[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits] [IPR]

Versions: 00 01 02 03 04 05 06 07 08 09 RFC 4166

INTERNET-DRAFT                                                 L. Coene
Internet Engineering Task Force                                 Siemens
Issued:  30 October 2000                                    J. Loughney
Expires: 30 April 2001                                            Nokia
                                                              I. Rytina
                                                               Ericsson
                                                                 L. Ong
                                                        Nortel Networks



           Signalling Transport over SCTP applicability statement
          <draft-ietf-sigtran-signalling-over-sctp-applic-01.txt>



Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026. Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
      http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-
   Draft Shadow Directories can be accessed at
      http://www.ietf.org/shadow.html

Abstract

   This document describes the applicability of the Stream Control
   Transmission Protocol(SCTP) for transport of signalling information
   over IP infrastructure. A few signalling application are descibed
   such as signalling System Nr7(SS7), Digital Subsciber Service 1/2
   (DSS1/2).... Specific info on signalling transport over
   IP(addressing, routing) is also provided. The use and specification
   of each of the adaptation layers for signalling transport in
   conjunction with SCTP is described.







Coene, et al.                Informational                      [Page 1]

Draft    Signalling Transport over SCTP applicability statementOctober 2000





















































Coene, et al.                Informational                      [Page 2]

                           TTTTaaaabbbblllleeee ooooffff CCCCoooonnnntttteeeennnnttttssss



   Signalling transport over SCTP Applicability statement .........   ii
   Chapter 1: Introduction ........................................    1
   Chapter 2: Signalling tranport using SCTP ......................    3
   Chapter 2.1: Adaptation layers for SCTP ........................    4
   Chapter 2.2: How to define and use adaptation layers ...........    4
   Chapter 2.3: Adaptation layers for signalling transport ........    6
   Chapter 2.4: General  issues for transporting signalling
   information over SCTP ..........................................    9
   Chapter 2.4.1: Congestion control issues in signalling infor-
   mation .........................................................    9
   Chapter 2.4.2: Multihoming .....................................   10
   Chapter 2.4.3: Routing protocols ...............................   11
   Chapter 2.4.4: Network Management ..............................   11
   Chapter 2.4.5: Congestion control and aviodance ................   11
   Chapter 2.3.6: Use of QOS methods ..............................   12
   Chapter 2.3.7: Multiple associations ...........................   13
   Chapter 2.4.8: Efficiency ......................................   13
   Chapter 2.4.9: Bundeling .......................................   13
   Chapter 2.4.10: Portnumbers ....................................   14
   Chapter 2.4.11: Sequenced/non-sequenced delivery ...............   14
   Chapter 2.4.12: Stream Usage ...................................   14
   Chapter 2.4.13: Network aperance Identifier ....................   14
   Chapter 2.4.14: Segmentation of messages .......................   15
   Chapter 3: Specific issues of SS7 signalling adaptation
   layers .........................................................   15
   Chapter 3.1: MTP lvl3 User Adaptation Layer(M3UA) ..............   15
   Chapter 3.2: MTP lvl2 User Adapatation Layer(M2UA) .............   18
   Chapter 3.3: SCCP user adaptation layer(SUA) ...................   20
   Chapter 3.4: Addressing and signalling .........................   20
   Chapter 4: Specific issues of User-Network signalling adapta-
   tion layers ....................................................   30
   Chapter 4.1 ISDN User Adaptation Layer(IUA) ....................   30
   Chapter 6: Security considerations .............................   32
   Chapter 7: References and related work .........................   33
   Chapter 8: Authors address .....................................   35



1 INTRODUCTION





Coene, et al.                Informational                      [Page 1]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     This applicability statement document covers subject terminology
and makes a overview of the solutions for transporting SS7, ISDN user or
any other form of signalling information over Internet Protocol infras-
tructure. This includes also a overview of the available Internet and
SS7 addressing. It tries to explain what the meaning is of the different
addressing modes in the internet and Signaling System Nr. 7 and where
their added value resides. Some example scenario's are provided as exam-
ple of how applications in the SS7 and/or internet may be able to reach
each other.

1.1 Terminology


     The following functions are commonly identified in related work:



     Stream Control Transmission Protocol(SCTP):  a transport protocol
     that will deliver messages in a relialable way to its peer. See
     [RFCSCTP] and [SCTPAS].

     Signal Transfer Point (STP):  This is a node in an SS7 network that
     routes signalling messages based on  their destination address in
     the SS7 network

     Signal Relay Point (SRP):  This is a node in an SS7 network that
     routes signalling messages based on  their called party address in
     the SS7 network. (Translates Called party address to a destination
     pointcode and also translates Calling prty address when needed)

     Stream Control Transmission Protocol(SCTP):  A transport protocol
     designed for the reliable transport of signalling information over
     a connectionless network( example: the Internet)

     Called Party Address(CLD):  Address of the party the message wants
     to reach.(Party can be a node, person, network..., a entity in
     general)(=Destination address)

     Calling Party Address(CLG):  Address of the party from which the
     message originated.(Originating address)

     Global Title:(GT) A globally unique identifier used in the CLD
     and/or CLG for identifying a entity. A global title can consist of
     a pointcode, translation type, nature of address, numbering plan
     and the title itself(=digits).

     Pointcode(PC) The Pointcode in SS7 and IP have the same meaning,
     but not necessary the same size and interpretation. A pointcode



Coene, et al.                Informational                      [Page 2]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     identifies a node within a particular network.

     Routing Indicator:  The routing indicator tells the SCCP routing
     function which part of the address has to use for routing the
     message(SSN + global title or SSN + pointcode).

     Translation Type Number(TTN): The translation type number indicates
     the translation type of the address.

     Numbering Plan(NP):  This indicates the numbering plan to which the
     digits belong: that can be E164, E212, private numbering plans,
     Internet Numbering Plan, .....

     Nature-Of-address(NA):  The nature of address indicates whether a
     address is for national, international or other use.

     Encoding Scheme(ES):  The encoding scheme indicates how the digits
     are encoded. Encoding is normally in Binary Coded decimal(BCD) for-
     mat.

     SubSystem Number(SSN) The SSN indicates the application entity that
     must be reached in the final destination node of the msg

     Global Titel Format(GTI):  Indicates which of the above mentioned
     parameters are actually present in the party address. If some
     parameters are not present in the address then default parameters
     are used for executing the Global Title Translation.

     Portnumber:  Indicates on the tranport level in IP which applica-
     tion needs to be reached in the layer above.

     Subsystem number(SSN):  Indicates on the networklayer in SS7 which
     application needs to be reached in the application layer.

     Subnet: a subnet is a collections of nodes, belonging to the same
     operator/ISP or collective of operators/ISP's. This may be
     equivalent with a Internet domain. A MTP net is always a subnet.
     Subnet may be owned by more than one operator(example MTP NAT0 sub-
     net in the US)

     Transport Address:  An IP address and a port number pair which
     identifies a SCTP association.

2  Signalling tranport using the Stream Control Transmission Protocol
     (SCTP)


The Stream Control Transmission Protocol(SCTP) provides a high



Coene, et al.                Informational                      [Page 3]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


relialable, redundant transport between 2 endpoints. It contains pro-
cedures that will throttle the traffic in case of message loss(meaning
congestion somewhere along the path), protecting the network against a
collapse of the network service. The interface between SCTP and its sig-
nalling applications is handled via adaptation layers which provide a
intermediation layer so that the upper layer signalling protocols of a
certain protocol stack architecture does not have to change their inter-
face towards the transport medium and internal functionality when they
start using SCTP instead of a other transport protocol. Another issue is
that the supported protocol stack architecture will conform to the
internet architecture as described in [RFCblabla] without compromising
its own rules.

For more information of how to use SCTP see [SCTPAS]. The inner workings
of SCTP are described in [RFCSCTP].

2.1  Adaptation layers for SCTP

Adaptation layers are used for transporting protocols without having to
change the interfaces between the tranported protocol and SCTP. SCTP is
a stream based protocol while some application of SCTP are message based
protocols. Without a adaptation layer, the transported protocol would
have to change in protocol structure or its underlaying interface or
some intermediate layer would be necessary.

