[Docs] [txt|pdf] [draft-brandenburg...] [Diff1] [Diff2] [IPR]

INFORMATIONAL

Independent Submission                                R. van Brandenburg
Request for Comments: 6983                               O. van Deventer
Category: Informational                                              TNO
ISSN: 2070-1721                                           F. Le Faucheur
                                                                K. Leung
                                                           Cisco Systems
                                                               July 2013


                Models for HTTP-Adaptive-Streaming-Aware
          Content Distribution Network Interconnection (CDNI)

Abstract

   This document presents thoughts on the potential impact of supporting
   HTTP Adaptive Streaming (HAS) technologies in Content Distribution
   Network Interconnection (CDNI) scenarios.  The intent is to present
   the authors' analysis of the CDNI-HAS problem space and discuss
   different options put forward by the authors (and by others during
   informal discussions) on how to deal with HAS in the context of CDNI.
   This document has been used as input information during the CDNI
   working group process for making a decision regarding support for
   HAS.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6983.












van Brandenburg, et al.       Informational                     [Page 1]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1. Introduction ....................................................4
      1.1. Terminology ................................................5
   2. HTTP Adaptive Streaming Aspects Relevant to CDNI ................6
      2.1. Segmentation versus Fragmentation ..........................6
      2.2. Addressing Chunks ..........................................7
           2.2.1. Relative URLs .......................................8
           2.2.2. Absolute URLs with Redirection ......................9
           2.2.3. Absolute URLs without Redirection ..................10
      2.3. Live Content versus VoD Content ...........................11
      2.4. Stream Splicing ...........................................12
   3. Possible HAS Optimizations .....................................12
      3.1. File Management and Content Collections ...................13
           3.1.1. General Remarks ....................................13
           3.1.2. Candidate Approaches ...............................13
                  3.1.2.1. Option 1.1: Do Nothing ....................13
                  3.1.2.2. Option 1.2: Allow Single-File
                           Storage of Fragmented Content .............14
                  3.1.2.3. Option 1.3: Access Correlation Hint .......14
           3.1.3. Recommendations ....................................15
      3.2. Content Acquisition of Content Collections ................15
           3.2.1. General Remarks ....................................15
           3.2.2. Candidate Approaches ...............................16
                  3.2.2.1. Option 2.1: No HAS Awareness ..............16
                  3.2.2.2. Option 2.2: Allow Single-File
                           Acquisition of Fragmented Content .........17
           3.2.3. Recommendations ....................................17











van Brandenburg, et al.       Informational                     [Page 2]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


      3.3. Request Routing of HAS Content ............................17
           3.3.1. General Remarks ....................................17
           3.3.2. Candidate Approaches ...............................18
                  3.3.2.1. Option 3.1: No HAS Awareness ..............18
                  3.3.2.2. Option 3.2: Manifest File Rewriting
                           by uCDN ...................................20
                  3.3.2.3. Option 3.3: Two-Step Manifest File
                           Rewriting .................................21
           3.3.3. Recommendations ....................................22
      3.4. Logging ...................................................23
           3.4.1. General Remarks ....................................23
           3.4.2. Candidate Approaches ...............................24
                  3.4.2.1. Option 4.1: Do Nothing ....................24
                  3.4.2.2. Option 4.2: CDNI Metadata Content
                           Collection ID .............................26
                  3.4.2.3. Option 4.3: CDNI Logging Interface
                           Compression ...............................28
                  3.4.2.4. Option 4.4: Full HAS
                           Awareness/Per-Session Logs ................29
           3.4.3. Recommendations ....................................30
      3.5. URL Signing ...............................................32
           3.5.1. HAS Implications ...................................32
           3.5.2. CDNI Considerations ................................33
           3.5.3. Option 5.1: Do Nothing .............................34
           3.5.4. Option 5.2: Flexible URL Signing by CSP ............34
           3.5.5. Option 5.3: Flexible URL Signing by uCDN ...........37
           3.5.6. Option 5.4: Authorization Group ID and HTTP
                  Cookie .............................................37
           3.5.7. Option 5.5: HAS Awareness with HTTP Cookie in CDN ..38
           3.5.8. Option 5.6: HAS Awareness with Manifest
                  File in CDN ........................................40
           3.5.9. Recommendations ....................................41
      3.6. Content Purge .............................................41
           3.6.1. Option 6.1: No HAS Awareness .......................42
           3.6.2. Option 6.2: Purge Identifiers ......................42
           3.6.3. Recommendations ....................................43
      3.7. Other Issues ..............................................43
   4. Security Considerations ........................................43
   5. Acknowledgements ...............................................44
   6. References .....................................................44
      6.1. Normative References ......................................44
      6.2. Informative References ....................................44









van Brandenburg, et al.       Informational                     [Page 3]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


1.  Introduction

   [RFC6707] defines the problem space for Content Distribution Network
   Interconnection (CDNI) and the associated CDNI interfaces.  This
   includes support, through interconnected Content Delivery Networks
   (CDNs), of content delivery to End Users using HTTP progressive
   download and HTTP Adaptive Streaming (HAS).

   HTTP Adaptive Streaming is an umbrella term for various HTTP-based
   streaming technologies that allow a client to adaptively switch
   between multiple bitrates, depending on current network conditions.
   A defining aspect of HAS is that, since it is based on HTTP, it is a
   pull-based mechanism, with a client actively requesting content
   segments instead of the content being pushed to the client by a
   server.  Due to this pull-based nature, media servers delivering
   content using HAS often show different characteristics when compared
   with media servers delivering content using traditional streaming
   methods such as the Real-time Transport Protocol / Real Time
   Streaming Protocol (RTP/RTSP), the Real Time Messaging Protocol
   (RTMP), and the Multimedia Messaging Service (MMS).

   This document presents a discussion of the impact of the HAS
   operation on the CDNI interfaces, and what HAS-specific optimizations
   may be required or may be desirable.  The scope of this document is
   to present the authors' analysis of the CDNI-HAS problem space and
   discuss different options put forward by the authors (and by others
   during informal discussions) on how to deal with HAS in the context
   of CDNI.  The document concludes by presenting the authors'
   recommendations on how the CDNI WG should deal with HAS in its
   initial charter, with a focus on 'making it work' instead of
   including 'nice-to-have' optimizations that might delay the
   development of the CDNI WG deliverables identified in its initial
   charter.

   It should be noted that the document is not a WG document but has
   been used as input during the WG process for making its decision
   regarding support for HAS.  We expect the analysis presented in the
   document to be useful in the future if and when the WG recharters and
   wants to reassess the level of HAS optimizations to be supported in
   CDNI scenarios.











van Brandenburg, et al.       Informational                     [Page 4]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


1.1.  Terminology

   This document uses the terminology defined in [RFC6707] and
   [CDNI-FRAMEWORK].

   For convenience, the definitions of HAS-related terms are restated
   here:

   Content Item:  A uniquely addressable content element in a CDN.  A
      content item is defined by the fact that it has its own Content
      Metadata associated with it.  An example of a content item is a
      video file/stream, an audio file/stream, or an image file.

   Chunk:  A fixed-length element that is the result of a segmentation
      or fragmentation operation and that is independently addressable.

   Fragment:  A specific form of chunk (see Section 2.1).  A fragment is
      stored as part of a larger file that includes all chunks that are
      part of the chunk collection.

   Segment:  A specific form of chunk (see Section 2.1).  A segment is
      stored as a single file from a file-system perspective.

   Original Content:  Non-chunked content that is the basis for a
      segmentation or fragmentation operation.  Based on Original
      Content, multiple alternative representations (using different
      encoding methods, supporting different resolutions, and/or
      targeting different bitrates) may be derived, each of which may be
      fragmented or segmented.

   Chunk Collection:  The set of all chunks that are the result of a
      single segmentation or fragmentation operation being performed on
      a single representation of the Original Content.  A chunk
      collection is described in a Manifest File.

   Content Collection:  The set of all chunk collections that are
      derived from the same Original Content.  A content collection may
      consist of multiple chunk collections, each corresponding to a
      single representation of the Original Content.  A content
      collection may be described by one or more Manifest Files.

   Manifest File:  A Manifest File, also referred to as a Media
      Presentation Description (MPD) file, is a file that lists the way
      the content has been chunked (possibly for multiple encodings), as
      well as where the various chunks are located (in the case of
      segments) or how they can be addressed (in the case of fragments).





van Brandenburg, et al.       Informational                     [Page 5]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


2.  HTTP Adaptive Streaming Aspects Relevant to CDNI

   In the last couple of years, a wide variety of HAS-like protocols
   have emerged.  Among them are proprietary solutions such as Apple's
   HTTP Live Streaming (HLS), Microsoft's HTTP Smooth Streaming (HSS),
   and Adobe's HTTP Dynamic Streaming (HDS), as well as various
   standardized solutions such as 3GPP Adaptive HTTP Streaming (AHS) and
   MPEG Dynamic Adaptive Streaming over HTTP (DASH).  While all of these
   technologies share a common set of features, each has its own
   defining elements.  This section looks at some of the common
   characteristics and some of the differences between these
   technologies and how those might be relevant to CDNI.  In particular,
   Section 2.1 describes the various methods to store HAS content, and
   Section 2.2 lists three methods that are used to address HAS content
   in a CDN.  After these generic HAS aspects are discussed, two special
   situations that need to be taken into account when discussing HAS are
   addressed: Section 2.3 discusses the differences between live content
   and Video on Demand (VoD) content, while Section 2.4 discusses the
   scenario where multiple streams are combined in a single Manifest
   File (e.g., for ad insertion purposes).

2.1.  Segmentation versus Fragmentation

   All HAS implementations are based on a concept referred to as
   "chunking": the concept of having a server split content up in
   numerous fixed-duration chunks that are independently decodable.  By
   sequentially requesting and receiving chunks, a client can recreate
   and play out the content.  An advantage of this mechanism is that it
   allows a client to seamlessly switch between different encodings of
   the same Original Content at chunk boundaries.  Before requesting a
   particular chunk, a client can choose between multiple alternative
   encodings of the same chunk, irrespective of the encoding of the
   chunks it has requested earlier.

   While every HAS implementation uses some form of chunking, not all
   implementations store the resulting chunks in the same way.  In
   general, there are two distinct methods of performing chunking and
   storing the results: segmentation and fragmentation.

