

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

sec RFC and Internet-Draft Index

Index

	ace

	acme

	cose

	curdle

	dots

	emu

	i2nsf

	ipsecme

	kitten

	lake

	lamps

	mile

	mls

	oauth

	rats

	sacm

	secdispatch

	secevent

	suit

	teep

	tls

	tokbind

	trans

ace RFC and Internet-Draft Index

Index

Active

	draft-ietf-ace-coap-est-16 EST over secure CoAP (EST-coaps)

	draft-ietf-ace-cwt-proof-of-possession-11 Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs)

	draft-ietf-ace-dtls-authorize-08 Datagram Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Environments (ACE)

	draft-ietf-ace-key-groupcomm-03 Key Provisioning for Group Communication using ACE

	draft-ietf-ace-key-groupcomm-oscore-03 Key Management for OSCORE Groups in ACE

	draft-ietf-ace-mqtt-tls-profile-02 MQTT-TLS profile of ACE

	draft-ietf-ace-oauth-authz-27 Authentication and Authorization for Constrained Environments (ACE) using the OAuth 2.0 Framework (ACE-OAuth)

	draft-ietf-ace-oauth-params-06 Additional OAuth Parameters for Authorization in Constrained Environments (ACE)

	draft-ietf-ace-oscore-profile-08 OSCORE profile of the Authentication and Authorization for Constrained Environments Framework

RFC

	RFC7744 Use Cases for Authentication and Authorization in Constrained Environments

	RFC8392 CBOR Web Token (CWT)

Related Active

	draft-palombini-ace-coap-pubsub-profile-06 CoAP Pub-Sub Profile for Authentication and Authorization for Constrained Environments (ACE)

	draft-raza-ace-cbor-certificates-02 CBOR Profile of X.509 Certificates

	draft-tiloca-ace-group-oscore-profile-01 Group OSCORE Profile of the Authentication and Authorization for Constrained Environments Framework

	draft-tiloca-ace-oscore-gm-admin-00 Admin Interface for the OSCORE Group Manager

	draft-tiloca-ace-revoked-token-notification-00 Notification of Revoked Access Tokens in the Authentication and Authorization for Constrained Environments (ACE) Framework

Related Expired

	draft-schaad-cnf-cwt-id-00 Use of a CWT identifier as a Confirmation Method

acme RFC and Internet-Draft Index

Index

Active

	draft-ietf-acme-authority-token-04 ACME Challenges Using an Authority Token

	draft-ietf-acme-authority-token-tnauthlist-05 TNAuthList profile of ACME Authority Token

	draft-ietf-acme-email-smime-06 Extensions to Automatic Certificate Management Environment for end user S/MIME certificates

	draft-ietf-acme-ip-08 ACME IP Identifier Validation Extension

	draft-ietf-acme-star-11 Support for Short-Term, Automatically-Renewed (STAR) Certificates in Automated Certificate Management Environment (ACME)

	draft-ietf-acme-star-delegation-01 An ACME Profile for Generating Delegated STAR Certificates

	draft-ietf-acme-tls-alpn-07 ACME TLS ALPN Challenge Extension

RFC

	RFC8555 Automatic Certificate Management Environment (ACME)

	RFC8657 Certification Authority Authorization (CAA) Record Extensions for Account URI and Automatic Certificate Management Environment (ACME) Method Binding

Related Active

	draft-friel-acme-integrations-02 ACME Integrations

	draft-friel-acme-subdomains-00 ACME for Subdomains

	draft-moriarty-acme-client-04 ACME End User Client and Code Signing Certificates

cose RFC and Internet-Draft Index

Index

Active

	draft-ietf-cose-hash-algs-02 CBOR Object Signing and Encryption (COSE): Hash Algorithms

	draft-ietf-cose-hash-sig-07 Use of the HSS/LMS Hash-based Signature Algorithm with CBOR Object Signing and Encryption (COSE)

	draft-ietf-cose-rfc8152bis-algs-06 CBOR Object Signing and Encryption (COSE): Initial Algorithms

	draft-ietf-cose-rfc8152bis-struct-07 CBOR Object Signing and Encryption (COSE): Structures and Process

	draft-ietf-cose-webauthn-algorithms-03 COSE and JOSE Registrations for WebAuthn Algorithms

	draft-ietf-cose-x509-05 CBOR Object Signing and Encryption (COSE): Headers for carrying and referencing X.509 certificates

RFC

	RFC8152 CBOR Object Signing and Encryption (COSE)

Related Active

	draft-schaad-cose-more-algs-00 CBOR Object Signing and Encryption (COSE): Additional Algorithms

Related RFC

	8230 Using RSA Algorithms with CBOR Object Signing and Encryption (COSE) Messages

curdle RFC and Internet-Draft Index

Index

Active

	draft-ietf-curdle-gss-keyex-sha2-10 GSS-API Key Exchange with SHA2

	draft-ietf-curdle-rc4-die-die-die-17 Deprecating RC4 in Secure Shell (SSH)

	draft-ietf-curdle-ssh-curves-12 Secure Shell (SSH) Key Exchange Method using Curve25519 and Curve448

	draft-ietf-curdle-ssh-ed25519-ed448-11 Ed25519 and Ed448 public key algorithms for the Secure Shell (SSH) protocol

	draft-ietf-curdle-ssh-kex-sha2-10 Key Exchange (KEX) Method Updates and Recommendations for Secure Shell (SSH)

RFC

	RFC8080 Edwards-Curve Digital Security Algorithm (EdDSA) for DNSSEC

	RFC8103 Using ChaCha20-Poly1305 Authenticated Encryption in the Cryptographic Message Syntax (CMS)

	RFC8268 More Modular Exponentiation (MODP) Diffie-Hellman (DH) Key Exchange (KEX) Groups for Secure Shell (SSH)

	RFC8270 Increase the Secure Shell Minimum Recommended Diffie-Hellman Modulus Size to 2048 Bits

	RFC8308 Extension Negotiation in the Secure Shell (SSH) Protocol

	RFC8332 Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol

	RFC8410 Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure

	RFC8411 IANA Registration for the Cryptographic Algorithm Object Identifier Range

	RFC8418 Use of the Elliptic Curve Diffie-Hellman Key Agreement Algorithm with X25519 and X448 in the Cryptographic Message Syntax (CMS)

	RFC8419 Use of Edwards-Curve Digital Signature Algorithm (EdDSA) Signatures in the Cryptographic Message Syntax (CMS)

	RFC8429 Deprecate Triple-DES (3DES) and RC4 in Kerberos

Related Active

	draft-mu-curdle-ssh-xmss-00 XMSS public key algorithms for the Secure Shell (SSH) protocol

dots RFC and Internet-Draft Index

Index

Active

	draft-ietf-dots-architecture-14 Distributed-Denial-of-Service Open Threat Signaling (DOTS) Architecture

	draft-ietf-dots-data-channel-31 Distributed Denial-of-Service Open Threat Signaling (DOTS) Data Channel Specification

	draft-ietf-dots-multihoming-02 Multi-homing Deployment Considerations for Distributed-Denial-of-Service Open Threat Signaling (DOTS)

	draft-ietf-dots-server-discovery-06 Distributed-Denial-of-Service Open Threat Signaling (DOTS) Agent Discovery

	draft-ietf-dots-signal-call-home-07 Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Call Home

	draft-ietf-dots-signal-channel-39 Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Specification

	draft-ietf-dots-signal-filter-control-02 Controlling Filtering Rules Using Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel

	draft-ietf-dots-use-cases-20 Use cases for DDoS Open Threat Signaling

RFC

	RFC8612 DDoS Open Threat Signaling (DOTS) Requirements

Related Active

	draft-chen-dots-attack-informations-03 DOTS client carry ddos attack informations in signal channel

	draft-chen-dots-attack-type-unification-00 attack type unification

	draft-chen-dots-server-hierarchical-deployment-01 A method for dots server deployment

	draft-hayashi-dots-dms-offload-00 DDoS Mitigation Offload: DOTS Applicability and Deployment Considerations

	draft-reddy-dots-telemetry-04 Distributed Denial-of-Service Open Threat Signaling (DOTS) Telemetry

emu RFC and Internet-Draft Index

Index

Active

	draft-ietf-emu-aka-pfs-02 Perfect-Forward Secrecy for the Extensible Authentication Protocol Method for Authentication and Key Agreement (EAP-AKA' PFS)

	draft-ietf-emu-eap-session-id-01 EAP Session-Id Derivation for EAP-SIM, EAP-AKA, and PEAP

	draft-ietf-emu-eap-tls13-07 Using EAP-TLS with TLS 1.3

	draft-ietf-emu-eaptlscert-00 Handling Large Certificates and Long Certificate Chains in TLS-based EAP Methods

	draft-ietf-emu-rfc5448bis-06 Improved Extensible Authentication Protocol Method for 3GPP Mobile Network Authentication and Key Agreement (EAP-AKA')

RFC

	RFC5216 The EAP-TLS Authentication Protocol

	RFC5433 Extensible Authentication Protocol - Generalized Pre-Shared Key (EAP-GPSK) Method

	RFC6677 Channel-Binding Support for Extensible Authentication Protocol (EAP) Methods

	RFC6678 Requirements for a Tunnel-Based Extensible Authentication Protocol (EAP) Method

	RFC7029 Extensible Authentication Protocol (EAP) Mutual Cryptographic Binding

	RFC7170 Tunnel Extensible Authentication Protocol (TEAP) Version 1

Related Active

	draft-aura-eap-noob-07 Nimble out-of-band authentication for EAP (EAP-NOOB)

	draft-harkins-eap-pwd-prime-00 Improved Extensible Authentication Protocol Using Only a Password

	draft-lear-eap-teap-brski-05 TEAP Update and Extensions for Bootstrapping

	draft-pala-eap-creds-05 Credentials Provisioning and Management via EAP (EAP-CREDS)

	draft-urien-eap-smartcard-37 EAP Support in Smartcard

i2nsf RFC and Internet-Draft Index

Index

Active

	draft-ietf-i2nsf-applicability-18 Applicability of Interfaces to Network Security Functions to Network-Based Security Services

	draft-ietf-i2nsf-capability-05 Information Model of NSFs Capabilities

	draft-ietf-i2nsf-capability-data-model-05 I2NSF Capability YANG Data Model

	draft-ietf-i2nsf-consumer-facing-interface-dm-07 I2NSF Consumer-Facing Interface YANG Data Model

	draft-ietf-i2nsf-nsf-facing-interface-dm-08 I2NSF Network Security Function-Facing Interface YANG Data Model

	draft-ietf-i2nsf-nsf-monitoring-data-model-02 I2NSF NSF Monitoring YANG Data Model

	draft-ietf-i2nsf-registration-interface-dm-05 I2NSF Registration Interface YANG Data Model

	draft-ietf-i2nsf-sdn-ipsec-flow-protection-07 Software-Defined Networking (SDN)-based IPsec Flow Protection

	draft-ietf-i2nsf-terminology-08 Interface to Network Security Functions (I2NSF) Terminology

RFC

	RFC8192 Interface to Network Security Functions (I2NSF): Problem Statement and Use Cases

	RFC8329 Framework for Interface to Network Security Functions

Related Active

	draft-nir-i2nsf-ipsec-dc-prof-00 A Data Center Profile for Software Defined Networking (SDN)-based IPsec

	draft-yang-i2nsf-nfv-architecture-05 I2NSF on the NFV Reference Architecture

	draft-yang-i2nsf-security-policy-translation-05 Security Policy Translation in Interface to Network Security Functions

ipsecme RFC and Internet-Draft Index

Index

Active

	draft-hopps-ipsecme-iptfs-01 IP Traffic Flow Security

	draft-ietf-ipsecme-ikev2-intermediate-02 Intermediate Exchange in the IKEv2 Protocol

	draft-ietf-ipsecme-implicit-iv-11 Implicit IV for Counter-based Ciphers in Encapsulating Security Payload (ESP)

	draft-ietf-ipsecme-ipv6-ipv4-codes-04 IKEv2 Notification Status Types for IPv4/IPv6 Coexistence

	draft-ietf-ipsecme-labeled-ipsec-02 Labeled IPsec Traffic Selector support for IKEv2

	draft-ietf-ipsecme-qr-ikev2-08 Postquantum Preshared Keys for IKEv2

	draft-tjhai-ipsecme-hybrid-qske-ikev2-04 Framework to Integrate Post-quantum Key Exchanges into Internet Key Exchange Protocol Version 2 (IKEv2)

	draft-yeung-g-ikev2-16 Group Key Management using IKEv2

RFC

	RFC5685 Redirect Mechanism for the Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC5723 Internet Key Exchange Protocol Version 2 (IKEv2) Session Resumption

	RFC5739 IPv6 Configuration in Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC5840 Wrapped Encapsulating Security Payload (ESP) for Traffic Visibility

	RFC5879 Heuristics for Detecting ESP-NULL Packets

	RFC5930 Using Advanced Encryption Standard Counter Mode (AES-CTR) with the Internet Key Exchange version 02 (IKEv2) Protocol

	RFC5996 Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC5998 An Extension for EAP-Only Authentication in IKEv2

	RFC6027 IPsec Cluster Problem Statement

	RFC6071 IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap

	RFC6290 A Quick Crash Detection Method for the Internet Key Exchange Protocol (IKE)

	RFC6311 Protocol Support for High Availability of IKEv2/IPsec

	RFC6989 Additional Diffie-Hellman Tests for the Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC7018 Auto-Discovery VPN Problem Statement and Requirements

	RFC7296 Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC7321 Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH)

	RFC7383 Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation

	RFC7427 Signature Authentication in the Internet Key Exchange Version 2 (IKEv2)

	RFC7619 The NULL Authentication Method in the Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC7634 ChaCha20, Poly1305, and Their Use in the Internet Key Exchange Protocol (IKE) and IPsec

	RFC8019 Protecting Internet Key Exchange Protocol Version 2 (IKEv2) Implementations from Distributed Denial-of-Service Attacks

	RFC8031 Curve25519 and Curve448 for the Internet Key Exchange Protocol Version 2 (IKEv2) Key Agreement

	RFC8221 Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH)

	RFC8229 TCP Encapsulation of IKE and IPsec Packets

	RFC8247 Algorithm Implementation Requirements and Usage Guidance for the Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC8420 Using the Edwards-Curve Digital Signature Algorithm (EdDSA) in the Internet Key Exchange Protocol Version 2 (IKEv2)

	RFC8598 Split DNS Configuration for the Internet Key Exchange Protocol Version 2 (IKEv2)

Related Active

	draft-hujun-idr-bgp-ipsec-01 BGP Provisioned IPsec Tunnel Configuration

	draft-hujun-idr-bgp-ipsec-transport-mode-00 BGP Provisioned IPsec Transport Mode Protected Tunnel Configuration

	draft-ietf-i2nsf-sdn-ipsec-flow-protection-07 Software-Defined Networking (SDN)-based IPsec Flow Protection

	draft-kampati-ipsecme-ikev2-sa-ts-payloads-opt-02 IKEv2 Optional SA
kitten RFC and Internet-Drafts Index

kitten RFC and Internet-Draft Index

Index

Active

	draft-ietf-kitten-krb-spake-preauth-06 SPAKE Pre-Authentication

	draft-ietf-kitten-sasl-saml-ec-19 SAML Enhanced Client SASL and GSS-API Mechanisms

RFC

	RFC4178 The Simple and Protected Generic Security Service Application Program Interface (GSS-API) Negotiation Mechanism

	RFC4401 A Pseudo-Random Function (PRF) API Extension for the Generic Security Service Application Program Interface (GSS-API)

	RFC4402 A Pseudo-Random Function (PRF) for the Kerberos V Generic Security Service Application Program Interface (GSS-API) Mechanism

	RFC4768 Desired Enhancements to Generic Security Services Application Program Interface (GSS-API) Version 3 Naming

	RFC5178 Generic Security Service Application Program Interface (GSS-API) Internationalization and Domain-Based Service Names and Name Type

	RFC5179 Generic Security Service Application Program Interface (GSS-API) Domain-Based Service Names Mapping for the Kerberos V GSS Mechanism

	RFC5554 Clarifications and Extensions to the Generic Security Service Application Program Interface (GSS-API) for the Use of Channel Bindings

	RFC5587 Extended Generic Security Service Mechanism Inquiry APIs

	RFC5588 Generic Security Service Application Program Interface (GSS-API) Extension for Storing Delegated Credentials

	RFC5653 Generic Security Service API Version 2: Java Bindings Update

	RFC6331 Moving DIGEST-MD5 to Historic

	RFC6595 A Simple Authentication and Security Layer (SASL) and GSS-API Mechanism for the Security Assertion Markup Language (SAML)

	RFC6616 A Simple Authentication and Security Layer (SASL) and Generic Security Service Application Program Interface (GSS-API) Mechanism for OpenID

	RFC6680 Generic Security Service Application Programming Interface (GSS-API) Naming Extensions

	RFC7546 Structure of the Generic Security Service (GSS) Negotiation Loop

	RFC7628 A Set of Simple Authentication and Security Layer (SASL) Mechanisms for OAuth

	RFC7751 Kerberos Authorization Data Container Authenticated by Multiple Message Authentication Codes (MACs)

	RFC7802 A Pseudo-Random Function (PRF) for the Kerberos V Generic Security Service Application Program Interface (GSS-API) Mechanism

	RFC8009 AES Encryption with HMAC-SHA2 for Kerberos 5

	RFC8062 Anonymity Support for Kerberos

	RFC8070 Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) Freshness Extension

	RFC8129 Authentication Indicator in Kerberos Tickets

	RFC8353 Generic Security Service API Version 2: Java Bindings Update

	RFC8636 Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) Algorithm Agility

Related Active

	draft-schmaus-kitten-sasl-ht-07 The Hashed Token SASL Mechanism

lake RFC and Internet-Drafts Index

lake RFC and Internet-Draft Index

Index

Related Active

	draft-selander-lake-edhoc-00 Ephemeral Diffie-Hellman Over COSE (EDHOC)

	draft-selander-lake-reqs-03 Requirements for a Lightweight AKE for OSCORE

lamps RFC and Internet-Drafts Index

lamps RFC and Internet-Draft Index

Index

Active

	draft-ietf-lamps-cms-hash-sig-10 Use of the HSS/LMS Hash-based Signature Algorithm in the Cryptographic Message Syntax (CMS)

	draft-ietf-lamps-cms-mix-with-psk-07 Using Pre-Shared Key (PSK) in the Cryptographic Message Syntax (CMS)

	draft-ietf-lamps-cms-shakes-18 Use of the SHAKE One-way Hash Functions in the Cryptographic Message Syntax (CMS)

	draft-ietf-lamps-header-protection-requirements-01 Problem Statement and Requirements for Header Protection

	draft-ietf-lamps-pkix-shake-15 Internet X.509 Public Key Infrastructure: Additional Algorithm Identifiers for RSASSA-PSS and ECDSA using SHAKEs

RFC

	RFC8398 Internationalized Email Addresses in X.509 Certificates

	RFC8399 Internationalization Updates to RFC 5280

	RFC8550 Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Certificate Handling

	RFC8551 Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification

	RFC8649 Hash Of Root Key Certificate Extension

	RFC8659 DNS Certification Authority Authorization (CAA) Resource Record

Related Active

	draft-autocrypt-lamps-protected-headers-01 Protected Headers for Cryptographic E-mail

	draft-brockhaus-lamps-cmp-updates-01 CMP Updates

	draft-brockhaus-lamps-lightweight-cmp-profile-01 Lightweight CMP Profile

	draft-dkg-lamps-samples-01 S/MIME Example Keys and Certificates

	draft-housley-lamps-cms-update-alg-id-protect-00 Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection

	draft-luck-lamps-pep-header-protection-03 pretty Easy privacy (pEp): Progressive Header Disclosure

	draft-richardson-lamps-rfc7030est-clarify-05 Clarification of Enrollment over Secure Transport (EST): transfer encodings and ASN.1

mile RFC and Internet-Drafts Index

mile RFC and Internet-Draft Index

Index

Active

	draft-ietf-mile-jsoniodef-11 JSON binding of IODEF

	draft-ietf-mile-rolie-csirt-06 Definition of ROLIE CSIRT Extension

	draft-ietf-mile-rolie-vuln-03 Definition of the ROLIE Vulnerability Extension

RFC

	RFC6545 Real-time Inter-network Defense (RID)

	RFC6546 Transport of Real-time Inter-network Defense (RID) Messages over HTTP/TLS

	RFC6684 Guidelines and Template for Defining Extensions to the Incident Object Description Exchange Format (IODEF)

	RFC6685 Expert Review for Incident Object Description Exchange Format (IODEF) Extensions in IANA XML Registry

	RFC7203 An Incident Object Description Exchange Format (IODEF) Extension for Structured Cybersecurity Information

	RFC7495 Enumeration Reference Format for the Incident Object Description Exchange Format (IODEF)

	RFC7970 The Incident Object Description Exchange Format Version 2

	RFC8134 Management Incident Lightweight Exchange (MILE) Implementation Report

	RFC8274 Incident Object Description Exchange Format Usage Guidance

	RFC8322 Resource-Oriented Lightweight Information Exchange (ROLIE)

	RFC8600 Using Extensible Messaging and Presence Protocol (XMPP) for Security Information Exchange

mls RFC and Internet-Drafts Index

mls RFC and Internet-Draft Index

Index

Active

	draft-ietf-mls-architecture-03 The Messaging Layer Security (MLS) Architecture

	draft-ietf-mls-federation-00 The Messaging Layer Security (MLS) Federation

	draft-ietf-mls-protocol-08 The Messaging Layer Security (MLS) Protocol

oauth RFC and Internet-Drafts Index

oauth RFC and Internet-Draft Index

Index

Active

	draft-ietf-oauth-access-token-jwt-02 JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens

	draft-ietf-oauth-browser-based-apps-04 OAuth 2.0 for Browser-Based Apps

	draft-ietf-oauth-incremental-authz-03 OAuth 2.0 Incremental Authorization

	draft-ietf-oauth-jwsreq-20 The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR)

	draft-ietf-oauth-jwt-bcp-07 JSON Web Token Best Current Practices

	draft-ietf-oauth-jwt-introspection-response-08 JWT Response for OAuth Token Introspection

	draft-ietf-oauth-mtls-17 OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens

	draft-ietf-oauth-reciprocal-04 Reciprocal OAuth

	draft-ietf-oauth-resource-indicators-08 Resource Indicators for OAuth 2.0

	draft-ietf-oauth-security-topics-13 OAuth 2.0 Security Best Current Practice

	draft-ietf-oauth-token-exchange-19 OAuth 2.0 Token Exchange

RFC

	RFC6749 The OAuth 2.0 Authorization Framework

	RFC6750 The OAuth 2.0 Authorization Framework: Bearer Token Usage

	RFC6755 An IETF URN Sub-Namespace for OAuth

	RFC6819 OAuth 2.0 Threat Model and Security Considerations

	RFC7009 OAuth 2.0 Token Revocation

	RFC7519 JSON Web Token (JWT)

	RFC7521 Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants

	RFC7522 Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants

	RFC7523 JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants

	RFC7591 OAuth 2.0 Dynamic Client Registration Protocol

	RFC7592 OAuth 2.0 Dynamic Client Registration Management Protocol

	RFC7636 Proof Key for Code Exchange by OAuth Public Clients

	RFC7662 OAuth 2.0 Token Introspection

	RFC7800 Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)

	RFC8176 Authentication Method Reference Values

	RFC8252 OAuth 2.0 for Native Apps

	RFC8414 OAuth 2.0 Authorization Server Metadata

	RFC8628 OAuth 2.0 Device Authorization Grant

Related Active

	draft-fett-oauth-dpop-03 OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer (DPoP)

	draft-fett-oauth-ivar-00 OAuth 2.0 Integrity Verification for Authorization Requests (IVAR)

	draft-lodderstedt-oauth-par-01 OAuth 2.0 Pushed Authorization Requests

	draft-lodderstedt-oauth-rar-03 OAuth 2.0 Rich Authorization Requests

	draft-parecki-oauth-client-intermediary-metadata-00 OAuth 2.0 Client Intermediary Metadata

	draft-richanna-oauth-http-signature-pop-00 Proof-of-Possession Tokens for OAuth Using JWS HTTP Signatures

	draft-sakimura-oauth-jpop-05 The OAuth 2.0 Authorization Framework: JWT Pop Token Usage

	draft-spencer-oauth-claims-01 The OAuth 2.0 Authorization Framework: Claims

	draft-yusef-oauth-nested-jwt-03 Nested JSON Web Token (JWT)

rats RFC and Internet-Drafts Index

rats RFC and Internet-Draft Index

Index

Active

	draft-ietf-rats-eat-01 The Entity Attestation Token (EAT)

Related Active

	draft-birkholz-rats-architecture-03 Remote Attestation Procedures Architecture

	draft-birkholz-rats-basic-yang-module-01 YANG Module for Basic Challenge-Response-based Remote Attestation Procedures

	draft-birkholz-rats-information-model-00 An Information Model for Assertions used in RATS

	draft-birkholz-rats-reference-interaction-model-01 Reference Interaction Model for Challenge-Response-based Remote Attestation

	draft-birkholz-rats-tuda-01 Time-Based Uni-Directional Attestation

	draft-fedorkow-rats-network-device-attestation-01 Network Device Attestation Workflow

	draft-mandyam-rats-qwestoken-00 The Qualcomm Wireless Edge Services (QWES) Attestation Token

	draft-richardson-rats-usecases-06 Use cases for Remote Attestation common encodings

	draft-thaler-rats-architecture-01 Remote Attestation Architecture

	draft-tschofenig-rats-psa-token-04 Arm's Platform Security Architecture (PSA) Attestation Token

	draft-xia-rats-pubsub-model-01 Using Netconf Pub/Sub Model for RATS Interaction Procedure

sacm RFC and Internet-Drafts Index

sacm RFC and Internet-Draft Index

Index

Active

	draft-ietf-sacm-arch-04 Security Automation and Continuous Monitoring (SACM) Architecture

	draft-ietf-sacm-coswid-13 Concise Software Identification Tags

	draft-ietf-sacm-epcp-00 Endpoint Posture Collection Profile

	draft-ietf-sacm-rolie-softwaredescriptor-08 Definition of the ROLIE Software Descriptor Extension

RFC

	RFC7632 Endpoint Security Posture Assessment: Enterprise Use Cases

	RFC8248 Security Automation and Continuous Monitoring (SACM) Requirements

	RFC8412 Software Inventory Message and Attributes (SWIMA) for PA-TNC

Related Active

	draft-inacio-sacm-infomodel-00 SACM Information Model

secevent RFC and Internet-Drafts Index

secevent RFC and Internet-Draft Index

Index

Active

	draft-ietf-secevent-http-poll-06 Poll-Based Security Event Token (SET) Delivery Using HTTP

	draft-ietf-secevent-http-push-07 Push-Based Security Event Token (SET) Delivery Using HTTP

RFC

	RFC8417 Security Event Token (SET)

Related Active

	draft-ietf-secevent-subject-identifiers-05 Subject Identifiers for Security Event Tokens

suit RFC and Internet-Drafts Index

suit RFC and Internet-Draft Index

Index

Active

	draft-ietf-suit-architecture-08 A Firmware Update Architecture for Internet of Things

	draft-ietf-suit-information-model-04 An Information Model for Firmware Updates in IoT Devices

	draft-ietf-suit-manifest-02 A Concise Binary Object Representation (CBOR)-based Serialization Format for the Software Updates for Internet of Things (SUIT) Manifest

Related Active

	draft-atkins-suit-cose-walnutdsa-01 Use of the Walnut Digital Signature Algorithm with CBOR Object Signing and Encryption (COSE)

teep RFC and Internet-Drafts Index

teep RFC and Internet-Draft Index

Index

Active

	draft-ietf-teep-architecture-03 Trusted Execution Environment Provisioning (TEEP) Architecture

	draft-ietf-teep-otrp-over-http-03 HTTP Transport for Trusted Execution Environment Provisioning: Agent-to- TAM Communication

Related Active

	draft-tschofenig-teep-protocol-01 Trusted Execution Environment Provisioning Protocol (teep-p)

Related Expired

	draft-liu-opentrustprotocol-cbor-00 Open Trust Protocol CBOR Encoding

	draft-liu-opentrustprotocol-usecase-01 A Protocol for Dynamic Trusted Execution Environment Enablement

Related Replaced

	draft-pei-opentrustprotocol-06 The Open Trust Protocol (OTrP)

tls RFC and Internet-Drafts Index

tls RFC and Internet-Draft Index

Index

Active

	draft-ietf-tls-certificate-compression-07 TLS Certificate Compression

	draft-ietf-tls-dtls-connection-id-07 Connection Identifiers for DTLS 1.2

	draft-ietf-tls-dtls13-34 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

	draft-ietf-tls-esni-05 Encrypted Server Name Indication for TLS 1.3

	draft-ietf-tls-exported-authenticator-10 Exported Authenticators in TLS

	draft-ietf-tls-external-psk-importer-02 Importing External PSKs for TLS

	draft-ietf-tls-grease-04 Applying GREASE to TLS Extensibility

	draft-ietf-tls-md5-sha1-deprecate-00 Deprecating MD5 and SHA-1 signature hashes in TLS 1.2

	draft-ietf-tls-oldversions-deprecate-05 Deprecating TLSv1.0 and TLSv1.1

	draft-ietf-tls-sni-encryption-09 Issues and Requirements for SNI Encryption in TLS

	draft-ietf-tls-subcerts-05 Delegated Credentials for TLS

	draft-ietf-tls-ticketrequests-04 TLS Ticket Requests

	draft-ietf-tls-tls13-cert-with-extern-psk-03 TLS 1.3 Extension for Certificate-based Authentication with an External Pre-Shared Key

	draft-ietf-tls-tlsflags-01 A Flags Extension for TLS 1.3

RFC

	RFC2246 The TLS Protocol Version 1.0

	RFC2712 Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)

	RFC2817 Upgrading to TLS Within HTTP/1.1

	RFC2818 HTTP Over TLS

	RFC3268 Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS)

	RFC3546 Transport Layer Security (TLS) Extensions

	RFC3749 Transport Layer Security Protocol Compression Methods

	RFC4132 Addition of Camellia Cipher Suites to Transport Layer Security (TLS)

	RFC4279 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)

	RFC4346 The Transport Layer Security (TLS) Protocol Version 1.1

	RFC4366 Transport Layer Security (TLS) Extensions

	RFC4492 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)

	RFC4785 Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for Transport Layer Security (TLS)

	RFC5054 Using the Secure Remote Password (SRP) Protocol for TLS Authentication

	RFC5081 Using OpenPGP Keys for Transport Layer Security (TLS) Authentication

	RFC5246 The Transport Layer Security (TLS) Protocol Version 1.2

	RFC5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS

	RFC5289 TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)

	RFC5469 DES and IDEA Cipher Suites for Transport Layer Security (TLS)

	RFC5487 Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter Mode

	RFC5489 ECDHE_PSK Cipher Suites for Transport Layer Security (TLS)

	RFC5705 Keying Material Exporters for Transport Layer Security (TLS)

	RFC5746 Transport Layer Security (TLS) Renegotiation Indication Extension

	RFC6066 Transport Layer Security (TLS) Extensions: Extension Definitions

	RFC6176 Prohibiting Secure Sockets Layer (SSL) Version 2.0

	RFC6347 Datagram Transport Layer Security Version 1.2

	RFC6520 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) Heartbeat Extension

	RFC6961 The Transport Layer Security (TLS) Multiple Certificate Status Request Extension

	RFC7250 Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

	RFC7301 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension

	RFC7366 Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

	RFC7465 Prohibiting RC4 Cipher Suites

	RFC7507 TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol Downgrade Attacks

	RFC7568 Deprecating Secure Sockets Layer Version 3.0

	RFC7627 Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension

	RFC7685 A Transport Layer Security (TLS) ClientHello Padding Extension

	RFC7905 ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS)

	RFC7918 Transport Layer Security (TLS) False Start

	RFC7919 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS)

	RFC7924 Transport Layer Security (TLS) Cached Information Extension

	RFC8422 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier

	RFC8442 ECDHE_PSK with AES-GCM and AES-CCM Cipher Suites for TLS 1.2 and DTLS 1.2

	RFC8446 The Transport Layer Security (TLS) Protocol Version 1.3

	RFC8447 IANA Registry Updates for TLS and DTLS

	RFC8448 Example Handshake Traces for TLS 1.3

	RFC8449 Record Size Limit Extension for TLS

Related Active

	draft-campagna-tls-bike-sike-hybrid-02 Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 (TLS)

	draft-camwinget-tls-proxy-impact-00 Impact of TLS 1.3 to Operational Network Security Practices

	draft-camwinget-tls-ts13-macciphersuites-04 TLS 1.3 Authentication and Integrity only Ciphersuites

	draft-camwinget-tls-use-cases-05 TLS 1.3 Impact on Network-Based Security

	draft-davidben-tls-batch-signing-02 Batch Signing for TLS

	draft-dukhovni-tls-dnssec-chain-00 The DANE Authentication Chain Extension for TLS

	draft-farrell-tls-pemesni-00 PEM file format for ESNI

	draft-farrell-tls-wkesni-01 A well-known URI for publishing ESNIKeys

	draft-friel-tls-atls-04 Application-Layer TLS

	draft-gutmann-tls-lts-12 TLS 1.2 Update for Long-term Support

	draft-jhoyla-tls-extended-key-schedule-00 TLS 1.3 Extended Key Schedule

	draft-rescorla-tls-ctls-03 Compact TLS 1.3

	draft-rescorla-tls-semistatic-dh-02 Semi-Static Diffie-Hellman Key Establishment for TLS 1.3

	draft-schwartz-tls-lb-02 TLS Metadata for Load Balancers

	draft-stebila-tls-hybrid-design-01 Design issues for hybrid key exchange in TLS 1.3

	draft-tschofenig-tls-cwt-01 Using CBOR Web Tokens (CWTs) in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

	draft-tschofenig-tls-dtls-rrc-00 Return Routability Check for DTLS 1.2 and DTLS 1.3

	draft-vanrein-tls-kdh-05 Quantum Relief for TLS with Kerberos

	draft-wang-tls-proxy-best-practice-00 TLS Proxy Best Practice

	draft-wang-tls-raw-public-key-with-ibc-11 Using Identity as Raw Public Key in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

	draft-yang-tls-tls13-sm-suites-01 SM Cipher Suites for Transport Layer Security (TLS) Protocol Version 1.3

tokbind RFC and Internet-Drafts Index

tokbind RFC and Internet-Draft Index

Index

Active

	draft-ietf-tokbind-ttrp-09 HTTPS Token Binding with TLS Terminating Reverse Proxies

RFC

	RFC8471 The Token Binding Protocol Version 1.0

	RFC8472 Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation

	RFC8473 Token Binding over HTTP

trans RFC and Internet-Drafts Index

trans RFC and Internet-Draft Index

Index

Active

	draft-ietf-trans-gossip-05 Gossiping in CT

	draft-ietf-trans-rfc6962-bis-34 Certificate Transparency Version 2.0

draft-atkins-suit-cose-walnutdsa-01 - Use of the Walnut Digital Signature Algorithm with CBOR Object Signing and Encryption (COSE)

draft-atkins-suit-cose-walnutdsa-01 - Use of the Walnut Digital Signature Algori

Index
Prev
Next

Internet Engineering Task Force

Internet-Draft

Intended status: Informational

Expires: May 23, 2020

D. Atkins

SecureRF Corporation

November 20, 2019

Use of the Walnut Digital Signature Algorithm with CBOR Object Signing and Encryption (COSE)

draft-atkins-suit-cose-walnutdsa-01

Abstract

 This document specifies the conventions for using the Walnut Digital
 Signature Algorithm (WalnutDSA) for digital signatures with the CBOR
 Object Signing and Encryption (COSE) syntax. WalnutDSA is a
 lightweight, quantum-resistant signature scheme based on Group
 Theoretic Cryptography (see [WALNUTDSA] and [WALNUTSPEC]) with
 implementation and computational efficiency of signature verification
 in constrained environments, even on 8- and 16-bit platforms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 23, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Motivation

	2. Terminology

	3. WalnutDSA Algorithm Overview

	4. WalnutDSA Algorithm Identifiers

	5. Security Considerations
	 5.1. Implementation Security Considerations

	 5.2. Method Security Considerations

	6. IANA Considerations
	 6.1. COSE Algorithms Registry Entry

	 6.2. COSE Key Types Registry Entry

	 6.3. COSE Key Type Parameter Registry Entries
	 6.3.1. WalnutDSA Parameter: N

	 6.3.2. WalnutDSA Parameter: q

	 6.3.3. WalnutDSA Parameter: t-values

	 6.3.4. WalnutDSA Parameter: matrix 1

	 6.3.5. WalnutDSA Parameter: permutation 1

	 6.3.6. WalnutDSA Parameter: matrix 2

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Acknowledgments

	Author's Address

1. Introduction

 This document specifies the conventions for using the Walnut Digital
 Signature Algorithm (WalnutDSA) [WALNUTDSA] for digital signatures
 with the CBOR Object Signing and Encryption (COSE) [RFC8152] syntax.
 WalnutDSA is a Group-Theoretic [GTC] signature scheme where signature
 validation is both computationally- and space-efficient, even on very
 small processors. Unlike many hash-based signatures, there is no
 state required and no limit on the number of signatures that can be
 made. WalnutDSA private and public keys are relatively small;
 however, the signatures are larger than RSA and ECC, but still
 smaller than most all other quantum-resistant schemes (including all
 hash-based schemes).

1.1. Motivation

 There have been recent advances in cryptanalysis and advances in the
 development of quantum computers. Each of these advances pose a
 threat to widely deployed digital signature algorithms.

 At Black Hat USA 2013, some researchers gave a presentation on the
 current state of public key cryptography. They said: "Current
 cryptosystems depend on discrete logarithm and factoring which has
 seen some major new developments in the past 6 months" [BH2013]. Due
 to advances in cryptanalysis, they encouraged preparation for a day
 when RSA and DSA cannot be depended upon.

 Peter Shor showed that a large-scale quantum computer could be used
 to factor a number in polynomial time [S1997], effectively breaking
 RSA. If large-scale quantum computers are ever built, these
 computers will be able to break many of the public-key cryptosystems
 currently in use. A post-quantum cryptosystem [PQC] is a system that
 is secure against quantum computers that have more than a trivial
 number of quantum bits (qu-bits). It is open to conjecture when it
 will be feasible to build such a machine; however, RSA, DSA, ECDSA,
 and EdDSA are all vulnerable if large-scale uantum computers come to
 pass.

 WalnutDSA does not depend on the difficulty of discrete logarithm or
 factoring. As a result this algorithm is considered to be post-
 quantum secure.

 Today, RSA and ECDSA are often used to digitally sign software
 updates. Unfortunately, implementations of RSA and ECDSA can be
 relatively large, and verification can take a significant amount of
 time on some very small processors. Therefore, we desire a digital
 signature scheme that verifies faster with less code. Moreover, in
 preparation for a day when RSA, DSA, and ECDSA cannot be depended
 upon, a digital signature algorithm is needed that will remain secure
 even if there are significant cryptoanalytic advances or a large-
 scale quantum computer is invented. WalnutDSA, specified in
 [WALNUTSPEC], is one such algorithm.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

3. WalnutDSA Algorithm Overview

 This specification makes use of WalnutDSA signatures as described in
 [WALNUTDSA] and more concretely specified in [WALNUTSPEC]. WalnutDSA
 is a Group-Theoretic cryptographic signature scheme that leverages
 infinite group theory as the basis of its security and maps that to a
 one-way evaluation of a series of matrices over small finite fields
 with permuted multiplicants based on the group input. WalnutDSA
 leverages the SHA2-256 and SHA2-512 one-way hash algorithms [SHA2] in
 a hash-then-sign process.

 WalnutDSA is based on a one-way function, E-Multiplication, which is
 an action on the infinite group. A single E-Multiplication step
 takes as input a matrix and permutation, a generator in the group,
 and a set of T-values (entries in the finite field) and outputs a new
 matrix and permutation. To process a long string of generators (like
 a WalnutDSA signature), E-Multiplication is iterated over each
 generator. Due to its structure, E-Multiplication is extremely easy
 to implement.

 In addition to being quantum-resistant, the two main benefits of
 using WalnutDSA are that the verification implementation is very
 small and WalnutDSA signature verification is extremely fast, even on
 very small processors (including 16- and even 8-bit MCUs). This
 lends it well to use in constrained and/or time-sensitive
 environments.

 WalnutDSA has several parameters required to process a signature.
 The main parameters are N and q. The parameter N defines the size of
 the group and implies working in an NxN matrix. The parameter q
 defines the size of the finite field (in q elements). Signature
 verification also requires a set of T-values, which is an ordered
 list of N entries in the finite field F_q.

 A WalnutDSA signature is just a string of generators in the infinite
 group.

4. WalnutDSA Algorithm Identifiers

 The CBOR Object Signing and Encryption (COSE) [RFC8152] supports two
 signature algorithm schemes. This specification makes use of the
 signature with appendix scheme for WalnutDSA signatures.

 The signature value is a large byte string. The byte string is
 designed for easy parsing, and it includes a length (number of
 generators) and type codes that indirectly provide all of the
 information that is needed to parse the byte string during signature
 validation.

 When using a COSE key for this algorithm, the following checks are
 made:

 o The 'kty' field MUST be present, and it MUST be 'WalnutDSA'.

 o If the 'alg' field is present, and it MUST be 'WalnutDSA'.

 o If the 'key_ops' field is present, it MUST include 'sign' when
 creating a WalnutDSA signature.

 o If the 'key_ops' field is present, it MUST include 'verify' when
 verifying a WalnutDSA signature.

 o If the 'kid' field is present, it MAY be used to identify the
 WalnutDSA Key.

5. Security Considerations

5.1. Implementation Security Considerations

 Implementations must protect the private keys. Use of a hardware
 security module (HSM) is one way to protect the private keys.
 Compromise of the private keys may result in the ability to forge
 signatures. As a result, when a private key is stored on non-
 volatile media or stored in a virtual machine environment, care must
 be taken to preserve confidentiality and integrity.

 The generation of private keys relies on random numbers. The use of
 inadequate pseudo-random number generators (PRNGs) to generate these
 values can result in little or no security. An attacker may find it
 much easier to reproduce the PRNG environment that produced the keys,
 searching the resulting small set of possibilities, rather than brute
 force searching the whole key space. The generation of quality
 random numbers is difficult. [RFC4086] offers important guidance in
 this area.

 The generation of WalnutDSA signatures also depends on random
 numbers. While the consequences of an inadequate pseudo-random
 number generator (PRNGs) to generate these values is much less severe
 than the generation of private keys, the guidance in [RFC4086]
 remains important.

5.2. Method Security Considerations

 The Walnut Digital Signature Algorithm has undergone significant
 cryptanalysis since it was first introduced, and several weaknesses
 were found in early versions of the method, resulting in the
 description of several exponential attacks. A full writeup of all
 the analysis can be found in [WalnutDSAAnalysis]. In summary, the
 original suggested parameters were too small, leading to many of
 these exponential attacks being practical. However, current
 parameters render these attacks impractical. The following
 paragraphs summarize the analysis and how the current parameters
 defeat all the previous attacks.

 First, the team of Hart et al found a universal forgery attack based
 on a group factoring problem that runs in O(q^((N-1)/2)) with a
 memory complexity of log_2(q) N^2 q^((N-1)/2). With parameters N=10
 and q=M31 (2^31 - 1), the runtime is 2^139 and memory complexity is
 2^151. W. Beullens found a modification of this attack but its
 runtime is even longer.

 Next, Beullens and Blackburn found several issues with the original
 method and parameters. First they used a Pollard-Rho attack and
 discovered the original public key space was too small. Specifically
 they require that q^(N(N-1)-1) > 2^(2*Security Level). One can
 clearly see that N=10, q=M31 provides 128-bit security and N=10,
 q=M61 provides 256-bit security.

 Beullens and Blackburn also found two issues with the original
 message encoder of WalnutDSA. First, the original encoder was non-
 injective, which reduced the available signature space. This was
 repaired in an update. Second, they pointed out that the dimension
 of the vector space generated by the encoder was too small.
 Specifically, they require that q^dimension > 2^(2*Security Level).
 With N=10, the current encoder produces a dimension of 66 which
 clearly provides sufficient security.

 The final issue discovered by Beullens and Blackburn was a process to
 theoretically "reverse" E-Multiplication. First, their process
 requires knowing the initial matrix and permutation (which is known
 for WalnutDSA). But more importantly, their process runs at
 O(q^((N-1)/2)) which, for N=10, q=M31 is greater than 2^128.

 A team at Steven's Institute leveraged a length-shortening attack
 that enabled them to remove the cloaking elements and then solve a
 conjugacy search problem to derive the private keys. Their attack
 requires both knowledge of the permutation being cloaked and also
 that the cloaking elements themselves are conjugates. By adding
 additional concealed cloaking elements the attack requires an N!
 search for each cloaking element. By inserting k concealed cloaking
 elements, this requires the attacker to perform (N!)^k work. This
 allows k to be set to meet the desired security level.

 Finally, Merz and Petit discovered that using a Garside Normal Form
 of a WalnutDSA signature enabled them to find commonalities with the
 Garside Normal Form of the encoded message. Using those
 commonalities they were able to splice into a signature and create
 forgeries. Increasing the number of cloaking elements, specifically
 within the encoded message, sufficiently obscures the commonalities
 and blocks this attack.

 In summary, most of these attacks are exponential in run time and can
 be shown that current parameters put the runtime beyond the desired
 security level. The final two attacks are also sufficiently blocked
 to the desired security level.

6. IANA Considerations

 IANA is requested to add entries for WalnutDSA signatures in the
 "COSE Algorithms" registry and WalnutDSA public keys in the "COSE Key
 Types" and "COSE Key Type Parameters" registries.

6.1. COSE Algorithms Registry Entry

 The new entry in the "COSE Algorithms" registry has the following
 columns:

 Name: WalnutDSA

 Value: TBD1 (Value to be assigned by IANA)

 Description: WalnutDSA signature

 Reference: This document (Number to be assigned by RFC Editor)

 Recommended: Yes

6.2. COSE Key Types Registry Entry

 The new entry in the "COSE Key Types" registry has the following
 columns:

 Name: WalnutDSA

 Value: TBD2 (Value to be assigned by IANA)

 Description: WalnutDSA public key

 Reference: This document (Number to be assigned by RFC Editor)

6.3. COSE Key Type Parameter Registry Entries

 The following sections detail the additions to the "COSE Key Type
 Parameters" registry.

6.3.1. WalnutDSA Parameter: N

 The new entry N in the "COSE Key Type Parameters" registry has the
 following columns:

 Key Type: TBD2 (Value assigned by IANA above)

 Name: N

 Label: TBD (Value to be assigned by IANA)

 CBOR Type: uint

 Description: Group and Matrix (NxN) size

 Reference: This document (Number to be assigned by RFC Editor)

6.3.2. WalnutDSA Parameter: q

 The new entry q in the "COSE Key Type Parameters" registry has the
 following columns:

 Key Type: TBD2 (Value assigned by IANA above)

 Name: q

 Label: TBD (Value to be assigned by IANA)

 CBOR Type: uint

 Description: Finite field F_q

 Reference: This document (Number to be assigned by RFC Editor)

6.3.3. WalnutDSA Parameter: t-values

 The new entry t-values in the "COSE Key Type Parameters" registry has
 the following columns:

 Key Type: TBD2 (Value assigned by IANA above)

 Name: t-values

 Label: TBD (Value to be assigned by IANA)

 CBOR Type: array (of uint)

 Description: List of T-values, enties in F_q

 Reference: This document (Number to be assigned by RFC Editor)

6.3.4. WalnutDSA Parameter: matrix 1

 The new entry matrix 1 in the "COSE Key Type Parameters" registry has
 the following columns:

 Key Type: TBD2 (Value assigned by IANA above)

 Name: matrix 1

 Label: TBD (Value to be assigned by IANA)

 CBOR Type: array (of array of uint)

 Description: NxN Matrix of enties in F_q

 Reference: This document (Number to be assigned by RFC Editor)

6.3.5. WalnutDSA Parameter: permutation 1

 The new entry permutation 1 in the "COSE Key Type Parameters"
 registry has the following columns:

 Key Type: TBD2 (Value assigned by IANA above)

 Name: permutation 1

 Label: TBD (Value to be assigned by IANA)

 CBOR Type: array (of uint)

 Description: Permutation associated with matrix 1

 Reference: This document (Number to be assigned by RFC Editor)

6.3.6. WalnutDSA Parameter: matrix 2

 The new entry matrix 2 in the "COSE Key Type Parameters" registry has
 the following columns:

 Key Type: TBD2 (Value assigned by IANA above)

 Name: matrix 2

 Label: TBD (Value to be assigned by IANA)

 CBOR Type: array (of array of uint)

 Description: NxN Matrix of enties in F_q

 Reference: This document (Number to be assigned by RFC Editor)

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC8152]
 Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SHA2]
 National Institute of Standards and Technology (NIST),
 "FIPS Publication 180-3: Secure Hash Standard", October
 2008.

 [WALNUTSPEC]

 Anshel, I., Atkins, D., Goldfeld, D., and P. Gunnells,
 "The Walnut Digital Signature Algorithm Specification",
 November 2018.

7.2. Informative References

 [BH2013]
 Ptacek, T., Ritter, J., Samuel, J., and A. Stamos, "The
 Factoring Dead: Preparing for the Cryptopocalypse", August
 2013, <https://media.blackhat.com/us-13/us-13-Stamos-The-
 Factoring-Dead.pdf>.

 [GTC]
 Vasco, M. and R. Steinwandt, "Group Theoretic
 Cryptography", April 2015, <https://www.crcpress.com/
 Group-Theoretic-Cryptography/Vasco-Steinwandt/p/
 book/9781584888369>.

 [PQC]
 Bernstein, D., "Introduction to post-quantum
 cryptography", 2009,
 <http://www.pqcrypto.org/www.springer.com/cda/content/
 document/cda_downloaddocument/9783540887010-c1.pdf>.

 [RFC4086]
 Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005, <https://www.rfc-
 editor.org/info/rfc4086>.

 [S1997]
 Shor, P., "Polynomial-time algorithms for prime
 factorization and discrete logarithms on a quantum
 computer", SIAM Journal on Computing 26(5), 1484-26, 1997,
 <http://dx.doi.org/10.1137/S0097539795293172>.

 [WALNUTDSA]

 Anshel, I., Atkins, D., Goldfeld, D., and P. Gunnells,
 "WalnutDSA(TM): A Quantum-Resistant Digital Signature
 Algorithm", January 2017,
 <https://eprint.iacr.org/2017/058>.

 [WalnutDSAAnalysis]

 Anshel, I., Atkins, D., Goldfeld, D., and P. Gunnells,
 "Defeating the Hart et al, Beullens-Blackburn, Kotov-
 Menshov-Ushakov, and Merz-Petit Attacks on WalnutDSA(TM)",
 May 2019, <https://eprint.iacr.org/2019/472>.

Appendix A. Acknowledgments

 A big thank you to Russ Housley for his input on the concepts and
 text of this document.

Author's Address

Derek Atkins
SecureRF Corporation
100 Beard Sawmill Rd, Suite 350
Shelton, CT 06484
US

Phone: +1 617 623 3745
Email: datkins@securerf.com

draft-aura-eap-noob-07 - Nimble out-of-band authentication for EAP (EAP-NOOB)

draft-aura-eap-noob-07 - Nimble out-of-band authentication for EAP (EAP-NOOB)

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 1, 2020

T. Aura

Aalto University

M. Sethi

Ericsson

October 29, 2019

Nimble out-of-band authentication for EAP (EAP-NOOB)

draft-aura-eap-noob-07

Abstract

 Extensible Authentication Protocol (EAP) provides support for
 multiple authentication methods. This document defines the EAP-NOOB
 authentication method for nimble out-of-band (OOB) authentication and
 key derivation. This EAP method is intended for bootstrapping all
 kinds of Internet-of-Things (IoT) devices that have a minimal user
 interface and no pre-configured authentication credentials. The
 method makes use of a user-assisted one-directional OOB channel
 between the peer device and authentication server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. EAP-NOOB protocol
	 3.1. Protocol overview

	 3.2. Protocol messages and sequences
	 3.2.1. Common handshake in all EAP exchanges

	 3.2.2. Initial Exchange

	 3.2.3. OOB Step

	 3.2.4. Completion Exchange

	 3.2.5. Waiting Exchange

	 3.3. Protocol data fields
	 3.3.1. Peer identifier, realm and NAI

	 3.3.2. Message data fields

	 3.4. Fast reconnect and rekeying
	 3.4.1. Persistent EAP-NOOB association

	 3.4.2. Reconnect Exchange

	 3.4.3. User reset

	 3.5. Key derivation

	 3.6. Error handling
	 3.6.1. Invalid messages

	 3.6.2. Unwanted peer

	 3.6.3. State mismatch

	 3.6.4. Negotiation failure

	 3.6.5. Cryptographic verification failure

	 3.6.6. Application-specific failure

	4. IANA Considerations
	 4.1. Cryptosuites

	 4.2. Message Types

	 4.3. Error codes

	 4.4. Domain name reservation considerations

	5. Implementation Status
	 5.1. Implementation with wpa_supplicant and hostapd

	 5.2. Implementation on Contiki

	 5.3. Protocol modeling

	6. Security considerations
	 6.1. Authentication principle

	 6.2. Identifying correct endpoints

	 6.3. Trusted path issues and misbinding attacks

	 6.4. Peer identifiers and attributes

	 6.5. Identity protection

	 6.6. Downgrading threats

	 6.7. Recovery from loss of last message

	 6.8. EAP security claims

	7. References
	 7.1. Normative references

	 7.2. Informative references

	Appendix A. Exchanges and events per state

	Appendix B. Application-specific parameters

	Appendix C. ServerInfo and PeerInfo contents

	Appendix D. EAP-NOOB roaming

	Appendix E. OOB message as URL

	Appendix F. Example messages

	Appendix G. TODO list

	Appendix H. Version history

	Appendix I. Acknowledgments

	Authors' Addresses

1. Introduction

 This document describes a method for registration, authentication and
 key derivation for network-connected ubiquitous computing devices,
 such as consumer and enterprise appliances that are part of the
 Internet of Things (IoT). These devices may be off-the-shelf
 hardware that is sold and distributed without any prior registration
 or credential-provisioning process. Thus, the device registration in
 a server database, ownership of the device, and the authentication
 credentials for both network access and application-level security
 must all be established at the time of the device deployment.
 Furthermore, many such devices have only limited user interfaces that
 could be used for their configuration. Often, the interfaces are
 limited to either only input (e.g. camera) or output (e.g. display
 screen). The device configuration is made more challenging by the
 fact that the devices may exist in large numbers and may have to be
 deployed or re-configured nimbly based on user needs.

 More specifically, the devices may have the following
 characteristics:

 o no pre-established relation with a specific server or user,

 o no pre-provisioned device identifier or authentication
 credentials,

 o limited user interface and configuration capabilities.

 Many proprietary OOB configuration methods exits for specific IoT
 devices. The goal of this specification is to provide an open
 standard and a generic protocol for bootstrapping the security of
 network-connected appliances, such as displays, printers, speakers,
 and cameras. The security bootstrapping in this specification makes
 use of a user-assisted out-of-band (OOB) channel. The device
 authentication relies on user having physical access to the device,
 and the of the key exchange security is based on the assumption that
 attackers are not able to observe or modify the messages conveyed
 through the OOB channel. We follow the common approach taken in
 pairing protocols: performing a Diffie-Hellman key exchange over the
 insecure network and authenticating the established key with the help
 of the OOB channel in order to prevent impersonation and man-in-the-
 middle (MitM) attacks.

 The solution presented here is intended for devices that have either
 an input or output interface, such as a camera, microphone, display
 screen, speakers or blinking LED light, which is able to send or
 receive dynamically generated messages of tens of bytes in length.
 Naturally, this solution may not be appropriate for very small
 sensors or actuators that have no user interface at all or for
 devices that are inaccessible to the user. We also assume that the
 OOB channel is at least partly automated (e.g. camera scanning a bar
 code) and, thus, there is no need to absolutely minimize the length
 of the data transferred through the OOB channel. This differs, for
 example, from Bluetooth simple pairing [BluetoothPairing], where it
 is critical to minimize the length of the manually transferred or
 compared codes. Since the OOB messages are dynamically generated, we
 do not support static printed registration codes. This also prevents
 attacks where a static secret code would be leaked.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In addition, this document frequently uses the following terms as
 they have been defined in [RFC5216]:

authenticator The entity initiating EAP authentication.

peer The entity that responds to the authenticator. In
 [IEEE‑802.1X], this entity is known as the supplicant.

server The entity that terminates the EAP authentication method with
 the peer. In the case where no backend authentication server
 is used, the EAP server is part of the authenticator. In the
 case where the authenticator operates in pass‑through mode, the
 EAP server is located on the backend authentication server.

3. EAP-NOOB protocol

 This section defines the EAP-NOOB protocol. The protocol is a
 generalized version of the original idea presented by Sethi et al.
 [Sethi14].

3.1. Protocol overview

 One EAP-NOOB protocol execution spans multiple EAP conversations,
 called Exchanges. This is necessary to leave time for the OOB
 message to be delivered, as will be explained below.

 The overall protocol starts with the Initial Exchange, in which the
 server allocates an identifier to the peer, and the server and peer
 negotiate the protocol version and cryptosuite (i.e. cryptographic
 algorithm suite), exchange nonces and perform an Ephemeral Elliptic
 Curve Diffie-Hellman (ECDHE) key exchange. The user-assisted OOB
 Step then takes place. This step requires only one out-of-band
 message either from the peer to the server or from the server to the
 peer. While waiting for the OOB Step action, the peer MAY probe the
 server by reconnecting to it with EAP-NOOB. If the OOB Step has
 already taken place, the probe leads to the Completion Exchange,
 which completes the mutual authentication and key confirmation. On
 the other hand, if the OOB Step has not yet taken place, the probe
 leads to the Waiting Exchange, and the peer will perform another
 probe after a server-defined minimum waiting time. The Initial
 Exchange and Waiting Exchange always end in EAP-Failure, while the
 Completion Exchange may result in EAP-Success. Once the peer and
 server have performed a successful Completion Exchange, both
 endpoints store the created association in persistent storage, and
 the OOB Step is not repeated. Thereafter, creation of new temporal
 keys, ECDHE rekeying, and updates of cryptographic algorithms can be
 achieved with the Reconnect Exchange.

 OOB Output/Initial Exchange/
 Waiting Exchange
 .‑‑‑‑‑.
 | v
 .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑. Initial .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | | Exchange | |
 .‑>| 0. Unregistered |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|1. Waiting for OOB|
 | | | | |
 | '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'
 | | | ^
User Reset Completion | | |
 | Exchange | OOB OOB
 |<‑‑‑‑‑‑‑. .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' Input Reject/
 | | | | Initial
 | | | | Exchange
 | | v v |
 | .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑. Completion .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
		Exchange	
	4. Registered	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	2. OOB Received
'‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'			
	^		
Mobility/			
Timeout/ Reconnect			
Failure Exchange			
v			
.‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.			
 '‑‑| 3. Reconnecting |
 | |
 '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'

 Figure 1: EAP-NOOB server-peer association state machine

 Figure 1 shows the association state machine, which is the same for
 the server and for the peer. (For readability, only the main state
 transitions are shown. The complete table of transitions can be
 found in Appendix A.) When the peer initiates the EAP-NOOB method,
 the server chooses the ensuing message exchange based on the
 combination of the server and peer states. The EAP server and peer
 are initially in the Unregistered state, in which no state
 information needs to be stored. Before a successful Completion
 Exchange, the server-peer association state is ephemeral in both the
 server and peer (ephemeral states 0..2), and either endpoint may
 cause the protocol to fall back to the Initial Exchange. After the
 Completion Exchange has resulted in EAP-Success, the association
 state becomes persistent (persistent states 3..4). Only user reset
 or memory failure can cause the return of the server or the peer from
 the persistent states to the ephemeral states and to the Initial
 Exchange.

 The server MUST NOT repeat a successful OOB Step with the same peer
 except if the association with the peer is explicitly reset by the
 user or lost due to failure of the persistent storage in the server.
 More specifically, once the association has entered the Registered
 state, the server MUST NOT delete the association or go back to
 states 0..2 without explicit user approval. Similarly, the peer MUST
 NOT repeat the OOB Step unless the user explicitly deletes from the
 peer the association with the server or resets the peer to the
 Unregistered state. The server and peer MAY implement user reset of
 the association by deleting the state data from that endpoint. If an
 endpoint continues to store data about the association after the user
 reset, its behavior SHOULD be equivalent to having deleted the
 association data.

 It can happen that the peer accidentally or through user reset loses
 its persistent state and reconnects to the server without a
 previously allocated peer identifier. In that case, the server MUST
 treat the peer as a new peer. The server MAY use auxiliary
 information, such as the PeerInfo field received in the Initial
 Exchange, to detect multiple associations with the same peer.
 However, it MUST NOT delete or merge redundant associations without
 user or application approval because EAP-NOOB internally has no
 secure way of verifying that the two peers are the same physical
 device. Similarly, the server might lose the association state
 because of a memory failure or user reset. In that case, the only
 way to recover is that the user resets also the peer.

 A special feature of the EAP-NOOB method is that the server is not
 assumed to have any a-priori knowledge of the peer. Therefore, the
 peer initially uses the generic identity string "noob@eap-noob.net"
 as its network access identifier (NAI). The server then allocates a
 server-specific identifier to the peer. The generic NAI serves two
 purposes: firstly, it tells the server that the peer supports and
 expects the EAP-NOOB method and, secondly, it allows routing of the
 EAP-NOOB sessions to a specific authentication server in the AAA
 architecture.

 EAP-NOOB is an unusual EAP method in that the peer has to have
 multiple EAP conversations with the server before it can receive EAP-
 Success. The reason is that, while EAP allows delays between the
 request-response pairs, e.g. for repeated password entry, the user
 delays in OOB authentication can be much longer than in password
 trials. In particular, EAP-NOOB supports also peers with no input
 capability in the user interface. Since user cannot initiate the
 protocol in these devices, they have to perform the Initial Exchange
 opportunistically and hope for the OOB Step to take place within a
 timeout period (NoobTimeout), which is why the timeout needs to be
 several minutes rather than seconds. For example, consider a printer
 (peer) that outputs the OOB message on paper, which is then scanned
 for the server. To support such high-latency OOB channels, the peer
 and server perform the Initial Exchange in one EAP conversation, then
 allow time for the OOB message to be delivered, and later perform the
 Waiting and Completion Exchanges in different EAP conversations.

3.2. Protocol messages and sequences

 This section defines the EAP-NOOB exchanges, which correspond to EAP
 conversations. The exchanges start with a common handshake, which
 determines the type of the following exchange. The common handshake
 messages and the subsequent messages for each exchange type are
 listed in the diagrams below. The diagrams also specify the data
 members present in each message. Each exchange comprises multiple
 EAP requests-response pairs and ends in either EAP-Failure,
 indicating that authentication is not (yet) successful, or in EAP-
 Success.

3.2.1. Common handshake in all EAP exchanges

 All EAP-NOOB exchanges start with common handshake messages. The
 handshake starts with the identity request and response that are
 common to all EAP methods. Their purpose is to enable the AAA
 architecture to route the EAP conversation to the EAP server and to
 enable the EAP server to select the EAP method. The handshake then
 continues with one EAP-NOOB request-response pair in which the server
 discovers the peer identifier used in EAP-NOOB and the peer state.

 In more detail, each EAP-NOOB exchanges begin with the authenticator
 sending an EAP-Request/Identity packet to the peer. From this point
 on, the EAP conversation occurs between the server and the peer, and
 the authenticator acts as a pass-through device. The peer responds
 to the authenticator with an EAP-Response/Identity packet, which
 contains the network access identifier (NAI). The authenticator,
 acting as a pass-through device, forwards this response and the
 following EAP conversation between the peer and the AAA architecture.
 The AAA architecture routes the conversation to a specific AAA server
 (called "EAP server" or simply "server" in this specification) based
 on the realm part of the NAI. The server selects the EAP-NOOB method
 based on the user part of the NAI, as defined in Section 3.3.1.

 After receiving the EAP-Response/Identity message, the server sends
 the first EAP-NOOB request (Type=9) to the peer, which responds with
 the peer identifier (PeerId) and state (PeerState) in the range 0..3.
 However, the peer SHOULD omit the PeerId from the response (Type=9)
 when PeerState=0. The server then chooses the EAP-NOOB exchange,
 i.e. the ensuing message sequence, as explained below. The peer
 recognizes the exchange based on the message type field (Type) of the
 next EAP-NOOB request received from the server.

 The server determines the exchange type based on the combination of
 the peer and server states as follows (also summarized in Figure 11).
 If one of the peer and server is in the Unregistered (0) state and
 the other is in one of the ephemeral states (0..2), the server
 chooses the Initial Exchange. If one of the peer or server is in the
 OOB Received (2) state and the other is either in the Waiting for OOB
 (1) or OOB Received (2) state, the OOB Step has taken place and the
 server chooses the Completion Exchange. If both the server and peer
 are in the Waiting for OOB (1) state, the server chooses the Waiting
 Exchange. If the peer is in the Reconnecting (3) state and the
 server is in the Registered (4) or Reconnecting (3) state, the server
 chooses the Reconnect Exchange. All other state combinations are
 error situations where user action is required, and the server
 indicates such errors to the peer with the error code 2002 (see
 Section 3.6.3). Note also that the peer MUST NOT initiate EAP-NOOB
 when the peer is in Registered (4) state.

EAP Peer EAP Server
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/Identity ‑| |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/Identity ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (NAI=noob@eap‑noob.net) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=9) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=9,[PeerId],PeerState=1) |
 | |
 | continuing with exchange‑specific messages... |

 Figure 2: Common handshake in all EAP-NOOB exchanges

3.2.2. Initial Exchange

 The Initial Exchange comprises the common handshake and two further
 EAP-NOOB request-response pairs, one for version, cryptosuite and
 parameter negotiation and the other for the ECDHE key exchange. The
 first EAP-NOOB request (Type=1) from the server contains a newly
 allocated PeerId for the peer and an optional Realm. The server
 allocates a new PeerId in the Initial Exchange regardless of any old
 PeerId in the username part of the received NAI. The server also
 sends in the request a list of the protocol versions (Vers) and
 cryptosuites (Cryptosuites) it supports, an indicator of the OOB
 channel directions it supports (Dirs), and a ServerInfo object. The
 peer chooses one of the versions and cryptosuites. The peer sends a
 response (Type=1) with the selected protocol version (Verp), the
 received PeerId, the selected cryptosuite (Cryptosuitep), an
 indicator of the OOB channel directions selected by the peer (Dirp),
 and a PeerInfo object. In the second EAP-NOOB request and response
 (Type=2), the server and peer exchange the public components of their
 ECDHE keys and nonces (PKs,Ns,PKp,Np). The ECDHE keys MUST be based
 on the negotiated cryptosuite i.e. Cryptosuitep. The Initial
 Exchange always ends with EAP-Failure from the server because the
 authentication cannot yet be completed.

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=1,Vers,PeerId,[Realm], |
 | Cryptosuites,Dirs,ServerInfo) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=1,Verp,PeerId,Cryptosuitep, |
 | Dirp,PeerInfo) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=2,PeerId,PKs,Ns,[SleepTime]) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=2,PeerId,PKp,Np) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Failure ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 3: Initial Exchange

 At the conclusion of the Initial Exchange, both the server and the
 peer move to the Waiting for OOB (1) state.

3.2.3. OOB Step

 The OOB Step, labeled as OOB Output and OOB Input in Figure 1, takes
 place after the Initial Exchange. Depending on the negotiated OOB
 channel direction, the peer or the server outputs the OOB message
 shown in Figure 4 or Figure 5, respectively. The data fields are the
 PeerId, the secret nonce Noob, and the cryptographic fingerprint
 Hoob. The contents of the data fields are defined in Section 3.3.2.
 The OOB message is delivered to the other endpoint via a user-
 assisted OOB channel.

 For brevity, we will use the terms OOB sender and OOB receiver in
 addition to the already familiar EAP server and EAP peer. If the OOB
 message is sent in in the server-to-peer direction, the OOB sender is
 the server and the OOB receiver is the peer. On the other hand, if
 the OOB message is sent in the peer-to-server direction, the OOB
 sender is the peer and the OOB receiver is the server.

EAP Peer EAP Server
 | |
 |=================OOB=============================>|
 | (PeerId,Noob,Hoob) |
 | |

 Figure 4: OOB Step, from peer to EAP server

EAP Peer EAP Server
 | |
 |<================OOB==============================|
 | (PeerId,Noob,Hoob) |
 | |

 Figure 5: OOB Step, from EAP server to peer

 The OOB receiver MUST compare the received value of the fingerprint
 Hoob with a value that it computes locally. If the values are equal,
 the receiver moves to the OOB Received (2) state. Otherwise, the
 receiver MUST reject the OOB message. For usability reasons, the OOB
 receiver SHOULD indicate the acceptance or rejection of the OOB
 message to the user. The receiver SHOULD reject invalid OOB messages
 without changing its state, until an application-specific number of
 invalid messages (OobRetries) has been reached, after which the
 receiver SHOULD consider it an error and go back to the Unregistered
 (0) state.

 The server or peer MAY send multiple OOB messages with different Noob
 values while in the Waiting for OOB (1) state. The OOB sender SHOULD
 remember the Noob values until they expire and accept any one of them
 in the following Completion Exchange. The Noob values sent by the
 server expire after an application-dependent timeout (NoobTimeout),
 and the server MUST NOT accept Noob values older than that in the
 Completion Exchange. The RECOMMENDED value for NoobTimeout is 3600
 seconds if there are no application-specific reasons for making it
 shorter or longer. The Noob values sent by the peer expire as
 defined in Section 3.2.5.

 The OOB receiver does not accept further OOB messages after it has
 accepted one and moved to the OOB Received (2) state. However, the
 receiver MAY buffer redundant OOB messages in case OOB message expiry
 or similar error detected in the Completion Exchange causes it to
 return to the Waiting for OOB (1) state. It is RECOMMENED that the
 OOB receiver notifies the user about redundant OOB messages, but it
 MAY also discard them silently.

 The sender will typically generate a new Noob, and therefore a new
 OOB message, at constant time intervals (NoobInterval). The
 RECOMMENDED interval is NoobInterval = NoobTimeout / 2, so that the
 two latest values are always accepted. However, the timing of the
 Noob generation may also be based on user interaction or on
 implementation considerations.

 Even though not recommended (see Section 3.3), this specification
 allows both directions to be negotiated (Dirp=3) for the OOB channel.
 In that case, both sides SHOULD output the OOB message, and it is up
 to the user to deliver one of them.

 The details of the OOB channel implementation including the message
 encoding are defined by the application. Appendix E gives an example
 of how the OOB message can be encoded as a URL that may be embedded
 in a QR code and NFC tag.

3.2.4. Completion Exchange

 After the Initial Exchange, if both the server and the peer support
 the peer-to-server direction for the OOB channel, the peer SHOULD
 initiate the EAP-NOOB method again after an applications-specific
 waiting time in order to probe for completion of the OOB Step. Also,
 if both sides support the server-to-peer direction of the OOB
 exchange and the peer receives the OOB message, it SHOULD initiate
 the EAP-NOOB method immediately. Depending on the combination of the
 peer and server states, the server continues with with the Completion
 Exchange or Waiting Exchange (see Section 3.2.1 on how the server
 makes this decision).

 The Completion Exchange comprises the common handshake and one or two
 further EAP-NOOB request-response pairs. If the peer is in the
 Waiting for OOB (1) state, the OOB message has been sent in the peer-
 to-server direction. In that case, only one request-response pair
 (Type=4) takes place. In the request, the server sends the NoobId
 value, which the peer uses to identify the exact OOB message received
 by the server. On the other hand, if the peer is in the OOB Received
 (2) state, the direction of the OOB message is from server to peer.
 In that case, two request-response pairs (Type=8 and Type=4) are
 needed. The purpose of the first request-response pair (Type=8) is
 that it enables the server to discover NoobId, which identifies the
 exact OOB message received by the peer. The server returns the same
 NoobId to the peer in the latter request.

 In the last and sometimes only request-response pair (Type=4) of the
 Completion Exchange, the server and peer exchange message
 authentication codes. Both sides MUST compute the keys Kms and Kmp
 as defined in Section 3.5 and the message authentication codes MACs
 and MACp as defined in Section 3.3.2. Both sides MUST compare the
 received message authentication code with a locally computed value.
 If the peer finds that it has received the correct value of MACs and
 the server finds that it has received the correct value of MACp, the
 Completion Exchange ends in EAP-Success. Otherwise, the endpoint
 where the comparison fails indicates this with an error message
 (error code 4001, see Section 3.6.1) and the Completion Exchange ends
 in EAP-Failure.

 After successful Completion Exchange, both the server and the peer
 move to the Registered (4) state. They also derive the output keying
 material and store the persistent EAP-NOOB association state as
 defined in Section 3.4 and Section 3.5.

 It is possible that the OOB message expires before it is received.
 In that case, the sender of the OOB message no longer recognizes the
 NoobId that it receives in the Completion Exchange. Another reason
 why the OOB sender might not recognize the NoobId is if the received
 OOB message was spoofed and contained an attacker-generated Noob
 value. The recipient of an unrecognized NoobId indicates this with
 an error message (error code 2003, see Section 3.6.1) and the
 Completion Exchange ends in EAP-Failure. The recipient of the error
 message 2003 moves back to the Waiting for OOB (1) state. This state
 transition is shown as OOB Reject in Figure 1 (even though it really
 is a specific type of failed Completion Exchange). The sender of the
 error message, on the other hand, stays in its previous state.

 Although it is not expected to occur in practice, poor user interface
 design could lead to two OOB messages delivered simultaneously, one
 from the peer to the server and the other from the server to the
 peer. The server detects this event in the beginning of the
 Completion Exchange by observing that both the server and peer are in
 the OOB Received state (2). In that case, as a tiebreaker, the
 server MUST behave as if only the server-to-peer message had been
 delivered.

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ [EAP‑Request/EAP‑NOOB] ‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=8,PeerId) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ [EAP‑Response/EAP‑NOOB] ‑‑‑‑‑‑‑‑‑‑>|
 | (Type=8,PeerId,NoobId) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=4,PeerId,NoobId,MACs) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=4,PeerId,MACp) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Success ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 6: Completion Exchange

3.2.5. Waiting Exchange

 As explained in Section 3.2.4, the peer SHOULD probe the server for
 completion of the OOB Step. When the combination of the peer and
 server states indicates that the OOB message has not yet been
 delivered, the server chooses the Waiting Exchange (see Section 3.2.1
 on how the server makes this decision). The Waiting Exchange
 comprises the common handshake and one further request-response pair,
 and it ends always in EAP-Failure.

 In order to limit the rate at which peers probe the server, the
 server MAY send to the peer either in the Initial Exchange or in the
 Waiting Exchange a minimum time to wait before probing the server
 again. A peer that has not received an OOB message MUST wait at
 least the server-specified minimum waiting time in seconds
 (SleepTime) before initiating EAP again with the same server. The
 peer uses the latest SleepTime value that it has received in or after
 the Initial Exchange. If the server has not sent any SleepTime
 value, the peer SHOULD wait for an application-specified minimum time
 (SleepTimeDefault).

 After the Waiting Exchange, the peer MUST discard (from its local
 ephemeral storage) Noob values that it has sent to the server in OOB
 messages that are older than the application-defined timeout
 NoobTimeout (see Section 3.2.3). The peer SHOULD discard such
 expired Noob values even if the probing failed, e.g. because of
 failure to connect to the EAP server or incorrect HMAC. The timeout
 of peer-generated Noob values is defined like this in order to allow
 the peer to probe the server once after it has waited for the server-
 specified SleepTime.

 If the server and peer have negotiated to use only the server-to-peer
 direction for the OOB channel (Dirp=2), the peer SHOULD nevertheless
 probe the server. The purpose of this is to keep the server informed
 about the peers that are still waiting for OOB messages. The server
 MAY set SleepTime to a high number (3600) to prevent the peer from
 probing the server frequently.

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=3,PeerId,[SleepTime]) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=3,PeerId) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Failure ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 7: Waiting Exchange

3.3. Protocol data fields

 This section defines the various identifiers and data fields used in
 the EAP-NOOB protocol.

3.3.1. Peer identifier, realm and NAI

 The server allocates a new peer identifier (PeerId) for the peer in
 the Initial Exchange. The peer identifier MUST follow the syntax of
 the utf8-username specified in [RFC7542]. The server MUST generate
 the identifiers in such a way that they do not repeat and cannot be
 guessed by the peer or third parties before the server sends them to
 the peer in the Initial Exchange. One way to generate the
 identifiers is to choose a random 16-byte identifier and to base64url
 encode it without padding [RFC4648] into a 22-character string.
 Another way to generate the identifiers is to choose a random
 22-character alphanumeric string. It is RECOMMENDED to not use
 identifiers longer than this because they result in longer OOB
 messages.

 The peer uses the allocated PeerId to identify itself to the server
 in the subsequent exchanges. It sets the PeerId value in response
 type 9 as follows. When the peer is in the Unregistered (0) state,
 it SHOULD omit the PeerId from response type 9. When the peer is in
 one of the states 1..2, it MUST use the PeerId that the server
 assigned to it in the latest Initial Exchange. When the peer is in
 one of the persistent states 3..4, it MUST use the PeerId from its
 persistent EAP-NOOB association. (The PeerId is written to the
 association when the peer moves to the Registered (4) state after a
 Completion Exchange.)

 The default realm for the peer is "eap-noob.net". However, the user
 or application MAY provide a different default realm to the peer.
 Furthermore, the server MAY assign a new realm to the peer in the
 Initial Exchange or Reconnect Exchange, in the Realm field of
 response types 1 and 5. The Realm value MUST follow the syntax of
 the utf8-realm specified in [RFC7542]. When the peer is in the
 Unregistered (0) state, or when the peer is in one of the states 1..2
 and the server did not send a Realm in the latest Initial Exchange,
 the peer MUST use the default realm. When the peer is in one of the
 states 1..2 and the server sent a Realm in the latest Initial
 Exchange, the peer MUST use that realm. Finally, when the peer is in
 one of the persistent states 3..4, it MUST use the Realm from its
 persistent EAP-NOOB association. (The Realm is written to the
 association when the peer moves to the Registered (4) state after a
 Completion Exchange or Reconnect Exchange.)

 To compose its NAI [RFC7542], the peer concatenates the string
 "noob@" and the server-assigned realm. When no server-assigned realm
 is available, the default value is used instead.

 The purpose of the server-assigned realm is to enable more flexible
 routing of the EAP sessions over the AAA infrastructure, including
 roaming scenarios (see Appendix D). Moreover, some Authenticators or
 AAA servers use the assigned Realm to determine peer-specific
 connection parameters, such as isolating the peer to a specific VLAN.
 The possibility to configure a different default realm enables
 registration of new devices while roaming. It also enables
 manufacturers to set up their own AAA servers for bootstrapping of
 new peer devices.

 The peer's PeerId and Realm are ephemeral until a successful
 Completion Exchange takes place. Thereafter, the values become parts
 of the persistent EAP-NOOB association, until the user resets the
 peer and the server or until a new Realm is assigned in the Reconnect
 Exchange.

3.3.2. Message data fields

 Table 1 defines the data fields in the protocol messages. The in-
 band messages are formatted as JSON objects [RFC8259] in UTF-8
 encoding. The JSON member names are in the left-hand column of the
 table.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Data field | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
Vers, Verp	EAP‑NOOB protocol versions supported by the
	EAP server, and the protocol version chosen by
	the peer. Vers is a JSON array of unsigned
	integers, and Verp is an unsigned integer.
	Example values are "[1]" and "1",
	respectively.
PeerId	Peer identifier as defined in Section 3.3.1.
Realm	Peer realm as defined in Section 3.3.1.
PeerState	Peer state is an integer in the range 0..4
	(see Figure 1). However, only values 0..3 are
	ever sent in the protocol messages.
Type	EAP‑NOOB message type. The type is an integer
	in the range 0..9. EAP‑NOOB requests and the
	corresponding responses share the same type
	value.
PKs, PKp	The public components of the ECDHE keys of the
	server and peer. PKs and PKp are sent in the
	JSON Web Key (JWK) format [RFC7517]. Detailed
	format of the JWK object is defined by the
	cryptosuite.
Cryptosuites,	The identifiers of cryptosuites supported by
Cryptosuitep	the server and of the cryptosuite selected by
	the peer. The server‑supported cryptosuites in
	Cryptosuites are formatted as a JSON array of
	the identifier integers. The server MUST send
	a nonempty array with no repeating elements,
	ordered by decreasing priority. The peer MUST
	respond with exactly one suite in the

	Cryptosuitep value, formatted as an identifier
	integer. The registration of cryptosuites is
	specified in Section 4.1. Example values are
	"[1]" and "1", respectively.
Dirs, Dirp	The OOB channel directions supported by the
	server and the directions selected by the
	peer. The possible values are 1=peer‑to‑
	server, 2=server‑to‑peer, 3=both directions.
Dir	The actual direction of the OOB message (1
	=peer‑to‑server, 2=server‑to‑peer). This value
	is not sent over any communication channel but
	it is included in the computation of the
	cryptographic fingerprint Hoob.
Ns, Np	32‑byte nonces for the Initial Exchange.
ServerInfo	This field contains information about the
	server to be passed from the EAP method to the
	application layer in the peer. The information
	is specific to the application or to the OOB
	channel and it is encoded as a JSON object of
	at most 500 bytes. It could include, for
	example, the access‑network name and server
	name or a Uniform Resource Locator (URL)
	[RFC4266] or some other information that helps
	the user to deliver the OOB message to the
	server through the out‑of‑band channel.
PeerInfo	This field contains information about the peer
	to be passed from the EAP method to the
	application layer in the server. The
	information is specific to the application or
	to the OOB channel and it is encoded as a JSON
	object of at most 500 bytes. It could include,
	for example, the peer brand, model and serial
	number, which help the user to distinguish
	between devices and to deliver the OOB message
	to the correct peer through the out‑of‑band
	channel.
SleepTime	The number of seconds for which peer MUST NOT
	start a new execution of the EAP‑NOOB method
	with the authenticator, unless the peer
	receives the OOB message or the peer is reset
	by the user. The server can use this field to
	limit the rate at which peers probe it.

	SleepTime is an unsigned integer in the range
	0..3600.
Noob	16‑byte secret nonce sent through the OOB
	channel and used for the session key
	derivation. The endpoint that received the OOB
	message uses this secret in the Completion
	Exchange to authenticate the exchanged key to
	the endpoint that sent the OOB message.
Hoob	16‑byte cryptographic fingerprint (i.e. hash
	value) computed from all the parameters
	exchanged in the Initial Exchange and in the
	OOB message. Receiving this fingerprint over
	the OOB channel guarantees the integrity of
	the key exchange and parameter negotiation.
	Hence, it authenticates the exchanged key to
	the endpoint that receives the OOB message.
NoobId	16‑byte identifier for the OOB message,
	computed with a one‑way function from the
	nonce Noob in the message.
MACs, MACp	Message authentication codes (HMAC) for mutual
	authentication, key confirmation, and
	integrity check on the exchanged information.
	The input to the HMAC is defined below, and
	the key for the HMAC is defined in Section
	3.5.
Ns2, Np2	32‑byte Nonces for the Reconnect Exchange.
KeyingMode	Integer indicating the key derivation method.
	0 in the Completion Exchange, and 1..3 in the
	Reconnect Exchange.
PKs2, PKp2	The public components of the ECDHE keys of the
	server and peer for the Reconnect Exchange.
	PKp2 and PKs2 are sent in the JSON Web Key
	(JWK) format [RFC7517]. Detailed format of the
	JWK object is defined by the cryptosuite.
MACs2, MACp2	Message authentication codes (HMAC) for mutual
	authentication, key confirmation, and
	integrity check on the Reconnect Exchange. The
	input to the HMAC is defined below, and the
	key for the HMAC is defined in Section 3.5.

ErrorCode	Integer indicating an error condition. Defined
	in Section 4.3.
ErrorInfo	Textual error message for logging and
	debugging purposes. UTF‑8 string of at most
	500 bytes.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 1: Message data fields

 It is RECOMMENDED for servers to support both OOB channel directions
 (Dirs=3), unless the type of the OOB channel limits them to one
 direction (Dirs=1 or Dirs=2). On the other hand, it is RECOMMENDED
 that the peer selects only one direction (Dirp=1 or Dirp=2) even when
 both directions (Dirp=3) would be technically possible. The reason
 is that, if value 3 is negotiated, the user may be presented with two
 OOB messages, one for each direction, even though only one of them
 needs to be delivered. This can be confusing to the user.
 Nevertheless, the EAP-NOOB protocol is designed to cope also with
 selected value 3, in which case it uses the first delivered OOB
 message. In the unlikely case of simultaneously delivered OOB
 messages, the protocol prioritizes the server-to-peer direction.

 The nonces in the in-band messages (Ns, Np, Ns2, Np2) are 32-byte
 fresh random byte strings, and the secret nonce Noob is a 16-byte
 fresh random byte string. All the nonces are generated by the
 endpoint that sends the message.

 The fingerprint Hoob and the identifier NoobId are computed with the
 cryptographic hash function specified in the negotiated cryptosuite
 and truncated to the 16 leftmost bytes of the output. The message
 authentication codes (MACs, MACp, MACs2, MACp2) are computed with the
 HMAC function [RFC2104] based on the same cryptographic hash function
 and truncated to the 32 leftmost bytes of the output.

 The inputs to the hash function for computing the fingerprint Hoob
 and to the HMAC for computing MACs, MACp, MACs2 and MACp2 are JSON
 arrays containing a fixed number (17) of elements. The array
 elements MUST be copied to the array verbatim from the sent and
 received in-band messages. When the element is a JSON object, its
 members MUST NOT be reordered or re-encoded. Whitespace MUST NOT be
 added anywhere in the JSON structure. Implementers should check that
 their JSON library copies the elements as UTF-8 strings and does not
 modify then in any way, and that it does not add whitespace to the
 HMAC input.

 The inputs for computing the fingerprint and message authentication
 codes are the following:

 Hoob = H(Dir,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,Cryptos
 uitep,Dirp,[Realm],PeerInfo,0,PKs,Ns,PKp,Np,Noob).

 NoobId = H("NoobId",Noob).

 MACs = HMAC(Kms; 2,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,C
 ryptosuitep,Dirp,[Realm],PeerInfo,0,PKs,Ns,PKp,Np,Noob).

 MACp = HMAC(Kmp; 1,Vers,Verp,PeerId,Cryptosuites,Dirs,ServerInfo,C
 ryptosuitep,Dirp,[Realm],PeerInfo,0,PKs,Ns,PKp,Np,Noob).

 MACs2 = HMAC(Kms2; 2,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo]
 ,Cryptosuitep,"",[Realm],[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],N
 p2,"")

 MACp2 = HMAC(Kmp2; 1,Vers,Verp,PeerId,Cryptosuites,"",[ServerInfo]
 ,Cryptosuitep,"",[Realm],[PeerInfo],KeyingMode,[PKs2],Ns2,[PKp2],N
 p2,"")

 Missing input values are represented by empty strings "" in the
 array. The values indicated with "" above are always empty strings.
 Realm is included in the computation of MACs and MACp if it was sent
 or received in the preceding Initial Exchange. Each of the values in
 brackets for the computation of Macs2 and Macp2 MUST be included if
 it was sent or received in the same Reconnect Exchange; otherwise the
 value is replaced by an empty string "".

 The parameter Dir indicates the direction in which the OOB message
 containing the Noob value is being sent (1=peer-to-server, 2=server-
 to-peer). This field is included in the Hoob input to prevent the
 user from accidentally delivering the OOB message back to its
 originator in the rare cases where both OOB directions have been
 negotiated. The keys (Kms, Kmp, Kms2, Kmp2) for the HMACs are
 defined in Section 3.5.

 The nonces (Ns, Np, Ns2, Np2, Noob) and the hash value (NoobId) MUST
 be base64url encoded [RFC4648] when they are used as input to the
 cryptograhic functions H or HMAC. These values and the message
 authentication codes (MACs, MACp, MACs2, MACp2) MUST also be
 base64url encoded when they are sent in the in-band messages. The
 values Noob and Hoob in the OOB channel MAY be base64url encoded if
 that is appropriate for the application and the OOB channel. All
 base64url encoding is done without padding. The base64url encoded
 values will naturally consume more space than the number of bytes
 specified above (22-character string for a 16-byte nonce and
 43-character string for a 32-byte nonce or message authentication
 code). In the key derivation in Section 3.5, on the other hand, the
 unencoded nonces (raw bytes) are used as input to the key derivation
 function.

 The ServerInfo and PeerInfo are JSON objects with UTF-8 encoding.
 The length of either encoded object as a byte array MUST NOT exceed
 500 bytes. The format and semantics of these objects MUST be defined
 by the application that uses the EAP-NOOB method.

3.4. Fast reconnect and rekeying

 EAP-NOOB implements Fast Reconnect ([RFC3748], section 7.2.1) that
 avoids repeated use of the user-assisted OOB channel.

 The rekeying and the Reconnect Exchange may be needed for several
 reasons. New EAP output values MSK and EMSK may be needed because of
 mobility or timeout of session keys. Software or hardware failure or
 user action may also cause the authenticator, EAP server or peer to
 lose its non-persistent state data. The failure would typically be
 detected by the peer or authenticator when session keys no longer are
 accepted by the other endpoint. Change in the supported cryptosuites
 in the EAP server or peer may also cause the need for a new key
 exchange. When the EAP server or peer detects any one of these
 events, it MUST change from the Registered to Reconnecting state.
 These state transitions are labeled Mobility/Timeout/Failure in
 Figure 1. The EAP-NOOB method will then perform the Reconnect
 Exchange next time when EAP is triggered.

3.4.1. Persistent EAP-NOOB association

 To enable rekeying, the EAP server and peer store the session state
 in persistent memory after a successful Completion Exchange. This
 state data, called "persistent EAP-NOOB association", MUST include at
 least the data fields shown in Table 2. They are used for
 identifying and authenticating the peer in the Reconnect Exchange.
 When a persistent EAP-NOOB association exists, the EAP server and
 peer are in the Registered state (4) or Reconnecting state (3), as
 shown in Figure 1.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Data field | Value | Type |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
PeerId	Peer identifier allocated by	UTF‑8 string
	server	(typically 22
		bytes)
Verp	Negotiated protocol version	integer
Cryptosuitep	Negotiated cryptosuite	integer
CryptosuitepPrev	Previous cryptosuite	integer
(at peer only)		
Realm	Optional realm assigned by	UTF‑8 string
	server (default value is	
	"eap‑noob.net")	
Kz	Persistent key material	32 bytes
KzPrev (at	Previous Kz value	32 bytes
peer only)		
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2: Persistent EAP-NOOB association

3.4.2. Reconnect Exchange

 The server chooses the Reconnect Exchange when both the peer and the
 server are in a persistent state and fast reconnection is needed (see
 Section 3.2.1 for details).

 The Reconnect Exchange comprises the common handshake and three
 further EAP-NOOB request-response pairs, one for cryptosuite and
 parameter negotiation, another for the nonce and ECDHE key exchange,
 and the last one for exchanging message authentication codes. In the
 first request and response (Type=5) the server and peer negotiate a
 protocol version and cryptosuite in the same way as in the Initial
 Exchange. The server SHOULD NOT offer and the peer MUST NOT accept
 protocol versions or cryptosuites that it knows to be weaker than the
 one currently in the Cryptosuitep field of the persistent EAP-NOOB
 association. The server SHOULD NOT needlessly change the
 cryptosuites it offers to the same peer because peer devices may have
 limited ability to update their persistent storage. However, if the
 peer has different values in the Cryptosuitep and CryptosuitepPrev
 fields, it SHOULD also accept offers that are not weaker than
 CryptosuitepPrev. Note that Cryptosuitep and CryptosuitePrev from
 the persistent EAP-NOOB association are only used to support the
 negotiation as described above; all actual cryptographic operations
 use the negotiated cryptosuite. The request and response (Type=5)
 MAY additionally contain PeerInfo and ServerInfo objects.

 The server then determines the KeyingMode (defined in Section 3.5)
 based on changes in the negotiated cryptosuite and whether it desires
 to achieve forward secrecy or not. The server SHOULD only select
 KeyingMode 3 when the negotiated cryptosuite differs from the
 Cryptosuitep in the server's persistent EAP-NOOB association,
 although it is technically possible to select this values without
 changing the cryptosuite. In the second request and response
 (Type=6), the server informs the peer about the KeyingMode, and the
 server and peer exchange nonces (Ns2, Np2). When KeyingMode is 2 or
 3 (rekeying with ECDHE), they also exchange public components of
 ECDHE keys (PKs2, PKp2). The server ECDHE key MUST be fresh, i.e.
 not previously used with the same peer, and the peer ECDHE key SHOULD
 be fresh, i.e. not previously used.

 In the third and final request and response (Type=7), the server and
 peer exchange message authentication codes. Both sides MUST compute
 the keys Kms2 and Kmp2 as defined in Section 3.5 and the message
 authentication codes MACs2 and MACp2 as defined in Section 3.3.2.
 Both sides MUST compare the received message authentication code with
 a locally computed value.

 The rules by which the peer compares the received MACs2 are non-
 trivial because, in addition to authenticating the current exchange,
 MACs2 may confirm the success or failure of a recent cryptosuite
 upgrade. The peer processes the final request (Type=7) as follows:

 1. The peer first compares the received MACs2 value with one it
 computed using the Kz stored in the persistent EAP-NOOB
 association. If the received and computed values match, the peer
 deletes any data stored in the CryptosuitepPrev and KzPrev fields
 of the persistent EAP-NOOB association. It does this because the
 received MACs2 confirms that the peer and server share the same
 Cryptosuitep and Kz, and any previous values must no longer be
 accepted.

2. If, on the other hand, the peer finds that the received MACs2
 value does not match the one it computed locally with Kz, the
 peer checks whether the KzPrev field in the persistent EAP‑NOOB
 association stores a key. If it does, the peer repeats the key
 derivation (Section 3.5) and local MACs2 computation
 (Section 3.3.2) using KzPrev in place of Kz. If this second
 computed MACs2 matches the received value, the match indicates
 synchronization failure caused by the loss of the last response
 (Type=7) in a previously attempted cryptosuite upgrade. In this

 case, the peer rolls back that upgrade by overwriting
 Cryptosuitep with CryptosuitepPrev and Kz with KzPrev in the
 persistent EAP-NOOB association. It also clears the
 CryptosuitepPrev and KzPrev fields.

 3. If the received MACs2 matched one of the locally computed values,
 the peer proceeds to send the final response (Type=7). The peer
 also moves to the Registered (4) state. When KeyingMode is 1 or
 2, the peer stops here. When KeyingMode is 3, the peer also
 updates the persistent EAP-NOOB association with the negotiated
 Cryptosuitep and the newly-derived Kz value. To prepare for
 possible synchronization failure caused by the loss of the final
 response (Type=7) during cryptosuite upgrade, the peer copies the
 old Cryptosuitep and Kz values in the persistent EAP-NOOB
 association to the CryptosuitepPrev and KzPrev fields.

 4. Finally, if the peer finds that the received MACs2 does not match
 either of the two values that it computed locally (or one value
 if no KzPrev was stored), the peer sends an error message (error
 code 4001, see Section 3.6.1), which causes the the Reconnect
 Exchange to end in EAP-Failure.

 The server rules for processing the final message are simpler than
 the peer rules because the server does not store previous keys and it
 never rolls back a cryptosuite upgrade. Upon receiving the final
 response (Type=7), the server compares the received value of MACp2
 with one it computes locally. If the values match, the Reconnect
 Exchange ends in EAP-Success. When KeyingMode is 3, the server also
 updates Cryptosuitep and Kz in the persistent EAP-NOOB association.
 On the other hand, if the server finds that the values do not match,
 it sends an error message (error code 4001), and the Reconnect
 Exchange ends in EAP-Failure.

 The endpoints MAY send updated Realm, ServerInfo and PeerInfo objects
 in the Reconnect Exchange. When there is no update to the values,
 they SHOULD omit this information from the messages. If the Realm
 was sent, each side updates Realm in the persistent EAP-NOOB
 association when moving to the Registered (4) state.

EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=5,Vers,PeerId,Cryptosuites, |
 | [Realm],[ServerInfo]) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=5,Verp,PeerId,Cryptosuitep,[PeerInfo])|
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=6,PeerId,KeyingMode,[PKs2],Ns2) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=6,PeerId,[PKp2],Np2) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=7,PeerId,MACs2) |
 | |
 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=7,PeerId,MACp2) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Success ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 8: Reconnect Exchange

3.4.3. User reset

 As shown in the association state machine in Figure 1, the only
 specified way for the association to return from the Registered state
 (4) to the Unregistered state (0) is through user-initiated reset.
 After the reset, a new OOB message will be needed to establish a new
 association between the EAP server and peer. Typical situations in
 which the user reset is required are when the other side has
 accidentally lost the persistent EAP-NOOB association data, or when
 the peer device is decommissioned.

 The server could detect that the peer is in the Registered or
 Reconnecting state but the server itself is in one of the ephemeral
 states 0..2 (including situations where the server does not recognize
 the PeerId). In this case, effort should be made to recover the
 persistent server state, for example, from a backup storage -
 especially if many peer devices are similarly affected. If that is
 not possible, the EAP server SHOULD log the error or notify an
 administrator. The only way to continue from such a situation is by
 having the user reset the peer device.

 On the other hand, if the peer is in any of the ephemeral states
 0..2, including the Unregistered state, the server will treat the
 peer as a new peer device and allocate a new PeerId to it. The
 PeerInfo can be used by the user as a clue to which physical device
 has lost its state. However, there is no secure way of matching the
 "new" peer with the old PeerId without repeating the OOB Step. This
 situation will be resolved when the user performs the OOB Step and,
 thus, identifies the physical peer device. The server user interface
 MAY support situations where the "new" peer is actually a previously
 registered peer that has been reset by a user or otherwise lost its
 persistent data. In those cases, the user could choose to merge new
 peer identity with the old one in the server. The alternative is to
 treat the device just like a new peer.

3.5. Key derivation

 EAP-NOOB derives the EAP output values MSK and EMSK and other secret
 keying material from the output of an Ephemeral Elliptic Curve
 Diffie-Hellman (ECDHE) algorithm following the NIST specification
 [NIST-DH]. In NIST terminology, we use a C(2, 0, ECC CDH) scheme,
 i.e. two ephemeral keys and no static keys. In the Initial and
 Reconnect Exchanges, the server and peer compute the ECDHE shared
 secret Z as defined in section 6.1.2.2 of the NIST specification
 [NIST-DH]. In the Completion and Reconnect Exchanges, the server and
 peer compute the secret keying material from Z with the single-step
 key derivation function (KDF) defined in section 5.8.1 of the NIST
 specification. The hash function H for KDF is taken from the
 negotiated cryptosuite.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| KeyingMode | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
0	Completion Exchange (always with ECDHE)
1	Reconnect Exchange, rekeying without ECDHE
2	Reconnect Exchange, rekeying with ECHDE, no change
	in cryptosuite
3	Reconnect Exchange, rekeying with ECDHE, new
	cryptosuite negotiated
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 3: Keying modes

 The key derivation has three different modes (KeyingMode), which are
 specified in Table 3. Table 4 defines the inputs to KDF in each
 KeyingMode.

 In the Completion Exchange (KeyingMode=0), the input Z comes from the
 preceding Initial exchange. KDF takes some additional inputs
 (OtherInfo), for which we use the concatenation format defined in
 section 5.8.1.2.1 of the NIST specification [NIST-DH]. OtherInfo
 consists of the AlgorithmId, PartyUInfo, PartyVInfo, and SuppPrivInfo
 fields. The first three fields are fixed-length bit strings, and
 SuppPrivInfo is a variable-length string with a one-byte Datalength
 counter. AlgorithmId is the fixed-length 8-byte ASCII string "EAP-
 NOOB". The other input values are the server and peer nonces. In
 the Completion Exchange, the inputs also include the secret nonce
 Noob from the OOB message.

 In the simplest form of the Reconnect Exchange (KeyingMode=1), fresh
 nonces are exchanged but no ECDHE keys are sent. In this case, input
 Z to the KDF is replaced with the shared key Kz from the persistent
 EAP-NOOB association. The result is rekeying without the
 computational cost of the ECDHE exchange, but also without forward
 secrecy.

 When forward secrecy is desired in the Reconnect Exchange
 (KeyingMode=2 or KeyingMode=3), both nonces and ECDHE keys are
 exchanged. Input Z is the fresh shared secret from the ECDHE
 exchange with PKs2 and PKp2. The inputs also include the shared
 secret Kz from the persistent EAP-NOOB association. This binds the
 rekeying output to the previously authenticated keys.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| KeyingMode | KDF input | Value | Length |
| | field | | (bytes) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
0	Z	ECDHE shared secret	variable
Completion		from PKs and PKp	
	AlgorithmId	"EAP‑NOOB"	8
	PartyUInfo	Np	32
	PartyVInfo	Ns	32
	SuppPubInfo	(not allowed)	
	SuppPrivInfo	Noob	16
1	Z	Kz	32
Reconnect,	AlgorithmId	"EAP‑NOOB"	8
rekeying	PartyUInfo	Np2	32
without	PartyVInfo	Ns2	32
ECDHE	SuppPubInfo	(not allowed)	
	SuppPrivInfo	(null)	0
2 or 3	Z	ECDHE shared secret	variable
Reconnect,		from PKs2 and PKp2	
rekeying,	AlgorithmId	"EAP‑NOOB"	8
with ECDHE,	PartyUInfo	Np2	32
same or new	PartyVInfo	Ns2	32
cryptosuite	SuppPubInfo	(not allowed)	
	SuppPrivInfo	Kz	32
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 4: Key derivation input

 Table 5 defines how the output bytes of KDF are used. In addition to
 the EAP output values MSK and EMSK, the server and peer derive
 another shared secret key AMSK, which MAY be used for application-
 layer security. Further output bytes are used internally by EAP-NOOB
 for the message authentication keys (Kms, Kmp, Kms2, Kmp2).

 The Completion Exchange (KeyingMode=0) produces the shared secret Kz,
 which the server and peer store in the persistent EAP-NOOB
 association. When a new cryptosuite is negotiated in the Reconnect
 Exchange (KeyingMode=3), it similarly produces a new Kz. In that
 case, the server and peer update both the cryptosuite and Kz in the
 persistent EAP-NOOB association. Additionally, the peer stores the
 previous Cryptosuitep and Kz values in the CryptosuitepPrev and
 KzPrev fields of the persistent EAP-NOOB association.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| KeyingMode | KDF output bytes | Used as | Length (bytes) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
0	0..63	MSK	64
Completion	64..127	EMSK	64
	128..191	AMSK	64
	192..223	MethodId	32
	224..255	Kms	32
	256..287	Kmp	32
	288..319	Kz	32
1 or 2	0..63	MSK	64
Reconnect,	64..127	EMSK	64
rekeying	128..191	AMSK	64
without ECDHE,	192..223	MethodId	32
or with ECDHE	224..255	Kms2	32
and unchanged	256..287	Kmp2	32
cryptosuite			
3 Reconnect,	0..63	MSK	64
rekeying	64..127	EMSK	64
with ECDHE,	128..191	AMSK	64
new cryptosuite	192..223	MethodId	32
	224..255	Kms2	32
	256..287	Kmp2	32
	288..319	Kz	32
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 5: Key derivation output

 Finally, every EAP method must export a Server-Id, Peer-Id and
 Session-Id [RFC5247]. In EAP-NOOB, the exported Peer-Id is the
 PeerId which the server has assigned to the peer. The exported
 Server-Id is a zero-length string (i.e. null string) because EAP-NOOB
 neither knows nor assigns any server identifier. The exported
 Session-Id is created by concatenating the Type-Code xxx (TBA) with
 the MethodId, which is obtained from the KDF output as shown in
 Table 5.

3.6. Error handling

 Various error conditions in EAP-NOOB are handled by sending an error
 notification message (Type=0) instead of the expected next EAP
 request or response message. Both the EAP server and the peer may
 send the error notification, as shown in Figure 9 and Figure 10.
 After sending or receiving an error notification, the server MUST
 send an EAP-Failure (as required by [RFC3748] section 4.2). The
 notification MAY contain an ErrorInfo field, which is a UTF-8 encoded
 text string with a maximum length of 500 bytes. It is used for
 sending descriptive information about the error for logging and
 debugging purposes.

EAP Peer EAP Server

 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Request/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Failure ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 9: Error notification from server to peer

EAP Peer EAP Server

 | |
 |‑‑‑‑‑‑‑‑‑‑‑‑ EAP‑Response/EAP‑NOOB ‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | (Type=0,[PeerId],ErrorCode,[ErrorInfo]) |
 | |
 | |
 |<‑‑‑‑‑‑‑‑‑‑‑ EAP‑Failure ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 10: Error notification from peer to server

 After the exchange fails due to an error notification, the server and
 peer set the association state as follows. In the Initial Exchange,
 both the sender and recipient of the error notification MUST set the
 association state to the Unregistered (0) state. In the Waiting and
 Completion Exchanges, each side MUST remain in its old state as if
 the failed exchange had not taken place, with the exception that the
 recipient of error code 2003 processes it as specified in
 Section 3.2.4. In the Reconnect Exchange, both sides MUST set the
 association state to the Reconnecting (3) state.

 Errors that occur in the OOB channel are not explicitly notified in-
 band.

3.6.1. Invalid messages

 If the NAI structure is invalid, the server SHOULD send the error
 code 1001 to the peer. The recipient of an EAP-NOOB request or
 response SHOULD send the following error codes back to the sender:
 1002 if it cannot parse the message as a JSON object or the top-level
 JSON object has missing or unrecognized members; 1003 if a data field
 has an invalid value, such as an integer out of range, and there is
 no more specific error code available; 1004 if the received message
 type was unexpected in the current state; 2004 if the PeerId has an
 unexpected value; 2003 if the NoobId is not recognized; and 1007 if
 the ECDHE key is invalid.

3.6.2. Unwanted peer

 The preferred way for the EAP server to rate limit EAP-NOOB
 connections from a peer is to use the SleepTime parameter in the
 Waiting Exchange. However, if the EAP server receives repeated EAP-
 NOOB connections from a peer which apparently should not connect to
 this server, the server MAY indicate that the connections are
 unwanted by sending the error code 2001. After receiving this error
 message, the peer MAY refrain from reconnecting to the same EAP
 server and, if possible, both the EAP server and peer SHOULD indicate
 this error condition to the user or server administrator. However,
 in order to avoid persistent denial of service, the peer is not
 required to stop entirely from reconnecting to the server.

3.6.3. State mismatch

 In the states indicated by "-" in Figure 11 in Appendix A, user
 action is required to reset the association state or to recover it,
 for example, from backup storage. In those cases, the server sends
 the error code 2002 to the peer. If possible, both the EAP server
 and peer SHOULD indicate this error condition to the user or server
 administrator.

3.6.4. Negotiation failure

 If there is no matching protocol version, the peer sends the error
 code 3001 to the server. If there is no matching cryptosuite, the
 peer sends the error code 3002 to the server. If there is no
 matching OOB direction, the peer sends the error code 3003 to the
 server.

 In practice, there is no way of recovering from these errors without
 software or hardware changes. If possible, both the EAP server and
 peer SHOULD indicate these error conditions to the user.

3.6.5. Cryptographic verification failure

 If the receiver of the OOB message detects an unrecognized PeerId or
 incorrect fingerprint (Hoob) in the OOB message, the receiver MUST
 remain in the Waiting for OOB state (1) as if no OOB message was
 received. The receiver SHOULD indicate the failure to accept the OOB
 message to the user. No in-band error message is sent.

 Note that if the OOB message was delivered from the server to the
 peer and the peer does not recognize the PeerId, the likely cause is
 that the user has unintentionally delivered the OOB message to the
 wrong peer device. If possible, the peer SHOULD indicate this to the
 user; however, the peer device may not have the capability for many
 different error indications to the user and it MAY use the same
 indication as in the case of an incorrect fingerprint.

 The rationale for the above is that the invalid OOB message could
 have been presented to the receiver by mistake or intentionally by a
 malicious party and, thus, it should be ignored in the hope that the
 honest user will soon deliver a correct OOB message.

 If the EAP server or peer detects an incorrect message authentication
 code (MACs, MACp, MACs2, MACp2), it sends the error code 4001 to the
 other side. As specified in the beginning of Section 3.6, the failed
 Completion Exchange will not result in server or peer state changes
 while error in the Reconnect Exchange will put both sides to the
 Reconnecting (3) state and thus lead to another reconnect attempt.

 The rationale for this is that the invalid cryptographic message may
 have been spoofed by a malicious party and, thus, it should be
 ignored. In particular, a spoofed message on the in-band channel
 should not force the honest user to perform the OOB Step again. In
 practice, however, the error may be caused by other failures, such as
 a software bug. For this reason, the EAP server MAY limit the rate
 of peer connections with SleepTime after the above error. Also,
 there SHOULD be a way for the user to reset the peer to the
 Unregistered state (0), so that the OOB Step can be repeated at the
 last resort.

3.6.6. Application-specific failure

 Applications MAY define new error messages for failures that are
 specific to the application or to one type of OOB channel. They MAY
 also use the generic application-specific error code 5001, or the
 error codes 5002 and 5004, which have been reserved for indicating
 invalid data in the ServerInfo and PeerInfo fields, respectively.
 Additionally, anticipating OOB channels that make use of a URL, the
 error code 5003 has been reserved for indicating invalid server URL.

4. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the EAP-
 NOOB protocol, in accordance with [RFC8126].

 The EAP Method Type number for EAP-NOOB needs to be assigned.

 This memo also requires IANA to create new registries as defined in
 the following subsections.

4.1. Cryptosuites

 Cryptosuites are identified by an integer. Each cryptosuite MUST
 specify an ECDHE curve for the key exchange, encoding of the ECDHE
 public key as a JWK object, and a cryptographic hash function for the
 fingerprint and HMAC computation and key derivation. The hash value
 output by the cryptographic hash function MUST be at least 32 bytes
 in length. The following suites are defined by EAP-NOOB:

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Cryptosuite | Algorithms |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
1	ECDHE curve Curve25519 [RFC7748], public‑key format
	[RFC7518] Section 6.2.1, hash function SHA‑256
	[RFC6234]
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Table 6: EAP-NOOB cryptosuites

 An example of Cryptosuite 1 public-key encoded as a JWK object is
 given below (line breaks are for readability only).

 "jwk":{"kty":"EC","crv":"Curve25519","x":"3p7bfXt9wbTTW2HC7OQ1Nz-
 DQ8hbeGdNrfx-FG-IK08"}

 Assignment of new values for new cryptosuites MUST be done through
 IANA with "Specification Required" and "IESG Approval" as defined in
 [RFC8126].

4.2. Message Types

 EAP-NOOB request and response pairs are identified by an integer
 Message Type. The following Message Types are defined by EAP-NOOB:

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Message | Used in | Purpose |
| Type | Exchange | |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
1	Initial	Version, cryptosuite and parameter
		negotiation
2	Initial	Exchange of ECDHE keys and nonces
3	Waiting	Indication to peer that the server has
		not yet received an OOB message
4	Completion	Authentication and key confirmation with
		HMAC
5	Reconnect	Version, cryptosuite, and parameter
		negotiation
6	Reconnect	Exchange of ECDHE keys and nonces
7	Reconnect	Authentication and key confirmation with
		HMAC
8	Completion	NoobId discovery
9	All	PeerId and PeerState discovery
	exchanges	
0	Error	Error notification
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Table 7: EAP-NOOB

 Assignment of new values for new Message Types MUST be done through
 IANA with "Expert Review" as defined in [RFC8126].

4.3. Error codes

 The error codes defined by EAP-NOOB are listed in Table 8.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Error code | Purpose |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
1001	Invalid NAI
1002	Invalid message structure
1003	Invalid data
1004	Unexpected message type
1007	Invalid ECDHE key
2001	Unwanted peer
2002	State mismatch, user action required
2003	Unrecognized OOB message identifier
2004	Unexpected peer identifier
3001	No mutually supported protocol version
3002	No mutually supported cryptosuite
3003	No mutually supported OOB direction
4001	HMAC verification failure
5001	Application‑specific error
5002	Invalid server info
5003	Invalid server URL
5004	Invalid peer info
6001‑6999	Private and experimental use
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 8: EAP-NOOB error codes

 Assignment of new error codes MUST be done through IANA with
 "Specification Required" and "IESG Approval" as defined in [RFC8126],
 with the exception of the range 6001-6999, which is reserved for
 "Private Use" and "Experimental Use".

4.4. Domain name reservation considerations

 "eap-noob.net" should be registered as a special-use domain. The
 considerations required by [RFC6761] for registering this special-use
 domain name are the following:

 o Users: Non-admin users are not expected to encounter this name or
 recognize it as special. AAA administrators may need to recognize
 the name.

 o Application Software: Application software is not expected to
 recognize this domain name as special.

 o Name Resolution APIs and Libraries: Name resolution APIs and
 libraries are not expected to recognize this domain name as
 special.

 o Caching DNS Servers: Caching servers are not expected to recognize
 this domain name as special.

 o Authoritative DNS Servers: Authoritative DNS servers MUST respond
 to queries for eap-noob.net with NXDOMAIN.

 o DNS Server Operators: Except for the authoritative DNS server,
 there are no special requirements for the operators.

 o DNS Registries/Registrars: There are no special requirements for
 DNS registrars.

5. Implementation Status

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

5.1. Implementation with wpa_supplicant and hostapd

 o Responsible Organization: Aalto University

 o Location: <https://github.com/tuomaura/eap-noob>

 o Coverage: This implementation includes all of the features
 described in the current specification. The implementation
 supports two dimensional QR codes and NFC as example out-of-band
 (OOB) channels

 o Level of Maturity: Alpha

 o Version compatibility: Version 06 of the draft implemented

 o Licensing: BSD

 o Contact Information: Tuomas Aura, tuomas.aura@aalto.fi

5.2. Implementation on Contiki

 o Responsible Organization: University of Murcia and Aalto
 University

 o Location: <https://github.com/eduingles/coap-eap-noob>

 o Coverage: This implementation includes all of the features
 described in the current specification. The implementation uses a
 blinking LED light as the out-of-band (OOB) channel

 o Level of Maturity: Alpha

 o Version compatibility: Version 05 of the draft implemented

 o Licensing: BSD

 o Contact Information: Eduardo Ingles, eduardo.ingles@um.es

5.3. Protocol modeling

 The current EAP-NOOB specification has been modeled with the mCRL2
 formal specification language [mcrl2]. The model
 <https://github.com/tuomaura/eap-noob/tree/master/protocolmodel/
 mcrl2> was used mainly for simulating the protocol behavior and for
 verifying basic safety and liveness properties as part of the
 specification process. For example, we verified the correctness of
 the tiebreaking mechanism when two OOB messages are received
 simultaneously, one in each direction. We also verified that a man-
 in-the-middle attacker cannot cause persistent failure by spoofing a
 finite number of messages in the Reconnect Exchange. Additionally,
 the protocol has been modeled with the ProVerif [proverif] tool.
 This model <https://github.com/tuomaura/eap-
 noob/tree/master/protocolmodel/proverif> was used to verify security
 properties such as mutual authentication.

6. Security considerations

 EAP-NOOB is an authentication and key derivation protocol and, thus,
 security considerations can be found in most sections of this
 specification. In the following, we explain the protocol design and
 highlight some other special considerations.

6.1. Authentication principle

 EAP-NOOB establishes a shared secret with an authenticated ECDHE key
 exchange. The mutual authentication in EAP-NOOB is based on two
 separate features, both conveyed in the OOB message. The first
 authentication feature is the secret nonce Noob. The peer and server
 use this secret in the Completion Exchange to mutually authenticate
 the session key previously created with ECDHE. The message
 authentication codes computed with the secret nonce Noob are alone
 sufficient for authenticating the key exchange. The second
 authentication feature is the integrity-protecting fingerprint Hoob.
 Its purpose is to prevent impersonation and man-in-the-middle attacks
 even in situations where the attacker is able to eavesdrop the OOB
 channel and the nonce Noob is compromised. In some human-assisted
 OOB channels, such as sound burst or user-transferred URL, it may be
 easier to detect tampering than spying of the OOB message, and such
 applications benefit from the second authentication feature.

 The additional security provided by the cryptographic fingerprint
 Hoob is somewhat intricate to understand. The endpoint that receives
 the OOB message uses Hoob to verify the integrity of the ECDHE
 exchange. Thus, the OOB receiver can detect impersonation and man-
 in-the-middle attacks on the in-band channel. The other endpoint,
 however, is not equally protected because the OOB message and
 fingerprint are sent only in one direction. Some protection to the
 OOB sender is afforded by the fact that the user may notice the
 failure of the association at the OOB receiver and therefore reset
 the OOB sender. Other device-pairing protocols have solved similar
 situations by requiring the user to confirm to the OOB sender that
 the association was accepted by the OOB receiver, e.g. by pressing an
 "confirm" button on the sender side. Applications MAY implement EAP-
 NOOB in this way. Nevertheless, since EAP-NOOB was designed to work
 with strictly one-directional OOB communication and the fingerprint
 is only the second authentication feature, the EAP-NOOB specification
 does not mandate such explicit confirmation to the OOB sender.

 To summarize, EAP-NOOB uses the combined protection of the secret
 nonce Noob and the cryptographic fingerprint Hoob, both conveyed in
 the OOB message. The secret nonce Noob alone is sufficient for
 mutual authentication, unless the attacker can eavesdrop it from the
 OOB channel. Even if an attacker is able to eavesdrop the secret
 nonce Noob, it nevertheless cannot perform a full man-in-the-middle
 attack on the in-band channel because the mismatching fingerprint
 would alert the OOB receiver, which would reject the OOB message.
 The attacker that eavesdropped the secret nonce can impersonate the
 OOB receiver to the OOB sender. In this case, the association will
 appear to be complete only on the OOB sender side, and such
 situations have to be resolved by the user by resetting the OOB
 sender to the initial state.

 The expected use cases for EAP-NOOB are ones where it replaces a
 user-entered access credentials in IoT appliances. In wireless
 network access without EAP, the user-entered credential is often a
 passphrase that is shared by all the network stations. The advantage
 of an EAP-based solution, including EAP-NOOB, is that it establishes
 a different master secret for each peer device, which makes the
 system more resilient against device compromise than if there were a
 common master secret. Additionally, it is possible to revoke the
 security association for an individual device on the server side.

 Forward secrecy in EAP-NOOB is optional. The Reconnect Exchange in
 EAP-NOOB provides forward secrecy only if both the server and peer
 send their fresh ECDHE keys. This allows both the server and the
 peer to limit the frequency of the costly computation that is
 required for forward secrecy. The server MAY adjust the frequency of
 its attempts at ECDHE rekeying based on what it knows about the
 peer's computational capabilities.

 The users delivering the OOB messages will often authenticate
 themselves to the EAP server, e.g. by logging into a secure web page.
 In this case, the server can reliably associate the peer device with
 the user account. Applications that make use of EAP-NOOB can use
 this information for configuring the initial owner of the freshly-
 registered device.

6.2. Identifying correct endpoints

 Potential weaknesses in EAP-NOOB arise from the fact that the user
 must identify physically the correct peer device. If the attacker is
 able to trick the user into delivering the OOB message to or from the
 wrong peer device, the server may create an association with the
 wrong peer. This reliance on user in identifying the correct
 endpoints is an inherent property of user-assisted out-of-band
 authentication.

 It is, however, not possible to exploit accidental delivery of the
 OOB message to the wrong device when the user makes a mistake. This
 is because the wrong peer device would not have prepared for the
 attack by performing the Initial Exchange with the server. In
 comparison, simpler solutions where the master key is transferred to
 the device via the OOB channel are vulnerable to opportunistic
 attacks if the user mistakenly delivers the master key to more than
 one device.

 One mechanism that can mitigate user mistakes is certification of
 peer devices. The certificate can convey to the server authentic
 identifiers and attributes of the peer device. Compared to a fully
 certificate-based authentication, however, EAP-NOOB can be used
 without trusted third parties and does not require the user to know
 any identifier of the peer device; physical access to the device is
 sufficient.

 Similarly, the attacker can try to trick the user to deliver the OOB
 message to the wrong server, so that the peer device becomes
 associated with the wrong server. Since the EAP server is typically
 online and accessed through a web user interface, the attack would be
 akin to phishing attacks where the user is tricked to accessing the
 wrong URL and wrong web page.

6.3. Trusted path issues and misbinding attacks

 Another potential threat is spoofed user input or output on the peer
 device. When the user is delivering the OOB message to or from the
 correct peer device, a trusted path between the user and the peer
 device is needed. That is, the user must communicate directly with
 an authentic operating system and EAP-NOOB implementation in the peer
 device and not with a spoofed user interface. Otherwise, a
 Registered device that is under the control of the attacker could
 emulate the behavior of an unregistered device. The secure path can
 be implemented, for example, by having the user pressing a reset
 button to return the device to the Unregistered state and a trusted
 UI. The problem with such trusted paths is that they are not
 standardized across devices.

 Another potential consequence of spoofed UI is the misbinding attack
 where the user tries to register the correct but compromised device,
 and that device tricks the user into registering another device
 instead. For example, a compromised device might have a malicious
 full-screen app running, which presents to the user QR codes copied,
 in real time, from another device's screen. If the unwitting user
 scans the QR code and delivers the OOB message in it to the server,
 the wrong device may become registered in the server. Such
 misbinding vulnerabilities arise because the user does not have any
 secure way of verifying that the in-band cryptographic handshake and
 the out-of-band physical access are terminated at the same physical
 device. Sethi et al. [Sethi19] analyze the binding threat against
 device-pairing protocols and also EAP-NOOB. Essentially, all
 protocols where the authentication relies on the user's physical
 access to the device are vulnerable to misbinding, including EAP-
 NOOB.

 A standardized trusted path for communicating directly with the
 trusted computing base in a physical device would mitigate the
 misbinding threat, but such paths rarely exist in practice. Careful
 asset tracking can also prevent most misbinding attacks because the
 PeerInfo sent in-band by the wrong device will not match expected
 values. Device certification by the manufacturer can further
 strengthen the asset tracking.

6.4. Peer identifiers and attributes

 The PeerId value in the protocol is a server-allocated identifier for
 its association with the peer and SHOULD NOT be shown to the user
 because its value is initially ephemeral. Since the PeerId is
 allocated by the server and the scope of the identifier is the single
 server, the so-called identifier squatting attacks, where a malicious
 peer could reserve another peer's identifier, are not possible in
 EAP-NOOB. The server SHOULD assign a random or pseudo-random PeerId
 to each new peer. It SHOULD NOT select the PeerId based on any peer
 characteristics that it may know, such as the peer's link-layer
 network address.

 User reset or failure in the OOB Step can cause the peer to perform
 many Initial Exchanges with the server and to allocate many PeerIds
 and to store the ephemeral protocol state for them. The peer will
 typically only remember the latest one. EAP-NOOB leaves it to the
 implementation to decide when to delete these ephemeral associations.
 There is no security reason to delete them early, and the server does
 not have any way to verify that the peers are actually the same one.
 Thus, it is safest to store the ephemeral states for at least one
 day. If the OOB messages are sent only in the server-to-peer
 direction, the server SHOULD NOT delete the ephemeral state before
 all the related Noob values have expired.

 After completion of EAP-NOOB, the server may store the PeerInfo data,
 and the user may use it to identify the peer and its properties, such
 as the make and model or serial number. A compromised peer could lie
 in the PeerInfo that it sends to the server. If the server stores
 any information about the peer, it is important that this information
 is approved by the user during or after the OOB Step. Without
 verification by the user or authentication with vendor certificates
 on the application level, the PeerInfo is not authenticated
 information and should not be relied on.

 One possible use for the PeerInfo field is EAP channel binding
 ([RFC3748] Section 7.15). That is, the PeerInfo may include data
 items that bind the EAP-NOOB association and exported keys to
 properties of the authenticator or the access link, such as the SSID
 and BSSID of the wireless network (see Appendix C).

6.5. Identity protection

 The PeerInfo field contains identifiers and other information about
 the peer device (see Appendix C), and the peer sends this information
 in plaintext to the EAP server before the server authentication in
 EAP-NOOB has been completed. While the information refers to the
 peer device and not directly to the user, it may be better for user
 privacy to avoid sending unnecessary information. In the Reconnect
 Exchange, the optional PeerInfo SHOULD be omitted unless some
 critical data has changed.

 Peer devices that randomize their layer-2 address to prevent tracking
 can do this whenever the user resets the EAP-NOOB association.
 During the lifetime of the association, the PeerId is a unique
 identifier that can be used to track the peer in the access network.
 Later versions of this specification may consider updating the PeerId
 at each Reconnect Exchange. In that case, it is necessary to
 consider how the authenticator and access-network administrators can
 recognize and blacklist misbehaving peer devices and how to avoid
 loss of synchronization between the server and the peer if messages
 are lost during the identifier update.

6.6. Downgrading threats

 The fingerprint Hoob protects all the information exchanged in the
 Initial Exchange, including the cryptosuite negotiation. The message
 authentication codes MACs and MACp also protect the same information.
 The message authentication codes MACs2 and MACp2 protect information
 exchanged during key renegotiation in the Reconnect Exchange. This
 prevents downgrading attacks to weaker cryptosuites as long as the
 possible attacks take more time than the maximum time allowed for the
 EAP-NOOB completion. This is typically the case for recently
 discovered cryptanalytic attacks.

 As an additional precaution, the EAP server and peer SHOULD check for
 downgrading attacks in the Reconnect Exchange. As long as the server
 or peer saves any information about the other endpoint, it MUST also
 remember the previously negotiated cryptosuite and MUST NOT accept
 renegotiation of any cryptosuite that is known to be weaker than the
 previous one, such as a deprecated cryptosuite.

 Integrity of the direction negotiation cannot be verified in the same
 way as the integrity of the cryptosuite negotiation. That is, if the
 OOB channel used in an application is critically insecure in one
 direction, a man-in-the-middle attacker could modify the negotiation
 messages and thereby cause that direction to be used. Applications
 that support OOB messages in both directions SHOULD therefore ensure
 that the OOB channel has sufficiently strong security in both
 directions. While this is a theoretical vulnerability, it could
 arise in practice if EAP-NOOB is deployed in unexpected applications.
 However, most devices acting as the peer are likely to support only
 one direction of exchange, in which case interfering with the
 direction negotiation can only prevent the completion of the
 protocol.

 The long-term shared key material Kz in the persistent EAP-NOOB
 association is established with an ECDHE key exchange when the peer
 and server are first associated. It is a weaker secret than a
 manually configured random shared key because advances in
 cryptanalysis against the used ECDHE curve could eventually enable
 the attacker to recover Kz. EAP-NOOB protects against such attacks
 by allowing cryptosuite upgrades in the Reconnect Exchange and by
 updating shared key material Kz whenever the cryptosuite is upgraded.
 We do not expect the cryptosuite upgrades to be frequent, but if one
 becomes necessary, the upgrade can be made without manual resetting
 and reassociation of the peer devices.

6.7. Recovery from loss of last message

 The EAP-NOOB Completion Exchange, as well as the Reconnect Exchange
 with cryptosuite update, result in a persistent state change that
 should take place either on both endpoints or on neither; otherwise,
 the result is a state mismatch that requires user action to resolve.
 The state mismatch can occur if the final EAP response of the
 exchanges is lost. In the Completion Exchange, the loss of the final
 response (Type=4) results in the peer moving to Registered (4) state
 and creating a persistent EAP-NOOB association while the server stays
 in an ephemeral state (1 or 2). In the Reconnect Exchange, the loss
 of the final response (Type=7) results in the peer moving to the
 Registered (4) state and updating its persistent key material Kz
 while the server stays in the Reconnecting (3) state and keeps the
 old key material.

 The state mismatch is an example of a unavoidable problem in
 distributed systems: it is theoretically impossible to guarantee
 synchronous state changes in endpoints that communicate
 asynchronously. The protocol will always have one critical message
 that may get lost, so that one side commits to the state change and
 the other side does not. In EAP, the critical message is the final
 response from the peer to the server. While the final response is
 normally followed by EAP-Success, [RFC3748] section 4.2 states that
 the peer MAY assume that the EAP-Success was lost and the
 authentication was successful. Furthermore, EAP methods in the peer
 do not receive notification of the EAP-Success message from the
 parent EAP state machine [RFC4137]. For these reasons, EAP-NOOB on
 the peer side commits to a state change already when it sends the
 final response.

 The best available solution to the loss of the critical message is to
 keep trying. EAP retransmission behavior defined in Section 4.3 of
 [RFC3748] suggests 3-5 retransmissions. In the absence of an
 attacker, this would be sufficient to reduce the probability of
 failure to an acceptable level. However, a determined attacker on
 the in-band channel can drop the final EAP-Response message and all
 subsequent retransmissions. In the Completion Exchange
 (KeyingMode=0) and in the Reconnect Exchange with cryptosuite upgrade
 (KeyingMode=3), this could result in state mismatch and persistent
 denial of service until user resets the peer state.

 EAP-NOOB implements its own recovery mechanism that allows unlimited
 retries of the Reconnect Exchange. When the DoS attacker eventually
 stops dropping packets on the in-band channel, the protocol will
 recover. The logic for this recovery mechanism is specified in
 Section 3.4.2.

 EAP-NOOB does not implement the same kind of retry mechanism in the
 Completion Exchange. The reason is that there is always a user
 involved in the initial association process, and the user can repeat
 the OOB Step to complete the association after the DoS attacker has
 left. On the other hand, Reconnect Exchange needs to work without
 user involvement.

6.8. EAP security claims

 EAP security claims are defined in section 7.2.1 of [RFC3748]. The
 security claims for EAP-NOOB are listed in Table 9.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Security | EAP‑NOOB claim |
| property | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
Authentication	ECDHE key exchange with out‑of‑band
mechanism	authentication
Protected	yes
cryptosuite	
negotiation	
Mutual	yes
authentication	
Integrity	yes
protection	
Replay	yes
protection	
Key derivation	yes
Key strength	The specified cryptosuites provide key strength
	of at least 128 bits.
Dictionary	yes
attack	
protection	
Fast reconnect	yes
Cryptographic	not applicable
binding	
Session	yes
independence	
Fragmentation	no
Channel	yes (The ServerInfo and PeerInfo can be used to
binding	convey integrity‑protected channel properties
	such as network SSID or peer MAC address.)
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 9: EAP security claims

7. References

7.1. Normative references

 [NIST-DH]
 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", NIST Special
 Publication 800-56A Revision 2 , May 2013,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
 NIST.SP.800-56Ar2.pdf>.

 [RFC2104]
 Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC4648]
 Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5247]
 Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, DOI 10.17487/RFC5247, August 2008,
 <https://www.rfc-editor.org/info/rfc5247>.

 [RFC6234]
 Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6761]
 Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
 RFC 6761, DOI 10.17487/RFC6761, February 2013,
 <https://www.rfc-editor.org/info/rfc6761>.

 [RFC7517]
 Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7518]
 Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7542]
 DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC7748]
 Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8259]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

7.2. Informative references

 [BluetoothPairing]

 Bluetooth, SIG, "Simple pairing whitepaper", Technical
 report , 2007.

 [EUI-48]
 Institute of Electrical and Electronics Engineers,
 "802-2014 IEEE Standard for Local and Metropolitan Area
 Networks: Overview and Architecture.", IEEE Standard
 802-2014. , June 2014.

 [IEEE-802.1X]

 Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004. , December 2004.

 [mcrl2]
 Groote, J. and M. Mousavi, "Modeling and analysis of
 communicating systems", The MIT press , 2014,
 <https://mitpress.mit.edu/books/modeling-and-analysis-
 communicating-systems>.

 [proverif]

 Blanchet, B., Smyth, B., Cheval, V., and M. Sylvestre,
 "ProVerif 2.00: Automatic Cryptographic Protocol Verifier,
 User Manual and Tutorial", The MIT press , 2018,
 <http://prosecco.gforge.inria.fr/personal/bblanche/
 proverif/>.

 [RFC2904]
 Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L.,
 Gross, G., de Bruijn, B., de Laat, C., Holdrege, M., and
 D. Spence, "AAA Authorization Framework", RFC 2904,
 DOI 10.17487/RFC2904, August 2000,
 <https://www.rfc-editor.org/info/rfc2904>.

 [RFC4137]
 Vollbrecht, J., Eronen, P., Petroni, N., and Y. Ohba,
 "State Machines for Extensible Authentication Protocol
 (EAP) Peer and Authenticator", RFC 4137,
 DOI 10.17487/RFC4137, August 2005,
 <https://www.rfc-editor.org/info/rfc4137>.

 [RFC4266]
 Hoffman, P., "The gopher URI Scheme", RFC 4266,
 DOI 10.17487/RFC4266, November 2005,
 <https://www.rfc-editor.org/info/rfc4266>.

 [RFC5216]
 Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
 March 2008, <https://www.rfc-editor.org/info/rfc5216>.

 [RFC7942]
 Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [Sethi14]
 Sethi, M., Oat, E., Di Francesco, M., and T. Aura, "Secure
 Bootstrapping of Cloud-Managed Ubiquitous Displays",
 Proceedings of ACM International Joint Conference on
 Pervasive and Ubiquitous Computing (UbiComp 2014), pp.
 739-750, Seattle, USA , September 2014,
 <http://dx.doi.org/10.1145/2632048.2632049>.

 [Sethi19]
 Sethi, M., Peltonen, A., and T. Aura, "Misbinding Attacks
 on Secure Device Pairing", 2019,
 <https://arxiv.org/abs/1902.07550>.

Appendix A. Exchanges and events per state

 Figure 11 shows how the EAP server chooses the exchange type
 depending on the server and peer states. In the state combinations
 marked with hyphen "-", there is no possible exchange and user action
 is required to make progress. Note that peer state 4 is omitted from
 the table because the peer never connects to the server when the peer
 is in that state. The table also shows the handling of errors in
 each exchange. A notable detail is that the recipient of error code
 2003 moves to state 1.

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| peer | exchange chosen by | next peer and |
| states | server | server states |
+========+===========================+==============================+
| server state: Unregistered (0) |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0..2 | Initial Exchange | both 1 (0 on error) |
| 3 | ‑ | no change, notify user |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| server state: Waiting for OOB (1) |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
0	Initial Exchange	both 1 (0 on error)
1	Waiting Exchange	both 1 (no change on error)
2	Completion Exchange	both 4 (A)
3	‑	no change, notify user
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
server state: OOB Received (2)		
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
0	Initial Exchange	both 1 (0 on error)
1	Completion Exchange	both 4 (B)
2	Completion Exchange	both 4 (A)
3	‑	no change, notify user
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
server state: Reconnecting (3) or Registered (4)		
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
0..2	‑	no change, notify user
3	Reconnect Exchange	both 4 (3 on error)
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(A) peer to 1 on error 2003, no other changes on error
(B) server to 1 on error 2003, no other changes on error

 Figure 11: How server chooses the exchange type

 Figure 12 lists the local events that can take place in the server or
 peer. Both the server and peer output and accept OOB messages in
 association state 1, leading the receiver to state 2. Communication
 errors and timeouts in states 0..2 lead back to state 0, while
 similar errors in states 3..4 lead to state 3. Application request
 for rekeying (e.g. to refresh session keys or to upgrade cryptosuite)
 also takes the association from state 3..4 to state 3. User can
 always reset the association state to 0. Recovering association
 data, e.g. from a backup, leads to state 3.

+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
server/	possible local events	next state
peer	on server and peer	
state		
+========+===========================+==============================+		
1	OOB Output*	1
1	OOB Input*	2 (1 on error)
0..2	Timeout/network failure	0
3..4	Timeout/network failure	3
3..4	Rekeying request	3
0..4	User resets peer state	0
0..4	Association state recovery	3
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 12: Local events on server and peer

Appendix B. Application-specific parameters

 Table 10 lists OOB channel parameters that need to be specified in
 each application that makes use of EAP-NOOB. The list is not
 exhaustive and is included for the convenience of implementors only.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Parameter | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
OobDirs	Allowed directions of the OOB channel
OobMessageEncoding	How the OOB message data fields are encoded
	for the OOB channel
SleepTimeDefault	Default minimum time in seconds that the
	peer should sleep before the next Waiting
	Exchange
OobRetries	Number of received OOB messages with invalid
	Hoob after which the receiver moves to
	Unregistered (0) state
NoobTimeout	How many seconds the sender of the OOB
	message remembers the sent Noob value. The
	RECOMMENDED value is 3600 seconds.
ServerInfoMembers	Required members in ServerInfo
PeerInfoMembers	Required members in PeerInfo
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 10: OOB channel characteristics

Appendix C. ServerInfo and PeerInfo contents

 The ServerInfo and PeerInfo fields in the Initial Exchange and
 Reconnect Exchange enable the server and peer, respectively, send
 information about themselves to the other endpoint. They contain
 JSON objects whose structure may be specified separately for each
 application and each type of OOB channel. ServerInfo and PeerInfo
 MAY contain auxiliary data needed for the OOB channel messaging and
 for EAP channel binding. Table 11 lists some suggested data fields
 for ServerInfo.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Data field | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
ServerName	String that may be used to aid human
	identification of the server.
ServerURL	Prefix string when the OOB message is formatted
	as URL, as suggested in Appendix E.
SSIDList	List of wireless network identifier (SSID)
	strings used for roaming support, as suggested
	in Appendix D. JSON array of UTF‑8 encoded SSID
	strings.
Base64SSIDList	List of wireless network identifier (SSID)
	strings used for roaming support, as suggested
	in Appendix D. JSON array of SSIDs, each of
	which is base64url encoded without padding. Peer
	SHOULD send at most one of the fields SSIDList
	and Base64SSIDList in PeerInfo, and the server
	SHOULD ignore SSIDList if Base64SSIDList is
	included.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 11: Suggested ServerInfo data fields

 PeerInfo typically contains auxiliary information for identifying and
 managing peers on the application level at the server end. Table 12
 lists some suggested data fields for PeerInfo.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Data field | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
PeerName	String that may be used to aid human
	identification of the peer.
Manufacturer	Manufacturer or brand string.
Model	Manufacturer‑specified model string.
SerialNumber	Manufacturer‑assigned serial number.
MACAddress	Peer link‑layer identifier (EUI‑48) in the
	12‑digit base‑16 form [EUI‑48]. The string MAY
	include additional colon ':' or dash '‑'
	characters that MUST be ignored by the server.
SSID	Wireless network SSID for channel binding. The
	SSID is a UTF‑8 string.
Base64SSID	Wireless network SSID for channel binding. The
	SSID is base64url encoded. Peer SHOULD send at
	most one of the fields SSID and Base64SSID in
	PeerInfo, and the server SHOULD ignore SSID if
	Base64SSID is included.
BSSID	Wireless network BSSID (EUI‑48) in the 12‑digit
	base‑16 form [EUI‑48]. The string MAY include
	additional colon ':' or dash '‑' characters that
	MUST be ignored by the server.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 12: Suggested PeerInfo data fields

Appendix D. EAP-NOOB roaming

 AAA architectures [RFC2904] allow for roaming of network-connected
 appliances that are authenticated over EAP. While the peer is
 roaming in a visited network, authentication still takes place
 between the peer and an authentication server at its home network.
 EAP-NOOB supports such roaming by assigning a Realm to the peer.
 After the Realm has been assigned, the peer's NAI enables the visited
 network to route the EAP session to the peer's home AAA server.

 A peer device that is new or has gone through a hard reset should be
 connected first to the home network and establish an EAP-NOOB
 association with its home AAA server before it is able to roam.
 After that, it can perform the Reconnect Exchange from the visited
 network.

 Alternatively, the device may provide some method for the user to
 configure the Realm of the home network. In that case, the EAP-NOOB
 association can be created while roaming. The device will use the
 user-assigned Realm in the Initial Exchange, which enables the EAP
 messages to be routed correctly to the home AAA server.

 While roaming, the device needs to identify the networks where the
 EAP-NOOB association can be used to gain network access. For 802.11
 access networks, the server MAY send a list of SSID strings in the
 ServerInfo JSON object in a member called either SSIDList or
 Base64SSIDList. The list is formated as explained in Table 11. If
 present, the peer MAY use this list as a hint to determine the
 networks where the EAP-NOOB association can be used for access
 authorization, in addition to the access network where the Initial
 Exchange took place.

Appendix E. OOB message as URL

 While EAP-NOOB does not mandate any particular OOB communication
 channel, typical OOB channels include graphical displays and emulated
 NFC tags. In the peer-to-server direction, it may be convenient to
 encode the OOB message as a URL, which is then encoded as a QR code
 for displays and printers or as an NDEF record for NFC tags. A user
 can then simply scan the QR code or NFC tag and open the URL, which
 causes the OOB message to be delivered to the authentication server.
 The URL MUST specify the https protocol i.e. secure connection to the
 server, so that the man-in-the-middle attacker cannot read or modify
 the OOB message.

 The ServerInfo in this case includes a JSON member called ServerUrl
 of the following format with maximum length of 60 characters:

 https://<host>[:<port>]/[<path>]

 To this, the peer appends the OOB message fields (PeerId, Noob, Hoob)
 as a query string. PeerId is provided to the peer by the server and
 might be a 22-character string. The peer base64url encodes, without
 padding, the 16-byte values Noob and Hoob into 22-character strings.
 The query parameters MAY be in any order. The resulting URL is of
 the following format:

 https://<host>[:<port>]/[<path>]?P=<PeerId>&N=<Noob>&H=<Hoob>

 The following is an example of a well-formed URL encoding the OOB
 message (without line breaks):
 https://example.com/Noob?P=ZrD7qkczNoHGbGcN2bN0&N=rMinS0-F4EfCU8D9ljx
 X_A&H=QvnMp4UGxuQVFaXPW_14UW

Appendix F. Example messages

 The message examples in this section are generated with Curve25519
 ECDHE test vectors specified in section 6.1 of [RFC7748]
 (server=Alice, peer=Bob). The direction of the OOB channel
 negotiated is 2 (server-to-peer). The JSON messages are as follows
 (line breaks are for readability only).

====== Initial Exchange ======

 Identity response:

 noob@eap-noob.net

 EAP request (type 9):

 {"Type":9}

 EAP response (type 9):

 {"Type":9,"PeerId":"07KRU6OgqX0HIeRFldnbSW","PeerState":0}

 EAP request (type 1):

 {"Type":1,"Vers":[1],"PeerId":"07KRU6OgqX0HIeRFldnbSW","Realm":"no
 ob.example.com","Cryptosuites":[1],"Dirs":3,"ServerInfo":{"Name":"
 Example","Url":"https://noob.example.com/sendOOB"}}

 EAP response (type 1):

 {"Type":1,"Verp":1,"PeerId":"07KRU6OgqX0HIeRFldnbSW","Cryptosuitep
 ":1,"Dirp":2,"PeerInfo":{"Make":"Acme","Type":"None","Serial":"DU-
 9999","SSID":"Noob1","BSSID":"6c:19:8f:83:c2:80"}}

 EAP request (type 2):

 {"Type":2,"PeerId":"07KRU6OgqX0HIeRFldnbSW","PKs":{"kty":"EC","crv
 ":"Curve25519","x":"hSDwCYkwp1R0i33ctD73Wg2_Og0mOBr066SpjqqbTmo"},
 "Ns":"PYO7NVd9Af3BxEri1MI6hL8Ck49YxwCjSRPqlC1SPbw","SleepTime":60}

 EAP response (type 2):

 {"Type":2,"PeerId":"07KRU6OgqX0HIeRFldnbSW","PKp":{"kty":"EC","crv
 ":"Curve25519","x":"3p7bfXt9wbTTW2HC7OQ1Nz-DQ8hbeGdNrfx-FG-
 IK08"},"Np":"HIvB6g0n2btpxEcU7YXnWB-451ED6L6veQQd6ugiPFU"}

====== Waiting Exchange ======

 Identity response:

 noob@eap-noob.net

 EAP request (type 9):

 {"Type":9}

 EAP response (type 9):

 {"Type":9,"PeerId":"07KRU6OgqX0HIeRFldnbSW","PeerState":1}

 EAP request (type 3):

 {"Type":3,"PeerId":"07KRU6OgqX0HIeRFldnbSW","SleepTime":60}

 EAP response (type 3):

 {"Type":3,"PeerId":"07KRU6OgqX0HIeRFldnbSW"}

====== OOB Step ======

 OOB message:

 P=07KRU6OgqX0HIeRFldnbSW&N=x3JlolaPciK4Wa6XlMJxtQ&H=WJ6Covspd50NT2
 RxkLHSeA

====== Completion Exchange ======

 Identity response:

 noob@eap-noob.net

 EAP request (type 9):

 {"Type":9}

 EAP response (type 9):

 {"Type":9,"PeerId":"07KRU6OgqX0HIeRFldnbSW","PeerState":2}

 EAP request (type 8):

 {"Type":8,"PeerId":"07KRU6OgqX0HIeRFldnbSW"}

 EAP response (type 8):

 {"Type":8,"PeerId":"07KRU6OgqX0HIeRFldnbSW","NoobId":"U0OHwYGCS4nE
 kzk2TPIE6g"}

 EAP request (type 4):

 {"Type":4,"PeerId":"07KRU6OgqX0HIeRFldnbSW","NoobId":"U0OHwYGCS4nE
 kzk2TPIE6g","MACs":"APpnhlFLWS2pfJPH5S7N3yr6FJWocuaAiuVrhgh8Xko"}

 EAP response (type 4):

 {"Type":4,"PeerId":"07KRU6OgqX0HIeRFldnbSW","MACp":"hihGS4v8w4cDy_
 yokNlOyQa87GRBLvMfmF9JFwJ6RrQ"}

====== Reconnect Exchange ======

 Identity response:

 noob@eap-noob.net

 EAP request (type 9):

 {"Type":9}

 EAP response (type 9):

 {"Type":9,"PeerId":"07KRU6OgqX0HIeRFldnbSW","PeerState":3}

 EAP request (type 5):

 {"Type":5,"Vers":[1],"PeerId":"07KRU6OgqX0HIeRFldnbSW","Cryptosuit
 es":[1],"Realm":"noob.example.com","ServerInfo":{"Name":"Example",
 "Url":"https://noob.example.com/sendOOB"}}

 EAP response (type 5):

 {"Type":5,"Verp":1,"PeerId":"07KRU6OgqX0HIeRFldnbSW","Cryptosuitep
 ":1,"PeerInfo":{"Make":"Acme","Type":"None","Serial":"DU-
 9999","SSID":"Noob1","BSSID":"6c:19:8f:83:c2:80"}}

 EAP request (type 6):

 {"Type":6,"PeerId":"07KRU6OgqX0HIeRFldnbSW","KeyingMode":2,"Ns2":"
 RDLahHBlIgnmL_F_xcynrHurLPkCsrp3G3B_S82WUF4"}

 EAP response (type 6):

 {"Type":6,"PeerId":"07KRU6OgqX0HIeRFldnbSW","Np2":"jN0_V4P0JoTqwI9
 VHHQKd9ozUh7tQdc9ABd-j6oTy_4"}

 EAP request (type 7):

 {"Type":7,"PeerId":"07KRU6OgqX0HIeRFldnbSW","MACs2":"TT_B9w-
 o86C1c1O_rhNxzcf9gJa0_8SiIhyxQecdM70"}

 EAP response (type 7):

 {"Type":7,"PeerId":"07KRU6OgqX0HIeRFldnbSW","MACp2":"GS9f8Mw3mUFvj
 IDKS54U27xPt6umIrnVXOGLl-iFRKk"}

Appendix G. TODO list

 o

Appendix H. Version history

 o Version 01:

 * Fixed Reconnection Exchange.

 * URL examples.

 * Message examples.

 * Improved state transition (event) tables.

 o Version 02:

 * Reworked the rekeying and key derivation.

 * Increased internal key lengths and in-band nonce and HMAC
 lengths to 32 bytes.

 * Less data in the persistent EAP-NOOB association.

 * Updated reference [NIST-DH] to Revision 2 (2013).

 * Shorter suggested PeerId format.

 * Optimized the example of encoding OOB message as URL.

 * NoobId in Completion Exchange to differentiate between multiple
 valid Noob values.

 * List of application-specific parameters in appendix.

 * Clarified the equivalence of Unregistered state and no state.

 * Peer SHOULD probe the server regardless of the OOB channel
 direction.

 * Added new error messages.

 * Realm is part of the persistent association and can be updated.

 * Clarified error handling.

 * Updated message examples.

 * Explained roaming in appendix.

 * More accurate definition of timeout for the Noob nonce.

 * Additions to security considerations.

 o Version 03:

 * Clarified reasons for going to Reconnecting state.

 * Included Verp in persistent state.

 * Added appendix on suggested ServerInfo and PeerInfo fields.

 * Exporting PeerId and SessionId.

 * Explicitly specified next state after OOB Step.

 * Clarified the processing of an expired OOB message and
 unrecognized NoobId.

 * Enabled protocol version upgrade in Reconnect Exchange.

 * Explained handling of redundant received OOB messages.

 * Clarified where raw and base64url encoded values are used.

 * Cryptosuite must specify the detailed format of the JWK object.

 * Base64url encoding in JSON strings is done without padding.

 * Simplified explanation of PeerId, Realm and NAI.

 * Added error codes for private and experimental use.

 * Updated the security considerations.

 o Version 04:

 * Recovery from synchronization failure due to lost last
 response.

 o Version 05:

 * Kz identifier added to help recovery from lost last messages.

 * Error message codes changed for better structure.

 * Improved security considerations section.

 o Version 06:

 * Kz identifier removed to enable PeerId anonymization in the
 future.

 * Clarified text on when to use server-assigned realm.

 * Send PeerId and PeerState in a separate request-reponse pair,
 not in NAI.

 * New subsection for the common handshake in all exchanges to
 avoid repetition.

 o Version 07:

 * Updated example messages.

 * Added pointers to new implementation in Contiki.

Appendix I. Acknowledgments

 Aleksi Peltonen modeled the protocol specification with the mCRL2
 formal specification language. Shiva Prasad TP and Raghavendra MS
 implemented parts of the protocol with wpa_supplicant and hostapd.
 Their inputs helped us in improving the specification.