It is the task of the adaptation layer to present the view towards its
application protocol as if it was the original protocol or protocol
stack that it is substituting for. therefore a adaptation layer is more
aptly called a Foo User adaptation layer, with foo the protocol is sub-
stituted for.

2.2  How to define and Use adaptation layers


Many different signaling applications may use SCTP for transporting sig-
nalling information. Signalling information usaully have their own
stacks and architecture. In order to let a certain signalling protcol
run over SCTP, first of all must be determined which parts of the old
protocol stack must be replaced. Layers can only be replaced starting
from the bottom of the protocol stack up. Then the replacement consist-
ing of SCTP + an User adaptation layer is inserted in the place of the
old protocol stack layers. The name of the user adaptation layer then
describes up till which layer of the old protocol stack is replaced.
Example M3UA mean that all the MTP levels up till MTP lvl3 area replaced
by SCTP+M3UA.

The basic architecture is as in Figure 2.4.1 :




Coene, et al.                Informational                      [Page 4]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


                User/Application level Protocols
                         |    |    |
             +------------------------------------+
             |        User Adaptation modules     |
             +------------------------------------+
                              |
             +------------------------------------+
             |Stream Control Transmission protocol|
             +------------------------------------+
                              |
             +------------------------------------+
             |       Standard IP Transport        |
             +------------------------------------+
                              |
                      Network Layer (IP)


       Figure 2.4.1:  Transport Components

The three components of the transport protocol are :

(1)  Adaptation modules that support specific primitives, e.g. manage-
     ment indications, required by a particular user/ application proto-
     col.


(2)  the Stream Control Transmission Protocol itself that supports a
     common set of reliable transport functions.


(3)  a standard IP transport/network protocol  provided by the operating
     system. In some network scenarios, it has been recognised that TCP
     can provide limited (but sufficient) reliable transport functional-
     ity for some applications, and this is discussed later in this
     document.

     Each of the interfaces described above may be implementation depen-
     dant. They are in general not specified by the protocol documents.

     a few examples of user adaptation layers are shown in the figure
     2.4.2:










Coene, et al.                Informational                      [Page 5]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


                   User/Application level Protocols
                 :
                 :                  MTP lvl3     TCAP     SCCP,ISUP
                 |                      |         |           |
      +-----------------------+ - - +------+ - +------+ - +-------+
      |User Adaptation modules|     | MTP  |   | SCCP |   | MTP 3 |
      +-----------------------+     | lvl2 |   |------|   |-------|
      |        SCTP           |     |      |   | MTP 3|   | MTP 2 |
      +-----------------------+     |- - - |   |------|   |-------|
      |   IP Transport        |     | MTP  |   | MTP 2|   | MTP 1 |
      +-----------------------+     | lvl1 |   |------|   |       |
                |                   |      |   | MTP 1|   |       |
         Network Layer (IP)         |      |   |      |   |       |

                (a)                    (b)       (c)         (d)

         Figure 2.4.1:  equivalence  of  adaptation  layer  to  replaced
     layer

     (b) User adaptation layer = MTP lvl2 user adaptation layer (M2UA)
     (c)  "       "        "   = SCCP user adapatation layer (SUA) (d)
     "       "        "   = MTP lvl3 User adaptation layer (M3UA)


2.3 Adapation layers for signalling transport


Currently, there are four adaptation layers, to support carrying of SS7
application protocols over IP. These adaptation layers are being
developed for different purposes, and there is no assumption that they
should interwork - i.e. - M2UA carries M3UA.  They should be thought of
as individual protocols for specific uses.

Adataption layers can have a peer-to-peer or master-slave relationship.
The master-slave relationship is mostly envisioned for very simple net-
works while the peer-to-peer case is more for fullfledged signalling
networks(akind to the present SS7 network worldwide).

2.3.1 IUA


There is a need for Switched Circuit Network (SCN) signaling protocol
delivery from an ISDN Signaling Gateway (SG) to a Media Gateway  Con-
troller (MGC).  The delivery mechanism should meet the following cri-
teria


     *  Support for transport of the Q.921 / Q.931 boundary primitives



Coene, et al.                Informational                      [Page 6]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     *  Support for communication between Layer Management modules on SG
     and MGC

     *  Support for management of active associations between SG and MGC


This draft supports both ISDN Primary Rate Access (PRA) as well as Basic
Rate Access (BRA) including the support for both point-to-point mode and
point-to-multipoint modes of communication. QSIG adaptation layer
requirements do not differ from Q.931 adaptation layer, hence the pro-
cedures described in this draft are also applicable to QSIG adaptation
layer.

2.3.2 M2UA


There is a need for SCN signaling protocol delivery from a Signaling
Gateway (SG) to a Media Gateway Controller (MGC) or IP Signaling Point
(IPSP).  The delivery mechanism should meet the following criteria:


     *  Support for MTP Level 2 / MTP Level 3 interface boundary

     *  Support for communication between Layer Management modules on SG
     and MGC

     *  Support for management of active associations between the SG and
     MGC


In other words, the Signaling Gateway will transport MTP Level 3 mes-
sages to a Media Gateway Controller (MGC) or IP Signaling Point (IPSP).
In the case of delivery from an SG to an IPSP, the SG and IPSP function
as traditional SS7 nodes using the IP network as a new type of SS7 link.
This allows for full MTP Level 3 message handling and network management
capabilities.

2.3.3 M3UA


There is a need for SCN signaling protocol delivery from an SS7 Signal-
ing Gateway (SG) to a Media Gateway Controller (MGC) or IP-resident
Database as described in the Framework Architecture for Signalling Tran-
sport [11].  The delivery mechanism should meet the following criteria:


     *  Support for transfer of all SS7 MTP3-User Part messages (e.g.,
     ISUP, SCCP, TUP, etc.)



Coene, et al.                Informational                      [Page 7]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     *  Support for the seamless operation of MTP3-User protocol peers

     *  Support for the management of SCTP transport associations and
     traffic between an SG and one or more MGCs or IP-resident Databases

     *  Support for MGC or IP-resident Database failover and loadsharing

     *  Support for the asynchronous reporting of status changes to
     management


In simplistic terms, the SG will terminate SS7 MTP2 and MTP3 protocols
and deliver ISUP, SCCP and/or any other MTP3-User protocol messages over
SCTP transport associations to MTP3-User peers in MGCs or IP-resident
Databases.

2.3.4 SUA


This document details the delivery of SCCP-user messages (MAP & CAP over
TCAP, RANAP, etc.) over IP, from an SS7 Signaling Gateway (SG) to an
IP-based signaling node (such as an IP-resident Database) as described
in the Framework Architecture for Signaling Transport [11].  The
delivery mechanism SHOULD meet the following criteria:


     *  Support for transfer of SS7 SCCP-User Part messages (e.g., TCAP,
     RANAP, etc.)

     *  Support for SCCP connectionless service.

     *  Support for SCCP connection oriented service.

     *  Support for the seamless operation of SCCP-User protocol peers

     *  Support for the management of SCTP transport associations
     between an SG and one or more IP-based signaling nodes).

     *  Support for distributed IP-based signaling nodes.

     *  Support for the asynchronous reporting of status changes to
     management


2.3.5 SIP


/* before editor(Whose name I do not know) gets shot: should it be



Coene, et al.                Informational                      [Page 8]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


mentioned here */



2.4 General issues for transporting signalling info over SCTP

2.4.1 Congestion control issues in signalling transport


Congestion control is a primary issue in any network, be it connection-
oriented or connectionless. The basic characteristic of congestion con-
trol in SCTP have been described in [RFCOENE], but some signalling pro-
tocols do have their own congestion control and avoidance techniques
which must be used even if the signalling transport from point A to B
runs completely over IP networks.

These techniques may interact with the congestion control procedures in
SCTP.

