[Docs] [txt|pdf|xml|html] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits] [IPR]

Versions: (draft-wang-hokey-erp-aak) 00 01 02 03 04 05 06 07 08 09 10 11 RFC 6630

Network Working Group                                             Z. Cao
Internet-Draft                                                   H. Deng
Intended status: Standards Track                            China Mobile
Expires: October 11, 2010                                        Y. Wang
                                                                   Q. Wu
                                           Huawei Technologies Co., Ltd.
                                                            G. Zorn, Ed.
                                                             Network Zen
                                                           April 9, 2010


EAP Re-authentication Protocol Extensions for Authenticated Anticipatory
                                 Keying
                      draft-ietf-hokey-erp-aak-00

Abstract

   The Extensible Authentication Protocol (EAP) is a generic framework
   supporting multiple types of authentication methods.

   The EAP Re-authentication Protocol (ERP) specifies extensions to EAP
   and the EAP keying hierarchy to support an EAP method-independent
   protocol for efficient re-authentication between the peer and an EAP
   re-authentication server through any authenticator.

   Authenticated Anticipatory Keying (AAK) is a method by which
   cryptographic keying material may be established prior to handover
   upon one or more candidate attachment points (CAPs), AAK uses the AAA
   infrastructure for key transport.

   This document specifies the extensions necessary to enable AAK
   support in ERP.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."




Cao, et al.             Expires October 11, 2010                [Page 1]

Internet-Draft                   ERP/AAK                      April 2010


   This Internet-Draft will expire on October 11, 2010.

Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  3
     2.1.  Standards Language . . . . . . . . . . . . . . . . . . . .  3
     2.2.  Acronyms . . . . . . . . . . . . . . . . . . . . . . . . .  3
   3.  ERP/AAK Overview . . . . . . . . . . . . . . . . . . . . . . .  4
   4.  ERP/AAK Key Hierarchy  . . . . . . . . . . . . . . . . . . . .  6
   5.  Packet and TLV Extension . . . . . . . . . . . . . . . . . . .  7
     5.1.  EAP-Initiate/Re-auth-Start Packet Extension  . . . . . . .  7
     5.2.  EAP-Initiate/Re-auth Packet Extension  . . . . . . . . . .  8
     5.3.  EAP-Finish/Re-auth extension . . . . . . . . . . . . . . .  9
     5.4.  TV/TLV and sub-TLV Attributes  . . . . . . . . . . . . . . 11
   6.  Lower Layer Considerations . . . . . . . . . . . . . . . . . . 12
   7.  AAA Transport Consideration  . . . . . . . . . . . . . . . . . 12
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
   9.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 12
   10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 13
     10.1. Normative References . . . . . . . . . . . . . . . . . . . 13
     10.2. Informative References . . . . . . . . . . . . . . . . . . 13














Cao, et al.             Expires October 11, 2010                [Page 2]

Internet-Draft                   ERP/AAK                      April 2010


1.  Introduction

   The Extensible Authentication Protocol (EAP) [RFC3748] is a generic
   framework supporting multiple types of authentication methods.  In
   systems where EAP is used for authentication, it is desirable to not
   repeat the entire EAP exchange with another authenticator.  The EAP
   Re-authentication Protocol (ERP) [RFC5296] specifies extensions to
   EAP and the EAP keying hierarchy to support an EAP method-independent
   protocol for efficient re-authentication between the peer and an EAP
   re-authentication server through any authenticator.  The re-
   authentication server may be in the home network or in the local
   network to which the peer is connecting.

   Authenticated Anticipatory Keying (AAK) [I-D.ietf-hokey-preauth-ps]
   is a method by which cryptographic keying material may be established
   prior to handover upon one or more candidate attachment points
   (CAPs).  AAK utilizes the AAA infrastructure for key transport.

   This document specifies the extensions necessary to enable AAK
   support in ERP.

2.  Terminology

2.1.  Standards Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119]

2.2.  Acronyms

   The following acronyms are used in this document; see the references
   for more details.

   AAA
      Authentication, Authorization and Accounting [RFC3588]

   CAP
      Candidate Attachment Point [I-D.ietf-hokey-preauth-ps]

   EA

      Abbreviation for "ERP/AAK"; used in figures

   ERP/AAK
      EAP Re-authentication Protocol Extensions for Authenticated
      Anticipatory Keying




Cao, et al.             Expires October 11, 2010                [Page 3]

Internet-Draft                   ERP/AAK                      April 2010


   MH
      Mobile Host

   SAP
      Serving Attachment Point [I-D.ietf-hokey-preauth-ps]

3.  ERP/AAK Overview

   ERP/AAK is intended to allow the establishment of cryptographic
   keying materials on one or more Candidate Attachment Points prior to
   the arrival of the MH at the Candidate Access Network (CAN).  The
   document also specifies a method by which the SAP may send the
   identities of neighboring attachment points to the peer in the EAP-
   Initiate/Re-auth-Start message.