 The authors would also like to thank Rhys Smith and Josh Howlett for
 providing valuable feedback as well as new use cases and requirements
 for the protocol. Thanks to Eric Rescorla, Darshak Thakore, Stefan
 Winter, and Hannes Tschofenig for interesting discussions in this
 problem space.

Authors' Addresses

Tuomas Aura
Aalto University
Aalto 00076
Finland

 EMail: tuomas.aura@aalto.fi

Mohit Sethi
Ericsson
Jorvas 02420
Finland

 EMail: mohit@piuha.net

draft-autocrypt-lamps-protected-headers-01 - Protected Headers for Cryptographic E-mail

draft-autocrypt-lamps-protected-headers-01 - Protected Headers for Cryptographic

Index
Back 5
Prev
Next
Forward 5

openpgp

Internet-Draft

Intended status: Informational

Expires: 7 May 2020

B.R. Einarsson

Mailpile ehf

. juga

Independent

D.K. Gillmor

ACLU

4 November 2019

Protected Headers for Cryptographic E-mail

draft-autocrypt-lamps-protected-headers-01

Abstract

 This document describes a common strategy to extend the end-to-end
 cryptographic protections provided by PGP/MIME, etc. to protect
 message headers in addition to message bodies. In addition to
 protecting the authenticity and integrity of headers via signatures,
 it also describes how to preserve the confidentiality of the Subject
 header.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 May 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

				 1. Introduction
		 1.1. Requirements Language

	 1.2. Terminology
		 1.2.1. User-Facing Headers

	 1.2.2. Structural Headers

	 2. Protected Headers Summary

	 3. Cryptographic MIME Message Structure
		 3.1. Cryptographic Layers
		 3.1.1. PGP/MIME Signing Cryptographic Layer (multipart/ signed)

	 3.1.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

	 3.2. Cryptographic Envelope

	 3.3. Cryptographic Payload
		 3.3.1. Simple Cryptographic Payloads

	 3.3.2. Multilayer Cryptographic Envelopes

	 3.3.3. A Baroque Example

	 3.4. Exposed Headers are Outside

	 4. Message Composition
		 4.1. Copying All Headers

	 4.2. Confidential Subject

	 4.3. Obscured Headers

	 4.4. Message Composition without Protected Headers

	 4.5. Message Composition with Protected Headers

	 5. Legacy Display
		 5.1. Message Generation: Including a Legacy Display Part
		 5.1.1. Legacy Display Transformation

	 5.1.2. When to Generate Legacy Display

	 5.2. Message Rendering: Omitting a Legacy Display Part
		 5.2.1. Legacy Display Detection Algorithm

	 5.3. Legacy Display is Decorative and Transitional

	 6. Message Interpretation
		 6.1. Reverse-Copying

	 6.2. Signature Invalidation

	 6.3. The Legacy Display Part

	 6.4. Replying to a Message with Obscured Headers

	 7. Common Pitfalls and Guidelines
		 7.1. Misunderstood Obscured Subjects

	 7.2. Reply/Forward Losing Subjects

	 7.3. Usability Impact of Reduced Metadata

	 7.4. Usability Impact of Obscured Message-ID

	Internet-Draft Protected Headers for Cryptographic E-mail November
					 7.5. Usability Impact of Obscured From/To/Cc

	 7.6. Mailing List Header Modifications

	 8. Comparison with Other Header Protection Schemes
		 8.1. S/MIME 3.1 Header Protection

	 8.2. The Content-Type Property "forwarded=no" {forwarded=no}

	 8.3. pEp Header Protection

	 8.4. DKIM

	 8.5. S/MIME "Secure Headers"

	 8.6. Triple-Wrapping

	 9. Test Vectors
		 9.1. Signed Message with Protected Headers

	 9.2. Signed and Encrypted Message with Protected Headers

	 9.3. Signed and Encrypted Message with Protected Headers and Legacy Display Part

	 9.4. Multilayer Message with Protected Headers

	 9.5. Multilayer Message with Protected Headers and Legacy Display Part

	 9.6. An Unfortunately Complex Example

	 10. IANA Considerations

	 11. Security Considerations
		 11.1. Subject Leak

	 11.2. Signature Replay

	 11.3. Participant Modification

	 12. Privacy Considerations

	 13. Document Considerations
		 13.1. Document History

	 14. Acknowledgements

	 15. References
		 15.1. Normative References

	 15.2. Informative References

	 Authors' Addresses

1. Introduction

 E-mail end-to-end security with OpenPGP and S/MIME standards can
 provide integrity, authentication, non-repudiation and
 confidentiality to the body of a MIME e-mail message. However, PGP/
 MIME ([RFC3156]) alone does not protect message headers. And the
 structure to protect headers defined in S/MIME 3.1 ([RFC3851]) has
 not seen widespread adoption.

 This document defines a scheme, "Protected Headers for Cryptographic
 E-mail", which has been adopted by multiple existing e-mail clients
 in order to extend the cryptographic protections provided by PGP/MIME
 to also protect the message headers.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 This document describes how these protections can be applied to
 cryptographically signed messages, and also discusses some of the
 challenges of encrypting many transit-oriented headers.

 It offers guidance for protecting the confidentiality of non-transit-
 oriented headers like Subject, and also offers a means to preserve
 backwards compatibility so that an encrypted Subject remains
 available to recipients using software that does not implement
 support for the Protected Headers scheme.

 The document also discusses some of the compatibility constraints and
 usability concerns which motivated the design of the scheme, as well
 as limitations and a comparison with other proposals.

 While the document (and the authors') focus is primarily PGP/MIME, we
 believe the technique is broadly applicable and would also apply to
 other MIME-compatible cryptographic e-mail systems, including S/MIME
 ([RFC8551]). Furthermore, this technique has already proven itself
 as a useful building block for other improvements to cryptographic
 e-mail, such as the Autocrypt Level 1.1 ([Autocrypt]) "Gossip"
 mechanism.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 For the purposes of this document, we define the following concepts:

 * _MUA_ is short for Mail User Agent; an e-mail client.

 * _Protection_ of message data refers to cryptographic encryption
 and/or signatures, providing confidentiality, authenticity or
 both.

 * _Cryptographic Layer_, _Cryptographic Envelope_ and _Cryptographic
 Payload_ are defined in Section 3

 * _Original Headers_ are the [RFC5322] message headers as known to
 the sending MUA at the time of message composition.

 * _Protected Headers_ are any headers protected by the scheme
 described in this document.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 * _Exposed Headers_ are any headers outside the Cryptographic
 Payload (protected or not).

 * _Obscured Headers_ are any Protected Headers which have been
 modified or removed from the set of Exposed Headers.

 * _Legacy Display Part_ is a MIME construct which provides
 visibility for users of legacy clients of data from the Original
 Headers which may have been removed or obscured from the Exposed
 Headers. It is defined in Section 5.

 * _User-Facing Headers_ are explained and enumerated in
 Section 1.2.1.

 * _Structural Headers_ are documented in Section 1.2.2.

1.2.1. User-Facing Headers

 Of all the headers that an e-mail message may contain, only a handful
 are typically presented directly to the user. The user-facing
 headers are:

 * "Subject"

 * "From"

 * "To"

 * "Cc"

 * "Date"

 * "Reply-To"

 * "Followup-To"

 The above is a complete list. No other headers are considered "user-
 facing".

 Other headers may affect the visible rendering of the message (e.g.,
 "References" and "In-Reply-To" may affect the placement of a message
 in a threaded discussion), but they are not directly displayed to the
 user and so are not considered "user-facing" for the purposes of this
 document.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

1.2.2. Structural Headers

 A message header whose name begins with "Content-" is referred to in
 this document as a "structural" header.

 These headers indicate something about the specific MIME part they
 are attached to, and cannot be transferred or copied to other parts
 without endangering the readability of the message.

 This includes (but is not limited to):

 * "Content-Type"

 * "Content-Transfer-Encoding"

 * "Content-Disposition"

 Note that no "user-facing" headers (Section 1.2.1) are also
 "structural" headers. Of course, many headers are neither "user-
 facing" nor "structural".

 FIXME: are there any non-"Content-*" headers we should consider as
 structural?

2. Protected Headers Summary

 The Protected Headers scheme relies on three backward-compatible
 changes to a cryptographically-protected e-mail message:

 * Headers known to the composing MUA at message composition time are
 (in addition to their typical placement as Exposed Headers on the
 outside of the message) also present in the MIME header of the
 root of the Cryptographic Payload. These Protected Headers share
 cryptographic properties with the rest of the Cryptographic
 Payload.

 * When the Cryptographic Envelope includes encryption, any Exposed
 Header MAY be _obscured_ by a transformation (including deletion).

 * If the composing MUA intends to obscure any user-facing headers,
 it MAY add a decorative "Legacy Display" MIME part to the
 Cryptographic Payload which additionally duplicates the original
 values of the obscured user-facing headers.

 When a composing MUA encrypts a message, it SHOULD obscure the
 "Subject:" header, by using the literal string "..." (three U+002E
 FULL STOP characters) as the value of the exposed "Subject:" header.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 When a receiving MUA encounters a message with a Cryptographic
 Envelope, it treats the headers of the Cryptographic Payload as
 belonging to the message itself, not just the subpart. In
 particular, when rendering a header for any such message, the
 renderer SHOULD prefer the header's Protected value over its Exposed
 value.

 A receiving MUA that understands Protected Headers and discovers a
 Legacy Display part SHOULD hide the Legacy Display part when
 rendering the message.

 The following sections contain more detailed discussion.

3. Cryptographic MIME Message Structure

 Implementations use the structure of an e-mail message to protect the
 headers. This section establishes some conventions about how to
 think about message structure.

3.1. Cryptographic Layers

 "Cryptographic Layer" refers to a MIME substructure that supplies
 some cryptographic protections to an internal MIME subtree. The
 internal subtree is known as the "protected part" though of course it
 may itself be a multipart object.

 For PGP/MIME [RFC3156] there are two forms of Cryptographic Layers,
 signing and encryption.

 In the diagrams below, "â�§" (DOWNWARDS ARROW FROM BAR, U+21A7)
 indicates "decrypts to".

3.1.1. PGP/MIME Signing Cryptographic Layer (multipart/signed)

â��â�¬â�´multipart/signed
 â��â��â�´[protected part]
 â��â��â�´application/pgp‑signature

3.1.2. PGP/MIME Encryption Cryptographic Layer (multipart/encrypted)

 â��â�¬â�´multipart/encrypted
 â��â��â�´application/pgp‑encrypted
 â��â��â�´application/octet‑stream
 â�§ (decrypts to)
 â��â��â�´[protected part]

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

3.2. Cryptographic Envelope

 The Cryptographic Envelope is the largest contiguous set of
 Cryptographic Layers of an e-mail message starting with the outermost
 MIME type (that is, with the Content-Type of the message itself).

 If the Content-Type of the message itself is not a Cryptographic
 Layer, then the message has no cryptographic envelope.

 "Contiguous" in the definition above indicates that if a
 Cryptographic Layer is the protected part of another Cryptographic
 Layer, the layers together comprise a single Cryptographic Envelope.

 Note that if a non-Cryptographic Layer intervenes, all Cryptographic
 Layers within the non-Cryptographic Layer _are not_ part of the
 Cryptographic Envelope (see the example in Section 3.3.3).

 Note also that the ordering of the Cryptographic Layers implies
 different cryptographic properties. A signed-then-encrypted message
 is different than an encrypted-then-signed message.

3.3. Cryptographic Payload

 The Cryptographic Payload of a message is the first non-Cryptographic
 Layer - the "protected part" - within the Cryptographic Envelope.
 Since the Cryptographic Payload itself is a MIME part, it has its own
 set of headers.

 Protected headers are placed on (and read from) the Cryptographic
 Payload, and should be considered to have the same cryptographic
 properties as the message itself.

3.3.1. Simple Cryptographic Payloads

 As described above, if the "protected part" identified in
 Section 3.1.1 or Section 3.1.2 is not itself a Cryptographic Layer,
 that part _is_ the Cryptographic Payload.

 If the application wants to generate a message that is both encrypted
 and signed, it MAY use the simple MIME structure from Section 3.1.2
 by ensuring that the [RFC4880] Encrypted Message within the
 "application/octet-stream" part contains an [RFC4880] Signed Message.

3.3.2. Multilayer Cryptographic Envelopes

 It is possible to construct a Cryptographic Envelope consisting of
 multiple layers for PGP/MIME, typically of the following structure:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 A â��â�¬â�´multipart/encrypted
 B â��â��â�´application/pgp‑encrypted
 C â��â��â�´application/octet‑stream
 D â�§ (decrypts to)
 E â��â�¬â�´multipart/signed
 F â��â��â�´[Cryptographic Payload]
 G â��â��â�´application/pgp‑signature

 When handling such a message, the properties of the Cryptographic
 Envelope are derived from the series "A", "E".

 As noted in Section 3.3.1, PGP/MIME applications also have a simpler
 MIME construction available with the same cryptographic properties.

3.3.3. A Baroque Example

 Consider a message with the following overcomplicated structure:

H â��â�¬â�´multipart/encrypted
I â��â��â�´application/pgp‑encrypted
J â��â��â�´application/octet‑stream
K â�§ (decrypts to)
L â��â�¬â�´multipart/signed
M â��â�¬â�´multipart/mixed
N â��â��â�¬â�´multipart/signed
O â��â��â��â��â�´text/plain
P â��â��â��â��â�´application/pgp‑signature
Q â��â��â��â�´text/plain
R â��â��â�´application/pgp‑signature

 The 3 Cryptographic Layers in such a message are rooted in parts "H",
 "L", and "N". But the Cryptographic Envelope of the message consists
 only of the properties derived from the series "H", "L". The
 Cryptographic Payload of the message is part "M".

 It is NOT RECOMMENDED to generate messages with such complicated
 structures. Even if a receiving MUA can parse this structure
 properly, it is nearly impossible to render in a way that the user
 can reason about the cryptographic properties of part "O" compared to
 part "Q".

3.4. Exposed Headers are Outside

 The Cryptographic Envelope fully encloses the Cryptographic Payload,
 whether the message is signed or encrypted or both. The Exposed
 Headers are considered to be outside of both.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

4. Message Composition

 This section describes the composition of a cryptographically-
 protected message with Protected Headers.

 We document legacy composition of cryptographically-protected
 messages (without protected headers) in Section 4.4, and then
 describe a revised version of that algorithm in Section 4.5 that
 produces conformant Protected Headers.

4.1. Copying All Headers

 All non-structural headers known to the composing MUA are copied to
 the MIME header of the Cryptographic Payload. The composing MUA
 SHOULD protect all known non-structural headers in this way.

 If the composing MUA omits protection for some of the headers, the
 receiving MUA will have difficulty reasoning about the integrity of
 the headers (see Section 11.2).

4.2. Confidential Subject

 When a message is encrypted, the Subject should be obscured by
 replacing the Exposed Subject with three periods: "..."

 This value ("...") was chosen because it is believed to be language
 agnostic and avoids communicating any potentially misleading
 information to the recipient (see Section 7.1 for a more detailed
 discussion).

4.3. Obscured Headers

 Due to compatibility and usability concerns, a Mail User Agent SHOULD
 NOT obscure any of: "From", "To", "Cc", "Message-ID", "References",
 "Reply-To", "In-Reply-To", (FIXME: MORE?) unless the user has
 indicated they have security constraints which justify the potential
 downsides (see Section 7 for a more detailed discussion).

 Aside from that limitation, this specification does not at this time
 define or limit the methods a MUA may use to convert Exposed Headers
 into Obscured Headers.

4.4. Message Composition without Protected Headers

 This section roughly describes the steps that a legacy MUA might use
 to compose a cryptographically-protected message _without_ Protected
 Headers.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 The message composition algorithm takes three parameters:

 * "origbody": the traditional unprotected message body as a well-
 formed MIME tree (possibly just a single MIME leaf part). As a
 well-formed MIME tree, "origbody" already has structural headers
 present (see Section 1.2.2).

 * "origheaders": the intended non-structural headers for the
 message, represented here as a table mapping from header names to
 header values.. For example, "origheaders['From']" refers to the
 value of the "From" header that the composing MUA would typically
 place on the message before sending it.

 * "crypto": The series of cryptographic protections to apply (for
 example, "sign with the secret key corresponding to OpenPGP
 certificate X, then encrypt to OpenPGP certificates X and Y").
 This is a routine that accepts a MIME tree as input (the
 Cryptographic Payload), wraps the input in the appropriate
 Cryptographic Envelope, and returns the resultant MIME tree as
 output,

 The algorithm returns a MIME object that is ready to be injected into
 the mail system:

 * Apply "crypto" to "origbody", yielding MIME tree "output"

 * For header name "h" in "origheaders":

 - Set header "h" of "output" to "origheaders[h]"

 * Return "output"

4.5. Message Composition with Protected Headers

 A reasonable sequential algorithm for composing a message _with_
 protected headers takes two more parameters in addition to
 "origbody", "origheaders", and "crypto":

 * "obscures": a table of headers to be obscured during encryption,
 mapping header names to their obscuring values. For example, this
 document recommends only obscuring the subject, so that would be
 represented by the single-entry table "obscures = {'Subject':
 '...'}". If header "Foo" is to be deleted entirely,
 "obscures['Foo']" should be set to the special value "null".

 * "legacy": a boolean value, indicating whether any recipient of the
 message is believed to have a legacy client (that is, a MUA that

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 is capable of decryption, but does not understand protected
 headers).

 The revised algorithm for applying cryptographic protection to a
 message is as follows:

 * if "crypto" contains encryption, and "legacy" is "true", and
 "obscures" contains any user-facing headers (see Section 1.2.1),
 wrap "orig" in a structure that carries a Legacy Display part:

 - Create a new MIME leaf part "legacydisplay" with header
 "Content-Type: text/rfc822-headers; protected-headers="v1""

 - For each obscured header name "obh" in "obscures":

 o If "obh" is user-facing:

 + Add "obh: origheaders[ob]" to the body of
 "legacydisplay". For example, if
 "origheaders['Subject']" is "lunch plans?", then add the
 line "Subject: lunch plans?" to the body of
 "legacydisplay"

 - Construct a new MIME part "wrapper" with "Content-Type:
 multipart/mixed"

 - Give "wrapper" exactly two subarts: "legacydisplay" and
 "origbody", in that order.

 - Let "payload" be MIME part "wrapper"

 * Otherwise:

 - Let "payload" be MIME part "origbody"

 * For each header name "h" in "origheaders":

 - Set header "h" of MIME part "payload" to "origheaders[h]"

 * FIXME: Enigmail adds "protected-headers="v1"" parameter to
 "payload" here. Is this necessary?

 * Apply "crypto" to "payload", producing MIME tree "output"

 * If "crypto" contains encryption:

 - For each obscured header name "obh" in "obscures":

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 o If "obscures[obh]" is "null":

 + Drop "obh" from "origheaders"

 o Else:

 + Set "origheaders[obh]" to "obscures[obh]"

 * For each header name "h" in "origheaders":

 - Set header "h" of "output" to "origheaders[h]"

 * return "output"

 Note that both new parameters, "obscured" and "legacy", are
 effectively ignored if "crypto" does not contain encryption. This is
 by design, because they are irrelevant for signed-only cryptographic
 protections.

5. Legacy Display

 MUAs typically display user-facing headers (Section 1.2.1) directly
 to the user. An encrypted message may be read by a decryption-
 capable legacy MUA that is unaware of this standard. The user of
 such a legacy client risks losing access to any obscured headers.

 This section presents a workaround to mitigate this risk by
 restructuring the Cryptographic Payload before encrypting to include
 a "Legacy Display" part.

5.1. Message Generation: Including a Legacy Display Part

 A generating MUA that wants to make an Obscured Subject (or any other
 user-facing header) visible to a recipient using a legacy MUA SHOULD
 modify the Cryptographic Payload by wrapping the intended body of the
 message in a "multipart/mixed" MIME part that prefixes the intended
 body with a Legacy Display part.

 The Legacy Display part MUST be of Content-Type "text/
 rfc822-headers", and MUST contain a "protected-headers" parameter
 whose value is "v1". It SHOULD be marked with "Content-Disposition:
 inline" to encourage recipients to render it.

 The contents of the Legacy Display part MUST be only the user-facing
 headers that the sending MUA intends to obscure after encryption.

 The original body (now a subpart) SHOULD also be marked with

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 "Content-Disposition: inline" to discourage legacy clients from
 presenting it as an attachment.

5.1.1. Legacy Display Transformation

 Consider a message whose Cryptographic Payload, before encrypting,
 that would have a traditional "multipart/alternative" structure:

X â��â�¬â�´multipart/alternative
Y â��â��â�´text/plain
Z â��â��â�´text/html

 When adding a Legacy Display part, this structure becomes:

V â��â�¬â�´multipart/mixed
W â��â��â�´text/rfc822‑headers ("Legacy Display" part)
X â��â�¬â�´multipart/alternative ("original body")
Y â��â��â�´text/plain
Z â��â��â�´text/html

 Note that with the inclusion of the Legacy Display part, the
 Cryptographic Payload is the "multipart/mixed" part (part "V" in the
 example above), so Protected Headers should be placed at that part.

5.1.2. When to Generate Legacy Display

 A MUA SHOULD transform a Cryptographic Payload to include a Legacy
 Display part only when:

 * The message is going to be encrypted, and

 * At least one user-facing header (see Section 1.2.1) is going to be
 obscured

 Additionally, if the sender knows that the recipient's MUA is capable
 of interpreting Protected Headers, it SHOULD NOT attempt to include a
 Legacy Display part. (Signalling such a capability is out of scope
 for this document)

5.2. Message Rendering: Omitting a Legacy Display Part

 A MUA that understands Protected Headers may receive an encrypted
 message that contains a Legacy Display part. Such an MUA SHOULD
 avoid rendering the Legacy Display part to the user at all, since it
 is aware of and can render the actual Protected Headers.

 If a Legacy Display part is detected, the Protected Headers should
 still be pulled from the Cryptographic Payload (part "V" in the

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 example above), but the body of message SHOULD be rendered as though
 it were only the original body (part "X" in the example above).

5.2.1. Legacy Display Detection Algorithm

 A receiving MUA acting on a message SHOULD detect the presence of a
 Legacy Display part and the corresponding "original body" with the
 following simple algorithm:

 * Check that all of the following are true for the message:

 * The Cryptographic Envelope must contain an encrypting
 Cryptographic Layer

 * The Cryptographic Payload must have a "Content-Type" of
 "multipart/mixed"

 * The Cryptographic Payload must have exactly two subparts

 * The first subpart of the Cryptographic Payload must have a
 "Content-Type" of "text/rfc822-headers"

 * The first subpart of the Cryptographic Payload's "Content-Type"
 must contain a property of "protected-headers", and its value must
 be "v1".

 * If all of the above are true, then the first subpart is the Legacy
 Display part, and the second subpart is the "original body".
 Otherwise, the message does not have a Legacy Display part.

5.3. Legacy Display is Decorative and Transitional

 As the above makes clear, the Legacy Display part is strictly
 decorative, for the benefit of legacy decryption-capable MUAs that
 may handle the message. As such, the existence of the Legacy Display
 part and its "multipart/mixed" wrapper are part of a transition plan.

 As the number of decryption-capable clients that understand Protected
 Headers grows in comparison to the number of legacy decryption-
 capable clients, it is expected that some senders will decide to stop
 generating Legacy Display parts entirely.

 A MUA developer concerned about accessiblity of the Subject header
 for their users of encrypted mail when Legacy Display parts are
 omitted SHOULD implement the Protected Headers scheme described in
 this document.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

6. Message Interpretation

 This document does not currently provide comprehensive
 recommendations on how to interpret Protected Headers. This is
 deliberate; research and development is still ongoing. We also
 recognize that the tolerance of different user groups for false
 positives (benign conditions misidentified as security risks), vs.
 their need for strong protections varies a great deal and different
 MUAs will take different approaches as a result.

 Some common approaches are discussed below.

6.1. Reverse-Copying

 One strategy for interpreting Protected Headers on an incoming
 message is to simply ignore any Exposed Header for which a Protected
 counterpart is available. This is often implemented as a copy
 operation (copying header back out of the Cryptographic Payload into
 the main message header) within the code which takes care of parsing
 the message.

 A MUA implementing this strategy should pay special attention to any
 user facing headers (Section 1.2.1). If a message has Protected
 Headers, and a user-facing header is among the Exposed Headers but
 missing from the Protected Headers, then an MUA implementing this
 strategy SHOULD delete the identified Exposed Header before
 presenting the message to the user.

This strategy does not risk raising a false alarm about harmless
deviations, but conversely it does nothing to inform the user if they
are under attack. This strategy does successfully mitigate and
thwart some attacks, including signature replay attacks
(Section 11.2) and participant modification attacks (Section 11.3).

6.2. Signature Invalidation

 An alternate strategy for interpreting Protected Headers is to
 consider the cryptographic signature on a message to be invalid if
 the Exposed Headers deviate from their Protected counterparts.

 This state should be presented to the user using the same interface
 as other signature verification failures.

 A MUA implementing this strategy MAY want to make a special exception
 for the "Subject:" header, to avoid invalidating the signature on any
 signed and encrypted message with a confidential subject.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Note that simple signature invalidation may be insufficient to defend
 against a participant modification attack (Section 11.3).

6.3. The Legacy Display Part

 This part is purely decorative, for the benefit of any recipient
 using a legacy decryption-capable MUA. See Section 5.2 for details
 and recommendations on how to handle the Legacy Display part.

6.4. Replying to a Message with Obscured Headers

 When replying to a message, many MUAs copy headers from the original
 message into their reply.

 When replying to an encrypted message, users expect the replying MUA
 to generate an encrypted message if possible. If encryption is not
 possible, and the reply will be cleartext, users typically want the
 MUA to avoid leaking previously-encrypted content into the cleartext
 of the reply.

 For this reason, an MUA replying to an encrypted message with
 Obscured Headers SHOULD NOT leak the cleartext of any Obscured
 Headers into the cleartext of the reply, whether encrypted or not.

 In particular, the contents of any Obscured Protected Header from the
 original message SHOULD NOT be placed in the Exposed Headers of the
 reply message.

7. Common Pitfalls and Guidelines

 Among the MUA authors who already implemented most of this
 specification, several alternative or more encompasing specifications
 were discussed and sometimes tried out in practice. This section
 highlights a few "pitfalls" and guidelines based on these discussions
 and lessons learned.

7.1. Misunderstood Obscured Subjects

 There were many discussions around what text phrase to use to obscure
 the "Subject:". Text phrases such as "Encrypted Message" were tried
 but resulted in both localization problems and user confusion.

 If the natural language phrase for the obscured "Subject:" is not
 localized (e.g. just English "Encrypted Message"), then it may be
 incomprehensible to a non-English-speaking recipient who uses a
 legacy MUA that renders the obscured "Subject:" directly.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 On the other hand, if it is localized based on the sender's MUA
 language settings, there is no guarantee that the recipient prefers
 the same language as the sender (consider a German speaker sending
 English text to an Anglophone). There is no standard way for a
 sending MUA to infer the language preferred by the recipient (aside
 from statistical inference of language based on the composed message,
 which would in turn leak information about the supposedly-
 confidential message body).

 Furthermore, implementors found that the phrase "Encrypted Message"
 in the subject line was sometimes understood by users to be an
 indication from the MUA that the message was actually encrypted. In
 practice, when some MUA failed to encrypt a message in a thread that
 started off with an obscured "Subject:", the value "Re: Encrypted
 Message" was retained even on those cleartext replies, resulting in
 user confusion.

 In contrast, using "..." as the obscured "Subject:" was less likely
 to be seen as an indicator from the MUA of message encryption, and it
 also neatly sidesteps the localization problems.

7.2. Reply/Forward Losing Subjects

 When the user of a legacy MUA replies to or forwards a message where
 the Subject has been obscured, it is likely that the new subject will
 be "Fwd: ..." or "Re: ..." (or the localized equivalent). This
 breaks an important feature: people are used to continuity of subject
 within a thread. It is especially unfortunate when a new participant
 is added to a conversation who never saw the original subject.

 At this time, there is no known workaround for this problem. The
 only solution is to upgrade the MUA to support Protected Headers.

 The authors consider this to be only a minor concern in cases where
 encryption is being used because confidentiality is important.
 However, in more opportunistic cases, where encryption is being used
 routinely regardless of the sensitivity of message contents, this
 cost becomes higher.

7.3. Usability Impact of Reduced Metadata

 Many mail user agents maintain an index of message metadata
 (including header data), which is used to rapidly construct mailbox
 overviews and search result listings. If the process which generates
 this index does not have access to the encrypted payload of a
 message, or does not implement Protected Headers, then the index will
 only contain the obscured versions Exposed Headers, in particular an
 obscured Subject of "...".

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 For sensitive message content, especially in a hosted MUA-as-
 a-service situation ("webmail") where the metadata index is
 maintained and stored by a third party, this may be considered a
 feature as the subject is protected from the third-party. However,
 for more routine communications, this harms usability and goes
 against user expectations.

 Two simple workarounds exist for this use case:

 1. If the metadata index is considered secure enough to handle
 confidential data, the protected content may be stored directly
 in the index once it has been decrypted.

 2. If the metadata index is not trusted, the protected content could
 be re-encrypted and encrypted versions stored in the index
 instead, which are then decrypted by the client at display time.

 In both cases, the process which decrypts the message and processes
 the Protected Headers must be able to update the metadata index.

 FIXME: add notes about research topics and other non-simple
 workarounds, like oblivious server-side indexing, or searching on
 encrypted data.

7.4. Usability Impact of Obscured Message-ID

 Current MUA implementations rely on the outermost Message-ID for
 message processing and indexing purposes. This processing often
 happens before any decryption is even attempted. Attempting to send
 a message with an obscured Message-ID header would result in several
 MUAs not correctly processing the message, and would likely be seen
 as a degradation by users.

 Furthermore, a legacy MUA replying to a message with an obscured
 "Message-ID:" would be likely to produce threading information
 ("References:", "In-Reply-To:") that would be misunderstood by the
 original sender. Implementors generally disapprove of breaking
 threads.

7.5. Usability Impact of Obscured From/To/Cc

 The impact of obscuring "From:", "To:", and "Cc:" headers has similar
 issues as discussed with obscuring the "Message-ID:" header in
 Section 7.4.

 In addition, obscuring these headers is likely to cause difficulties
 for a legacy client attempting formulate a correct reply (or "reply
 all") to a given message.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

7.6. Mailing List Header Modifications

 Some popular mailing-list implementations will modify the Exposed
 Headers of a message in specific, benign ways. In particular, it is
 common to add markers to the "Subject" line, and it is also common to
 modify either "From" or "Reply-To" in order to make sure replies go
 to the list instead of directly to the author of an individual post.

 Depending on how the MUA resolves discrepancies between the Protected
 Headers and the Exposed Headers of a received message, these mailing
 list "features" may either break or the MUA may incorrectly interpret
 them as a security breach.

 Implementors may for this reason choose to implement slightly
 different strategies for resolving discrepancies, if a message is
 known to come from such a mailing list. MUAs should at the very
 least avoid presenting false alarms in such cases.

8. Comparison with Other Header Protection Schemes

 Other header protection schemes have been proposed (in the IETF and
 elsewhere) that are distinct from this mechanism. This section
 documents the differences between those earlier mechanisms and this
 one, and hypothesizes why it has seen greater interoperable adoption.

 The distinctions include:

 * backward compatibility with legacy clients

 * compatibility across PGP/MIME and S/MIME

 * protection for both confidentiality and signing

8.1. S/MIME 3.1 Header Protection

 S/MIME 3.1 ([RFC3851]) introduces header protection via "message/
 rfc822" header parts.

 The problem with this mechanism is that many legacy clients
 encountering such a message were likely to interpret it as either a
 forwarded message, or as an unreadable substructure.

 For signed messages, this is particularly problematic - a message
 that would otherwise have been easily readable by a client that knows
 nothing about signed messages suddenly shows up as a message-within-
 a-message, just by virtue of signing. This has an impact on _all_
 clients, whether they are cryptographically-capable or not.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 For encrypted messages, whose interpretation only matters on the
 smaller set of cryptographically-capable legacy clients, the
 resulting message rendering is awkward at best.

 Furthermore, Formulating a reply to such a message on a legacy client
 can also leave the user with badly-structured quoted and attributed
 content.

 Additionally, a message deliberately forwarded in its own right
 (without preamble or adjacent explanatory notes) could potentially be
 confused with a message using the declared structure.

 The mechanism described here allows cryptographically-incapable
 legacy MUAs to read and handle cleartext signed messages without any
 modifications, and permits cryptographically-capable legacy MUAs to
 handle encrypted messages without any modifications.

 In particular, the Legacy Display part described in {#legacy-display}
 makes it feasible for a conformant MUA to generate messages with
 obscured Subject lines that nonetheless give access to the obscured
 Subject header for recipients with legacy MUAs.

8.2. The Content-Type Property "forwarded=no" {forwarded=no}

 Section A.1.2 of
 [I-D.draft-ietf-lamps-header-protection-requirements-01] refers to a
 proposal that attempts to mitigate one of the drawbacks of the scheme
 described in S/MIME 3.1 (Section 8.1).

 In particular, using the Content-Type property "forwarded="no""
 allows _non-legacy_ clients to distinguish between deliberately
 forwarded messages and those intended to use the defined structure
 for header protection.

 However, this fix has no impact on the confusion experienced by
 legacy clients.

8.3. pEp Header Protection

 [I-D.draft-luck-lamps-pep-header-protection-03] is applicable only to
 signed+encrypted mail, and does not contemplate protection of signed-
 only mail.

 In addition, the pEp header protection involved for "pEp message
 format 2" has an additional "multipart/mixed" layer designed to
 facilitate transfer of OpenPGP Transferable Public Keys, which seems
 orthogonal to the effort to protect headers.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Finally, that draft suggests that the exposed Subject header be one
 of "=?utf-8?Q?p=E2=89=A1p?=", "pEp", or "Encrypted message". "pEp" is
 a mysterious choice for most users, and see Section 7.1 for more
 commentary on why "Encrypted message" is likely to be problematic.

8.4. DKIM

 [RFC6736] offers DKIM, which is often used to sign headers associated
 with a message.

 DKIM is orthogonal to the work described in this document, since it
 is typically done by the domain operator and not the end user
 generating the original message. That is, DKIM is not "end-to-end"
 and does not represent the intent of the entity generating the
 message.

 Furthermore, a DKIM signer does not have access to headers inside an
 encrypted Cryptographic Layer, and a DKIM verifier cannot effectively
 use DKIM to verify such confidential headers.

8.5. S/MIME "Secure Headers"

 [RFC7508] describes a mechanism that embeds message header fields in
 the S/MIME signature using ASN.1.

 The mechanism proposed in that draft is undefined for use with PGP/
 MIME. While all S/MIME clients must be able to handle CMS and ASN.1
 as well as MIME, a standard that works at the MIME layer itself
 should be applicable to any MUA that can work with MIME, regardess of
 whether end-to-end security layers are provided by S/MIME or PGP/
 MIME.

 That mechanism also does not propose a means to provide
 confidentiality protection for headers within an encrypted-but-not-
 signed message.

 Finally, that mechanism offers no equivalent to the Legacy Display
 described in Section 5. Instead, sender and receiver are expected to
 negotiate in some unspecified way to ensure that it is safe to remove
 or modify Exposed Headers in an encrypted message.

8.6. Triple-Wrapping

 [RFC2634]
 defines "Triple Wrapping" as a means of providing cleartext
 signatures over signed and encrypted material. This can be used in
 combination with the mechanism described in [RFC7508] to authenticate
 some headers for transport using S/MIME.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 But it does not offer confidentiality protection for the protected
 headers, and the signer of the outer layer of a triple-wrapped
 message may not be the originator of the message either.

 In practice on today's Internet, DKIM ([RFC6736] provides a more
 widely-accepted cryptographic header-verification-for-transport
 mechanism than triple-wrapped messages.

9. Test Vectors

 The subsections below provide example messages that implement the
 Protected Header scheme.

 The secret keys and OpenPGP certificates from
 [I-D.draft-bre-openpgp-samples-00] can be used to decrypt and verify
 them.

 They are provided in textual source form as [RFC5322] messages.

9.1. Signed Message with Protected Headers

 This shows a clearsigned message. Its MIME message structure is:

 â��â�¬â�´multipart/signed

 â��â��â�´text/plain â�� Cryptographic Payload
 â��â��â�´application/pgp-signature

 Note that if this message had been generated without Protected
 Headers, then an attacker with access to it could modify the Subject
 without invalidating the signature. Such an attacker could cause Bob
 to think that Alice wanted to cancel the contract with BarCorp
 instead of FooCorp.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Received: from localhost (localhost [127.0.0.1]);
 Sun, 20 Oct 2019 09:18:28 ‑0400 (UTC‑04:00)
 MIME‑Version: 1.0
 Content‑Type: multipart/signed; boundary="1790868a14";
 protocol="application/pgp‑signature"; micalg="pgp‑sha512"
 From: Alice Lovelace <alice@openpgp.example>
 To: Bob Babbage <bob@openpgp.example>
 Date: Sun, 20 Oct 2019 09:18:11 ‑0400
 Subject: The FooCorp contract
 Message‑ID: <signed@protected‑headers.example>

 ‑‑1790868a14
 Content‑Type: text/plain; charset="us‑ascii"
 From: Alice Lovelace <alice@openpgp.example>
 To: Bob Babbage <bob@openpgp.example>
 Date: Sun, 20 Oct 2019 09:18:11 ‑0400
 Subject: The FooCorp contract
 Message‑ID: <signed@protected‑headers.example>

 Bob, we need to cancel this contract.

 Please start the necessary processes to make that happen today.

Thanks, Alice
‑‑
Alice Lovelace
President
OpenPGP Example Corp

‑‑1790868a14
content‑type: application/pgp‑signature

 -----BEGIN PGP SIGNATURE-----

wnUEARYKAB0FAl2sXpMWIQTrhbtfozp14V6UTmPyMVUMT0fjjgAKCRDyMVUMT0fj
jq3uAP4/K66bZXT4jFsmKLztz2Ihxjftgf3TaeD2uL05yWdJAQEAjRdWIh35C6MP
utqkLnFeLpkTwrMnncdF/G+so/yXvQA=
=UMd4
‑‑‑‑‑END PGP SIGNATURE‑‑‑‑‑

 --1790868a14--

9.2. Signed and Encrypted Message with Protected Headers

 This shows a simple encrypted message with protected headers. The
 encryption also contains an signature in the OpenPGP Message
 structure. Its MIME message structure is:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 â��â�¬â�´multipart/encrypted
 â��â��â�´application/pgp‑encrypted
 â��â��â�´application/octet‑stream
 â�§ (decrypts to)
 â��â��â�´text/plain â�� Cryptographic Payload

 The "Subject:" header is successfully obscured.

 Note that if this message had been generated without Protected
 Headers, then an attacker with access to it could have read the
 Subject. Such an attacker would know details about Alice and Bob's
 business that they wanted to keep confidential.

 The protected headers also protect the authenticity of subject line
 as well.

 The session key for this message's crypto layer is an AES-256 key
 with value
 "8df4b2d27d5637138ac6de46415661be0bd01ed12ecf8c1db22a33cf3ede82f2"
 (in hex).

 If Bob's MUA is capable of interpreting these protected headers, it
 should render the "Subject:" of this message as "BarCorp contract
 signed, let's go!".

Received: from localhost (localhost [127.0.0.1]);
 Mon, 21 Oct 2019 07:18:39 ‑0700 (UTC‑07:00)
MIME‑Version: 1.0
Content‑Type: multipart/encrypted; boundary="bcde3ce988";
 protocol="application/pgp‑encrypted"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Message‑ID: <signed+encrypted@protected‑headers.example>
Subject: ...

‑‑bcde3ce988
content‑type: application/pgp‑encrypted

 Version: 1

‑‑bcde3ce988
content‑type: application/octet‑stream

 -----BEGIN PGP MESSAGE-----

 wV4DR2b2udXyHrYSAQdAifmSGlN6dUG8WjtsDsVf3RoFUu69cEhUQyVMaUBEaSAw
 EAtGxmoM2YY6y/87UXI2USJMj9PiFn7RuV0pAFVT6NwMAY1JgLX5qoSdKXuLZ9CA

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 wcDMA3wvqk35PDeyAQv9HNVhvGMSyCXZjsu5LlLGPF/6XHnk3PtunCo8GpUd7Mg9
 zVDS0zK+dtePYHNgKZ47KLDBgu6XInVBWeeSkImaWjFirTmqp/GP20urKQ/phSkC
 vI88cEH+fCqeFxDcL5tb0RLm3/iv707CHvoOM2qCbV8WDSSvNY2FGlJZqqGO3mkE
 VhZFytVop12c/L5+PltIS0/P25KMoSuIIb9xenAncyLZ1a2M/NsgZjBqWeXFfQnZ
 ssMK1xOvNIYNxUzEws+U6un74OE5sBZeZCvM/nIf50iXvEQMxoc/MX2XFUA9Scid
 +bmy9nZCit0KQNk4ikrshgtxmG6xJfMv1IpnscQwMy9KfOAhnrVWFVHpzr+K7mXb
 yHHF4Ov1Cl2FvwHU6DujaoApkn/xg5BjbRZxfRfVF7LvZ3UJJ/v1XzGLv5LTL8Fr
 1S+Ql69M8yvftMiZ799dNgOT7jc4CY5yN7P2YQn5Z3Nm/gUWcGwuqwQecw0hs/87
 yCQzkDHAC62LL6+zHqc20sHbAeuQHcGttI9Vu8rEO+5OeDr3WjTB/UXvLKr/G9ty
 LUpaYYwFtNgMaRAg0niMV9xfwTFjLBmNkq/8N0mAOsZSO9lMZyUIfBiFbw5yWNzx
 TuKxZymZ3ts6ywvKOgzLNgF+AdtTQk5nkNIsh7Fd02RSl9heF3t47FXVSvBSo5KI
 FXuznjzK7VNl8fTp9MpBwp00Dai3jtKGQ3/XGiD4l/wa/QxfffojPAZ9UZpgA2Xx
 Uw3W4+zCNZNJ35QME6I2ysKwbgAQGFeKM57lLXrmIJWU7KEIDnc1MCBwsSt50yB8
 kIdSPXxK/Jon2wbATUN8Uuo3oLA2dpH8XncjrkqTooNjkK3uPrGNphDBVSMA5W5Z
 deHc9NmzETXLBPysc0LHWMUO8g4YnWB4sLq9ZBxTYYX9CYRJvdB8EZN4Dq+IUDVK
 W7Hu8oFkPRqU7oVa+utiZq5YvTXbIMJBWdUa8r8zlwz0jVsUJGBIPDWhs8Yse2JX
 54dNJRAy2X5M3KM1S2Aat1gHl35cft5pLYLp5/gs7GYgybhYfgXbcbBHE6/XTAtg
 L7ZbzN+AEDu24uPQaTN5jUA8MfQIkksRgIhZN3N8NBVltv4t+tbtIiaLLaQ/7Wdd
 X0BINwZxhBZHEtjljqf4VE4RlWpMriW+ezcrPU3zEcM62knjeCLCh9iseAuz1J1o
 R1o4DKwlVY9dJZigguO9kzz+K9n1/mpn8orV9kn5FyH9vs9ZF+RQiSHgpoZ3TKER
 iy4T7WPV1WzyPSTmlKktOGjgJ5nszKw8YarMjtXYiPNOShBWuBTxBeSyjCLhZ85m
 YAhS1znrJ9CzX3jjaZTHTd/5gYN7wVByUlw9OkyN2QQRFl6fg1xN6Tb79oGxDqh/
 BHb6PBgDtwnGmHdDmw==
 =rTjd
 ‑‑‑‑‑END PGP MESSAGE‑‑‑‑‑

 --bcde3ce988--

 Unwrapping the Cryptographic Layer yields the following content:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Content‑Type: text/plain; charset="us‑ascii"
 From: Alice Lovelace <alice@openpgp.example>
 To: Bob Babbage <bob@openpgp.example>
 Date: Mon, 21 Oct 2019 07:18:11 ‑0700
 Subject: BarCorp contract signed, let's go!
 Message‑ID: <signed+encrypted@protected‑headers.example>

 Hi Bob!

 I just signed the contract with BarCorp and they've set us up with
 an account on their system for testing.

 The account information is:

 Site: https://barcorp.example/
Username: examplecorptest
Password: correct‑horse‑battery‑staple

 Please get the account set up and apply the test harness.

 Let me know when you've got some results.

Thanks, Alice
‑‑
Alice Lovelace
President
OpenPGP Example Corp

9.3. Signed and Encrypted Message with Protected Headers and Legacy
 Display Part

 If Alice's MUA wasn't sure whether Bob's MUA would know to render the
 obscured "Subject:" header correctly, it might include a legacy
 display part in the cryptographic payload.

 This message is structured in the following way:

â��â�¬â�´multipart/encrypted
 â��â��â�´application/pgp‑encrypted
 â��â��â�´application/octet‑stream
 â�§ (decrypts to)
 â��â�¬â�´multipart/mixed â�� Cryptographic Payload
 â��â��â�´text/rfc822‑headers â�� Legacy Display Part
 â��â��â�´text/plain

 The example below shows the same message as Section 9.2.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 If Bob's MUA is capable of handling protected headers, the two
 messages should render in the same way as the message in Section 9.2,
 because it will know to omit the Legacy Display part as documented in
 Section 5.2.

 But if Bob's MUA is capable of decryption but is unaware of protected
 headers, it will likely render the Legacy Display part for him so
 that he can at least see the originally-intended "Subject:" line.

 For this message, the session key is an AES-256 key with value
 "95a71b0e344cce43a4dd52c5fd01deec5118290bfd0792a8a733c653a12d223e"
 (in hex).

Received: from localhost (localhost [127.0.0.1]);
 Mon, 21 Oct 2019 07:18:39 ‑0700 (UTC‑07:00)
MIME‑Version: 1.0
Content‑Type: multipart/encrypted; boundary="8f1c37571f";
 protocol="application/pgp‑encrypted"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Message‑ID: <sign+enc+legacy‑display@protected‑headers.example>
Subject: ...

‑‑8f1c37571f
content‑type: application/pgp‑encrypted

 Version: 1

‑‑8f1c37571f
content‑type: application/octet‑stream

 -----BEGIN PGP MESSAGE-----

 wV4DR2b2udXyHrYSAQdARLfz+1WBB1rOgBFbyrPQXZkCoiK/aA7SpG8mY39S8Tow
 cuEVQ1/a4B0VfwiKMyXomehg4GMo7akIAd7nh1LIG26eW+JeEjOJLhjrcg4x5Cg/
 wcDMA3wvqk35PDeyAQv9Hu30CZtCMGeHCVyvPeZZuYUWtHDADt4Wo3rg5va5bUu1
 nZCV/7vo9worPUvhN+qqLP0t4l0KbdklNofLKggJt/+LgJ/IvJv4KhwK6PR10Cba
 Lu2uyzUJK33WKCnvPzqsgEuE4OmbGcIZki3Bo+hKLgr0wS1sNi5okybM5JMmrqTw
 GXEmHdtohx4/YFsAJ++b4WEWb26jflBbj7NwyXdAESb/lcxi5ZKqXerRJiaN2X/x
 O/CiwZwSw3LA7VlCwN8Jb9AR4KjjFHIi6pUOp5S7Iz0Hs0juA6862gsuOrfGN8q8
 1KkTUPwAw0lQSnSpMxsnRS3+zv1aeWnm8K+bt1Q0E/Nl1E0GYtwiEBLVWX1ZQYCr
 DgrgFBl3/kvx8e+L+b6bEF9GVckZSGrkzJJeMx1JzGaR5MtkEJThsZAlyrJVpMuf
 un4N1Xy11G3IWNMCl8SfvPdnaSrytVej2s3ItL+0sxy3wi4hhCXle/YJuFwPTbEP
 G8jkjJknuVd/6kxf85mT0sI1AfS//hCeieoyi9cjeBVGh39z7bonD2bSp5RfYKI5
 ANj5ANV+hWeB8TGmI7Ka6OOU/43MuilIRAu79M+XnFjMqDQWmRLhydgkThdc63+l
 LTt4jZRnUI2IjxsZ5Bgc13agpWzsStJcjRYz8QWOoANc+A74MCX75gsFn8NbQknR
 xa/rXpMEF6TulvgCtV/tDCXOv2hnpu+JhIqwLgKIspJih60R8oSIr5qzX3B4AAcc

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 8Lr3cGrlohVtMDUYUkQF81+KsBWKJZWEvhZdQZC2nSzJSx5hgmw0D6ybYSGuCh9Z
 MyZbH38HJnwkZQWUYPyg4ui8XFi0PVY1WignaF6l0D0DhklzgkzO0Ey1BvEu4Zdg
 jkfUjYD4VnXNd4UyIwycfo8myrx3fqd5WcZRJmX9Njhlwn3a4l0adZlTIG9S0ytP
 VW9jijjGQ+IhizH+Q4jErcEuHJhNDCD0xOIpjQz68/NDm94BDmI2dyr07YOrQEQa
 ahDl7vMfMFQVncGp4zY0kYmNDOPSG3djCU5OhKA6dRz8cmigxvW0/CzMrOArMso3
 oW+EjldvkQIgeDwodARO8OLKKdQBQhcWIV4G3R8oaLXDxbP/3XAx7eU53jPi0ahW
 PbcD7IfHdrVVTyKLcolb0MqnP12gtnCmOwqWSA3D0aeuRGxIKCLnMVMID3I7OVjb
 1PMpXs4EsgIuVxWbm0qibVrw9yYd/4xRKKdZqYP+PCSo4aQEMzW7U+mWiZUmDE07
 4xzZlTd1qBRUgBKdteNjOcZ859hPZGREuG++JKBrL5Yr/kVBf8UFGLPES+8vslg3
 zMQ9K2FO50o4LxYyaKZEW9ihk2BbGB60+hiimtbpWjqZ79qZZ3PJqzd2Au7da7x4
 jKhOSvFAoLyze+8l2m+8uzGAQTh/1k6e3O6UcwdrV5Z4i41LZp2qdD7WBSfZD1tv
 IdvtbwnZ7YlLr/X0ESERPW4WWrDlHq4SDt5H16hgAbXVfYwmHxgAPawnIRLYVqZ6
 ViIf7Hfaqg==
 =QAR/
 ‑‑‑‑‑END PGP MESSAGE‑‑‑‑‑

 --8f1c37571f--

 Unwrapping the Cryptographic Layer yields the following content:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Content‑Type: multipart/mixed; boundary="6ae0cc9247"
 From: Alice Lovelace <alice@openpgp.example>
 To: Bob Babbage <bob@openpgp.example>
 Date: Mon, 21 Oct 2019 07:18:11 ‑0700
 Subject: BarCorp contract signed, let's go!
 Message‑ID: <sign+enc+legacy‑display@protected‑headers.example>

 ‑‑6ae0cc9247
 content‑type: text/rfc822‑headers; protected‑headers="v1"
 Content‑Disposition: inline

 Subject: BarCorp contract signed, let's go!

‑‑6ae0cc9247
Content‑Type: text/plain; charset="us‑ascii"

 Hi Bob!

 I just signed the contract with BarCorp and they've set us up with
 an account on their system for testing.

 The account information is:

 Site: https://barcorp.example/
Username: examplecorptest
Password: correct‑horse‑battery‑staple

 Please get the account set up and apply the test harness.

 Let me know when you've got some results.

Thanks, Alice
‑‑
Alice Lovelace
President
OpenPGP Example Corp

 --6ae0cc9247--

9.4. Multilayer Message with Protected Headers

 Some mailers may generate signed and encrypted messages with a
 multilayer cryptographic envelope. We show here how such a mailer
 might generate the same message as Section 9.2.

 A typical message like this has the following structure:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 â��â�¬â�´multipart/encrypted
 â��â��â�´application/pgp‑encrypted
 â��â��â�´application/octet‑stream
 â�§ (decrypts to)
 â��â�¬â�´multipart/signed
 â��â��â�´text/plain â�� Cryptographic Payload
 â��â��â�´application/pgp‑signature

 For this message, the session key is an AES-256 key with value
 "5e67165ed1516333daeba32044f88fd75d4a9485a563d14705e41d31fb61a9e9"
 (in hex).

Received: from localhost (localhost [127.0.0.1]);
 Mon, 21 Oct 2019 07:18:39 ‑0700 (UTC‑07:00)
MIME‑Version: 1.0
Content‑Type: multipart/encrypted; boundary="15d01ebd43";
 protocol="application/pgp‑encrypted"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Message‑ID: <multilayer@protected‑headers.example>
Subject: ...

‑‑15d01ebd43
content‑type: application/pgp‑encrypted

 Version: 1

‑‑15d01ebd43
content‑type: application/octet‑stream

 -----BEGIN PGP MESSAGE-----

 wV4DR2b2udXyHrYSAQdAOgQDEkyc6EDXP9maqDSnaxSKQ5Cli2idlkJr/fiRJUkw
 FBc7t5vaz9x2HIE1M87W8fljvfK9HQIcLRxLo4kba3ZI7wLbDUSQP5SXzV2agnf5
 wcDMA3wvqk35PDeyAQv7BFf4oXdwgK7+GaFykpweiQV9PtdzyQUyAZKTjblmH53S
 bURXXxQaJVs1v5sqM85WMwgBbCQw2Gjs2K9l4JBWubC/ROO2AKG8odPaj1XA+FW4
 cW3jP1G/hoHRhTsWFOYQm/+1lfa7DRt5WVPkIBSHECHP7NW5slLB0uGJaeopU4bY
 ZY+65r3ZV3ieTkexwEVkcAdLHGzgpCXyYfj1JwLWWHAuJv96K137Q37J36g9T8wR
 hlkIDRqIorY2IexI2lv/PsEHXrzUw4RT4HllriGmHmRJA45QoijnFA3ei+IuhIPm
 OcQmlyICZL40fznOaRWYHqp2oLaJ8OVHTU/ZAYurVj+0vsc7qcfxF69S9LvTSInu
 CtcamqybdH56wd575OdFKKcng75M19ttIXNguejwMJR0ERL/4xh0y5oN9v5fYzUM
 LiK1HIBTjY9JW/jbeqr+InuwTAEvh7Vfzjg+8bMhJMVnTgjea3FSdcfxsrnsZp30
 JY6SC70on74Di/zmBg1Z0sIxAVYh7Vc++W0eUIeEj+Azc4mIfaDZ5U3hHk1OV8Lt
 XCJz6r/KzUuy3bogwhVUL76kMvuKw/3zQ5zI2YYDpAybsXtUhVA6hg6Zy4JTtJEU
 +Z0H0a2EU3CYPBG+ic0PzxAdTz7iDb9AvwpRgWJrgBQmZ5J8bWjgvRTKdt7e2cz8
 0ESrfetg+VSEJLWWipNZNzNGaHlUO7ypgwjYYKfX0VAq5rhWCk8079/n4Xzcn9mt
 9UaqfjvaV6FuRDFTW1YVkVJdndnC9vQzkHVb6MPFA4fp5H3aY/j3yvMa5YaePv1v

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 3zA70nuFbe6j1RQO6KhiJBJA7x+MtnZFt6xByhdImVloSr7c9kfuRaFQ83YbwM5I
 vjrz29jB8+jG9msFeJ75ajFKpUiN1yVOltTQg+WS28osD3irb461X5YtJCCuD8+d
 i6EA7W9P/Hr1YJsaH1wFxYqEpvSClpHWUD/nMbUUWmhvTQ75yJyF1BDfEPmaHhsd
 vRBVkZgKdSUo8uNRsSakVWe+4D0U92P0kPyZog6LOOq5EILXnmtZpri6zGt0evgV
 qEc316nfQeWRism2KJot83TXIov6KIliB4THBo1Chnp/eCs634B4KF2Z1K2N4AHf
 8nIIfpJw60VqPrmOzUUvyabiqrebEkhJ7ZHesZJI+OL8UbaAFklaHMHv6PYWDyBl
 7XEwRV8MxqMADd094p5sPXOhj4kbCvHCAY08NFPGIPFVUuwE0YRvRhtVaqMVwf/o
 AHO6lGMdQqw1NhmRHkcdLK9qVdZvg5MPwm5w6n8/JvvsHkAVDpsBmvX9jeajI1pq
 X6b2cn/G9uNCM1K8zsYIbM/RMM1ILmTh1rgQjFc8S1xE2pQNydegk0JaQz/IqbAa
 GZy153vaUNzWSku5Ef3AjFP7YTyB+WRR+AHkAg2UawJq8FXR+KYMjWkg0BPBmhE+
 TXXt8IYUE0uudIAHplt4RWXfr1dfZH2UODdl2ZNyQExtPfTE4VUYtpCIrgSAERKD
 QBjq
 =ME+d
 ‑‑‑‑‑END PGP MESSAGE‑‑‑‑‑

 --15d01ebd43--

 Unwrapping the encryption Cryptographic Layer yields the following
 content:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Content-Type: multipart/signed; boundary="a6b911f1d1";

 protocol="application/pgp-signature"; micalg="pgp-sha512"

‑‑a6b911f1d1
Content‑Type: text/plain; charset="us‑ascii"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Subject: BarCorp contract signed, let's go!
Message‑ID: <multilayer@protected‑headers.example>

 Hi Bob!

 I just signed the contract with BarCorp and they've set us up with
 an account on their system for testing.

 The account information is:

 Site: https://barcorp.example/
Username: examplecorptest
Password: correct‑horse‑battery‑staple

 Please get the account set up and apply the test harness.

 Let me know when you've got some results.

Thanks, Alice
‑‑
Alice Lovelace
President
OpenPGP Example Corp

‑‑a6b911f1d1
content‑type: application/pgp‑signature

 -----BEGIN PGP SIGNATURE-----

wnUEARYKAB0FAl2tviMWIQTrhbtfozp14V6UTmPyMVUMT0fjjgAKCRDyMVUMT0fj
jv/lAP95zG/boihWaRRYusB5KInnMqz8DM9CrxCO/Z67FoZvQAD/WJKfIW/UaBaG
TvwLcfdYDnHVFi/sLCPzP7/+Rp/prQU=
=X47R
‑‑‑‑‑END PGP SIGNATURE‑‑‑‑‑

 --a6b911f1d1--

 Note the placement of the Protected Headers on the Cryptographic
 Payload specifically, which is not the immediate child of the
 encryption Cryptographic Layer.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

9.5. Multilayer Message with Protected Headers and Legacy Display Part

 And, a mailer that generates a multilayer cryptographic envelope
 might want to provide a Legacy Display part, if it is unsure of the
 capabilities of the recipient's MUA. We show here how sucha mailer
 might generate the same message as Section 9.2.

 Such a message might have the following structure:

â��â�¬â�´multipart/encrypted
 â��â��â�´application/pgp‑encrypted
 â��â��â�´application/octet‑stream
 â�§ (decrypts to)
 â��â�¬â�´multipart/signed
 â��â�¬â�´multipart/mixed â�� Cryptographic Payload
 â��â��â��â�´text/rfc822‑headers â�� Legacy Display Part
 â��â��â��â�´text/plain
 â��â��â�´application/pgp‑signature

 For this message, the session key is an AES-256 key with value
 "b346a2a50fa0cf62895b74e8c0d2ad9e3ee1f02b5d564c77d879caaee7a0aa70"
 (in hex).

Received: from localhost (localhost [127.0.0.1]);
 Mon, 21 Oct 2019 07:18:39 ‑0700 (UTC‑07:00)
MIME‑Version: 1.0
Content‑Type: multipart/encrypted; boundary="750bb87f7c";
 protocol="application/pgp‑encrypted"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Message‑ID: <multilayer+legacy‑display@protected‑headers.example>
Subject: ...

‑‑750bb87f7c
content‑type: application/pgp‑encrypted

 Version: 1

‑‑750bb87f7c
content‑type: application/octet‑stream

 -----BEGIN PGP MESSAGE-----

 wV4DR2b2udXyHrYSAQdAl9YvLLNZzswNHPuBf0LHXgrp7l6MvJ4bc1tgPZD8XGww
 mbzTgolXvZe/1NewcfrKpEr2dxQikm9XqvzdODcunsca++c+6sgDGNMNEzSgivaO
 wcDMA3wvqk35PDeyAQv/ZKJLN7S79WnezPjzy6RKJi6qPQgKR3X8zfZsnGCw7ooA
 Bx5zk+sO2XHM+ho8YJ0HAULkBvzXbDgRoe4VO1kn06nwYBzMnyotNcNf7p6KSfkB

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 ypiBZ3Orr/0fVaXoStNZfTFp+UqPNw0fVtbTyZRZ0AXmmxVbGPjxjb6m/qRWj26k
 0sNb/ruYPzpBEkBdMlK+wYlJHtwyV9gyXU7U33o0UrSf/CcnQcXmJ+OkJbEjUNW/
 MHN69jVY8WC9nOgL98qGLtqQwFaxBEemRCoh3PU4Qw52HHpSJBRJuWb/WjACQ9Ds
 wGjg5Q2lBUosnaFUvIFg+eP+aqshSEtSYMXHmERysA7hY91R9YSncPpAjTeb298N
 XTKlBmvM6JCT21Ur3y2mi8NmQdmn6J3Pa88MwNpUnJ3yWjNPJZVvbFUkseD3+sDL
 oLmxil75U8GoB1YxHoX7TTrkkkHPEJ6jlz3sjOXWByOEfuarSjlwn+QiFFGCMpSJ
 0TMye28sCTMs4X6eJSqi0sJ9AU7ecIHNwq9IhMtYcK+6xnY9C9uBoNfnHpigzHj/
 vq0mBnpvEMf9GkUNbkrzwwMu6wFaTSrcvAQjPN+llgvfI1B+lFhOloQJU3Rpuqop
 aOoj7LWoocdeCNQINUkflbX0nFf3sLs4lOT/RwfHauwr2PMb2umBNi4ML0gKfj+D
 eSoHqiKhDT2USVt1Kt/KnRC1KSd7lAf6U9rvyWA++w8V/gqt7PNVBREem9Ek8AEA
 o9uM37nBJuyJSlA6Tqo2GDw603izKbz8A+JlvWyUQWE106nqBX/LMkkm8zhl045+
 EUfKJGIMHFhEWaayPtLFtU1cDvFh2OeZftF1qN451RpWRDwEIVeA6IngotWAaejU
 QPLXtDvXKC8O2vIcdI95M+x9yq3or40KS0stZVQAgLZWiXFvvqwyTc+fiby2LYzv
 /JPVH3f+F3Vz229u/iob6mgLe3O1Xa2bhcwFqFG1AlpMx2f/ZJsBvYUJ4MMBM/S9
 xJ4QPna6oHilBfs72Y2pyCrG6KIBIeWkVd6XhLKaFq5QtKM/rO8IOFtgU7iiJYwD
 ZIyVqaV8weaRSF5uGWH2Mc+6/hSeQ+yx8h4sa26KkIwooHbSnx3sjefAB29h013G
 8n7u/T375w5Y3J3bHpM888BXUNJh0J+Yiey9PNIEljp577PLBv8sKP0FVpxxfxPO
 BFaSoJGiba1GqjJfLRsf3ExeA+ocrnuFfo6x+kyZ7zd0+4+jIQ6fQtF5dnoBbHLA
 iTyFZm24994qSOoOoZGEBA5DFsGktAEDfrD8mNYQR9ubY14zlhcOZblQ34w4WsTS
 C7olDgoWjos3UQggh+HN+ulp5BO+xTwCVCB85VoVH6pEIZ2IWcAo+R21OMIjyX5d
 aE8p3tcqQAGbdPsDR/WRTd/fvNLmEzLDv18ZuglY6b+f0qErG5ce1AJpEhsFZuiX
 2oCxVpmURf0T7j7EdrCC8Bhjaq5fw1PPp9Azqv7csYidhmeAw9NetwVo2+fg0H1z
 m7sB3QI2qqw4/5ErrKZ1CV109eMOUFMuM+fiJEu+vuXBayvviCPkz0pWHUmjexWS
 ISKPpt8ok3hLpojbNf96lDxChlpqaILSL6SopTicnw==
 =h5ce
 ‑‑‑‑‑END PGP MESSAGE‑‑‑‑‑

 --750bb87f7c--

 Unwrapping the encryption Cryptographic Layer yields the following
 content:

 Content-Type: multipart/signed; boundary="4e3b9ccaba";

 protocol="application/pgp-signature"; micalg="pgp-sha512"

‑‑4e3b9ccaba
Content‑Type: multipart/mixed; boundary="6ae0cc9247"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Subject: BarCorp contract signed, let's go!
Message‑ID: <multilayer+legacy‑display@protected‑headers.example>

‑‑6ae0cc9247
content‑type: text/rfc822‑headers; protected‑headers="v1"
Content‑Disposition: inline

 Subject: BarCorp contract signed, let's go!

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 ‑‑6ae0cc9247
 Content‑Type: text/plain; charset="us‑ascii"

 Hi Bob!

 I just signed the contract with BarCorp and they've set us up with
 an account on their system for testing.

 The account information is:

 Site: https://barcorp.example/
Username: examplecorptest
Password: correct‑horse‑battery‑staple

 Please get the account set up and apply the test harness.

 Let me know when you've got some results.

Thanks, Alice
‑‑
Alice Lovelace
President
OpenPGP Example Corp

 --6ae0cc9247--

‑‑4e3b9ccaba
content‑type: application/pgp‑signature

 -----BEGIN PGP SIGNATURE-----

wnUEARYKAB0FAl2tviMWIQTrhbtfozp14V6UTmPyMVUMT0fjjgAKCRDyMVUMT0fj
jj/AAQDqeRa+AaS9dHoYHE4sSGhnXfuTlB9WPbtI/3uLmpX4wgD/boo2TFUJ4VYs
KPDOt/ekjp079bvvfcSjpLNEI1sfSwA=
=Otfk
‑‑‑‑‑END PGP SIGNATURE‑‑‑‑‑

 --4e3b9ccaba--

9.6. An Unfortunately Complex Example

 For all of the potential complexity of the Cryptographic Envelope,
 the Cryptographic Payload itself can be complex. The Cryptographic
 Envelope in this example is the same as the previous example
 (Section 9.5). The Cryptographic Payload has protected headers and a
 legacy display part (also the same as Section 9.5), but in addition
 Alice's MUA composes a message with both plaintext and HTML variants,
 and Alice includes a single attachment as well.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 While this message is complex, a modern MUA could also plausibly
 generate such a structure based on reasonable commands from the user
 composing the message (e.g., Alice composes the message with a rich
 text editor, and attaches a file to the message).

 The key takeaway of this example is that the complexity of the
 Cryptographic Payload (which may contain a Legacy Display part) is
 independent of and distinct from the complexity of the Cryptographic
 Envelope.

 This message has the following structure:

â��â�¬â�´multipart/encrypted
 â��â��â�´application/pgp‑encrypted
 â��â��â�´application/octet‑stream
 â�§ (decrypts to)
 â��â�¬â�´multipart/signed
 â��â�¬â�´multipart/mixed â�� Cryptographic Payload
 â��â��â��â�´text/rfc822‑headers â�� Legacy Display Part
 â��â��â�¬â�´multipart/mixed
 â�� â��â�¬â�´multipart/alternative
 â�� â��â��â��â�´text/plain
 â�� â��â��â��â�´text/html
 â�� â��â��â�´text/x‑diff â�� attachment
 â��â��â�´application/pgp‑signature

 For this message, the session key is an AES-256 key with value
 "1c489cfad9f3c0bf3214bf34e6da42b7f64005e59726baa1b17ffdefe6ecbb52"
 (in hex).

Received: from localhost (localhost [127.0.0.1]);
 Mon, 21 Oct 2019 07:18:39 ‑0700 (UTC‑07:00)
MIME‑Version: 1.0
Content‑Type: multipart/encrypted; boundary="241c1d8182";
 protocol="application/pgp‑encrypted"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Message‑ID: <unfortunately‑complex@protected‑headers.example>
Subject: ...

‑‑241c1d8182
content‑type: application/pgp‑encrypted

 Version: 1

 ‑‑241c1d8182
 content‑type: application/octet‑stream

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 -----BEGIN PGP MESSAGE-----

wV4DR2b2udXyHrYSAQdAp4ZrYIrBddsWr41zuxkG+58YgQDeKk1h+gHTz1BmVFMw
oLGI9dIR1LEgCm7FGTB61oXa4JqxSM1+h6q+UFGHjypGMj0/E+BABTgoC7CuYrAr
wcDMA3wvqk35PDeyAQv9EHLWRWMLLSkSJSEqNuywgnAN2I+i6WaCou7t/vP0Looz
/VePnARGcwi6b4RSQYaClf95SOiqzqD56hiXW5yb+2r057HSvAVZ78r0ymCFN83Y
nu9Byy3vulvqueP1PgqJmBY0u5eJjgtCGQs2YM1bb++hyPFHPNsgJuAkB8YwSmqk
aIrFRi2YZXd61Zhvdl58f/ECFMkpmSQRROxddFSXjt/nFXXimWQFP4Jp/m1VjCBF
ne5bQpOdrBjWXWds7zUnFspCtj4RinFI7UjyLR9VelOkezyc58nAIgTdjD0wrp+g
RBdNBGSpoBMBj4t6gVCNMFQL04/UhwQmwl+R0gFDwd2XdJPa9ijCyxROFP9CNcNN
x1Jq+SgkdJMJLbsyWlF8GvioNOMg0cgSEoyXtwCBZV3IpXdMt1SmMAhEv6mmWR4t
zI6BJ3i0dX/y+djz93uj0Ty2fmd/h//OaI5JMn+muhNss4tRRHhNistqyjFO6qaj
cadwj/QetMWVAR8e8lDc0sPeASPx9QMDzFWI+joVIKZ7oAvHw6WArpS+Gu9rhIB6
aa9Xn0dn4l/xYDzFvZqSgVasL7+BFj1NZtdgvdgvLd/ACfAW4G5XvrQ+dEHW/p2n
oVP58W7jKMJNwDxZva1fwNb+6eWwkGVhzI11uX6n0mtL6UpfFYLfirSD/Z/IpMos
sJ1RCnox60W1JardwXIkx5rFgtHgFb9hUyyZKC6VXstuIoSAtlc7NCRsSwuP5PGY
f0g3ttgivLMZOV9Oankqijol6jFDUrNAZJrLZKYYs0AhIkWoDlwhsK4bWSyEk7Zc
BPR033MgGpY4CCadEWPZL4n5vhUsYnBr9LihKDzDWZzdU/5YQpM8OuLqqk9mxsuo
Oim8HPkJ2z1Itw58UIW23cqVXz8uKtEsywNSv8VlM2IVG9jHvhmnK4laZN2U+1bp
KIY9giBFlCqxSjyx2Knq2C7HaBelWjqaGUkH1YOdsnCKEj/JRJYo4ogOLy4xSHEz
8gaDQZjyHLICvsrL84RzDfxx+yWid0Gzzzf69/ux0bATkUXN5tMy4h2p15Fm8LtK
9IAQjiByqf0FKvfQLt8SleNMDPvBfscTCNb+N7aLoJARto2oLHyes8AxM18c4Qb+
ihNpDwtIvXUN9dn6moylna0Y2eo6zjGWK/bxKVvlNakwxtVOLHxpj1xuNiQC5LJR
n0rHsHOUZQUWTfgp+N8vdwMOJhLyD1yTiCbzrtuw+QYRCXBNBSkc1Jtr6yCESKr/
1ef03Ygtb0G/H0I6KDLVdrrc0TjjkD98hjILMc953coF4a3yKJOWoLGOWrWup+IX
kiax2FlJ3b13PZODENVfdhQ4ACKUTrl3eZNepZmwzVK8z8CPlQbRYEo7sET0IEBp
Vo7VnLeeUZzNOqwZkyipRNRfkQzMmTjbNZeKvsCQsoZx2goo1Pm7XG093z34RcK8
HHsrEvY7kymXoU1xS2gQYQcoiq4LBY42HJ/+mXcEKqSUuwINYVhlwutFL23T1uvp
9/eY6jyn5cc+QSCZMIf5MRKKruc13xzs/WaxVFd2NfLAghtlqqZj1ziKZ3XRLlwc
pesR9415yGakbBC2C5HwUOhHvv5NMuX4S2UHOiRX+XQzzEOafBekRCHAOXPfbTEm
Xj7wPJVSXS7vCV3K+2scAZopuOJMIOkegcJAsuata2GiHr2TbcRbMAZSQzrQ/wSe
GbkgLHSthKEXVEbkYMTHSDPClpThppfD40mBIHyhw3BbC8j3lVgEZ1EeXyJuhZDu
VzPeRxYD9Yun6UOYYbjBSiWNe59DylN1ZBTICgymnff+utfW94UXs93FGRGgSpNB
c8Jc3tlKd7VP+FlEKBmqFHRzE7fdnabQ3BUBnPdBwjkFqImVOLwwKEZ8MRowDjfu
tcjpUEvROWi/FORqmkZHik7AqfuCO4cB3g5AePYfweIEONXxK7yjjpGlmfNgVLBa
uHlSSNl7/oIRP1ivCNEUmmMbqvKnjrTx7i/0XKdHeyGMpVSaksH4Nj+Wz7jA+65K
iEhVOC2QoKSlI5W7v9fAQXCtNfXWlrrVSAqxk74rpIErdip8SpJloGOvtVtApi19
=p3e5
‑‑‑‑‑END PGP MESSAGE‑‑‑‑‑

 --241c1d8182--

 Unwrapping the encryption Cryptographic Layer yields the following
 content:

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Content-Type: multipart/signed; boundary="c72d4fa142";

 protocol="application/pgp-signature"; micalg="pgp-sha512"

‑‑c72d4fa142
Content‑Type: multipart/mixed; boundary="6ae0cc9247"
From: Alice Lovelace <alice@openpgp.example>
To: Bob Babbage <bob@openpgp.example>
Date: Mon, 21 Oct 2019 07:18:11 ‑0700
Subject: BarCorp contract signed, let's go!
Message‑ID: <unfortunately‑complex@protected‑headers.example>

‑‑6ae0cc9247
content‑type: text/rfc822‑headers; protected‑headers="v1"
Content‑Disposition: inline

 Subject: BarCorp contract signed, let's go!

‑‑6ae0cc9247
Content‑Type: multipart/mixed; boundary="8dfc0e9ecf"

‑‑8dfc0e9ecf
Content‑Type: multipart/alternative; boundary="32c4d5a901"

‑‑32c4d5a901
Content‑Type: text/plain; charset="us‑ascii"

 Hi Bob!

 I just signed the contract with BarCorp and they've set us up with
 an account on their system for testing.

 The account information is:

 Site: https://barcorp.example/
Username: examplecorptest
Password: correct‑horse‑battery‑staple

 Please get the account set up and apply the test harness.

 Let me know when you've got some results.

Thanks, Alice
‑‑
Alice Lovelace
President
OpenPGP Example Corp

 --32c4d5a901

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Content-Type: text/html; charset="us-ascii"

<html><head></head><body><p>Hi Bob!
</p><p>
I just signed the contract with BarCorp and they've set us up with
 an account on their system for testing.
</p><p>
The account information is:
</p><dl>
<dt>Site</dt><dd>
https://barcorp.example/
</dd>
<dt>Username</dt><dd><tt>examplecorptest</tt></dd>
<dt>Password</dt><dd>correct‑horse‑battery‑staple</dd>
</dl><p>
Please get the account set up and apply the test harness.
</p><p>
Let me know when you've got some results.
</p><p>
Thanks, Alice

‑‑

Alice Lovelace

President

OpenPGP Example Corp

</p></body></html>

 --32c4d5a901--

‑‑8dfc0e9ecf
Content‑Type: text/x‑diff; charset="us‑ascii"
Content‑Disposition: inline; filename="testharness‑config.diff"

diff ‑ruN a/testharness.cfg b/testharness.cfg
‑‑‑ a/testharness.cfg
+++ b/testharness.cfg
@@ ‑13,3 +13,8 @@
 endpoint = https://openpgp.example/test/
 username = testuser
 password = MJVMZlHR75mILg
+
+[barcorp]
+endpoint = https://barcorp.example/
+username = examplecorptest
+password = correct‑horse‑battery‑staple

 --8dfc0e9ecf--

 --6ae0cc9247--

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 ‑‑c72d4fa142
 content‑type: application/pgp‑signature

 -----BEGIN PGP SIGNATURE-----

wnUEARYKAB0FAl2tviMWIQTrhbtfozp14V6UTmPyMVUMT0fjjgAKCRDyMVUMT0fj
jrR3AP9H2o1HBGLwkz5qzBgGmXsXLrc2xbluWtYmiDQcnq3e9QEA+DaBG1gEXasg
7OfAEqT4DrOivtNo18CxpIPrskgOXws=
=Ul2/
‑‑‑‑‑END PGP SIGNATURE‑‑‑‑‑

 --c72d4fa142--

10. IANA Considerations

 FIXME: register content-type parameter for legacy-display part

 MAYBE: provide a list of user-facing headers, or a new "user-facing"
 column in some table of known RFC5322 headers?

 MAYBE: provide a comparable indicator for which headers are
 "structural" ?

11. Security Considerations

 This document describes a technique that can be used to defend
 against two security vulnerabilities in traditional end-to-end
 encrypted e-mail.

11.1. Subject Leak

 While e-mail structure considers the Subject header to be part of the
 message metadata, nearly all users consider the Subject header to be
 part of the message content.

 As such, a user sending end-to-end encrypted e-mail may inadvertently
 leak sensitive material in the Subject line.

 If the user's MUA uses Protected Headers and obscures the Subject
 header as described in Section 4.2 then they can avoid this breach of
 confidentiality.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

11.2. Signature Replay

 A message without Protected Headers may be subject to a signature
 replay attack, which attempts to violate the recipient's expectations
 about message authenticity and integrity. Such an attack works by
 taking a message delivered in one context (e.g., to someone else, at
 a different time, with a different subject, in reply to a different
 message), and replaying it with different message headers.

 A MUA that generates all its signed messages with Protected Headers
 gives recipients the opportunity to avoid falling victim to this
 attack.

 Guidance for how a message recipient can use Protected Headers to
 defend against a signature replay attack are out of scope for this
 document.

11.3. Participant Modification

 A trivial (if detectable) attack by an active network adversary is to
 insert an additional e-mail address in a "To" or "Cc" or "Reply-To"
 or "From" header. This is a staging attack against message
 confidentiality - it relies on followup action by the recipient.

 For an encrypted message that is part of an ongoing discussion where
 users are accustomed to doing "reply all", such an insertion would
 cause the replying MUA to encrypt the replying message to the
 additional party, giving them access to the conversation. If the
 replying MUA quotes and attributes cleartext from the original
 message within the reply, then the attacker learns the contents of
 the encrypted message.

 As certificate discovery becomes more automated and less noticeable
 to the end user, this is an increasing risk.

 An MUA that rejects Exposed Headers in favor of Protected Headers
 should be able to avoid this attack when replying to a signed
 message.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

12. Privacy Considerations

 This document only explicitly contemplates confidentiality protection
 for the Subject header, but not for other headers which may leak
 associational metadata. For example, "From" and "To" and "Cc" and
 "Reply-To" and "Date" and "Message-Id" and "References" and "In-
 Reply-To" are not explicitly necessary for messages in transit, since
 the SMTP envelope carries all necessary routing information, but an
 encrypted [RFC5322] message as described in this document will
 contain all this associational metadata in the clear.

 Although this document does not provide guidance for protecting the
 privacy of this metadata directly, it offers a platform upon which
 thoughtful implementations may experiment with obscuring additional
 e-mail headers.

13. Document Considerations

 [RFC Editor: please remove this section before publication]

 This document is currently edited as markdown. Minor editorial
 changes can be suggested via merge requests at
 https://github.com/autocrypt/protected-headers or by e-mail to the
 authors. Please direct all significant commentary to the public IETF
 LAMPS mailing list: spasm@ietf.org

13.1. Document History

 Changes between version -00 and -01:

 * Credit Randall for "correct horse battery staple".

 * Adjust test vectors to ensure no line in the generated .txt format
 exceeds 72 chars.

 * Minor formatting cleanup to appease idnits.

 * Update references to more recent documents (RFC 2822 -> 5322, -00
 to -01 of draft-ietf-lamps-header-protection-requirements).

14. Acknowledgements

 The set of constructs and algorithms in this document has a previous
 working title of "Memory Hole", but that title is no longer used as
 different implementations gained experience in working with it.

 These ideas were tested and fine-tuned in part by the loose
 collaboration of MUA developers known as [Autocrypt].

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 Additional feedback and useful guidance was contributed by attendees
 of the OpenPGP e-mail summit ([OpenPGP-Email-Summit-2019]).

 The following people have contributed implementation experience,
 documentation, critique, and other feedback:

 * Holger Krekel

 * Patrick Brunschwig

 * Vincent Breitmoser

 The password example used in Section 9 comes from [xkcd936].

15. References

15.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3156]
 Elkins, M., Del Torto, D., Levien, R., and T. Roessler,
 "MIME Security with OpenPGP", RFC 3156,
 DOI 10.17487/RFC3156, August 2001,
 <https://www.rfc-editor.org/info/rfc3156>.

 [RFC4880]
 Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007,
 <https://www.rfc-editor.org/info/rfc4880>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

 [Autocrypt]

 "Autocrypt Specification 1.1", 13 October 2019,
 <https://autocrypt.org/level1.html>.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 [I-D.draft-bre-openpgp-samples-00]

 Einarsson, B., juga, j., and D. Gillmor, "OpenPGP Example
 Keys and Certificates", Work in Progress, Internet-Draft,
 draft-bre-openpgp-samples-00, 15 October 2019,
 <http://www.ietf.org/internet-drafts/draft-bre-openpgp-
 samples-00.txt>.

 [I-D.draft-ietf-lamps-header-protection-requirements-01]

 Melnikov, A. and B. Hoeneisen, "Problem Statement and
 Requirements for Header Protection", Work in Progress,
 Internet-Draft, draft-ietf-lamps-header-protection-
 requirements-01, 29 October 2019, <http://www.ietf.org/
 internet-drafts/draft-ietf-lamps-header-protection-
 requirements-01.txt>.

 [I-D.draft-luck-lamps-pep-header-protection-03]

 Luck, C., "pretty Easy privacy (pEp): Progressive Header
 Disclosure", Work in Progress, Internet-Draft, draft-luck-
 lamps-pep-header-protection-03, 5 July 2019,
 <http://www.ietf.org/internet-drafts/draft-luck-lamps-pep-
 header-protection-03.txt>.

 [OpenPGP-Email-Summit-2019]

 "OpenPGP Email Summit 2019", 13 October 2019,
 <https://wiki.gnupg.org/OpenPGPEmailSummit201910>.

 [RFC2634]
 Hoffman, P., Ed., "Enhanced Security Services for S/MIME",
 RFC 2634, DOI 10.17487/RFC2634, June 1999,
 <https://www.rfc-editor.org/info/rfc2634>.

 [RFC3851]
 Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification",
 RFC 3851, DOI 10.17487/RFC3851, July 2004,
 <https://www.rfc-editor.org/info/rfc3851>.

 [RFC6736]
 Brockners, F., Bhandari, S., Singh, V., and V. Fajardo,
 "Diameter Network Address and Port Translation Control
 Application", RFC 6736, DOI 10.17487/RFC6736, October
 2012, <https://www.rfc-editor.org/info/rfc6736>.

 [RFC7508]
 Cailleux, L. and C. Bonatti, "Securing Header Fields with
 S/MIME", RFC 7508, DOI 10.17487/RFC7508, April 2015,
 <https://www.rfc-editor.org/info/rfc7508>.

 [RFC8551]
 Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", RFC 8551, DOI 10.17487/RFC8551,
 April 2019, <https://www.rfc-editor.org/info/rfc8551>.

Internet‑Draft Protected Headers for Cryptographic E‑mail November 2019

 [xkcd936]
 Munroe, R., "xkcd: Password Strength", 10 August 2011,
 <https://www.xkcd.com/936/>.

Authors' Addresses

Bjarni RÃºnar Einarsson
Mailpile ehf
Baronsstigur
Iceland

 Email: bre@mailpile.is

juga
Independent

 Email: juga@riseup.net

Daniel Kahn Gillmor
American Civil Liberties Union
125 Broad St.
New York, NY, 10004
United States of America

 Email: dkg@fifthhorseman.net

draft-birkholz-rats-architecture-03 - Remote Attestation Procedures Architecture

draft-birkholz-rats-architecture-03 - Remote Attestation Procedures Architecture

Index
Prev
Next
Forward 5

RATS Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 7, 2020

H. Birkholz

Fraunhofer SIT

M. Wiseman

GE Global Research

H. Tschofenig

ARM Ltd.

N. Smith

Intel

M. Richardson

Sandelman Software Works

November 04, 2019

Remote Attestation Procedures Architecture

draft-birkholz-rats-architecture-03

Abstract

 An entity (a relying party) requires a source of truth and evidence
 about a remote peer to assess the peer's trustworthiness. The
 evidence is typically a believable set of claims about its host,
 software or hardware platform. This document describes an
 architecture for such remote attestation procedures (RATS).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Motivation

	 1.2. Opportunities

	 1.3. Overview of Document

	 1.4. RATS in a Nutshell

	 1.5. Remote Attestation Workflow

	 1.6. Message Flows
	 1.6.1. Passport Model

	 1.6.2. Background Check

	2. Terminology

	3. Reference use cases
	 3.1. Device Capabilities/Firmware Attestation

	 3.2. IETF TEEP WG Use-Case

	 3.3. Safety Critical Systems

	 3.4. Virtualized Multi-Tenant Hosts

	 3.5. Cryptographic Key Attestation

	 3.6. Geographic Evidence

	 3.7. Device Provenance Attestation

	4. Conceptual Overview
	 4.1. Two Types of Environments

	 4.2. Evidence Creation Prerequisites

	 4.3. Trustworthiness

	 4.4. Workflow

	 4.5. Interoperability between RATS

	5. RATS Architecture
	 5.1. Goals

	 5.2. Attestation Principles

	 5.3. Attestation Workflow
	 5.3.1. Roles

	 5.3.2. Role Messages

	 5.4. Principals (Entities?) - Containers for the Roles

	6. Privacy Considerations

	7. Security Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 Remote Attestation provides a way for an entity (the Relying Party)
 to determine the health and provenance of an endpoint/host (the
 Attester). Knowledge of the health of the endpoint allows for a
 determination of trustworthiness of the endpoint.

1.1. Motivation

 The IETF has long spent it's time focusing on threats to the
 communication channel (see [RFC3552] and [DOLEV-YAO]), assuming that
 endpoints could be trusted and were under the observation of trusted,
 well-trained professionals. This assumption has not been true since
 the days of the campus mini-computer. For some time after the
 desktop PC became ubiquitous, the threat to the endpoints has been
 dealt with as an internal matter, with generally poor results.
 Enterprises have done some deployment of Network Endpoint Assessment
 ([RFC5209]) to assess the security posture about an endpoint, but it
 has not been ubiquitous.

 The movement towards personal mobile devices ("smartphones") and the
 continuing threat from unmanaged residential desktops has resulted in
 a renewed interest in standardizing internet-scale endpoint remote
 attestation. Additionally, the rise of the Internet of Things (IoT)
 has made this issue even more critical: some skeptics have even
 renamed it to the Internet of Threats [iothreats] :-) IoT devices
 have poor or non-existent user interfaces, as such as there are not
 even good ways to assess the health of the devices manually: a need
 to determine the health via remote attestation is now critical.

 In addition to the health of the device, knowledge of its provenance
 helps to determine the level of trust, and prevents attacks to the
 supply chain.

1.2. Opportunities

 The Trusted Platform Module (TPM) is now a commonly available
 peripheral on many commodity compute platforms, both servers and
 desktops. Smartphones commonly have either an actual TPM, or have
 the ability to emulate one in software running in a Trusted Execution
 Environment [I-D.ietf-teep-architecture]. There are now few barriers
 to creating a standards-based system for remote attestation
 procedures.

 A number of niche solutions have emerged that provide for use-case
 specific remote attestation, but none have the generality needed to
 be used across the Internet.

1.3. Overview of Document

 The architecture described in this document (along with the
 accompanying solution and reference documents) enables the use of
 common formats for communicating Claims about an Attester to a
 Relying Party. [FIXME Attester? Flows? To what end?]

 Existing transports were not designed to carry attestation Claims.
 It is therefore necessary to design serializations of Claims that fit
 into a variety of transports, for instance: X.509 certificates, TLS
 negotiations, YANG modules or EtherNet/IP. There are also new,
 greenfield uses for remote attestation. Transport and serialization
 of these can be done without retrofitting. This is (will be)
 described in [INSERT reference to adopted document on transport].

 While it is not anticipated that the existing niche solutions
 described in the use cases section Section 3 will exchange claims
 directly, the use of a common format enables common code. As some of
 the code needs to be in intentionally hard to modify trusted modules,
 the use of a common formats and transfer protocols significantly
 reduces the cost of adoption to all parties. This commonality also
 significantly reduces the incidence of critical bugs.

 In some environments the collection of Evidence by the Attester to be
 provided to the Verifier is part of an existing protocol: this
 document does not change that, rather embraces those legacy
 mechanisms as part of the specification. This is an evolutionary
 path forward, not revolutionary. Yet in other greenfield
 environments, there is a desire to have a standard for Evidence as
 well as for Attestation Results, and this architecture outlines how
 that is done.

 This introduction gives an overview of the message flows and roles
 involved. Following this, is a terminology section that is
 referenced normatively by other documents and is a key part of this
 document. There is then a section on use cases and how they leverage
 the roles and workflows described.

 In this document, terms defined within this document are consistently
 Capitalized [work in progress. please raise issues, if there are
 Blatant inconsistencies].

 Current verticals that use remote attestation include:

 o The Trusted Computing Group "Network Device Attestation Workflow"
 [I-D.fedorkow-rats-network-device-attestation]

 o Android Keystore [keystore]

 o Fast Identity Online (FIDO) Alliance attestation [fido]

 o A number of Intel SGX niche systems based upon OTRP.

1.4. RATS in a Nutshell

 1. Remote Attestation message flows typically convey Claims that
 contain the trustworthiness properties associated with an
 Attested Environment (Evidence).

 2. A corresponding provisioning message flows conveys Reference
 trustworthiness claims that can be compared with attestation
 Evidence. Reference Values typically consist of firmware or
 software digests and details about what makes the attesting
 module a trusted source of Evidence.

 3. Relying Parties are performing tasks such as managing a resource,
 controlling access, and/or managing risk. Attestation Results
 helps Relying Parties determine levels of trust.

1.5. Remote Attestation Workflow

 The logical information flow is from Attester to Verifier to Relying
 Party. There are variations presented below on how this integrates
 into actual protocols.

 * Asserter *

 |
 |
 |Known‑Good‑Values
 |Endorsements
 |
 v
 .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | Verifier |
 .‑‑‑‑‑‑‑‑‑>| |‑‑‑‑‑‑‑‑‑‑.
 | | | |
 | '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' |
 | |
 |Evidence |Attestation Results
 | |(Claims)
 | |
 | v
.‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑. .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
Attester		Relying Party
'‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'

 Figure 1: RATS Workflow

 In the architecture shown above, specific content items (payload
 conveyed in message flows) are identified:

 o Evidence is as set of believable Claims about distinguishable
 Environments made by an Attester.

 o Known-Good-Values are reference Claims used to appraise Evidence
 by an Verifier.

 o Endorsements are reference Claims about the type of protection
 that enables an Attester to create believable Evidence.
 Endorsements enable trust relationships towards system components
 or environments Evidence cannot be created for by an Attester.

 o Attestation Results are the output from the appraisal of Evidence,
 Known-Good-Values and Endorsements and are consumed by Relying
 Parties.

 Attestation Results are the output of RATS.

 Assessment of Attestation Results is be multi-faceted and out-of-
 scope for the architecture.

 If appropriate Endorsements about the Attester are available, Known-
 Good-Values about the Attester are available, and if the Attester is
 capable of creating believable Evidence - then the Verifier is able
 to create Attestation Results that enable Relying Parties to
 establish a level of confidence in the trustworthiness of the
 Attester.

 The Asserter role and the format for Known-Good-Values and
 Endorsements are not subject to standardization at this time. The
 current verticals already include provisions for encoding and/or
 distributing these objects.

1.6. Message Flows

 Two distinct flows have been identified for passage of Evidence and
 production of Attestation Results. It is possible that there are
 additional situations which are not captured by these two flows.

1.6.1. Passport Model

 In the Passport Model message flow the Attester provides it's
 Evidence directly to the Verifier. The Verifier will evaluate the
 Evidence and then sign an Attestation Result. This Attestation
 Result is returned to the Attester, and it is up to the Attester to
 communicate the Attestation Result (potentially including the
 Evidence, if disclosable) to the Relying Party.

 * Asserter *

 |Known‑Good‑Values
 |Endorsements
 |
 v
 .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | Verifier |
 | |
 | |
 '‑‑‑‑‑‑‑‑‑‑‑‑|‑‑'
 ^ |
 | |Attestation Results
Evidence | |(Claims)
 | |
 | |
 | v
 .‑‑‑|‑‑‑‑‑‑‑‑‑‑‑. .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | Attester | | Relying Party |
 | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
 | | Attestation Results | |
 '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' (Claims) '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'

 Figure 2: RATS Passport Flow

 This flow is named in this way because of the resemblance of how
 Nations issue Passports to their citizens. The nature of the
 Evidence that an individual needs to provide to it's local authority
 is specific to the country involved. The citizen retains control of
 the resulting document and presents it to other entities when it
 needs to assert a citizenship or identity claim.

1.6.2. Background Check

 In the Background-Check message flow the Attester provides it's
 Evidence to the Relying Party. The Relying Party sends this evidence
 to a Verifier of its choice. The Verifier will evaluate the Evidence
 and then sign an Attestation Result. This Attestation Result is
 returned to the Relying Party, which processes it directly.

 * Asserter *

 |Known‑Good‑Values
 |Endorsements
 |
 v
 .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | Verifier |
 | |
 | |
 '‑‑^‑‑‑‑‑‑‑‑‑|‑‑'
 | |
 | |Attestation Results
 Evidence | |(Claims)
 | |
 | v
.‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑. .‑‑|‑‑‑‑‑‑‑‑‑‑‑‑.
| Attester | Evidence | Relying Party |
| ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
| | | |
'‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑' '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'

 Figure 3: RATS Background Check Flow

 This flow is named in this way because of the resemblance of how
 employers and volunteer organizations perform background checks.
 When a prospective employee provides claims about education or
 previous experience, the employer will contact the respective
 institutions or former employers to validate the claim. Volunteer
 organizations often perform police background checks on volunteers in
 order to determine the volunteer's trustworthiness.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Appraisal: A Verifier process that compares Evidence to Reference
 values while taking into account Endorsements and produces
 Attestation Results.

Asserter: See Section 5.3.1.2.

Attester: See Section 5.3.1.1.

Attested Environment: A target environment that is observed or
 controlled by an Attesting Environment.

Attesting Environment: An environment capable of making
 trustworthiness Claims about an Attested Environment.

Background‑Check Message Flow: An attestation workflow where the
 Attester provides Evidence to a Relying Party, who consults one or
 more Verifiers who supply Attestation Results to the Relying
 Party. See Section 1.6.2.

Claim: A statement about the construction, composition, validation
 or behavior of an Entity that affects trustworthiness. Evidence,
 Reference Values and Attestation Results are expressions that
 consists of one or more Claims.

Conveyance: The process of transferring Evidence, Reference Values
 and Attestation Results between Entities participating in
 attestation workflow.

Entity: A device, component (see System Component [RFC4949]), or
 environment that implements one or more Roles.

Evidence: See Section 5.3.2.1.

Passport Message Flow: An attestation workflow where the Attester
 provides Evidence to a Verifier who returns Attestation Results
 that are then forwarded to one or more Relying Parties. See
 Section 1.6.1.

Reference Values: See Section 5.3.2.2. Also referred to as Known‑
 Good‑Values.

Relying Party: See Section 5.3.1.4.

Attestation Results: See Section 5.3.2.3.

Role: A function or process in an attestation workflow, typically
 described by: Attester, Verifier, Relying Party and Asserter.

Verifier: See Section 5.3.1.3.

3. Reference use cases

 This section provides an overview of a number of distinct use cases
 that benefit from a standardized claim format. In addition to
 outlining the user, the specific message flow is identified from
 among the flows detailed in Section 1.6.

3.1. Device Capabilities/Firmware Attestation

 This is a large category of claims that includes a number of
 subcategories, not detailed here.

Use case name: Device Identity

Who will use it: Network Operators, larger enterprises

Attester: varies

Message Flow: sometimes passport and sometimes background check

Relying Party: varies

Description: Network operators want a trustworth report of identity
 and version of information of the hardware and software on the
 machines attached to their network. The process starts with some
 kind of Root of Trust that provides device identity and protected
 storage for measurements. The mechanism performs a series of
 measurements, and expresses this with an attestation as to the
 hardware and firmware/software which is running.

 This is a general description for which there are many specific use
 cases, including [I-D.fedorkow-rats-network-device-attestation]
 section 1.2, "Software Inventory"

3.2. IETF TEEP WG Use-Case

Use case name: TAM validation

Who will use it: The TAM server

Message Flow: background check

Attester: Trusted Execution Environment (TEE)

Relying Party: end‑application

Description: The "Trusted Application Manager (TAM)" server wants to
 verify the state of a TEE, or applications in the TEE, of a
 device. The TEE attests to the TAM, which can then decide whether
 to install sensitive data in the TEE, or whether the TEE is out of
 compliance and the TAM needs to install updated code in the TEE to
 bring it back into compliance with the TAM's policy.

3.3. Safety Critical Systems

Use case name: Safety Critical Systems

Who will use it: Power plants and other systems that need to assert
 their current state, but which can not accept any inputs from the
 outside. The corollary system is a black‑box (such as in an
 aircraft), which needs to log the state of a system, but which can
 never initiate a handshake.

Message Flow: background check

Attester: web services and other sources of status/sensor
 information

Relying Party: open

Claims used as Evidence: the beginning and ending time as endorsed
 by a Time Stamp Authority, represented by a time stamp token. The
 real time clock of the system itself. A Root of Trust for time;
 the TPM has a relative time from startup.

Description: These requirements motivate the creation of the Time‑
 Base Unidirectional Attestation (TUDA) [I‑D.birkholz‑rats‑tuda],
 the output of TUDA is typically a secure audit log, where
 freshness is determined by synchronization to a trusted source of
 external time.

 The freshness is preserved in the Evidence by the use of a Time
 Stamp Authority (TSA) which provides Time Stamp Tokens (TST).

3.4. Virtualized Multi-Tenant Hosts

Use case name: Multi‑Tenant Hosts

Who will use it: Virtual machine systems

Message Flow: passport

Attester: virtual machine hypervisor

Relying Party: network operators

Description: The host system will do verification as per Section 3.1

 The tenant virtual machines will do verification as per
 Section 3.1.

 The network operator wants to know if the system _as a whole_ is
 free of malware, but the network operator is not allowed to know
 who the tenants are.

 This is contrasted to the Chassis + Line Cards case (To Be
 Defined: TBD).

 Multiple Line Cards, but a small attestation system on the main
 card can combine things together. This is a kind of proxy.

3.5. Cryptographic Key Attestation

 Cryptographic Attestion includes subcategories such as Device Type
 Attestation (the FIDO use case), and Key storage Attestation (the
 Android Keystore use case), and End-User Authorization.

Use case name: Key Attestation

Who will use it: network authentication systems

Message Flow: passport

Attester: device platform

Relying Party: internet peers

Description: The relying party wants to know how secure a private
 key that identifies an entity is. Unlike the network attestation,
 the relying party is not part of the network infrastructure, nor
 do they necessarily have a business relationship (such as
 ownership) over the end device.

 The Device Type Attestation is provided by a Firmware TPM
 performing the Verifier function, creating Attestation Results
 that indicate a particular model/type of device. In TCG terms,
 this is called Implicit Attestation, in this case the Attested
 Environment is the (smartphone) Rich Execution Environment (REE)
 ([I-D.ietf-teep-architecture] section 2), and the Attesting
 Environment is within the TEE.

3.6. Geographic Evidence

Use case name: Location Evidence

Who will use it: geo‑fenced systems

Message Flow: passport (probably)

Attester: secure GPS system(s)

Relying Party: internet peers

Description: The relying party wants to know the physical location
 (on the planet earth, using a geodetic system) of the device.
 This may be provided directly by a GPS/GLONASS/BeiDou/Galileo
 module that is incorporated into a TPM. This may also be provided
 by collecting other proximity messages from other device that the
 relying party can form a trust relationship with.

3.7. Device Provenance Attestation

Use case name: RIV ‑ Device Provenance

Who will use it: Industrial IoT devices

Message Flow: passport

Attester: network management station

Relying Party: a network entity

Description: A newly manufactured device needs to be onboarded into
 a network where many if not all device management duties are
 performed by the network owner. The device owner wants to verify
 the device originated from a legitimate vendor. A cryptographic
 device identity such as an IEEE802.1AR is embedded during
 manufacturing and a certificate identifying the device is
 delivered to the owner onboarding agent. The device authenticates
 using its 802.1AR IDevID to prove it originated from the expected
 vendor.

 The device chain of custody from the original device manufacturer to
 the new owner may also be verified as part of device provenance
 attestation. The chain of custody history may be collected by a
 cloud service or similar capability that the supply chain and owner
 agree to use.

 [I-D.fedorkow-rats-network-device-attestation]
 section 1.2 refers to
 this as "Provable Device Identity", and section 2.3 details the
 parties.

4. Conceptual Overview

 In network protocol exchanges, it is often the case that one entity
 (a Relying Party) requires an assessment of the trustworthiness of a
 remote entity (an Attester or specific system components [RFC4949]
 thereof). Remote ATtestation procedureS (RATS) enable Relying
 Parties to establish a level of confidence in the trustworthiness of
 Attesters through the

 o Creation,

 o Conveyance, and

 o Appraisal

 of attestation Evidence.

Qualities of Evidence: Evidence is composed of Claims about
 trustworthiness (the set of Claims is unbounded). The system
 characteristics of Attesters ‑ the Environments they are composed‑
 of, and their continuous development ‑ have an impact on the
 veracity of trustworthiness Claims included in valid Evidence.

 Valid Evidence about the intactness of an Attester must be
 impossible to create by an untrustworthy or compromised
 Environment of an Attester.

Qualities of Environments: The resilience of Environments that are
 part of an Attester can vary widely ‑ ranging from those highly
 resistant to attacks to those having little or no resistance to
 attacks. Configuration options, if set poorly, can result in a
 highly resistant environment being operationally less resistant.
 When a trustworthy Environment changes, it is possible that it
 transitions from being trustworthy to being untrustworthy.

 An untrustworthy or compromised Environment must never be able to
 create valid Evidence expressing the intactness of an Attester.

 The architecture provides a framework for anticipating when a
 relevant change with respect to a trustworthiness attribute occurs,
 what exactly changed and how relevant it is. The architecture also
 creates a context for enabling an appropriate response by
 applications, system software and protocol endpoints when changes to
 trustworthiness attributes do occur.

 Detailed protocol specifications for message flows are defined in
 separate documents.

4.1. Two Types of Environments

 An Attester produces Evidence about its own integrity, which means
 "it measures itself". To disambiguate this recursive or circular
 looking relationships, two types of Environments inside an Attester
 are distinguished:

 The attest-ED Environments and the attest-ING Environments.

 Attested Environments are measured. They provide the raw values and
 the information to be represented in Claims and ultimately expressed
 as Evidence.

 Attesting Environments conduct the measuring. They collect the
 Claims, format them appropriately, and typically use key material and
 cryptographic functions, such as signing or cipher algorithms, to
 create Evidence.

 Attesting Environments use system components that have to be trusted.
 As a result, Evidence includes Claims about the Attested and the
 Attesting Environments. Claims about the Attested Environments are
 appraised using Reference Values and Claims about the Attesting
 Environments are appraised using Endorsements. It is not mandated
 that both Environments have to be separate, but it is highly
 encouraged. Examples of separated Environments that can be used as
 Attesting Environments include: Trusted Execution Environments (TEE),
 embedded Secure Elements (eSE), or Hardware Security Modules (HSM).

 In summary, the majority of the creation of evidence can take place
 in an Attested Environments. Exemplary duties include the collection
 and formatting of Claim values, or the trigger for creating Evidence.
 A trusted sub-set of the creation of evidence can take place in an
 Attesting Environment, that provide special protection with respect
 to key material, identity documents, or primitive functions to create
 the Evidence itself.

4.2. Evidence Creation Prerequisites

 One or more Environments that are part of an Attester must be able to
 conduct the following duties in order to create Evidence:

 o monitoring trustworthiness attributes of other Environments,

 o collecting trustworthiness attributes and create Claims about
 them,

 o serialize Claims using interoperable representations,

 o provide integrity protection for the sets of Claims, and

 o add appropriate attestation provenance attributes about the sets
 of Claims.

4.3. Trustworthiness

 The trustworthiness of an Attester and therefore the believability of
 the Evidence it creates relies on the protection methods in place to
 shield and restrict the use of key material and the duties conducted
 by the Attesting Environment. In order to assess trustworthiness
 effectively, it is mandatory to understand the trustworthiness
 properties of the environments of an Attester. The corresponding
 appraisal of Evidence that leads to such an assessment of
 trustworthiness is the duty of a Verifier.

 Trusting the assessment of a Verifier might com frome trusting the
 Verifier's key material (direct trust), or trusting an Entity that
 the Verifier is associated with via a certification path (indirect
 trust).

 The trustworthiness of corresponding Attestation Results also relies
 on trust towards manufacturers and those manufacturer's hardware in
 order to assess the integrity and resilience of that manufacturer's
 devices.

 A stronger level of security comes when information can be vouched
 for by hardware or by (unchangeable) firmware, especially if such
 hardware is physically resistant to hardware tampering. The
 component that is implicitly trusted is often referred to as a Root
 of Trust.

4.4. Workflow

 The basic function of RATS is creation, conveyance and appraisal of
 attestation Evidence. An Attester creates attestation Evidence that
 are conveyed to a Verifier for appraisal. The appraisals compare
 Evidence with expected Known-Good-Values obtained from Asserters
 (e.g. Principals that are Supply Chain Entities). There can be
 multiple forms of appraisal (e.g., software integrity verification,
 device composition and configuration verification, device identity
 and provenance verification). Attestation Results are the output of
 appraisals. Attestation Results are signed and conveyed to Relying
 Parties. Attestation Results provide the basis by which the Relying
 Party may determine a level of confidence to place in the application
 data or operations that follow.

 The architecture defines attestation Roles: Attester, Verifier,
 Asserter and Relying Party. Roles exchange messages, but their
 structure is not defined in this document. The detailed definition
 of the messages is in an appropriate document, such as
 [I-D.ietf-rats-eat] or other protocols to be defined. Roles can be
 combined in various ways into Principals, depending upon the needs of
 the use case. Information Model representations are realized as data
 structure and conveyance protocol specifications.

4.5. Interoperability between RATS

 The RATS architecture anticipates use of information modeling
 techniques that describe computing structures - their components/
 computational elements and corresponding capabilities - so that
 verification operations may rely on the information model as an
 interoperable way to navigate the structural complexity.

5. RATS Architecture

5.1. Goals

 RATS architecture has the following goals:

 o Enable semantic interoperability of attestation semantics through
 information models about computing environments and
 trustworthiness.

 o Enable data structure interoperability related to claims, endpoint
 composition / structure, and end-to-end integrity and
 confidentiality protection mechanisms.

 o Enable programmatic assessment of trustworthiness. (Note:
 Mechanisms that manage risk, justify a level of confidence, or
 determine a consequence of an attestation result are out of
 scope).

 o Provide the building blocks, including Roles and Principals that
 enable the composition of service-chains/hierarchies and workflows
 that can create and appraise evidence about the trustworthiness of
 devices and services.

 o Use-case driven architecture and design (see
 [I-D.richardson-rats-usecases] and Section 3)

 o Terminology conventions that are consistently applied across RATS
 specifications.

 o Reinforce trusted computing principles that include attestation.

5.2. Attestation Principles

 Specifications developed by the RATS working group apply the
 following principles:

 o Freshness - replay of previously asserted Claims about an Attested
 Environment can be detected.

 o Identity - the Attesting Environment is identifiable (non-
 anonymous).

 o Context - the Attested Environment is well-defined (unambiguous).

 o Provenance - the origin of Claims with respect to the Attested and
 Attesting Environments are known.

 o Validity - the expected lifetime of Claims about an Attested
 Environment is known.

 o Veracity - the believability (level of confidence) of Claims is
 based on verifiable proofs.

5.3. Attestation Workflow

 Attestation workflow helps a Relying Party make better decisions by
 providing insight about the trustworthiness of endpoints
 participating in a distributed system. The workflow consists
 primarily of four roles; Relying Party, Verifier, Attester and
 Asserter. Attestation messages contain information useful for
 appraising the trustworthiness of an Attester endpoint and informing
 the Relying Party of the appraisal result.

 This section details the primary roles of an attestation workflow and
 the messages they exchange.

5.3.1. Roles

 An endpoint system (a.k.a., Entity) may implement one or more
 attestation Roles to accommodate a variety of possible message flows.
 Exemplary message flows are described in Section 1.6.1 and
 Section 1.6.2. Role messages are secured by the Entity that
 generated it. Entities possess credentials (e.g., cryptographic
 keys) that authenticate, integrity protect and optionally
 confidentiality protect attestation messages.

5.3.1.1. Attester

 The Attester consists of both an Attesting Environment and an
 Attested Environment. In some implementations these environments may
 be combined. Other implementations may have multiples of Attesting
 and Attested environments. Although endpoint environments can be
 complex, and that complexity is security relevant, the basic function
 of an Attester is to create Evidence that captures operational
 conditions affecting trustworthiness.

5.3.1.2. Asserter

 The Asserter role is out of scope. The mechanism by which an
 Asserter communicates Known-Good-Values to a Verifier is also not
 subject to standardization. Users of the RATS architecture are
 assumed to have pre-existing mechanisms.

5.3.1.3. Verifier

 The Verifier workflow function accepts Evidence from an Attester and
 accepts Reference Values from one or more Asserters. Reference
 values may be supplied a priori, cached or used to created policies.
 The Verifier performs an appraisal by matching Claims found in
 Evidence with Claims found in Reference Values and policies. If an
 attested Claim value differs from an expected Claim value, the
 Verifier flags this as a change possibly impacting trust level.

 Endorsements may not have corresponding Claims in Evidence (because
 of their intrinsic nature). Consequently, the Verifier need only
 authenticate the endpoint and verify the Endorsements match the
 endpoint identity.

 The result of appraisals and Endorsements, informed by owner
 policies, produces a new set of Claims that a Relying Party is suited
 to consume.

5.3.1.4. Relying Party

 A Role in an attestation workflow that accepts Attestation Results
 from a Verifier that may be used by the Relying Party to inform
 application specific decision making. How Attestation Results are
 used to inform decision making is out-of-scope for this architecture.

5.3.2. Role Messages

5.3.2.1. Evidence

 Claims that are formatted and protected by an Attester.

 Evidence SHOULD satisfy Verifier expectations for freshness,
 identity, context, provenance, validity, and veracity.

5.3.2.2. Reference Values

 Reference-values are Claims that a manufacturer, vendor or other
 supply chain entity makes that affects the trustworthiness of an
 Attester endpoint.

 Claims may be persistent properties of the endpoint due to the
 physical nature of how it was manufactured or may reflect the
 processes that were followed as part of moving the endpoint through a
 supply-chain; e.g., validation or compliance testing. This class of
 Reference-values is known as Endorsements.

 Another class of Reference-values identifies the firmware and
 software that could be installed in the endpoint after its
 manufacture. A digest of the the firmware or software can be an
 effective identifier for keeping track of the images produced by
 vendors and installed on an endpoint. This class of Reference-value
 is referred to as Known-Good-Value (KGV).

Known‑Good‑Values: Claims about the Attested Environment.
 Typically, Known‑Good‑Value (KGV) Claims are message digests of
 firmware, software or configuration data supplied by various
 vendors. If an Attesting Environment implements cryptography,
 they include Claims about key material.

 Like Claims, Known-Good-Values SHOULD satisfy a Verifier's
 expectations for freshness, identity, context, provenance,
 validity, relevance and veracity. Known-Good-Values are reference
 Claims that are - like Evidence - well formatted and protected
 (e.g. signed).

Endorsements: Claims about immutable and implicit characteristics of
 the Attesting Environment. Typically, endorsement Claims are
 created by manufacturing or supply chain entities.

 Endorsements are intended to increase the level of confidence with
 respect to Evidence created by an Attester.

5.3.2.3. Attestation Results

 Statements about the output of an appraisal of Evidence that are
 created, formatted and protected by a Verifier.

 Attestation Results provide the basis for a Relying Party to
 establish a level of confidence in the trustworthiness of an
 Attester. Attestation Results SHOULD satisfy Relying Party
 expectations for freshness, identity, context, provenance, validity,
 relevance and veracity.

5.4. Principals (Entities?) - Containers for the Roles

 [The authors are unhappy with the term Principal, and have been
 looking for something else. JOSE/JWT uses the term Principal]

 Principals are Containers for the Roles.

 Principals are users, organizations, devices and computing
 environments (e.g., devices, platforms, services, peripherals).

 Principals may implement one or more Roles. Massage flows occurring
 within the same Principal are out-of-scope.

 The methods whereby Principals may be identified, discovered,
 authenticated, connected and trusted, though important, are out-of-
 scope.

 Principal operations that apply resiliency, scaling, load balancing
 or replication are generally believed to be out-of-scope.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Principal 1		Principal 2				
+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				
	Role A	<‑	‑‑‑	‑>	Role D	
+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑+‑‑‑‑‑‑+		+‑‑‑‑‑+‑‑‑‑‑‑+				
	Role B	<‑	‑‑‑	‑>	Role E	
+‑‑‑‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4: Principals-Role Composition

 Principals have the following properties:

 o Multiplicity - Multiple instances of Principals that possess the
 same Roles can exist.

 o Composition - Principals possessing different Roles can be
 combined into a singleton Principal possessing the union of Roles.
 Message flows between combined Principals is uninteresting.

 o Decomposition - A singleton Principal possessing multiple Roles
 can be divided into multiple Principals.

6. Privacy Considerations

 The conveyance of Evidence and the resulting Attestation Results
 reveal a great deal of information about the internal state of a
 device. In many cases the whole point of the Attestation process is
 to provided reliable evidence about the type of the device and the
 firmware that the device is running. This information is
 particularly interesting to many attackers: knowing that a device is
 running a weak version of a the firmware provides a way to aim
 attacks better.

 Just knowing the existence of a device is itself a disclosure.

 Conveyance protocols must detail what kinds of information is
 disclosed, and to whom it is exposed.

7. Security Considerations

 Evidence, Verifiable Assertions and Attestation Results SHOULD use
 formats that support end-to-end integrity protection and MAY support
 end-to-end confidentiality protection.

 Replay attacks are a concern that protocol implementations MUST deal
 with. This is typically done via a Nonce Claim, but the details
 belong to the protocol.

 All other attacks involving RATS structures are not explicitly
 addressed by the architecture.

 Additional security protections MAY be required of conveyance
 mechanisms. For example, additional means of authentication,
 confidentiality, integrity, replay, denial of service and privacy
 protection of RATS payloads and Principals may be needed.

8. Acknowledgements

 Dave Thaler created the concepts of "Passport" and "Background
 Check".

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [ABLP]
 Abadi, M., Burrows, M., Lampson, B., and G. Plotkin, "A
 Calculus for Access Control in Distributed Systems",
 Springer Annual International Cryptology Conference,
 page 1-23, DOI 10.1.1.36.691, 1991.

 [DOLEV-YAO]

 Dolev, D. and A. Yao, "On the security of public key
 protocols", IEEE Transactions on Information Theory Vol.
 29, pp. 198-208, DOI 10.1109/tit.1983.1056650, March 1983.

 [fido]
 FIDO Alliance, ., "FIDO Specification Overview", 2019,
 <https://fidoalliance.org/specifications/>.

 [I-D.birkholz-rats-tuda]

 Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann,
 "Time-Based Uni-Directional Attestation", draft-birkholz-
 rats-tuda-01 (work in progress), September 2019.

 [I-D.fedorkow-rats-network-device-attestation]

 Fedorkow, G. and J. Fitzgerald-McKay, "Network Device
 Attestation Workflow", draft-fedorkow-rats-network-device-
 attestation-00 (work in progress), July 2019.

 [I-D.ietf-rats-eat]

 Mandyam, G., Lundblade, L., Ballesteros, M., and J.
 O'Donoghue, "The Entity Attestation Token (EAT)", draft-
 ietf-rats-eat-01 (work in progress), July 2019.

 [I-D.ietf-teep-architecture]

 Pei, M., Tschofenig, H., Wheeler, D., Atyeo, A., and D.
 Liu, "Trusted Execution Environment Provisioning (TEEP)
 Architecture", draft-ietf-teep-architecture-03 (work in
 progress), July 2019.

 [I-D.richardson-rats-usecases]

 Richardson, M., Wallace, C., and W. Pan, "Use cases for
 Remote Attestation common encodings", draft-richardson-
 rats-usecases-05 (work in progress), October 2019.

 [iothreats]

 GDN, ., "The Internet of Things or the Internet of
 threats?", 2016, <https://gcn.com/articles/2016/05/03/
 internet-of-threats.aspx>.

 [keystore]

 Google, ., "Android Keystore System", 2019,
 <https://developer.android.com/training/articles/
 keystore>.

 [Lampson2007]

 Lampson, B., "Practical Principles for Computer Security",
 IOSPress Proceedings of Software System Reliability and
 Security, page 151-195, DOI 10.1.1.63.5360, 2007.

 [RFC3552]
 Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC4949]
 Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC5209]
 Sangster, P., Khosravi, H., Mani, M., Narayan, K., and J.
 Tardo, "Network Endpoint Assessment (NEA): Overview and
 Requirements", RFC 5209, DOI 10.17487/RFC5209, June 2008,
 <https://www.rfc-editor.org/info/rfc5209>.

Authors' Addresses

Henk Birkholz
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: henk.birkholz@sit.fraunhofer.de

Monty Wiseman
GE Global Research
USA

 Email: monty.wiseman@ge.com

Hannes Tschofenig
ARM Ltd.
110 Fulbourn Rd
Cambridge CB1 9NJ
UK

 Email: hannes.tschofenig@gmx.net

Ned Smith
Intel Corporation
USA

 Email: ned.smith@intel.com

Michael Richardson
Sandelman Software Works
Canada

 Email: mcr+ietf@sandelman.ca

draft-birkholz-rats-basic-yang-module-01 - YANG Module for Basic Challenge-Response-based Remote Attestation Procedures

draft-birkholz-rats-basic-yang-module-01 - YANG Module for Basic Challenge-Respo

Index
Prev
Next
Forward 5

RATS Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 9, 2020

H. Birkholz

M. Eckel

Fraunhofer SIT

S. Bhandari

B. Sulzen

E. Voit

Cisco

L. Xia

Huawei

T. Laffey

HPE

G. Fedorkow

Juniper

July 08, 2019

YANG Module for Basic Challenge-Response-based Remote Attestation Procedures

draft-birkholz-rats-basic-yang-module-01

Abstract

 This document defines a YANG RPC and a minimal datastore tree
 required to retrieve attestation evidence about integrity
 measurements from a composite device with one or more roots of trust
 for reporting. Complementary measurement logs are also provided by
 the YANG RPC originating from one or more roots of trust of
 measurement. The module defined requires a TPM 2.0 and corresponding
 Trusted Software Stack included in the device components of the
 composite device the YANG server is running on.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements notation

	2. The YANG Module for Basic Remote Attestation Procedures
	 2.1. Tree format

	 2.2. Raw Format

	3. IANA considerations

	4. Security Considerations

	5. Acknowledgements

	6. Change Log

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Authors' Addresses

1. Introduction

 This document is based on the terminology defined in the
 [I-D.birkholz-attestation-terminology] and uses the interaction model
 and information elements defined in the
 [I-D.birkholz-rats-reference-interaction-model] document. The
 currently supported hardware security module (HWM) - sometimes also
 referred to as an embedded secure element(eSE) - is the Trusted
 Platform Module (TPM) 2.0 specified by the Trusted Computing Group
 (TCG). One ore more TPM 2.0 embedded in the components of a
 composite device - sometimes also referred to as an aggregate device
 - are required in order to use the YANG module defined in this
 document. A TPM 2.0 is used as a root of trust for reporting (RTR)
 in order to retrieve attestation evidence from a composite device.
 Additionally, it is used as a root of trust for measurement (RTM) in
 order to provide event logs - sometimes also referred to as
 measurement logs.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119, BCP 14 [RFC2119].

2. The YANG Module for Basic Remote Attestation Procedures

 One or more TPM 2.0 MUST be embedded in the composite device that is
 providing attestation evidence via the YANG module defined in this
 document. The ietf-basic-remote-attestation YANG module enables a
 composite device to take on the role of Claimant and Attester in
 accordance with the Remote Attestation Procedures (RATS) architecture
 [I-D.birkholz-attestation-terminology] and the corresponding
 challenge-response interaction model defined in the
 [I-D.birkholz-rats-reference-interaction-model] document. A fresh
 nonce with an appropriate amount of entropy MUST be supplied by the
 YANG client in order to enable a proof-of-freshness with respect to
 the attestation evidence provided by the attester running the YANG
 datastore. The functions of this YANG module are restricted to 0-1
 TPM 2.0 per hardware component.

2.1. Tree format

<CODE BEGINS>
module: ietf‑basic‑remote‑attestation
 +‑‑ro rats‑support‑structures
 +‑‑ro supported‑algos* uint16
 +‑‑ro tpms* [tpm_name]
 | +‑‑ro tpm_name string
 | +‑‑ro tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro certificates* []
 | +‑‑ro certificate
 | +‑‑ro certificate‑name? string
 | +‑‑ro certificate‑type? enumeration
 | +‑‑ro certificate‑value? ietfct:end‑entity‑cert‑cms
 +‑‑ro compute‑nodes* [node‑name]
 +‑‑ro node‑name string
 +‑‑ro node‑physical‑index? int32 {ietfhw:entity‑mib}?

 rpcs:
 +‑‑‑x tpm12‑challenge‑response‑attestation
 | +‑‑‑w input
 | | +‑‑‑w tpm1‑attestation‑challenge
 | | +‑‑‑w pcr‑indices* uint8
 | | +‑‑‑w nonce‑value binary
 | | +‑‑‑w TPM_SIG_SCHEME‑value uint8

 | | +‑‑‑w (key‑identifier)?
 | | | +‑‑:(public‑key)
 | | | | +‑‑‑w pub‑key‑id? binary
 | | | +‑‑:(TSS_UUID)
 | | | +‑‑‑w TSS_UUID‑value
 | | | +‑‑‑w ulTimeLow? uint32
 | | | +‑‑‑w usTimeMid? uint16
 | | | +‑‑‑w usTimeHigh? uint16
 | | | +‑‑‑w bClockSeqHigh? uint8
 | | | +‑‑‑w bClockSeqLow? uint8
 | | | +‑‑‑w rgbNode* uint8
 | | +‑‑‑w add‑version? boolean
 | | +‑‑‑w tpm_name? string
 | | +‑‑‑w tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro output
 | +‑‑ro tpm12‑attestation‑response* [tpm_name]
 | +‑‑ro tpm_name string
 | +‑‑ro tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro up‑time? uint32
 | +‑‑ro node‑name? string
 | +‑‑ro node‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro fixed? binary
 | +‑‑ro external‑data? binary
 | +‑‑ro signature‑size? uint32
 | +‑‑ro signature? binary
 | +‑‑ro (tpm12‑quote)
 | +‑‑:(tpm12‑quote1)
 | | +‑‑ro version* []
 | | | +‑‑ro major? uint8
 | | | +‑‑ro minor? uint8
 | | | +‑‑ro revMajor? uint8
 | | | +‑‑ro revMinor? uint8
 | | +‑‑ro digest‑value? binary
 | | +‑‑ro TPM_PCR_COMPOSITE* []
 | | +‑‑ro pcr‑indices* uint8
 | | +‑‑ro value‑size? uint32
 | | +‑‑ro tpm12‑pcr‑value* binary
 | +‑‑:(tpm12‑quote2)
 | +‑‑ro tag? uint8
 | +‑‑ro pcr‑indices* uint8
 | +‑‑ro locality‑at‑release? uint8
 | +‑‑ro digest‑at‑release? binary
 +‑‑‑x tpm20‑challenge‑response‑attestation
 | +‑‑‑w input
 | | +‑‑‑w tpm20‑attestation‑challenge
 | | | +‑‑‑w pcr‑list* []
 | | | | +‑‑‑w pcr
 | | | | +‑‑‑w pcr‑indices* uint8

 | | | | +‑‑‑w (algo‑registry‑type)
 | | | | +‑‑:(tcg)
 | | | | | +‑‑‑w tcg‑hash‑algo‑id? uint16
 | | | | +‑‑:(ietf)
 | | | | +‑‑‑w ietf‑ni‑hash‑algo‑id? uint8
 | | | +‑‑‑w nonce‑value binary
 | | | +‑‑‑w (signature‑identifier‑type)
 | | | | +‑‑:(TPM_ALG_ID)
 | | | | | +‑‑‑w TPM_ALG_ID‑value? uint16
 | | | | +‑‑:(COSE_Algorithm)
 | | | | +‑‑‑w COSE_Algorithm‑value? int32
 | | | +‑‑‑w (key‑identifier)?
 | | | +‑‑:(public‑key)
 | | | | +‑‑‑w pub‑key‑id? binary
 | | | +‑‑:(uuid)
 | | | +‑‑‑w uuid‑value? binary
 | | +‑‑‑w tpms* [tpm_name]
 | | +‑‑‑w tpm_name string
 | | +‑‑‑w tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro output
 | +‑‑ro tpm20‑attestation‑response* [tpm_name]
 | +‑‑ro tpm_name string
 | +‑‑ro tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro up‑time? uint32
 | +‑‑ro node‑name? string
 | +‑‑ro node‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro tpms‑attest
 | | +‑‑ro pcrdigest? binary
 | | +‑‑ro tpms‑attest‑result? binary
 | | +‑‑ro tpms‑attest‑result‑length? uint32
 | +‑‑ro tpmt‑signature? binary
 +‑‑‑x basic‑trust‑establishment
 | +‑‑‑w input
 | | +‑‑‑w nonce‑value binary
 | | +‑‑‑w (signature‑identifier‑type)
 | | | +‑‑:(TPM_ALG_ID)
 | | | | +‑‑‑w TPM_ALG_ID‑value? uint16
 | | | +‑‑:(COSE_Algorithm)
 | | | +‑‑‑w COSE_Algorithm‑value? int32
 | | +‑‑‑w tpm_name? string
 | | +‑‑‑w tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | | +‑‑‑w certificate‑name? string
 | +‑‑ro output
 | +‑‑ro attestation‑certificates* [tpm_name]
 | +‑‑ro tpm_name string
 | +‑‑ro tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro up‑time? uint32
 | +‑‑ro node‑name? string

 | +‑‑ro node‑physical‑index? int32 {ietfhw:entity‑mib}?
 | +‑‑ro certificate‑name? string
 | +‑‑ro attestation‑certificate? ietfct:end‑entity‑cert‑cms
 | +‑‑ro (key‑identifier)?
 | +‑‑:(public‑key)
 | | +‑‑ro pub‑key‑id? binary
 | +‑‑:(uuid)
 | +‑‑ro uuid‑value? binary
 +‑‑‑x log‑retrieval
 +‑‑‑w input
 | +‑‑‑w log‑selector* [node‑name]
 | | +‑‑‑w node‑name string
 | | +‑‑‑w node‑physical‑index? int32 {ietfhw:entity‑mib}?
 | | +‑‑‑w (index‑type)?
 | | +‑‑:(last‑entry)
 | | | +‑‑‑w last‑entry‑value? binary
 | | +‑‑:(index)
 | | | +‑‑‑w index‑number? uint64
 | | +‑‑:(timestamp)
 | | +‑‑‑w timestamp? yang:date‑and‑time
 | +‑‑‑w log‑type identityref
 | +‑‑‑w pcr‑list* []
 | | +‑‑‑w pcr
 | | +‑‑‑w pcr‑indices* uint8
 | | +‑‑‑w (algo‑registry‑type)
 | | +‑‑:(tcg)
 | | | +‑‑‑w tcg‑hash‑algo‑id? uint16
 | | +‑‑:(ietf)
 | | +‑‑‑w ietf‑ni‑hash‑algo‑id? uint8
 | +‑‑‑w log‑entry‑quantity? uint16
 +‑‑ro output
 +‑‑ro system‑event‑logs
 +‑‑ro node‑data* [node‑name tpm_name]
 +‑‑ro node‑name string
 +‑‑ro node‑physical‑index? int32 {ietfhw:entity‑mib}?
 +‑‑ro up‑time? uint32
 +‑‑ro tpm_name string
 +‑‑ro tpm‑physical‑index? int32 {ietfhw:entity‑mib}?
 +‑‑ro log‑result
 +‑‑ro (log‑type)
 +‑‑:(bios)
 | +‑‑ro bios‑event‑logs
 | +‑‑ro bios‑event‑entry* [event‑number]
 | +‑‑ro event‑number uint32
 | +‑‑ro event‑type? uint32
 | +‑‑ro pcr‑index? uint16
 | +‑‑ro digest‑list* []
 | | +‑‑ro (algo‑registry‑type)

 | | | +‑‑:(tcg)
 | | | | +‑‑ro tcg‑hash‑algo‑id? uint16
 | | | +‑‑:(ietf)
 | | | +‑‑ro ietf‑ni‑hash‑algo‑id? uint8
 | | +‑‑ro digest* binary
 | +‑‑ro event‑size? uint32
 | +‑‑ro event‑data* uint8
 +‑‑:(ima)
 +‑‑ro ima‑event‑logs
 +‑‑ro ima‑event‑entry* [event‑number]
 +‑‑ro event‑number uint64
 +‑‑ro ima‑template? string
 +‑‑ro filename‑hint? string
 +‑‑ro filedata‑hash? binary
 +‑‑ro template‑hash‑algorithm? string
 +‑‑ro template‑hash? binary
 +‑‑ro pcr‑index? uint16
 +‑‑ro signature? binary
<CODE ENDS>

2.2. Raw Format

<CODE BEGINS>
module ietf‑basic‑remote‑attestation {
 namespace "urn:ietf:params:xml:ns:yang:ietf‑basic‑remote‑attestation";
 prefix "yang‑brat";

 import ietf‑yang‑types {
 prefix yang;
 }
 import ietf‑hardware {
 prefix ietfhw;
 }
 import ietf‑crypto‑types {
 prefix ietfct;
 }

 organization
 "Fraunhofer SIT";
 contact
 "Henk Birkholz
 Fraunhofer Institute for Secure Information Technology
 Email: henk.birkholz@sit.fraunhofer.de";
 description
 "A YANG module to enable TPM 1.2 and TPM 2.0 based
 remote attestation procedures.
 Copyright (C) Fraunhofer SIT (2019).";
 revision "2019‑07‑08" {

 description
 "Second version";
 reference
 "draft‑birkholz‑rats‑basic‑yang‑module";
 }

 grouping hash‑algo {
 description
 "A selector for the hashing algorithm";
 choice algo‑registry‑type {
 mandatory true;
 description
 "Unfortunately, both IETF and TCG have registries here.
 Choose your weapon wisely.";
 case tcg {
 description
 "you chose the east door, the tcg space opens up to
 you.";
 leaf tcg‑hash‑algo‑id {
 type uint16;
 description
 "This is an index referencing the TCG Algorithm
 Registry based on TPM_ALG_ID.";
 }
 }
 case ietf {
 description
 "you chose the west door, the ietf space opens up to
 you.";
 leaf ietf‑ni‑hash‑algo‑id {
 type uint8;
 description
 "This is an index referencing the Named Information
 Hash Algorithm Registry.";
 }
 }
 }
 }

 grouping hash {
 description
 "The hash value including hash‑algo identifier";
 list hash‑digests {
 description
 "The list of hashes.";
 container hash‑digest {
 description
 "A hash value based on a hash algorithm registered by an

 SDO.";
 uses hash‑algo;
 leaf hash‑value {
 type binary;
 description
 "The binary representation of the hash value.";
 }
 }
 }
 }

 grouping nonce {
 description
 "A nonce to show freshness and counter replays.";
 leaf nonce‑value {
 type binary;
 mandatory true;
 description
 "This nonce SHOULD be generated via a registered
 cryptographic‑strength algorithm. In consequence, the length
 of the nonce depends on the hash algorithm used. The algorithm
 used in this case is independent from the hash algorithm used to
 create the hash‑value in the response of the attestor.";
 }
 }

 grouping tpm12‑pcr‑selection {
 description
 "A Verifier can request one or more PCR values using its
 individually created Attestation Key Certificate (AC).
 The corresponding selection filter is represented in this grouping.
 Requesting a PCR value that is not in scope of the AC used, detailed
 exposure via error msg should be avoided.";
 leaf‑list pcr‑indices {
 type uint8;
 description
 "The numbers/indexes of the PCRs. At the moment this is limited
 to 32.";
 }
 }

 grouping tpm20‑pcr‑selection {
 description
 "A Verifier can request one or more PCR values uses its
 individually created AC. The corresponding selection filter is
 represented in this grouping. Requesting a PCR value that is not
 in scope of the AC used, detailed exposure via error msg should
 be avoided.";

 list pcr‑list {
 description
 "For each PCR in this list an individual list of banks
 (hash‑algo) can be requested. It depends on the datastore, if
 every bank in this grouping is included per PCR (crude), or if
 each requested bank set is returned for each PCR individually
 (elegant).";
 container pcr {
 description
 "The composite of a PCR number and corresponding bank
 numbers.";
 leaf‑list pcr‑indices {
 type uint8;
 description
 "The number of the PCR. At the moment this is limited
 32";
 }
 uses hash‑algo;
 }
 }
 }

 grouping pcr‑selector {
 description
 "A Verifier can request the generation of an attestation
 certificate (a signed public attestation key
 (non‑migratable, tpm‑resident) wrt one or more PCR values.
 The corresponding creation input is represented in this grouping.
 Requesting a PCR value that is not supported results in an error,
 detailed exposure via error msg should be avoided.";
 list pcr‑list {
 description
 "For each PCR in this list an individual hash‑algo can be
 requested.";
 container pcr {
 description
 "The composite of a PCR number and corresponding bank
 numbers.";
 leaf‑list pcr‑index {
 type uint8;
 description
 "The numbers of the PCRs that are associated with
 the created key. At the moment the highest number is 32";
 }
 uses hash‑algo;
 }
 }
 }

 grouping tpm12‑signature‑scheme {
 description
 "The signature scheme used to sign the evidence via a TPM 1.2.";
 leaf TPM_SIG_SCHEME‑value {
 type uint8;
 mandatory true;
 description
 "Selects the signature scheme that is used to sign the TPM quote
 information response. Allowed values can be found in the table at
 the bottom of page 32 in the TPM 1.2 Structures specification
 (Level 2 Revision 116, 1 March 2011).";
 }
 }

 grouping tpm20‑signature‑scheme {
 description
 "The signature scheme used to sign the evidence.";
 choice signature‑identifier‑type {
 mandatory true;
 description
 "There are multiple ways to reference a signature type.
 This used to select the signature algo to sign the quote
 information response.";
 case TPM_ALG_ID {
 description
 "This references the indices of table 9 in the TPM 2.0
 structure specification.";
 leaf TPM_ALG_ID‑value {
 type uint16;
 description
 "The TPM Algo ID.";
 }
 }
 case COSE_Algorithm {
 description
 "This references the IANA COSE Algorithms Registry indices.
 Every index of this registry to be used must be mapable to a
 TPM_ALG_ID value.";
 leaf COSE_Algorithm‑value {
 type int32;
 description
 "The TPM Algo ID.";
 }
 }
 }
 }

 grouping tpm12-attestation-key-identifier {

 description
 "A selector for a suitable key identifier for a TPM 1.2.";
 choice key‑identifier {
 description
 "Identifier for the attestation key to use for signing
 attestation evidence.";
 case public‑key {
 leaf pub‑key‑id {
 type binary;
 description
 "The value of the identifier for the public key.";
 }
 }
 case TSS_UUID {
 description
 "Use a YANG agent generated (and maintained) attestation
 key UUID that complies with the TSS_UUID datatype of the TCG
 Software Stack (TSS) Specification, Version 1.10 Golden,
 August 20, 2003.";
 container TSS_UUID‑value {
 description
 "A detailed structure that is used to create the
 TPM 1.2 native TSS_UUID as defined in the TCG Software
 Stack (TSS) Specification, Version 1.10 Golden,
 August 20, 2003.";
 leaf ulTimeLow {
 type uint32;
 description
 "The low field of the timestamp.";
 }
 leaf usTimeMid {
 type uint16;
 description
 "The middle field of the timestamp.";
 }
 leaf usTimeHigh {
 type uint16;
 description
 "The high field of the timestamp multiplexed with the
 version number.";
 }
 leaf bClockSeqHigh {
 type uint8;
 description
 "The high field of the clock sequence multiplexed with
 the variant.";
 }
 leaf bClockSeqLow {

 type uint8;
 description
 "The low field of the clock sequence.";
 }
 leaf‑list rgbNode {
 type uint8;
 description
 "The spatially unique node identifier.";
 }
 }
 }
 }
}

grouping tpm20‑attestation‑key‑identifier {
 description
 "A selector for a suitable key identifier.";
 choice key‑identifier {
 description
 "Identifier for the attestation key to use for signing
 attestation evidence.";
 case public‑key {
 leaf pub‑key‑id {
 type binary;
 description
 "The value of the identifier for the public key.";
 }
 }
 case uuid {
 description
 "Use a YANG agent generated (and maintained) attestation
 key UUID.";
 leaf uuid‑value {
 type binary;
 description
 "The UUID identifying the corresponding public key.";
 }
 }
 }
}

grouping tpm‑name {
 description
 "In a system with multiple‑TPMs get the data from a specific TPM
 identified by the name and physical‑index.";
 leaf tpm_name {
 type string;
 description

 "Name of the TPM or All";
 }
 leaf tpm‑physical‑index {
 if‑feature ietfhw:entity‑mib;
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "The entPhysicalIndex for the TPM.";
 reference
 "RFC 6933: Entity MIB (Version 4) ‑ entPhysicalIndex";
 }
}
grouping compute‑node {
 description
 "In a distributed system with multiple compute nodes
 this is the node identified by name and physical‑index.";
 leaf node‑name {
 type string;
 description
 "Name of the compute node or All";
 }
 leaf node‑physical‑index {
 if‑feature ietfhw:entity‑mib;
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "The entPhysicalIndex for the compute node.";
 reference
 "RFC 6933: Entity MIB (Version 4) ‑ entPhysicalIndex";
 }
}

grouping tpm12‑pcr‑info‑short {
 description
 "This structure is for defining a digest at release when the only
 information that is necessary is the release configuration.";
 uses tpm12‑pcr‑selection;
 leaf locality‑at‑release {
 type uint8;
 description
 ".This SHALL be the locality modifier required to release the
 information (TPM 1.2 type TPM_LOCALITY_SELECTION)";
 }
 leaf digest‑at‑release {

 type binary;
 description
 "This SHALL be the digest of the PCR indices and PCR values
 to verify when revealing auth data (TPM 1.2 type
 TPM_COMPOSITE_HASH).";
 }
}

grouping tpm12‑version {
 description
 "This structure provides information relative the version of
 the TPM.";
 list version {
 description
 "This indicates the version of the structure
 (TPM 1.2 type TPM_STRUCT_VER). This MUST be 1.1.0.0.";
 leaf major {
 type uint8;
 description
 "Indicates the major version of the structure.
 MUST be 0x01.";
 }
 leaf minor {
 type uint8;
 description
 "Indicates the minor version of the structure.
 MUST be 0x01.";
 }
 leaf revMajor {
 type uint8;
 description
 "Indicates the rev major version of the structure.
 MUST be 0x00.";
 }
 leaf revMinor {
 type uint8;
 description
 "Indicates the rev minor version of the structure.
 MUST be 0x00.";
 }
 }
}

grouping tpm12‑quote‑info‑common {
 description
 "These statements are used in bot quote variants of the TPM 1.2";
 leaf fixed {
 type binary;

 description
 "This SHALL always be the string 'QUOT' or 'QUO2'
 (length is 4 bytes).";
 }
 leaf external‑data {
 type binary;
 description
 "160 bits of externally supplied data, typically a nonce.";
 }
 leaf signature‑size {
 type uint32;
 description
 "The size of TPM 1.2 'signature' value.";
 }
 leaf signature {
 type binary;
 description
 "Signature over SHA‑1 hash of tpm12‑quote‑info2'.";
 }
}

grouping tpm12‑quote‑info {
 description
 "This structure provides the mechanism for the TPM to quote the
 current values of a list of PCRs (as used by the TPM_Quote2
 command).";
 uses tpm12‑version;
 leaf digest‑value {
 type binary;
 description
 "This SHALL be the result of the composite hash algorithm using
 the current values of the requested PCR indices
 (TPM 1.2 type TPM_COMPOSITE_HASH.)";
 }
}

grouping tpm12‑quote‑info2 {
 description
 "This structure provides the mechanism for the TPM to quote the
 current values of a list of PCRs
 (as used by the TPM_Quote2 command).";
 leaf tag {
 type uint8;
 description
 "This SHALL be TPM_TAG_QUOTE_INFO2.";
 }
 uses tpm12‑pcr‑info‑short;
}

grouping tpm12‑cap‑version‑info {
 description
 "TPM returns the current version and revision of the TPM 1.2 .";
 list TPM_PCR_COMPOSITE {
 description
 "The TPM 1.2 TPM_PCRVALUEs for the pcr‑indices.";
 uses tpm12‑pcr‑selection;
 leaf value‑size {
 type uint32;
 description
 "This SHALL be the size of the 'tpm12‑pcr‑value' field
 (not the number of PCRs).";
 }
 leaf‑list tpm12‑pcr‑value {
 type binary;
 description
 "The list of TPM_PCRVALUEs from each PCR selected in sequence
 of tpm12‑pcr‑selection.";
 }
 list version‑info {
 description
 "An optional output parameter from a TPM 1.2 TPM_Quote2.";
 leaf tag {
 type uint16;
 description
 "The TPM 1.2 version and revision
 (TPM 1.2 type TPM_STRUCTURE_TAG).
 This MUST be TPM_CAP_VERSION_INFO (0x0030)";
 }
 uses tpm12‑version;
 leaf spec‑level {
 type uint16;
 description
 "A number indicating the level of ordinals supported.";
 }
 leaf errata‑rev {
 type uint8;
 description
 "A number indicating the errata version of the
 specification.";
 }
 leaf tpm‑vendor‑id {
 type binary;
 description
 "The vendor ID unique to each TPM manufacturer.";
 }
 leaf vendor‑specific‑size {
 type uint16;

 description
 "The size of the vendor‑specific area.";
 }
 leaf vendor‑specific {
 type binary;
 description
 "Vendor specific information.";
 }
 }
 }
}

grouping tpm12‑pcr‑composite {
 description
 "The actual values of the selected PCRs (a list of TPM_PCRVALUEs
 (binary)and associated metadata for TPM 1.2.";
 list TPM_PCR_COMPOSITE {
 description
 "The TPM 1.2 TPM_PCRVALUEs for the pcr‑indices.";
 uses tpm12‑pcr‑selection;
 leaf value‑size {
 type uint32;
 description
 "This SHALL be the size of the 'tpm12‑pcr‑value' field
 (not the number of PCRs).";
 }
 leaf‑list tpm12‑pcr‑value {
 type binary;
 description
 "The list of TPM_PCRVALUEs from each PCR selected in sequence
 of tpm12‑pcr‑selection.";
 }
 }
}

grouping node‑uptime {
 description
 "Uptime in seconds of the node.";
 leaf up‑time {
 type uint32;
 description
 "Uptime in seconds of this node reporting its data";
 }
}

identity log‑type {
 description
 "The type of logs available.";

 }

 identity bios {
 base log‑type;
 description
 "Measurement log created by the BIOS/UEFI.";
 }

 identity ima {
 base log‑type;
 description
 "Measurement log created by IMA.";
 }

 grouping log‑identifier {
 description
 "Identifier for type of log to be retrieved.";
 leaf log‑type {
 type identityref {
 base log‑type;
 }
 mandatory true;
 description
 "The corresponding measurement log type identity.";
 }
 }

 grouping boot‑event‑log {
 description
 "Defines an event log corresponding to the event that extended the
 PCR";
 leaf event‑number {
 type uint32;
 description
 "Unique event number of this event";
 }
 leaf event‑type {
 type uint32;
 description
 "log event type";
 }
 leaf pcr‑index {
 type uint16;
 description
 "Defines the PCR index that this event extended";
 }
 list digest‑list {
 description "Hash of event data";

 uses hash‑algo;
 leaf‑list digest {
 type binary;
 description
 "The hash of the event data";
 }
 }
 leaf event‑size {
 type uint32;
 description
 "Size of the event data";
 }
 leaf‑list event‑data {
 type uint8;
 description
 "the event data size determined by event‑size";
 }
 }

 grouping ima‑event {
 description
 "Defines an hash log extend event for IMA measurements";
 leaf event‑number {
 type uint64;
 description
 "Unique number for this event for sequencing";
 }
 leaf ima‑template {
 type string;
 description
 "Name of the template used for event logs
 for e.g. ima, ima‑ng";
 }
 leaf filename‑hint {
 type string;
 description
 "File that was measured";
 }
 leaf filedata‑hash {
 type binary;
 description
 "Hash of filedata";
 }
 leaf template‑hash‑algorithm {
 type string;
 description
 "Algorithm used for template‑hash";
 }

 leaf template‑hash {
 type binary;
 description
 "hash(filedata‑hash, filename‑hint)";
 }
 leaf pcr‑index {
 type uint16;
 description
 "Defines the PCR index that this event extended";
 }
 leaf signature {
 type binary;
 description
 "The file signature";
 }
 }

 grouping bios‑event‑log {
 description
 "Measurement log created by the BIOS/UEFI.";
 list bios‑event‑entry {
 key event‑number;
 description
 "Ordered list of TCG described event log
 that extended the PCRs in the order they
 were logged";
 uses boot‑event‑log;
 }
 }

 grouping ima‑event‑log {
 list ima‑event‑entry {
 key event‑number;
 description
 "Ordered list of ima event logs by event‑number";
 uses ima‑event;
 }
 description
 "Measurement log created by IMA.";
 }

 grouping event‑logs {
 description
 "A selector for the log and its type.";
 choice log‑type {
 mandatory true;
 description
 "Event log type determines the event logs content.";

 case bios {
 description
 "BIOS/UEFI event logs";
 container bios‑event‑logs {
 description
 "This is an index referencing the TCG Algorithm
 Registry based on TPM_ALG_ID.";
 uses bios‑event‑log;
 }
 }
 case ima {
 description
 "IMA event logs";
 container ima‑event‑logs {
 description
 "This is an index referencing the TCG Algorithm
 Registry based on TPM_ALG_ID.";
 uses ima‑event‑log;
 }
 }
 }
 }

 rpc tpm12‑challenge‑response‑attestation {
 description
 "This RPC accepts the input for TSS TPM 1.2 commands of the
 managed device. ComponentIndex from the hardware manager YANG
 module to refer to dedicated TPM in composite devices,
 e.g. smart NICs, is still a TODO.";
 input {
 container tpm1‑attestation‑challenge {
 description
 "This container includes every information element defined
 in the reference challenge‑response interaction model for
 remote attestation. Corresponding values are based on
 TPM 1.2 structure definitions";
 uses tpm12‑pcr‑selection;
 uses nonce;
 uses tpm12‑signature‑scheme;
 uses tpm12‑attestation‑key‑identifier;
 leaf add‑version {
 type boolean;
 description
 "Whether or not to include TPM_CAP_VERSION_INFO; if true,
 then TPM_Quote2 must be used to create the response.";
 }
 uses tpm‑name;
 }

 }
 output {
 list tpm12‑attestation‑response {
 key tpm_name;
 description
 "The binary output of TPM 1.2 TPM_Quote/TPM_Quote2, including
 the PCR selection and other associated attestation evidence
 metadata";
 uses tpm‑name;
 uses node‑uptime;
 uses compute‑node;
 uses tpm12‑quote‑info‑common;
 choice tpm12‑quote {
 mandatory true;
 description
 "Either a tpm12‑quote‑info or tpm12‑quote‑info2, depending
 on whether TPM_Quote or TPM_Quote2 was used
 (cf. input field add‑verson).";
 case tpm12‑quote1 {
 description
 "BIOS/UEFI event logs";
 uses tpm12‑quote‑info;
 uses tpm12‑pcr‑composite;
 }
 case tpm12‑quote2 {
 description
 "BIOS/UEFI event logs";
 uses tpm12‑quote‑info2;
 }
 }
 }
 }
 }

 rpc tpm20‑challenge‑response‑attestation {
 description
 "This RPC accepts the input for TSS TPM 2.0 commands of the
 managed device. ComponentIndex from the hardware manager YANG
 module to refer to dedicated TPM in composite devices,
 e.g. smart NICs, is still a TODO.";
 input {
 container tpm20‑attestation‑challenge {
 description
 "This container includes every information element defined
 in the reference challenge‑response interaction model for
 remote attestation. Corresponding values are based on
 TPM 2.0 structure definitions";
 uses tpm20‑pcr‑selection;

 uses nonce;
 uses tpm20‑signature‑scheme;
 uses tpm20‑attestation‑key‑identifier;
 }
 list tpms {
 key tpm_name;
 description
 "TPMs to fetch the attestation information.";
 uses tpm‑name;
 }
 }
 output {
 list tpm20‑attestation‑response {
 key tpm_name;
 description
 "The binary output of TPM2b_Quote. An TPMS_ATTEST structure
 including a length, encapsulated in a signature";
 uses tpm‑name;
 uses node‑uptime;
 uses compute‑node;
 container tpms‑attest {
 leaf pcrdigest {
 type binary;
 description
 "split out value of TPMS_QUOTE_INFO for convenience";
 }
 leaf tpms‑attest‑result {
 type binary;
 description
 "The complete TPM generate structure including
 signature.";
 }
 leaf tpms‑attest‑result‑length {
 type uint32;
 description
 "Length of attest result provided by the TPM structure.";
 }
 description
 "A composite of value and length and list of selected
 pcrs (original name: [type]attested)";
 }
 leaf tpmt‑signature {
 type binary;
 description
 "Split out value of the signature for convenience.
 TODO: check for length values that complent binary value
 data node leafs.";
 }

 }
 }
 }

 rpc basic‑trust‑establishment {
 description
 "This RPC creates a tpm‑resident, non‑migratable key to be used
 in TPM_Quote commands, an attestation certificate.";
 input {
 uses nonce;
 uses tpm20‑signature‑scheme;
 uses tpm‑name;
 leaf certificate‑name {
 type string;
 description
 "An arbitrary name for the identity certificate chain
 requested.";
 }
 }
 output {
 list attestation‑certificates {
 key tpm_name;
 description
 "Attestation Certificate data from a TPM identified by the TPM
 name";
 uses tpm‑name;
 uses node‑uptime;
 uses compute‑node;
 leaf certificate‑name {
 type string;
 description
 "An arbitrary name for this identity certificate or
 certificate chain.";
 }
 leaf attestation‑certificate {
 type ietfct:end‑entity‑cert‑cms;
 description
 "The binary signed certificate chain data for this identity
 certificate.";
 }
 uses tpm20‑attestation‑key‑identifier;
 }
 }
 }

 rpc log‑retrieval {
 description
 "Logs Entries are either identified via indices or via providing

 the last line received. The number of lines returned can be
 limited. The type of log is a choice that can be augmented.";
 input {
 list log‑selector {
 key node‑name;
 description
 "Selection of log entries to be reported.";
 uses compute‑node;
 choice index‑type {
 description
 "Last log entry received, log index number, or timestamp.";
 case last‑entry {
 description
 "The last entry of the log already retrieved.";
 leaf last‑entry‑value {
 type binary;
 description
 "Content of an log event which matches 1:1 with a
 unique event record contained within the log. Log
 entries subsequent to this will be passed to the
 requester. Note: if log entry values are not unique,
 this MUST return an error.";
 }
 }
 case index {
 description
 "Numeric index of the last log entry retrieved, or zero.";
 leaf index‑number {
 type uint64;
 description
 "The numeric index number of a log entry. Zero means
 to start at the beginning of the log. Entries
 subsequent to this will be passed to the
 requester.";
 }
 }
 case timestamp {
 leaf timestamp {
 type yang:date‑and‑time;
 description
 "Timestamp from which to start the extraction. The next
 log entry subsequent to this timestamp is to be sent.";
 }
 description
 "Timestamp from which to start the extraction.";
 }
 }
 }

 uses log‑identifier;
 uses tpm20‑pcr‑selection;
 leaf log‑entry‑quantity {
 type uint16;
 description
 "The number of log entries to be returned. If omitted, it
 means all of them.";
 }
 }
 output {
 container system‑event‑logs {
 description
 "The requested data of the measurement event logs";
 list node‑data {
 key "node‑name tpm_name";
 description
 "Event logs of a node in a distributed system
 identified by the node name";
 uses compute‑node;
 uses node‑uptime;
 uses tpm‑name;
 container log‑result {
 description
 "The requested entries of the corresponding log.";
 uses event‑logs;
 }
 }
 }
 }
 }

 container rats‑support‑structures {
 config false;
 description
 "The datastore definition enabling verifiers or relying
 parties to discover the information necessary to use the
 remote attestation RPCs appropriately.";
 leaf‑list supported‑algos {
 type uint16;
 description
 "Supported TPM_ALG_ID values for the TPM in question.
 Will include ComponentIndex soon.";
 }
 list tpms {
 key tpm_name;
 uses tpm‑name;
 description
 "A list of TPMs in this composite

 device that rats can be conducted with.";
 list certificates {
 description
 "The TPM's endorsement‑certificate.";
 container certificate {
 leaf certificate‑name {
 type string;
 description
 "An arbitrary name for this identity certificate or
 certificate chain.";
 }
 leaf certificate‑type {
 type enumeration {
 enum endorsement‑cert {
 value 0;
 description
 "EK Cert type.";
 }
 enum attestation‑cert {
 value 1;
 description
 "AK Cert type.";
 }
 }
 description "Type of this certificate";
 }
 leaf certificate‑value {
 type ietfct:end‑entity‑cert‑cms;
 description
 "The binary signed public endorsement key (EK),
 attestation key(AK) and corresponding assertions
 (EK,AK Certificate). In a TPM 2.0 the EK,AK Certificate
 resides in a well‑defined NVRAM location by the TPM
 vendor.";
 }
 description
 "Two kinds of certificates can be accessed via this
 statement. An Attestation Key Certificate and a
 Endorsement Key Certificate.";
 }
 }
 }
 list compute‑nodes {
 key node‑name;
 uses compute‑node;
 description
 "A list names of hardware components in this composite
 device that rats can be conducted with.";

 }
 }
}
<CODE ENDS>

3. IANA considerations

 This document will include requests to IANA:

 To be defined yet.