The basic principle is that SCTP will lead the network, in one or more
points along the transmission path, into or near congestion. This is due
to the fact that SCTP will try to share bandwith with other associations
or connections. That requires a somewhat steady stream of messages along
the path from A to B. Unfortunaly most signalling applications do not
have such a behaviour: it consists of a rather limited exchange of mes-
sages between the 2 endpoints with mostely a request - response style of
message exchange. Such a message exchange does not trigger very easily
the congestion control procedure as defined in [RFCSCTP] and [RFCOENE].
It is only when a lot of similar message exchanges(belonging to a lot of
different connections) are taken together, that at that moment only the
proper SCTP congestion procedures can kick in to produce the required
result. With other means SCTP(TCP/MTP lvl2) requires a flow/stream (it
explain the stream part of the name of the SCTP protocol) to operate its
congestion algorithms.

Streams will always try to utilse the maximal bandwith of a router or
link,in contrast transaction based message exchanged will sometimes
utilse the maximal bandwith of a router or link. The net result is the
same, the message gets lost during congestion, the way in how it was
detected is also the same but the way in which it is handle for the
application is different. In transaction based messaging, the end node
has no knowledge of the stream and does not want to know, assuming in
the first place that it was possible to know. It has to know the final
endpoint(identified by its address, be it a Pointcode and/or a Name).

In classical SS7 networks Pointcodes are local to the network of a cer-
tain provider, they are never global(meaning global on a planetary
scale). In exceptional cases can they be used if both endpoints are



Coene, et al.                Informational                      [Page 9]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


located within the same provider network.  The more general way of
addressing endpoints is by global titles(GT) and there  the rule is that
the endpoint is part of a collection of endpoints with the same service
capability and a particular endpont is selected the first of the
request-response message sequence, the rest of the sequence is routed to
that same endpoint. The selection of the particular server is based on
its own congestion level/ QOS level or whatever service level name
attributed. The selection is with other words a local descision made at
a certain point. Thus transactions generated from the same endpoint A
towards the name B could possible wind up distributed over a unknown
number of servers which would have to have congestion controlled for a
very few messages(meaning the congestion control algorithms never gets a
chance to kick in at all -> conclusion: no congestion control, at least
not in the end-to-end congestion control meaning)

That means that local congestion control should be employed for transac-
tion based messages exchanges, even when used in the internet. The local
congestion control methods are used by M3UA and SUA and are described
more in detail in the management paragraph.


2.4.2  SCTP Multihoming


Redundant communication between 2 SCTP endpoints is achieved by using
multihoming where the endpoint is able to send/receive over more than
one IP transport address.

Under the assumption that every IP transport address will have a
seperate and diverse path towards the remote endpoint, (this is the
responsability of the routing protocols(3.2.4) or of manual configura-
tion), if the transport to one of the IP address/port (= 1 particular
path) fails then the traffic can migrate to the other remaining IP
address/ports(= other paths).

Multihoming could also be used for sharing the traffic load across the
different paths. However as the througput of any of the paths is not
known in advance and constantly changes due to the actions of other
associations and transport protocols along that particular path, this
would require very tight feedback of the paths to the loadsharing func-
tions of the adaptation layer. It would also require to store the
congestion information on path basis instead of on assoication
basis(association = single state per association, one or more paths =
one or more states per asociation).

2.4.3 Routing protocols





Coene, et al.                Informational                     [Page 10]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


In order to provide redundant paths for a certain SCTP association
throughout the network, Routing protocols must support multihoming and
the endnodes must have at LEAST one transport address(that is have more
than 1 interface with a IP address).

It is advisable to let the originator network layer choose from which
source addresss it can send the datagram towards the destination because
the paths are based on source, destination pair.  Mosts hosts only look
at the "to" address to determine which interface the message goes out,
based on the routing tables. Once the interface is selected, if the host
network layer is allowed to choose the source, it will happily put in
the source address most closely tied to the interface (assuming you have
bound all interfaces this means the source address of that interface).
By letting the network layer choose the source adres, it may select
sub-optimal paths for return messages. If transport layer should select
both source and destination address, it will NOT change what interface
it goes out unless the network layer is doing strict source/destination
based addressing.

Influence of the IP routing protocols on M3UA routing and SCCP routing.
Intradomain vs Interdomain

          - RIP

          - OSPF

          - BGMP


2.4.4 Network Management


Management messages are exchanged between the M3UA, SUA, IUA and M2UA
peers for exchanging and updating the status of the signalling nodes or
associations. The status describes the state of teh node, or of the
applications located on a certain node. They might also indicated the
load of a certain node.



2.4.5 Congestion control & avoidance


A general overview of congestion control and avoidance can be found in
the SCTP applicability statement[RFCSCTPA].

However some particular restrictions migth be observed when using SCTP
for transporting signalling info over IP infrastructure. This



Coene, et al.                Informational                     [Page 11]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


restrictions must be aplied with care as in most cases, the SCTP associ-
ation is never in complete full control of the links between the 2 nodes
exchanging the signalling info. See paragraph 2.3.12, use of QOS
methods.

This restrictions are mostly based on restriction found in the original
protocol, the adaptation layer is replacing. (Example:  boundaries on
message transmission time, retransmission timers and so on). Sometimes
the restriction has a direct impact on some of SCTP protocol variables
which might to be tunable for tranporting signalling traffic.


2.4.6  Use of QOS methods


SCTP is a end-to-end protocol which cannot guarantee the quality-of-
service along the complete path taken by the messages of that particular
association. It only guarantees that a message will be deliverred wintin
a certain timeframe or otherwise be lost. If more guarantees are
required(example: on the timeframe, message loss...) for improving the
relialability of the transport, some form of QOS mechanism may be
needed.


(1)  Overprovisioning
      Overprovisioning of the links so that the total traffic running
     over over the link never excedes the link capacity.  In practice,
     this may be difficult to ensure reliably. This solution will try to
     address the message loss. However the effect of overprovisioning is
     conunteracted by the workings of SCTP itself, which will try to
     utilise the full bandwitdh of the links/nodes along its path.  If
     the same performance as MTP is required(regarding msg delays and
     msg delivery), then it is advisable to assign at most a single SCTP
     association to a IP link. This would also mean that the 2 endpoints
     would be directly interconnected. A router may be present but
     should carry only the traffic of those SCTP associations between
     the 2 nodes. Any router that might be present and carries unrelated
     traffic would interfer with the SCTP association esspecially in
     high load condition. Due the backoff of SCTP in high load condi-
     tions, that would mean that for example 2 associations would get
     each about the 50% of the link bandwith or router capacity if both
     where trying to run at the highest transmission rate
     possible(without packet loss).

     If another transport protocol which does not behave as SCTP and/or
     TCP would be running on the same link, or through the same router
     as the signalling traffic, then the signalling traffic may be
     pushed aside by the more aggressive transport protocol.



Coene, et al.                Informational                     [Page 12]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     The general rule is that if the associations try to obtain maximum
     throughput accross a single link in absence of any other traffic,
     they will over a long time divide the bandwith up in equal
     spaces(example 4 users => bandwith of 1 user = Total linkbandwith /
     4)

     If agressive transport protocols are used, then the SCTP assocai-
     tion will be pushed to use minimal bandwith(mathematical speaking :
     bandwith use of SCTP will go to 0)


(2)  Specific intranet Use of a private network solely for signalling
     transport purposes. Private networks may allow better control and
     monitoring of resources available.  However the same observation as
     for overprovionning aplies.


(3)  Differentiated services: by providing a certain codepoint in the
     Type-of-service field (TOS), certain Differential services can be
     selected.  Setting the code point for signaling transport requires
     some thought.  It is good practice to give the signaling transport
     a higher priority than the traffic responsible for the signaling.
     However the same bandwith sharing observations aplies if more than
     one association uses the same differential service codepoint.


(4)  Integrated services By use of integrated services [RFC2208],
     resources are reserved for signaling transport.  If resources are
     unavailable for to initiate a new signaling transport, that request
     will be denied.   Here every assoication may be able to get its own
     RSVP reservation, thus getting each their own bandwith. In prac-
     tice, RSVP may turn out not to scale very well for large number of
     signalling links and this solution may prove to be unfeasable.

     2.4.7 Multiple associations.

     The association may be spread out acrossn the IPv4 and IPv6 domain.
     /* editors note:  Multiple associations: see in the MDTP drafts en
     SCTP drafts got lost in transit */ This setup is not recommended as
     it sees both endpoints in both the IPv4 and IPv6 domain. This
     should only happen in switchover cases(when the network switches
     from IPv4 to IPv6).