   It is assumed that the peer has previously completed full EAP
   authentication.  Figure 1 shows the general protocol exchange by
   which the keying material is established on the CAP(s).

































Cao, et al.             Expires October 11, 2010                [Page 4]

Internet-Draft                   ERP/AAK                      April 2010


       +------+    +-----+    +-----+    +-----+    +-----------+
       | Peer |    | SAP |    |CAP1 |    |CAPx |    | EA Server |
       +--+---+    +--+--+    +--+--+    +--+--+    +-----+-----+
          |           |          |          |             |
       1. | [EAP-Initiate/       |          |             |
          | Re-auth-start        |          |             |
          | (E-flag)  |          |          |             |
          |<----------|          |          |             |
          |           |          |          |             |
       2. | EAP-Initiate/        |          |             |
          | Re-auth   |          |          |             |
          | (E-flag)  |          |          |             |
          |---------->|          |          |             |
       3. |           | AAA (EAP-Initiate/Re-auth(E-flag))|
          |           |---------------------------------->|
          |           |          |          |             |
          |           |          |          |   +---------+---------+
          |           |          |          |   | CA authorized &   |
       4. |           |          |          |   | authenticated;    |
          |           |          |          |   | EA keying         |
          |           |          |          |   | materials derived |
          |           |          |          |   +---------+---------+
          |           |          |          |             |
       5. |           |          |      AAA (pMSK)        |
          |           |          |          |<----------->|
          |           |          |<---------------------->|
          |           |          |          |             |
       6. |           | AAA (EAP-Finish/Re-auth(E-flag))  |
          |           |<----------------------------------|
          |           |          |          |             |
       7. | EAP-Finish/          |          |             |
          | Re-auth(E-flag)      |          |             |
          |<----------|          |          |             |
          |           |          |          |             |

                        Figure 1: ERP/AAK Operation

   ERP/AAK re-uses the packet format defined by ERP, but specifies a new
   flag to differentiate EAP early-authentication from EAP re-
   authentication.  The peer initiates ERP/AAK itself, or does so in
   response to an EAP-Initiate/Re-Auth-Start message from the SAP.  In
   this document, it is required that the SAP should support ERP/AAK.
   If either the peer or the SAP does not support ERP/AAK, it should
   fall back to full EAP authentication.

   The peer sends an early-authentication request message (EAP-Initiate/
   Re-auth with the 'E' flag set) containing the keyName-NAI, the NAS-
   Identifier, rIK and sequence number.  The realm in the keyName-NAI



Cao, et al.             Expires October 11, 2010                [Page 5]

Internet-Draft                   ERP/AAK                      April 2010


   field is used to locate the peer's ERP/AAK server.  The NAS-
   Identifier is used to identify the CAP(s).  The rIK is used to
   protect the message.  The sequence number is used for replay
   protection.  To avoid the same pre-established Master Session Key
   (pMSK) being derived for multiple CAPs, the sequence number MUST be
   unique for each CAP.

   The SAP encapsulates the early-authentication message into a AAA
   message and sends it to the peer's ERP/AAK server in the realm
   indicated in the keyName-NAI field.

   Upon receiving the message, the ERP/AAK server first checks its
   integrity and freshness, then authenticates and authorizes the CAP(s)
   presented in the NAS-Identifier TLV(s).  After the CAP(s) is
   authenticated and authorized successfully, the ERP/AAK server derives
   the pRK and the subsequent pMSK for each CAP.

   The ERP/AAK server transports the pMSK to the authenticated and
   authorized CAP(s) via AAA as described in Section 7.  After the
   keying materials are delivered, the ERP/AAK server should determine
   each CA whether accepts the pMSK and whether the peer could be
   attached to.

   At last, the ERP/AAK server sends the early-authentication finish
   message (EAP-Finish/Re-auth with E-flag) containing the determinate
   CAP(s) to the peer via the SAP.