   -  With segmentation -- which is, for example, mandatory in all
      versions of Apple's HLS prior to version 7 -- the chunks, in this
      case also referred to as segments, are stored completely
      independently from each other, with each segment being stored as a
      separate file from a file-system perspective.  This means that
      each segment has its own unique URL with which it can be
      retrieved.





van Brandenburg, et al.       Informational                     [Page 6]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   -  With fragmentation (or virtual segmentation) -- which is, for
      example, used in Microsoft's HTTP Smooth Streaming -- all chunks,
      or fragments, belonging to the same chunk collection are stored
      together as part of a single file.  While there are a number of
      container formats that allow for storing this type of chunked
      content, fragmented MP4 is most commonly used.  With
      fragmentation, a specific chunk is addressable by suffixing, to
      the common file URL, an identifier uniquely identifying the chunk
      that one is interested in, either by timestamp, by byte range, or
      in some other way.

   While one can argue about the merits of each of these two different
   methods of handling chunks, both have their advantages and drawbacks
   in a CDN environment.  For example, fragmentation is often regarded
   as a method that introduces less overhead, from both a storage and
   processing perspective.  Segmentation, on the other hand, is regarded
   as being more flexible and easier to cache.  In practice, current HAS
   implementations increasingly support both methods.

2.2.  Addressing Chunks

   In order for a client to request chunks, in the form of either
   segments or fragments, it needs to know how the content has been
   chunked and where to find the chunks.  For this purpose, most HAS
   protocols use a concept that is often referred to as a Manifest File
   (also known as a Media Presentation Description, or MPD), i.e., a
   file that lists the way the content has been chunked and where the
   various chunks are located (in the case of segments) or how they can
   be addressed (in the case of fragments).  A Manifest File or set of
   Manifest Files may also identify the different representations, and
   thus chunk collections, available for the content.

   In general, a HAS client will first request and receive a Manifest
   File, and then, after parsing the information in the Manifest File,
   proceed with sequentially requesting the chunks listed in the
   Manifest File.  Each HAS implementation has its own Manifest File
   format, and even within a particular format there are different
   methods available to specify the location of a chunk.

   Of course, managing the location of files is a core aspect of every
   CDN, and each CDN will have its own method of doing so.  Some CDNs
   may be purely cache-based, with no higher-level knowledge of where
   each file resides at each instant in time.  Other CDNs may have
   dedicated management nodes that, at each instant in time, do know at
   which servers each file resides.  The CDNI interfaces designed by the
   CDNI WG will probably need to be agnostic to these kinds of CDN-
   internal architecture decisions.  In the case of HAS, there is a
   strict relationship between the location of the content in the CDN



van Brandenburg, et al.       Informational                     [Page 7]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   (in this case chunks) and the content itself (the locations specified
   in the Manifest File).  It is therefore useful to have an
   understanding of the different methods in use in CDNs today for
   specifying chunk locations in Manifest Files.  The different methods
   for doing so are described in Sections 2.2.1 to 2.2.3.

   Although these sections are especially relevant for segmented content
   due to its inherent distributed nature, the discussed methods are
   also applicable to fragmented content.  Furthermore, it should be
   noted that the methods detailed below for specifying locations of
   content items in Manifest Files do not relate only to temporally
   segmented content (e.g., segments and fragments) but are also
   relevant in situations where content is made available in multiple
   representations (e.g., in different qualities, encoding methods,
   resolutions, and/or bitrates).  In this case, the content consists of
   multiple chunk collections, which may be described by either a single
   Manifest File or multiple interrelated Manifest Files.  In the latter
   case, there may be a high-level Manifest File describing the various
   available bitrates, with URLs pointing to separate Manifest Files
   describing the details of each specific bitrate.  For specifying the
   locations of the other Manifest Files, the same methods that are used
   for specifying chunk locations also apply.

   One final note relates to the delivery of the Manifest Files
   themselves.  While in most situations the delivery of both the
   Manifest File and the chunks is handled by the CDN, there are
   scenarios imaginable in which the Manifest File is delivered by, for
   example, the Content Service Provider (CSP), and the Manifest File is
   therefore not visible to the CDN.

2.2.1.  Relative URLs

   One method for specifying chunk locations in a Manifest File is
   through the use of relative URLs.  A relative URL is a URL that does
   not include the HOST part of a URL but only includes (part of) the
   PATH part of a URL.  In practice, a relative URL is used by the
   client as being relative to the location from which the Manifest File
   has been acquired.  In these cases, a relative URL will take the form
   of a string that has to be appended to the location of the Manifest
   File to get the location of a specific chunk.  This means that in the
   case where a Manifest File with relative URLs is used, all chunks
   will be delivered by the same Surrogate that delivered the Manifest
   File.  A relative URL will therefore not include a hostname.








van Brandenburg, et al.       Informational                     [Page 8]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   For example, in the case where a Manifest File has been requested
   (and received) from:

      http://surrogate.server.cdn.example.com/content_1/manifest.xml

   a relative URL pointing to a specific segment referenced in the
   Manifest File might be:

      segments/segment1_1.ts

   which means that the client should take the location of the Manifest
   File and append the relative URL.  In this case, the segment would
   then be requested from http://surrogate.server.cdn.example.com/
   content_1/segments/segment1_1.ts.

   One drawback of using relative URLs is that it forces a CDN relying
   on HTTP-based request routing to deliver all segments belonging to a
   given content item with the same Surrogate that delivered the
   Manifest File for that content item, which results in limited
   flexibility.  Another drawback is that relative URLs do not allow for
   fallback URLs; should the Surrogate that delivered the Manifest File
   break down, the client is no longer able to request chunks.  The
   advantage of relative URLs is that it is very easy to transfer
   content between different Surrogates and even CDNs.

2.2.2.  Absolute URLs with Redirection

   Another method for specifying locations of chunks (or other Manifest
   Files) in a Manifest File is through the use of an absolute URL.  An
   absolute URL contains a fully formed URL (i.e., the client does not
   have to calculate the URL as in the case of the relative URL but can
   use the URL from the Manifest File directly).

   In the context of Manifest Files, there are two types of absolute
   URLs imaginable: absolute URLs with redirection and absolute URLs
   without redirection.  The two methods differ in whether the URL
   points to a request routing node that will redirect the client to a
   Surrogate (absolute URLs with redirection) or point directly to a
   Surrogate hosting the requested content (absolute URLs without
   redirection).

   In the case of absolute URLs with redirection, a request for a chunk
   is handled by the Request Routing system of a CDN just as if it were
   a standalone (non-HAS) content request, which might include looking
   up the Surrogate (and/or CDN) best suited for delivering the
   requested chunk to the particular user and sending an HTTP redirect





van Brandenburg, et al.       Informational                     [Page 9]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   to the user with the URL pointing to the requested chunk on the
   specified Surrogate (and/or CDN), or a DNS response pointing to the
   specific Surrogate.

   An example of an absolute URL with redirection might look as follows:

      http://requestrouting.cdn.example.com/
      content_request?content=content_1&segment=segment1_1.ts

   As can be seen from this example URL, the URL includes a pointer to a
   general CDN Request Routing function and some arguments identifying
   the requested segment.

   The advantage of using absolute URLs with redirection is that they
   allow for maximum flexibility (since chunks can be distributed across
   Surrogates and CDNs in any imaginable way) without having to modify
   the Manifest File every time one or more chunks are moved (as is the
   case when absolute URLs without redirection are used).  The downside
   of this method is that it can add significant load to a CDN Request
   Routing system, since it has to perform a redirect every time a
   client requests a new chunk.

2.2.3.  Absolute URLs without Redirection

   In the case of absolute URLs without redirection, the URL points
   directly to the specific chunk on the actual Surrogate that will
   deliver the requested chunk to the client.  In other words, there
   will be no HTTP redirection operation taking place between the client
   requesting the chunk and the chunk being delivered to the client by
   the Surrogate.

   An example of an absolute URL without redirection is the following:

      http://surrogate1.cdn.example.com/content_1/segments/segment1_1.ts

   As can be seen from this example URL, the URL includes both the
   identifier of the requested segment (in this case segment1_1.ts) and
   the server that is expected to deliver the segment (in this case
   surrogate1.cdn.example.com).  With this, the client has enough
   information to directly request the specific segment from the
   specified Surrogate.

   The advantage of using absolute URLs without redirection is that it
   allows more flexibility compared to using relative URLs (since
   segments do not necessarily have to be delivered by the same server)
   while not requiring per-segment redirection (which would add
   significant load to the node doing the redirection).  The drawback of




van Brandenburg, et al.       Informational                    [Page 10]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   this method is that it requires a modification of the Manifest File
   every time content is moved to a different location (either within a
   CDN or across CDNs).

2.3.  Live Content versus VoD Content

   Though the formats and addresses of Manifest Files and chunk files do
   not typically differ significantly between live and Video-on-Demand
   (VoD) content, the time at which the Manifest Files and chunk files
   become available does differ significantly.  For live content, chunk
   files and their corresponding Manifest Files are created and
   delivered in real time.  This poses a number of potential issues for
   HAS optimization:

   -  With live content, chunk files are made available in real time.
      This limits the applicability of bundling for content acquisition
      purposes.  Pre-positioning may still be employed; however, any
      significant latency in the pre-positioning may diminish the value
      of pre-positioning if a client requests the chunk prior to
      pre-positioning or if the pre-positioning request is serviced
      after the chunk playout time has passed.

   -  In the case of live content, Manifest Files must be updated for
      each chunk and therefore must be retrieved by the client prior to
      each chunk request.  Any optimization schemes based on Manifest
      Files must therefore be prepared to optimize on a per-segment
      request basis.  Manifest Files may also be polled multiple times
      prior to the actual availability of the next chunk.

   -  Since live Manifest Files are updated as new chunks become
      available, the cacheability of Manifest Files is limited.  Though
      timestamping and reasonable Time-to-Live (TTL) settings can
      improve delivery performance, timely replication and delivery of
      updated Manifest Files are critical to ensuring uninterrupted
      playback.

   -  Manifest Files are typically updated after the corresponding chunk
      is available for delivery, to prevent premature requests for
      chunks that are not yet available.  HAS optimization approaches
      that employ dynamic Manifest File generation must be synchronized
      with chunk creation to prevent playback errors.










van Brandenburg, et al.       Informational                    [Page 11]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


2.4.  Stream Splicing

   Stream splicing is used to create media mashups, combining content
   from multiple sources.  A common example in which content resides
   outside the CDNs is with advertisement insertion, for both VoD and
   live streams.  Manifest Files that contain absolute URLs with
   redirection may contain chunk or nested Manifest File URLs that point
   to content not delivered via any of the interconnected CDNs.