2.4.8  Efficiency


2.4.9  Bundeling



Coene, et al.                Informational                     [Page 13]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     Bundling can be done on SCTP and/or on user adapatation layer. In
     case of the adapatation layer it has to specified by the adaptation
     protocol.

2.4.10  Portnumbers


The SG acts as a server and listen on the wellknown port of the adapta-
tion layers that the SG supports. The clients can indicate to the SG to
use different portnumbers. (dynamical portnumber assigment) The subse-
quent communication is then exchange via those portnumbers. If 2 servers
try to connect, then the adaptation layer management should resolve to
client-server model.

2.4.11  Sequenced / non-sequenced delivery


SCTP can deliver messages in sequence or not in sequence. Most signal-
ling adaptation layers expect SCTP to deliver the msg in sequence. How-
ever not all SS7 applications (= applications located above the adapta-
tion layer) do need sequenced delivery.

2.4.12  Stream usage


The application can choose on which stream he can send it data. Some
application level protocols may standardize stream number usage conven-
tion, which, for instance, allows to send data msg through certain
stream while management msg through others, so as to avoid user messages
from blocking management messages.  This is not a must.

User adaptation layers data msg and adaptation layer management msg may
be transported over different streams. The order of the management msg
should be kept. Sequence is important. Management msg Should be on
stream 0. It is alllowed for some management msg to use unordered ,
non-stream 0 streams. This should be specified by the management part of
the user adaptation layer.


2.4.13  Network apperance Identifier


A similar id to the protocol id (see SCTP applicability
statement[RFCSCTPAS]) is also contained in the adaptation layers, but it
has not the same meaning. It is called the network apperance(akin to the
network identifier in SS7: NAT0, NAT1...). It is a administrable number
to be determined between or within the network operator. The network
apperance identifies a set of pointcodes. SG and Host can be present in



Coene, et al.                Informational                     [Page 14]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


in different network apperances at the same time. Communication should
be done between nodes of the same network apperances(thus having the
same network apperance value).

2.4.14  Segmentation of messages


Segementation of messages in the adaptation layers is not encouraged as
SCTP has already this functionality segmenting/reassembly and MTU
discovery build in.

However, this does not solve the cases in which the messages must tran-
sit from IP to PSTN based transport mechanism. There if a node in the
PSTN decided to segment the message, then the endpoint located in the IP
net MUST be able to reassemble the message.


3  SPECIFIC ISSUES OF SS7 BASED SIGNALLING ADAPTATION LAYERS


SS7 messages are transported across IP using the Stream Control
Transmission Protocol(SCTP). SCTP provides a high relialable, redundant
transport between 2 SS7-over-IP nodes. A SS7-over IP node is a SCTP end-
point.

The interface with SS7 is message based. Therefore a adaptationlayer is
needed to prevent changes to the upper layer SS7 protocols.

Within a asociation between 2 endpoint, 1 or more stream(s) may be avi-
alable. These streams are not directly visible to the adaptation layers.

The linkset towards a certain destination is the collection of all the
links which can send trfaffic to that destination, even with a inter-
mediate node in between(so different path towards that destination
exsist). The MTP linkset is thus equivalent to the SCTP association. The
streams within SCTP may be regarded as the links. A advantage of SCTP
streams is, when one of the multihomed paths fails, the stream will
migrate to one of the still open paths(Soft changeover). In SS7 when a
link fails, a a change over procedure has to be initiated towards a
still working link of the same linkset(=hard changeover)).

In a MTP based network, the capacity of the links is fixed at n times
64Kb (with n= 1,32,...). SCTP association do not have a fixed capacity
assigned to them.  The bandwith used/provided by SCTP is dependant on
the rest of the traffic(other SCTP, TCP, RTP,UDP...) going through the
same links of the path followed by the SCTP association. See also the
SCTP applicability statement[RFCOENE].




Coene, et al.                Informational                     [Page 15]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


3.1  MTP lvl3 User Adaptation layers(M3UA)


The MTP lvl 3 user adaptation layer provides a emulation of MTP lvl 3
towards its users. Its function is address translation and mapping,
stream mapping, congestion control and network management.

3.1.1  Routing in M3UA


a strict assignment must be made in the SG to reach the correct Applica-
tion Server(AS) (Example ISUP CICs and trunkgroups must match). The
Application Server Process being part of the AS must have common state
sharing between the ASPs. Each ASP of the same AS can be a different
Application node(AN). Each application is a physical box or host. How
the state is shared, is an internal implementation issue.

The M3UA layer has to handle at least one or more SCTP associations. The
selection of a SCTP association(called the routing key) can be done by
via a single part or multiple parts of the DPC, OPC, SLS, CIC fields of
the MTP routing label. If a association were to fail then alternate map-
pings may be done(Implementation dependant).

3.1.2  M3UA heartbeats


If a M3UA nodes fails,then this must be detected via the use of heart-
beats msg between the M3UA peers. The SCTP heartbeat is not sufficient
because it only determines if a path for the SCTP association exists,
not if M3UA is ready to process msg.

The transmission rate of sending keepalive msg should be engineerable
and the possible loss of keepalive msg could be used for the monitoring
and measurements of the concerned M3UA nodes.

3.1.3  M3UA Network management


Network management messages used used to convey error information,
congestion information and/or state information from one node to
another.

The M3U maintains state of each remote Application Server Process(ASP)
in a remote Application Server(AS). A AS consists of one or more ASP.

3.1.3.1 Management messages





Coene, et al.                Informational                     [Page 16]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


These messages are used to notify the peer M3UA that a error was
detected in a incoming message. Examples can be : a syntax error in a
data message, unexpected management or maintenance messages in a certain
state, etc...

The diagnostic information may be used to send back more info concerning
the error. This information can be used for debugging purposes. Error
messages should never be returned upon receipt of error messages them-
selves.

3.1.3.2 Application Server maintenance


The application server process maintenance messages indicates that it
may be ready to receive or not to receive management or data messages.
Each of those messages is acknowledge to the peer M3UA.


     The ASP-UP messages indicate the first stage of communication,
     namely that a SCTP association was setup between the 2 ASP, was
     succesfull. The ASP-UP messages indicate that further M3UA manage-
     ments message might be exchanged between the 2 nodes. ASP-UP mes-
     sages do never allow the exchange of user data traffic. ASP-UP(or
     DOWN) messages are per default for all the routing contexts of the
     ASP.

     The ASP-ACTIVE messages indicates the second stage of communica-
     tion, namely that the ASP is ready to send/receive user data
     traffic for one or more routing contexts. User data traffic may
     only be initiated after the acknowledgement has been received. The
     ASP active messages may indicate the AS traffic handling method of
     the user messages. The user message may be directed to a single
     active ASP of the AS(over-ride mode) or may be load shared between
     all the active ASP of the AS(load-share mode). The algorithm for
     loadsharing within a AS should make sure that user data(=signalling
     messages) of the same call or transaction should be sent to the
     same ASP. It should also take into account as much as possible the
     load of every ASP wihtin the AS and slect the least loaded ASP by
     preference. Load information concerning ASP will be conveyed using
     the signalling network management messages.

     Heartbeat message is optional and is used only in case that the
     underlying transport layer does NOT have a heartbeat messages
     mechanism(example TCP).


3.1.3.3 Signalling network management




Coene, et al.                Informational                     [Page 17]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


The signalling network management messages play a role in indicating -

     whether a destination is avialable or not(via DUNA/DAVA)

     the congestion info required for congestion handling of M3UA data
     messages(via SCON)

     the avialability of the user parts in a destination(DUPU)


3.1.4  Different flavours of MTP


A few different message layouts do exist in the world, among the most
important are ITU format, ANSI format..etc. This is vissible in M3UA as
the complete service information octet and MTP routing lable is carried
in the M3UA DATA message. The SIO and the routing lable has a different
layout for ITU, ANSI adn other MTP formats. Each node within the network
must employ the same format for a certain network apperance. Different
network apperance identifiers may use different MTP formats but this is
not a must.

3.2 MTP lvl2 User Adaptation layer(M2UA)


The MTP lvl 2 user adaptation layer provides a emulation of a single MTP
link between 2 SS7 nodes. Routing of messages is not required here.