4. Security Considerations

 There are always some.

5. Acknowledgements

 Not yet.

6. Change Log

 Changes from version 00 to version 01:

 o Addressed author's comments

 o Extended complementary details about attestation-certificates

 o Relabeled chunk-size to log-entry-quantity

 o Relabeled location with compute-node or tpm-name where appropriate

 o Added a valid entity-mib physical-index to compute-node and tpm-
 name to map it back to hardware inventory

 o Relabeled name to tpm_name

 o Removed event-string in last-entry

7. References

7.1. Normative References

 [I-D.birkholz-rats-reference-interaction-model]

 Birkholz, H. and M. Eckel, "Reference Interaction Model
 for Challenge-Response-based Remote Attestation", draft-
 birkholz-rats-reference-interaction-model-00 (work in
 progress), March 2019.

 [I-D.ietf-netconf-crypto-types]

 Watsen, K. and H. Wang, "Common YANG Data Types for
 Cryptography", draft-ietf-netconf-crypto-types-10 (work in
 progress), July 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

7.2. Informative References

 [I-D.birkholz-attestation-terminology]

 Birkholz, H., Wiseman, M., and H. Tschofenig, "Reference
 Terminology for Remote Attestation Procedures", draft-
 birkholz-attestation-terminology-02 (work in progress),
 July 2018.

Authors' Addresses

Henk Birkholz
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: henk.birkholz@sit.fraunhofer.de

Michael Eckel
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: michael.eckel@sit.fraunhofer.de

Shwetha Bhandari
Cisco Systems

 Email: shwethab@cisco.com

Bill Sulzen
Cisco Systems

 Email: bsulzen@cisco.com

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Liang Xia (Frank)
Huawei Technologies
101 Software Avenue, Yuhuatai District
Nanjing, Jiangsu 210012
China

 Email: Frank.Xialiang@huawei.com

Tom Laffey
Hewlett Packard Enterprise

 Email: tom.laffey@hpe.com

Guy C. Fedorkow
Juniper Networks
10 Technology Park Drive
Westford, Massachusetts 01886

 Email: gfedorkow@juniper.net

draft-birkholz-rats-information-model-00 - An Information Model for Assertions used in RATS

draft-birkholz-rats-information-model-00 - An Information Model for Assertions u

Index
Prev
Next
Forward 5

RATS Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 9, 2020

H. Birkholz

M. Eckel

Fraunhofer SIT

July 08, 2019

An Information Model for Assertions used in RATS

draft-birkholz-rats-information-model-00

Abstract

 This document defines a standardized information model (IM) for
 assertions that can be used in remote attestation procedures (RATS).
 The information elements defined include attestation assertions which
 provide information about system components characteristics, as well
 as commonly used attributes and attribute structures that are
 required by protocols facilitating remote attestation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Document Structure

	2. RATS Information Elements

	3. Security Considerations

	4. Acknowledgments

	5. Change Log

	6. Contributors

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Authors' Addresses

1. Introduction

 Remote attestation procedures (RATS) are used to increase the trust
 in the trustworthiness of an attester. This is typically
 accomplished by conveying attestation evidence from an attester to a
 verifier that is able to appraise the evidence. The exact
 definitions of RATS roles, such as an attester or a verifier, are
 specified in the RATS architecture [I-D.birkholz-rats-architecture].
 This document defines the common information elements (IE) that are
 able to express the characteristics of an attester. Ultimately,
 these IE can be used to compose attestation evidence (attestation
 assertions that are accompanied by a proof of their validity).

 In general, RATS convey information elements that:

 o enable the functionality of remote attestation protocols,

 o are able to express assertions about an attester's composition,
 configuration, or operational state,

 o represent the provenance of assertions, including entities that
 provide assertions on behalf of the attester,

 o compose a type of proof of validity with respect to other
 assertions, and that

 o are either verifiable (via comparison with trusted reference
 values) or non-verifiable.

1.1. Document Structure

 Every information element listed is annotated with one or more of
 these attributes:

Protocol (P): This IE is used on a remote attestation protocol
 layer, typically on the control plane or as protocol‑specific data
 plane content.

Hardware (H): This IE expresses characteristics about an attester's
 hardware components or the composition of its hardware components.

Software (S): This IE expresses characteristics about an attester's
 software components or their semantic relationship. The term
 software component ‑ in the scope of this document ‑ subsumes
 firmware, bootloader, BIOS/(U)EFI, and microcode.

Operational State (O): This IE is used to convey information about
 the combination of applied configuration and system state as
 defined in [RFC8342].

Verifiable (V): This IE requires reference integrity measurements
 (RIM), compliance‑policy, certification‑path, or another type of
 trust‑chain in order to be appraised appropriately by a verifier.

 Additionally, every IE definition includes a reference to the source
 of its definition, if it is not specified in this document for the
 first time (which is the most likely case). If a source of a
 definition is not a specification or (proposed) standard, but a
 draft, a web resource, or source that cannot be attribute with a DOI
 or ISSN, the following attribute is associated.

Unstable (U): The source of the definition of this IE may change in
 the future and is not considered to be stable at the time of
 publication of this document.

 Information elements might reference other information elements or
 have to be associated in a set (with or without a specific order) in
 order to convey the intended meaning to a verifier. Reference to
 other IE inside this documents simply use their name as reference.
 In consequence, an IE can be a superstructure composed of other IE
 with its own name (and potentially additional definition text that
 defines its purpose and or usage).

 The RATS Information Model allows for expressing a hierarchical
 taxonomy. If an IE is a specialisation of another IE, the last
 sentence in the definition includes a "This IE is a specialization of
 IE NAME".

 The ordering of IE is in descending alphabetical order; independent
 of source or semantic relationship to other IE, or other types of
 hierarchy.

2. RATS Information Elements

Age: The latency between the creation of an assertion value (e.g. by
 asserters such as a hardware sensors or the Linux Integrity
 Measurement Architecture) including its composition into
 attestation evidence and its following conveyance to another RATS
 Actor/Role in RATS. The Age IE does not require a threshold at
 which point another information element is considered "old" and an
 age information element has to be included.

 Reference: [I-D.ietf-rats-eat]

Assertion Selection: [P]

 A filter expression that enables the conveyance of a subset of all
 attestation assertions available to the attester, if requested by
 a verifier.

Attestation Evidence: [H, S, O, V]

 A composite IE that must include at least an Authentication-Secret
 Identifier, an Attester Identity, and at least one Attestation
 Assertion. Attestation Evidence is always signed via the
 Authentication Secret and thereby binds the listed information
 elements cryptographically. Attestation Evidence can only be
 trusted by a verifier if it is associated with a trust anchor the
 verifier also trusts.

Attester Identifier: [P, O, V]

 A value associated or bound to a distinguishable attester that is
 intended to uniquely identify it, but is not directly associated
 with a trust anchor. Additional Endorsement Documents can
 increase the level of confidence in an Attester Identifier.

Attester Identity: [P, S, V]

 A document about a distinguishable attester issued and signed by a
 third party. If not cryptographically associated with a trust
 anchor directly or indirectly, this IE is a specialization of
 Attester Identifier.

Attestation Result: [P]

 A set of one or more values that are created by an appraisal
 action of a verifier. Attestation Result is the most generic
 definition of the output of RATS and are typically consumed by
 relying parties.

Authentication‑Secret Identifier: [O, V]

 An identifier that is associated with an authentication secret
 used to sign attestation evidence.

Authorization Challenge: [P]

 The input to an challenge-response protocol hand-shake. This IE
 can be Nonce, but also the output of a local attestation
 procedure.

 Reference [I-D.tschofenig-rats-psa-token]

Endorsement Document: [P, H, S, V]

 A document about the capabilities and functionality of one or more
 sub-components of a distinguishable attester issued and signed by
 a third party. Endorsement Documents are intended to render
 Attestation Evidence trustworthy. If not cryptographically
 associated with a trust anchor directly or indirectly, this IE is
 a specialization of System Component Identifier.

Location: A global standardized set of coordinates and related
 attributes representing the geographic position of a device based
 on a geodetic system, such as Navstar GPS. The coordinate values
 can have different meaning with respect to the geographic position
 of a device depending on the geodetic system used. The default is
 WGS‑84.

 The basic location attributes include: latitude, longitude,
 altitude, accuracy, altitude accuracy, heading, and velocity.

 Reference [I-D.ietf-rats-eat]

Measured Boot Characteristics: [H, S, V]

 If every piece of software is measured by a root-of-trust for
 measuring during boot time and across staged computing contexts
 (e.g. UEFI, Bootloader, Kernel, Rich OS), associated information
 about how and in which operational states these measurements are
 conducted is vital to RATS. This IE represents several states of
 a (composite) device with respect to measured boot (previously
 often called secure boot) including: "Secure Boot Enabled", "Debug
 Disabled", "Debug Disabled Since Boot", "Debug Permanent Disable",
 "Debug Full Permanent Disable".

Nonce: [P]

 An information element with two major uses: the prevention of
 replay-attacks and as an IE that can be used in a challenge-
 response interaction model. It is created by the requester to
 provide evidence about the freshness of the corresponding
 response. It is important to highlight that a nonce by itself
 does not protect from relay-attacks.

OEM Identifier: [H, S, V]

 A organizationally unique identifier (OUI) assigned by the IEEE
 Registration Authority (IEEE RA). This IE is associated with a
 device or a distinguishable sub-component of a composite device
 with its own computing context. It intended to identify a
 device(component) during its life-cycle. This is a specialization
 of System Component Identifier.

 Reference [I-D.ietf-rats-eat]

Origination: [P, S, V]]

 An IE representing attestation provenance. Attestation Assertions
 or Attestation Evidence are produced by a specific source of
 information that is intended to be uniquely identifiable. The
 source of information is a distinguishable computing context (see
 [I-D.birkholz-rats-architecture]) of a device or the sub-
 components of a composite device.

 Reference [I-D.ietf-rats-eat]

Universal Entity ID: [P, H, V]

 A unique identifier permanently associated with an individual
 manufactured entity / device, such as a mobile phone, a water
 meter, a Bluetooth speaker or a networked security camera. This
 IE is intended to either identify an device or a submodule or
 subsystem of a device. It does not identify types, models or
 classes of devices. It is akin to a serial number, though it does
 not have to be sequential. This IE is a specialization of System
 Component Identifier.

 Reference [I-D.ietf-rats-eat]

Uptime: [H, S]

 An IE representing the number of seconds since the first computing
 context of a (composite) device is able to measure it.

 Reference [I-D.ietf-rats-eat]

Security Level: [H, S, V]

 A level of confidence with respect to the resilience against
 attacks intended to compromise attestation evidence. A Security
 Level can be associated with an Origination. This IE is context
 specific and requires a scope-specific definition of values as
 part of a security framework. The [I-D.ietf-rats-eat] document,
 for example, provides an enumeration of security levels that is
 similar to the Metadata Service defined by the Fast Identity
 Online (FIDO) Alliance.

 Reference [I-D.ietf-rats-eat]

Software Component Identifier: [S, V]

 An IE representing one or more distinguishable Software Components
 [I-D.ietf-sacm-terminology] that were loaded and measured by an
 appropriate root-of-trust. The use of this IE typically requires
 the use of Measured Boot.

 Reference [I-D.tschofenig-rats-psa-token]

System Component Identifier: [H, S, V]

 An identifier intended to uniquely identify a distinguishable
 system component. System components can be hardware components or
 software components (e.g. a virtual machine). The system
 component can be an "atomic" device (i.e. a composite device with
 only one hardware component) or a part of a composite device.

Timestamp: [P, S]

 A generic information element that represents a certain point of
 time in the past. The level of confidence in the value of a
 timestamp is based on the trustworthiness of the source of time,
 which can be local or remote, a composite of multiple time sources
 to represent the state synchronization, as well as the precision
 and the accuracy of the source of time itself.

 Timestamps can be time-zone specific and therefore change their
 meaning if the definition of time zones changes.

Verification Service Indicator: [P, S, V]

 This IE provides a hint (typically consumed by a Relying Party)
 that enables the discovery of an appropriate Verification Service
 or Remote Attestation Service, e.g. a URL.

 Reference [I-D.tschofenig-rats-psa-token]

3. Security Considerations

 Probably none

4. Acknowledgments

 TBD

5. Change Log

 Initial version -00

6. Contributors

 TBD

7. References

7.1. Normative References

 [I-D.birkholz-rats-architecture]

 Birkholz, H., Wiseman, M., Tschofenig, H., and N. Smith,
 "Architecture and Reference Terminology for Remote
 Attestation Procedures", draft-birkholz-rats-
 architecture-01 (work in progress), March 2019.

 [I-D.birkholz-rats-basic-yang-module]

 Birkholz, H., Eckel, M., Bhandari, S., Sulzen, B., Voit,
 E., and G. Fedorkow, "YANG Module for Basic Challenge-
 Response-based Remote Attestation Procedures", draft-
 birkholz-rats-basic-yang-module-00 (work in progress),
 March 2019.

 [I-D.birkholz-rats-tuda]

 Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann,
 "Time-Based Uni-Directional Attestation", draft-birkholz-
 rats-tuda-00 (work in progress), March 2019.

 [I-D.ietf-rats-eat]

 Mandyam, G., Lundblade, L., Ballesteros, M., and J.
 O'Donoghue, "The Entity Attestation Token (EAT)", draft-
 ietf-rats-eat-01 (work in progress), July 2019.

 [I-D.tschofenig-rats-psa-token]

 Tschofenig, H., Frost, S., Brossard, M., Shaw, A., and T.
 Fossati, "Arm's Platform Security Architecture (PSA)
 Attestation Token", draft-tschofenig-rats-psa-token-02
 (work in progress), July 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

7.2. Informative References

 [I-D.birkholz-rats-reference-interaction-model]

 Birkholz, H. and M. Eckel, "Reference Interaction Model
 for Challenge-Response-based Remote Attestation", draft-
 birkholz-rats-reference-interaction-model-00 (work in
 progress), March 2019.

 [I-D.ietf-sacm-terminology]

 Birkholz, H., Lu, J., Strassner, J., Cam-Winget, N., and
 A. Montville, "Security Automation and Continuous
 Monitoring (SACM) Terminology", draft-ietf-sacm-
 terminology-16 (work in progress), December 2018.

 [I-D.richardson-rats-usecases]

 Richardson, M., Wallace, C., and W. Pan, "Use cases for
 Remote Attestation common encodings", draft-richardson-
 rats-usecases-03 (work in progress), July 2019.

Authors' Addresses

Henk Birkholz
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: henk.birkholz@sit.fraunhofer.de

Michael Eckel
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: michael.eckel@sit.fraunhofer.de

draft-birkholz-rats-reference-interaction-model-01 - Reference Interaction Model for Challenge-Response-based Remote Attestation

draft-birkholz-rats-reference-interaction-model-01 - Reference Interaction Model

Index
Prev
Next
Forward 5

RATS Working Group

Internet-Draft

Intended status: Informational

Expires: January 9, 2020

H. Birkholz

M. Eckel

Fraunhofer SIT

July 08, 2019

Reference Interaction Model for Challenge-Response-based Remote Attestation

draft-birkholz-rats-reference-interaction-model-01

Abstract

 This document defines an interaction model for a basic remote
 attestation procedure. Additionally, the required information
 elements are illustrated.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements notation

	2. Disambiguation

	3. Scope

	4. Component Roles

	5. Prerequisites

	6. Remote Attestation Interaction Model
	 6.1. Information Elements

	 6.2. Interaction Model

	7. Further Context
	 7.1. Confidentiality

	 7.2. Mutual Authentication

	 7.3. Hardware-Enforcement/Support

	8. Security and Privacy Considerations

	9. Acknowledgments

	10. Change Log

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. CDDL Specification for a simple CoAP Challenge/Response Interaction

	Authors' Addresses

1. Introduction

 Remote attestation procedures (RATS) are a combination of activities,
 in which a Verifier creates assertions about assertions of integrity
 and about characteristics of other system entities by the appraisal
 of corresponding signed assertions (evidence). In this document, a
 reference interaction model for a generic challenge-response-based
 remote attestation procedure is provided. The minimum set of
 components, roles and information elements that have to be conveyed
 between Verifier and Attester are defined as a standard reference to
 derive more complex RATS from.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Disambiguation

 The term "Remote Attestation" is a common expression and often
 associated with certain properties. The term "Remote" in this
 context does not necessarily refer to a remote system entity in the
 scope of network topologies or the Internet. It rather refers to a
 decoupled system or different computing context, which also could be
 present locally as components of a composite device. Examples
 include: a Trusted Execution Environment (TEE), Baseboard Management
 Controllers (BMCs), as well as other physical or logical protected/
 isolated execution environments.

3. Scope

 This document focuses on a generic interaction model between
 Verifiers and Attesters. Complementary processes, functions and
 activities that are required for a complete semantic binding of RATS
 are not in scope. Examples include: identity establishment, key
 enrollment, and certificate revocation. Furthermore, any processes
 and activities that go beyond carrying out the remote attestation
 process are out of scope. For instance, using the result of a remote
 attestation that is emitted by the Verifier, such as triggering
 remediation actions and recovery processes, as well as the
 remediation actions and recovery processes themselves, are out of
 scope.

4. Component Roles

 The Reference Interaction Model for Challenge-Response-based Remote
 Attestation is based on the standard roles defined in
 [I-D.birkholz-rats-architecture]:

Attester: The role that designates the subject of the remote
 attestation. A system entity that is the provider of evidence
 takes on the role of an Attester.

Verifier: The role that designates the system entity and that is the
 appraiser of evidence provided by the Attester. A system entity
 that is the consumer of evidence takes on the role of a Verifier.

5. Prerequisites

 Attester Identity:

Attestation Authenticity: An Attestation MUST be authentic.

 An attestation, in order to be authentic, MAY This Identity MUST
 be part of the signed assertions (attestation evidence) that the
 Attester conveys to the Verifier. An Identity MAY be a unique
 identity or it MAY be included in a zero-knowledge proof (ZKP) or
 be part of a group signature.

Authentication Secret: An Authentication Secret MUST be present on
 the Attester. The Attester MUST sign assertions with that
 Authentication Secret, proving the authenticity of the assertions.
 The Authentication Secret MUST be established before a remote
 attestation procedure can take place. How it is established is
 out of scope for this reference model.

6. Remote Attestation Interaction Model

 This section defines the information elements that have to be
 conveyed via a protocol, enabling the conveyance of Evidence between
 Verifier and Attester, as well as the interaction model for a generic
 challenge-response remote attestation scheme.

6.1. Information Elements

Attester Identity ('attesterIdentity'): _mandatory_

 A statement about a distinguishable Attester made by an entity
 without accompanying evidence of its validity, used as proof of
 identity.

Authentication Secret ID ('authSecID'): _mandatory_

 An identifier that MUST be associated with the Authentication
 Secret which is used to sign evidence.

Nonce ('nonce'): _mandatory_

 The Nonce (number used once) is intended to be unique and
 practically infeasible to guess. In this reference interaction
 model the Nonce MUST be provided by the Verifier and MUST be used
 as proof of freshness. With respect to conveyed evidence, it
 ensures the result of an attestation activity to be created
 recently, e. g. sent or derived by the challenge from the
 Verifier. As such, the Nonce MUST be part of the signed
 Attestation Evidence that is sent from the Attester to the
 Verifier.

Assertions ('assertions'): _mandatory_

 Assertions represent characteristics of an Attester. They are
 required for proving the integrity of an Attester. Examples are
 assertions about sensor data, policies that are active on the
 system entity, versions of composite firmware of a platform,
 running software, routing tables, or information about a local
 time source.

 Reference Assertions ('refAssertions') _mandatory_

 Reference Assertions are used to verify the assertions received
 from an Attester in an attestation verification process. For
 example, Reference Assertions MAY be Reference Integrity
 Measurements (RIMs) or assertions that are implicitly trusted
 because they are signed by a trusted authority. RIMs represent
 (trusted) assertions about the intended platform operational state
 of the Attester.

Assertion Selection ('assertionSelection'): _optional_

 An Attester MAY provide a selection of assertions in order to
 reduce or increase retrieved assertions to those that are relevant
 to the conducted appraisal. Usually, all available assertions
 that are available to the Attester SHOULD be conveyed. The
 Assertion Selection MAY be composed as complementary signed
 assertions or MAY be encapsulated assertions in the signed
 Attestation Evidence. An Attester MAY decide whether or not to
 provide all requested assertions or not. An example for an
 Assertion Selection is a Verifier requesting (signed) RIMs from an
 Attester.

(Signed) Attestation Evidence ('signedAttestationEvidence'): _mandat
 ory_

 Attestation Evidence consists of the Authentication Secret ID that
 identifies an Authentication Secret, the Attester Identity, the
 Assertions, and the Verifier-provided Nonce. Attestation Evidence
 MUST cryptographically bind all of those elements. The
 Attestation Evidence MUST be signed by the Authentication Secret.
 The Authentication Secret MUST be trusted by the Verifier as
 authoritative.

Attestation Result ('attestationResult'): _mandatory_

 An Attestation Result is produced by the Verifier as a result of a
 Verification of Attestation Evidence. The Attestation Result
 represents assertions about integrity and other characteristics of
 the corresponding Attester.

6.2. Interaction Model

 The following sequence diagram illustrates the reference remote
 attestation procedure defined by this document.

[Attester] [Verifier]
 | |
 | <‑‑‑ requestAttestation(nonce, authSecID, assertionSelection) |
 | |
collectAssertions(assertionSelection) |
 | => assertions |
 | |
signAttestationEvidence(authSecID, assertions, nonce) |
 | => signedAttestationEvidence |
 | |
 | signedAttestationEvidence ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
 | |
 | verifyAttestationEvidence(signedAttestationEvidence, refAssertions)
 | attestationResult <= |
 | |

 The remote attestation procedure is initiated by the Verifier,
 sending an attestation request to the Attester. The attestation
 request consists of a Nonce, a Authentication Secret ID, and an
 Assertion Selection. The Nonce guarantees attestation freshness.
 The Authentication Secret ID selects the secret with which the
 Attester is requested to sign the Attestation Evidence. The
 Assertions Selection narrows down or increases the amount of received
 Assertions, if required. If the Assertions Selection is empty, then
 by default all assertions that are available on the system of the
 Attester SHOULD be signed and returned as Attestation Evidence. For
 example, a Verifier may only be interested in particular information
 about the Attester, such as proof of with which BIOS and firmware it
 booted up, and not include information about all currently running
 software.

 The Attester, after receiving the attestation request, collects the
 corresponding Assertions to compose the Attestation Evidence that the
 Verifier requested--or, in case the Verifier did not provide an
 Assertions Selection, the Attester collects all information that can
 be used as complementary Assertions in the scope of the semantics of
 the remote attestation procedure. After that, the Attester produces
 Attestation Evidence by signing the Attester Identity, the
 Assertions, and the Nonce with the Authentication Secret identified
 by the Authentication Secret ID. Then the Attester sends the signed
 Attestation Evidence back to the Verifier.

 Important at this point is that Assertions, the Nonce as well as the
 Attester Identity information MUST be cryptographically bound to the
 signature of the Attestation Evidence. It is not required for them
 to be present in plain text, though. Cryptographic blinding MAY be
 used at this point. For further reference see Security and Privacy
 Considerations (Section 8)

 As soon as the Verifier receives the signed Attestation Evidence, it
 verifies the signature, the Attester Identity, the Nonce, and the
 Assertions. This process is application-specific and can be carried
 out by, e. g., comparing the Assertions to known (good), expected
 Reference Assertions, such as Reference Integrity Measurements
 (RIMs), or evaluating it in other ways. The final output of the
 Verifier is the Attestation Result. It constitutes an new assertion
 about properties and characteristics of the Attester, i. e. whether
 or not it is compliant to policies, or even can be "trusted".

7. Further Context

 Depending on the use cases to cover, there may be additional
 requirements. Some of them are mentioned in this section.

7.1. Confidentiality

 Confidentiality of exchanged attestation information may be
 desirable. This requirement usually is present when communication
 takes place over insecure channels, such as the public Internet. In
 such cases, TLS may be uses as a suitable communication protocol that
 preserves confidentiality. In private networks, such as carrier
 management networks, it must be evaluated whether or not the
 transport medium is considered confidential.

7.2. Mutual Authentication

 In particular use cases mutual authentication may be desirable in
 such a way that a Verifier also needs to prove its identity to the
 Attester, instead of only the Attester proving its identity to the
 Verifier.

7.3. Hardware-Enforcement/Support

 Depending on the requirements, hardware support for secure storage of
 cryptographic keys, crypto accelerators, or protected or isolated
 execution environments may be useful. Well-known technologies are
 Hardware Security Modules (HSM), Physically Unclonable Functions
 (PUFs), Shielded Secrets, and Trusted Executions Environments (TEEs).

8. Security and Privacy Considerations

 In a remote attestation process the Verifier or the Attester MAY want
 to cryptographically blind several attributes. For instance,
 information can be part of the signature after applying a one-way
 function (e. g. a hash function).

 There is also a possibility to scramble the Nonce or Attester
 Identity with other information that is known to both the Verifier
 and Attester. A prominent example is the IP address of the Attester
 that usually is known by the Attester itself as well as the Verifier.
 This extra information can be used to scramble the Nonce in order to
 counter certain types of relay attacks.

9. Acknowledgments

 Very likely.

10. Change Log

 o Initial draft -00

 o Changes from version 00 to version 01:

 * Added details to the flow diagram

 o Changes from version 01 to version 02:

 * Integrated comments from Ned Smith (Intel)

 * Reorganized sections and

 * Updated interaction model

 o Changes from version 02 to version 03:

 * Replaced "claims" with "assertions"

 * Added proof-of-concept CDDL for CBOR via CoAP based on a TPM
 2.0 quote operation

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.birkholz-rats-architecture]

 Birkholz, H., Wiseman, M., Tschofenig, H., and N. Smith,
 "Architecture and Reference Terminology for Remote
 Attestation Procedures", draft-birkholz-rats-
 architecture-01 (work in progress), March 2019.

Appendix A. CDDL Specification for a simple CoAP Challenge/Response
 Interaction

 The following CDDL specification is an examplary proof-of-concept to
 illustrate a potential implementation of the Reference Interaction
 Model. The transfer protocol used is CoAP using the FETCH operation.
 The actual resource operated on can be empty. Both the Challenge
 Message and the Response Message are exchanged via the FETCH Request
 and FETCH Response body.

 In this example, the root-of-trust for reporting primitive operation
 "quote" is provided by a TPM 2.0.

RAIM-Bodies = CoAP-FETCH-Body / CoAP-FETCH-Response-Body

CoAP‑FETCH‑Body = [hello: bool, ; if true, the AK‑Cert is conveyed
 nonce: bytes,
 pcr‑selection: [+ [tcg‑hash‑alg‑id: uint .size 2, ; TPM2_ALG_ID
 [+ pcr: uint .size 1],
]
],
]

CoAP‑FETCH‑Response‑Body = [attestation‑evidence: TPMS_ATTEST‑quote,
 tpm‑native‑signature: bytes,
 ? ak‑cert: bytes, ; attestation key certificate
]

TPMS_ATTEST‑quote = [qualifiediSigner: uint .size 2, ;TPM2B_NAME
 TPMS_CLOCK_INFO,
 firmwareVersion: uint .size 8
 quote‑responses: [* [pcr: uint .size 1,
 + [pcr‑value: bytes,
 ? hash‑alg‑id: uint .size 2,
],
],
 ? pcr‑digest: bytes,
],
]

TPMS_CLOCK_INFO = [clock: uint .size 8,
 resetCounter: uint .size 4,
 restartCounter: uint .size 4,
 save: bool,
]

Authors' Addresses

Henk Birkholz
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: henk.birkholz@sit.fraunhofer.de

Michael Eckel
Fraunhofer SIT
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: michael.eckel@sit.fraunhofer.de

draft-birkholz-rats-tuda-01 - Time-Based Uni-Directional Attestation

draft-birkholz-rats-tuda-01 - Time-Based Uni-Directional Attestation

Index
Back 5
Prev
Next
Forward 5

RATS Working Group

Internet-Draft

Intended status: Standards Track

Expires: March 15, 2020

A. Fuchs

H. Birkholz

Fraunhofer SIT

I. McDonald

High North Inc

C. Bormann

Universitaet Bremen TZI

September 12, 2019

Time-Based Uni-Directional Attestation

draft-birkholz-rats-tuda-01

Abstract

 This documents defines the method and bindings used to conduct Time-
 based Uni-Directional Attestation (TUDA) between two RATS (Remote
 ATtestation procedureS) Principals over the Internet. TUDA does not
 require a challenge-response handshake and thereby does not rely on
 the conveyance of a nonce to prove freshness of remote attestation
 Evidence. Conversely, TUDA enables the creation of Secure Audit Logs
 that can constitute Evidence about current and past operational
 states of an Attester. As a prerequisite for TUDA, every RATS
 Principal requires access to a trusted and synchronized time-source.
 Per default, in TUDA this is a Time Stamp Authority (TSA) issuing
 signed Time Stamp Tokens (TST).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 15, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Notation

	 1.2. Evidence

	 1.3. Creating Evidence about Software Component Integrity
	 1.3.1. Data Items

	 1.3.2. System Components

	 1.3.3. Operations

	 1.4. Remote Attestation Principles

	 1.5. System Component Requirements

	 1.6. Evidence Appraisal

	 1.7. Activities and Actions

	 1.8. Attestation and Verification

	 1.9. Information Elements and Conveyance

	 1.10. TUDA Objectives

	 1.11. Hardware Dependencies

	2. TUDA Core Concept

	3. Terminology
	 3.1. Universal Terms

	 3.2. Roles
	 3.2.1. General Types

	 3.2.2. RoT specific terms

	 3.3. Certificates

	4. Time-Based Uni-Directional Attestation
	 4.1. TUDA Information Elements Update Cycles

	5. Sync Base Protocol

	6. IANA Considerations

	7. Security Considerations

	8. Change Log

	9. Contributors

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Appendix A. REST Realization

	Appendix B. SNMP Realization
	 B.1. Structure of TUDA MIB
	 B.1.1. Cycle Index

	 B.1.2. Instance Index

	 B.1.3. Fragment Index

	 B.2. Relationship to Host Resources MIB

	 B.3. Relationship to Entity MIB

	 B.4. Relationship to Other MIBs

	 B.5. Definition of TUDA MIB

	Appendix C. YANG Realization

	Appendix D. Realization with TPM functions
	 D.1. TPM Functions
	 D.1.1. Tick-Session and Tick-Stamp

	 D.1.2. Platform Configuration Registers (PCRs)

	 D.1.3. PCR restricted Keys

	 D.1.4. CertifyInfo

	 D.2. IE Generation Procedures for TPM 1.2
	 D.2.1. AIK and AIK Certificate

	 D.2.2. Synchronization Token

	 D.2.3. RestrictionInfo

	 D.2.4. Measurement Log

	 D.2.5. Implicit Attestation

	 D.2.6. Attestation Verification Approach

	 D.3. IE Generation Procedures for TPM 2.0
	 D.3.1. AIK and AIK Certificate

	 D.3.2. Synchronization Token

	 D.3.3. Measurement Log

	 D.3.4. Explicit time-based Attestation

	 D.3.5. Sync Proof

	Acknowledgements

	Authors' Addresses

1. Introduction

 Remote ATtestation procedureS (RATS) describe the attempt to
 determine and appraise properties, such as integrity and
 trustworthiness, of a communication partner - the Attester - over the
 Internet to another communication parter - the Verifier - without
 direct access. TUDA uses the architectural constituents of the RATS
 Architecture [I-D.birkholz-rats-architecture] that defines the Roles
 Attester and Verifier in detail. The RATS Architecture also defines
 Role Messages. TUDA creates and conveys a specific type of Role
 Message called Evidence, a composition of trustwrthiness Claims
 provided by an Attester and consumed by a Verifier (potentially
 relayed by another RATS Role that is a Relying Party). TUDA - in
 contrast to traditional bi-directional challenge-response protocols
 [I-D.birkholz-rats-reference-interaction-model] - enables a uni-
 directional conveyance of attestation Evidence that allows for
 providing attestation information without solicitation (e.g. as
 beacons or push data via YANG Push [RFC8641], [RFC8640], [RFC8639]).

 As a result, this document introduces the term Forward Authenticity.

Forward Authenticity (FA): A property of secure communication
 protocols, in which later compromise of the long‑term keys of a
 data origin does not compromise past authentication of data from
 that origin. FA is achieved by timely recording of assessments of
 the authenticity from system components (via "audit logs" during
 "audit sessions") that are authorized for this purpose and
 trustworthy (e.g via endorsed roots of trust), in a time frame
 much shorter than that expected for the compromise of the long‑
 term keys.

 Forward Authenticity enables new levels of assurance and can be
 included in basically every protocol, such as ssh, YANG Push,
 router advertisements, link layer neighbor discovery, or even ICMP
 echo.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Evidence

 Remote attestation Evidence is basically a set of trustworthiness
 claims (assertions about the Attester and its system characteristics
 including security posture and protection characteristics) that are
 accompanied by a proof of their veracity - typically a signature
 based on shielded, private and potentially restricted key material.
 As key material alone is typically not self-descriptive with respect
 to its intended use (its semantics), the remote attestation Evidence
 created via TUDA is accompanied by two kinds of certificates that are
 cryptographically associated with a Trust Anchor (TA) [RFC4949] via a
 certification path:

 o an Attestation Key (AK) Certificate (AK-Cert) that represents the
 attestation provenance of the created Evidence, and

 o an Endorsement Key (EK) Certificate (EK-Cert) that represents the
 protection characteristics of the system components the AK is
 stored in.

 If a Verifier decides to trust both the TA of an AK-Cert and an EK-
 Cert presented by an Attester - and the included assertions about the
 system characteristics describing the Attester, the attestation
 Evidence created via TUDA by the Attester is considered believable.
 Ultimately, believable Evidence is appraised by a Verifier in order
 to assess the trustworthiness of the corresponding Attester.

1.3. Creating Evidence about Software Component Integrity

 The TUDA protocol mechanism uses hash values of all started software
 components as a basis to provide and create Evidence about the
 integrity of the software components of an Attester. This section
 defines the processed data items, the required system components, and
 corresponding operations to enable the creation of Evidence about
 software component integrity for TUDA.

1.3.1. Data Items

 The hash value of a software component created before it is executed
 is referred to as a "measurement" in the remainder of this document.
 Measurements are chained using a rolling hash function. Each
 measurement added to the sequence of all measurements results in a
 new current hash value that is referred to as a "digest" in the
 remainder of this document.

1.3.2. System Components

 The function to store these measurements via a rolling hash function
 is provided by a root of trust for storage - a system component that
 MUST be a component of the attester.

 With respect to the boot sequence of an Attester, the very first
 measurements of software components (e.g. the BIOS, or a sometimes a
 bootloader) have to be conducted by a root of trust for measurement
 that is implemented in hardware and MUST be a system component of the
 Attester.

 All measurements retained in the root of trust for measurements are
 handed over to the root of trust for storage when it becomes
 available during the boot procedure of the Attester. During that
 hand-over the sequence of measurements retained in the root of trust
 for measurement are processed by the rolling hash function of the
 root of trust for storage.

 The function of retrieving the current output value of the rolling
 hash function, including a signature to provide a proof of veracity,
 is provided by a root of trust for reporting and MUST be a system
 component of the Attester.

 Typically, a root of trust for storage and a root of trust for
 reporting are tightly coupled. Analogously, a root of trust for
 measurement is typically independent from the root of trust for
 storage, but has to be able to interact with root of trust for
 storage at some point of the boot sequence of the Attester to hand
 over the retained measurements.

1.3.3. Operations

 The operation of processing a measurement and adding it to the
 sequence of measurements via the rolling hash function is called
 "extend" and is provided by the root of trust for storage.

 The operation of retrieving the current available hash value that is
 the result of the rolling hash function including a signature based
 on an Attestation Key is called "quote" and is provided by the
 corresponding root of trust for reporting.

1.4. Remote Attestation Principles

 In essence, RATS are composed of three base activities. The
 following definitions are derived from the definitions presented in
 [PRIRA] and [TCGGLOSS], and are a simplified summary of the RATS
 Architecture relevant for TUDA. The complete RATS Architecture and
 every corresponding constituent, message and interaction is defined
 in [I-D.birkholz-rats-architecture].

Attestation: The creation of one ore more claims about the
 trustworthiness properties of an Attester, such that the claims
 can be used as Evidence.

Conveyance: The transfer of Evidence from the Attester to the
 Verifier via an interconnect.

Verification: The appraisal of Evidence by evaluating it against
 known‑good‑values (a type of declarative guidance).

 With TUDA, the claims that compose the evidence are signatures over
 trustworthy integrity measurements created by leveraging roots of
 trust. The evidence is appraised via corresponding signatures over
 reference integrity measurements (RIM, represented, for example via
 [I-D.ietf-sacm-coswid]).

 Protocols that facilitate Trust-Anchor based signatures in order to
 provide RATS are usually bi-directional challenge/response protocols,
 such as the Platform Trust Service protocol [PTS] or CAVES [PRIRA],
 where one entity sends a challenge that is included inside the
 response to prove the recentness - the freshness (see fresh in
 [RFC4949]) - of the attestation information. The corresponding
 interaction model tightly couples the three activities of creating,
 transferring and appraising evidence.

 The Time-Based Uni-directional Attestation family of protocols - TUDA
 - described in this document can decouple the three activities RATS
 are composed of. As a result, TUDA provides additional capabilities,
 such as:

 o remote attestation for Attesters that might not always be able to
 reach the Internet by enabling the verification of past states,

 o secure audit logs by combining the evidence created via TUDA with
 integrity measurement logs that represent a detailed record of
 corresponding past states,

 o an uni-directional interaction model that can traverse "diode-
 like" network security functions (NSF) or can be leveraged in
 RESTful architectures (e.g. CoAP [RFC7252]), analogously.

1.5. System Component Requirements

 TUDA is a family of protocols that bundles results from specific
 attestation activities. The attestation activities of TUDA are based
 on a hardware roots of trust that provides the following
 capabilities:

 o Platform Configuration Registers (PCR) that can extend
 measurements consecutively and represent the sequence of
 measurements as a single digest,

 o Restricted Signing Keys (RSK) that can only be accessed, if a
 specific signature about a set of measurements can be provided as
 authentication, and

 o a dedicated source of (relative) time, e.g. a tick counter (a tick
 being a specific time interval, for example 10 ms).

1.6. Evidence Appraisal

 To appraise the evidence created by an Attester, the Verifier
 requires corresponding Reference Integrity Measurements (RIM).
 Typical set of RIMs are required to assess the integrity of an
 Attester. These sets are called RIM Bundles. The scope of a RIM
 Bundle encompasses, e.g., a platform, a device, a computing context,
 or a virtualised function. In order to be comparable, the hashing
 algorithms used by the Attester to create the integrity measurements
 have to match the hashing algorithms used to create the corresponding
 RIM that are used by the Verifier to appraise the attestation
 Evidence about software component integrity.

1.7. Activities and Actions

 Depending on the platform (i.e. one or more computing contexts
 including a dedicated hardware RoT), a generic RA activity results in
 platform-specific actions that have to be conducted. In consequence,
 there are multiple specific operations and data models (defining the
 input and output of operations). Hence, specific actions are are not
 covered by this document. Instead, the requirements on operations
 and the information elements that are the input and output to these
 operations are illustrated using pseudo code in Appendix C and D.

1.8. Attestation and Verification

 Both the attestation and the verification activity of TUDA also
 require a trusted Time Stamp Authority (TSA) as an additional third
 party next to the Attester and the Verifier. The protocol uses a
 Time Stamp Authority based on [RFC3161]. The combination of the
 local source of time provided by the hardware RoT (located on the
 Attester) and the Time Stamp Tokens provided by the TSA (to both the
 Attester and the Verifier) enable the attestation and verification of
 an appropriate freshness of the evidence conveyed by the Attester --
 without requiring a challenge/response interaction model that uses a
 nonce to ensure the freshness.

 Typically, the verification activity requires declarative guidance
 (representing desired or compliant endpoint characteristics in the
 form of RIM, see above) to appraise the individual integrity
 measurements the conveyed evidence is composed on. The acquisition
 or representation (data models) of declarative guidance as well as
 the corresponding evaluation methods are out of the scope of this
 document.

1.9. Information Elements and Conveyance

 TUDA defines a set of information elements (IE) that are created and
 stored on the Attester and are intended to be transferred to the
 Verifier in order to enable appraisal. Each TUDA IE:

 o is encoded in the Concise Binary Object Representation (CBOR
 [RFC7049]) to minimize the volume of data in motion. In this

 document, the composition of the CBOR data items that represent IE
 is described using the Concise Data Definition Language, CDDL
 [RFC8610]

 o that requires a certain freshness is only created/updated when
 out-dated, which reduces the overall resources required from the
 Attester, including the utilization of the hardware root of trust.
 The IE that have to be created are determined by their age or by
 specific state changes on the Attester (e.g. state changes due to
 a reboot-cycle)

 o is only transferred when required, which reduces the amount of
 data in motion necessary to conduct remote attestation
 significantly. Only IE that have changed since their last
 conveyance have to be transferred

 o that requires a certain freshness can be reused for multiple
 remote attestation procedures in the limits of its corresponding
 freshness-window, further reducing the load imposed on the
 Attester and its corresponding hardware RoT.

1.10. TUDA Objectives

 The Time-Based Uni-directional Attestation family of protocols is
 designed to:

 o increase the confidence in authentication and authorization
 procedures,

 o address the requirements of constrained-node networks,

 o support interaction models that do not maintain connection-state
 over time, such as REST architectures [REST],

 o be able to leverage existing management interfaces, such as SNMP
 [RFC3411]. RESTCONF [RFC8040] or CoMI [I-D.ietf-core-comi] -- and
 corresponding bindings,

 o support broadcast and multicast schemes (e.g. [IEEE1609]),

 o be able to cope with temporary loss of connectivity, and to

 o provide trustworthy audit logs of past endpoint states.

1.11. Hardware Dependencies

 The binding of the attestation scheme used by TUDA to generate the
 TUDA IE is specific to the methods provided by the hardware RoT used
 (see above). In this document,expositional text and pseudo-code that
 is provided as a reference to instantiate the TUDA IE is based on TPM
 1.2 and TPM 2.0 operations. The corresponding TPM commands are
 specified in [TPM12] and [TPM2]. The references to TPM commands and
 corresponding pseudo-code only serve as guidance to enable a better
 understanding of the attestation scheme and is intended to encourage
 the use of any appropriate hardware RoT or equivalent set of
 functions available to a CPU or Trusted Execution Environment [TEE].

2. TUDA Core Concept

 There are significant differences between conventional bi-directional
 attestation and TUDA regarding both the information elements conveyed
 between Attester and Verifier and the time-frame, in which an
 attestation can be considered to be fresh (and therefore
 trustworthy).

 In general, remote attestation using a bi-directional communication
 scheme includes sending a nonce-challenge within a signed attestation
 token. Using the TPM 1.2 as an example, a corresponding nonce-
 challenge would be included within the signature created by the
 TPM_Quote command in order to prove the freshness of the attestation
 response, see e.g. [PTS].

 In contrast, the TUDA protocol uses the combined output of
 TPM_CertifyInfo and TPM_TickStampBlob. The former provides a proof
 about the platform's state by creating evidence that a certain key is
 bound to that state. The latter provides proof that the platform was
 in the specified state by using the bound key in a time operation.
 This combination enables a time-based attestation scheme. The
 approach is based on the concepts introduced in [SCALE] and
 [SFKE2008].

 Each TUDA IE has an individual time-frame, in which it is considered
 to be fresh (and therefore trustworthy). In consequence, each TUDA
 IE that composes data in motion is based on different methods of
 creation.

 The freshness properties of a challenge-response based protocol
 define the point-of-time of attestation between:

 o the time of transmission of the nonce, and

 o the reception of the corresponding response.

 Given the time-based attestation scheme, the freshness property of
 TUDA is equivalent to that of bi-directional challenge response
 attestation, if the point-in-time of attestation lies between:

 o the transmission of a TUDA time-synchronization token, and

 o the typical round-trip time between the Verifier and the Attester.

 The accuracy of this time-frame is defined by two factors:

 o the time-synchronization between the Attester and the TSA. The
 time between the two tickstamps acquired via the hardware RoT
 define the scope of the maximum drift ("left" and "right" in
 respect to the timeline) to the TSA timestamp, and

 o the drift of clocks included in the hardware RoT.

 Since the conveyance of TUDA evidence does not rely upon a Verifier
 provided value (i.e. the nonce), the security guarantees of the
 protocol only incorporate the TSA and the hardware RoT. In
 consequence, TUDA evidence can even serve as proof of integrity in
 audit logs with precise point-in-time guarantees, in contrast to
 classical attestations.

 Appendix A contains guidance on how to utilize a REST architecture.

 Appendix B contains guidance on how to create an SNMP binding and a
 corresponding TUDA-MIB.

 Appendix C contains a corresponding YANG module that supports both
 RESTCONF and CoMI.

 Appendix D.2 contains a realization of TUDA using TPM 1.2 primitives.

 Appendix D.3 contains a realization of TUDA using TPM 2.0 primitives.

3. Terminology

 This document introduces roles, information elements and types
 required to conduct TUDA and uses terminology (e.g. specific
 certificate names) typically seen in the context of attestation or
 hardware security modules.

3.1. Universal Terms

Attestation Identity Key (AIK): a special purpose signature
 (therefore asymmetric) key that supports identity related
 operations. The private portion of the key pair is maintained

 confidential to the entity via appropriate measures (that have an
 impact on the scope of confidence). The public portion of the key
 pair may be included in AIK credentials that provide a claim about
 the entity.

Claim: A piece of information asserted about a subject [RFC4949]. A
 claim is represented as a name/value pair consisting of a Claim
 Name and a Claim Value [RFC7519].

 In the context of SACM, a claim is also specialized as an
 attribute/value pair that is intended to be related to a statement
 [I-D.ietf-sacm-terminology].

Endpoint Attestation: the creation of evidence on the Attester that
 provides proof of a set of the endpoints's integrity measurements.
 This is done by digitally signing a set of PCRs using an AIK
 shielded by the hardware RoT.

Endpoint Characteristics: the context, composition, configuration,
 state, and behavior of an endpoint.

Evidence: a trustworthy set of claims about an endpoint's
 characteristics.

Identity: a set of claims that is intended to be related to an
 entity.

Integrity Measurements: Metrics of endpoint characteristics (i.e.
 composition, configuration and state) that affect the confidence
 in the trustworthiness of an endpoint. Digests of integrity
 measurements can be stored in shielded locations (i.e. PCR of a
 TPM).

Reference Integrity Measurements: Signed measurements about the
 characteristics of an endpoint's characteristics that are provided
 by a vendor and are intended to be used as declarative guidance
 [I‑D.ietf‑sacm‑terminology] (e.g. a signed CoSWID).

Trustworthy: the qualities of an endpoint that guarantee a specific
 behavior and/or endpoint characteristics defined by declarative
 guidance. Analogously, trustworthiness is the quality of being
 trustworthy with respect to declarative guidance. Trustworthiness
 is not an absolute property but defined with respect to an entity,
 corresponding declarative guidance, and has a scope of confidence.

 Trustworthy Endpoint: an endpoint that guarantees trustworthy
 behavior and/or composition (with respect to certain declarative
 guidance and a scope of confidence).

 Trustworthy Statement: evidence that is trustworthy conveyed by an
 endpoint that is not necessarily trustworthy.

3.2. Roles

Attester: the endpoint that is the subject of the attestation to
 another endpoint.

Verifier: the endpoint that consumes the attestation of another
 endpoint to conduct a verification.

TSA: a Time Stamp Authority [RFC3161]

3.2.1. General Types

Byte: the now customary synonym for octet

Cert: an X.509 certificate represented as a byte‑string

3.2.2. RoT specific terms

PCR: a Platform Configuration Register that is part of a hardware
 root of trust and is used to securely store and report
 measurements about security posture

PCR‑Hash: a hash value of the security posture measurements stored
 in a TPM PCR (e.g. regarding running software instances)
 represented as a byte‑string

3.3. Certificates

TSA‑CA: the Certificate Authority that provides the certificate for
 the TSA represented as a Cert

AIK‑CA: the Certificate Authority that provides the certificate for
 the attestation identity key of the TPM. This is the client
 platform credential for this protocol. It is a placeholder for a
 specific CA and AIK‑Cert is a placeholder for the corresponding
 certificate, depending on what protocol was used. The specific
 protocols are out of scope for this document, see also
 [AIK‑Enrollment] and [IEEE802.1AR].

4. Time-Based Uni-Directional Attestation

 A Time-Based Uni-Directional Attestation (TUDA) consists of the
 following seven information elements. They are used to gain
 assurance of the Attester's platform configuration at a certain point
 in time:

TSA Certificate: The certificate of the Time Stamp Authority that is
 used in a subsequent synchronization protocol token. This
 certificate is signed by the TSA‑CA.

AIK Certificate: A certificate about the Attestation Identity Key
 (AIK) used. This may or may not also be an [IEEE802.1AR] IDevID
 or LDevID, depending on their setting of the corresponding
 identity property. ([AIK‑Credential], [AIK‑Enrollment]; see
 Appendix D.2.1.)

Synchronization Token: The reference for attestations are the
 relative timestanps provided by the hardware RoT. In order to put
 attestations into relation with a Real Time Clock (RTC), it is
 necessary to provide a cryptographic synchronization between these
 trusted relative timestamps and the regular RTC that is a hardware
 component of the Attester. To do so, a synchronization protocol
 is run with a Time Stamp Authority (TSA).

Restriction Info: The attestation relies on the capability of the
 hardware RoT to operate on restricted keys. Whenever the PCR
 values for the machine to be attested change, a new restricted key
 is created that can only be operated as long as the PCRs remain in
 their current state.

 In order to prove to the Verifier that this restricted temporary
 key actually has these properties and also to provide the PCR
 value that it is restricted, the corresponding signing
 capabilities of the hardware RoT are used. It creates a signed
 certificate using the AIK about the newly created restricted key.

Measurement Log: Similarly to regular attestations, the Verifier
 needs a way to reconstruct the PCRs' values in order to estimate
 the trustworthiness of the device. As such, a list of those
 elements that were extended into the PCRs is reported. Note
 though that for certain environments, this step may be optional if
 a list of valid PCR configurations (in the form of RIM available
 to the Verifier) exists and no measurement log is required.

Implicit Attestation: The actual attestation is then based upon a
 signed timestamp provided by the hardware RoT using the restricted
 temporary key that was certified in the steps above. The signed
 timestamp provides evidence that at this point in time (with
 respect to the relative time of the hardware RoT) a certain
 configuration existed (namely the PCR values associated with the
 restricted key). Together with the synchronization token this
 timestamp represented in relative time can then be related to the
 real‑time clock.

Concise SWID tags: As an option to better assess the trustworthiness
 of an Attester, a Verifier can request the reference hashes (RIM,
 which are often referred to as golden measurements) of all started
 software components to compare them with the entries in the
 measurement log. References hashes regarding installed (and
 therefore running) software can be provided by the manufacturer
 via SWID tags. SWID tags are provided by the Attester using the
 Concise SWID representation [I‑D.ietf‑sacm‑coswid] and bundled
 into a CBOR array (a RIM Manifest). Ideally, the reference hashes
 include a signature created by the manufacturer of the software to
 prove their integrity.

 These information elements could be sent en bloc, but it is
 recommended to retrieve them separately to save bandwidth, since
 these elements have different update cycles. In most cases,
 retransmitting all seven information elements would result in
 unnecessary redundancy.

 Furthermore, in some scenarios it might be feasible not to store all
 elements on the Attester endpoint, but instead they could be
 retrieved from another location or be pre-deployed to the Verifier.
 It is also feasible to only store public keys on the Verifier and
 skip the whole certificate provisioning completely in order to save
 bandwidth and computation time for certificate verification.

4.1. TUDA Information Elements Update Cycles

 An endpoint can be in various states and have various information
 associated with it during its life cycle. For TUDA, a subset of the
 states (which can include associated information) that an endpoint
 and its hardware root of trust can be in, is important to the
 attestation process. States can be:

 o persistent, even after a hard reboot. This includes certificates
 that are associated with the endpoint itself or with services it
 relies on.

 o volatile to a degree, because they change at the beginning of each
 boot cycle. This includes the capability of a hardware RoT to
 provide relative time which provides the basis for the
 synchronization token and implicit attestation--and which can
 reset after an endpoint is powered off.

 o very volatile, because they change during an uptime cycle (the
 period of time an endpoint is powered on, starting with its boot).
 This includes the content of PCRs of a hardware RoT and thereby
 also the PCR-restricted signing keys used for attestation.

 Depending on this "lifetime of state", data has to be transported
 over the wire, or not. E.g. information that does not change due to
 a reboot typically has to be transported only once between the
 Attester and the Verifier.

 There are three kinds of events that require a renewed attestation:

 o The Attester completes a boot-cycle

 o A relevant PCR changes

 o Too much time has passed since the last attestation statement

 The third event listed above is variable per application use case and
 also depends on the precision of the clock included in the hardware
 RoT. For usage scenarios, in which the device would periodically
 push information to be used in an audit-log, a time-frame of
 approximately one update per minute should be sufficient in most
 cases. For those usage scenarios, where Verifiers request (pull) a
 fresh attestation statement, an implementation could use the hardware
 RoT continuously to always present the most freshly created results.
 To save some utilization of the hardware RoT for other purposes,
 however, a time-frame of once per ten seconds is recommended, which
 would typically leave about 80% of utilization for other
 applications.

Attester Verifier
 | |
 Boot |
 | |
 Create Sync‑Token |
 | |
 Create Restricted Key |
 Certify Restricted Key |
 | |
 | AIK‑Cert ‑‑‑> |
 | Sync‑Token ‑‑‑> |
 | Certify‑Info ‑‑‑> |
 | Measurement Log ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
 | Attestation ‑‑> |
 | Verify Attestation
 | |
 | <Time Passed> |
 | |
 | Attestation ‑‑> |
 | Verify Attestation
 | |
 | <Time Passed> |

 | |
 PCR‑Change |
 | |
 Create Restricted Key |
 Certify Restricted Key |
 | |
 | Certify‑Info ‑‑‑> |
 | Measurement Log ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
 | Attestation ‑‑> |
 | Verify Attestation
 | |
 Boot |
 | |
 Create Sync‑Token |
 | |
 Create Restricted Key |
 Certify Restricted Key |
 | |
 | Sync‑Token ‑‑‑> |
 | Certify‑Info ‑‑‑> |
 | Measurement Log ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
 | Attestation ‑‑> |
 | Verify Attestation
 | |
 | <Time Passed> |
 | |
 | Attestation ‑‑> |
 | Verify Attestation
 | |

 Figure 1: Example sequence of events

5. Sync Base Protocol

 The uni-directional approach of TUDA requires evidence on how the TPM
 time represented in ticks (relative time since boot of the TPM)
 relates to the standard time provided by the TSA. The Sync Base
 Protocol (SBP) creates evidence that binds the TPM tick time to the
 TSA timestamp. The binding information is used by and conveyed via
 the Sync Token (TUDA IE). There are three actions required to create
 the content of a Sync Token:

 o At a given point in time (called "left"), a signed tickstamp
 counter value is acquired from the hardware RoT. The hash of
 counter and signature is used as a nonce in the request directed
 at the TSA.

 o The corresponding response includes a data-structure incorporating
 the trusted timestamp token and its signature created by the TSA.

 o At the point-in-time the response arrives (called "right"), a
 signed tickstamp counter value is acquired from the hardware RoT
 again, using a hash of the signed TSA timestamp as a nonce.

 The three time-related values -- the relative timestamps provided by
 the hardware RoT ("left" and "right") and the TSA timestamp -- and
 their corresponding signatures are aggregated in order to create a
 corresponding Sync Token to be used as a TUDA Information Element
 that can be conveyed as evidence to a Verifier.

 The drift of a clock incorporated in the hardware RoT that drives the
 increments of the tick counter constitutes one of the triggers that
 can initiate a TUDA Information Element Update Cycle in respect to
 the freshness of the available Sync Token.

 content TBD

6. IANA Considerations

 This memo includes requests to IANA, including registrations for
 media type definitions.

 TBD

7. Security Considerations

 There are Security Considerations. TBD

8. Change Log

 Changes from version 04 to I2NSF related document version 00: *
 Refactored main document to be more technology agnostic * Added first
 draft of procedures for TPM 2.0 * Improved content consistency and
 structure of all sections

 Changes from version 03 to version 04:

 o Refactoring of Introduction, intend, scope and audience

 o Added first draft of Sync Base Prootoll section illustrated
 background for interaction with TSA

 o Added YANG module

 o Added missing changelog entry

 Changes from version 02 to version 03:

 o Moved base concept out of Introduction

 o First refactoring of Introduction and Concept

 o First restructuring of Appendices and improved references

 Changes from version 01 to version 02:

 o Restructuring of Introduction, highlighting conceptual
 prerequisites

 o Restructuring of Concept to better illustrate differences to hand-
 shake based attestation and deciding factors regarding freshness
 properties

 o Subsection structure added to Terminology

 o Clarification of descriptions of approach (these were the FIXMEs)

 o Correction of RestrictionInfo structure: Added missing signature
 member

 Changes from version 00 to version 01:

 Major update to the SNMP MIB and added a table for the Concise SWID
 profile Reference Hashes that provides additional information to be
 compared with the measurement logs.

9. Contributors

 TBD

10. References

10.1. Normative References

 [I-D.birkholz-rats-architecture]

 Birkholz, H., Wiseman, M., Tschofenig, H., and N. Smith,
 "Architecture and Reference Terminology for Remote
 Attestation Procedures", draft-birkholz-rats-
 architecture-01 (work in progress), March 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8639]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8640]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Dynamic Subscription to YANG Events
 and Datastores over NETCONF", RFC 8640,
 DOI 10.17487/RFC8640, September 2019,
 <https://www.rfc-editor.org/info/rfc8640>.

 [RFC8641]
 Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

10.2. Informative References

 [AIK-Credential]

 TCG Infrastructure Working Group, "TCG Credential
 Profile", 2007, <https://www.trustedcomputinggroup.org/wp-
 content/uploads/IWG-Credential_Profiles_V1_R1_14.pdf>.

 [AIK-Enrollment]

 TCG Infrastructure Working Group, "A CMC Profile for AIK
 Certificate Enrollment", 2011,
 <https://www.trustedcomputinggroup.org/wp-content/uploads/
 IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf>.

 [I-D.birkholz-rats-reference-interaction-model]

 Birkholz, H. and M. Eckel, "Reference Interaction Model
 for Challenge-Response-based Remote Attestation", draft-
 birkholz-rats-reference-interaction-model-01 (work in
 progress), July 2019.

 [I-D.ietf-core-comi]

 Veillette, M., Stok, P., Pelov, A., Bierman, A., and I.
 Petrov, "CoAP Management Interface", draft-ietf-core-
 comi-07 (work in progress), July 2019.

 [I-D.ietf-sacm-coswid]

 Birkholz, H., Fitzgerald-McKay, J., Schmidt, C., and D.
 Waltermire, "Concise Software Identification Tags", draft-
 ietf-sacm-coswid-12 (work in progress), July 2019.

 [I-D.ietf-sacm-terminology]

 Birkholz, H., Lu, J., Strassner, J., Cam-Winget, N., and
 A. Montville, "Security Automation and Continuous
 Monitoring (SACM) Terminology", draft-ietf-sacm-
 terminology-16 (work in progress), December 2018.

 [IEEE1609]

 IEEE Computer Society, "1609.4-2016 - IEEE Standard for
 Wireless Access in Vehicular Environments (WAVE) -- Multi-
 Channel Operation", IEEE Std 1609.4, 2016.

 [IEEE802.1AR]

 IEEE Computer Society, "802.1AR-2009 - IEEE Standard for
 Local and metropolitan area networks - Secure Device
 Identity", IEEE Std 802.1AR, 2009.

 [PRIRA]
 Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen,
 J., O'Hanlon, B., Ramsdell, J., Segall, A., Sheehy, J.,
 and B. Sniffen, "Principles of Remote Attestation",
 Springer International Journal of Information Security,
 Vol. 10, pp. 63-81, DOI 10.1007/s10207-011-0124-7, April
 2011.

 [PTS]
 TCG TNC Working Group, "TCG Attestation PTS Protocol
 Binding to TNC IF-M", 2011,
 <https://www.trustedcomputinggroup.org/wp-content/uploads/
 IFM_PTS_v1_0_r28.pdf>.

 [REST]
 Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine, 2000,
 <http://www.ics.uci.edu/~fielding/pubs/dissertation/
 fielding_dissertation.pdf>.

 [RFC1213]
 McCloghrie, K. and M. Rose, "Management Information Base
 for Network Management of TCP/IP-based internets: MIB-II",
 STD 17, RFC 1213, DOI 10.17487/RFC1213, March 1991,
 <https://www.rfc-editor.org/info/rfc1213>.

 [RFC2790]
 Waldbusser, S. and P. Grillo, "Host Resources MIB",
 RFC 2790, DOI 10.17487/RFC2790, March 2000,
 <https://www.rfc-editor.org/info/rfc2790>.

 [RFC3161]
 Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, DOI 10.17487/RFC3161, August
 2001, <https://www.rfc-editor.org/info/rfc3161>.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 DOI 10.17487/RFC3411, December 2002,
 <https://www.rfc-editor.org/info/rfc3411>.

 [RFC3418]
 Presuhn, R., Ed., "Management Information Base (MIB) for
 the Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, DOI 10.17487/RFC3418, December 2002,
 <https://www.rfc-editor.org/info/rfc3418>.

 [RFC4949]
 Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC6690]
 Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC6933]
 Bierman, A., Romascanu, D., Quittek, J., and M.
 Chandramouli, "Entity MIB (Version 4)", RFC 6933,
 DOI 10.17487/RFC6933, May 2013,
 <https://www.rfc-editor.org/info/rfc6933>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7252]
 Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7320]
 Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 7320, DOI 10.17487/RFC7320, July 2014,
 <https://www.rfc-editor.org/info/rfc7320>.

 [RFC7519]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7540]
 Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8610]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [SCALE]
 Fuchs, A., "Improving Scalability for Remote Attestation",
 Master Thesis (Diplomarbeit), Technische Universitaet
 Darmstadt, Germany, 2008.

 [SFKE2008]

 Stumpf, F., Fuchs, A., Katzenbeisser, S., and C. Eckert,
 "Improving the scalability of platform attestation",
 ACM Proceedings of the 3rd ACM workshop on Scalable
 trusted computing - STC '08 , page 1-10,
 DOI 10.1145/1456455.1456457, 2008.

 [STD62]
 "Internet Standard 62", STD 62, RFCs 3411 to 3418,
 December 2002.

 [TCGGLOSS]

 TCG, "TCG Glossary", 2012,
 <https://www.trustedcomputinggroup.org/wp-content/uploads/
 TCG_Glossary_Board-Approved_12.13.2012.pdf>.

 [TEE]
 Global Platform, "TEE System Architecture v1.1,
 GPD_SPE_009", 2017.

 [TPM12]
 "Information technology -- Trusted Platform Module -- Part
 1: Overview", ISO/IEC 11889-1, 2009.

 [TPM2]
 "Trusted Platform Module Library Specification, Family
 2.0, Level 00, Revision 01.16 ed., Trusted Computing
 Group", 2014.

Appendix A. REST Realization

 Each of the seven data items is defined as a media type (Section 6).
 Representations of resources for each of these media types can be
 retrieved from URIs that are defined by the respective servers
 [RFC7320]. As can be derived from the URI, the actual retrieval is
 via one of the HTTPs ([RFC7230], [RFC7540]) or CoAP [RFC7252]. How a
 client obtains these URIs is dependent on the application; e.g., CoRE
 Web links [RFC6690] can be used to obtain the relevant URIs from the
 self-description of a server, or they could be prescribed by a
 RESTCONF data model [RFC8040].

Appendix B. SNMP Realization

 SNMPv3 [STD62] [RFC3411] is widely available on computers and also
 constrained devices. To transport the TUDA information elements, an
 SNMP MIB is defined below which encodes each of the seven TUDA
 information elements into a table. Each row in a table contains a
 single read-only columnar SNMP object of datatype OCTET-STRING. The
 values of a set of rows in each table can be concatenated to
 reconstitute a CBOR-encoded TUDA information element. The Verifier
 can retrieve the values for each CBOR fragment by using SNMP GetNext
 requests to "walk" each table and can decode each of the CBOR-encoded
 data items based on the corresponding CDDL [RFC8610] definition.

 Design Principles:

 1. Over time, TUDA attestation values age and should no longer be
 used. Every table in the TUDA MIB has a primary index with the
 value of a separate scalar cycle counter object that
 disambiguates the transition from one attestation cycle to the
 next.

 2. Over time, the measurement log information (for example) may grow
 large. Therefore, read-only cycle counter scalar objects in all
 TUDA MIB object groups facilitate more efficient access with SNMP
 GetNext requests.

 3. Notifications are supported by an SNMP trap definition with all
 of the cycle counters as bindings, to alert a Verifier that a new
 attestation cycle has occurred (e.g., synchronization data,
 measurement log, etc. have been updated by adding new rows and
 possibly deleting old rows).

B.1. Structure of TUDA MIB

 The following table summarizes the object groups, tables and their
 indexes, and conformance requirements for the TUDA MIB:

‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑
Group/Table	Cycle	Instance	Fragment	Required
‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑
General				x
AIKCert	x	x	x	
TSACert	x	x	x	
SyncToken	x		x	x
Restrict	x			x
Measure	x	x		
VerifyToken	x			x
SWIDTag	x	x	x	
‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑

B.1.1. Cycle Index

 A tudaV1<Group>CycleIndex is the:

 1. first index of a row (element instance or element fragment) in
 the tudaV1<Group>Table;

 2. identifier of an update cycle on the table, when rows were added
 and/or deleted from the table (bounded by tudaV1<Group>Cycles);
 and

 3. binding in the tudaV1TrapV2Cycles notification for directed
 polling.

B.1.2. Instance Index

 A tudaV1<Group>InstanceIndex is the:

 1. second index of a row (element instance or element fragment) in
 the tudaV1<Group>Table; except for

 2. a row in the tudaV1SyncTokenTable (that has only one instance per
 cycle).

B.1.3. Fragment Index

 A tudaV1<Group>FragmentIndex is the:

 1. last index of a row (always an element fragment) in the
 tudaV1<Group>Table; and

 2. accomodation for SNMP transport mapping restrictions for large
 string elements that require fragmentation.

B.2. Relationship to Host Resources MIB

 The General group in the TUDA MIB is analogous to the System group in
 the Host Resources MIB [RFC2790] and provides context information for
 the TUDA attestation process.

 The Verify Token group in the TUDA MIB is analogous to the Device
 group in the Host MIB and represents the verifiable state of a TPM
 device and its associated system.

 The SWID Tag group (containing a Concise SWID reference hash profile
 [I-D.ietf-sacm-coswid]) in the TUDA MIB is analogous to the Software
 Installed and Software Running groups in the Host Resources MIB
 [RFC2790].

B.3. Relationship to Entity MIB

 The General group in the TUDA MIB is analogous to the Entity General
 group in the Entity MIB v4 [RFC6933] and provides context information
 for the TUDA attestation process.

 The SWID Tag group in the TUDA MIB is analogous to the Entity Logical
 group in the Entity MIB v4 [RFC6933].

B.4. Relationship to Other MIBs

 The General group in the TUDA MIB is analogous to the System group in
 MIB-II [RFC1213] and the System group in the SNMPv2 MIB [RFC3418] and
 provides context information for the TUDA attestation process.

B.5. Definition of TUDA MIB

<CODE BEGINS>
TUDA‑V1‑ATTESTATION‑MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE, Integer32, Counter32,
 enterprises, NOTIFICATION‑TYPE
 FROM SNMPv2‑SMI ‑‑ RFC 2578
 MODULE‑COMPLIANCE, OBJECT‑GROUP, NOTIFICATION‑GROUP
 FROM SNMPv2‑CONF ‑‑ RFC 2580
 SnmpAdminString
 FROM SNMP‑FRAMEWORK‑MIB; ‑‑ RFC 3411

 tudaV1MIB MODULE-IDENTITY

LAST‑UPDATED "201903120000Z" ‑‑ 12 March 2019
ORGANIZATION
 "Fraunhofer SIT"
CONTACT‑INFO
 "Andreas Fuchs
 Fraunhofer Institute for Secure Information Technology
 Email: andreas.fuchs@sit.fraunhofer.de

 Henk Birkholz
 Fraunhofer Institute for Secure Information Technology
 Email: henk.birkholz@sit.fraunhofer.de

 Ira E McDonald
 High North Inc
 Email: blueroofmusic@gmail.com

 Carsten Bormann
 Universitaet Bremen TZI
 Email: cabo@tzi.org"

 DESCRIPTION

 "The MIB module for monitoring of time-based unidirectional
 attestation information from a network endpoint system,
 based on the Trusted Computing Group TPM 1.2 definition.

 Copyright (C) High North Inc (2019)."

REVISION "201903120000Z" ‑‑ 12 March 2019
DESCRIPTION
 "Eighth version, published as draft‑birkholz‑rats‑tuda‑00."

REVISION "201805030000Z" ‑‑ 03 May 2018
DESCRIPTION
 "Seventh version, published as draft‑birkholz‑i2nsf‑tuda‑03."

REVISION "201805020000Z" ‑‑ 02 May 2018
DESCRIPTION
 "Sixth version, published as draft‑birkholz‑i2nsf‑tuda‑02."

REVISION "201710300000Z" ‑‑ 30 October 2017
DESCRIPTION
 "Fifth version, published as draft‑birkholz‑i2nsf‑tuda‑01."

REVISION "201701090000Z" ‑‑ 09 January 2017
DESCRIPTION
 "Fourth version, published as draft‑birkholz‑i2nsf‑tuda‑00."

 REVISION "201607080000Z" -- 08 July 2016

 DESCRIPTION

 "Third version, published as draft-birkholz-tuda-02."

REVISION "201603210000Z" ‑‑ 21 March 2016
DESCRIPTION
 "Second version, published as draft‑birkholz‑tuda‑01."

REVISION "201510180000Z" ‑‑ 18 October 2015
DESCRIPTION
 "Initial version, published as draft‑birkholz‑tuda‑00."

 ::= { enterprises fraunhofersit(21616) mibs(1) tudaV1MIB(1) }

tudaV1MIBNotifications OBJECT IDENTIFIER ::= { tudaV1MIB 0 }
tudaV1MIBObjects OBJECT IDENTIFIER ::= { tudaV1MIB 1 }
tudaV1MIBConformance OBJECT IDENTIFIER ::= { tudaV1MIB 2 }

‑‑
‑‑ General
‑‑
tudaV1General OBJECT IDENTIFIER ::= { tudaV1MIBObjects 1 }

tudaV1GeneralCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of TUDA update cycles that have occurred, i.e.,
 sum of all the individual group cycle counters.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1General 1 }

tudaV1GeneralVersionInfo OBJECT‑TYPE
 SYNTAX SnmpAdminString (SIZE(0..255))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Version information for TUDA MIB, e.g., specific release
 version of TPM 1.2 base specification and release version
 of TPM 1.2 errata specification and manufacturer and model
 TPM module itself."
 DEFVAL { "" }
 ::= { tudaV1General 2 }

‑‑
‑‑ AIK Cert
‑‑

tudaV1AIKCert OBJECT IDENTIFIER ::= { tudaV1MIBObjects 2 }

tudaV1AIKCertCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of AIK Certificate chain update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1AIKCert 1 }

tudaV1AIKCertTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1AIKCertEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table of fragments of AIK Certificate data."
 ::= { tudaV1AIKCert 2 }

tudaV1AIKCertEntry OBJECT‑TYPE
 SYNTAX TudaV1AIKCertEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one fragment of AIK Certificate data."
 INDEX { tudaV1AIKCertCycleIndex,
 tudaV1AIKCertInstanceIndex,
 tudaV1AIKCertFragmentIndex }
 ::= { tudaV1AIKCertTable 1 }

TudaV1AIKCertEntry ::=
 SEQUENCE {
 tudaV1AIKCertCycleIndex Integer32,
 tudaV1AIKCertInstanceIndex Integer32,
 tudaV1AIKCertFragmentIndex Integer32,
 tudaV1AIKCertData OCTET STRING
 }

tudaV1AIKCertCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "High‑order index of this AIK Certificate fragment.
 Index of an AIK Certificate chain update cycle that has
 occurred (bounded by the value of tudaV1AIKCertCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1AIKCertEntry 1 }

tudaV1AIKCertInstanceIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Middle index of this AIK Certificate fragment.
 Ordinal of this AIK Certificate in this chain, where the AIK
 Certificate itself has an ordinal of '1' and higher ordinals
 go *up* the certificate chain to the Root CA.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1AIKCertEntry 2 }

tudaV1AIKCertFragmentIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Low‑order index of this AIK Certificate fragment.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1AIKCertEntry 3 }

tudaV1AIKCertData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "A fragment of CBOR encoded AIK Certificate data."
 DEFVAL { "" }
 ::= { tudaV1AIKCertEntry 4 }

‑‑
‑‑ TSA Cert
‑‑
tudaV1TSACert OBJECT IDENTIFIER ::= { tudaV1MIBObjects 3 }

tudaV1TSACertCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of TSA Certificate chain update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1TSACert 1 }

tudaV1TSACertTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1TSACertEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table of fragments of TSA Certificate data."
 ::= { tudaV1TSACert 2 }

tudaV1TSACertEntry OBJECT‑TYPE
 SYNTAX TudaV1TSACertEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one fragment of TSA Certificate data."
 INDEX { tudaV1TSACertCycleIndex,
 tudaV1TSACertInstanceIndex,
 tudaV1TSACertFragmentIndex }
 ::= { tudaV1TSACertTable 1 }

TudaV1TSACertEntry ::=
 SEQUENCE {
 tudaV1TSACertCycleIndex Integer32,
 tudaV1TSACertInstanceIndex Integer32,
 tudaV1TSACertFragmentIndex Integer32,
 tudaV1TSACertData OCTET STRING
 }

tudaV1TSACertCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "High‑order index of this TSA Certificate fragment.
 Index of a TSA Certificate chain update cycle that has
 occurred (bounded by the value of tudaV1TSACertCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1TSACertEntry 1 }

tudaV1TSACertInstanceIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Middle index of this TSA Certificate fragment.

 Ordinal of this TSA Certificate in this chain, where the TSA
 Certificate itself has an ordinal of '1' and higher ordinals
 go *up* the certificate chain to the Root CA.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1TSACertEntry 2 }

tudaV1TSACertFragmentIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Low‑order index of this TSA Certificate fragment.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1TSACertEntry 3 }

tudaV1TSACertData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "A fragment of CBOR encoded TSA Certificate data."
 DEFVAL { "" }
 ::= { tudaV1TSACertEntry 4 }

‑‑
‑‑ Sync Token
‑‑
tudaV1SyncToken OBJECT IDENTIFIER ::= { tudaV1MIBObjects 4 }

tudaV1SyncTokenCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of Sync Token update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1SyncToken 1 }

tudaV1SyncTokenInstances OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of Sync Token instance entries that have

 been recorded (some entries MAY have been pruned).

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1SyncToken 2 }

tudaV1SyncTokenTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1SyncTokenEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table of fragments of Sync Token data."
 ::= { tudaV1SyncToken 3 }

tudaV1SyncTokenEntry OBJECT‑TYPE
 SYNTAX TudaV1SyncTokenEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one fragment of Sync Token data."
 INDEX { tudaV1SyncTokenCycleIndex,
 tudaV1SyncTokenInstanceIndex,
 tudaV1SyncTokenFragmentIndex }
 ::= { tudaV1SyncTokenTable 1 }

TudaV1SyncTokenEntry ::=
 SEQUENCE {
 tudaV1SyncTokenCycleIndex Integer32,
 tudaV1SyncTokenInstanceIndex Integer32,
 tudaV1SyncTokenFragmentIndex Integer32,
 tudaV1SyncTokenData OCTET STRING
 }

tudaV1SyncTokenCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "High‑order index of this Sync Token fragment.
 Index of a Sync Token update cycle that has
 occurred (bounded by the value of tudaV1SyncTokenCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1SyncTokenEntry 1 }

tudaV1SyncTokenInstanceIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current

 DESCRIPTION
 "Middle index of this Sync Token fragment.
 Ordinal of this instance of Sync Token data
 (NOT bounded by the value of tudaV1SyncTokenInstances).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1SyncTokenEntry 2 }

tudaV1SyncTokenFragmentIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Low‑order index of this Sync Token fragment.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1SyncTokenEntry 3 }

tudaV1SyncTokenData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "A fragment of CBOR encoded Sync Token data."
 DEFVAL { "" }
 ::= { tudaV1SyncTokenEntry 4 }

‑‑
‑‑ Restriction Info
‑‑
tudaV1Restrict OBJECT IDENTIFIER ::= { tudaV1MIBObjects 5 }

tudaV1RestrictCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of Restriction Info update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1Restrict 1 }

tudaV1RestrictTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1RestrictEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION

 "A table of instances of Restriction Info data."
 ::= { tudaV1Restrict 2 }

tudaV1RestrictEntry OBJECT‑TYPE
 SYNTAX TudaV1RestrictEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one instance of Restriction Info data."
 INDEX { tudaV1RestrictCycleIndex }
 ::= { tudaV1RestrictTable 1 }

TudaV1RestrictEntry ::=
 SEQUENCE {
 tudaV1RestrictCycleIndex Integer32,
 tudaV1RestrictData OCTET STRING
 }

tudaV1RestrictCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Index of this Restriction Info entry.
 Index of a Restriction Info update cycle that has
 occurred (bounded by the value of tudaV1RestrictCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1RestrictEntry 1 }

tudaV1RestrictData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "An instance of CBOR encoded Restriction Info data."
 DEFVAL { "" }
 ::= { tudaV1RestrictEntry 2 }

‑‑
‑‑ Measurement Log
‑‑
tudaV1Measure OBJECT IDENTIFIER ::= { tudaV1MIBObjects 6 }

tudaV1MeasureCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only

 STATUS current
 DESCRIPTION
 "Count of Measurement Log update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1Measure 1 }

tudaV1MeasureInstances OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of Measurement Log instance entries that have
 been recorded (some entries MAY have been pruned).

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1Measure 2 }

tudaV1MeasureTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1MeasureEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table of instances of Measurement Log data."
 ::= { tudaV1Measure 3 }

tudaV1MeasureEntry OBJECT‑TYPE
 SYNTAX TudaV1MeasureEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one instance of Measurement Log data."
 INDEX { tudaV1MeasureCycleIndex,
 tudaV1MeasureInstanceIndex }
 ::= { tudaV1MeasureTable 1 }

TudaV1MeasureEntry ::=
 SEQUENCE {
 tudaV1MeasureCycleIndex Integer32,
 tudaV1MeasureInstanceIndex Integer32,
 tudaV1MeasureData OCTET STRING
 }

tudaV1MeasureCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current

 DESCRIPTION
 "High‑order index of this Measurement Log entry.
 Index of a Measurement Log update cycle that has
 occurred (bounded by the value of tudaV1MeasureCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1MeasureEntry 1 }

tudaV1MeasureInstanceIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Low‑order index of this Measurement Log entry.
 Ordinal of this instance of Measurement Log data
 (NOT bounded by the value of tudaV1MeasureInstances).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1MeasureEntry 2 }

tudaV1MeasureData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "A instance of CBOR encoded Measurement Log data."
 DEFVAL { "" }
 ::= { tudaV1MeasureEntry 3 }

‑‑
‑‑ Verify Token
‑‑
tudaV1VerifyToken OBJECT IDENTIFIER ::= { tudaV1MIBObjects 7 }

tudaV1VerifyTokenCycles OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of Verify Token update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1VerifyToken 1 }

tudaV1VerifyTokenTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1VerifyTokenEntry
 MAX‑ACCESS not‑accessible

 STATUS current
 DESCRIPTION
 "A table of instances of Verify Token data."
 ::= { tudaV1VerifyToken 2 }

tudaV1VerifyTokenEntry OBJECT‑TYPE
 SYNTAX TudaV1VerifyTokenEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one instance of Verify Token data."
 INDEX { tudaV1VerifyTokenCycleIndex }
 ::= { tudaV1VerifyTokenTable 1 }

TudaV1VerifyTokenEntry ::=
 SEQUENCE {
 tudaV1VerifyTokenCycleIndex Integer32,
 tudaV1VerifyTokenData OCTET STRING
 }

tudaV1VerifyTokenCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Index of this instance of Verify Token data.
 Index of a Verify Token update cycle that has
 occurred (bounded by the value of tudaV1VerifyTokenCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1VerifyTokenEntry 1 }

tudaV1VerifyTokenData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "A instance of CBOR encoded Verify Token data."
 DEFVAL { "" }
 ::= { tudaV1VerifyTokenEntry 2 }

‑‑
‑‑ SWID Tag
‑‑
tudaV1SWIDTag OBJECT IDENTIFIER ::= { tudaV1MIBObjects 8 }

tudaV1SWIDTagCycles OBJECT‑TYPE
 SYNTAX Counter32

 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "Count of SWID Tag update cycles that have occurred.

 DEFVAL intentionally omitted ‑ counter object."
 ::= { tudaV1SWIDTag 1 }

tudaV1SWIDTagTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF TudaV1SWIDTagEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A table of fragments of SWID Tag data."
 ::= { tudaV1SWIDTag 2 }

tudaV1SWIDTagEntry OBJECT‑TYPE
 SYNTAX TudaV1SWIDTagEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry for one fragment of SWID Tag data."
 INDEX { tudaV1SWIDTagCycleIndex,
 tudaV1SWIDTagInstanceIndex,
 tudaV1SWIDTagFragmentIndex }
 ::= { tudaV1SWIDTagTable 1 }

TudaV1SWIDTagEntry ::=
 SEQUENCE {
 tudaV1SWIDTagCycleIndex Integer32,
 tudaV1SWIDTagInstanceIndex Integer32,
 tudaV1SWIDTagFragmentIndex Integer32,
 tudaV1SWIDTagData OCTET STRING
 }

tudaV1SWIDTagCycleIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "High‑order index of this SWID Tag fragment.
 Index of an SWID Tag update cycle that has
 occurred (bounded by the value of tudaV1SWIDTagCycles).

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1SWIDTagEntry 1 }

 tudaV1SWIDTagInstanceIndex OBJECT-TYPE

 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Middle index of this SWID Tag fragment.
 Ordinal of this SWID Tag instance in this update cycle.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1SWIDTagEntry 2 }

tudaV1SWIDTagFragmentIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "Low‑order index of this SWID Tag fragment.

 DEFVAL intentionally omitted ‑ index object."
 ::= { tudaV1SWIDTagEntry 3 }

tudaV1SWIDTagData OBJECT‑TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "A fragment of CBOR encoded SWID Tag data."
 DEFVAL { "" }
 ::= { tudaV1SWIDTagEntry 4 }

‑‑
‑‑ Trap Cycles
‑‑
tudaV1TrapV2Cycles NOTIFICATION‑TYPE
 OBJECTS {
 tudaV1GeneralCycles,
 tudaV1AIKCertCycles,
 tudaV1TSACertCycles,
 tudaV1SyncTokenCycles,
 tudaV1SyncTokenInstances,
 tudaV1RestrictCycles,
 tudaV1MeasureCycles,
 tudaV1MeasureInstances,
 tudaV1VerifyTokenCycles,
 tudaV1SWIDTagCycles
 }
 STATUS current
 DESCRIPTION
 "This trap is sent when the value of any cycle or instance

 counter changes (i.e., one or more tables are updated).

 Note: The value of sysUpTime in IETF MIB‑II (RFC 1213) is
 always included in SNMPv2 traps, per RFC 3416."
 ::= { tudaV1MIBNotifications 1 }

‑‑
‑‑ Conformance Information
‑‑
tudaV1Compliances OBJECT IDENTIFIER
 ::= { tudaV1MIBConformance 1 }

tudaV1ObjectGroups OBJECT IDENTIFIER
 ::= { tudaV1MIBConformance 2 }

tudaV1NotificationGroups OBJECT IDENTIFIER
 ::= { tudaV1MIBConformance 3 }

‑‑
‑‑ Compliance Statements
‑‑
tudaV1BasicCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "An implementation that complies with this module MUST
 implement all of the objects defined in the mandatory
 group tudaV1BasicGroup."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { tudaV1BasicGroup }

 GROUP tudaV1OptionalGroup
 DESCRIPTION
 "The optional TUDA MIB objects.
 An implementation MAY implement this group."

 GROUP tudaV1TrapGroup
 DESCRIPTION
 "The TUDA MIB traps.
 An implementation SHOULD implement this group."
 ::= { tudaV1Compliances 1 }

‑‑
‑‑ Compliance Groups
‑‑
tudaV1BasicGroup OBJECT‑GROUP
 OBJECTS {
 tudaV1GeneralCycles,
 tudaV1GeneralVersionInfo,

 tudaV1SyncTokenCycles,
 tudaV1SyncTokenInstances,
 tudaV1SyncTokenData,
 tudaV1RestrictCycles,
 tudaV1RestrictData,
 tudaV1VerifyTokenCycles,
 tudaV1VerifyTokenData
 }
 STATUS current
 DESCRIPTION
 "The basic mandatory TUDA MIB objects."
 ::= { tudaV1ObjectGroups 1 }

tudaV1OptionalGroup OBJECT‑GROUP
 OBJECTS {
 tudaV1AIKCertCycles,
 tudaV1AIKCertData,
 tudaV1TSACertCycles,
 tudaV1TSACertData,
 tudaV1MeasureCycles,
 tudaV1MeasureInstances,
 tudaV1MeasureData,
 tudaV1SWIDTagCycles,
 tudaV1SWIDTagData
 }
 STATUS current
 DESCRIPTION
 "The optional TUDA MIB objects."
 ::= { tudaV1ObjectGroups 2 }

tudaV1TrapGroup NOTIFICATION‑GROUP
 NOTIFICATIONS { tudaV1TrapV2Cycles }
 STATUS current
 DESCRIPTION
 "The recommended TUDA MIB traps ‑ notifications."
 ::= { tudaV1NotificationGroups 1 }

END
<CODE ENDS>

Appendix C. YANG Realization

<CODE BEGINS>
module TUDA‑V1‑ATTESTATION‑MIB {

 namespace "urn:ietf:params:xml:ns:yang:smiv2:TUDA-V1-ATTESTATION-MIB";
 prefix "tuda-v1";

import SNMP‑FRAMEWORK‑MIB { prefix "snmp‑framework"; }
import yang‑types { prefix "yang"; }

 organization

 "Fraunhofer SIT";

contact
 "Andreas Fuchs
 Fraunhofer Institute for Secure Information Technology
 Email: andreas.fuchs@sit.fraunhofer.de

 Henk Birkholz
 Fraunhofer Institute for Secure Information Technology
 Email: henk.birkholz@sit.fraunhofer.de

 Ira E McDonald
 High North Inc
 Email: blueroofmusic@gmail.com

 Carsten Bormann
 Universitaet Bremen TZI
 Email: cabo@tzi.org";

description
 "The MIB module for monitoring of time‑based unidirectional
 attestation information from a network endpoint system,
 based on the Trusted Computing Group TPM 1.2 definition.

 Copyright (C) High North Inc (2017).";

revision "2017‑10‑30" {
 description
 "Fifth version, published as draft‑birkholz‑tuda‑04.";
 reference
 "draft‑birkholz‑tuda‑04";
}
revision "2017‑01‑09" {
 description
 "Fourth version, published as draft‑birkholz‑tuda‑03.";
 reference
 "draft‑birkholz‑tuda‑03";
}
revision "2016‑07‑08" {
 description
 "Third version, published as draft‑birkholz‑tuda‑02.";
 reference
 "draft‑birkholz‑tuda‑02";
}

revision "2016‑03‑21" {
 description
 "Second version, published as draft‑birkholz‑tuda‑01.";
 reference
 "draft‑birkholz‑tuda‑01";
}
revision "2015‑10‑18" {
 description
 "Initial version, published as draft‑birkholz‑tuda‑00.";
 reference
 "draft‑birkholz‑tuda‑00";
}

container tudaV1General {
description
 "TBD";

 leaf tudaV1GeneralCycles {
 type yang:counter32;
 config false;
 description
 "Count of TUDA update cycles that have occurred, i.e.,
 sum of all the individual group cycle counters.

 DEFVAL intentionally omitted ‑ counter object.";
 }

 leaf tudaV1GeneralVersionInfo {
 type snmp‑framework:SnmpAdminString {
 length "0..255";
 }
 config false;
 description
 "Version information for TUDA MIB, e.g., specific release
 version of TPM 1.2 base specification and release version
 of TPM 1.2 errata specification and manufacturer and model
 TPM module itself.";
 }
}

container tudaV1AIKCert {
description
 "TBD";

 leaf tudaV1AIKCertCycles {
 type yang:counter32;
 config false;
 description

 "Count of AIK Certificate chain update cycles that have

 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
}

 /* XXX table comments here XXX */

 list tudaV1AIKCertEntry {

 key "tudaV1AIKCertCycleIndex tudaV1AIKCertInstanceIndex
 tudaV1AIKCertFragmentIndex";
 config false;
 description
 "An entry for one fragment of AIK Certificate data.";

 leaf tudaV1AIKCertCycleIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "High‑order index of this AIK Certificate fragment.
 Index of an AIK Certificate chain update cycle that has
 occurred (bounded by the value of tudaV1AIKCertCycles).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1AIKCertInstanceIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Middle index of this AIK Certificate fragment.
 Ordinal of this AIK Certificate in this chain, where the AIK
 Certificate itself has an ordinal of '1' and higher ordinals
 go *up* the certificate chain to the Root CA.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1AIKCertFragmentIndex {
 type int32 {
 range "1..2147483647";

 }
 config false;
 description
 "Low‑order index of this AIK Certificate fragment.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1AIKCertData {
 type binary {
 length "0..1024";
 }
 config false;
 description
 "A fragment of CBOR encoded AIK Certificate data.";
 }
 }
}

container tudaV1TSACert {
description
 "TBD";

 leaf tudaV1TSACertCycles {
 type yang:counter32;
 config false;
 description
 "Count of TSA Certificate chain update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }

 /* XXX table comments here XXX */

 list tudaV1TSACertEntry {

 key "tudaV1TSACertCycleIndex tudaV1TSACertInstanceIndex
 tudaV1TSACertFragmentIndex";
 config false;
 description
 "An entry for one fragment of TSA Certificate data.";

 leaf tudaV1TSACertCycleIndex {
 type int32 {
 range "1..2147483647";

 }
 config false;
 description
 "High‑order index of this TSA Certificate fragment.
 Index of a TSA Certificate chain update cycle that has
 occurred (bounded by the value of tudaV1TSACertCycles).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1TSACertInstanceIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Middle index of this TSA Certificate fragment.
 Ordinal of this TSA Certificate in this chain, where the TSA
 Certificate itself has an ordinal of '1' and higher ordinals
 go *up* the certificate chain to the Root CA.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1TSACertFragmentIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Low‑order index of this TSA Certificate fragment.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1TSACertData {
 type binary {
 length "0..1024";
 }
 config false;
 description
 "A fragment of CBOR encoded TSA Certificate data.";
 }
 }
}

container tudaV1SyncToken {
description

 "TBD";

leaf tudaV1SyncTokenCycles {
 type yang:counter32;
 config false;
 description
 "Count of Sync Token update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
}

leaf tudaV1SyncTokenInstances {
 type yang:counter32;
 config false;
 description
 "Count of Sync Token instance entries that have
 been recorded (some entries MAY have been pruned).

 DEFVAL intentionally omitted ‑ counter object.";
}

 list tudaV1SyncTokenEntry {

 key "tudaV1SyncTokenCycleIndex
 tudaV1SyncTokenInstanceIndex
 tudaV1SyncTokenFragmentIndex";
 config false;
 description
 "An entry for one fragment of Sync Token data.";

 leaf tudaV1SyncTokenCycleIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "High‑order index of this Sync Token fragment.
 Index of a Sync Token update cycle that has
 occurred (bounded by the value of tudaV1SyncTokenCycles).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1SyncTokenInstanceIndex {
 type int32 {
 range "1..2147483647";

 }
 config false;
 description
 "Middle index of this Sync Token fragment.
 Ordinal of this instance of Sync Token data
 (NOT bounded by the value of tudaV1SyncTokenInstances).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1SyncTokenFragmentIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Low‑order index of this Sync Token fragment.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1SyncTokenData {
 type binary {
 length "0..1024";
 }
 config false;
 description
 "A fragment of CBOR encoded Sync Token data.";
 }
 }
}

container tudaV1Restrict {
description
 "TBD";

 leaf tudaV1RestrictCycles {
 type yang:counter32;
 config false;
 description
 "Count of Restriction Info update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }

 /* XXX table comments here XXX */

 list tudaV1RestrictEntry {

 key "tudaV1RestrictCycleIndex";
 config false;
 description
 "An entry for one instance of Restriction Info data.";

 leaf tudaV1RestrictCycleIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Index of this Restriction Info entry.
 Index of a Restriction Info update cycle that has
 occurred (bounded by the value of tudaV1RestrictCycles).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1RestrictData {
 type binary {
 length "0..1024";
 }
 config false;
 description
 "An instance of CBOR encoded Restriction Info data.";
 }
 }
}

container tudaV1Measure {
description
 "TBD";

 leaf tudaV1MeasureCycles {
 type yang:counter32;
 config false;
 description
 "Count of Measurement Log update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }

 leaf tudaV1MeasureInstances {

 type yang:counter32;

 config false;
 description
 "Count of Measurement Log instance entries that have
 been recorded (some entries MAY have been pruned).

 DEFVAL intentionally omitted ‑ counter object.";
}

 list tudaV1MeasureEntry {

 key "tudaV1MeasureCycleIndex tudaV1MeasureInstanceIndex";
 config false;
 description
 "An entry for one instance of Measurement Log data.";

 leaf tudaV1MeasureCycleIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "High‑order index of this Measurement Log entry.
 Index of a Measurement Log update cycle that has
 occurred (bounded by the value of tudaV1MeasureCycles).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1MeasureInstanceIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Low‑order index of this Measurement Log entry.
 Ordinal of this instance of Measurement Log data
 (NOT bounded by the value of tudaV1MeasureInstances).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1MeasureData {
 type binary {
 length "0..1024";
 }
 config false;
 description

 "A instance of CBOR encoded Measurement Log data.";
 }
 }
}

container tudaV1VerifyToken {
description
 "TBD";

 leaf tudaV1VerifyTokenCycles {
 type yang:counter32;
 config false;
 description
 "Count of Verify Token update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }

 /* XXX table comments here XXX */

 list tudaV1VerifyTokenEntry {

 key "tudaV1VerifyTokenCycleIndex";
 config false;
 description
 "An entry for one instance of Verify Token data.";

 leaf tudaV1VerifyTokenCycleIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Index of this instance of Verify Token data.
 Index of a Verify Token update cycle that has
 occurred (bounded by the value of tudaV1VerifyTokenCycles).

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1VerifyTokenData {
 type binary {
 length "0..1024";
 }
 config false;

 description
 "A instanc‑V1‑ATTESTATION‑MIB.yang
 }
 }
}

container tudaV1SWIDTag {
description
 "see CoSWID and YANG SIWD module for now"

 leaf tudaV1SWIDTagCycles {
 type yang:counter32;
 config false;
 description
 "Count of SWID Tag update cycles that have occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }

 list tudaV1SWIDTagEntry {

key "tudaV1SWIDTagCycleIndex tudaV1SWIDTagInstanceIndex
 tudaV1SWIDTagFragmentIndex";
config false;
description
 "An entry for one fragment of SWID Tag data.";

leaf tudaV1SWIDTagCycleIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "High‑order index of this SWID Tag fragment.
 Index of an SWID Tag update cycle that has
 occurred (bounded by the value of tudaV1SWIDTagCycles).

 DEFVAL intentionally omitted ‑ index object.";
}

leaf tudaV1SWIDTagInstanceIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Middle index of this SWID Tag fragment.

 Ordinal of this SWID Tag instance in this update cycle.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1SWIDTagFragmentIndex {
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "Low‑order index of this SWID Tag fragment.

 DEFVAL intentionally omitted ‑ index object.";
 }

 leaf tudaV1SWIDTagData {
 type binary {
 length "0..1024";
 }
 config false;
 description
 "A fragment of CBOR encoded SWID Tag data.";
 }
 }
 }

 notification tudaV1TrapV2Cycles {
 description
 "This trap is sent when the value of any cycle or instance
 counter changes (i.e., one or more tables are updated).

 Note: The value of sysUpTime in IETF MIB‑II (RFC 1213) is
 always included in SNMPv2 traps, per RFC 3416.";

 container tudaV1TrapV2Cycles‑tudaV1GeneralCycles {
 description
 "TPD"
 leaf tudaV1GeneralCycles {
 type yang:counter32;
 description
 "Count of TUDA update cycles that have occurred, i.e.,
 sum of all the individual group cycle counters.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1AIKCertCycles {
 description
 "TPD"
 leaf tudaV1AIKCertCycles {
 type yang:counter32;
 description
 "Count of AIK Certificate chain update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1TSACertCycles {
 description
 "TPD"
 leaf tudaV1TSACertCycles {
 type yang:counter32;
 description
 "Count of TSA Certificate chain update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1SyncTokenCycles {
 description
 "TPD"
 leaf tudaV1SyncTokenCycles {
 type yang:counter32;
 description
 "Count of Sync Token update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1SyncTokenInstances {
 description
 "TPD"
 leaf tudaV1SyncTokenInstances {
 type yang:counter32;
 description
 "Count of Sync Token instance entries that have
 been recorded (some entries MAY have been pruned).

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1RestrictCycles {
 description
 "TPD"
 leaf tudaV1RestrictCycles {
 type yang:counter32;
 description
 "Count of Restriction Info update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1MeasureCycles {
 description
 "TPD"
 leaf tudaV1MeasureCycles {
 type yang:counter32;
 description
 "Count of Measurement Log update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1MeasureInstances {
 description
 "TPD"
 leaf tudaV1MeasureInstances {
 type yang:counter32;
 description
 "Count of Measurement Log instance entries that have
 been recorded (some entries MAY have been pruned).

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1VerifyTokenCycles {
 description
 "TPD"
 leaf tudaV1VerifyTokenCycles {
 type yang:counter32;

 description
 "Count of Verify Token update cycles that have
 occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 container tudaV1TrapV2Cycles‑tudaV1SWIDTagCycles {
 description
 "TPD"
 leaf tudaV1SWIDTagCycles {
 type yang:counter32;
 description
 "Count of SWID Tag update cycles that have occurred.

 DEFVAL intentionally omitted ‑ counter object.";
 }
 }

 }
}
<CODE ENDS>

Appendix D. Realization with TPM functions

D.1. TPM Functions

 The following TPM structures, resources and functions are used within
 this approach. They are based upon the TPM specifications [TPM12]
 and [TPM2].

D.1.1. Tick-Session and Tick-Stamp

 On every boot, the TPM initializes a new Tick-Session. Such a tick-
 session consists of a nonce that is randomly created upon each boot
 to identify the current boot-cycle - the phase between boot-time of
 the device and shutdown or power-off - and prevent replaying of old
 tick-session values. The TPM uses its internal entropy source that
 guarantees virtually no collisions of the nonce values between two of
 such boot cycles.

 It further includes an internal timer that is being initialize to
 Zero on each reboot. From this point on, the TPM increments this
 timer continuously based upon its internal secure clocking
 information until the device is powered down or set to sleep. By its
 hardware design, the TPM will detect attacks on any of those
 properties.

 The TPM offers the function TPM_TickStampBlob, which allows the TPM
 to create a signature over the current tick-session and two
 externally provided input values. These input values are designed to
 serve as a nonce and as payload data to be included in a
 TickStampBlob: TickstampBlob := sig(TPM-key, currentTicks || nonce ||
 externalData).

 As a result, one is able to proof that at a certain point in time
 (relative to the tick-session) after the provisioning of a certain
 nonce, some certain externalData was known and provided to the TPM.
 If an approach however requires no input values or only one input
 value (such as the use in this document) the input values can be set
 to well-known value. The convention used within TCG specifications
 and within this document is to use twenty bytes of zero
 h'00' as well-known value.

D.1.2. Platform Configuration Registers (PCRs)

 The TPM is a secure cryptoprocessor that provides the ability to
 store measurements and metrics about an endpoint's configuration and
 state in a secure, tamper-proof environment. Each of these security
 relevant metrics can be stored in a volatile Platform Configuration
 Register (PCR) inside the TPM. These measurements can be conducted
 at any point in time, ranging from an initial BIOS boot-up sequence
 to measurements taken after hundreds of hours of uptime.

 The initial measurement is triggered by the Platforms so-called pre-
 BIOS or ROM-code. It will conduct a measurement of the first
 loadable pieces of code; i.e.\ the BIOS. The BIOS will in turn
 measure its Option ROMs and the BootLoader, which measures the OS-
 Kernel, which in turn measures its applications. This describes a
 so-called measurement chain. This typically gets recorded in a so-
 called measurement log, such that the values of the PCRs can be
 reconstructed from the individual measurements for validation.

 Via its PCRs, a TPM provides a Root of Trust that can, for example,
 support secure boot or remote attestation. The attestation of an
 endpoint's identity or security posture is based on the content of an
 TPM's PCRs (platform integrity measurements).

D.1.3. PCR restricted Keys

 Every key inside the TPM can be restricted in such a way that it can
 only be used if a certain set of PCRs are in a predetermined state.
 For key creation the desired state for PCRs are defined via the
 PCRInfo field inside the keyInfo parameter. Whenever an operation
 using this key is performed, the TPM first checks whether the PCRs
 are in the correct state. Otherwise the operation is denied by the
 TPM.

D.1.4. CertifyInfo

 The TPM offers a command to certify the properties of a key by means
 of a signature using another key. This includes especially the
 keyInfo which in turn includes the PCRInfo information used during
 key creation. This way, a third party can be assured about the fact
 that a key is only usable if the PCRs are in a certain state.

D.2. IE Generation Procedures for TPM 1.2

D.2.1. AIK and AIK Certificate

 Attestations are based upon a cryptographic signature performed by
 the TPM using a so-called Attestation Identity Key (AIK). An AIK has
 the properties that it cannot be exported from a TPM and is used for
 attestations. Trust in the AIK is established by an X.509
 Certificate emitted by a Certificate Authority. The AIK certificate
 is either provided directly or via a so-called PrivacyCA
 [AIK-Enrollment].

 This element consists of the AIK certificate that includes the AIK's
 public key used during verification as well as the certificate chain
 up to the Root CA for validation of the AIK certificate itself.

TUDA‑Cert = [AIK‑Cert, TSA‑Cert]; maybe split into two for SNMP
AIK‑Cert = Cert
TSA‑Cert = Cert

 Figure 2: TUDA-Cert element in CDDL

 The TSA-Cert is a standard certificate of the TSA.

 The AIK-Cert may be provisioned in a secure environment using
 standard means or it may follow the PrivacyCA protocols. Figure 3
 gives a rough sketch of this protocol. See [AIK-Enrollment] for more
 information.

 The X.509 Certificate is built from the AIK public key and the
 corresponding PKCS #7 certificate chain, as shown in Figure 3.

 Required TPM functions:

| create_AIK_Cert(...) = {
| AIK = TPM_MakeIdentity()
| IdReq = CollateIdentityRequest(AIK,EK)
| IdRes = Call(AIK‑CA, IdReq)
| AIK‑Cert = TPM_ActivateIdentity(AIK, IdRes)
| }
|
| /* Alternative */
|
| create_AIK_Cert(...) = {
| AIK = TPM_CreateWrapKey(Identity)
| AIK‑Cert = Call(AIK‑CA, AIK.pubkey)
| }

 Figure 3: Creating the TUDA-Cert element

D.2.2. Synchronization Token

 The reference for Attestations are the Tick-Sessions of the TPM. In
 order to put Attestations into relation with a Real Time Clock (RTC),
 it is necessary to provide a cryptographic synchronization between
 the tick session and the RTC. To do so, a synchronization protocol
 is run with a Time Stamp Authority (TSA) that consists of three
 steps:

 o The TPM creates a TickStampBlob using the AIK

 o This TickstampBlob is used as nonce to the Timestamp of the TSA

 o Another TickStampBlob with the AIK is created using the TSA's
 Timestamp a nonce

 The first TickStampBlob is called "left" and the second "right" in a
 reference to their position on a time-axis.

 These three elements, with the TSA's certificate factored out, form
 the synchronization token

TUDA‑Synctoken = [
 left: TickStampBlob‑Output,
 timestamp: TimeStampToken,
 right: TickStampBlob‑Output,
]

 TimeStampToken = bytes ; RFC 3161

TickStampBlob‑Output = [
 currentTicks: TPM‑CURRENT‑TICKS,
 sig: bytes,
]

TPM‑CURRENT‑TICKS = [
 currentTicks: uint
 ? (
 tickRate: uint
 tickNonce: TPM‑NONCE
)
]
; Note that TickStampBlob‑Output "right" can omit the values for
; tickRate and tickNonce since they are the same as in "left"

 TPM-NONCE = bytes .size 20

 Figure 4: TUDA-Sync element in CDDL

 Required TPM functions:

| dummyDigest = h'00'
| dummyNonce = dummyDigest
|
| create_sync_token(AIKHandle, TSA) = {
| ts_left = TPM_TickStampBlob(
| keyHandle = AIK_Handle, /*TPM_KEY_HANDLE*/
| antiReplay = dummyNonce, /*TPM_NONCE*/
| digestToStamp = dummyDigest /*TPM_DIGEST*/)
|
| ts = TSA_Timestamp(TSA, nonce = hash(ts_left))
|
| ts_right = TPM_TickStampBlob(
| keyHandle = AIK_Handle, /*TPM_KEY_HANDLE*/
| antiReplay = dummyNonce, /*TPM_NONCE*/
| digestToStamp = hash(ts)) /*TPM_DIGEST*/
|
| TUDA‑SyncToken = [[ts_left.ticks, ts_left.sig], ts,
| [ts_right.ticks.currentTicks, ts_right.sig]]
| /* Note: skip the nonce and tickRate field for ts_right.ticks */
| }

 Figure 5: Creating the Sync-Token element

D.2.3. RestrictionInfo

 The attestation relies on the capability of the TPM to operate on
 restricted keys. Whenever the PCR values for the machine to be
 attested change, a new restricted key is created that can only be
 operated as long as the PCRs remain in their current state.

 In order to prove to the Verifier that this restricted temporary key
 actually has these properties and also to provide the PCR value that
 it is restricted, the TPM command TPM_CertifyInfo is used. It
 creates a signed certificate using the AIK about the newly created
 restricted key.

 This token is formed from the list of:

 o PCR list,

 o the newly created restricted public key, and

 o the certificate.

TUDA‑RestrictionInfo = [Composite,
 restrictedKey_Pub: Pubkey,
 CertifyInfo]

 PCRSelection = bytes .size (2..4) ; used as bit string

Composite = [
 bitmask: PCRSelection,
 values: [*PCR‑Hash],
]

 Pubkey = bytes ; may be extended to COSE pubkeys

CertifyInfo = [
 TPM‑CERTIFY‑INFO,
 sig: bytes,
]

TPM‑CERTIFY‑INFO = [
 ; we don't encode TPM‑STRUCT‑VER:
 ; these are 4 bytes always equal to h'01010000'
 keyUsage: uint, ; 4byte? 2byte?
 keyFlags: bytes .size 4, ; 4byte
 authDataUsage: uint, ; 1byte (enum)
 algorithmParms: TPM‑KEY‑PARMS,
 pubkeyDigest: Hash,
 ; we don't encode TPM‑NONCE data, which is 20 bytes, all zero
 parentPCRStatus: bool,
 ; no need to encode pcrinfosize
 pcrinfo: TPM‑PCR‑INFO, ; we have exactly one
]

TPM‑PCR‑INFO = [
 pcrSelection: PCRSelection; /* TPM_PCR_SELECTION */
 digestAtRelease: PCR‑Hash; /* TPM_COMPOSITE_HASH */
 digestAtCreation: PCR‑Hash; /* TPM_COMPOSITE_HASH */
]

TPM‑KEY‑PARMS = [
 ; algorithmID: uint, ; <= 4 bytes ‑‑ not encoded, constant for TPM1.2
 encScheme: uint, ; <= 2 bytes
 sigScheme: uint, ; <= 2 bytes
 parms: TPM‑RSA‑KEY‑PARMS,
]

TPM‑RSA‑KEY‑PARMS = [
 ; "size of the RSA key in bits":
 keyLength: uint
 ; "number of prime factors used by this RSA key":
 numPrimes: uint
 ; "This SHALL be the size of the exponent":
 exponentSize: null / uint / biguint

 ; "If the key is using the default exponent then the exponentSize
 ; MUST be 0" ‑> we represent this case as null
]

 Figure 6: TUDA-Key element in CDDL

 Required TPM functions:

| dummyDigest = h'00'
| dummyNonce = dummyDigest
|
| create_Composite
|
| create_restrictedKey_Pub(pcrsel) = {
| PCRInfo = {pcrSelection = pcrsel,
| digestAtRelease = hash(currentValues(pcrSelection))
| digestAtCreation = dummyDigest}
| / * PCRInfo is a TPM_PCR_INFO and thus also a TPM_KEY */
|
| wk = TPM_CreateWrapKey(keyInfo = PCRInfo)
| wk.keyInfo.pubKey
| }
|
| create_TPM‑Certify‑Info = {
| CertifyInfo = TPM_CertifyKey(
| certHandle = AIK, /* TPM_KEY_HANDLE */
| keyHandle = wk, /* TPM_KEY_HANDLE */
| antiReply = dummyNonce) /* TPM_NONCE */
|
| CertifyInfo.strip()
| /* Remove those values that are not needed */
| }

 Figure 7: Creating the pubkey

D.2.4. Measurement Log

 Similarly to regular attestations, the Verifier needs a way to
 reconstruct the PCRs' values in order to estimate the trustworthiness
 of the device. As such, a list of those elements that were extended
 into the PCRs is reported. Note though that for certain
 environments, this step may be optional if a list of valid PCR
 configurations exists and no measurement log is required.

TUDA‑Measurement‑Log = [*PCR‑Event]
PCR‑Event = [
 type: PCR‑Event‑Type,
 pcr: uint,
 template‑hash: PCR‑Hash,
 filedata‑hash: tagged‑hash,
 pathname: text; called filename‑hint in ima (non‑ng)
]

PCR‑Event‑Type = &(
 bios: 0
 ima: 1
 ima‑ng: 2
)

; might want to make use of COSE registry here
; however, that might never define a value for sha1
tagged‑hash /= [sha1: 0, bytes .size 20]
tagged‑hash /= [sha256: 1, bytes .size 32]

D.2.5. Implicit Attestation

 The actual attestation is then based upon a TickStampBlob using the
 restricted temporary key that was certified in the steps above. The
 TPM-Tickstamp is executed and thereby provides evidence that at this
 point in time (with respect to the TPM internal tick-session) a
 certain configuration existed (namely the PCR values associated with
 the restricted key). Together with the synchronization token this
 tick-related timing can then be related to the real-time clock.

 This element consists only of the TPM_TickStampBlock with no nonce.

 TUDA-Verifytoken = TickStampBlob-Output

 Figure 8: TUDA-Verify element in CDDL

 Required TPM functions:

| imp_att = TPM_TickStampBlob(
| keyHandle = restrictedKey_Handle, /*TPM_KEY_HANDLE*/
| antiReplay = dummyNonce, /*TPM_NONCE*/
| digestToStamp = dummyDigest) /*TPM_DIGEST*/
|
| VerifyToken = imp_att

 Figure 9: Creating the Verify Token

D.2.6. Attestation Verification Approach

 The seven TUDA information elements transport the essential content
 that is required to enable verification of the attestation statement
 at the Verifier. The following listings illustrate the verification
 algorithm to be used at the Verifier in pseudocode. The pseudocode
 provided covers the entire verification task. If only a subset of
 TUDA elements changed (see Section 4.1), only the corresponding code
 listings need to be re-executed.

| TSA_pub = verifyCert(TSA‑CA, Cert.TSA‑Cert)
| AIK_pub = verifyCert(AIK‑CA, Cert.AIK‑Cert)

 Figure 10: Verification of Certificates

| ts_left = Synctoken.left
| ts_right = Synctoken.right
|
| /* Reconstruct ts_right's omitted values; Alternatively assert == */
| ts_right.currentTicks.tickRate = ts_left.currentTicks.tickRate
| ts_right.currentTicks.tickNonce = ts_left.currentTicks.tickNonce
|
| ticks_left = ts_left.currentTicks
| ticks_right = ts_right.currentTicks
|
| /* Verify Signatures */
| verifySig(AIK_pub, dummyNonce || dummyDigest || ticks_left)
| verifySig(TSA_pub, hash(ts_left) || timestamp.time)
| verifySig(AIK_pub, dummyNonce || hash(timestamp) || ticks_right)
|
| delta_left = timestamp.time ‑
| ticks_left.currentTicks * ticks_left.tickRate / 1000
|
| delta_right = timestamp.time ‑
| ticks_right.currentTicks * ticks_right.tickRate / 1000

 Figure 11: Verification of Synchronization Token

| compositeHash = hash_init()
| for value in Composite.values:
| hash_update(compositeHash, value)
| compositeHash = hash_finish(compositeHash)
|
| certInfo = reconstruct_static(TPM‑CERTIFY‑INFO)
|
| assert(Composite.bitmask == ExpectedPCRBitmask)
| assert(certInfo.pcrinfo.PCRSelection == Composite.bitmask)
| assert(certInfo.pcrinfo.digestAtRelease == compositeHash)
| assert(certInfo.pubkeyDigest == hash(restrictedKey_Pub))
|
| verifySig(AIK_pub, dummyNonce || certInfo)

 Figure 12: Verification of Restriction Info

| for event in Measurement‑Log:
| if event.pcr not in ExpectedPCRBitmask:
| continue
| if event.type == BIOS:
| assert_whitelist‑bios(event.pcr, event.template‑hash)
| if event.type == ima:
| assert(event.pcr == 10)
| assert_whitelist(event.pathname, event.filedata‑hash)
| assert(event.template‑hash ==
| hash(event.pathname || event.filedata‑hash))
| if event.type == ima‑ng:
| assert(event.pcr == 10)
| assert_whitelist‑ng(event.pathname, event.filedata‑hash)
| assert(event.template‑hash ==
| hash(event.pathname || event.filedata‑hash))
|
| virtPCR[event.pcr] = hash_extend(virtPCR[event.pcr],
| event.template‑hash)
|
| for pcr in ExpectedPCRBitmask:
| assert(virtPCR[pcr] == Composite.values[i++]

 Figure 13: Verification of Measurement Log

| ts = Verifytoken
|
| /* Reconstruct ts's omitted values; Alternatively assert == */
| ts.currentTicks.tickRate = ts_left.currentTicks.tickRate
| ts.currentTicks.tickNonce = ts_left.currentTicks.tickNonce
|
| verifySig(restrictedKey_pub, dummyNonce || dummyDigest || ts)
|
| ticks = ts.currentTicks
|
| time_left = delta_right + ticks.currentTicks * ticks.tickRate / 1000
| time_right = delta_left + ticks.currentTicks * ticks.tickRate / 1000
|
| [time_left, time_right]

 Figure 14: Verification of Attestation Token

D.3. IE Generation Procedures for TPM 2.0

 The pseudo code below includes general operations that are conducted
 as specific TPM commands:

 o hash() : description TBD

 o sig() : description TBD

 o X.509-Certificate() : description TBD

 These represent the output structure of that command in the form of a
 byte string value.

D.3.1. AIK and AIK Certificate

 Attestations are based upon a cryptographic signature performed by
 the TPM using a so-called Attestation Identity Key (AIK). An AIK has
 the properties that it cannot be exported from a TPM and is used for
 attestations. Trust in the AIK is established by an X.509
 Certificate emitted by a Certificate Authority. The AIK certificate
 is either provided directly or via a so-called PrivacyCA
 [AIK-Enrollment].

 This element consists of the AIK certificate that includes the AIK's
 public key used during verification as well as the certificate chain
 up to the Root CA for validation of the AIK certificate itself.
 TUDA-Cert = [AIK-Cert, TSA-Cert]; maybe split into two for SNMP
 AIK-Certificate = X.509-Certificate(AIK-Key,Restricted-Flag)
 TSA-Certificate = X.509-Certificate(TSA-Key, TSA-Flag)

 Figure 15: TUDA-Cert element for TPM 2.0

D.3.2. Synchronization Token

 The synchronization token uses a different TPM command, TPM2
 GetTime() instead of TPM TickStampBlob(). The TPM2 GetTime() command
 contains the clock and time information of the TPM. The clock
 information is the equivalent of TUDA v1's tickSession information.

TUDA‑SyncToken = [
 left_GetTime = sig(AIK‑Key,
 TimeInfo = [
 time,
 resetCount,
 restartCount
]
),
 middle_TimeStamp = sig(TSA‑Key,
 hash(left_TickStampBlob),
 UTC‑localtime
),
 right_TickStampBlob = sig(AIK‑Key,
 hash(middle_TimeStamp),
 TimeInfo = [
 time,
 resetCount,
 restartCount
]
)
]

 Figure 16: TUDA-Sync element for TPM 2.0

D.3.3. Measurement Log

 The creation procedure is identical to Appendix D.2.4.

Measurement‑Log = [
 * [EventName,
 PCR‑Num,
 Event‑Hash]
]

 Figure 17: TUDA-Log element for TPM 2.0

D.3.4. Explicit time-based Attestation

 The TUDA attestation token consists of the result of TPM2_Quote() or
 a set of TPM2_PCR_READ followed by a TPM2_GetSessionAuditDigest. It
 proves that -- at a certain point-in-time with respect to the TPM's
 internal clock -- a certain configuration of PCRs was present, as
 denoted in the keys restriction information.

TUDA-AttestationToken = TUDA-AttestationToken_quote / TUDA-AttestationToken_audit

TUDA‑AttestationToken_quote = sig(AIK‑Key,
 TimeInfo = [
 time,
 resetCount,
 restartCount
],
 PCR‑Selection = [* PCR],
 PCR‑Digest := PCRDigest
)

TUDA‑AttestationToken_audit = sig(AIK‑key,
 TimeInfo = [
 time,
 resetCount,
 restartCount
],
 Session‑Digest := PCRDigest
)

 Figure 18: TUDA-Attest element for TPM 2.0

D.3.5. Sync Proof

 In order to proof to the Verifier that the TPM's clock was not 'fast-
 forwarded' the result of a TPM2_GetTime() is sent after the TUDA-
 AttestationToken.

TUDA‑SyncProof = sig(AIK‑Key,
 TimeInfo = [
 time,
 resetCount,
 restartCount
]
),

 Figure 19: TUDA-Proof element for TPM 2.0

Acknowledgements

Authors' Addresses

Andreas Fuchs
Fraunhofer Institute for Secure Information Technology
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: andreas.fuchs@sit.fraunhofer.de

Henk Birkholz
Fraunhofer Institute for Secure Information Technology
Rheinstrasse 75
Darmstadt 64295
Germany

 Email: henk.birkholz@sit.fraunhofer.de

Ira E McDonald
High North Inc
PO Box 221
Grand Marais 49839
US

 Email: blueroofmusic@gmail.com

Carsten Bormann
Universitaet Bremen TZI
Bibliothekstr. 1
Bremen D‑28359
Germany

Phone: +49‑421‑218‑63921
Email: cabo@tzi.org

draft-brockhaus-lamps-cmp-updates-01 - CMP Updates

draft-brockhaus-lamps-cmp-updates-01 - CMP Updates

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Updates: 4210 (if approved)

Intended status: Standards Track

Expires: May 6, 2020

H. Brockhaus

Siemens

November 3, 2019

CMP Updates

draft-brockhaus-lamps-cmp-updates-01

Abstract

 This document contains a set of updates to the base syntax of
 Certificate Management Protocol (CMP) version 2. This document
 updates RFC 4210.

 Specifically, the CMP services updated in this document comprise the
 enabling of using EnvelopedData instead of EncryptedValue and the
 definition of extended key usages to identify certificates of CMP
 endpoints on certification and registration authorities.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. History of changes

	2. Introduction
	 2.1. Convention and Terminology

	3. Updates to RFC 4210 - Certificate Management Protocol (CMP)
	 3.1. New Section 1.1. - Changes since RFC 4210

	 3.2. New Section 4.5 - Extended Key Usage

	 3.3. Replace Section 5.1.3.4 - Multiple Protection

	 3.4. Replace Section 5.2.2. - Encrypted Values

	 3.5. Update Section 5.3.4. - Certification Response

	 3.6. Update Section 5.3.19.9. - Revocation Passphrase

	 3.7. New Section - Polling Request and Response

	 3.8. Update Appendix B - The Use of Revocation Passphrase

	 3.9. Update Appendix C - Request Message Behavioral Clarifications

	 3.10. Update Appendix D.4. - Initial Registration/Certification (Basic Authenticated Scheme)

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgements

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. ASN.1 Modules

	Author's Address

1. History of changes

 From version 00 -> 01:

 o Add a section describing the new extended key usages

 o Complete the section on changes to the specification of encrypted
 values

 o Add a section on a clarification to Appendix D.4

 o Add a section describing the new extended key usages

 o Minor generalization in sections 5.1.3.4 and 5.3.22

 o Minor changes in wording

2. Introduction

 While using CMP [RFC4210] in industrial and IoT environments and
 developing the Lightweight CMP Profile
 [I-D.brockhaus-lamps-lightweight-cmp-profile] some limitations were
 identified in the original CMP specification. This document updates
 RFC 4210 [RFC4210] to overcome these limitations.

 In general this document aims to improve the crypto agility of CMP to
 be flexible to react on future advances in cryptography.

 This document also introduces new extended key usages to identify CMP
 services on registration and certification authorities.

2.1. Convention and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying significance described in RFC 2119.

 Technical terminology is used in conformance with RFC 4210 [RFC4210],
 RFC 4211 [RFC4211], and RFC 5280 [RFC5280]. The following key words
 are used:

CA: Certification authority, which issues certificates.

RA: Registration authority, an optional system component to which
 a CA delegates certificate management functions such as
 authorization checks.

KGA: Key generation authority, which generates key pairs on behalf
 of an EE. The KGA could be co‑located with a RA or a CA.

EE: End entity, a user, device, or service that holds a PKI
 certificate. An identifier for the EE is given as its
 subject of the certificate.

3. Updates to RFC 4210 - Certificate Management Protocol (CMP)

3.1. New Section 1.1. - Changes since RFC 4210

 The following subsections describe feature updates to RFC 4210
 [RFC4210]. They are always related to the base specification. Hence
 references to the original sections in RFC 4210 [RFC4210] are used
 whenever possible.

 Insert this section at the end of the current Section 1.

 The following updates were made since RFC 4210:

 o Offering envelopedData as another choice next to EncryptedValue to
 extend crypto agility in CMP. Note that according to RFC 4211
 [RFC4211] section 2.1.9 the use of the EncryptedValue structure
 has been deprecated in favor of the EnvelopedData structure. For
 reasons of completeness and consistency the exchange of
 EncryptedValue with EncryptedKey is performed not only where
 required for the needed crypto agility for protection of centrally
 generated private key, but also for other purposes like encryption
 of certificates and revocation passphrases.

 o Add new extended key usages for different CMP server types, e.g.
 Registration authority and certification authority.

3.2. New Section 4.5 - Extended Key Usage

 Insert this section.

 The Extended Key Usage (EKU) extension indicates the purposes for
 which the certified public key may be used. It therefore restricts
 the use of a certificate to specific applications. Certificates used
 for CMP message protection or signed data for central key generation
 SHOULD use one of the following EKUs to express its authorization for
 acting as the PKI management entities described below. The ASN.1 to
 define these EKUs is:

id‑kp‑cmpCA OBJECT IDENTIFIER ::= { id‑kp ... }
id‑kp‑cmpRA OBJECT IDENTIFIER ::= { id‑kp ... }
id‑kp‑cmpKGA OBJECT IDENTIFIER ::= { id‑kp ... }

 < TBD: IDs to be defined. >

 The description of the PKI entity for each of the EKUs is as follows:

 CMP Certification Authorities as described in section 3.1.1.2 are
 identified by the id-kp-cmpCA extended key usage in the context of
 CMP management operations, especially CMP message protection. The
 certificate may be the same as or different than the CA uses to sign
 a certificate. If a different certificate is used for CMP management
 operations, the certificates containing the id-kp-cmpCA extended key
 usage SHOULD have the same name as the certificate used for issuing
 certificates.

 Note: Using a separate key pair for protecting CMP management
 operations at the CA decreases the number of operations of the
 private key used to sign certificates.

 CMP Registration Authorities as described in section 3.1.1.3 are
 identified by the id-kp-cmpRA extended key usage. This usage is
 placed into RA certificates.

 CMP Key Generation Authorities are identified by the id-kp-cmPKGA
 extended key usage. Though the KGA knows the private key it
 generated on behalf of the end entity, this is a very sensible
 service and needs specific authorization. This authorization is
 indicated by placing the id-kp-cmpKGA extended key usage into the RA
 or CA certificate used to protect the origin of the private key to
 express the aithorization to offer this service.

3.3. Replace Section 5.1.3.4 - Multiple Protection

 Section 5.1.3.4 of RFC 4210 [RFC4210] describes the nested Message.
 This document deletes the stipulation that all PKI messages contained
 in a nested message must be of the same type.

 Replace the last paragraph in Section 5.1.3.4 with the following
 text.

 (The use of PKIMessages, a SEQUENCE OF PKIMessage, lets the RA batch
 the requests of several EEs in a single new message.) If the RA
 wishes to modify the message(s) in some way (e.g., add particular
 field values or new extensions), then it MAY create its own desired
 PKIBody. The original PKIMessage from the EE MAY be included in the
 generalInfo field of PKIHeader (to accommodate, for example, cases in
 which the CA wishes to check POP or other information on the original
 EE message). The infoType to be used in this situation is {id-it 15}
 (see Section 5.3.19 for the value of id-it) and the infoValue is
 PKIMessages (contents MUST be in the same order as the requests in
 PKIBody).

3.4. Replace Section 5.2.2. - Encrypted Values

 Section 5.2.2 of RFC 4210 [RFC4210] describes the usage of
 EncryptedValue to transport encrypted data. This document extends
 the encryption of data to also use EnvelopedData.

 Replace the text of the section with the following text.

 Where encrypted data (restricted, in this specification, to be either
 private keys, certificates or passwords) are sent in PKI messages,
 the EncryptedKey data structure is used.

EncryptedKey ::= CHOICE {
 encryptedValue EncryptedValue, ‑‑ deprecated
 envelopedData [0] EnvelopedData }

 See CRMF [RFC4211] for EncryptedKey and EncryptedValue syntax and for
 EnvelopedData syntax see CMS [RFC5652]. Using the EncryptedKey data
 structure, the choice to either use EncryptedValue (for backward
 compatibility only) or EnvelopedData is offered. The use of the
 EncryptedValue structure has been deprecated in favor of the
 EnvelopedData structure. Therefore, it is recommended to use
 EnvelopedData.

 The EncryptedKey data structure is used in CMP to either transport a
 private key, certificate or revocation passphrase in encrypted form.

 EnvelopedData is used as follows:

 o Contains only one recepientInfo structure because the content is
 encrypted only for one recipient.

 o Contains the private key in a SignedData structure as specified in
 CMS section 5 [RFC5652] signed by the Key Generation Authority.

 o Contains the certificate or revocation passphrase directly in the
 encryptedContent field.

 Note: When transferring a centrally generated private key in a
 certificate response message to the EE, the algorithm identifier and
 the associated public key will anyhow be transported in this response
 message. Therefore, the private key will not be delivered in a key
 package structure as specified in [RFC5958] and [RFC6032]. But the
 wrapping of the private key in a SignedData structure that is wrapped
 in an this EnvelopedData structure as specified in [RFC6032] is
 applied here.

 The content of the EnvelopedData structure, as specified in CMS
 section 3 [RFC5652], MUST be encrypted using a newly generated
 symmetric content-encryption key. This content-encryption key MUST
 be securely provided to the recipient using one of three key
 management techniques.

 The choice of the key management technique to be used by the sender
 depends on the ceredential available for the recitpient:

 o Jointly shared secret: The content-encryption key will be
 protected using the symmetric key-encryption key management
 technique, as specified in CMS section 5.2.3 [RFC5652].

 o Recipient's certificate that contains a key usage extension
 asserting keyAgreement: The content-encryption key will be
 protected using the key agreement key management technique, as
 specified in CMS section 5.2.2 [RFC5652].

 o Recipient's certificate that contains a key usage extension
 asserting keyEncipherment: The content-encryption key will be
 protected using the key transport key management technique, as
 specified in CMS section 5.2.1 [RFC5652].

 The EncryptedValue data structure MAY be used for backward
 compatibility reasons. Use of this data structure requires that the
 creator and intended recipient be able to encrypt and decrypt,
 respectively. Typically, this will mean that the sender and
 recipient have, or are able to generate, a shared secret key. If the
 recipient of the PKIMessage already possesses a private key usable
 for decryption, then the encSymmKey field MAY contain a session key
 encrypted using the corresponding recipient's public key.

3.5. Update Section 5.3.4. - Certification Response

 Section 5.3.4 of RFC 4210 [RFC4210] describes the Certification
 Response. This document updates the syntax by using EncryptedKey
 instead of EncryptedValue as described in Section 3.1 above.

 Replace the ASN.1 syntax of CertifiedKeyPair and CertOrEncCert with
 the following text.

CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedKey OPTIONAL,
 ‑‑ see [CRMF] for comment on encoding
 publicationInfo [1] PKIPublicationInfo OPTIONAL
}

CertOrEncCert ::= CHOICE {
 certificate [0] Certificate,
 encryptedCert [1] EncryptedKey
}

 Add the following paragraphs to the end of the section.

 The use of EncryptedKey is described in section 5.2.2.

3.6. Update Section 5.3.19.9. - Revocation Passphrase

 Section 5.3.19.9 of RFC 4210 [RFC4210] describes the provisioning of
 a revocation passphrase for authenticating a later revocation
 request. This document updates the handling by using EncryptedKey
 instead of EncryptedValue to transport this information as described
 in Section 3.1 above.

 Replace the text of the section with the following text.

 The revocation passphrase MAY be used by the EE to send a passphrase
 to a CA/RA for the purpose of authenticating a later revocation
 request (in the case that the appropriate signing private key is no
 longer available to authenticate the request). See Appendix B for
 further details on the use of this mechanism.

GenMsg: {id‑it 12}, EncryptedKey
GenRep: {id‑it 12}, < absent >

 The use of EncryptedKey is described in section 5.2.2.

3.7. New Section - Polling Request and Response

 Section 5.3.22 of RFC 4210 [RFC4210] describes when and how polling
 messages are used. This document adds the polling mechanism also to
 outstanding p10cr transactions.

 Replace the all paragraphs in front of the state machine diagram in
 Section 5.3.22 with the following text.

 This pair of messages is intended to handle scenarios in which the
 client needs to poll the server in order to determine the status of
 an outstanding ir, cr, p10cr, or kur transaction (i.e., when the
 "waiting" PKIStatus has been received).

PollReqContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER }

PollRepContent ::= SEQUENCE OF SEQUENCE {
 certReqId INTEGER,
 checkAfter INTEGER, ‑‑ time in seconds
 reason PKIFreeText OPTIONAL }

 The following clauses describe when polling messages are used, and
 how they are used. It is assumed that multiple certConf messages can
 be sent during transactions. There will be one sent in response to
 each ip, cp, or kup that contains a CertStatus for an issued
 certificate.

1 In response to an ip, cp, or kup message, an EE will send a
 certConf for all issued certificates and, following the ack, a
 pollReq for all pending certificates.

2 In response to a pollReq, a CA/RA will return an ip, cp, or kup if
 one or more of the pending certificates is ready; otherwise, it
 will return a pollRep.

3 If the EE receives a pollRep, it will wait for at least as long as
 the checkAfter value before sending another pollReq.

4 If an ip, cp, or kup is received in response to a pollReq, then it
 will be treated in the same way as the initial response.

 Note: As the PKCS#10 [RFC2986] does not contain a certificate request
 number, it is assumed that there is only one CertificationRequestInfo
 data structure in a p10cr message and the certReqId is to be det to 0
 in all following messages of this transaction.

3.8. Update Appendix B - The Use of Revocation Passphrase

 Appendix B of RFC 4210 [RFC4210] describes the usage of the
 revocation passphrases. As this document updates RFC 4210 [RFC4210]
 to utilize EncryptedKey in favor of EncryptedValue as described in
 Section 3.1 above, the description is updated accordingly.

 Replace the first bullet point of this section with the following
 text.

 o The OID and value specified in Section 5.3.19.9 of RFC 4210
 [RFC4210] MAY be sent in a GenMsg message at any time, or MAY be
 sent in the generalInfo field of the PKIHeader of any PKIMessage
 at any time. (In particular, the EncryptedKey as described in
 section 5.2.2 may be sent in the header of the certConf message
 that confirms acceptance of certificates requested in an
 initialization request or certificate request message.) This
 conveys a revocation passphrase chosen by the entity (i.e., for
 use of EnvelopedData this is in the decrypted bytes of
 encryptedContent of the EnvelopedData structure and for use of
 EncryptedValue this is in the decrypted bytes of the encValue
 field) to the relevant CA/RA; furthermore, the transfer is
 accomplished with appropriate confidentiality characteristics.

 Replace the third bullet point of this section with the following
 text.

 o When using EnvelopedData the contentType of EncryptedContentInfo
 and when using EncryptedValue the valueHint field MAY contain a

 key identifier (chosen by the entity, along with the passphrase
 itself) to assist in later retrieval of the correct passphrase
 (e.g., when the revocation request is constructed by the entity
 and received by the CA/RA).

3.9. Update Appendix C - Request Message Behavioral Clarifications

 Appendix C of RFC 4210 [RFC4210] provides clarifications to the
 request message behavior. As this document updates RFC 4210
 [RFC4210] to utilize EncryptedKey in favor of EncryptedValue as
 described in Section 3.1 above, the description is updated
 accordingly.

 Replace the note coming after the ASN.1 syntax of POPOPrivKey of this
 section with the following text.

‑‑ **********
‑‑ * the type of "thisMessage" is given as BIT STRING in RFC 4211
‑‑ * [RFC4211]; it should be "EncryptedKey" (in accordance with
‑‑ * Section 5.2.2, "Encrypted Values", of this specification).
‑‑ * Therefore, this document makes the behavioral clarification of
‑‑ * specifying that the contents of "thisMessage" MUST be encoded
‑‑ * either as EnvelopedData or EncryptedValue (only for backward
‑‑ * compatibility) and then wrapped in a BIT STRING. This allows
‑‑ * the necessary conveyance and protection of the private key
‑‑ * while maintaining bits‑on‑the‑wire compatibility with RFC 4211
‑‑ * [RFC4211].
‑‑ **********

3.10. Update Appendix D.4. - Initial Registration/Certification (Basic
 Authenticated Scheme)

 Appendix D.4 of RFC 4210 [RFC4210] provides the initial registration/
 certification scheme. This scheme shall continue to use
 EncryptedValue for backward compatibility reasons.

 Replace the comment after the privateKey field of
 crc[1].certifiedKeyPair in the syntax of the Initialization Response
 message with the following text.

‑‑ see Appendix C, Request Message Behavioral Clarifications
‑‑ for backward compatibility reasons, use EncryptedValue

4. IANA Considerations

 <Add any IANA considerations>

5. Security Considerations

No changes are made to the existing security considerations of
RFC 4210 [RFC4210].

6. Acknowledgements

 Special thank goes to Jim Schaad his guidance and for the inspiration
 I got from [RFC6402] that updates CMC in a similar manner.

 I also like to thank all reviewers of this document for their
 valuable feedback.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2986]
 Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

 [RFC4210]
 Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210,
 DOI 10.17487/RFC4210, September 2005,
 <https://www.rfc-editor.org/info/rfc4210>.

 [RFC4211]
 Schaad, J., "Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)", RFC 4211,
 DOI 10.17487/RFC4211, September 2005,
 <https://www.rfc-editor.org/info/rfc4211>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

7.2. Informative References

 [I-D.brockhaus-lamps-lightweight-cmp-profile]

 Brockhaus, H., Fries, S., and D. Oheimb, "Lightweight CMP
 Profile", draft-brockhaus-lamps-lightweight-cmp-profile-00
 (work in progress), July 2019.

 [RFC5958]
 Turner, S., "Asymmetric Key Packages", RFC 5958,
 DOI 10.17487/RFC5958, August 2010,
 <https://www.rfc-editor.org/info/rfc5958>.

 [RFC6032]
 Turner, S. and R. Housley, "Cryptographic Message Syntax
 (CMS) Encrypted Key Package Content Type", RFC 6032,
 DOI 10.17487/RFC6032, December 2010,
 <https://www.rfc-editor.org/info/rfc6032>.

 [RFC6402]
 Schaad, J., "Certificate Management over CMS (CMC)
 Updates", RFC 6402, DOI 10.17487/RFC6402, November 2011,
 <https://www.rfc-editor.org/info/rfc6402>.

Appendix A. ASN.1 Modules

 Changes to the following parts are needed

 o Import from PKIKXCRMF-2005

CertTemplate, PKIPublicationInfo, EncryptedKey, CertId,
CertReqMessages
 FROM PKIXCRMF‑2005 {iso(1) identified‑organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7)
 id‑mod(0) id‑mod‑crmf2005(36)}

 o In CertifiedKeyPair, CertOrEncCert and id-it-revPassphrase

CertifiedKeyPair ::= SEQUENCE {
 certOrEncCert CertOrEncCert,
 privateKey [0] EncryptedKey OPTIONAL,
 ‑‑ see [CRMF] for comment on encoding
 publicationInfo [1] PKIPublicationInfo OPTIONAL
}

CertOrEncCert ::= CHOICE {
 certificate [0] CMPCertificate,
 encryptedCert [1] EncryptedKey
}

‑‑ id‑it‑revPassphrase OBJECT IDENTIFIER ::= {id‑it 12}
‑‑ RevPassphraseValue ::= EncryptedKey

‑‑
‑‑ Extended Key Usage extension for PKI entities used in
‑‑ CMP operations
‑‑

id‑kp‑cmpCA OBJECT IDENTIFIER ::= { id‑kp ... }
id‑kp‑cmpRA OBJECT IDENTIFIER ::= { id‑kp ... }
id‑kp‑cmpKGA OBJECT IDENTIFIER ::= { id‑kp ... }
< TBD: IDs to be defined. >

 < TBD: If needed the complete ASN.1 Module from RFC 4210 section
 needs to be copied here. >

Author's Address

Hendrik Brockhaus
Siemens AG
Otto‑Hahn‑Rin 6
Munich 81739
Germany

Email: hendrik.brockhaus@siemens.com
URI: http://www.siemens.com/

draft-brockhaus-lamps-lightweight-cmp-profile-01 - Lightweight CMP Profile

draft-brockhaus-lamps-lightweight-cmp-profile-01 - Lightweight CMP Profile

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Intended status: Standards Track

Expires: May 6, 2020

H. Brockhaus

S. Fries

D. von Oheimb

Siemens

November 3, 2019

Lightweight CMP Profile

draft-brockhaus-lamps-lightweight-cmp-profile-01

Abstract

 The goal of this document is to facilitate interoperability and
 automation by profiling the Certificate Management Protocol (CMP)
 version 2 and the related Certificate Request Message Format (CRMF)
 version 2. It specifies a subset of CMP and CRMF focusing on typical
 uses cases relevant for managing certificates of devices in many
 industrial and IoT scenarios. To limit the overhead of certificate
 management for more constrained devices only the most crucial types
 of transactions are specified as mandatory. To foster
 interoperability also in more complex scenarios, other types of
 transactions are specified as recommended or optional.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. History of changes

	2. Introduction
	 2.1. Motivation for profiling CMP

	 2.2. Motivation for a lightweight profile for CMP

	 2.3. Existing CMP profiles

	 2.4. Compatibility with existing CMP profiles

	 2.5. Scope of this document

	 2.6. Structure of this document

	 2.7. Convention and Terminology

	3. Architecture and use cases
	 3.1. Solution architecture

	 3.2. Basic generic CMP message content

	 3.3. Supported use cases
	 3.3.1. Mandatory use cases

	 3.3.2. Recommended Use Cases

	 3.3.3. Optional use cases

	 3.4. CMP message transport

	4. Generic parts of the PKI message
	 4.1. General description of the CMP message header

	 4.2. General description of the CMP message protection

	 4.3. General description of CMP message extraCerts

	5. End Entity focused certificate management use cases
	 5.1. Requesting a new certificate from a PKI
	 5.1.1. A certificate from a new PKI with signature protection

	 5.1.2. A certificate from a trusted PKI with signature protection

	 5.1.3. Update an existing certificate with signature protection

	 5.1.4. A certificate from a PKI with MAC protection

	 5.1.5. A certificate from a legacy PKI using PKCS#10 request

	 5.1.6. Generate the key pair centrally at the (L)RA/CA
	 5.1.6.1. Using symmetric key-encryption key management technique

	 5.1.6.2. Using key agreement key management technique

	 5.1.6.3. Using key transport key management technique

	 5.1.7. Delayed enrollment

	 5.2. Revoking a certificate

	 5.3. Error reporting

	 5.4. Support messages
	 5.4.1. General message and response

	 5.4.2. Get CA certiificates

	 5.4.3. Get root CA certificate update

	 5.4.4. Get certificate request parameters

	 5.4.5. Get certificate management configuration

	 5.4.6. Get enrollment voucher

	6. LRA and RA focused certificate management use cases
	 6.1. Forwarding of messages
	 6.1.1. Not changing protection

	 6.1.2. Replacing protection
	 6.1.2.1. Keeping proof-of-possession

	 6.1.2.2. Breaking proof-of-possession

	 6.1.3. Initiating delayed enrollment

	 6.2. Revoking certificates on behalf of another's entities

	 6.3. Error reporting

	7. CMP message transport variants
	 7.1. HTTP transport

	 7.2. HTTPS transport using certificates

	 7.3. HTTPS transport using shared secrets

	 7.4. File-based transport

	 7.5. CoAP transport

	 7.6. Piggybacking on other reliable transport

	8. IANA Considerations

	9. Security Considerations

	10. Acknowledgements

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Additional Stuff

	Authors' Addresses

1. History of changes

 From version 00 -> 01:

 o Complete specification of requesting a certificate from a legacy
 PKI using a PKCS#10 [RFC2986] request in Section 5.1.5.

 o Complete specification of adding central generation of a key pair
 to a certificate request in Section 5.1.6.

 o Complete specification of handling delayed enrollment due to
 asynchronous message delivery in Section 5.1.7.

 o Complete specification of additional support messages, e.g., to
 update a Root CA certificate or to request an RFC 8366 [RFC8366]
 voucher, in Section 5.4.

 o Minor changes in wording.

 From version draft-brockhaus-lamps-industrial-cmp-profile-00 ->
 brockhaus-lamps-lightweight-cmp-profile-00:

 o Change focus from industrial to more multi-purpose use cases and
 lightweight CMP profile.

 o Incorporate the omitted confirmation into the header specified in
 Section 4.1 and described in the standard enrollment use case in
 Section 5.1.1 due to discussion with Tomas Gustavsson.

 o Change from OPTIONAL to RECOMMENDED for use case 'Revoke another's
 entities certificate' in Section 6.2, because it is regarded as
 important functionality in many environments to enable the
 management station to revoke EE certificates.

 o Complete the specification of the revocation message flow in
 Section 5.2 and Section 6.2.

 o The CoAP based transport mechanism and piggybacking of CMP
 messages on top of other reliable transport protocols is out of
 scope of this document and would need to be specified in another
 document.

 o Further minor changes in wording.

2. Introduction

 This document specifies PKI management operations supporting machine-
 to-machine and IoT use cases. The focus lies on maximum automation
 and interoperable implementation of all involved PKI entities from
 end entities (EE) through an optional Local Registration Authority
 (LRA) and the RA up to the CA. The profile makes use of the concepts
 and syntax specified in CMP [RFC4210], CRMF [RFC4211], HTTP transfer
 for CMP [RFC6712], and CMP Updates [I-D.brockhaus-lamps-cmp-updates].
 Especially CMP and CRMF are very feature-rich standards, while only a
 limited subset of the specified functionality is needed in many
 environments. Additionally, the standards are not always precise
 enough on how to interpret and implement the described concepts.
 Therefore, we aim at tailoring and specifying in more detail how to
 use these concepts to implement lightweight automated certificate
 management.

2.1. Motivation for profiling CMP

 CMP was standardized in 1999 and is implemented in several CA
 products. In 2005 a completely reworked and enhanced version 2 of
 CMP [RFC4210] and CRMF [RFC4211] has been published followed by a
 document specifying a transfer mechanism for CMP messages using http
 [RFC6712] in 2012.

 Though CMP is a very solid and capable protocol it could be used more
 widely. The most important reason for not more intense application
 of CMP appears to be that the protocol is offering a large set of
 features and options but being not always precise enough and leaving
 room for interpretation. On the one hand, this makes CMP applicable
 to a very wide range of scenarios, but on the other hand a full
 implementation of all options is unrealistic because this would take
 enormous effort.