4.  ERP/AAK Key Hierarchy

   As an optimization of ERP, ERP/AAK uses key hierarchy similar to that
   of ERP.  The EMSK is used to derive the ERP/AAK pre-established Root
   Key (pRK).  Similarly, the ERP/AAK pre-established Integrity Key
   (pIK) and the pre-established Master Session Key (pMSK) are derived
   from the pRK.  The pMSK is established for the CAP(s) when the peer
   early authenticates to the network.  The pIK is established for the
   peer to re-authenticate the network after handover.  The hierarchy
   relationship is illustrated in Figure 2, below.

                                DSRK    EMSK
                                 |       |
                             +---+---+---+---+
                             |       |       |
                            pRK     rRK     ...

                                 Figure 2

   The EMSK and DSRK both can be used to derive the pRK.  In general,
   the pRK is derived from the EMSK in case of the peer moving in the



Cao, et al.             Expires October 11, 2010                [Page 6]

Internet-Draft                   ERP/AAK                      April 2010


   home AAA realm and derived from the DRSK in case of the peer moving
   in the visited AAA realm.  The DSRK is delivered from the EAP server
   to the ERP/AAK server as specified in [I-D.ietf-dime-local-keytran].
   If the peer has previously authenticated by means of ERP or ERP/AAK,
   the DSRK SHOULD be directly re-used.

                                    pRK
                                     |
                            +--------+--------+
                            |        |        |
                           pIK     pMSK      ...

                                 Figure 3

   The pRK is used to derive the pIK and pMSK for the CAP(s).  Different
   sequence numbers for each CAP MUST be used to derive the unique
   pMSK(s).

5.  Packet and TLV Extension

   This section describes the packet and TLV extensions for the ERP/AAK
   exchange.

5.1.  EAP-Initiate/Re-auth-Start Packet Extension

   Figure 4 shows the changed parameters contained in the EAP-Initiate/
   Re-auth-Start packet defined in RFC 5296 [RFC5296].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |  Identifier   |            Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |E| Reserved    |     1 or more TVs or TLVs     ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 4

   Flags

   'E' - The E flag is used to indicate early-authentication.

   Reserved: MUST be set to 0.

   TVs and TLVs

   NAS-Identifier: As defined in [RFC5296], it is carried in a TLV
   payload.  It is used by the SAP to advertise the identifier(s) of



Cao, et al.             Expires October 11, 2010                [Page 7]

Internet-Draft                   ERP/AAK                      April 2010


   CAP(s) to the peer.  One or more NAS-Identifier TLVs MAY be included
   in the EAP-Initiate/Re-auth-Start packet if the SAP has performed CAP
   discovery.

   If the EAP-Initiate/Re-auth-Start packet is not supported by the
   peer, it is discarded silently.

5.2.  EAP-Initiate/Re-auth Packet Extension

   Figure 5 illustrates the changed parameters contained in the EAP-
   Initiate/Re-auth packet defined in RFC 5296 [RFC5296].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |  Identifier   |            Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |R|x|L|E|Resved |             SEQ               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 1 or more TVs or TLVs                         ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Cryptosuite  |         Authentication Tag                     ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 5

   Flags

   'x' - The x flag is reserved.  It MUST be set to 0.

   'E' - The E flag is used to indicate early-authentication.

   The rest of the 4 bits (Resved) MUST be set to 0 and ignored on
   reception.

   SEQ

   A 16-bit sequence number is used for replay protection.

   TVs and TLVs

   keyName-NAI: As defined in RFC 5296 [RFC5296], this is carried in a
   TLV payload.  The Type is 1.  The NAI is variable in length, not
   exceeding 253 octets.  The username part of the NAI is the EMSKname
   used identify the peer.  The realm part of the NAI is the peer's home
   domain name or the domain to which the peer is currently attached.
   Exactly one keyName-NAI attribute SHALL be present in an EAP-
   Initiate/Re-auth packet.



Cao, et al.             Expires October 11, 2010                [Page 8]

Internet-Draft                   ERP/AAK                      April 2010


   NAS-Identifier: As defined in RFC 5296 [RFC5296], it is carried in a
   TLV payload.  It is used to indicate the identifier of a CAP.  One or
   more NAS-Identifier may be included in the EAP-Initiate/Re-auth
   packet.

   Sequence number: It is carried in a TV payload.  The Type is TBD
   (which is lower than 128).  It is used in the derivation of the pMSK
   for each CAP to avoid multiple CAP using the same pMSK.  Each NAS-
   Identifier in the packet MUST be associated with a unique sequence
   number.