   Furthermore, client and downstream proxy devices may depend on
   non-URL information provided in the Manifest File (e.g., comments or
   custom tags) for performing stream splicing.  This often occurs
   outside the scope of the interconnected CDNs.  HAS optimization
   schemes that employ dynamic Manifest File generation or rewriting
   must be cognizant of chunk URLs, nested Manifest File URLs, and other
   metadata that should not be modified or removed.  Improper
   modification of these URLs or other metadata may cause playback
   interruptions and in the case of unplayed advertisements may result
   in loss of revenue for CSPs.

3.  Possible HAS Optimizations

   In the previous section, some of the unique properties of HAS were
   discussed.  Furthermore, some of the CDN-specific design decisions
   with regards to addressing chunks have been detailed.  In this
   section, the impact of supporting HAS in CDNI scenarios is discussed.

   There are a number of topics, or problem areas, that are of
   particular interest when considering the combination of HAS and CDNI.
   For each of these problem areas, it holds that there are a number of
   different ways in which the CDNI interfaces can deal with them.  In
   general, it can be said that each problem area can either be solved
   in a way that minimizes the amount of HAS-specific changes to the
   CDNI interfaces or maximizes the flexibility and efficiency with
   which the CDNI interfaces can deliver HAS content.  The goal for the
   CDNI WG should probably be to try to find the middle ground between
   these two extremes and try to come up with solutions that optimize
   the balance between efficiency and additional complexity.

   In order to allow the WG to make this decision, this section briefly
   describes each of the following problem areas, together with a number
   of different options for dealing with them.  Section 3.1 discusses
   the problem of how to deal with file management of groups of files,
   or content collections.  Section 3.2 deals with a related topic: how
   to do content acquisition of content collections between the Upstream
   CDN (uCDN) and Downstream CDN (dCDN).  After that, Section 3.3
   describes the various options for the request routing of HAS content,
   particularly related to Manifest Files.  Section 3.4 talks about a



van Brandenburg, et al.       Informational                    [Page 12]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   number of possible optimizations for the logging of HAS content,
   while Section 3.5 discusses the options regarding URL signing.
   Finally, Section 3.6 describes different scenarios for dealing with
   the removal of HAS content from CDNs.

3.1.  File Management and Content Collections

3.1.1.  General Remarks

   One of the unique properties of HAS content is that it does not
   consist of a single file or stream but of multiple interrelated files
   (segments, fragments, and/or Manifest Files).  In this document, this
   group of files is also referred to as a content collection.  Another
   important aspect is the difference between segments and fragments
   (see Section 2.1).

   Irrespective of whether segments or fragments are used, different
   CDNs might handle content collections differently from a file
   management perspective.  For example, some CDNs might handle all
   files belonging to a content collection as individual files that are
   stored independently from each other.  An advantage of this approach
   is that it makes it easy to cache individual chunks.  Other CDNs
   might store all fragments belonging to a content collection in a
   bundle, as if they were a single file (e.g., by using a fragmented
   MP4 container).  The advantage of this approach is that it reduces
   file management overhead.

   The following subsections look at the various ways with which the
   CDNI interfaces might deal with these differences in handling content
   collections from a file management perspective.  The different
   options can be distinguished based on the level of HAS awareness they
   require on the part of the different CDNs and the CDNI interfaces.

3.1.2.  Candidate Approaches

3.1.2.1.  Option 1.1: Do Nothing

   This option assumes no HAS awareness in both the involved CDNs and
   the CDNI interfaces.  This means that the uCDN uses individual files,
   and the dCDN is not explicitly made aware of the relationship between
   chunks and doesn't know which files are part of the same content
   collection.  In practice, this scenario would mean that the file
   management method used by the uCDN is simply imposed on the dCDN as
   well.

   This scenario also means that it is not possible for the dCDN to use
   any form of file bundling, such as the single-file mechanism, which
   can be used to store fragmented content as a single file (see



van Brandenburg, et al.       Informational                    [Page 13]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   Section 2.1).  The one exception to this rule is the situation where
   the content is fragmented and the Manifest Files on the uCDN contain
   byte range requests, in which case the dCDN might be able to acquire
   fragmented content as a single file (see Section 3.2.2.2).

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks:

   +  No HAS awareness necessary in CDNs; no changes to CDNI interfaces
      necessary

   -  The dCDN is forced to store chunks as individual files

3.1.2.2.  Option 1.2: Allow Single-File Storage of Fragmented Content

   In some cases, the dCDN might prefer to store fragmented content as a
   single file on its Surrogates to reduce file management overhead.  In
   order to do so, it needs to be able to either acquire the content as
   a single file (see Section 3.2.2.2) or to merge the different chunks
   together and place them in the same container (e.g., fragmented MP4).
   The downside of this method is that in order to do so, the dCDN needs
   to be fully HAS aware.

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: Add fields for indicating the particular
      type of HAS (e.g., MPEG DASH or HLS) that is used and whether
      segments or fragments are used

   o  CDNI Metadata interface: Add field for indicating the name and
      type of the Manifest File(s)

   Advantages/Drawbacks:

   +  Allows the dCDN to store fragmented content as a single file,
      reducing file management overhead

   -  Complex operation, requiring the dCDN to be fully HAS aware

3.1.2.3.  Option 1.3: Access Correlation Hint

   An intermediary approach between the two extremes detailed in the
   previous two sections is one that uses an 'Access Correlation Hint'.
   This hint, which is added to the CDNI Metadata of all chunks of a
   particular content collection, indicates that those files are likely



van Brandenburg, et al.       Informational                    [Page 14]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   to be requested in a short time window from each other.  This
   information can help a dCDN to implement local file storage
   optimizations for VoD items (e.g., by bundling all files with the
   same Access Correlation Hint value in a single bundle/file), thereby
   reducing the number of files it has to manage while not requiring any
   HAS awareness.

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: Add field for indicating Access
      Correlation Hint

   Advantages/Drawbacks:

   +  Allows the dCDN to perform file management optimization

   +  Does not require any HAS awareness

   +  Very small impact on CDNI interfaces

   -  Expected benefit compared with Option 1.1 is small

3.1.3.  Recommendations

   Based on the listed pros and cons, the authors recommend that the WG
   go for Option 1.1 (do nothing).  The likely benefits of going for
   Option 1.3 are not believed to be significant enough to warrant
   changing the CDNI Metadata interface.  Although Option 1.2 would
   bring definite benefits for HAS-aware dCDNs, going for this option
   would require significant CDNI extensions that would impact the WG's
   milestones.  The authors therefore don't recommend including it in
   the current work but mark it as a possible candidate for rechartering
   once the initial CDNI solution is completed.

3.2.  Content Acquisition of Content Collections

3.2.1.  General Remarks

   In the previous section, the relationship between file management and
   HAS in a CDNI scenario was discussed.  This section discusses a
   related topic: content acquisition between two CDNs.

   With regards to content acquisition, it is important to note the
   difference between CDNs that do dynamic acquisition of content and
   CDNs that perform content pre-positioning.  In the case of dynamic
   acquisition, a CDN only requests a particular content item when a
   cache miss occurs.  In the case of pre-positioning, a CDN proactively
   places content items on the nodes on which it expects traffic for



van Brandenburg, et al.       Informational                    [Page 15]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   that particular content item.  For each of these types of CDNs, there
   might be a benefit in being HAS aware.  For example, in the case of
   dynamic acquisition, being HAS aware means that after a cache miss
   for a given chunk occurs, that node might not only acquire the
   requested chunk but might also acquire some related chunks that are
   expected to be requested in the near future.  In the case of
   pre-positioning, similar benefits can be had.

3.2.2.  Candidate Approaches

3.2.2.1.  Option 2.1: No HAS Awareness

   This option assumes no HAS awareness in both the involved CDNs and
   the CDNI interfaces.  Just as with Option 1.1, discussed earlier with
   regards to file management, having no HAS awareness means that the
   dCDN is not aware of the relationship between chunks.  In the case of
   content acquisition, this means that each and every file belonging to
   a content collection will have to be individually acquired from the
   uCDN by the dCDN.  The exception to the rule is cases with fragmented
   content where the uCDN uses Manifest Files that contain byte range
   requests.  In this case, the dCDN can simply omit the byte range
   identifier and acquire the complete file.

   The advantage of this approach is that it is highly flexible.  If a
   client only requests a small portion of the chunks belonging to a
   particular content collection, the dCDN only has to acquire those
   chunks from the uCDN, saving both bandwidth and storage capacity.

   The downside of acquiring content on a per-chunk basis is that it
   creates more transaction overhead between the dCDN and uCDN, compared
   to a method in which entire content collections can be acquired as
   part of one transaction.

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks:

   +  Per-chunk content acquisition allows for a high level of
      flexibility between the dCDN and uCDN

   -  Per-chunk content acquisition creates more transaction overhead
      between the dCDN and uCDN







van Brandenburg, et al.       Informational                    [Page 16]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.2.2.2.  Option 2.2: Allow Single-File Acquisition of Fragmented
          Content

   As discussed in Section 3.2.2.1, there is one (fairly rare) case
   where fragmented content can be acquired as a single file without any
   HAS awareness, and that is when fragmented content is used and where
   the Manifest File specifies byte range requests.  This section
   discusses how to perform single-file acquisition in the other (very
   common) cases.  To do so, the dCDN would have to have full HAS
   awareness (at least to the extent of being able to map between a
   single file and individual chunks to serve).

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: Add fields for indicating the particular
      type of HAS (e.g., MPEG DASH or HLS) that is used and whether
      segments or fragments are used

   o  CDNI Metadata interface: Add field for indicating the name and
      type of the Manifest File(s)

   Advantages/Drawbacks:

   +  Allows for more efficient content acquisition in all HAS-specific
      supported forms

   -  Requires full HAS awareness on the part of the dCDN

   -  Requires significant CDNI Metadata interface extensions

3.2.3.  Recommendations

   Based on the listed pros and cons, the authors recommend that the WG
   go for Option 2.1, since it is sufficient to 'make HAS work'.  While
   Option 2.2 would bring benefits to the acquisition of large content
   collections, it would require significant CDNI extensions that would
   impact the WG's milestones.  Option 2.2 might be a candidate to
   include in possible rechartering once the initial CDNI solution is
   completed.