 Moreover, many details of the CMP protocol have been left open or
 have not been specified in full preciseness. The profiles specified
 in Appendix D and E of [RFC4210] offer some more detailed certificate
 use cases. But the specific needs of highly automated scenarios for
 a machine-to-machine communication are not covered sufficiently.

 As also 3GPP and UNISG already put across, profiling is a way of
 coping with the challenges mentioned above. To profile means to take
 advantage of the strengths of the given protocol, while explicitly
 narrowing down the options it provides to exactly those needed for
 the purpose(s) at hand and eliminating all identified ambiguities.
 In this way all the general and applicable aspects of the protocol
 can be taken over and only the peculiarities of the target scenario
 need to be dealt with specifically.

 Doing such a profiling for a new target environment can be a high
 effort because the range of available options needs to be well
 understood and the selected options need to be consistent with each
 other and with the intended usage scenario. Since most industrial
 use cases typically have much in common it is worth sharing this
 effort, which is the aim of this document. Other standardization
 bodies can then reference the profile from this document and do not
 need to come up with individual profiles.

2.2. Motivation for a lightweight profile for CMP

 The profiles specified in Appendix D and E of CMP have been developed
 in particular to manage certificates of human end entities. With the
 evolution of distributed systems and client-server architectures,
 certificates for machines and applications on them have become widely
 used. This trend has strengthened even more in emerging industrial
 and IoT scenarios. CMP is sufficiently flexible to support these
 very well.

 Today's IT security architectures for industrial solutions typically
 use certificates for endpoint authentication within protocols like
 IPSec, TLS, or SSH. Therefore, the security of these architectures
 highly relies upon the security and availability of the implemented
 certificate management procedures.

 Due to increasing security in operational networks as well as
 availability requirements, especially on critical infrastructures and
 systems with a high volume of certificates, a state-of-the-art
 certificate management must be constantly available and cost-
 efficient, which calls for high automation and reliability. The NIST
 Cyber Security Framework [NIST-CSFW] also refers to proper processes
 for issuance, management, verification, revocation, and audit for
 authorized devices, users and processes involving identity and
 credential management. Such PKI operation according to commonly
 accepted best practices is also required in IEC 62443-3-3
 [IEC62443-3-3] for security level 2 up to security level 4.

 Further challenges in many industrial systems are network
 segmentation and asynchronous communication, where PKI operation is
 often not deployed on-site but in a more protected environment of a
 data center or trust center. Certificate management must be able to
 cope with such network architectures. CMP offers the required
 flexibility and functionality, namely self-contained messages,
 efficient polling, and support for asynchronous message transfer with
 end-to-end security.

2.3. Existing CMP profiles

 As already stated, CMP contains profiles with mandatory and optional
 transactions in the Appendixes D and E of [RFC4210]. Those profiles
 focus on management of human user certificates and do only partly
 address the specific needs for certificate management automation for
 unattended machine or application-oriented end entities.

 3GPP makes use of CMP [RFC4210] in its Technical Specification 133
 310 [ETSI-3GPP] for automatic management of IPSec certificates in
 UMTS, LTE, and 5G backbone networks. Since 2010 a dedicated CMP
 profile for initial certificate enrollment and update transactions
 between end entities and the RA/CA is specified in the document.

 UNISIG has included a CMP profile for certificate enrollment in the
 subset 137 specifying the ETRAM/ECTS on-line key management for train
 control systems [UNISIG] in 2015.

 Both standardization bodies use CMP [RFC4210], CRMF [RFC4211], and
 HTTP transfer for CMP [RFC6712] to add tailored means for automated
 certificate management for unattended machine or application-oriented
 end entities.

2.4. Compatibility with existing CMP profiles

 The profile specified in this document is compatible with CMP
 [RFC4210] Appendixes D and E (PKI Management Message Profiles), with
 the following exceptions:

 o signature-based protection is the default protection; initial
 transactions may also use HMAC,

 o certification of a second key pair within the same transaction is
 not supported,

 o proof-of-possession (POPO) with self-signature of the certTemplate
 according to [RFC4211] section 4.1 clause 3 is the only supported
 POPO method,

 o confirmation of newly enrolled certificates may be omitted, and

 o all transactions consist of request-response message pairs
 originating at the EE, i.e., announcement messages are omitted.

 The profile specified in this document is compatible with the CMP
 profile for UMTS, LTE, and 5G network domain security and
 authentication framework [ETSI-3GPP], except that:

 o protection of initial transactions may be HMAC-based,

 o the subject name is mandatory in certificate templates, and

 o confirmation of newly enrolled certificates may be omitted.

 The profile specified in this document is compatible with the CMP
 profile for on-line key management in rail networks as specified in
 UNISIG subset-137 [UNISIG], except that:

o as of RFC 4210 [RFC4210] the messageTime is required to be
 Greenwich Mean Time coded as generalizedTime (Note: While UNISIG
 explicitely states that the messageTime in required to be 'UTC
 time', it is not clear if this means a coding as UTCTime or
 generalizedTime and if other time zones than Greenwich Mean Time
 shall be allowed. Therefore UNISG may be in conflict with
 RFC 4210 [RFC4210]. Both time formats are described in RFC 5280
 [RFC5280] section 4.1.2.5.), and

 o in case the request message is MAC protected, also the response,
 certConf, and PKIconf messages have a MAC-based protection (Note:
 if changing to signature protection of the response the caPubs
 field cannot be used securely anymore.).

2.5. Scope of this document

 This document specifies requirements on generating messages on the
 sender side. It does not specify strictness of verification on the
 receiving side and how in detail to handle error cases.

 Especially on the EE side this profile aims at a lightweight protocol
 that can be implemented on more constrained devices. On the side of
 the central PKI management entities the profile accepts higher
 resource needed.

 For the sake of robustness and preservation of security properties
 implementations should, as far as security is not affected, adhere to
 Postel's law: "Be conservative in what you do, be liberal in what you
 accept from others" (often reworded as: "Be conservative in what you
 send, be liberal in what you accept").

 When in chapter 3, 4, and 5 a field of the ASN.1 syntax as defined in
 RFC 4210 [RFC4210] and RFC 4211 [RFC4211] is not explicitly
 specified, it SHOULD not be used by the sending entity. The
 receiving entity MUST NOT require its absence and if present MUST
 gracefully handle its presence.

2.6. Structure of this document

 Chapter 2 introduces the general PKI architecture and approach to
 certificate management using CMP that is assumed in this document.
 Then it enlists the PKI management opertations specified in this
 document and describes them in general words. The list of supported
 certificate management use cases is divided into mandatory,
 recommended, and optional ones.

 Chapter 3 profiles the CMP message header, protection, and extraCerts
 section as they are general elements of CMP messages.

 Chapter 4 profiles the exchange of CMP messages between an EE and the
 first PKI management entities. There are various flavors of
 certificate enrollment requests optionally with polling, revocation,
 error handling, and general support transactions.

 Chapter 5 profiles the exchange between PKI management entities.
 These are in the first place the forwarding of messages coming from
 or going to an EE. This includes also initiating delayed delivery of
 messages, which involves polling. Additionally, it specifies
 transactions where the PKI component manages certificates on behalf
 of an EE or for itself.

 Chapter 6 outlines different mechanisms for CMP message transfer,
 namely http-based transfer as already specified in [RFC6712], using
 an additional TLS layer, or offline file-based transport. CoAP
 [RFC7252] and piggybacking CMP messages on other protocols is out of
 scope and left for further documents.

2.7. Convention and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying significance described in RFC 2119.

 Technical terminology is used in conformance with RFC 4210 [RFC4210],
 RFC 4211 [RFC4211], RFC 5280 [RFC5280], and IEEE 802.1AR
 [IEEE802.1AR]. The following key words are used:

CA: Certification authority, which issues certificates.

RA: Registration authority, an optional system component to which
 a CA delegates certificate management functions such as
 authorization checks.

LRA: Local registration authority, an optional RA system component
 with proximity to the end entities.

KGA: Key generation authority, an optional system component,
 typically co‑located with an LRA, RA, or CA, that offers key
 generation services to end entities.

EE: End entity, a user, device, or service that holds a PKI
 certificate. An identifier for the EE is given as the
 subject of its certificate.

3. Architecture and use cases

3.1. Solution architecture

 Typically, a machine EE will be equipped with a manufacturer issued
 certificate during production. Such a manufacturer issued
 certificate is installed during production to identify the device
 throughout its lifetime. This manufacturer certificate can be used
 to protect the initial enrollment of operational certificates after
 installation of the EE in a plant or industrial network. An
 operational certificate is issued by the owner or operator of the
 device to identify the device during operation, e.g., within a
 security protocol like IPSec, TLS, or SSH. In IEEE 802.1AR
 [IEEE802.1AR] a manufacturer certificate is called IDevID certificate
 and an operational certificate is called LDevID certificate.

 All certificate management transactions are initiated by the EE. The
 EE creates a CMP request message, protects it using its manufacturer
 or operational certificate, if available, and sends it to its locally
 reachable PKI component. This PKI component may be an LRA, RA, or
 the CA, which checks the request, responds to it itself, or forwards
 the request upstream to the next PKI component. In case an (L)RA
 changes the CMP request message header or body or wants to prove a
 successful verification or authorization, it can apply a protection
 of its own. Especially the communication between an LRA and RA can
 be performed synchronously or asynchronously. Synchronous
 communication describes a timely uninterrupted communication between
 two communication partners, as asynchronous communication is not
 performed in a timely consistent manner, e.g., because of a delayed
 message delivery.

+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+
EE	<‑‑‑‑‑‑‑‑‑‑>	LRA	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	RA	<‑‑‑‑‑‑‑‑‑‑>	CA
+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+

 synchronous (a)synchronous synchronous
 +‑‑‑‑connection‑‑‑‑+‑‑‑‑‑‑connection‑‑‑‑‑‑+‑‑‑‑connection‑‑‑‑+

 on site at operators service partner
+‑‑‑‑‑‑‑‑‑‑plant‑‑‑‑‑‑‑‑‑+‑‑‑‑‑backend services‑‑‑‑‑+‑trust center‑+

 Figure 1: Certificate management on site

 In operation environments a layered LRA-RA-CA architecture can be
 deployed, e.g., with LRAs bundling requests from multiple EEs at
 dedicated locations and one (or more than one) central RA aggregating
 the requests from multiple LRAs. Every (L)RA in this scenario will
 have its own dedicated certificate containing an extended key usage
 as specified in CMP Updates [I-D.brockhaus-lamps-cmp-updates] and
 private key allowing it to protect CMP messages it processes (CMP
 signing key/certificate). The figure above shows an architecture
 using one LRA and one RA. It is also possible to have only an RA or
 multiple LRAs and/or RAs. Depending on the network infrastructure,
 the communication between different PKI components may be synchronous
 online-communication, delayed asynchronous communication, or even
 offline file transfer.

 As this profile focusses on specifying the pull model, where the EE
 always requests a PKI management operation. CMP response messages,
 especially in case of central key generation as described in
 Section 5.1.6, can also be used to deliver proactively to the EE to
 implement the push model.

 Third-party CAs typically implement different variants of CMP or even
 use proprietary interfaces for certificate management. Therefore,
 the LRA or the RA may need to adapt the exchanged CMP messages to the
 flavor of communication required by the CA.

3.2. Basic generic CMP message content

 Section 4 specifies the generic parts of the CMP messages as used
 later in Section 5 and Section 6.

 o Header of a CMP message; see Section 4.1.

 o Protection of a CMP message; see Section 4.2.

 o ExtraCerts field of a CMP message; see Section 4.3.

3.3. Supported use cases

 Following the outlined scope from Section 2.5, this section gives a
 brief overview of the certificate management use cases specified in
 Section 5 and Section 6 and points out, if an implementation by
 compliant EE or PKI component is mandatory, recommended or optional.

3.3.1. Mandatory use cases

 The mandatory uses case in this document shall limit the overhead of
 certificate management for more constrained devices to the most
 crucial types of transactions.

 Section 5 - End Entity focused certificate management use cases

 o Request a certificate from a new PKI with signature protection;
 see Section 5.1.1.

 o Request to update an existing certificate with signature
 protection; see Section 5.1.3.

 o Error reporting; see Section 5.3.

 Section 6 - LRA and RA focused certificate management use cases

 o Forward messages without changes; see Section 6.1.1.

 o Forward messages with replaced protection and raVerified as proof-
 of-possession; see Section 6.1.2.2.

 o Error reporting; see Section 6.3.

3.3.2. Recommended Use Cases

 Additional recommended use cases shall support some more complex
 scenarios, that are considered as beneficial for environments with
 more specific boundary conditions.

 Section 5 - End Entity focused certificate management use cases

 o Request a certificate from a PKI with MAC protection; see
 Section 5.1.4.

 o Handle delayed enrollment due to asynchronous message delivery;
 see Section 5.1.7.

 o Revoke an own certificate.

 Section 6 - LRA and RA focused certificate management use cases

 o Revoke another's entities certificate.

3.3.3. Optional use cases

 The optional use cases support specific requirements seen only in a
 subset of environments.

 Section 5 - End Entity focused certificate management use cases

 o Request a certificate from a legacy PKI using a PKCS#10 [RFC2986]
 request; see Section 5.1.5.

 o Add central generation of a key pair to a certificate request; see
 Section 5.1.6.

 o Additional support messages, e.g., to update a Root CA certificate
 or to request an RFC 8366 [RFC8366] voucher; see Section 5.4.

 Section 6 - LRA and RA focused certificate management use cases

 o Initiate delayed enrollment due to asynchronous message delivery;
 see Section 6.1.3.

3.4. CMP message transport

 Recommended transport

 o Transfer CMP messages using HTTP; see Section 7.1.

 Optional transport

 o Transfer CMP messages using HTTPS with certificate-based
 authentication; see Section 7.2.

 o Transfer CMP messages using HTTPS with shared-secret based
 protection; see Section 7.3.

 o File-based CMP message transport.

 < Motivation see Section 7.4, specification TBD >

4. Generic parts of the PKI message

 To reduce redundancy in the text and to ease implementation, the
 contents of the header, protection, and extraCerts fields of the CMP
 messages used in the transactions specified in Section 5 and
 Section 6 are standardized to the maximum extent possible.
 Therefore, the generic parts of a CMP message are described centrally
 in this section.

 As described in section 5.1 of [RFC4210], all CMP messages have the
 following general structure:

+‑‑+
| PKIMessage |
| +‑‑+ |
| | header | |
| +‑‑+ |
| +‑‑+ |
| | body | |
| +‑‑+ |
| +‑‑+ |
| | protection (OPTIONAL) | |
| +‑‑+ |
| +‑‑+ |
| | extraCerts (OPTIONAL) | |
| +‑‑+ |
+‑‑+

 Figure 2: CMP message structure

 The general contents of the message header, protection, and
 extraCerts fields are specified in the Section 4.1 to Section 4.3.

 In case a specific CMP message needs different contents in the
 header, protection, or extraCerts fields, the differences are
 described in the respective message.

 The CMP message body contains the message-specific information. It
 is described in the context of Section 5 and Section 6.

 The behavior in case an error occurs while handling a CMP message is
 described in Section 6.3.

4.1. General description of the CMP message header

 This section describes the generic header field of all CMP messages
 with signature-based protection. The only variations described here
 are in the fields recipient, transactionID, and recipNonce of the
 first message of a transaction.

 In case a message has MAC-based protection the changes are described
 in the respective section. The variations will affect the fields
 sender, protectionAlg, and senderKID.

 For requirements about proper random number generation please refer
 to [RFC4086]. Any message-specific fields or variations are
 described in the respective sections of this chapter.

header
 pvno REQUIRED
 ‑‑ MUST be set to 2 to indicate CMP V2
 sender REQUIRED
 ‑‑ MUST be the subject of the signing certificate used for
 ‑‑ protection of this message
 recipient REQUIRED
 ‑‑ MUST be the name of the intended recipient
 ‑‑ If this is the first message of a transaction: SHOULD be the
 ‑‑ subject of the issuing CA certificate
 ‑‑ In all other messages: SHOULD be the same name as in the
 ‑‑ sender field of the previous message in this transaction
 messageTime RECOMMENDED
 ‑‑ MUST be the time at which the message was produced, if
 ‑‑ present
 protectionAlg REQUIRED
 ‑‑ MUST be the algorithm identifier of the signature or algorithm
 ‑‑ id‑PasswordBasedMac algorithm used for calculation of the
 ‑‑ protection bits
 ‑‑ The signature algorithm MUST be consistent with the
 ‑‑ SubjectPublicKeyInfo field of the signer's certificate
 ‑‑ The hash algorithm used SHOULD be SHA‑256
 algorithm REQUIRED
 ‑‑ MUST be the OID of the signature algorithm, like
 ‑‑ sha256WithRSAEncryption or ecdsa‑with‑SHA256, or
 ‑‑ id‑PasswordBasedMac
 senderKID RECOMMENDED
 ‑‑ MUST be the SubjectKeyIdentifier, if available, of the
 ‑‑ certificate used for protecting this message
 transactionID REQUIRED
 ‑‑ If this is the first message of a transaction:
 ‑‑ MUST be 128 bits of random data for the start of a
 ‑‑ transaction to reduce the probability of having the
 ‑‑ transactionID already in use at the server
 ‑‑ In all other messages:
 ‑‑ MUST be the value from the previous message in the same
 ‑‑ transaction
 senderNonce REQUIRED
 ‑‑ MUST be fresh 128 random bits
 recipNonce RECOMMENDED
 ‑‑ If this is the first message of a transaction: SHOULD be
 ‑‑ absent
 ‑‑ In all other messages: MUST be present and contain the value
 ‑‑ from senderNonce of the previous message in the same
 ‑‑ transaction
 generalInfo OPTIONAL
 implicitConfirm OPTIONAL
 ImplicitConfirmValue REQUIRED

 ‑‑ The field is optional though it only applies to
 ‑‑ ir/cr/kur/p10cr requests and ip/cp/kup responses
 ‑‑ ImplicitConfirmValue of the request message MUST be NULL if
 ‑‑ the EE wants to request not to send a confirmation message
 ‑‑ ImplicitConfirmValue MUST be set to NULL if the (L)RA/CA wants
 ‑‑ to grant not sending a confirmation message

4.2. General description of the CMP message protection

 This section describes the generic protection field of all CMP
 messages with signature-based protection.

protection REQUIRED
 ‑‑ MUST contain the signature calculated using the signature
 ‑‑ algorithm specified in protectionAlg

 Only for MAC-based protection major differences apply as described in
 the respective message.

 The CMP message protection provides, if available, message origin
 authentication and integrity protection for the CMP message header
 and body. The CMP message extraCerts is not covered by this
 protection.

 NOTE: The requirements for checking certificates given in [RFC5280]
 MUST be followed for the CMP message protection. OCSP or CRLs SHOULD
 be used for status checking of the CMP signer certificates of
 communication partners.

4.3. General description of CMP message extraCerts

 This section describes the generic extraCerts field of all CMP
 messages with signature-based protection.

extraCerts RECOMMENDED
 ‑‑ SHOULD contain the signing certificate together with its
 ‑‑ chain, if needed
 ‑‑ If present, the first certificate in this field MUST
 ‑‑ be the certificate used for signing this message
 ‑‑ Self‑signed certificates SHOULD NOT be included in
 ‑‑ extraCerts and MUST NOT be trusted based on the listing in
 ‑‑ extraCerts in any case

5. End Entity focused certificate management use cases

 This chapter focuses on the communication of the EE and the first PKI
 component it talks to. Depending on the network and PKI solution,
 this will either be the LRA, the RA or the CA.

 Profiles of the Certificate Management Protocol (CMP) [RFC4210]
 handled in this chapter cover the following certificate management
 use cases:

 o Requesting a certificate from a PKI with variations like initial
 requests and updating, central key generation and different
 protection means

 o Revocation of a certificate

 o General messages for further support functions

 The use cases mainly specify the message body of the CMP messages and
 utilize the specification of the message header, protection and
 extraCerts as specified in Section 5.

 The behavior in case an error occurs is described in Section 5.3.

 This chapter is aligned to Appendix D and Appendix E of [RFC4210].
 The general rules for interpretation stated in Appendix D.1 in
 [RFC4210] need to be applied here, too.

 This document does not mandate any specific supported algorithms like
 Appendix D.2 of [RFC4210], [ETSI-3GPP], and [UNISIG] do. Using the
 message sequences described here require agreement upon the
 algorithms to support and thus the algorithm identifiers for the
 specific target environment.

5.1. Requesting a new certificate from a PKI

 There are different approaches to request a certificate from a PKI.

 These approaches differ on the one hand in the way the EE can
 authenticate itself to the PKI it wishes to get a new certificate
 from and on the other hand in its capabilities to generate a proper
 new key pair. The authentication means may be as follows:

 o Using a certificate from a trusted PKI and the corresponding
 private key, e.g., a manufacturer certificate

 o Using the certificate to be updated and the corresponding private
 key

 o Using a shared secret known to the EE and the PKI

 Typically, such EE requests a certificate from a CA. When the (L)RA/
 CA responds with a message containing a certificate, the EE MUST
 reply with a confirmation message. The (L)RA/CA then MUST send
 confirmation back, closing the transaction.

 The message sequences in this section allow the EE to request
 certification of a locally generated public-private key pair. For
 requirements about proper random number and key generation please
 refer to [RFC4086]. The EE MUST provide a signature-based proof-of-
 possession of the private key associated with the public key
 contained in the certificate request as defined by [RFC4211] section
 4.1 case 3. To this end it is assumed that the private key can
 technically be used as signing key. The most commonly used
 algorithms are RSA and ECDSA, which can technically be used for
 signature calculation regardless of potentially intended restrictions
 of the key usage.

 The requesting EE provides the binding of the proof-of-possession to
 its identity by signature-based or MAC-based protection of the CMP
 request message containing that POPO. The (L)RA/CA needs to verify
 whether this EE is authorized to obtain a certificate with the
 requested subject and other attributes and extensions. Especially
 when removing the protection provided by the EE and applying a new
 protection the (L)RA MUST verify in particular the included proof-of-
 possession self-signature of the certTemplate using the public key of
 the requested certificate and MUST check that the EE, as
 authenticated by the message protection, is authorized to request a
 certificate with the subject as specified in the certTemplate (see
 Section 6.1.2).

 There are several ways to install the Root CA certificate of a new
 PKI on an EE. The installation can be performed in an out-of-band
 manner, using general messagesm, a voucher [RFC8366], or other
 formats for enrolment, or in-band of CMP by the caPubs field in the
 certificate response message. In case the installation of the new
 Root CA certificate is performed using the caPubs field, the
 certificate response message MUST be properly authenticated, and the
 sender of this message MUST be authorized to install new Root CA
 certificates on the EE. This authorization MUST be indicated by the
 extended key usage in the (L)RA/CA certificate as specified in CMP
 Updates [I-D.brockhaus-lamps-cmp-updates].

5.1.1. A certificate from a new PKI with signature protection

 This message sequence should be used by an EE to request a
 certificate of a new PKI using an existing certificate from an
 external PKI, e.g., a manufacturer certificate, to prove its identity
 to the new PKI. The EE already has established trust in this new PKI
 it is about to enroll to, e.g., by configuration means. The
 initialization request message is signature-protected using the
 existing certificate.

 Preconditions:

1 The EE MUST have a certificate enrolled by an external PKI in
 advance to this transaction to authenticate itself to the (L)RA/CA
 using signature‑based protection, e.g., using a manufacturer
 certificate.

2 The EE SHOULD know the subject name of the new CA it requests a
 certificate from; this name MAY be established using an enrollment
 voucher or other configuration means. If the EE does not know the
 name of the CA, the (L)RA/CA MUST know where to route this request
 to.

3 The EE MUST authenticate responses from the (L)RA/CA; trust MAY be
 established using an enrollment voucher or other configuration
 means

4 The (L)RA/CA MUST trust the external PKI the EE uses to
 authenticate itself; trust MAY be established using some
 configuration means

 This message sequence is like that given in [RFC4210] Appendix E.7.

 Message flow:

Step# EE (L)RA/CA
 1 format ir
 2 ‑> ir ‑>
 3 handle, re‑protect or
 forward ir
 4 format or receive ip
 5 possibly grant implicit
 confirm
 6 <‑ ip <‑
 7 handle ip
 8 In case of status
 "rejection" in the
 ip message, no certConf
 and pkiConf are sent
 9 format certConf (optional)
 10 ‑> certConf ‑>
 11 handle, re‑protect or
 forward certConf
 12 format or receive PKIConf
 13 <‑ pkiConf <‑
 14 handle pkiConf (optional)

 For this message sequence the EE MUST include exactly one single
 CertReqMsg in the ir. If more certificates are required, further
 requests MUST be sent using separate CMP Messages. If the EE wants
 to omit sending a certificate confirmation message after receiving
 the ip to reduce the number of protocol messages exchanged in a
 transaction, it MUST request this by setting the implicitControlValue
 in the ir to NULL.

 If the CA accepts the request it MUST return the new certificate in
 the certifiedKeyPair field of the ip message. If the EE requested to
 omit sending a certConf message after receiving the ip, the (L)RA/CA
 MAY confirm this by also setting the implicitControlValue in the ip
 to NULL.

 If the EE did not request implicit confirmation or the request was
 not granted by the (L)RA/CA the confirmation as follows MUST be
 performed. If the EE successfully receives the certificate and
 accepts it, the EE MUST send a certConf message, which MUST be
 answered by the (L)RA/CA with a pkiConf message. If the (L)RA/CA
 does not receive the expected certConf message in time it MUST handle
 this like a rejection by the EE.

 If the certificate request was refused by the CA, the (L)RA/CA must
 return an ip message containing the status code "rejection" and no
 certifiedKeyPair field. Such an ip message MUST NOT be followed by
 the certConf and pkiConf messages.

 Detailed message description:

 Certification Request -- ir

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The request of the EE for a new certificate
 ir REQUIRED
 ‑‑ MUST be exactly one CertReqMsg
 ‑‑ If more certificates are required, further requests MUST be
 ‑‑ packaged in separate PKI Messages
 certReq REQUIRED
 certReqId REQUIRED
 ‑‑ MUST be set to 0
 certTemplate REQUIRED
 version OPTIONAL
 ‑‑ MUST be 2 if supplied.
 subject REQUIRED
 ‑‑ MUST contain the suggested subject name of the EE
 ‑‑ certificate
 publicKey REQUIRED
 algorithm REQUIRED
 ‑‑ MUST include the subject public key algorithm ID and value
 ‑‑ In case a central key generation is requested, this field
 ‑‑ contains the algorithm and parameter preferences of the
 ‑‑ requesting entity regarding the to‑be‑generated key pair
 subjectPublicKey REQUIRED
 ‑‑ MUST contain the public key to be included into the requested
 ‑‑ certificate in case of local key‑generation
 ‑‑ MUST contain a zero‑length BIT STRING in case a central key
 ‑‑ generation is requested
 ‑‑ MUST include the subject public key algorithm ID and value
 extensions OPTIONAL
 ‑‑ MAY include end‑entity‑specific X.509 extensions of the
 ‑‑ requested certificate like subject alternative name,
 ‑‑ key usage, and extended key usage
 Popo REQUIRED
 POPOSigningKey OPTIONAL
 ‑‑ MUST be used in case subjectPublicKey contains a public key
 ‑‑ MUST be absent in case subjectPublicKey contains a
 ‑‑ zero‑length BIT STRING

 POPOSigningKey REQUIRED
 poposkInput PROHIBITED
 ‑‑ MUST NOT be used because subject and publicKey are both
 ‑‑ present in the certTemplate
 algorithmIdentifier REQUIRED
 ‑‑ The signature algorithm MUST be consistent with the
 ‑‑ publicKey field of the certTemplate
 ‑‑ The hash algorithm used SHOULD be SHA‑256
 signature REQUIRED
 ‑‑ MUST be the signature computed over the DER‑encoded
 ‑‑ certTemplate

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts REQUIRED
 ‑‑ As described in section 3.3

 Certification Response -- ip

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The response of the CA to the request as appropriate
 ip REQUIRED
 caPubs OPTIONAL
 ‑‑ MAY be used
 ‑‑ If used it MUST contain only the root certificate of the
 ‑‑ certificate contained in certOrEncCert
 response REQUIRED
 ‑‑ MUST be exactly one CertResponse
 certReqId REQUIRED
 ‑‑ MUST be set to 0
 status REQUIRED
 ‑‑ PKIStatusInfo structure MUST be present
 status REQUIRED
 ‑‑ positive values allowed: "accepted", "grantedWithMods"
 ‑‑ negative values allowed: "rejection"
 ‑‑ In case of rejection no certConf and pkiConf messages will
 ‑‑ be sent
 statusString OPTIONAL
 ‑‑ MAY be any human‑readable text for debugging, logging or to
 ‑‑ display in a GUI
 failInfo OPTIONAL

 ‑‑ MUST be present if status is "rejection" and in this case
 ‑‑ the transaction MUST be terminated
 ‑‑ MUST be absent if the status is "accepted" or
 ‑‑ "grantedWithMods"
 certifiedKeyPair OPTIONAL
 ‑‑ MUST be present if status is "accepted" or "grantedWithMods"
 ‑‑ MUST be absent if status is "rejection"
 certOrEncCert REQUIRED
 ‑‑ MUST be present when certifiedKeyPair is present
 certificate REQUIRED
 ‑‑ MUST be present when certifiedKeyPair is present
 ‑‑ MUST contain the newly enrolled X.509 certificate
 privateKey OPTIONAL
 ‑‑ MUST be absent in case of local key‑generation
 ‑‑ MUST contain the encrypted private key in an EnvelopedData
 ‑‑ structure as specified in section 5.1.5 in case the private
 ‑‑ key was generated centrally

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts REQUIRED
 ‑‑ As described in section 3.3
 ‑‑ MUST contain the chain of the issued certificate
 ‑‑ Duplicate certificates MAY be omitted

 Certificate Confirmation -- certConf

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The message of the EE sends confirmation to the (L)RA/CA
 ‑‑ to accept or reject the issued certificates
 certConf REQUIRED
 ‑‑ MUST be exactly one CertStatus
 CertStatus REQUIRED
 certHash REQUIRED
 ‑‑ MUST be the hash of the certificate, using the same hash
 ‑‑ algorithm as used to create the certificate signature
 certReqId REQUIRED
 ‑‑ MUST be set to 0
 status RECOMMENDED
 ‑‑ PKIStatusInfo structure SHOULD be present
 ‑‑ Omission indicates acceptance of the indicated certificate

 status REQUIRED
 ‑‑ positive values allowed: "accepted"
 ‑‑ negative values allowed: "rejection"
 statusString OPTIONAL
 ‑‑ MAY be any human‑readable text for debugging or logging
 failInfo OPTIONAL
 ‑‑ MUST be present if status is "rejection"
 ‑‑ MUST be absent if the status is "accepted"

protection REQUIRED
 ‑‑ As described in section 3.2
 ‑‑ MUST use the same certificate as for protection of the ir

extraCerts RECOMMENDED
 ‑‑ SHOULD contain the protection certificate together with its
 ‑‑ chain
 ‑‑ If present, the first certificate in this field MUST be the
 ‑‑ certificate used for signing this message
 ‑‑ Self‑signed certificates SHOULD NOT be included in
 ‑‑ extraCerts and
 ‑‑ MUST NOT be trusted based on the listing in extraCerts in
 ‑‑ any case

 PKI Confirmation -- pkiConf

Field Value

 header

 -- As described in section 3.1

body
 pkiConf REQUIRED
 ‑‑ The content of this field MUST be NULL

protection REQUIRED
 ‑‑ As described in section 3.2
 ‑‑ SHOULD use the same certificate as for protection of the ip

extraCerts RECOMMENDED
 ‑‑ SHOULD contain the protection certificate together with its
 ‑‑ chain
 ‑‑ If present, the first certificate in this field MUST be the
 ‑‑ certificate used for signing this message
 ‑‑ Self‑signed certificates SHOULD NOT be included in extraCerts
 ‑‑ and
 ‑‑ MUST NOT be trusted based on the listing in extraCerts in
 ‑‑ any case

5.1.2. A certificate from a trusted PKI with signature protection

 < TBD: In case the PKI is already trusted the cr/cp messages could be
 used instead of ir/ip. It needs to be decided, whether an additional
 section should be added here, or the previous section should be
 extended to also cover this use case. >

5.1.3. Update an existing certificate with signature protection

 This message sequence should be used by an EE to request an update of
 one of the certificates it already has and that is still valid. The
 EE uses the certificate it wishes to update to prove its identity and
 possession of the private key for the certificate to be updated to
 the PKI. Therefore, the key update request message is signed using
 the certificate that is to be updated.

 The general message flow for this message sequence is the same as
 given in Section 5.1.1.

 Preconditions:

1 The certificate the EE wishes to update MUST NOT be expired or
 revoked.

2 A new public‑private key pair SHOULD be used.

 The message sequence for this exchange is like that given in
 [RFC4210] Appendix D.6.

 The message sequence for this exchange is identical to that given in
 Section 5.1.1, with the following changes:

1 The body of the first request and response MUST be kur and kup,
 respectively.

2 Protection of the kur MUST be performed using the certificate to
 be updated.

3 The subject field of the CertTemplate MUST contain the subject
 name of the existing certificate to be updated, without
 modifications.

4 The CertTemplate MUST contain the subject, issuer and publicKey
 fields only.

5 The regCtrl OldCertId SHOULD be used to make clear, even in case
 an (L)RA changes the message protection, which certificate is to
 be.

6 The caPubs field in the kup message MUST be absent.

 As part of the certReq structure of the kur the control is added
 right after the certTemplate.

controls
 type RECOMMENDED
‑‑ MUST be the value id‑regCtrl‑oldCertID, if present
 value
 issuer REQUIRED
 serialNumber REQUIRED
‑‑ MUST contain the issuer and serialNumber of the certificate
‑‑ to be updated

5.1.4. A certificate from a PKI with MAC protection

 This message sequence should be used by an EE to request a
 certificate of a new PKI without having a certificate to prove its
 identity to the target PKI, but there is a shared secret established
 between the EE and the PKI. Therefore, the initialization request is
 MAC-protected using this shared secret. The (L)RA checking the MAC-
 protection SHOULD replace this protection according to Section 6.1.2
 in case the next hop does not know the shared secret.

 For requirements with regard to proper random number and key
 generation please refer to [RFC4086].

 The general message flow for this message sequence is the same as
 given in Section 5.1.1.

 Preconditions:

1 The EE and the (L)RA/CA MUST share a symmetric key, this MAY be
 established by a service technician during initial local
 configuration.

2 The EE SHOULD know the subject name of the new CA it requests a
 certificate from; this name MAY be established using an enrollment
 voucher or other configuration means. If the EE does not know the
 name of the CA, the (L)RA/CA MUST know where to route this request
 to.

3 The EE MUST authenticate responses from the (L)RA/CA; trust MAY be
 established using the shared symmetric key.

 The message sequence for this exchange is like that given in
 [RFC4210] Appendix D.4.

 The message sequence for this exchange is identical to that given in
 Section 5.1.1, with the following changes:

1 The protection of all messages MUST be calculated using Message
 Authentication Code (MAC); the protectionAlg field MUST be id‑
 PasswordBasedMac as described in section 5.1.3.1 of [RFC4210].

2 The sender MUST contain a name representing the originator of the
 message. The senderKID MUST contain a reference all participating
 entities can use to identify the symmetric key used for the
 protection.

3 The extraCerts of the ir, certConf, and PKIConf messages MUST be
 absent.

4 The extraCerts of the ip message MUST contain the chain of the
 issued certificate and root certificates SHOULD not be included
 and MUST NOT be trusted in any case.

 Part of the protectionAlg structure, where the algorithm identifier
 MUST be id-PasswordBasedMac, is a PBMParameter sequence. The fields
 of PBMParameter SHOULD remain constant for message protection
 throughout this certificate management transaction to reduce the
 computational overhead.

PBMParameter REQUIRED
 salt REQUIRED
‑‑ MUST be the random value to salt the secret key
 owf REQUIRED
‑‑ MUST be the algorithm identifier for the one‑way function
‑‑ used
‑‑ The one‑way function SHA‑1 MUST be supported due to
‑‑ [RFC4211] requirements, but SHOULD NOT be used any more
‑‑ SHA‑256 SHOULD be used instead
 iterationCount REQUIRED
‑‑ MUST be a limited number of times the OWF is applied
‑‑ To prevent brute force and dictionary attacks a reasonable
‑‑ high number SHOULD be used
 mac REQUIRED
‑‑ MUST be the algorithm identifier of the MAC algorithm used
‑‑ The MAC function HMAC‑SHA1 MUST be supported due to
‑‑ [RFC4211] requirements, but SHOULD NOT be used any more
‑‑ HMAC‑SHA‑256 SHOULD be used instead

5.1.5. A certificate from a legacy PKI using PKCS#10 request

 This message sequence should be used by an EE to request a
 certificate of a legacy PKI only capable to process PKCS#10 [RFC2986]
 certification requests. The EE can prove its identity to the target
 PKI by using various protection means as described in Section 5.1.1
 or Section 5.1.4.

 In contrast to the other transactions described in Section 5.1, this
 transaction uses PKCS#10 [RFC2986] instead of CRMF [RFC4211] for the
 certificate request for compatibility reasons with legacy CA systems
 that require a PKCS#10 certificate request and cannot process CMP
 [RFC4210] or CRMF [RFC4211] messages. In such case the (L)RA must
 extract the PKCS#10 certificate request from the p10cr and provides
 it separately to the CA.

 The general message flow for this message sequence is the same as
 given in Section 5.1.1, but the public key is contained in the
 subjectPKInfo of the PKCS#10 certificate request.

 Preconditions:

1 The EE MUST either have a certificate enrolled from this or any
 other accepted PKI, or a shared secret known to the PKI and the EE
 to authenticate itself to the (L)RA/CA.

2 The EE SHOULD know the subject name of the CA it requests a
 certificate from; this name MAY be established using an enrollment
 voucher or other configuration means. If the EE does not know the
 name of the CA, the (L)RA/CA MUST know where to route this request
 to.

3 The EE MUST authenticate responses from the (L)RA/CA; trust MAY be
 established by an available root certificate, using an enrollment
 voucher, or other configuration means.

4 The (L)RA/CA MUST trust the current or the PKI the EE uses to
 authenticate itself; trust MAY be established by a corresponding
 available root certificate or using some configuration means.

 The profile for this exchange is identical to that given in
 Section 5.1.1, with the following changes:

1 The body of the first request and response MUST be p10cr and cp,
 respectively.

2 The subject name of the CA MUST be in the recipient field of the
 p10cr message header.

3 The certReqId in the cp message MUST be 0.

4 The caPubs field in the cp message SHOULD be absent.

 Detailed description of the p10cr message:

 Certification Request -- p10cr

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The request of the EE for a new certificate using a PKCS#10
 ‑‑ certificate request
 p10cr REQUIRED
 CertificationRequestInfo REQUIRED
 version REQUIRED
 ‑‑ MUST be set to 0 to indicate PKCS#10 V1.7
 subject REQUIRED
 ‑‑ MUST contain the suggested subject name of the EE
 subjectPKInfo REQUIRED
 ‑‑ MUST include the subject public key algorithm ID and value
 attributes OPTIONAL
 ‑‑ MAY contain a set of end‑entity‑specific attributes or X.509
 ‑‑ extensions to be included in the requested certificate or used
 ‑‑ otherwise
 signatureAlgorithm REQUIRED
 ‑‑ The signature algorithm MUST be consistent with the
 ‑‑ subjectPKInfo field. The hash algorithm used SHOULD be SHA‑256
 signature REQUIRED
 ‑‑ MUST containing the self‑signature for proof‑of‑possession

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts REQUIRED
 ‑‑ As described in section 3.3

5.1.6. Generate the key pair centrally at the (L)RA/CA

 This functional extension can be applied in combination with
 certificate enrollment as described in Section 5.1.1 and
 Section 5.1.4. The functional extension can be used in case an EE is
 not abele or is not willing to generate is't new public-private key
 pair itself. It is a matter of the local implementation which
 central PKI components will perform the key generation. This
 component must have a proper (L)RA/CA certificate containing the
 additional extended key usage id-kp-cmcKGA to be identified by the EE
 as a legitimate key-generation instance. In case the (L)RA generated
 the new key pair for the EE, it can use Section 5.1.1 to
 Section 5.1.4 to request the certificate for this key pair as usual.

 Generally speaking, in a machine-to-machine scenario it is strongly
 preferable to generate public-private key pairs locally at the EE.
 Together with proof-of-possession of the private key in the
 certification request, this is to make sure that only the entity
 identified in the newly issued certificate is the only entity who
 ever hold the private key.

 There are some cases where an EE is not able or not willing to
 locally generate the new key pair. Reasons for this may be the
 following:

 o Lack of sufficient initial entropy.

 Note: Good random numbers are not only needed for key generation, but
 also for session keys and nonces in any security protocol.
 Therefore, we believe that a decent security architecture should
 anyways support good random number generation on the EE side or
 provide enough entropy for the RNG seed during manufacturing to
 guarantee good initial pseudo-random number generation.

 o Due to lack of computational resources, e.g., in case of RSA keys.

 Note: As key generation can be performed in advance to the
 certificate enrollment communication, it is typical not time
 critical.

 Note: Besides the initial enrollment right after the very first
 bootup of the device, where entropy available on the device may be
 insufficient, we do not see any good reason for central key
 generation.

 Note: As mentioned in Section 3.1 central key generation may be
 required in a push model, where the certificate response message is
 transfered by the (L)RA/CA to the EE without receiving a previos
 request message.

 If the EE wishes to request central key generation, it MUST fill the
 subjectPublicKey field in the certTemplate structure of the request
 message with a zero-length BIT STRING. This indicates to the (L)RA/
 CA that a new key pair shall be generated centrally on behalf of the
 EE.

 Note: As the protection of centrally generated keys in the response
 message is being extended from EncryptedValue to EncryptedKey by CMP
 Updates [I-D.brockhaus-lamps-cmp-updates] also the alternative
 EnvelopedData can be used. In CRMF Section 2.1.9 [RFC4211] the use
 of EncryptedValue has been deprecated in favor of the EnvelopedData
 structure. Therefore, this profile specifies using EnvelopedData as
 specified in CMS Section 6 [RFC5652] to offer more crypto agility.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| EnvelopedData |
| [RFC5652] section 6 |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
	SignedData			
	[RFC5652] section 5			
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			
		privateKey		
		OCTET STRING		
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+			
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3: Encrypted private key container

 The (L)RA/CA delivers the private key in the privateKey field in the
 certifiedKeyPair structure of the response message also containing
 the newly issued certificate.

 The private key MUST be wrapped in a SignedData structure, as
 specified in CMS Section 5 [RFC5652], signed by the KGA generating
 the key pair. The signature MUST be performed using a CMP signer
 certificate asserting the extended key usage kp-id-cmpKGA as
 described in CMP Updates [I-D.brockhaus-lamps-cmp-updates] to show
 the authorization to generate key pairs on behalf of an EE.

 This SignedData structure MUST be wrapped in an EnvelopedData
 structure, as specified in CMS Section 6 [RFC5652], encrypting it
 using a newly generated symmetric content-encryption key.

 Note: Instead of the specification in CMP Appendix D 4.4 [RFC4210]
 this content-encryption key is not generated on the EE side. As we
 just mentioned, central key generation should only be used in this
 profile in case of lack of randomness on the EE.

 As part of the EnvelopedData structure this content-encryption key
 MUST be securely provided to the EE using one of three key management
 techniques. The choice of the key management technique to be used by
 the (L)RA/CA depends on the authentication mechanism the EE choose to
 protect the request message.

 o MAC protected request message: The content-encryption key will be
 protected using the symmetric key-encryption key management
 technique, see Section 5.1.6.1.

 o Signature protected request message using a certificate that
 contains a key usage extension asserting keyAgreement: The
 content-encryption key will be protected using the key agreement
 key management technique, see Section 5.1.6.2.

 o Signature protected request message using a certificate that
 contains a key usage extension asserting keyEncipherment: The
 content-encryption key will be protected using the key transport
 key management technique, see Section 5.1.6.3.

 For encrypting the SignedData structure containing the private key a
 fresh content-encryption key MUST be generated with enough entropy
 with regard to the used symmetric encryption algorithm.

 Note: Depending on the lifetime of the certificate and the
 criticality of the generated private key, it is advisable to use the
 strongest possible symmetric encryption algorithm. Therefore, this
 specification recommends using at least AES-256.

 The detailed description of the privateKey field looks like this:

 privateKey OPTIONAL
‑‑ MUST be an envelopedData structure as specified in
‑‑ CMS [RFC5652] section 6
 version REQUIRED
‑‑ MUST be set to 2
 recipientInfos REQUIRED
‑‑ MUST be exactly one RecipientInfo
 recipientInfo REQUIRED
‑‑ MUST be either KEKRecipientInfo (see section 5.1.5.1),
‑‑ KeyAgreeRecipientInfo (see section 5.1.5.2), or
‑‑ KeyTransRecipientInfo (see section 5.1.5.3) is used
 encryptedContentInfo
 REQUIRED
 contentType REQUIRED
‑‑ MUST be id‑signedData
 contentEncryptionAlgorithm
 REQUIRED
‑‑ MUST be the algorithm identifier of the symmetric
‑‑ content‑encryption algorithm used
‑‑ As private keys need long‑term protection, the use of AES‑256
‑‑ or a stronger symmetric algorithm is RECOMMENDED
 encryptedContent REQUIRED
‑‑ MUST be the encrypted signedData structure as specified in

‑‑ CMS [RFC5652] section 5
 version REQUIRED
‑‑ MUST be set to 3
 digestAlgorithms
 REQUIRED
‑‑ MUST be exactly one digestAlgorithm identifier
 digestAlgorithmIdentifier
 REQUIRED
‑‑ MUST be the OID of the digest algorithm used for generating
‑‑ the signature
‑‑ The hash algorithm used SHOULD be SHA‑256
 encapContentInfo
 REQUIRED
‑‑ MUST be the content that is to be signed
 contentType REQUIRED
‑‑ MUST be id‑data
 content REQUIRED
‑‑ MUST be the privateKey as OCTET STRING
 certificates REQUIRED
‑‑ SHOULD contain the signing certificate together with its chain
‑‑ If present, the first certificate in this field MUST
‑‑ be the certificate used for signing this content
‑‑ Self‑signed certificates SHOULD NOT be included
‑‑ and MUST NOT be trusted based on the listing in any case
 crls OPTIONAL
‑‑ MAY be present to provide status information on the signer or
‑‑ its CA certificates
 signerInfos REQUIRED
‑‑ MUST be exactly one signerInfo
 version REQUIRED
‑‑ MUST be set to 3
 sid REQUIRED
 subjectKeyIdentifier
 REQUIRED
‑‑ MUST be the subjectKeyIdentifier of the signer's certificate
 digest algorithm
 REQUIRED
‑‑ MUST be the same OID as in digest algorithm
 signatureAlgorithm
 REQUIRED
‑‑ MUST be the algorithm identifier of the signature algorithm
‑‑ used for calculation of the signature bits,
‑‑ like sha256WithRSAEncryption or ecdsa‑with‑SHA256
‑‑ The signature algorithm MUST be consistent with the
‑‑ SubjectPublicKeyInfo field of the signer's certificate
 signature REQUIRED
‑‑ MUST be the result of the digital signature generation

5.1.6.1. Using symmetric key-encryption key management technique

 This key management technique can be applied in combination with the
 message flow specified in Section 5.1.4 using MAC protected CMP
 messages. The shared secret used for the MAC protection MUST also be
 used for the encryption of the content-encryption key but with a
 different seed in the PBMParameter sequence. To use this key
 management technique the KEKRecipientInfo structure MUST be used in
 the contentInfo field.

 The KEKRecipientInfo structure included into the envelopedData
 structure is specified in CMS Section 6.2.3 [RFC5652].

 The detailed description of the KEKRecipientInfo structure looks like
 this:

 recipientInfo REQUIRED
‑‑ MUST be KEKRecipientInfo as specified in
‑‑ CMS section 6.2.3 [RFC5652]
 version REQUIRED
‑‑ MUST be set to 4
 kekid REQUIRED
 keyIdentifier REQUIRED
‑‑ MUST contain the same value as the senderKID in the respective
‑‑ request messages
 keyEncryptionAlgorithm
 REQUIRED
‑‑ MUST be id‑PasswordBasedMac
 PBMParameter REQUIRED
 salt REQUIRED
‑‑ MUST be the random value to salt the secret key
‑‑ MUST be a different value than used in the PBMParameter
‑‑ data structure in the header of this message
 owf REQUIRED
‑‑ MUST be the same value than used in the PBMParameter
‑‑ data structure in the header of this message
 iterationCount
 REQUIRED
‑‑ MUST be a limited number of times the OWF is applied
‑‑ To prevent brute force and dictionary attacks a reasonable
‑‑ high number SHOULD be used
 mac REQUIRED
‑‑ MUST be the same as in the contentEncryptionAlgorithm field
 encryptedKey REQUIRED
‑‑ MUST be the encrypted content‑encryption key

 < To make use of a different symmetric keys for encrypting the
 private key and for MAC-protection of the CMP Message, we derive
 another key using the same PBMParameter structure from CMP, even
 though from the perspective of field names, it is not intended to be
 used for deriving encryption keys.

 Does anyone sees a better solution here? >

5.1.6.2. Using key agreement key management technique

 This key management technique can be applied in combination with the
 message flow specified in Section 5.1.1 using signature-based
 protected CMP messages. The public key of the EE certificate used
 for the signature-based protection of the request message MUST also
 be used for the Ephemeral-Static Diffie-Hellmann key establishment of
 the content-encryption key. To use this key management technique the
 KeyAgreeRecipientInfo structure MUST be used in the contentInfo
 field.

 The KeyAgreeRecipientInfo structure included into the envelopedData
 structure is specified in CMS Section 6.2.2 [RFC5652].

 The detailed description of the KeyAgreeRecipientInfo structure looks
 like this:

 recipientInfo REQUIRED
‑‑ MUST be KeyAgreeRecipientInfo as specified in
 version REQUIRED
‑‑ MUST be set to 3
 originator REQUIRED
‑‑ MUST contain the originatorKey sequence
 algorithm REQUIRED
‑‑ MUST be the algorithm identifier of the
‑‑ static‑ephemeral Diffie‑Hellmann algorithm
 publicKey REQUIRED
‑‑ MUST be the ephemeral public key of the sending party
 ukm OPTIONAL
‑‑ MUST be used when 1‑pass ECMQV is used
 keyEncryptionAlgorithm
 REQUIRED
‑‑ MUST be the same as in the contentEncryptionAlgorithm field
 recipientEncryptedKeys
 REQUIRED
‑‑ MUST be exactly one recipientEncryptedKey sequence
 recipientEncryptedKey
 REQUIRED
 rid REQUIRED
 rKeyId REQUIRED
 subjectKeyID
 REQUIRED
‑‑ MUST contain the same value as the senderKID in the respective
‑‑ request messages
 encryptedKey
 REQUIRED
‑‑ MUST be the encrypted content‑encryption key

5.1.6.3. Using key transport key management technique

 This key management technique can be applied in combination with the
 message flow specified in Section 5.1.1 using signature-based
 protected CMP messages. The public key of the EE certificate used
 for the signature-based protection of the request message MUST also
 be used for key encipherment of the content-encryption key. To use
 this key management technique the KeyTransRecipientInfo structure
 MUST be used in the contentInfo field.

 The KeyTransRecipientInfo structure included into the envelopedData
 structure is specified in CMS Section 6.2.1 [RFC5652].

 The detailed description of the KeyTransRecipientInfo structure looks
 like this:

 recipientInfo REQUIRED
‑‑ MUST be KeyTransRecipientInfo as specified in
‑‑ CMS section 6.2.1 [RFC5652]
 version REQUIRED
‑‑ MUST be set to 2
 rid REQUIRED
 subjectKeyIdentifier
 REQUIRED
‑‑ MUST contain the same value as the senderKID in the respective
‑‑ request messages
 keyEncryptionAlgorithm
 REQUIRED
‑‑ MUST contain the key encryption algorithm identifier used for
‑‑ public key encryption
 encryptedKey REQUIRED
‑‑ MUST be the encrypted content‑encryption key

5.1.7. Delayed enrollment

 This functional extension can be applied in combination with
 certificate enrollment as described in Section 5.1.1 to
 Section 5.1.5. The functional extension can be used in case a (L)RA/
 CA cannot respond to the certificate request in a timely manner,
 e.g., due to offline upstream communication or required registration
 officer interaction. Depending on the PKI architecture, it is not
 necessary that the PKI component directly communicating with the EE
 initiates the delayed enrollment.

 The PKI component initiating the delayed enrollment MUST include the
 status "waiting" in the response and this response MUST not contain
 the newly issued certificate. When receiving a response with status
 "waiting" the EE MUST send a poll request to the (L)RA/CA. The PKI
 component that initiated the delayed enrollment MUST answers with a
 poll response containing a checkAfter time. This value indicates the
 minimum number of seconds that must elapse before the EE sends
 another poll request. As soon as the (L)RA/CA can provide the final
 response message for the initial request of the EE, it MUST provide
 this in response to a poll request. After receiving this response,
 the EE can continue the original message sequence as described in the
 respective section of this document, e.g., send a certConf message.

 Typically, intermediate PKI entities SHOULD NOT change the sender and
 recipient nonce even in case an intermediate (L)RA modifies a request
 or a response message. In the special case of polling between EE and
 LRA with offline transport between an LRA and RA, see Section 6.1.3,
 an exception occurs. The EE and LRA exchange pollReq and pollRep
 messages handle the nonce words as described. When, after pollRep,
 the final response from the CA arrives at the LRA, the next response
 will contain the recipientNonce set to the value of the senderNonce
 in the original request message (copied by the CA). The LRA needs to
 replace the recipientNonce in this case with the senderNonce of the
 last pollReq because the EE will validate it in this way.

 Message flow:

Step# EE (L)RA/CA
 1 format ir/cr/p10cr/kur
 As described in the
 respective section
 in this document
 2 ‑>ir/cr/p10cr/kur‑>
 3 handle request as described
 in the respective section
 in this document
 4 in case no immediate final
 response is possible,
 receive or format ip, cp
 or kup message containing
 status "waiting"
 5 <‑ ip/cp/kup <‑
 6 handle ip/cp/kup
 7 format pollReq
 8 ‑> pollReq ‑>
 9 handle, re‑protect or
 forward pollReq
10 in case the requested
 certificate or a
 corresponding response
 message is available,
 receive or format ip, cp,
 or kup containing the
 issued certificate, or
 format or receive pollRep
 with appropriate
 checkAfter value
11 <‑ pollRep <‑
12 handle pollRep
13 let checkAfter
 time elapse
14 continue with line 7

 Detailed description of the first ip/cp/kup:

Response with status 'waiting' ‑‑ ip/cp/kup

Field Value

header
 ‑‑ MUST contain a header as described for the first response
 ‑‑ message of the respective sheme

body
 ‑‑ The response of the (L)RA/CA to the request in case no
 ‑‑ immediate appropriate response can be sent
 ip/cp/kup REQUIRED
 response REQUIRED
 ‑‑ MUST be exactly one CertResponse
 certReqId REQUIRED
 ‑‑ MUST be set to 0
 status REQUIRED
 ‑‑ PKIStatusInfo structure MUST be present
 status REQUIRED
 ‑‑ MUST be set to "waiting"
 statusString OPTIONAL
 ‑‑ MAY be any human‑readable text for debugging, logging or to
 ‑‑ display in a GUI
 failInfo PROHIBITED
 certifiedKeyPair PROHIBITED

protection REQUIRED
 ‑‑ MUST contain protection as described for the first response
 ‑‑ message of the respective profile, but
 ‑‑ MUST use the protection key of the (L)RA/CA initiating the
 ‑‑ delayed enrollment and creating this response message

extraCerts REQUIRED
 ‑‑ MUST contain certificates as described for the first response
 ‑‑ message of the respective profile.
 ‑‑ As no new certificate is issued yet, no respective certificate
 ‑‑ chain is included.

 Polling Request -- pollReq

Field Value

 header

 -- MUST contain a header as described for the certConf message
 -- of the respective sheme

 body

 ‑‑ The message of the EE asks for the final response or for a
 ‑‑ time to check again
 pollReq REQUIRED
 certReqId REQUIRED
 ‑‑ MUST be exactly one value
 ‑‑ MUST be set to 0

protection REQUIRED
 ‑‑ MUST contain protection as described for the certConf message
 ‑‑ of the respective profile

extraCerts OPTIONAL
 ‑‑ If present, it MUST contain certificates as described for the
 ‑‑ certConf message of the respective profile.

 Polling Response -- pollRep

Field Value

header
 ‑‑ MUST contain a header as described for the pkiConf message
 ‑‑ of the respective sheme

body pollRep
 ‑‑ The message indicated the time to after which the EE may
 ‑‑ send another pollReq messaged for this transaction
 pollRep REQUIRED
 ‑‑ MUST be exactly one set of the following values
 certReqId REQUIRED
 ‑‑ MUST be set to 0
 checkAfter REQUIRED
 ‑‑ time in seconds to elapse before a new pollReq may be sent by
 ‑‑ the EE

protection REQUIRED
 ‑‑ MUST contain protection as described for the pkiConf message
 ‑‑ of the respective profile, but
 ‑‑ MUST use the protection key of the (L)RA/CA that initiated the
 ‑‑ delayed enrollment and is creating this response message

extraCerts OPTIONAL
 ‑‑ If present, it MUST contain certificates as described for the
 ‑‑ pkiConf message of the respective profile.

 Final response -- ip/cp/kup

Field Value

header
 ‑‑ MUST contain a header as described for the first
 ‑‑ response message of the respective sheme
 ‑‑ but the recipientNonce MUST be the senderNonce of the last
 ‑‑ pollReq message

body
 ‑‑ The response of the (L)RA/CA to the initial request as
 ‑‑ described in the respective profile

protection REQUIRED
 ‑‑ MUST contain protection as described for the first response
 ‑‑ message of the respective profile, but
 ‑‑ MUST use the protection key of the (L)RA/CA that initiated the
 ‑‑ delayed enrollment and forwarding the response message

extraCerts REQUIRED
 ‑‑ MUST contain certificates as described for the first
 ‑‑ response message of the respective profile

5.2. Revoking a certificate

 This message sequence should be used by an entity to request the
 revocation of a certificate. Here the revocation request is used by
 an EE to revoke one of its own certificates. A (L)RA could also act
 as an EE to revoke one of its own certificates.

 The revocation request message MUST be signed using the certificate
 that is to be revoked to prove the authorization to revoke to the
 PKI. The revocation request message is signature-protected using
 this certificate.

 An EE requests the revocation of an own certificate at the CA that
 issued this certificate. The (L)RA/CA responds with a message that
 contains the status of the revocation from the CA.

 Preconditions:

1 The certificate the EE wishes to revoke is not yet expired or
 revoked.

 Message flow:

Step# EE (L)RA/CA
 1 format rr
 2 ‑> rr ‑>
 3 handle, re‑protect or
 forward rr
 4 receive rp
 5 <‑ rp <‑
 6 handle rp

 For this profile, the EE MUST include exactly one RevDetails
 structure in the rr. In case no error occurred the response to the
 rr MUST be an rp message. The (L)RA/CA MUST produce a rp containing
 a status field with a single set of values.

 Detailed message description:

 Revocation Request -- rr

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The request of the EE to revoke its certificate
 rr REQUIRED
 ‑‑ MUST contain exactly one element of type RevDetails
 ‑‑ If more revocations are desired, further requests MUST be
 ‑‑ packaged in separate PKI Messages
 certDetails REQUIRED
 ‑‑ MUST be present and is of type CertTemplate
 serialNumber REQUIRED
 ‑‑ MUST contain the certificate serialNumber attribute of the
 ‑‑ X.509 certificate to be revoked
 issuer REQUIRED
 ‑‑ MUST contain the issuer attribute of the X.509 certificate to
 ‑‑ be revoked
 crlEntryDetails REQUIRED
 ‑‑ MUST contain exactly one reasonCode of type CRLReason (see
 ‑‑ [RFC5280] section 5.3.1)
 ‑‑ If the reason for this revocation is not known or shall not be
 ‑‑ published the reasonCode MUST be 0 = unspecified

protection REQUIRED
 ‑‑ As described in section 3.2 and the private key related to the

 -- certificate to be revoked

extraCerts REQUIRED
 ‑‑ As described in section 3.3

 Revocation Response -- rp

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The responds of the (L)RA/CA to the request as appropriate
 rp REQUIRED
 status REQUIRED
 ‑‑ MUST contain exactly one element of type PKIStatusInfo
 status REQUIRED
 ‑‑ positive value allowed: "accepted"
 ‑‑ negative value allowed: "rejection"
 statusString OPTIONAL
 ‑‑ MAY be any human‑readable text for debugging, logging or to
 ‑‑ display in a GUI
 failInfo OPTIONAL
 ‑‑ MAY be present if and only if status is "rejection"

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts REQUIRED

5.3. Error reporting

 This functionality should be used by an EE to report any error
 conditions upstream to the (L)RA/CA. Error reporting by the (L)RA
 downstream to the EE is described in Section 6.3.

 In case the error condition is related to specific details of an ip,
 cp, or kup response message and a confirmation is expected the error
 condition MUST be reported in the respective certConf message with
 negative contents.

 General error conditions, e.g., problems with the message header,
 protection, or extraCerts, and negative feedback on rp, pollRep, or
 pkiConf messages MAY be reported in the form of an error message.
 In both situations the error is reported in the PKIStatusInfo
 structure of the respective message.

 The (L)RA/CA MUST respond to an error message with a pkiConf message,
 or with another error message if any part of the header is not valid.
 Both sides MUST treat this message as the end of the current
 transaction.

 The PKIStatusInfo structure is used to report errors. The
 PKIStatusInfo structure SHOULD consist of the following fields:

 o status: Here the PKIStatus value rejection is the only one
 allowed.

 o statusString: Here any human-readable valid value for logging or
 to display in a GUI SHOULD be added.

 o failInfo: Here the PKIFailureInfo values MAY be used in the
 following way. For explanation of the reason behind a specific
 value, please refer to [RFC4210] Appendix F.

 * transactionIdInUse: This is sent in case the received request
 contains a transaction ID that is already in use for another
 transaction. An EE receiving such error message SHOULD resend
 the request in a new transaction using a different transaction
 ID.

 * systemUnavail or systemFailure: This is sent in case a back-end
 system is not available or currently not functioning correctly.
 An EE receiving such error message SHOULD resend the request in
 a new transaction after some time.

 Detailed error message description:

 Error Message -- error

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The message sent by the EE or the (L)RA/CA to indicate an
 ‑‑ error that occurred
 error REQUIRED
 pKIStatusInfo REQUIRED
 status REQUIRED
 ‑‑ MUST have the value "rejection"
 statusString RECOMMENDED
 ‑‑ SHOULD be any human‑readable text for debugging, logging
 ‑‑ or to display in a GUI
 failInfo OPTIONAL
 ‑‑ MAY be present

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts OPTIONAL
 ‑‑ As described in section 3.3

5.4. Support messages

 The following support messages offer on demand in-band transport of
 content that may be provided by the (L)RA/CA and relevant to the EE.
 The general messages and general response are used for this purpose.
 Depending on the environment, these requests are answered by the LRA,
 RA, or CA.

 The general message and general response transport InfoTypeAndValue
 structures. In addition to those infoType values defined in CMP
 [RFC4210] further OIDs MAY be defined to define new PKI management
 operations, or general-purpose messages as needed in a specific
 environment.

 Possible content described here address:

 o Request of CA certificates

 o Update of Root CA certificates

 o Parameters needed for a planned certificate request message

 o Voucher request and enrollment voucher exchange

5.4.1. General message and response

 The general message transaction is similar to that given in CMP
 Appendix E.5 [RFC4210]. In this section the general message (genm)
 and general response (genp) are described. The specific
 InfoTypeAndValue structures are described in the following sections.

 The behavior in case an error occurs is described in Section 5.3.

 Message flow:

Step# EE (L)RA/CA
 1 format genm
 2 ‑> genm ‑>
 3 handle, re‑protect or
 forward genm
 4 format or receive genp
 5 <‑ genp <‑
 6 handle genp

 Detailed message description:

 General Message -- genm

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The request of the EE to receive information
 genm REQUIRED
 ‑‑ MUST contain exactly one element of type
 ‑‑ InfoTypeAndValue
 infoType REQUIRED
 ‑‑ MUST be the OID identifying the specific scheme
 ‑‑ described below
 infoValue OPTIONAL
 ‑‑ MUST be as described in the specific scheme described
 ‑‑ below

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts REQUIRED
 ‑‑ As described in section 3.3

 General Response -- genp

Field Value

 header

 -- As described in section 3.1

body
 ‑‑ The response of the (L)RA/CA to the information request
 genp REQUIRED
 ‑‑ MUST contain exactly one element of type
 ‑‑ InfoTypeAndValue
 infoType REQUIRED
 ‑‑ MUST be the OID identifying the specific scheme
 ‑‑ described below
 infoValue OPTIONAL
 ‑‑ MUST be as described in the specific scheme described
 ‑‑ below

protection REQUIRED
 ‑‑ As described in section 3.2

extraCerts REQUIRED
 ‑‑ As described in section 3.3

5.4.2. Get CA certiificates

 This scheme can be used by an EE to request CA certificates from the
 (L)RA/CA.

 An EE requests CA certificates from the (L)RA/CA by sending a general
 message with OID id-it-getCaCerts. The (L)RA/CA responds with a
 general response with the same OID that either contains a SEQUENCE of
 certificates populated with the available CA intermediate and issuing
 CA certificates or with no content in case no CA certificate is
 available.

 < NOTE: The OID id-it-getCaCerts is not yet defined. It should be
 registered in the tree 1.3.6.1.5.5.7.4 (id-it) like other infoType
 OIDs, see CMP Appendix F [RFC4210] on page 92. >

 The profile for this exchange is as given in Section 5.4.1, with the
 following specific content:

1 the body MUST contain as infoType the OID id‑it‑getCaCerts

2 the infoValue of the request MUST be absent

3 if present, the infoValue of the response MUST be caCerts field

 The infoValue field of the general response containing the id-it-
 getCaCerts OID looks like this:

 infoValue OPTIONAL
‑‑ MUST be absent if no CA certificate is available
‑‑ MUST be present if CA certificates are available
 caCerts REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST be a sequence of CMPCertificate

5.4.3. Get root CA certificate update

 This scheme can be used by an EE to request an update of an existing
 root CA Certificate by the EE. It utilizes the root CA key update
 announcement message as described in CMP Appendix E.4 [RFC4210] as
 response to a respective general message.

 An EE requests a root CA certificate update from the (L)RA/CA by
 sending a general message with OID id-it-caKeyUpdateInfo. The (L)RA/
 CA responds with a general response with the same OID that either
 contains the update of the root CA certificate consisting of three
 certificates, or with no content in case no update is available.
 These three certificates are described in more detail in section
 4.4.1, section 6.2, and Appendix E.3 of [RFC4210].

 The profile for this exchange is as given in Section 5.4.1, with the
 following specific content:

1 the body MUST contain as infoType the OID id‑it‑caKeyUpdateInfo

2 the infoValue of the request MUST be absent

3 if present, the infoValue of the response MUST be a
 CAKeyUpdAnnContent structure

 The infoValue field of the general response containing the id-it-
 caKeyUpdateInfo extension looks like this:

 infoValue OPTIONAL
‑‑ MUST be absent if no update of the root CA certificate is
 available
‑‑ MUST be present if an update of the root CA certificate
‑‑ is available
 caKeyUpdateInfo REQUIRED
‑‑ MUST be present and be of type CAKeyUpdAnnContent
 oldWithNew REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain an X.509 certificate containing the old public
‑‑ root CA key signed with the new private root CA key
 newWithOld REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain an X.509 certificate containing the new public
‑‑ root CA key signed with the old private root CA key
 newWithNew REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain the new root CA certificate

5.4.4. Get certificate request parameters

 This scheme can be used by an EE to request configuration parameters
 for a planned certificate request transaction.

 An EE requests certificate request parameters from the (L)RA/CA by
 sending a general message with OID id-it-getCSRParam. The (L)RA/CA
 responds with a general response with the same OID that either
 contains the required fields, e.g., algorithm identifier for key pair
 generation or other attributes and extensions or with no content in
 case no specific requirements are made by the (L)RA/CA.

 < NOTE: The OID id-it-getCSRParam is not yet defined. It should be
 registered in the tree 1.3.6.1.5.5.7.4 (id-it) like other infoType
 OIDs, see CMP Appendix F [RFC4210] on page 92. >

 The EE SHOULD follow the requirements from the recieved CertTemplate
 and the optional RSA key length. In case a field is present but the
 value is absent, it means that this field is required but its content
 has to be provided by the EE.

 The profile for this exchange is as given in Section 5.4.1, with the
 following specific content:

1 the body MUST contain as infoType the OID id‑it‑getCSRParam

2 the infoValue of the request MUST be absent

3 if present, the infoValue of the response MUST be a SEQUENCE of a
 certTemplate structure and an rsaKeyLen field of type INTEGER

 The infoValue field of the general response containing the id-it-
 getCSRParam OID looks like this:

 infoValue OPTIONAL
‑‑ MUST be absent if no requirements are available
‑‑ MUST be present if the (L)RA/CA has any requirements on the
‑‑ content of the certificates to be requested.
 certTemplate REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain the prefilled certTemplate structure
 rsaKeyLen OPTIONAL
‑‑ This field is of type INTEGER. Any reasonable RSA key length
‑‑ SHOULD be specified if the algorithm in the
‑‑ subjectPublicKeyInfo field of the certTemplate is of type
‑‑ rsaEncryption.

5.4.5. Get certificate management configuration

 This scheme can be used by an EE to request the current certificate
 management configuration information by the EE in advance to a
 planned certificate management transaction, e.g., in case no out-of-
 band transport is available. Such certificate management
 configuration can consist of all information the EE needs to know to
 generate and deliver a proper certificate request, such as

 o algorithm, curve, and key length for key generation

 o various certificate extensions to be used for the certificate
 request

 o specific host name, port and path on the RA/LRA to send this CMP
 request to

 o Infrastructure Root CA Certificate, e.g., the root of the (L)RA
 TLS and CMP signer certificates.

 There is an overlap with Section 5.4.2 with regard to transport of CA
 certificates and with Section 5.4.4 with regard to key generation
 parameter and certificate request attributes and extensions. This
 profile offers to request a proprietary configuration file containing
 all information needed in one exchange.

 An EE requests certificate management configuration from the (L)RA/CA
 by sending a general message with the OID id-it-getCertMgtConfig.
 The (L)RA/CA responds with a general response with the same OID that
 either contains a certMgtConfig field containing the configuration
 file encoded as OCTET STRING or with no content in case no
 certificate management configuration is available.

 < NOTE: The OID id-it-getCertMgtConfig is not yet defined. It should
 be registered in the tree 1.3.6.1.5.5.7.4 (id-it) like other infoType
 OIDs, see CMP Appendix F [RFC4210] on page 92. >

 The EE SHOULD use the contents of this certMgtConfig to format and
 deliver the certificate request. The certificate management
 configuration may contain contact details, e.g., like an URI and
 issuing CA distinguished name, where to address the request messages
 to and may also contain certificate request parameters as described
 in Section 5.4.4.

 The certMgtConfig field may be of any format suitable for the EE,
 e.g., CMS [RFC5652], JWT [RFC7519] or, XML [W3C_XML]. The
 certMgtConfig contents MAY be signed, e.g., like CMS SignedData
 [RFC5652], JWS [RFC7515] or, XML-DSig [W3C_XML-Dsig]. For
 interoperability the format of the certMgtConfig field should be
 specified in detail if needed.

 The profile for this exchange is as given in Section 5.4.1, with the
 following specific content:

1 the body MUST contain as infoType the OID id‑it‑getCertMgtConfig

2 the infoValue of the request MUST be absent

3 if present, the infoValue of the response MUST be a certMgtConfig
 structure

 The infoValue field of the general response containing the id-it-
 getCertMgtConfig extension looks like this:

 infoValue OPTIONAL
‑‑ MUST be absent if no certificate management configuration
‑‑ is available
‑‑ MUST be present if the (L)RA/CA provides any certificate
‑‑ management configuration
 certMgtConfig REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain the certificate management configuration as OCTET
‑‑ OCTET STRING

5.4.6. Get enrollment voucher

 This scheme can be used by an EE to request an enrollment voucher
 containing the root certificate of a new, additional, or alternative
 PKI to establish trust in this PKI, e.g., in case no out-of-band
 transport is available. Such an enrollment voucher can be used in
 advance to an enrollment to this new environment. It may contain
 further information depending on the use case.

 An EE requests an enrollment voucher from the (L)RA/CA by sending a
 general message. The (L)RA/CA responds with a general response with
 the same OID that either contains the voucher or with no content in
 case no voucher is available.

 The (L)RA MAY use the content of the voucherRequest to get an
 enrollment voucher from other backend components, e.g., as described
 in BRSKI [I-D.ietf-anima-bootstrapping-keyinfra]. The EE SHOULD use
 the contents of the received enrollmentVoucher to authenticate the
 (L)RA/CA it is about to enroll to. The enrollment voucher may for
 example contain the Root CA certificate of the new PKI or the CMP
 signer certificate of the (L)RA. The general response message MUST
 be properly authenticated and the sender of this message MUST be
 authorized to install new root certificates. One example for an
 enrollment voucher is specified in RFC8366 [RFC8366].

 The voucherRequest and enrollmentVoucher fields may be of any format
 suitable for the EE, e.g., CMS [RFC5652], JWT [RFC7519] or, XML
 [W3C_XML]. The voucherRequest and enrollmentVoucher contents MAY
 contain a signature, e.g., CMS SignedData [RFC5652], JWS [RFC7515]
 or, XML-DSig [W3C_XML-Dsig]. For interoperability the format of the
 voucherRequest and enrollmentVoucher field schould be specified in
 detail if needed, e.g., as defined in BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra] and RFC8366 [RFC8366].

 < TBD: The vontent of the voucherRequest and enrollmentVoucher fields
 can also be linited to the specufucations in BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra] and RFC8366 [RFC8366]. >

 The profile for this exchange is as given in Section 5.4.1, with the
 following specific content:

1 the body MUST contain as infoType the OID id‑it‑
 getEnrollmentVoucher

2 if present, the infoValue of the request MUST be a voucherRequest
 structure

3 if present, the infoValue of the response MUST be an
 enrollmentVoucher structure

 The infoValue field of the general message containing the id-it-
 getEnrollmentVoucher extension looks like this:

 infoValue OPTIONAL
‑‑ MUST be absent if no voucher request is available
‑‑ MUST be present if the EE provides the voucher request
 voucherRequest REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain the voucher request as OCTET STRING

 The infoValue field of the general response containing the id-it-
 getEnrollmentVoucher extension looks like this:

 infoValue OPTIONAL
‑‑ MUST be absent if no enrollment voucher is available
‑‑ MUST be present if the (L)RA/CA provides the enrollment
‑‑ voucher
 enrollmentVoucher REQUIRED
‑‑ MUST be present if infoValue is present
‑‑ MUST contain the enrollment voucher as OCTET STRING

6. LRA and RA focused certificate management use cases

 This chapter focuses on the communication of PKI backend components
 with each other. Depending on the network and PKI solution design,
 these will either be an LRA, RA or CA.

 Typically, an (L)RA forwards messages from downstream, but it may
 also reply to them itself. Besides forwarding of received messages
 an (L)RA could also need to revoke certificates of EEs, report
 errors, or may need to manage its own certificates.

 < In CMP Updates [I-D.brockhaus-lamps-cmp-updates] additional
 extended key usages like id-kp-cmpRA will be defined to indicate that
 a key pair is entitled to be used for signature-based protection of a
 CMP message by an (L)RA/CA. >

6.1. Forwarding of messages

 Each CMP request message (i.e., ir, cr, p10cr, kur, pollReq, or
 certConf) or error message coming from an EE or the previous
 (downstream) PKI component MUST be sent to the next (upstream) PKI
 component. This PKI component MUST forward response messages to the
 next (downstream) PKI component or EE.

 The (L)RA SHOULD verify the protection, the syntax, the required
 message fields, the message type, and if applicable the authorization
 and the proof-of-possession of the message. Additional checks or
 actions MAY be applied depending on the PKI solution requirements and
 concept. If one of these verification procedures fails, the (L)RA
 SHOULD respond with a negative response message and SHOULD not
 forward the message further upstream. General error conditions
 should be handled as described in Section 5.3 and Section 6.3.

 An (L)RA SHOULD not change the received message if not necessary.
 The (L)RA SHOULD only update the message protection if it is
 technically necessary. Concrete PKI system specifications may define
 in more detail if and when to do so.

 This is particularly relevant in the upstream communication of a
 request message.

 Each hop in a chain of PKI components has one or more
 functionalities, e.g.,

 o An (L)RA may need to verify the identities of EEs or base
 authorization decisions for certification request processing on
 specific knowledge of the local setup, e.g., by consulting an
 inventory or asset management system.

 o An (L)RA may need to add fields to certificate request messages.

 o An (L)RA may need to store data from a message in a database for
 later usage or documentation purposes.

 o An (L)RA may provide traversal of a network boundary.

 o An (L)RA may need to double-check if the messages transferred back
 and forth are properly protected and well formed.

 o An RA can collect messages from different LRAs and forward them to
 the CA.

 o An (L)RA may provide a proof that it has performed all required
 checks.

 o An (L)RA may initiate a delayed enrollment due to offline upstream
 communication or registration officer interaction.

 o An (L)RA may grant the request of an EE to omit sending a
 confirmation message.

 Therefore, the decision if a message should be forwarded

 o unchanged with the original protection,

 o unchanged with a new protection, or

 o changed with a new protection

 depends on the PKI solution design and the associated security policy
 (CP/CPS [RFC3647]).

 This section specifies the different options an (L)RA may implement
 and use.

 An (L)RA MAY update the protection of a message

 o if the (L)RA performs changes to the header or the body of the
 message,

 o if the (L)RA needs to prove checks or validations performed on the
 message to one of the next (upstream) PKI components,

 o if the (L)RA needs to protect the message using a key and
 certificate from a different PKI, or

 o if the (L)RA needs to replace a MAC based-protection.

 This is particularly relevant in the upstream communication of
 certificate request messages.

 The message protection covers only the header and the body and not
 the extraCerts. The (L)RA MAY change the extraCerts in any of the
 following message adaptations, e.g., to sort or add needed or to
 delete needless certificates to support the next hop. This may be
 particularly helpful to extend upstream messages with additional
 certificates or to reduce the number of certificates in downstream
 messages when forwarding to constrained devices.

6.1.1. Not changing protection

 This message adaptation can be used by any (L)RA to forward an
 original CMP message without changing the header, body or protection.
 In any of these cases the (L)RA acts more like a proxy, e.g., on a
 network boundary, implementing no specific RA-like security
 functionality to the PKI.

 This message adaptation MUST be used for forwarding kur messages that
 must not be approved by the respective (L)RA.

6.1.2. Replacing protection

 The following two message adaptations can be used by any (L)RA to
 forward a CMP message with or without changes, but providing its own
 protection using its CMP signer key providing approval of this
 message. In this case the (L)RA acts as an actual Registration
 Authority (RA), which implements important security functionality of
 the PKI.

 Before replacing the existing protection by a new protection, the
 (L)RA MUST verify the protection provided by the EE or by the
 previous PKI component and approve its content including any own
 modifications. For certificate requests the (L)RA MUST verify in
 particular the included proof-of-possession self-signature of the
 certTemplate using the public key of the requested certificate and
 MUST check that the EE, as authenticated by the message protection,
 is authorized to request a certificate with the subject as specified
 in the certTemplate.

 In case the received message has been protected by a CA or another
 (L)RA, the current (L)RA MUST verify its protection and approve its
 content including any own modifications. For certificate requests
 the (L)RA MUST check that the other (L)RA, as authenticated by the
 message protection, is authorized to issue or forward the request.

 These message adaptations MUST NOT be applied to kur request messages
 as described in Section 5.1.3 since their original protection using
 the key and certificate to be updated needs to be preserved, unless
 the regCtrl OldCertId is used to clearly identify the certificate to
 be updated.

6.1.2.1. Keeping proof-of-possession

 This message adaptation can be used by any (L)RA to forward a CMP
 message with or without modifying the message header or body while
 preserving any included proof-of-possession.

 By replacing the existing using its own CMP signer key the (L)RA
 provides a proof of verifying and approving of the message as
 described above.

 In case the (L)RA modifies the certTemplate of an ir or cr message,
 the message adaptation in Section 6.1.2.2 needs to be applied
 instead.

6.1.2.2. Breaking proof-of-possession

 This message adaptation can be used by any (L)RA to forward an ir or
 cr message with modifications of the certTemplate i.e., modification,
 addition, or removal of fields. Such changes will break the proof-
 of-possession provided by the EE in the original message.

 By replacing the existing or applying an initial protection using its
 own CMP signer key the (L)RA provides a proof of verifying and
 approving the new message as described above.

 In addition to the above the (L)RA MUST verify in particular the
 proof-of-possession contained in the original message as described
 above. If these checks were successfully performed the (L)RA MUST
 change the popo to raVerified.

 The popo field MUST contain the raVerified choice in the certReq
 structure of the modified message as follows:

popo
 raVerified REQUIRED
‑‑ MUST have the value NULL and indicates that the (L)RA
‑‑ verified the popo of the original message.

6.1.3. Initiating delayed enrollment

 This message adaptation can be used by an (L)RA to initiate delayed
 enrollment. In this case a (L)RA/CA MUST add the status waiting in
 the response message. The (L)RA/CA MUST then reply to the pollReq
 messages as described in Section 5.1.7.

6.2. Revoking certificates on behalf of another's entities

 This message sequence can be used by an (L)RA to revoke a certificate
 of any other entity. This revocation request message MUST be signed
 by the (L)RA using its own CMP signer key to prove to the PKI
 authorization to revoke the certificate on behalf of the EE.

 The general message flow for this profile is the same as given in
 section Section 5.2.

 Preconditions:

1 the certificate to be revoked MUST be known to the (L)RA

2 the (L)RA MUST have the authorization to revoke the certificates
 of other entities issued by the corresponding CA

 The profile for this exchange is identical to that given in section
 Section 5.2, with the following changes:

1 it is not required that the certificate to be revoked is not yet
 expired or revoked

2 the (L)RA acts as EE for this message exchange

3 the rr messages MUST be signed using the CMP signer key of the
 (L)RA.

6.3. Error reporting

 This functionality should be used by the (L)RA to report any error
 conditions downstream to the EE. Potential error reporting by the EE
 upstream to the (L)RA/CA is described in Section 5.3.

 In case the error condition is related to specific details of an ir,
 cr, p10cr, or kur request message it MUST be reported in the specific
 response message, i.e., an ip, cp, or kup with negative contents.

 General error conditions, e.g., problems with the message header,
 protection, or extraCerts, and negative feedback on rr, pollReq,
 certConf, or error messages MUST be reported in the form of an error
 message.

 In both situations the (L)RA reports the errors in the PKIStatusInfo
 structure of the respective message as described in Section 5.3.

 An EE receiving any such negative feedback SHOULD log the error
 appropriately and MUST terminate the current transaction.

7. CMP message transport variants

 The CMP messages are designed to be self-contained, such that in
 principle any transport can be used. HTTP SHOULD be used for online
 transport while file-based transport MAY be used in case offline
 transport is required. In case HTTP transport is not desired or
 possible, CMP messages MAY also be piggybacked on any other reliable
 transport protocol, e.g., CoAP [RFC7252].

 Independently of the means of transport it could happen that messages
 are lost, or a communication partner does not respond. In order to
 prevent waiting indefinitely, each CMP client component SHOULD use a
 configurable per-request timeout, and each CMP server component
 SHOULD use a configurable per-response timeout in case a further
 message is to be expected from the client side. In this way a
 hanging transaction can be closed cleanly with an error and related
 resources (for instance, any cached extraCerts) can be freed.

7.1. HTTP transport

 This transport mechanism can be used by an EE and (L)RA/CA to
 transfer CMP messages over HTTP. If HTTP transport is used the
 specifications as described in [RFC6712] MUST be followed.

7.2. HTTPS transport using certificates

 This transport mechanism can be used by an EE and (L)RA/CA to further
 protect the HTTP transport as described in Section 7.1 using TLS 1.2
 [RFC5246] or TLS 1.3 [RFC8446] as described in [RFC2818] with
 certificate-based authentication. Using this transport mechanism,
 the CMP transport via HTTPS MUST use TLS server authentication and
 SHOULD use TLS client authentication.

 EE:

 o The EE SHOULD use a TLS client certificate as far as available.
 If no dedicated TLS certificate is available the EE SHOULD use an
 already existing certificate identifying the EE (e.g., a
 manufacturer certificate).

 o If no TLS certificate is available at the EE, server-only
 authenticated TLS SHOULD be used.

 o The EE MUST validate the TLS server certificate of its
 communication partner.

 (L)RA:

 o Each (L)RA SHOULD use a TLS client certificate on its upstream
 (client) interface.

 o Each (L)RA SHOULD use a TLS server certificate on its downstream
 (server) interface.

 o Each (L)RA MUST validate the TLS certificate of its communication
 partner.

 NOTE: The requirements for checking certificates given in [RFC5280],
 [RFC5246] and [RFC8446] MUST be followed for the TLS layer. OCSP or
 CRLs SHOULD be used for status checking of the TLS certificates of
 communication partners.

7.3. HTTPS transport using shared secrets

 This transport mechanism can be used by an EE and (L)RA/CA to further
 protect the HTTP transport as described in Section 7.1 using TLS 1.2
 [RFC5246] or TLS 1.3 [RFC8446] as described in [RFC2818] with mutual
 authentication based on shared secrets as described in [RFC5054].

 EE:

 o The EE MUST use the shared symmetric key for authentication.

 (L)RA:

 o The (L)RA MUST use the shared symmetric key for authentication.

7.4. File-based transport

 For offline transfer file-based transport MAY be used. Offline
 transport is typically used between LRA and RA nodes.

 Connection and error handling mechanisms like those specified for
 HTTP in [RFC6712] need to be implemented.

 < Details need to be defined later >

7.5. CoAP transport

 In constrained environments where no HTTP transport is desired or
 possible, CoAP [RFC7252] MAY be used instead. Connection and error
 handling mechanisms like those specified for HTTP in [RFC6712] may
 need to be implemented.

 Such specification is out of scope of this document and would need to
 be specifies in a separate document.

7.6. Piggybacking on other reliable transport

 For online transfer where no HTTP transport is desired or possible
 CMP messages MAY also be transported on some other reliable protocol.
 Connection and error handling mechanisms like those specified for
 HTTP in [RFC6712] need to be implemented.

 Such specification is out of scope of this document and would need to
 be specifies in a separate document, e.g., in the scope of the
 respective transport protocol used.

8. IANA Considerations

 <Add any IANA considerations>

9. Security Considerations

 <Add any security considerations>

10. Acknowledgements

 We would like to thank the various reviewers of this CMP profile.

11. References

11.1. Normative References

 [I-D.brockhaus-lamps-cmp-updates]

 Brockhaus, H., "CMP Updates", draft-brockhaus-lamps-cmp-
 updates-00 (work in progress), July 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2986]
 Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

 [RFC4086]
 Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4210]
 Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210,
 DOI 10.17487/RFC4210, September 2005,
 <https://www.rfc-editor.org/info/rfc4210>.

 [RFC4211]
 Schaad, J., "Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)", RFC 4211,
 DOI 10.17487/RFC4211, September 2005,
 <https://www.rfc-editor.org/info/rfc4211>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6712]
 Kause, T. and M. Peylo, "Internet X.509 Public Key
 Infrastructure -- HTTP Transfer for the Certificate
 Management Protocol (CMP)", RFC 6712,
 DOI 10.17487/RFC6712, September 2012,
 <https://www.rfc-editor.org/info/rfc6712>.

11.2. Informative References

 [ETSI-3GPP]

 3GPP, "TS33.310; Network Domain Security (NDS);
 Authentication Framework (AF); Release 16; V16.1.0",
 December 2018,
 <http://www.3gpp.org/ftp/Specs/archive/33_series/33.310/>.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-29 (work in progress), October 2019.

 [IEC62443-3-3]

 IEC, "Industrial communication networks - Network and
 system security - Part 3-3: System security requirements
 and security levels", IEC 62443-3-3, August 2013,
 <https://webstore.iec.ch/publication/7033>.

 [IEEE802.1AR]

 IEEE, "802.1AR Secure Device Identifier", June 2018,
 <http://standards.ieee.org/findstds/standard/802.1AR-
 2009.html>.

 [NIST-CSFW]

 NIST, "Framework for Improving Critical Infrastructure
 Cybersecurity Version 1.1", April 2018,
 <https://www.nist.gov/publications/framework-improving-
 critical-infrastructure-cybersecurity-version-11>.

 [RFC2818]
 Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3647]
 Chokhani, S., Ford, W., Sabett, R., Merrill, C., and S.
 Wu, "Internet X.509 Public Key Infrastructure Certificate
 Policy and Certification Practices Framework", RFC 3647,
 DOI 10.17487/RFC3647, November 2003,
 <https://www.rfc-editor.org/info/rfc3647>.

 [RFC5054]
 Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
 "Using the Secure Remote Password (SRP) Protocol for TLS
 Authentication", RFC 5054, DOI 10.17487/RFC5054, November
 2007, <https://www.rfc-editor.org/info/rfc5054>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC7252]
 Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7515]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7519]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [UNISIG]
 UNISIG, "Subset-137; ERTMS/ETCS On-line Key Management
 FFFIS; V1.0.0", December 2015,
 <https://www.era.europa.eu/filebrowser/download/542_en>.

 [W3C_XML]
 W3C, "Extensible Markup Language (XML) 1.0", W3C XML,
 November 2008, <https://www.w3.org/TR/xml/>.

 [W3C_XML-Dsig]

 W3C, "XML Signature Syntax and Processing Version 2.0",
 W3C XML-DSIG, July 2015,
 <https://www.w3.org/TR/xmldsig-core2/>.

Appendix A. Additional Stuff

 This becomes an Appendix.

Authors' Addresses

Hendrik Brockhaus
Siemens AG
Otto‑Hahn‑Rin 6
Munich 81739
Germany

Email: hendrik.brockhaus@siemens.com
URI: http://www.siemens.com/

Steffen Fries
Siemens AG
Otto‑Hahn‑Ring 6
Munich 81739
Germany

Email: steffen.fries@siemens.com
URI: http://www.siemens.com/

David von Oheimb
Siemens AG
Otto‑Hahn‑Ring 6
Munich 81739
Germany

Email: david.von.oheimb@siemens.com
URI: http://www.siemens.com/

draft-campagna-tls-bike-sike-hybrid-02 - Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 (TLS)

draft-campagna-tls-bike-sike-hybrid-02 - Hybrid Post-Quantum Key Encapsulation M

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force

Internet-Draft

Intended status: Experimental

Expires: May 7, 2020

M. Campagna

E. Crockett

AWS

November 4, 2019

Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 (TLS)

draft-campagna-tls-bike-sike-hybrid-02

Abstract

 Hybrid key exchange refers to executing two independent key exchanges
 and feeding the two resulting shared secrets into a Pseudo Random
 Function (PRF), with the goal of deriving a secret which is as secure
 as the stronger of the two key exchanges. This document describes
 new hybrid key exchange schemes for the Transport Layer Security 1.2
 (TLS) protocol. The key exchange schemes are based on combining
 Elliptic Curve Diffie-Hellman (ECDH) with a post-quantum key
 encapsulation method (PQ KEM) using the existing TLS PRF. In
 particular, this document specifies the use of the Bit Flipping Key
 Exchange (BIKE) and Supersingular Isogeny Key Exchange (SIKE) schemes
 in combination with ECDHE as a hybrid key agreement in a TLS 1.2
 handshake.

Context

 This draft is experimental. It is intended to define hybrid key
 exchanges in sufficient detail to allow independent experimentations
 to interoperate. While the NIST standardization process is still a
 few years away from being complete, we know that many TLS users have
 highly sensitive workloads that would benefit from the speculative
 additional protections provided by quantum-safe key exchanges. These
 key exchanges are likely to change through the standardization
 process. Early experiments serve to understand the real-world
 performance characteristics of these quantum-safe schemes as well as
 provide speculative additional confidentiality assurances against a
 future adversary with a large-scale quantum computer.

 Comments are solicited and can be sent to all authors at
 mcampagna@amazon.com.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Key Exchange Algorithms
	 2.1. Key Encapsulation Method (KEM)

	 2.2. ECDHE_[KEM]

	3. Hybrid Premaster Secret

	4. TLS Extension for Supported PQ KEM Parameters

	5. Data Structures and Computations
	 5.1. Client Hello Extensions
	 5.1.1. When these extensions are sent

	 5.1.2. Meaning of these extensions

	 5.1.3. Structure of these extensions

	 5.1.4. Actions of the sender

	 5.1.5. Actions of the receiver

	 5.1.6. Supported PQ KEM Parameters Extension

	 5.2. Server Key Exchange
	 5.2.1. When this message is sent

	 5.2.2. Meaning of this message

	 5.2.3. Structure of this message

	 5.2.4. Actions of the sender

	 5.2.5. Actions of the receiver

	 5.3. Client Key Exchange
	 5.3.1. When this message is sent

	 5.3.2. Meaning of the message

	 5.3.3. Structure of this message

	 5.3.4. Actions of the sender

	 5.3.5. Actions of the receiver

	 5.4. Derivation of the master secret for hybrid key agreement

	6. Cipher Suites

	7. Security Considerations [DRAFT]

	8. IANA Considerations

	9. Acknowledgements

	10. Normative References

	Appendix A. Additional Stuff

	Authors' Addresses

1. Introduction

 Quantum-safe (or post-quantum) key exchanges are being developed in
 order to provide secure key establishment against an adversary with
 access to a quantum computer. Under such a threat model, the current
 key exchange mechanisms would be vulnerable. BIKE and SIKE are two
 post-quantum candidates which were submitted to the NIST Call for
 Proposals for Post-Quantum Cryptographic Schemes. While these
 schemes are still being analyzed as part of that process, there is
 already a need to protect the confidentiality of today's TLS
 connections against a future adversary with a quantum computer.
 Hybrid key exchanges are designed to provide two parallel key
 exchanges: one which is classical (e.g., ECDHE) and the other which
 is quantum-safe (e.g., BIKE or SIKE). The hybrid schemes we propose
 are no less secure against classical computers than ECDH, and no less
 secure against quantum computers than BIKE or SIKE. This strategy is
 emerging as a method to speculatively provide additional security to
 existing protocols.

 This document describes additions to TLS to support PQ Hybrid Key
 Exchanges, applicable to TLS Version 1.2 [RFC5246]. These additions
 are designed to support most of the second-round candidates in the
 NIST Call for Proposals, but this document only defines ciphersuites
 for a small subset of possible hybrid key agreement methods. In
 particular, it defines the use of the ECDHE together with BIKE or
 SIKE, as a hybrid key agreement method.

 The remainder of this document is organized as follows. Section 2
 provides an overview of PQ KEM-based key exchange algorithms for TLS.
 Section 3 describes how PQ KEM can be combined with ECDHE to form a
 premaster secret. In Section 4, we present a TLS extension that
 allow a client to negotiate the use of specific PQ schemes and
 parameters. Section 5 specifies various data structures needed for a
 BIKE- or SIKE-based hybrid key exchange handshake, their encoding in
 TLS messages, and the processing of those messages. Section 6
 defines two new PQ KEM hybrid-based cipher suites and identifies a
 small subset of these as recommended for all implementations of this
 specification. Section 7 discusses some security considerations.
 Section 8 describes IANA considerations for the name spaces created
 by this document. Section 9 gives acknowledgments.

 Implementation of this specification requires familiarity with TLS
 [RFC5246], BIKE, and SIKE.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. Key Exchange Algorithms

 This document introduces two new hybrid-based key exchange methods
 for TLS. They use ECDHE with either BIKE or SIKE in order to compute
 the TLS premaster secret. The master secret derivation is augmented
 to include the ClientKeyExchange message. The derivation of the
 encryption/MAC keys and initialization vectors is independent of the
 key exchange algorithm and not impacted by the introduction of these
 hybrid key exchanges. While this specification only defines the use
 of a PQ KEM hybrid key exchange with BIKE or SIKE, it is specifically
 designed so that it can be easily extended to include additional PQ
 KEM methods.

 The table below summarizes the new hybrid key exchange schemes.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Hybrid Key Exchange Scheme Name | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
ECDHE_BIKE	ECDHE and a BIKE KEM.
ECDHE_SIKE	ECDHE and a SIKE KEM.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Hybrid Key Exchange Schemes

 These schemes are intended to provide quantum-safe forward secrecy.

Client Server
‑‑‑‑‑‑ ‑‑‑‑‑‑

ClientHello ‑‑‑‑‑‑‑‑>
 ServerHello
 Certificate
 ServerKeyExchange
 CertificateRequest*+
 <‑‑‑‑‑‑‑‑ ServerHelloDone
Certificate*+
ClientKeyExchange
CertificateVerify*+
[ChangeCipherSpec]
Finished ‑‑‑‑‑‑‑‑>
 [ChangeCipherSpec]
 <‑‑‑‑‑‑‑‑ Finished

Application Data <‑‑‑‑‑‑‑> Application Data

 * message is not sent under some conditions
 + message is not sent unless client authentication
 is desired

 Figure 1: Message flow in a hybrid TLS handshake

 Figure 1 shows the messages involved in the TLS key establishment
 protocol (aka full handshake). The addition of hybrid key exchanges
 has direct impact on the ClientHello, the ServerHello, the
 ServerKeyExchange, and the ClientKeyExchange messages. Next, we
 describe each hybrid key exchange scheme in greater detail in terms
 of the content and processing of these messages. For ease of
 exposition, we defer discussion of the optional extension for
 specifying the parameters supported by an implementation until
 Section 4.

2.1. Key Encapsulation Method (KEM)

 A key encapsulation mechanism (KEM) is a set of three algorithms

 o key generation (KeyGen)

 o encapsulation (Encaps)

 o decapsulation (Decaps)

 and a defined key space, where

 o "KeyGen()": returns a public and a secret key (pk, sk).

 o "Encaps(pk)": takes pk as input and outputs ciphertext c and a key
 K from the key space.

 o "Decaps(sk, c)": takes sk and c as input, and returns a key K or
 ERROR. K is called the session key.

 The security of a KEM is discussed in Section 7. BIKE and SIKE are
 two examples of a KEM.

2.2. ECDHE_[KEM]

 This section describes the nearly identical hybrid key exchanges
 ECDHE_BIKE and ECDHE_SIKE. For the remainder of this section [KEM]
 refers to either BIKE or SIKE. The server sends its ephemeral ECDH
 public key and an ephemeral [KEM] public key generated using the
 corresponding curve and [KEM] parameters in the ServerKeyExchange
 message. This specification requires that these parameters MUST be
 signed using a signature algorithm corresponding to the public key in
 the server's certificate.

 The client generates an ECDHE key pair on the same curve as the
 server's ephemeral ECDH key, and computes a ciphertext value based on
 the [KEM] public key provided by the server, and sends them in the
 ClientKeyExchange message. The client computes and holds the PQ KEM-
 encapsulated key (K) as a contribution to the premaster secret.

 Both client and server perform an ECDH operation and use the
 resultant shared secret (Z) as part of the premaster secret. The
 server computes the PQ KEM decapsulation routine to compute the
 encapsulated key (K), or to produce an error message in case the
 decapsulation fails.

3. Hybrid Premaster Secret

 This section defines the mechanism for combining the ECDHE and [KEM]
 secrets into a TLS 1.2 [RFC5246] pre-master secret. In the hybrid
 key exchange, both the server and the client compute two shared
 secrets: the previously defined ECDHE shared secret Z from RFC 8422,
 and another shared secret K from the underlying PQ key encapsulation
 method.

 Form the premaster secret for ECDHE_[KEM] hybrid key exchanges as the
 concatenation of the ECDHE shared secret Z with the KEM key K to form
 the opaque data value "premaster_secret = Z || K".

4. TLS Extension for Supported PQ KEM Parameters

 A new TLS extension for post-quantum key encapsulation methods is
 defined in this specification.

 This allows negotiating the use of specific PQ KEM parameter sets
 during a handshake starting a new session. The extension is
 especially relevant for constrained clients that may only support a
 limited number of PQ KEM parameter sets. They follow the general
 approach outlined in RFC 5246; message details are specified in
 Section 5. The client enumerates the BIKE and SIKE parameters it
 supports by including the PQ KEM extension in its ClientHello
 message.

 A TLS client that proposes PQ KEM cipher suites in its ClientHello
 message SHOULD include this extension. Servers implementing a PQ KEM
 cipher suite MUST support this extension, and when a client uses this
 extension, servers MUST NOT negotiate the use of a PQ KEM parameter
 set unless they can complete the handshake while respecting the
 choice of parameters specified by the client. This eliminates the
 possibility that a negotiated hybrid handshake will be subsequently
 aborted due to a client's inability to deal with the server's PQ KEM
 key.

 The client MUST NOT include the PQ KEM extension in the ClientHello
 message if it does not propose any PQ KEM cipher suites.
 Additionally, the client MUST NOT include parameters in the PQ KEM
 extension for PQ KEM cipher suites it does not propose. That is, if
 a client does not support BIKE, it must not include the BIKE
 parameters in the extension, and if the client does not support SIKE,
 it must not include SIKE parameters in the extension. A client that
 proposes a PQ KEM scheme may choose not to include this extension.
 In this case, the server is free to choose any one of the parameter
 sets listed in Section 5. That section also describes the structure
 and processing of this extension in greater detail.

 In the case of session resumption, the server simply ignores the
 Supported PQ KEM Parameters extension appearing in the current
 ClientHello message. These extensions only play a role during
 handshakes negotiating a new session.

5. Data Structures and Computations

 This section specifies the data structures and computations used by
 PQ KEM hybrid-key agreement mechanisms specified in Sections 2, 3,
 and 4. The presentation language used here is the same as that used
 in TLS 1.2 [RFC5246].

5.1. Client Hello Extensions

This section specifies the Supported PQ KEM Parameters extension that
can be included with the ClientHello message as described in
RFC 5246.

5.1.1. When these extensions are sent

 The extensions SHOULD be sent along with any ClientHello message that
 proposes the associated PQ KEM cipher suites.

5.1.2. Meaning of these extensions

 These extensions allow a client to enumerate the PQ KEM parameters
 sets it supports for any supported PQ KEM.

5.1.3. Structure of these extensions

 The general structure of TLS extensions is described in RFC 5246, and
 this specification adds a new type to ExtensionType.

enum {
 pq_kem_parameters(0xFE01)
 } ExtensionType;

 where

 o "pq_kem_parameters" (Supported PQ KEM Parameters extension):
 Indicates the set of post-quantum KEM parameters supported by the
 client. For this extension, the opaque extension_data field
 contains PQKEMParametersExtension. See Section 5.1.6 for details.

5.1.4. Actions of the sender

 A client that proposes PQ KEM hybrid key exchange cipher suites in
 its ClientHello message appends these extensions (along with any
 others), enumerating the parameters it supports. Clients SHOULD send
 the PQ KEM parameter sets it supports if it supports PQ KEM hybrid
 key exchange cipher suites.

5.1.5. Actions of the receiver

 A server that receives a ClientHello containing this extension MUST
 use the client's enumerated capabilities to guide its selection of an
 appropriate cipher suite. One of the proposed PQ KEM cipher suites
 must be negotiated only if the server can successfully complete the
 handshake while using the PQ KEM parameters supported by the client
 (cf. Section 5.1.6.)

 If a server does not understand the Supported PQ KEM Parameters
 extension, or is unable to complete the PQ KEM handshake while
 restricting itself to the enumerated parameters, it MUST NOT
 negotiate the use of the corresponding PQ KEM cipher suite.
 Depending on what other cipher suites are proposed by the client and
 supported by the server, this may result in a fatal handshake failure
 alert due to the lack of common cipher suites.

5.1.6. Supported PQ KEM Parameters Extension

 This section defines the contents of the Supported PQ KEM Parameters
 extension. In the language of RFC 5246, the "extension_data" is the
 "PQKEMParametersExtension" type defined below.

enum {
 BIKE1r1‑Level1 (1),
 BIKE1r1‑Level3 (2),
 BIKE1r1‑Level5 (3),
 BIKE2r1‑Level1 (4),
 BIKE2r1‑Level3 (5),
 BIKE2r1‑Level5 (6),
 BIKE3r1‑Level1 (7),
 BIKE3r1‑Level3 (8),
 BIKE3r1‑Level5 (9),
 SIKEp503r1‑KEM (10),
 SIKEp751r1‑KEM (11),
 SIKEp964r1‑KEM (12),
 BIKE1r2‑CCA‑Level1 (13),
 BIKE1r2‑CCA‑Level3 (14),
 BIKE1r2‑CCA‑Level5 (15),
 SIKEp434r2‑KEM (16),
 SIKEp503r2‑KEM (17),
 SIKEp610r2‑KEM (18),
 SIKEp751r2‑KEM (19)
 } NamedPQKEM (2^16‑1);

 "BIKE1r1-Level1", etc: Indicates support of the corresponding BIKE
 parameters defined in BIKE Round 1, the round 1 candidate to the NIST
 Post-Quantum Cryptography Standardization Process.

 "BIKE1r2-CCA-Level1", etc: Indicates support of the corresponding
 BIKE CCA parameters defined in BIKE Round 2, the round 2 CCA
 candidate to the NIST Post-Quantum Cryptography Standardization
 Process.

 "SIKE1r1-Level1", etc: Indicates support of the corresponding SIKE
 parameters defined in SIKE Round 1, the round 1 candidate to the NIST
 Post-Quantum Cryptography Standardization Process.
 "SIKE1r2-Level1", etc: Indicates support of the corresponding SIKE
 parameters defined in SIKE Round 2, the round 2 candidate to the NIST
 Post-Quantum Cryptography Standardization Process.

struct {
 NamedPQKEM pq_kem_parameters_list <1..2^16‑1>
 } PQKEMParametersExtension;

 Items in "pq_kem_parameters_list" are ordered according to the
 client's preferences (favorite choice first).

 As an example, a client that only supports BIKE1r1-Level1 (value 1 =
 0x0001), BIKE2-Level1 (value 4 = 0x0004) and SIKEp503r1-KEM (value
 10 = 0x000A) and prefers to use SIKEp503r1-KEM would include a TLS
 extension consisting of the following octets:

 FE 01 00 08 00 06 00 0A 00 01 00 04

 Note that the first two octets (FE 01) indicate the extension type
 (Supported PQ KEM Parameters extension), the next two octets
 indicates the length of the extension in bytes (00 08), and the next
 two octets indicate the length of enumerated values in bytes (00 06).

5.2. Server Key Exchange

5.2.1. When this message is sent

 This message is sent when using an ECDHE_[KEM] hybrid key exchange
 algorithms.

5.2.2. Meaning of this message

 This message is used to convey the server's ephemeral ECDH and [KEM]
 public keys to the client.

5.2.3. Structure of this message

struct {
 opaque public_key <1,...,2^24 ‑ 1>;
 } PQKEMPublicKey;

 public_key: This is a byte string representation of the [KEM] public
 key following the conversion defined by the [KEM] implementation.

struct {
 NamedPQKEM named_params;
 PQKEMPublicKey public;
 } ServerPQKEMParams;

 The ServerKeyExchange message is extended as follows:

struct {
 ServerECDHParams ecdh_params;
 ServerPQKEMParams pq_kem_params;
 Signature signed_params;
 } ServerKeyExchange;

 where

 o "ecdh_params": Specifies the ECDHE public key and associated
 domain parameters.

 o "pq_kem_params": Specifies the [KEM] public key and associated
 parameters.

 o "signed_params": a signature over the server's key exchange
 parameters. Note that only ciphersuites which include a signature
 algorithm are supported; see Section 6. The private key
 corresponding to the certified public key in the server's
 Certificate message is used for signing.

digitally‑signed struct {
 opaque client_random[32];
 opaque server_random[32];
 ServerDHParams ecdh_params;
 ServerPQKEMParams pq_kem_params;
 } Signature;

 The parameters are hashed as part of the signing algorithm as
 follows, where H is the hash function used for generating the
 signature:

 For ECDHE_[KEM]:

 "H(client_random[32] + server_random[32] + ecdh_params +
 pq_kem_params)."

 NOTE: This specification only defines hybrid ciphersuites with RSA
 and ECDSA signatures. See [RFC5246] and RFC 8422, respectively, for
 details on their use in TLS 1.2.

5.2.4. Actions of the sender

The server selects elliptic curve domain parameters and an ephemeral
ECDH public key corresponding to these parameters according to
RFC 8422. The server SHOULD generate a fresh ephemeral ECDH key for
each key exchange so that the hybrid key exchange scheme provides

 forward secrecy. The server selects a PQ KEM parameter set, and uses
 "KeyGen()" for the corresponding parameters of BIKE Round 1, BIKE
 Round 2, SIKE Round 1, or SIKE Round 2 to generate an ephemeral
 public key pair. The server MUST generate a fresh BIKE or SIKE key
 for each key exchange. A server that receives a Supported PQ KEM
 Parameters extension MUST use the client's enumerated capabilities to
 guide its selection of an appropriate cipher suite. The server MUST
 NOT negotiate the use of a PQ KEM parameter set unless they can
 complete the handshake while respecting the choice of parameters
 specified by the client (cf. Section 5.1.6). If the client does not
 include the PQ KEM Parameters extension, the server is free to choose
 any one of the parameters listed in Section 5.1.6.

 If a server is unable to complete the PQ KEM handshake while
 restricting itself to the enumerated parameters, it MUST NOT
 negotiate the use of the corresponding PQ KEM cipher suite.
 Depending on what other cipher suites are proposed by the client and
 supported by the server, this may result in a fatal handshake failure
 alert due to the lack of common cipher suites.

 After selecting a ciphersuite and appropriate parameters, the server
 conveys this information to the client in the ServerKeyExchange
 message using the format defined above.

5.2.5. Actions of the receiver

 The client verifies the signature and retrieves the server's elliptic
 curve domain parameters and ephemeral ECDH public key and the [KEM]
 parameter set and public key from the ServerKeyExchange message.

 A possible reason for a fatal handshake failure is that the client's
 capabilities for handling elliptic curves and point formats are
 exceeded (see RFC 8422), the PQ KEM parameters are not supported (see
 Section 5.1), or the signature does not verify.

5.3. Client Key Exchange

5.3.1. When this message is sent

 This message is sent in all key exchange algorithms. In the key
 exchanges defined in this document, it contains the client's
 ephemeral ECDH public key and the [KEM] ciphertext value.

5.3.2. Meaning of the message

 This message is used to convey ephemeral data relating to the key
 exchange belonging to the client (such as its ephemeral ECDH public
 key and the [KEM] ciphertext value).

5.3.3. Structure of this message

 The TLS ClientKeyExchange message is extended as follows.

struct {
 opaque ciphertext <1,..., 2^24 ‑ 1>;
 } PQKEMCiphertext;

 where

 o "ciphertext": This is a byte string representation of the PQ
 ciphertext of the KEM construction. Since the underlying calling
 convention of the KEM API handles the ciphertext byte string
 directly it is sufficient to pass this as single byte string array
 in the protocol.

struct {
 ClientECDiffieHellmanPublic ecdh_public;
 PQKEMCiphertext ciphertext;
 } ClientKeyExchange;

5.3.4. Actions of the sender

 The client selects an ephemeral ECDH public key corresponding to the
 parameters it received from the server according to RFC 8422. The
 client SHOULD generate a fresh ephemeral ECDH key for each key
 exchange so that the hybrid key exchange scheme provides forward
 secrecy. Using the "Encaps(pk)" function corresponding to the PQ KEM
 and named parameters in ServerKeyExchange message, the client
 computes a [KEM] ciphertext. It conveys this information to the
 server in the ClientKeyExchange message using the format defined
 above.

5.3.5. Actions of the receiver

 The server retrieves the client's ephemeral ECDH public key and the
 [KEM] ciphertext from the ClientKeyExchange message and checks that
 it is on the same elliptic curve as the server's ECDHE key, and that
 the [KEM] ciphertexts conform to the domain parameters selected by
 the server. The server uses the "Decaps(pk)" function corresponding
 to the PQ KEM and named parameters in ServerKeyExchange message to
 compute the KEM shared secret.

 In the case of BIKE there is a decapsulation failure rate no greater
 than 10^(-7). In the case of a decapsulation failure, an
 implementation MUST abort the handshake.

5.4. Derivation of the master secret for hybrid key agreement

 This section defines a new hybrid master secret derivation. It is
 defined under the assumption that we use the concatenated premaster
 secret defined in Section 3.1 (Section 3). Recall in this case the
 premaster_secret = Z || K, where Z it the ECDHE shared secret, and K
 is the KEM shared secret.

 We define the master secret as follows:

 master_secret[48] = TLS-PRF(secret, label, seed)

 where

 o "secret": the premaster_secret,

 o "label": the string "hybrid master secret", and

 o "seed": the concatenation of "ClientHello.random ||
 ServerHello.random || ClientKeyExchange"

6. Cipher Suites

 The table below defines new hybrid key exchange cipher suites that
 use the key exchange algorithms specified in Section 2 (Section 2).

+‑‑‑+
| Ciphersuite |
+‑‑‑+
| TLS_ECDHE_BIKE_ECDSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x01 } |
| |
| TLS_ECDHE_BIKE_ECDSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x02 } |
| |
| TLS_ECDHE_BIKE_RSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x03 } |
| |
| TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x04 } |
| |
| TLS_ECDHE_SIKE_ECDSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x05 } |
| |
| TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x06 } |
| |
| TLS_ECDHE_SIKE_RSA_WITH_AES_128_GCM_SHA256 = { 0xFF, 0x07 } |
| |
| TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x08 } |
+‑‑‑+

 Table 2: TLS hybrid key exchange cipher suites

The key exchange method, signature algorithm, cipher, and hash
algorithm for each of these cipher suites are easily determined by
examining the name. Ciphers and hash algorithms are defined in
RFC 5288.

 It is recommended that any implementation of this specification
 include both of the following ciphersuites:

 o TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x04 }

 o TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF, 0x08 }

 using the parameters BIKE1r1-Level1 and SIKEp503r1-KEM.

7. Security Considerations [DRAFT]

 The security considerations in TLS 1.2 [RFC5246] and RFC 8422 apply
 to this document as well. In addition, as described in RFC 5288 and
 RFC 5289, these cipher suites may only be used with TLS 1.2 or
 greater.

 The description of a KEM is provided in Section 2.1. The security of
 the KEM is defined through the indistinguishability against a chosen-
 plaintext (IND-CPA) and against a chosen-ciphertext (IND-CCA)
 adversary. We are focused here on the IND-CPA security of the KEM.
 As a result, implementations MUST NOT use a KEM key more than once,
 as reusing keys with IND-CPA KEMs can result in chosen ciphertext
 attacks like the GJS attack against BIKE [GJS].

 In the IND-CPA experiment of KEMs, an oracle generates keys (sk, pk)
 with "KeyGen()", computes (c, K) with "Encaps(pk)", and draws
 uniformly at random a value R from the key space, and a random bit b.
 The adversary is an algorithm A that is given (pk, c, K) if b=1, and
 (pk, c, R) if b=0. Algorithm A outputs a bit b' as a guess for b,
 and wins if b' = b.

 All of the ciphersuites described in this document are intended to
 provide forward secrecy. The hybrid key exchange mechanism described
 in this specification achieves forward secrecy when all ephemeral
 keys are single-use. This specification requires single-use PQ KEM
 keys, so ephemeral ECDH keys SHOULD also be single-use so that
 forward secrecy is achieved.

8. IANA Considerations

 This document describes three new name spaces for use with the TLS
 protocol:

9. Acknowledgements

 This specification is based on ideas discussed with Ian Goldberg,
 Michele Mosca, Douglas Stebila and William Whyte during preparations
 for the first ETSI-IQC Quantum Safe Cryptography Workshop in 2013.
 The specification was developed through collaboration on the open
 source s2n project with Nicholas Allen, Nir Drucker, Shay Gueron,
 Andrew Hopkins, Colm MacCarthaigh and Alex Weibel.

10. Normative References

 [BIKEr1]
 Misoczki, R., Aragon, N., Barreto, P., Bettaieb, S.,
 Bidoux, L., Blazy, O., Deneuville, J., Gaborit, P.,
 Gueron, S., Guneysu, T., Melchor, C., Persichetti, E.,
 Sendrier, N., Tillich, J., and G. Zemor, "BIKE: Bit
 Flipping Key Encapsulation", November 2017,
 <http://http://bikesuite.org/files/BIKE.pdf>.

 [BIKEr2]
 Misoczki, R., Aragon, N., Barreto, P., Bettaieb, S.,
 Bidoux, L., Blazy, O., Deneuville, J., Gaborit, P.,
 Gueron, S., Guneysu, T., Melchor, C., Persichetti, E.,
 Sendrier, N., Tillich, J., Vasseur, V., and G. Zemor,
 "BIKE: Bit Flipping Key Encapsulation", March 2018,
 <https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
 Cryptography/documents/round-2/submissions/BIKE-
 Round2.zip>.

 [GJS]
 Guo, Q., Johansson, T., and P. Stankovski, "A Key Recovery
 Attack on MDPC with CCA Security Using Decoding Failures",
 2016, <https://eprint.iacr.org/2016/858.pdf>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5288]
 Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 DOI 10.17487/RFC5288, August 2008,
 <https://www.rfc-editor.org/info/rfc5288>.

 [RFC5289]
 Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 DOI 10.17487/RFC5289, August 2008,
 <https://www.rfc-editor.org/info/rfc5289>.

 [RFC8422]
 Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [SIKEr1]
 Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De
 Feo, L., Hess, B., Jalali, A., Koziel, B., LaMacchia, B.,
 Longa, P., Naehrig, M., Renes, J., Soukharev, V., and D.
 Urbanik, "Supersingular Isogeny Key Encapsulation",
 November 2017, <https://csrc.nist.gov/CSRC/media/Projects/
 Post-Quantum-Cryptography/documents/round-1/submissions/
 SIKE.zip>.

 [SIKEr2]
 Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De
 Feo, L., Hess, B., Jalali, A., Koziel, B., LaMacchia, B.,
 Longa, P., Naehrig, M., Pereira, G., Renes, J., Soukharev,
 V., and D. Urbanik, "Supersingular Isogeny Key
 Encapsulation", April 2019,
 <https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
 Cryptography/documents/round-2/submissions/SIKE-
 Round2.zip>.

Appendix A. Additional Stuff

 This becomes an Appendix.

Authors' Addresses

Matt Campagna
AWS

 Email: campagna@amazon.com

Eric Crockett
AWS

 Email: ericcro@amazon.com

draft-camwinget-tls-proxy-impact-00 - Impact of TLS 1.3 to Operational Network Security Practices

draft-camwinget-tls-proxy-impact-00 - Impact of TLS 1.3 to Operational Network S

Index
Back 5
Prev
Next
Forward 5

TODO Working Group

Internet-Draft

Intended status: Informational

Expires: May 7, 2020

N. Cam-Winget

E. Wang

Cisco Systems, Inc.

R. Danyliw

Software Engineering Institute

R. DuToit

Symantec

November 04, 2019

Impact of TLS 1.3 to Operational Network Security Practices

draft-camwinget-tls-proxy-impact-00

Abstract

 Network-based security solutions are used by enterprises, the public
 sector, internet-service providers, and cloud-service providers to
 both complement and enhance host-based security solutions. As the
 most widely deployed protocol to secure communication, these network-
 based security solutions must necessarily interact with TLS. This
 document describes this interaction for current operational security
 practices and notes the impact of TLS 1.3 on them.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions and Definitions

	3. How TLS is used to enable Network-Based Security Solutions
	 3.1. Passive TLS Inspection
	 3.1.1. OP-1. Acceptable Use Policy (AUP) Enforcement (via header inspection)

	 3.1.2. OP-2. Network Behavior Analytics

	 3.1.3. OP-3. Crypto and Security Policy Compliance (server)

	 3.1.4. OP-4. Crypto and Security Policy Compliance (client)

	 3.2. Outbound TLS Proxy
	 3.2.1. OP-5: Acceptable Use Policy (AUP) Enforcement (via payload inspection)

	 3.2.2. OP-6: Data Loss Prevention Compliance

	 3.2.3. OP-7: Granular Network Segmentation

	 3.2.4. OP-8: Network-based Threat Protection (client)

	 3.2.5. OP-9: Protecting Challenging End Points

	 3.2.6. OP-10: Content Injection

	 3.3. Inbound TLS Proxy
	 3.3.1. OP-11: TLS offloading

	 3.3.2. OP-12. Content distribution and application load balancing

	 3.3.3. OP-13: Network-based Threat Protection (server)

	 3.3.4. OP-14: Full Packet Capture

	 3.3.5. OP-15: Application Layer Gateway (ALG)

	4. Changes in TLS v1.3 Relevant to Security Operations
	 4.1. Perfect Forward Secrecy (PFS)

	 4.2. Encrypted Server Certificate

	5. Security Considerations

	6. IANA Considerations

	7. Appendix A: Summary Impact to Operational Practices with TLS 1.3

	8. Normative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 Enterprises, public sector organizations, internet service providers
 and cloud service providers defend their networks and information
 systems from attacks that originate from inside and outside their
 networks. These organizations commonly employ security architectures
 that involve complementary technologies deployed on both endpoints
 and in the network; and collaborative watch-and-warning practices to
 realize this defense.

 The design of these security architectures and associated practices
 entails numerous trade-offs. Typically, there is more than one
 technical approach to realize a particular mitigation, although
 comparable approaches may have different costs or side-effects.
 Network-based solutions are often attractive because a single network
 device can:

 o provide protection to many hosts and systems at once

 o protect systems regardless of their type (e.g., fully patched
 desktop systems on a modern operating system; unpatched function-
 specific industrial control system)

 o enforce policy on a system even if it is compromised,
 misconfigured, not under configuration control or had its endpoint
 protection disabled

 o be managed (e.g. updates) and provisioned resources (e.g. disk and
 computing) independent of the systems it is protecting

 In response to the adoption of new technologies, protocols and
 threats, these security architectures must evolve to remain
 effective. [RFC8404] documented such a need with the effect of
 pervasive encryption on operations. This document takes a narrower
 focus by documenting the interaction of existing network-based
 security practices with TLS v1.2 [RFC5246] (and earlier) traffic to
 implement security policy, detection or mitigation of threats; and
 the impact on these practices with improvements made in TLS v1.3
 [RFC8446].

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Specific operational practices are numbered as "OP-##", operational
 practice 1 (i.e., OP-1), 2 (i.e., OP-2), etc.

3. How TLS is used to enable Network-Based Security Solutions

 Network-based security solutions come in many forms, most commonly as
 Firewalls, Intrusion Detection Systems (IDS), and Intrusion
 Prevention Systems (IPS). They inspect the network traffic, and then
 based on their function, log their observation and/or act on the
 traffic to implement security policy. When these devices act on the
 network traffic, they are typically deployed inline, as middleboxes.
 If their function is only to observe, they can be deployed either as
 middleboxes or given access to the network traffic out-of-band (OOB),
 through the network fabric (e.g., network tap or span port).

 Depending on their function, network-based security devices need
 different degrees of visibility into the TLS traffic. Some
 operational practices require only access to the unencrypted protocol
 headers and associated meta-data of the TLS traffic. Other practices
 require full visibility into the encrypted session (payload).

 The practices that inspect only the unencrypted headers and meta-data
 of TLS, require no special capabilities beyond access to the TLS
 packets. However, to inspect the encrypted payload of TLS traffic
 requires a TLS proxy.

 A TLS proxy provides visibility and inspection to effectuate security
 controls without changing the state machine of the TLS Server and TLS
 Client, or the user experience. This TLS Proxy is a transparent hop
 on the packet path; and where necessary, preserves the client's and
 server's original IP address and the intended source and destination
 TCP ports.

 To achieve this, a TLS Proxy must be able to present a valid X.509
 certificate to the TLS client to appear as a valid TLS Server;
 similarly, the client must be able to validate the X.509 certificate
 using the appropriate trust anchor for that TLS connection. To
 achieve this, a deployment must properly provision their systems (TLS
 Proxies and TLS clients).

 Specific network security operational practices applied to TLS v1.2
 (and earlier) are described in subsequent sub-sections. They are
 categorized into the following deployment scenarios:

 1. Passive TLS inspection, where the network-based security function
 is inspecting either the inbound or outbound TLS header or meta-
 data traffic

 2. Outbound TLS Proxy, where a TLS proxy mediates a TLS session
 originating from a client inside the perimeter (and in the same
 administrative domain as the proxy) towards an entity on the
 outside

 3. Inbound TLS Proxy, where a TLS proxy mediates a TLS session from
 a client outside the perimeter towards an entity on the inside
 (and in the same administrative domain as the proxy)

 Each deployment scenario describes relevant operational practices.
 For each operational practice, possible deployment modes (e.g.,
 inline, out-of-band), a description of the practice, and the impact
 of TLS v1.3 is categorized and explained. The categorized impacts to
 practices when migrating to TLS v1.3 are as follows:

 o no impact - no change in capability or performance is expected
 with this practice

 o no capability impact - no change in capability is expected; but
 there may be a performance or implementation change required for
 this practice

 o reduced effectiveness - this practice will not be as effective on
 TLS v1.3 traffic

 o alternative approach required - this practice will not work with
 TLS v1.3 traffic

3.1. Passive TLS Inspection

 Passive TLS inspection is the deployment scenario where a network
 security device passively inspects inbound or outbound TLS traffic to
 make visibility inferences or take policy actions. The network
 security device examines only the unencrypted TLS protocol headers
 and does not have access to the encrypted content of the payload.

 The TLS proxy deployment scenarios may also incorporate these
 practices.

3.1.1. OP-1. Acceptable Use Policy (AUP) Enforcement (via header
 inspection).

 Deployment mode: inline

 A firewall or web proxy restricts a client in the same administrative
 domain from accessing sites or services outside that domain per an
 acceptable use policy. The identification of the destination server
 is performed through the inspection of either the SNI field in the
 TLS ClientHello message from the client; or by extracting the server
 identity from the Common Name (CN) or Subject Alternative Name (SAN)
 fields of an X.509 certificate that is presented in the server's
 Certificate TLS message. This data is used for domain categorization
 or application identification.

 This meta-data can also inform decryption eligibility decisions by a
 firewall, in OP-4. For instance, a firewall may bypass traffic
 decryption for a connection destined to a healthcare web service due
 to privacy compliance requirements.

 TLS 1.3 impact: reduced effectiveness. Per Section 4.2, domain
 categorization and application identification will be limited to IP
 address and SNI information (beyond additional correlation possible
 with other means such as DNS).

 While an SNI is mandatory in TLS 1.3, there is no guarantee that the
 server responding is the one indicated in the SNI from the client. A
 SNI alone, without comparison of the server certificate, does not
 provide reliable information about the server that the client is
 attempting to reach. Where a client has been compromised by malware,
 it may present an innocuous SNI to bypass protective filters (e.g.,
 to reach a command and control server), and this will be undetectable
 under TLS 1.3.

3.1.2. OP-2. Network Behavior Analytics

 Deployment mode: inline and out-of-band

 Network behavior analysis and machine learning engines in IDSs, IPSs
 and firewalls observe the cleartext fields of the TLS handshake
 (e.g., session cipher suites) and conducts traffic analysis by
 observing encrypted record sizes, packet rates and their inter-
 arrival times, and similar outer connection behavior. They match
 encrypted connections against known application patterns; identify
 anomalies; and identify or block those without payload inspection.
 These analytics may also observe that malicious applications may
 deliberately manipulate certain TLS header fields, throttle packet
 rates, and vary payload sizes in order to circumvent detection.

 TLS 1.3 considerations: reduced effectiveness. Per Section 4.2, any
 features relying on Certificate information will not be available.

3.1.3. OP-3. Crypto and Security Policy Compliance (server)

 Deployment: out-of-band

 A network security device observes TLS handshake traffic to audit
 that TLS server configuration conforms to policy. This compliance
 monitoring commonly examines ciphersuites (e.g., use of weak
 ciphersuites) and certificate properties (e.g., no self-signed
 certificates, black or white list of certificate authorities,
 certificate expiration times).

 TLS 1.3 considerations: reduced effectiveness. Per Section 4.2, only
 TLS ClientHello and ServerHello parameters can be audited.
 Certification information will not be visible.

3.1.4. OP-4. Crypto and Security Policy Compliance (client)

 Deployment: inline

 A network security device observes TLS handshake traffic to ensure
 that clients negotiating TLS connections have configurations (e.g.,
 only make connections with TLS 1.2+) and server certificate (e.g.,
 black-listed CAs) that adhere to policy. This is a variant of OP-3.
 It is commonly used in deployments where an organization may have
 reduced configuration control of end points (e.g., lab environments,
 Bring Your Own Device arrangements, and IoT).

 TLS 1.3 considerations: reduced effectiveness. Per Section 4.2, only
 TLS ClientHello and ServerHello parameters can be audited.
 Certification information will not be visible.

3.2. Outbound TLS Proxy

 Outbound TLS proxy is the deployment scenario where a security device
 that performs the TLS proxy function is in the same administrative
 domain as the TLS client, and the TLS server is located in an
 external zone such as the Internet or in another policy zone of the
 same administrative domain. Usually the goal is to protect the
 client endpoint and the organization by controlling application
 behaviors and enforcing an acceptable use policy for the
 organizational network. See Figure 1.

 The administrator manages the TLS client to allow interception by the
 TLS proxy, usually by deploying a local Certificate Authority (CA)
 certificate on the TLS client. A typical scenario is an
 organization-managed client endpoint, such as a laptop or a mobile
 device that accesses the Internet through the organizational network.
 When a client attempts to access an external TLS server, the TLS
 proxy function typically presents a locally signed certificate from
 the local CA on behalf of the server; alternatively, the certificate
 generation function may be offloaded to an external Hardware Security
 Module (HSM) service with which that the TLS proxy must integrate.

 _________ __________
 \ /
 \ | Administrative
 \ | Domain, _‑‑‑‑__
 +‑+ \ | Zone 2 / / ____
 | | \ ______/ __/ +‑‑‑‑‑‑+ \
 |C|.. | . / |S‑NEWS| __
 | | . | . (+‑‑‑‑‑‑+ \
 +‑+ . +‑‑‑+ . (+‑‑‑‑‑‑‑‑+)
 ..| |.... \ |S‑GAMING|)
 | P |..........(+‑‑‑‑‑‑‑‑+)
 +‑+ ...| | \ +‑‑‑‑‑‑‑‑‑+)
 | | . +‑‑‑+ (|S‑BANKING| /
 |C|... | _.+‑‑‑‑‑‑‑‑‑+)
 | | | \.. /
 +‑+ / ____‑‑'
 /
Administrative / Internet
Domain, Zone 1 /
 _________/

 Figure 1: Outbound TLS proxy

3.2.1. OP-5: Acceptable Use Policy (AUP) Enforcement (via payload
 inspection)

 Deployment: inline

 A firewall or web proxy restricts a client in the same administrative
 domain from accessing sites or services outside that domain per an
 acceptable use policy. Similar in intent to OP-1, but the policy
 enforcement in this practice requires access to data in the TLS
 session (e.g., URL).

 TLS 1.3 considerations: no capability impact. See Section 4.2 if a
 selective decryption policy is used.

3.2.2. OP-6: Data Loss Prevention Compliance

 Deployment: inline

 A firewall enforces a Data Loss Prevention (DLP) policy by monitoring
 the TLS sessions content of outbound communication for systems
 sending organizational proprietary content or other restricted
 information.

 TLS 1.3 considerations: no capability impact. See Section 4.2 if a
 selective decryption policy is used.

3.2.3. OP-7: Granular Network Segmentation

 Deployment: inline

 A firewall mediates the traffic between different policy zones in an
 organization. The access policies between these zones may be based
 on application names and categories rather than static IP addresses
 and TCP/UDP port numbers. Through a TLS proxy, the firewall can
 inspect URLs and other application parameters based on data in the
 TLS session.

 TLS 1.3 considerations: no capability impact. See Section 4.2 if a
 selective decryption policy is used.

3.2.4. OP-8: Network-based Threat Protection (client)

 Deployment: inline or out-of-band (depending on functionality)

 Web proxies and firewalls protect end-users against a range of
 threats by inspecting the data in the TLS session with a variety of
 analytical techniques (e.g., signatures, heuristics, statistical
 models, machine learning). This practice is a superset of OP-2.
 Common goals are to prevent malware from reaching the endpoint,
 preventing malware communication from a compromised host, restricting
 lateral network movement of an intruder and gathering insight into
 the behavior of threat activity on the network.

 In certain deployments these technologies are also used to act as a
 last line of defense against software vulnerabilities on endpoints -
 either for 0-days for which there is no patch, or simply unpatched
 clients.

 TLS 1.3 considerations: no capability impact. See Section 4.2 if a
 selective decryption policy is used.

3.2.5. OP-9: Protecting Challenging End Points

 Deployment mode: inline

 Web proxies, IPS and firewalls implement security policy and afford
 protection to devices for which it is not feasible to run an end-
 point solution (e.g., IoT); or that are end-of-life and will not
 receive patches. This is a specialized instance of OP-8 targeting
 these disadvantaged classes of devices.

 These practices ensure that that older endpoints (and in some cases
 even new ones) are not permanently vulnerable to newly discovered
 vulnerabilities.

 TLS 1.3 considerations: no capability impact. See Section 4.2 if a
 selective decryption policy is used.

3.2.6. OP-10: Content Injection

 Deployment: inline

 A firewall or web proxy restricts insert a message, such as a block
 page or an interactive authentication portal redirect, into the
 encrypted flow for the client to see. This may be used in
 conjunction with OP-1, OP-5, and OP-7.

 TLS 1.3 considerations: no capability impact. See Section 4.2 if a
 selective decryption policy is used.

3.3. Inbound TLS Proxy

 Inbound TLS proxy is the deployment scenario where the TLS proxy is
 deployed in front of one or a set of servers or services. The
 network device that implements the TLS proxy function is located in
 the same administrative domain as the server(s) or service(s) it is
 protecting. Usually it is not predictable or controllable as to
 which TLS client will initiate a connection. See Figure 2.

 The TLS proxy is provisioned with the server's certificates and
 private keys so that it may either decrypt or terminate the TLS
 connection on behalf of the server. In some instances, the TLS proxy
 may need to periodically retrieve the private keys and associated
 certificates from an external secure distribution service, such as a
 HSM. Traffic between the TLS proxy and server may be encrypted or in
 the clear; the former configuration is typical of a perimeter
 firewall while the latter of a load-balancer.

 /
 / S
 _‑‑‑‑__ / .‑‑.
 / ____ / |==|
 __/ / |‑‑|
 / +‑+ +‑+ __ | |==| S
(| | | | \ | . |‑‑| .‑‑.
(|C| +‑+ |C| +‑+) +‑‑‑+ . |::| |==|
 \ | | | | | | | |) | |... |__| |‑‑|
 (+‑+ |C| +‑+ |C|..............| P | S " " |==|
 \ | | | |) | |... .‑‑. |‑‑|
 (+‑+ +‑+ / +‑‑‑+ . |==| |::|
 _.) | . |‑‑| |__|
 \.. / | ..|==| " "
 ____‑‑' \ |‑‑|
 \ |::| Administrative
 External Network \ |__| Domain
 \ " "

 Figure 2: Inbound TLS proxy

3.3.1. OP-11: TLS offloading

 Deployment mode: inline

 Offloads crypto operations from the application server to a TLS
 Proxy. This is not a typical security function on its own, but it
 facilitates security control insertion downstream. As this is in the
 same administrative domain, it is presumed that a TLS Proxy can be
 provisioned with the appropriate keys when the TLS Server is
 configured or managed.

 TLS 1.3 considerations: no impact.

3.3.2. OP-12. Content distribution and application load balancing

 Deployment mode: inline

 Load balancers deployed in front of services provide resiliency
 against denial of service attacks. TLS proxy functionality provides
 access to the cleartext application layer data to enable service-
 tailored load balancing. Similar to OP-11, it is presumed that a TLS
 Proxy can be provisioned with the appropriate keys when the TLS
 Server is configured or managed.

 This practice may be combined with OP-11.

 TLS 1.3 considerations: no impact.

3.3.3. OP-13: Network-based Threat Protection (server)

 Deployment mode: inline and out-of-band

 Web application firewalls (WAF) and firewalls protect servers and
 services against a range of threats by inspecting the data in the TLS
 session with a variety of analytical techniques (e.g., signatures,
 heuristics, statistical models, machine learning). This practice is
 identical in function to OP-8, but focused on threat prevention of
 inbound requests to servers and services.

 TLS 1.3 considerations for inline deployment mode: no capability
 impact. Per Section 4.1, the network security device must explicitly
 terminate the TLS connection from the client.

 TLS 1.3 considerations for out-of-band mode: alternative approach
 required. Per Section 4.1, active participation in the TLS exchange
 is required to inspect the session.

3.3.4. OP-14: Full Packet Capture

 Deployment mode: inline and out-of-band

 A network security device stores a copy of all decrypted traffic that
 meets a given filter. This traffic may be continuously captured in a
 rolling buffer for use in future forensic analysis, incident
 response, or computationally intensive retrospective analysis. This
 collection may also be selectively enabled to support application
 troubleshooting.

 TLS 1.3 considerations for inline deployment mode: no capability
 impact. Per Section 4.1, the network security device must explicitly
 terminate the TLS connection from the client.

 TLS 1.3 considerations for out-of-band mode: alternative approach
 required. Per Section 4.1, offline decryption is not possible.

3.3.5. OP-15: Application Layer Gateway (ALG)

 Deployment mode: inline

 To conduct protocol conformance checks and rewrite embedded IP
 addresses and TCP/UDP ports within the application layer payload for
 traffic traversing a NAT boundary. While not strictly a security
 function, this capability may typically be found in firewalls along
 with the NAT supporting functions.

 TLS 1.3 considerations: no impact.

4. Changes in TLS v1.3 Relevant to Security Operations

 TLS v1.3 introduces a number of protocol design changes to improve
 security and privacy. However, these enhancements impact current
 network security operational practices that rely on the protocol
 behavior of earlier TLS versions.

4.1. Perfect Forward Secrecy (PFS)

 TLS 1.2 (and earlier versions) supports static RSA and Diffie-Hellman
 (DH) cipher suites, which enables the server's private key to be
 shared with a TLS proxy. TLS 1.3 has removed support for these
 cipher suites in favor of supporting only ephemeral mode Diffie-
 Hellman to provide perfect forward secrecy (PFS). As a result of
 this enhancement, it would no longer possible for a server to share a
 key with the middlebox in advance, which in turn implies that the
 middlebox cannot gain access to the TLS session data.

4.2. Encrypted Server Certificate

 TLS 1.2 (and earlier versions) sends the ClientHello, ServerHello and
 Certificate messages in clear-text. In TLS 1.3, the Certificate
 message is encrypted whereby hiding the server identity from any
 intermediary. As a result of this enhancement, it would no longer be
 possible to observe the server certificate without inspection the
 encrypted TLS payload.

 TLS proxies which implement a selective decryption policy will need
 to alter their behavior to accommodate TLS 1.3. In TLS 1.2 (and
 earlier), the proxy could observe the TLS handshake till seeing the
 clear text server certificate to make the decryption policy decision.
 For example, a proxy may not be permitted to decrypt certain types of
 traffic such as those going to a banking and health care service.
 However, in TLS 1.3, the TLS proxy must participate in both
 handshakes (i.e., client-to-proxy; and proxy-to-server) in order to
 view the server certificate. This change will impose a slight
 increase in load per connection on the proxy.

5. Security Considerations

 This entire document discusses security considerations in existing
 operational security practices interacting with TLS. It notes where
 existing practices will have to be adjusted to remain effective due
 to TLS v1.3 improvements.

 These operational practices involve both good faith and malicious
 client applications. The former category typically exhibits
 consistently identifiable behavior and does not actively prevent any
 transit inspection devices from performing application identification
 for visibility and control purposes. The latter category of
 applications actively attempts to circumvent network security
 controls by deliberately manipulating various protocol headers,
 injecting specific messages, and varying payload sizes in order to
 avoid identification or to masquerade as a different permitted
 application.

6. IANA Considerations

 This document has no IANA actions.

7. Appendix A: Summary Impact to Operational Practices with TLS 1.3

+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Operational Practice | Impact with TLS 1.3 |
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
OP‑1: AUP enforcement (headers only)	reduced effectiveness
OP‑2: Behavior analytics (headers only)	reduced effectiveness
OP‑3: Crypto compliance monitoring (server)	reduced effectiveness
OP‑4: Crypto compliance monitoring (client)	reduced effectiveness
OP‑5: AUP enforcement (payload)	no capability impact
OP‑6: Data loss prevention compliance	no capability impact
OP‑7: Granular network segmentation	no capability impact
OP‑8: Network protection (client)	no capability impact
OP‑9: Protecting challenging end points	no capability impact
OP‑10: Content Injection	no capability impact
OP‑11: TLS offloading	no impact
OP‑12: Application load balancing	no impact
OP‑13: inline: Network protection (server)	no operational impact
OP‑13: oob: Network protection (server)	alternative required
OP‑14: inline: Full packet capture	no operational impact
OP‑14: oob: Full packet capture	alternative required
OP‑15: Application layer gateway	no impact
+‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8404]
 Moriarty, K., Ed. and A. Morton, Ed., "Effects of
 Pervasive Encryption on Operators", RFC 8404,
 DOI 10.17487/RFC8404, July 2018,
 <https://www.rfc-editor.org/info/rfc8404>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Acknowledgments

 The authors thank Andrew Ossipov, Flemming Andreasen and Kirsty Paine
 for their contributions and valuable feedback.

Authors' Addresses

Nancy Cam‑Winget
Cisco Systems, Inc.
3550 Cisco Way
San Jose, CA 95134
USA

 EMail: ncamwing@cisco.com

Eric Wang
Cisco Systems, Inc.
3550 Cisco Way
San Jose, CA 95134
USA

 EMail: ejwang@cisco.com

Roman Danyliw
Software Engineering Institute

 EMail: rdd@cert.org

Roelof DuToit
Symantec

 EMail: r@nerd.ninja

draft-camwinget-tls-ts13-macciphersuites-04 - TLS 1.3 Authentication and Integrity only Ciphersuites

draft-camwinget-tls-ts13-macciphersuites-04 - TLS 1.3 Authentication and Integri

Index
Back 5
Prev
Next
Forward 5

TLS

Internet-Draft

Intended status: Informational

Expires: January 9, 2020

N. Cam-Winget

Cisco Systems

J. Visoky

ODVA

July 8, 2019

TLS 1.3 Authentication and Integrity only Ciphersuites

draft-camwinget-tls-ts13-macciphersuites-04

Abstract

 There are use cases, specifically in Internet of Things (IoT) and
 constrained environments that do not require confidentiality, though
 mutual authentication during tunnel establishment and message
 integrity is still mandated. This document defines the use of HMAC
 only as ciphersuites in TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Applicability Statement

	4. Using Integrity only Cipher Suites

	5. Record Payload Protection for Integrity only Cipher Suites

	6. Key Schedule when using Integrity only Cipher Suites

	7. IANA Considerations

	8. Security and Privacy Considerations

	9. Acknowledgements

	10. References
	 10.1. Normative References

	 10.2. Informative Reference

	Authors' Addresses

1. Introduction

 There are several use cases in which communications privacy is not
 strictly needed, although authenticity of the communications
 transport is still very important. For example, within the
 Industrial Automation space there could be TCP or UDP communications
 which command a robotic arm to move a certain distance at a certain
 speed. Without authenticity guarantees an attacker could modify the
 packets to change the movement of the robotic arm, potentially
 causing physical damage. However, the motion control commands are
 not considered to be sensitive information and thus there is no
 requirement to provide confidentiality. Another IoT example with no
 strong requirement for confidentiality is the reporting of weather
 information; however, message authenticity is required to ensure
 integrity of the message..

 Besides having a strong need for authenticity and a weak need for
 confidentiality, many of these systems also have serious latency
 requirements. Furthermore, several IoT devices (industrial or
 otherwise) have limited processing capability. However, these IoT
 systems still gain great benefit from leveraging TLS 1.3 for secure
 communications. Given the reduced need for confidentiality TLS 1.3
 [RFC8446] cipher suites that maintain data integrity without
 confidentiality are described in this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14 [RFC2119]
 [RFC8174] when, and only when, they appear in all capitals, as shown
 here.

3. Applicability Statement

 The ciphersuites defined in this document are intended for a small
 limited set of applications where confidentiality requirements are
 relaxed and the need to minimize the cryptographic algorithms are
 prioritized. This section describes some of those applicable use
 cases.

 Use cases in the industrial automation industry, while requiring data
 integrity, relax the confidential communications requirement.
 Mainly, information communicated to unmanned machines to execute
 repetitive tasks do not convey private information. For example,
 there could be a system with a robotic arm that is doing high speed
 pick-and-place of materials. The position synchronization data and
 motion commands are required to have very low latency, as the process
 needs to be done at high speed on a compute and memory constrained
 device. However, information such as the position, speed,
 acceleration of the robotic arm or other material in the system is
 not confidential. That is, while an attacker can determine the
 behavioral aspects and task of the device; no intellectual property
 concerns or data privacy concerns exist for these communications.
 However, data integrity is required as being able to modify this data
 would be a threat that an attacker might seek to exploit with serious
 consequences; the attacker could modify the motion information in
 order to cause physical damage to the equipment.

 Another use case which is closely related is that of fine grained
 time updates. Motion systems often rely on time synchronization to
 ensure proper execution. Time updates are essentially public, there
 is no threat from an attacker knowing the time update information.
 This should make intuitive sense to those not familiar with these
 applications; rarely if ever does time information present a serious
 attack surface dealing with privacy. However the authenticity is
 still quite important. Modification of the data can at best lead to
 a denial-of-service attack, although a more intelligent threat actor
 might be able to cause actual physical damage. As these time
 synchronization updates are very fine-grained, it is again important
 for latency to be very low.

 A third use case deals with Alarming data. Industrial control
 sensing equipment can be configured to send alarm information when it
 meets certain conditions. Often times this data is used to detect
 certain out-of-tolerance conditions, allowing an operator or
 automated system to take corrective action. Once again, in many
 systems the reading of this data doesn't grant the attacker
 information that can be exploited, it is generally just information
 regarding the physical state of the system. At the same time, being
 able to modify this data would allow an attacker to either trigger
 alarms falsely or to cover up evidence of an attack that might allow
 for detection of their malicious activity. Furthermore, sensors are
 often low powered devices that might struggle to process encrypted
 and authenticated data. Sending data that is just authenticated
 significantly eases the burden placed on these devices, yet still
 allows the data to be protected against any tampering threats.

 A fourth use case considers the protection of commands in the railway
 industry. In railway control systems, no confidentiality
 requirements are applied for the command exchange between an
 interlocking controller and a railway equipment controller (for
 instance, a railway point controller of a tram track where the
 position of the controlled point is publicly available). However,
 protecting integrity of those commands is vital, otherwise, an
 adversary could change the target position of the point by modifying
 the commands, which consequently could lead to the derailment of a
 passing train. Furthermore, requirements for providing blackbox
 recording of the safety related network traffic can only be fulfilled
 through using integrity only ciphers, to be able to provide the
 safety related commands to a third party, which is responsible for
 the analysis after an accident.

 The above use cases describe the relaxed requirements to provide
 confidentiality, and as these devices come with a small runtime
 memory footprint and reduced processing power, the need to minimize
 the number of cryptographic algorithms used is prioritized.

4. Using Integrity only Cipher Suites

 This document defines the following cipher suites for use in TLS 1.3:

TLS_SHA256_SHA256 {0xC0, 0xB4}

TLS_SHA384_SHA384 {0xC0, 0xB5}

 These cipher suites allow the use of SHA-256 or SHA-384 as the HMACs
 for data integrity protection as well as its use for HKDF. The
 authentication mechanisms remain unchanged with the intent to only
 update the cipher suites to relax the need for confidentiality.

5. Record Payload Protection for Integrity only Cipher Suites

 The record payload protection as defined in [RFC8446] can be retained
 when integrity only cipher suites are used. This section describes
 the mapping of record payload structures when integrity only cipher
 suites are employed.

 As integrity is provided with protection over the full record, the
 encrypted_record in the TLSCiphertext along with the additional_data
 input to AEADEncrypted as defined in Section 5.2 [RFC8446] remains
 the same. The TLSCiphertext.length for the integrity cipher suites
 will be:

TLS_SHA256_SHA256: TLSPlaintext.length + 32

TLS_SHA384_SHA384: TLSPlaintext.length + 48

 The resulting encrypted_record is the concatenation of the
 TLSPlaintext with the resulting HMAC. With this mapping, the decrypt
 order as defined in Section 5.2 of [RFC8446] remains the same. That
 is, the HMAC operation is of the form:

 AEAD-Encrypt-HMAC(write_key, nonce, additional_data, plaintext) =
 plaintext || HMAC(write_key, nonce || additional_data || plaintext)

 The encrypt and decrypt operations provide the integrity protection
 using HMAC SHA-256 or SHA-384 as described in [RFC4634].

6. Key Schedule when using Integrity only Cipher Suites

 The key derivation process for Integrity only Cipher Suites remains
 the same as defined in [RFC8446]. The only difference is that the
 keys used to protect the tunnel applies to the negotiated HMAC
 SHA-256 or HMAC SHA-384 ciphers.

7. IANA Considerations

 IANA has granted registration the following specifically for this
 document:

 TLS_SHA256_SHA256 {0xC0, 0xB4} cipher suite and TLS_SHA384_SHA384
 {0xC0, 0xB5} cipher suite.