   Cryptosuite

   This field indicates the integrity algorithm used for ERP/AAK.  Key
   lengths and output lengths are either indicated or are obvious from
   the cryptosuite name.  We specify some cryptosuites below:

   0  RESERVED

   1  HMAC-SHA256-64

   2  HMAC-SHA256-128

   3  HMAC-SHA256-256

   HMAC-SHA256-128 is mandatory to implement and should be enabled in
   the default configuration.

   Authentication Tag

   This field contains the integrity checksum over the ERP/AAK packet,
   excluding the authentication tag field itself.  The length of the
   field is indicated by the Cryptosuite.

   If the EAP-Initiate/Re-auth packet is not supported by the SAP, it is
   discarded silently.

5.3.  EAP-Finish/Re-auth extension

   Figure 6 shows the changed parameters contained in the EAP-Finish/
   Re-auth packet defined in [RFC5296].










Cao, et al.             Expires October 11, 2010                [Page 9]

Internet-Draft                   ERP/AAK                      April 2010


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |  Identifier   |            Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |R|x|L|E|Resved |             SEQ               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                 1 or more TVs or TLVs                         ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Cryptosuite  |         Authentication Tag                     ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 6

   Flags

   'x' - The x flag is reserved.  It MUST be set to 0.

   'E' - The E flag is used to indicate early-authentication.

   The rest of the 4 bits (Resved) MUST be set to 0 and ignored on
   reception.

   SEQ

   A 16-bit sequence number is used for replay protection.

   TVs and TLVs

   keyName-NAI: As defined in[RFC5296], this is carried in a TLV
   payload.  The Type is 1.  The NAI is variable in length, not
   exceeding 253 octets.  The realm part of the NAI is the home domain
   name.  Exactly one keyName-NAI attribute SHALL be present in an EAP-
   Finish/Re-auth packet.

   ERP/AAK-Key: It is carried in a TLV payload for the key container.
   The type is TBD.  One or more than one ERP/AAK-key may be present in
   an EAP-Finish/Re-auth packet.

   ERP/AAK-Key ::=
        { sub-TLV: NAS-Identifier }
        { sub-TLV: pMSK-lifetime }
        { sub-TLV: pRK-lifetime }
        { sub-TLV: Cryptosuites }

      NAS-Identifier: It is carried in a sub-TLV payload.  It is used to
      indicate the identifier of candidate authenticator.  There exactly
      one instance of the NAS-Identifier TLV MUST be present in the ERP/



Cao, et al.             Expires October 11, 2010               [Page 10]

Internet-Draft                   ERP/AAK                      April 2010


      AAK-Key TLV.

      pMSK-lifetime: It is carried in a sub-TLV payload.  The Type is
      TBD.  The value field is a 32-bit field and contains the lifetime
      of the pMSK in seconds.  If the 'L' flag is set, the pMSK Lifetime
      attribute SHOULD be present.

      pRK-lifetime: It is carried in a sub-TLV payload.  The Type is
      TBD.  The value field is a 32-bit field and contains the lifetime
      of the pRK in seconds.  If the 'L' flag is set, the pRK Lifetime
      attribute SHOULD be present.

      List of Cryptosuites: This is a sub-TLV payload.  The Type is TBD.
      The value field contains a list of cryptosuites, each 1 octet in
      length.  The allowed cryptosuite values are as specified in
      Section 5.2, above.  The server SHOULD include this attribute if
      the cryptosuite used in the EAP-Initiate/Re-auth message was not
      acceptable and the message is being rejected.  The server MAY
      include this attribute in other cases.  The server MAY use this
      attribute to signal to the peer about its cryptographic algorithm
      capabilities.

   Cryptosuite

   This field indicates the integrity algorithm and PRF used for ERP/
   AAK.  Key lengths and output lengths are either indicated or are
   obvious from the cryptosuite name.

   Authentication Tag

   This field contains the integrity checksum over the ERP/AAK packet,
   excluding the authentication tag field itself.  The length of the
   field is indicated by the Cryptosuite.

5.4.  TV/TLV and sub-TLV Attributes

   The TV and TLV attributes are the same specified as section 5.3.4 of
   [RFC5296].  In this document, some new TLV(s) which may be present in
   the EAP-Initiate or EAP-Finish messages are defined as below:

      Sequence number - This is a TV payload.  The type is TBD.

      ERP/AAK-Key - This is a TLV payload.  The type is TBD.