3.2.1  Link and application redudancy


Link reduncancy is accomplished via multihoming in SCTP itself. If mul-
tihoming is used, then there are different paths toward the destination.
A path of as SCTP association does not correspond with a classical SS7
link or SS7 linkset. In a multihomed association, only one of the paths
is activly used, while the remaining others are just sampled(via the
heartbeat) to see if they are still there. The streams within a SCTP
association should be looked upon a links, and the SCTP association
should be looked upon as the linkset. Multiple associations towards a
single destination(or application redundancy) is only possible if dif-
ferent portnumbers are employed for each association. Application redun-
dancy is handled in the user adapatation layers via switching over from
one association to another association.

If a true classical linkset is needed, then multiple, not multihomed,
associations should be used. Each association should employ a different
portnumber and one of the different multihomed IP addresses.



Coene, et al.                Informational                     [Page 18]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


3.2.2  Link state control


SCTP does not provide information about the link state(as it is not a
link protocol, it only emulates a link). The layers above M2UA do need
this information for corect operation. Therefore some info concerning
the link state(= SCTP state) needs to be conveyed between the 2 peers.

The link aligment initiates the SCTP association setup procedure. Each
M2UA is listening on its wellknown M2UA port for new SCTP associations.
Multple links may be used(as in paragraph 3.2.1). after establishing the
associations, the round trip time must be determined and analysed. This
allows for user input(implementation dependant) on the characteristic of
the association.

The link is then allowed to go into service. processor outage might also
be detected and be conveyed to the remote peer. Processor outage indi-
cates that the upper layer of the peer that sended the message, was not
able to process the M2UA messages.

The flow control is a implementation dependant function. It migth get
its information from SCTP which contains the state about the congestion
of its association. However that info must be mapped to approriate
congestion levels(ANSI/ITU/...) for processing by MTP lvl3.


3.2.3  Changeover


Changeover is the way in which signalling traffic going via one
link(association) is diverted onto a alternate signalling
link(association). This has to be done without missequencing, duplica-
tion or message loss. That would require fine, internal control of the
SCTP association for retrieving the unsend messages.Presumably until the
Cumulative TSN, taking care of the gaps in TSN that did make it, unfor-
tunaly missequenceing is enarly guaranteed to occur as the already
succesfully acknowledge msg will get a headstart to those who have to be
redirected. Resending from the cumulative TSN does not solve the problem
either because we would end up with duplicated messages at the end node.


3.3 SCCP User Adaptation layer(SUA)


The SCCP user adaptation layer provides a emulation of SCCP services on
a node.

/* work in progress */



Coene, et al.                Informational                     [Page 19]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


3.4 Addressing: how to reach the remote end

One of the basic problems in any network is to get from point A to point
B. The application in the IP and PSTN world must have the possiblity to
reach their peer wherever they may be located. Another problem is how to
choose between different point B. The first problem is solved via SCTP
associations(you put the msg in SCTP at one end, and voila, it comes out
at the other end). The second problem is solved via addressing. Some
signalling is point-to-point, meaning that it simply needs a SCTP asso-
ciation to get to the other side(UIA, M2UA is a case in point). Other
Signalling needs to route based on its addressing contained in the
message(M3UA, SUA).


3.4.1 Internet addressing


Every layer needs to determine the service to which it wants to deliver
its information. The way in which this is done depends from layer to
layer. The transport protocols above the IP network protocol are indi-
cated in the protocol extension headers field contained at the end of
the IP header. Every protocol has its own standardized protocol number.

The transport layer determines the application to which it wants to
deliver the information by the portnumber.

The tuple destination address and portnumber uniqely identifies a appli-
cation in the internet. Further selectors may be used in higher layers
to obtain the desired application. The IP address itself is a pointcode.
The following types of pointcode may de distinguished :

     - Unicast address: a unicast address designates a single node
     within a IP network. It can have some hierarchy in it or not. The
     address may be globally unique or be a private pointcode.

     - Multicast address: the message is send to all nodes
     belonging/attached to that multicast address/group.( Similar prin-
     ciple as with SCCP broadcast but different implementation)

     - Link-local address: these are addresses assigned to the link(wow
     local "private").

     - Site-local address: these are addresses assigned to a site(wow
     local, "private")

     - ...





Coene, et al.                Informational                     [Page 20]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


As the meaning of the pointcodes is only known to IP and it has a rela-
tion to the link and its interface to the link, layers which only know
about destinations(such as SCCP), SHOULD NOT/MUST NOT try to to inter-
prete the IP address.

The IP pointcode does not strictly identify the node in the network but
rather the interface to the IP network layer. Thus IP nodes can have
more than 1 Pointcode(and those PC can be used for having 2 links
between 2 adjacend nodes, a feature that is called multihoming ).

3.4.2 SS7 addressing


SS7 was develop in stages: ISUP and MTP were first developped. The deci-
sion to route was done by the application in a similar way as the
MFC/... signalling determined the trunk to the next exchange. ISUP had
to determine for a certain E164 number a DPC(= the pointcode of the
adjacend exchange) and then the msg was routed to the office where the
same procedure was done over all again.(=link-by- link routing)


(1)  MTP addres:  MTP routing label consists of a Network indicator(also
     called A MTP-SAP=service acces point) , a destination
     Pointcode(=DPC) and a origination Pointcode(OPC). The MTP-SAP indi-
     cates for which network the pointcode in the routing label is
     valid. If the routing table has been engineerd in a node for that
     network, the message can reach that destination. The size of a
     pointcode is fixed within a single network. Different networks can
     have different sizes of pointcodes:

          - ITU 14 bit

          - China 24 bit

          - ANSI 24 bit

          - Others.....

     A MTP pointcode is private to its own network. The global unique-
     ness is NEVER assured by the MTP pointcode but by global titles(as
     used in SCCP and in ISUP).

     The representation of pointcodes can be diverse: decimal, 3-4-3-4
     format, 8-8-8 format .... It is allowed to structure the
     pointcode(akind to CIDR and its prefixes in IP).

     MTP uses static routing: no routing protocols like RIP, OSPF or BGP
     are used for finding out routes between nodes in a MTP network.



Coene, et al.                Informational                     [Page 21]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     However it is allowed to use dynamic routing in a MTP net. The ITU
     marked this as "For Further study", but they never got around to
     it.



(2)  SCCP adress :  The SCCP address is a variable length address build
     as a collection of optional elements. It identifies destinations
     and has no notion about routes to those destinations. That is left
     to the underlying network layer(MTP or IP). A destination can be a
     network, node ,application entity, a person... Routing is static.
     The SCCP address is generally refered to as a Global title. The
     global title must be globally unique(at least on a world scale) as
     this allows the A-party to reach the B-party End-to-End without
     setting up a connection through the network. It can also be used
     for Link-by-link routing.

     The function responsible for deriving a pointcode from a global
     title is (not surprisingly) called the global title translation
     function(GTT). The GTT is a local function which bases it transla-
     tion and routing decision on the local situation(translation rule,
     loadsharing of destinations, route to backup node...) It has no
     topological knowledge of the network(something MTP and certainly IP
     have). The GTT function can therefore not only be used by msg with
     SCCP address but also by Q931 or other signaling messages for find-
     ing out to which destination the message must be sent.

     The elements of the Global Title consists of the following:

          - MTP pointcode AND Network indicator(=MTP-SAP). The network
          indicator indicates to which network the msg belongs.

          - Subsystem Number: indicates to which application the msg
          belongs.

          - Global title: a structure indicating a global identification
          of a node and/or application. A GT may occur in the SCCP
          Calling(=Originator address) and in the Called(Destination
          address) Party address.

     If only a MTP pointcode, network indicator and SSN is present, then
     the message can only be routed within that particular MTP network.
     If a global title(meaning if translation type, nature of addres
     and/or Digits) is present (accompanied possibly by a MTP pointcode,
     network indicator and SSN), then the msg can be routed across mul-
     tiple MTP networks, provided the networks are interconnected and
     the destination is reachable.




Coene, et al.                Informational                     [Page 22]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


(3)  Global Title and Global Title Translations:

     A global title contains the following elements. They are nearly all
     optional, the occurrence of the field in the SCCP message itself is
     governed by the global title format field(GTI) in the message.