 Note that both of these cipher suites are registered with the DTLS-OK
 column set to Y and the Recommneded column set to N

8. Security and Privacy Considerations

 In general, with the exception of confidentiality and privacy, the
 security considerations detailed in [RFC8446] and in [RFC5246] apply
 to this document. Furthermore, as the cipher suites described in
 this document do not provide any confidentiality, it is important
 that they only be used in cases where there are no confidentiality or
 privacy requirements and concerns; and the runtime memory
 requirements can accommodate support for more cryptographic
 constructs.

 With the lack of data encryption specified in this draft, no
 confidentiality or privacy is provided for the data transported via
 the TLS session. To highlight the loss of privacy, the information
 carried in both the Server and Client certificates, while integrity
 protected, will be sent unencrypted. Similarly, other TLS extensions
 that may be carried in the Server's EncryptedExtensions message will
 only be integrity protected without provisions for confidentiality.

 Given the lack of confidentiality, it is of the utmost importance
 that these cipher suites never be enabled by default. As these
 cipher suites are meant to serve the IoT market, it is important that
 any IoT endpoint that uses them be explicitly configured with a
 policy of non-confidential communications.

9. Acknowledgements

 The authors would like to acknowledge the work done by Industrial
 Communications Standards Groups (such as ODVA) as the motivation for
 this document. We would also like to thank Steffen Fries for
 providing a fourth use case. In addition, we are grateful for the
 advice and feedback from Joe Salowey, Blake Anderson and David
 McGrew.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4634]
 Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, DOI 10.17487/RFC4634, July
 2006, <https://www.rfc-editor.org/info/rfc4634>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative Reference

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

Authors' Addresses

Nancy Cam‑Winget
Cisco Systems
3550 Cisco Way
San Jose, CA 95134
USA

 Email: ncamwing@cisco.com

Jack Visoky
ODVA
1 Allen Bradley Dr
Mayfield Heights, OH 44124
USA

 Email: jmvisoky@ra.rockwell.com

draft-camwinget-tls-use-cases-05 - TLS 1.3 Impact on Network-Based Security

draft-camwinget-tls-use-cases-05 - TLS 1.3 Impact on Network-Based Security

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: January 9, 2020

F. Andreasen

N. Cam-Winget

E. Wang

Cisco Systems

July 8, 2019

TLS 1.3 Impact on Network-Based Security

draft-camwinget-tls-use-cases-05

Abstract

 Network-based security solutions are used by enterprises, public
 sector, and cloud service providers today in order to both complement
 and enhance host-based security solutions. TLS 1.3 introduces
 several changes to TLS 1.2 with a goal to improve the overall
 security and privacy provided by TLS. However some of these changes
 have a negative impact on network-based security solutions and
 deployments that adopt a multi-layered approach to security. While
 this may be viewed as a feature, there are several real-life use case
 scenarios where the same functionality and security can not be
 offered without such network-based security solutions. In this
 document, we identify the TLS 1.3 changes that may impact such use
 cases.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 Enterprises, public sector, and cloud service providers need to
 defend their information systems from attacks originating from both
 inside and outside their networks. Protection and detection are
 typically done both on end hosts and in the network. Host agents
 have deep visibility on the devices where they are installed, whereas
 the network has broader visibility. With such network and security
 devices in the network, it can provide, among other functions,
 homogenous security controls across heterogenous endpoints, covering
 devices for which no host monitoring is available (which is common
 today and is increasingly so in the Internet of Things). This helps
 protect against unauthorized devices installed by insiders, and
 provides a fallback in case the infection of a host disables its
 security agent. Because of these advantages, network-based security
 mechanisms are widely used. In fact, regulatory standards such as
 NERC CIP [NERCCIP] place strong requirements about network perimeter
 security and its ability to have visibility to provide security
 information to the security management and control systems. At the
 same time, the privacy of employees, customers, and other users must
 be respected by minimizing the collection of personal data and
 controlling access to what data is collected. These imperatives hold
 for both end host and network based security monitoring.

 Network-based security solutions such as Firewalls (FW) and Intrusion
 Prevention Systems (IPS) rely on some level of network traffic
 inspection to implement perimeter-based security policies. In many
 use cases, only the metadata or visible aspects of the network
 traffic is inspected. Depending on the security functions required,
 these middleboxes can either be deployed as traffic monitoring
 devices or active in-line devices. A traffic monitoring middlebox
 may for example perform vulnerability detection, intrusion detection,
 crypto audit, compliance monitoring, etc. An active in-line
 middlebox may for example prevent malware download, block known
 malicious URLs, enforce use of strong ciphers, stop data
 exfiltration, etc. A portion of such security policies require
 clear-text traffic inspection above Layer 4, which becomes
 problematic when traffic is encrypted with Transport Layer Security
 (TLS) [RFC5246]. Today, network-based security solutions typically
 address this problem by becoming a man-in-the-middle (MITM) for the
 TLS session according to one of the following two scenarios:

 1. Outbound Session, where the TLS session originates from a client
 inside the perimeter towards an entity on the outside

 2. Inbound Session, where the TLS session originates from a client
 outside the perimeter towards an entity on the inside

 For the outbound session scenario, MITM is enabled by generating a
 local root certificate and an accompanying (local) public/private key
 pair. The local root certificate is installed on the inside entities
 for which TLS traffic is to be inspected, and the network security
 device(s) store a copy of the private key. During the TLS handshake,
 the network security device (hereafter referred to as a middlebox)
 makes a policy decision on the current TLS session. The policy
 decision could be pass-through, decrypt, deny, etc. On a "decrypt"
 policy action, the middlebox becomes a TLS proxy for this TLS
 session. It modifies the certificate provided by the (outside)
 server and (re)signs it with the private key from the local root
 certificate. From here on, the middlebox has visibility into further
 exchanges between the client and server which enables it to decrypt
 and inspect subsequent network traffic. Alternatively, based on
 policy, the middlebox may allow the current session to pass through
 if the session starts in monitoring mode, and then decrypt the next
 session from the same client.

 For the inbound session scenario, the TLS proxy on the middlebox is
 configured with a copy of the local servers' certificate(s) and
 corresponding private key(s). Based on the server certificate
 presented, the TLS proxy determines the corresponding private key,
 which again enables the middlebox to gain visibility into further
 exchanges between the client and server and hence decrypt subsequent
 network traffic.

 To date, there are a number of use case scenarios that rely on the
 above capabilities when used with TLS 1.2 [RFC5246] or earlier. TLS
 1.3 [RFC8446] introduces several changes which prevent a number of
 these use case scenarios from being satisfied with the types of TLS
 proxy based capabilities that exist today.

 It has been noted, that currently deployed TLS proxies on middleboxes
 may reduce the security of the TLS connection itself due to a
 combination of poor implementation and configuration, and they may
 compromise privacy when decrypting a TLS session. As such, it has
 been argued that preventing TLS proxies from working should be viewed
 as a feature of TLS 1.3 and that the proper way of solving these
 issues is to solely rely on endpoint (client and server) based
 solutions instead. We believe this is an overly constrained view of
 the problem that ignores a number of important real-life use case
 scenarios that improve the overall security posture. For instance,
 it goes against a layered defense approach. We also note that
 current endpoint-based TLS proxies suffer from many of the same
 security issues as the network-based TLS proxies do [HTTPSintercept].

 The purpose of this document is to provide a representative set of
 network based security use case scenarios that are impacted by TLS
 1.3. For each use case scenario, we highlight the specific aspect(s)
 of TLS 1.3 that make the use case problematic with a TLS proxy based
 solution.

 It should be noted that this document addresses only _security_ use
 cases with a focus on identifying the problematic ones. The document
 does not offer specific solutions to these as the goal is to describe
 how current network security solutions rely on network traffic
 inspection to address customer requirements and use cases.

1.1. Requirements notation

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. TLS 1.3 Change Impact Overview

 Aiming to improve its overall security and privacy, TLS 1.3
 introduces several changes to TLS 1.2, but some of the changes
 present a negative impact on network based security. In this
 section, we describe those TLS 1.3 changes and briefly outline some
 scenario impacts. We divide the changes into two groups; those that
 impact inbound sessions and those that impact outbound sessions.

2.1. Inbound Session Change Impacts

2.1.1. Removal of Static RSA and Diffie-Hellman Cipher Suites

 TLS 1.2 supports static RSA and Diffie-Hellman(DH) cipher suites,
 which enables the server's private key to be shared with server-side
 middleboxes. TLS 1.3 has removed support for these cipher suites in
 favor of supporting only ephemeral mode Diffie-Hellman in order to
 provide perfect forward secrecy (PFS). As a result of this, it is no
 longer possible for a server to share a key with the middlebox a
 priori, which in turn implies that the middlebox cannot gain access
 to the TLS session data.

 Example scenarios that are impacted by this include network
 monitoring, troubleshooting, compliance, etc.

 For further details (and a suggested solution), please refer to
 [I-D.green-tls-static-dh-in-tls13].

2.2. Outbound Session Change Impacts

2.2.1. Encrypted Server Certificate

 In TLS, the ClientHello message is sent to the server's transport
 address (IP and port). The ClientHello message may include the
 Server Name Indication (SNI) to specify the hostname the client
 wishes to contact. This is useful when multiple "virtual servers"
 are hosted on a given transport address (IP and port). It also
 provides passive observers and security devices information about the
 domain the client is attempting to reach. Note that while SNI is
 optional in TLS 1.2, it is mandatory in TLS 1.3.

 The server replies with a ServerHello message, which contains the
 selected connection parameters, followed by a Certificate message,
 which contains the server's certificate and hence its identity.

 Note that even _if_ the SNI is provided by the client, there is no
 guarantee that the actual server responding is the one indicated in
 the SNI from the client. SNI alone, without comparison of the server
 certificate, does not provide reliable information about the server
 that the client attempts to reach. Where a client has been
 compromised by malware and connects to a command and control server,
 but presents an innocuous SNI to bypass protective filters, it is
 undetectable under TLS 1.3.

 In TLS 1.2, the ClientHello, ServerHello and Certificate messages are
 all sent in clear-text, however in TLS 1.3, the Certificate message
 is encrypted thereby hiding the server identity from any
 intermediary.

 Example scenarios that are impacted by this involve selective network
 security policies on the server, such as whitelists or blacklists
 based on security intelligence, regulatory requirements, categories
 (e.g. financial services), etc. Under TLS 1.3, these scenarios now
 require the middlebox to perform decryption and inspection of every
 connection to have the same information to make policy decisions.
 Further, the middlebox is not able to make the policy decisions
 without actively engaging in the TLS 1.3 session from the beginning
 of the handshake, and it cannot step out of the connection once it
 has been determined to be benign, without dropping the whole
 connection. In TLS 1.2, middleboxes could be more selective in
 choosing what connections to engage with, and make decisions based on
 the certificate without actively decrypting the connection to access
 the certificate(s).

 While conformant clients can generate the SNI and check that the
 server certificate contains a name matching the SNI, there are non-
 conformant clients that do not and some enterprises also require a
 level of validation. Thus, from a network infrastructure
 perspective, policies to validate SNI against the Server Certificate
 can not be validated in TLS 1.3 as the Server certificate is now
 obscured to the middlebox. This is an example where the network
 infrastructure is using one measure to protect the enterprise from
 non-conformant (e.g. evasive) clients and a conformant server. As a
 general practice, security functions conduct cross checks and
 consistency checks wherever possible to mitigate imperfect or
 malicious implementations; even if they are deemed redundant with
 fully conformant implementations.

2.2.2. Resumption and Pre-Shared Key

 In TLS 1.2 and below, session resumption is provided by "session IDs"
 and "session tickets" [RFC5077]. If the server does not want to
 honor a ticket, then it can simply initiate a full TLS handshake with
 the client as usual.

 In TLS 1.3, the above mechanism is replaced by Pre-Shared Keys (PSK),
 which can be negotiated as part of an initial handshake and then used
 in a subsequent handshake to perform resumption using the PSK. TLS
 1.3 states that the client SHOULD include a "key_share" extension to
 enable the server to decline resumption and fall back to a full
 handshake, however it is not an absolute requirement.

 Example scenarios that are impacted by this are middleboxes that were
 not part of the initial handshake, and hence do not know the PSK. If
 the client does not include the "key_share" extension, the middlebox
 cannot force a fallback to the full handshake. If the middlebox
 policy requires it to inspect the session, it will have to fail the
 connection instead.

 Note that in practice though, it is unlikely that clients using
 session resumption will not allow for fallback to a full handshake
 since the server may treat a ticket as valid for a shorter period of
 time that what is stated in the ticket_lifetime [RFC8446]. As long
 as the client advertises a supported DH group, the server (or
 middlebox) can always send a HelloRetryRequest to force the client to
 send a key_share and hence a full handshake.

 Clients that truly only support PSK mode of operation (provisioned
 out of band) will of course not negotiate a new key, however that is
 not a change in TLS 1.3.

2.2.3. Version Negotiation and Downgrade Protection

 In TLS, the ClientHello message includes a list of supported protocol
 versions. The server will select the highest supported version and
 indicate its choice in the ServerHello message.

 TLS 1.3 changes the way in which version negotiation is performed.
 The ClientHello message will indicate TLS version 1.3 in the new
 "supported_versions" extension, however for backwards compatibility
 with TLS 1.2, the ClientHello message will indicate TLS version 1.2
 in the "legacy_version" field. A TLS 1.3 server will recognize that
 TLS 1.3 is being negotiated, whereas a TLS 1.2 server will simply see
 a TLS 1.2 ClientHello and proceed with TLS 1.2 negotiation.

 In TLS 1.3, the random value in the ServerHello message includes a
 special value in the last eight bytes when the server negotiates
 either TLS 1.2 or TLS 1.1 and below. The special value(s) enable a
 TLS 1.3 client to detect an active attacker launching a downgrade
 attack when the client did indeed reach a TLS 1.3 server, provided
 ephemeral ciphers are being used.

 From a network security point of view, the primary impact is that TLS
 1.3 requires the TLS proxy to be an active man-in-the-middle from the
 start of the handshake. It is also required that a TLS 1.2 and below
 middlebox implementation must handle unsupported extensions
 gracefully, which is a requirement for a conformant middlebox.

2.2.4. SNI Encryption in TLS Through Tunneling

 As noted above, with server certificates encrypted, the Server Name
 Indication (SNI) in the ClientHello message is the only information
 available in cleartext to indicate the client's targeted server, and
 the actual server reached may differ.

 [I-D.ietf-tls-sni-encryption] proposes to hide the SNI in the
 ClientHello from middleboxes.

 Example scenarios that are impacted by this involve selective network
 security, such as whitelists or blacklists based on security
 intelligence, regulatory requirements, categories (e.g. financial
 services), etc. An added challenge is that some of these scenarios
 require the middlebox to perform inspection, whereas other scenarios
 require the middlebox to not perform inspection. Without the SNI,
 however, the middlebox may not have the information required to
 determine the actual scenario before it is too late.

3. Inbound Session Use Cases

 In this section we explain how a set of real-life inbound use case
 scenarios are affected by some of the TLS 1.3 changes.

3.1. Use Case I1 - Data Center Protection

 Services deployed in the data center may be offered for access by
 external and untrusted hosts. Network security functions such as IPS
 and Web Application Firewall (WAF) are deployed to monitor and
 control the transactions to these services. While an Application
 level load balancer is not a security function strictly speaking, it
 is also an important function that resides in front of these services

 These network security functions are usually deployed in two modes:
 monitoring and inline. In either case, they need to access the L7
 and application data such as HTTP transactions which could be
 protected by TLS encryption. They may monitor the TLS handshakes for
 additional visibility and control.

 The TLS handshake monitoring function will be impacted by TLS 1.3.

 For additional considerations on this scenario, see also
 [I-D.green-tls-static-dh-in-tls13].

3.2. Use Case I2 - Application Operation over NAT

 The Network Address Translation (NAT) function translates L3 and L4
 addresses and ports as the packet traverses the network device.
 Sophisticated NAT devices may also implement application inspection
 engines to correct L3/L4 data embedded in the control messages (e.g.,
 FTP control message, SIP signaling messages) so that they are
 consistent with the outer L3/L4 headers.

 Without the correction, the secondary data (FTP) or media (SIP)
 connections will likely reach a wrong destination.

 The embedded address and port correction operation requires access to
 the L7 payload which could be protected by encryption.

3.3. Use Case I3 - Compliance

 Many regulations exist today that include cyber security requirements
 requiring close inspection of the information traversing through the
 network. For example, organizations that require PCI-DSS [PCI-DSS]
 compliance must provide the ability to regularly monitor the network
 to prevent, detect and minimize impact of a data compromise.
 [PCI-DSS] Requirement #2 (and Appendix A2 as it concerns TLS)
 describes the need to be able to detect protocol and protocol usage
 correctness. Further, [PCI-DSS] Requirement #10 detailing monitoring
 capabilities also describe the need to provide network-based audit to
 ensure that the protocols and configurations are properly used.

 Deployments today still use factory or default credentials and
 settings that must be observed, and to meet regulatory compliance,
 must be audited, logged and reported. As the server (certificate)
 credential is now encrypted in TLS 1.3, the ability to verify the
 appropriate (or compliant) use of these credentials are lost, unless
 the middlebox always becomes an active MITM.

3.4. Use Case I4 - Crypto Security Audit

 Organizations may have policies around acceptable ciphers and
 certificates on their servers. Examples include no use of self-
 signed certificates, black or white-list Certificate Authority, valid
 certificate experitation time, etc. In TLS 1.2, the Certificate
 message was sent in clear-text, however in TLS 1.3 the message is
 encrypted thereby preventing both a network-based audit and policy
 enforcement around acceptable server certificates.

 While the audits and policy enforcements could in theory be done on
 the servers themselves, the premise of the use case is that not all
 servers are configured correctly and hence such an approach is
 unlikely to work in practice. A common example where this occurs
 includes lab servers.

4. Outbound Session Use Cases

 In this section we explain a set of real-life outbound session use
 case scenarios. These scenarios remain functional with TLS 1.3
 though the TLS proxy's performance is impacted by participating in
 the DHE key exchange from the beginning of the handshake. Similarly,
 while with TLS 1.2 the handshake packets could be passively
 inspected, with TLS 1.3 the TLS proxy may have to perform full
 decryption to inspect the certificates or to affect other policies
 impacting its performance.

4.1. Use Case O1 - Acceptable Use Policy (AUP)

 Enterprises deploy security devices to enforce Acceptable Use Policy
 (AUP) according to the IT and workplace policies. The security
 devices, such as firewall/next-gen firewall, web proxy and an
 application on the endpoints, act as middleboxes to scan traffic in
 the enterprise network for policy enforcement.

 Sample AUP policies are:

 o "Employees are not allowed to access 'gaming' websites from
 enterprise network"

 o "Temporary workers are not allowed to use enterprise network to
 upload video clips to Internet, but are allowed to watch video
 clips"

 Such enforcements are accomplished by controlling the DNS
 transactions and HTTP transactions. A coarse control can currently
 be achieved by controlling the DNS response (though this may become
 infeasible if it is also protected by TLS), however, in many cases,
 granular control is required at HTTP URL or Method levels, to
 distinguish a specific web page on a hosting site, or to
 differentiate between uploading and downloading operations.

 The security device requires access to plain text HTTP header for
 granular AUP control.

4.2. Use Case O2 - Malware and Threat Protection

 Enterprises adopt a multi-technology approach when it comes to
 malware and threat protection for the network assets. This includes
 solutions deployed on the endpoint, network and cloud.

 While endpoint application based solution may be effective, to an
 extent, at detecting and preventing some types of attack, defense in
 depth is widely considered to be best security practice because it
 provides additional protection against compromise of endpoints. For
 example, network-based solutions can detect malware and threats based
 on network visibility and provide discovery to a compromised
 endpoint, even though the logs of such a compromised endpoint appear
 normal. That is, network based solutions provide such additional
 detection, prevention and mitigation of attacks with the benefit of
 rapid and centralized updates.

 The network based solutions utilise network traffic for a range of
 purposes, including but not limited to: preventing malware landing on
 the endpoint through signatures, detecting abnormal data
 exfiltration, allowing 0-day analysis and mitigation of successful
 attacks.".

 The security functions require access to clear text HTTP or other
 application level streams on a needed basis.

4.3. Use Case O3 - IoT Endpoints

 As the Internet of Everything continues to evolve, more and more
 endpoints become connected to the Internet. From a security point of
 view, some of the challenges presented by these are:

 o Constrained devices with limited resources (CPU, memory, battery
 life, etc.)

 o Lack of ability to install and update endpoint protection
 software.

 o Lack of software updates as new vulnerabilities are discovered.

 In short, the security posture of such devices is expected to be
 weak, especially as they get older, and the only way to improve this
 posture is to supplement them with a network-based solution. IoT
 deployments are further challenged in that they host a variety of
 these devices, each with different update cycles and often, are very
 slow to update their software or firmware to ensure availability and
 safe of the environments they operate. This in turn requires network
 based solutions to afford a consistant security baseline. This
 solution can range from selective passive monitoring to a full and
 active MiTM.

4.4. Use Case O4 - Unpatched Endpoints

 New vulnerabilities appear constantly and in spite of many advances
 in recent years in terms of automated software updates, especially in
 reaction to security vulnerabilities, the reality is that a very
 large number of endpoints continue to run versions of software with
 known vulnerabilities.

 In theory, these endpoints should of course be patched, but in
 practice, it is often not done which leaves the endpoint open to the
 vulnerability in question. A network-based security solution can
 look for attempted exploits of such vulnerabilities and stop them
 before they reach the unpatched endpoint.

4.5. Use Case O5 - Rapid Containment of New Vulnerability and Campaigns

 When a new vulnerability is discovered or an attack campaign is
 launched, it is important to patch the vulnerability or contain the
 campaign as quickly as possible. Patches however are not usually
 available immediately for every device on the network, and even when
 they are, most endpoints are in practice not patched immediately,
 which leaves them open to the attack.

 A network-based security solution can look for attempted exploits of
 such new vulnerabilities or recognize an attack being launched based
 on security intelligence related to the campaign and stop them before
 they reach the vulnerable endpoint.

4.6. Use Case O6 - End-of-Life Endpoint

 Older endpoints (and in some cases even new ones) will not receive
 any software updates. As new vulnerabilities inevitably are
 discovered, these endpoints will be permanently vulnerable to
 exploits without security solutions that are not endpoint-based.

 A network-based security solution can help prevent such exploits with
 the MITM functions.

4.7. Use Case O7 - Compliance

 This use case is similar to the inbound compliance use case described
 in Section 3.3, except its from the client point of view.

4.8. Use Case O8 - Crypto Security Audit

 This is a variation of the use case in Section 3.4.

 Organizations may have policies around acceptable ciphers and
 certificates for client sessions, possibly based on the destination.
 Examples include no use of self-signed certificates, black or white-
 list Certificate Authority, etc. In TLS 1.2, the Certificate message
 was sent in clear-text, however in TLS 1.3 the message is encrypted
 thereby preventing either a network-based audit or policy enforcement
 around acceptable server certificates.

 It is not possible to implement a full security solution by relying
 on the client alone in this case. For example, in the many cases
 where the device is not under configuration control of the
 organisation (i.e. "Bring Your Own Device" devices, which are
 present in many modern organisations), as audits and policy
 enforcements can't be done on such clients or on clients that are not
 properly configured.

5. IANA considerations

 This document does not include IANA considerations.

6. Security Considerations

 This document describes existing functionality and use case scenarios
 and as such does not introduce any new security considerations.

7. Acknowledgements

 The authors thank Eric Rescorla, the National Cyber Security Center
 and Dan Wing who provided several comments on technical accuracy and
 middlebox security implications.

8. Change Log

8.1. Version -01

 Updates based on comments from Eric Rescorla.

8.2. Version -03

 Updates based on EKR's comments

9. Version -04

 Updates based on Kirsty's comments

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

10.2. Informative References

 [HTTPSintercept]

 "The Security Impact of HTTPS Interception", n.d.,
 <https://jhalderm.com/pub/papers/interception-ndss17.pdf>.

 [I-D.green-tls-static-dh-in-tls13]

 Green, M., Droms, R., Housley, R., Turner, P., and S.
 Fenter, "Data Center use of Static Diffie-Hellman in TLS
 1.3", draft-green-tls-static-dh-in-tls13-01 (work in
 progress), July 2017.

 [I-D.ietf-tls-sni-encryption]

 Huitema, C. and E. Rescorla, "Issues and Requirements for
 SNI Encryption in TLS", draft-ietf-tls-sni-encryption-04
 (work in progress), November 2018.

 [NERCCIP]
 "North American Electric Reliability Corporation, (CIP)
 Critical Infrastructure Protection", n.d.,
 <http://www.nerc.com/pa/stand/Pages/ReliabilityStandardsUn
 itedStates.aspx?jurisdiction=United%20States>.

 [PCI-DSS]
 "Payment Card Industry (PCI): Data Security Standard",
 n.d., <https://www.pcisecuritystandards.org/documents/
 PCI_DSS_v3-2.pdf>.

 [RFC5077]
 Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

Authors' Addresses

Flemming Andreasen
Cisco Systems
111 Wood Avenue South
Iselin, NJ 08830
USA

 Email: fandreas@cisco.com

Nancy Cam‑Winget
Cisco Systems
3550 Cisco Way
San Jose, CA 95134
USA

 Email: ncamwing@cisco.com

Eric Wang
Cisco Systems
3550 Cisco Way
San Jose, CA 95134
USA

 Email: ejwang@cisco.com

draft-chen-dots-attack-informations-03 - DOTS client carry ddos attack informations in signal channel

draft-chen-dots-attack-informations-03 - DOTS client carry ddos attack informati

Index
Back 5
Prev
Next
Forward 5

DOTS

Internet-Draft

Intended status: Standards Track

Expires: February 23, 2020

M. Chen

Li. Su

Jin. Peng

CMCC

August 22, 2019

DOTS client carry ddos attack informations in signal channel

draft-chen-dots-attack-informations-03

Abstract

 This document describes DDoS attack information which can be obtained
 by DOTS client when the enterprise suspects it is under DDoS attack,
 these informations will be send from DOTS client to DOTS server in
 mitigation request using Signal channel or Data channel.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 23, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology
	 2.1. Key Words

	 2.2. Definition of Terms

	3. Alarm attributes for mitigation request
	 3.1. Bandwidth consuming attack
	 3.1.1. Attack_Target_IP

	 3.1.2. Alarm_Begin_time

	 3.1.3. Direction

	 3.1.4. Target_Attack_Type

	 3.1.5. Target_Attack_Type_Threshold

	 3.1.6. Attack_Target_IP_Peak

	 3.1.7. Attack_Source_IP_Num

	 3.1.8. Attack_Bandwidth

	 3.2. Host resource consuming attack
	 3.2.1. Attack_Target_IP

	 3.2.2. Attack_Target_Packet_Rate

	 3.2.3. Alarm_Begin_Time

	 3.2.4. Direction

	 3.2.5. Target_Attack_Type

	4. mitigation attributes for mitigation response
	 4.1. Bandwidth consuming attack
	 4.1.1. Attack_Target_IP

	 4.1.2. Alarm_End_time

	 4.1.3. Target_Attack_Type

	 4.1.4. Total_Traffic

	 4.1.5. Residual_Traffic

	 4.1.6. Attack_Traffic

	 4.1.7. Attack_Target_IP_Peak

	 4.1.8. Attack_Source_IP_Num

	 4.2. Host resource consuming attack
	 4.2.1. Attack_Target_IP

	 4.2.2. Alarm_End_time

	 4.2.3. Target_Attack_Type

	 4.2.4. Attack_Source_IP

	 4.2.5. Attack_Target_Packet_Rate

	5. Mitigation Use Case 1
	 5.1. Mitigations for attack flow

	 5.2. Optimal device selection

	 5.3. Optimum path for disposal

	 5.4. Mitigation request parameters

	6. Mitigation Use Case 2
	 6.1. classified disposal

	 6.2. Standard of Attack Type Definition

	7. Mitigation Use Case 3
	 7.1. Mitigation alarm baseline

	8. Mitigation request optional parameters
	 8.1. Bandwidth consuming attack

	 8.2. Host resource consuming attack

	9. Mitigation response parameters
	 9.1. Bandwidth consuming attack

	 9.2. Host resource consuming attack

	10. Security Considerations

	11. IANA Considerations

	12. Acknowledgement

	13. References
	 13.1. Normative References

	 13.2. Informative References

	Authors' Addresses

1. Introduction

 Distributed Denial of Service (DDoS) is a type of resource-consuming
 attack, which exploits a large number of attack resources and uses
 standard protocols to attack target objects. DDoS attacks consume a
 large amount of target network resources or server resources
 (including computing power, storage capacity, etc.), this means there
 are two types of the DDoS attack, one is bandwidth consuming attack,
 the other is host resource consuming attack. At present, DDoS attack
 is one of the most powerful and indefensible attacks on the Internet,
 and due to the extensive use of mobile devices and IoT devices in
 recent years, it is easier for DDoS attackers to attack with real
 attack sources (broilers).

 The IETF is specifying the DDoS Open Threat Signaling (DOTS)
 [I-D.ietf-dots-architecture]architecture, where a DOTS client can
 inform a DOTS server that the attack target is under a potential
 attack and that appropriate mitigation actions are required. In the
 architecture draft, it says in the draft the enterprise has a DOTS
 client, which obtains information about the DDoS attack, and signals
 the DOTS server for help in mitigating the attack. but it doesn't
 says what the information of DDoS attack is. the scope of this draft
 is about the information of DDoS attack which DOTS client can obtain.

 In the architecture draft, it says in the draft the client signal may
 also include telemetry information about the attack, if the DOTS
 client has such information available. But in the signal channel
 draft it doesn't define optional parameter about the telemetry
 information which will be regarded as DDoS portrait information.

 "DDoS portrait information" is defined as the collection of
 attributes characterizing the attacks(or suspected attack) that have
 been detected and mitigated. The DDoS portrait information is an
 optional set of attributes that can be signaled. The portrait can be
 optionally sent from the DOTS Client to Server and vice versa.

 This document will divide into two directions, before mitigation
 request and after mitigation is complete. Before mitigation request,
 DOTS client can obtain informations of attack; After mitigation, DOTS
 server can obtain from mitigator.

2. Terminology

2.1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119]

2.2. Definition of Terms

 The readers should be familiar with the terms defined in
 [I-D.ietf-dots-requirements] [I-D.ietf-dots-use-cases]

 The terminology related to YANG data modules is defined in [RFC7950]

 In addition, this document uses the terms defined below:

Bandwidth consuming attack DDoS attack that causes network
 congestion.

Host resources consuming attack DDoS attack that consuming the
 ability of the protocol stack to process resources, or make host
 engaged in high‑consumption business, thus unable to respond to
 normal business

Attack‑bandwidth: the amount of traffic under attack, it is usually
 expressed numerically.

Flow clean: one selection of Attack traffic deposition, the
 operation contains recognize, discard and reinage.

Attack Type: used to distinguish between different methods of ddos
 attack.

Attack type definition: General definition method, Covers most
 current attack types.

Attack‑source‑ip‑number: Number of all attack sources(ip).

Target‑attack‑type‑threshold: The DDoS detection device sets a
 threshold for each type of attack, this threshold is usually
 exceeded to generate DDoS alarms.

3. Alarm attributes for mitigation request

3.1. Bandwidth consuming attack

3.1.1. Attack_Target_IP

 The IP address of attack target, which can be either IPv4 or IPv6,
 supports address block notation. For example, if a company's IP
 address is attacked, it can aggregate IP addresses.

3.1.2. Alarm_Begin_time

 If the alarm is confirmed to be real and effective after mitigation,
 the alarm start time is the same as the attack start time.

3.1.3. Direction

 The direction of the attack, divided into inward and outward, 0 means
 inward, 1 means outward. Inward means attack target suffers DDoS
 attack, outward means attack target is launching DDoS attack.

3.1.4. Target_Attack_Type

 A list of attack types involved in an attack.

3.1.5. Target_Attack_Type_Threshold

 The alarm threshold set for each attack type, measurement unit can be
 pps or bps.

3.1.6. Attack_Target_IP_Peak

 Peak of attack traffic, measurement unit can be pps or bps. We use
 peak of attack traffic rather than averages because peak of attack is
 more indicative of attacks.

3.1.7. Attack_Source_IP_Num

 The number of attack source ip, measure the number of attacker's is
 much more helpful for the scale of attack for Bandwidth consuming
 attack.

3.1.8. Attack_Bandwidth

 The proportion of the current traffic bandwidth to the total
 bandwidth of the pipeline. The attack bandwidth is described in
 terms of percentage. The total bandwidth is preset in the attack
 target.

3.2. Host resource consuming attack

3.2.1. Attack_Target_IP

 The IP address of attack target, which can be either IPv4 or IPv6,
 supports address block notation. For example, if a company's IP
 address is attacked, it can aggregate IP addresses.

3.2.2. Attack_Target_Packet_Rate

 All packet rates for the same protocol and the same attack target in
 one period. for example, A is suffering CC attack, then
 attack_target_packet_rate is used to calculate the number of all HTTP
 packets in 5 minites.

3.2.3. Alarm_Begin_Time

 If the alarm is confirmed to be real and effective after mitigation,
 the alarm start time is the same as the attack start time.

3.2.4. Direction

 The direction of the attack, divided into inward and outward, 0 means
 inward, 1 means outward. Inward means attack target suffers DDoS
 attack, outward means attack target is launching DDoS attack.

3.2.5. Target_Attack_Type

 A list of attack types involved in an attack.

4. mitigation attributes for mitigation response

4.1. Bandwidth consuming attack

4.1.1. Attack_Target_IP

 The IP address of attack target, which can be either IPv4 or IPv6,
 supports address block notation. For example, if a company's IP
 address is attacked, it can aggregate IP addresses.

4.1.2. Alarm_End_time

 The end time of mitigation, denoted by -1 if the remission is not
 finished temporarily

4.1.3. Target_Attack_Type

 A list of attack types involved in an attack.

4.1.4. Total_Traffic

 Total traffic received by the attack target, measurement unit can be
 pps or bps.

4.1.5. Residual_Traffic

 Residual traffic can also be considered normal business traffic, In
 the actual cleaning operation, that is the normal service flow
 injected into the link.

4.1.6. Attack_Traffic

 The total attack traffic, It can be calculated by the Total_Traffic
 minus the Residual_Traffic

4.1.7. Attack_Target_IP_Peak

 Peak of attack traffic, measurement unit can be pps or bps. After
 mitigation, the Attack_Target_IP_peak will be more precise for
 measurement.

4.1.8. Attack_Source_IP_Num

 The number of attackers in the case of this whole attack.

4.2. Host resource consuming attack

4.2.1. Attack_Target_IP

 The IP address of attack target, which can be either IPv4 or IPv6,
 supports address block notation. For example, if a company's IP
 address is attacked, it can aggregate IP addresses.

4.2.2. Alarm_End_time

 The end time of mitigation, denoted by -1 if the remission is not
 finished temporarily

4.2.3. Target_Attack_Type

 A list of attack types involved in an attack.

4.2.4. Attack_Source_IP

 All the attack IP addresses involved in an attack.

4.2.5. Attack_Target_Packet_Rate

 All packet rates for the same protocol and the same attack target in
 one period. for example, A is suffering CC attack, then
 attack_target_packet_rate is used to calculate the number of all HTTP
 packets in 5 minites.

5. Mitigation Use Case 1

5.1. Mitigations for attack flow

 when attack target is under attack, it has to make corresponding
 disposal, there are two options for disposal, one is blackhole
 directly which may be take effect in routers, in this way all the
 attack flow will be discarded by router upper path of attack target,
 this means that the attack target will not receive any traffic during
 the attack depending on the routing strategy, all the traffic
 forwards attack target will be discarded, this has a huge impact on
 the work environment, especially the host that provide external
 service. The other way of the disposition is to drainage all the
 traffic flow to clean center from router, then the clean center will
 use pattern matching or any other method to find out the attack
 traffic flow to discard, finally, clean center reinage the normal
 business traffic back to attack target by upper router, the whole
 process above is defined as flow clean(Figure 1).

attack flow +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
‑‑‑‑‑‑‑‑‑‑‑>| router |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| clean |
 1 +‑‑‑‑‑‑‑‑+ 2 | center |
 | +‑‑‑‑‑‑‑‑+
 3 | |
 | +‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑>| attack |<‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | target |
 +‑‑‑‑‑‑‑‑+

 Figure 1: diagram of DDoS Mitigation usecase

 Generally, the bandwidth of the link 1 must be larger than link 2 and
 link 3, and the clean ability of clean center limited to hardware
 resources. An example of link situation is as below(Figure 2):

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| figure | bandwidth/ |
| tag | capability |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
link 1	100Gb
link 2	50Gb
link 3	10Gb
clean center	80Gb
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: an example of link bandwidth

 The Figure2 is a scenario of the link bandwidth, when a ddos attack
 is ongoing, if the link 1 bandwidth is completely jammed, the best
 way to mitigate the attack is to discard all the attack flow; if the
 amount of the traffic flow is lower than the remainder cleaning
 ability, the most suitable disposition is to drainage all the attack
 flow to clean center. Therefore, it is an obvious requirement in the
 current network environment.

5.2. Optimal device selection

 Mitigator may owns a cleaning device cluster and can manage cleaning
 devices. The capacity of each cleaning equipment is variable,
 usually each cleaning equipment utilization rate is different, then
 the remaining cleaning capacity is not consistent. When the attack
 flow is less than the ability of a cleaning equipment, according to
 the attack-bandwidth can choose a suitable cleaning equipment, that
 is conducive to the utilization of equipment; When the attack flow is
 larger than the cleaning capacity of one cleaning device, several
 cleaning devices can be optimally scheduled according to the attack-
 bandwidth.

5.3. Optimum path for disposal

 When mitigator is an attack flow cleaning service, they typically
 deployed the mitigator in a distributed way because of the cost of
 bandwidth usage with their own leased operator's link bandwidth, and
 choosing the best traction path was the key to profitability. If the
 parameter of attack-bandwidth is carried, then the generation of the
 best drainage path is very meaningful.

 When mitigator is at the upstream service operator level, they might
 have multiple networks, with the attack alert using one network and
 the flow drainage using another, and the link load is not the same,
 then carrying the attack-bandwidth is very beneficial for choosing
 the drainage path, mainly for link load balancing.

5.4. Mitigation request parameters

 When a DOTS client requires mitigation for some reason, the DOTS
 client uses the CoAP PUT method to send a mitigation request to its
 DOTS server(s). If a DOTS client is entitled to solicit the DOTS
 service, the DOTS server enables mitigation on behalf of the DOTS
 client by communicating the DOTS client's request to a mitigator
 (which may be colocated with the DOTS server) and relaying the
 feedback of the thus-selected mitigator to the requesting DOTS
 client.

 DOTS clients use the PUT method to request mitigation from a DOTS
 server. During active mitigation, DOTS clients may use PUT requests
 to carry mitigation efficacy updates to the DOTS server. We suggest
 to add attack bandwidth to satiesfy the requirement.

 total traffic when ddos attack occur, reflects the urgency of the
 current attack. Serious attacks are treated with blackhole, Other
 cases use flow cleaning, attack-bandwidth is conducive to the
 selection of disposal mode.

 This is an optional attribute.

6. Mitigation Use Case 2

6.1. classified disposal

 DDoS attack is a hybrid attack across multiple protocol layers and
 multiple method, when we deal with DDoS attacks, we find it more
 reasonable and effective to deal with them according to the types of
 attacks, It is easier to handle if the type of attack is already
 included in the mitigation request. There is no doubt that the
 information may not be accurate, but we can take it as a reference.
 Therefore, with attack type the disposal process is more helpful.
 The ddos attack alarm in the industry is set according to the attack
 type, from the point of view of cleaning, different types of attacks
 are handled differently. For example, Memcached reflection flood use
 UDP 11211 port for DDoS flood, but tcp syn flood use defects of TCP
 three-way handshake to consuming connection resources. This two
 attacks are alarmed respectively and cleaned in different ways. We
 suggest to add attack type to satiesfy the requirement.

 A list of attack types involved in an attack.

 There is no uniform definition of attack types, It is often the case
 that the same type of attack has different names, An attack type is
 defined in section 4.

 The parameter of Target_Attack_Type contains three values:
 Attack_Name, Attack_Alias and Target_Attack_Type_Threshold,
 Attack_Alias will solve the abbreviation problem.An attack could be a
 hybrid attack, then the target_Attack_Type represents major types of
 attacks

 This is an optional attribute.

6.2. Standard of Attack Type Definition

 For the Target_Attack_Type field, we define it as a string Type, and
 define the two fields according to the attack method and extension
 name. there may be problems in the actual network environment, that
 attack target and mitigator (such as cleaning equipment) belong to
 different models of different vendors, because different vendors have
 different definitions of Attack in understanding and implementation.
 When an attack occurs, some devices may not be considered as an
 attack. It is also possible that the detection device considere it
 as A type attack, while the cleaning device consider it as B type
 attack. When performing the cleaning schedule, it will cause the
 problem of incorrect cleaning or over-cleaning. Both of these errors
 will cause the normal business to fail to link. Therefore, it is
 necessary to unify the attack definition, form a standard attack
 definition, and solve the problem of cleaning errors from the source.
 we give out a complete format for DDoS attacks as below:

 [protocol layer] [protocol name] [message name/operation name/port]
 [attack methods feature description field 1] [attack methods feature
 description field 2] [attack methods describe the standard field]

 protocol layer(mandatory): Network layer, transport layer,
 application layer;

 protocol name(mandatory): The protocol type used for the attack, such
 as http, TCP, ICMP, NTP...;

 message name/ operation name/ port(optional): The message name,
 operation name, or port used for the attack is a further addition to
 the protocol used for the attack, with message names such as SYN and
 operation names such as GET, Post, SYN, ACK, Query...;

 attack methods feature description field 1 or 2 (optional):
 Description of the method used in the attack, such as Fragment,
 Amplification, Misuse, Slow...;

 attack methods describe the standard field(mandatory): Used to
 describe the type of attack, as the end field, such as flood, attack;

 The protocol name and message name must contain at least one item in
 the abbreviation.

 interval between each field operators use special symbol or any other
 symbol agreed. For example:HTTP Get Flood(CC) definition, we defined
 the Target_Attack_Type field as below(Figure 3):

 {

 "Attack_Name":" Application_Layer, HTTP, Get,,, Flood"
 "Attack_Alias":"HTTP CC Flood"
 "Target_Attack_Type_Threshold":"1000pps"

 }

 Figure 3: Attack type definition example

 An example of abbreviation: Define the target-attack-type using the
 methods specified above, complete attack name: Transport_Layer TCP
 SYN Flood; abbreviated form: TCP SYN Flood.

7. Mitigation Use Case 3

7.1. Mitigation alarm baseline

 Attack target looks like to be attacked by DDoS, then DOTS client
 send mitigation request to DOTS server, So there are exist false
 alarms. In practice, there are standards for alerting whether or not
 they are appropriate, such as alarm baseline. With this parameter,
 it is possible to determine whether the standard is reasonable or
 not, False alarms can be corrected and normal alarms can be
 optimized. It is suggested to use Target_Attack_Type_Threshold to
 carry this information.

 DDoS attacks are distributed attacks, it means there are many sources
 of attack that the traffic from each attack source varies little, so
 it is more efficient to record the numbers of source ip than the
 details ip address. Blocking every IP address is a thankless task
 and short-lived. After mitigation, mitigators can feedback the
 source ip number to DOTS server, and this information must be more
 closer to the attack scene, these informations will be used in the
 feedback module for more application.

Target_Attack_Type_Threshold: Baseline for a type of attack .

 If attack target have the ability to classify each type of DDoS
 attack, it must have ability to feedback criteria for each type of
 attack. It doesn't matter that if it can not provide this
 information, it is just an optional attribute.

 This is an optional attribute.

8. Mitigation request optional parameters

8.1. Bandwidth consuming attack

 Added parameters show in put method for Bandwidth consuming attack
 are show as below(Figure 4)

Content‑Format: "application/dots+cbor"
 {
 "ietf‑dots‑signal‑channel:mitigation‑scope": {
 "scope": [
 {
 "target‑prefix": [
 "string"
],
 "target‑port‑range": [
 {
 "lower‑port": number,
 "upper‑port": number
 }
],
 "target‑protocol": [
 number
],
 "target‑fqdn": [
 "string"
],
 "Attack_Target_IP":[
 "string"
],
 "Alarm_Begin_time":[
 "string"
],
 "Direction":[
 number
],
 "Attack_Target_IP_peak":[
 "string"
],

 "Attack_Source_IP_Num":[
 "string"
],
 "Target_Attack_Type": [
 {
 "Attack‑Name": ["string"],
 "Attack‑Alias": ["string"],
 "Target_attack_Type_threshold":["string"]
 }
],
 "Attack_Bandwidth":[
 "string"
],
 attack_src_ip_number:[
 "string"
],

 "target‑uri": [
 "string"
],
 "alias‑name": [
 "string"
],
 "lifetime": number,
 "trigger‑mitigation": true|false
 }
]
 }
 }

 Figure 4: Mitigation request for Bandwidth consuming attack

8.2. Host resource consuming attack

 Added parameters show in put method for Host resource consuming
 attack are show as below(Figure 5)

Content‑Format: "application/dots+cbor"
 {
 "ietf‑dots‑signal‑channel:mitigation‑scope": {
 "scope": [
 {
 "target‑prefix": [
 "string"
],
 "target‑port‑range": [
 {

 "lower‑port": number,
 "upper‑port": number
 }
],
 "target‑protocol": [
 number
],
 "target‑fqdn": [
 "string"
],
 "Attack_Target_IP":[
 "string"
],
 "Alarm_Begin_time":[
 "string"
],
 "Direction":[
 number
],
 "Attack_Target_Packet_Rate":[
 "string"
],
 "Target_Attack_Type": [
 {
 "Attack‑Name": ["string"],
 "Attack‑Alias": ["string"],
 }
],
 "target‑uri": [
 "string"
],
 "alias‑name": [
 "string"
],
 "lifetime": number,
 "trigger‑mitigation": true|false
 }
]
 }
 }

 Figure 5: Mitigation request for Host resource consuming attack

9. Mitigation response parameters

 After the mitigation of a DDoS attack, DOTS server can obtain some
 informations from mitigator, these informations are optional
 parameters only as a suggestion when use DOTS to inform the message
 between attack target and mitigator.

9.1. Bandwidth consuming attack

 added parameters of Mitigation response for Bandwidth consuming
 attack, Figure6Figure 6

Content‑Format: "application/dots+cbor"
 {
 "ietf‑dots‑signal‑channel:mitigation‑scope": {
 "scope": [
 {
 "target‑prefix": [
 "string"
],
 "target‑port‑range": [
 {
 "lower‑port": number,
 "upper‑port": number
 }
],
 "target‑protocol": [
 number
],
 "target‑fqdn": [
 "string"
],
 "Attack_Target_IP":[
 "string"
],
 "Alarm_End_time":[
 "string"
 "],
 "Total_Traffic":[
 "string"
],
 "Residual_Traffic":[
 "string"
],
 "Attack_Traffic":[
 "string"
],
 "Attack_Target_IP_Peak":[

 "string"
],
 "Attack‑Source‑IP‑Num":[
 "string"
],
 "Target_Attack_Type": [
 {
 "Attack‑Name": ["string"],
 "Attack‑Alias": ["string"],
 "Target_attack_Type_threshold":["string"]
 }
],
 "target‑uri": [
 "string"
],
 "alias‑name": [
 "string"
],
 "lifetime": number,
 "trigger‑mitigation": true|false
 }
]
 }
 }

 Figure 6: Mitigation response for Bandwidth consuming attack

9.2. Host resource consuming attack

 added parameters of Mitigation response for Bandwidth consuming
 attack, Figure7Figure 7

Content‑Format: "application/dots+cbor"
 {
 "ietf‑dots‑signal‑channel:mitigation‑scope": {
 "scope": [
 {
 "target‑prefix": [
 "string"
],
 "target‑port‑range": [
 {
 "lower‑port": number,
 "upper‑port": number
 }
],
 "target‑protocol": [

 number
],
 "target‑fqdn": [
 "string"
],
 "Attack_Target_IP":[
 "string"
],
 "Alarm_End_time":[
 "string"
 "],

 "Attack_Source_IP":[
 "string"
],
 "Attack_Target_Packet_Rate":[
 "string"
],
 "Target_Attack_Type": [
 {
 "Attack‑Name": ["string"],
 "Attack‑Alias": ["string"],
 }
],
 "target‑uri": [
 "string"
],
 "alias‑name": [
 "string"
],
 "lifetime": number,
 "trigger‑mitigation": true|false
 }
]
 }
 }

 Figure 7: Mitigation response for Host resource consuming attack

10. Security Considerations

 TBD

11. IANA Considerations

 TBD

12. Acknowledgement

 TBD

13. References

13.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

13.2. Informative References

 [I-D.ietf-dots-architecture]

 Mortensen, A., K, R., Andreasen, F., Teague, N., and R.
 Compton, "Distributed-Denial-of-Service Open Threat
 Signaling (DOTS) Architecture", draft-ietf-dots-
 architecture-14 (work in progress), May 2019.

 [I-D.ietf-dots-requirements]

 Mortensen, A., K, R., and R. Moskowitz, "Distributed
 Denial of Service (DDoS) Open Threat Signaling
 Requirements", draft-ietf-dots-requirements-22 (work in
 progress), March 2019.

 [I-D.ietf-dots-signal-channel]

 K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
 Teague, "Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification", draft-
 ietf-dots-signal-channel-37 (work in progress), July 2019.

 [I-D.ietf-dots-use-cases]

 Dobbins, R., Migault, D., Fouant, S., Moskowitz, R.,
 Teague, N., Xia, L., and K. Nishizuka, "Use cases for DDoS
 Open Threat Signaling", draft-ietf-dots-use-cases-19 (work
 in progress), July 2019.

Authors' Addresses

Meiling Chen
CMCC
32, Xuanwumen West
BeiJing , BeiJing 100053
China

 Email: chenmeiling@chinamobile.com

Li Su
CMCC
32, Xuanwumen West
BeiJing 100053
China

 Email: suli@chinamobile.com

Jin Peng
CMCC
32, Xuanwumen West
BeiJing 100053
China

 Email: pengjin@chinamobile.com

draft-chen-dots-attack-type-unification-00 - attack type unification

draft-chen-dots-attack-type-unification-00 - attack type unification

Index
Back 5
Prev
Next

DOTS

Internet-Draft

Intended status: Informational

Expires: April 19, 2020

M. Chen

Li. Su

CMCC

October 17, 2019

attack type unification

draft-chen-dots-attack-type-unification-00

Abstract

 This document put forward a method to unify DDoS attack type
 classification and attack definition description, this will help
 different mitigators to mitigate DDoS attacks together.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 19, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. DDoS Attack Type Classification Framework

	4. DDoS Attack Definition Description

	5. Security Considerations

	6. IANA Considerations

	7. Acknowledgement

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Introduction

 Distributed Denial of Service (DDoS) is a type of resource-consuming
 attack, which exploits a large number of attack resources and uses
 standard protocols to attack target objects. With the cost of DDoS
 attack become more cheaper, DDoS attack become more and more
 frequently, a single mitigator unable to cope with all the DDoS
 attack, so DOTS come up to solve the problem.

 From the charter of DOTS working group, it writes that elements may
 be deployed as part of a wider strategy incorporating multiple points
 of DDoS detection, classification, traceback and mitigation, both on
 premise or service provider based. As so far, DDoS classification
 have not written to DOTS. This draft will from the perspective of
 the type of DDoS attack to do DDoS classification.

 Different understanding of DDoS attacks will result in different
 classification and that's why do we need uniform attack types. At
 present, telecom operators, cloud service providers and third-party
 manufacturers have their own anti-ddos solutions.The construction of
 DDoS attack mitigation and disposal system involves two devices,
 namely detection equipment and cleaning equipment. In the actual
 network deployment, the core nodes of the network will deploy
 detection equipment and cleaning equipment at the same time to detect
 and dispose attacks. After an alarm is given, the cleaning equipment
 will be triggered to carry out traffic drainage and cleaning
 operations. At present, the detection equipment adopts the coarse-
 grained attack type determination method, which greatly reduces the
 false alarm rate of attack.Different disposal of cleaning equipment
 is different for different attack types. For example, TCP attack
 types can be discarded directly after matching, but HTTP CC Flood can
 be further determined only after interactive operation is required at
 the disposal. Interactive operation may be redirection or
 verification code sending. In the actual environment, there are many
 manufacturers of detection equipment and cleaning equipment, and each
 manufacturer has its own definition method of attack type, so it is
 easy to lead to the same attack, but the field of attack type
 detected by different equipment manufacturers is different, which may
 easily lead to disposal confusion. The attack type is inconsistently
 defined, it is difficult or controversial to judge the ability of
 test selection of DDoS attack detection and clean equipment.

 Volume based distributed denial-of-service attack have many types
 based on different protocol layer, for the service providers to
 immediately protect their network services from DDoS attacks, DDoS
 mitigation needs to be automated. DDoS Open Threat Signaling (DOTS)
 is a protocol to standardize real-time signaling, threat-handling
 requests[I-D.ietf-dots-signal-channel], when attack target is under
 attack, dots client send mitigation request to dots server for help,
 If the mitigation request contains enough messages of the attack,
 then the mitigator can respond very effectively. This document
 recommand a method for attack type unification.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119]

 The readers should be familiar with the terms defined in
 [I-D.ietf-dots-requirements] [I-D.ietf-dots-use-cases]

 The terminology related to YANG data modules is defined in [RFC7950]

 In addition, this document uses the terms defined below:

Attack Type: used to distinguish between different methods of ddos
 attack.

Attack type definition: General definition method, Covers most
 current attack types.

3. DDoS Attack Type Classification Framework

 The existing classification of DDoS attack type is divided into
 multiple dimensions: by the protocol used, such as SYN Flood, HTTP
 Flood, ICMP Flood; by attack effect, such as bandwidth occupancy
 attack, Connection attack, slow attack; by the attack method, such as
 abnormal message attack, reflection amplification attack;

 In the above definition of multiple types of attacks, there is
 partial overlap. Combined with the existing classification of DDoS
 attack, the consensus of classifying DDoS attack by protocol layer is
 the highest.

 This draft of protocol layer is based on the TCP/IP model, the basic
 classification framework of DDoS attack as follows: Firstly, protocol
 layer, such as Network layer, transport layer and application layer;
 Secondly, Protocol and Messaging, Divide by protocol exploited by the
 attack, Then define the message and port involved in the protocol,
 User-defined (Protocol+port) format identifies attack types that are
 not well defined or standardized.Finally, Attack method, defined
 according to the method used in DDoS attack.

...
Protocol layer |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|Network layer|‑‑‑‑‑|Transport layer|‑‑‑‑‑‑|Application layer|
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
..............|....................|.......................|.........
Protocol and | | |
Messaging | | |
 +‑‑‑+ +‑‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑‑+ +‑‑‑+ +‑‑‑+
 |...|‑‑‑|ICMP| |TCP|‑‑‑|UDP|‑‑‑|...| |HTTP|‑‑|DNS|‑‑|...|
 +‑‑‑+ +‑‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑‑+ +‑‑‑+ +‑‑‑+
 | | |
..............|....................|.......................|.........
Attack Method | | |
 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Flood		Flood		Flood
Fragment Flood		Fragment Flood		Slow attack
...	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
...

 Figure 1: Basic classification framework

4. DDoS Attack Definition Description

 In view of the difference in attack definition, the method of this
 draft is based on the basic classification framework to standardize
 the format as follows.

 [protocol layer] [protocol name] [message name/operation name/port]
 [attack methods feature description field 1] [attack methods feature
 description field 2] [attack methods describe the standard field].
 Note1: the field of [message name/operation name/port] and [attack
 methods feature description field 1] and [attack methods feature
 description field 2] are optional. Note2: [protocol name] and
 [message name/operation name/port] must contain at least one in the
 abbreviation. Note3: The fields should be distinguished by the space
 character.

 The field of [message name/operation name/port] can have many
 choices, such as "Get/Post/SYN/ACK/Query/Memcached"; The field of
 [attack methods feature description field 1 or 2] can represent by
 "Connection", "Fragment", "Amplification", "Reflection", "Misuse",
 "BandWidth", or "Slow"; The field of [attack methods describe the
 standard field] just have two choice, one is "Flood" and the other is
 "Attack".

..
Protocol layer	Protocol	message name	attack methods	attack methods	attack methods
	Name	/operation name	feature field 1	feature field 2	describe the
		/port			standard field
..					
Network_Layer	ICMP	‑‑‑‑‑‑	‑‑‑‑‑‑	‑‑‑‑‑‑	Flood
..					
Transport_Layer	TCP	SYN	‑‑‑‑‑‑	‑‑‑‑‑‑	Flood
..					
Transport_Layer	UDP	Memcached	Reflection	Amplification	Flood
..					
Application_Layer	HTTP	GET	‑‑‑‑‑‑	‑‑‑‑‑‑	Flood
..

 Figure 2: Attack Definition Example

 The complete DDoS attack definition and the abbreviated definition
 examples shown as bellow:

..
| complete DDoS attack definition | abbreviated definition |
..
|Network_Layer ICMP Flood | ICMP Flood |
..
|Transport_Layer TCP SYN Flood | TCP SYN Flood |
..
|Transport_Layer UDP Memcached Reflection Amplification Flood | UDP Memcached Flood |
..
|Application_Layer HTTP GET Flood | HTTP GET Flood |
..

 Figure 3: Attack Definition and Abbreviated Definition Example

5. Security Considerations

 TBD

6. IANA Considerations

 TBD

7. Acknowledgement

 TBD

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

8.2. Informative References

 [I-D.ietf-dots-requirements]

 Mortensen, A., K, R., and R. Moskowitz, "Distributed
 Denial of Service (DDoS) Open Threat Signaling
 Requirements", draft-ietf-dots-requirements-22 (work in
 progress), March 2019.

 [I-D.ietf-dots-signal-channel]

 K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
 Teague, "Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification", draft-
 ietf-dots-signal-channel-37 (work in progress), July 2019.

 [I-D.ietf-dots-use-cases]

 Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
 L., and K. Nishizuka, "Use cases for DDoS Open Threat
 Signaling", draft-ietf-dots-use-cases-20 (work in
 progress), September 2019.

Authors' Addresses

Meiling Chen
CMCC
32, Xuanwumen West
BeiJing , BeiJing 100053
China

 Email: chenmeiling@chinamobile.com

Li Su
CMCC
32, Xuanwumen West
BeiJing 100053
China

 Email: suli@chinamobile.com

draft-chen-dots-server-hierarchical-deployment-01 - A method for dots server deployment

draft-chen-dots-server-hierarchical-deployment-01 - A method for dots server dep

Index
Back 5
Prev
Next

DOTS

Internet-Draft

Intended status: Informational

Expires: May 3, 2020

M. Chen

Li. Su

Jin. Peng

CMCC

October 31, 2019

A method for dots server deployment

draft-chen-dots-server-hierarchical-deployment-01

Abstract

 As DOTS is used for DDoS Mitigation signaling, in practice, there are
 different deployment scenarios for DOTS agents deployment depending
 on the network deployment mode. This document made an accommandation
 for DOTS Server deployment which may be Suitable for ISP. The goal
 is to provide some guidance for DOTS agents deployment.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. DOTS server Considerations

	4. DOTS server deployment inside an ISP
	 4.1. DOTS Agents Deployment

	 4.2. DOTS Agents interfaces
	 4.2.1. Bandwidth consuming attack

	 4.2.2. Host resource consuming attack

	5. DOTS server deployment between ISPs

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgement

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Authors' Addresses

1. Introduction

 DDoS Open Threat Signaling (DOTS) is a protocol to standardize real-
 time signaling, threat-handling
 requests[I-D.ietf-dots-signal-channel], when attack target is under
 attack, dots client send mitigation request to dots server for help,
 If the mitigation request contains enough messages of the attack,
 then the mitigator can respond very effectively.

 In the architecture draft[I-D.ietf-dots-architecture], when comes to
 the deployment topic, it says this does not necessarily imply that
 the attack target and the DOTS client have to be co-located in the
 same administrative domain, but it is expected to be a common
 scenario. Although co-location of DOTS server and mitigator within
 the same domain is expected to be a common deployment model, it is
 assumed that operators may require alternative models.

 In the DOTS server discovery draft[I-D.ietf-dots-server-discovery],
 it is says that a key point in the deployment of DOTS is the ability
 of network operators to be able to onfigure DOTS clients with the
 correct DOTS server(s) nformation consistently.

 In the DOTS multihoming draft[I-D.ietf-dots-multihoming], it provides
 deployment recommendations for DOTS client and DOTS gateway, it is
 says when conveying a mitigation request to protect the attack
 target, the DOTS client among the DOTS servers available Must select
 a DOTS server whose network has assigned the prefixes from which
 target prefixes and target IP addresses are derived. This implies
 that id no appropriate DOTS server is found, the DOTS client must not
 send the mitigation request to any DOTS server. So in this document,
 we give some dots server deployment consideration as the title
 suggests we prefer hierarchical deployment.

 This is DOTS server deployment guidance for operators, We've written
 about our experience as an ISP, and we hope that other scenarios will
 contribute as well.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119]

 The readers should be familiar with the terms defined in
 [I-D.ietf-dots-requirements] [I-D.ietf-dots-use-cases]

 The terminology related to YANG data modules is defined in [RFC7950]

 In addition, this document uses the terms defined below:

dots svr: abbreviation of dots server.

ISP: Internet service provider.

Orchestrator: With the function of DOTS server that can receive
 messages from clients and made decisions for mitigators selection.

netflow/ipfix collector: Flow collector used for DDoS attack
 detection.

3. DOTS server Considerations

 When take dots server deployment into consideration, one thing must
 be involved is mitigator.so far, how many network devices can play
 the role of mitigator, we make a summerized list as follows:

 o Router.

 o Special cleaning equipment, such as Flow clean device and clean
 center.

 o Network security equipment, such as firewall,IPS and WAF.

 Whether DOTS server can be deployed, the following conditions need to
 be met:

 o DOTS server and mitigator are in the same administrative domain

 o DOTS server can go directly to the mitigator which had best go
 through without any other DOTS agents

 o DOTS server has the permissions for scheduling and operations on
 mitigator

 o DOTS server has the ability to know the address of attack target
 belong to which mitigator

4. DOTS server deployment inside an ISP

4.1. DOTS Agents Deployment

 From the internal structure of ISP, the whole network can divide into
 three parts logically. There are three most important routers:
 backbone router, man(metropolitan area network) router, and IDC
 router. When a ddos attack occurs, it must be one of the three cases
 as follows, and the corresponding mitigator will responsible for
 mitigation.

 o only the lan network detected the attack, dots server3 will
 receive mitigation request, and mitigator3 will act as the first
 responsible mitigator.

 o only the man network detected the attack, dots server2 will
 receive mitigation request, then mitigator2 will act as the first
 responsible mitigator.

 o only the backbone network detected the attack, dots server1 will
 receive mitigation request, then mitigator1 will act as the first
 responsible mitigator.

 o Attacks on the same attack target are found both in adjacent
 areas, the lower network mitigator will act as the first
 responsible mitigator. for example, dots server1 and dots server2
 both received the mitigation request from attack target by dots
 client, mitigator2 will responsible for ddos disposition(priority
 ranking: mitigator3, mitigator2, mitigator1).

 Normally, The lower network the target in, the easier it is to alert.
 Because the higher network the attack target in, the greater the
 bandwidth of the pipeline. As shown in the following figure,
 Orchestrator take on the role for scheduling. Because the importance
 of the orchestrator, it is suggested to consider bakeup mechanisms to
 ensure continuity and security.

 How does DOTS client can find DOTS servers, we can reference the DOTS
 server discovery draft[I-D.ietf-dots-server-discovery], Static
 configuration or dynamic discovery depends on the actual scenario and
 the size of the network.

 +‑‑‑‑‑‑‑‑‑+
 |other ISP|
 +‑‑‑‑‑‑‑‑‑+
 |..........................
 | backbone network
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 |backbone router|‑‑‑‑‑|mitigator1|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 |dots svr1|
 +‑‑‑‑‑‑‑‑‑+
..........|.................................
 | metropolitan area network
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 |man router|‑‑‑‑‑‑‑|mitigator2|
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 |dots svr2|
 +‑‑‑‑‑‑‑‑‑+
..........|.................................
 | local area network
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 |IDC router|‑‑‑‑‑‑|mitigator3|
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 |dots svr3|
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 |Orchestrator|
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |dots client|‑‑‑‑|netflow/ipfix collector|‑‑‑|attack target|
 +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: DOTS Server Deployment

4.2. DOTS Agents interfaces

 In the dots use case draft[I-D.ietf-dots-use-cases], it is says the
 orchestrator analyses the various information it receives from DDoS
 telemetry system, and initiates one or multiple DDoS mitigation
 strategies. In the telemetry draft, all the telemetry informations
 are contained and some parameters can be used to make decisions.
 This section made a discussion on which attributes could be used in
 orchestrator for scheduling and the orchestrator's ability. to know
 all the related mitigators capability and residue capability.

 We suggest orchestrator has three capabilities and reuse the method
 of registration and notification in signal channel:

 1.Can get the neflow/ipfix collector's telemetry informations.

 2.Can get the capabilities of each mitigator, it means the initial
 capacity, this means that with each addition of mitigator there needs
 to be a protocol that can push this information to orchestrator, we
 recommend using DOTS signal channel to transfer initial capacity.

 3.When mitigation finished, mitigator can inform orchestrator that
 mitigation is finished and capacity has been released, also we
 recommend using DOTS signal channel to transfer.

4.2.1. Bandwidth consuming attack

 The following parameters will be required by orchestrator:

 o top-talker

 o source-prefix

 o total-traffic

 o total-attack-traffic

 o total-pipe-capability

 The recommended approach here is to redirect traffic and flow
 cleaning.

4.2.2. Host resource consuming attack

 The following parameters will be required by orchestrator:

 o top-talker

 o source-prefix

 The recommended approach here is to use router for disposition.

5. DOTS server deployment between ISPs

 The coexistence of different operators is very common, coordination
 between operators across networks is very important. Interdomain
 attacks occur frequently, We recommend deploying the DOTS server at
 the access point

 o DDoS attack from one of other ISPs, for example, ISP A received
 DDoS attack from ISP B or ISP C, then dots server C or dots server
 B will receive the mitigation request.

 o DDOS attack from two or more of other ISPs,for example, ISP A and
 ISP B both start ddos attack to ISP C, then dots server A and dots
 server B will both receive mitigation request from dots client C.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
ISP A	‑‑‑‑‑‑‑‑	ISP B				
+‑‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑‑+				
	dots svrA				dots svrB	
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ISP C |
| +‑‑‑‑‑‑‑‑‑+ |
| |dots svrC| |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: DOTS Server Deployment2

6. Security Considerations

 TBD

7. IANA Considerations

 TBD

8. Acknowledgement

 TBD

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

9.2. Informative References

 [I-D.ietf-dots-architecture]

 Mortensen, A., K, R., Andreasen, F., Teague, N., and R.
 Compton, "Distributed-Denial-of-Service Open Threat
 Signaling (DOTS) Architecture", draft-ietf-dots-
 architecture-14 (work in progress), May 2019.

 [I-D.ietf-dots-multihoming]

 Boucadair, M., K, R., and W. Pan, "Multi-homing Deployment
 Considerations for Distributed-Denial-of-Service Open
 Threat Signaling (DOTS)", draft-ietf-dots-multihoming-02
 (work in progress), July 2019.

 [I-D.ietf-dots-requirements]

 Mortensen, A., K, R., and R. Moskowitz, "Distributed
 Denial of Service (DDoS) Open Threat Signaling
 Requirements", draft-ietf-dots-requirements-22 (work in
 progress), March 2019.

 [I-D.ietf-dots-server-discovery]

 Boucadair, M. and R. K, "Distributed-Denial-of-Service
 Open Threat Signaling (DOTS) Agent Discovery", draft-ietf-
 dots-server-discovery-05 (work in progress), August 2019.

 [I-D.ietf-dots-signal-channel]

 K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
 Teague, "Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Signal Channel Specification", draft-
 ietf-dots-signal-channel-38 (work in progress), October
 2019.

 [I-D.ietf-dots-use-cases]

 Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
 L., and K. Nishizuka, "Use cases for DDoS Open Threat
 Signaling", draft-ietf-dots-use-cases-20 (work in
 progress), September 2019.

Authors' Addresses

Meiling Chen
CMCC
32, Xuanwumen West
BeiJing , BeiJing 100053
China

 Email: chenmeiling@chinamobile.com

Li Su
CMCC
32, Xuanwumen West
BeiJing 100053
China

 Email: suli@chinamobile.com

Jin Peng
CMCC
32, Xuanwumen West
BeiJing 100053
China

 Email: pengjin@chinamobile.com

draft-davidben-tls-batch-signing-02 - Batch Signing for TLS

draft-davidben-tls-batch-signing-02 - Batch Signing for TLS

Index
Back 5
Prev
Next
Forward 5

TLS

Internet-Draft

Intended status: Experimental

Expires: May 4, 2020

D. Benjamin

Google LLC

November 01, 2019

Batch Signing for TLS

draft-davidben-tls-batch-signing-02

Abstract

 This document describes a mechanism for batch signing in TLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions and Definitions

	3. Batch SignatureSchemes
	 3.1. Signing

	 3.2. Verifying

	4. Security Considerations
	 4.1. Correctness

	 4.2. Domain Separation

	 4.3. Payload Confidentiality

	 4.4. Information Leaks

	5. IANA Considerations

	6. Normative References

	Appendix A. Test Vectors

	Acknowledgments

	Author's Address

1. Introduction

 TLS [RFC8446] clients and servers authenticating with certificates
 perform online signatures with the private key associated with their
 certificate. In some cases, signing throughput may be limited. For
 instance, RSA signing is CPU-intensive compared to many other
 algorithms used in TLS. The private key may also be stored on a
 hardware module or be accessed remotely on another server. Under
 load, this can result in DoS concerns or impact system performance.

 To mitigate these concerns, this document introduces a mechanism for
 batch signing in TLS. It allows TLS implementations to satisfy many
 concurrent requests with a single signing operation, at a logarithmic
 cost to signature size. A server under load could, for instance,
 preferentially serve batch-capable clients as part of its DoS
 strategy.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. All TLS notation comes from section 3 of
 [RFC8446].

3. Batch SignatureSchemes

 A batch SignatureScheme signs a number of input messages from
 different connections concurrently and returns a corresponding batch
 signature for each input message.

 Each SignatureScheme is parameterized by the following:

 o A base signature algorithm

 o A hash function

 This document defines the following values:

enum {
 ecdsa_secp256r1_sha256_batch(TBD1),
 ecdsa_secp384r1_sha384_batch(TBD2),
 ecdsa_secp521r1_sha512_batch(TBD3),
 ed25519_batch(TBD4),
 ed448_batch(TBD5),
 rsa_pss_pss_sha256_batch(TBD6),
 rsa_pss_rsae_sha256_batch(TBD7),
 rsa_pkcs1_sha256_legacy_batch(TBD8),
 (65536)
} SignatureScheme

 "ecdsa_secp256r1_sha256_batch", "ecdsa_secp384r1_sha384_batch", and
 "ecdsa_secp521r1_sha512_batch" use base signature algorithms of
 "ecdsa_secp256r1_sha256", "ecdsa_secp384r1_sha384", and
 "ecdsa_secp521r1_sha512" with SHA-256, SHA-384, and SHA-512 [SHS],
 respectively, as the hash function.

 "ed25519_batch" uses a base signature algorithm of "ed25519" with
 SHA-512 as the hash function. "ed448_batch" uses a base signature
 algorithm of "ed448" with 64 bytes (512 bits) of SHAKE256 [FIPS202]
 output as the hash function.

 "rsa_pss_pss_sha256_batch" and "rsa_pss_rsae_sha256_batch" use base
 signature algorithms of "rsa_pss_pss_sha256" and
 "rsa_pss_rsae_sha256" with SHA-256 as the hash function.

 "rsa_pkcs1_sha256_legacy_batch" uses a base signature algorithm of
 "rsa_pkcs1_sha256_legacy" [I-D.davidben-tls13-pkcs1] with SHA-256 as
 the hash function. As with "rsa_pkcs1_sha256_legacy", this code
 point is only defined for use with client certificates.

 Batch signing is only defined for use with TLS 1.3. If TLS 1.2 is
 negotiated, the above code points MUST NOT be used in
 ServerKeyExchange or CertificateVerify messages. Note, however, a
 client which supports both TLS 1.2 and TLS 1.3 MAY offer the code
 points in the ClientHello.

 These code points do not correspond to certificate signature
 algorithms. Implementations wishing to advertise support for the
 base signature algorithm should send the base algorithm's
 corresponding code point.

3.1. Signing

 Signing is performed by building a Merkle tree on top of the signing
 inputs, interspersed with blinding values. An example tree for three
 messages is shown below:

level 3: t30
 _____/ _____
 / \
level 2: t20 t21
 / \ / \
 / \ / \
level 1: t10 t11 t12 t13=t10
 / \ / \ / \
level 0: t00 t01 t02 t03 t04 t05
 | | |
 m0 m1 m2

 In general, let n be the number of input messages. If n is greater
 than 2^31, the signing procedure fails and returns an error.
 Otherwise, it builds a tree with l levels numbered 0 to l-1, where l
 is ceil(log_2(n)) + 2. Hashes in the tree are built from the
 following functions:

HashLeaf(msg) = Hash(0x00 || msg)
HashNode(left, right) = Hash(0x01 || left || right)

 "0x00" and "0x01" denote byte strings containing a single byte with
 value zero and one, respectively. "||" denotes concatenation. "left"
 and "right" are byte strings with length Hash.length.

 Tree levels are computed iteratively as follows:

 1. Initialize level 0 with 2*n elements. For i between 0 and n-1,
 inclusive, set element 2*i to the output of HashLeaf(m[i]) and
 element 2*i+1 to a random string of Hash.length bytes. The
 random values placed at odd indices preserve signature payload
 confidentiality (see Section 4.3).

 2. For i between 1 and l-1, inclusive, compute level i from level
 i-1 as follows:

 * If level i-1 has an odd number of elements, pad it to an even
 number of elements with a copy of its first element. That is,
 if the previous level contained three hashes, x, y, z, it
 should now contain four elements, x, y, z, x.

 * Initialize level i with half as many elements as level i-1.
 Set element j to the output of HashNode(left, right) where
 "left" is element 2*j of level i-1 and "right" is element
 2*j+1 of level i-1. "left" and "right" are the left and right
 children of element j.

 Level l-1 will contain a single element, the root of the tree. The
 signer then computes a digital signature using the base signature
 algorithm. This signature is computed over the concatenation of:

 o A string that consists of octet 32 (0x20) repeated 64 times

 o The context string "TLS batch signature"

 o A single 0 byte which serves as the separator

 o The batch signature algorithm's SignatureScheme code point,
 expressed as a big-endian 16-bit integer. Note this is the code
 point of the batch algorithm, not the original base algorithm.

 o The value at the root of the tree

 This structure is intended to provide key separation with other
 signatures in TLS (see Section 4.2).

 The signer then constructs a BatchSignature structure, as defined
 below, for each input message. It encodes each to bytes to obtain
 the final signatures.

 opaque Node[Hash.length];

struct {
 uint32 index;
 Node path<Hash.length..2^16‑1>;
 opaque root_signature<0..2^16‑1>;
} BatchSignature;

 To assemble the BatchSignature structure for message i:

 1. Set "index" to i. This will be a value between 0 and n-1,
 inclusive.

 2. Set "path" to an array of l-1 hashes. Set element j of this
 array to element k of level j, where k is ((2 * i) >> j) ^ 1.
 ">>" denotes a bitwise right-shift, and "^" denotes a bitwise
 exclusive OR (XOR) operation. This element is the sibling of the
 ancestor of message i in the tree. Note the root is never
 included.

 3. Set "root_signature" to the digital signature computed above.

 For example, in the diagram below, the "path" field of the signature
 of "m2" contains the marked nodes, in order from bottom to top.

level 3: t30
 _____/ _____
 / \
level 2: *t20 t21
 / \ / \
 / \ / \
level 1: t10 t11 t12 *t13=t10
 / \ / \ / \
level 0: t00 t01 t02 t03 t04 *t05
 | | |
 m0 m1 m2

3.2. Verifying

 The signature is verified by recovering the root hash from the
 supplied "path" and "index" fields and then verifying the signature
 in the "root_signature" field. This is done as follows:

 1. If decoding the BatchSignature structure fails, terminate the
 algorithm and reject the signature.

 2. If the value of the "index" field is 2^31 or higher, or if the
 number of elements in the "path" field is higher than 32,
 terminate the algorithm and reject the signature. Otherwise, set
 "remaining" to double this value.

 3. Set "hash" to the output of HashLeaf(message).

 4. For each element "v" of the "path" field, in order:

 * If "remaining" is odd, set "hash" to the output of HashNode(v,
 hash). Otherwise, set "hash" to the output of HashNode(hash,
 v)

 * Set "remaining" to remaining >> 1.

 5. If "remaining" is non-zero, the signature is invalid. Terminate
 the algorithm and reject the signature.

 6. As in the signing algorithm, concatenate the following:

 * A string that consists of octet 32 (0x20) repeated 64 times

 * The context string "TLS batch signature"

 * A single 0 byte which serves as the separator

 * The batch signature algorithm's SignatureScheme code point,
 expressed as a big-endian 16-bit integer. Note this is the
 code point of the batch algorithm, not the original base
 algorithm.

 * The value of "hash"

 7. Verify that the "root_signature" field is a valid signature for
 the concatenation, using the base signature algorithm. If it is
 invalid, terminate the algorithm and reject the signature.
 Otherwise, accept the signature.

 Note there are many possible valid signatures for a given message,
 depending on how many and what messages were batched together.

4. Security Considerations

4.1. Correctness

 Batch signatures sign the root of a Merkle tree (see Section 3.1) so,
 provided the hash is collision-resistant and the base algorithm is
 secure, an attacker can only forge signatures of messages in the
 leaves of the Merkle tree. These leaves are the input messages, with
 the exception of padding and blinding nodes, discussed below.

 When building the tree, this mechanism pads odd-length levels with
 extra copies of nodes already in the tree. This is equivalent to
 signing multiple copies of some input messages to bring the total to
 a power of two. This avoids introducing other messages for which the
 signature would also be valid. Verification (see Section 3.2)
 implicitly rejects odd indices in the tree to likewise ensure
 blinding values are not mistaken for message hashes.

4.2. Domain Separation

 Signatures made by the same key in different contexts should be
 separated to avoid potential cross-protocol attacks. Inputs to the
 batch signing algorithm include any existing context strings, such as
 TLS 1.3's distinct client and server labels or new labels that may be
 allocated by future versions of TLS. By signing over those labels,
 batch signing preserves separation between those inputs.

 The root signature additionally includes its own context string.
 This separates it from unbatched TLS 1.3 signatures, defined in
 section 4.4.3 of [RFC8446]. Like TLS 1.3, it additionally includes a
 64-byte padding prefix to clear the ClientHello.random and
 ServerHello.random prefixes in the TLS 1.2 ServerKeyExchange signing
 payload. This allows the same key to be used for batched and
 unbatched signatures, simplifying deployment.

 Finally, including the code point in the signature payload provides
 separation in case the same base signature algorithm is used in two
 batch constructions with, say, different hash functions.

4.3. Payload Confidentiality

 The signing payload in TLS 1.3 is the handshake transcript. This
 contains information which is normally encrypted, such as the server
 certificate. Path elements in a batch signature are computed from
 payloads from other connections in the same batch. A naive
 construction could permit one peer to learn confidential information
 in other connections' signing payloads, such as which server
 certificate was selected in response to an encrypted SNI.

 This mechanism avoids these attacks by pairing each input with a
 secret blinding value. An input's signature path will reveal the
 corresponding blinding value at level 0, but all other inputs in the
 path are incorporated in nodes at level 1 or higher. Provided the
 hash is preimage-resistant, these nodes do not reveal the original
 payload.

 In the event of entropy failure when generating the blinding values,
 signatures remain unforgeable. The blinding values are only needed
 for payload confidentiality.

4.4. Information Leaks

 A server observing multiple batched client signatures with the same
 root hash learns the two connections were created by the same client.
 However, the connections are already correlatable via the client
 certificate itself, so this does not reveal additional information in
 most deployments. Clients can partition the contexts in which
 signing requests may be batched to further mitigate these issues.

 Additionally, a single batch signature reveals the number of signing
 requests in that batch, rounded up to a power of two. This may
 reveal some information about a service's signing load.

5. IANA Considerations

 IANA is requested to create the following entries in the TLS
 SignatureScheme registry, defined in [RFC8446]. The "Reference"
 column should be set to this document.

+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Value | Description | Recommended |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
TBD1	ecdsa_secp256r1_sha256_batch	Y
TBD2	ecdsa_secp384r1_sha384_batch	Y
TBD3	ecdsa_secp521r1_sha512_batch	Y
TBD4	ed25519_batch	Y
TBD5	ed448_batch	Y
TBD6	rsa_pss_pss_sha256_batch	Y
TBD7	rsa_pss_rsae_sha256_batch	Y
TBD8	rsa_pkcs1_sha256_legacy_batch	N
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

6. Normative References

 [FIPS202]
 Dworkin, M., "SHA-3 Standard: Permutation-Based Hash and
 Extendable-Output Functions", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.202, July 2015.

 [I-D.davidben-tls13-pkcs1]

 Benjamin, D., "Legacy RSASSA-PKCS1-v1_5 codepoints for TLS
 1.3", draft-davidben-tls13-pkcs1-00 (work in progress),
 July 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [SHS]
 Dang, Q., "Secure Hash Standard", National Institute of
 Standards and Technology report,
 DOI 10.6028/nist.fips.180-4, July 2015.

Appendix A. Test Vectors

 TODO: Include test vectors. Probably use
 ecdsa_secp256r1_sha256_batch. RSA signatures are big and Ed25519
 isn't as common. Include some negative examples for verifying as
 well as intermediate values so signing code can at least compare
 against the tree-building vectors. (Blinding values and most of our
 defined signature schemes are non-deterministic.)

Acknowledgments

 The mechanism described in this document is derived from a similar
 construction by Adam Langley in the Roughtime protocol. Adam also
 provided the initial suggestion to apply a similar technique to TLS.

Author's Address

David Benjamin
Google LLC

 Email: davidben@google.com

draft-dkg-lamps-samples-01 - S/MIME Example Keys and Certificates

draft-dkg-lamps-samples-01 - S/MIME Example Keys and Certificates

Index
Back 5
Prev
Next

lamps

Internet-Draft

Intended status: Informational

Expires: 24 May 2020

D.K. Gillmor

ACLU

21 November 2019

S/MIME Example Keys and Certificates

draft-dkg-lamps-samples-01

Abstract

 The S/MIME development community benefits from sharing samples of
 signed or encrypted data. This document facilitates such
 collaboration by defining a small set of X.509v3 certificates and
 keys for use when generating such samples.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 May 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Terminology

	2. Background
	 2.1. Certificate Usage

	 2.2. Certificate Expiration

	 2.3. Certificate Revocation

	 2.4. Using the CA in Test Suites

	 2.5. Certificate Chains

	 2.6. Passwords

	3. Example Certificate Authority
	 3.1. Certificate Authority Certificate

	 3.2. Certificate Authority Secret Key

	4. Alice's Sample
	 4.1. Alice's End-Entity Certificate

	 4.2. Alice's Private Key Material

	 4.3. PKCS12 Object for Alice

	5. Bob's Sample
	 5.1. Bob's End-Entity Certificate

	 5.2. Bob's Private Key Material

	 5.3. PKCS12 Object for Bob

	6. Security Considerations

	7. IANA Considerations

	8. Document Considerations
	 8.1. Document History
	 8.1.1. Substantive Changes from -00 to -01

	9. Acknowledgements

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Author's Address

1. Introduction

 The S/MIME ([RFC8551]) development community, in particular the
 e-mail development community, benefits from sharing samples of signed
 and/or encrypted data. Often the exact key material used does not
 matter because the properties being tested pertain to implementation
 correctness, completeness or interoperability of the overall system.
 However, without access to the relevant secret key material, a sample
 is useless.

 This document defines a small set of X.509v3 certificates ([RFC5280])
 and secret keys for use when generating or operating on such samples.
 An example certificate authority is supplied, and samples are
 provided for two "personas", Alice and Bob.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 * "Certificate Authority" (or "CA") is a party capable of issuing
 X.509 certificates

 * "End-Entity" is a party that is capable of using X.509
 certificates (and their corresponding secret key material)

 * "Mail User Agent" (or "MUA") is a program that generates or
 handles [RFC5322] e-mail messages.

2. Background

2.1. Certificate Usage

 These X.509 certificates ([RFC5280]) are designed for use with S/MIME
 protections ([RFC8551]) for e-mail ([RFC5322]).

 In particular, they should be usable with signed and encrypted
 messages.

2.2. Certificate Expiration

 The certificates included in this draft expire in 2052. This should
 be sufficiently far in the future that they will be useful for a few
 decades. However, when testing tools in the far future (or when
 playing with clock skew scenarios), care should be taken to consider
 the certificate validity window.

 Due to this lengthy expiration window, these certificates will not be
 particularly useful to test or evaluate the interaction between
 certificate expiration and protected messages.

2.3. Certificate Revocation

 Because these are expected to be used in test suites or examples, and
 we do not expect there to be online network services in these use
 cases, we do not expect these certificates to produce any revocation
 artifacts.

 As a result, there are no OCSP or CRL indicators in any of the
 certificates.

2.4. Using the CA in Test Suites

 To use these end-entity certificates in a piece of software (for
 example, in a test suite or an interoperability matrix), most tools
 will need to accept the example CA (Section 3) as a legitimate root
 authority.

 Note that some tooling behaves differently for certificates validated
 by "locally-installed root CAs" than for pre-installed "system-level"
 root CAs). For example, many common implementations of HPKP
 ([RFC7469]) only applied the designed protections when dealing with a
 certificate issued by a pre-installed "system-level" root CA, and
 were disabled when dealing with a certificate issued by a "locally-
 installed root CA".

 To test some tooling specifically, it may be necessary to install the
 root CA as a "system-level" root CA.

2.5. Certificate Chains

 In most real-world examples, X.509 certificates are deployed with a
 chain of more than one X.509 certificate. In particular, there is
 typically a long-lived root CA that users' software knows about upon
 installation, and the end-entity certificate is issued by an
 intermediate CA, which is in turn issued by the root CA.

 The examples presented in this document use a simple two-link
 certificate chain, and therefore may be unsuitable for simulating
 some real-world deployments.

 In particular, testing the use of a "transvalid" certificate (an end-
 entity certificate that is supplied without its intermediate
 certificate) is not possible with the configuration here.

2.6. Passwords

 Each secret key presented in this draft is unprotected (it has no
 password).

 As such, the secret keys are not suitable for verifying interoperable
 password protection schemes, or for MUAs that require passwords on
 their PKCS#12 [RFC7292] cryptographic objects.

3. Example Certificate Authority

 The example Certificate Authority has the following information:

 * Name: "Sample LAMPS Certificate Authority"

3.1. Certificate Authority Certificate

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIDLTCCAhWgAwIBAgIULXcNXGI2bZp38sV7cF6VcQfnKDwwDQYJKoZIhvcNAQEN
BQAwLTErMCkGA1UEAxMiU2FtcGxlIExBTVBTIENlcnRpZmljYXRlIEF1dGhvcml0
eTAgFw0xOTExMjAwNjU0MThaGA8yMDUyMDkyNzA2NTQxOFowLTErMCkGA1UEAxMi
U2FtcGxlIExBTVBTIENlcnRpZmljYXRlIEF1dGhvcml0eTCCASIwDQYJKoZIhvcN
AQEBBQADggEPADCCAQoCggEBAMUfZ8+NYSh6h36zQcXBo5B6ficAcBJ1f3aLxyN8
QXB83XuP8aDRWQ9uJvJpQkWVH4zx96/E/zI0t0lDMYtZNqra16h+gxbHJgoq2pRw
RCOiyYu/p2vzvvZ1dtFTMc/mIigjA/73kokui62j1EFy//fNVIihkVS3rAweq+fI
8qJHSMhdc2aYa9wOP0eGe/HTiDYgT4L4f2HTGMGGwQgj1vub0gpR4YHmNqr0GyEA
63mHUQUZpnmN1FEl+nVFA5Ntu4uF++qf/tkTji89/eXYBdKX2yUdTeTIKoCI65IL
EXxezjTc8aFjf/8E0aWGVZR/DtCsjWOh/s/mV7n/YPyb4+ECAwEAAaNDMEEwDwYD
VR0TAQH/BAUwAwEB/zAPBgNVHQ8BAf8EBQMDBwYAMB0GA1UdDgQWBBS3Uk1zwIg9
ssN6WgzzlPf3gKJ32zANBgkqhkiG9w0BAQ0FAAOCAQEALsU91Bmhc6EgCNr7inY2
2gYPnosJ+kZ1eC0hvHIK9e0Tx74RmhTOe8M2C9YXQKehHpRaX+DLcjup6scoH/bT
u0THbmzeOy29TTiFcyV9BK+SEKQWW4s98Fwdk9fPWcflHtYvqxjooAV3vHbt6Xmp
KrKDz/jdg7t0ptI4zSqAf3wNppiJoswlOHBUnH2W1MIYkWQ4jYj5socblVlklHOr
ykKUiEZAbjU+C1+0FhT4HgLjBB9R4H1H0JRKsggWiZBBJ6UpN0dTN4iD0mDVa0jy
sJqqWnIViy/xaSDcNaWJmU3o2KmkMkdpinoJ5uLkAHQqXjFaujdU1PkufeA7v3uG
Rw==
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

3.2. Certificate Authority Secret Key

‑‑‑‑‑BEGIN RSA PRIVATE KEY‑‑‑‑‑
MIIEpQIBAAKCAQEAxR9nz41hKHqHfrNBxcGjkHp+JwBwEnV/dovHI3xBcHzde4/x
oNFZD24m8mlCRZUfjPH3r8T/MjS3SUMxi1k2qtrXqH6DFscmCiralHBEI6LJi7+n
a/O+9nV20VMxz+YiKCMD/veSiS6LraPUQXL/981UiKGRVLesDB6r58jyokdIyF1z
Zphr3A4/R4Z78dOINiBPgvh/YdMYwYbBCCPW+5vSClHhgeY2qvQbIQDreYdRBRmm
eY3UUSX6dUUDk227i4X76p/+2ROOLz395dgF0pfbJR1N5MgqgIjrkgsRfF7ONNzx
oWN//wTRpYZVlH8O0KyNY6H+z+ZXuf9g/Jvj4QIDAQABAoIBAQC6LWFU7IkZPDEA
/7ldV/huGuNPXuB67rLGelpJL7B219gwPdHPPCrLohPy3GuVYLT94AM55evJtXRv
I6GFpWs2j58kKukQ+GL7M2Ji1G3m4ndNIGS2Vu7DxEnGhrcDTq5wDjJV++pQ2r9d
7uAoOL99glcW/NJQm3FJuSZPssFHdjfzFrirRUwLPq9RoYsvst/EECxoq5WOZbeM
OsyGJ0ARsJpvBhIMFq/6eo/dFfTR4qba3BP0RksbETRNUk7ld2iQJ9huZkThNz1l
lxMpvpYRCHkmM8CIVzvb0IsCBmio/5YpShP3PVB39Zw5XDs/A9Yn5b46hjEX45mn
HTqaAz/JAoGBAN7ayderxL4C0jm8aif3wWMazXetuU8dU0jeYAmYCNl+R6dxtBSI
KAv770caDfDD7wxmjBDqEIBqIHYUPo3ouXiGt6r3WWNEzvRp3VbOS9TfR0MQys1K
WAgroB7mSJUG14I/JTpuFqwqN+VBXNTND2zb7ULj9UYOedIgxBqNCkbbAoGBAOJw
3r2tQNGBaT2VKlp5Jflvy09OOFaypdqMujSkbLi/gfU2WulYw8hti9yjsJdeAhv7
jk8LBIfiXyByXk/qc+IcEov79Uq5x44lV/KiP4FcZ3kGVMYmr2ldTa+JJ0gtIkDh
ZKVzw6SaXnqxbygCtNY+DRxCTBGcCpZQCkZhjIbzAoGBAJPjd1zjRU2fC6l66quZ
U8GT0NRh+f6RhGpwACV9uimzDpQE9a9GZ+UEDFcP6D5lmCaPitXSrp65Ts9tQdHk
pehg5lPTj4M772btNhBcGKCsh1rvMtYnRuItKTY4NeSHxM5PX0I2Ol+IKM2/oX4q
ktj33aytIGCcTKVwTxMbk71PAoGACVtImOXTy9RhGN5VBbAD1a684+YDhfGT0NgH
ya0RoQCoyg0Y7JNyY5HDOba50UddJvLaCoIWCddcvuZ65yp0517plUcv94p9qG36
mFgD78B1thaA4j8u+FeWoi40pVLYG340vnFuIBsQ1FkIksqp1kByIjzLD982wMdF
5Wqad+kCgYEAjqXkzyFiD71D6g205kwwPzoIV8unmNMsvNn3UFF50/MS/f/ubTTy
FoHYUt5E/YiHbPRyr8zTzSGWUGhV286jRPq4iCwhd2ZQDRw1DuqNooQAqQeY93nS
YDg6U+BjPWQx0lN4LucF+BKwXWQ8ZNdwxjs8SSf6XQMVco4LiUZBOyo=
‑‑‑‑‑END RSA PRIVATE KEY‑‑‑‑‑

4. Alice's Sample

 Alice has the following information:

 * Name: "Alice Lovelace"

 * E-mail Address: "alice@smime.example"

4.1. Alice's End-Entity Certificate

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIDbjCCAlagAwIBAgIUZ4K0WXNSS8H0cUcZavD9EYqqTAswDQYJKoZIhvcNAQEN
BQAwLTErMCkGA1UEAxMiU2FtcGxlIExBTVBTIENlcnRpZmljYXRlIEF1dGhvcml0
eTAgFw0xOTExMjAwNjU0MThaGA8yMDUyMDkyNzA2NTQxOFowGTEXMBUGA1UEAxMO
QWxpY2UgTG92ZWxhY2UwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDD
7q35ZdG2JAzzJGNZDZ9sV7AKh0hlRfoFjTZN5m4RegQAYSyag43ouWi1xRN0avf0
UTYrwjK04qRdV7GzCACoEKq/xiNUOsjfJXzbCublN3fZMOXDshKKBqThlK75SjA9
Czxg7ejGoiY/iidk0e91neK30SCCaBTJlfR2ZDrPk73IPMeksxoTatfF9hw9dDA+
/Hi1yptN/aG0Q/s9icFrxr6y2zQXsjuQPmjMZgj10aD9cazWVgRYCgflhmA0V1uQ
l1wobYU8DAVxVn+GgabqyjGQMoythIK0Gn5+ofwxXXUM/zbU+g6+1ISdoXxRRFtq
2GzbIqkAHZZQm+BbnFrhAgMBAAGjgZcwgZQwDAYDVR0TAQH/BAIwADAeBgNVHREE
FzAVgRNhbGljZUBzbWltZS5leGFtcGxlMBMGA1UdJQQMMAoGCCsGAQUFBwMEMA8G
A1UdDwEB/wQFAwMHoAAwHQYDVR0OBBYEFKwuVFqk/VUYry7oZkQ40SXR1wB5MB8G
A1UdIwQYMBaAFLdSTXPAiD2yw3paDPOU9/eAonfbMA0GCSqGSIb3DQEBDQUAA4IB
AQB76o4Yz7yrVSFcpXqLrcGtdI4q93aKCXECCCzNQLp4yesh6brqaZHNJtwYcJ5T
qbUym9hJ70iJE4jGNN+yAZR1ltte0HFKYIBKM4EJumG++2hqbUaLz4tl06BHaQPC
v/9NiNY7q9R9c/B6s1YzHhwqkWht2a+AtgJ4BkpG+g+MmZMQV/Ao7RwLFKJ9OlMW
LBmEXFcpIJN0HpPasT0nEl/MmotSu+8RnClAi3yFfyTKb+8rD7VxuyXetqDZ6dU/
9/iqD/SZS7OQIjywtd343mACz3B1RlFxMHSA6dQAf2btGumqR0KiAp3KkYRAePoa
JqYkB7Zad06ngFl0G0FHON+7
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

4.2. Alice's Private Key Material

‑‑‑‑‑BEGIN RSA PRIVATE KEY‑‑‑‑‑
MIIEogIBAAKCAQEAw+6t+WXRtiQM8yRjWQ2fbFewCodIZUX6BY02TeZuEXoEAGEs
moON6LlotcUTdGr39FE2K8IytOKkXVexswgAqBCqv8YjVDrI3yV82wrm5Td32TDl
w7ISigak4ZSu+UowPQs8YO3oxqImP4onZNHvdZ3it9EggmgUyZX0dmQ6z5O9yDzH
pLMaE2rXxfYcPXQwPvx4tcqbTf2htEP7PYnBa8a+sts0F7I7kD5ozGYI9dGg/XGs
1lYEWAoH5YZgNFdbkJdcKG2FPAwFcVZ/hoGm6soxkDKMrYSCtBp+fqH8MV11DP82
1PoOvtSEnaF8UURbaths2yKpAB2WUJvgW5xa4QIDAQABAoIBAA7vrwuIG4iLDwGq
EHjFdRXJSX5D+dzejMTHkxA1NMbYSl3NCp1s0fCf0b+pmmYRkX1qg3qqfzsS2/zR
ppZDUel9+8ZK0H6nTJDWRsJb/mYS6GwCMkHM3WTwRLl9oCkY4ryEksHA4THjQo8t
dPtWla6drp7crmHClXMYn143HdSdCIB9StRPkSgyHjyFLOThReOog2Nsm7eShmov
7WkMuESFku5OHFPLUw5FyLEzHJar8ZI7qYbT7X6IamXOf9aTMPDA1rqAcix+4KQa
zF3cNY1xgq/yIvtsv6oyknTStw1i3i46PWzMWf845Eayunrg8e6F3hWt7zndjXWQ
Jg/gAAECgYEA3SLlO2tGdb5gWHwzzZAnTzBMo1Z3toEN25LetuSmY7mxkjMTRDAi
5VOdpSXrVFaT5r8qwU9yFEm+OuB6k52CVbTE1Fp96JlbzYjZnKaLn5OG8+HSLdtn
1vj1XyCGRDJKJ8GaZpZp+WvBfp6449WpSgupXMdIOM8jfekgTEh6rgECgYEA4tKM
Da3tFEEyVy9ZSxZV9ep9dhE7kmVQnr2pvt2YfJTiKnSo2kkj/qKoMi2PhS8ZO0JQ
J90bDngqI5sIo/OGi+hwYRmcKCrvfnfJUEq3v+3BFQYPDfwktgiBu5TGDNimFA2t
l+23SwwCPfjPh5frk8GTq0IslRhXY3djNPhhbOECgYAojSegN9HZ8alVUKFnRtIO
kXrcURTu4MebxlkVDOT+UKUhfEBCNtmPWEAGcueutZm1rMS4Yks3MTazMUsJGs81
zEpz7ow8RTMyg6/0LA5amwEaZATY5+0o3MqSQTKd+uLiW3xm55pTZNE82PpqvVmn
/G94VgsGb+XARynnEzt8AQKBgDER356t+9Yf7KYT5jtqT5pt6kp6m+ql5HUTDv/t
rKl3BB6vMkBXBmR2B/EjDiN/9vNs+y5ElS/iKyucxJfDfV4TIQzAn5nJABraC0FF
iM8KvnSv5N3fqImA+Z/9JYNt8y/vbZiqoranmGyTwUHSSfKjNDEelcqDg5RPJbU1
7s3BAoGAdqDEx0K1sW/e0pOtb97fBNIRgUemSUctUiaV1imwIku1wuxVvD8z92xh
g0DszHZfhSIvZwrhxF0VqPEgh1mDWVfuSHG1g74gDyPy5p3OnEnrk4bloBhXit2Z
pUSPj7ME4rNqAEXlfdVUPq4T1Yq95lDMafQlCmUZU0DnuAy19dc=
‑‑‑‑‑END RSA PRIVATE KEY‑‑‑‑‑

4.3. PKCS12 Object for Alice

 This PKCS12 ([RFC7292]) object contains the same information as
 presented in Section 4.1, Section 4.2 , and Section 3.1.

 -----BEGIN PKCS12-----
 MIINxQIBAzCCDV0GCSqGSIb3DQEHAaCCDU4Egg1KMIINRjCCBC8GCSqGSIb3DQEH
 BqCCBCAwggQcAgEAMIIEFQYJKoZIhvcNAQcBMBwGCiqGSIb3DQEMAQMwDgQI/9dn
 i+BuhWsCAhSEgIID6A5pqJodSl0Y9+WLYXssoT9lDAQHO6NzQ/XBjRhx2qHtVtW7
 OhG239eSt9vzMCnc35YGCfnoKgQg22qRrrBbWDr/zmNYi5fZKvxETNvscpPQKnKn
 BHGQov3r+HiivO0I4eXJVSRhG30szy+zneATyc+pKgZWk+1q2X/Q32pGa9T6SPgZ
 l+HH4bDf+Y9Vs3LkYw7vIM5NLefgCgiNGeiNTKHzRd9VZmAWyBO5KB4nsYdDi6JF
 LGB3Udw8ETaAGYMQer50FsZwReSNgSJVnLk21zEJgKvXSsKa9A3xT5h+Zgbd5Dsx
 bdaQKnvtmXZh1SQJxDregQ+QNT7GJnDbPNXABswzaHnaGOKQFl48M76An29nq8m9
 E3ZYlrU41c7ud0Ik4tPShUjUHIejXIadrJTa4Xnl3jH940kmojwh/PhjxrHY/1GT
 KVE/1sFLfRyEmf9vOhDVLVj+Hq+4PWO8KIzaPCYtaAcMOXAT4XC4l9gL9qomzu+/
 FOHwaNMNqd2XG0J6cIIIW6xbPjKuGr3vYSEEYPYenycpv8P/6uNyj2rBWmNWgMkd
 ntR/cg3NZSodo65vgW0kbiQrUMZxL0HZlBMeQjghG5ziLAKI7mZdPiA6Nt3HgpIE
 EWgvdhitYa21Lb8wv53SavOQWWaxwsnyoQzqDA0R1+ChtulEBopR0bD57ypuFT00
 sz8tuJy566UQ8+dF+65JqqjFAbJ+gSVTZKJPpwV23wzDkmxrQCH/+UoYq8N9dZ5A
 fvvfHwiJYLojI5nEJt8ssud5M3oYJ7hR00YjNK1Ucf3lPKP3tviOpNj/pBy04zp3
 0UZGRgE5dzaX7lwIIwuPbdNbdUkrAP3wpmtjbT/lu2hYzORQP5X6fGH2qpMo+mxF
 JeV9570v91Pp1J5jY5atY+bImPW3P8e23oNXYQgLqpPLSxLDISRBjGVt/j0staCR
 t0GSCEYtHyOnBkwR+CBKHreIppGw3fsEGxpfK3/xLPFdAoDjceG8zLz4EkbWiX9Q
 LR+xkWYypEVH8SRd1A4urA21mnaUBgOU/+sFSMzGehPtlRkZ51hrvkrvreETHkP5
 NQFyBHvZUlVZGxy/VN7Hsil0t1G3iGhxW8v3giVFeocVhVRdICuNMOZBOXR/X9LC
 PYDT/AbGE9Vr0gciO4fT5kDO3QqyJwe/VLYym5V1fEaEp4u+pTY1AXAnLMbpQCl4
 +uobNB7QaFG1BP5UlrxlK3oeJwzVzmJTNZKjEdmT8rM+8pdZcfCP78zYdHw/t9LG
 W1MXVmD6bxkZEaN744w39vaUZScmch2yJdUHFDhiqcuZE7y2V1HP9U7dIImawzoY
 xBHbhucwggOvBgkqhkiG9w0BBwagggOgMIIDnAIBADCCA5UGCSqGSIb3DQEHATAc
 BgoqhkiG9w0BDAEDMA4ECEWK7aRxpzOiAgIUSYCCA2g8qec1HwJsCAm8eGqgMudQ
 bHT072jC9aQL+LGMyM9pSoyz40KGlYfyG8oWhFngdE1Hjwp6ydHrK1hG4u2RSXty
 q1ABeZhEsiUeZbIpf32i1ljiMXzEdFlzxLoaAp8pwT/RX05SWYiTOKhHfrkWqs7j
 QYdNCPCECgUEYpEE9mM6bhJMG2Gw0DebVPIJcCPrtES1sQr9J1aRwK/CgDe9sYUV
 ft3GS7LDmjgssPWOVan2fDXMDt1vA2tNarl8c5iFVBmxKsSY0n9Rt58LVSOCUHVD
 3p+Nspa2i2JVij8NbgJwIMhGlvsdrjqCFo0SRqFqpB0CplUcq6RQuWBLudYX4+Ek
 5wEW/7seIxq4R8w0fewnDth6HGexUhOqwNvAsbK5ZY3ok+b2BJlKwXs5rRmLai9e
 eoun3VSsyGBR697S9zvUODmpKz6wKRoip9O74dtPWtA05xrsOjx4GzvFUagMWmM8
 RI2Z6Mz0qDj/2+ReGw9Z+ePHxY7mTNQncrbrMAN1qlO+VP2OtYE1d/8HJsDcemZg
 9vnCPvf36r4r+45iVno6moC+rz87NYLTXlTsOCpv2RSuLrUyCm3qBNpM/geavYeZ
 SCaggVkSm81vymUQseogR6DPKqBOejFTggxBA/b9mzfCLp2NRfe3gjngvkqY6aqP
 QzCoumYg9pEM7tVSZGryQbVMm85e3w2R1FxOT1JmNE2YtF7W3Lo4DN33gywoFRJN
 JPAMnn42gIC8N1BCC9EcGzF2cgn8XxK7LWCLxmL/1193eIqouokcichJjuMpYYQB
 l056TvlVL2NuyawAXnc+L0ttWp/sN9xSI72Ti+FOSW1g/cDQ0iKvG3O0DqQd4rOU
 1NM3FsZFCGOU3RELnct+4gNGnZXFLj36sIe3bDguJZAXpPeE72mHiV115XWR/+KM
 nzN+kM4vyGShPOVWSuxFODfWhu8B1H2HcSlBhmqG4f553bM+z7sqp8fGvjFI8T3O
 Ys+qrNalhFiHOZNRT2Vp1gSY0L2RG3TbnQSFcYSKrd1lIXR9jHMoaZnumdLCPBj5
 NwkqEAUmCTlDpvySGWMCFmrnWzoAWhSvcx0x8wqxMRNuO3vJrzOIiW5cjovM6FEE
 dD2ohb27WIR2ST/aSAje+EMG0q7V5c5hPlq3Gp3f9/IaMwQh9ETipDCCBVwGCSqG
 SIb3DQEHAaCCBU0EggVJMIIFRTCCBUEGCyqGSIb3DQEMCgECoIIE7jCCBOowHAYK
 KoZIhvcNAQwBAzAOBAjRhW3i7sf6OAICFDEEggTIAHeeSYh8F9rPFPYnChBUV2Vy
 b48I3jYwIBDYCE35dvpP/5tlTTTbHSmYrRwfzAx5VY1ATaXl+xPhm/3LX9w+TdoK
 VggYCVWi1J3gYyff50ZbHsbUZ5L0nQvW+RP62DxWWKdjSZXSgJGDRqqvT+xS14ae
 Zt1u0z2095modzg7BCsPP9nzUxovs5wTKd5gCcPzuR+8xxkqJXQmJQXqQ7Vz/XSD
 JXlBQE3UwBTege3eAS2SBsYGTkCgLw7aFfAlWE7KKZTL0iTiD6k5eSYSG3hO2BwU
 LXyc4uztag1A30+vcy7oTeop7NkNvDUcaxK5NO+/+rjf8/h9aLAa+CLSITHuUWhH
 PeDCbPzpUWnMVIQ8eRO5qC055/fmSrJNXyOXy6Bmf4Dgq9wE36BSNafSdaA64Dr8
 5S/amMG31SgvT6+gB2TfTYwzUH3+lVZWsqRgSHcDKreAeKZSciZeViVQpGxjy4aT
 RkvWJtyxqZD5PF5q2P3YPYmDbf1jy3Zsj9tOyViqbuws0AzilwIgM8MWkwkGtXdo
 8UKmp4vMJMnJ1RD0tzeayumConDM/ACnsada9jBLIN8oN5tUYZfYbifTLm9OmIzK
 ci4/zaUHxoG7X9v9b+6nrF5PxTtMLikU6yr38rXKZqr9KEwdIlZENuajkZQ+kpHP
 AoUrnK7qjxGXC6gssHamLQB/PFjmiU/OVwDzWi9sbJTPdeQ0Jzzkdr5HjBkSeY17
 nxjNz4PWAOLznqG8SmSSPGgQYQg8OB/kNcSey7hX/vNCmlYIdJEZSMkDZ5hL/PvZ
 SwWq6U09JN2bAgH4Sum03CNAYPrysMrJLm3OvsFq9zme0znSnBTe4jLzEJwaR56O
 e0ythLIRaSQL+gxHy/Oi97z2IubuDOVy+aSZsTtVKr5ByZU3oJHJ5qsWTIHFBZmn
 FvZNKM+3XuEa4Y3fZt2fdyYtV+FkEoWfkx2/lPVcSrQ/oOH0iXQxB1qsiuGYwydp
 mUPo9qIqihPNKmbQzcym8EX3i71/HElirUHSukyF/qO0PsnQZCRj/veLm7Y4cDAW
 EDH7lVB+DG45aAXZHZI5OkkTwytptbEvx2bJQFCbB9wyb0c+7B9SO/dCY95pAIAt

MHsWTroG3fRwZ/i5638VRu/wiK4GNE9zxYyIPNuOHPGDtfH4/V0vBWturB+iOp/1
awZLqSbeW+ySo4g9au5eyqsdVVlBFYPW8hVxmyiZbSd67gHNNrk7HaM/vBMUjKz4
WmzF6e5PLGT2PR1PlHbMUx9saNGGGtWHTyAYR8sWynazVa5gFFCxEy3gWwcatFgB
OJQ2gZfVN/SSoOixwUs4O981r80W+ZHeOH8WXWpdSzS4+CIWOMwrsfFBprUeguRQ
hIj+uUSsuuj7FMOQt3K+enuWORhPu8b6f89qh5dkJl5S4+tKLZ6Qo43mAmbhUakx
w1JR+DNmOFtLjCBgi9G6aCBnV+gJ1wWYFkVs+0cjLw56TevSf7j2I3Q4o5+w4FBE
TrcSKUlRE0cVIqSv4RloWaBzWul5LnId2jYZWk+4F97SMt1oX5ZwTyU90zGL7f6M
FAaEFHRu+JjxWZfUWMntIdjGeUsYVw8BRRx8dcKBryhfmXwT7iP+EKsOUf6FszNN
uha4gBKcMUAwGQYJKoZIhvcNAQkUMQweCgBhAGwAaQBjAGUwIwYJKoZIhvcNAQkV
MRYEFKwuVFqk/VUYry7oZkQ40SXR1wB5MF8wTzALBglghkgBZQMEAgMEQN2V6eSI
57sRTBc+I8Ah5tbc+6Rs5i9MI5n8I4wFjBU5QCJM/cEGnmEXlJv20wBqoCekW9N9
j8JjCFJI20FoI0IECEHWKi/gHZBmAgIoAA==
‑‑‑‑‑END PKCS12‑‑‑‑‑

5. Bob's Sample

 Bob has the following information:

 * Name: "Bob Babbage"

 * E-mail Address: "bob@smime.example"

5.1. Bob's End-Entity Certificate

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIDaTCCAlGgAwIBAgIUIlPuMG0CCx8CzfXJwT4633mmG8IwDQYJKoZIhvcNAQEN
BQAwLTErMCkGA1UEAxMiU2FtcGxlIExBTVBTIENlcnRpZmljYXRlIEF1dGhvcml0
eTAgFw0xOTExMjAwNjU0MThaGA8yMDUyMDkyNzA2NTQxOFowFjEUMBIGA1UEAxML
Qm9iIEJhYmJhZ2UwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDCZjlu
Li00rpoCsq2s8SHqb91QPP5bdfzfaJg/G61lHUhfavEX9zZluyMwPPE50wqwV2RJ
X5dg0kStyH9s9Ja5D59pPnX8oJJ7XEqNKwxqSfJt7lRmM8BrDvSP55iP7Ofx+O+2
MzVA4tA6WUaUy2j9984CMmXH/CHjBK/+w21vSTmzFVGmeTqxxHONbd2zOqQ6Yqr/
LBaHjAWl+tj9Q+2nIjEQFKlWs6vZll3Xwid6+dAxrtpEO5rIpKZcbn40qT1pyDpr
ylNk8h3P90nwrOISpdlAJ2p71ZDdLfLd8c6qZGBPjmHwTUnjmH0oy33uBukT73RU
W6raD8MwM4AhQ4ETAgMBAAGjgZUwgZIwDAYDVR0TAQH/BAIwADAcBgNVHREEFTAT
gRFib2JAc21pbWUuZXhhbXBsZTATBgNVHSUEDDAKBggrBgEFBQcDBDAPBgNVHQ8B
Af8EBQMDB6AAMB0GA1UdDgQWBBQBrAKQ6Dj0kN4Z7pXzMnThZgAopzAfBgNVHSME
GDAWgBS3Uk1zwIg9ssN6WgzzlPf3gKJ32zANBgkqhkiG9w0BAQ0FAAOCAQEAa/tJ
ZPgdlmc7Zbn5bccc1TXNn8qBhECGHma4iSTWczDUmsNjezmDNniM3hs8QOqUZvx4
ey6diTlEngrKZ8bnwsX03k9Bn8UDPT5Y5sbxwEHpwKew41LRiLPOZFSh3DzCKYS7
HDSXJsJEGop1AwzKxtRss06C35g4ELK0Q2MwLw1u95f0+rC4q+vYndS9NzFyS3Bj
MIt37gN+Yy8h/r2wvtPVJ40mYNGmtQhdNuYnr56LOuFMmGiMIYXE8owo6L/kzCcy
YxxCy71lbnBOWLGcJz4HmRMdWJMRDV+mgLmTNnN8mPltgQU9gE3KNrYcST9v2kk+
N+cfxLhC0caHFL5G8g==
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

5.2. Bob's Private Key Material

‑‑‑‑‑BEGIN RSA PRIVATE KEY‑‑‑‑‑
MIIEpAIBAAKCAQEAwmY5bi4tNK6aArKtrPEh6m/dUDz+W3X832iYPxutZR1IX2rx
F/c2ZbsjMDzxOdMKsFdkSV+XYNJErch/bPSWuQ+faT51/KCSe1xKjSsMaknybe5U
ZjPAaw70j+eYj+zn8fjvtjM1QOLQOllGlMto/ffOAjJlx/wh4wSv/sNtb0k5sxVR
pnk6scRzjW3dszqkOmKq/ywWh4wFpfrY/UPtpyIxEBSpVrOr2ZZd18InevnQMa7a
RDuayKSmXG5+NKk9acg6a8pTZPIdz/dJ8KziEqXZQCdqe9WQ3S3y3fHOqmRgT45h
8E1J45h9KMt97gbpE+90VFuq2g/DMDOAIUOBEwIDAQABAoIBAAvQiKcAmXC9N9D4
KQP8t7H20H2C53aJii/NvIsBVJ1zlSVva22ocZ7nK7FP0t1PzTOAbDDlZV7WCKSD
LfNiPhLLN0X/LM6It75VkpZXym5fRiOWO3zmokgfZY+lZKlCnaogFfl9zTu/TSZu
rJJ4dk4RFG0fwP3RfgG9FDEokWsU7fNS52VCndOWdGIt0EmsZIfX9H8rnnSrSTro
Dsk9cQjyjMcCH7X340KDUaVJlRtx+1YlbPTyuKF2nbNjSWfsYhuIOGT4xGm6Trda
z6bWjuxH7nNrGKrtO14aE8Xv56sC+J5ulwaIjf/V+eDZVfpVgiXyq6oa6JioPv7u
rx7cIQECgYEA9ovqOi/OYdDNQTJXB4LNMtS1WLxgrpzE/SNPEV5XknQ5yf6rrKZ3
+lr/r6w2Opr4PY+3/igMoBZcN7YgIM9Drkg6bDLzrS354A9dZLDBNAgCnDR0yY87
U3f2ljjpCA2zZrahYhhKsfyMxt2w3cUso299OYgjNwLaLI7LrXvPa4ECgYEAydpv
fw+zdEc0xbGGILb4xiiFpJY2s604auZ3/s/y9W3v8LSKrytHHopQOg3GALvQi+Ay
LWRBIaJTzEueE6lIYInZI2+WvK2zP2GB21/JX5MI3x7AcRp//1muyhnW3GfyPGpg
6zRE45dZPm9nklywl4+yl47ubdOvNyxifBmDxpMCgYAQHb1F6HIZOsjwBhZiS06W
kAj6r/Wx9FV8Jp64h+45iJdueNNICem119T26s7wrcikXYytdHi+zjdg/OrEuke2
UMpg4EPFgkffOaHlPxiiChQBmfw4YMCECEd6MmYpPJwJjs6l1uirEdMx/LPfC1CL
rnIFHL0Qj4MrfnoZ8QnyAQKBgQC6WT2ryPv8MiynAi/4jdL3ZbuTadYQZK98CU7o
YGRFbnwf9R0/gC3FJR3RqpuMW9e4+n54Z2C1w12ncnv6XMLj1P8wdrlrcNTVg5hV
xYVsBZsgGQzCnhtiyxHRpK82hYQdgHv/SB79GeGbAVBVz9p74X6X6q11mQLeZcx6
EzgTnwKBgQDjWmtDk85A0GQuJBR7QOB+CXb39j0a78Qwywpx+XYibmg+N3aD1yJB
8VVtHWYbq3wM51EdjxYVagyKd3IKIjnPbBIWIjFWqEgDXmBROwwR8DBpfvff3jh4
JjK+LtvnHhhw09KtfCvZGplZYfSfC1tLuodBMNjxUX9u04bqTyqx/g==
‑‑‑‑‑END RSA PRIVATE KEY‑‑‑‑‑

5.3. PKCS12 Object for Bob

 This PKCS12 ([RFC7292]) object contains the same information as
 presented in Section 5.1, Section 5.2 , and Section 3.1.

 -----BEGIN PKCS12-----
 MIINuQIBAzCCDVEGCSqGSIb3DQEHAaCCDUIEgg0+MIINOjCCBCcGCSqGSIb3DQEH
 BqCCBBgwggQUAgEAMIIEDQYJKoZIhvcNAQcBMBwGCiqGSIb3DQEMAQMwDgQIvszW
 w8h7VVcCAhT/gIID4El/66Kqq6rDw4JuvnOKupl5Tueo6piyJPJ0fYLaflZAqRIY
 FYno6VETexj6Jr8QoakjJLP/75t9hbZpDmd8DPQj6fWmwSlC1RCu0TTpy40/j3Nz
 TmIW9vZr6jgG9MkOLEWxNwLvwRpSh1WFXGhiMkcmwPmb870n2HZo7RWXjm8TPAvJ
 mlPUyveC0B26iFPvurobAeSAXhIFVEmXGWcVhlKhpQ1GYhmUVnLBa03Q4qbqEISS
 p6Kdt/nvLwW44s4Oxq95EzFya4AtklUCfIJ2jR9Cb6+N5IcQj4/g+o8b9I2xv9lo
 k5t39X/ngGhGCl/PnXnEmwlDq2Lq5bu2wYwYX4GR1klAabm7+h8PI5gFTdG18vBT
 wo2QFpVnnMNiPf85XVk8PaOf1rxSqDiZttVlziVRVdvjgLAO4pvbVYOtgjIhPPmB
 uXzwXJXB22VdNAiG4DWdapj5RlsokBqKzW8JauLlI4oFl3oyzGcaGolbWMoCWmGR
 ixz9pyb5+Icv/oEL5ljWwPY0pdFfQ+T9PH91nDMa3X1hnwrCskJex1hLqRMnWDKE
 UK5AWUl6Diiiqy2nlQmiZKULlyDX1ICzaUPNjSi5VoxW/QGLdeb6TOykWaDJIame
 hq1jrmq/o6yoH1GFtUn1VUEI9mjR2k6Pod89IW35FZQz7hFMX1iBv3nwcgIoQapO
 eiy/vhvr0bAFj1ZRZ/G5oULCcRq/iC9jE2qu3lYXVQ7MCo+4xPkYMUQk98rsF1cL
 dRNQbAdVpQfS0nclZOTvwGsK7z76dWM865yGRE6YzrVICck+QeAzVN555kk8d8US
 SMS7S/y47EaiCPaiQLCzRoHp0NFELrsjgryFSSG6PJQl+EbcNQfdjJQB3j3PLRed
 YI0ixGVGikdHF1R7geyFgUwwdzBBcEJkrNhuQPiF7PhcsNLvzUhddCTk8GKPg8T9
 NJIgMxjBBYic6QFlGEhBb1Hyyud8vwrLB1Jan/aZ72g+FyfVvgzKzEYg+B0qCK0m
 0gs2+g6HgcyfP+Pz5ZqUxNBtcujZ8sIOL3oy5OuGg72FqdcDgqdJBUC84txVMQPm
 2pwBlEYBbZBGjWQ+vX7y8DCjHgkSsBG2XIKx1c9Nw3DPJplQtCirJJYRa2/6FOC+
 8i3nanDaIYZUcO74dyTQUVLlJymoO5UcPKK6ZqW3O/qiA23zCZIQ2G/S/c4qyefv
 Z+Jl529zpqNBjZKWDaK7Hlcqf51sWMho5c4s4WwDqMrbKsaIN5lQt3xGc6q2umYC
 yGuc/A5MVrFSIdFyt+L8tAvVBMHGpYRz9XRvry8XtdugTtD5qpQVfT0aHjqKMIID
 rwYJKoZIhvcNAQcGoIIDoDCCA5wCAQAwggOVBgkqhkiG9w0BBwEwHAYKKoZIhvcN
 AQwBAzAOBAiB/XCQbXHtjgICFFCAggNomvRtKzKEFruatccbzp3KakWSte4bq96y
 zHb+56gj/XPySdMJlW9+AF2Wn0BfYdFpcR5H0PYHfyhnYWJ04XiPrB9EsDCKnpQP
 BkAgWyOTRfsnafF6iyc1Iuz56nWSsBIirDWMGZkQZrvBZlDKVHn/TSU9juRDAgLP
 9T0B3og4Y+CahyI3sVz7j86803TdCLZ5WR18jBF5zaU/A8Em8YK965We/a0xUdCI
 8ZGgI+qPT+AZuICuqAtPnhMU89AY/bYwnDQ83Os9XTdCtHBtnH9/etrCey1qDNRF
 NNmDSWgmWSB9KdabdKePHzYZYppMzajs/jbesAWWT/jVbdtNXpKYZDyUq0iF1uYw
 OIxOw/MJ3TVVCklqzpx6aLAIMlbCKwybf+mUjfDlMIYo63mU6p7Wzgje3HZfUHgX
 Z4mgNnSCQi6vURVsA1K8IcCYDlR4e1Ei9qBAJpqsXyUAXqgirVcJ4yeUbleFLlmy
 oocZcX41hkaZOwi7q7Z7ycCF8ng2dxP8msnR+iStHtanXoWlqkK055mLiZgeBbsz
 8fbUTmk5ZFgH/hIkSElc2dq+kFvq6zgbtyc37qz6o6qx9gEfYvpiBt8bZOlkM9av
 iWPlblbzr0PsD6mBYgVa7kld/TEBxX7DoyluxHBcRRYCsN7u19jZgIRemUQkdzno
 zCjJ/KavJLGb+JJNDoD/kParRsYWrdzJuQ2Oj2T4ec56hWIbb+8ngC2Cjiq9EJZk
 515+ELC1/4nIAbX1qjK+3Azw8OUd+OPnYrzrxD2ggktoOHcdhsPtYpmTM0WrdtJW
 kfQdMueddSJTDj+ZMew3qyKNo1FJaIVRQE64dw+m4t4nK3hgAkvEuQ2HXO6/abo3
 WqBsMZ8nv+mn39iaXGEbYPbWyp3WA69oEpiQ+2Su78TaJ2x0eBmauoNaqJVhkEVJ
 NDhYbgOiVV1MPDi1/TaZ2yc1TKSm0CQB8MYWkB8Pl+eDTftxI7wUP7WHvPA1Wzie
 chMMtyQeA7fWL/6M0g97UmGDYm1y8atM8OT+8uHFDHS9ZXLYdVOX1dMPa8R51LIt
 LKTCSM2kFbMkPy1q8h//nKYktLnNgD5Mg7Z+n0OYcQEZZ+Znkq3a8KqaVCh8fsMx
 6CeYk1hDd4O2udJpdAiq5MuSaFsdHTklI4+S0e4LCCswggVYBgkqhkiG9w0BBwGg
 ggVJBIIFRTCCBUEwggU9BgsqhkiG9w0BDAoBAqCCBO4wggTqMBwGCiqGSIb3DQEM
 AQMwDgQIyPYWEdcyAm0CAhRwBIIEyDKlQn0Ac8GkTFU6QLlMaVStle2bQDTtfF9M
 1/1FFNKqNsssNbPwOpvAUrowEugT0/I9DoZzFJnpQEMS2Y3IE/gdy4IGAYDSYUkx
 ygTqX7iRgnI/YgibzQeq6yhp/y01jEDzsEaqEm7tRRidJdgk/J51v45LAB/PmAtC
 7VURjhPq7NakNgJ5vB2n4FEJJke38+dlb+Xq008+rjzPPQ0XgMLRYELeHAaeWhvd
 3c1EYqyi/J/i+Lc3COOc0s3ArPIXKAazzKAIShOkF7rIZyLUJMdQOaEd3JvJlgs9
 nvAj5io8XyvpWOEdxjpsWIAybltB2gZmb4JjF1jNSrBogSyt2a2QhGBy+mUeRL5n
 Utml6D2pMqKdwI9aGrYRBn9waaNw3OD0Yh3J46++2w6Mn058YbCQvFBsNbSNvlVP
 1QiaLULuso+rrT97d3GvPK/HQIS5Zp4FsPbD9xcoIR9TRxueqwpDA54IpSdRYjpZ
 kBznw7fJ/3BJbImuY1SBTgQnxkzM3i2ZW65YBsh2M3M1Gt9/eg2J7SVZ30E0kehR
 WvNPBsxvjAe2dSMlTsEcBxava4gmB+OXx6bQObFTWCzSislLr9qw8WAVhX/bQi5M
 Wc2l6ubbJTQ0WsMq5oKmnxbJNUKirDYMUKDfkQc7k+Tf81oeYTAr9ZFQzRAsfnD1
 uRtdi1K3oyapSntaIzjC9v+9fekLSaegTfTfTdnvWNOA1AKw95stN/SMp1j9xXv6
 /tPXP6e2cF/cHb1OOobhm+BckOQ9Y9RSbmpYuJLMPJz/kMiwi3aeR8h0U9Q0qSHv
 6Hep5q9mjWRyjEg8bHMF+450zYgurHp4vW5hiZ4WW4MYxkO8v7XE05qJ1OWJMHl9
 IE2uJxgP2YAYF0xn3xviqEChGT7LxgM4K2F5JMDqwUyISMqPkSFcrz83WlyZnft+
 q7NuISpgsfliHJwnVbODjn4quMeUmvSWeCx6k4gvP+tK6REsSRWcrGzp7LG1a7Pj
 U7C2BvVn/n1CAD+v9qrlCAj7XKAVNQ1h0S2yS7dCf2lcQjPRh7XS79OjEcdHlJzP
 9+xcVsex4EpCyvCyBNjz00phOsoXy1kdiPJ+xghNHQEwE7ghFAfBmqeId3kpGs3j

dl3Jxk23B6qfLxxMwpJ8caXvc5I7XeHDWW9wG5c0hD8rFIpHbKipXlsLkVtbOrcj
MhD3cuSNvryF6ZwBuKkdvGhTpU5Ltpi4sr7Q0ArVXzC8J/OVxTPoOlO+R89IhB39
2+I5KOSQHsawLOWeK9fDO+elIh+5MXkH2UdwGwazjOdAnJVQUZFN756CrDIQI6ia
G+PZb4xtFfMV+gl09uRExVm0o31CfzrTz8TQ9KOhv6loRJMUftSFFxhQdbGnDtrE
Osn2wgwmpf0u3le1HZ7lxL+7w2XaK3z98lRma2eMazlu/YqoXbNZAGlzaMaBnhpp
z1S1qPRPp06WWXE60YlrqxdQMU6zVWqxSIWbWNR4o6ksL+VSZFF8EaB/IsteaeIJ
dyVPEUQRJZg7Ym7DMunSRYI2z7M/q42RVDz0OZyhu6vSKXHm67G+hL7NOkI1+id9
qEx7hxPXKtm7xA5tlPYXEzoEJ8AweV6FqGPsDp1FQbOUXuSZ88ksp0rEXO5ZfzE8
MBUGCSqGSIb3DQEJFDEIHgYAYgBvAGIwIwYJKoZIhvcNAQkVMRYEFAGsApDoOPSQ
3hnulfMydOFmACinMF8wTzALBglghkgBZQMEAgMEQNtkJG/r+MMQQ6SBx2QWOarf
yXDT4tFGtCrec547Oj5mN13aL2fKBuz8pzNCec6NM6SDbXb50IR2B7k8VWi/O8UE
CMK3E7w6ejgaAgIoAA==
‑‑‑‑‑END PKCS12‑‑‑‑‑

6. Security Considerations

 The keys presented in this document should be considered compromised
 and insecure, because the secret key material is published and
 therefore not secret.

 Applications which maintain blacklists of invalid key material SHOULD
 include these keys in their lists.

7. IANA Considerations

 IANA has nothing to do for this document.

8. Document Considerations

 [RFC Editor: please remove this section before publication]

 This document is currently edited as markdown. Minor editorial
 changes can be suggested via merge requests at
 https://gitlab.com/dkg/lamps-samples or by e-mail to the author.
 Please direct all significant commentary to the public IETF LAMPS
 mailing list: "spasm@ietf.org"

8.1. Document History

8.1.1. Substantive Changes from -00 to -01

 * changed all three keys to use RSA instead of RSA-PSS

 * set keyEncipherment keyUsage flag instead of dataEncipherment in
 EE certs

9. Acknowledgements

 This draft was inspired by similar work in the OpenPGP space by
 Bjarni Runar and juga at [I-D.bre-openpgp-samples].

 Eric Rescorla helped spot issues with certificate formats.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC7292]
 Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
 and M. Scott, "PKCS #12: Personal Information Exchange
 Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
 <https://www.rfc-editor.org/info/rfc7292>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8551]
 Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", RFC 8551, DOI 10.17487/RFC8551,
 April 2019, <https://www.rfc-editor.org/info/rfc8551>.

10.2. Informative References

 [I-D.bre-openpgp-samples]

 Einarsson, B., juga, j., and D. Gillmor, "OpenPGP Example
 Keys and Certificates", Work in Progress, Internet-Draft,
 draft-bre-openpgp-samples-00, 15 October 2019,
 <http://www.ietf.org/internet-drafts/draft-bre-openpgp-
 samples-00.txt>.

 [RFC7469]
 Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

Author's Address

Daniel Kahn Gillmor
American Civil Liberties Union
125 Broad St.
New York, NY, 10004
United States of America

 Email: dkg@fifthhorseman.net

draft-dukhovni-tls-dnssec-chain-00 - The DANE Authentication Chain Extension for TLS

draft-dukhovni-tls-dnssec-chain-00 - The DANE Authentication Chain Extension for

Index
Back 5
Prev
Next
Forward 5

TLS

Internet-Draft

Intended status: Experimental

Expires: May 7, 2020

V. Dukhovni

Two Sigma

S. Huque

Salesforce

W. Toorop

NLnet Labs

P. Wouters

Red Hat

M. Shore

Fastly

November 4, 2019

The DANE Authentication Chain Extension for TLS

draft-dukhovni-tls-dnssec-chain-00

Abstract

 This draft describes a new TLS extension for transport of a DNS
 record set serialized with the DNSSEC signatures needed to
 authenticate that record set. This allows TLS clients to perform
 DANE authentication of a TLS server without the need to perform
 additional DNS record lookups.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Requirements Notation

	2. Introduction

	3. DNSSEC Authentication Chain Extension
	 3.1. Protocol, TLS 1.2

	 3.2. Protocol, TLS 1.3

	 3.3. DNSSEC Authentication Chain Data
	 3.3.1. Authenticated Denial of Existence

	4. Construction of Serialized Authentication Chains

	5. Caching and Regeneration of the Authentication Chain

	6. Verification

	7. Extension pinning

	8. Trust Anchor Maintenance

	9. Virtual Hosting

	10. Operational Considerations

	11. Security Considerations

	12. IANA Considerations

	13. Acknowledgments

	14. References
	 14.1. Normative References

	 14.2. Informative References

	Appendix A. Test vectors
	 A.1. _443._tcp.www.example.com

	 A.2. _25._tcp.example.com NSEC wildcard

	 A.3. _25._tcp.example.org NSEC3 wildcard

	 A.4. _443._tcp.www.example.org CNAME

	 A.5. _443._tcp.www.example.net DNAME

	 A.6. _25._tcp.smtp.example.com NSEC Denial of Existence

	 A.7. _25._tcp.smtp.example.org NSEC3 Denial of Existence

	 A.8. _443._tcp.www.insecure.example NSEC3 opt-out insecure delegation

	Authors' Addresses

1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Introduction

 This document describes a new TLS [RFC5246] [RFC8446] extension for
 transport of DNSSEC [RFC4034] signed DNS Resource Records (RRs).
 This allows TLS clients to perform DANE Authentication [RFC6698]
 [RFC7671] of a TLS server without the need to perform additional DNS
 record lookups. Retrieval of the required DNS records may be
 unavailable to the client ([HAMPERING]), or may incur undesirable
 additional latency. It further allows a TLS client to validate the
 server's DANE (TLSA) records itself without requiring access to a
 validating DNS resolver to which it must have a secure connection.

 The extension described here allows a TLS client to request that the
 TLS server return the DNSSEC authentication chain corresponding to
 its DNSSEC-validated DANE TLSA Resource Record set (RRset), or
 authenticated denial of existence of such an RRset (as described in
 Section 3.3.1). If the server supports this extension it performs
 the appropriate DNS queries, builds the authentication chain, and
 returns it to the client. The server will typically use a previously
 cached authentication chain, but it will need to rebuild it
 periodically as described in Section 5. The client then
 authenticates the chain using a pre-configured DNSSEC trust anchor.

 In the absense of TLSA records, this extension conveys the required
 authenticated denial of existence. Such proofs are needed to
 securely signal that specified TLSA records are not available so that
 TLS clients can safely fall back to WebPKI based authentication if
 allowed by local policy. These proofs are also needed to avoid
 downgrade from opportunistic authenticated TLS (when DANE TLSA
 records are present) to unauthenticated opportunistic TLS (in the
 absence of DANE). Denial of existence records are also used by the
 TLS client to clear no longer relevant extension pins, as described
 in Section 7.

 As described in the DANE specification [RFC6698] [RFC7671], this
 procedure applies to the DANE authentication of X.509 certificates or
 raw public keys [RFC7250].

 This extension also mitigates againts an unknown key share (UKS)
 attack [I-D.barnes-dane-uks] when using raw public keys, since the
 server commits to its DNS name (normally found in its certificate)
 via the content of the returned TLSA RRset.

3. DNSSEC Authentication Chain Extension

3.1. Protocol, TLS 1.2

 A client MAY include an extension of type "dnssec_chain" in the
 (extended) ClientHello. The "extension_data" field of this extension
 consists of the server's 16-bit TCP port number in network (big-
 endian) byte order. Clients sending this extension MUST also send
 the Server Name Identification (SNI, [RFC6066]) extension. Together,
 these make it possible for the server to determine which
 authenticated TLSA RRset chain needs to be used for the
 "dnssec_chain" extension.

 When a server that implements (and is configured to enable the use
 of) this extension receives a "dnssec_chain" extension in the
 ClientHello, it MUST first check whether the requested TLSA RRset
 (based on the port number in this extension and hostname in the SNI
 extension) is associated with the server. If the extension, the SNI
 hostname or the port number is unsupported, the server's extended
 ServerHello message SHALL not include the dnssec_chain extension.

 Otherwise, the server's extended ServerHello message MUST contain a
 serialized authentication chain using the format described below. If
 the server does not have access to the requested DNS chain - for
 example due to a misconfiguration or expired chain - the server MUST
 omit the extension rather than send an incomplete chain. Clients
 that are expecting this extension MUST interpret this as a downgrade
 attack and MUST abort the TLS session. Therefore, servers MUST send
 denial of existence proofs, unless for the particular application
 protocol or service clients are expected to continue even in the
 absence of such a proof. As with all TLS extensions, if the server
 does not support this extension it will not return any authentication
 chain.

3.2. Protocol, TLS 1.3

 In TLS 1.3, the server adds its dnssec_chain extension in the
 extension block of the Certificate message containing the end entity
 certificate being validated, rather than to the extended ServerHello
 message.

 The extension protocol behavior otherwise follows that specified for
 TLS version 1.2.

3.3. DNSSEC Authentication Chain Data

 The "extension_data" field of the client's "dnssec_chain" extension
 MUST contain the server's 16-bit TCP port number in network (big-
 endian) byte order:

struct {
 uint16 PortNumber;
} DnssecChainExtension;

 The "extension_data" field of the server's "dnssec_chain" extension
 MUST contain a DNSSEC Authentication Chain encoded in the following
 form:

struct {
 uint16 ExtSupportLifetime;
 opaque AuthenticationChain<1..2^16‑1>
} DnssecChainExtension;

 The ExtSupportLifetime value is the number of hours for which the TLS
 server has committed itself to serving this extension. A value of
 zero prohibits the client from unilaterally requiring ongoing use of
 the extension based on prior observation of its use (extension
 pinning). This is further described in Section 7.

 The AuthenticationChain is composed of a sequence of uncompressed
 wire format DNS Resource Record sets (RRsets) and corresponding
 Resource Record signatures (RRSIGs).

 This sequence of native DNS wire format records enables easier
 generation of the data structure on the server and easier
 verification of the data on client by means of existing DNS library
 functions.

 Each RRset in the chain is composed of a sequence of wire format DNS
 Resource Records. The format of the Resource Record is described in
 [RFC1035], Section 3.2.1.

 RR(i) = owner | type | class | TTL | RDATA length | RDATA

 where RR(i) denotes the ith RR.

 The Resource Records that make up a RRset all have the same owner,
 type, class and TTL, but different RDATA as specified in [RFC2181],
 Section 5.

 Each signed RRset in the sequence is followed by its associated RRsig
 record set. This RRset has the same owner and class as the preceding
 RRset, but has type RRSIG. The Type Covered field in the RDATA of
 the RRsigs identifies the type of the preceding RRset as described in
 [RFC4034]>, Section 3.

 The RRsig record wire format is described in [RFC4034], Section 3.1.
 The signature portion of the RDATA, as described in the same section,
 is the following:

 signature = sign(RRSIG_RDATA | RR(1) | RR(2)...)

 where RRSIG_RDATA is the wire format of the RRSIG RDATA fields with
 the Signer's Name field in canonical form and the signature field
 excluded.

 The order of returned RRsets is unspecified and a TLS client MUST NOT
 assume any ordering of RRsets.

 Unsigned CNAMEs that are implied by associated DNAME records MUST not
 be included, they can be inferred from the DNAME records. Any NSEC
 or NSEC3 denial of existence records must be accompanied by the
 associated SOA record.

 The returned RRsets MUST contain either the requested TLSA RRset,
 perhaps or the associated denial of existence proof. In either case,
 the chain of RRsets MUST be accompanied with the full set of DNS
 records needed to authenticate the TLSA record set or its denial of
 existence up the DNS hierarchy up to either the Root Zone or another
 trust anchor mutually configured by the TLS server and client.

 The chain will contain a unique class 1 (IN) RRset whose owner is
 equal to or is the closest ancestore of the requested TLSA RRset, and
 whose record type is one of TLSA, SOA, CNAME or DNAME. These four
 cases correspond to either:

 1. A signed TLSA RRset at the requested domain name.

 2. An signed SOA record and signed NSEC or NSEC3 records from the
 associated zone, which together authenticate the non-existence of
 the requested TLSA RRset.

 3. A signed CNAME from the requested name to another domain name,
 ultimately leading to a TLSA RRset, or denial of existence.

 4. A signed ancestor DNAME record that specifies a new subtree in
 DNS at which the chain continues (by prepending the labels
 intermediate betwen the requested name the owner of the DNAME
 record).

 The first two cases determine whether the TLSA RRset does or does not
 exist. The last two just redirect the requested name to the target
 of the alias (actual with CNAME, or implied with DNAME), with the
 status determined there or after further alias indirection. Clients
 MUST be prepared to encounter alias loops, and then conclude that the
 requested TLSA RRset therefore does not exist. In the presence of a
 CNAME loop or other server-side DNS problem, servers may be unable to
 construct the authentication chain and would then have no choice but
 to omit the extension.

 In the case of a denial of existence response, the response chain
 should include all DNSSEC signed records from the root zone to the
 proof of non-existence of a validable entry in the chain that
 disproves the existence of a a secure delegation to - or of - the
 TLSA record.

 Names that are aliased via CNAME and/or DNAME records may involve
 multiple branches of the DNS tree. In this case, the authentication
 chain structure needs to include DS and DNSKEY record sets that cover
 all the necessary branches.

 If the TLSA record set was synthesized by a DNS wildcard, the chain
 MUST include the signed NSEC or NSEC3 [RFC5155] records that prove
 that there was no explicit match of the TLSA record name and no
 closer wildcard match.

 The topmost DNSKEY RRset in the authentication chain corresponds to
 the trust anchor (typically the DNS root). This trust anchor is also
 preconfigured in the TLS client, but including it in the response
 from the server permits TLS clients to use the automated trust anchor
 rollover mechanism defined in RFC 5011 [RFC5011] to update their
 configured trust anchor.

 The following is an example of the records in the AuthenticationChain
 structure for the HTTPS server at www.example.com, where there are
 zone cuts at "com." and "example.com." (record data are omitted here
 for brevity):

_443._tcp.www.example.com. TLSA
RRSIG(_443._tcp.www.example.com. TLSA)
example.com. DNSKEY
RRSIG(example.com. DNSKEY)
example.com. DS
RRSIG(example.com. DS)
com. DNSKEY
RRSIG(com. DNSKEY)
com. DS
RRSIG(com. DS)
. DNSKEY
RRSIG(. DNSKEY)

 The following is an example of denial of existence for a TLSA RRset
 at "_443._tcp.www.example.com". The NSEC record in this example
 asserts the non-existence of both the requested RRset and any
 potentially relevant wildcard records.

www.example.com. IN NSEC (example.com. DNSKEY SOA NS NSEC RRSIG)
RRSIG(www.example.com. NSEC)
example.com. DNSKEY
RRSIG(example.com. DNSKEY)
example.com. DS
RRSIG(example.com. DS)
com. DNSKEY
RRSIG(com. DNSKEY)
com. DS
RRSIG(com. DS)
. DNSKEY
RRSIG(. DNSKEY)

 The following is an example of (hypothetical) insecure delegation of
 "example.com" from the ".com" zone. This example shows NSEC3 records
 with opt-out.

; covers example.com
onib9mgub9h0rml3cdf5bgrj59dkjhvj.com. NSEC3 (1 1 0 ‑
 onib9mgub9h0rml3cdf5bgrj59dkjhvl NS DS RRSIG)
RRSIG(onib9mgub9h0rml3cdf5bgrj59dkjhvj.com. NSEC3)
; covers *.com
3rl2r262eg0n1ap5olhae7mah2ah09hi.com. NSEC3 (1 1 0 ‑
 3rl2r262eg0n1ap5olhae7mah2ah09hk NS DS RRSIG)
RRSIG(3rl2r262eg0n1ap5olhae7mah2ah09hj.com. NSEC3)
; closest‑encloser "com"
ck0pojmg874ljref7efn8430qvit8bsm.com. NSEC3 (1 1 0 ‑
 ck0pojmg874ljref7efn8430qvit8bsm.com
 NS SOA RRSIG DNSKEY NSEC3PARAM)
RRSIG(ck0pojmg874ljref7efn8430qvit8bsm.com. NSEC3)
com. DNSKEY
RRSIG(com. DNSKEY)
com. DS
RRSIG(com. DS)
. DNSKEY
RRSIG(. DNSKEY)

3.3.1. Authenticated Denial of Existence

 TLS servers supporting this extension that do not have a signed TLSA
 record MUST instead return a DNSSEC chain that provides authenticated
 denial of existence. A TLS client receiving proof of authenticated
 denial of existence MUST use an alternative method to verify the TLS
 server identity or close the connection. Such an alternative could
 be the classic WebPKI model of preinstalled root CA's.

 Authenticated denial chains include NSEC or NSEC3 records that
 demonstrate one of the following facts:

 o The TLSA record does not exist.

 o There is no signed delegation to a DNS zone which is either an
 ancestor of, or the same as, the TLSA record name.

4. Construction of Serialized Authentication Chains

 This section describes a possible procedure for the server to use to
 build the serialized DNSSEC chain.

 When the goal is to perform DANE authentication [RFC6698] [RFC7671]
 of the server, the DNS record set to be serialized is a TLSA record
 set corresponding to the server's domain name, protocol, and port
 number.

 The domain name of the server MUST be that included in the TLS
 server_name (SNI) extension [RFC6066]. If the server does not
 recognize the SNI name as one if its own names, but wishes to proceed
 with the handshake rather than to abort the connection, the server
 MUST NOT send a dnssec_chain extension to the client.

 The name in client's SNI extension MUST NOT be CNAME-expanded by the
 server. The TLSA base domain (Section 3 of [RFC6698]) SHALL be the
 hostname from the client's SNI extension and the guidance in
 Section 7 of [RFC7671] does not apply. See Section 9 for further
 discussion.

 The TLSA record to be queried is constructed by prepending the _port
 and _transport labels to the domain name as described in [RFC6698],
 where "port" is the port number taken from the client's dnssec_chain
 extension. The transport is "tcp" for TLS servers, and "udp" for
 DTLS servers. The port number label is the left-most label, followed
 by the transport, followed by the server domain name (from SNI).

 The components of the authentication chain are typically built by
 starting at the target record set and its corresponding RRSIG. Then
 traversing the DNS tree upwards towards the trust anchor zone
 (normally the DNS root). For each zone cut, the DNSKEY and DS RRsets
 and their signatures are added. However, see Section 3.3 for
 specific processing needed for aliases and wildcards. If DNS
 response messages contain any domain names utilizing name compression
 [RFC1035], then they MUST be uncompressed prior to inclusion in the
 chain.

 Implementations of EDNS Chain Query Requests as specified in
 [RFC7901] may offer an easier way to obtain all of the chain data in
 one transaction with an upstream DNSSEC aware recursive server.

5. Caching and Regeneration of the Authentication Chain

 DNS records have Time To Live (TTL) parameters, and DNSSEC signatures
 have validity periods (specifically signature expiration times).
 After the TLS server constructs the serialized authentication chain,
 it SHOULD cache and reuse it in multiple TLS connection handshakes.
 However, it MUST refresh and rebuild the chain as TTLs and signature
 validity periods dictate. A server implementation could carefully
 track these parameters and requery component records in the chain
 correspondingly. Alternatively, it could be configured to rebuild
 the entire chain at some predefined periodic interval that does not
 exceed the DNS TTLs or signature validity periods of the component
 records in the chain.

6. Verification

 A TLS client performing DANE based verification might not need to use
 this extension. For example, the TLS client could perform native DNS
 lookups and perform DANE verification without this extension. Or it
 could fetch authentication chains via another protocol. If the TLS
 client already possesses a valid TLSA record, it MAY omit using this
 extension. However, if it includes this extension, it MUST use the
 TLS server reply to update the extension pinning status of the TLS
 server's extension lifetime. See Section 7.

 A TLS client making use of this specification, and which receives a
 valid DNSSEC authentication chain extension from a server, MUST use
 this information to perform DANE authentication of the server. In
 order to perform the validation, it uses the mechanism specified by
 the DNSSEC protocol [RFC4035] [RFC5155]. This mechanism is sometimes
 implemented in a DNSSEC validation engine or library.

 If the authentication chain validates, the client then performs DANE
 authentication of the server according to the DANE TLS protocol
 [RFC6698] [RFC7671].

 Clients MAY cache the server's validated TLSA RRset to ammortize the
 cost of receiving and validating the chain over multiple connections.
 The period of such caching MUST NOT exceed the TTL associated with
 those records. A client that possesses a validated and unexpired
 TLSA RRset or the full chain in its cache does not need to send the
 dnssec_chain extension for subsequent connections to the same TLS
 server. It can use the cached information to perform DANE
 authentication.

 Note that when a client and server perform TLS session resumption the
 server sends no "dnssec_chain". This is particularly clear with TLS
 1.3, where the certificate message to which the chain might be
 attached is also not sent on resumption.

7. Extension pinning

 TLS applications can be designed to unconditionally mandate this
 extension. Such TLS clients requesting this extension would abort a
 connection to a TLS server that does not respond with a validatable
 extension reply.

 However, in a mixed use deployment of WebPKI and DANE, there is the
 possibility that the security of a TLS client is downgraded from DANE
 to WebPKI. This can happen when a TLS client connection is
 intercepted and redirected to a rogue TLS server presenting a TLS
 certificate that is considered valid from a WebPKI point of view, but
 one that does not match the legitimate server's TLSA records. By
 omitting this extension, such a rogue TLS server could downgrade the
 TLS client to validate the mis-issued certificate using only the
 WebPKI and not via DANE, provided the TLS client is also not able to
 fetch the TLSA records directly from DNS.

 The ExtSupportLifetime element of the extension provides a counter-
 measure against such downgrade attacks. It's value represents the
 number of hours that the TLS server (or cluster of servers serving
 the same Server Name) commit to serving this extension in the future.
 This is referred to as the "pinning time" or "extension pin" of the
 extension. A non-zero extenion pin value received MUST ONLY be used
 if the extention also contains a valid TLSA authentication chain that
 matches the server's certificate chain (the server passes DANE
 authentication based on the enclosed TLSA RRset).