3.3.  Request Routing of HAS Content

3.3.1.  General Remarks

   In this section, the effect HAS content has on request routing is
   identified.  Of particular interest in this case are the different
   types of Manifest Files that might be used.  In Section 2.2, three
   different methods for identifying and addressing chunks from within a



van Brandenburg, et al.       Informational                    [Page 17]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   Manifest File were described: relative URLs, absolute URLs with
   redirection, and absolute URLs without redirection.  Of course, not
   every current CDN will use and/or support all three methods.  Some
   CDNs may only use one of the three methods, while others may support
   two or all three.

   An important factor in deciding which chunk-addressing method is used
   is the CSP.  Some CSPs may have a strong preference for a particular
   method and deliver the Manifest Files to the CDN in a particular way.
   Depending on the CDN and the agreement it has with the CSP, a CDN may
   either host the Manifest Files as they were created by the CSP or
   modify the Manifest File to adapt it to its particular architecture
   (e.g., by changing relative URLs to absolute URLs that point to the
   CDN Request Routing function).

3.3.2.  Candidate Approaches

3.3.2.1.  Option 3.1: No HAS Awareness

   This option assumes no HAS awareness in both the involved CDNs and
   the CDNI interfaces.  This scenario also assumes that neither the
   dCDN nor the uCDN has the ability to actively manipulate Manifest
   Files.  As was also discussed with regards to file management and
   content acquisition, having no HAS awareness means that each file
   constituting a content collection is handled on an individual basis,
   with the dCDN unaware of any relationship between files.

   The only chunk-addressing method that works without question in this
   case is absolute URLs with redirection.  In other words, the CSP that
   ingested the content into the uCDN created a Manifest File with each
   chunk location pointing to the Request Routing function of the uCDN.
   Alternatively, the CSP may have ingested the Manifest File containing
   relative URLs, and the uCDN ingestion function has translated these
   to absolute URLs pointing to the Request Routing function.

   In this "absolute URL with redirection" case, the uCDN can simply
   have the Manifest File be delivered by the dCDN as if it were a
   regular file.  Once the client parses the Manifest File, it will
   request any subsequent chunks from the uCDN Request Routing function.
   That function can then decide to outsource the delivery of those
   chunks to the dCDN.  Depending on whether HTTP-based (recursive or
   iterative) or DNS-based request routing is used, the uCDN Request
   Routing function will then either directly or indirectly redirect the
   client to the Request Routing function of the dCDN (assuming that it
   does not have the necessary information to redirect the client
   directly to a Surrogate in the dCDN).





van Brandenburg, et al.       Informational                    [Page 18]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   The drawback of this method is that it creates a large amount of
   request routing overhead for both the uCDN and dCDN.  For each chunk,
   the full inter-CDN Request Routing process is invoked (which can
   result in two HTTP redirections in the case of iterative redirection,
   or one HTTP redirection plus one CDNI Request Routing Redirection
   interface request/response).  Even in the case where DNS-based
   redirection is used, there might be significant overhead involved,
   since both the dCDN and uCDN Request Routing functions might have to
   perform database lookups and query each other.  While with DNS this
   overhead might be reduced by using DNS's inherent caching mechanism,
   this will have significant impact on the accuracy of the redirect.

   With no HAS awareness, relative URLs might or might not work,
   depending on the type of relative URL that is used.  When a uCDN
   delegates the delivery of a Manifest File containing relative URLs to
   a dCDN, the client goes directly to the dCDN Surrogate from which it
   has received the Manifest File for every subsequent chunk.  As long
   as the relative URL is not path-absolute (see [RFC3986]), this
   approach will work fine.

   Since using absolute URLs without redirection inherently requires a
   HAS-aware CDN, absolute URLs without redirection cannot be used in
   this case because the URLs in the Manifest File will point directly
   to a Surrogate in the uCDN.  Since this scenario assumes no HAS
   awareness on the part of the dCDN or uCDN, it is impossible for
   either of these CDNs to rewrite the Manifest File and thus allow the
   client to either go to a Surrogate in the dCDN or to a Request
   Routing function.

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks:

   +  Supports absolute URLs with redirection

   +  Supports relative URLs

   +  Does not require HAS awareness and/or changes to the CDNI
      interfaces

   -  Not possible to use absolute URLs without redirection

   -  Creates significant signaling overhead in cases where absolute
      URLs with redirection are used (inter-CDN request redirection for
      each chunk)




van Brandenburg, et al.       Informational                    [Page 19]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.3.2.2.  Option 3.2: Manifest File Rewriting by uCDN

   While Option 3.1 does allow absolute URLs with redirection to be
   used, it does so in a way that creates a high level of request
   routing overhead for both the dCDN and the uCDN.  This option
   presents a solution to significantly reduce this overhead.

   In this scenario, the uCDN is able to rewrite the Manifest File (or
   generate a new one) to be able to remove itself from the request
   routing chain for chunks being referenced in the Manifest File.  As
   described in Section 3.3.2.1, in the case of no HAS awareness, the
   client will go to the uCDN Request Routing function for each chunk
   request.  This Request Routing function can then redirect the client
   to the dCDN Request Routing function.  By rewriting the Manifest File
   (or generating a new one), the uCDN is able to remove this first step
   and have the Manifest File point directly to the dCDN Request Routing
   function.

   A key advantage of this solution is that it does not directly have an
   impact on the CDNI interfaces and is therefore transparent to these
   interfaces.  It is a CDN-internal function that a uCDN can perform
   autonomously by using information configured for regular CDNI
   operation or received from the dCDN as part of the regular
   communication using the CDNI Request Routing Redirection interface.

   More specifically, in order for the uCDN to rewrite the Manifest
   File, the minimum information needed is the location of the dCDN
   Request Routing function (or, alternatively, the location of the dCDN
   delivering Surrogate).  This information can be available from
   configuration or can be derived from the regular CDNI Request Routing
   Redirection interface.  For example, the uCDN may ask the dCDN for
   the location of its request routing node (through the CDNI Request
   Routing Redirection interface) every time a request for a Manifest
   File is received and processed by the uCDN Request Routing function.
   The uCDN would then modify the Manifest File and deliver the Manifest
   File to the client.  One advantage of this method is that it
   maximizes efficiency and flexibility by allowing the dCDN to
   optionally respond with the locations of its Surrogates instead of
   the location of its Request Routing function (and effectively turning
   the URLs into absolute URLs without redirection).  There are many
   variations on this approach, such as where the modification of the
   Manifest File is only performed once (or once per period of time) by
   the uCDN Request Routing function, when the first client for that
   particular content collection (and redirected to that particular
   dCDN) sends a Manifest File request.  The advantage of such a
   variation is that the uCDN only has to modify the Manifest File once





van Brandenburg, et al.       Informational                    [Page 20]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   (or once per time period).  The drawback of this variation is that
   the dCDN is no longer in a position to influence the request routing
   decision across individual content requests.

   It should be noted that there are a number of things to take into
   account when changing a Manifest File (see, for example, Sections 2.3
   and 2.4 on live HAS content and ad insertion).  Furthermore, some
   CSPs might have issues with a CDN changing Manifest Files.  However,
   in this option the Manifest File manipulation is only being performed
   by the uCDN, which can be expected to be aware of these limitations
   if it wants to perform Manifest File manipulation, since it is in its
   own best interest that its customer's content gets delivered in the
   proper way and since there is a direct commercial and technical
   relationship between the uCDN (the Authoritative CDN in this
   scenario) and its customer (the CSP).  Should the CSP want to limit
   Manifest File manipulation, it can simply arrange this with the uCDN
   bilaterally.

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks:

   +  Possible to significantly decrease signaling overhead when using
      absolute URLs

   +  (Optional) Possible to have the uCDN rewrite the Manifest File
      with locations of Surrogates in the dCDN (turning absolute URLs
      with redirection into absolute URLs without redirection)

   +  No changes to CDNI interfaces

   +  Does not require HAS awareness in the dCDN

   -  Requires a high level of HAS awareness in the uCDN (for modifying
      Manifest Files)

3.3.2.3.  Option 3.3: Two-Step Manifest File Rewriting

   One of the possibilities with Option 3.2 is allowing the dCDN to
   provide the locations of a specific Surrogate to the uCDN, so that
   the uCDN can fit the Manifest File with absolute URLs without
   redirection and the client can request chunks directly from a dCDN
   Surrogate.  However, some dCDNs might not be willing to provide this
   information to the uCDN.  In that case, they can only provide the
   uCDN with the location of their Request Routing function, thereby
   preventing the use of absolute URLs without redirection.



van Brandenburg, et al.       Informational                    [Page 21]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   One method for solving this limitation is allowing two-step Manifest
   File manipulation.  In the first step, the uCDN would perform its own
   modification and place the locations of the dCDN Request Routing
   function in the Manifest File.  Then, once a request for the Manifest
   File comes in at the dCDN Request Routing function, it would perform
   a second modification in which it replaces the URLs in the Manifest
   Files with the URLs of its Surrogates.  This way, the dCDN can still
   profit from having limited request routing traffic while not having
   to share sensitive Surrogate information with the uCDN.

   The downside of this approach is that it not only assumes HAS
   awareness in the dCDN but also requires some HAS-specific additions
   to the CDNI Metadata interface.  In order for the dCDN to be able to
   change the Manifest File, it has to have some information about the
   structure of the content.  Specifically, it needs to have information
   about which chunks make up the content collection.

   Effect on CDNI interfaces (apart from those already listed under
   Option 3.2):

   o  CDNI Metadata interface: Add necessary fields for conveying HAS-
      specific information (e.g., the files that make up the content
      collection) to the dCDN

   o  CDNI Metadata interface: Allow dCDN to modify Manifest File

   Advantages/Drawbacks (apart from those already listed under
   Option 3.2):

   +  Allows the dCDN to use absolute URLs without redirection, without
      having to convey sensitive information to the uCDN

   -  Requires a high level of HAS awareness in the dCDN (for modifying
      Manifest Files)

   -  Requires adding HAS-specific and Manifest File manipulation-
      specific information to the CDNI Metadata interface

3.3.3.  Recommendations

   Based on the listed pros and cons, the authors recommend going for
   Option 3.1, with Option 3.2 as an optional feature that may be
   supported as a CDN-internal behavior by a uCDN.  While Option 3.1
   allows for HAS content to be delivered using the CDNI interfaces, it
   does so with some limitations regarding supported Manifest Files and,
   in some cases, with a large amount of signaling overhead.  Option 3.2
   can solve most of these limitations and presents a significant
   reduction in request routing overhead.  Since Option 3.2 does not



van Brandenburg, et al.       Informational                    [Page 22]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   require any changes to the CDNI interfaces but only changes the way
   the uCDN uses the existing interfaces, supporting it is not expected
   to result in a significant delay of the WG's milestones.  The authors
   recommend that the WG not include Option 3.3, since it raises some
   questions of potential brittleness and including it would result in a
   significant delay of the WG's milestones.