          -Translation Type(TTN): should indicate what sort of transla-
          tion is needed. The most used TTN is the UNKNOWN. In the US
          some of the TTN have been used to address the
          application(instead of the SSN), thus doubling as application
          entity selectors. The Translation Type Number has no counter-
          part in IP.

          - Numbering plan(NP): this contains the numbering plan indica-
          tion to which the rest of the address conforms. This may be
          the E164, E212, E211, private numbering plans, .... The
          Numbering plan indication has no explicit counterpart in IP.
          It is implicitly included in the IPv4 address and partly
          explicitly included in the IPv6(example : E164 numbers
          included in OSI-NSAP address in IPv6)

          - Nature-of-address(NA): this indicates the national or inter-
          national use of the address. The Nature-of-Address has no
          counterpart in IP. This could be interpreted as scope indica-
          tion of the address, something that is explicitly present in
          Ipv6 pointcodes(Link local, site local...).

          - Encoding scheme(ES): this is a implicit parameter used to
          indicate the format of the global title digits(BCD even or BCD
          uneven). The Encoding scheme has no counterpart in IP.

          - Global title digits: digits in the format specified by the
          encoding scheme. They contain the global identification of
          node(and possibly also of the application within that node.)
          Also the number of digits is included(as GT is a variable
          length address.

          - Subsystem Number(SSN): indicates the application entity
          which should be reached . Some of the SSN are universally
          defined while others are not. Some are even double used. The
          SSN corresponds roughly to the portnumber of IP. However SSNs
          are derived at the network layer and go straight through to
          the application layer. Portnumbers only obtain their visibil-
          ity from the transportlayer.

          - Global title format: indicates which of the field mentioned
          above are explicitly contained in the called or calling party
          address of the message. Some formats indicates that some



Coene, et al.                Informational                     [Page 23]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


          fields(like NA and NP) are specified implicitly.

     Global title have no explicit counterpart in IP. IP addresses are
     implicitly assumed to be Global (NAT not included). A GT could also
     be a name(such as in Directory Naming service (DNS)).

     Also some routing information is included in the calling/called
     party address.

          - routing Indicator: indicates to the node processing
          calling/called party address how to route the message on. The
          message can be routed on the Pointcode (and SSN: applicable
          only in the final end-node) or on global title(this requires a
          translation).The routing indicator has no counterpart in IP.

     Depending on the routing indicator the message will be routed by
     SCCP. If route-on-SPC then MTP will do the routing. If route-on-GT
     then the SCCP global Title translation function will be invoked to
     determine the next(possible final or intermediate) node of the mes-
     sage. The address will be examined on the TTN,NP,NA and Digits and
     a translation will be done yielding a MTP pointcode + network indi-
     cator. A SSN may also be the additional outcome of the Global Title
     Translation(GTT). This MTP address is then used by MTP to route to
     the next destination(intermediate or final).

     If required, the TTN, NP, NA, SSN and possible all the digits may
     be transformed into a TTN', NP' , NA' , SSN' and digits'. It will
     change the address (if the routing policy prescribes it) in a
     effort to reach the final destination. The only rule to which it
     has to adhere is that the change in addresses must be so that the
     return message(from the B-party) must reach the originator of the
     start msg(=A-party). This means that the message routing is NOT
     symmetric. Global title translation conforms to the notion of a
     Store-Compute-and-Forward network as opposed to a IP network which
     is a Store-and-Forward network. This translation is completely
     stateless(we are routing unitdata messages). The same function can
     also be invoked for connections(see SCCP connection-oriented) then
     the translation is done only once at the connection setup phase and
     SCCP connection oriented will then contain the state.

     The translation rules for digits consist of:

          - Deleting digits.

          - Inserting digits

          - Replacing digits




Coene, et al.                Informational                     [Page 24]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


          - Copying digits

     That means that your called party address may have completely
     changed once it went through the GTT and at the same time the cal-
     ling party address must also be changed to adhere to the rule that
     the backward message MUST be routable so that a end-to-end dialogue
     may be send up between 2 nodes.


3.4.3 How to reach applications in SS7


Every layer needs to determine the service access point to which it
wants to deliver its information. The basic element in SS7 to determine
this is the Subsystem Number(SSN for short). the SSN can be found in MTP
and SCCP. The MTP has a SSN which indicates along others ISUP, SCCP
,..etc... The SSN in MTP are standardized on international level.
Locally defined SSN are allowed but may not be used outside that net-
work.

The SSN used in SCCP indicates directly to which application the message
must be send to. These SSN may be standardized but that is not a
prerequisite(see Q715). Some applications have standardized SSN, while
others use(and sometimes reuse) not standardized SSN. When messages go
from a net with SSN1 to a net with SSN2(SSN1 and SSN2 indicate the same
protocol) global title translation must be invoke to convert the SSN's.
This is one of the  most basic and simplest use of Global Title transla-
tion in SS7.

The general architecture is decribed in [RFC2719].

3.4.4 Routing of SS7 message in a IP net.


As the signalling is in fact transported over a "SS7" overlay network on
top of IP, both SS7 pointcodes and IP pointcodes are used. The basic
routing in the overlay network is done using SS7 pointcodes.  However at
a certain point, that SS7 pointcode must be mapped to a IP pointcode
because (1) SCTP  uses the IP pointcode(+portnumber) for selecting the
correct association and (2) IP routes only on IP pointcodes.

The way in way this mapping can be done, could be static or dynamic.
This is dependant on what adaptation layer is used and also on the sort
of network architecture(redundant servers, associations...).

/* editors note:  work in progress */





Coene, et al.                Informational                     [Page 25]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


3.4.5 Routing using globally assigned IP addresses.

/* editors note:  This section might address a problem in SS7 of shor-
tage of pointcodes in certain SS7 nets, notably the international
(INAT0) SS7 network) */

IP addresses are required to be globally unique. If SS7 wants to tran-
sport its messages over a IP network, then they should be treated as
global addresses. This means that SS7 shall look at them as global
titles, it shall NOT rely on the specific handling of the addresses by
the underlying IP layer and below. This also means that SCCP is a prere-
quisite for transporting message over a IP infrastructure when non-call
related messages are to be transported over IP. ISUP and other signaling
protocols will have to the same for call related messages , translating
the addresses it has in the adaptation layers to IP addresses. They can
all invoke the GTT function if wanted.

The following cases may be envisioned:

          - E164,E212, (=telephone numbers) to IP address(depending on
          the underlying network Ipv4 or Ipv6) (equivalent to transla-
          tion MTP 14bit, 24bit ...)

          - IP address to IP address - IP address to MTP address

          - IP address to a form of a telephone address (=E164*) :
          needed if the message transit from a IP net to a IP net via a
          couple of MTP nets.

     As some forms of IP addresses have a very limited scope(such as
     link-local and site local), they should better not be used.

     The following poitncodes can be used:

          - IPv4 unicast : Globally assigned - IPv4 multicast: Globaly
          assigned, very few avialable Note 1.

          - IPv6 unicast :

          - IPv6 multicast: Note 1

          - IPv6 anycast:

          - IPv6 link-local:

          - IPv6 site-local:





Coene, et al.                Informational                     [Page 26]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     Note 1:  A word of care is advised when using multicast addresses.
     This is especially true if the routing indicator in SCCP is Route-
     on-GT. SCCP has no knowledge whether the translation yielded a uni-
     cast or multicast PC, so it cannot and it will not take action to
     relay or stop the message.  The use of this form of address is
     dependant on the application in question.

     Note 2

     Implications of this are that GTT function could support IP
     pointcodes. The IP pointcode must be put in the digit block of the
     GT. The representation may be in BCD, the meaning of it should not.
     The length of a Ipv4 address(32bits) should then be 8 digits(always
     fixed). The length of a Ipv6 address(128bits) should be 32 digits.
     The GT number of digits in the SCCP header should allow for at
     least 32 digits(some extra digits may need to be inserted for
     proper routing). The result attached to a certain translation must
     be or a MTP PC(14,24) or a Ipv4 PC or a Ipv6 PC. The nature of
     address may be defined as indicating a international address with
     bitmap format. This could even lead to a new GTT operation (besides
     insert, copy, delete, replace) called bitmapPCCopy. The bit-
     mapPCcopy takes the IPvx poitncode out of the GT and uses it as the
     resulting pointcode of the GTT for further routing. The same effect
     can also be achieved via proper engineering of the GT database.