 Any existing extension pin for the server instance (name and port)
 MUST be cleared on receipt of a valid denial of existence for the
 associated TLSA RRset. The same also applies if the client obtained
 the denial of existence proof via another method, such as through
 direct DNS queries. Based on the TLS client's local policy, it MAY
 then terminate the connection or MAY continue using WebPKI based
 server authentication.

 Extension pins MUST also be cleared upon the completion of a DANE
 authenticated handshake with a server that returns a dnssec_chain
 extension with a zero ExtSupportLifetime.

 Upon completion of a full validated hanshake with a server that
 returns a dnssec_chain extension with a non-zero ExtSupport lifetime,
 the client MUST update any existing pin lifetime for the service
 (name and port) to a value that is no longer than that indicated by
 the server. The client MAY, subject to local policy, create a
 previously non-existent pin, again for a lifetime that is not longer
 than that indicated by the server. The extension support lifetime is
 not constrained by any DNS TTLs or RRSIG expirations in the returned
 chain.

 Clients MAY implement support for a subset of DANE certificate
 usages. For example, clients may support only DANE-EE(3) and DANE-
 TA(2) ([RFC7218]), only PKIX-EE(1) and PKIX-TA(0) or all four.
 Clients that implement DANE-EE(3) and DANE-TA(2) MUST implement the
 relevant updates in [RFC7671].

 For a non-zero saved value of the ExtSupportLifetime element of the
 extension, TLS clients MUST mandate ("pin") the use of this extension
 by the corresponding TLS servers for the time period specified by the
 pinning value. If during this time, the TLS client does not have a
 valid TLSA record and connects to a TLS server using this extension
 for the associated name and port, and it does not obtain a valid
 authentication chain in this extension, it MUST either abort the
 connection or delay communication with the server via the TLS session
 until it is able to obtain valid TLSA records (or non-existence
 proof) out of band, such as via direct DNS lookups. If attempts to
 obtain the TLSA RRset out of band fail, the client MUST abort the TLS
 session.

 Note that requiring the extension is NOT the same as requiring the
 use of DANE TLSA records or even DNSSEC. A DNS zone operator may at
 any time delete the TLSA records, or even remove the DS records to
 disable the secure delegation of the server's DNS zone. The TLS
 server will, when it updates its cached TLSA authentication chain,
 replace the chain with the corresponding denial of existence chain.
 The server's only obligation is continued support for this extension.

8. Trust Anchor Maintenance

 The trust anchor may change periodically, e.g. when the operator of
 the trust anchor zone performs a DNSSEC key rollover. TLS clients
 using this specification MUST implement a mechanism to keep their
 trust anchors up to date. They could use the method defined in
 [RFC5011] to perform trust anchor updates inband in TLS, by tracking
 the introduction of new keys seen in the trust anchor DNSKEY RRset.
 However, alternative mechanisms external to TLS may also be utilized.
 Some operating systems may have a system-wide service to maintain and
 keep the root trust anchor up to date. In such cases, the TLS client
 application could simply reference that as its trust anchor,
 periodically checking whether it has changed. Some applications may
 prefer to implement trust anchor updates as part of their automated
 software updates.

9. Virtual Hosting

 Delivery of application services is often provided by a third party
 on behalf of the domain owner (hosting customer). Since the domain
 owner may want to be able to move the service between providers, non-
 zero support lifetimes for this extension should only be enabled by
 mutual agreement between the provider and domain owner.

 When CNAME records are employed to redirect network connections to
 the provider's network, as mentioned in Section 4 the server uses the
 client's SNI hostname as the TLSA base domain without CNAME
 expansion. When the certificate chain for the service is managed by
 the provider, it is impractical to coordinate certificate changes by
 the provider with updates in the hosting customer's DNS. Therefore,
 the TLSA RRset for the hosted domain is best configured as a CNAME
 from the customer's domain to a TLSA RRset that is managed by the
 provider as part of delivering the hosted service. For example:

; Customer DNS
www.example.com. IN CNAME node1.provider.example.
_443._tcp.www.example.com. IN CNAME _dane443.node1.provider.example.
; Provider DNS
node1.provider.example. IN A 192.0.2.1
_dane443.node1.provider.example. IN TLSA 1 1 1 ...

 Clients that obtain TLSA records directly from DNS, bypassing this
 extension, may however perform CNAME-expansion as in Section 7 of
 [RFC7671], and if TLSA records are associated with the fully-expanded
 name, may use that name as the TLSA base domain and SNI name for the
 TLS handshake.

 To avoid confusion, it is RECOMMENDED that server operators not
 publish TLSA RRs (_port._tcp. + base domain) based on the expanded
 CNAMEs used to locate their network addresses. Instead, the server
 operator SHOULD publish TLSA RRs at an alternative DNS node (as in
 the example above), to which the hosting customer will publish a
 CNAME alias. This results in all clients (whether they obtain TLSA
 records from DNS directly, or employ this extension) seeing the same
 TLSA records and sending the same SNI name.

10. Operational Considerations

 When DANE is being introduced incrementally into an existing PKIX
 environment, there may be scenarios in which DANE authentication for
 a server fails but PKIX succeeds, or vice versa. What happens here
 depends on TLS client policy. If DANE authentication fails, the
 client may decide to fall back to traditional PKIX authentication.
 In order to do so efficiently within the same TLS handshake, the TLS
 server needs to have provided the full X.509 certificate chain. When
 TLS servers only support DANE-EE or DANE-TA modes, they have the
 option to send a much smaller certificate chain: just the EE
 certificate for the former, and a short certificate chain from the
 DANE trust anchor to the EE certificate for the latter. If the TLS
 server supports both DANE and traditional PKIX, and wants to allow
 efficient PKIX fallback within the same handshake, they should always
 provide the full X.509 certificate chain.

 When a TLS server operator wishes to no longer deploy this extension,
 it must properly decommission its use. If a non-zero pin lifetim is
 presently advertised, it must first be changed to 0. The extension
 can be disabled once all previously advertised pin lifetimes have
 expired. Removal of TLSA records or even DNSSEC signing of the zone
 can be done at any time, but the server MUST still be able to return
 the associated denial of existence proofs to any clients that have
 unexpired pins.

 TLS clients MAY reduce the received extension pin value to a maximum
 set by local policy. This can mitigate a theoretical yet unlikely
 attack where a compromised TLS server is modified to advertise a pin
 value set to the maximum of 7 years. Care should be taken not to set
 a local maximum that is too short as that would reduce the downgrade
 attack protection that the extension pin offers.

 If the hosting provider intends to use end-entity TLSA records
 (certificate usage PKIX-EE(1) or DANE-EE(3)) then the simplest
 approach is to use the same key-pair for all the certificates at a
 given hosting node, and publish "1 1 1" or "3 1 1" RRs matching the
 common public key. Since key rollover cannot be simultaneous across
 multiple certificate updates, there will be times when multiple "1 1
 1" (or "3 1 1") records will be required to match all the extant
 certificates. Multiple TLSA records are in any case needed a few
 TTLs before certificate updates as explained in Section 8 of
 [RFC7671].

 If the hosting provider intends to use trust-anchor TLSA records
 (certificate usage PKIX-TA(0) or DANE-TA(2)) then the same TLSA
 record can match all end-entity certificates issues by the
 certification authority in question, and continues to work across
 end-entity certificate updates, so long as the issuer certificate or
 public keys remains unchanged. This can be easier to implement, at
 the cost of greater reliance on the security of the selected
 provider.

 The provider can of course publish separate TLSA records for each
 customer, which increases the number of such RRsets that need to be
 managed, but makes each one independent of the rest.

11. Security Considerations

 The security considerations of the normatively referenced RFCs all
 pertain to this extension. Since the server is delivering a chain of
 DNS records and signatures to the client, it MUST rebuild the chain
 in accordance with TTL and signature expiration of the chain
 components as described in Section 5. TLS clients need roughly
 accurate time in order to properly authenticate these signatures.
 This could be achieved by running a time synchronization protocol
 like NTP [RFC5905] or SNTP [RFC5905], which are already widely used
 today. TLS clients MUST support a mechanism to track and roll over
 the trust anchor key, or be able to avail themselves of a service
 that does this, as described in Section 8. Security considerations
 related to mandating the use of this extension are described in
 Section 7.

12. IANA Considerations

 This document defines one new entry in the TLS ExtensionsType Values
 registry:

Value Extension Name TLS 1.3 Recommended Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
TBD dnssec_chain CH No [this document]

 Figure 1

13. Acknowledgments

 Many thanks to Adam Langley for laying the groundwork for this
 extension in [I-D.agl-dane-serializechain]. The original idea is his
 but our acknowledgment in no way implies his endorsement. This
 document also benefited from discussions with and review from the
 following people: Daniel Kahn Gillmor, Jeff Hodges, Allison Mankin,
 Patrick McManus, Rick van Rein, Ilari Liusvaara, Eric Rescorla, Gowri
 Visweswaran, Duane Wessels, Nico Williams, and Richard Barnes.

14. References

14.1. Normative References

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC2181]
 Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

 [RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC5155]
 Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
 <https://www.rfc-editor.org/info/rfc5155>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-
 editor.org/info/rfc5246>.

 [RFC6066]
 Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011, <https://www.rfc-
 editor.org/info/rfc6066>.

 [RFC6698]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC7218]
 Gudmundsson, O., "Adding Acronyms to Simplify
 Conversations about DNS-Based Authentication of Named
 Entities (DANE)", RFC 7218, DOI 10.17487/RFC7218, April
 2014, <https://www.rfc-editor.org/info/rfc7218>.

 [RFC7671]
 Dukhovni, V. and W. Hardaker, "The DNS-Based
 Authentication of Named Entities (DANE) Protocol: Updates
 and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671,
 October 2015, <https://www.rfc-editor.org/info/rfc7671>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

14.2. Informative References

 [RFC5011]
 StJohns, M., "Automated Updates of DNS Security (DNSSEC)
 Trust Anchors", STD 74, RFC 5011, DOI 10.17487/RFC5011,
 September 2007, <https://www.rfc-editor.org/info/rfc5011>.

 [RFC5905]
 Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7250]
 Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7901]
 Wouters, P., "CHAIN Query Requests in DNS", RFC 7901,
 DOI 10.17487/RFC7901, June 2016, <https://www.rfc-
 editor.org/info/rfc7901>.

 [I-D.barnes-dane-uks]

 Barnes, R., Thomson, M., and E. Rescorla, "Unknown Key-
 Share Attacks on DNS-based Authentications of Named
 Entities (DANE)", draft-barnes-dane-uks-00 (work in
 progress), October 2016.

 [I-D.agl-dane-serializechain]

 Langley, A., "Serializing DNS Records with DNSSEC
 Authentication", draft-agl-dane-serializechain-01 (work in
 progress), July 2011.

 [HAMPERING]

 Gorjon, X. and W. Toorop, "Discovery method for a DNSSEC
 validating stub resolver", July 2015,
 <http://www.nlnetlabs.nl/downloads/publications/
 os3-2015-rp2-xavier-torrent-gorjon.pdf>.

Appendix A. Test vectors

 The test vectors in this appendix are representations of the content
 of the "opaque AuthenticationChain" field in DNS presentation format.
 And except for the "extention_data" in Figure 2, do not contain the
 "uint16 ExtSupportLifetime" field.

 For brevity and reproducibility all DNS zones involved with the test
 vectors are signed using keys with algorithm 13: ECDSA Curve P-256
 with SHA-256.

 To reflect operational practice, different zones in the examples are
 in different phases of rolling their signing keys:

 All zones use a Key Signing Key (KSK) and Zone Signing Key (ZSK),
 except for the example.com and example.net zones which use a
 Combined Signing Key (CSK).

 The root and org zones are rolling their ZSK's.

 The com and org zones are rolling their KSK's.

 The test vectors are DNSSEC valid in the same period as the
 certificate is valid, which is in between November 28 2018 and
 December 2 2020, with the following root trust anchor:

. IN DS (47005 13 2 2eb6e9f2480126691594d649a5a613de3052e37861634
 641bb568746f2ffc4d4)

 The test vectors will authenticate the certificate used with
 https://example.com/, https://example.net/ and https://example.org/
 at the time of writing:

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
MIIHQDCCBiigAwIBAgIQD9B43Ujxor1NDyupa2A4/jANBgkqhkiG9w0BAQsFADBN
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMScwJQYDVQQDEx5E
aWdpQ2VydCBTSEEyIFNlY3VyZSBTZXJ2ZXIgQ0EwHhcNMTgxMTI4MDAwMDAwWhcN
MjAxMjAyMTIwMDAwWjCBpTELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3Ju
aWExFDASBgNVBAcTC0xvcyBBbmdlbGVzMTwwOgYDVQQKEzNJbnRlcm5ldCBDb3Jw
b3JhdGlvbiBmb3IgQXNzaWduZWQgTmFtZXMgYW5kIE51bWJlcnMxEzARBgNVBAsT
ClRlY2hub2xvZ3kxGDAWBgNVBAMTD3d3dy5leGFtcGxlLm9yZzCCASIwDQYJKoZI
hvcNAQEBBQADggEPADCCAQoCggEBANDwEnSgliByCGUZElpdStA6jGaPoCkrp9vV
rAzPpXGSFUIVsAeSdjF11yeOTVBqddF7U14nqu3rpGA68o5FGGtFM1yFEaogEv5g
rJ1MRY/d0w4+dw8JwoVlNMci+3QTuUKf9yH28JxEdG3J37Mfj2C3cREGkGNBnY80
eyRJRqzy8I0LSPTTkhr3okXuzOXXg38ugr1x3SgZWDNuEaE6oGpyYJIBWZ9jF3pJ
QnucP9vTBejMh374qvyd0QVQq3WxHrogy4nUbWw3gihMxT98wRD1oKVma1NTydvt
hcNtBfhkp8kO64/hxLHrLWgOFT/l4tz8IWQt7mkrBHjbd2XLVPkCAwEAAaOCA8Ew
ggO9MB8GA1UdIwQYMBaAFA+AYRyCMWHVLyjnjUY4tCzhxtniMB0GA1UdDgQWBBRm
mGIC4AmRp9njNvt2xrC/oW2nvjCBgQYDVR0RBHoweIIPd3d3LmV4YW1wbGUub3Jn
ggtleGFtcGxlLmNvbYILZXhhbXBsZS5lZHWCC2V4YW1wbGUubmV0ggtleGFtcGxl
Lm9yZ4IPd3d3LmV4YW1wbGUuY29tgg93d3cuZXhhbXBsZS5lZHWCD3d3dy5leGFt
cGxlLm5ldDAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
AQUFBwMCMGsGA1UdHwRkMGIwL6AtoCuGKWh0dHA6Ly9jcmwzLmRpZ2ljZXJ0LmNv
bS9zc2NhLXNoYTItZzYuY3JsMC+gLaArhilodHRwOi8vY3JsNC5kaWdpY2VydC5j
b20vc3NjYS1zaGEyLWc2LmNybDBMBgNVHSAERTBDMDcGCWCGSAGG/WwBATAqMCgG
CCsGAQUFBwIBFhxodHRwczovL3d3dy5kaWdpY2VydC5jb20vQ1BTMAgGBmeBDAEC
AjB8BggrBgEFBQcBAQRwMG4wJAYIKwYBBQUHMAGGGGh0dHA6Ly9vY3NwLmRpZ2lj
ZXJ0LmNvbTBGBggrBgEFBQcwAoY6aHR0cDovL2NhY2VydHMuZGlnaWNlcnQuY29t
L0RpZ2lDZXJ0U0hBMlNlY3VyZVNlcnZlckNBLmNydDAMBgNVHRMBAf8EAjAAMIIB
fwYKKwYBBAHWeQIEAgSCAW8EggFrAWkAdwCkuQmQtBhYFIe7E6LMZ3AKPDWYBPkb
37jjd80OyA3cEAAAAWdcMZVGAAAEAwBIMEYCIQCEZIG3IR36Gkj1dq5L6EaGVycX
sHvpO7dKV0JsooTEbAIhALuTtf4wxGTkFkx8blhTV+7sf6pFT78ORo7+cP39jkJC
AHYAh3W/51l8+IxDmV+9827/Vo1HVjb/SrVgwbTq/16ggw8AAAFnXDGWFQAABAMA
RzBFAiBvqnfSHKeUwGMtLrOG3UGLQIoaL3+uZsGTX3MfSJNQEQIhANL5nUiGBR6g
l0QlCzzqzvorGXyB/yd7nttYttzo8EpOAHYAb1N2rDHwMRnYmQCkURX/dxUcEdkC
wQApBo2yCJo32RMAAAFnXDGWnAAABAMARzBFAiEA5Hn7Q4SOyqHkT+kDsHq7ku7z
RDuM7P4UDX2ft2Mpny0CIE13WtxJAUr0aASFYZ/XjSAMMfrB0/RxClvWVss9LHKM
MA0GCSqGSIb3DQEBCwUAA4IBAQBzcIXvQEGnakPVeJx7VUjmvGuZhrr7DQOLeP4R
8CmgDM1pFAvGBHiyzvCH1QGdxFl6cf7wbp7BoLCRLR/qPVXFMwUMzcE1GLBqaGZM
v1Yh2lvZSLmMNSGRXdx113pGLCInpm/TOhfrvr0TxRImc8BdozWJavsn1N2qdHQu
N+UBO6bQMLCD0KHEdSGFsuX6ZwAworxTg02/1qiDu7zW7RyzHvFYA4IAjpzvkPIa
X6KjBtpdvp/aXabmL95YgBjT8WJ7pqOfrqhpcmOBZa6Cg6O1l4qbIFH/Gj9hQB5I
0Gs4+eH6F9h3SojmPTYkT+8KuZ9w84Mn+M8qBXUQoYoKgIjN
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑

A.1. _443._tcp.www.example.com

_443._tcp.www.example.com. 3600 IN TLSA (3 1 1
 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
 922)
_443._tcp.www.example.com. 3600 IN RRSIG (TLSA 13 5 3600

 20201202000000 20181128000000 1870 example.com.
 rqY69NnTf4CN3GBGQjKEJCLAMsRkUrXe0JW8IqDb5rQHHzxNqqPeEoi+2vI6S
 z2BhaswpGLVVuoijuVdzxYjmw==)
example.com. 3600 IN DNSKEY (257 3 13
 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
 /TsSfZMaGWVvlsuieh5nHcXzA==) ; Key ID = 1870
example.com. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 1870 example.com.
 nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
 QHPGSpvRxTUC4tZi62z1UgGDw==)
example.com. 172800 IN DS (1870 13 2 e9b533a049798e900b5c29c90cd
 25a986e8a44f319ac3cd302bafc08f5b81e16)
example.com. 172800 IN RRSIG (DS 13 2 172800
 20201202000000 20181128000000 34327 com.
 sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
 J1hhWSB6jgubEVl17rGNOA/YQ==)
com. 172800 IN DNSKEY (256 3 13
 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
 3URIZ8L3Fa2gBLMOZUzZ1GQCw==) ; Key ID = 34327
com. 172800 IN DNSKEY (257 3 13
 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
 Ic3I8xfZDNw8Wa0Pe3/g2QA/w==) ; Key ID = 18931
com. 172800 IN DNSKEY (257 3 13
 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
 DiVk37lNAQmgSlHbrGu0yOTkA==) ; Key ID = 28809
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 18931 com.
 LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
 7LFdPKpcvb8BvhM+GqKWGBEsg==)
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 28809 com.
 sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
 mDXqz6KEhhQjT+aQWDt6WFHlA==)
com. 86400 IN DS (18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
 f9eabb94487e658c188e7bcb52115)
com. 86400 IN DS (28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
 70643bbde681db342a9e5cf2bb380)
com. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
 vBKTf6pk8JRCqnfzlo2QY+WXA==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13

 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

 A hex dump of the "extension_data" of the server's "dnssec_chain"
 extension represention this with an ExtSupportLifetime value of 0 is:

0000: 00 00 04 5f 34 34 33 04 5f 74 63 70 03 77 77 77
0010: 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 34 00
0020: 01 00 00 0e 10 00 23 03 01 01 8b d1 da 95 27 2f
0030: 7f a4 ff b2 41 37 fc 0e d0 3a ae 67 e5 c4 d8 b3
0040: c5 07 34 e1 05 0a 79 20 b9 22 04 5f 34 34 33 04
0050: 5f 74 63 70 03 77 77 77 07 65 78 61 6d 70 6c 65
0060: 03 63 6f 6d 00 00 2e 00 01 00 00 0e 10 00 5f 00
0070: 34 0d 05 00 00 0e 10 5f c6 d9 00 5b fd da 80 07
0080: 4e 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ce 1d
0090: 3a de b7 dc 7c ee 65 6d 61 cf b4 72 c5 97 7c 8c
00a0: 9c ae ae 9b 76 51 55 c5 18 fb 10 7b 6a 1f e0 35
00b0: 5f ba af 75 3c 19 28 32 fa 62 1f a7 3a 8b 85 ed
00c0: 79 d3 74 11 73 87 59 8f cc 81 2e 1e f3 fb 07 65
00d0: 78 61 6d 70 6c 65 03 63 6f 6d 00 00 30 00 01 00
00e0: 00 0e 10 00 44 01 01 03 0d 26 70 35 5e 0c 89 4d
00f0: 9c fe a6 c5 af 6e b7 d4 58 b5 7a 50 ba 88 27 25
0100: 12 d8 24 1d 85 41 fd 54 ad f9 6e c9 56 78 9a 51
0110: ce b9 71 09 4b 3b b3 f4 ec 49 f6 4c 68 65 95 be
0120: 5b 2e 89 e8 79 9c 77 17 cc 07 65 78 61 6d 70 6c
0130: 65 03 63 6f 6d 00 00 2e 00 01 00 00 0e 10 00 5f
0140: 00 30 0d 02 00 00 0e 10 5f c6 d9 00 5b fd da 80
0150: 07 4e 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 46
0160: 28 38 30 75 b8 e3 4b 74 3a 20 9b 27 ae 14 8d 11
0170: 0d 4e 1a 24 61 38 a9 10 83 24 9c b4 a1 2a 2d 9b
0180: c4 c2 d7 ab 5e b3 af b9 f5 d1 03 7e 4d 5d a8 33
0190: 9c 16 2a 92 98 e9 be 18 07 41 a8 ca 74 ac cc 07
01a0: 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 2b 00 01
01b0: 00 02 a3 00 00 24 07 4e 0d 02 e9 b5 33 a0 49 79
01c0: 8e 90 0b 5c 29 c9 0c d2 5a 98 6e 8a 44 f3 19 ac
01d0: 3c d3 02 ba fc 08 f5 b8 1e 16 07 65 78 61 6d 70
01e0: 6c 65 03 63 6f 6d 00 00 2e 00 01 00 02 a3 00 00
01f0: 57 00 2b 0d 02 00 02 a3 00 5f c6 d9 00 5b fd da
0200: 80 86 17 03 63 6f 6d 00 a2 03 e7 04 a6 fa cb eb
0210: 13 fc 93 84 fd d6 de 6b 50 de 56 59 27 1f 38 ce
0220: 81 49 86 84 e6 36 31 72 d4 7e 23 19 fd b4 a2 2a
0230: 58 a2 31 ed c2 f1 ff 4f b2 81 1a 18 07 be 72 cb
0240: 52 41 aa 26 fd ae e0 39 03 63 6f 6d 00 00 30 00
0250: 01 00 02 a3 00 00 44 01 00 03 0d ec 82 04 e4 3a

0260: 25 f2 34 8c 52 a1 d3 bc e3 a2 65 aa 5d 11 b4 3d
0270: c2 a4 71 16 2f f3 41 c4 9d b9 f5 0a 2e 1a 41 ca
0280: f2 e9 cd 20 10 4e a0 96 8f 75 11 21 9f 0b dc 56
0290: b6 80 12 cc 39 95 33 67 51 90 0b 03 63 6f 6d 00
02a0: 00 30 00 01 00 02 a3 00 00 44 01 01 03 0d 45 b9
02b0: 1c 3b ef 7a 5d 99 a7 a7 c8 d8 22 e3 38 96 bc 80
02c0: a7 77 a0 42 34 a6 05 a4 a8 88 0e c7 ef a4 e6 d1
02d0: 12 c7 3c d3 d4 c6 55 64 fa 74 34 7c 87 37 23 cc
02e0: 5f 64 33 70 f1 66 b4 3d ed ff 83 64 00 ff 03 63
02f0: 6f 6d 00 00 30 00 01 00 02 a3 00 00 44 01 01 03
0300: 0d b3 37 3b 6e 22 e8 e4 9e 0e 1e 59 1a 9f 5b d9
0310: ac 5e 1a 0f 86 18 7f e3 47 03 f1 80 a9 d3 6c 95
0320: 8f 71 c4 af 48 ce 0e bc 5c 79 2a 72 4e 11 b4 38
0330: 95 93 7e e5 34 04 26 81 29 47 6e b1 ae d3 23 93
0340: 90 03 63 6f 6d 00 00 2e 00 01 00 02 a3 00 00 57
0350: 00 30 0d 01 00 02 a3 00 5f c6 d9 00 5b fd da 80
0360: 49 f3 03 63 6f 6d 00 18 a9 48 eb 23 d4 4f 80 ab
0370: c9 92 38 fc b4 3c 5a 18 de be 57 00 4f 73 43 59
0380: 3f 6d eb 6e d7 1e 04 65 4a 43 3f 7a a1 97 21 30
0390: d9 bd 92 1c 73 dc f6 3f cf 66 5f 2f 05 a0 aa eb
03a0: af b0 59 dc 12 c9 65 03 63 6f 6d 00 00 2e 00 01
03b0: 00 02 a3 00 00 57 00 30 0d 01 00 02 a3 00 5f c6
03c0: d9 00 5b fd da 80 70 89 03 63 6f 6d 00 61 70 e6
03d0: 95 9b d9 ed 6e 57 58 37 b6 f5 80 bd 99 db d2 4a
03e0: 44 68 2b 0a 35 96 26 a2 46 b1 81 2f 5f 90 96 b7
03f0: 5e 15 7e 77 84 8f 06 8a e0 08 5e 1a 60 9f c1 92
0400: 98 c3 3b 73 68 63 fb cc d4 d8 1f 5e b2 03 63 6f
0410: 6d 00 00 2b 00 01 00 01 51 80 00 24 49 f3 0d 02
0420: 20 f7 a9 db 42 d0 e2 04 2f bb b9 f9 ea 01 59 41
0430: 20 2f 9e ab b9 44 87 e6 58 c1 88 e7 bc b5 21 15
0440: 03 63 6f 6d 00 00 2b 00 01 00 01 51 80 00 24 70
0450: 89 0d 02 ad 66 b3 27 6f 79 62 23 aa 45 ed a7 73
0460: e9 2c 6d 98 e7 06 43 bb de 68 1d b3 42 a9 e5 cf
0470: 2b b3 80 03 63 6f 6d 00 00 2e 00 01 00 01 51 80
0480: 00 53 00 2b 0d 01 00 01 51 80 5f c6 d9 00 5b fd
0490: da 80 7c ae 00 12 2e 27 6d 45 d9 e9 81 6f 79 22
04a0: ad 6e a2 e7 3e 82 d2 6f ce 0a 4b 71 86 25 f3 14
04b0: 53 1a c9 2f 8a e8 24 18 df 9b 89 8f 98 9d 32 e8
04c0: 0b c4 de ab a7 c4 a7 c8 f1 72 ad b5 7c ed 7f b5
04d0: e7 7a 78 4b 07 00 00 30 00 01 00 01 51 80 00 44
04e0: 01 00 03 0d cc ac fe 0c 25 a4 34 0f ef ba 17 a2
04f0: 54 f7 06 aa c1 f8 d1 4f 38 29 90 25 ac c4 48 ca
0500: 8c e3 f5 61 f3 7f c3 ec 16 9f e8 47 c8 fc be 68
0510: e3 58 ff 7c 71 bb 5e e1 df 0d be 51 8b c7 36 d4
0520: ce 8d fe 14 00 00 30 00 01 00 01 51 80 00 44 01
0530: 00 03 0d f3 03 19 67 89 73 1d dc 8a 67 87 ef f2
0540: 4c ac fe dd d0 32 58 2f 11 a7 5b b1 bc aa 5a b3
0550: 21 c1 d7 52 5c 26 58 19 1a ec 01 b3 e9 8a b7 91

0560: 5b 16 d5 71 dd 55 b4 ea e5 14 17 11 0c c4 cd d1
0570: 1d 17 11 00 00 30 00 01 00 01 51 80 00 44 01 01
0580: 03 0d ca f5 fe 54 d4 d4 8f 16 62 1a fb 6b d3 ad
0590: 21 55 ba cf 57 d1 fa ad 5b ac 42 d1 7d 94 8c 42
05a0: 17 36 d9 38 9c 4c 40 11 66 6e a9 5c f1 77 25 bd
05b0: 0f a0 0c e5 e7 14 e4 ec 82 cf df ac c9 b1 c8 63
05c0: ad 46 00 00 2e 00 01 00 01 51 80 00 53 00 30 0d
05d0: 00 00 01 51 80 5f c6 d9 00 5b fd da 80 b7 9d 00
05e0: de 7a 67 40 ee ec ba 4b da 1e 5c 2d d4 89 9b 2c
05f0: 96 58 93 f3 78 6c e7 47 f4 1e 50 d9 de 8c 0a 72
0600: df 82 56 0d fb 48 d7 14 de 32 83 ae 99 a4 9c 0f
0610: cb 50 d3 aa ad b1 a3 fc 62 ee 3a 8a 09 88 b6 be

 Figure 2

A.2. _25._tcp.example.com NSEC wildcard

_25._tcp.example.com. 3600 IN TLSA (3 1 1
 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
 922)
_25._tcp.example.com. 3600 IN RRSIG (TLSA 13 3 3600
 20201202000000 20181128000000 1870 example.com.
 BZawXvte5SyF8hnXviKDWqll5E2v+RMXqaSE+NOcAMlZOrSMUkfyPqvkv53K2
 rfL4DFP8rO3VMgI0v+ogrox0w==)
*._tcp.example.com. 3600 IN NSEC (smtp.example.com. RRSIG
 NSEC TLSA)
*._tcp.example.com. 3600 IN RRSIG (NSEC 13 3 3600
 20201202000000 20181128000000 1870 example.com.
 K6u8KrR8ca5bjtbce3w8yjMXr9vw12225lAwyIHpxptY43OMLCUCenwpYW5qd
 mpFvAacqj4+tSkKiN279SI9pA==)
example.com. 3600 IN DNSKEY (257 3 13
 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
 /TsSfZMaGWVvlsuieh5nHcXzA==) ; Key ID = 1870
example.com. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 1870 example.com.
 nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
 QHPGSpvRxTUC4tZi62z1UgGDw==)
example.com. 172800 IN DS (1870 13 2 e9b533a049798e900b5c29c90cd
 25a986e8a44f319ac3cd302bafc08f5b81e16)
example.com. 172800 IN RRSIG (DS 13 2 172800
 20201202000000 20181128000000 34327 com.
 sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
 J1hhWSB6jgubEVl17rGNOA/YQ==)
com. 172800 IN DNSKEY (256 3 13
 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
 3URIZ8L3Fa2gBLMOZUzZ1GQCw==) ; Key ID = 34327
com. 172800 IN DNSKEY (257 3 13
 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f

 Ic3I8xfZDNw8Wa0Pe3/g2QA/w==) ; Key ID = 18931
com. 172800 IN DNSKEY (257 3 13
 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
 DiVk37lNAQmgSlHbrGu0yOTkA==) ; Key ID = 28809
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 18931 com.
 LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
 7LFdPKpcvb8BvhM+GqKWGBEsg==)
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 28809 com.
 sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
 mDXqz6KEhhQjT+aQWDt6WFHlA==)
com. 86400 IN DS (18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
 f9eabb94487e658c188e7bcb52115)
com. 86400 IN DS (28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
 70643bbde681db342a9e5cf2bb380)
com. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
 vBKTf6pk8JRCqnfzlo2QY+WXA==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

A.3. _25._tcp.example.org NSEC3 wildcard

_25._tcp.example.org. 3600 IN TLSA (3 1 1
 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
 922)
_25._tcp.example.org. 3600 IN RRSIG (TLSA 13 3 3600
 20201202000000 20181128000000 56566 example.org.
 lNp6th/CJel5WsYlLsLadcQ/YdSTJAIOttzYKnNkNzeZ0jxtDyEP818Q1R4lL
 cYzJ7vCvqb9gFCiCJjK2gAamw==)
dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN NSEC3 (
 1 0 1 ‑ t6lf7uuoi0qofq0nvdjroavo46pp20im RRSIG TLSA)
dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN RRSIG (
 NSEC3 13 3 3600 20201202000000 20181128000000 56566
 example.org.

 guUyy9LIZlYb0FZttAdYJGrFNKpKu91Tm+dPOz98rnpwIlwwvLifXIvIl90nE
 X38cWzEQOpreJu3t4WAfPsxdg==)
example.org. 3600 IN DNSKEY (256 3 13
 NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N
 UR5TlG4Zh+YPbbmUIixe4nS3w==) ; Key ID = 56566
example.org. 3600 IN DNSKEY (257 3 13
 uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr
 Wy9txxesNQ9MkO4LUrFght1LQ==) ; Key ID = 44384
example.org. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 44384 example.org.
 ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk
 6OPPvyHjVXMAsvk0tqV0B+/ag==)
example.org. 86400 IN DS (44384 13 2 ec307e2efc8f0117ed96ab48a51
 3c8003e1d9121f1ff11a08b4cdd348d090aa6)
example.org. 86400 IN RRSIG (DS 13 2 86400 20201202000000
 20181128000000 9523 org.
 m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62
 clpAfvZHx59Ackst4X+zXYpUA==)
org. 86400 IN DNSKEY (256 3 13
 fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e
 HfWx7kzlBBoJB0vLrvsJtXJ6g==) ; Key ID = 47417
org. 86400 IN DNSKEY (256 3 13
 zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy
 mlMiAAoaoXh7BUkEBVgDVN8sQ==) ; Key ID = 9523
org. 86400 IN DNSKEY (257 3 13
 Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6
 Dlger0VJTm0QuX/JVXcyGVGoQ==) ; Key ID = 49352
org. 86400 IN DNSKEY (257 3 13
 0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ
 HTjK6Fvy8W6yZ+cAptn8sQheg==) ; Key ID = 12651
org. 86400 IN RRSIG (DNSKEY 13 1 86400 20201202000000
 20181128000000 12651 org.
 Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt
 us0pUgWngbT/OWXskdMYXZU4A==)
org. 86400 IN RRSIG (DNSKEY 13 1 86400 20201202000000
 20181128000000 49352 org.
 VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p
 vZEMj1YXD+dIqb2nUK9PGBAXw==)
org. 86400 IN DS (12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f
 9db5c24a75743eb1e704b97a9fabc)
org. 86400 IN DS (49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe
 f4a2f18920db5f58710dd767c293b)
org. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV
 EemgaE357S4pX5D0tVZzeZJ6A==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW

 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

A.4. _443._tcp.www.example.org CNAME

_443._tcp.www.example.org. 3600 IN CNAME (
 dane311.example.org.)
_443._tcp.www.example.org. 3600 IN RRSIG (CNAME 13 5 3600
 20201202000000 20181128000000 56566 example.org.
 R0dUe6Rt4G+2ablrQH9Zw8j9NhBLMgNYTI5+H7nO8SNz5Nm8w0NZrXv3Qp7gx
 Qb/a90O696120NsYaZX2+ebBA==)
dane311.example.org. 3600 IN TLSA (3 1 1
 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b
 922)
dane311.example.org. 3600 IN RRSIG (TLSA 13 3 3600
 20201202000000 20181128000000 56566 example.org.
 f6TbTZTpu3h6MYpLkKQwWILAkYQ3EUY+Nsoa6any6yt+aeuunMUjw+IJB2QLm
 0x0PrD7m39JA3NUSkUp9riNNQ==)
example.org. 3600 IN DNSKEY (256 3 13
 NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N
 UR5TlG4Zh+YPbbmUIixe4nS3w==) ; Key ID = 56566
example.org. 3600 IN DNSKEY (257 3 13
 uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr
 Wy9txxesNQ9MkO4LUrFght1LQ==) ; Key ID = 44384
example.org. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 44384 example.org.
 ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk
 6OPPvyHjVXMAsvk0tqV0B+/ag==)
example.org. 86400 IN DS (44384 13 2 ec307e2efc8f0117ed96ab48a51
 3c8003e1d9121f1ff11a08b4cdd348d090aa6)
example.org. 86400 IN RRSIG (DS 13 2 86400 20201202000000
 20181128000000 9523 org.
 m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62
 clpAfvZHx59Ackst4X+zXYpUA==)
org. 86400 IN DNSKEY (256 3 13
 fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e
 HfWx7kzlBBoJB0vLrvsJtXJ6g==) ; Key ID = 47417
org. 86400 IN DNSKEY (256 3 13
 zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy

 mlMiAAoaoXh7BUkEBVgDVN8sQ==) ; Key ID = 9523
org. 86400 IN DNSKEY (257 3 13
 Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6
 Dlger0VJTm0QuX/JVXcyGVGoQ==) ; Key ID = 49352
org. 86400 IN DNSKEY (257 3 13
 0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ
 HTjK6Fvy8W6yZ+cAptn8sQheg==) ; Key ID = 12651
org. 86400 IN RRSIG (DNSKEY 13 1 86400 20201202000000
 20181128000000 12651 org.
 Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt
 us0pUgWngbT/OWXskdMYXZU4A==)
org. 86400 IN RRSIG (DNSKEY 13 1 86400 20201202000000
 20181128000000 49352 org.
 VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p
 vZEMj1YXD+dIqb2nUK9PGBAXw==)
org. 86400 IN DS (12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f
 9db5c24a75743eb1e704b97a9fabc)
org. 86400 IN DS (49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe
 f4a2f18920db5f58710dd767c293b)
org. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV
 EemgaE357S4pX5D0tVZzeZJ6A==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

A.5. _443._tcp.www.example.net DNAME

example.net. 3600 IN DNAME example.com.
example.net. 3600 IN RRSIG (DNAME 13 2 3600 20201202000000
 20181128000000 48085 example.net.
 o3uV5k5Ewp5fdrOZt0n4QuH+/Hpku2Lo3CzGRt9/MS2zZt2Qb/AXz435UFQBx
 OI/pDnjJcLSd/gBLtqR52WLMA==)
; _443._tcp.www.example.net. 3600 IN CNAME (
; _443._tcp.www.example.com.)
_443._tcp.www.example.com. 3600 IN TLSA (3 1 1
 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b

 922)
_443._tcp.www.example.com. 3600 IN RRSIG (TLSA 13 5 3600
 20201202000000 20181128000000 1870 example.com.
 rqY69NnTf4CN3GBGQjKEJCLAMsRkUrXe0JW8IqDb5rQHHzxNqqPeEoi+2vI6S
 z2BhaswpGLVVuoijuVdzxYjmw==)
example.net. 3600 IN DNSKEY (257 3 13
 X9GHpJcS7bqKVEsLiVAbddHUHTZqqBbVa3mzIQmdp+5cTJk7qDazwH68Kts8d
 9MvN55HddWgsmeRhgzePz6hMg==) ; Key ID = 48085
example.net. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 48085 example.net.
 CkwqgEt1p97oMa3w5LctIjKIuG5XVSapKrfwuHhb5p04fWXRMNsXasG/kd2F/
 wlmMWiq38gOQaYCLNm+cjQzpQ==)
example.net. 172800 IN DS (48085 13 2 7c1998ce683df60e2fa41460c4
 53f88f463dac8cd5d074277b4a7c04502921be)
example.net. 172800 IN RRSIG (DS 13 2 172800
 20201202000000 20181128000000 10713 net.
 w0JxDeiBJZNlpCdxKtRENlqfTpSxcs6Vftscsyfo/hyeTPYcIt4yItDkYsYK+
 KQ6FYAVE4nisA3vDQoZVL4wow==)
net. 172800 IN DNSKEY (256 3 13
 061EoQs4sBcDsPiz17vt4nFSGLmXAGguqLStOesmKNCimi4/lw/vtyfqALuLF
 JiFjtCK3HMPi8HQ1jbGEwbGCA==) ; Key ID = 10713
net. 172800 IN DNSKEY (257 3 13
 LkNCPE+v3S4MVnsOqZFhn8n2NSwtLYOZLZjjgVsAKgu4XZncaDgq1R/7ZXRO5
 oVx2zthxuu2i+mGbRrycAaCvA==) ; Key ID = 485
net. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 485 net.
 031jXg06zSuDwI5zqYuYFJg1O5p+zy85csMXagvRxB9W2lL/wJRi6Gn9BcaCV
 RnDId5WR+yCADhsbKfSrrd9vQ==)
net. 86400 IN DS (485 13 2 ab25a2941aa7f1eb8688bb783b25587515a0c
 d8c247769b23adb13ca234d1c05)
net. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 vOXoTjxggGTYKIwssQ3kpML0ag6D0Hcm+Syy7++4zT7gaFHfRH9a6uZekIWdb
 oss8y7q4onW4rxKdtw2S28hwQ==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)
example.com. 3600 IN DNSKEY (257 3 13

 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
 /TsSfZMaGWVvlsuieh5nHcXzA==) ; Key ID = 1870
example.com. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 1870 example.com.
 nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
 QHPGSpvRxTUC4tZi62z1UgGDw==)
example.com. 172800 IN DS (1870 13 2 e9b533a049798e900b5c29c90cd
 25a986e8a44f319ac3cd302bafc08f5b81e16)
example.com. 172800 IN RRSIG (DS 13 2 172800
 20201202000000 20181128000000 34327 com.
 sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
 J1hhWSB6jgubEVl17rGNOA/YQ==)
com. 172800 IN DNSKEY (256 3 13
 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
 3URIZ8L3Fa2gBLMOZUzZ1GQCw==) ; Key ID = 34327
com. 172800 IN DNSKEY (257 3 13
 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
 Ic3I8xfZDNw8Wa0Pe3/g2QA/w==) ; Key ID = 18931
com. 172800 IN DNSKEY (257 3 13
 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
 DiVk37lNAQmgSlHbrGu0yOTkA==) ; Key ID = 28809
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 18931 com.
 LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
 7LFdPKpcvb8BvhM+GqKWGBEsg==)
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 28809 com.
 sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
 mDXqz6KEhhQjT+aQWDt6WFHlA==)
com. 86400 IN DS (18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
 f9eabb94487e658c188e7bcb52115)
com. 86400 IN DS (28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
 70643bbde681db342a9e5cf2bb380)
com. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
 vBKTf6pk8JRCqnfzlo2QY+WXA==)

A.6. _25._tcp.smtp.example.com NSEC Denial of Existence

example.com. 3600 IN SOA (sns.dns.icann.org. noc.dns.icann.org.
 2017042720 7200 3600 1209600 3600)
example.com. 3600 IN RRSIG (SOA 13 2 3600 20201202000000
 20181128000000 1870 example.com.
 sr214XHDDSIcInHStplCFZQ0CI5pl5aIIrrFRkwyISWYbjp9KncxJlWc4nsvf
 6npBwVo+MP4/dg9JLO35kVkUw==)
smtp.example.com. 3600 IN NSEC (www.example.com. A AAAA
 RRSIG NSEC)

smtp.example.com. 3600 IN RRSIG (NSEC 13 3 3600
 20201202000000 20181128000000 1870 example.com.
 rH/K4wghCOm4jpEHwQKiyZzvFIa7qpFySuKIGGetW4SE4O2Mh5jPxcEzf78Hf
 crlsQZmnAUlfmBNCygxAd7JNw==)
example.com. 3600 IN DNSKEY (257 3 13
 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s
 /TsSfZMaGWVvlsuieh5nHcXzA==) ; Key ID = 1870
example.com. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 1870 example.com.
 nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt
 QHPGSpvRxTUC4tZi62z1UgGDw==)
example.com. 172800 IN DS (1870 13 2 e9b533a049798e900b5c29c90cd
 25a986e8a44f319ac3cd302bafc08f5b81e16)
example.com. 172800 IN RRSIG (DS 13 2 172800
 20201202000000 20181128000000 34327 com.
 sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO
 J1hhWSB6jgubEVl17rGNOA/YQ==)
com. 172800 IN DNSKEY (256 3 13
 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj
 3URIZ8L3Fa2gBLMOZUzZ1GQCw==) ; Key ID = 34327
com. 172800 IN DNSKEY (257 3 13
 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f
 Ic3I8xfZDNw8Wa0Pe3/g2QA/w==) ; Key ID = 18931
com. 172800 IN DNSKEY (257 3 13
 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt
 DiVk37lNAQmgSlHbrGu0yOTkA==) ; Key ID = 28809
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 18931 com.
 LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5
 7LFdPKpcvb8BvhM+GqKWGBEsg==)
com. 172800 IN RRSIG (DNSKEY 13 1 172800 20201202000000
 20181128000000 28809 com.
 sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev
 mDXqz6KEhhQjT+aQWDt6WFHlA==)
com. 86400 IN DS (18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202
 f9eabb94487e658c188e7bcb52115)
com. 86400 IN DS (28809 13 2 ad66b3276f796223aa45eda773e92c6d98e
 70643bbde681db342a9e5cf2bb380)
com. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb
 vBKTf6pk8JRCqnfzlo2QY+WXA==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635

. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

A.7. _25._tcp.smtp.example.org NSEC3 Denial of Existence

example.org. 3600 IN SOA (sns.dns.icann.org. noc.dns.icann.org.
 2017042720 7200 3600 1209600 3600)
example.org. 3600 IN RRSIG (SOA 13 2 3600 20201202000000
 20181128000000 56566 example.org.
 cpKzINSSU0Jk6Y/QrsYLgfXNUY4b/pXDWsXrzIHOT8udmQcJkIU+LtnO9+Qa3
 2vJqiV6m65FvbBigJ612c3Wyw==)
vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org. 3600 IN NSEC3 (
 1 0 1 ‑ 93u63bg57ppj6649al2n31l92iedkjd6 A AAAA RRSIG)
vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org. 3600 IN RRSIG (
 NSEC3 13 3 3600 20201202000000 20181128000000 56566
 example.org.
 wn3cePVdc5VPPniYzGp+1CBPOY2m83/A3cjnAb7FTZuwL45B25fwVUyjKQksh
 gQeV5KgP1cdvPt1BEowKqK4Sw==)
dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN NSEC3 (
 1 0 1 ‑ t6lf7uuoi0qofq0nvdjroavo46pp20im RRSIG TLSA)
dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN RRSIG (
 NSEC3 13 3 3600 20201202000000 20181128000000 56566
 example.org.
 guUyy9LIZlYb0FZttAdYJGrFNKpKu91Tm+dPOz98rnpwIlwwvLifXIvIl90nE
 X38cWzEQOpreJu3t4WAfPsxdg==)
a73bi8coh6dvf1arqdeuogf95r0828mk.example.org. 3600 IN NSEC3 (
 1 0 1 ‑ c1p0lp7l1l8gdn0jl13pp1o41h35untj CNAME RRSIG)
a73bi8coh6dvf1arqdeuogf95r0828mk.example.org. 3600 IN RRSIG (
 NSEC3 13 3 3600 20201202000000 20181128000000 56566
 example.org.
 ePBUuWdj8Bc+/41gHBm2Bx/IK/j/Q4W7A5uTgSj/0Sd57mP/NTWRZq3p8yBNe
 FPC2mBJ2oWQFi6/V9dmyiBh2A==)
example.org. 3600 IN DNSKEY (256 3 13
 NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N
 UR5TlG4Zh+YPbbmUIixe4nS3w==) ; Key ID = 56566
example.org. 3600 IN DNSKEY (257 3 13
 uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr
 Wy9txxesNQ9MkO4LUrFght1LQ==) ; Key ID = 44384
example.org. 3600 IN RRSIG (DNSKEY 13 2 3600
 20201202000000 20181128000000 44384 example.org.
 ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk
 6OPPvyHjVXMAsvk0tqV0B+/ag==)
example.org. 86400 IN DS (44384 13 2 ec307e2efc8f0117ed96ab48a51

 3c8003e1d9121f1ff11a08b4cdd348d090aa6)
example.org. 86400 IN RRSIG (DS 13 2 86400 20201202000000
 20181128000000 9523 org.
 m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62
 clpAfvZHx59Ackst4X+zXYpUA==)
org. 86400 IN DNSKEY (256 3 13
 fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e
 HfWx7kzlBBoJB0vLrvsJtXJ6g==) ; Key ID = 47417
org. 86400 IN DNSKEY (256 3 13
 zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy
 mlMiAAoaoXh7BUkEBVgDVN8sQ==) ; Key ID = 9523
org. 86400 IN DNSKEY (257 3 13
 Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6
 Dlger0VJTm0QuX/JVXcyGVGoQ==) ; Key ID = 49352
org. 86400 IN DNSKEY (257 3 13
 0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ
 HTjK6Fvy8W6yZ+cAptn8sQheg==) ; Key ID = 12651
org. 86400 IN RRSIG (DNSKEY 13 1 86400 20201202000000
 20181128000000 12651 org.
 Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt
 us0pUgWngbT/OWXskdMYXZU4A==)
org. 86400 IN RRSIG (DNSKEY 13 1 86400 20201202000000
 20181128000000 49352 org.
 VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p
 vZEMj1YXD+dIqb2nUK9PGBAXw==)
org. 86400 IN DS (12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f
 9db5c24a75743eb1e704b97a9fabc)
org. 86400 IN DS (49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe
 f4a2f18920db5f58710dd767c293b)
org. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV
 EemgaE357S4pX5D0tVZzeZJ6A==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

A.8. _443._tcp.www.insecure.example NSEC3 opt-out insecure delegation

example. 432000 IN SOA (ns.ns‑servers.example.
 hostmaster.ns‑servers.example.
 2018042500 1800 900 604800 43200)
example. 432000 IN RRSIG (SOA 13 1 432000 20201202000000
 20181128000000 15903 example.
 Hx4gEL0q9Za/jAB0LZ8dduuwef9qPrSyEK3RoSevb1S9UkrLQj1cL08HkiDwz
 mcduSc5oMky0toC/gjOoZClEA==)
c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example. 43200 IN NSEC3 (
 1 1 1 ‑ shn05itmoa45mmnv74lc4p0nnfmimtjt NS SOA RRSIG DNSKEY
 NSEC3PARAM)
c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example. 43200 IN RRSIG (
 NSEC3 13 2 43200 20201202000000 20181128000000 15903
 example.
 pW16gQOLhLpKYgXpGt4XB4o92W/QoPYyG5CjQ+t+g7LBVcCiPQv8ars1j9UOg
 RpXUsJhZBDax2dfDhK7zOk7ow==)
shn05itmoa45mmnv74lc4p0nnfmimtjt.example. 43200 IN NSEC3 (
 1 1 1 ‑ a3ib1dvf1bdtfmd91usrdem5fiiepi6p NS DS RRSIG)
shn05itmoa45mmnv74lc4p0nnfmimtjt.example. 43200 IN RRSIG (
 NSEC3 13 2 43200 20201202000000 20181128000000 15903
 example.
 5Aq//A8bsWNwcXbT91pMX2Oqf8VpJQRjqH4D2yZElW00wKmt85mhgu2qYPrvH
 QwGEB4STMz2Nefq01/GY6NHKg==)
example. 432000 IN DNSKEY (257 3 13
 yrkqXSbVwXOoUxCjr/E9yg8XUzbZNlwPllVsoUPd73TLOnBQQ+03Qw4/k+Nme
 /66WIw+ZTlHYcTNalxiGYm0uQ==) ; Key ID = 15903
example. 432000 IN RRSIG (DNSKEY 13 1 432000
 20201202000000 20181128000000 15903 example.
 wwEo3ri6JBuCqx5b33w8axFWOhIen1l+/mm0Isyc9FciuLhBiP+IqSgt+Igc8
 9nR8zRpJpo1D6XR/qJxZgnfaA==)
example. 86400 IN DS (15903 13 2 7e0ebaf1cc0d309d4a73ca7d711719d
 d940f4da87b3d72865167650fc73ea577)
example. 86400 IN RRSIG (DS 13 1 86400 20201202000000
 20181128000000 31918 .
 B5vx4zZaS+bOYfz0PzpaPfk9VxxBvYbGjIvGhpUZV3diXzfCguXxN4JIT1Sz8
 eJX6BYT5QPIrbG/N35U1sIskw==)
. 86400 IN DNSKEY (256 3 13
 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW
 P98cbte4d8NvlGLxzbUzo3+FA==) ; Key ID = 31918
. 86400 IN DNSKEY (256 3 13
 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW
 xbVcd1VtOrlFBcRDMTN0R0XEQ==) ; Key ID = 2635
. 86400 IN DNSKEY (257 3 13
 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv
 Q+gDOXnFOTsgs/frMmxyGOtRg==) ; Key ID = 47005
. 86400 IN RRSIG (DNSKEY 13 0 86400 20201202000000
 20181128000000 47005 .
 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m
 nBT1dtNjIczvLG9pQTnOKUsHQ==)

Authors' Addresses

Viktor Dukhovni
Two Sigma

 EMail: ietf-dane@dukhovni.org

Shumon Huque
Salesforce

 EMail: shuque@gmail.com

Willem Toorop
NLnet Labs

 EMail: willem@nlnetlabs.nl

Paul Wouters
Red Hat

 EMail: pwouters@redhat.com

Melinda Shore
Fastly

 EMail: mshore@fastly.com

draft-farrell-tls-pemesni-00 - PEM file format for ESNI

draft-farrell-tls-pemesni-00 - PEM file format for ESNI

Index
Back 5
Prev
Next
Forward 5

TLS

Internet-Draft

Intended status: Experimental

Expires: April 30, 2020

S. Farrell

Trinity College Dublin

October 28, 2019

PEM file format for ESNI

draft-farrell-tls-pemesni-00

Abstract

 Encrypted SNI key pairs need to be configured into TLS servers, some
 of which can be built with different TLS libraries, so there is a
 benefit and little cost in documenting a file format to use for
 these, similar to how RFC7468 defines other PEM file formats.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. ESNIKeys file

	4. Security Considerations

	5. Acknowledgements

	6. IANA Considerations

	7. Normative References

	Author's Address

1. Introduction

 Encrypted Server Name Indication (ESNI) [I-D.ietf-tls-esni] for
 TLS1.3 [RFC8446] defines a confidentiality mechanism for server names
 in TLS. That requires publication of an ESNIKeys data structure in
 the DNS. An ESNIKeys structure contains the public component of a
 key pair that will typically be periodically (re-)generated by some
 key manager for a TLS server. TLS servers then need to be configured
 to use these key pairs, and given that various TLS servers can be
 built with different TLS libraries, there is a benefit in having a
 standard format for ESNI key pairs, just as was done with [RFC7468].

 [[This idea could: a) wither on the vine, b) be published as it's own
 RFC, or c) end up as a PR for [I-D.ietf-tls-esni]. There is no
 absolute need for this to be in the RFC that defines ESNI, so (b)
 seems feasible if there's enough interest, hence this draft. The
 source for this is in https://github.com/sftcd/pemesni/ PRs are
 welcome there too.]]

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. ESNIKeys file

 The public and private keys MUST both be PEM encoded. The file
 contains the catenation of the PEM encoding of the private key
 followed by the PEM encoding of the public key. The private key MUST
 be encoded as a PKCS#8 PrivateKey. The public key MUST be the base64
 encoded form of the binary ESNIKeys value that is published in the
 DNS. The string "ESNIKEY" MUST be used in the PEM file delimiter for
 the public key.

 There MUST only be one key pair in each file even if a server
 publishes multiple public keys in one ESNIKeys structure.

 Figure 1 shows an example ESNI PEM File

‑‑‑‑‑BEGIN PRIVATE KEY‑‑‑‑‑
MC4CAQAwBQYDK2VuBCIEIEDyEDpfvLoFYQi4rNjAxAz7F/Dqydv5IFmcPpIyGNd8
‑‑‑‑‑END PRIVATE KEY‑‑‑‑‑
‑‑‑‑‑BEGIN ESNIKEY‑‑‑‑‑
/wG+49mkACQAHQAgB8SUB952QOphcyUR1sAvnRhY9NSSETVDuon9/CvoDVYAAhMBAQQAAAAAXYZC
TwAAAABdlBoPAAA=
‑‑‑‑‑END ESNIKEY‑‑‑‑‑

 Figure 1: Example ESNI PEM file

4. Security Considerations

 Storing cryptographic keys in files leaves them vulnerable should
 anyone get shell access to the TLS server machine. So: Don't let
 that happen:-)

5. Acknowledgements

 TBD, as needed

6. IANA Considerations

 There are none so this section can be deleted later.

7. Normative References

 [I-D.ietf-tls-esni]

 Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-
 ietf-tls-esni-04 (work in progress), July 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7468]
 Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
 PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
 April 2015, <https://www.rfc-editor.org/info/rfc7468>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Author's Address

Stephen Farrell
Trinity College Dublin
Dublin 2
Ireland

Phone: +353‑1‑896‑2354
EMail: stephen.farrell@cs.tcd.ie

draft-farrell-tls-wkesni-01 - A well-known URI for publishing ESNIKeys

draft-farrell-tls-wkesni-01 - A well-known URI for publishing ESNIKeys

Index
Back 5
Prev
Next
Forward 5

TLS

Internet-Draft

Intended status: Experimental

Expires: January 6, 2020

S. Farrell

Trinity College Dublin

July 5, 2019

A well-known URI for publishing ESNIKeys

draft-farrell-tls-wkesni-01

Abstract

 We propose use of a well-known URI at which web servers can publish
 ESNIKeys as a way to help get those published in the DNS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Example use of the well-known URI for ESNI

	4. The esni well-known URI

	5. The JSON structure for ESNIKeys

	6. Zone factory behaviour

	7. Security Considerations

	8. Acknowledgements

	9. IANA Considerations

	10. Normative References

	Appendix A. Change Log

	Author's Address

1. Introduction

 Encrypted Server Name Indication (ESNI) [I-D.ietf-tls-esni] for
 TLS1.3 [RFC8446] defines a confidentiality mechanism for server names
 in TLS. That requires publication of an ESNIKeys data structure in
 the DNS. An ESNIKeys structure contains the public component of a
 key pair that will typically be periodically (re-)generated by a web
 server. Many web servers will have an API that can be used to
 dynamically update ESNIKeys in the DNS. Some implementations/
 deployments however, will not, so web server implementers could
 benefit from a mechanism to use in such cases.

 We define such a mechanism here. Note that this is not intended for
 universal deployment, but just for cases where the zone file (or
 equivalent) that includes the ESNIKeys RR is on some machine, which
 we here call a "zone factory," to which the web server doesn't have
 write access.

 We propose use of a well-known URI [RFC8615] on the web server that
 allows the zone factory for that web server to poll for changes to
 ESNIKeys RR values. For example, if a web server generates new
 ESNIKeys hourly and publishes those at the well-known URI, its zone
 factory server can poll that URI. When the zone factory sees new
 values, it can check if those work, and if they do, then update the
 zone file and re-publish the zone.

 [[This idea could: a) wither on the vine, b) be published as it's own
 RFC, or c) end up as a PR for [I-D.ietf-tls-esni]. There is no
 absolute need for this to be in the RFC that defines ESNI, so (b)
 seems feasible if there's enough interest, hence this draft. The
 source for this is in https://github.com/sftcd/wkesni/ PRs are
 welcome there too.]]

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Example use of the well-known URI for ESNI

 An example deployment could be as follows:

o Web server generates new ESNIKeys hourly at N past the hour via a
 cronjob
o ESNIKeys are "current" for an hour, published with a TTL of 1800,
 and remain usable for 3 hours from the time of generation
o Web server has a set of "hidden" sites ‑ the DNS name for each
 hidden web site is here represented as $HIDDEN, which will end up
 as a realSNI value to be encrypted inside an ESNI extension
o Web server has a "cover" site ($COVER), where $COVER will
 typically be the DNS name used in the ESNIKeys public_name field
 for ESNIKeys version 0xff02
o The cronjob creates creates a JSON file for each hidden site at
 https://$COVER/.well‑known/esni/$HIDDEN.json
o Each JSON file contains an array with the ESNIKeys RR values for
 that particular $HIDDEN as shown in Figure 1 ‑ the values in
 Figure 1 with ellipses are the RR values we want to eventually see
 in the DNS
o On the zone factory, a cronjob runs at N+3 past the hour, it knows
 all the names involved and checks to see if the content at those
 well‑known URIs has changed or not
o If the content has changed the cronjob attempts to use the
 ESNIKeys, and for each $HIDDEN where that works, it updates the
 zone file and re‑publishes the zone containing only the new
 ESNIKeys RR values

4. The esni well-known URI

 When a web server ($COVER) wants to publish ESNIKeys information for
 a hidden site ($HIDDEN) then it provides the JSON content defined in
 Section 5 at: https://$COVER/.well-known/esni/$HIDDEN.json

 The well-known URI defined here MUST be an https URL and therefore
 the zone factory verifies the correct $COVER is being accessed. If
 there is any failure in accessing the well-known URI, then the zone
 factory MUST NOT modify the zone.

5. The JSON structure for ESNIKeys

 [[Since the specifics of the JSON structure in Figure 1 are very
 likely to change, this is mostly TBD. What is here for now, is what
 the author has currently implemented simply because it worked ok and
 was easy to do:-)]]

[
 {
 "ESNIKeys.version": 0xff01,
 "desired‑ttl": 1800,
 "ESNIKeys": "/wH5QHc...="
 },
 {
 "ESNIKeys.version": 0xff02,
 "desired‑ttl": 1800,
 "ESNIKeys": "FF02897...OA"
 }
]

 Figure 1: Sample JSON

 The JSON file at the well-known URI MUST contain an array with one or
 more elements. Each element of the array MUST have these fields:

o ESNIKeys.version: contains a number with the value of the version
 field of the ESNIKeys. This is needed (today) as different
 versions are published in the DNS differently. (Draft‑02 used a
 TXT RR and is still all that is usable with some early test
 deployments, draft‑03 uses a new RRTYPE from the experimental
 range.)
o desired‑ttl: contains a number indicating the TTL that the web
 server would like to see used for this RR. The zone factory MUST
 NOT use a longer TTL.
o ESNIKeys: contains the RRVALUE value to be used, either as a
 base64 encoded string (for ESNIKeys.version of 0xff01) or as an
 ASCII‑HEX string (for ESNIKeys.version of 0xff02).

 The JSON file contains an array for a couple of reasons:

o While ESNI is still in draft form, it may be necessary to publish
 different versions of the ESNIKeys structure.
o For some deployments, the same $HIDDEN could be accessible, using
 ESNI, via different $COVER (or public_name) web servers.
o As ESNIKeys is (regrettably:‑) an extensible structure, it may be
 necessary to publish different ESNIKeys values to get best
 interoperability.

6. Zone factory behaviour

 The zone factory SHOULD check that the presented ESNIKeys values work
 with the $HIDDEN server before publication. A "special" TLS client
 may be needed for this check, that does not require the ESNIKeys
 value to have already been published in the DNS. [[I guess that
 could call for the zone factory to know of a "safe" URL on $HIDDEN to
 use, or maybe it could use HTTP HEAD? Figuring that out is TBD.]]

 The zone factory SHOULD publish all the ESNIKeys values that are
 presented in the JSON file, and that pass the check above.

 The zone factory SHOULD only publish ESNIKeys values that are in the
 latest version of the JSON file. This leaves the control of "expiry"
 with the web server, so long as the ESNIKeys presented actually work.
 [[An alternative could be to have the new values just be appended to
 the zone, but that'd require some form of "notAfter" value in the
 JSON file which seems unnecessary and more complex.]]

 From the point of view of the zone factory, the KeyShareEntry values
 within each element of the JSON array are entirely independent. The
 zone factory MUST NOT assume that there is any specific relationship
 between the ESNIKeys values in one JSON structure, nor between the
 set of JSON structures for the set of $HIDDEN sites that share a
 $COVER.

 The ESNI specification [I-D.ietf-tls-esni] defines how and where the
 ESNIKeys RR for $HIDDEN needs to be published in the DNS.

 A possibly interesting (unintended) consequence of this design is
 that once a TLS client has first gotten ESNIKeys from the DNS for
 $HIDDEN with the draft-03 ESNIKeys structure containing the
 public_name field, the TLS client would know both $COVER and $HIDDEN
 and so could later probe for this .well-known as an alternative to
 doing so via DoT/DoH. Probably not something a web browser might do,
 but could be fun for other applications maybe.

7. Security Considerations

 This document defines another way to publish ESNIKeys. If the wrong
 keys were read from here and published in the DNS, then clients using
 ESNI would do the wrong thing, likely resulting in denial of service,
 or worse, when TLS clients attempt to use ESNI with a hidden web
 site. So: Don't do that:-)

8. Acknowledgements

 Thanks to Niall O'Reilly for a quick review.

9. IANA Considerations

 [[TBD: IANA registration of a .well-known. Also TBD - how to handle
 I18N for $COVER and $HIDDEN within such a URL.]]

10. Normative References

 [I-D.ietf-tls-esni]

 Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-
 ietf-tls-esni-03 (work in progress), March 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8615]
 Nottingham, M., "Well-Known Uniform Resource Identifiers
 (URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,
 <https://www.rfc-editor.org/info/rfc8615>.

Appendix A. Change Log

 [[RFC editor: please remove this before publication.]]

 From -00 to -01:

 o Re-structured a bit after re-reading rfc8615

Author's Address

Stephen Farrell
Trinity College Dublin
Dublin 2
Ireland

Phone: +353‑1‑896‑2354
EMail: stephen.farrell@cs.tcd.ie

draft-fedorkow-rats-network-device-attestation-01 - Network Device Attestation Workflow

draft-fedorkow-rats-network-device-attestation-01 - Network Device Attestation W

Index
Back 5
Prev
Next
Forward 5

RATS Working Group

Internet-Draft

Intended status: Informational

Expires: December 3, 2019

G. Fedorkow, Ed.

Juniper Networks, Inc.

J. Fitzgerald-McKay

National Security Agency

June 1, 2019

Network Device Attestation Workflow

draft-fedorkow-rats-network-device-attestation-01

Abstract

 This document describes a workflow for network device attestation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 3, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Goals

	 1.3. Description of Remote Integrity Verification (RIV)

	 1.4. Solution Requirements

	 1.5. Scope
	 1.5.1. Out of Scope

	 1.5.2. Why Remote Integrity Verification?

	 1.5.3. Network Device Attestation Challenges

	 1.5.4. Why is OS Attestation Different?

	2. Solution Outline
	 2.1. RIV Software Configuration Attestation using TPM

	 2.2. RIV Keying

	 2.3. RIV Information Flow

	 2.4. RIV Simplifying Assumptions
	 2.4.1. DevID Alternatives

	 2.4.2. Additional Attestation of Platform Characteristics

	 2.4.3. Root of Trust for Measurement

	 2.4.4. Reference Integrity Manifests (RIMs)

	 2.4.5. Attestation Logs

	3. Standards Components
	 3.1. Reference Models
	 3.1.1. IETF Reference Model for Challenge-Response Remote Attestation

	 3.2. RIV Workflow

	 3.3. Layering Model for Network Equipment Attester and Verifier

	4. Privacy Considerations

	5. Security Considerations

	6. Conclusion

	7. Appendix
	 7.1. Implementation Notes

	 7.2. Comparison with TCG PTS / IETF NEA

	8. IANA Considerations

	9. Informative References

	Authors' Addresses

1. Introduction

 There are many aspects to consider in fielding a trusted computing
 device, from operating systems to applications. Mechanisms to prove
 that a device installed at a customer's site is authentic (i.e., not
 counterfeit) and has been configured with authorized software, all as
 part of a trusted supply chain, is one of those aspects that's easily
 overlooked.

 Attestation is defined here as the process of creating, conveying and
 appraising assertions about Platform trustworthiness characteristics,
 including supply chain trust, identity, platform provenance, software
 configuration, hardware configuration, platform composition,
 compliance to test suites, functional and assurance evaluations, etc.

 The supply chain itself has many elements, from validating suppliers
 of electronic components, to ensuring that shipping procedures
 protect against tampering through many stages of distribution and
 warehousing. One element that helps maintain the integrity of the
 supply chain after manufacturing is Attestation, by assuring an
 administrator that the software that was launched when the device was
 started is the same as the software that the device vendor initially
 shipped.

 Within the Trusted Computing Group context, attestation is the
 process by which an independent Verifier can obtain cryptographic
 proof as to the identity of the device in question, evidence of the
 integrity of software loaded on that device when it started up, and
 then verify that what's there is what's supposed to be there. For
 networking equipment, a verifier capability can be embedded in a
 Network Management Station (NMS), a posture collection server, or
 other network analytics tool (such as a software asset management
 solution, or a threat detection and mitigation tool, etc.). While
 informally referred to as attestation, this document focuses on a
 subset defined here as Remote Integrity Verification (RIV). RIV
 takes a network equipment centric perspective that includes a set of
 protocols and procedures for determining whether a particular device
 was launched with untampered software, starting from Roots of Trust.
 While there are many ways to accomplish attestation, RIV sets out a
 specific set of protocols and tools that work in environments
 commonly found in Networking Equipment. RIV does not cover other
 platform characteristics that could be attested, although it does
 provide evidence of a secure infrastructure to increase the level of
 trust in other platform characteristics attested by other means.

 This profile outlines the RIV problem, and then identifies elements
 that are necessary to get the complete attestation procedure working
 in a scalable solution using commercial products.

 This document focuses primarily on software integrity verification
 using the Trusted Platform Module (TPM) to ensure a trustworthy
 result.

 The integrity of attestation information must be protected by means
 of cryptographic techniques, to assure its validity.

It's important to note that TCG technologies are available to use
either symmetric key encryption with shared keys, or public key
cryptography using private/public key pairs.
The two techniques can each produce secure results, but do require
different provisioning mechanisms.
The RIV document currently focuses on asymmetric keying approaches
only; future work might include techniques for attestation using
symmetric keys.

1.1. Requirements Language

 This document itself is non-normative; the document does not define
 protocols, but rather identifies protocols that can be used together
 to achieve the goals above, and in some cases, highlights gaps in
 existing protocols.

1.2. Goals

 Attestation requires two interlocking services on the device:

 o Platform Identity, the mechanism providing trusted identity, can
 reassure network managers that the specific devices they ordered
 from authorized manufacturers for attachment to their network are
 those that were installed, and that they continue to be present in
 their network. As part of the mechanism for Platform Identity,
 cryptographic proof of the identity of the manufacturer is also
 provided.

 o Software Measurement is the mechanism that reports the state of
 mutable software components on the device, and can assure network
 managers that they have known, untampered software configured to
 run in their network.

 As a part of a trusted supply chain, the RIV attestation workflow
 outlined in this document is intended to meet the following high-
 level goals:

 o Provable Device Identity - The ability to identify a device using
 a cryptographic identifier is a critical prerequisite to software
 inventory attestation.

 o Software Inventory - A key goal is to identify the software
 release installed on the device, and to provide evidence of its
 integrity.

 o Verifiability - Verification of software and configuration of the
 device shows that the software that's supposed to be installed on
 there actually has been launched. Verification against reference

 manifests signed by the supplier of the software provides
 assurance that the software is free of unauthorized modification.

1.3. Description of Remote Integrity Verification (RIV)

 RIV is a procedure that assures a network operator that the equipment
 on their network can be reliably identified, and that untampered
 software of a known version is installed on each endpoint. In this
 context, endpoint might include the conventional connected devices
 like servers and laptops, but also connected devices that make up the
 network equipment itself, such as routers, switches and firewalls.

 RIV can be viewed as a link in a trusted supply chain that ensures
 that devices launch software without unauthorized modification, and
 includes three major processes:

 1. Creation of Evidence is the process whereby an endpoint generates
 cryptographic proof (evidence) of claims about platform
 properties. In particular, the platform identity and its
 software configuration are of critical importance

 o Platform Identity refers to the mechanism assuring the attestation
 relying party (typically a network administrator) of the identity
 of devices that make up their network, and that their
 manufacturers are known.

 o Software used to boot a platform can be described as a chain of
 measurements, started by a Root of Trust for Measurement, that
 normally ends when the system software is loaded. A measurement
 signifies the identity, integrity and version of each software
 component registered with the TPM, so that the subsequent
 appraisal stage can determine if the software installed is
 authentic, up-to-date, and free of tampering.

 Clearly the second part of the problem, attesting the state of
 mutable components of a given device, is of little value without
 reliable identification of the device in question. By the same
 token, unambiguous identity of a device is necessary, but is
 insufficient to assure the operator of the provenance of the device
 through the supply chain, or that the device is configured to behave
 properly.

 1. Conveyance of Evidence is the process of reliably transporting
 evidence from the point in a connected device where a measurement
 is stored to an appraiser/verifier, e.g. a management station.
 The transport is typically carried out via a management network.
 The channel must provide integrity and authenticity, and, in some
 use cases, may also require confidentiality.

 2. Appraisal of Evidence is the process of verifying the evidence
 received by a verifier/appraiser from a device, and using
 verified evidence to inform decision making. In this context,
 verification means comparing the device measurements reported as
 evidence with the configuration expected by the system
 administrator. This step can work only when there is a way to
 express what should be there, often referred to as golden
 measurements, or Reference Integrity Measurements, representing
 the intended configured state of the connected device.

 An implementation of RIV requires three technologies

1. Identity: Platform identity can be based on IEEE 802.1AR Device
 Identity [IEEE‑802‑1AR], coupled with careful supply‑chain
 management by the manufacturer. The DevID certificate contains a
 statement by the manufacturer that establishes the provenance of
 the device as it left the factory. Some applications with a
 more‑complex post‑manufacture supply chain (e.g. Value Added
 Resellers), or with different privacy concerns, may want to use
 an alternate mechanism for platform authentication based on TCG
 Platform Certificates [Platform‑Certificates].
 RIV currently relies on asymmetric keying for identity; alternate
 approaches might use symmetric keys.

 2. Platform Attestation provides evidence of configuration of
 software elements throughout the product lifecycle. This form of
 attestation can be implemented with TPM PCR, Quote and log
 mechanisms, which provide an authenticated mechanism to report
 what software actually starts up on the device each time it
 reboots.

 3. Reference Integrity Measurements must be conveyed from the
 software authority (often the manufacturer for embedded systems)
 to the system in which verification will take place

 Service Providers benefit from a trustworthy attestation mechanism
 that provides assurance that their network comprises authentic
 equipment, and has loaded software free of known vulnerabilities and
 unauthorized tampering.

1.4. Solution Requirements

 The RIV attestation solution must meet a number of requirements to
 make it simple to deploy at scale.

 1. Easy to Use - This solution should work "out of the box" as far
 as possible, that is, with the fewest possible steps needed at
 the end-user's site. Eliminate complicated databases or
 provisioning steps that would have to be executed by the owner of
 a new device. Network equipment is often required to "self-
 configure", to reliably reach out without manual intervention to
 prove its identity and operating posture, then download its own
 configuration. See [RFC8572] for an example of Secure Zero Touch
 Provisioning.

 2. Multi-Vendor - This solution should identify standards-based
 interfaces that allow attestation to work with attestation-
 capable devices and verifiers supplied by different vendors in
 one network.

 3. Scalable - The solution must not depend on choke points that
 limit the number of endpoints that could be evaluated in one
 network domain.

 4. Extensible - A network equipment attestation solution needs to
 expand over time as new features are added. The solution must
 allow new features to be added easily, providing for a smooth
 transition and allowing newer and older architectural components
 to continue to work together. Further, a network equipment
 attestation solution and the specifications referenced here must
 define safe extensibility mechanisms that enable innovation
 without breaking interoperability.

 5. Efficient - A network equipment attestation solution should, to
 the greatest extent feasible, continuously monitor the health and
 posture status of network devices. Posture measurements should
 be updated in real-time as changes to device posture occur and
 should be published to remote integrity validators. Validation
 reports should also be shared with their relying parties (for
 example, network administrators, or network analytics that rely
 on these reports for posture assessment) as soon as they are
 available.

1.5. Scope

 This document includes a number of assumptions to limit the scope:

 o This solution is for use in non-privacy-preserving applications
 (for example, networking, Industrial IoT), avoiding the need for a
 Privacy Certificate Authority for attestation keys
 [AIK-Enrollment]

 o This document applies primarily to "embedded" applications, where
 the device manufacturer ships the software image for the device.

 o The approach outlined in this document assumes the use of TPM 1.2
 or TPM 2.0.

1.5.1. Out of Scope

 o Run-Time Attestation: Run-time attestation of Linux or other
 multi-threaded operating system processes considerably expands the
 scope of the problem. Many researchers are working on that
 problem, but this document defers the run-time attestation
 problem.

 o Multi-Vendor Embedded Systems: Additional coordination would be
 needed for devices that themselves comprise hardware and software
 from multiple vendors, integrated by the end user.

 o Processor Sleep Modes: Network equipment typically does not
 "sleep", so sleep and hibernate modes are not considered.

 o Virtualization and Containerization: These technologies are
 increasingly used in Network equipment, but are not considered in
 this revision of the document.

1.5.2. Why Remote Integrity Verification?

 Remote Integrity Verification can go a long way to solving the "Lying
 Endpoint" problem, in which malicious software on an endpoint may
 both subvert the intended function, and also prevent the endpoint
 from reporting its compromised status. Man-in-the Middle attacks are
 also made more difficult through a strong focus on device identity

 Attestation data can be used for asset management, vulnerability and
 compliance assessment, plus configuration management.

1.5.3. Network Device Attestation Challenges

 There have been demonstrations of attestation using TPMs for years,
 accompanied by compelling security reasons for adopting attestation.
 Despite this, the technology has not been widely adopted, in part,
 due to the difficulties in deploying TPM-based attestation. Some of
 those difficulties are:

 o Standardizing device identity. Creating and using unique device
 identifiers is difficult, especially in a privacy-sensitive
 environment. But attestation is of limited value if the operator
 is unable to determine which devices pass attestation validation
 tests, and which fail. This problem is substantially simplified
 for infrastructure devices like network equipment, where identity
 can be explicitly coded using IEEE 802.1AR, but doing so relies on

 adoption of 802.1AR [IEEE-802-1AR] by manufacturers and hardware
 system integrators.

 o Standardizing attestation representations and conveyance.
 Interoperable remote attestation has a fundamental dependence on
 vendors agreeing to a limited set of network protocols commonly
 used in existing network equipment for communicating attestation
 data. Network device vendors will be slow to adopt the changes
 necessary to implement remote attestation without a fully-realized
 plan for deployment.

 o Interoperability. Networking equipment operates in a
 fundamentally multi-vendor environment, putting additional
 emphasis on the need for standardized procedures and protocols.

 o Attestation evidence is complex. Operating systems used in larger
 embedded devices are often multi-threaded, so the order of
 completion for individual processes is non-deterministic. While
 the hash of a specific component is stable, once extended into a
 PCR, the resulting values are dependent on the (non-deterministic)
 ordering of events, so there will never be a single known-good
 value for some PCRs. Careful analysis of event logs can provide
 proof that the expected modules loaded, but it's much more
 complicated than simply comparing reported and expected digests,
 as collected in TPM Platform Configuration Registers (PCRs).

 o Software configurations can have seemingly infinite variability.
 This problem is nearly intractable on PC and Server equipment,
 where end users have unending needs for customization and new
 applications. However, embedded systems, like networking
 equipment, are often simpler, in that there are fewer variations
 and releases, with vendors typically offering fewer options for
 mixing and matching.

 o Standards-based mechanisms to encode and distribute Reference
 Integrity Measurements, (i.e., expected values) are still in
 development.

 o Software updates can be complex. Even the most organized network
 operator may have many different releases in their network at any
 given time, with the result that there's never a single digest or
 fingerprint that indicates the software is "correct"; digests
 formed by hashing software modules on a device can only show the
 correct combination of versions for a specific device at a
 specific time.

 None of these issues are insurmountable, but together, they've made
 deployment of attestation a major challenge. The intent of this
 document is to outline an attestation profile that's simple enough to
 deploy, while yielding enough security to be useful.

1.5.4. Why is OS Attestation Different?

 Even in embedded systems, adding Attestation at the OS level (e.g.
 Linux IMA, Integrity Measurement Architecture [IMA]) increases the
 number of objects to be attested by one or two orders of magnitude,
 involves software that's updated and changed frequently, and
 introduces processes that begin in unpredictable order.

 TCG and others (including the Linux community) are working on methods
 and procedures for attesting the operating system and application
 software, but standardization is still in process.

2. Solution Outline

2.1. RIV Software Configuration Attestation using TPM

 RIV Attestation is a process for determining the identity of software
 running on a specifically-identified device. Remote Attestation is
 broken into two phases, shown in Figure 1:

 o During system startup, measurements (i.e., digests computed as
 fingerprints of files) are extended, or cryptographically folded,
 into the TPM. Entries are also added to an informational log.
 The measurement process generally follows the Chain of Trust model
 used in Measured Boot, where each stage of the system measures the
 next one, and extends its measurement into the TPM, before
 launching it.

 o Once the device is running and has operational network
 connectivity, a separate, trusted server (called a Verifier in
 this document) can interrogate the network device to retrieve the
 logs and a copy of the digests collected by hashing each software
 object, signed by an attestation private key known only to the
 TPM.

 The result is that the Verifier can verify the device's identity by
 checking the certificate containing the TPM's attestation public key,
 and can validate the software that was launched by comparing digests
 in the log with known-good values, and verifying their correctness by
 comparing with the signed digests from the TPM.

 It should be noted that attestation and identity are inextricably
 linked; signed evidence that a particular version of software was
 loaded is of little value without cryptographic proof of the identity
 of the device producing the evidence.

+‑‑‑+
| +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ |
| | BIOS |‑‑‑>| Loader |‑‑>| Kernel |‑‑‑>|Userland | |
| +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ |
| | | | |
| | | | |
| +‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑+ |
| Step 1 | |
| V |
| +‑‑‑‑‑‑‑‑+ |
| | TPM | |
| +‑‑‑‑‑‑‑‑+ |
| Router | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 | Step 2
 | +‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑>| Verifier |
 +‑‑‑‑‑‑‑‑‑‑‑+

Reset‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑flow‑of‑time‑during‑boot‑‑...‑‑‑‑‑‑‑>

 Figure 1: RIV Attestation Model

 In Step 1, measurements are "extended" into the TPM as processes
 start. In Step 2, signed PCR digests are retrieved from the TPM for
 off-box analysis after the system is operational.

2.2. RIV Keying

 TPM 1.2 and TPM 2.0 have a variety of rules separating the functions
 of identity and attestation, allowing for use-cases where software
 configuration must be attested, but privacy must be maintained.

 To accommodate these rules, enforced inside the TPM, in an
 environment where device privacy is not normally a requirement, the
 TCG Guidance for Securing Network Equipment [NetEq] suggests using
 separate keys for Identity (i.e., DevID) and Attestation (i.e.,
 signing a quote of the contents of the PCRs), but provisioning an
 Initial Attestation Key (IAK) and x.509 certificate that parallels
 the IDevID, with the same device ID information as the IDevID
 certificate (i.e., the same Subject Name and Subject Alt Name, even
 though the key pairs are different). This allows a quote from the
 device, signed by the IAK, to be linked directly to the device that
 provided it, by examining the corresponding IAK certificate.

 Inclusion of an IAK by a vendor does not preclude a mechanism whereby
 an Administrator can define Local Attestation Keys (LAKs) if desired.

2.3. RIV Information Flow

 RIV workflow for networking equipment is organized around a simple
 use-case, where a network operator wishes to verify the integrity of
 software installed in specific, fielded devices. This use-case
 implies several components:

 1. A Device (e.g. a router or other embedded device, also known as
 an Attester) somewhere and the network operator wants to examine
 its boot state.

 2. A Verifier (which might be a network management station)
 somewhere separate from the Device that will retrieve the
 information and analyze it to pass judgement on the security
 posture of the device.

 3. A Relying Party, which has access to the Verifier to request
 attestation and to act on results. Interaction between the
 Relying Party and the Verifier is considered out of scope for
 RIV.

 4. This document assumes that signed Reference Integrity Manifests
 (RIMs) (containing "golden measurements", or Reference Integrity
 Measurements) can either be created by the device manufacturer
 and shipped along with the device as part of its software image,
 or alternatively, could be obtained a number of other ways
 (direct to the verifier from the manufacturer, from a third
 party, from the owner's observation of what's thought to be a
 "known good system", etc.). Retrieving RIMs from the device
 itself allows attestation to be done in systems which may not
 have access to the public internet, or by other devices that are
 not management stations per-se (e.g., a peer device). If
 reference measurements are obtained from multiple sources, the
 Verifier may need to evaluate the relative level of trust to be
 placed in each source in case of a discrepancy.

 These components are illustrated in Figure 2.

 A more-detailed taxonomy of terms is given in
 [I-D.birkholz-rats-architecture]

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
		Attester	Step 1	Verifier	
Asserter		(Device	<‑‑‑‑‑‑‑	(Network	Relying
(Device		under	‑‑‑‑‑‑‑>	Mngmt	Party
Manufacturer		attestation)	Step 2	Station)	
or other					
authority)					
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
 | /\
 | Step 0 |
 ‑‑‑

 Figure 2: RIV Reference Configuration for Network Equipment

 In Step 0, The Asserter (the device manufacturer) provides a Software
 Image accompanied by one or more Reference Integrity Manifests (RIMs)
 to the Attester (the device under attestation) signed by the
 asserter. In Step 1, the Verifier (Network Management Station), on
 behalf of a Relying Party, requests Identity, Measurement Values (and
 possibly RIMs) from the Attester. In Step 2, the Attester responds
 to the request by providing a DevID, quotes (measured values), and
 optionally RIMs, signed by the Attester.

 See [I-D.birkholz-rats-reference-interaction-model] for more narrowly
 defined terms related to Attestation

2.4. RIV Simplifying Assumptions

 This document makes the following simplifying assumptions to reduce
 complexity:

 o The product to be attested is shipped with an IEEE 802.1AR DevID
 and an Initial Attestation Key (IAK) with certificate. The IAK
 cert contains the same identity information as the DevID
 (specifically, the same Subject Name and Subject Alt Name, signed
 by the manufacturer), but it's a type of key that can be used to
 sign a TPM Quote. This convention is described in TCG Guidance
 for Securing Network Equipment [NetEq]. For network equipment,
 which is generally non-privacy-sensitive, shipping a device with
 both an IDevID and an IAK already provisioned substantially
 simplifies initial startup. Privacy-sensitive applications may
 use the TCG Platform Certificate and additional procedures to
 install identity credentials on the platform after manufacture.
 (See Section 2.3.1 below for the Platform Certificate alternative)

 o The product is equipped with a Root of Trust for Measurement, Root
 of Trust for Storage and Root of Trust for Reporting (as defined

 in [GloPlaRoT]) that are capable of conforming to the TCG Trusted
 Attestation Protocol (TAP) Information Model [TAP].

 o The vendor will ship Reference Integrity Measurements (i.e.,
 known-good measurements) in the form of signed CoSWID tags
 [I-D.ietf-sacm-coswid], [SWID], as described in TCG Reference
 Integrity Measurement Manifest [RIM].

2.4.1. DevID Alternatives

 Some situations may have privacy-sensitive requirements that preclude
 shipping every device with an Initial Device ID installed. In these
 cases, the IDevID can be installed remotely using the TCG Platform
 Certificate [Platform-Certificates].

 Some administrators may want to install their own identity
 credentials to certify device identity and attestation results. IEEE
 802.1AR [IEEE-802-1AR] allows for both Initial Device Identity
 credentials, installed by the manufacturer, (analogous to a physical
 serial number plate), or Local Device Identity credentials installed
 by the administrator of the device (analogous to the physical Asset
 Tag used by many enterprises to identify their property). TCG TPM
 2.0 Keys documents [Platform-DevID-TPM-2.0] and
 [PC-Client-BIOS-TPM-2.0] specifies parallel Initial and Local
 Attestation Keys (IAK and LAK), and contains figures showing the
 relationship between IDevID, LDevID, IAK and LAK keys.

 Device administrators are free to use any number of criteria to judge
 authenticity of a device before installing local identity keys, as
 part of an on-boarding process. The TCG TPM 2.0 Keys document
 [Platform-DevID-TPM-2.0] also outlines procedures for creating Local
 Attestation Keys and Local Device IDs (LDevIDs) rooted in the
 manufacturer's IDevID as a check to reduce the chances that
 counterfeit devices are installed in the network.

 Note that many networking devices are expected to self-configure (aka
 Zero Touch Provisioning). Current standardized zero-touch mechanisms
 such as [RFC8572] assume that identity keys are already in place
 before network on-boarding can start, and as such, are compatible
 with IDevID and IAK keys installed by the manufacturer, but not with
 LDevID and LAK keys, which would have to be installed by the
 administrator.

2.4.2. Additional Attestation of Platform Characteristics

 The Platform Attribute Credential [Platform-Certificates] can also be
 used to convey additional information about a platform from the
 manufacturer or other entities in the supply chain. While outside
 the scope of RIV, the Platform Attribute Credential can deliver
 information such as lists of serial numbers for components embedded
 in a device or security assertions related to the platform, signed by
 the manufacturer, system integrator or value-added-reseller.

2.4.3. Root of Trust for Measurement

 The measurements needed for attestation require that the device being
 attested is equipped with a Root of Trust for Measurement, i.e., some
 trustworthy mechanism that can compute the first measurement in the
 chain of trust required to attest that each stage of system startup
 is verified, and a Root of Trust for Reporting to report the results
 [TCGRoT], [GloPlaRoT].

 While there are many complex aspects of a Root of Trust, two aspects
 that are important in the case of attestation are:

 o The first measurement computed by the Root of Trust for
 Measurement, and stored in the TPM's Root of Trust for Storage, is
 presumed to be correct.

 o There must not be a way to reset the RTS without re-entering the
 RTM code.

 The first measurement must be computed by code that is implicitly
 trusted; if that first measurement can be subverted, none of the
 remaining measurements can be trusted. (See [NIST-SP-800-155])

2.4.4. Reference Integrity Manifests (RIMs)

 Much of attestation focuses on collecting and transmitting evidence
 in the form of PCR measurements and attestation logs. But the
 critical part of the process is enabling the verifier to decide
 whether the measurements are "the right ones" or not.

 While it must be up to network administrators to decide what they
 want on their networks, the software supplier should supply the
 Reference Integrity Measurements, (aka Golden Measurements or "known
 good" digests) that may be used by a verifier to determine if
 evidence shows known good, known bad or unknown software
 configurations.

 In general, there are two kinds of reference measurements:

 1. Measurements of early system startup (e.g., BIOS, boot loader, OS
 kernel) are essentially single threaded, and executed exactly
 once, in a known sequence, before any results could be reported.
 In this case, while the method for computing the hash and
 extending relevant PCRs may be complicated, the net result is
 that the software (more likely, firmware) vendor will have one
 known good PCR value that "should" be present in the PCR after
 the box has booted. In this case, the signed reference
 measurement simply lists the expected hash for the given version.

 2. Measurements taken later in operation of the system, once an OS
 has started (for example, Linux IMA[IMA]), may be more complex,
 with unpredictable "final" PCR values. In this case, the
 Verifier must have enough information to reconstruct the expected
 PCR values from logs and signed reference measurements from a
 trusted authority.

 In both cases, the expected values can be expressed as signed CoSWID
 tags, but the SWID structure in the second case is somewhat more
 complex. An example of how CoSWIDs could be incorporated into a
 reference manifest can be found in the IETF Internet-Draft "A SUIT
 Manifest Extension for Concise Software Identifiers"
 [I-D.birkholz-suit-coswid-manifest].

 The TCG has done exploratory work in defining formats for reference
 integrity manifests under the working title TCG Reference Integrity
 Manifest [RIM].

2.4.5. Attestation Logs

 Quotes from a TPM can provide evidence of the state of a device up to
 the time the evidence was recorded, but to make sense of the quote in
 most cases an event log of what software modules contributed which
 values to the quote during startup must also be provided. The log
 must contain enough information to demonstrate its integrity by
 allowing exact reconstruction of the digest conveyed in the signed
 quote (e.g., PCR values).

 TCG has defined several event log formats:

 o Legacy BIOS event log (TCG PC Client Specific Implementation
 Specification for Conventional BIOS,
 Section 11.3[PC-Client-BIOS-TPM-1.2])

 o UEFI BIOS event log (TCG EFI Platform Specification for TPM Family
 1.1 or 1.2, Section 7 [EFI])

 o Canonical Event Log [Canonical-Event-Log]

 It should be noted that a given device might use more than one event
 log format (e.g., a UEFI log during initial boot, switching to
 Canonical Log when the host OS launches).

 The TCG SNMP Attestation MIB [SNMP-Attestation-MIB] will support any
 record-oriented log format, including the three TCG-defined formats,
 but it currently leaves figuring out which log(s) are in what format
 up to the Verifier.

3. Standards Components

3.1. Reference Models

3.1.1. IETF Reference Model for Challenge-Response Remote Attestation

 Initial work at IETF defines remote attestation as follows:

 The Reference Interaction Model for Challenge-Response-based Remote
 Attestation is based on the standard roles defined in
 [I-D.birkholz-rats-architecture]:

 o Attester: The role that designates the subject of the remote
 attestation. A system entity that is the provider of evidence
 takes on the role of an Attester.

 o Verifier: The role that designates the system entity and that is
 the appraiser of evidence provided by the Attester. A system
 entity that is the consumer of evidence takes on the role of a
 Verifier.

 The following diagram illustrates a common information flow between a
 Verifier and an Attester, specified in
 [I-D.birkholz-rats-reference-interaction-model]:

Attester Verifier
 | |
 | <‑‑‑‑‑‑‑ requestAttestation(nonce, authSecID, claimSelection) |
 | |
collectAssertions(assertionsSelection) |
 | => assertions |
 | |
signAttestationEvidence(authSecID, assertions, nonce) |
 | => signedAttestationEvidence |
 | |
 | signedAttestationEvidence ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
 | |
 | verifyAttestationEvidence(signedAttestatEvidence, refassertions)
 | attestationResult <= |
 | |

 Figure 3: IETF Attestation Information Flow

 The RIV approach outlined in this document aligns with the RATS
 reference model.

3.2. RIV Workflow

 The overall flow for an attestation session is shown in Figure 4. In
 this diagram:

 o Step 0, obtaining the signed reference measurements, may happen in
 two ways:

 o Step 0A below shows a verifier obtaining reference measurements
 directly from a software configuration authority, whether it's the
 vendor or another authority chosen by the system administrator.
 The reference measurements are signed by the Asserter (i.e., the
 software configuration authority).

 o - Or - Step 0B, the reference measurements, signed by the
 Asserter, may be distributed as part of software installation,
 long before the attestation session begins. Software installation
 is usually vendor-dependent, so there are no standards involved in
 this step. However, the verifier can use the same protocol to
 obtain the reference measurements from the device as it would have
 used with an external reference authority

 o In Step 1, the Verifier initiates an attestation session by
 opening a TLS session, validated using the DevID to prove that the
 connection is attesting the right box.

 o In Step 2, measured values are retrieved from the Attester's TPM
 using a YANG [RFC8348] or SNMP [RFC3413] interface that implements
 the TCG TAP model (e.g. YANG Module for Basic Challenge-Response-
 based Remote Attestation Procedures
 [I-D.birkholz-yang-basic-remote-attestation]).

 o In Step 3, the Attester also delivers a copy of the signed
 reference measurements, using Software Inventory YANG module based
 on Software Identifiers [I-D.birkholz-yang-swid].

 These steps yield enough information for the Verifier to verify
 measurements against reference values. Of course in all cases, the
 signatures protecting quotes and RIMs must be checked before the
 contents are used.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
			Step 1	
		Attester	<‑‑‑‑‑‑>	Verifier
Asserter		(Device	<‑‑‑‑‑‑>	(Network
(Configuration	‑‑‑‑‑‑‑>	under	Step 2	Mngmt
Authority)	Step 0A	attestation)		Station)
			‑‑‑‑‑‑‑>	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ Step 3 +‑‑‑‑‑‑‑‑‑+
 | /|\
 | |
 ‑‑
 Step 0B

 Figure 4: RIV Protocol and Encoding Summary

 Either CoSWID-encoded reference measurements are signed by a trusted
 authority and retrieved directly prior to attestation (as shown in
 Step 0A), or CoSWID-encoded reference measurements are signed by the
 device manufacturer, installed on the device by a proprietary
 installer, and delivered during attestation (as shown in Step 0B).
 In Step 1, the Verifier initiates a connection for attestation. The
 Attester's identity is validated using DevID with TLS. In Step 2, a
 nonce, quotes (measured values) and measurement log are conveyed via
 TAP with a protocol-specific binding (e.g. SNMP). Logs are sent in
 the Canonical Log Format In Step 3, CoSWID-encoded reference
 measurements are retrieved from the Attester using the YANG
 ([I-D.birkholz-yang-swid]. .

 The following components are used:

 1. TPM Keys are configured according to [Platform-DevID-TPM-2.0],
 [PC-Client-BIOS-TPM-1.2], or [Platform-ID-TPM-1.2]

 2. Measurements of bootable modules are taken according to TCG PC
 Client [PC-Client-BIOS-TPM-2.0] and Linux IMA [IMA]

 3. Device Identity is managed by IEEE 802.1AR certificates
 [IEEE-802-1AR], with keys protected by TPMs.

 4. Quotes are retrieved according to TCG TAP Information Model [TAP]

 5. Reference Integrity Measurements are encoded as CoSWID tags, as
 defined in the TCG RIM document [RIM], compatible with NIST IR
 8060 [NIST-IR-8060] and the IETF CoSWID draft
 [I-D.ietf-sacm-coswid]. Reference measurements are signed by the
 device manufacturer.

3.3. Layering Model for Network Equipment Attester and Verifier

 Retrieval of identity and attestation state uses one protocol stack,
 while retrieval of Reference Measurements uses a different set of
 protocols. Figure 5 shows the components involved.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Attester	<‑‑‑‑‑‑‑‑‑‑‑‑‑	Verifier	
(Device)	‑‑‑‑‑‑‑‑‑‑‑‑‑>	(Management Station)	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
|Reference Integrity Measurements| | Attestation |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

**
* IETF Attestation Reference Interaction Diagram *
**

 . Reference Integrity . . TAP (PTS2.0) Info .
 . Manifest . . Model and Canonical .
 . . . Log Format .

 ************************* **********************
 * YANG SWID Module * . TCG . * YANG Attestation *
 * I‑D.birkholz‑yang‑swid* . Attestation. * Module *
 * * . MIB . * I‑D.birkholz‑yang‑ *
 * * . . * basic‑remote‑ *
 * * . . * attestation *
 ************************* **********************

 ************************* ************ ************************
 * XML, JSON, CBOR (etc) * * UDP * * XML, JSON, CBOR (etc)*
 ************************* ************ ************************

 ************************* ************************
 * RESTCONF/NETCONF * * RESTCONF/NETCONF *
 ************************ *************************

 ************************* ************************
 * TLS, SSH * * TLS, SSH *
 ************************* ************************

 Figure 5: RIV Protocol Stacks

 IETF documents are captured in boxes surrounded by asterisks. TCG
 documents are shown in boxes surrounded by dots. The IETF
 Attestation Reference Interaction Diagram, Reference Integrity
 Manifest, TAP Information Model and Canonical Log Format, and both
 YANG modules are works in progress. Information Model layers
 describe abstract data objects that can be requested, and the
 corresponding response SNMP is still widely used, but the industry is
 transitioning to YANG, so in some cases, both will be required. TLS
 Authentication with TPM has been shown to work; SSH authentication
 using TPM-protected keys is not as easily done [as of 2019]

4. Privacy Considerations

 Networking Equipment such as routers, switches and firewalls has a
 key role to play in guarding the privacy of individuals using the
 network: * Packets passing through the device must not be sent to
 unauthorized destinations. For example * Routers often act as Policy
 Enforcement Points, where individual subscribers may be checked for
 authorization to access a network. Subscriber login information must
 not be released to unauthorized parties. * Networking Equipment is
 often called upon to block access to protected resources, or from
 unauthorized users. * Routing information, such as the identity of a
 router's peers, must not be leaked to unauthorized neighbors. * If
 configured, encryption and decryption of traffic must be carried out
 reliably, while protecting keys and credentials. Functions that
 protect privacy are implemented as part of each layer of hardware and
 software that makes up the networking device. In light of these
 requirements for protecting the privacy of users of the network, the
 Network Equipment must identify itself, and its boot configuration
 and measured device state (for example, PCR values), to the
 Equipment's Administrator, so there's no uncertainty as to what
 function each device and configuration is configured to carry out .
 This allows the administrator to ensure that the network provides
 individual and peer privacy guarantees.

 RIV specifically addresses the collection information from enterprise
 network devices by an enterprise network. As such, privacy is a
 fundamental concern for those deploying this solution, given EU GDPR,
 California CCPA, and many other privacy regulations. The enterprise
 should implement and enforce their duty of care.

 See [NetEq] for more context on privacy in networking devices

5. Security Considerations

 Attestation results from the RIV procedure are subject to a number of
 attacks:

 o Keys may be compromised

 o A counterfeit device may attempt to impersonate (spoof) a known
 authentic device

 o Man-in-the-middle attacks may be used by a counterfeit device to
 attempt to deliver responses that originate in an actual authentic
 device *Replay attacks may be attempted by a compromised device

 Trustworthiness of RIV attestation depends strongly on the validity
 of keys used for identity and attestation reports. RIV takes full
 advantage of TPM capabilities to ensure that results can be trusted.

 Two sets of keys are relevant to RIV attestation

 o A DevID key is used to certify the identity of the device in which
 the TPM is installed.

 o An Attestation Key (AK) key signs attestation reports, (called
 'quotes' in TCG documents), used to provide evidence for integrity
 of the software on the device.

 TPM practices require that these keys be different, as a way of
 ensuring that a general-purpose signing key cannot be used to spoof
 an attestation quote.

 In each case, the private half of the key is known only to the TPM,
 and cannot be retrieved externally, even by a trusted party. To
 ensure that's the case, specification-compliant private/public key-
 pairs are generated inside the TPM, where they're never exposed, and
 cannot be extracted (See [Platform-DevID-TPM-2.0]).

 Keeping keys safe is just part of attestation security; knowing which
 keys are bound to the device in question is just as important.

 While there are many ways to manage keys in a TPM (See
 [Platform-DevID-TPM-2.0]), RIV includes support for "zero touch"
 provisioning (also known as zero-touch onboarding) of fielded devices
 (e.g. Secure ZTP, [RFC8572]}), where keys which have predictable
 trust properties are provisioned by the device vendor.

 Device identity in RIV is based on IEEE 802.1AR DevID. This
 specification provides several elements

 o A DevID requires a unique key pair for each device, accompanied by
 an x.509 certificate

 o The private portion of the DevID key is to be stored in the
 device, in a manner that provides confidentiality (Section 6.2.5
 [IEEE-802-1AR])

 The x.509 certificate contains several components

 o The public part of the unique DevID key assigned to that device

 o An identifying string that's unique to the manufacturer of the
 device. This is normally the serial number of the unit, which
 might also be printed on label on the device.

 o The certificate must be signed by a key traceable to the
 manufacturer's root key.

 With these elements, the device's manufacturer and serial number can
 be identified by analyzing the DevID certificate plus the chain of
 intermediate certs leading back to the manufacturer's root
 certificate. As is conventional in TLS connections, a nonce must be
 signed by the device in response to a challenge, proving posession of
 its DevID private key.

 RIV uses the DevID to validate a TLS connection to the device as the
 attestation session begins. Security of this process derives from
 TLS security, with the DevID providing proof that the TLS session
 terminates on the intended device. [RFC8446].

 Evidence of software integrity is delivered in the form of a quote
 signed by the TPM itself. Because the contents of the quote are
 signed inside the TPM, any external modification (including
 reformatting to a different data format) will be detected as
 tampering.

 To prevent spoofing, the quote generated inside the TPM must by
 signed by a key that's different from the DevID, called an
 Attestation Key (AK). But the binding between the AK and the same
 device must also be proven to prevent a man-in-the-middle attack
 (e.g. the 'Asokan Attack' [RFC6813]).

 This is accomplished in RIV through use of an AK certificate with the
 same elements as the DevID (i.e., same manufacturer's serial number,
 signed by the same manufacturer's key), but containing the device's
 unique AK public key instead of the DevID public key. [this will
 require an OID that says the key is known by the CA to be an
 Attestation key]

 These two keys and certificates are used together:

 o The DevID is used to validate a TLS connection terminating on the
 device with a known serial number.

 o The AK is used to sign attestation quotes, providing proof that
 the attestation evidence comes from the same device.

Replay attacks, where results of a previous attestation are submitted
in response to subsequent requests, are usually prevented by
inclusion of a nonce in the request to the TPM for a quote. Each
request from the Verifier includes a new random number (a nonce).
The resulting quote signed by the TPM contains the same nonce,
allowing the verifier to determine freshness, i.e., that the
resulting quote was generated in response to the verifier's specific
request.
Time‑Based Uni‑directional Attestation [I‑D.birkholz‑rats‑tuda]
provides an alternate mechanism to verify freshness without requiring
a request/response cycle.

 Requiring results of attestation of the operating software to be
 signed by a key known only to the TPM also removes the need to trust
 the device's operating software (beyond the first measurement; see
 below); any changes to the quote, generated and signed by the TPM
 itself, made by malicious device software, or in the path back to the
 verifier, will invalidate the signature on the quote.

 Although RIV recommends that device manufacturers pre-provision
 devices with easily-verified DevID and AK certs, use of those
 credentials is not mandatory. IEEE 802.1AR incorporates the idea of
 an Initial Device ID (IDevID), provisioned by the manufacturer, and a
 Local Device ID (LDevID) provisioned by the owner of the device. RIV
 extends that concept by defining an Initial Attestation Key (IAK) and
 Local Attestation Key (LAK) with the same properties.

 Device owners can use any method to provision the Local credentials.

 o TCG doc [Platform-DevID-TPM-2.0] shows how the initial Attestation
 keys can be used to certify LDevID and LAK keys. Use of the
 LDevID and LAK allows the device owner to use a uniform identity
 structure across device types from multiple manufacturers (in the
 same way that an "Asset Tag" is used by many enterprises use to
 identify devices they own). TCG doc [Provisioning-TPM-2.0] also
 contains guidance on provisioning identity keys in TPM 2.0.

 o But device owners can use any other mechanism they want to assure
 themselves that Local identity certificates are inserted into the
 intended device, including physical inspection and programming in
 a secure location, if they prefer to avoid placing trust in the
 manufacturer-provided keys.

 Clearly, Local keys can't be used for secure Zero Touch provisioning;
 installation of the Local keys can only be done by some process that
 runs before the device is configured for network operation.

 On the other end of the device life cycle, provision should be made
 to wipe Local keys when a device is decommissioned, to indicate that
 the device is no longer owned by the enterprise. The manufacturer's
 Initial identity keys must be preserved, as they contain no
 information that's not already printed on the device's serial number
 plate.

 In addition to trustworthy provisioning of keys, RIV depends on other
 trust anchors. (See [GloPlaRoT] for definitions of Roots of Trust.)

 o Secure identity depends on mechanisms to prevent per-device secret
 keys from being compromised. The TPM provides this capability as
 a Root of Trust for Storage

o Attestation depends on an unbroken chain of measurements, starting
 from the very first measurement.
 That first measurement is made by code called the Root of Trust
 for Measurement, typically done by trusted firmware stored in boot
 flash. Mechanisms for maintaining the trustworthiness of the RTM
 are out of scope for RIV, but could include immutable firmware,
 signed updates, or a vendor‑specific hardware verification
 technique.

 o RIV assumes some level of physical defense for the device. If a
 TPM that has already been programmed with an authentic DevID is
 stolen and inserted into a counterfeit device, attestation of that
 counterfeit device may become indistinguishable from an authentic
 device.

 RIV also depends on reliable reference measurements, as expressed by
 the RIM [RIM]. The definition of trust procedures for RIMs is out of
 scope for RIV, and the device owner is free to use any policy to
 validate a set of reference measurements. RIMs may be conveyed out-
 of-band or in-band, as part of the attestation process (see
 Section 3.2). But for embedded devices, where software is usually
 shipped as a self-contained package, RIMs signed by the manufacturer
 and delivered in-band may be more convenient for the device owner.

6. Conclusion

 TCG technologies can play an important part in the implementation of
 Remote Integrity Verification. Standards for many of the components
 needed for implementation of RIV already exist:

 o Platform identity can be based on IEEE 802.1AR Device identity,
 coupled with careful supply-chain management by the manufacturer.

 o Complex supply chains can be certified using TCG Platform
 Certificates [Platform-Certificates]

 o The TCG TAP mechanism can be used to retrieve attestation
 evidence. Work is needed on a YANG model for this protocol.

 o Reference Measurements must be conveyed from the software
 authority (e.g., the manufacturer) to the system in which
 verification will take place. IETF CoSWID work forms the basis
 for this, but new work is needed to create an information model
 and YANG implementation.

 Gaps still exist for implementation in Network Equipment (as of May
 2019):

 o Coordination of YANG model development with the IETF is still
 needed

 o Specifications for management of signed Reference Integrity
 Manifests must still be completed

7. Appendix

7.1. Implementation Notes

 Table 1 summarizes many of the actions needed to complete an
 Attestation system, with links to relevant documents. While
 documents are controlled by a number of standards organizations, the
 implied actions required for implementation are all the
 responsibility of the manufacturer of the device, unless otherwise
 noted.

+‑‑+
| Component | Controlling |
| | Specification |
‑‑
Make a Secure execution environment	TCG RoT
o Attestation depends on a secure root of	UEFI.org
trust for measurement outside the TPM, as	
well as roots for storage amd reporting	
inside the TPM.	
o Refer to TCG Root of Trust for Measurement.	
o NIST SP 800‑193 also provides guidelines	
on Roots of Trust	
‑‑

Provision the TPM as described in	TCG TPM DevID
TCG documents.	TCG Platform
	Certificate
‑‑	
Put a DevID or Platform Cert in the TPM	TCG TPM DevID
o Install an Initial Attestation Key at the	TCG Platform
same time so that Attestation can work out	Certificate
of the box	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
o Equipment suppliers and owners may want to	IEEE 802.1AR
implement Local Device ID as well as	
Initial Device ID	
‑‑	
Connect the TPM to the TLS stack	Vendor TLS
o Use the DevID in the TPM to authenticate	stack (This
TAP connections, identifying the device	action is
	simply
	configuring TLS
	to use the
	DevID as its
	trust anchor.)
‑‑	
Make CoSWID tags for BIOS/LoaderLKernel objects	IETF CoSWID
o Add reference measurements into SWID tags	ISO/IEC 19770‑2
o Manufacturer should sign the SWID tags	NIST IR 8060
o This should be covered in a new TCG	TagVault SWID
Reference Integrity Manifest document	Tag Signing
‑ IWG should define the literal SWID	Guidance
format	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
‑ IWG should evaluate whether IETF SUIT	TCG RIM
is a suitable manifest when multiple	
SWID tags are involved	
‑ There could be a proof‑of‑concept	
project to actually make sample SWID	
tags (a gap might appear in the	
process)	
‑‑	
Package the SWID tags with a vendor software	There is no
release	need to specify
o A tag‑generator plugin could help	where the tags
(i.e., a plugin for common development	are stored in a
environments. NIST has something that	vendor OS, as
plugs into Maven Build Environment)	long as there
	is a standards‑
	based mechanism
	to retrieve
	them.
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	TCG RIM

‑‑
BIOS SWIDs might be hard to manage on an OS	
disk‑‑ maybe keep them in the BIOS flash?	TCG RIM
o Maybe a UEFI Var? Would its name have to be	
specified by UEFI.org?	
o How big is a BIOS SWID tag? Do we need to	
use a tag ID instead of an actual tag?	
o Note that the presence of Option ROMs turns	
the BIOS reference measurements into a	
multi‑vendor interoperability problem	
‑‑	
Use PC Client measurement definitions as a	TCG PC Client
starting point to define the use of PCRs	BIOS
(although Windows OS is rare on Networking	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Equipment)	There have been
	proposals for
	non‑PC‑Client
	allocation of
	PCRs, although
	no specific
	document exists
	yet.
‑‑	
Use TAP to retrieve measurements	
o Map TAP to SNMP	TCG SNMP MIB
o Map to YANG	YANG Module for
o Complete Canonical Log Format	Basic
	Attestation
	TCG Canonical
	Log Format
‑‑	
Posture Collection Server (as described in IETF	
SACMs ECP) would have to request the	
attestation and analyze the result	
The Management application might be broken down	
to several more components:	
o A Posture Manager Server	
which collects reports and stores them in	
a database	
o One or more Analyzers that can look at the	
results and figure out what it means.	
‑‑

 Figure 6: Component Status

7.2. Comparison with TCG PTS / IETF NEA

 Some components of an Attestation system have been implemented for
 end-user machines such as PCs and laptops. Figure 7 shows the
 corresponding protocol stacks.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Attester	<‑‑‑‑‑‑‑‑‑‑‑‑‑	Verifier	
(Device)	‑‑‑‑‑‑‑‑‑‑‑‑‑>	(Management Station)	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
|Reference Integrity Measurements| | Attestation |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

‑‑
| IETF Attestation Reference Interaction Diagram |
‑‑‑

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 . No Existing . | TAPS (PTS2.0) Info Model and|
 . Reference Integrity . | Canonical Log Format |
 . Manifest . | |
 . Protocols Exist . ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 . .
 . . ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
 . . | YANG Attestation | |IETF NEA|
 . . | Module | | Msg and|
 . . | I‑D.birkholz‑yang‑ | | Attrib.|
 . . | basic‑remote‑ | | for PA‑|
 . . | attestation | | TNC |
 . . ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
 . . ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
 . . | XML, JSON, CBOR | | PT‑TLS |
 . . ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ | (for |
 . . ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ |endpoint|
 . . | NETCONF, RESTCONF, | |mcahines|
 . . | COAP | | |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
 ‑‑
 | TLS, SSH |
 ‑‑

 Figure 7: Attestation for End User Computers

8. IANA Considerations

 This memo includes no request to IANA.

9. Informative References

 [AIK-Enrollment]

 Trusted Computing Group, "TCG Infrastructure Working
 GroupA CMC Profile for AIK Certificate Enrollment Version
 1.0, Revision 7", March 2011,
 <https://trustedcomputinggroup.org/wp-content/uploads/
 IWG_CMC_Profile_Cert_Enrollment_v1_r7.pdf>.

 [Canonical-Event-Log]

 Trusted Computing Group, "DRAFT Canonical Event Log Format
 Version: 1.0, Revision: .12", October 2018.

 [EFI]
 Trusted Computing Group, "TCG EFI Platform Specification
 for TPM Family 1.1 or 1.2, Specification Version 1.22,
 Revision 15", January 2014,
 <https://trustedcomputinggroup.org/wp-content/uploads/
 EFI-Protocol-Specification-rev13-160330final.pdf>.

 [GloPlaRoT]

 GlobalPlatform Technology, "Root of Trust Definitions and
 Requirements Version 1.1", June 2018,
 <https://globalplatform.org/specs-library/globalplatform-
 root-of-trust-definitions-and-requirements/>.

 [I-D.birkholz-rats-architecture]

 Birkholz, H., Wiseman, M., Tschofenig, H., and N. Smith,
 "Remote Attestation Procedures Architecture", draft-
 birkholz-rats-architecture-02 (work in progress),
 September 2019.

 [I-D.birkholz-rats-reference-interaction-model]

 Birkholz, H. and M. Eckel, "Reference Interaction Model
 for Challenge-Response-based Remote Attestation", draft-
 birkholz-rats-reference-interaction-model-01 (work in
 progress), July 2019.

 [I-D.birkholz-rats-tuda]

 Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann,
 "Time-Based Uni-Directional Attestation", draft-birkholz-
 rats-tuda-01 (work in progress), September 2019.

 [I-D.birkholz-suit-coswid-manifest]

 Birkholz, H., "A SUIT Manifest Extension for Concise
 Software Identifiers", draft-birkholz-suit-coswid-
 manifest-00 (work in progress), July 2018.

 [I-D.birkholz-yang-basic-remote-attestation]

 Birkholz, H., Eckel, M., Bhandari, S., Sulzen, B., Voit,
 E., and G. Fedorkow, "YANG Module for Basic Challenge-
 Response-based Remote Attestation Procedures", draft-
 birkholz-yang-basic-remote-attestation-01 (work in
 progress), October 2018.

 [I-D.birkholz-yang-swid]

 Birkholz, H., "Software Inventory YANG module based on
 Software Identifiers", draft-birkholz-yang-swid-02 (work
 in progress), October 2018.

 [I-D.ietf-sacm-coswid]

 Birkholz, H., Fitzgerald-McKay, J., Schmidt, C., and D.
 Waltermire, "Concise Software Identification Tags", draft-
 ietf-sacm-coswid-12 (work in progress), July 2019.

 [IEEE-802-1AR]

 Seaman, M., "802.1AR-2018 - IEEE Standard for Local and
 Metropolitan Area Networks - Secure Device Identity, IEEE
 Computer Society", August 2018.

 [IMA]
 and , "Integrity Measurement Architecture", June 2019,
 <https://sourceforge.net/p/linux-ima/wiki/Home/>.

 [NetEq]
 Trusted Computing Group, "TCG Guidance for Securing
 Network Equipment", January 2018,
 <https://trustedcomputinggroup.org/wp-content/uploads/
 TCG_Guidance_for_Securing_NetEq_1_0r29.pdf>.

 [NIST-IR-8060]

 National Institute for Standards and Technology,
 "Guidelines for the Creation of Interoperable Software
 Identification (SWID) Tags", April 2016,
 <https://nvlpubs.nist.gov/nistpubs/ir/2016/
 NIST.IR.8060.pdf>.

 [NIST-SP-800-155]

 National Institute for Standards and Technology, "BIOS
 Integrity Measurement Guidelines (Draft)", December 2011,
 <https://csrc.nist.gov/csrc/media/publications/sp/800-
 155/draft/documents/draft-sp800-155_dec2011.pdf>.

 [PC-Client-BIOS-TPM-1.2]

 Trusted Computing Group, "TCG PC Client Specific
 Implementation Specification for Conventional BIOS,
 Specification Version 1.21 Errata, Revision 1.00",
 February 2012, <https://www.trustedcomputinggroup.org/wp-
 content/uploads/TCG_PCClientImplementation_1-21_1_00.pdf>.

 [PC-Client-BIOS-TPM-2.0]

 Trusted Computing Group, "PC Client Specific Platform
 Firmware Profile Specification Family "2.0", Level 00
 Revision 1.04", June 2019,
 <https://trustedcomputinggroup.org/pc-client-specific-
 platform-firmware-profile-specification>.

 [Platform-Certificates]

 Trusted Computing Group, "DRAFT: TCG Platform Attribute
 Credential Profile, Specification Version 1.0, Revision
 15, 07 December 2017", December 2017.

 [Platform-DevID-TPM-2.0]

 Trusted Computing Group, "DRAFT: TPM Keys for Platform
 DevID for TPM2, Specification Version 0.7, Revision 0",
 October 2018.

 [Platform-ID-TPM-1.2]

 Trusted Computing Group, "TPM Keys for Platform Identity
 for TPM 1.2, Specification Version 1.0, Revision 3",
 August 2015, <https://trustedcomputinggroup.org/wp-
 content/uploads/
 TPM_Keys_for_Platform_Identity_v1_0_r3_Final.pdf>.

 [Provisioning-TPM-2.0]

 Trusted Computing Group, "TCG TPM v2.0 Provisioning
 Guidance", March 2015, <https://trustedcomputinggroup.org/
 wp-content/uploads/
 TCG-TPM-v2.0-Provisioning-Guidance-Published-v1r1.pdf>.

 [RFC3413]
 Levi, D., Meyer, P., and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62,
 RFC 3413, DOI 10.17487/RFC3413, December 2002,
 <https://www.rfc-editor.org/info/rfc3413>.

 [RFC6813]
 Salowey, J. and S. Hanna, "The Network Endpoint Assessment
 (NEA) Asokan Attack Analysis", RFC 6813,
 DOI 10.17487/RFC6813, December 2012,
 <https://www.rfc-editor.org/info/rfc6813>.

 [RFC8348]
 Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
 YANG Data Model for Hardware Management", RFC 8348,
 DOI 10.17487/RFC8348, March 2018,
 <https://www.rfc-editor.org/info/rfc8348>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8572]
 Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
 Touch Provisioning (SZTP)", RFC 8572,
 DOI 10.17487/RFC8572, April 2019,
 <https://www.rfc-editor.org/info/rfc8572>.

 [RIM]
 Trusted Computing Group, "DRAFT: TCG Reference Integrity
 Manifest", June 2019.

 [SNMP-Attestation-MIB]

 Trusted Computing Group, "DRAFT: SNMP MIB for TPM-Based
 Attestation, Specification Version 0.8, Revision 0.02",
 May 2018.

 [SWID]
 The International Organization for Standardization/
 International Electrotechnical Commission, "Information
 Technology Software Asset Management Part 2: Software
 Identification Tag, ISO/IEC 19770-2", October 2015,
 <https://www.iso.org/standard/65666.html>.

 [TAP]
 Trusted Computing Group, "DRAFT: TCG Trusted Attestation
 Protocol (TAP) Information Model for TPM Families 1.2 and
 2.0 and DICE Family 1.0, Version 1.0, Revision 0.29",
 October 2018.

 [TCGRoT]
 Trusted Computing Group, "TCG Roots of Trust
 Specification", October 2018,
 <https://trustedcomputinggroup.org/wp-content/uploads/
 TCG_Roots_of_Trust_Specification_v0p20_PUBLIC_REVIEW.pdf>.

Authors' Addresses

Guy Fedorkow (editor)
Juniper Networks, Inc.
US

 Email: gfedorkow@juniper.net

Jessica Fitzgerald‑McKay
National Security Agency
US

 Email: jmfitz2@nsa.gov

draft-fett-oauth-dpop-03 - OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer (DPoP)

draft-fett-oauth-dpop-03 - OAuth 2.0 Demonstration of Proof-of-Possession at the

Index
Back 5
Prev
Next
Forward 5

Web Authorization Protocol

Internet-Draft

Intended status: Standards Track

Expires: May 2, 2020

D. Fett

yes.com

B. Campbell

Ping Identity

J. Bradley

Yubico

T. Lodderstedt

yes.com

M. Jones

Microsoft

D. Waite

Ping Identity

October 30, 2019

OAuth 2.0 Demonstration of Proof-of-Possession at the Application Layer (DPoP)

draft-fett-oauth-dpop-03

Abstract

 This document describes a mechanism for sender-constraining OAuth 2.0
 tokens via a proof-of-possession mechanism on the application level.
 This mechanism allows for the detection of replay attacks with access
 and refresh tokens.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Conventions and Terminology

	2. Main Objective

	3. Concept

	4. DPoP Proof JWTs
	 4.1. Syntax

	 4.2. Checking DPoP Proofs

	5. Token Request (Binding Tokens to a Public Key)

	6. Resource Access (Proof of Possession for Access Tokens)

	7. Public Key Confirmation

	8. Acknowledgements

	9. Security Considerations
	 9.1. DPoP Proof Replay

	 9.2. Signed JWT Swapping

	 9.3. Signature Algorithms

	 9.4. Message Integrity

	10. IANA Considerations
	 10.1. OAuth Access Token Type Registration

	 10.2. JSON Web Signature and Encryption Type Values Registration

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Document History

	Authors' Addresses

1. Introduction

 [I-D.ietf-oauth-mtls] describes methods to bind (sender-constrain)
 access tokens using mutual Transport Layer Security (TLS)
 authentication with X.509 certificates.

 [I-D.ietf-oauth-token-binding] provides mechanisms to sender-
 constrain access tokens using HTTP token binding.

 Due to a sub-par user experience of TLS client authentication in user
 agents and a lack of support for HTTP token binding, neither
 mechanism can be used if an OAuth client is a Single Page Application
 (SPA) running in a web browser.

 This document outlines an application-level sender-constraining for
 access and refresh tokens that can be used in cases where neither
 mTLS nor OAuth Token Binding are available. It uses proof-of-
 possession based on a public/private key pair and application-level
 signing.

 DPoP can be used with public clients and, in case of confidential
 clients, can be combined with any client authentication method.

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the terms "access token", "refresh token",
 "authorization server", "resource server", "authorization endpoint",
 "authorization request", "authorization response", "token endpoint",
 "grant type", "access token request", "access token response", and
 "client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Main Objective

 Under the attacker model defined in [I-D.ietf-oauth-security-topics],
 the mechanism defined by this specification aims to prevent token
 replay at a different endpoint.

 More precisely, if an adversary is able to get hold of an access
 token or refresh token because it set up a counterfeit authorization
 server or resource server, the adversary is not able to replay the
 respective token at another authorization or resource server.

 Secondary objectives are discussed in Section 9.

3. Concept

 The main data structure introduced by this specification is a DPoP
 proof JWT, described in detail below. A client uses a DPoP proof JWT
 to prove the possession of a private key belonging to a certain
 public key. Roughly speaking, a DPoP proof is a signature over some
 data of the HTTP request to which it is attached to and a timestamp.

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
	‑‑(A)‑‑ Token Request ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	
Client	(DPoP Proof)	Authorization
		Server
	<‑(B)‑‑ DPoP‑bound Access Token ‑‑‑‑‑‑‑‑‑‑	
	(token_type=DPoP) +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
	PoP Refresh Token for public clients	
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
	‑‑(C)‑‑ DPoP‑bound Access Token ‑‑‑‑‑‑‑‑‑>	
	(DPoP Proof)	Resource
		Server
	<‑(D)‑‑ Protected Resource ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
	+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+	
+‑‑‑‑‑‑‑‑+

 Figure 1: Basic DPoP Flow

 The basic steps of an OAuth flow with DPoP are shown in Figure 1:

 o (A) In the Token Request, the client sends an authorization code
 to the authorization server in order to obtain an access token
 (and potentially a refresh token). The client attaches a DPoP
 proof to the request in an HTTP header.

 o (B) The AS binds (sender-constrains) the access token to the
 public key claimed by the client in the DPoP proof; that is, the
 access token cannot be used without proving possession of the
 respective private key. This is signaled to the client by using
 the "token_type" value "DPoP".

 o If a refresh token is issued to a public client, it is sender-
 constrained in the same way. For confidential clients, refresh
 tokens are bound to the "client_id", which is more flexible than
 binding it to a particular public key.

 o (C) If the client wants to use the access token, it has to prove
 possession of the private key by, again, adding a header to the
 request that carries the DPoP proof. The resource server needs to
 receive information about the public key to which the access token
 is bound. This information is either encoded directly into the
 access token (for JWT structured access tokens), or provided at
 the token introspection endpoint of the authorization server (not
 shown).

 o (D) The resource server refuses to serve the request if the
 signature check fails or the data in the DPoP proof is wrong,

 e.g., the request URI does not match the URI claim in the DPoP
 proof JWT.

 o When a refresh token that is sender-constrained using DPoP is used
 by the client, the client has to provide a DPoP proof just as in
 the case of a resource access. The new access token will be bound
 to the same public key.

 The mechanism presented herein is not a client authentication method.
 In fact, a primary use case is public clients (single page
 applications) that do not use client authentication. Nonetheless,
 DPoP is designed such that it is compatible with "private_key_jwt"
 and all other client authentication methods.

 DPoP does not directly ensure message integrity but relies on the TLS
 layer for that purpose. See Section 9 for details.

4. DPoP Proof JWTs

 DPoP uses so-called DPoP proof JWTs for binding public keys and
 proving knowledge about private keys.

4.1. Syntax

 A DPoP proof is a JWT ([RFC7519]) that is signed (using JWS,
 [RFC7515]) using a private key chosen by the client (see below). The
 header of a DPoP JWT contains at least the following parameters:

 o "typ": type header, value "dpop+jwt" (REQUIRED).

 o "alg": a digital signature algorithm identifier as per [RFC7518]
 (REQUIRED). MUST NOT be "none" or an identifier for a symmetric
 algorithm (MAC).

 o "jwk": representing the public key chosen by the client, in JWK
 format, as defined in [RFC7515] (REQUIRED)

 The body of a DPoP proof contains at least the following claims:

 o "jti": Unique identifier for the DPoP proof JWT (REQUIRED). The
 value MUST be assigned such that there is a negligible probability
 that the same value will be assigned to any other DPoP proof used
 in the same context during the time window of validity. Such
 uniqueness can be accomplished by encoding (base64url or any other
 suitable encoding) at least 96 bits of pseudorandom data or by
 using a version 4 UUID string according to [RFC4122]. The "jti"
 SHOULD be used by the server for replay detection and prevention,
 see Section 9.1.

 o "htm": The HTTP method for the request to which the JWT is
 attached, as defined in [RFC7231] (REQUIRED).

 o "htu": The HTTP URI used for the request, without query and
 fragment parts (REQUIRED).

 o "iat": Time at which the JWT was created (REQUIRED).

 Figure 2 shows the JSON header and payload of a DPoP proof JWT.

{
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx‑34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P‑256"
 }
}.{
 "jti":"‑BwC3ESc6acc2lTc",
 "htm":"POST",
 "htu":"https://server.example.com/token",
 "iat":1562262616
}

 Figure 2: Example JWT content for "DPoP" proof header.

 Note: To keep DPoP simple to implement, only the HTTP method and URI
 are signed in DPoP proofs. Nonetheless, DPoP proofs can be extended
 to contain other information of the HTTP request (see also
 Section 9.4).

4.2. Checking DPoP Proofs

 To check if a string that was received as part of an HTTP Request is
 a valid DPoP proof, the receiving server MUST ensure that

 1. the string value is a well-formed JWT,

 2. all required claims are contained in the JWT,

 3. the "typ" field in the header has the value "dpop+jwt",

 4. the algorithm in the header of the JWT indicates an asymmetric
 digital signature algorithm, is not "none", is supported by the
 application, and is deemed secure,

 5. that the JWT is signed using the public key contained in the
 "jwk" header of the JWT,

 6. the "htm" claim matches the HTTP method value of the HTTP request
 in which the JWT was received (case-insensitive),

 7. the "htu" claims matches the HTTP URI value for the HTTP request
 in which the JWT was received, ignoring any query and fragment
 parts,

 8. the token was issued within an acceptable timeframe (see
 Section 9.1), and

 9. that, within a reasonable consideration of accuracy and resource
 utilization, a JWT with the same "jti" value has not been
 received previously (see Section 9.1).

 Servers SHOULD employ Syntax-Based Normalization and Scheme-Based
 Normalization in accordance with Section 6.2.2. and Section 6.2.3. of
 [RFC3986] before comparing the "htu" claim.

5. Token Request (Binding Tokens to a Public Key)

 To bind a token to a public key in the token request, the client MUST
 provide a valid DPoP proof JWT in a "DPoP" header. The HTTPS request
 shown in Figure 3 illustrates the protocol for this (with extra line
 breaks for display purposes only).

POST /token HTTP/1.1
Host: server.example.com
Content‑Type: application/x‑www‑form‑urlencoded;charset=UTF‑8
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia
 WF0IjoxNTYyMjYyNjE2fQ.2‑GxA6T8lP4vfrg8v‑FdWP0A0zdrj8igiMLvqRMUvwnQg
 4PtFLbdLXiOSsX0x7NVY‑FNyJK70nfbV37xRZT3Lg
grant_type=authorization_code
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
&code_verifier=bEaL42izcC‑o‑xBk0K2vuJ6U‑y1p9r_wW2dFWIWgjz‑

 Figure 3: Token Request for a DPoP sender-constrained token.

 The HTTP header "DPoP" MUST contain a valid DPoP proof.

 The authorization server, after checking the validity of the DPoP
 proof, MUST associate the access token issued at the token endpoint
 with the public key. It then sets "token_type" to "DPoP" in the
 token response.

 A client typically cannot know whether a certain AS supports DPoP.
 It therefore SHOULD use the value of the "token_type" parameter
 returned from the AS to determine support for DPoP: If the token type
 returned is "Bearer" or another value, the AS does not support DPoP.
 If it is "DPoP", DPoP is supported. Only then, the client needs to
 send the "DPoP" header in subsequent requests and use the token type
 "DPoP" in the "Authorization" header as described below.

 If a refresh token is issued to a public client at the token endpoint
 and a valid DPoP proof is presented, the refresh token MUST be bound
 to the public key contained in the header of the DPoP proof JWT.

 If a DPoP-bound refresh token is to be used at the token endpoint by
 a public client, the AS MUST ensure that the DPoP proof contains the
 same public key as the one the refresh token is bound to. The access
 token issued MUST be bound to the public key contained in the DPoP
 proof.

6. Resource Access (Proof of Possession for Access Tokens)

 To make use of an access token that is token-bound to a public key
 using DPoP, a client MUST prove the possession of the corresponding
 private key by providing a DPoP proof in the "DPoP" request header.

 The DPoP-bound access token must be sent in the "Authorization"
 header with the prefix "DPoP".

 If a resource server detects that an access token that is to be used
 for resource access is bound to a public key using DPoP (via the
 methods described in Section 7) it MUST check that a header "DPoP"
 was received in the HTTP request, and check the header's contents
 according to the rules in Section 4.2.

 The resource server MUST NOT grant access to the resource unless all
 checks are successful.

GET /protectedresource HTTP/1.1
Host: resource.example.org
Authorization: DPoP eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWI
 iOiJzb21lb25lQGV4YW1wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbX
 BsZS5jb20iLCJhdWQiOiJodHRwczovL3Jlc291cmNlLmV4YW1wbGUub3JnIiwibmJmI
 joxNTYyMjYyNjExLCJleHAiOjE1NjIyNjYyMTYsImNuZiI6eyJqa3QiOiIwWmNPQ09S
 Wk5ZeS1EV3BxcTMwalp5SkdIVE4wZDJIZ2xCVjN1aWd1QTRJIn19.vsFiVqHCyIkBYu
 50c69bmPJsj8qYlsXfuC6nZcLl8YYRNOhqMuRXu6oSZHe2dGZY0ODNaGg1cg‑kVigzY
 hF1MQ
DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj
 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z
 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOH0.lNhmpAX1WwmpBvwhok4E74kWCiGB
 NdavjLAeevGy32H3dbF0Jbri69Nm2ukkwb‑uyUI4AUg1JSskfWIyo4UCbQ

 Figure 4: Protected Resource Request with a DPoP sender-constrained
 access token.

7. Public Key Confirmation

 It MUST be ensured that resource servers can reliably identify
 whether a token is bound using DPoP and learn the public key to which
 the token is bound.

 Access tokens that are represented as JSON Web Tokens (JWT) [RFC7519]
 MUST contain information about the DPoP public key (in JWK format) in
 the member "jkt" of the "cnf" claim, as shown in Figure 5.

 The value in "jkt" MUST be the base64url encoding [RFC7515] of the
 JWK SHA-256 Thumbprint (according to [RFC7638]) of the public key to
 which the access token is bound.

{
 "sub":"someone@example.com",
 "iss":"https://server.example.com",
 "aud":"https://resource.example.org",
 "nbf":1562262611,
 "exp":1562266216,
 "cnf":{
 "jkt":"0ZcOCORZNYy‑DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
}

 Figure 5: Example access token body with "cnf" claim.

 When access token introspection is used, the same "cnf" claim as
 above MUST be contained in the introspection response.

 Resource servers MUST ensure that the fingerprint of the public key
 in the DPoP proof JWT equals the value in the "jkt" claim in the
 access token or introspection response.

8. Acknowledgements

 We would like to thank David Waite, Filip Skokan, Mike Engan, and
 Justin Richer for their valuable input and feedback.

 This document resulted from discussions at the 4th OAuth Security
 Workshop in Stuttgart, Germany. We thank the organizers of this
 workshop (Ralf Kuesters, Guido Schmitz).

9. Security Considerations

 In DPoP, the prevention of token replay at a different endpoint (see
 Section 2) is achieved through the binding of the DPoP proof to a
 certain URI and HTTP method. DPoP does not, however, achieve the
 same level of protection as TLS-based methods such as OAuth Mutual
 TLS [I-D.ietf-oauth-mtls] or OAuth Token Binding
 [I-D.ietf-oauth-token-binding] (see also Section 9.1 and
 Section 9.4). TLS-based mechanisms can leverage a tight integration
 between the TLS layer and the application layer to achieve a very
 high level of message integrity and replay protection. Therefore, it
 is RECOMMENDED to prefer TLS-based methods over DPoP if such methods
 are suitable for the scenario at hand.

9.1. DPoP Proof Replay

 If an adversary is able to get hold of a DPoP proof JWT, the
 adversary could replay that token at the same endpoint (the HTTP
 endpoint and method are enforced via the respective claims in the
 JWTs). To prevent this, servers MUST only accept DPoP proofs for a
 limited time window after their "iat" time, preferably only for a
 relatively brief period. Servers SHOULD store the "jti" value of
 each DPoP proof for the time window in which the respective DPoP
 proof JWT would be accepted and decline HTTP requests for which the
 "jti" value has been seen before. In order to guard against memory
 exhaustion attacks a server SHOULD reject DPoP proof JWTs with
 unnecessarily large "jti" values or store only a hash thereof.

 Note: To accommodate for clock offsets, the server MAY accept DPoP
 proofs that carry an "iat" time in the near future (e.g., up to a few
 seconds in the future).

9.2. Signed JWT Swapping

 Servers accepting signed DPoP proof JWTs MUST check the "typ" field
 in the headers of the JWTs to ensure that adversaries cannot use JWTs
 created for other purposes in the DPoP headers.

9.3. Signature Algorithms

 Implementers MUST ensure that only asymmetric digital signature
 algorithms that are deemed secure can be used for signing DPoP
 proofs. In particular, the algorithm "none" MUST NOT be allowed.

9.4. Message Integrity

 DPoP does not ensure the integrity of the payload or headers of
 requests. The signature of DPoP proofs only contains the HTTP URI
 and method, but not, for example, the message body or other request
 headers.

 This is an intentional design decision to keep DPoP simple to use,
 but as described, makes DPoP potentially susceptible to replay
 attacks where an attacker is able to modify message contents and
 headers. In many setups, the message integrity and confidentiality
 provided by TLS is sufficient to provide a good level of protection.

 Implementers that have stronger requirements on the integrity of
 messages are encouraged to either use TLS-based mechanisms or signed
 requests. TLS-based mechanisms are in particular OAuth Mutual TLS
 [I-D.ietf-oauth-mtls] and OAuth Token Binding
 [I-D.ietf-oauth-token-binding].

 Note: While signatures on (parts of) requests are out of the scope of
 this specification, signatures or information to be signed can be
 added into DPoP proofs.

10. IANA Considerations

10.1. OAuth Access Token Type Registration

 This specification registers the following access token type in the
 OAuth Access Token Types registry defined in [RFC6749].

 o Type name: "DPoP"

 o Additional Token Endpoint Response Parameters: (none)

 o HTTP Authentication Scheme(s): Bearer

 o Change controller: IETF

 o Specification document(s): [[this specification]]

10.2. JSON Web Signature and Encryption Type Values Registration

 This specification registers the "dpop+jwt" type value in the IANA
 JSON Web Signature and Encryption Type Values registry [RFC7515]:

 o "typ" Header Parameter Value: "dpop+jwt"

 o Abbreviation for MIME Type: None

 o Change Controller: IETF

 o Specification Document(s): [[this specification]]

11. References

11.1. Normative References

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749]
 Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7231]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7518]
 Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7638]
 Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <https://www.rfc-editor.org/info/rfc7638>.

11.2. Informative References

 [I-D.ietf-oauth-mtls]

 Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
 and Certificate-Bound Access Tokens", draft-ietf-oauth-
 mtls-17 (work in progress), August 2019.

 [I-D.ietf-oauth-security-topics]

 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", draft-ietf-
 oauth-security-topics-13 (work in progress), July 2019.

 [I-D.ietf-oauth-token-binding]

 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-
 binding-08 (work in progress), October 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122]
 Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC7515]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Document History

 [[To be removed from the final specification]]

 -03

 o rework the text around uniqueness requirements on the jti claim in
 the DPoP proof JWT

 o make tokens a bit smaller by using "htm", "htu", and "jkt" rather
 than "http_method", "http_uri", and "jkt#S256" respectively

 o more explicit recommendation to use mTLS if that is available

 o added David Waite as co-author

 o editorial updates

 -02

 o added normalization rules for URIs

 o removed distinction between proof and binding

 o "jwk" header again used instead of "cnf" claim in DPoP proof

 o renamed "Bearer-DPoP" token type to "DPoP"

 o removed ability for key rotation

 o added security considerations on request integrity

 o explicit advice on extending DPoP proofs to sign other parts of
 the HTTP messages

 o only use the jkt#S256 in ATs

 o iat instead of exp in DPoP proof JWTs

 o updated guidance on token_type evaluation

 -01

 o fixed inconsistencies

 o moved binding and proof messages to headers instead of parameters

 o extracted and unified definition of DPoP JWTs

 o improved description

 -00

 o first draft

Authors' Addresses

Daniel Fett
yes.com

 Email: mail@danielfett.de

Brian Campbell
Ping Identity

 Email: bcampbell@pingidentity.com

John Bradley
Yubico

 Email: ve7jtb@ve7jtb.com

Torsten Lodderstedt
yes.com

 Email: torsten@lodderstedt.net

Michael Jones
Microsoft

 Email: mbj@microsoft.com

David Waite
Ping Identity

 Email: david@alkaline-solutions.com

draft-fett-oauth-ivar-00 - OAuth 2.0 Integrity Verification for Authorization Requests (IVAR)

draft-fett-oauth-ivar-00 - OAuth 2.0 Integrity Verification for Authorization Re

Index
Back 5
Prev
Next
Forward 5

Web Authorization Protocol

Internet-Draft

Intended status: Standards Track

Expires: January 24, 2020

D. Fett

yes.com

J. Bradley

Yubico

July 23, 2019

OAuth 2.0 Integrity Verification for Authorization Requests (IVAR)

draft-fett-oauth-ivar-00

Abstract

 This document describes a mechanism for the integrity protection of
 OAuth 2.0 authorization requests.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 24, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Conventions and Terminology

	2. Concept

	3. Client Metadata for IVAR

	4. Protocol
	 4.1. Storing the Authorization Request

	 4.2. IVAR Verification

	5. Fallback if JavaScript is unavailable

	6. Security Considerations

	7. IANA Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Document History

	Authors' Addresses

1. Introduction

 A number of attacks on OAuth 2.0 are based on the fact that the
 contents of the OAuth authorization request lack integrity and
 authenticity protection. To launch an attack, an attacker might, for
 example, start an OAuth flow in his browser, use the authorization
 request URI created by the client, and send it to its victim (with or
 without manipulations). The victim might then complete the
 authorization. Since the attacker knows or has manipulated parts of
 the authorization request URI, certain security mechanisms in OAuth
 might then not work as expected --- undermining the security of OAuth
 or protocols based on OAuth, like OpenID Connect.

 Among others, the following attacks are facilitated by the lack of
 integrity and authenticity of the authorization request:

 o Attacks on the redirection URI, in which an attacker manipulates
 the redirection URI and let it point either to a server controlled
 by the attacker or an endpoint at the client which discloses
 contents of the authorization response to the attacker.

 o The PKCE Chosen Challenge Attack, described in [arXiv.1901.11520],
 wherein an attacker uses his access to the authorization response
 (see attacker model A3 in [I-D.ietf-oauth-security-topics]) to
 gain access to the user's resources.

 o A variant of the AS Mix-Up attack in which a malicious AS
 redirects the user to an honest AS, re-using request parameters.
 (See [arXiv.1601.01229] for details.)

 While TLS protects the integrity of the authorization request, these
 attacks leverage the fact that an attacker can make a victim's
 browser visit arbitrary URIs, including those manipulated by the
 attacker or obtained by the attacker from one of his own interactions
 with the client.

 This document describes IVAR, a mechanism for the verification of the
 integrity and origin of the contents of the authorization request.

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the terms "access token", "refresh token",
 "authorization server", "resource server", "authorization endpoint",
 "authorization request", "authorization response", "token endpoint",
 "grant type", "access token request", "access token response", and
 "client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Concept

 On a high level, IVAR works as follows: When the client starts a new
 OAuth authorization flow, it stores the whole authorization URI (or a
 hash thereof) in the web storage of the resource owner's browser
 under the client's origin. When the AS received the authorization
 request, it opens an iframe from a URI the client registered with the
 AS beforehand. To this "checking" iframe, the AS sends a cross-
 document message (postMessage) containing the whole authorization
 request URI as received by the AS. If the URI matches the one stored
 by the client earlier, the client responds with a message "ok". If
 not, the AS aborts the transaction.

3. Client Metadata for IVAR

 Clients that support IVAR register the following metadata parameter
 in the OAuth 2.0 Dynamic Client Registration Protocol [RFC7591]:

 "ivar_uri". The content MUST be an https URI from which the checking
 iframe is loaded by the AS.

4. Protocol

 The steps of the IVAR protocol are defined in the following.

4.1. Storing the Authorization Request

 Before the client redirects the resource owner's browser to the
 authorization server, the client stores information about the full
 redirection URI (including query parameters) in the web storage
 [WebStorage] of the resource owner's browser. It is at the client's
 discretion to store either the full URI or a hash value of the URI.

 The data MUST be stored such that it is only accessible to the
 client's origin. Its contents MUST NOT be modifiable or readable by
 any other origin.

 Since multiple OAuth flows may happen in the same browser at the same
 time, the storage mechanism MUST be able to store multiple entries in
 parallel.

4.2. IVAR Verification

 After receiving the authorization request, the AS opens the client's
 "ivar_uri" in an iframe in its web site. (The client is identified
 using the "client_id" parameter.) The IVAR iframe script from the
 client sends a postMessage with the content "ready" to its parent
 iframe.

 The AS then sends a postMessage containing the full authorization
 request URI to the iframe. It is important that the AS limits the
 intended receiver of this message to the origin of the "ivar_uri" to
 avoid leaking contents of the authorization request URI to an
 attacker.

 The client's script in the iframe then checks if an exact match of
 the authorization request URI sent by the AS can be found in the list
 of stored authorization request URIs. If so, it checks that the
 postMessage containing the URI was received from the origin of the
 authorization request URI. It then sends the string "ok" in a
 postMessage to its parent window. It is again important that the
 intended receiver of this postMessage is set to the authorization
 request's origin.

 The AS ensures that the string "ok" is received in a postMessage
 originating from the IVAR iframe and the correct origin (from the
 "ivar_uri"). Only then it continues with the authorization flow.
 If any of these steps fail, the AS MUST abort the authorization flow
 and redirect the browser back to the client with an error value of
 "ivar_fail".

5. Fallback if JavaScript is unavailable

 If the resource owner's browser does not support JavaScript, or
 JavaScript is disabled, the client cannot store the redirection URI.
 Likewise, the AS cannot run its part of the IVAR protocol. The AS
 may skip the IVAR checks if, and only if, it detects that the
 resource owner's browser does not have JavaScript enabled (which is
 required for IVAR). The respective check for JavaScript support MUST
 NOT be open to influence by an attacker.

 An attacker cannot usually disable JavaScript in a user's browser for
 an origin other than his own. The attacker might, however, trick the
 uesr's browser into treating the IVAR checking script on the AS's
 origin as part of a cross-site scripting attack and thus disabling
 the affected JavaScript. To achieve this, the attacker can add the
 text representation of the respective JavaScript in a (new) URI
 parameter. Some browser's cross-site scripting auditing engines
 string match URI parameters inputs with contents in the source code
 of the web page. If a match is found, the respective JavaScript is
 disabled.

 To avoid disabling of the IVAR checking script by an attacker, AS
 MUST disable browser-based detection of cross-site scripting using
 the non-standardized header "X-XSS-Protection: 0" or by sufficiently
 randomizing the source code of the IVAR checking script.

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

 [RFC6749]
 Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7591]
 Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

8.2. Informative References

 [arXiv.1601.01229]

 Fett, D., Kuesters, R., and G. Schmitz, "A Comprehensive
 Formal Security Analysis of OAuth 2.0", January 2016,
 <http://arxiv.org/abs/1601.01229/>.

 [arXiv.1901.11520]

 Fett, D., Hosseyni, P., and R. Kuesters, "An Extensive
 Formal Security Analysis of the OpenID Financial-grade
 API", January 2019, <http://arxiv.org/abs/1901.11520/>.

 [I-D.ietf-oauth-security-topics]

 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", draft-ietf-
 oauth-security-topics-13 (work in progress), July 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [WebStorage]

 Hickson, I., "Web Storage (Second Edition) - W3C
 Recommendation 19 April 2016", Apr 2016,
 <https://www.w3.org/TR/webstorage/>.