3.4.  Logging

3.4.1.  General Remarks

   As stated in [RFC6707], the CDNI Logging interface enables details of
   logs or events to be exchanged between interconnected CDNs.

   As discussed in [CDNI-LOGGING], the CDNI logging information can be
   used for multiple purposes, including maintenance/debugging by a
   uCDN, accounting (e.g., for billing or settlement purposes),
   reporting and management of end-user experience (e.g., to the CSP),
   analytics (e.g., by the CSP), and control of content distribution
   policy enforcement (e.g., by the CSP).

   The key consideration for HAS with respect to logging is the
   potential increase of the number of log records by two to three
   orders of magnitude, as compared to regular HTTP delivery of a video,
   since by default log records would typically be generated on a
   per-chunk-delivery basis instead of a per-content-item-delivery
   basis.  This impacts the scale of every processing step in the
   logging process (see [CDNI-LOGGING]), including:

   a.  Logging information generation and storing on CDN elements
       (Surrogate, Request Routers, ...)

   b.  Logging information aggregation within a CDN

   c.  Logging information manipulation (including information
       protection, filtering, update, and rectification)

   d.  (Where needed) CDNI reformatting of logging information (e.g.,
       reformatting from a CDN-specific format to the CDNI Logging
       interface format for export by the dCDN to the uCDN)

   e.  Logging exchange via the CDNI Logging interface









van Brandenburg, et al.       Informational                    [Page 23]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   f.  (Where needed) Logging re-reformatting (e.g., reformatting from
       the CDNI Logging interface format into a log-consuming
       application)

   g.  Logging consumption/processing (e.g., feed logs into uCDN
       accounting application, feed logs into uCDN reporting system to
       provide per-CSP views, feed logs into debugging tools)

   Note that there may be multiple instances of steps [f] and [g]
   running in parallel.

   While the CDNI Logging interface is only used to perform step [e], we
   note that its format directly affects steps [d] and [f] and that its
   format also indirectly affects the other steps (for example, if the
   CDNI Logging interface requires per-chunk log records, steps [a],
   [b], and [d] cannot operate on a per-HAS-session basis, and they also
   need to operate on a per-chunk basis).

   This section discusses the main candidate approaches identified for
   CDNI in terms of dealing with HAS with respect to logging.

3.4.2.  Candidate Approaches

3.4.2.1.  Option 4.1: Do Nothing

   In this approach, nothing is done specifically for HAS, so each
   HAS-chunk delivery is considered, for CDNI logging, as a standalone
   content delivery.  In particular, a separate log record for each
   HAS-chunk delivery is included in the CDNI Logging interface in
   step [e] (as defined in Section 3.4.1).  This approach requires that
   steps [a], [b], [c], [d], and [f] also be performed on a per-chunk
   basis.  This approach allows step [g] to be performed either on a
   per-chunk basis (assuming that step [f] maintains per-chunk records)
   or in a more "summarized" manner, such as on a per-HAS-session basis
   (assuming that step [f] summarizes per-chunk records into per-HAS-
   session records).

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks:

   +  No information loss (i.e., all details of each individual chunk
      delivery are preserved).  While this full level of detail may not
      be needed for some log-consuming applications (e.g., billing),
      this full level of detail is likely valuable (and possibly
      required) for some log-consuming applications (e.g., debugging)



van Brandenburg, et al.       Informational                    [Page 24]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   +  Easier integration (at least in the short term) into existing
      logging tools, since those tools are all capable of handling
      per-chunk records

   +  No extension needed on CDNI interfaces

   -  High volume of logging information to be handled (storing and
      processing) at every step of the logging process, from steps [a]
      to [g] (while summarization in step [f] is conceivable, it may be
      difficult to achieve in practice without any hints for correlation
      in the log records)

   An interesting question is whether a dCDN could use the CDNI Logging
   interface specified for the "do nothing" approach to report
   summarized "per-session" log information in the case where the dCDN
   performs such summarization.  The high-level idea would be that when
   a dCDN performs HAS log summarization, for its own purposes anyway,
   this dCDN could include in the CDNI Logging interface one or more log
   entries for a HAS session (instead of one entry per HAS chunk) that
   summarize the deliveries of many/all HAS chunks for a session.
   However, the authors feel that when considering the details of this
   idea, it is not achievable without explicit agreement between the
   uCDN and dCDN about how to perform/interpret such summarization.  For
   example, when a HAS session switches between representations, the
   uCDN and dCDN would have to agree on things such as:

   o  whether the session will be represented by a single log entry
      (which therefore cannot convey the distribution across
      representations), or multiple log entries, such as one entry per
      contiguous period at a given representation (which therefore would
      be generally very difficult to correlate back into a single
      session)

   o  what the single URI included in the log entry would correspond to
      (for example, the Manifest File, top-level playlist, or next-level
      playlist, ...)

   The authors feel that since explicit agreement is needed between the
   uCDN and dCDN on how to perform/interpret the summarization, this
   method can only work if it is specified as part of the CDNI Logging
   interface, in which case it would effectively boil down to Option 4.4
   (full HAS awareness / per-session logs) as defined below.









van Brandenburg, et al.       Informational                    [Page 25]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   We note that support by CDNI of a mechanism (independent of HAS)
   allowing the customization of the fields to be reported in log
   entries by the dCDN to the uCDN would mitigate concerns related to
   the scaling of HAS logging, because it ensures that only the
   necessary subset of fields is actually stored, reported, and
   processed.

3.4.2.2.  Option 4.2: CDNI Metadata Content Collection ID

   In this approach, a "Content Collection IDentifier (CCID)" field is
   distributed through the CDNI Metadata interface, and the same CCID
   value is associated through the CDNI Metadata interface with every
   chunk of the same content collection.  The CCID value needs to be
   such that it allows, in combination with the content URI, unique
   identification of a content collection.  When the CCID is
   distributed, and CCID logging is requested from the dCDN, the dCDN
   Surrogates are to store the CCID value in the corresponding log
   entries.  The objective of this field is to facilitate optional
   summarization of per-chunk records at step [f] into something along
   the lines of per-HAS-session logs, at least for the log-consuming
   applications that do not require per-chunk detailed information (for
   example, billing).

   We note that if the dCDN happens to have sufficient HAS awareness to
   be able to generate a "Session IDentifier (Session-ID)", optionally
   including such a Session-ID (in addition to the CCID) in the
   per-chunk log record would further facilitate optional summarization
   at step [f].  The Session-ID value to be included in a log record by
   the delivering CDN is such that

   o  different per-chunk log records with the same Session-ID value
      must correspond to the same user session (i.e., delivery of the
      same content to the same End User at a given point in time).

   o  log records for different chunks of the same user session (i.e.,
      delivery of the same content to the same End User at a given point
      in time) should be provided with the same Session-ID value.  While
      undesirable, there may be situations where the delivering CDN uses
      more than one Session-ID value for different per-chunk log records
      of a given session -- for example, in scenarios of fail-over or
      load balancing across multiple Surrogates and where the delivering
      CDN does not implement mechanisms to synchronize Session-IDs
      across Surrogates.








van Brandenburg, et al.       Informational                    [Page 26]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   Effect on CDNI interfaces:

   o  CDNI Metadata interface: One additional metadata field (CCID) in
      the CDNI Metadata interface.  We note that a similar content
      collection ID is discussed for the handling of other aspects of
      HAS and observe that further thought is needed to determine
      whether such a CCID should be shared for multiple purposes or
      should be independent.

   o  CDNI Logging interface: Two additional fields (CCID and
      Session-ID) in CDNI logging records.

   Advantages/Drawbacks:

   +  No information loss (i.e., all details of each individual chunk
      delivery are preserved).  While this full level of detail may not
      be needed for some log-consuming applications (e.g., billing),
      this full level of detail is likely valuable (and possibly
      required) for some log-consuming applications (e.g., debugging)

   +  Easier integration (at least in the short term) into existing
      logging tools, since those tools are all capable of handling
      per-chunk records

   +  Very minor extension to CDNI interfaces needed

   +  Facilitated summarization of records related to a HAS session in
      step [f] and therefore ability to operate on a lower volume of
      logging information in step [g] by log-consuming applications that
      do not need per-chunk record details (e.g., billing) or that need
      per-session information (e.g., analytics)

   -  High volume of logging information to be handled (storing and
      processing) at every step of the logging process, from steps [a]
      to [f]
















van Brandenburg, et al.       Informational                    [Page 27]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.4.2.3.  Option 4.3: CDNI Logging Interface Compression

   In this approach, a lossless compression technique is applied to the
   sets of logging records (e.g., logging files) for transfer on the
   CDNI Logging interface.  The objective of this approach is to reduce
   the volume of information to be stored and transferred in step [e].