     Other possibilities include User adaptation layers which maps the
     MTP pointcode to IP pointcode or a mapping from MTP pointcode to a
     certain SCTP session.

     If GTT is used then IP must need a Numbering plan indicator(NP
     value normally assigned by SG11). This may or may not be agreed
     with SG11. This is not mandatory(but it is encouraged) as already
     there exists private numbering plans not known to SG11. As long as
     you make sure at the network border via GTT that the next network
     will be able to route the message NP , you can do pretty much any-
     thing. This is a bilateral agreement between operators/Internet
     Service providers) In general any value may be used as long as it
     is routable in your own subnet and that you or somebody else is
     able to route it further over its own net.

     Also maybe the portnumber may become part of the input/output to
     the GTT function.


(1)  IPv4 Considerations

     When coding a Ipv4 address, the length of the address (32 bits)
     should then be 8 digits(always fixed). The GT number of digits in



Coene, et al.                Informational                     [Page 27]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     the SCCP header should allow for at least 32 digits (some extra
     digits may need to be inserted for proper routing). The result
     attached to a certain translation must be or a MTP PC(14,24) or a
     Ipv4 PC or a Ipv6 PC.


(2)  IPv6 Considerations

     When coding a IPv6, the length of the address (128 bits) should be
     32 digits. The GT number of digits in the SCCP header should allow
     for at least 32 digits (some extra digits may need to be inserted
     for proper routing). The result attached to a certain translation
     must be or a MTP PC(14,24) or a Ipv4 PC or a Ipv6 PC.


(3)  Routing SS7 messages and dynamic assigned adresses

     Problems may occur with dynamically assigned IP addresses. The node
     could obtain a IP address that is later reclaimed and/or replaced
     by another IP address out of a pool of IP addresses. The destina-
     tion address in the routing tables would have to be invalidated or
     changed. Therefore it is strongly recommended to use a fixed
     assigned IP address. Do not forget that the IP node which is work-
     ing in the SS7 net is supposed to be up all the time. It should not
     be regarded as a dial-up user(for which Dynamic assigned addresses
     are meant).

     Also, dynamically assigned address may invalidate security features
     of SCTP.  If transport addresses may change during the lifetime of
     a SCTP association, it is impossible to reliably ensure that the
     current transport address is the transport address which was used
     in the setup of the association.

     If this practice should turn out to be unavoidable, then a Q3/SNMP
     Management msg would be required to be exchanged between DHCP and
     SCCP network element configuration part so that the pointcode
     attached to a certain GT must be updated, deleted or added. The
     same solution is also feasible for working in NAT's with dynamical
     assigned addresses.


(4)  Routing SS7 message and Network address Translators.

     Network Address Translator(NAT) are boxes which map a private IP
     net address to a globally assigned IP address. This happens because
     there are many more users within the private IP net than there a
     globally assigned IP addresses allocated to that private IP net.
     That means that the mapping is ALWAYS dynamic. The mapping must be



Coene, et al.                Informational                     [Page 28]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     both ways and via the same NAT and the NAT is always the final des-
     tination. Also the association is based on state(thus breaking the
     end-to-end principle). This amounts to crossing a network border.
     It should be envisioned to use a static private address in the NAT.

     It would be advisiable to termination the association from the pub-
     lic network at the NAT, and have separate association(s) within the
     private network. Then there is a clear network border at the cross-
     ing between the NAT and that internet.

          Endpoint          Endpoint          Endpoint
           A(NAT)            B (NAT)             C
          +------+          +------+          +----+
          | ISEP |----------|  SG  |----------| SG |---
          +------+          +------+          +----+
                 association 1  !  association 2 !
                                !                !
                     NAT        !    internet    !  PSTN
                                !                !

                 Fig 5.x: use of SCTP associations with NAT's

     Another solution is the use of name option for setting up the SCTP
     association.


(5)  Routing SS7 messages and routing protocols

     The term routing protocols has a much broader sense in the Internet
     than in the SS7 world. SS7 designates such protocols as Management
     protocols(SCCP management, MTP management...) The scope of SS7
     management protocols is much smaller. They only exchange informa-
     tions of links in service and nodes in service(mostly only the own
     links and the adjacend nodes) The topology of the network is NOT
     exchanged between SS7 nodes. In general most nodes haven't got the
     faintest idea how even the topology of its own subnet may look
     like.(and they don't care).

     The interaction between IP routing protocols and SS7 routing may
     require some study especially in the case that routes start chang-
     ing due to routing recomputation. The loadsharing and
     primary/backup systems of GTT seems not to be impacted as it relies
     on destinations and not on links. As long as a destination is
     accessible/avialable in the IP net, then messages may be send to
     it. If the destination is no longer avialable, then GTT must per-
     form according to its own rules. Beware of changing conditions
     being triggered by routing updates.




Coene, et al.                Informational                     [Page 29]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


(6)  Routing SS7 messages and automatic renumbering

     Automatic renumbering is the process of changing the IP addresses
     of one or more nodes in a network so that the prefix of the address
     (which is then common for all the changed nodes) allows to have a
     routing table with a reduced number of entries. This renumbering is
     mainly of interest in IPv6 networks.

     If this happens, a similar solution(management request of the GT
     tree) should be used to change the pointcode derived from GT.



4  SPECIFIC ISSUES OF USER-NETWORK BASED SIGNALLING ADAPTATION LAYERS

4.1 ISDN User Adaptation layer(IUA)


The ISDN user adaptation layer provides a emulation of a signalling link
from transporting user-network signalling(in most case Q931) from point
to point. Routing of messages is not required here. Only changeovers
between ASP of a AS is needed at most. One or more terminal equipment
may be involved in the signalling exchange.


3.1.2  IUA heartbeats


If a IUA nodes fails,then this must be detected via the use of heart-
beats msg between the IUA peers. The SCTP heartbeat is not sufficient
because it only determines if a path for the SCTP association exists,
not if IUA is ready to process msg.

The transmission rate of sending keepalive msg should be engineerable
and the possible loss of keepalive msg could be used for the monitoring
and measurements of the concerned IUA nodes.

3.1.3  IUA Network management


Network management messages used used to convey error information,
congestion information and/or state information from one node to
another.

The IUA maintains state of each remote Application Server Process(ASP)
in a remote Application Server(AS). A AS consists of one or more ASP.

3.1.3.1 Management messages



Coene, et al.                Informational                     [Page 30]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


These messages are used to notify the peer IUA that a error was detected
in a incoming message. Examples can be : a syntax error in a data mes-
sage, unexpected management or maintenance messages in a certain state,
etc...

The diagnostic information may be used to send back more info concerning
the error. This information can be used for debugging purposes. Error
messages should never be returned upon receipt of error messages them-
selves.

Also Terminal Endpoint Identifier (TEI) status messages are exchanged
which indicates the status of particular terminal equipment.

3.1.3.2 Application Server maintenance


The application server process maintenance messages indicates that it
may be ready to receive or not to receive management or data messages.
Each of those messages is acknowledge to the peer IUA.


     The ASP-UP messages indicate the first stage of communication,
     namely that a SCTP association was setup between the 2 ASP, was
     succesfull. The ASP-UP messages indicate that further IUA manage-
     ments message might be exchanged between the 2 nodes. ASP-UP mes-
     sages do never allow the exchange of user data traffic. ASP-UP(or
     DOWN) messages are per default for all the routing contexts of the
     ASP.

     The ASP-ACTIVE messages indicates the second stage of communica-
     tion, namely that the ASP is ready to send/receive user data
     traffic for one or more routing contexts. User data traffic may
     only be initiated after the acknowledgement has been received. The
     ASP active messages may indicate the AS traffic handling method of
     the user messages. The user message may be directed to a single
     active ASP of the AS(over-ride mode) or may be load shared between
     all the active ASP of the AS(load-share mode). The algorithm for
     loadsharing within a AS should make sure that user data(=signalling
     messages) of the same call or transaction should be sent to the
     same ASP. It should also take into account as much as possible the
     load of every ASP wihtin the AS and slect the least loaded ASP by
     preference. Load information concerning ASP will be conveyed using
     the signalling network management messages.