Appendix A. Document History

 [[To be removed from the final specification]]

 -00

 o first draft

Authors' Addresses

Daniel Fett
yes.com

 Email: mail@danielfett.de

John Bradley
Yubico

 Email: ve7jtb@ve7jtb.com

draft-friel-acme-integrations-02 - ACME Integrations

draft-friel-acme-integrations-02 - ACME Integrations

Index
Back 5
Prev
Next

Network Working Group

Internet-Draft

Intended status: Informational

Expires: April 26, 2020

O. Friel

R. Barnes

Cisco

R. Shekh-Yusef

Avaya

October 24, 2019

ACME Integrations

draft-friel-acme-integrations-02

Abstract

 This document outlines multiple advanced use cases and integrations
 that ACME facilitates without any modifications or enhancements
 required to the base ACME specification. The use cases include ACME
 integration with EST, BRSKI and TEAP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. ACME Integration with EST

	4. ACME Integration with BRSKI

	5. ACME Integration with BRSKI Default Cloud Registrar

	6. ACME Integration with TEAP

	7. ACME Integration with TEAP-BRSKI

	8. IANA Considerations

	9. Security Considerations

	10. Informative References

	Appendix A. Comments

	Authors' Addresses

1. Introduction

 ACME [RFC8555] defines a protocol that a certificate authority (CA)
 and an applicant can use to automate the process of domain name
 ownership validation and X.509 (PKIX) certificate issuance. The
 protocol is rich and flexible and enables multiple use cases that are
 not immediately obvious from reading the specification. This
 document explicitly outlines multiple advanced ACME use cases
 including:

 o ACME integration with EST [RFC7030]

 o ACME integration with BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra]

 o ACME integration with BRSKI Default Cloud Registrar
 [I-D.friel-anima-brski-cloud]

 o ACME integration with TEAP [RFC7170]

 o ACME integration with TEAP-BRSKI [I-D.lear-eap-teap-brski]

 The integrations with EST, BRSKI (which is based upon EST), and TEAP
 enable automated certificate enrolment for devices. ACME for
 subdomains [I-D.friel-acme-subdomains] outlines how ACME can be used
 by a client to obtain a certificate for a subdomain identifier from a
 certificate authority where client has fulfilled a challenge against
 a parent domain but does not need to fulfil a challenge against the
 explicit subdomain. This is a useful optimisation when ACME is used
 to issue certificates for large numbers of devices as it reduces the
 domain ownership proof traffic (DNS or HTTP) and ACME traffic
 overhead, but is not a necessary requirement.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used in this document:

 o BRSKI: Bootstrapping Remote Secure Key Infrastructures
 [I-D.ietf-anima-bootstrapping-keyinfra]

 o CA: Certificate Authority

 o CMC: Certificate Management over CMS

 o CSR: Certificate Signing Request

 o EST: Enrollment over Secure Transport [RFC7030]

 o FQDN: Fully Qualified Domain Name

 o RA: PKI Registration Authority

 o TEAP: Tunneled Extensible Authentication Protocol [RFC7170]

3. ACME Integration with EST

 EST [RFC7030] defines a mechanism for clients to enroll with a PKI
 Registration Authority by sending CMC messages over HTTP. EST
 section 1 states:

 "Architecturally, the EST service is located between a Certification
 Authority (CA) and a client. It performs several functions
 traditionally allocated to the Registration Authority (RA) role in a
 PKI."

 EST section 1.1 states that:

 "For certificate issuing services, the EST CA is reached through the
 EST server; the CA could be logically "behind" the EST server or
 embedded within it."

 When the CA is logically "behind" the EST RA, EST does not specify
 how the RA communicates with the CA. EST section 1 states:

 "The nature of communication between an EST server and a CA is not
 described in this document."

 This section outlines how ACME could be used for communication
 between the EST RA and the CA. The example call flow leverages
 [I-D.friel-acme-subdomains] and shows the RA proving ownership of a
 parent domain, with individual client certificates being subdomains
 under that parent domain. This is an optimisation that reduces DNS
 and ACME traffic overhead. The RA could of course prove ownership of
 every explicit client certificate identifier.

 The call flow illustrates the client calling the EST /csrattrs API
 before calling the EST /simpleenroll API. This enables the EST
 server to indicate to the client what attributes it expects the
 client to include in the CSR request send in the /simpleenroll API.
 For example, EST servers could use this mechanism to tell the client
 what fields to include in the CSR Subject and Subject Alternative
 Name fields.

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑+
| Pledge | | EST RA | | ACME | | DNS |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑+
 | | | |
 STEP 1: Pre‑Authorization of parent domain
 | | | |
 | | POST /newAuthz | |
 | | "domain.com" | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 authorizations | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | Publish DNS TXT | |
 | | "domain.com" | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | | |
 | | POST /challenge | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | Verify |
 | | |‑‑‑‑‑‑‑‑‑‑>|
 | | 200 status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | Delete DNS TXT | |
 | | "domain.com" | |

 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | | |
 STEP 2: Pledge enrolls against RA
 | | | |
 | GET /csrattrs | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 200 OK | | |
 | SEQUENCE {AttrOrOID} | | |
 | SAN OID: | | |
 | "pledgeid.domain.com"| | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | POST /simpleenroll | | |
 | PCSK#10 CSR | | |
 | "pledgeid.domain.com"| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 202 Retry‑After | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 3: RA places ACME order
 | | | |
 | | POST /newOrder | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 status=ready | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /finalize | |
 | | PKCS#10 CSR | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /certificate | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK | |
 | | PEM | |
 | | "pledgeid.domain.com"| |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 STEP 4: Pledge retries enroll
 | | | |

 | POST /simpleenroll | | |
 | PCSK#10 CSR | | |
 | "pledgeid.domain.com"| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 200 OK | | |
 | PKCS#7 | | |
 | "pledgeid.domain.com"| | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |

4. ACME Integration with BRSKI

 BRSKI [I-D.ietf-anima-bootstrapping-keyinfra] is based upon EST
 [RFC7030] and defines how to autonomically bootstrap PKI trust
 anchors into devices via means of signed vouchers. EST certificate
 enrollment may then optionally take place after trust has been
 established. BRKSI voucher exchange and trust establishment are
 based on EST extensions and the certificate enrollment part of BRSKI
 is fully based on EST. Similar to EST, BRSKI does not define how the
 EST RA communicates with the CA. Therefore, the mechanisms outlined
 in the previous section for using ACME as the communications protocol
 between the EST RA and the CA are equally applicable to BRSKI.

 The following call flow shows how ACME may be integrated into a full
 BRSKI voucher plus EST enrollment workflow. For brevity, it assumes
 that the EST RA has previously proven ownership of a parent domain
 and that pledge certificate identifiers are a subdomain of that
 parent domain. The domain ownership exchanges between the RA, ACME
 and DNS are not shown. Similarly, not all BRSKI interactions are
 shown and only the key protocol flows involving voucher exchange and
 EST enrollment are shown.

 Similar to the EST section above, the client calls EST /csrattrs API
 before calling the EST /cimpleenroll API. This enables the server to
 indicate what fields the pledge should include in the CSR that the
 client sends in the /simpleenroll API.

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
| Pledge | | EST RA | | ACME | | MASA |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
 | | | |
 NOTE: Pre‑Authorization of "domain.com" is complete
 | | | |
 STEP 1: Pledge requests Voucher
 | | | |
 | POST /requestvoucher | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | POST /requestvoucher | |

 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK Voucher | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | 200 OK Voucher | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 2: Pledge enrolls against RA
 | | | |
 | GET /csrattrs | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 200 OK | | |
 | SEQUENCE {AttrOrOID} | | |
 | SAN OID: | | |
 | "pledgeid.domain.com"| | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | POST /simpleenroll | | |
 | PCSK#10 CSR | | |
 | "pledgeid.domain.com"| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 202 Retry‑After | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 3: RA places ACME order
 | | | |
 | | POST /newOrder | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 status=ready | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /finalize | |
 | | PKCS#10 CSR | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /certificate | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK | |
 | | PEM | |

 | | "pledgeid.domain.com"| |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 STEP 4: Pledge retries enroll
 | | | |
 | POST /simpleenroll | | |
 | PCSK#10 CSR | | |
 | "pledgeid.domain.com"| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 200 OK | | |
 | PKCS#7 | | |
 | "pledgeid.domain.com"| | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |

5. ACME Integration with BRSKI Default Cloud Registrar

 BRSKI Cloud Registrar [I-D.friel-anima-brski-cloud] specifies the
 behaviour of a BRSKI Cloud Registrar, and how a pledge can interact
 with a BRSKI Cloud Registrar when bootstrapping. Similar to the
 local domain registrar BRSKI flow, ACME can be easily integrated with
 a cloud registrar bootstrap flow.

 BRSKI cloud registrar is flexible and allows for multiple different
 local domain discovery and redirect scenarios. In the example
 illustrated here, the extension to [RFC8366] Vouchers which is
 defined in [[TODO ID-TBD]] and allows the specification of a
 bootstrap DNS domain is leveraged. This extension allows the cloud
 registrar to specify the local domain RA that the pledge should
 connect to for the purposes of EST enrollment.

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
| Pledge | | EST RA | | ACME | | Cloud RA |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ | / MASA |
 | +‑‑‑‑‑‑‑‑‑‑+
 | |
 NOTE: Pre‑Authorization of "domain.com" is complete
 | |
 STEP 1: Pledge requests Voucher from Cloud Registrar
 | |
 | POST /requestvoucher |
 |‑‑>|
 | |
 | 200 OK Voucher (EST RA domain) |
 |<‑‑|
 | | | |
 STEP 2: Pledge enrolls against local domain RA
 | | | |

 | GET /csrattrs | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 200 OK | | |
 | SEQUENCE {AttrOrOID} | | |
 | SAN OID: | | |
 | "pledgeid.domain.com"| | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | POST /simpleenroll | | |
 | PCSK#10 CSR | | |
 | "pledgeid.domain.com"| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | 202 Retry‑After | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 3: RA places ACME order
 | | | |
 | | POST /newOrder | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 status=ready | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /finalize | |
 | | PKCS#10 CSR | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /certificate | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK | |
 | | PEM | |
 | | "pledgeid.domain.com"| |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 STEP 4: Pledge retries enroll
 | | | |
 | POST /simpleenroll | | |
 | PCSK#10 CSR | | |
 | "pledgeid.domain.com"| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |

 | | | |
 | 200 OK | | |
 | PKCS#7 | | |
 | "pledgeid.domain.com"| | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |

6. ACME Integration with TEAP

 TEAP [RFC7170] defines a tunnel-based EAP method that enables secure
 communication between a peer and a server by using TLS to establish a
 mutually authenticated tunnel. TEAP enables certificate provisioning
 within the tunnel. TEAP does not define how the TEAP server
 communicates with the CA.

 This section outlines how ACME could be used for communication
 between the TEAP server and the CA. The example call flow leverages
 [I-D.friel-acme-subdomains] and shows the TEAP server proving
 ownership of a parent domain, with individual client certificates
 being subdomains under that parent domain.

 The example illustrates the TEAP server sending a Request-Action TLV
 including a CSR-Attributes TLV instructing the peer to send a CSR-
 Attributes TLV to the server. This enables the server to indicate
 what fields the peer should include in the CSR that the peer sends in
 the PKCS#10 TLV. For example, the TEAP server could instruct the
 peer what Subject or SAN entries to include in its CSR.

+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑+
| Peer | | TEAP‑Server | | ACME | | DNS |
+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑+
 | | | |
 STEP 1: Pre‑Authorization of parent domain
 | | | |
 | | POST /newAuthz | |
 | | "domain.com" | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 authorizations | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | Publish DNS TXT | |
 | | "domain.com" | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | | |
 | | POST /challenge | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | Verify |
 | | |‑‑‑‑‑‑‑‑‑‑>|

 | | 200 status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | Delete DNS TXT | |
 | | "domain.com" | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | | |
 | | | |
 STEP 2: Establsh EAP Outer Tunnel
 | | | |
 | EAP‑Request/ | | |
 | Type=Identity | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=Identity | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | TEAP Start, | | |
 | Authority‑ID TLV | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | TLS(ClientHello) | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | TLS(ServerHello, | | |
 | Certificate, | | |
 | ServerKeyExchange, | | |
 | CertificateRequest, | | |
 | ServerHelloDone) | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | TLS(Certificate, | | |
 | ClientKeyExchange, | | |
 | CertificateVerify, | | |
 | ChangeCipherSpec, | | |
 | Finished) | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |

 | Type=TEAP, | | |
 | TLS(ChangeCipherSpec, | | |
 | Finished), | | |
 | {Crypto‑Binding TLV, | | |
 | Result TLV=Success} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {Crypto‑Binding TLV, | | |
 | Result TLV=Success} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {Request‑Action TLV: | | |
 | Status=Failure, | | |
 | Action=Process‑TLV, | | |
 | TLV=CSR‑Attributes, | | |
 | TLV=PKCS#10} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 3: Enroll for certificate
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {CSR‑Attributes TLV} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {CSR‑Attributes TLV} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {PKCS#10 TLV: | | |
 | "pledgeid.domain.com"}| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | POST /newOrder | |
 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 status=ready | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /finalize | |
 | | PKCS#10 CSR | |

 | | "pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /certificate | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK | |
 | | PEM | |
 | | "pledgeid.domain.com"| |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {PKCS#7 TLV, | | |
 | Result TLV=Success} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {Result TLV=Success} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Success | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |

7. ACME Integration with TEAP-BRSKI

 TEAP-BRSKI [I-D.lear-eap-teap-brski] defines how to execute BRSKI at
 layer 2 inside a TEAP tunnel. Similar to the TEAP proposal in the
 previous section, BRSKI-TEAP leverages the existing TEAP PKXS#10 and
 PKCS#7 mechanisms for certificate enrollment, and does not define how
 the TEAP server communicates with the CA.

 This section outlines how ACME could be used for communication
 between the TEAP server and the CA, and how this fits in with the
 TEAP-BRSKI proposal.

 Similar to baseline TEAP, the TEAP server can use the CSR-Atributes
 TLV to tell the peer what attributes to include in its CSR request.

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
| Pledge | | TEAP‑Server | | ACME | | MASA |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
 | | | |

 NOTE: Pre‑Authorization of "domain.com" is complete
 and EAP outer tunnel is established as outlined in
 the previous section
 | | | |
 STEP 1: Perform BRSKI Flow
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {Request‑Action TLV: | | |
 | Status=Failure, | | |
 | Action=Process‑TLV, | | |
 | TLV=Request‑Voucher, | | |
 | TLV=Trusted‑Server‑Root,| | |
 | TLV=CSR‑Attributes, | | |
 | TLV=PKCS#10} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {Request‑Voucher TLV} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| RequestVoucher | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ | \‑‑‑‑‑‑>|
 | | Voucher | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ | \‑‑‑‑‑‑‑|
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {Voucher TLV} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 2: Retrieve CA Configuration
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {Trusted‑Server‑Root TLV} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {Trusted‑Server‑Root TLV} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {CSR‑Attributes TLV} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |

 | {CSR‑Attributes TLV} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 STEP 3: Enroll for certificate
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {PKCS#10 TLV: | | |
 | "pledgeid.domain.com"} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | |POST /newOrder | |
 | |"pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 201 status=ready | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | |POST /finalize | |
 | |PKCS#10 CSR | |
 | |"pledgeid.domain.com"| |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | | 200 OK status=valid | |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | | POST /certificate | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | |
 | |200 OK | |
 | |PEM | |
 | |"pledgeid.domain.com"| |
 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | | |
 | EAP‑Request/ | | |
 | Type=TEAP, | | |
 | {PKCS#7 TLV, | | |
 | Result TLV=Success} | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | |
 | EAP‑Response/ | | |
 | Type=TEAP, | | |
 | {Result TLV=Success} | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | |
 | EAP‑Success | | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |

8. IANA Considerations

 [todo]

9. Security Considerations

 [todo]

10. Informative References

 [I-D.friel-acme-subdomains]

 Friel, O., Barnes, R., and T. Hollebeek, "ACME for
 Subdomains", draft-friel-acme-subdomains-00 (work in
 progress), October 2019.

 [I-D.friel-anima-brski-cloud]

 Friel, O., Shekh-Yusef, R., and M. Richardson, "BRSKI
 Cloud Registrar", draft-friel-anima-brski-cloud-01 (work
 in progress), October 2019.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-28 (work in progress), September 2019.

 [I-D.lear-eap-teap-brski]

 Lear, E., Friel, O., Cam-Winget, N., and D. Harkins,
 "Bootstrapping Key Infrastructure over EAP", draft-lear-
 eap-teap-brski-04 (work in progress), September 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7030]
 Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7170]
 Zhou, H., Cam-Winget, N., Salowey, J., and S. Hanna,
 "Tunnel Extensible Authentication Protocol (TEAP) Version
 1", RFC 7170, DOI 10.17487/RFC7170, May 2014,
 <https://www.rfc-editor.org/info/rfc7170>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8555]
 Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/info/rfc8555>.

Appendix A. Comments

Authors' Addresses

Owen Friel
Cisco

 Email: ofriel@cisco.com

Richard Barnes
Cisco

 Email: rlb@ipv.sx

Rifaat Shekh‑Yusef
Avaya

 Email: rifaat.ietf@gmail.com

draft-friel-acme-subdomains-00 - ACME for Subdomains

draft-friel-acme-subdomains-00 - ACME for Subdomains

Index
Back 5
Prev
Next

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2020

O. Friel

R. Barnes

Cisco

T. Hollebeek

DigiCert

October 23, 2019

ACME for Subdomains

draft-friel-acme-subdomains-00

Abstract

 This document outlines how ACME can be used by a client to obtain a
 certificate for a subdomain identifier from a certificate authority.
 The client has fulfilled a challenge against a parent domain but does
 not need to fulfil a challenge against the explicit subdomain as
 certificate authority policy allows issuance of the subdomain
 certificate without explicit subdomain ownership proof.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. ACME Workflow and Identifier Requirements

	4. ACME Issuance of Subdomain Certificates
	 4.1. newOrder and newAuthz Handling

	 4.2. Examples

	5. Directory Object Metadata Fields Registry

	6. IANA Considerations

	7. Security Considerations

	8. Informative References

	Appendix A. CA Browser Forum Baseline Requirements

	Authors' Addresses

1. Introduction

 ACME [RFC8555] defines a protocol that a certificate authority (CA)
 and an applicant can use to automate the process of domain name
 ownership validation and X.509 (PKIX) certificate issuance. The
 protocol is rich and flexible and enables multiple use cases that are
 not immediately obvious from reading the specification.

 This document explicitly outlines how ACME can be used to issue
 subdomain certificates, without requiring the ACME client to
 explicitly fulfil an ownership challenge against the subdomain
 identifiers - the ACME client need only fulfil an ownership challenge
 against a parent domain identifier.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are used in this document:

 o CA: Certificate Authority

 o CSR: Certificate Signing Request

 o FQDN: Fully Qualified Domain Name

3. ACME Workflow and Identifier Requirements

 A typical ACME workflow for issuance of certificates is as follows:

 1. client POSTs a newOrder request that contains a set of
 "identifiers"

 2. server replies with a set of "authorizations" and a "finalize"
 URI

 3. client sends POST-as-GET requests to retrieve the
 "authorizations", with the downloaded "authorization" object(s)
 containing the "identifier" that the client must prove control of

 4. client proves control over the "identifier" in the
 "authorization" object by completing the specified challenge, for
 example, by publishing a DNS TXT record

 5. client POSTs a CSR to the "finalize" API

 6. server replies with an updated order object that includes a
 "certificate" URI

 7. client sends POST-as-GET request to the "certificate" URI to
 download the certificate

 ACME places the following restrictions on "identifiers":

 o section 7.1.4: the only type of "identifier" defined by the ACME
 specification is a fully qualified domain name: "The only type of
 identifier defined by this specification is a fully qualified
 domain name (type: "dns"). The domain name MUST be encoded in the
 form in which it would appear in a certificate."

 o Section 7.4: the "identifier" in the CSR request must match the
 "identifier" in the newOrder request: "The CSR MUST indicate the
 exact same set of requested identifiers as the initial newOrder
 request."

 o Sections 8.3: the "identifier", or FQDN, in the "authorization"
 object must be used when fulfilling challenges via HTTP:
 "Construct a URL by populating the URL template ... where the
 domain field is set to the domain name being verified"

 o Section 8.4: the "identifier", or FQDN, in the "authorization"
 object must be used when fulfilling challenges via DNS: "The
 client constructs the validation domain name by prepending the
 label "_acme-challenge" to the domain name being validated."

 ACME does not mandate that the "identifier" in a newOrder request
 matches the "identifier" in "authorization" objects.

4. ACME Issuance of Subdomain Certificates

 As noted in the previous section, ACME does not mandate that the
 "identifier" in a newOrder request matches the "identifier" in
 "authorization" objects. This means that the ACME specification does
 not preclude an ACME server processing newOrder requests and issuing
 certificates for a subdomain without requiring a challenge to be
 fulfilled against that explicit subdomain. ACME server policy could
 allow issuance of certificates for a subdomain to a client where the
 client only has to fulfil an authorization challenge for the parent
 domain. The relevant sections from current CA/Browser baseline
 requirements are given in section Appendix A.

 This allows a flow where a client proves ownership of, for example,
 "example.com" and then successfully obtains a certificate for
 "sub.example.com". The ACME pre-authorization flow makes most sense
 for this use case, and that is what is illustrated in the following
 call flow.

 The client could pre-authorize for the parent domain once, and then
 issue multiple newOrder requests for certificates for multiple
 subdomains. This call flow illustrates the client only placing one
 newOrder request.

 The call flow illustrates the DNS-based proof of ownership mechanism,
 but the subdomain workflow is equally valid for HTTP based proof of
 ownership.

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑+
| Client | | ACME | | DNS |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑+
 | | |
 STEP 1: Pre‑Authorization of parent domain
 | | |
 | POST /newAuthz | |
 | "example.com" | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | |
 | 201 authorizations | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | |
 | Publish DNS TXT | |
 | "example.com" | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | |

 | POST /challenge | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | Verify |
 | |‑‑‑‑‑‑‑‑‑‑>|
 | 200 status=valid | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | |
 | Delete DNS TXT | |
 | "example.com" | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | |
 STEP 2: Place order for subdomain
 | | |
 | POST /newOrder | |
 | "sub.example.com" | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | |
 | 201 status=ready | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | |
 | POST /finalize | |
 | CSR "sub.example.com"| |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | |
 | 200 OK status=valid | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 | | |
 | POST /certificate | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | |
 | 200 OK | |
 | PKI "sub.example.com"| |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |

4.1. newOrder and newAuthz Handling

 Servers may consider validation of a parent domain sufficient
 authorization for a subdomain. If a server has such a policy and a
 client is already authorized for the parent domain then:

 o If the client submits a newAuthz request for a subdomain: The
 server MUST return status 200 (OK) response. The response body is
 the existing authorization object for the parent domain with
 status set to "valid".

 o If the client submits a newOrder request for a subdomain: The
 server MUST return a 201 (Created) response. The response body is

 an order object with status set to "ready" and links to the
 unexpired authorizations against the parent domain.

 If a server has such a policy and a client is not authorized for the
 parent domain then:

 o If the client submits a newAuthz request for a subdomain: The
 server MUST return a status 201 (Created) response. The response
 body is a newly created authorization object for the parent domain
 with status set to "pending".

 o If the client submits a newOrder request for a subdomain: The
 server MUST return a status 201 (Created) response. The response
 body is an order object with status set to "pending" and links to
 newly created authorizations objects against the parent domain.

 [[TODO: This section documents a change from RFC8555, which states
 that the identifier in the newAuthz request MUST match that in the
 authorization object.

 Additionally, 200 response code is used here in one scenario instead
 of a 201 response. However, this is arguably an under-specification
 in RFC8555, and has been reported in https://www.rfc-
 editor.org/errata/eid5861.

 These two items need a review.]]

4.2. Examples

 In order to illustrate subdomain behaviour, let us assume that a
 client wishes to get certificates for subdomain identifiers
 "sub0.example.com", "sub1.example.com" and "sub2.example.com" under
 parent domain "example.com", and CA policy allows certificate
 issuance of these subdomain identifiers while only requiring the
 client to fulfil an ownership challenge for parent domain
 "example.com". Let us also assume that the client has not yet proven
 ownership of parent domain "example.com".

 1. The client POSTs a newOrder request for identifier
 "sub0.example.com"

 The server creates an authorization object for identifier
 "example.com". The server replies with a 201 (Created) response.
 The response body is an order object with status set to "pending" and
 a link to newly created authorization object against the parent
 domain "example.com". Therefore, the server is instructing the
 client to fulfil a challenge against domain identifier "example.com"
 in order to obtain a certificate including identifier
 "sub0.example.com".

 The client completes the challenge for "example.com", POSTs a CSR to
 the order finalize URI, and downloads the certificate.

 1. The client POSTs a newOrder request for identifier
 "sub1.example.com"

 The server replies with a 201 (Created) response. The response body
 is an order object with status set to "ready" and a link to the
 unexpired authorization against the parent domain "example.com".

 The client POSTs a CSR to the order finalize URI, and downloads the
 certificate.

 1. The client POSTs a newAuthz request for identifier
 "sub2.example.com"

 The server replies with a 200 (OK) response. The response body is
 the previously created authorization object for "example.com" with
 status set to "valid".

5. Directory Object Metadata Fields Registry

 [[TODO: is this required?]]

 An ACME server can advertise support of issuance of subdomain
 certificates by including the boolean field
 "implicitSubdomainAuthorization" in its "ACME Directory Metadata
 Fields" registry. If not specified, then no default value is
 assumed. If an ACME server supports issuance of subdomain
 certificates, it can indicate this by including this field with a
 value of "true".

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Field Name | Field Type | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| implicitSubdomainAuthorization | boolean | RFC XXXX |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

6. IANA Considerations

 [[TODO: register implicitSubdomainAuthorization?]]

7. Security Considerations

 [[TODO]]

8. Informative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8555]
 Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/info/rfc8555>.

Appendix A. CA Browser Forum Baseline Requirements

 The CA/Browser Forum Baseline Requirements version 1.6.5 states:

 o Section: "1.6.1 Definitions": Authorization Domain Name: The
 Domain Name used to obtain authorization for certificate issuance
 for a given FQDN. The CA may use the FQDN returned from a DNS
 CNAME lookup as the FQDN for the purposes of domain validation.
 If the FQDN contains a wildcard character, then the CA MUST remove
 all wildcard labels from the left most portion of requested FQDN.
 The CA may prune zero or more labels from left to right until
 encountering a Base Domain Name and may use any one of the
 intermediate values for the purpose of domain validation.

 o Section: "3.2.2.4.7 DNS Change": Once the FQDN has been validated
 using this method, the CA MAY also issue Certificates for other
 FQDNs that end with all the labels of the validated FQDN. This
 method is suitable for validating Wildcard Domain Names.

Authors' Addresses

Owen Friel
Cisco

 Email: ofriel@cisco.com

Richard Barnes
Cisco

 Email: rlb@ipv.sx

Tim Hollebeek
DigiCert

 Email: tim.hollebeek@digicert.com

draft-friel-tls-atls-04 - Application-Layer TLS

draft-friel-tls-atls-04 - Application-Layer TLS

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Informational

Expires: May 7, 2020

O. Friel

R. Barnes

M. Pritikin

Cisco

H. Tschofenig

Arm Ltd.

M. Baugher

Consultant

November 04, 2019

Application-Layer TLS

draft-friel-tls-atls-04

Abstract

 This document specifies how TLS and DTLS can be used at the
 application layer for the purpose of establishing secure end-to-end
 encrypted communication security.

 Encodings for carrying TLS and DTLS payloads are specified for HTTP
 and CoAP to improve interoperability. While the use of TLS and DTLS
 is straight forward we present multiple deployment scenarios to
 illustrate the need for end-to-end application layer encryption and
 the benefits of reusing a widely deployed and readily available
 protocol. Application software architectures for building, and
 network architectures for deploying application layer TLS are
 outlined.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Application Layer End-to-End Security Use Cases
	 3.1. Constrained Devices

	 3.2. Bootstrapping Devices

	4. ATLS Goals

	5. Architecture Overview
	 5.1. Application Architecture

	 5.2. Functional Design

	 5.3. Network Architecture

	6. ATLS Session Establishment

	7. ATLS over CoAP Transport

	8. ATLS over HTTP Transport
	 8.1. Protocol Summary

	 8.2. Content-Type Header

	 8.3. HTTP Status Codes

	 8.4. ATLS Session Tracking

	 8.5. Session Establishment and Key Exporting

	 8.6. Illustrative ATLS over HTTP Session Establishment

	9. Key Exporting and Application Data Encryption
	 9.1. OSCORE

	 9.2. COSE

	10. TLS Ciphersuite to COSE/OSCORE Algorithm Mapping

	11. TLS Extensions
	 11.1. The "oscore_connection_id" Extension

	 11.2. The "cose_ext" Extension

	12. IANA Considerations
	 12.1. "oscore_connection_id" TLS extension

	 12.2. TLS Ciphersuite to OSCORE/COSE Algorithm Mapping

	 12.3. .well-known URI Registry

	 12.4. Media Types Registry

	 12.5. HTTP Content-Formats Registry

	 12.6. CoAP Content-Formats Registry

	 12.7. TLS Key Extractor Label

	13. Security Considerations

	14. References
	 14.1. Normative References

	 14.2. Informative References

	Appendix A. Pseudo Code
	 A.1. OpenSSL

	 A.2. Java JSSE

	Appendix B. ATLS and HTTP CONNECT

	Appendix C. Alternative Approaches to Application Layer End-to- End Security
	 C.1. Noise

	 C.2. Signal

	 C.3. Google ALTS

	 C.4. Ephemeral Diffie-Hellman Over COSE (EDHOC)

	Authors' Addresses

1. Introduction

 There are multiple scenarios where there is a need for application
 layer end-to-end security between clients and application services.
 Two examples include:

 o Constrained devices connecting via gateways to application
 services, where different transport layer protocols may be in use
 on either side of the gateway, with the gateway transcoding
 between the different transport layer protocols.

 o Bootstrapping devices that must connect to HTTP application
 services across untrusted TLS interception middleboxes

 These two scenarios are described in more detail in Section 3.

 This document describes how clients and applications can leverage
 standard TLS software stacks to establish secure end-to-end encrypted
 connections at the application layer. TLS [RFC5246] [RFC8446] or
 DTLS [RFC6347] [I-D.ietf-tls-dtls13] can be used and this document is
 agnostic to the versions being used. There are multiple advantages
 to reuse of existing TLS software stacks for establishment of
 application layer secure connections. These include:

 o many clients and application services already include a TLS
 software stack, so there is no need to include yet another
 software stack in the software build

 o no need to define a new cryptographic negotiation, authentication,
 and key exchange protocol between clients and services

 o provides standards based PKI mutual authentication between clients
 and services

 o no need to train software developers on how to use a new
 cryptographic protocols or libraries

 o automatically benefit from new cipher suites by simply upgrading
 the TLS software stack

 o automatically benefit from new features, bugfixes, etc. in TLS
 software stack upgrades

 When TLS or DTLS is used at the application layer we refer to it as
 Application-Layer TLS, or ATLS. There is, however, no difference to
 TLS versions used over connection-oriented transports, such as TCP or
 SCTP. The same is true for DTLS. The difference is mainly in its
 use and the requirements placed on the underlying transport.

 This document defines how ATLS can be used over HTTP [RFC7230]
 [RFC7540] and over CoAP [RFC7252]. This document does not preclude
 the use of other transports. However, defining how ATLS can be
 established over [ZigBee], [Bluetooth], etc. is beyond the scope of
 this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Application-Layer TLS is referred to as ATLS throughout this
 document.

3. Application Layer End-to-End Security Use Cases

 This section describes describes a few end-to-end use cases in more
 detail.

3.1. Constrained Devices

 Two constrained device use cases are outlined here.

3.1.1. Constrained Device Connecting over a Non-IP Network

 There are industry examples of smart lighting systems where
 luminaires are connected using ZigBee to a gateway. A server
 connects to the gateway using CoAP over DTLS. The server can control
 the luminaires by sending messages and commands via the gateway. The
 gateway has full access to all messages sent between the luminaires
 and the server.

 A generic use case similar to the smart lighting system outlined
 above has an IoT device talking ZigBee, Bluetooth Low Energy,
 LoRaWAN, NB-IoT, etc. to a gateway, with the gateway in turn talking
 CoAP over DTLS or another protocol to a server located in the cloud
 or on-premise. This is illustrated in Figure 1.

 There are scenarios where certain messages sent between the IoT
 device and the server must not be exposed to the gateway function.
 Additionally, the two endpoints may not have visibility to and no
 guarantees about what transport layer security and encryption is
 enforced across all hops end-to-end as they only have visibility to
 their immediate next hop. ATLS addresses these concerns.

+‑‑‑‑‑‑‑‑+ ZigBee +‑‑‑‑‑‑‑‑‑+ CoAP/DTLS +‑‑‑‑‑‑‑‑‑‑‑‑+
| Device |‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Gateway |‑‑‑‑‑‑‑‑‑‑‑‑‑>| Server |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑ Device to Server ‑‑‑‑‑‑‑+

 Figure 1: IoT Closed Network Gateway

3.1.2. Constrained Device Connecting over IP

 In this example an IoT device connecting to a gateway using a
 suitable transport mechanism, such as ZigBee, CoAP, MQTT, etc. The
 gateway function in turn talks HTTP over TLS (or, for example, HTTP
 over QUIC) to an application service over the Internet. This is
 illustrated in Figure 2.

 The gateway may not be trusted and all messages between the IoT
 device and the application service must be end-to-end encrypted.
 Similar to the previous use case, the endpoints have no guarantees
 about what level of transport layer security is enforced across all
 hops. Again, ATLS addresses these concerns.

+‑‑‑‑‑‑‑‑+ CoAP/DTLS +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ HTTP/TLS +‑‑‑‑‑‑‑‑‑+
| Device |‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Internet Gateway |‑‑‑‑‑‑‑‑‑‑‑‑>| Service |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑‑Device to Cloud Service ATLS Connection‑‑‑‑‑‑‑‑‑‑+

 Figure 2: IoT Internet Gateway

3.2. Bootstrapping Devices

 There are far more classes of clients being deployed on today's
 networks than at any time previously. This poses challenges for
 network administrators who need to manage their network and the
 clients connecting to their network, and poses challenges for client
 vendors and client software developers who must ensure that their
 clients can connect to all required services.

 One common example is where a client is deployed on a local domain
 TCP/IP network that protects its perimeter using a TLS terminating
 middlebox, and the client needs to establish a secure connection to a
 service in a different network via the middlebox. This is
 illustrated in Figure 3.

 Traditionally, this has been enabled by the network administrator
 deploying the necessary certificate authority trusted roots on the
 client. This can be achieved at scale using standard tools that
 enable the administrator to automatically push trusted roots out to
 all client machines in the network from a centralized domain
 controller. This works for personal computers, laptops and servers
 running standard Operating Systems that can be centrally managed.
 This client management process breaks for multiple classes of clients
 that are being deployed today, there is no standard mechanism for
 configuring trusted roots on these clients, and there is no standard
 mechanism for these clients to securely traverse middleboxes.

+‑‑‑‑‑‑‑‑+ C‑>M TLS +‑‑‑‑‑‑‑‑‑‑‑+ M‑>S TLS +‑‑‑‑‑‑‑‑‑+
| Client |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Middlebox |‑‑‑‑‑‑‑‑‑‑‑‑‑>| Service |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑‑‑‑Client to Service ATLS Connection‑‑‑‑‑‑‑‑‑+

 Figure 3: Bootstrapping Devices

 The ATLS mechanism defined in this document enables clients to
 traverse middleboxes and establish secure connections to services
 across network domain boundaries. The purpose of this connection may
 simply be to facilitate a bootstrapping process, for example
 [I-D.ietf-anima-bootstrapping-keyinfra], whereby the client securely
 discovers the local domain certificate authorities required to
 establish a trusted network layer TLS connection to the middlebox.

4. ATLS Goals

 The high level goals driving the design of this mechanism are:

 o enable authenticated key exchange at the application layer by
 reusing existing technologies,

 o ensure that ATLS packets are explicitly identified thus ensuring
 that any middleboxes or gateways at the transport layer are
 content aware,

 o leverage TLS stacks and handshake protocols thus avoiding
 introducing new software or protocol dependencies in clients and
 applications

 o reuse TLS [RFC5246] [RFC8446] and DTLS [RFC6347]
 [I-D.ietf-tls-dtls13] specifications,

 o do not mandate constraints on how the TLS stack is configured or
 used,

 o be forward compatible with future TLS versions including new
 developments such as compact TLS [I-D.rescorla-tls-ctls], and

 o ensure that the design is as simple as possible.

5. Architecture Overview

5.1. Application Architecture

 TLS software stacks allow application developers to 'unplug' the
 default network socket transport layer and read and write TLS records
 directly from byte buffers. This enables application developers to
 use ATLS, extract the raw TLS record bytes from the bottom of the TLS
 stack, and transport these bytes over any suitable transport. The
 TLS software stacks can generate byte streams of full TLS flights,
 which may include multiple TLS records. Additionally, TLS software
 stacks support Keying Material Exporters [RFC5705] and allow
 applications to export keying material from established TLS sessions.
 This keying material can then be used by the application for
 encryption of data outside the context of the TLS session. This is
 illustrated in Figure 4 below.

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 Handshake Records | | Handshake Records | |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | | Byte |
 Unencrypted Data | TLS | Encrypted Data | |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Buffers |
 | Software | | |
 Encrypted Data | | Unencrypted Data | |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Stack |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | | +‑‑‑‑‑‑‑‑‑+
 Keying Material | |
<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 + ‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4: TLS Stack Interfaces

 These TLS software stack APIs enable application developers to build
 the software architectures illustrated in Figure 5 and Figure 6.

 In both architectures, the application creates and interacts with an
 application layer TLS session in order to generate and consume raw
 TLS records. The application transports these raw TLS records inside
 transport layer message bodies using whatever standard transport
 layer stack is suitable for the application or architecture. This
 document does not place any restrictions on the choice of transport
 layer and any suitable protocol such as HTTP, TCP, CoAP, ZigBee,
 Bluetooth, etc. could be used.

 The transport layer will typically encrypt data, and this encryption
 is completely independent from any application layer encryption. The
 transport stack may create a transport layer TLS session. The
 application layer TLS session and transport layer TLS session can
 both leverage a shared, common TLS software stack. This high level
 architecture is applicable to both clients and application services.
 The key differences between the architectures are as follows.

 In the model illustrated in Figure 5, the application sends all
 sensitive data that needs to be securely exchanged with the peer
 application through the Application TLS session in order to be
 encrypted and decrypted. All sensitive application data is thus
 encoded within TLS records by the TLS stack, and these TLS records
 are transmitted over the transport layer.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| | App
| | Data +‑‑‑‑‑‑‑‑‑+
| Application |<‑‑‑‑‑‑‑‑‑‑>| App | +‑‑‑‑‑‑‑‑‑+
| | TLS | TLS |‑‑‑‑‑>| TLS |
| | Records | Session | | Stack |
| +‑‑‑>|<‑‑‑‑‑‑‑‑‑‑>| | +‑‑‑‑‑‑‑‑‑+
| | | +‑‑‑‑‑‑‑‑‑+ ^
| | | |?
| | | Transport +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| | | Payload | Transport | | Transport |
| +‑‑‑>|<‑‑‑‑‑‑‑‑‑>| Stack |‑‑‑>| Encryption |‑‑>Packets
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 5: TLS Stack used for all data encryption

 In the model illustrated in Figure 6, the application establishes an
 application layer TLS session purely for the purposes of key
 exchange. Therefore, the only TLS records that are sent or received
 by the application layer are TLS handshake records. Once the
 application layer TLS session is established, the application uses
 Keying Material Exporter [RFC5705] APIs to export keying material
 from the TLS stack from this application layer TLS session. The
 application can then use these exported keys to derive suitable
 shared encryption keys with its peer for exchange of encrypted data.
 The application encrypts and decrypts sensitive data using these
 shared encryption keys using any suitable cryptographic library
 (which may be part of the same library that provides the TLS stack),
 and transports the encrypted data directly over the transport layer.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| |
| Application |
| |
| +‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑+
	App		Key Export	
	Data	<‑‑‑	<‑‑‑‑‑‑‑‑‑‑‑	
	Crypto			App
+‑‑‑‑‑‑‑+	TLS	TLS	+‑‑‑‑‑‑‑‑‑+	
^	Handshake	Session	‑‑‑‑‑>	TLS
		Records		
	+‑‑‑>	<‑‑‑‑‑‑‑‑‑‑>		+‑‑‑‑‑‑‑‑‑+
			+‑‑‑‑‑‑‑‑‑+ ^	
				?
			Transport +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+	
			Payload	Transport
+‑‑‑‑+‑‑‑>	<‑‑‑‑‑‑‑‑‑>	Stack	‑‑‑>	Encryption
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 6: TLS stack used for key agreement and exporting

 The choice of which application architecture to use will depend on
 the overall solution architecture, and the underlying transport layer
 or layers in use. While the choice of application architecture is
 outside the scope of this document, some considerations are outlined
 here.

 o in some IoT use cases reducing the number of bytes transmitted is
 important. [I-D.mattsson-lwig-security-protocol-comparison]
 analyses the overhead of TLS headers compared with OSCORE
 [I-D.ietf-core-object-security] illustrating the additional
 overhead associated with TLS headers. The overhead varies between
 the different TLS versions and also between TLS and DTLS. It may
 be more appropriate to use the architecture defined in Figure 6 in
 order to establish shared encryption keys, and then transport
 encrypted data directly without the overhead of unwanted TLS
 record headers.

 o when using HTTP as a transport layer, it may be more appropriate
 to use the architecture defined in Figure 6 in order to avoid any
 TLS session vs. HTTP session affinity issues.

5.1.1. Application Architecture Benefits

 There are several benefits to using a standard TLS software stack to
 establish an application layer secure communications channel between
 a client and a service. These include:

 o no need to define a new cryptographic negotiation and exchange
 protocol between client and service

 o automatically benefit from new cipher suites by simply upgrading
 the TLS software stack

 o automatically benefit from new features, bugfixes, etc. in TLS
 software stack upgrades

5.1.2. ATLS Packet Identification

 It is recommended that ATLS packets are explicitly identified by a
 standardized, transport-specific identifier enabling any gateways and
 middleboxes to identify ATLS packets. Middleboxes have to contend
 with a vast number of applications and network operators have
 difficulty configuring middleboxes to distinguish unencrypted but not
 explicitly identified application data from end-to-end encrypted
 data. This specification aims to assist network operators by
 explicitly identifying ATLS packets. The HTTP and CoAP encodings
 documented in Section 8 and Section 7 explicitly identify ATLS
 packets.

5.1.3. ATLS Session Tracking

 The ATLS application service establishes multiple ATLS sessions with
 multiple clients. As TLS sessions are stateful, the application
 service must be able to correlate ATLS records from different clients
 across the relevant ATLS sessions. The details of how session
 tracking is implemented are outside the scope of this document.
 Recommendations are given in Section 8 and Section 7, but session
 tracking is application and implementation specific.

5.1.4. ATLS Record Inspection

 No constraints are placed on the ContentType contained within the
 transported TLS records. The TLS records may contain handshake,
 application_data, alert or change_cipher_spec messages. If new
 ContentType messages are defined in future TLS versions, these may
 also be transported using this protocol.

5.1.5. ATLS Message Routing

 In many cases ATLS message routing is trival. However, there are
 potentially cases where the middlebox topology is quite complex and
 an example is shown in Figure 7. In this scenario multiple devices
 (Client 1-3) are connected using serial communication to a gateway
 (referred as middlebox A). Middlebox A communicates with another
 middlebox B over UDP/IP. Middlebox B then interacts with some
 servers in the backend using CoAP over TCP.

 This scenario raises the question about the ATLS message routing. In
 particular, there are two questions:

 o How do the middleboxes know to which IP address to address the
 ATLS packet? This question arises in scenarios where clients are
 communicating over non-IP transports.

 o How are response messages demultiplexed?

 In some scenarios it is feasible to pre-configure the destination IP
 address of outgoing packets. Another other scenarios extra
 information available in the ATLS message or in a shim layer has to
 provide the necessary information. In the case of ATLS the use of
 the Server Name Indicating (SNI) parameter in the TLS/DTLS
 ClientHello message is a possibility to give middleboxes enough
 information to determine the ATLS communication endpoint. This
 approach is also compatible with SNI encryption.

 For demultiplexing again different approaches are possible. The
 simplest approach is to use separate source ports for each ATLS
 session. In our example, Middlebox A allocates a dedicated socket
 (with a separate source port) for outgoing UDP datagrams in order to
 be able to relay a response message to the respective client.
 Alternatively, it is possible to make use of a shim layer on top of
 the transport that provides this extra demultiplexing capabilities.
 The use of multiple UDP "sessions" (as well as different TCP
 sessions) has the advantage of avoiding head-of-line blocking.

 +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | Server 1|‑‑‑‑+‑‑‑‑‑| Server 2|
 +‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑+
 |
 |CoAP
 |over
 |TCP/TLS
 |
 +‑‑‑‑‑+‑‑‑‑‑+
 |Middlebox B|
 +‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 |CoAP
 |over
 |UDP/DTLS
 |
 +‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑|Middlebox A|‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑‑+ |
 | | |
 |CoAP |CoAP |CoAP
 |over |over |over
 |Serial |Serial |Serial
 | | |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
|Client 1| |Client 2| |Client 3|
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+

 Figure 7: Message Routing Scenario

5.1.6. Implementation

 Pseudo code illustrating how to read and write TLS records directly
 from byte buffers using both OpenSSL BIO functions and Java JSSE
 SSLEngine is given in the appendices. A blog post by [Norrell]
 outlines a similar approach to leveraging OpenSSL BIO functions, and
 Oracle publish example code for leveraging [SSLEngine].

5.2. Functional Design

 The functional design assumes that an authorization system has
 established operational keys for authenticating endpoints. In a
 layered design, this needs to be done for each layer, which may
 operate in two separate authorization domains. Note that Figure 8
 shows a generic setup where TLS/DTLS is used at two layers. In some
 cases, use of TLS/DTLS at the application layer may be sufficient
 where lower layer security mechanisms provide protection of the
 transport-specific headers.

+‑‑‑+
| +‑‑‑+ +‑‑‑+ |
+‑‑‑‑‑‑‑‑+	APP		APP	+‑‑‑‑‑‑‑‑+		
	security	+‑‑‑+ +‑‑‑+	security			
	‑‑‑‑‑‑‑‑+ ^ ^	‑‑‑‑‑‑‑‑+				
	policies				policies	
	LAYER 0				LAYER 0	
+‑‑‑‑‑‑‑‑+ v v +‑‑‑‑‑‑‑‑+						
+ +‑‑‑‑‑‑+ APP +‑‑‑‑‑‑+ +						
		TLS‑	<‑‑‑‑‑‑‑‑‑>	TLS‑		
+‑‑‑‑‑>	SERVER	LAYER	CLIENT	<‑‑‑‑‑+		
+‑‑‑‑‑‑+ +‑‑‑‑‑‑+						
TOP LAYER ^ ^						
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+				
BOTTTOM LAYER						
v v						
+‑‑‑‑‑‑+ TRANSPORT +‑‑‑‑‑‑+						
	TLS‑	<‑‑‑‑‑‑‑‑‑>	TLS‑			
+‑‑‑‑‑‑‑‑+	SERVER	LAYER	CLIENT	+‑‑‑‑‑‑‑‑+		
	security	+‑‑‑‑‑‑+ +‑‑‑‑‑‑+	security			
	‑‑‑‑‑‑‑‑+ ^ ^	‑‑‑‑‑‑‑‑+				
	policies				policies	
	LAYER 1 +‑‑‑‑‑+ +‑‑‑‑‑+LAYER 1					
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+						
+‑‑‑+

 Figure 8: Functional Design

 The security policies of one layer are distinct from those of another
 in Figure 8. They may overlap, but that is not necessary or perhaps
 even likely since the key exchanges at the different layers terminate
 at different endpoints and the two often have different authorization
 domains.

 TLS can protect IoT device-to-gateway communications "on the wire"
 using the "bottom layer" of Figure 8, and it can protect application
 data from the device to the application server using the "top layer."
 Application and transport security each have a role to play.
 Transport security restricts access to messages on the networks,
 notably application headers and application-layer TLS restricts
 access to the application payloads.

 As shown in Figure 8, an application-layer message, which gets
 encrypted and integrity protected and, in the generic case, the the
 resulting TLS message and headers are passed to a TLS socket at the
 bottom layer, which may have a different security policy than the
 application layer.

5.3. Network Architecture

 An example network deployment is illustrated in Figure 9. It shows a
 constrained client connecting to an application service via an
 internet gateway. The client uses CoAP over DTLS to communicate with
 the gateway. The gateway extracts the messages the client sent over
 CoAP and sends these messages inside HTTP message bodies to the
 application service. It also shows a TLS terminator deployed in
 front of the application service. The client establishes a transport
 layer CoAP/DTLS connection with the gateway (C->G DTLS), the gateway
 in turn opens a transport layer TLS connection with the TLS
 terminator deployed in front of the service (G->T TLS). The client
 can ignore any certificate validation errors when it connects to the
 gateway. CoAP messages are transported between the client and the
 gateway, and HTTP messages are transported between the client and the
 service. Finally, application layer TLS messages are exchanged
 inside the CoAP and HTTP message bodies in order to establish an end-
 to-end TLS session between the client and the service (C->S TLS).

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | App Data | | App Data |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>S TLS | | C‑>S TLS | | App Data |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | CoAP | | HTTP | | C‑>S TLS |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>G DTLS| | M‑>T TLS | | HTTP |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | UDP | | TCP | | TCP |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
| Client |‑‑‑‑‑>| Gateway |‑‑‑‑‑>| TLS Terminator |‑‑‑‑>| Service |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑Client to Service ATLS Connection‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 9: Constrained Device Gateway Network Architecture

 Another typical network deployment is illustrated in Figure 10. It
 shows a client connecting to a service via a middlebox. It also
 shows a TLS terminator deployed in front of the service. The client
 establishes a transport layer TLS connection with the middlebox (C->M
 TLS), the middlebox in turn opens a transport layer TLS connection
 with the TLS terminator deployed in front of the service (M->T TLS).
 The client can ignore any certificate validation errors when it
 connects to the middlebox. HTTP messages are transported over this
 layer between the client and the service. Finally, application layer
 TLS messages are exchanged inside the HTTP message bodies in order to
 establish an end-to-end TLS session between the client and the
 service (C->S TLS).

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | App Data | | App Data |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>S TLS | | C‑>S TLS | | App Data |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | HTTP | | HTTP | | C‑>S TLS |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>M TLS | | M‑>T TLS | | HTTP |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | TCP | | TCP | | TCP |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
| Client |‑‑‑‑‑>| Middlebox |‑‑‑‑‑>| TLS Terminator |‑‑‑‑>| Service |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑Client to Service ATLS Connection‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 10: HTTP Middlebox Network Architecture

6. ATLS Session Establishment

 Figure 11 illustrates how an ATLS session is established using the
 key exporting architectural model shown in Figure 6. The number of
 RTTs that take place when establishing a TLS session depends on the
 version of TLS and what capabilities are enabled on the TLS software
 stack. For example, a 0-RTT exchange is possible with TLS 1.3. If
 applications wish to ensure a predictable number of RTTs when
 establishing an application layer TLS connection, this may be
 achieved by configuring the TLS software stack appropriately.

 The outline is as follows:

 o the client creates an ATLS session object

 o the client initiates a TLS handshake on the session

 o the client extracts the TLS records for the first TLS flight (the
 first RTT)

 o the client sends the TLS records over the transport layer to the
 server

 o on receipt of the TLS flight, the server creates an ATLS session
 object

 o the server injects the received TLS flight into the session

 o the server extracts the TLS records for the first TLS flight
 response

 o the server sends the TLS response records over the transport layer
 to the client

 o the client injects the received TLS records into its TLS session
 completing the first full RTT

 o the client and server repeat the above process and complete the
 second RTT

 o once the ATLS session is up, both sides export keying material

 o both sides now can exchange data encrypted using shared keys
 derived from the keying material

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Client | | ATLS Server |
+‑‑‑‑‑‑‑‑‑+‑‑‑+‑‑‑‑‑+‑+‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+‑‑+‑‑‑‑‑+‑‑+‑‑‑‑‑‑‑‑‑+
| ATLS | | App | |Transport| |Transport| | App | | ATLS |
| Session | +‑‑‑‑‑+ | Stack | | Stack | +‑‑‑‑‑+ | Session |
+‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑+
 | | | | | |
 | | | | | |
 | | | | | |
 | Create | | | | |
 | Session | | | | |
 + |<‑‑‑‑‑‑‑‑‑| | | | |
 | | Start | | | | |
 | | Handshake| | | | |
 | |<‑‑‑‑‑‑‑‑‑| | | | |
 | | TLS | | | | |
 | | Records | Pack | | | |
 | |‑‑‑‑‑‑‑‑‑>| Records | | | |
 | |‑‑‑‑‑‑‑‑>| send packet | Unpack | |
 R | | |‑‑‑‑‑‑‑‑‑‑‑‑>| Records | Create |

 T | | | |‑‑‑‑‑‑‑‑‑>| Session |
 T | | | | |‑‑‑‑‑‑‑‑‑>|
 | | | | | TLS |
 1 | | | | | Records |
 | | | | |‑‑‑‑‑‑‑‑‑>| |
 | | | | | | TLS |
 | | | | | Pack | Records |
 | | | | | Records |<‑‑‑‑‑‑‑‑‑|
 | | | Unpack |send response|<‑‑‑‑‑‑‑‑‑| |
 | | TLS | Records |<‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | Records |<‑‑‑‑‑‑‑‑| | | |
 + |<‑‑‑‑‑‑‑‑‑| | | | |
 | TLS | | | | |
 | Records | | | | |
 + |‑‑‑‑‑‑‑‑‑>|‑‑‑‑‑‑‑‑>|‑‑‑‑‑‑‑‑‑‑‑‑>|‑‑‑‑‑‑‑‑‑>|‑‑‑‑‑‑‑‑‑>|
 | | | | | | |
 | | | | | Session |
 R | | | | | Up |
 T | | | | |<‑‑‑‑‑‑‑‑‑|
 T | | | | | TLS |
 | | | | | Records |
 2 |<‑‑‑‑‑‑‑‑‑|<‑‑‑‑‑‑‑‑|<‑‑‑‑‑‑‑‑‑‑‑‑|<‑‑‑‑‑‑‑‑‑|<‑‑‑‑‑‑‑‑‑|
 | Session | | | | |
 | | Up | | | | |
 + |‑‑‑‑‑‑‑‑‑>| | | | |
 | Export | | | | Export |
 | Keys | | | | Keys |
 |‑‑‑‑‑‑‑‑‑>| | E2E Session | |<‑‑‑‑‑‑‑‑‑|
 | |<‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑>| |

 Figure 11: ATLS Session Establishment

7. ATLS over CoAP Transport

 To carry TLS messages over CoAP [RFC7252] it is recommended to use
 Confirmable messages while DTLS payloads may as well use non-
 confirmable messages. The exchange pattern in CoAP uses the
 following style: A request from the CoAP client to the CoAP server
 uses a POST with the ATLS message contained in the payload of the
 request. An ATLS response is returned by the CoAP server to the CoAP
 client in a 2.04 (Changed) message.

 When DTLS messages are conveyed in CoAP over UDP then the DDoS
 protection offered by DTLS MAY be used instead of replicating the
 functionality at the CoAP layer. If TLS is conveyed in CoAP over UDP
 then DDoS protection by CoAP has to be utilized. Carrying ATLS
 messages in CoAP over TCP does not require any additional DDoS
 protection.

 The URI path used by ATLS is "/.well-known/atls".

 {{coap-example} shows a TLS 1.3 handshake inside CoAP graphically.

Client Server
 | |
 +‑‑‑‑‑‑‑‑‑>| Header: POST (Code=0.02)
 | POST | Uri‑Path: "/.well‑known/atls"
 | | Content‑Format: application/atls
 | | Payload: ATLS (ClientHello)
 | |
 |<‑‑‑‑‑‑‑‑‑+ Header: 2.04 Changed
 | 2.04 | Content‑Format: application/atls
 | | Payload: ATLS (ServerHello,
 | | {EncryptedExtensions}, {CertificateRequest*}
 | | {Certificate*}, {CertificateVerify*} {Finished})
 | |
 +‑‑‑‑‑‑‑‑‑>| Header: POST (Code=0.02)
 | POST | Uri‑Path: "/.well‑known/atls"
 | | Content‑Format: application/atls
 | | Payload: ATLS ({Certificate*},
 | | {CertificateVerify*}, {Finished})
 | |
 |<‑‑‑‑‑‑‑‑‑+ Header: 2.04 Changed
 | 2.04 |
 | |

 Figure 12: Transferring ATLS in CoAP

 Note that application data can already be sent by the server in the
 second message and by the client in the third message, in case of the
 full TLS 1.3 handshake. In case of the 0-RTT handshake application
 data can be sent earlier. To mix different media types in the same
 CoAP payload the application/multipart-core content type is used.

 Note also that CoAP blockwise transfer MAY be used if the payload
 size, for example due to the size of the certificate chain, exceeds
 the MTU size.

8. ATLS over HTTP Transport

 The assumption is that the client will establish a transport layer
 connection to the server for exchange of HTTP messages. The
 underlying transport layer connection could be over TCP or TLS. The
 client will then establish an application layer TLS connection with
 the server by exchanging TLS records with the server inside HTTP
 message request and response bodies.

 Note that ATLS over HTTP transport addresses a different deployment
 scenario than HTTP CONNECT proxies. HTTP CONNECT proxy behaviour is
 compared and contrasted with ATLS in Appendix B.

8.1. Protocol Summary

 All ATLS records are transported unmodified as binary data within
 HTTP message bodies. The application simply extracts the TLS records
 from the TLS stack and inserts them directly into HTTP message
 bodies. Each message body contains a full TLS flight, which may
 contain multiple TLS records.

 The client sends all ATLS records to the server in the bodies of POST
 requests.

 The server sends all ATLS records to the client in the bodies of 200
 OK responses to the POST requests.

 The URI path used by ATLS is "/.well-known/atls".

8.2. Content-Type Header

 A new Content-Type header value is defined:

 Content-type: application/atls

 All message bodies containing ATLS records must set this Content-
 Type. This enables middleboxes to readily identify ATLS payloads.

8.3. HTTP Status Codes

 This document does not define any new HTTP status codes, and does not
 specify additional semantics or refine existing semantics for status
 codes. This is the best current practice as outlined in
 [I-D.ietf-httpbis-bcp56bis].

8.4. ATLS Session Tracking

 The application service needs to track multiple client application
 layer TLS sessions so that it can correlate TLS records received in
 HTTP message bodies with the appropriate TLS session. The
 application service should use stateful cookies [RFC6265] in order to
 achieve this as recommended in [I-D.ietf-httpbis-bcp56bis].

8.5. Session Establishment and Key Exporting

 It is recommended that applications using ATLS over HTTP transport
 only use ATLS for session establishment and key exchange, resulting
 in only 2 ATLS RTTs between the client and the application service.

 Key exporting must be carried out as described in Section 9.

8.6. Illustrative ATLS over HTTP Session Establishment

 A client initiates an ATLS session by sending the first TLS flight in
 a POST request message body to the ATLS server.

POST /.well‑known/atls
Content‑Type: application/atls

 <binary TLS client flight 1 records>

 The server handles the request, creates an ATLS session object, and
 replies by including its first TLS flight in a 200 OK message body.
 The server also sets a suitable cookie for session tracking purposes.

200 OK
Content‑Type: application/atls
Set‑Cookie: my‑atls‑cookie=my‑cookie‑value

 <binary TLS server flight 1 records>

 The client handles the server first flight TLS records and replies
 with its second flight.

POST /.well‑known/atls
Content‑Type: application/atls
Cookie: my‑atls‑cookie=my‑cookie‑value

 <binary TLS client flight 2 records>

 The server handles the second flight, establishes the ATLS session,
 and replies with its second flight.

200 OK
Content‑Type: application/atls

 <binary TLS server flight 2 records>

9. Key Exporting and Application Data Encryption

 When solutions implement the architecture described in Figure 6, they
 leverage [RFC5705] for exporting keys. This section describes how to
 establish keying material and negotiate algorithms for OSCORE and for
 COSE.

9.1. OSCORE

 When the OSCORE mode has been agreed using the "oscore_connection_id"
 extension defined in this document, different keys are used for DTLS/
 TLS record protection and for OSCORE packet protection. These keys
 are produced using a TLS exporter [RFC5705] and the exporter takes
 three input values:

 o a disambiguating label string,

 o a per-association context value provided by the application using
 the exporter, and

 o a length value.

 The label string for use with this specification is defined as 'atls-
 oscore'. The per-association context value is empty.

 The length value is twice the size of the key size utilized by the
 negotiated algorithm since the lower-half is used for the Master
 Secret and the upper-half is used for the Master Salt.

 For example, if a TLS/DTLS 1.2 handshake negotiated the
 TLS_PSK_WITH_AES_128_CCM_8 ciphersuite then the key size utilized by
 the negotiated algorithm, i.e. AES 128, is 128 bit. Hence, the key
 extractor is requested to produce 2 x 128 bit keying material.

 The following parameters are needed for use with OSCORE:

 o Master Secret: The master secret is derived as described above.

 o Sender ID: This values is negotiated using the
 "oscore_connection_id" extension, as described in Section 11.1.

 o Recipient ID: This values is negotiated using the
 "oscore_connection_id" extension, as described in Section 11.1.

 o AEAD Algorithm: This value is negotiated using the ciphersuite
 exchange provided by the TLS/DTLS handshake. For example, if a
 TLS/DTLS 1.2 handshake negotiated the TLS_PSK_WITH_AES_128_CCM_8
 ciphersuite then the AEAD algorithm identifier is AES_128_CCM_8,

 which corresponds to two COSE algorithms, which both use AES-CCM
 mode with a 128-bit key, a 64-bit tag:

 * AES-CCM-64-64-128

 * AES-CCM-16-64-128 The difference between the two is only the
 length of the nonce, which is 7-bytes in the former case and
 13-bytes in the latter. In TLS/DTLS the nonce value is not
 negotiated but fixed instead. Figure 13 provides the mapping
 between the TLS defined ciphersuite and the COSE algorithms.

 o Master Salt: The master salt is derived as described above.

 o HKDF Algorithm: This value is negotiated using the ciphersuite
 exchange provided by the TLS/DTLS handshake. As a default,
 SHA-256 is assumed as a HKDF algorithm for algorithms using
 128-bit key sizes and SHA384 for 256-bit key sizes.

 o Replay Window: A default window size of 32 packets is assumed.

9.2. COSE

 The key exporting procedure for COSE is similiar to the one defined
 for OSCORE. The label string for use with this specification is
 defined as 'atls-cose'. The per-association context value is empty.

 The length value is twice the size of the key size utilized by the
 negotiated algorithm since the lower-half is used for the Master
 Secret and the upper-half is used for the Master Salt.

 The COSE algorithm corresponds to the ciphersuite negotiated during
 the TLS/DTLS handshake with with the mapping provided in Figure 13.
 The HKDF algorithm is negotiated using the the TLS/DTLS handshake.
 As a default, SHA-256 is assumed as a HKDF algorithm for algorithms
 using 128-bit key sizes and SHA384 for 256-bit key sizes.

 COSE uses key ids to allow finding the appropriate security context.
 Those key IDs conceptually correspond to CIDs, as described in
 Section 11.2.

10. TLS Ciphersuite to COSE/OSCORE Algorithm Mapping

TLS Ciphersuite | COSE/OSCORE Algorithm
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑
AES_128_CCM_8 | AES‑CCM w/128‑bit key, 64‑bit tag, 13‑byte nonce
AES_256_CCM_8 | AES‑CCM w/256‑bit key, 64‑bit tag, 13‑byte nonce
CHACHA20_POLY1305 | ChaCha20/Poly1305 w/256‑bit key, 128‑bit tag
AES_128_CCM | AES‑CCM w/128‑bit key, 128‑bit tag, 13‑byte nonce
AES_256_CCM | AES‑CCM w/256‑bit key, 128‑bit tag, 13‑byte nonce
AES_128_GCM | AES‑GCM w/128‑bit key, 128‑bit tag
AES_256_GCM | AES‑GCM w/256‑bit key, 128‑bit tag

 Figure 13: TLS Ciphersuite to COSE/OSCORE Algorithm Mapping

11. TLS Extensions

11.1. The "oscore_connection_id" Extension

 This document defines the "oscore_connection_id" extension, which is
 used in ClientHello and ServerHello messages. It is used only for
 establishing the OSCORE Sender ID and the OSCORE Recipient ID. The
 OSCORE Sender ID maps to the CID provided by the server in the
 ServerHello and the OSCORE Recipient ID maps to the CID provided by
 the client in the ClientHello.

 The negotiation mechanism follows the procedure used in
 [I-D.ietf-tls-dtls-connection-id] with the exception that the
 negotiated CIDs agreed with the "oscore_connection_id" extension is
 only used with OSCORE and does not impact the record layer format of
 the DTLS/TLS payloads nor the MAC calculation used by DTLS/TLS. As
 such, this extension can be used with DTLS as well as with TLS when
 those protocols are used at the application layer.

 The extension type is specified as follows.

enum {
 oscore_connection_id(TBD), (65535)
} ExtensionType;

struct {
 opaque cid<0..2^8‑1>;
} ConnectionId;

 Figure 14: The 'oscore_connection_id' Extension

 Note: This extension allows a client and a server to determine
 whether an OSCORE security context should be established.

11.2. The "cose_ext" Extension

 This document defines the "cose_ext" extension, which is used in
 ClientHello and ServerHello messages. It is used only for
 establishing the key identifiers, AEAD algorithms, as well as keying
 material for use with application layer protection using COSE. The
 CID provided by the server in the ServerHello maps to the COSE kid
 transmitted from the client to the server and the CID provided by the
 client in the ClientHello maps to the COSE kid transmitted from the
 server to the client.

 The negotiation mechanism follows the procedure used in
 [I-D.ietf-tls-dtls-connection-id] with the exception that the
 negotiated CIDs agreed with the "cose_ext" extension is only used
 with COSE and does not impact the record layer format of the DTLS/TLS
 payloads nor the MAC calculation used by DTLS/TLS. As such, this
 extension can be used with DTLS as well as with TLS when those
 protocols are used at the application layer.

 The extension type is specified as follows.

enum {
 oscore_connection_id(TBD), (65535)
} ExtensionType;

struct {
 opaque cid<0..2^8‑1>;
} ConnectionId;

 Figure 15: The 'cose_ext' Extension

 Note: This extension allows a client and a server to determine
 whether an COSE security context should be established.

12. IANA Considerations

12.1. "oscore_connection_id" TLS extension

 IANA is requested to allocate two entries to the existing TLS
 "ExtensionType Values" registry, defined in [RFC5246], for
 oscore_connection_id(TBD1) and cose_ext(TBD2) defined in this
 document, as described in the table below.

Value Extension Name TLS 1.3 DTLS Only Recommended Reference
‑‑‑
TBD1 oscore_connection_id Y N N [[This doc]]
TBD2 cose_ext Y N N [[This doc]]

 Note: The "N" values in the Recommended column are set because these
 extensions are intended only for specific use cases.

12.2. TLS Ciphersuite to OSCORE/COSE Algorithm Mapping

 IANA is requested to create a new registry for mapping TLS
 ciphersuites to SCORE/COSE algorithms

 An initial mapping can be found in Figure 13.

 Registration requests are evaluated after a three-week review period
 on the tls-reg-review@ietf.or mailing list, on the advice of one or
 more Designated Experts [RFC8126]. However, to allow for the
 allocation of values prior to publication, the Designated Experts may
 approve registration once they are satisfied that such a
 specification will be published.

 Registration requests sent to the mailing list for review should use
 an appropriate subject (e.g., "Request to register an TLS - OSCORE/
 COSE algorithm mapping: example"). Registration requests that are
 undetermined for a period longer than 21 days can be brought to the
 IESG's attention (using the iesg@ietf.org mailing list) for
 resolution.

 Criteria that should be applied by the Designated Experts includes
 determining whether the proposed registration duplicates existing
 functionality, whether it is likely to be of general applicability or
 whether it is useful only for a single extension, and whether the
 registration description is clear.

 IANA must only accept registry updates from the Designated Experts
 and should direct all requests for registration to the review mailing
 list.

12.3. .well-known URI Registry

 IANA is requested to add the well-known URI 'atls' to the Well-Known
 URIs registry.

 o URI suffix: atls

 o Change controller: IETF

 o Specification document(s): [[this document]]

 o Related information: None

12.4. Media Types Registry

 IANA is requested to add the media type 'application/atls' to the
 Media Types registry.

 o Type name: application

 o Subtype name: atls

 o Required parameters: N/A

 o Optional parameters: N/A

 o Encoding considerations: binary

 o Security considerations: See Security Considerations section of
 this document.

 o Interoperability considerations: N/A

 o Published specification: [[this document]] (this document)

 o Applications that use this media type: Potentially any

 o Fragment identifier considerations: N/A

 o Additional information:

 * Magic number(s): N/A

 * File extension(s): N/A

 * Macintosh file type code(s): N/A

 o Person & email address to contact for further information: See
 "Authors' Addresses" section.

 o Intended usage: COMMON

 o Restrictions on usage: N/A

 o Author: See "Authors' Addresses" section.

 o Change Controller: IESG

12.5. HTTP Content-Formats Registry

 IANA is requested to add the media type 'application/atls' to the
 HTTP Content-Formats registry.

 o Media Type: application/atls

 o Encoding: binary

 o ID: TBD

 o Reference: [[this document]]

12.6. CoAP Content-Formats Registry

 IANA is requested to add the media type 'application/atls' to the
 CoAP Content-Formats registry.

 o Media Type: application/atls

 o Encoding: binary

 o ID: TBD

 o Reference: [[this document]]

12.7. TLS Key Extractor Label

 IANA is requested to register the "application-layer-tls" label in
 the TLS Extractor Label Registry to correspond to this specification.

13. Security Considerations

 This specification re-uses the TLS and DTLS and hence the security
 considerations of the respective TLS/DTLS version applies. As
 described in Section 5.2, implementers need to take the policy
 configuration into account when applying security protection at
 various layers of the stack even if the same protocol is used since
 the communiation endpoints and the security requirements are likely
 going to vary.

 For use in the IoT environment the considerations described in
 [RFC7925] apply and other environments the guidelines in [RFC7525]
 are applicable.

14. References

14.1. Normative References

 [I-D.ietf-core-object-security]

 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-16 (work in
 progress), March 2019.

 [I-D.ietf-tls-dtls13]

 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-33 (work in progress), October
 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5705]
 Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6265]
 Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7252]
 Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7540]
 Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7925]
 Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016,
 <https://www.rfc-editor.org/info/rfc7925>.

 [RFC8126]
 Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

14.2. Informative References

 [ALTS]
 Google, "Application Layer Transport Security", December
 2017, <https://cloud.google.com/security/encryption-in-
 transit/application-layer-transport-security/>.

 [Bluetooth]

 Bluetooth, "Bluetooth Core Specification v5.0", 2016,
 <https://www.bluetooth.com/>.

 [I-D.ietf-anima-bootstrapping-keyinfra]

 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-29 (work in progress), October 2019.

 [I-D.ietf-httpbis-bcp56bis]

 Nottingham, M., "Building Protocols with HTTP", draft-
 ietf-httpbis-bcp56bis-09 (work in progress), November
 2019.

 [I-D.ietf-tls-dtls-connection-id]

 Rescorla, E., Tschofenig, H., and T. Fossati, "Connection
 Identifiers for DTLS 1.2", draft-ietf-tls-dtls-connection-
 id-07 (work in progress), October 2019.

 [I-D.mattsson-lwig-security-protocol-comparison]

 Mattsson, J. and F. Palombini, "Comparison of CoAP
 Security Protocols", draft-mattsson-lwig-security-
 protocol-comparison-01 (work in progress), March 2018.

 [I-D.rescorla-tls-ctls]

 Rescorla, E. and R. Barnes, "Compact TLS 1.3", draft-
 rescorla-tls-ctls-02 (work in progress), July 2019.

 [I-D.selander-ace-cose-ecdhe]

 Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
 Diffie-Hellman Over COSE (EDHOC)", draft-selander-ace-
 cose-ecdhe-14 (work in progress), September 2019.

 [LwM2M]
 Open Mobile Alliance, "Lightweight Machine to Machine
 Requirements", December 2017,
 <http://www.openmobilealliance.org/>.

 [Noise]
 Perrin, T., "Noise Protocol Framework", October 2017,
 <http://noiseprotocol.org/>.

 [Norrell]
 Norrell, ., "Use SSL/TLS within a different protocol with
 BIO pairs", 2016,
 <https://thekerneldiaries.com/2016/06/13/openssl-ssltls-
 within-a-different-protocol/>.

 [Signal]
 Open Whisper Systems, "Signal Protocol", 2016,
 <https://signal.org/>.

 [SSLEngine]

 Oracle, "SSLEngineSimpleDemo.java", 2004, <https://docs.or
 acle.com/javase/7/docs/technotes/guides/security/jsse/
 samples/sslengine/SSLEngineSimpleDemo.java>.

 [ZigBee]
 ZigBee Alliance, "ZigBee Specification", 2012,
 <http://www.zigbee.org>.

Appendix A. Pseudo Code

 This appendix gives both C and Java pseudo code illustrating how to
 inject and extract raw TLS records from a TLS software stack. Please
 note that this is illustrative, non-functional pseudo code that does
 not compile.

A.1. OpenSSL

 OpenSSL provides a set of Basic Input/Output (BIO) APIs that can be
 used to build a custom transport layer for TLS connections. This
 appendix gives pseudo code on how BIO APIs could be used to build a
 client application that completes a TLS handshake and exchanges
 application data with a service.

char inbound[MAX];
char outbound[MAX];
int rx_bytes;
SSL_CTX *ctx = SSL_CTX_new();
SSL *ssl = SSL_new(ctx);

// Create in‑memory BIOs and plug in to the SSL session
BOI* bio_in = BIO_new(BIO_s_mem());
BOI* bio_out = BIO_new(BIO_s_mem());
SSL_set_bio(ssl, bio_in, bio_out);

// We are a client
SSL_set_connect_state(ssl);

// Loop through TLS flights until we are done
do {
 // Calling SSL_do_handshake() will result in a full
 // TLS flight being written to the BIO buffer
 SSL_do_handshake(ssl);

 // Read the client flight that the TLS session
 // has written to memory
 BIO_read(bio_out, outbound, MAX);

 // POST the outbound bytes to the server using a suitable
 // function. Lets assume that the server response will be
 // written to the 'inbound' buffer
 num_bytes = postTlsRecords(outbound, inbound);

 // Write the server flight to the memory BIO so the TLS session
 // can read it. The next call to SSL_do_handshake() will handle
 // this received server flight
 BIO_write(bio_in, inbound, num_bytes);

 } while (!SSL_is_init_finished(ssl));

// Send a message to the server. Calling SSL_write() will run the
// plaintext through the TLS session and write the encrypted TLS
// records to the BIO buffer
SSL_write(ssl, "Hello World", strlen("Hello World"));

// Read the TLS records from the BIO buffer and
// POST them to the server
BIO_read(bio_out, outbound, MAX);
num_bytes = postTlsRecords(outbound, inbound);

A.2. Java JSSE

 The Java SSLEngine class "enables secure communications using
 protocols such as the Secure Sockets Layer (SSL) or IETF RFC 2246
 "Transport Layer Security" (TLS) protocols, but is transport
 independent". This pseudo code illustrates how a server could use
 the SSLEngine class to handle an inbound client TLS flight and
 generate an outbound server TLS flight response.

SSLEngine sslEngine = SSLContext.getDefault().createSSLEngine();
sslEngine.setUseClientMode(false);
sslEngine.beginHandshake();

// Lets assume 'inbound' has been populated with
// the Client 1st Flight
ByteBuffer inbound;

// 'outbound' will be populated with the
// Server 1st Flight response
ByteBuffer outbound;

// SSLEngine handles one TLS Record per call to unwrap().
// Loop until the engine is finished unwrapping.
while (sslEngine.getHandshakeStatus() ==
 HandshakeStatus.NEED_UNWRAP) {
 SSLEngineResult res = sslEngine.unwrap(inbound, outbound);

 // SSLEngine may need additional tasks run
 if (res.getHandshakeStatus() == NEED_TASK) {
 Runnable run = sslEngine.getDelegatedTask();
 run.run();
 }
}

// The SSLEngine has now finished handling all inbound TLS Records.
// Check if it wants to generate outbound TLS Records. SSLEngine
// generates one TLS Record per call to wrap().
// Loop until the engine is finished wrapping.
while (sslEngine.getHandshakeStatus() ==
 HandshakeStatus.NEED_WRAP) {
 SSLEngineResult res = sslEngine.wrap(inbound, outbound);

 // SSLEngine may need additional tasks run
 if (res.getHandshakeStatus() == NEED_TASK) {
 Runnable run = sslEngine.getDelegatedTask();
 run.run();
 }
}

// outbound ByteBuffer now contains a complete server flight
// containing multiple TLS Records
// Rinse and repeat!

Appendix B. ATLS and HTTP CONNECT

 It is worthwhile comparing and contrasting ATLS with HTTP CONNECT
 tunneling.

 First, let us introduce some terminology:

 o HTTP Proxy: A HTTP Proxy operates at the application layer,
 handles HTTP CONNECT messages from clients, and opens tunnels to
 remote origin servers on behalf of clients. If a client
 establishes a tunneled TLS connection to the origin server, the
 HTTP Proxy does not attempt to intercept or inspect the HTTP
 messages exchanged between the client and the server

 o middlebox: A middlebox operates at the transport layer, terminates
 TLS connections from clients, and originates new TLS connections
 to services. A middlebox inspects all messages sent between
 clients and services. Middleboxes are generally completely
 transparent to applications, provided that the necessary PKI root
 Certificate Authority is installed in the client's trust store.

 HTTP Proxies and middleboxes are logically separate entities and one
 or both of these may be deployed in a network.

 HTTP CONNECT is used by clients to instruct a HTTP Forward Proxy
 deployed in the local domain to open up a tunnel to a remote origin
 server that is typically deployed in a different domain. Assuming
 that TLS transport is used between both client and proxy, and proxy
 and origin server, the network architecture is as illustrated in
 Figure 16. Once the proxy opens the transport tunnel to the service,
 the client establishes an end-to-end TLS session with the service,
 and the proxy is blindly transporting TLS records (the C->S TLS
 session records) between the client and the service. From the client
 perspective, it is tunneling a TLS session to the service inside the
 TLS session it has established to the proxy (the C->P TLS session).
 No middlebox is attempting to intercept or inspect the HTTP messages
 between the client and the service.

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>S HTTP| | C‑>S HTTP|
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>S TLS | | C‑>S TLS |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>P TLS | | P‑>S TCP |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>P TCP |
 +‑‑‑‑‑‑‑‑‑‑+

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
| Client |‑‑‑‑‑>| HTTP Proxy |‑‑‑‑‑>| Service |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+

 Figure 16: HTTP Proxy transport layers

 A more complex network topology where the network operator has both a
 HTTP Proxy and a middlebox deployed is illustrated in Figure 17. In
 this scenario, the proxy has tunneled the TLS session from the client
 towards the origin server, however the middlebox is intercepting and
 terminating this TLS session. A TLS session is established between
 the client and the middlebox (C->M TLS), and not end-to-end between
 the client and the server. It can clearly be seen that HTTP CONNECT
 and HTTP Proxies serve completely different functions than
 middleboxes.

 Additionally, the fact that the TLS session is established between
 the client and the middlebox can be problematic for two reasons:

 o the middle box is inspecting traffic that is sent between the
 client and the service

 o the client may not have the necessary PKI root Certificate
 Authority installed that would enable it to validate the TLS
 connection to the middlebox. This is the scenario outlined in
 Section 3.2.

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>S HTTP| | C‑>S HTTP| | C‑>S HTTP|
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>M TLS | | C‑>M TLS | | M‑>S TLS |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>P TLS | | P‑>M TCP | | M‑>S TCP |
 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | C‑>P TCP |
 +‑‑‑‑‑‑‑‑‑‑+

+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
| Client |‑‑‑‑‑>| HTTP Proxy |‑‑‑‑‑>| Middlebox |‑‑‑‑‑>| Service |
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+

 Figure 17: HTTP Proxy and middlebox transport layers

 As HTTP CONNECT can be used to establish a tunneled TLS connection,
 one hypothetical solution to this middlebox issue is for the client
 to issue a HTTP CONNECT command to a HTTP Reverse Proxy deployed in
 front of the origin server. This solution is not practical for
 several reasons:

 o if there is a local domain HTTP Forward Proxy deployed, this would
 result in the client doing a first HTTP CONNECT to get past the
 Forward Proxy, and then a second HTTP CONNECT to get past the
 Reverse Proxy. No client or client library supports the concept
 of HTTP CONNECT inside HTTP CONNECT.

 o if there is no local domain HTTP Proxy deployed, the client still
 has to do a HTTP CONNECT to the HTTP Reverse Proxy. This breaks
 with standard and expected HTTP CONNECT operation, as HTTP CONNECT
 is only ever called if there is a local domain proxy.

 o clients cannot generate CONNECT from XHR in web applications.

 o this would require the deployment of a Reverse Proxy in front of
 the origin server, or else support of the HTTP CONNECT method in
 standard web frameworks. This is not an elegant design.

 o using HTTP CONNECT with HTTP 1.1 to a Reverse Proxy will break
 middleboxes inspecting HTTP traffic, as the middlebox would see
 TLS records when it expects to see HTTP payloads.

 In contrast to trying to force HTTP CONNECT to address a problem for
 which it was not designed to address, and having to address all the
 issues just outlined; ATLS is specifically designed to address the
 middlebox issue in a simple, easy to develop, and easy to deploy
 fashion.

 o ATLS works seamlessly with HTTP Proxy deployments

 o no changes are required to HTTP CONNECT semantics

 o no changes are required to HTTP libraries or stacks

 o no additional Reverse Proxy is required to be deployed in front of
 origin servers

 It is also worth noting that if HTTP CONNECT to a Reverse Proxy were
 a conceptually sound solution, the solution still ultimately results
 in encrypted traffic traversing the middlebox that the middlebox
 cannot intercept and inspect. That is ultimately what ATLS results
 in - traffic traversing the middle box that the middlebox cannot
 intercept and inspect. Therefore, from a middlebox perspective, the
 differences between the two solutions are in the areas of solution
 complexity and protocol semantics. It is clear that ATLS is a
 simpler, more elegant solution that HTTP CONNECT.

Appendix C. Alternative Approaches to Application Layer End-to-End
 Security

 End-to-end security at the application layer is increasing seen as a
 key requirement across multiple applications and services. Some
 examples of end-to-end security mechanisms are outlined here. All
 the solutions outlined here have some common characteristics. The
 solutions:

 o do not rely on transport layer security

 o define a new handshake protocol for establishment of a secure end-
 to-end session

C.1. Noise

 [Noise] is a framework for cryptographic protocols based on Elliptic
 Curve Diffie-Hellman (ECDH) key agreement, AEAD encryption, and
 BLAKE2 and SHA2 hash functions. Noise is currently used by WhatsApp,
 WireGuard, and Lightning.