   Effect on CDNI interfaces:

   o  One compression mechanism to be included in the CDNI Logging
      interface

   Advantages/Drawbacks:

   +  No information loss (i.e., all details of each individual chunk
      delivery are preserved).  While this full level of detail may not
      be needed for some log-consuming applications (e.g., billing),
      this full level of detail is likely valuable (and possibly
      required) for some log-consuming applications (e.g., debugging)

   +  Easier integration (at least in the short term) into existing
      logging tools, since those tools are all capable of handling
      per-chunk records

   +  Small extension to CDNI interfaces needed

   +  Reduced volume of logging information in step [e]

   +  Compression likely to also be applicable to logs for non-HAS
      content

   -  High volume of logging information to be handled (storing and
      processing) at every step of the logging process, from steps [a]
      to [g], except step [e].

















van Brandenburg, et al.       Informational                    [Page 28]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.4.2.4.  Option 4.4: Full HAS Awareness/Per-Session Logs

   In this approach, HAS awareness is assumed across the CDNs
   interconnected via CDNI, and the necessary information to describe
   the HAS relationship across all chunks of the same content collection
   is distributed through the CDNI Metadata interface.  In this
   approach, the dCDN leverages the HAS information distributed through
   the CDNI Metadata and their HAS awareness, to do one of the
   following:

   o  directly generate summarized logging information at logging
      information generation time (which has the benefit of operating on
      a lower volume of logging information as early as possible in the
      successive steps of the logging process), or

   o  (if per-chunk logs are generated) accurately correlate and
      summarize per-chunk logs into per-session logs for exchange over
      the CDNI Logging interface

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: Significant extension to convey HAS
      relationship across chunks of a content collection.  Note that
      this extension requires specific support for every HAS protocol to
      be supported over the CDNI mesh

   o  CDNI Logging interface: Extension to specify summarized per-
      session logs

   Advantages/Drawbacks:

   +  Lower volume of logging information to be handled (storing and
      processing) at every step of the logging process, from steps [a]
      to [g]

   +  Accurate generation of summarized logs because of HAS awareness in
      the dCDN (for example, where the Surrogate is also serving the
      Manifest File(s) for a content collection, the Surrogate may be
      able to extract definitive information about the relationship
      between all chunks)

   -  Very significant extensions to CDNI interfaces needed, including
      specific support for available HAS protocols

   -  Very significant additional requirement for HAS awareness on the
      dCDN and for this HAS awareness to be consistent with the defined
      CDNI logging summarization




van Brandenburg, et al.       Informational                    [Page 29]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   -  Some information loss (i.e., all details of each individual chunk
      delivery are not preserved).  The actual information loss depends
      on the summarization approach selected (typically, the lower the
      information loss, the lower the summarization gain), so the right
      "sweet spot" would have to be selected.  While a full level of
      detail may not be needed for some log-consuming applications
      (e.g., billing), such a full level of detail is likely valuable
      (and possibly required) for some log-consuming applications (e.g.,
      debugging)

   -  Less easy integration (at least in the short term) into existing
      logging tools, since those tools are all capable of handling
      per-chunk records but may not be capable of handling CDNI
      summarized records

   -  Challenges in defining behavior (and achieving summarization gain)
      in the presence of load balancing of a given HAS session across
      multiple Surrogates (in the same dCDN or a different dCDN)

3.4.3.  Recommendations

   Because of its benefits (in particular simplicity, universal support
   by CDNs, and support by all log-consuming applications), the authors
   recommend that per-chunk logging as described in Section 3.4.2.1
   (Option 4.1) be supported by the CDNI Logging interface as a "High
   Priority" (as defined in [CDNI-REQUIREMENTS]) and be a mandatory
   capability of CDNs implementing CDNI.

   Because of its very low complexity and its benefits in facilitating
   some useful scenarios (e.g., per-session analytics), we recommend
   that the CCID mechanisms and Session-ID mechanism as described in
   Section 3.4.2.2 (Option 4.2) be supported by the CDNI Metadata
   interface and the CDNI Logging interface as a "Medium Priority" (as
   defined in [CDNI-REQUIREMENTS]) and be an optional capability of CDNs
   implementing CDNI.

   The authors also recommend that

   (i)   the ability of the uCDN to request inclusion of the CCID and
         Session-ID fields (in log entries provided by the dCDN) be
         supported by the relevant CDNI interfaces

   (ii)  the ability of the dCDN to include the CCID and Session-ID
         fields in CDNI log entries (when the dCDN is capable of doing
         so) be indicated in the CDNI Logging interface (in line with
         the "customizable" log format expected to be defined
         independently of HAS)




van Brandenburg, et al.       Informational                    [Page 30]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   (iii) items (i) and (ii) be supported as a "Medium Priority" (as
         defined in [CDNI-REQUIREMENTS]) and be an optional capability
         of CDNs implementing CDNI

   When performing dCDN selection, a uCDN may want to take into account
   whether a given dCDN is capable of reporting the CCID and Session-ID.
   Thus, the authors recommend that the ability of a dCDN to advertise
   its support of the optional CCID and Session-ID capability be
   supported by the CDNI Footprint & Capabilities Advertisement
   interface as a "Medium Priority" (as defined in [CDNI-REQUIREMENTS]).

   The authors also recommend that a generic mechanism (independent of
   HAS) be supported that allows the customization of the fields to be
   reported in logs by CDNs over the CDNI Logging interface -- because
   of the reduction of the logging information volume exchanged across
   CDNs that it allows by removing information that is not of interest
   to the other CDN.

   Because the following can be achieved with very little complexity and
   can provide some clear storage/communication compression benefits,
   the authors recommend that, in line with the concept of Option 4.3,
   some existing very common compression techniques (e.g., gzip) be
   supported by the CDNI Logging interface as a "Medium Priority" (as
   defined in [CDNI-REQUIREMENTS]) and be an optional capability of CDNs
   implementing CDNI.

   Because of its complexity, the time it would take to understand the
   trade-offs of candidate summarization approaches, and the time it
   would take to specify the corresponding support in the CDNI Logging
   interface, the authors recommend that the log summarization discussed
   in Section 3.4.2.4 (Option 4.4) not be supported by the CDNI Logging
   interface at this stage but that it be kept as a candidate topic of
   great interest for a rechartering of the CDNI WG once the first set
   of deliverables is produced.  At that time, we suggest investigating
   the notion of complementing a "push style" CDNI Logging interface
   that would support summarization via an on-demand "pull type"
   interface that would in turn allow a uCDN to request the subset of
   the detailed logging information that it may need but that is lost in
   the summarized pushed information.

   The authors note that while a CDN only needs to adhere to the CDNI
   Logging interface on its external interfaces and can perform logging
   in a different format within the CDN, any possible CDNI logging
   approach effectively places some constraints on the dCDN logging
   format.  For example, to support the "do nothing" approach, a CDN
   needs to perform and retain per-chunk logs.  As another example, to
   support the "full HAS awareness/per-session logs" approach, the dCDN
   cannot use a logging format that summarizes data in a way that is



van Brandenburg, et al.       Informational                    [Page 31]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   incompatible with the summarization specified for CDNI logging (e.g.,
   summarizes data into a smaller set of information than what is
   specified for CDNI logging).  However, the authors feel that such
   constraints are (i) inevitable, (ii) outweighed by the benefits of a
   standardized logging interface, and (iii) acceptable because, in the
   case of incompatible summarization, most or all CDNs are capable of
   reverting to per-chunk logging as per the "do nothing" approach that
   we recommend as the base mandatory approach.

3.5.  URL Signing

   URL signing is an authorization method for content delivery.  This is
   based on embedding the HTTP URL with information that can be
   validated to ensure that the request has legitimate access to the
   content.  There are two parts: 1) parameters that convey
   authorization restrictions (e.g., source IP address and time period)
   and/or a protected URL portion, and 2) a message digest that confirms
   the integrity of the URL and authenticates the entity that creates
   the URL.  The authorization parameters can be anything agreed upon
   between the entity that creates the URL and the entity that validates
   the URL.  A key is used to generate the message digest (i.e., sign
   the URL) and validate the message digest.  The two functions may or
   may not use the same key.

   There are two types of keys used for URL signing: asymmetric keys and
   symmetric keys.  Asymmetric keys always have a key pair made up of a
   public key and private key.  The private key and public key are used
   for signing and validating the URL, respectively.  A symmetric key is
   the same key that is used for both functions.  Regardless of the type
   of key, the entity that validates the URL has to obtain the key.
   Distribution of the symmetric key requires security to prevent others
   from taking it.  A public key can be distributed freely, while a
   private key is kept by the URL signer.  The method for key
   distribution is out of scope for this document.

   URL signing operates in the following way.  A signed URL is provided
   by the content owner (i.e., URL signer) to the user during website
   navigation.  When the user selects the URL, the HTTP request is sent
   to the CDN, which validates that URL before delivering the content.

3.5.1.  HAS Implications

   The authorization lifetime for URL signing is affected by HAS.  The
   expiration time in the authorization parameters of URL signing limits
   the period that the content referenced by the URL can be accessed.
   This works for URLs that directly access the media content, but for
   HAS content the Manifest File contains another layer of URLs that
   reference the chunks.  The chunk URL that is embedded in the content



van Brandenburg, et al.       Informational                    [Page 32]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   may be requested some undetermined amount of time later.  The time
   period between access to the Manifest File and chunk retrieval may
   vary significantly.  The type of content (i.e., live or VoD) impacts
   this time variance as well.  This property of HAS content needs to be
   addressed for URL signing.

3.5.2.  CDNI Considerations

   For CDNI, the two types of request routing are DNS-based and HTTP-
   based.  The use of symmetric vs. asymmetric keys for URL signing has
   implications for the trust model between the CSP and CDNs and for the
   key distribution method that can be used.

   DNS-based request routing does not change the URL.  In the case of a
   symmetric key, the CSP and the Authoritative CDN have a business
   relationship that allows them to share a key (or multiple keys) for
   URL signing.  When the user requests content from the Authoritative
   CDN, the URL is signed by the CSP.  The Authoritative CDN (as a uCDN)
   redirects the request to a dCDN via DNS.  There may be more than one
   level of redirection to reach the delivering CDN.  The user would
   obtain the IP address from DNS and send the HTTP request to the
   delivering CDN, which needs to validate the URL.  This requires that
   the key be distributed from the Authoritative CDN to the delivering
   CDN.  This may be problematic when the key is exposed to a delivering
   CDN that does not have a relationship with the CSP.  The combination
   of DNS-based request routing and symmetric key function is a generic
   issue for URL signing and not specific to HAS content.  In the case
   of asymmetric keys, the CSP signs the URL with its private key.  The
   delivering CDN validates the URL with the associated public key.