     Heartbeat message is optional and is used only in case that the
     underlying transport layer does NOT have a heartbeat messages
     mechanism(example TCP).




Coene, et al.                Informational                     [Page 31]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


3.1.3.3 Signalling network management


The signalling network management messages are not needed because there
is no network to watch over. ISDN signalling is only point-to-point.



/* editors note:  work in progress */






6.0 Security


The following aspects of security are :


     Authentication:

     Information is sent/received from a known and/or trusted partner.
     Until recently the number of interconnects of a SS7 node with
     another SS7 node belonging to another operator was relativily lim-
     ited and those other operators were implicitly known (and sometimes
     trusted). Due to the increasing interconnect demands between dif-
     ferent operators on a voluntary or mandatory basis, the trusted
     relation does not longer exist. That mean that a operator will not
     accept all SS7 msg send to him by another operator. This is done
     using MTP and SCCP screening: depending on the information in the
     different MTP fields(example OPC...) and/or SCCP fields(example
     Calling party address, SSN...) a msg may be rejected or accepted
     for transport across or termination into the network. In the worst
     case it may try to screen up to the application level(example: the
     user info in a IAM msg or in a TC INVOKE component, Application
     Context name screening). See [16].

     A SS7 gateway using screening does behave like a firewall.


     Intergrity:

     Information may not be modified while in transit. The integrity of
     a msg in a public network is not guaranteed. If it is transported
     over a IP network the integrity may be guaranteed at 2 levels.  (1)
     the IP level using IPSEC:  which is equivalent to providing



Coene, et al.                Informational                     [Page 32]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     integrity on on SS7 link level basis. Keydistribution is at most
     limited to the network of that operator.  (2) End-To-End integrity
     using TCAP: For further study in the ITU.



     Confidentiality:

     Confidentiality of the user data must be ensured.  User data can
     not be examined by unauthorized users.



     Availability:

     The communicating endpoint must remain in service in all circon-
     stances. All SS7 nodes have to remain active for the 99.999% of the
     time.


The description of the internet security architecture and the use of it
is described in [18].

Apart from the above mentioned classic security cases, also attacks as
mentioned in [RFCSCTP] and [RFCOENE] must be handled. As the user adap-
tation layers are all users of SCTP, they are automatically protected
from such a attacks. This would NOT be the case if they had used TCP or
UDP or whatever other transport protocol presently avialable. More info
on these security issues can be found in [RFCOENE].

10 References and related work


[RFCSCTP] Stewart, R. R., Xie, Q., Morneault, K., Sharp, C. , ,
     Schwarzbauer, H. J., Taylor, T., Rytina, I., Kalla, M., Zhang, L.
     and Paxson, V, "Stream Control Transmission Protocol", <draft-
     ietf-sigtran-sctp-13.txt>, July 2000.  Work In Progress.


[RFCOENE] Coene, L., Tuexen, M., Loughney, J., Rytina, I., Ong, L. and
     Stewart, R. R., "Stream Control Transmission Protocol", <draft-
     ietf-sigtran-sctp-13.txt>, July 2000. Work In Progress.


[Q1400] SG11, ITU-T Recommendation Q.1400, " architecture framework for
     the development of signaling and OA&M protocols using OSI concepts
     ",1993




Coene, et al.                Informational                     [Page 33]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


[RFC2719] Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L.,
     Lin, H., Juhasz, I., Holdrege, M., Sharp, C., "Framework Architec-
     ture for Signaling Transport", RFC2719, October 1999


[IANA] Internet Assigned Numbers Authority, http://www.iana.org/, April
     2000


[RFC814] Clark, D.D., "Names, addresses, ports and routes", RFC 0814,
     July 1982.


[M2UA] Morneault, K., Kalla, M., Sidebottom, G., Dantu, R., George, T.,
     "SS7 MTP2-User Adaptation Layer (M2UA)", <draft-ietf-sigtran-m2ua-
     04.txt> ,Work in progress


[M2PUA] Morneault, K., Kalla, M., Sidebottom, G., Dantu, R., George, T.,
     "SS7 MTP2-User Peer-to-peer Adaptation Layer (M2PUA)", <draft-
     ietf-sigtran-m2peer-02.txt> ,Work in progress


[M3UA] Sidebottom,G., Ong, L., Mousseau, G., Rytina, I., Schwarzbauer,
     HJ., Morneault, K., Kalla, M., "SS7 MTP3-User Adaptation Layer
     (M3UA)", <draft-ietf-sigtran-m3ua-04.txt> ,Work in progress


[IUA] Kalla, M., Rengasami, S., Morneault, K., Sidebottom, G. "ISDN
     Q.921-User Adaptation Layer(IUA)", <draft-ietf-sigtran-iua-07.txt>
     ,Work in progress


[RFCSCTPAS] Coene, L., Tuexen, M., Loughney, J., Rytina, I., Ong, L.,
     Stewart, R. R.,  "Stream Control Transmission Protocol Applicabil-
     ity Statement", <draft-ietf-sigtran-sctp-applicability-02.txt>,
     Work in progress


[Q700] ITU-T Recommendation Q.700, "Introduction to CCITT Signaling Sys-
     tem No.7", March, 1993


[Q700] ITU-T Recommendation Q.701-705, "Message Transfer part No. 7",
     1996


[Q710] ITU-T Recommendation Q.710-715, "Signaling Connection Control



Coene, et al.                Informational                     [Page 34]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     Part No. 7", 1996


[Q770] ITU-T Recommendation Q.770-775, "Transaction Capabilities Appli-
     cation Part No. 7", 1996


[Q1400] ITU-T Recommendation Q.1400, " architecture  framework for the
     development  of  signaling and  OA&M protocols  using OSI concepts
     ",1993


[RFC1035] Mockapetris, P., "Domain Names, Implementation and specifica-
     tion", RFC1035, November 1987



11  Author's Address

     Lode Coene
     Siemens Atea
     Atealaan 34
     B-2200    Herentals
     Belgium

     Phone: +32-14-252081
     EMail: lode.coene@siemens.atea.be

     John Loughney
     Nokia
     Research centre
     Itamerenkatu 11-13
     FIN-00180    Helsinki
     Finland

     Phone: +358-9-43761
     EMail: john.loughney@nokia.com

     Ian Rytina
     Ericsson Australia
     37/360 Elizabeth Street
     Melbourne, Victoria 3000
     Australia

     Phone : -
     EMail:ian.rytina@ericsson.com

     Lyndon Ong



Coene, et al.                Informational                     [Page 35]

Draft    Signalling Transport over SCTP applicability statementOctober 2000


     Nortel Networks
     4401 Great America Parkway
     Santa Clara, CA 95054
     USA

     Phone: -
     EMail: long@nortelnetworks.com




     Expires: April 2001


     Full Copyright Statement

     Copyright (C) The Internet Society (2000).  All Rights Reserved.

     This document and translations of it may be copied and furnished
     to others, and derivative works that comment on or otherwise
     explain it or assist in its implementation may be prepared,
     copied, published and distributed, in whole or in part, without
     restriction of any kind, provided that the above copyright notice
     and this paragraph are included on all such copies and derivative
     works.  However, this document itself may not be modified in any
     way, such as by removing the copyright notice or references to the
     Internet Society or other Internet organizations, except as needed
     for the purpose of developing Internet standards in which case the
     procedures for copyrights defined in the Internet Standards
     process must be followed, or as required to translate it into
     languages other than English.

     The limited permissions granted above are perpetual and will not
     be revoked by the Internet Society or its successors or assigns.

     This document and the information contained herein is provided on
     an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
     ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
     THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
     WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.










Coene, et al.                Informational                     [Page 36]

Draft    Signalling Transport over SCTP applicability statementOctober 2000





















































Coene, et al.                Informational                     [Page 37]


Html markup produced by rfcmarkup 1.108, available from http://tools.ietf.org/tools/rfcmarkup/