   The format of sub-TLV attributes that may be present in the EAP-
   Initiate or EAP-Finish messages is:





Cao, et al.             Expires October 11, 2010               [Page 11]

Internet-Draft                   ERP/AAK                      April 2010


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    Length     |            Value ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The following types are defined in this document:

      pRK Lifetime: This is a TV payload.  The type of this sub-TLV is
      TBD.

      pMSK Lifetime: This is a TV payload.  The type of this sub-TLV is
      TBD.

      List of Cryptosuites: This is a TLV payload.  The type of this
      sub-TLV is TBD.

6.  Lower Layer Considerations

   Similar to ERP, the lower layer specifications may need to be revised
   to support ERP/AAK.  Refer to section 6 of [RFC5296] for additional
   guidance.

7.  AAA Transport Consideration

   AAA transport of ERP/AAK message is the same as AAA transport of the
   ERP message specified ERP [RFC5296].  In addition, the document
   requires AAA transport of the ERP/AAK keying materials delivered by
   the ERP/AAK server to the CAP.  Hence, a new Diameter ERP/AAK
   application message should be specified to transport the keying
   materials.

8.  Security Considerations

   TBD.

9.  IANA Considerations

   New TLV types:

      NAS-Identifier

      Sequence number

      ERP/AAK-Key

   New sub-TLV types:




Cao, et al.             Expires October 11, 2010               [Page 12]

Internet-Draft                   ERP/AAK                      April 2010


      NAS-Identifier

      pRK Lifetime

      pMSK Lifetime

      List of Cryptosuites

10.  References

10.1.  Normative References

   [RFC2119]                      Bradner, S., "Key words for use in
                                  RFCs to Indicate Requirement Levels",
                                  BCP 14, RFC 2119, March 1997.

   [RFC5296]                      Narayanan, V. and L. Dondeti, "EAP
                                  Extensions for EAP Re-authentication
                                  Protocol (ERP)", RFC 5296,
                                  August 2008.

10.2.  Informative References

   [I-D.ietf-dime-local-keytran]  Zorn, G., Wu, W., and V. Cakulev,
                                  "Diameter Attribute-Value Pairs for
                                  Cryptographic Key Transport",
                                  draft-ietf-dime-local-keytran-02 (work
                                  in progress), March 2010.

   [I-D.ietf-hokey-preauth-ps]    Ohba, Y., Wu, Q., and G. Zorn,
                                  "Extensible Authentication Protocol
                                  (EAP) Early Authentication Problem
                                  Statement",
                                  draft-ietf-hokey-preauth-ps-12 (work
                                  in progress), December 2009.

   [RFC3588]                      Calhoun, P., Loughney, J., Guttman,
                                  E., Zorn, G., and J. Arkko, "Diameter
                                  Base Protocol", RFC 3588,
                                  September 2003.

   [RFC3748]                      Aboba, B., Blunk, L., Vollbrecht, J.,
                                  Carlson, J., and H. Levkowetz,
                                  "Extensible Authentication Protocol
                                  (EAP)", RFC 3748, June 2004.






Cao, et al.             Expires October 11, 2010               [Page 13]

Internet-Draft                   ERP/AAK                      April 2010


Authors' Addresses

   Zhen Cao
   China Mobile
   53A Xibianmennei Ave., Xuanwu District
   Beijing, Beijing  100053
   P.R. China

   EMail: caozhen@chinamobile.com


   Hui Deng
   China Mobile
   53A Xibianmennei Ave., Xuanwu District
   Beijing, Beijing  100053
   P.R. China

   EMail: denghui02@gmail.com


   Yungui Wang
   Huawei Technologies Co., Ltd.
   Floor 10, HuiHong Mansion, No.91 BaiXia Rd.
   Nanjing, Jiangsu  210001
   P.R. China

   Phone: +86 25 84565893
   EMail: w52006@huawei.com


   Qin Wu
   Huawei Technologies Co., Ltd.
   Floor 12, HuiHong Mansion, No.91 BaiXia Rd.
   Nanjing, Jiangsu  210001
   P.R. China

   Phone: +86 25 84565892
   EMail: sunseawq@huawei.com













Cao, et al.             Expires October 11, 2010               [Page 14]

Internet-Draft                   ERP/AAK                      April 2010


   Glen Zorn (editor)
   Network Zen
   1463 East Republican Street
   #358
   Seattle, Washington  98112
   USA

   EMail: gwz@net-zen.net











































Cao, et al.             Expires October 11, 2010               [Page 15]


Html markup produced by rfcmarkup 1.109, available from https://tools.ietf.org/tools/rfcmarkup/