   HTTP-based request routing changes the URL during the redirection
   procedure.  In the case of a symmetric key, the CSP signs the
   original URL with the same key used by the Authoritative CDN to
   validate the URL.  The Authoritative CDN (as a uCDN) redirects the
   request to the dCDN.  The new URL is signed by the uCDN with the same
   key used by the dCDN to validate that URL.  The key used by the uCDN
   to validate the original URL is expected to be different than the key
   used to sign the new URL.  In the case of asymmetric keys, the CSP
   signs the original URL with its private key.  The Authoritative CDN
   validates that URL with the CSP's public key.  The Authoritative CDN
   redirects the request to the dCDN.  The new URL is signed by the uCDN
   with its private key.  The dCDN validates that URL with the uCDN's
   public key.  There may be more than one level of redirection to reach
   the delivering CDN.  The URL signing operation described previously
   applies at each level between the uCDN and dCDN for both symmetric
   keys and asymmetric keys.





van Brandenburg, et al.       Informational                    [Page 33]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   URL signing requires support in most of the CDNI interfaces.  The
   CDNI Metadata interface should specify the content that is subject to
   URL signing and provide information to perform the function.  The
   dCDN should inform the uCDN that it supports URL signing in the
   asynchronous capabilities information advertisement as part of the
   Request Routing interface.  This allows the CDN selection function in
   request routing to choose the dCDN with URL signing capability when
   the CDNI Metadata of the content requires this authorization method.
   The logging interface provides information on the authorization
   method (e.g., URL signing) and related authorization parameters used
   for content delivery.  Having the information in the URL is not
   sufficient to know that the Surrogate enforced the authorization.
   URL signing has no impact on the control interface.

3.5.3.  Option 5.1: Do Nothing

   This approach means that the CSP can only perform URL signing for the
   top-level Manifest File.  The top-level Manifest File contains chunk
   URLs or lower-level Manifest File URLs, which are not modified (i.e.,
   no URL signing for the embedded URLs).  In essence, the lower-level
   Manifest Files and chunks are delivered without content access
   authorization.

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks:

   +  Top-level Manifest File access is protected

   +  The uCDN and dCDN do not need to be aware of HAS content

   -  Lower-level Manifest Files and chunks are not protected, making
      this approach unqualified for content access authorization

3.5.4.  Option 5.2: Flexible URL Signing by CSP

   In addition to URL signing for the top-level Manifest File, the CSP
   performs flexible URL signing for the lower-level Manifest Files and
   chunks.  For each HAS session, the top-level Manifest File contains
   signed chunk URLs or signed lower-level Manifest File URLs for the
   specific session.  The lower-level Manifest File contains session-
   based signed chunk URLs.  The CSP generates the Manifest Files
   dynamically for the session.  The chunk (segment/fragment) is
   delivered with content access authorization using flexible URL
   signing, which protects the invariant portion of the URL.  A
   "segment" URL (e.g., HLS) is individually signed for the invariant



van Brandenburg, et al.       Informational                    [Page 34]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   URL portion (relative URL) or the entire URL (absolute URL without
   redirection) in the Manifest File.  A "fragment" URL (e.g., HTTP
   Smooth Streaming) is signed for the invariant portion of the template
   URL in the Manifest File.  More details are provided later in this
   section.  The URL signing expiration time for the chunk needs to be
   long enough to play the video.  There are implications related to
   signing the URLs in the Manifest File.  For live content, the
   Manifest Files are requested at a high frequency.  For VoD content,
   the Manifest File may be quite large.  URL signing can add more
   computational load and delivery latency in high-volume cases.

   For HAS content, the Manifest File contains the relative URL,
   absolute URL without redirection, or absolute URL with redirection
   for specifying the chunk location.  Signing the chunk URL requires
   that the CSP know the portion of the URL that remains when the
   content is requested from the delivering CDN Surrogate.

   For absolute URLs without redirection, the CSP knows that the chunk
   URL is explicitly linked with the delivering CDN Surrogate and can
   sign the URL based on that information.  Since the entire URL is set
   and does not change, the Surrogate can validate the URL.  The CSP and
   the delivering CDN are expected to have a business relationship in
   this case, and so either symmetric keys or asymmetric keys can be
   used for URL signing.

   For relative URLs, the URL of the Manifest File provides the root
   location.  The method of request routing affects the URL used to
   ultimately request the chunk from the delivering CDN Surrogate.  For
   DNS, the original URL does not change.  This allows the CSP to sign
   the chunk URL based on the Manifest File URL and the relative URL.
   For HTTP, the URL changes during redirection.  In this case, the CSP
   does not know the redirected URL that will be used to request the
   Manifest File.  This uncertainty makes it impossible to accurately
   sign the chunk URLs in the Manifest File.  Basically, URL signing
   using this reference method "as is" for protection of the entire URL
   is not supported.  However, instead of signing the entire URL, the
   CSP signs the relative URL (i.e., the invariant portion of the URL)
   and conveys the protected portion in the authorization parameters
   embedded in the chunk URL.  This approach works in the same way as
   absolute URLs without redirection, except that the HOST part and
   (part of) the PATH part of the URL are not signed and validated.  The
   security level should remain the same, as content access
   authorization ensures that the user that requested the content has
   the proper credentials.  This scheme does not seem to compromise the
   authorization model, since the resource is still protected by the
   authorization parameters and message digest.  Further evaluation of
   security might be helpful.




van Brandenburg, et al.       Informational                    [Page 35]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   For absolute URLs with redirection, the method of request routing
   affects the URL used to ultimately request the chunk from the
   delivering CDN Surrogate.  This case has the same conditions as those
   indicated above for the relative URL.  The difference is that the URL
   is for the chunk instead of the Manifest File.  For DNS, the chunk
   URL does not change and can be signed by the CSP.  For HTTP, the URL
   used to deliver the chunk is unknown to the CSP.  In this case, the
   CSP cannot sign the URL, and this method of reference for the chunk
   is not supported.

   Effect on CDNI interfaces:

   o  Requires the ability to exclude the variant portion of the URL in
      the signing process.  (NOTE: Is this issue specific to URL signing
      support for HAS content and not CDNI?)

   Advantages/Drawbacks:

   +  The Manifest File and chunks are protected

   +  The uCDN and dCDN do not need to be aware of HAS content

   +  DNS-based request routing with asymmetric keys and HTTP-based
      request routing for relative URLs and absolute URLs without
      redirection work

   -  The CSP has to generate Manifest Files with session-based signed
      URLs and becomes involved in content access authorization for
      every HAS session

   -  Manifest Files are not cacheable

   -  DNS-based request routing with symmetric keys may be problematic
      due to the need for transitive trust between the CSP and
      delivering CDN

   -  HTTP-based request routing for absolute URLs with redirection does
      not work, because the URL used by the delivering CDN Surrogate is
      unknown to the CSP












van Brandenburg, et al.       Informational                    [Page 36]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.5.5.  Option 5.3: Flexible URL Signing by uCDN

   This is similar to the previous section, with the exception that the
   uCDN performs flexible URL signing for the lower-level Manifest Files
   and chunks.  URL signing for the top-level Manifest File is still
   provided by the CSP.

   Effect on CDNI interfaces:

   o  Requires the ability to exclude the variant portion of the URL in
      the signing process.  (NOTE: Is this issue specific to URL signing
      support for HAS content and not CDNI?)

   Advantages/Drawbacks:

   +  The Manifest File and chunks are protected

   +  The CSP does not need to be involved in content access
      authorization for every HAS session

   +  The dCDN does not need to be aware of HAS content

   +  DNS-based request routing with asymmetric keys and HTTP-based
      request routing for relative URLs and absolute URLs without
      redirection work

   -  The uCDN has to generate Manifest Files with session-based signed
      URLs and becomes involved in content access authorization for
      every HAS session

   -  Manifest Files are not cacheable

   -  The Manifest File needs to be distributed through the uCDN

   -  DNS-based request routing with symmetric keys may be problematic
      due to the need for transitive trust between the uCDN and
      non-adjacent delivering CDN

   -  HTTP-based request routing for absolute URLs with redirection does
      not work, because the URL used by the delivering CDN Surrogate is
      unknown to the uCDN

3.5.6.  Option 5.4: Authorization Group ID and HTTP Cookie

   Based on the Authorization Group ID metadata, the CDN validates the
   URL signing or validates the HTTP cookie for request of content in
   the group.  The CSP performs URL signing for the top-level Manifest
   File.  The top-level Manifest File contains lower-level Manifest File



van Brandenburg, et al.       Informational                    [Page 37]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   URLs or chunk URLs.  The lower-level Manifest Files and chunks are
   delivered with content access authorization using an HTTP cookie that
   contains session state associated with authorization of the top-level
   Manifest File.  The Group ID metadata is used to associate the
   related content (i.e., Manifest Files and chunks).  It also specifies
   content (e.g., regexp method) that needs to be validated by either
   URL signing or an HTTP cookie.  Note that the creator of the metadata
   is HAS aware.  The duration of the chunk access may be included in
   the URL signing of the top-level Manifest File and set in the cookie.
   Alternatively, the access control duration could be provided by the
   CDNI Metadata interface.

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: Authorization Group ID metadata
      identifies the content that is subject to validation of URL
      signing or validation of an HTTP cookie associated with the URL
      signing

   o  CDNI Logging interface: Report the authorization method used to
      validate the request for content delivery

   Advantages/Drawbacks:

   +  The Manifest File and chunks are protected

   +  The CDN does not need to be aware of HAS content

   +  The CSP does not need to change the Manifest Files

   -  Authorization Group ID metadata is required (i.e., CDNI Metadata
      interface enhancement)

   -  Requires the use of an HTTP cookie, which may not be acceptable in
      some environments (e.g., where some targeted User Agents do not
      support HTTP cookies)

   -  The Manifest File has to be delivered by the Surrogate

3.5.7.  Option 5.5: HAS Awareness with HTTP Cookie in CDN

   The CDN is aware of HAS content and uses URL signing and HTTP cookies
   for content access authorization.  URL signing is fundamentally about
   authorizing access to a content item or its specific content
   collections (representations) for a specific user during a time
   period, possibly also using some other criteria.  A chunk is an
   instance of the sets of chunks referenced by the Manifest File for
   the content item or its specific content collections.  This



van Brandenburg, et al.       Informational                    [Page 38]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   relationship means that once the dCDN has authorized the Manifest
   File, it can assume that the associated chunks are implicitly
   authorized.  The new function for the CDN is to link the Manifest
   File with the chunks for the HTTP session.  This can be accomplished
   by using an HTTP cookie for the HAS session.

   After validating the URL and detecting that the requested content is
   a top-level Manifest File, the delivering CDN Surrogate sets an HTTP
   cookie with a signed session token for the HTTP session.  When a
   request for a lower-level Manifest File or chunk arrives, the
   Surrogate confirms that the HTTP cookie value contains the correct
   session token.  If so, the lower-level Manifest File or chunk is
   delivered in accordance with the transitive authorization mechanism.
   The duration of the chunk access may be included in the URL signing
   of the top-level Manifest File and set in the cookie.  The details of
   the operation are left to be determined later.

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: New metadata identifies the content that
      is subject to validation of URL signing and information in the
      cookie for the type of HAS content

   o  Request Routing interface: The dCDN should inform the uCDN that it
      supports URL signing for known HAS content types in the
      asynchronous capabilities information advertisement.  This allows
      the CDN selection function in request routing to choose the
      appropriate dCDN when the CDNI Metadata identifies the content

   o  CDNI Logging interface: Report the authorization method used to
      validate the request for content delivery

   Advantages/Drawbacks:

   +  The Manifest File and chunks are protected

   +  The CSP does not need to change the Manifest Files

   -  Requires full HAS awareness on the part of the uCDN and dCDN

   -  Requires extensions to CDNI interfaces

   -  Requires the use of an HTTP cookie, which may not be acceptable in
      some environments (e.g., where some targeted User Agents do not
      support HTTP cookies)

   -  The Manifest File has to be delivered by the Surrogate




van Brandenburg, et al.       Informational                    [Page 39]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.5.8.  Option 5.6: HAS Awareness with Manifest File in CDN

   The CDN is aware of HAS content and uses URL signing for content
   access authorization of Manifest Files and chunks.  The CDN generates
   or rewrites the Manifest Files and learns about the chunks based on
   the Manifest File.  The embedded URLs in the Manifest File are signed
   by the CDN.  The duration of the chunk access may be included in the
   URL signing.  The details of the operation are left to be determined
   later.  Since this approach is based on signing the URLs in the
   Manifest File, the implications for live and VoD content mentioned in
   Section 3.5.4 apply.

   Effect on CDNI interfaces:

   o  CDNI Metadata interface: New metadata identifies the content that
      is subject to validation of URL signing and information in the
      cookie for the type of HAS content

   o  Request Routing interface: The dCDN should inform the uCDN that it
      supports URL signing for known HAS content types in the
      asynchronous capabilities information advertisement.  This allows
      the CDN selection function in request routing to choose the
      appropriate dCDN when the CDNI Metadata identifies the content

   o  CDNI Logging interface: Report the authorization method used to
      validate the request for content delivery

   Advantages/Drawbacks:

   +  The Manifest File and chunks are protected

   +  The CSP does not need to change the Manifest Files

   -  Requires full HAS awareness on the part of the uCDN and dCDN

   -  Requires extensions to CDNI interfaces

   -  Requires the CDN to generate or rewrite the Manifest File

   -  The Manifest File has to be delivered by the Surrogate











van Brandenburg, et al.       Informational                    [Page 40]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.5.9.  Recommendations

   The authors consider Option 5.1 (do nothing) unsuitable for access
   control of HAS content.

   Where the HTTP cookie mechanism is supported by the targeted User
   Agents and the security requirements can be addressed through the
   proper use of HTTP cookies, the authors recommend using Option 5.4
   (Authorization Group ID and HTTP cookie) and therefore that
   Option 5.4 be supported by the CDNI solution.  This method does not
   require Manifest File manipulation, as Manifest File manipulation may
   be a significant obstacle to deployment.  Otherwise, the authors
   recommend that Option 5.2 (flexible URL signing by the CSP) or
   Option 5.3 (flexible URL signing by the uCDN) be used and therefore
   that flexible URL signing be supported by the CDNI solution.
   Options 5.2 and 5.3 protect all the content, do not require that the
   dCDN be aware of HAS, do not impact CDNI interfaces, support all
   different types of devices, and support the common cases of request
   routing for HAS content (i.e., DNS-based request routing with
   asymmetric keys and HTTP-based request routing for relative URLs).

   Options 5.5 and 5.6 (HAS awareness in CDNs using HTTP cookies or
   Manifest Files) have some advantages that should be considered for
   future support (e.g., a CDN that is aware of HAS content can manage
   the content more efficiently in a broader context).  Content
   distribution, storage, delivery, deletion, access authorization, etc.
   can all benefit.  Including HAS awareness as part of the current CDNI
   charter, however, would almost certainly delay the CDNI WG's
   milestones, and the authors therefore do not recommend it right now.

3.6.  Content Purge

   At some point in time, a uCDN might want to remove content from a
   dCDN.  With regular content, this process can be relatively
   straightforward; a uCDN will typically send the request for content
   removal to the dCDN, including a reference to the content that it
   wants to remove (e.g., in the form of a URL).  However, due to the
   fact that HAS content consists of large groups of files, things might
   be more complex.  Section 3.1 described a number of different
   scenarios for doing file management on these groups of files, while
   Section 3.2 listed the options for performing content acquisition on
   these content collections.  This section presents the options for
   requesting a content purge for the removal of a content collection
   from a dCDN.







van Brandenburg, et al.       Informational                    [Page 41]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


3.6.1.  Option 6.1: No HAS Awareness

   The most straightforward way to signal content purge requests is to
   just send a single purge request for every file that makes up the
   content collection.  While this method is very simple and does not
   require HAS awareness, it obviously creates signaling overhead
   between the uCDN and dCDN, since a reference is to be provided for
   each content chunk to be purged.

   Effect on CDNI interfaces:

   o  None

   Advantages/Drawbacks (apart from those already listed under
   Option 3.3):

   +  Does not require changes to the CDNI interfaces or HAS awareness

   -  Requires individual purge request for every file making up a
      content collection (or, alternatively, requires the ability to
      convey references to all the chunks making up a content collection
      inside a purge request), which creates signaling overhead

3.6.2.  Option 6.2: Purge Identifiers

   There exists a potentially more efficient method for performing
   content removal of large numbers of files simultaneously.  By
   including a "Purge IDentifier (Purge-ID)" in the metadata of a
   particular file, it is possible to virtually group together different
   files making up a content collection.  A Purge-ID can take the form
   of an arbitrary number or string that is communicated as part of the
   CDNI Metadata interface, and that is the same for all files making up
   a particular content item but different across different content
   items.  If a uCDN wants to request that the dCDN remove a content
   collection, it can send a purge request containing this Purge-ID.
   The dCDN can then remove all files that share the corresponding
   Purge-ID.

   The advantage of this method is that it is relatively simple to use
   by both the dCDN and uCDN and requires only limited additions to the
   CDNI Metadata interface and CDNI Control interface.

   The Purge-ID is similar to the CCID discussed in Section 3.4.2.2 for
   handling HAS logging, and we note that further thought is needed to
   determine whether the CCID and Purge-ID should be collapsed into a
   single element or remain separate elements.





van Brandenburg, et al.       Informational                    [Page 42]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


   Effect on CDNI interfaces:

   o  CDNI Metadata interface: Add metadata field for indicating
      Purge-ID

   o  CDNI Control interface: Add functionality to convey a Purge-ID in
      purge requests

   Advantages/Drawbacks:

   +  Allows for efficient purging of content from a dCDN

   +  Does not require HAS awareness on the part of a dCDN

3.6.3.  Recommendations

   Based on the listed pros and cons, the authors recommend that the WG
   have mandatory support for Option 1.1 (do nothing).  In addition,
   because of its very low complexity and its benefit in facilitating
   low-overhead purge of large numbers of content items simultaneously,
   the authors recommend that Purge-IDs (Option 6.2; see Section 3.6.2)
   be supported as an optional feature by the CDNI Metadata interface
   and the CDNI Control interface.

3.7.  Other Issues

   This section includes some HAS-specific issues that came up during
   the discussion of this document and that do not fall under any of the
   categories discussed in the previous sections.

   -  As described in Section 2.2, a Manifest File might be delivered by
      either a CDN or the CSP and thereby be invisible to the CDN
      delivering the chunks.  Obviously, the decision of whether the CDN
      or CSP delivers the Manifest File is made between the uCDN and
      CSP, and the dCDN has no choice in the matter.  However, some
      dCDNs might only want to offer their services in the cases where
      they have access to the Manifest File (e.g., because their
      internal architecture is based on the knowledge inside the
      Manifest File).  For these cases, it might be useful to include a
      field in the CDNI Capability Advertisement to allow dCDNs to
      advertise the fact that they require access to the Manifest File.

4.  Security Considerations

   This document does not discuss security issues related to HTTP or HAS
   delivery, as these topics are expected to be discussed in the CDNI WG
   documents, including [CDNI-FRAMEWORK].




van Brandenburg, et al.       Informational                    [Page 43]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


5.  Acknowledgements

   The authors would like to thank Kevin Ma, Stef van der Ziel, Bhaskar
   Bhupalam, Mahesh Viveganandhan, Larry Peterson, Ben Niven-Jenkins,
   and Matt Caulfield for their valuable contributions to this document.

6.  References

6.1.  Normative References

   [RFC6707]  Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
              Distribution Network Interconnection (CDNI) Problem
              Statement", RFC 6707, September 2012.

6.2.  Informative References

   [CDNI-FRAMEWORK]
              Peterson, L., Ed., and B. Davie, "Framework for CDN
              Interconnection", Work in Progress, February 2013.

   [CDNI-LOGGING]
              Bertrand, G., Ed., Stephan, E., Peterkofsky, R., Le
              Faucheur, F., and P. Grochocki, "CDNI Logging Interface",
              Work in Progress, October 2012.

   [CDNI-REQUIREMENTS]

              Leung, K., Ed., and Y. Lee, Ed., "Content Distribution
              Network Interconnection (CDNI) Requirements", Work in
              Progress, July 2013.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, January 2005.

















van Brandenburg, et al.       Informational                    [Page 44]

RFC 6983            HTTP Adaptive Streaming and CDNI           July 2013


Authors' Addresses

   Ray van Brandenburg
   TNO
   Brassersplein 2
   Delft  2612CT
   the Netherlands

   Phone: +31-88-866-7000
   EMail: ray.vanbrandenburg@tno.nl


   Oskar van Deventer
   TNO
   Brassersplein 2
   Delft  2612CT
   the Netherlands

   Phone: +31-88-866-7000
   EMail: oskar.vandeventer@tno.nl


   Francois Le Faucheur
   Cisco Systems
   E.Space Park - Batiment D
   6254 Allee des Ormes - BP 1200
   06254 Mougins cedex
   France

   Phone: +33 4 97 23 26 19
   EMail: flefauch@cisco.com


   Kent Leung
   Cisco Systems
   170 West Tasman Drive
   San Jose, CA  95134
   USA

   Phone: +1 408-526-5030
   EMail: kleung@cisco.com










van Brandenburg, et al.       Informational                    [Page 45]


Html markup produced by rfcmarkup 1.109, available from https://tools.ietf.org/tools/rfcmarkup/