 The current Noise protocol framework defines mechanisms for proving
 possession of a private key, but does not define authentication
 mechanisms. Section 14 "Security Considerations" of Noise states:
   ~~~ it's up to the application to determine whether the remote
   party's static public key is acceptable ~~~




C.2. Signal

   The [Signal] protocol provides end-to-end encryption and uses EdDSA
   signatures, Triple Diffie-Hellman handshake for shared secret
   establishment, and the Double Ratchet Algorithm for key management.
   It is used by Open Whisper Systems, WhatsApp and Google.



   Similar to Noise, Signal does not define an authentication mechanism.
   The current [X3DH] specification states in Section 4.1
   "Authentication":



   Methods for doing this are outside the scope of this document




C.3. Google ALTS

   Google's Application Layer Transport Security [ALTS] is a mutual
   authentication and transport encryption system used for securing
   Remote Procedure Call (RPC) communications within Google's
   infrastructure.  ALTS uses an ECDH handshake protocol and a record
   protocol containing AES encrypted payloads.




C.4. Ephemeral Diffie-Hellman Over COSE (EDHOC)

   There is ongoing work to standardise EDHOC
   [I-D.selander-ace-cose-ecdhe], which defines a SIGMA-I based
   authenticated key exchange protocol using COSE and CBOR.



Authors' Addresses



Owen Friel
Cisco



   Email: ofriel@cisco.com




Richard Barnes
Cisco



   Email: rlb@ipv.sx




Max Pritikin
Cisco



   Email: pritikin@cisco.com



Hannes Tschofenig
Arm Ltd.



   Email: hannes.tschofenig@gmx.net




Mark Baugher
Consultant



   Email: mark@mbaugher.com












































draft-gutmann-tls-lts-12 - TLS 1.2 Update for Long-term Support 






draft-gutmann-tls-lts-12 - TLS 1.2 Update for Long-term Support 

Index
Back 5
Prev
Next
Forward 5


TLS Working Group

Internet-Draft

Intended status: Standards Track

Expires: December 14, 2019


P. Gutmann

University of Auckland

June 12, 2019



TLS 1.2 Update for Long-term Support  

draft-gutmann-tls-lts-12


Abstract

   This document specifies an update of TLS 1.2 for long-term support on
   systems that can have multi-year or even decade-long update cycles,
   one that incoporates as far as possible what's already deployed for
   TLS 1.2 but with the security holes and bugs fixed.  This document
   also recognises the fact that there is a huge amount of TLS use
   outside the web content-delivery environment with its resource-rich
   hardware and software that can be updated whenever required and
   provides a long-term stable, known-good version that can be deployed
   to systems that can't roll out ongoing changes on a continuous basis.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on December 14, 2019.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Conventions Used in This Document



	2.  TLS-LTS Negotiation


	3.  TLS-LTS
	 3.1.  Encryption/Authentication


	 3.2.  Message Formats


	 3.3.  Miscellaneous


	 3.4.  Implementation Issues


	 3.5.  Use of TLS Extensions


	 3.6.  Downgrade Attack Prevention


	 3.7.  Rationale



	4.  Implementer's Checklist


	5.  Security Considerations
	 5.1.  Security Properties Provided by TLS-LTS


	 5.2.  Security Properties Not Provided by TLS-LTS



	6.  IANA Considerations


	7.  Acknowledgements


	8.  References
	 8.1.  Normative References


	 8.2.  Informative References



	Author's Address




1. Introduction

   TLS [2] and DTLS [5], by nature of their enormous complexity and the
   inclusion of large amounts of legacy material, contain numerous
   security issues that have been known to be a problem for many years
   and that keep coming up again and again in attacks (there are too
   many of these to provide references for in the standard manner, and
   in any case more will have been published by the time you read this).
   This document presents a minimal, known-good set of mechanisms that
   defend against all currently-known weaknesses in TLS, that would have
   defended against them ten years ago, and that have a good chance of
   defending against them ten years from now, providing the long-term
   stability that's required by many systems in the field.  This long-
   term stability is particularly important in light of the fact that
   widespread mainstream adoption of new versions of TLS has been shown
   to take 15 years or more [29], with adoption in embedded environments
   taking even longer.



   In particular, this document takes inspiration from numerous
   published analyses of TLS [11] [12] [13] [14] [15] [16] [17] [18]
   [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] along with two
   decades of implementation and deployment experience to select a
   standard interoperable feature set that provides the best chance of
   long-term stability and resistance to attack, as well as guidance on
   implementing this feature set in a sound manner.  This is intended
   for use in systems that need to run in a fixed configuration for a
   long period of time after they're deployed, with little or no ability
   to roll out patches every month or two when the next attack on TLS is
   published.



   Unlike the full TLS 1.2, TLS-LTS is not meant to be all things to all
   people.  It represents a fixed, safe solution that's appropriate for
   users who require a simple, secure, and long-term stable means of
   getting data from A to B.  This represents the majority of the non-
   browser uses of TLS, particularly for embedded systems that are most
   in need of a long-term stable protocol definition.



[Note: Although this specification is present as a draft, it
 has been stable since ‑03 and is already supported in a
 number of deployed implementations.  The specification is
 unlikely to change before its final publication, and may be
 regarded as stable and representative of the final
 published form.

 There is currently a TLS 1.2 LTS test server running at
 either https://82.94.251.205:8443 or 82.94.251.197:8443
 depending on the load balance.  This uses the extension
 value 26 until a value is permanently assigned for LTS use.
 To connect, your implementation should accept whatever
 certificate is presented by the server or use PSK with
 name = "plc", password = "test".  For embedded systems
 testing, note that the this is a conventional web server,
 not an IED/RTU/PLC, that talks HTTP and not DNP3 or
 ICCP/TASE.2, so you'll get an error if you try and connect
 with a PLC control centre that expects one of those
 protocols].




1.1. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [1].




2. TLS-LTS Negotiation

   The use of TLS-LTS is negotiated via TLS/DTLS extensions as defined
   in TLS Extensions [4].  On connecting, the client includes the
   tls_lts extension in its Client Hello if it wishes to use TLS-LTS.
   If the server is capable of meeting this requirement, it responds
   with a tls_lts extension in its Server Hello.  The "extension_type"
   value for this extension MUST be 26 (0x1A, see IANA Considerations
   below) and the "extension_data" field of this extension is empty.
   The client and server MUST NOT use TLS-LTS unless both sides have
   successfully exchanged tls_lts extensions.



   Note that the TLS-LTS extension applies to TLS 1.2, not to any
   earlier version of TLS.  If a client requests the use of TLS-LTS in
   its client_hello but the server falls back to TLS 1.1 or earlier, it
   MUST NOT indicate the use of TLS-LTS in its server_hello.



   In the case of session resumption, once TLS-LTS has been negotiated
   implementations MUST retain the use of TLS-LTS across all subsequent
   resumed sessions.  In other words if TLS-LTS is enabled for the
   current session then the resumed session MUST also use TLS-LTS.  If a
   client or server attempts to resume a TLS-LTS session as a non-TLS-
   LTS session then the peer MUST abort the handshake.




3. TLS-LTS

   TLS-LTS specifies a few simple restrictions on the huge range of TLS
   suites, options and parameters to limit the protocol to a known-good
   subset, as well as making minor corrections to prevent or at least
   limit various attacks.




3.1. Encryption/Authentication

   TLS-LTS restricts the more or less unlimited TLS 1.2 with its more
   than three hundred cipher suites, over forty ECC parameter sets, and
   zoo of supplementary algorithms, parameters, and parameter formats,
   to just two, one traditional one with DHE + AES-CBC + HMAC-SHA-256 +
   RSA-SHA-256/PSK and one ECC one with ECDHE-P256 + AES-GCM + HMAC-
   SHA-256 + ECDSA-P256-SHA-256/PSK with uncompressed points:



   o  TLS-LTS implementations MUST support
      TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
      TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,
      TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and
      TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256.  For these suites, SHA-256
      is used in all locations in the protocol where a hash function is
      required, specifically in the PRF and per-packet MAC calculations
      (as indicated by the _SHA256 in the suite) and also in the client



      and server signatures in the CertificateVerify and
      ServerKeyExchange messages.



[Note: TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 is based on
 draft‑ietf‑tls‑ecdhe‑psk‑aead, currently still
 progressing as an IETF draft, the reference will be
 updated to the full RFC once it's published].



   TLS-LTS only permits encrypt-then-MAC, not MAC-then-encrypt, fixing
   20 years of attacks on this mechanism:



   o  TLS-LTS implementations MUST implement encrypt-then-MAC [6] rather
      than the earlier MAC-then-encrypt.



   TLS-LTS adds a hash of all messages leading up to the calculation of
   the master secret into the master secret to protect against the use
   of manipulated handshake parameters:



   o  TLS-LTS implementations MUST implement extended master secret [8]
      to protect handshake and crypto parameters.



   In several locations TLS modifies or truncates the output of
   cryptographic operations so that the original security guarantees
   associated with them may no longer be valid.  TLS-LTS utilises the
   full cryptographic parameters rather than partial, truncated, or
   otherwise modified forms.  In particular, TLS-LTS drops the MAC
   truncation of the Finished message contents and uses the full
   elliptic curve point Q output from the ECDH key agreement mechanism
   rather than the point's x coordinate by itself:



   o  The length of verify_data (verify_data_length) in the Finished
      message MUST be equal to the length of the output of the hash
      function used for the PRF.  For the mandatory TLS-LTS cipher
      suites this hash is always SHA-256, so the value of
      verify_data_length will be 32 bytes.  For other suites, the size
      depends on the hash algorithm associated with the suite.  For
      example for SHA-512 it would be 64 bytes.



   o  When ECDH is used to establish the premaster secret, the premaster
      secret value is the full elliptic curve point Q as output from the
      ECDH key agreement mechanism rather than the x coordinate of the
      point Q by itself.  In other words for the uncompressed point
      format used in TLS-LTS, the premaster secret would be 04 || qx ||
      qy rather than qx by itself.



   TLS-LTS signs a hash of the client and server hello messages for the
   ServerKeyExchange rather than signing just the client and server
   nonces, avoiding various attacks that build on the fact that standard
   TLS doesn't authenticate previously-exchanged parameters when the
   ServerKeyExchange message is sent:



   o  When generating the ServerKeyExchange signature, the signed_params
      value is updated to replace the client_random and server_random
      with a hash of the full Client Hello and Server Hello using the
      hash algorithm for the chosen cipher suite.  In other words the
      value being signed is changed from:



digitally‑signed struct {
    opaque client_random[32];
    opaque server_random[32];
    ServerDHParams params;
    } signed_params;



      to:



digitally‑signed struct {
    opaque client_server_hello_hash;
    ServerDHParams params;
    } signed_params;



      For the mandatory TLS-LTS cipher suites the hash algorithm is
      always SHA-256, so the length of the client_server_hello_hash is
      32 bytes.  For other suites, the size depends on the hash
      algorithm associated with the suite.  For example for SHA-512 it
      would be 64 bytes.



   (In terms of side-channel attack prevention, it would be preferable
   to include a non-public quantity into the data being signed since
   this reduces the scope of attack from a passive to an active one,
   with the attacker needing to initiate their own handshakes in order
   to carry out their attack.  However no shared secret value has been
   established at this point so only public data can be signed).



   The choice of key sizes is something that will never get any
   consensus because there are so many different worldviews involved.
   TLS-LTS makes only general recommendations on best practices and
   leaves the choice of which key sizes are appropriate to implementers
   and policy makers:



   o  Implementations SHOULD choose public-key algorithm key sizes that
      are appropriate for the situation, weighted by the value of the
      information being protected, the probability of attack and
      capabilities of the attacker(s), any relevant security policies,
      and the ability of the system running the TLS implementation to
      deal with the computational load of large keys.  For example a
      SCADA system being used to switch a ventilator on and off doesn't



      require anywhere near the keysize-based security of a system used
      to transfer classified data.



   One way to avoid having to use very large public keys is to switch
   the keys periodically.  For example for DH keys this can be done by
   regenerating DH parameters in a background thread and rolling them
   over from time to time.  If this isn't possible, an alternative
   option is to pre-generate a selection of DH parameters and choose one
   set at random for each new handshake, or again roll them over from
   time to time from the pre-generated selection, so that an attacker
   has to attack multiple sets of parameters rather than just one.




3.2. Message Formats

   TLS-LTS sends the full set of DH parameters, X9.42/FIPS 186 style,
   not p and g only, PKCS #3 style.  This allows verification of the DH
   parameters, which the current format doesn't allow:



   o  TLS-LTS implementations MUST send the DH domain parameters as { p,
      q, g } rather than { p, g }.  This makes the ServerDHParams field:



struct {
    opaque dh_p<1..2^16‑1>;
    opaque dh_q<1..2^16‑1>;
    opaque dh_g<1..2^16‑1>;
    opaque dh_Ys<1..2^16‑1>;
    } ServerDHParams;     /* Ephemeral DH parameters */

   Note that this uses the standard DLP parameter order { p, q, g },
   not the erroneous { p, g, q } order from the X9.42 DH
   specification.
o  The domain parameters MUST either be compared for equivalence to a
   set of known‑good parameters provided by an appropriate standards
   body or they MUST be verified as specified in FIPS 186 [9].
   Examples of the former may be found in RFC 3526 [32].



   Note that while other sources of DH parameters exist, these should be
   treated with a great deal of caution.  For example RFC 5114 [33]
   provides no source for the values used, leading to suspicions that
   they may be trapdoored, and RFC 7919 [34] mandates fallback to RSA if
   the sole DH parameter set for each key size specified in the standard
   isn't automatically chosen by both client and server.



   Industry standards bodies may consider restricting domain parameters
   to only allow known-good values such as those referenced in the above
   standard, or ones generated by the standards body.  This makes
   checking easier, but has the downside that restricting the choice to
   a small set of values makes them a more tempting target for well-
   resourced attackers.  In addition it requires that the values be
   carefully generated, and the generation process be well-documented,
   to produce a so-called NUMS (Nothing Up My Sleeve) number that avoids
   any suspicion of it having undesirable hidden properties (the
   standard mentioned above, RFC 5114 [33], does not contain NUMS
   values).



   In any case signing the Client/Server Hello messages and the use of
   Extended Master Secret makes active attacks that manipulate the
   domain parameters on the fly far more difficult than they would be
   for standard TLS.




3.3. Miscellaneous

   TLS-LTS drops the need to send the current time in the random data,
   which serves no obvious purpose and leaks the client/server's time to
   attackers:



   o  TLS-LTS implementations SHOULD NOT include the time in the Client/
      Server Hello random data.  The data SHOULD consist entirely of
      random bytes.



       [Note: A proposed downgrade-attack prevention mechanism

        may make use of these bytes, see section 3.6].



   TLS-LTS drops compression and rehandshake, which have led to a number
   of attacks:



   o  TLS-LTS implementations MUST NOT implement compression or
      rehandshake.



   TLS-LTS drops the requirement to generate the Client.random and
   Server.random using "a secure random number generator", typically the
   one used to generate encryption keys.  The use of a secure/
   cryptographic random number generator serves no obvious purpose (all
   that's required is a unique value), but exposes 224 bits of the
   cryptographic RNG output to an attacker, allowing them to analyse and
   potentially attack the RNG, and by extension any crypto keys that it
   generates:



   o  Implementations SHOULD NOT use the raw output from a
      cryptographic/secure RNG that's used to generate keying material
      to generate the Client.random and Server.random values.  Instead,
      they SHOULD employ a mechanism that doesn't directly expose
      cryptographic RNG output to attackers, for example by using the
      crypto RNG to seed a hash-based PRF such as the TLS PRF and using
      the output of that for the values.




3.4. Implementation Issues

   TLS-LTS requires that RSA signature verification be done as encode-
   then-compare, which fixes all known padding-manipulation issues:



   o  TLS-LTS implementations MUST verify RSA signatures by using
      encode-then-compare as described in PKCS #1 [10], meaning that
      they encode the expected signature result and perform a constant-
      time compare against the recovered signature data.



   The constant-time compare isn't strictly necessary for security in
   this case, but it's generally good hygiene and is explicitly required
   when comparing secret data values:



   o  All operations on crypto- or security-related values SHOULD be
      performed in a manner that's as timing-independent as possible.
      For example compares of MAC values such as those used in the
      Finished message and data packets SHOULD be performed using a
      constant-time memcmp() or equivalent so as not to leak timing data
      to an attacker.



   TLS-LTS recommends that implementations take measures to protect
   against side-channel attacks:



   o  Implementations SHOULD take steps to protect against timing
      attacks, for example by using constant-time implementations of
      algorithms and by using blinding for non-randomised algorithms
      like RSA.



   TLS uses a number of crypto mechanisms, some of which are more
   brittle than others.  The ECC algorithms used in are quite vulnerable
   to faults, with RSA significantly less so.  Conversely, the PSK
   mechanisms are essentially immune to key compromise induced by
   faults.  In terms of bulk encryption mechanisms, AES-GCM is far more
   vulnerable to faults than AES-CBC:



   o  Implementations SHOULD take steps to protect against fault
      attacks.  One simple countermeasure for the public-key signature
      mechanisms is to use the public key to verify any signatures
      generated before they are sent over the wire.  Other protection
      measures include checksumming key data held in memory,
      particularly where the key is stored over an extended period of
      time.  Implementations intended to be used in harsh environments
      where faults are expected SHOULD consider the use of TLS-PSK in
      place of any of the mechanisms using public/private-key
      authentication, for which key compromise in the presence of faults
      is unlikely.



   Authentication mechanisms for protocols run over TLS typically have
   separate authentication procedures for the tunnelled protocol and the
   encapsulating TLS session.  The leads to an issue known as the
   channel binding problem in which the tunnelled protocol isn't tied to
   the encapsulating TLS session and can be manipulated by an attacker
   once it passes the TLS endpoint.  Channel binding ties the
   cryptographic protection offered by TLS to the protocol that's being
   run over the TLS tunnel:



   o  Implementations that require authentication for protocols run over
      TLS SHOULD consider using channel bindings to tie the application-
      level protocol to the TLS session, specifically the tls_unique
      binding, which makes use of the contents of the first TLS Finished
      message sent in an exchange to bind to the tunneled application-
      level protocol [3].



   The original description of the tls_unique binding contains a long
   note detailing problems that arise due to rehandshake issues and how
   to deal with them.  Since TLS-LTS doesn't allow rehandshakes, these
   problems don't exist, so no special handling is required.



   The TLS protocol has historically and somewhat arbitrarily been
   described as a state machine, which has led to numerous
   implementation flaws when state transitions weren't very carefully
   considered and enforced [20][23] [25] [26].  A safer and more logical
   means of representing the protocol is as a ladder diagram, which
   hardcodes the transitions into the diagram and removes the need to
   juggle a large amount of state:



   o  Implementations SHOULD consider representing/implementing the
      protocol as a ladder diagram rather than a state machine, since
      the state-diagram form has led to numerous implementation errors
      in the past which are avoided through the use of the ladder
      diagram form.



   TLS-LTS mandates the use of cipher suites that provide so-called
   Perfect Forward Secrecy (PFS), in which an attacker can't record
   sessions and decrypt them at a later date.  The PFS property is
   however impacted by the TLS session cache and session tickets, which
   allow an attacker to decrypt old sessions.  The session cache is
   relatively short-term and only allows decryption while a session is
   held in the cache, but the use of long-term keys in combination with
   session tickets means that an attacker can decrypt any session used
   with that key, defeating PFS:



   o  Implementations SHOULD consider the impact of using session caches
      and session tickets on PFS.  Security issues in this area can be
      mitigated by using short session cache expiry times, and avoiding



      session tickets or changing the key used to encrypt them
      periodically.



   Another form of cacheing that can affect security is the reuse of the
   supposedly-ephemeral DH value y = g^x mod p or its elliptic curve
   equivalent.  Instead of computing a fresh value for each session,
   some servers for performance reasons compute the y value once and
   then reuse it across multiple TLS sessions.  If this is done then an
   attacker can compute the discrete log value from one TLS session and
   reuse it to attack later sessions:



   o  Implementations SHOULD consider the impact of reusing the DH y =
      g^x mod p value across multiple TLS sessions, and avoid this reuse
      if possible.  Where the reuse of y is unavoidable, it SHOULD be
      refreshed as often as is feasible.  One way to do this is to
      compute it as a background task so that a fresh value is available
      when required.



   TLS-LTS protects its handshake by including cryptographic integrity
   checks of preceding messages in subsequent messages, defeating
   attacks that build on the ability to manipulate handshake messages to
   compromise security.  What's authenticated at various stages is a log
   of preceding messages in the exchange.  The simplest way to implement
   this, if the underlying API supports it, is to keep a running hash of
   all messages (which will be required for the final Finished
   computation) and peel off a copy of the current hash state to
   generate the hash value required at various stages during the
   handshake.  If only the traditional { Begin, [ Update, Update, ... ],
   Final } hash API interface is available then several parallel chains
   of hashing will need to be run in order to terminate the hashing at
   different points during the handshake.



   Cryptographic protocol implementations rely critically on the
   implementation performing extensive checking of all crypto operations
   to ensure that problems are detected and caught.  Testing for the
   failure of these checks is rarely performed in implementations and
   test suites, and the problem is not picked up by normal testing.  To
   deal with this issue, this specification recommends that
   implementations test their cryptographic mechanisms to ensure that
   crypto failures are detected and caught:



   o  Implementations SHOULD apply fault-injection testing to ensure
      that cryptographic failures are correctly caught.  At a minimum,
      test suites SHOULD be capable of inducing faults in the
      client_random/server_random, the ServerDHParams/ServerECDHParams
      in the ServerKeyExchange, the signature value for the server key,
      the MAC value in the finished message, and the IV, payload data,



      and MAC values for messages, and the implementation MUST be able
      to detect these faults.



      One way to induce such a fault is to flip a bit in the appropriate
      data value in a location where the problem must be detected by
      cryptographic means, for example in the binary payload data rather
      than in an identifier or length field where it would be picked up
      as a decoding error.



   o  If certificate-based authentication is used, implementations
      SHOULD apply fault-injection testing to ensure that cryptographic
      failures in the certificate processing are correctly caught.  At a
      minimum, test suites SHOULD be capable of inducing faults in the
      signed certificate content and the certificate signature data, and
      the implementation MUST be able to detect these faults.



      PKI provides near-unlimited scope for further checking,
      implementations MAY apply additional testing as required.



   o  If PSK-based authentication is used, implementations SHOULD apply
      fault-injection testing to ensure that failures in the PSK
      authentication are correctly caught.  At a minimum, test suites
      SHOULD be capable of inducing faults in the psk_identity and the
      psk, and the implementation MUST be able to detect these faults.




3.5. Use of TLS Extensions

   TLS-LTS is inspired by Grigg's Law that "there is only one mode and
   that is secure".  Because it mandates the use of known-good
   mechanisms, much of the signalling and negotiation that's required in
   standard TLS to reach the same state becomes redundant.  In
   particular, TLS-LTS removes the need to use the following extensions:



   o  The signature_algorithms extension, since the use of SHA-256 with
      RSA or ECDSA is implicit in TLS-LTS.



   o  The elliptic_curves and ec_point_formats extensions, since the use
      of P256 with uncompressed points is implicit in TLS-LTS.



   o  The universally-ignored requirement that all certificates provided
      by the server must be signed by the algorithm(s) specified in the
      signature_algorithms extension is removed both implicitly by not
      sending the extension and explicitly by removing this requirement.



   o  The encrypt_then_mac extension, since the use of encrypt-then-MAC
      is implicit in TLS-LTS.



   o  The extended_master_secret extension, since the use of extended
      Master Secret is implicit in TLS-LTS.



   TLS-LTS implementations that wish to communicate only with other TLS-
   LTS implementations MAY omit these extensions, with the presence of
   tls_lts implying signature_algorithms = RSA/ECDSA + SHA-256,
   elliptic_curves = P256, ec_point_formats = uncompressed,
   encrypt_then_mac = TRUE, and extended_master_secret = TRUE.
   Implementations that wish to communicate with legacy implementations
   and wish to use the capabilities described by the extensions outside
   of TLS-LTS MUST include these extensions in their Client Hello.



   Conversely, although all of the above extensions are implied by TLS-
   LTS, if a client requests TLS-LTS in its Client Hello then it doesn't
   expect to see them returned in the Server Hello if TLS-LTS is
   indicated.  The handling of extensions during the Client/Server Hello
   exchange is therefore as follows:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|       Client Hello      |   Server Chooses   |    Server Hello    |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|         TLS‑LTS         |      TLS‑LTS       |      TLS‑LTS       |
|                         |                    |                    |
|         TLS‑LTS,        |      TLS‑LTS       |      TLS‑LTS       |
|    EMS/EncThenMAC/...   |                    |                    |
|                         |                    |                    |
|         TLS‑LTS,        | EMS/EncThenMAC/... | EMS/EncThenMAC/... |
|    EMS/EncThenMAC/...   |                    |                    |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Table 1: Use of TLS-LTS Extensions



   TLS-LTS capabilities are indicated purely by the presence of the
   tls_lts extension, not the plethora of other extensions that it's
   comprised of.  This allows an implementation that needs to be
   backwards-compatible with legacy implementations to specify
   individual options for use with non-TLS-LTS implementations via a
   range of extensions, and specify the use of TLS-LTS via the tls_lts
   extension.




3.6. Downgrade Attack Prevention

   The use of the TLS-LTS improvements relies on an attacker not being
   able to delete the TLS-LTS extension from the Client/Server Hello
   messages.  This is achieved through the SCSV [7] signalling
   mechanism.



   [If SCSV is used then insert required boilerplate here, however this
   will also require banning weak cipher suites like export ones, which
   is a bit interesting in that it'll required banning something that in
   theory has already been extinct for 15 years.  A better option is to
   refer to Karthikeyan Bhargavan's rather clever idea on anti-downgrade
   signalling, which is a more reliable mechanism than SCSV].




3.7. Rationale

   This section addresses the question of why this document specifies a
   long-term support profile for TLS 1.2 rather than going to TLS 1.3.
   The reason for this is twofold.  Firstly, we know that TLS, which has
   become more or less the universal substrate for secure communications
   over the Internet, has extremely long deployment times.  Much of this
   information is anecdotal (although there are a large number of these
   anecdotes), however one survey carried out in 2015 and 2016
   illustrates the scope of the problem.  This study found that the most
   frequently-encountered protocol (in terms of use in observed Internet
   connections) was the fifteen-year-old TLS 1.0, with the next most
   common, TLS 1.2, lagging well behind [29].  This was on the public
   Internet, in the non-public arena (where much of the anecdotal
   evidence comes from, since it's not possible to perform a public
   scan) the most common protocol appears to be TLS 1.0 (which includes
   it being hardcoded into specifications like the widely-used DPWS [30]
   and IEC 62351 [31]), with significant numbers of systems still using
   the twenty-year-old SSLv3.



   Given that TLS 1.3 is almost a completely new protocol compared to
   the incremental changes from SSLv3 to TLS 1.2, and that the most
   widely-encountered protocol version from that branch is more than
   fifteen years old, it's likely that TLS 1.3 deployment outside of
   constantly-updated web browsers may take one to two decades, or may
   never happen at all given that a move to TLS 1.2 is an incremental
   change from TLS 1.0 while TLS 1.3 requires the implementation of a
   new protocol.  This document takes the position that if a protocol
   from the TLS 1.0 - 1.2 branch will remain in use for decades to come,
   it should be the best form of TLS 1.2 available.



   The second reason why this document exists has already been mentioned
   above, that while TLS 1.0 - 1.2 are all from the same fairly similar
   family, TLS 1.3 is an almost entirely new protocol.  As such, it
   rolls back the 20 years of experience that we have with all the
   things that can go wrong in TLS and starts again from scratch with a
   new protocol based on bleeding-edge/experimental ideas, mechanisms,
   and algorithms.  When SSLv3 was introduced, it used ideas that were
   10-20 years old (DH, RSA, DES, and so on were all long-established
   algorithms, only SHA-1 was relatively new).  These were mature
   algorithms with large amounts of research published on them, and yet
   we're still fixing issues with them 20 years later (the DH algorithm
   was published in 1976, SSLv3 dates from 1996, and the latest DH
   issue, Logjam, dates from 2015).  With TLS 1.3 we currently have zero
   implementation and deployment experience, which means that we're
   likely to have another 10-20 years of patching holes and fixing
   protocol and implementation problems ahead of us.



   It's for this reason that this specification uses the decades of
   experience we have with SSL and TLS and the huge deployed base of TLS
   1.0 - 1.2 implementations to update TLS 1.2 into a known-good form
   that leverages about 15 years of analysis and 20 years of
   implementation experience, rather than betting on what's almost an
   entirely new protocol based on experimental ideas, mechanisms, and
   algorithms, and hoping that it can be deployed in less than a decade-
   or multi-decade time frame.  The intent is to create a long-term
   stable protocol specification that can be deployed once as a minor
   update to existing TLS implementations, not deployed as a new from-
   scratch implementation and then patched, updated, and fixed
   constantly for the lifetime of the equipment that it's used with.




4. Implementer's Checklist

   This section provides an implementer's checklist of the core features
   that are required for a TLS-LTS implementation.  This doesn't cover
   all of the requirements in this document, merely the minimum ones
   required for an interoperable implementation.  See the remainder of
   this document for the full set of requirements.



[  ] Client sends TLS‑LTS extension and checks for returned extension
     from server.
[  ] Server accepts TLS‑LTS extension and returns it to client.
[  ] Once TLS‑LTS is negotiated, it persists across session
     resumptions.
[  ] Implementation of Encrypt‑then‑MAC.
[  ] Implementation of Extended Master Secret.
[  ] Use of full‑length MAC values rather than their truncated form.
[  ] Use of the full Q value rather than only the x coordinate qx.
[  ] Signing of the full client and server hello rather than only the
     nonces.
[  ] Server sends and client checks the full DH parameter set { p, q,
     g }, not just { p, g }.
[  ] Compression and rehandshake are disabled.




5. Security Considerations

   This document defines a minimal, known-good subset of TLS 1.2 that
   attempts to address all known weaknesses in the protocol, mostly by
   simply removing known-insecure mechanisms but also by updating the
   ones that remain to take advantage of many years of security research
   and implementation experience.  As an example of its efficacy,
   several attacks on standard TLS that emerged after this document was
   first published were countered by the mechanisms specified here, with
   no updates or changes to TLS-LTS implementations being necessary to
   deal with them.




5.1. Security Properties Provided by TLS-LTS

   If implemented correctly, TLS will provide confidentiality and
   integrity protection of traffic, and guarantees liveness of the
   communications.  In some circumstances it also provides
   authentication, see below.  Apart from that, it provides no other
   guarantees.




5.2. Security Properties Not Provided by TLS-LTS

   TLS does not in general protect against spoofing (most commonly
   encountered on the web as phishing).  The one exception is when one
   of the PSK mechanisms, which provides mutual cryptographic
   authentication of client and server, is used.  PKI, a mechanism
   outside of TLS, is expected to provide protection against spoofing,
   but in practice rarely does so.



   Unless implemented very carefully, TLS does not provide strong
   protection against side-channel attacks.  While this document
   specifies countermeasures against timing and oracle side-channels
   that should be employed, these are very difficult to get right and
   not always effective.



   TLS provides no real protection against traffic analysis.  While the
   protocol specification contains provisions for message padding, this
   has little effect on attackers in practice.



   In the presence of implementation flaws (bugs) or hardware or
   software errors, some TLS mechanisms may fail catastrophically.  AES-
   GCM is fatally vulnerable to nonce reuse or repeated counter/IV
   values.  AES-CBC in contrast can be arbitrarily abused, for example
   by setting the IV to the constant value zero, with at most a slight
   degradation in security (reduction to ECB mode) rather than a
   complete loss of security.



   TLS provides no availability guarantees.  In fact since it increases
   susceptibility to failures, either genuine or artificially-induced
   (for example due to an expired certificate that's otherwise fully
   valid), it reduces overall availability.



   TLS provides no guarantees of non-repudiation, access control, or
   authorisation.  These services must be provided by external
   mechanisms.



   In short, TLS provides confidentiality (if the crypto is implemented
   properly and steps are taken to protect against faults and failures),
   integrity protection, and in some limited cases authentication.  It
   does not provide any other service.  If further security services are
   required, these must be provided through additional, external
   mechanisms.



   TLS is a cryptographic protocol, not security pixie dust.  Before
   deciding to employ it, you should evaluate whether it actually
   provides the security services that you think it does.




6. IANA Considerations

   IANA has added the extension code point 26 (0x1A) for the tls_lts
   extension to the TLS ExtensionType values registry as specified in
   TLS [2].




7. Acknowledgements

   The author would like to thank contributors from various embedded
   system vendors for their feedback on this document.




8. References


8.1. Normative References


   [1]
        Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.




   [2]
        Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.




   [3]
        Altman, J., Williams, N., and L. Zhu, "Channel Bindings
              for TLS", RFC 5929, July 2010.




   [4]
        Eastlake 3rd, D., "Transport Layer Security (TLS)
              Extensions", RFC 6066, January 2011.




   [5]
        Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, January 2012.




   [6]
        Gutmann, P., "Encrypt-then-MAC for Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", RFC 7366, September 2014.




   [7]
        Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
              Suite Value (SCSV) for Preventing Protocol Downgrade
              Attacks", RFC 7507, April 2015.




   [8]
        Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
              A., and M. Ray, "Transport Layer Security (TLS) Session
              Hash and Extended Master Secret Extension", RFC 7627,
              September 2015.




   [9]
        NIST, "Digital Signature Standard (DSS)", FIPS 186, July
              2013.




   [10]
       Jonsson, J. and B. Kaliski, "Public-Key Cryptography
              Standards (PKCS) #1: RSA Cryptography Specifications
              Version 2.1", RFC 3447, February 2003.




8.2. Informative References


   [11]
       Gajek, S., Manulis, M., Pereira, O., Sadeghi, A., and J.
              Schwenk, "Universally Composable Security Analysis of
              TLS", Springer-Verlag LNCS 5324, November 2008.




   [12]
       Morrissey, P., Smart, N., and B. Warinschi, "A Modular
              Security Analysis of the TLS Handshake Protocol",
              Springer-Verlag LNCS 5350, December 2008.




   [13]
       Firing, T., "Analysis of the Transport Layer Security
              protocol", June 2010.




   [14]
       Shrimpton, T., "A long answer to the simple question, "Is
              TLS provably secure?"", Workshop on Theory and Practice in
              Cryptography 2012, January 2012.




   [15]
       Brzuska, C., Fischlin, M., Smart, N., Warinschi, B., and
              S. Williams, "Less is more: relaxed yet compatible
              security notions for key exchange", IACR ePrint
              archive 2012/242, April 2012.




   [16]
       Jager, T., Kohlar, F., Schaege, S., and J. Schwenk, "On
              the security of TLS-DHE in the standard model", Springer-
              Verlag LNCS 7417, August 2012.




   [17]
       Meyer, C. and J. Schwenk, "Lessons Learned From Previous
              SSL/TLS Attacks - A Brief Chronology Of Attacks And
              Weaknesses", Cryptology ePrint Archive 2013/049, January
              2013.




   [18]
       Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A.,
              and P. Strub, "Implementing TLS with Verified
              Cryptographic Security", IEEE Security and Privacy 2013,
              May 2013.




   [19]
       Krawczyk, H., Paterson, K., and H. Wee, "On the security
              of the TLS protocol", Springer-Verlag LNCS 8042, August
              2013.




   [20]
       Giesen, F., Kohlar, F., and D. Stebila, "On the security
              of TLS renegotiation", ACM CCS 2013, November 2013.




   [21]
       Wee, H., "On the Security of SSL/TLS", Workshop on Theory
              and Practice in Cryptography 2014, January 2014.




   [22]
       Stebila, D., "Provable security of advanced properties of
              TLS and SSH", Workshop on Theory and Practice in
              Cryptography 2014, January 2014.




   [23]
       Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A.,
              Strub, P., and S. Zanella-Beguelin, "Proving the TLS
              handshake secure (as is)", Springer-Verlag LNCS 8617,
              August 2014.




   [24]
       Bhargavan, K. and M. Kohlweiss, "Triple Handshake: Can
              cryptography, formal methods, and applied security be
              friends?", Workshop on Theory and Practice in
              Cryptography 2015, January 2015.




   [25]
       Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A.,
              Fournet, C., Kohlweiss, M., Pironti, A., Strub, P., and J.
              Zinzindohoue, "A Messy State of the Union: Taming the
              Composite State Machines of TLS", IEEE Symposium on
              Security and Privacy 2015, May 2015.




   [26]
       Dowling, B. and D. Stebila, "Modelling ciphersuite and
              version negotiation in the TLS protocol", Springer-Verlag
              LNCS 9144, June 2015.




   [27]
       Beurdouche, B., Delignat-Lavaud, A., Kobeissi, N.,
              Pironti, A., and K. Bhargavan, "FLEXTLS: A Tool for
              Testing TLS Implementations", Workshop on Offensive
              Technologies 2015, August 2015.




   [28]
       Somorovsky, J., "Systematic Fuzzing and Testing of TLS
              Libraries", Proceedings of the Conference on Computer and
              Communications Security 2016, October 2016.




   [29]
       Holz, R., Amann, J., Mehani, O., Wachs, M., and M. Kaafar,
              "TLS in the Wild: An Internet-Wide Analysis of TLS-Based
              Protocols for Electronic Communication", Network and
              Distributed System Security Symposium 2016, February 2016.




   [30]
       OASIS, "Devices Profile for Web Services Version 1.1",
              OASIS Standard wsdd-dpws-1.1-spec-os, July 2009.




   [31]
       IEC, "Power systems management and associated information
              exchange - Data and communications security - Part 3:
              Communication network and system security - Profiles
              including TCP/IP", IEC Standard 62351-3, 2007.




   [32]
       Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
              Diffie-Hellman groups for Internet Key Exchange (IKE)",
              RFC 3526, May 2003.




   [33]
       Lepinski, M. and S. Kent, "Additional Diffie-Hellman
              Groups for Use with IETF Standards", RFC 5114, January
              2008.




   [34]
       Gillmor, D., "Negotiated Finite Field Diffie-Hellman
              Ephemeral Parameters for Transport Layer Security (TLS)",
              RFC 7919, August 2016.



Author's Address



Peter Gutmann
University of Auckland
Department of Computer Science
University of Auckland
New Zealand



   Email: pgut001@cs.auckland.ac.nz




















draft-harkins-eap-pwd-prime-00 - Improved Extensible Authentication Protocol Using Only a Password 






draft-harkins-eap-pwd-prime-00 - Improved Extensible Authentication Protocol Usi

Index
Back 5
Prev
Next


EMU

Internet-Draft

Intended status: Informational

Expires: January 25, 2020


D. Harkins

HPE

July 24, 2019



Improved Extensible Authentication Protocol Using Only a Password  

draft-harkins-eap-pwd-prime-00.txt


Abstract

   Passwords are a popular form of credential for user authentication.
   EAP-pwd (RFC 5931) is a popular method of performing secure password
   authenticaiton.  EAP-pwd requires a secret element in a finite cyclic
   group, unfortunately the technique it uses to derive this secret is
   open to timing and cache attacks.  This improved version, EAP-pwd',
   uses a different technique to derive the secret element which is
   resistant to timing and cache attacks.



Requirements Language



   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [1].




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on January 25, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  EAP-pwd'
	 2.1.  Secret Element Derivation for ECC


	 2.2.  Secret Element Derivation for FFC


	 2.3.  Fixing the Password Element



	3.  Acknowledgements


	4.  IANA Considerations


	5.  Implementation Considerations


	6.  Security Considerations


	7.  References
	 7.1.  Normative References


	 7.2.  Informative References



	Author's Address




1. Introduction

   EAP-pwd is a popular EAP method due to the fact that it authenticates
   without requiring certificates.  Large federated networks sometimes
   have latency issues with numerous fragmented packets going between
   the EAP client and EAP server, a problem exacerbated by using EAP
   methods that require certificate-based authentication.  EAP-pwd
   obviates this.



   The technique used by EAP-pwd to obtain its secret element is
   susceptible to timing attacks and cache attacks that can partition
   the dictionary enough to successfully determine the password.  Recent
   work in the Crypto Forum Research Group on constant time techniques
   to hash a string into a point on an elliptic curve in constant time
   [2] provides an opportunity to address this.




2. EAP-pwd'

   EAP-pwd' is an EAP method that follows the EAP-pwd specification
   ([3]) in all respects except for the following:



   o  It uses the Type code TBD-1, not 52 which is used by EAP-pwd.



   o  It derives PWE/pwe as defined in Section 2.1 and Section 2.2 for
      ECC and FFC groups, respectively, using a different technique than
      the "hunting and pecking" loop defined in [3].



   o  it defines three new random functions using HKDF instantiated with
      SHA-256, SHA-384, and SHA-512.



   EAP-pwd' MUST be used with one of the random functions defined in
   this document.



   The technique used by EAP-pwd' for deriving PWE/pwe can be
   implemented in constant time and is resistant to the side channel and
   timing attacks that the hunting-and-pecking loop of [3] is
   susceptible to.  Computing the password element in EAP-pwd' is a two-
   step process.  First, a secret element based on the password is
   generated using one of the two new techniques, one for ECC and one
   for FFC.  Next the identities of the EAP server and EAP peer are
   combined with the secret element to create the password element used
   by the key exchange of [3].



   The secret element can be generated at provisioning time or a run-
   time.  Either way, the EAP server will generate the password element
   prior to generation of an EAP-pwd-Commit/Request and the EAP peer
   will generate the password element prior to generation of an EAP-pwd-
   Commit/Response.




2.1. Secret Element Derivation for ECC

   The new technique to hash into an elliptic curve is the "Simplified
   Shallue-van de Woestijne-Ulas Method" from [2].  The operations to
   derive the secret element can be implemented in constant time.



   The Simplified SWU method takes a password as input and generates 2
   values-- x1 and x2-- at least one of which will be the abscissa of a
   point on the curve.  Since this method does not map its input to the
   entire curve it is necessary to use a construct from [5] that uses
   Simplified SWU with two functions that operate as random oracles to
   produce two different points whose sum is the secret point S:



      S := SSWU( h1(m) ) + SSWU( h2(m) )



   Where m is the message to hash, h1() and h2() are random oracles
   based on hash functions, '+' is point addition, and SSWU() is the
   "Simplified SWU" hash-to-curve method.



   EAP-pwd' uses HKDF ([4]) to instantiate the random oracles.  The
   password and a label is passed to HKDF() to produce a password-seed.
   The password seed is then reduced modulo the prime to produce the
   input variable, u, for "Simplified SWU" which generates the first
   intermediate point.  This process is repeated with a different label
   to produce the second intermediate point.  Their sum is S.



   The particular flavor of HKDF is the random function negotiated by
   EAP-pwd'.



   Algorithmically, the process looks like this:



simplified_swu(password) {
    pwd‑seed = HKDF(0^n, password,
                    "EAP‑pwd' Hash to Element P1", olen(p))
    u = (pwd‑seed modulo (p ‑ 2)) + 2

    t = inverse(z^2 * u^4 + z * u^2)
    x1 = (‑b/a) * (1 + t)
    gx1 = x1^3 + a * x1 + b
    x2 = z * u^2 * x1
    gx2 = x2^3 + a * x2 + b

    l = gx1 is a quadratic residue modulo p
    v = CSEL(l, gx1, gx2)
    x = CSEL(l, x1, x2)
    y = sqrt(v)

    l = CEQ(LSB(u), LSB(y))
    P1 = CSEL(l, (x,y), (x, p‑y))


    pwd‑seed = HKDF(0^n, password,
                    "EAP‑pwd' Hash to Element P2", olen(p))
    u = (pwd‑seed modulo (p ‑ 2)) + 2

    t = inverse(z^2 * u^4 + z * u^2)
    x1 = (‑b/a) * (1 + t)
    gx1 = x1^3 + a * x1 + b
    x2 = z * u^2 * x1
    gx2 = x2^3 + a * x2 + b

    l = gx1 is a quadratic residue modulo p
    v = CSEL(l, gx1, gx2)
    x = CSEL(l, x1, x2)
    y = sqrt(v)

    l = CEQ(LSB(u), LSB(y))
    P2 = CSEL(l, (x,y), (x, p‑y))



       S = P1 + P2



    output S
}



               Figure 1: Generation of the ECC Secret Point



   Where:



   o  0^n is a salt of all zeros whose length equals the length of the
      digest of the hash function that instantiates HKDF



   o  p is the prime, q is the order, a and b are part of the equation
      of the curve, and all of these are defined in the domain parameter
      set of the chosen curve



   o  z is a curve-specific parameter derived according to [2] for the
      chosen curve



   o  LSB(x) returns the least significant bit of x



   o  CSEL(x,y,z) operates in constant time and returns y if x is true
      and z otherwise



   o  CEQ(x,y) operates in constant time and returns true if x equals y
      and false otherwise




2.2. Secret Element Derivation for FFC

   The new technique to hash into an FFC group is similar to the
   technique used in [3] but it does so without looping thereby
   obviating a timing attack that can partition the dictionary.



   EAP-pwd' uses HKDF ([4]) to produce a password value which is
   exponentiated to produce a new element of the same order as the
   generator of the group.  This new element is output.



   Algorithmically, the process looks like this:



hash_to_ffc(password) {
    pwd‑value = HKDF(0^n, password,
                     "EAP‑pwd' Hash To Element",
                     olen(p))
    pwd‑value = (pwd‑value modulo (p ‑ 2)) + 2



       s = pwd-value^((p-1)/q) modulo p



    output s
}



               Figure 2: Generation of the FFC Secret Point



   Where:



   o  0^n is a salt of all zeros whose length equals the length of the
      digest of the hash function that instantiates HKDF



   o  p is the prime, and q is the order and are defined in the domain
      parameter set of the chosen group



   The secret element, s, is guaranteed to have an order of either 1 or
   q and the probability that it is 1 is remote enough to ignore.




2.3. Fixing the Password Element

   The secret element derived in Section 2.1 or Section 2.2 is used to
   fix EAP-pwd's Password Element prior to the generation of the EAP-
   pwd-Commit/Request by the EAP server and prior to generation of the
   EAP-pwd-Commit/Response by the EAP peer.  To do this, they use the
   negotiated random function to hash the anti-clogging token from [3]
   and their identities to the length of the order of the negotiated
   group.  This is interpreted as an integer and reduced such that it is
   between 1 and the order of the group, exclusive.  The secret element
   is then operated on by this value, point multiplication for ECC and
   exponentiation for FFC, to produce the Password Element.



   For ECC groups, this process looks like:



   fix_PWE(S) {

       val = HKDF(peer-ID | server-ID, token, "Fixing PWE", olen(p))
       val = val modulo (q - 1) + 1



    PWE = val * S
}



                        Figure 3: Generation of PWE



   Where: p is the prime, and q is the order and are defined in the
   domain parameter set of the chosen group.



   For FFC groups, this process looks like:



   fix_pwe(S) {

       val = HKDF(peer-ID | server-ID, token, "Fixing pwe", olen(p))
       val = val modulo (q - 1) + 1



    pwe = s^val modulo p
}



                        Figure 4: Generation of pwe



   Where: p is the prime, and q is the order and are defined in the
   domain parameter set of the chosen group.




3. Acknowledgements

   The author thanks Hugo Krawczyk and Riad Wahby.




4. IANA Considerations

   IANA is insructed to assign a new EAP method type to EAP-pwd' and
   replace TBD-1 in this document with that value.



   IANA is instructed to assign values from the Random Function registry
   of [3] for the following:



   o  TBD-2: HKDF with SHA256 as defined in [4]



   o  TBD-3: HKDF with SHA384 as defined in [4]



   o  TBD-4: HKDF with SHA512 as defined in [4]



   Replacing TBD-[2-4] with the assigned values.




5. Implementation Considerations

   Implementations SHOULD generate the secret element from Section 2.1
   and Section 2.2 when the password is provisioned and wait to generate
   a session-specific password element when the EAP-pwd' protocol
   begins.



   Implementations SHOULD offer use a random function that provides
   commensurate strength for the curve being negotiated.  Guidance is as
   follows based on the length of the curve's prime, len(p):



   o  HKDF-SHA256 when len(p) <= 256



   o  HKDF-SHA384 when 256 < len(p) <= 384



   o  HKDF-SHA512 when 384 < len(p)



   The technique to generate the secret element on an elliptic curve
   from Section 2.1 only works on Weierstrass curves with an equation of
   y^2 = x^3 + a*x + b, with a != 0 and b != 0.  A different hash-to-
   curve technique implementable in constant time will have to be used
   for other curves. [2] defines curve-specific techniques to obtain a
   secret element for other curves.  In the event that such a technique
   is used, the random function negotiated SHALL be HKDF based on the
   hash function defined in the ciphersuite of the particular hash to
   curve technique.



   [2] describes useful utility functions that can be used to perform
   the operations in Figure 1 in constant time.  In addition, [7]
   describes a useful blinding technique that can be used to determine
   whether number is a quadratic residue modulo a prime in constant
   time.




6. Security Considerations

   The "hunting and pecking" loop done in [3] leaked information on how
   many loops it took to determine the password element.  This allows an
   attacker to partition the dictionary by excluding possible passwords
   which would take a different number of loops.  After a frighteningly
   few such partitionings it becomes possible for the attacker to
   eliminate enough passwords to feasibly launch active attacks to learn
   the password.  [6] describes cache based attacks and timing attacks
   that are possible against [3].



   The Simplified SWU hash-to-curve method with the Brier construct
   allows for the password element to be derived in constant time which
   obviates these attacks.



   For implementations that cannot become completely constant time (due
   to, for instance, limitations in a crypto library) it is possible to
   limit timing attacks by generating the secret element from
   Section 2.1 and Section 2.2 when the password is provisioned and then
   generating the password element at run time.




7. References


7.1. Normative References


   [1]
        Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997,
              <http://xml.resource.org/public/rfc/html/rfc2119.html>.




   [2]
        Fax-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
              C. Wood, "Hashing to Elliptic Curves", draft-irtf-cfrg-
              hash-to-curve A work in progress, July 2019.




   [3]
        Harkins, D. and G. Zorn, "Extensible Authentication
              Protocol (EAP) Authentication Using Only a Password", RFC
              5931, August 2010.




   [4]
        Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/
              RFC5869, May 2010,
              <http://www.rfc-editor.org/info/rfc5869>.




7.2. Informative References


   [5]
        Brier, E., "Efficient Indifferentiable Hashing into
              Ordinary Elliptic Curves", Advances in Cryptology-- Crypto
              2010 Springer-Verlag, 2010.




   [6]
        Vanhoef, M. and E. Ronen, "Dragonblood: A Security
              Analysis of WPA3's SAE Handshake", Cryptology ePrint
              Archive Report 2019, 2019.




   [7]
        Harkins, D., Ed., "Dragonfly Key Exchange", RFC 7664, DOI
              10.17487/RFC7664, November 2015,
              <http://www.rfc-editor.org/info/rfc7664>.



Author's Address



Dan Harkins
Hewlett Packard Enterprise
3333 Scott boulevard
Santa Clara
United States of America



   Email: dharkins@lounge.org































draft-hayashi-dots-dms-offload-00 - DDoS Mitigation Offload: DOTS Applicability and Deployment Considerations 






draft-hayashi-dots-dms-offload-00 - DDoS Mitigation Offload: DOTS Applicability 

Index
Back 5
Prev
Next


DOTS

Internet-Draft

Intended status: Informational

Expires: January 21, 2020








Y. Hayashi

NTT

K. Nishizuka

NTT Communications

M. Boucadair

Orange

July 20, 2019

DDoS Mitigation Offload: DOTS Applicability and Deployment Considerations  

draft-hayashi-dots-dms-offload-00


Abstract

   This document describes a deployment scenario to assess the
   applicability of DOTS protocols together with a discussion on DOTS
   deployment considerations of such scenario.  This scenario assumes
   that a DMS (DDoS Mitigation System) whose utilization rate is high
   sends its blocked traffic information to an orchestrator using DOTS
   protocols, then the orchestrator requests forwarding nodes such as
   routers to filter the traffic.  Doing so enables service providers to
   mitigate the DDoS attack traffic automatically while ensuring
   interoperability and distributed filter enforcement.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on January 21, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  The Problem


	4.  DDoS Mitigation Offload Scenario


	5.  DOTS Deployment Considerations
	 5.1.  DOTS Signaling via Out-of-band Link
	  5.1.1.  Example of using Data Channel



	 5.2.  DOTS Signaling via In-band Link
	  5.2.1.  Example of using Signal Channel


	  5.2.2.  Example of using Signal Channel Call Home


	  5.2.3.  Data Channel and Signal Channel Controlling Filtering





	6.  Security Considerations


	7.  IANA Considerations


	8.  Acknowledgement


	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Authors' Addresses




1. Introduction

   Volume-based distributed Denial-of-Service (DDoS) attacks such as DNS
   amplification attacks are critical threats to be handled by service
   providers.  When such attacks occur, service providers have to
   mitigate them immediately to protect or recover their services.



   Therefore, for the service providers to immediately protect their
   network services from DDoS attacks, DDoS mitigation needs to be
   automated.  To automate DDoS attack mitigation, it is desirable that
   multi-vendor elements involved in DDoS attack detection and
   mitigation collaborate and support standard interfaces to
   communicate.



   DDoS Open Threat Signaling (DOTS) is a set of protocols for real-time
   signaling, threat-handling requests, and data filtering between the
   multi-vendor elements [I-D.ietf-dots-signal-channel]
   [I-D.ietf-dots-signal-call-home]
   [I-D.ietf-dots-signal-filter-control] [I-D.ietf-dots-data-channel].
   This document describes an automated DDoS Mitigation offload scenario
   inherited from the DDoS orchestration scenario
   [I-D.ietf-dots-use-cases], which ambitions to enable cost-effective
   DDoS Mitigation.  Furthermore, this document describes deployment
   consideration for network operators who carry out this scenario using
   DOTS protocols in their network.



   This document aims to assess to what extent DOTS protocols can be
   used to provide the intended functionality and identify any gaps.




2. Terminology

   The readers should be familiar with the terms defined in [RFC8612]
   [I-D.ietf-dots-use-cases]



   In addition, this document makes use of the following terms:



Mitigation offload:  Getting rid of a DMS's mitigation action and
   assigning the action to another entity when the utilization rate
   of the DMS reaches a given threshold.  How such threshold is set
   is deployment‑specific.

Utilization rate:  A scale to measure load of an entity such as link
   utilization rate or CPU utilization rate.




3. The Problem

   In general, DDoS countermeasures are divided into detection and
   filtering.  Detection is technically challenging given the dynamic of
   attacks and sophisticated attack strategies.  DDoS Mitigation System
   (DMS) can detect attack traffic based on a specific technology
   (provided and supposed to be updated and maintained by vendors to
   detect complex attacks), so service providers can increase DDoS
   countermeasure level by deploying the DMS in their network.



   However, the number/capacity of DMS instances that can be deployed in
   a service providers network is limited due to equipment cost and
   dimensioning matters.  Thus, DMS's utilization rate can reach its
   maximum capacity faster when the volume of DDoS attacks is enormous.
   When the rate reaches maximum capacity, the mitigation strategy needs
   to offload mitigation actions from the DMS to cost-effective
   forwarding nodes such as routers.




4. DDoS Mitigation Offload Scenario

   This section describes offloading mitigation actions from DMS whose
   utilization rate is high to cost-effective forwarding node using DOTS
   protocols.  This section does not consider deployments where the
   network orchestrator and DMS are co-located.



   Figures 1 and 2 show a sample component diagram and a sequence
   diagram of the deployment scenario, respectively.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑+
|              |        | DDoS      |+
| Orchestrator |<‑‑‑‑‑‑‑| mitigation||
|              |S DOTS C| systems   ||
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑+|
       |                  +‑‑‑‑‑‑‑‑‑‑+
       | e.g., BGP, BGP Flowspec
       |
       |  +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
       +‑>| Forwarding nodes |+
          +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+|
            +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
    * C is for DOTS Client function
    * S is for DOTS Server function



      Figure 1: Component Diagram of DDoS Mitigation Offload Scenario



   The component diagram shown in Figure 1 differs from that of DDoS
   Orchestration scenario in [I-D.ietf-dots-use-cases] in some respects.
   First, the DMS embeds a DOTS client to send DOTS requests to the
   orchestrator.  Second, the orchestrator sends a request to underlying
   forwarding nodes to filter the attack traffic.



+‑‑‑‑‑‑‑‑‑‑‑‑+          +‑‑‑‑‑‑‑‑‑‑+   +‑‑‑‑‑‑‑‑‑‑‑‑+
|            |          |DDoS      |+  | Forwarding |+
|Orchestrator|          |Mitigation||  | Nodes      ||
|            |          |Systems   ||  |            ||
+‑‑‑‑‑‑‑‑‑‑‑‑+          +‑‑‑‑‑‑‑‑‑‑+|  +‑‑‑‑‑‑‑‑‑‑‑‑+|
     |                   +‑‑‑‑‑‑‑‑‑‑+   +‑‑‑‑‑‑‑‑‑‑‑‑+
     |                         |              |
     | DOTS Request            |              |
     |S<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑C|              |
     |                         |              |
     | e.g., BGP, BGP Flowspec |              |
     | Filter Attack Traffic   |              |
     |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑>|
     |                         |              |
     * C is for DOTS Client function
     * S is for DOTS Server function



      Figure 2: Sequence Diagram of DDoS Mitigation Offload Scenario



   In this scenario, it is assumed that volume based attack already hits
   a network and attack traffic is detected and blocked by a DMS in the
   network.  When the volume-based attack becomes intense, DMS's
   utilization rate can reach a certain threshold (e.g., maximum
   capacity).  Then, the DMS sends a DOTS request as offload request to
   the orchestrator with the actions to enforce on the traffic.  After
   that, the orchestrator requests the forwarding nodes to filter attack
   traffic by dissemination of flow specification rules protocols such
   as BGP Flowspec [RFC5575] on the basis of the blocked traffic
   information.



   This schenario is divided into two cases based on type of link
   between the DMS and the orchestrator: "out-of-band case" and "in-band
   case".



   "Out-of-band case" is that the DMS sends a DOTS request to the
   orchestrator with blocked traffic information by the DMS via out-of-
   band link.  The link is not congested when it is under volume attack-
   time, so the link can convey a lot of information.



   On the other hand, "in-band case" is that the DMS sends a mitigation
   request to the orchestrator with blocked traffic information by the
   DMS via in-band channel.  The link can be congested when it is under
   volume attack-time, so the link can convey limited information.




5. DOTS Deployment Considerations

   This section describes deployment considerations: what type of DOTS
   protocol can be used and what type of information can be conveyed and
   effective by DOTS protocol in this scenario.  Figure 3 shows overview
   of the DOTS signaling method and conveyed information for the out-of-
   band case and in-band case.



   The volume of information should be considered carefully when DOTS
   protocol is used in the in-band case.  What type of information can
   be conveyed by DMS relays on attack type detected by the DMS:
   reflection attack or non-reflection attack.  When it is under non-
   reflection attack, src_ip and src_port information cannot be conveyed
   because attackers usually randomize the parameters so number of its
   become enormous.  On the other hand, when it is under reflection
   attack, dst_port information cannot be conveyed because attackers
   usually randomize src_port so the number of dst_port of attack
   packets reached to victim become enormous.  Furthermore, when it is
   under reflection attack, src_ip information cannot be conveyed when
   number of reflector is enormous.



+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|             |        Reflection Attack          |  Non‑Reflection  |
|             |                                   |     Attack       |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Out‑of‑band | Attack Time                                          |
|     case    | Method : Data Channel                                |
|             | Info : src_ip, src_port, dst_ip, dst_port, protocol  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|   In‑band   | Attack Time                       | Attack Time      |
|    case     | (Number of reflector is small)    | Method : Signal  |
|             | Method : Signal Channel with src  |          Channel |
|             | Info : src_ip, src_port,          | Info : dst_ip,   |
|             |        dst_ip, protocol           |        dst_port, |
|             +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        protocol  |
|             | Attack Time                       |                  |
|             | (Number of reflector is enormous) |                  |
|             | Method : Signal Channel with src  |                  |
|             | Info : src_port, dst_ip, protocol |                  |
|             +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|             | Peace Time                        | Peace Time       |
|             | Method : Data Channel             | Method : Data    |
|             | Info : src_port,                  |          Channel |
|             |        dst_ip, protocol           | Info : dst_ip,   |
|             |                                   |        dst_port, |
|             |                                   |        protocol  |
|             |                                   |                  |
|             | Attack Time                       | Attack Time      |
|             | Method : Signal Channel           | Method : Signal  |
|             |          Control Filtering        |          Channel |
|             | Info : ACL name                   | Control Filtering|
|             |                                   | Info : ACL name  |
|‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




            Figure 3: Signaling Method and Conveyed Information



   About offloading DMS against reflection attack, the current signal
   channel [I-D.ietf-dots-signal-channel] is insufficient in terms of
   conveying source information.  On the other hand, both signal channel
   extensions defined in [I-D.ietf-dots-signal-call-home] (called,
   source-* clauses hereafter) and the filtering control extensions
   [I-D.ietf-dots-signal-filter-control] allow for sending source
   information.



   Using src-* attributes defined in [I-D.ietf-dots-signal-call-home]
   enables signal channel to convey src_ip information and src_port
   information in attack time.  On the other hand, filtering control
   extensions can activate filtering rule configured in peacetime.
   Filtering rule for well-known port numbers abused for reflection
   attack can be configured to DOTS server in peacetime.  However,
   filtering rule for reflector's IP address in attack time can't be
   known in peace time.  So filtering control expansion can convey
   src_port information but can't send src_ip information against
   reflection attack.  About sending source information in the DMS
   offload s scenario, the capability of the call home extension
   encompasses the capabilities of the filtering control extension.



   The following sub-sections describes example of use DOTS protocols in
   each case.




5.1. DOTS Signaling via Out-of-band Link

   In this case, the link is not congested when it is under volume
   attack-time, so DOTS data channel [I-D.ietf-dots-data-channel] is
   suitable because DOTS data channel has capability of conveying the
   drop-listed filtering rules including (src_ip, src_port, dst_ip,
   dst_port, protocol) information (and other actions such as 'rate-
   limit').




5.1.1. Example of using Data Channel

   The procedure to use DOTS Data Channel in such case is as follows:



   o  The DMS generates a list of flow (src_ip, src_port, dst_ip,
      dst_port, protocol) information which the DMS is blocking/rate-
      limiting and wants to offload.



   o  The DMS creates data-channel ACL such as shown figure 4.



   o  The DMS sends the data-channel ACL to the orchestrator.



{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [
      {
        "name": "DMS_Offload_scenario_ACL",
        "type": "ipv4‑acl‑type",
        "activation‑type": "immediate",
        "aces": {
          "ace": [
            {
              "name": "DMS_Offload_scenario_ACE_00",
              "matches": {
                "ipv4": {
                  "destination‑ipv4‑network": "192.0.2.2/32",
                  "source‑ipv4‑network": "203.0.113.2/32",

                  "protocol":17
                },
                "udp": {
                  "source‑port": {
                    "operator": "eq",
                    "port": 53
                  }
                }
              },
              "actions": {
                "forwarding": "drop"
              }
            },
            {
              "name": "DMS_Offload_scenario_ACE_01",
              "matches": {
                "ipv4": {
                  "destination‑ipv4‑network": "192.0.2.2/32",
                  "source‑ipv4‑network": "203.0.113.3/32",
                  "protocol":17
                },
                "udp": {
                  "source‑port": {
                    "operator": "eq",
                    "port": 53
                  }
                }
              },
              "actions": {
                "forwarding": "drop"
              }
            }
          ]
        }
      }
    ]
  }
}



    Figure 4: JSON Example of ACL including (src_ip, src_port, dst_ip,

       dst_port, protocol) information conveyed by DOTS data channel




5.2. DOTS Signaling via In-band Link

   In this case, the link can be congested when it is under volume
   attack-time, so DOTS data channel can't be used to convey the drop-
   listed filtering rules as blocked traffic information [Interop].  On
   the other hand, DOTS signal channel [I-D.ietf-dots-signal-channel],
   the source-* clauses defined in [I-D.ietf-dots-signal-call-home] and
   filtering control [I-D.ietf-dots-signal-filter-control] can be used
   to communicate the policies to the orchestrator.




5.2.1. Example of using Signal Channel

   DOTS signal channel has capability to send (dst_ip, dst_port,
   protocol) information.  The procedure to use DOTS Signal Channel in
   this case is as follows:



   o  The DMS generates a list of (dst_ip, dst_port, protocol)
      information which the DMS is blocking/rate-limiting and wants to
      offload.



   o  The DMS creates mitigation request such as shown figure 5.



   o  The DMS sends the mitigation requests to the orchestrator.



{
  "ietf‑dots‑signal‑channel:mitigation‑scope": {
    "scope": [
      {
        "target‑prefix": [
        "192.0.2.2/32"
        ],
        "target‑port‑range": [
          {
           "lower‑port": 80
          },
          {
           "lower‑port": 443
          }
        ],
        "target‑protocol": [
          6
        ],
        "lifetime": 3600
      },
      {
        "target‑prefix": [
        "192.0.2.2/32"
        ],
        "target‑port‑range": [
          {
           "lower‑port": 53
          },
          {
           "lower‑port": 123
          }
        ],
        "target‑protocol": [
          17
        ],
        "lifetime": 3600
      }
    ]
  }
}



       Figure 5: JSON Example of offload request including (dst_ip,
      dst_port, protocol) information conveyed by DOTS signal channel




5.2.2. Example of using Signal Channel Call Home

   [I-D.ietf-dots-signal-call-home] extends the DOTS signal channel to
   convey (dst_ip, dst_port, src_ip, src_port, protocol) information in
   a mitigation request.  A mitigation request can convey src_ip
   information when the number of reflectors detected by a DMS is small.
   The procedure to use DOTS src-* clauses is as follows:



   o  The DMS generates a list of (dst_ip, src_ip, src_port, protocol)
      information which the DMS is blocking/rate-limiting and wants to
      offload.



   o  The DMS creates mitigation request such as shown figure 6.



   o  The DMS sends the mitigation requests to the orchestrator.



{
  "ietf‑dots‑signal‑channel:mitigation‑scope": {
    "scope": [
      {
        "target‑prefix": [
        "192.0.2.2/32"
        ],
        "target‑protocol": [
          6
        ],
         "ietf‑dots‑call‑home:source‑prefix": [
           "203.0.113.2/32"
         ],
         "ietf‑dots‑call‑home:source‑port‑range" : [
         {
           "ietf‑dots‑call‑home:lower‑port": 53
         },
         {
          "ietf‑dots‑call‑home:lower‑port": 123
         }
         ],
        "lifetime": 3600
      },
      {
        "target‑prefix": [
        "192.0.2.2/32"
        ],
        "target‑protocol": [
          6
        ],
         "ietf‑dots‑call‑home:source‑prefix": [
         "203.0.113.3/32"

         ],
         "ietf‑dots‑call‑home:source‑port‑range" : [
         {
          "ietf‑dots‑call‑home:lower‑port": 19
         },
         {
          "ietf‑dots‑call‑home:lower‑port": 11211
         }
         ],
        "lifetime": 3600
      }
    ]
  }
}



   Figure 6: JSON Example of offload request including (dst_ip, src_ip,

      src_port, protocol) information conveyed by DOTS signal channel



   On the other hand, a mitigation request cannot convey src_ip
   information when number of reflector detected by DMS exceeds a
   certain number (cannot fit within one single request).  The procedure
   to use the DOTS signal channel in the situation is as follows:



   o  The DMS generates a list of (dst_ip, src_port, protocol)
      information which the DMS is blocking/rate-limiting and wants to
      offload.



   o  The DMS creates mitigation request such as shown in Figure 7.



   o  The DMS sends the mitigation requests to the orchestrator.



{
  "ietf‑dots‑signal‑channel:mitigation‑scope": {
    "scope": [
      {
        "target‑prefix": [
        "192.0.2.2/32"
        ],
        "target‑protocol": [
          6
        ],
         "ietf‑dots‑call‑home:source‑port‑range" : [
         {
          "ietf‑dots‑call‑home:lower‑port": 53
         },
         {
          "ietf‑dots‑call‑home:lower‑port": 123
         },
         {
          "ietf‑dots‑call‑home:lower‑port": 19
         },
         {
          "ietf‑dots‑call‑home:lower‑port": 11211
         }
         ],
        "lifetime": 3600
      }
    ]
  }
}



       Figure 7: JSON Example of offload request including (dst_ip,
      src_port, protocol) information conveyed by DOTS signal channel




5.2.3. Data Channel and Signal Channel Controlling Filtering

   DOTS signal channel controlling filtering
   [I-D.ietf-dots-signal-filter-control] has capability to activate or
   deactivate ACL configured by Data Channel.  Against reflection
   attack, DOTS client configures ACL including (dst_ip, src_port,
   protocol) information in peace time by Data Channel, and DOTS client
   activate the ACL in attack time by Signal Channel controlling
   filtering.  Note that the src_port is well known port abused to carry
   out reflection attack by attacker.  The procedure to use DOTS data
   channel and signal channel controlling filtering is as follows:



   o  In peace time, the DMS sends the ACL including (dst_ip, src_port,
      protocol) information such as figure 8.



   o  In attack time, the DMS generates a list of (dst_ip, src_port,
      protocol) which the DMS is blocking/rate-limiting and wants to
      offload.  After that, the DMS sends the mitigation requests to
      activate corresponding ACL configured to the orchestrator such as
      figure 9.



{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [
      {
        "name": "DMS_Offload_scenario_ACL",
        "type": "ipv4‑acl‑type",
        "activation‑type": "activate‑when‑mitigating",
        "aces": {
          "ace": [
            {
              "name": "DMS_Offload_scenario_ACL_DNS_amp",
              "matches": {
                "ipv4": {
                  "destination‑ipv4‑network": "192.0.2.2/32",
                  "protocol":17
                },
                "udp": {
                  "source‑port": {
                    "operator": "eq",
                    "port": 53
                  }
                }
              },
              "actions": {
                "forwarding": "drop"
              }
            },
            {
              "name": "DMS_Offload_scenario_ACL_NTP_amp",
              "matches": {
                "ipv4": {
                  "destination‑ipv4‑network": "192.0.2.2/32",
                  "protocol":17
                },
                "udp": {
                  "source‑port": {
                    "operator": "eq",
                    "port": 123
                  }
                }
              },
              "actions": {

                "forwarding": "drop"
              }
            }
          ]
        }
      }
    ]
  }
}



   Figure 8: JSON Example of ACL including (dst_ip, src_port, protocol)

                 information conveyed by DOTS data channel



{
  "ietf‑dots‑signal‑channel:mitigation‑scope": {
    "scope": [
      {
        "target‑prefix": [
           "192.0.2.2/32"
         ],
         "target‑protocol": [
           17
         ],
         "acl‑list": [
           {
             "acl‑name": "DMS_Offload_scenario_ACL_DNS_amp",
             "activation‑type": "immediate"
           }
        "lifetime": 3600
      }
    ]
  }
}



   Figure 9: JSON Example of including acl name conveyed by DOTS signal

                                  channel



   Against non-reflection attack, DOTS client configures ACL including
   (dst_ip, dst_port, protocol) information in peace time by Data
   Channel, and DOTS client activate the 'acl' in attack time by Signal
   Channel.  Note that the dst_port is well known port abused to carry
   out non-reclection attack by attacker.  The procedure to use DOTS
   data channel and signal channel controlling filtering is as follows:



   o  In peace time, the DMS sends the ACL including (dst_ip, dst_port,
      protocol) information such as figure 10.



   o  In attack time, the DMS generates a list of (dst_ip, dst_port,
      protocol) which the DMS is blocking/rate-limiting and wants to
      offload.  After that, the DMS sends the mitigation requests to
      activate corresponding ACL configured to the orchestrator such as
      figure 11.



{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [
      {
        "name": "DMS_Offload_scenario_ACL",
        "type": "ipv4‑acl‑type",
        "activation‑type": "activate‑when‑mitigating",
        "aces": {
          "ace": [
            {
              "name": "DMS_Offload_scenario_HTTP_GET_Flooding",
              "matches": {
                "ipv4": {
                  "destination‑ipv4‑network": "192.0.2.2/32",
                  "protocol":6
                },
                "tcp": {
                  "destination‑port": {
                    "operator": "eq",
                    "port": 80
                  }
                }
              },
              "actions": {
                "forwarding": "drop"
              }
            },
            {
              "name": "DMS_Offload_scenario_SYN_Flooding_FTP",
              "matches": {
                "ipv4": {
                  "destination‑ipv4‑network": "192.0.2.2/32",
                  "protocol":6
                },
                "tcp": {
                  "destination‑port": {
                    "operator": "eq",
                    "port": 20
                  }
                }
              },
              "actions": {

                "forwarding": "drop"
              }
            }
          ]
        }
      }
    ]
  }
}



   Figure 10: JSON Example of ACL including (dst_ip, dst_port, protocol)

                 information conveyed by DOTS data channel



{
  "ietf‑dots‑signal‑channel:mitigation‑scope": {
    "scope": [
      {
        "target‑prefix": [
           "192.0.2.2/32"
         ],
         "target‑protocol": [
           6
         ],
         "acl‑list": [
           {
             "acl‑name": "DMS_Offload_scenario_HTTP_GET_Flooding",
             "activation‑type": "immediate"
           }
        "lifetime": 3600
      }
    ]
  }
}



   Figure 11: JSON Example of including ACL name conveyed by DOTS signal

                                  channel




6. Security Considerations

   Security considerations discussed in [I-D.ietf-dots-data-channel] and
   [I-D.ietf-dots-signal-channel] are to be taken into account.




7. IANA Considerations

   This document does not require any action from IANA.




8. Acknowledgement

   Thanks to Tirumaleswar Reddy, Shunsuke Homma, Pan Wei, and Xia Liang
   for the comments.



   Thanks to Koichi Sakurada for demonstrating proof of concepts of this
   proposal .




9. References


9.1. Normative References


   [I-D.ietf-dots-data-channel]

              Boucadair, M. and R. K, "Distributed Denial-of-Service
              Open Threat Signaling (DOTS) Data Channel Specification",
              draft-ietf-dots-data-channel-30 (work in progress), July
              2019.




   [I-D.ietf-dots-signal-call-home]

              K, R., Boucadair, M., and J. Shallow, "Distributed Denial-
              of-Service Open Threat Signaling (DOTS) Signal Channel
              Call Home", draft-ietf-dots-signal-call-home-03 (work in
              progress), July 2019.




   [I-D.ietf-dots-signal-channel]

              K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
              Teague, "Distributed Denial-of-Service Open Threat
              Signaling (DOTS) Signal Channel Specification", draft-
              ietf-dots-signal-channel-35 (work in progress), July 2019.




   [I-D.ietf-dots-signal-filter-control]

              Nishizuka, K., Boucadair, M., K, R., and T. Nagata,
              "Controlling Filtering Rules Using Distributed Denial-of-
              Service Open Threat Signaling (DOTS) Signal Channel",
              draft-ietf-dots-signal-filter-control-01 (work in
              progress), May 2019.




9.2. Informative References


   [I-D.ietf-dots-use-cases]

              Dobbins, R., Migault, D., Fouant, S., Moskowitz, R.,
              Teague, N., Xia, L., and K. Nishizuka, "Use cases for DDoS
              Open Threat Signaling", draft-ietf-dots-use-cases-18 (work
              in progress), July 2019.




   [Interop]
  Nishizuka, K., Shallow, J., and L. Xia , "DOTS Interop
              test report, IETF 103 Hackathon", November 2018,
              <https://datatracker.ietf.org/meeting/103/materials/
              slides-103-dots-interop-report-from-ietf-103-hackathon-
              00>.




   [RFC4271]
  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <https://www.rfc-editor.org/info/rfc4271>.




   [RFC5575]
  Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
              and D. McPherson, "Dissemination of Flow Specification
              Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
              <https://www.rfc-editor.org/info/rfc5575>.




   [RFC8612]
  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
              Threat Signaling (DOTS) Requirements", RFC 8612,
              DOI 10.17487/RFC8612, May 2019,
              <https://www.rfc-editor.org/info/rfc8612>.



Authors' Addresses



Yuhei Hayashi
NTT
3‑9‑11, Midori‑cho
Musashino‑shi, Tokyo  180‑8585
Japan



   Email: yuuhei.hayashi@gmail.com




Kaname Nishizuka
NTT Communications
GranPark 16F 3‑4‑1 Shibaura, Minato‑ku
Tokyo  108‑8118
Japan



   Email: kaname@nttv6.jp




Mohamed Boucadair
Orange
Rennes  35000
France



   Email: mohamed.boucadair@orange.com







draft-hopps-ipsecme-iptfs-01 - IP Traffic Flow Security 






draft-hopps-ipsecme-iptfs-01 - IP Traffic Flow Security 

Index
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: December 7, 2019


C. Hopps

LabN Consulting, L.L.C.

June 5, 2019



IP Traffic Flow Security  

draft-hopps-ipsecme-iptfs-01


Abstract

   This document describes a mechanism to enhance IPsec traffic flow
   security by adding traffic flow confidentiality to encrypted IP
   encapsulated traffic.  Traffic flow confidentiality is provided by
   obscuring the size and frequency of IP traffic using a fixed-sized,
   constant-send-rate IPsec tunnel.  The solution allows for congestion
   control as well.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on December 7, 2019.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology & Concepts



	2.  The IP-TFS Tunnel
	 2.1.  Tunnel Content


	 2.2.  IPTFS_PROTOCOL Payload Content
	  2.2.1.  Data Blocks


	  2.2.2.  No Implicit Padding Required


	  2.2.3.  Empty Payload


	  2.2.4.  IP Header Value Mapping



	 2.3.  Exclusive SA Use


	 2.4.  Initiating IP-TFS Operation On The SA


	 2.5.  Modes of Operation
	  2.5.1.  Non-Congestion Controlled Mode


	  2.5.2.  Congestion Controlled Mode





	3.  Congestion Information
	 3.1.  ECN Support



	4.  Configuration
	 4.1.  Bandwidth


	 4.2.  Fixed Packet Size


	 4.3.  Congestion Control



	5.  IKEv2
	 5.1.  TFS Type Transform Type


	 5.2.  IPTFS_REQUIREMENTS Status Notification



	6.  Packet and Data Formats
	 6.1.  ESP IP-TFS Payload
	  6.1.1.  Non-Congestion Control IPTFS_PROTOCOL Payload Format


	  6.1.2.  Congestion Control IPTFS_PROTOCOL Payload Format


	  6.1.3.  Data Blocks





	7.  IANA Considerations
	 7.1.  IPTFS_PROTOCOL Type


	 7.2.  IKEv2 Transform Type TFS Type


	 7.3.  TFS Type Transform IDs Registry


	 7.4.  IPTFS_REQUIREMENTS Notify Message Status Type



	8.  Security Considerations


	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Appendix A.  Example Of An Encapsulated IP Packet Flow


	Appendix B.  A Send and Loss Event Rate Calculation


	Appendix C.  Comparisons of IP-TFS
	 C.1.  Comparing Overhead
	  C.1.1.  IP-TFS Overhead


	  C.1.2.  ESP with Padding Overhead



	 C.2.  Overhead Comparison


	 C.3.  Comparing Available Bandwidth
	  C.3.1.  Ethernet





	Appendix D.  Acknowledgements


	Appendix E.  Contributors


	Author's Address




1. Introduction

   Traffic Analysis ([RFC4301], [AppCrypt]) is the act of extracting
   information about data being sent through a network.  While one may
   directly obscure the data through the use of encryption [RFC4303],
   the traffic pattern itself exposes information due to variations in
   it's shape and timing ([I-D.iab-wire-image], [AppCrypt]).  Hiding the
   size and frequency of traffic is referred to as Traffic Flow
   Confidentiality (TFC) per [RFC4303].



   [RFC4303] provides for TFC by allowing padding to be added to
   encrypted IP packets and allowing for transmission of all-pad packets
   (indicated using protocol 59).  This method has the major limitation
   that it can significantly under-utilize the available bandwidth.



   The IP-TFS solution provides for full TFC without the aforementioned
   bandwidth limitation.  To do this, we use a constant-send-rate IPsec
   [RFC4303] tunnel with fixed-sized encapsulating packets; however,
   these fixed-sized packets can contain partial, whole or multiple IP
   packets to maximize the bandwidth of the tunnel.



   For a comparison of the overhead of IP-TFS with the RFC4303
   prescribed TFC solution see Appendix C.



   Additionally, IP-TFS provides for dealing with network congestion
   [RFC2914].  This is important for when the IP-TFS user is not in full
   control of the domain through which the IP-TFS tunnel path flows.




1.1. Terminology & Concepts

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119] [RFC8174] when, and only when, they appear in all capitals,
   as shown here.



   This document assumes familiarity with IP security concepts described
   in [RFC4301].




2. The IP-TFS Tunnel

   As mentioned in Section 1 IP-TFS utilizes an IPsec [RFC4303] tunnel
   (SA) as it's transport.  To provide for full TFC we send fixed-sized
   encapsulating packets at a constant rate on the tunnel.



   The primary input to the tunnel algorithm is the requested bandwidth
   of the tunnel.  Two values are then required to provide for this
   bandwidth, the fixed size of the encapsulating packets, and rate at
   which to send them.



   The fixed packet size may either be specified manually or can be
   determined through the use of Path MTU discovery [RFC1191] and
   [RFC8201].



   Given the encapsulating packet size and the requested tunnel
   bandwidth, the corresponding packet send rate can be calculated.  The
   packet send rate is the requested bandwidth divided by the payload
   size of the encapsulating packet.



   The egress of the IP-TFS tunnel MUST allow for, and expect the
   ingress (sending) side of the IP-TFS tunnel to vary the size and rate
   of sent encapsulating packets, unless constrained by other policy.




2.1. Tunnel Content

   As previously mentioned, one issue with the TFC padding solution in
   [RFC4303] is the large amount of wasted bandwidth as only one IP
   packet can be sent per encapsulating packet.  In order to maximize
   bandwidth IP-TFS breaks this one-to-one association.



   With IP-TFS we aggregate as well as fragment the inner IP traffic
   flow into fixed-sized encapsulating IPsec tunnel packets.  We only
   pad the tunnel packets if there is no data available to be sent at
   the time of tunnel packet transmission, or if fragmentation has been
   disabled by the receiver.



   In order to do this we use a new Encapsulating Security Payload (ESP,
   [RFC4303]) payload type which is the new IP protocol number
   IPTFS_PROTOCOL (TBD1).




2.2. IPTFS_PROTOCOL Payload Content

   The IPTFS_PROTOCOL ESP payload is comprised a 4 or 16 octet header
   followed by either a partial, a full or multiple partial or full data
   blocks.  The following diagram illustrates the IPTFS_PROTOCOL ESP
   payload within the ESP packet.  See Section 6.1 for the exact formats
   of the IPTFS_PROTOCOL payload.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Outer Encapsulating Header ...                                .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. ESP Header...                                                 .
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|               ...            :           BlockOffset          |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
:                  [Optional Congestion Info]                   :
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|       DataBlocks ...                                          ~
~                                                               ~
~                                                               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
. ESP Trailer...                                                .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



                Figure 1: Layout of an IP-TFS IPsec Packet



   The "BlockOffset" value is either zero or some offset into or past
   the end of the "DataBlocks" data.



   If the "BlockOffset" value is zero it means that the "DataBlocks"
   data begins with a new data block.



   Conversely, if the "BlockOffset" value is non-zero it points to the
   start of the new data block, and the initial "DataBlocks" data
   belongs to a previous data block that is still being re-assembled.



   The "BlockOffset" can point past the end of the "DataBlocks" data
   which indicates that the next data block occurs in a subsequent
   encapsulating packet.



   Having the "BlockOffset" always point at the next available data
   block allows for quick recovery with minimal inner packet loss in the
   presence of outer encapsulating packet loss.



   An example IP-TFS packet flow can be found in Appendix A.




2.2.1. Data Blocks

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Type  | rest of IPv4, IPv6 or pad.
+‑‑‑‑‑‑‑‑



                   Figure 2: Layout of IP-TFS data block



   A data block is defined by a 4-bit type code followed by the data
   block data.  The type values have been carefully chosen to coincide
   with the IPv4/IPv6 version field values so that no per-data block
   type overhead is required to encapsulate an IP packet.  Likewise, the
   length of the data block is extracted from the encapsulated IPv4 or
   IPv6 packet's length field.




2.2.2. No Implicit Padding Required

   It's worth noting that there is never a need for an implicit pad at
   the end of an encapsulating packet.  Even when the start of a data
   block occurs near the end of a encapsulating packet such that there
   is no room for the length field of the encapsulated header to be
   included in the current encapsulating packet, the fact that the
   length comes at a known location and is guaranteed to be present is
   enough to fetch the length field from the subsequent encapsulating
   packet payload.  Only when there is no data to encapsulate is padding
   required, and then an explicit "Pad Data Block" would be used to
   identify the padding.




2.2.3. Empty Payload

   In order to support reporting of congestion control information
   (described later) on a non-IP-TFS enabled SA, IP-TFS allows for the
   sending of an IP-TFS payload with no data blocks (i.e., the ESP
   payload length is equal to the IP-TFS header length).  This special
   payload is called an empty payload.




2.2.4. IP Header Value Mapping

   [RFC4301] provides some direction on when and how to map various
   values from an inner IP header to the outer encapsulating header,
   namely the Don't-Fragment (DF) bit ([RFC0791] and [RFC8200]), the
   Differentiated Services (DS) field [RFC2474] and the Explicit
   Congestion Notification (ECN) field [RFC3168].  Unlike [RFC4301] with
   IP-TFS we may and often will be encapsulating more than 1 IP packet
   per ESP packet.  To deal with this we further restrict these
   mappings.  In particular we never map the inner DF bit as it is
   unrelated to the IP-TFS tunnel functionality; we never IP fragment
   the inner packets and the inner packets will not affect the
   fragmentation of the outer encapsulation packets.  Likewise, the ECN
   value need not be mapped as any congestion related to the constant-
   send-rate IP-TFS tunnel is unrelated (by design!) to the inner
   traffic flow.  Finally, by default the DS field SHOULD NOT be copied
   although an implementation MAY choose to allow for configuration to
   override this behavior.  An implementation SHOULD also allow the DS
   value to be set by configuration.




2.3. Exclusive SA Use

   It is not the intention of this specification to allow for mixed use
   of an IP-TFS enabled SA.  In other words, an SA that has IP-TFS
   enabled is exclusively for IP-TFS use and MUST NOT have non-IP-TFS
   payloads such as IP (IP protocol 4), TCP transport (IP protocol 6),
   or ESP pad packets (protocol 59) intermixed with non-empty IP-TFS (IP
   protocol TBD1) payloads.  While it's possible to envision making the
   algorithm work in the presence of sequence number skips in the IP-TFS
   payload stream, the added complexity is not deemed worthwhile.  Other
   IPsec uses can configure and use their own SAs.




2.4. Initiating IP-TFS Operation On The SA.

   While a user will normally configure their IPsec tunnel (SA) to
   operate using IP-TFS to start, we also allow IP-TFS operation to be
   enabled post-SA creation and use.  This late-enabling may be useful
   for debugging or other purposes.  To support this late-enabled
   operation the receiver switches to IP-TFS operation on receipt of the
   first ESP payload with the IPTFS_PROTOCOL indicated as the payload
   type which also contains a data block (i.e., a non-empty IP-TFS
   payload).  The the receipt of an empty IPTFS_PROTOCOL payload (i.e.,
   one without any data blocks) is used to communicate congestion
   control information from the receiver back to the sender on a non-IP-
   TFS enabled SA, and MUST NOT cause IP-TFS to be enabled on that SA.




2.5. Modes of Operation

   Just as with normal IPsec/ESP tunnels, IP-TFS tunnels are
   unidirectional.  Bidirectional IP-TFS functionality is achieved by
   setting up 2 IP-TFS tunnels, one in either direction.



   An IP-TFS tunnel can operate in 2 modes, a non-congestion controlled
   mode and congestion controlled mode.




2.5.1. Non-Congestion Controlled Mode

   In the non-congestion controlled mode IP-TFS sends fixed-sized
   packets at a constant rate.  The packet send rate is constant and is
   not automatically adjusted regardless of any network congestion
   (e.g., packet loss).



   For similar reasons as given in [RFC7510] the non-congestion
   controlled mode should only be used where the user has full
   administrative control over the path the tunnel will take.  This is
   required so the user can guarantee the bandwidth and also be sure as
   to not be negatively affecting network congestion [RFC2914].  In this
   case packet loss should be reported to the administrator (e.g., via
   syslog, YANG notification, SNMP traps, etc) so that any failures due
   to a lack of bandwidth can be corrected.




2.5.2. Congestion Controlled Mode

   With the congestion controlled mode, IP-TFS adapts to network
   congestion by lowering the packet send rate to accommodate the
   congestion, as well as raising the rate when congestion subsides.
   Since overhead is per packet, by allowing for maximal fixed-size
   packets and varying the send rate we minimize transport overhead.



   The output of the congestion control algorithm will adjust the rate
   at which the ingress sends packets.  While this document does not
   require a specific congestion control algorithm, best current
   practice RECOMMENDS that the algorithm conform to [RFC5348].
   Congestion control principles are documented in [RFC2914] as well.
   An example of an implementation of the [RFC5348] algorithm which
   matches the requirements of IP-TFS (i.e., designed for fixed-size
   packet and send rate varied based on congestion) is documented in
   [RFC4342].



   The required inputs for the TCP friendly rate control algorithm
   described in [RFC5348] are the receivers loss event rate and the
   senders estimated round-trip time (RTT).  These values are provided
   by IP-TFS using the congestion information header fields described in
   Section 3.  In particular these values are sufficient to implement
   the algorithm described in [RFC5348].



   At a minimum, the congestion information must be sent, from the
   receiver as well as from the sender, at least once per RTT.  Prior to
   establishing an RTT the information SHOULD be sent constantly from
   the sender and the receiver so that an RTT estimate can be
   established.  The lack of receiving this information over multiple
   consecutive RTT intervals should be considered a congestion event
   that causes the sender to adjust it's sending rate lower.  For
   example, [RFC4342] calls this the "no feedback timeout" and it is
   equal to 4 RTT intervals.  When a "no feedback timeout" has occurred
   [RFC4342] halves the sending rate.



   An implementation could choose to always include the congestion
   information in it's IP-TFS payload header if sending on an IP-TFS
   enabled SA.  Since IP-TFS normally will operate with a large packet
   size, the congestion information should represent a small portion of
   the available tunnel bandwidth.



   When an implementation is choosing a congestion control algorithm (or
   a selection of algorithms) one should remember that IP-TFS is not
   providing for reliable delivery of IP traffic, and so per packet ACKs
   are not required and are not provided.



   It's worth noting that the variable send-rate of a congestion
   controlled IP-TFS tunnel, is not private; however, this send-rate is
   being driven by network congestion, and as long as the encapsulated
   (inner) traffic flow shape and timing are not directly affecting the
   (outer) network congestion, the variations in the tunnel rate will
   not weaken the provided inner traffic flow confidentiality.




2.5.2.1. Circuit Breakers

   In additional to congestion control, implementations MAY choose to
   define and implement circuit breakers [RFC8084] as a recovery method
   of last resort.  Enabling circuit breakers is also a reason a user
   may wish to enable congestion information reports even when using the
   non-congestion controlled mode of operation.  The definition of
   circuit breakers are outside the scope of this document.




3. Congestion Information

   In order to support the congestion control mode, the sender needs to
   know the loss event rate and also be able to approximate the RTT
   ([RFC5348]).  In order to obtain these values the receiver sends
   congestion control information on it's SA back to the sender.  Thus,
   in order to support congestion control the receiver must have a
   paired SA back to the sender (this is always the case when the tunnel
   was created using IKEv2).  If the SA back to the sender is a non-IP-
   TFS enabled SA then an IPTFS_PROTOCOL empty payload (i.e., header
   only) is used to convey the information.



   In order to calculate a loss event rate compatible with [RFC5348],
   the receiver needs to have a round-trip time estimate.  Thus the
   sender communicates this estimate in the "RTT" header field.  On
   startup this value will be zero as no RTT estimate is yet known.



   In order to allow the sender to calculate the "RTT" value, the
   receiver communicates the last sequence number it has seen to the
   sender in the "LastSeqNum" header field.  In addition to the
   "LastSeqNum" value, the receiver sends an estimate of the amount of
   time between receiving the "LastSeqNum" packet and transmitting the
   "LastSeqNum" value back to the sender in the congestion information.
   It places this time estimate in the "Delay" header field along with
   the "LastSeqNum".



   The receiver also calculates, and communicates in the "LossEventRate"
   header field, the loss event rate for use by the sender.  This is
   slightly different from [RFC4342] which periodically sends all the
   loss interval data back to the sender so that it can do the
   calculation.  See Appendix B for a suggested way to calculate the
   loss event rate value.  Initially this value will be zero (indicating
   no loss) until enough data has been collected by the receiver to
   update it.




3.1. ECN Support

   In additional to normal packet loss information IP-TFS supports use
   of the ECN bits in the encapsulating IP header [RFC3168] for
   identifying congestion.  If ECN use is enabled and a packet arrives
   at the egress endpoint with the Congestion Experienced (CE) value
   set, then the receiver considers that packet as being dropped,
   although it does not drop it.  The receiver MUST set the E bit in any
   IPTFS_PROTOCOL payload header containing a "LossEventRate" value
   derived from a CE value being considered.



   As noted in [RFC3168] the ECN bits are not protected by IPsec and
   thus may constitute a covert channel.  For this reason ECN use SHOULD
   NOT be enabled by default.




4. Configuration

   IP-TFS is meant to be deployable with a minimal amount of
   configuration.  All IP-TFS specific configuration should be able to
   be specified at the unidirectional tunnel ingress (sending) side.  It
   is intended that non-IKEv2 operation is supported, at least, with
   local static configuration.




4.1. Bandwidth

   Bandwidth is a local configuration option.  For non-congestion
   controlled mode the bandwidth SHOULD be configured.  For congestion
   controlled mode one can configure the bandwidth or have no
   configuration and let congestion control discover the maximum
   bandwidth available.  No standardized configuration method is
   required.




4.2. Fixed Packet Size

   The fixed packet size to be used for the tunnel encapsulation packets
   can be configured manually or can be automatically determined using
   Path MTU discovery (see [RFC1191] and [RFC8201]).  No standardized
   configuration method is required.




4.3. Congestion Control

   Congestion control is a local configuration option.  No standardized
   configuration method is required.




5. IKEv2


5.1. TFS Type Transform Type

   When IP-TFS is used with IKEv2 a new "TFS Type" Transform Type (TBD2)
   is used to negotiate (as defined in [RFC7296]) the possible operation
   of IP-TFS on a child SA pair.  This document defines 3 "TFS Type"
   Transform IDs for the new "TFS Type" Transform Type: None (0),
   TFS_IPTFS_CC (1) for congestion-controlled IP-TFS mode or
   TFS_IPTFS_NOCC (2) for non-congestion controlled IP-TFS mode.  The
   selection of a proposal with a "TFS Type" Transform ID TFS_IPTFS_CC
   or TFS_IPTFS_NOCC does not mandate the use of IP-TFS, rather it
   indicates a willingness or intent to use IP-TFS on the SA pair.  In
   addition, a new Notify Message Status Type IPTFS_REQUIREMENTS (TBD3)
   MAY be used by the initiator as well as the responder to further
   refine any operational requirements.



   Additional "TFS Type" Transform IDs may be defined in the future, and
   so readers are referred to [IKEV2IANA] for the most up to date list.




5.2. IPTFS_REQUIREMENTS Status Notification

   As mentioned in the previous section, a new Notify Message Status
   Type IPTFS_REQUIREMENTS (TBD3) MAY be sent by the initiator and/or
   the responder to further refine what will be supported.  This
   notification is sent during IKE_AUTH and new CREATE_CHILD_SA
   exchanges; however, it MUST NOT be sent, and MUST be ignored, during
   a CREATE_CHILD_SA rekeying exchange as the requirements are not
   allowed to change during rekeying.



   The IPTFS_REQUIREMENTS notification contains a 1 octet payload of
   flags that specify any extra requirements from the sender of the
   message.  The flag values (currently a single flag) are defined
   below.  If the IPTFS_REQUIREMENTS notification is not sent then it
   implies that all the flag bits are clear.



+‑+‑+‑+‑+‑+‑+‑+‑+
|0|0|0|0|0|0|0|D|
+‑+‑+‑+‑+‑+‑+‑+‑+



   0:

      MUST be zero on send and MUST be ignored on receive.



   D:

      Don't Fragment bit, if set indicates the sender of the notify
      message does not support receiving packet fragments (i.e., inner
      packets MUST be sent using a single "Data Block").  This value
      only applies to what the sender is capable of receiving; the
      sender MAY still send packet fragments unless similarly restricted
      by the receiver in it's IPTFS_REQUIREMENTS notification.




6. Packet and Data Formats


6.1. ESP IP-TFS Payload

   An ESP IP-TFS payload is identified by the IP protocol number
   IPTFS_PROTOCOL (TBD1).  This payload begins with a fixed 4 or 16
   octet header followed by a variable amount of "DataBlocks" data.  The
   exact payload format and fields are defined in the following
   sections.




6.1.1. Non-Congestion Control IPTFS_PROTOCOL Payload Format

   The non-congestion control IPTFS_PROTOCOL payload is comprised of a 4
   octet header followed by a variable amount of "DataBlocks" data as
   shown below.



                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|V|C|        Reserved           |          BlockOffset          |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|       DataBlocks ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑



   V:

      A 1 bit version field that MUST be set to zero.  If received as
      one the packet MUST be dropped.



   C:

      A 1 bit value that MUST be set to 0 to indicate no congestion
      control information is present.



   Reserved:

      A 14 bit field set to 0 and ignored on receipt.



   BlockOffset:

      A 16 bit unsigned integer counting the number of octets of
      "DataBlocks" data before the start of a new data block.
      "BlockOffset" can count past the end of the "DataBlocks" data in
      which case all the "DataBlocks" data belongs to the previous data



      block being re-assembled.  If the "BlockOffset" extends into
      subsequent packets it continues to only count subsequent
      "DataBlocks" data (i.e., it does not count subsequent packets
      non-"DataBlocks" octets).



   DataBlocks:

      Variable number of octets that begins with the start of a data
      block, or the continuation of a previous data block, followed by
      zero or more additional data blocks.




6.1.2. Congestion Control IPTFS_PROTOCOL Payload Format

   The congestion control IPTFS_PROTOCOL payload is comprised of a 16
   octet header followed by a variable amount of "DataBlocks" data as
   shown below.



                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|V|C|E|        Reserved         |          BlockOffset          |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|              RTT              |             Delay             |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                          LossEventRate                        |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                           LastSeqNum                          |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|       DataBlocks ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑



   V:

      A 1 bit version field that MUST be set to zero.  If received as
      one the packet MUST be dropped.



   C:

      A 1 bit value that MUST be set to 1 which indicates the presence
      of the congestion information header fields "RTT", "Delay",
      "LossEventRate" and "LastSeqNum".



   E:

      A 1 bit value if set indicates that Congestion Experienced (CE)
      ECN bits were received and used in deriving the reported
      "LossEventRate".



   Reserved:

      A 13 bit field set to 0 and ignored on receipt.



   BlockOffset:



      The same value as the non-congestion controlled payload format
      value.



   RTT:

      A 16 bit value specifying the sender's current round-trip time
      estimate in milliseconds.  The value MAY be zero prior to the
      sender having calculated a round-trip time estimate.  The value
      SHOULD be set to zero on non-IP-TFS enabled SAs.



   Delay:

      A 16 bit value specifying the delay in milliseconds incurred
      between the receiver receiving the "LastSeqNum" packet and the
      sending of this acknowledgement of it.



   LossEventRate:

      A 32 bit value specifying the inverse of the current loss event
      rate as calculated by the receiver.  A value of zero indicates no
      loss.  Otherwise the loss event rate is "1/LossEventRate".



   LastSeqNum:

      A 32 bit value containing the lower 32 bits of the largest
      sequence number last received.  This is the latest in the sequence
      not necessarily the most recent (in the case of re-ordering of
      packets it may be less recent).  When determining largest and 64
      bit extended sequence numbers are in use, the upper 32 bits should
      be used during the comparison.



   DataBlocks:

      Variable number of octets that begins with the start of a data
      block, or the continuation of a previous data block, followed by
      zero or more additional data blocks.  For the special case of
      sending congestion control information on an non-IP-TFS enabled SA
      this value MUST be empty (i.e., be zero octets long).




6.1.3. Data Blocks

                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
| Type  | IPv4, IPv6 or pad...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑



   Type:

      A 4 bit field where 0x0 identifies a pad data block, 0x4 indicates
      an IPv4 data block, and 0x6 indicates an IPv6 data block.




6.1.3.1. IPv4 Data Block

                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|  0x4  |  IHL  |  TypeOfService  |         TotalLength         |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
| Rest of the inner packet ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑



   These values are the actual values within the encapsulated IPv4
   header.  In other words, the start of this data block is the start of
   the encapsulated IP packet.



   Type:

      A 4 bit value of 0x4 indicating IPv4 (i.e., first nibble of the
      IPv4 packet).



   TotalLength:

      The 16 bit unsigned integer length field of the IPv4 inner packet.




6.1.3.2. IPv6 Data Block

                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|  0x6  | TrafficClass  |               FlowLabel               |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|          TotalLength          | Rest of the inner packet ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑



   These values are the actual values within the encapsulated IPv6
   header.  In other words, the start of this data block is the start of
   the encapsulated IP packet.



   Type:

      A 4 bit value of 0x6 indicating IPv6 (i.e., first nibble of the
      IPv6 packet).



   TotalLength:

      The 16 bit unsigned integer length field of the inner IPv6 inner
      packet.




6.1.3.3. Pad Data Block

                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|  0x0  | Padding ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑



   Type:

      A 4 bit value of 0x0 indicating a padding data block.



   Padding:

      extends to end of the encapsulating packet.




7. IANA Considerations


7.1. IPTFS_PROTOCOL Type

   This document requests a protocol number IPTFS_PROTOCOL be allocated
   by IANA from "Assigned Internet Protocol Numbers" registry for
   identifying the IP-TFS ESP payload format.



   Type:

      TBD1



   Description:

      IP-TFS ESP payload format.



   Reference:

      This document




7.2. IKEv2 Transform Type TFS Type

   This document requests an IKEv2 Transform Type "TFS Type" be
   allocated by IANA from the "Transform Type Values" registry.



   Type:

      TBD2



   Description:

      TFS Type



   Used In:

      (optional in ESP)



   Reference:

      This document




7.3. TFS Type Transform IDs Registry

   This document requests a "Transform Type TBD3 - TFS Type Transform
   IDs" registry be created.  The registration procedure is Expert
   Review.  The initial values are as follows:



  Number  Name            Reference
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
       0  NONE            This document
       1  TFS_IPTFS_CC    This document
       2  TFS_IPTFS_NOCC  This document
 3‑65535  Reserved        This document




7.4. IPTFS_REQUIREMENTS Notify Message Status Type

   This document requests a status type IPTFS_REQUIREMENTS be allocated
   from the "IKEv2 Notify Message Types - Status Types" registry.



   Value:

      TBD3



   Name:

      IPTFS_REQUIREMENTS



   Reference:

      This document




8. Security Considerations

   This document describes a mechanism to add Traffic Flow
   Confidentiality to IP traffic.  Use of this mechanism is expected to
   increase the security of the traffic being transported.  Other than
   the additional security afforded by using this mechanism, IP-TFS
   utilizes the security protocols [RFC4303] and [RFC7296] and so their
   security considerations apply to IP-TFS as well.



   As noted previously in Section 2.5.2, for TFC to be fully maintained
   the encapsulated traffic flow should not be affecting network
   congestion in a predictable way, and if it would be then non-
   congestion controlled mode use should be considered instead.




9. References


9.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4303]
  Kent, S., "IP Encapsulating Security Payload (ESP)",
              RFC 4303, DOI 10.17487/RFC4303, December 2005,
              <https://www.rfc-editor.org/info/rfc4303>.




   [RFC7296]
  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




9.2. Informative References


   [AppCrypt]

              Schneier, B., "Applied Cryptography: Protocols,
              Algorithms, and Source Code in C", 11 2017.




   [I-D.iab-wire-image]

              Trammell, B. and M. Kuehlewind, "The Wire Image of a
              Network Protocol", draft-iab-wire-image-01 (work in
              progress), November 2018.




   [IKEV2IANA]

              IANA, "Internet Key Exchange Version 2 (IKEv2)
              Parameters",
              <http://www.iana.org/assignments/ikev2-parameters/>.




   [RFC0791]
  Postel, J., "Internet Protocol", STD 5, RFC 791,
              DOI 10.17487/RFC0791, September 1981,
              <https://www.rfc-editor.org/info/rfc791>.




   [RFC1191]
  Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
              DOI 10.17487/RFC1191, November 1990,
              <https://www.rfc-editor.org/info/rfc1191>.




   [RFC2474]
  Nichols, K., Blake, S., Baker, F., and D. Black,
              "Definition of the Differentiated Services Field (DS
              Field) in the IPv4 and IPv6 Headers", RFC 2474,
              DOI 10.17487/RFC2474, December 1998,
              <https://www.rfc-editor.org/info/rfc2474>.




   [RFC2914]
  Floyd, S., "Congestion Control Principles", BCP 41,
              RFC 2914, DOI 10.17487/RFC2914, September 2000,
              <https://www.rfc-editor.org/info/rfc2914>.




   [RFC3168]
  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
              of Explicit Congestion Notification (ECN) to IP",
              RFC 3168, DOI 10.17487/RFC3168, September 2001,
              <https://www.rfc-editor.org/info/rfc3168>.




   [RFC4301]
  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
              December 2005, <https://www.rfc-editor.org/info/rfc4301>.




   [RFC4342]
  Floyd, S., Kohler, E., and J. Padhye, "Profile for
              Datagram Congestion Control Protocol (DCCP) Congestion
              Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC 4342,
              DOI 10.17487/RFC4342, March 2006,
              <https://www.rfc-editor.org/info/rfc4342>.




   [RFC5348]
  Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
              Friendly Rate Control (TFRC): Protocol Specification",
              RFC 5348, DOI 10.17487/RFC5348, September 2008,
              <https://www.rfc-editor.org/info/rfc5348>.




   [RFC7510]
  Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
              "Encapsulating MPLS in UDP", RFC 7510,
              DOI 10.17487/RFC7510, April 2015,
              <https://www.rfc-editor.org/info/rfc7510>.




   [RFC8084]
  Fairhurst, G., "Network Transport Circuit Breakers",
              BCP 208, RFC 8084, DOI 10.17487/RFC8084, March 2017,
              <https://www.rfc-editor.org/info/rfc8084>.




   [RFC8200]
  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.




   [RFC8201]
  McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
              "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
              DOI 10.17487/RFC8201, July 2017,
              <https://www.rfc-editor.org/info/rfc8201>.




Appendix A. Example Of An Encapsulated IP Packet Flow

   Below we show an example inner IP packet flow within the
   encapsulating tunnel packet stream.  Notice how encapsulated IP
   packets can start and end anywhere, and more than one or less than 1
   may occur in a single encapsulating packet.



 Offset: 0        Offset: 100    Offset: 2900    Offset: 1400
[ ESP1  (1500) ][ ESP2  (1500) ][ ESP3  (1500) ][ ESP4  (1500) ]
[‑‑800‑‑][‑‑800‑‑][60][‑240‑][‑‑4000‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑][pad]



                   Figure 3: Inner and Outer Packet Flow



   The encapsulated IP packet flow (lengths include IP header and
   payload) is as follows: an 800 octet packet, an 800 octet packet, a
   60 octet packet, a 240 octet packet, a 4000 octet packet.



   The "BlockOffset" values in the 4 IP-TFS payload headers for this
   packet flow would thus be: 0, 100, 2900, 1400 respectively.  The
   first encapsulating packet ESP1 has a zero "BlockOffset" which points
   at the IP data block immediately following the IP-TFS header.  The
   following packet ESP2s "BlockOffset" points inward 100 octets to the
   start of the 60 octet data block.  The third encapsulating packet
   ESP3 contains the middle portion of the 4000 octet data block so the
   offset points past its end and into the forth encapsulating packet.
   The fourth packet ESP4s offset is 1400 pointing at the padding which
   follows the completion of the continued 4000 octet packet.




Appendix B. A Send and Loss Event Rate Calculation

   The current best practice indicates that congestion control should be
   done in a TCP friendly way.  A TCP friendly congestion control
   algorithm is described in [RFC5348].  For our use case (as with
   [RFC4342]) we consider our (fixed) packet size the segment size for
   the algorithm.  The formula for the send rate is then as follows:



                             1
X_Pps = ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
        R * (sqrt(2*p/3) + 12*sqrt(3*p/8)*p*(1+32*p^2))



   Where "X_Pps" is the send rate in packets per second, "R" is the
   round trip time estimate and "p" is the loss event rate (the inverse
   of which is provided by the receiver).



   The IP-TFS receiver, having the RTT estimate from the sender MAY use
   the same method as described in [RFC4342] to collect the loss
   intervals and calculate the loss event rate value using the weighted
   average as indicated.  The receiver communicates the inverse of this
   value back to the sender in the IPTFS_PROTOCOL payload header field
   "LossEventRate".



   The IP-TFS sender now has both the "R" and "p" values and can
   calculate the correct sending rate ("X_Pps").  If following [RFC5348]
   the sender SHOULD also use the slow start mechanism described therein
   when the IP-TFS SA is first established.




Appendix C. Comparisons of IP-TFS


C.1. Comparing Overhead


C.1.1. IP-TFS Overhead

   The overhead of IP-TFS is 40 bytes per outer packet.  Therefore the
   octet overhead per inner packet is 40 divided by the number of outer
   packets required (fractional allowed).  The overhead as a percentage
   of inner packet size is a constant based on the Outer MTU size.



OH = 40 / Outer Payload Size / Inner Packet Size
OH % of Inner Packet Size = 100 * OH / Inner Packet Size
OH % of Inner Packet Size = 4000 / Outer Payload Size

                  Type  IP‑TFS  IP‑TFS  IP‑TFS
                   MTU     576    1500    9000
                 PSize     536    1460    8960
                ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
                    40   7.46%   2.74%   0.45%
                   576   7.46%   2.74%   0.45%
                  1500   7.46%   2.74%   0.45%
                  9000   7.46%   2.74%   0.45%



       Figure 4: IP-TFS Overhead as Percentage of Inner Packet Size




C.1.2. ESP with Padding Overhead

   The overhead per inner packet for constant-send-rate padded ESP
   (i.e., traditional IPsec TFC) is 36 octets plus any padding, unless
   fragmentation is required.



   When fragmentation of the inner packet is required to fit in the
   outer IPsec packet, overhead is the number of outer packets required
   to carry the fragmented inner packet times both the inner IP overhead
   (20) and the outer packet overhead (36) minus the initial inner IP
   overhead plus any required tail padding in the last encapsulation
   packet.  The required tail padding is the number of required packets
   times the difference of the Outer Payload Size and the IP Overhead
   minus the Inner Payload Size.  So:



Inner Paylaod Size = IP Packet Size ‑ IP Overhead
Outer Payload Size = MTU ‑ IPsec Overhead

              Inner Payload Size
NF0 = ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
       Outer Payload Size ‑ IP Overhead



     NF = CEILING(NF0)



OH = NF * (IP Overhead + IPsec Overhead)
     ‑ IP Overhead
     + NF * (Outer Payload Size ‑ IP Overhead)
     ‑ Inner Payload Size



     OH = NF * (IPsec Overhead + Outer Payload Size)

          - (IP Overhead + Inner Payload Size)



     OH = NF * (IPsec Overhead + Outer Payload Size)

          - Inner Packet Size




C.2. Overhead Comparison

   The following tables collect the overhead values for some common L3
   MTU sizes in order to compare them.  The first table is the number of
   octets of overhead for a given L3 MTU sized packet.  The second table
   is the percentage of overhead in the same MTU sized packet.



   Type  ESP+Pad  ESP+Pad  ESP+Pad  IP‑TFS  IP‑TFS  IP‑TFS
 L3 MTU      576     1500     9000     576    1500    9000
  PSize      540     1464     8964     536    1460    8960
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
     40      500     1424     8924     3.0     1.1     0.2
    128      412     1336     8836     9.6     3.5     0.6
    256      284     1208     8708    19.1     7.0     1.1
    536        4      928     8428    40.0    14.7     2.4
    576      576      888     8388    43.0    15.8     2.6
   1460      268        4     7504   109.0    40.0     6.5
   1500      228     1500     7464   111.9    41.1     6.7
   8960     1408     1540        4   668.7   245.5    40.0
   9000     1368     1500     9000   671.6   246.6    40.2



                  Figure 5: Overhead comparison in octets



  Type  ESP+Pad  ESP+Pad   ESP+Pad  IP‑TFS  IP‑TFS  IP‑TFS
   MTU      576     1500      9000     576    1500    9000
 PSize      540     1464      8964     536    1460    8960
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
    40  1250.0%  3560.0%  22310.0%   7.46%   2.74%   0.45%
   128   321.9%  1043.8%   6903.1%   7.46%   2.74%   0.45%
   256   110.9%   471.9%   3401.6%   7.46%   2.74%   0.45%
   536     0.7%   173.1%   1572.4%   7.46%   2.74%   0.45%
   576   100.0%   154.2%   1456.2%   7.46%   2.74%   0.45%
  1460    18.4%     0.3%    514.0%   7.46%   2.74%   0.45%
  1500    15.2%   100.0%    497.6%   7.46%   2.74%   0.45%
  8960    15.7%    17.2%      0.0%   7.46%   2.74%   0.45%
  9000    15.2%    16.7%    100.0%   7.46%   2.74%   0.45%



           Figure 6: Overhead as Percentage of Inner Packet Size




C.3. Comparing Available Bandwidth

   Another way to compare the two solutions is to look at the amount of
   available bandwidth each solution provides.  The following sections
   consider and compare the percentage of available bandwidth.  For the
   sake of providing a well understood baseline we will also include
   normal (unencrypted) Ethernet as well as normal ESP values.




C.3.1. Ethernet

   In order to calculate the available bandwidth we first calculate the
   per packet overhead in bits.  The total overhead of Ethernet is 14+4
   octets of header and CRC plus and additional 20 octets of framing
   (preamble, start, and inter-packet gap) for a total of 48 octets.
   Additionally the minimum payload is 46 octets.



 Size  E + P  E + P  E + P  IPTFS  IPTFS  IPTFS  Enet   ESP
  MTU    590   1514   9014    590   1514   9014   any   any
   OH     74     74     74     78     78     78    38    74
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
   40    614   1538   9038     45     42     40    84   114
  128    614   1538   9038    146    134    129   166   202
  256    614   1538   9038    293    269    258   294   330
  536    614   1538   9038    614    564    540   574   610
  576   1228   1538   9038    659    606    581   614   650
 1460   1842   1538   9038   1672   1538   1472  1498  1534
 1500   1842   3076   9038   1718   1580   1513  1538  1574
 8960  11052  10766   9038  10263   9438   9038  8998  9034
 9000  11052  10766  18076  10309   9480   9078  9038  9074



                      Figure 7: L2 Octets Per Packet



 Size  E + P  E + P  E + P  IPTFS  IPTFS  IPTFS  Enet   ESP
  MTU  590    1514   9014   590    1514   9014   any    any
   OH  74     74     74     78     78     78     38     74
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
   40  2.0M   0.8M   0.1M   27.3M  29.7M  31.0M  14.9M  11.0M
  128  2.0M   0.8M   0.1M   8.5M   9.3M   9.7M   7.5M   6.2M
  256  2.0M   0.8M   0.1M   4.3M   4.6M   4.8M   4.3M   3.8M
  536  2.0M   0.8M   0.1M   2.0M   2.2M   2.3M   2.2M   2.0M
  576  1.0M   0.8M   0.1M   1.9M   2.1M   2.2M   2.0M   1.9M
 1460  678K   812K   138K   747K   812K   848K   834K   814K
 1500  678K   406K   138K   727K   791K   826K   812K   794K
 8960  113K   116K   138K   121K   132K   138K   138K   138K
 9000  113K   116K   69K    121K   131K   137K   138K   137K



               Figure 8: Packets Per Second on 10G Ethernet



 Size   E + P   E + P   E + P   IPTFS   IPTFS   IPTFS    Enet     ESP
          590    1514    9014     590    1514    9014     any     any
           74      74      74      78      78      78      38      74
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
   40   6.51%   2.60%   0.44%  87.30%  94.93%  99.14%  47.62%  35.09%
  128  20.85%   8.32%   1.42%  87.30%  94.93%  99.14%  77.11%  63.37%
  256  41.69%  16.64%   2.83%  87.30%  94.93%  99.14%  87.07%  77.58%
  536  87.30%  34.85%   5.93%  87.30%  94.93%  99.14%  93.38%  87.87%
  576  46.91%  37.45%   6.37%  87.30%  94.93%  99.14%  93.81%  88.62%
 1460  79.26%  94.93%  16.15%  87.30%  94.93%  99.14%  97.46%  95.18%
 1500  81.43%  48.76%  16.60%  87.30%  94.93%  99.14%  97.53%  95.30%
 8960  81.07%  83.22%  99.14%  87.30%  94.93%  99.14%  99.58%  99.18%
 9000  81.43%  83.60%  49.79%  87.30%  94.93%  99.14%  99.58%  99.18%



             Figure 9: Percentage of Bandwidth on 10G Ethernet



   A sometimes unexpected result of using IP-TFS (or any packet
   aggregating tunnel) is that, for small to medium sized packets, the
   available bandwidth is actually greater than native Ethernet.  This
   is due to the reduction in Ethernet framing overhead.  This increased
   bandwidth is paid for with an increase in latency.  This latency is
   the time to send the unrelated octets in the outer tunnel frame.  The
   following table illustrates the latency for some common values on a
   10G Ethernet link.  The table also includes latency introduced by
   padding if using ESP with padding.



       ESP+Pad  ESP+Pad  IP‑TFS   IP‑TFS
       1500     9000     1500     9000

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
   40  1.14 us  7.14 us  1.17 us  7.17 us
  128  1.07 us  7.07 us  1.10 us  7.10 us
  256  0.97 us  6.97 us  1.00 us  7.00 us
  536  0.74 us  6.74 us  0.77 us  6.77 us
  576  0.71 us  6.71 us  0.74 us  6.74 us
 1460  0.00 us  6.00 us  0.04 us  6.04 us
 1500  1.20 us  5.97 us  0.00 us  6.00 us



                         Figure 10: Added Latency



   Notice that the latency values are very similar between the two
   solutions; however, whereas IP-TFS provides for constant high
   bandwidth, in some cases even exceeding native Ethernet, ESP with
   padding often greatly reduces available bandwidth.




Appendix D. Acknowledgements

   We would like to thank Don Fedyk for help in reviewing this work.




Appendix E. Contributors

   The following people made significant contributions to this document.



Lou Berger
LabN Consulting, L.L.C.



      Email: lberger@labn.net



Author's Address



Christian Hopps
LabN Consulting, L.L.C.



   Email: chopps@chopps.org
















draft-housley-lamps-cms-update-alg-id-protect-00 - Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection 






draft-housley-lamps-cms-update-alg-id-protect-00 - Update to the Cryptographic M

Index
Back 5
Prev
Next


Network Working Group

Internet-Draft

Updates: 5652 (if approved)

Intended status: Standards Track

Expires: April 5, 2020


R. Housley

Vigil Security

October 03, 2019





Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection  

draft-housley-lamps-cms-update-alg-id-protect-00


Abstract

   This document updates the Cryptographic Message Syntax (CMS)
   specified in RFC 5652 to ensure that algorithm identifiers are
   adequately protected.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 5, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Require use the same hash algorithm
	 3.1.  RFC 5652, Section 5.3


	 3.2.  RFC 5652, Section 5.4


	 3.3.  RFC 5652, Section 5.6


	 3.4.  Backward Compatibility Considerations


	 3.5.  Timestamp Compatibility Considerations



	4.  Recommend inclusion of the CMSAlgorithmProtection attribute
	 4.1.  RFC 5652, Section 14



	5.  IANA Considerations


	6.  Security Considerations


	7.  Acknowledgements


	8.  References
	 8.1.  Normative References


	 8.2.  Informative References



	Author's Address




1. Introduction

   This document updates the Cryptographic Message Syntax (CMS)
   [RFC5652] to ensure that algorithm identifiers are adequately
   protected.



   The CMS Signed-data Content Type [RFC5652], unlike X.509 certificates
   [RFC5280], can be vulnerable to algorithm substitution attacks.  In
   an algorithm substitution attack, the attacker changes either the
   algorithm identifier or the parameters associated with the algorithm
   identifier to change the verification process used by the recipient.
   The X.509 certificate structure protects the algorithm identifier and
   the associate parameters by signing them.



   In an algorithm substitution attack, the attacker looks for a
   different algorithm that produces the same result as the algorithm
   used by the originator.  As an example, if the signer of a message
   used SHA-256 [SHS] as the digest algorithm to hash the message
   content, then the attacker looks for a weaker hash algorithm that
   produces a result that is of the same length.  The attacker's goal is
   to find a different message that results in the same hash value,
   which is commonly called a collision.  Today, there are many hash
   functions that produce 256-bit results.  One of them may be found to
   be weak in the future.



   Further, when a digest algorithm produces a larger result than is
   needed by a digital signature algorithm, the digest value is reduced
   to the size needed by the signature algorithm.  This can be done both
   by truncation and modulo operations, with the simplest being
   straightforward truncation.  In this situation, the attacker needs to
   find a collision with the reduced digest value.  As an example, if
   the message signer uses SHA-512 [SHS] as the digest algorithm and
   ECDSA with the P-256 curve [DSS] as the signature algorithm, then the
   attacker needs to find a collision with the first half of the digest.



   Similar attacks can be mounted against parameterized algorithm
   identifiers.  When looking at randomized hash functions, such as the
   example in [RFC6210], the algorithm identifier parameter includes a
   random value that can be manipulated by an attacker looking for
   collisions.  Some other algorithm identifiers include complex
   parameter structures, and each value provides another opportunity for
   manipulation by an attacker.



   This document makes two updates to CMS to provide similar protection
   for the algorithm identifier.  First, it mandates a convention
   followed by many implementations by requiring the originator to use
   the same hash algorithm to compute the digest of the message content
   and the digest of signed attributes.  Second, it recommends that the
   originator include the CMSAlgorithmProtection attribute [RFC6211].




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




3. Require use the same hash algorithm

   This section updates [RFC5652] to require the originator to use the
   same hash algorithm to compute the digest of the message content and
   the digest of signed attributes.




3.1. RFC 5652, Section 5.3

   Change the paragraph describing the digestAlgorithm as follows:



   OLD:



      digestAlgorithm identifies the message digest algorithm, and any
      associated parameters, used by the signer.  The message digest is
      computed on either the content being signed or the content
      together with the signed attributes using the process described in
      Section 5.4.  The message digest algorithm SHOULD be among those
      listed in the digestAlgorithms field of the associated SignerData.
      Implementations MAY fail to validate signatures that use a digest
      algorithm that is not included in the SignedData digestAlgorithms
      set.



   NEW:



      digestAlgorithm identifies the message digest algorithm, and any
      associated parameters, used by the signer.  The message digest is
      computed on either the content being signed or the content
      together with the signed attributes using the process described in
      Section 5.4.  The message digest algorithm SHOULD be among those
      listed in the digestAlgorithms field of the associated SignerData.
      If signedAttrs are present in the SignerInfo, then the same digest
      algorithm MUST be used to compute the digest of the SignedData
      encapContentInfo eContent, which is carried in the message-digest
      attribute, and to compute the digest of the DER-encoded SET OF
      signed attributes, which is passed to the signature algorithm.
      Implementations MAY fail to validate signatures that use a digest
      algorithm that is not included in the SignedData digestAlgorithms
      set.




3.2. RFC 5652, Section 5.4

   Add the following paragraph as the second paragraph in Section 5.4:



   ADD:



      When the signedAttrs field is present, the same digest algorithm
      MUST be used to compute the digest of the the encapContentInfo
      eContent OCTET STRING, which is carried in the message-digest
      attribute, and the collection of attributes that are signed.




3.3. RFC 5652, Section 5.6

   Change the paragraph discussing the signedAttributes as follows:



   OLD:



      The recipient MUST NOT rely on any message digest values computed
      by the originator.  If the SignedData signerInfo includes
      signedAttributes, then the content message digest MUST be
      calculated as described in Section 5.4.  For the signature to be
      valid, the message digest value calculated by the recipient MUST
      be the same as the value of the messageDigest attribute included
      in the signedAttributes of the SignedData signerInfo.



   NEW:



      The recipient MUST NOT rely on any message digest values computed
      by the originator.  If the SignedData signerInfo includes
      signedAttributes, then the content message digest MUST be
      calculated as described in Section 5.4, using the same digest
      algorithm to compute the digest of the the encapContentInfo
      eContent OCTET STRING and the message-digest attribute.  For the
      signature to be valid, the message digest value calculated by the
      recipient MUST be the same as the value of the messageDigest
      attribute included in the signedAttributes of the SignedData
      signerInfo.




3.4. Backward Compatibility Considerations

   The new requirement introduced above might lead to compatibility with
   an implementation that allowed different digest algorithms to be used
   to compute the digest of the message content and the digest of signed
   attributes.  The signatures produced by such an implementation when
   two different digest algorithms are used will be considered invalid
   by an implementation that follows this specification.  However, most,
   if not all, implementations already require the originator to use the
   same digest algorithm for both operations.



   READER:



      If you have an implementation that allows different digest
      algorithms to be used to compute the digest of the message content
      and the digest of signed attributes, please tell us on the
      spasm@ietf.org mail list.




3.5. Timestamp Compatibility Considerations

   The new requirement introduced above might lead to compatibility
   issues for timestamping systems when the originator does not wish to
   share the message content with the Time Stamp Authority (TSA)
   [RFC3161].  In this situation, the originator sends a TimeStampReq to
   the TSA that includes a MessageImprint, which consists of a digest
   algorithm identifier and a digest value, then the TSA uses the digest
   in the MessageImprint.  As a result, the signature algorithm used by
   the TSA needs to be compatible with the digest algorithm selected by
   the originator for the MessageImprint.




4. Recommend inclusion of the CMSAlgorithmProtection attribute

   This section updates [RFC5652] to recommend that the originator
   include the CMSAlgorithmProtection attribute [RFC6211] whenever
   signed attributes or authenticated attributes are present.




4.1. RFC 5652, Section 14

   Add the following paragraph as the eighth paragraph in Section 14:



   ADD:



      While no known algorithm substitution attacks are known at this
      time, the inclusion of the algorithm identifiers used by the
      originator as a signed attribute or an authenticated attribute
      makes such an attack significantly more difficult.  Therefore, the
      originator of a Signed-data content type that includes signed
      attributes SHOULD include the CMSAlgorithmProtection attribute
      [RFC6211] as one of the signed attributes.  Likewise, the
      originator of an Authenticated-data content type that includes
      authenticated attributes SHOULD include the CMSAlgorithmProtection
      attribute [RFC6211] as one of the authenticated attributes.




5. IANA Considerations

   This document makes no requests of the IANA.




6. Security Considerations

   The security considerations of [RFC5652] are updated ensure that
   algorithm identifiers are adequately protected, which makes algorithm
   substitution attacks significantly more difficult.



   The CMSAlgorithmProtection attribute [RFC6211] offers protection the
   algorithm identifiers used in the signed-data and authenticated-data
   content types.  There is not currently protection mechanism for the
   algorithm identifiers used in the enveloped-data, digested-data, or
   encrypted-data content types.  Likewise there us not currently
   protection mechanism for the algorithm identifiers used in the
   authenticated-enveloped-data content type defined in [RFC5083].




7. Acknowledgements

   Many thanks to Jim Schaad and Peter Gutmann; without knowing it, they
   motivated me to write this document.




8. References


8.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC5652]
  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.




   [RFC6211]
  Schaad, J., "Cryptographic Message Syntax (CMS) Algorithm
              Identifier Protection Attribute", RFC 6211,
              DOI 10.17487/RFC6211, April 2011,
              <https://www.rfc-editor.org/info/rfc6211>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




8.2. Informative References


   [DSS]
      National Institute of Standards and Technology (NIST),
              "Digital Signature Standard (DSS)", FIPS
              Publication 186-3, June 2009.




   [RFC3161]
  Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
              "Internet X.509 Public Key Infrastructure Time-Stamp
              Protocol (TSP)", RFC 3161, DOI 10.17487/RFC3161, August
              2001, <https://www.rfc-editor.org/info/rfc3161>.




   [RFC5083]
  Housley, R., "Cryptographic Message Syntax (CMS)
              Authenticated-Enveloped-Data Content Type", RFC 5083,
              DOI 10.17487/RFC5083, November 2007,
              <https://www.rfc-editor.org/info/rfc5083>.




   [RFC5280]
  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.




   [RFC6210]
  Schaad, J., "Experiment: Hash Functions with Parameters in
              the Cryptographic Message Syntax (CMS) and S/MIME",
              RFC 6210, DOI 10.17487/RFC6210, April 2011,
              <https://www.rfc-editor.org/info/rfc6210>.




   [SHS]
      National Institute of Standards and Technology (NIST),
              "Secure Hash Standard", FIPS Publication 180-3, October
              2008.



Author's Address



Russ Housley
Vigil Security
516 Dranesville Road
Herndon, VA  20170
US



   Email: housley@vigilsec.com













































draft-hujun-idr-bgp-ipsec-01 - BGP Provisioned IPsec Tunnel Configuration 






draft-hujun-idr-bgp-ipsec-01 - BGP Provisioned IPsec Tunnel Configuration 

Index
Back 5
Prev
Next
Forward 5


idr

Internet-Draft

Intended status: Standards Track

Expires: March 7, 2020


J. Hu

Nokia

September 4, 2019



BGP Provisioned IPsec Tunnel Configuration  

draft-hujun-idr-bgp-ipsec-01


Abstract

   This document defines a method of using BGP to provide IPsec tunnel
   configuration along with NLRI, it uses and extends tunnel
   encapsulation attribute as specified in [I-D.ietf-idr-tunnel-encaps]
   for IPsec tunnel.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on March 7, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology



	2.  Tunnel Encapsulation Attribute for IPsec
	 2.1.  Local and Remote Prefix sub-TLV


	 2.2.  Public Routing Instance sub-TLV


	 2.3.  IPsec Configuration Tag sub-TLV



	3.  Operation


	4.  Semantics and Usage of IPsec Tunnel Encapsulation attribute
	 4.1.  Nested Tunnel


	 4.2.  Other Operation Specifics



	5.  IANA Considerations


	6.  Security Considerations


	7.  Change Log


	8.  References
	 8.1.  Normative References


	 8.2.  Informative References



	Author's Address




1. Introduction

   IPsec is the standard for IP layer traffic protection, however in a
   big network where mesh connections are needed, configuring large
   number of IPsec tunnels is error prone and not scalable.  So instead
   of pre-provision IPsec tunnels on each router, this document defines
   a method to allow router to advertise the IPsec tunnel configurations
   it requires to reach a given NLRI via BGP.  This document does not
   intend to be one solution for all cases, the main use case is to
   simplify IPsec tunnel provision in networks under single
   administrative domain; it uses standard based components (IPsec/
   IKEv2[RFC7296] and BGP) with limited changes.  There is no change to
   IPsec/IKEv2, and only limited changes to BGP.



   IPsec tunnel in this document means IPsec tunnel mode as defined in
   [RFC4301].



   IPsec tunnel configurations typically include following parts:



   o  tunnel endpoint address (local and remote)



   o  public routing instance, routing instance where IPsec packet is
      forwarded in



   o  private routing instance, routing instance where payload packet is
      forwarded in



   o  tunnel authentication method and credentials



   o  IKE SA and CHILD SA transform (a.k.a crypto algorithms)



   o  CHILD SA traffic selector



   o  other: like lifetime, DPD timer, use of PFS ..etc



   In order to minimize amount configurations signal via BGP, only
   following configurations are explicit advertised:



   o  local tunnel endpoint address: BGP tunnel encapsulation attribute



   o  public routing instance: sub-TLV in tunnel encapsulation attribute



   o  CHILD SA traffic selector address range: NLRI and/or sub-TLV in
      tunnel encapsulation attribute



   Other configurations are either derived or via tag mapping:



   o  remote tunnel endpoint address: dynamic learned when received
      IKEv2 IKE_SA_INIT request



   o  private routing instance: via route-target in same BGP UPDATE



   o  tunnel authentication/credentials, traffic selector protocol/port
      range, IKE SA and CHILD SA transform, lifetime, DPD timer, PFS
      ..etc: all these configurations are implicitly signaled via IPsec
      configuration tag sub-TLV in tunnel encapsulation attribute



   [I-D.ietf-idr-tunnel-encaps] defines a generic tunnel encapsulation
   attribute for BGP, however it needs to be extended to support IPsec
   tunnel.




1.1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




2. Tunnel Encapsulation Attribute for IPsec

   This document extends tunnel encapsulation attribute specified in
   [I-D.ietf-idr-tunnel-encaps] by introducing following changes:



   o  A tunnel type for IPsec tunnel: ESP tunnel mode (AH tunnel mode is
      not included in this document).  Existing type 4 (IPsec in Tunnel-



      mode) in IANA "BGP Tunnel Encapsulation Attribute Tunnel Types"
      registry could be reused



   o  A new sub-TLV for public routing instance



   o  A new sub-TLV for remote address prefix



   o  A new sub-TLV for local address prefix



   o  A new sub-TLV for IPsec configuration tag



   Following existing sub-TLVs apply to IPsec tunnel encapsulation
   attribute:



   o  Remote Endpoint: IPsec tunnel endpoint address



   o  Embedded Label Handling: see Section 4 for detail




2.1. Local and Remote Prefix sub-TLV

   Local prefix sub-TLV is an optional sub-TLV used to specify a list of
   address prefix that used as local traffic selector address ranges; if
   local prefix sub-TLV is not included, then prefixes in NLRI will be
   used; Remote prefix sub-TLV is a mandatory sub-TLV used to specify a
   list of address prefix that used as remote traffic selector address
   ranges; The IP version of local/remote prefix MUST be as same as IP
   version of prefix in NLRI.  A single all zero prefix means any prefix
   is allowed.  Local and remote prefix sub-TLV has same encoding as
   following:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|  list of prefixes (variable)          |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Figure 1: Source Prefix sub-TLV



   Each prefix is encoded as following:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|   prefix Length (1 octet) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|   Prefix (4 or 16 octets) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                             Figure 2: prefix



   For a given IPsec tunnel TLV, local prefix sub-TLV MUST appear either
   zero or one time; remote prefix sub-TLV MUST appear only one time.




2.2. Public Routing Instance sub-TLV

   Public routing instance sub-TLV is an optional sub-TLV used to
   specify the routing instance to which the remote point address
   belongs, if tunnel encapsulation attribute doesn't include this TLV,
   then the routing instance is the same to which BGP session belongs.
   the value field of the sub-TLV consist a route target community as
   defined in [RFC4360].



   For a given IPsec tunnel TLV, public routing instance sub-TLV MUST
   appear either zero or one time.




2.3. IPsec Configuration Tag sub-TLV

   This sub-TLV represents the IPsec configurations (like IPsec
   transform) that are not explicit advertised by other sub-TLVs
   specified in this documentation; the meaning of this sub-TLV is local
   to the administrative domain.  Follow are some examples:



   o  tag value T1 map to following configurations:



      *  Certificate trust-anchor: CA-1



      *  IKE_SA/CHILD_SA transform: AES-GCM-128



      *  Diffie-Hellman Group: 15



      *  Perfect Forward Secrecy: No



      *  local/remote Traffic selector protocol: any



      *  local/remote Traffic selector port range: any



      *  IKE_SA lifetime: 24 hours



      *  CHILD_SA lifetime: 1 hour



      *  DPD interval: 30 seconds



      *  ESP extended sequence number: no



   o  tag value T2 map to following configurations:



      *  Certificate trust-anchor: CA-2



      *  IKE_SA/CHILD_SA transform: AES-GCM-256



      *  Diffie-Hellman Group: 20



      *  Perfect Forward Secrecy: Yes with group 20



      *  local/remote Traffic selector protocol: UDP



      *  local/remote Traffic selector port range: any



      *  IKE_SA lifetime: 48 hours



      *  CHILD_SA lifetime: 2 hours



      *  DPD interval: 10 seconds



      *  ESP extended sequence number: yes



   The value field of this sub-TLV is 4 octets long. each IPsec tunnel
   TLV SHOULD only contain one IPsec configuration tag sub-TLV;



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|   IPsec Configuration tag (4 octets) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 3: IPsec Configuration Tag



   For a given IPsec tunnel TLV, IPsec configuration tag sub-TLV MUST
   appear only one time.




3. Operation

   Following are the rules of operation:



   1.  All routers are in same administrative domain



   2.  All routers are pre-provisioned with Mapping between IPsec
       configuration tag value and IPsec configurations include
       authentication method/credentials



   3.  If a given NLRI need IPsec protection, then advertising router
       need to include an IPsec tunnel encapsulation attribute, along
       with the NLRI in BGP UPDATE U;



   4.  When a router need to forward a packet along a path is determined
       by a BGP UPDATE which has a tunnel encapsulation attribute that
       contains one or more IPsec tunnel TLV, and router decides use
       IPsec based on local policy, then the router use first feasible
       CHILD_SA, a CHILD SA is considered as feasible when it meets all
       following conditions:



       *  its private routing instance is same as routing instance to
          which the packet to be forwarded belongs



       *  its public routing instance is same as indicated by the Public
          Routing Instance sub-TLV; if the sub-TLV doesn't exist, then
          it is same as routing instance to which BGP session belongs




       *  its peer tunnel address is same as indicated by Remote
          Endpoint sub-TLV



       *  the source and destination address of the packet to be
          forwarded falls in the range of CHILD SA's traffic selector



       *  its transform and other configuration maps to the tag
          indicated in the IPsec configuration tag sub-TLV



   5.  If router can't find such CHILD SA, then it will use IKEv2 to
       create one; if there are multiple IPsec tunnel TLVs in U, then it
       need to select one from feasible TLVs, a IPsec tunnel TLV is
       considered as feasible when it meets all following requirements:



       *  the source address of the packet must fall in one of Remote
          Prefixes



       *  the destination address of the packet must fall one of Source
          Prefixes



       *  the Remote Endpoint, along with Public Routing Instance sub-
          TLV identifies an IP address that is reachable



   6.  If there are multiple feasible IPsec tunnel TLV exists, then
       select the TLV using following rules in order:



       1.  TLV with smallest local address range as indicated by Remote
           Prefix sub-TLV



       2.  TLV with smallest remote address range as indicated by Local
           Prefix sub-TLV (NLRI prefix if local prefix sub-TLV is not
           included in TLV)



   7.  After an IPsec TLV is selected, router uses IKEv2 to create the
       CHILD_SA:



       *  public/private routing instance, peer's tunnel address are
          chosen based on above rules



       *  Traffic Selector:



       *  For each TS in TSi:



          +  address range: the prefix specified in Remote Prefix sub-
             TLV



          +  protocol: tag mapped configuration



          +  port range: tag mapped configuration



       *  for each TS in TSr:



          +  address range: prefixes specified by Local Prefix sub-TLV
             if it exists; otherwise use the prefix specified by the
             NLRI




          +  protocol: tag mapped configuration



          +  port range: tag mapped configuration



   The operation of BGP provisioned IPsec configuration is illustrated
   with following example:



                          +‑‑‑‑‑‑‑‑+
                 +‑‑‑‑‑‑‑‑+ BGP RR +‑‑‑‑‑‑‑‑‑+
                 |        +‑‑‑‑‑‑‑‑+         |
                 |                           |
                 |     CHILDSA1: Tag‑1       |
              +‑‑+‑‑‑+ <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> +‑‑+‑‑‑+
subetA ‑‑‑‑‑‑‑+  R1  |      IKEv2         |  R2  +‑‑‑‑‑ subnetB/subnetC
              +‑‑‑‑‑‑+ <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> +‑‑‑‑‑‑+
                        CHILDSA2: Tag‑2



                        Figure 4: Operation Example



   There are following traffic protection requirements:



   o  subnetA - subnetB: ESP tunnel, CHACHA20_POLY1305 , mapping to tag
      Tag-1



   o  subnetA - subnetC: ESP tunnel, NULL-AES-GMAC-256 , mapping to tag
      Tag-2



   o  note: other IPsec configurations, like IKE_SA lifetime ..etc, are
      the same for both Tag-1 and Tag-2; not listed here for sake of



   Both R1 and R2 are provisioned with IPsec authentication credentials
   and configurations corresponding to Tag-1 and Tag-2; both Tag-1 and
   Tag-2 map to traffic selector protocol any and port range any.



   o  R1 advertise subnetA in BGP UPDATE, which has a tunnel
      encapsulation attribute that contains two IPsec tunnel TLVs:



      *  TLV-1: endpoint R1TunnelAddr, tag sub-TLV Tag-1 and subnetB in
         Remote Prefix sub-TLV.



      *  TLV-2: endpoint R1TunnelAddr, tag sub-TLV Tag-2 and subnetC in
         Remote Prefix sub-TLV.



   o  R2 advertise subnetB in BGP UPDATE, which has a tunnel
      encapsulation attribute that contains one IPsec tunnel TLV:
      R2TunnelAddr, tag sub-TLV Tag-1 and subnetA in Remote Prefix sub-
      TLV.



   o  R2 advertise subnetC in BGP UPDATE, which has a tunnel
      encapsulation attribute that contains one IPsec tunnel TLV:
      R2TunnelAddr, tag sub-TLV Tag-2 and subnetA in Remote Prefix sub-
      TLV.



   o  R1 received a packet from subnetA destined to subnetB, since BGP
      UPDATE contain subnetB also contains an IPsec tunnel encapsulation
      attribute, there is no existing CHILD SA could be used, based on
      the rules described in this section, R1 select TLV-1 and uses
      IKEv2 to establish an IPsec tunnel to R2TunnelAddr, using
      certificate authentication, create 1st CHILD SA CHILDSA1:



      *  ESP transform: CHACHA20_POLY1305



      *  Traffic Selector:



         +  TSi: address subnetA, protocol any, port any



         +  TSr: address subnetB, protocol any, port any



   o  after tunnel is created, R1 and R2 could forward traffic between
      subnetA and subnetB over CHILDSA1



   o  R1 received a packet from subnetA destined to subnetC, CHILDSA1
      can't be used for this packet, R1 select TLV-2 to create 2nd CHILD
      SA, and given there is already an IKE SA between R1 and R2, R1
      uses existing IKESA to create CHILDSA2:



      *  ESP transform: NULL-AES-GMAC-256



      *  Traffic Selector:



         +  TSi: address subnetA, protocol any, port any



         +  TSr: address subnetC, protocol any, port any



   o  R1 and R2 could forward traffic between subnetA and subnetC over
      CHILDSA2




4. Semantics and Usage of IPsec Tunnel Encapsulation attribute

   IPsec tunnel encapsulation TLV has same usage and semantics as
   defined in [I-D.ietf-idr-tunnel-encaps] with following specific to
   IPsec tunnel:



   o  Due to nature of IPsec, the payload packet could only be IPv4 or
      IPv6 packet, so it MAY be carried in any BGP UPDATE message whose
      AFI/SAFI is 1/1 (IPv4 Unicast), 2/1 (IPv6 Unicast).



   o  For 1/128 (VPN-IPv4 Labeled Unicast), 2/128 (VPN-IPv6 Labeled
      Unicast), these NLRI has embedded label, which cause the payload
      packet can't be encapsulated in ESP packet, however with IPsec
      tunnel encapsulation, the label could be ignored during
      encapsulation since CHILD SA itself could be used to identify the
      private routing instance; so an UPDATE that include IPsec tunnel
      encapsulation attribute, which contains value 2 of Embedded Label
      Handling Sub-TLV, could be used to signal this type of setup.



   o  For other types of AFI/SAFI, a nested tunnel setup could be used
      to get IPsec protection, for example, an 25/70 (EVPN) payload
      packet could be encapsulated in VXLAN over IPsec tunnel.  See
      Section 4.1 for further detail.




4.1. Nested Tunnel

   A nested tunnel could be used for payload packet type that can't be
   encapsulated in IPsec tunnel directly, e.g. an Ethernet packet of
   EVPN service.  Following is an example of using VXLAN over IPsec
   tunnel for EVPN service:



   o  R1 need to forward an Ethernet packet P



   o  the path along which P is to be forwarded is determined by BGP
      UPDATE U1, which has a VXLAN tunnel encapsulation attribute and
      the next-hop is router R2



   o  the best path to R2 is a BGP route that was advertised in BGP
      UPDATE U2, which has an IPsec tunnel encapsulation TLV.



   o  R1 will encapsulate P in a VXLAN tunnel as indicated in U1, then
      encapsulate VXLAN packet into IPsec tunnel as indicated in U2



   o  if tag sub-TLV is used, then both U1 and U2 MUST have matching tag
      sub-TLV, otherwise the VXLAN packet will not be sent through IPsec
      tunnels identified in U2





4.2. Other Operation Specifics

   Following are some operation specific rules:



   1.  An IPsec dead peer detection mechanism, like IKEv2 DPD or BFD
       over IPsec, SHOULD be used to monitor liveness of IPsec tunnel;




   2.  If IPsec peer goes down, as described in section 5 of
       [I-D.ietf-idr-tunnel-encaps], packet forwarding router chooses
       another functional tunnel, specified by another tunnel TLV of
       same BGP route if there is any, to forward the packet; if there
       is no such tunnel, then router MAY drop the packet or MAY forward
       packet as it would had the Tunnel Encapsulation attribute not
       been present. this is matter of local policy.



   3.  After IPsec peer goes down, packet forwarding router SHOULD try
       to re-establish IPsec tunnel with certain hold-down timer and
       back-off mechanism. the detail is up to implementation. also
       IKEv2 session resumption [RFC5723] MAY be used to efficiently re-
       create tunnel;



   4.  When router receives a packet destined to a BGP route it
       advertised but does not have any of tunnel encapsulation in the
       BGP route, it MAY drop it or MAY accept it; this is matter of
       local policy. by default, the packet should be accepted.



   5.  As with all types of tunnel technology, IPsec tunnel adds
       overhead (crypto & encapsulation) to the packet, which often
       causes MTU issues, deployment SHOULD take tunnel overhead into
       MTU consideration.




5. IANA Considerations

   This document reuses "IPsec in Tunnel-mode"(4) as BGP Tunnel
   Encapsulation Attribute Tunnel Types.



   This document will request new values in IANA "BGP Tunnel
   Encapsulation Attribute Sub-TLVs" registry for following sub-TLV:



   o  public routing instance



   o  remote address prefix



   o  local address prefix



   o  IPsec configuration tag




6. Security Considerations

   IKEv2 is used to create IPsec tunnel, which ensures following:



   o  Traffic protection keys are generated dynamically during IKEv2
      negotiation, only known by participating peer of the IPsec tunnel;
      there is no central node to manage and distribute all keys.



   o  IKEv2 rekey mechanism refresh keys regularly; PFS(Perfect Forward
      Secrecy) provides additional protection;



   o  Secure authentication mechanism that only allow authenticated peer
      to create tunnel



   o  Traffic Selector guarantee that only agreed traffic is allowed to
      be forwarded within the IPsec tunnel;



   o  Using a separate, dedicate protocol(IKEv2) for key management/
      authentication ensure they are not tied to BGP, all existing and
      future IKEv2 features could be used without changing BGP;



   There is concern that malicious party might manipulate IPsec tunnel
   encapsulation attribute to divert traffic, however this risk could be
   mitigated by IKEv2 mutual authentication.



   BGP route filter include outbound route filter [RFC5291], Origin
   Validation [RFC6811] and BGPSec [RFC8205] could be used to further
   secure BGP UPDATE message.



   IKEv2 cookie [RFC7296] and varies mechanisms defined including client
   puzzle defined in [RFC8019] could be used to protect IKEv2 from
   Distributed Denial-of-Service Attacks.



   Follow latest IETF ESP/IKEv2 implementation requirement and guidance
   ([RFC8221] and [RFC8247] at time of writing) to make sure always
   using secure and up-to-date cryptographic algorithms;




7. Change Log

   o  v00 March 04, 2019: initial draft



   o  v01 Sep 04, 2019:



      *  replaces color sub-TLV with a new IPsec configuration tag sub-
         TLV



      *  add rule on selecting TLV when there multiple feasible TLVs in
         section Section 3



      *  change crypto used in example of section Section 3



      *  change title from "BGP Signaled IPsec Tunnel Configuration" to
         "BGP Provisioned IPsec Tunnel Configuration"



      *  Add a section Section 4.2 on some operation specifics



      *  add more content in Section 6



      *  add specification of number of time each new sub-TLV allowed in
         a given tunnel TLV



      *  add clarification in section Section 1 to clarify IPsec tunnel
         means IPsec tunnel mode



      *  traffic selector protocol and port range now come from tag
         mapped configuration




8. References


8.1. Normative References


   [I-D.ietf-idr-tunnel-encaps]

              Patel, K., Velde, G., Ramachandra, S., and E. Rosen, "The
              BGP Tunnel Encapsulation Attribute", draft-ietf-idr-
              tunnel-encaps-13 (work in progress), July 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4301]
  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
              December 2005, <https://www.rfc-editor.org/info/rfc4301>.




   [RFC4360]
  Sangli, S., Tappan, D., and Y. Rekhter, "BGP Extended
              Communities Attribute", RFC 4360, DOI 10.17487/RFC4360,
              February 2006, <https://www.rfc-editor.org/info/rfc4360>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




8.2. Informative References


   [RFC5291]
  Chen, E. and Y. Rekhter, "Outbound Route Filtering
              Capability for BGP-4", RFC 5291, DOI 10.17487/RFC5291,
              August 2008, <https://www.rfc-editor.org/info/rfc5291>.




   [RFC5723]
  Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
              Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,
              DOI 10.17487/RFC5723, January 2010,
              <https://www.rfc-editor.org/info/rfc5723>.




   [RFC6811]
  Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R.
              Austein, "BGP Prefix Origin Validation", RFC 6811,
              DOI 10.17487/RFC6811, January 2013,
              <https://www.rfc-editor.org/info/rfc6811>.




   [RFC7296]
  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.




   [RFC8019]
  Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange
              Protocol Version 2 (IKEv2) Implementations from
              Distributed Denial-of-Service Attacks", RFC 8019,
              DOI 10.17487/RFC8019, November 2016,
              <https://www.rfc-editor.org/info/rfc8019>.




   [RFC8205]
  Lepinski, M., Ed. and K. Sriram, Ed., "BGPsec Protocol
              Specification", RFC 8205, DOI 10.17487/RFC8205, September
              2017, <https://www.rfc-editor.org/info/rfc8205>.




   [RFC8221]
  Wouters, P., Migault, D., Mattsson, J., Nir, Y., and T.
              Kivinen, "Cryptographic Algorithm Implementation
              Requirements and Usage Guidance for Encapsulating Security
              Payload (ESP) and Authentication Header (AH)", RFC 8221,
              DOI 10.17487/RFC8221, October 2017,
              <https://www.rfc-editor.org/info/rfc8221>.




   [RFC8247]
  Nir, Y., Kivinen, T., Wouters, P., and D. Migault,
              "Algorithm Implementation Requirements and Usage Guidance
              for the Internet Key Exchange Protocol Version 2 (IKEv2)",
              RFC 8247, DOI 10.17487/RFC8247, September 2017,
              <https://www.rfc-editor.org/info/rfc8247>.



Author's Address



Hu Jun
Nokia
777 East Middlefield Road
Mountain View  CA 95148
United States



   Email: jun.hu@nokia.com







































draft-hujun-idr-bgp-ipsec-transport-mode-00 - BGP Provisioned IPsec Transport Mode Protected Tunnel Configuration 






draft-hujun-idr-bgp-ipsec-transport-mode-00 - BGP Provisioned IPsec Transport Mo

Index
Back 5
Prev
Next
Forward 5


idr

Internet-Draft

Intended status: Standards Track

Expires: April 12, 2020


J. Hu

Nokia

October 10, 2019



BGP Provisioned IPsec Transport Mode Protected Tunnel Configuration  

draft-hujun-idr-bgp-ipsec-transport-mode-00


Abstract

   This document defines a method of using BGP to advertise IPsec
   transport mode protected tunnel (like GRE tunnel with IPsec transport
   mode protection) configuration along with NLRI, based on
   [I-D.ietf-idr-tunnel-encaps] and [I-D.hujun-idr-bgp-ipsec].




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 12, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology


	 1.2.  IPsec Transport Protected sub-TLV



	2.  Semantics and Operation


	3.  IANA Considerations


	4.  Security Considerations


	5.  Change Log


	6.  References
	 6.1.  Normative References


	 6.2.  Informative References



	Author's Address




1. Introduction

   [I-D.hujun-idr-bgp-ipsec] defines a method of using BGP to advertise
   configuration for IPsec tunnel with ESP tunnel mode, however there
   are other use cases require of using IPsec/ESP transport mode with
   other types of IP tunnel, like GRE tunnel, as defined in [RFC4301]
   and [RFC4303].  Figure 2 shows an example of IPv4 GRE tunnel packet
   with ESP transport mode protection.  This document defines a method
   of using BGP to advertise configuration for these use cases.



‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
|IPv4 header  | ESP | GRE | Payload |   ESP   | ESP|
|(any options)| Hdr | Hdr | Packet  | Trailer | ICV|
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
                          |<‑‑ encryption ‑‑‑>|
                    |<‑‑‑‑‑‑‑‑ integrity ‑‑‑‑>|



      Figure 1: IPv4 GRE tunnel packet with ESP transport protection



   The method follows same principle as [I-D.hujun-idr-bgp-ipsec], keep
   changes to BGP minimal and not changing IKEv2/IPsec; however the
   IPsec transport mode protected IP tunnel is not a tunnel stack or
   nested tunnels, IPsec transport mode protection doesn't add extra IP
   header.



   The requirement of using IPsec transport mode is signaled by
   including a sub-TLV: IPsec transport protected, in a BGP tunnel
   encapsulation TLV.




1.1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




1.2. IPsec Transport Protected sub-TLV

   This sub-TLV represents using IPsec transport mode protection for the
   tunnel specified by parent tunnel encapsulation TLV, its value is a
   IPsec configuration tag as defined in [I-D.hujun-idr-bgp-ipsec].



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|   IPsec Configuration tag (4 octets) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 2: IPsec Configuration Tag



   For a given tunnel encapsulation TLV, IPsec configuration tag sub-TLV
   MUST appear only one time.




2. Semantics and Operation

   Except for what this document explicitly specifies, the semantics and
   operation of tunnel encapsulation TLV with IPsec Transport Protected
   sub-TLV are same as defined in [I-D.ietf-idr-tunnel-encaps] and
   [I-D.hujun-idr-bgp-ipsec].



   IPsec Transport Protected sub-TLV MAY be included in any type of IP
   tunnel TLV specified in [I-D.ietf-idr-tunnel-encaps]; it MUST be
   ignored when included in a IPsec tunnel TLV.



   The inclusion of IPsec Transport Protected TLV and its value is
   determined by local policy.



   Following are the rules of operations:



   1.  All routers are pre-provisioned with Mapping between IPsec
       configuration tag value and IPsec configurations include
       authentication method/credentials



   2.  If a given NLRI needs a specific tunnel encapsulation with IPsec
       transport mode protection, then advertising router need to
       include an IPsec Transport Protected sub-TLV with required
       configuration tag, in the corresponding tunnel encapsulation TLV/
       attribute, along with the NLRI in BGP UPDATE U;



   3.  When a router need to forward a packet along a path is determined
       by a BGP UPDATE which has a tunnel encapsulation attribute that
       contains one or more tunnel TLV, router selects a tunnel TLV
       based on Semantics defined in [I-D.ietf-idr-tunnel-encaps], if
       the selected tunnel TLV contains IPsec Transport Protected sub-
       TLV, then the router use first feasible CHILD_SA for IP tunnel
       packet encryption, a CHILD SA is considered as feasible when it
       meets all following conditions:



       *  it is ESP transport mode



       *  its private and public routing instance is same as routing
          instance in which the packet to be forwarded



       *  its peer tunnel address is same as indicated by Remote
          Endpoint sub-TLV



       *  the source and destination address of the packet to be
          forwarded falls in the range of CHILD SA's traffic selector



       *  its transform and other configuration maps to the tag
          indicated in the IPsec configuration tag sub-TLV



   4.  If router can't find such CHILD SA, then it will use IKEv2 to
       create one with following IPsec configuration:



       *  ESP transport mode



       *  private and public routing instance is the routing instance in
          which the packet to be forwarded




       *  peer tunnel address is specified by Remote Endpoint sub-TLV



       *  local traffic selector:



          +  address range: local tunnel endpoint address



          +  protocol: tag mapped configuration



          +  port range: tag mapped configuration



       *  remote traffic selector:



          +  address range: address in Remote Endpoint sub-TLV of
             selected tunnel encapsulation TLV



          +  protocol: tag mapped configuration



          +  port range: tag mapped configuration



       *  other configurations come from mapping of the configuration
          tag in IPsec Transport Protected sub-TLV of selected tunnel
          encapsulation TLV




3. IANA Considerations

   This document will request new values in IANA "BGP Tunnel
   Encapsulation Attribute Sub-TLVs" registry for IPsec Transport
   Protected sub-TLV.




4. Security Considerations

   IKEv2 is used to create IPsec tunnel, which ensures following:



   o  Traffic protection keys are generated dynamically during IKEv2
      negotiation, only known by participating peer of the IPsec tunnel;
      there is no central node to manage and distribute all keys.



   o  IKEv2 rekey mechanism refresh keys regularly; PFS(Perfect Forward
      Secrecy) provides additional protection;



   o  Secure authentication mechanism that only allow authenticated peer
      to create tunnel



   o  Traffic Selector guarantee that only agreed traffic is allowed to
      be forwarded within the IPsec tunnel;



   o  Using a separate, dedicate protocol(IKEv2) for key management/
      authentication ensure they are not tied to BGP, all existing and
      future IKEv2 features could be used without changing BGP;



   There is concern that malicious party might manipulate IPsec tunnel
   encapsulation attribute to divert traffic, however this risk could be
   mitigated by IKEv2 mutual authentication.



   BGP route filter include outbound route filter [RFC5291], Origin
   Validation [RFC6811] and BGPSec [RFC8205] could be used to further
   secure BGP UPDATE message.



   IKEv2 cookie [RFC7296] and varies mechanisms defined including client
   puzzle defined in [RFC8019] could be used to protect IKEv2 from
   Distributed Denial-of-Service Attacks.



   Follow latest IETF ESP/IKEv2 implementation requirement and guidance
   ([RFC8221] and [RFC8247] at time of writing) to make sure always
   using secure and up-to-date cryptographic algorithms;




5. Change Log

   o  v00 Sep 29, 2019: initial draft




6. References


6.1. Normative References


   [I-D.hujun-idr-bgp-ipsec]

              Hu, J., "BGP Provisioned IPsec Tunnel Configuration",
              draft-hujun-idr-bgp-ipsec-01 (work in progress), September
              2019.




   [I-D.ietf-idr-tunnel-encaps]

              Patel, K., Velde, G., and S. Ramachandra, "The BGP Tunnel
              Encapsulation Attribute", draft-ietf-idr-tunnel-encaps-14
              (work in progress), September 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4301]
  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
              December 2005, <https://www.rfc-editor.org/info/rfc4301>.




   [RFC4303]
  Kent, S., "IP Encapsulating Security Payload (ESP)",
              RFC 4303, DOI 10.17487/RFC4303, December 2005,
              <https://www.rfc-editor.org/info/rfc4303>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




6.2. Informative References


   [RFC5291]
  Chen, E. and Y. Rekhter, "Outbound Route Filtering
              Capability for BGP-4", RFC 5291, DOI 10.17487/RFC5291,
              August 2008, <https://www.rfc-editor.org/info/rfc5291>.




   [RFC6811]
  Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R.
              Austein, "BGP Prefix Origin Validation", RFC 6811,
              DOI 10.17487/RFC6811, January 2013,
              <https://www.rfc-editor.org/info/rfc6811>.




   [RFC7296]
  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.




   [RFC8019]
  Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange
              Protocol Version 2 (IKEv2) Implementations from
              Distributed Denial-of-Service Attacks", RFC 8019,
              DOI 10.17487/RFC8019, November 2016,
              <https://www.rfc-editor.org/info/rfc8019>.




   [RFC8205]
  Lepinski, M., Ed. and K. Sriram, Ed., "BGPsec Protocol
              Specification", RFC 8205, DOI 10.17487/RFC8205, September
              2017, <https://www.rfc-editor.org/info/rfc8205>.




   [RFC8221]
  Wouters, P., Migault, D., Mattsson, J., Nir, Y., and T.
              Kivinen, "Cryptographic Algorithm Implementation
              Requirements and Usage Guidance for Encapsulating Security
              Payload (ESP) and Authentication Header (AH)", RFC 8221,
              DOI 10.17487/RFC8221, October 2017,
              <https://www.rfc-editor.org/info/rfc8221>.




   [RFC8247]
  Nir, Y., Kivinen, T., Wouters, P., and D. Migault,
              "Algorithm Implementation Requirements and Usage Guidance
              for the Internet Key Exchange Protocol Version 2 (IKEv2)",
              RFC 8247, DOI 10.17487/RFC8247, September 2017,
              <https://www.rfc-editor.org/info/rfc8247>.



Author's Address



Hu Jun
Nokia
777 East Middlefield Road
Mountain View  CA 95148
United States



   Email: jun.hu@nokia.com

















draft-ietf-ace-coap-est-16 - EST over secure CoAP (EST-coaps) 






draft-ietf-ace-coap-est-16 - EST over secure CoAP (EST-coaps) 

Index
Next
Forward 5


ACE

Internet-Draft

Intended status: Standards Track

Expires: April 24, 2020












P. van der Stok

Consultant

P. Kampanakis

Cisco Systems

M. Richardson

SSW

S. Raza

RISE SICS

October 22, 2019

EST over secure CoAP (EST-coaps)  

draft-ietf-ace-coap-est-16


Abstract

   Enrollment over Secure Transport (EST) is used as a certificate
   provisioning protocol over HTTPS.  Low-resource devices often use the
   lightweight Constrained Application Protocol (CoAP) for message
   exchanges.  This document defines how to transport EST payloads over
   secure CoAP (EST-coaps), which allows constrained devices to use
   existing EST functionality for provisioning certificates.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 24, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Change Log


	2.  Introduction


	3.  Terminology


	4.  DTLS and conformance to RFC7925 profiles


	5.  Protocol Design
	 5.1.  Discovery and URIs


	 5.2.  Mandatory/optional EST Functions


	 5.3.  Payload formats


	 5.4.  Message Bindings


	 5.5.  CoAP response codes


	 5.6.  Message fragmentation


	 5.7.  Delayed Responses


	 5.8.  Server-side Key Generation



	6.  HTTPS-CoAPS Registrar


	7.  Parameters


	8.  Deployment limitations


	9.  IANA Considerations
	 9.1.  Content-Format Registry


	 9.2.  Resource Type registry



	10. Security Considerations
	 10.1.  EST server considerations


	 10.2.  HTTPS-CoAPS Registrar considerations



	11. Contributors


	12. Acknowledgements


	13. References
	 13.1.  Normative References


	 13.2.  Informative References



	Appendix A.  EST messages to EST-coaps
	 A.1.  cacerts


	 A.2.  enroll / reenroll


	 A.3.  serverkeygen


	 A.4.  csrattrs



	Appendix B.  EST-coaps Block message examples
	 B.1.  cacerts


	 B.2.  enroll / reenroll



	Appendix C.  Message content breakdown
	 C.1.  cacerts


	 C.2.  enroll / reenroll


	 C.3.  serverkeygen



	Authors' Addresses




1. Change Log

   EDNOTE: Remove this section before publication



   -16



      Updates to address Yaron S.'s Secdir review.



      Updates to address David S.'s Gen-ART review.



   -15



      Updates to addressed Ben's AD follow up feedback.



   -14



      Updates to complete Ben's AD review feedback and discussions.



   -13



      Updates based on AD's review and discussions



      Examples redone without password



   -12



      Updated section 5 based on Esko's comments and nits identified.



      Nits and some clarifications for Esko's new review from 5/21/2019.



      Nits and some clarifications for Esko's new review from 5/28/2019.



   -11



      Updated Server-side keygen to simplify motivation and added
      paragraphs in Security considerations to point out that random
      numbers are still needed (feedback from Hannes).



   -10



      Addressed WGLC comments



      More consistent request format in the examples.



      Explained root resource difference when there is resource
      discovery



      Clarified when the client is supposed to do discovery



      Fixed nits and minor Option length inaccurracies in the examples.



   -09



      WGLC comments taken into account



      consensus about discovery of content-format



      added additional path for content-format selection



      merged DTLS sections



   -08



      added application/pkix-cert Content-Format TBD287.



      discovery text clarified



      Removed text on ct negotiation in connection to multipart-core



      removed text that duplicates or contradicts RFC7252 (thanks Klaus)



      Stated that well-known/est is compulsory



      Use of response codes clarified.



      removed bugs: Max-Age and Content-Format Options in Request



      Accept Option explained for est/skg and added in enroll example



      Added second URI /skc for server-side key gen and a simple cert
      (not PKCS#7)



      Persistence of DTLS connection clarified.



      Minor text fixes.



   -07:



      redone examples from scratch with openssl



      Updated authors.



      Added CoAP RST as a MAY for an equivalent to an HTTP 204 message.



      Added serialization example of the /skg CBOR response.



      Added text regarding expired IDevIDs and persistent DTLS
      connection that will start using the Explicit TA Database in the
      new DTLS connection.



      Nits and fixes



      Removed CBOR envelop for binary data



      Replaced TBD8 with 62.



      Added RFC8174 reference and text.



      Clarified MTI for server-side key generation and Content-Formats.
      Defined the /skg MTI (PKCS#8) and the cases where CMS encryption
      will be used.



      Moved Fragmentation section up because it was referenced in
      sections above it.



   -06:



      clarified discovery section, by specifying that no discovery may
      be needed for /.well-known/est URI.



      added resource type values for IANA



      added list of compulsory to implement and optional functions.



      Fixed issues pointed out by the idnits tool.



      Updated CoAP response codes section with more mappings between EST
      HTTP codes and EST-coaps CoAP codes.



      Minor updates to the MTI EST Functions section.



      Moved Change Log section higher.



   -05:



      repaired again



      TBD8 = 62 removed from C-F registration, to be done in CT draft.



   -04:



      Updated Delayed response section to reflect short and long delay
      options.



   -03:



      Removed observe and simplified long waits



      Repaired Content-Format specification



   -02:



      Added parameter discussion in section 8



      Concluded Content-Format specification using multipart-ct draft



      examples updated



   -01:



      Editorials done.



      Redefinition of proxy to Registrar in Section 6.  Explained better
      the role of https-coaps Registrar, instead of "proxy"



      Provide "observe" Option examples



      extended block message example.



      inserted new server key generation text in Section 5.8 and
      motivated server key generation.



      Broke down details for DTLS 1.3



      New Media-Type uses CBOR array for multiple Content-Format
      payloads



      provided new Content-Format tables



      new media format for IANA



   -00



      copied from vanderstok-ace-coap-04




2. Introduction

   "Classical" Enrollment over Secure Transport (EST) [RFC7030] is used
   for authenticated/authorized endpoint certificate enrollment (and
   optionally key provisioning) through a Certificate Authority (CA) or
   Registration Authority (RA).  EST transports messages over HTTPS.
   This document defines a new transport for EST based on the
   Constrained Application Protocol (CoAP) since some Internet of Things
   (IoT) devices use CoAP instead of HTTP.  Therefore, this
   specification utilizes DTLS [RFC6347] and CoAP [RFC7252] instead of
   TLS [RFC8446] and HTTP [RFC7230].



   EST responses can be relatively large and for this reason this
   specification also uses CoAP Block-Wise Transfer [RFC7959] to offer a
   fragmentation mechanism of EST messages at the CoAP layer.



   This document also profiles the use of EST to only support
   certificate-based client authentication.  HTTP Basic or Digest
   authentication (as described in Section 3.2.3 of [RFC7030]) are not
   supported.




3. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Many of the concepts in this document are taken from [RFC7030].
   Consequently, much text is directly traceable to [RFC7030].




4. DTLS and conformance to RFC7925 profiles

   This section describes how EST-coaps conforms to the profiles of low-
   resource devices described in [RFC7925].  EST-coaps can transport
   certificates and private keys.  Certificates are responses to
   (re-)enrollment requests or requests for a trusted certificate list.
   Private keys can be transported as responses to a server-side key
   generation request as described in Section 4.4 of [RFC7030] and
   discussed in Section 5.8 of this document.



   EST-coaps depends on a secure transport mechanism that secures the
   exchanged CoAP messages.  DTLS is one such secure protocol.  No other
   changes are necessary regarding the secure transport of EST messages.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|    EST request/response messages               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|    CoAP for message transfer and signaling     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|    Secure Transport                            |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Figure 1: EST-coaps protocol layers



   In accordance with sections 3.3 and 4.4 of [RFC7925], the mandatory
   cipher suite for DTLS in EST-coaps is
   TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251].  Curve secp256r1 MUST
   be supported [RFC8422]; this curve is equivalent to the NIST P-256
   curve.  After the standardization of [RFC7748], support for
   Curve25519 will likely be required in the future by (D)TLS Profiles
   for the Internet of Things [RFC7925].



   DTLS 1.2 implementations must use the Supported Elliptic Curves and
   Supported Point Formats Extensions in [RFC8422].  Uncompressed point
   format must also be supported.  DTLS 1.3 [I-D.ietf-tls-dtls13]
   implementations differ from DTLS 1.2 because they do not support
   point format negotiation in favor of a single point format for each
   curve.  Thus, support for DTLS 1.3 does not mandate point format
   extensions and negotiation.  In addition, in DTLS 1.3 the Supported
   Elliptic Curves extension has been renamed to Supported Groups.



   CoAP was designed to avoid IP fragmentation.  DTLS is used to secure
   CoAP messages.  However, fragmentation is still possible at the DTLS
   layer during the DTLS handshake when using ECC ciphersuites.  If
   fragmentation is necessary, "DTLS provides a mechanism for
   fragmenting a handshake message over several records, each of which
   can be transmitted separately, thus avoiding IP fragmentation"
   [RFC6347].



   The authentication of the EST-coaps server by the EST-coaps client is
   based on certificate authentication in the DTLS handshake.  The EST-
   coaps client MUST be configured with at least an Implicit TA database
   which will enable the authentication of the server the first time
   before updating its trust anchor (Explicit TA) [RFC7030].



   The authentication of the EST-coaps client MUST be with a client
   certificate in the DTLS handshake.  This can either be



   o  a previously issued client certificate (e.g., an existing
      certificate issued by the EST CA); this could be a common case for
      simple re-enrollment of clients.



   o  a previously installed certificate (e.g., manufacturer IDevID
      [ieee802.1ar] or a certificate issued by some other party).
      IDevID's are expected to have a very long life, as long as the
      device, but under some conditions could expire.  In that case, the
      server MAY want to authenticate a client certificate against its
      trust store although the certificate is expired (Section 10).



   EST-coaps supports the certificate types and Trust Anchors (TA) that
   are specified for EST in Section 3 of [RFC7030].



   As described in Section 2.1 of [RFC5272] proof-of-identity refers to
   a value that can be used to prove that the private key corresponding
   to the certified public key is in the possession of and can be used
   by an end-entity or client.  Additionally, channel-binding
   information can link proof-of-identity with an established connetion.
   Connection-based proof-of-possession is OPTIONAL for EST-coaps
   clients and servers.  When proof-of-possession is desired, a set of
   actions are required regarding the use of tls-unique, described in
   Section 3.5 in [RFC7030].  The tls-unique information consists of the
   contents of the first "Finished" message in the (D)TLS handshake
   between server and client [RFC5929].  The client adds the "Finished"
   message as a ChallengePassword in the attributes section of the
   PKCS#10 Request [RFC5967] to prove that the client is indeed in
   control of the private key at the time of the (D)TLS session
   establishment.



In the case of handshake message fragmentation, if proof‑of‑
possession is desired, the Finished message added as the
ChallengePassword in the CSR is calculated as specified by the DTLS
standards.  We summarize it here for convenience.  For DTLS 1.2, in
the event of handshake message fragmentation, the Hash of the
handshake messages used in the MAC calculation of the Finished
message must be computed as if each handshake message had been sent
as a single fragment (Section 4.2.6 of [RFC6347]).  The Finished
message is calculated as shown in Section 7.4.9 of [RFC5246].
Similarly, for DTLS 1.3, the Finished message must be computed as if
each handshake message had been sent as a single fragment
(Section 5.8 of [I‑D.ietf‑tls‑dtls13]) following the algorithm
described in 4.4.4 of [RFC8446].



   In a constrained CoAP environment, endpoints can't always afford to
   establish a DTLS connection for every EST transaction.
   Authenticating and negotiating DTLS keys requires resources on low-
   end endpoints and consumes valuable bandwidth.  To alleviate this
   situation, an EST-coaps DTLS connection MAY remain open for
   sequential EST transactions.  For example, an EST csrattrs request
   that is followed by a simpleenroll request can use the same
   authenticated DTLS connection.  However, when a cacerts request is
   included in the set of sequential EST transactions, some additional
   security considerations apply regarding the use of the Implicit and
   Explicit TA database as explained in Section 10.1.



   Given that after a successful enrollment, it is more likely that a
   new EST transaction will take place after a significant amount of
   time, the DTLS connections SHOULD only be kept alive for EST messages
   that are relatively close to each other.  In some cases, like NAT
   rebinding, keeping the state of a connection is not possible when
   devices sleep for extended periods of time.  In such occasions,
   [I-D.ietf-tls-dtls-connection-id] negotiates a connection ID that can
   eliminate the need for new handshake and its additional cost; or DTLS
   session resumption provides a less costly alternative than re-doing a
   full DTLS handshake.




5. Protocol Design

   EST-coaps uses CoAP to transfer EST messages, aided by Block-Wise
   Transfer [RFC7959] to avoid IP fragmentation.  The use of Blocks for
   the transfer of larger EST messages is specified in Section 5.6.
   Figure 1 shows the layered EST-coaps architecture.



   The EST-coaps protocol design follows closely the EST design.  The
   supported message types in EST-coaps are:



   o  CA certificate retrieval needed to receive the complete set of CA
      certificates.



   o  Simple enroll and re-enroll for a CA to sign client identity
      public key.



   o  Certificate Signing Request (CSR) attribute messages that informs
      the client of the fields to include in a CSR.



   o  Server-side key generation messages to provide a client identity
      private key when the client chooses so.



   While [RFC7030] permits a number of the EST functions to be used
   without authentication, this specification requires that the client
   MUST be authenticated for all functions.




5.1. Discovery and URIs

   EST-coaps is targeted for low-resource networks with small packets.
   Two types of installations are possible (1) rigid ones where the
   address and the supported functions of the EST server(s) are known,
   and (2) flexible one where the EST server and it supported functions
   need to be discovered.



   For both types of installations, saving header space is important and
   short EST-coaps URIs are specified in this document.  These URIs are
   shorter than the ones in [RFC7030].  Two example EST-coaps resource
   path names are:



   coaps://example.com:<port>/.well-known/est/<short-est>
   coaps://example.com:<port>/.well-known/est/
                                              ArbitraryLabel/<short-est>



   The short-est strings are defined in Table 1.  Arbitrary Labels are
   usually defined and used by EST CAs in order to route client requests
   to the appropriate certificate profile.  Implementers should consider
   using short labels to minimize transmission overhead.



   The EST-coaps server URIs, obtained through discovery of the EST-
   coaps resource(s) as shown below, are of the form:



   coaps://example.com:<port>/<root-resource>/<short-est>
   coaps://example.com:<port>/<root-resource>/
                                              ArbitraryLabel/<short-est>



   Figure 5 in Section 3.2.2 of [RFC7030] enumerates the operations and
   corresponding paths which are supported by EST.  Table 1 provides the
   mapping from the EST URI path to the shorter EST-coaps URI path.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| EST              | EST‑coaps                    |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| /cacerts         | /crts                        |
| /simpleenroll    | /sen                         |
| /simplereenroll  | /sren                        |
| /serverkeygen    | /skg (PKCS#7)                |
| /serverkeygen    | /skc (application/pkix‑cert) |
| /csrattrs        | /att                         |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 1: Short EST-coaps URI path



   The /skg message is the EST /serverkeygen equivalent where the client
   requests a certificate in PKCS#7 format and a private key.  If the
   client prefers a single application/pkix-cert certificate instead of
   PKCS#7, it will make an /skc request.  In both cases (i.e., /skg,
   /skc) a private key MUST be returned



   Clients and servers MUST support the short resource EST-coaps URIs.



   In the context of CoAP, the presence and location of (path to) the
   EST resources are discovered by sending a GET request to "/.well-
   known/core" including a resource type (RT) parameter with the value
   "ace.est*" [RFC6690].  The example below shows the discovery over
   CoAPS of the presence and location of EST-coaps resources.  Linefeeds
   are included only for readability.



     REQ: GET /.well-known/core?rt=ace.est*



  RES: 2.05 Content
</est/crts>;rt="ace.est.crts";ct="281 TBD287",
</est/sen>;rt="ace.est.sen";ct="281 TBD287",
</est/sren>;rt="ace.est.sren";ct="281 TBD287",
</est/att>;rt="ace.est.att";ct=285,
</est/skg>;rt="ace.est.skg";ct=62,
</est/skc>;rt="ace.est.skc";ct=62



   The first three lines, describing ace.est.crts, ace.est.sen, and
   ace.est.sren, of the discovery response above MUST be returned if the
   server supports resource discovery.  The last three lines are only
   included if the corresponding EST functions are implemented (see
   Table 2).  The Content-Formats in the response allow the client to
   request one that is supported by the server.  These are the values
   that would be sent in the client request with an Accept option.



   Discoverable port numbers can be returned in the response payload.
   An example response payload for non-default CoAPS server port 61617
   follows below.  Linefeeds are included only for readability.



     REQ: GET /.well-known/core?rt=ace.est*



  RES: 2.05 Content
<coaps://[2001:db8:3::123]:61617/est/crts>;rt="ace.est.crts";
              ct="281 TBD287",
<coaps://[2001:db8:3::123]:61617/est/sen>;rt="ace.est.sen";
              ct="281 TBD287",
<coaps://[2001:db8:3::123]:61617/est/sren>;rt="ace.est.sren";
              ct="281 TBD287",
<coaps://[2001:db8:3::123]:61617/est/att>;rt="ace.est.att";
              ct=285,
<coaps://[2001:db8:3::123]:61617/est/skg>;rt="ace.est.skg";
              ct=62,
<coaps://[2001:db8:3::123]:61617/est/skc>;rt="ace.est.skc";
              ct=62



   The server MUST support the default /.well-known/est root resource.
   The server SHOULD support resource discovery when it supports non-
   default URIs (like /est or /est/ArbitraryLabel) or ports.  The client
   SHOULD use resource discovery when it is unaware of the available
   EST-coaps resources.



   Throughout this document the example root resource of /est is used.




5.2. Mandatory/optional EST Functions

   This specification contains a set of required-to-implement functions,
   optional functions, and not specified functions.  The latter ones are
   deemed too expensive for low-resource devices in payload and
   calculation times.



   Table 2 specifies the mandatory-to-implement or optional
   implementation of the EST-coaps functions.  Discovery of the
   existence of optional functions is described in Section 5.1.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| EST Functions    | EST‑coaps implementation |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| /cacerts         | MUST                     |
| /simpleenroll    | MUST                     |
| /simplereenroll  | MUST                     |
| /fullcmc         | Not specified            |
| /serverkeygen    | OPTIONAL                 |
| /csrattrs        | OPTIONAL                 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 2: List of EST-coaps functions




5.3. Payload formats

   EST-coaps is designed for low-resource devices and hence does not
   need to send Base64-encoded data.  Simple binary is more efficient
   (30% smaller payload for DER-encoded ASN.1) and well supported by
   CoAP.  Thus, the payload for a given Media-Type follows the ASN.1
   structure of the Media-Type and is transported in binary format.



   The Content-Format (HTTP Media-Type equivalent) of the CoAP message
   determines which EST message is transported in the CoAP payload.  The
   Media-Types specified in the HTTP Content-Type header (Section 3.2.2
   of [RFC7030]) are specified by the Content-Format Option (12) of
   CoAP.  The combination of URI-Path and Content-Format in EST-coaps
   MUST map to an allowed combination of URI and Media-Type in EST.  The
   required Content-Formats for these requests and response messages are
   defined in Section 9.1.  The CoAP response codes are defined in
   Section 5.5.



   Content-Format TBD287 can be used in place of 281 to carry a single
   certificate instead of a PKCS#7 container in a /crts, /sen, /sren or
   /skg response.  Content-Format 281 MUST be supported by EST-coaps
   servers.  Servers MAY also support Content-Format TBD287.  It is up
   to the client to support only Content-Format 281, TBD287 or both.
   The client will use a COAP Accept Option in the request to express
   the preferred response Content-Format.  If an Accept Option is not
   included in the request, the client is not expressing any preference
   and the server SHOULD choose format 281.



   Content-Format 286 is used in /sen, /sren and /skg requests and 285
   in /att responses.



   A representation with Content-Format identifier 62 contains a
   collection of representations along with their respective Content-
   Format.  The Content-Format identifies the Media-Type application/
   multipart-core specified in [I-D.ietf-core-multipart-ct].  For
   example, a collection, containing two representations in response to
   a EST-coaps server-side key generation /skg request, could include a
   private key in PKCS#8 [RFC5958] with Content-Format identifier 284
   (0x011C) and a single certificate in a PKCS#7 container with Content-
   Format identifier 281 (0x0119).  Such a collection would look like
   [284,h'0123456789abcdef', 281,h'fedcba9876543210'] in diagnostic CBOR
   notation.  The serialization of such CBOR content would be




84                  # array(4)
19 011C             # unsigned(284)
48                  # bytes(8)
   0123456789ABCDEF # "\x01#Eg\x89\xAB\xCD\xEF"
19 0119             # unsigned(281)
48                  # bytes(8)
   FEDCBA9876543210 # "\xFE\xDC\xBA\x98vT2\x10"



                   Multipart /skg response serialization



   When the client makes an /skc request the certificate returned with
   the private key is a single X.509 certificate (not a PKCS#7
   container) with Content-Format identifier TBD287 (0x011F) instead of
   281.  In cases where the private key is encrypted with CMS (as
   explained in Section 5.8) the Content-Format identifier is 280
   (0x0118) instead of 284.  The content format used in the response is
   summarized in Table 3.



+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Function | Response part 1 | Response part 2 |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| /skg     | 284             | 281             |
| /skc     | 280             | TBD287          |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



             Table 3: response content formats for skg and skc



   The key and certificate representations are DER-encoded ASN.1, in its
   native binary form.  An example is shown in Appendix A.3.




5.4. Message Bindings

   The general EST-coaps message characteristics are:



   o  EST-coaps servers sometimes need to provide delayed responses
      which are preceded by an immediately returned empty ACK or an ACK
      containing response code 5.03 as explained in Section 5.7.  Thus,
      it is RECOMMENDED for implementers to send EST-coaps requests in
      confirmable CON CoAP messages.



   o  The CoAP Options used are Uri-Host, Uri-Path, Uri-Port, Content-
      Format, Block1, Block2, and Accept.  These CoAP Options are used
      to communicate the HTTP fields specified in the EST REST messages.
      The Uri-host and Uri-Port Options can be omitted from the COAP
      message sent on the wire.  When omitted, they are logically
      assumed to be the transport protocol destination address and port
      respectively.  Explicit Uri-Host and Uri-Port Options are
      typically used when an endpoint hosts multiple virtual servers and
      uses the Options to route the requests accordingly.  Other COAP
      Options should be handled in accordance with [RFC7252].



   o  EST URLs are HTTPS based (https://), in CoAP these are assumed to
      be translated to CoAPS (coaps://)



   Table 1 provides the mapping from the EST URI path to the EST-coaps
   URI path.  Appendix A includes some practical examples of EST
   messages translated to CoAP.




5.5. CoAP response codes

   Section 5.9 of [RFC7252] and Section 7 of [RFC8075] specify the
   mapping of HTTP response codes to CoAP response codes.  The success
   code in response to an EST-coaps GET request (/crts, /att), is 2.05.
   Similarly, 2.04 is used in successfull response to EST-coaps POST
   requests (/sen, /sren, /skg, /skc).



   EST makes use of HTTP 204 or 404 responses when a resource is not
   available for the client.  In EST-coaps 2.04 is used in response to a
   POST (/sen, /sren, /skg, /skc). 4.04 is used when the resource is not
   available for the client.



   HTTP response code 202 with a Retry-After header in [RFC7030] has no
   equivalent in CoAP.  HTTP 202 with Retry-After is used in EST for
   delayed server responses.  Section 5.7 specifies how EST-coaps
   handles delayed messages with 5.03 responses with a Max-Age Option.
   Additionally, EST's HTTP 400, 401, 403, 404 and 503 status codes have
   their equivalent CoAP 4.00, 4.01, 4.03, 4.04 and 5.03 response codes
   in EST-coaps.  Table 4 summarizes the EST-coaps response codes.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| operation       | EST‑coaps       | Description                   |
|                 | response code   |                               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| /crts, /att     | 2.05            | Success. Certs included in    |
|                 |                 | the response payload.         |
|                 | 4.xx / 5.xx     | Failure.                      |
| /sen, /skg,     | 2.04            | Success. Cert included in the |
| /sren, /skc     |                 | response payload.             |
|                 | 5.03            | Retry in Max‑Age Option time. |
|                 | 4.xx / 5.xx     | Failure.                      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 4: EST-coaps response codes




5.6. Message fragmentation

   DTLS defines fragmentation only for the handshake and not for secure
   data exchange (DTLS records).  [RFC6347] states that to avoid using
   IP fragmentation, which involves error-prone datagram reconstitution,
   invokers of the DTLS record layer should size DTLS records so that
   they fit within any Path MTU estimates obtained from the record
   layer.  In addition, invokers residing on a 6LoWPAN over IEEE
   802.15.4 [ieee802.15.4] network are recommended to size CoAP messages
   such that each DTLS record will fit within one or two IEEE 802.15.4
   frames.



   That is not always possible in EST-coaps.  Even though ECC
   certificates are small in size, they can vary greatly based on
   signature algorithms, key sizes, and Object Identifier (OID) fields
   used.  For 256-bit curves, common ECDSA cert sizes are 500-1000 bytes
   which could fluctuate further based on the algorithms, OIDs, Subject
   Alternative Names (SAN) and cert fields.  For 384-bit curves, ECDSA
   certificates increase in size and can sometimes reach 1.5KB.
   Additionally, there are times when the EST cacerts response from the
   server can include multiple certificates that amount to large
   payloads.  Section 4.6 of CoAP [RFC7252] describes the possible
   payload sizes: "if nothing is known about the size of the headers,
   good upper bounds are 1152 bytes for the message size and 1024 bytes
   for the payload size".  Section 4.6 of [RFC7252] also suggests that
   IPv4 implementations may want to limit themselves to more
   conservative IPv4 datagram sizes such as 576 bytes.  Even with ECC,
   EST-coaps messages can still exceed MTU sizes on the Internet or
   6LoWPAN [RFC4919] (Section 2 of [RFC7959]).  EST-coaps needs to be
   able to fragment messages into multiple DTLS datagrams.



   To perform fragmentation in CoAP, [RFC7959] specifies the Block1
   Option for fragmentation of the request payload and the Block2 Option
   for fragmentation of the return payload of a CoAP flow.  As explained
   in Section 1 of [RFC7959], block-wise transfers should be used in
   Confirmable CoAP messages to avoid the exacerbation of lost blocks.
   Both EST-coaps clients and servers MUST support Block2.  EST-coaps
   servers MUST also support Block1.  The EST-coaps client MUST support
   Block1 only if it sends EST-coaps requests with an IP packet size
   that exceeds the Path MTU.



   [RFC7959] also defines Size1 and Size2 Options to provide size
   information about the resource representation in a request and
   response.  EST-client and server MAY support Size1 and Size2 Options.



   Examples of fragmented EST-coaps messages are shown in Appendix B.




5.7. Delayed Responses

   Server responses can sometimes be delayed.  According to
   Section 5.2.2 of [RFC7252], a slow server can acknowledge the request
   and respond later with the requested resource representation.  In
   particular, a slow server can respond to an EST-coaps enrollment
   request with an empty ACK with code 0.00, before sending the
   certificate to the client after a short delay.  If the certificate
   response is large, the server will need more than one Block2 block to
   transfer it.



   This situation is shown in Figure 2.  The client sends an enrollment
   request that uses N1+1 Block1 blocks.  The server uses an empty 0.00
   ACK to announce the delayed response which is provided later with
   2.04 messages containing N2+1 Block2 Options.  The first 2.04 is a
   confirmable message that is acknowledged by the client.  Onwards, the
   client acknowledges all subsequent Block2 blocks.



   The notation of Figure 2 is explained in Appendix B.1.



POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} ‑‑>
   <‑‑ (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} ‑‑>
   <‑‑ (ACK) (1:1/1/256) (2.31 Continue)
                  .
                  .
                  .
POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR (frag# N1+1)}‑‑>
   <‑‑ (0.00 empty ACK)
                  |
   ... Short delay before the certificate is ready ...
                  |
   <‑‑ (CON) (1:N1/0/256)(2:0/1/256)(2.04 Changed) {Cert resp (frag# 1)}
                                   (ACK)                     ‑‑>
POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256)          ‑‑>
   <‑‑ (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)}
                  .
                  .
                  .
POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256)          ‑‑>
   <‑‑ (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}



               Figure 2: EST-COAP enrollment with short wait



   If the server is very slow (i.e., minutes) in providing the response
   (i.e., when a manual intervention is needed), it SHOULD respond with
   an ACK containing response code 5.03 (Service unavailable) and a Max-
   Age Option to indicate the time the client SHOULD wait to request the
   content later.  After a delay of Max-Age, the client SHOULD resend
   the identical CSR to the server.  As long as the server responds with
   response code 5.03 (Service Unavailable) with a Max-Age Option, the
   client SHOULD keep resending the enrollment request until the server
   responds with the certificate or the client abandons the request for
   other reasons.



   To demonstrate this scenario, Figure 3 shows a client sending an
   enrollment request that uses N1+1 Block1 blocks to send the CSR to
   the server.  The server needs N2+1 Block2 blocks to respond, but also
   needs to take a long delay (minutes) to provide the response.
   Consequently, the server uses a 5.03 ACK response with a Max-Age
   Option.  The client waits for a period of Max-Age as many times as it
   receives the same 5.03 response and retransmits the enrollment
   request until it receives a certificate in a fragmented 2.04
   response.



POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)}  ‑‑>
  <‑‑ (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)}  ‑‑>
  <‑‑ (ACK) (1:1/1/256) (2.31 Continue)
                  .
                  .
                  .
POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR (frag# N1+1)}‑‑>
  <‑‑ (ACK) (1:N1/0/256) (5.03 Service Unavailable) (Max‑Age)
                  |
                  |
  ... Client tries again after Max‑Age with identical payload ...
                  |
                  |
POST [2001:db8::2:1]:61616/est/sen(CON)(1:0/1/256){CSR (frag# 1)}‑‑>
  <‑‑ (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)}  ‑‑>
  <‑‑ (ACK) (1:1/1/256) (2.31 Continue)
                  .
                  .
                  .
POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR (frag# N1+1)}‑‑>
                  |
   ... Immediate response when certificate is ready ...
                  |
  <‑‑ (ACK) (1:N1/0/256) (2:0/1/256) (2.04 Changed){Cert resp (frag# 1)}
POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256)           ‑‑>
  <‑‑ (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)}
                  .
                  .
                  .
POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256)          ‑‑>
  <‑‑ (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}



               Figure 3: EST-COAP enrollment with long wait




5.8. Server-side Key Generation

   In scenarios where it is desirable that the server generates the
   private key, server-side key generation is available.  Such scenarios
   could be when it is considered more secure to generate at the server
   the long-lived random private key that identifies the client, or when
   the resources spent to generate a random private key at the client
   are considered scarce, or when the security policy requires that the
   certificate public and corresponding private keys are centrally
   generated and controlled.  Of course, that does not eliminate the
   need for proper random numbers in various protocols like (D)TLS
   (Section 10.1).



   When requesting server-side key generation, the client asks for the
   server or proxy to generate the private key and the certificate which
   are transferred back to the client in the server-side key generation
   response.  In all respects, the server treats the CSR as it would
   treat any enroll or re-enroll CSR; the only distinction here is that
   the server MUST ignore the public key values and signature in the
   CSR.  These are included in the request only to allow re-use of
   existing codebases for generating and parsing such requests.



   The client /skg request is for a certificate in a PKCS#7 container
   and private key in two application/multipart-core elements.
   Respectively, an /skc request is for a single application/pkix-cert
   certificate and a private key.  The private key Content-Format
   requested by the client is indicated in the PKCS#10 CSR request.  If
   the request contains SMIMECapabilities and DecryptKeyIdentifier or
   AsymmetricDecryptKeyIdentifier the client is expecting Content-Format
   280 for the private key.  Then the private key is encrypted
   symmetrically or asymmetrically as per [RFC7030].  The symmetric key
   or the asymmetric keypair establishment method is out of scope of the
   specification.  A /skg or /skc request with a CSR without
   SMIMECapabilities expects an application/multipart-core with an
   unencrypted PKCS#8 private key with Content-Format 284.



   The EST-coaps server-side key generation response is returned with
   Content-Format application/multipart-core
   [I-D.ietf-core-multipart-ct] containing a CBOR array with four items
   (Section 5.3) .  The two representations (each consisting of two CBOR
   array items) do not have to be in a particular order since each
   representation is preceded by its Content-Format ID.  Dependent on
   the request, the private key can be in unprotected PKCS#8 [RFC5958]
   format (Content-Format 284) or protected inside of CMS SignedData
   (Content-Format 280).  The SignedData, placed in the outermost
   container, is signed by the party that generated the private key,
   which may be the EST server or the EST CA.  SignedData placed within
   the Enveloped Data does not need additional signing as explained in
   Section 4.4.2 of [RFC7030].  In summary, the symmetrically encrypted
   key is included in the encryptedKey attribute in a KEKRecipientInfo
   structure.  In the case where the asymmetric encryption key is
   suitable for transport key operations the generated private key is
   encrypted with a symmetric key which is encrypted by the client-
   defined (in the CSR) asymmetric public key and is carried in an
   encryptedKey attribute in a KeyTransRecipientInfo structure.
   Finally, if the asymmetric encryption key is suitable for key
   agreement, the generated private key is encrypted with a symmetric
   key which is encrypted by the client defined (in the CSR) asymmetric
   public key and is carried in an recipientEncryptedKeys attribute in a
   KeyAgreeRecipientInfo.



   [RFC7030] recommends the use of additional encryption of the returned
   private key.  For the context of this specification, clients and
   servers that choose to support server-side key generation MUST
   support unprotected (PKCS#8) private keys (Content-Format 284).
   Symmetric or asymmetric encryption of the private key (CMS
   EnvelopedData, Content-Format 280) SHOULD be supported for
   deployments where end-to-end encryption is needed between the client
   and a server.  Such cases could include architectures where an entity
   between the client and the CA terminates the DTLS connection
   (Registrar in Figure 4).  Although [RFC7030] strongly recommends that
   clients request the use of CMS encryption on top of the TLS channel's
   protection, this document does not make such a recommendation; CMS
   encryption can still be used when mandated by the use-case.




6. HTTPS-CoAPS Registrar

   In real-world deployments, the EST server will not always reside
   within the CoAP boundary.  The EST server can exist outside the
   constrained network in which case it will support TLS/HTTP instead of
   CoAPS.  In such environments EST-coaps is used by the client within
   the CoAP boundary and TLS is used to transport the EST messages
   outside the CoAP boundary.  A Registrar at the edge is required to
   operate between the CoAP environment and the external HTTP network as
   shown in Figure 4.



                                     Constrained Network
.‑‑‑‑‑‑.                         .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
|  CA  |                         |.‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.|
'‑‑‑‑‑‑'                         ||                          ||
   |                             ||                          ||
.‑‑‑‑‑‑.  HTTP   .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.   CoAPS  .‑‑‑‑‑‑‑‑‑‑‑.  ||
| EST  |<‑‑‑‑‑‑‑>|EST‑coaps‑to‑HTTPS|<‑‑‑‑‑‑‑>| EST Client|  ||
|Server|over TLS |   Registrar     |          '‑‑‑‑‑‑‑‑‑‑‑'  ||
'‑‑‑‑‑‑'         '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'                         ||
                                 ||                          ||
                                 |'‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'|
                                 '‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'



       Figure 4: EST-coaps-to-HTTPS Registrar at the CoAP boundary.



   The EST-coaps-to-HTTPS Registrar MUST terminate EST-coaps downstream
   and initiate EST connections over TLS upstream.  The Registrar MUST
   authenticate and optionally authorize the client requests while it
   MUST be authenticated by the EST server or CA.  The trust
   relationship between the Registrar and the EST server SHOULD be pre-
   established for the Registrar to proxy these connections on behalf of
   various clients.



   When enforcing Proof-of-Possession (PoP) linking, the DTLS tls-unique
   value of the (D)TLS session is used to prove that the private key
   corresponding to the public key is in the possession of the client
   and was used to establish the connection as explained in Section 4.
   The PoP linking information is lost between the EST-coaps client and
   the EST server when a Registrar is present.  The EST server becomes
   aware of the presence of a Registrar from its TLS client certificate
   that includes id-kp-cmcRA [RFC6402] extended key usage extension
   (EKU).  As explained in Section 3.7 of [RFC7030], the "EST server
   SHOULD apply an authorization policy consistent with a Registrar
   client.  For example, it could be configured to accept PoP linking
   information that does not match the current TLS session because the
   authenticated EST client Registrar has verified this information when
   acting as an EST server".



   Table 1 contains the URI mappings between EST-coaps and EST that the
   Registrar MUST adhere to.  Section 5.5 of this specification and
   Section 7 of [RFC8075] define the mappings between EST-coaps and HTTP
   response codes, that determine how the Registrar MUST translate CoAP
   response codes from/to HTTP status codes.  The mapping from CoAP
   Content-Format to HTTP Media-Type is defined in Section 9.1.
   Additionally, a conversion from CBOR major type 2 to Base64 encoding
   MUST take place at the Registrar.  If CMS end-to-end encryption is
   employed for the private key, the encrypted CMS EnvelopedData blob
   MUST be converted at the Registrar to binary CBOR type 2 downstream
   to the client.  This is a format conversion that does not require
   decryption of the CMS EnvelopedData.



   A deviation from the mappings in Table 1 could take place if clients
   that leverage server-side key generation preferred for the enrolled
   keys to be generated by the Registrar in the case the CA does not
   support server-side key generation.  Such a Registrar is responsible
   for generating a new CSR signed by a new key which will be returned
   to the client along with the certificate from the CA.  In these
   cases, the Registrar MUST use random number generation with proper
   entropy.



   Due to fragmentation of large messages into blocks, an EST-coaps-to-
   HTTP Registrar MUST reassemble the BLOCKs before translating the
   binary content to Base64, and consecutively relay the message
   upstream.



   The EST-coaps-to-HTTP Registrar MUST support resource discovery
   according to the rules in Section 5.1.




7. Parameters

   This section addresses transmission parameters described in sections
   4.7 and 4.8 of [RFC7252].  EST does not impose any unique values on
   the CoAP parameters in [RFC7252], but the setting of the CoAP
   parameter values may have consequence for the setting of the EST
   parameter values.



   It is recommended, based on experiments, to follow the default CoAP
   configuration parameters ([RFC7252]).  However, depending on the
   implementation scenario, retransmissions and timeouts can also occur
   on other networking layers, governed by other configuration
   parameters.  When a change in a server parameter has taken place, the
   parameter values in the communicating endpoints MUST be adjusted as
   necessary.



   Some further comments about some specific parameters, mainly from
   Table 2 in [RFC7252]:



   o  NSTART: A parameter that controls the number of simultaneous
      outstanding interactions that a client maintains to a given
      server.  An EST-coaps client is expected to control at most one
      interaction with a given server, which is the default NSTART value
      defined in [RFC7252].



   o  DEFAULT_LEISURE: This setting is only relevant in multicast
      scenarios, outside the scope of EST-coaps.



   o  PROBING_RATE: A parameter which specifies the rate of re-sending
      non-confirmable messages.  In the rare situations that non-
      confirmable messages are used, the default PROBING_RATE value
      defined in [RFC7252] applies.



   Finally, the Table 3 parameters in [RFC7252] are mainly derived from
   Table 2.  Directly changing parameters on one table would affect
   parameters on the other.




8. Deployment limitations

   Although EST-coaps paves the way for the utilization of EST by
   constrained devices in constrained networks, some classes of devices
   [RFC7228] will not have enough resources to handle the payloads that
   come with EST-coaps.  The specification of EST-coaps is intended to
   ensure that EST works for networks of constrained devices that choose
   to limit their communications stack to DTLS/CoAP.  It is up to the
   network designer to decide which devices execute the EST protocol and
   which do not.




9. IANA Considerations


9.1. Content-Format Registry

   Additions to the sub-registry "CoAP Content-Formats", within the
   "CoRE Parameters" registry [COREparams] are specified in Table 5.
   These have been registered provisionally in the IETF Review or IESG
   Approval range (256-9999).



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HTTP Media‑Type              |    ID | Reference                  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| application/pkcs7‑mime;      |   280 | [RFC7030] [I‑D.ietf‑lamps‑ |
| smime‑type=server‑generated‑ |       | rfc5751‑bis] [ThisRFC]     |
| key                          |       |                            |
| application/pkcs7‑mime;      |   281 | [I‑D.ietf‑lamps‑rfc5751‑bi |
| smime‑type=certs‑only        |       | s] [ThisRFC]               |
| application/pkcs8            |   284 | [RFC5958] [I‑D.ietf‑lamps‑ |
|                              |       | rfc5751‑bis] [ThisRFC]     |
| application/csrattrs         |   285 | [RFC7030]                  |
| application/pkcs10           |   286 | [RFC5967] [I‑D.ietf‑lamps‑ |
|                              |       | rfc5751‑bis] [ThisRFC]     |
| application/pkix‑cert        | TBD28 | [RFC2585] [ThisRFC]        |
|                              |     7 |                            |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 5: New CoAP Content-Formats



   It is suggested that 287 is allocated to TBD287.




9.2. Resource Type registry

   This memo registers new Resource Type (rt=) Link Target Attributes in
   the "Resource Type (rt=) Link Target Attribute Values" subregistry
   under the "Constrained RESTful Environments (CoRE) Parameters"
   registry.



   o  rt="ace.est.crts".  This resource depicts the support of EST get
      cacerts.



   o  rt="ace.est.sen".  This resource depicts the support of EST simple
      enroll.



   o  rt="ace.est.sren".  This resource depicts the support of EST
      simple reenroll.



   o  rt="ace.est.att".  This resource depicts the support of EST get
      CSR attributes.



   o  rt="ace.est.skg".  This resource depicts the support of EST
      server-side key generation with the returned certificate in a
      PKCS#7 container.



   o  rt="ace.est.skc".  This resource depicts the support of EST
      server-side key generation with the returned certificate in
      application/pkix-cert format.




10. Security Considerations


10.1. EST server considerations

   The security considerations of Section 6 of [RFC7030] are only
   partially valid for the purposes of this document.  As HTTP Basic
   Authentication is not supported, the considerations expressed for
   using passwords do not apply.  The other portions of the security
   considerations of [RFC7030] continue to apply.



   Modern security protocols require random numbers to be available
   during the protocol run, for example for nonces and ephemeral (EC)
   Diffie-Hellman key generation.  This capability to generate random
   numbers is also needed when the constrained device generates the
   private key (that corresponds to the public key enrolled in the CSR).
   When server-side key generation is used, the constrained device
   depends on the server to generate the private key randomly, but it
   still needs locally generated random numbers for use in security
   protocols, as explained in Section 12 of [RFC7925].  Additionally,
   the transport of keys generated at the server is inherently risky.
   For those deploying server-side key generation, analysis SHOULD be
   done to establish whether server-side key generation increases or
   decreases the probability of digital identity theft.



   It is important to note that sources contributing to the randomness
   pool used to generate random numbers on laptops or desktop PCs are
   not available on many constrained devices, such as mouse movement,
   timing of keystrokes, or air turbulence on the movement of hard drive
   heads, as pointed out in [PsQs].  Other sources have to be used or
   dedicated hardware has to be added.  Selecting hardware for an IoT
   device that is capable of producing high-quality random numbers is
   therefore important [RSAfact].



   It is also RECOMMENDED that the Implicit Trust Anchor database used
   for EST server authentication is carefully managed to reduce the
   chance of a third-party CA with poor certification practices
   jeopardizing authentication.  Disabling the Implicit Trust Anchor
   database after successfully receiving the Distribution of CA
   certificates response (Section 4.1.3 of [RFC7030]) limits any risk to
   the first DTLS exchange.  Alternatively, in a case where a /sen
   request immediately follows a /crts, a client MAY choose to keep the
   connection authenticated by the Implicit TA open for efficiency
   reasons (Section 4).  A client that interleaves EST-coaps /crts
   request with other requests in the same DTLS connection SHOULD
   revalidate the server certificate chain against the updated Explicit
   TA from the /crts response before proceeding with the subsequent
   requests.  If the server certificate chain does not authenticate
   against the database, the client SHOULD close the connection without
   completing the rest of the requests.  The updated Explicit TA MUST
   continue to be used in new DTLS connections.



   In cases where the IDevID used to authenticate the client is expired
   the server MAY still authenticate the client because IDevIDs are
   expected to live as long as the device itself (Section 4).  In such
   occasions, checking the certificate revocation status or authorizing
   the client using another method is important for the server to ensure
   that the client is to be trusted.



   In accordance with [RFC7030], TLS cipher suites that include
   "_EXPORT_" and "_DES_" in their names MUST NOT be used.  More
   information about recommendations of TLS and DTLS are included in
   [BCP195].



   As described in CMC, Section 6.7 of [RFC5272], "For keys that can be
   used as signature keys, signing the certification request with the
   private key serves as a PoP on that key pair".  The inclusion of tls-
   unique in the certificate request links the proof-of-possession to
   the TLS proof-of-identity.  This implies but does not prove that only
   the authenticated client currently has access to the private key.



   What's more, CMC PoP linking uses tls-unique as it is defined in
   [RFC5929].  The 3SHAKE attack [tripleshake] poses a risk by allowing
   a man-in-the-middle to leverage session resumption and renegotiation
   to inject himself between a client and server even when channel
   binding is in use.  Implementers should use the Extended Master
   Secret Extension in DTLS [RFC7627] to prevent such attacks.  In the
   context of this specification, an attacker could invalidate the
   purpose of the PoP linking ChallengePassword in the client request by
   resuming an EST-coaps connection.  Even though the practical risk of
   such an attack to EST-coaps is not devastating, we would rather use a
   more secure channel binding mechanism.  Such a mechanism could
   include an updated tls-unique value generation like the tls-unique-
   prf defined in [I-D.josefsson-sasl-tls-cb] by using a TLS exporter
   [RFC5705] in TLS 1.2 or TLS 1.3's updated exporter (Section 7.5 of
   [RFC8446]) value in place of the tls-unique value in the CSR.  Such
   mechanism has not been standardized yet.  Adopting a channel binding
   value generated from an exporter would break backwards compatibility
   for an RA that proxies through to a classic EST server.  Thus, in
   this specification we still depend on the tls-unique mechanism
   defined in [RFC5929], especially since a 3SHAKE attack does not
   expose messages exchanged with EST-coaps.



   Interpreters of ASN.1 structures should be aware of the use of
   invalid ASN.1 length fields and should take appropriate measures to
   guard against buffer overflows, stack overruns in particular, and
   malicious content in general.




10.2. HTTPS-CoAPS Registrar considerations

   The Registrar proposed in Section 6 must be deployed with care, and
   only when direct client-server connections are not possible.  When
   PoP linking is used the Registrar terminating the DTLS connection
   establishes a new TLS connection with the upstream CA.  Thus, it is
   impossible for PoP linking to be enforced end-to-end for the EST
   transaction.  The EST server could be configured to accept PoP
   linking information that does not match the current TLS session
   because the authenticated EST Registrar is assumed to have verified
   PoP linking downstream to the client.



   The introduction of an EST-coaps-to-HTTP Registrar assumes the client
   can authenticate the Registrar using its implicit or explicit TA
   database.  It also assumes the Registrar has a trust relationship
   with the upstream EST server in order to act on behalf of the
   clients.  When a client uses the Implicit TA database for certificate
   validation, it SHOULD confirm if the server is acting as an RA by the
   presence of the id-kp-cmcRA EKU [RFC6402] in the server certificate.



   In a server-side key generation case, if no end-to-end encryption is
   used, the Registrar may be able see the private key as it acts as a
   man-in-the-middle.  Thus, the client puts its trust on the Registrar
   not exposing the private key.



   Clients that leverage server-side key generation without end-to-end
   encryption of the private key (Section 5.8) have no knowledge if the
   Registrar will be generating the private key and enrolling the
   certificates with the CA or if the CA will be responsible for
   generating the key.  In such cases, the existence of a Registrar
   requires the client to put its trust on the registrar when it is
   generating the private key.




11. Contributors

   Martin Furuhed contributed to the EST-coaps specification by
   providing feedback based on the Nexus EST over CoAPS server
   implementation that started in 2015.  Sandeep Kumar kick-started this
   specification and was instrumental in drawing attention to the
   importance of the subject.




12. Acknowledgements

   The authors are very grateful to Klaus Hartke for his detailed
   explanations on the use of Block with DTLS and his support for the
   Content-Format specification.  The authors would like to thank Esko
   Dijk and Michael Verschoor for the valuable discussions that helped
   in shaping the solution.  They would also like to thank Peter
   Panburana for his feedback on technical details of the solution.
   Constructive comments were received from Benjamin Kaduk, Eliot Lear,
   Jim Schaad, Hannes Tschofenig, Julien Vermillard, John Manuel, Oliver
   Pfaff, Pete Beal and Carsten Bormann.



   Interop tests were done by Oliver Pfaff, Thomas Werner, Oskar
   Camezind, Bjorn Elmers and Joel Hoglund.



   Robert Moskowitz provided code to create the examples.




13. References


13.1. Normative References


   [I-D.ietf-core-multipart-ct]

              Fossati, T., Hartke, K., and C. Bormann, "Multipart
              Content-Format for CoAP", draft-ietf-core-multipart-ct-04
              (work in progress), August 2019.




   [I-D.ietf-lamps-rfc5751-bis]

              Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Message Specification", draft-ietf-lamps-rfc5751-bis-12
              (work in progress), September 2018.




   [I-D.ietf-tls-dtls13]

              Rescorla, E., Tschofenig, H., and N. Modadugu, "The
              Datagram Transport Layer Security (DTLS) Protocol Version
              1.3", draft-ietf-tls-dtls13-33 (work in progress), October
              2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC2585]
  Housley, R. and P. Hoffman, "Internet X.509 Public Key
              Infrastructure Operational Protocols: FTP and HTTP",
              RFC 2585, DOI 10.17487/RFC2585, May 1999,
              <https://www.rfc-editor.org/info/rfc2585>.




   [RFC5246]
  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <https://www.rfc-editor.org/info/rfc5246>.




   [RFC5958]
  Turner, S., "Asymmetric Key Packages", RFC 5958,
              DOI 10.17487/RFC5958, August 2010,
              <https://www.rfc-editor.org/info/rfc5958>.




   [RFC5967]
  Turner, S., "The application/pkcs10 Media Type", RFC 5967,
              DOI 10.17487/RFC5967, August 2010,
              <https://www.rfc-editor.org/info/rfc5967>.




   [RFC6347]
  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.




   [RFC6690]
  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
              Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
              <https://www.rfc-editor.org/info/rfc6690>.




   [RFC7030]
  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
              "Enrollment over Secure Transport", RFC 7030,
              DOI 10.17487/RFC7030, October 2013,
              <https://www.rfc-editor.org/info/rfc7030>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC7925]
  Tschofenig, H., Ed. and T. Fossati, "Transport Layer
              Security (TLS) / Datagram Transport Layer Security (DTLS)
              Profiles for the Internet of Things", RFC 7925,
              DOI 10.17487/RFC7925, July 2016,
              <https://www.rfc-editor.org/info/rfc7925>.




   [RFC7959]
  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
              the Constrained Application Protocol (CoAP)", RFC 7959,
              DOI 10.17487/RFC7959, August 2016,
              <https://www.rfc-editor.org/info/rfc7959>.




   [RFC8075]
  Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
              E. Dijk, "Guidelines for Mapping Implementations: HTTP to
              the Constrained Application Protocol (CoAP)", RFC 8075,
              DOI 10.17487/RFC8075, February 2017,
              <https://www.rfc-editor.org/info/rfc8075>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8422]
  Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
              Curve Cryptography (ECC) Cipher Suites for Transport Layer
              Security (TLS) Versions 1.2 and Earlier", RFC 8422,
              DOI 10.17487/RFC8422, August 2018,
              <https://www.rfc-editor.org/info/rfc8422>.




   [RFC8446]
  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.




13.2. Informative References


   [BCP195]
   Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, May 2015,
              <https://www.rfc-editor.org/info/bcp195>.




   [COREparams]

              "Constrained RESTful Environments (CoRE) Parameters",
              <https://www.iana.org/assignments/core-parameters/core-
              parameters.xhtml>.




   [I-D.ietf-tls-dtls-connection-id]

              Rescorla, E., Tschofenig, H., and T. Fossati, "Connection
              Identifiers for DTLS 1.2", draft-ietf-tls-dtls-connection-
              id-07 (work in progress), October 2019.




   [I-D.josefsson-sasl-tls-cb]

              Josefsson, S., "Channel Bindings for TLS based on the
              PRF", draft-josefsson-sasl-tls-cb-03 (work in progress),
              March 2015.




   [I-D.moskowitz-ecdsa-pki]

              Moskowitz, R., Birkholz, H., Xia, L., and M. Richardson,
              "Guide for building an ECC pki", draft-moskowitz-ecdsa-
              pki-07 (work in progress), August 2019.




   [ieee802.15.4]

              "IEEE Standard 802.15.4-2006", 2006.




   [ieee802.1ar]

              "IEEE 802.1AR Secure Device Identifier", December 2009.




   [PsQs]
     "Mining Your Ps and Qs: Detection of Widespread Weak Keys
              in Network Devices", USENIX Security Symposium 2012 ISBN
              978-931971-95-9, August 2012.




   [RFC4919]
  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
              over Low-Power Wireless Personal Area Networks (6LoWPANs):
              Overview, Assumptions, Problem Statement, and Goals",
              RFC 4919, DOI 10.17487/RFC4919, August 2007,
              <https://www.rfc-editor.org/info/rfc4919>.




   [RFC5272]
  Schaad, J. and M. Myers, "Certificate Management over CMS
              (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
              <https://www.rfc-editor.org/info/rfc5272>.




   [RFC5705]
  Rescorla, E., "Keying Material Exporters for Transport
              Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
              March 2010, <https://www.rfc-editor.org/info/rfc5705>.




   [RFC5929]
  Altman, J., Williams, N., and L. Zhu, "Channel Bindings
              for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
              <https://www.rfc-editor.org/info/rfc5929>.




   [RFC6402]
  Schaad, J., "Certificate Management over CMS (CMC)
              Updates", RFC 6402, DOI 10.17487/RFC6402, November 2011,
              <https://www.rfc-editor.org/info/rfc6402>.




   [RFC7228]
  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
              Constrained-Node Networks", RFC 7228,
              DOI 10.17487/RFC7228, May 2014,
              <https://www.rfc-editor.org/info/rfc7228>.




   [RFC7230]
  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.




   [RFC7251]
  McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
              CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
              TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
              <https://www.rfc-editor.org/info/rfc7251>.




   [RFC7299]
  Housley, R., "Object Identifier Registry for the PKIX
              Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
              <https://www.rfc-editor.org/info/rfc7299>.




   [RFC7627]
  Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
              Langley, A., and M. Ray, "Transport Layer Security (TLS)
              Session Hash and Extended Master Secret Extension",
              RFC 7627, DOI 10.17487/RFC7627, September 2015,
              <https://www.rfc-editor.org/info/rfc7627>.




   [RFC7748]
  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.




   [RSAfact]
  "Factoring RSA keys from certified smart cards:
              Coppersmith in the wild", Advances in Cryptology
              -  ASIACRYPT 2013, August 2013.




   [tripleshake]

              "Triple Handshakes and Cookie Cutters: Breaking and Fixing
              Authentication over TLS", IEEE Security and Privacy ISBN
              978-1-4799-4686-0, May 2014.




Appendix A. EST messages to EST-coaps

   This section shows similar examples to the ones presented in
   Appendix A of [RFC7030].  The payloads in the examples are the hex
   encoded binary, generated with 'xxd -p', of the PKI certificates
   created following [I-D.moskowitz-ecdsa-pki].  Hex is used for
   visualization purposes because a binary representation cannot be
   rendered well in text.  The hexadecimal representations would not be
   transported in hex, but in binary.  The payloads are shown
   unencrypted.  In practice the message content would be transferred
   over an encrypted DTLS channel.



   The certificate responses included in the examples contain Content-
   Format 281 (application/pkcs7).  If the client had requested Content-
   Format TBD287 (application/pkix-cert) by querying /est/skc, the
   server would respond with a single DER binary certificate in the
   multipart-core container.



   These examples assume a short resource path of "/est".  Even though
   omitted from the examples for brevity, before making the EST-coaps
   requests, a client would learn about the server supported EST-coaps
   resources with a GET request for /.well-known/core?rt=ace.est* as
   explained in Section 5.1.



   The corresponding CoAP headers are only shown in Appendix A.1.
   Creating CoAP headers is assumed to be generally understood.



   The message content breakdown is presented in Appendix C.




A.1. cacerts

   In EST-coaps, a cacerts message can be:



GET example.com:9085/est/crts
(Accept:  281)



   The corresponding CoAP header fields are shown below.  The use of
   block and DTLS are worked out in Appendix B.



Ver = 1
T = 0 (CON)
Code = 0x01 (0.01 is GET)
Token = 0x9a (client generated)
Options
Option (Uri‑Host)
   Option Delta = 0x3  (option# 3)
   Option Length = 0xB
   Option Value = "example.com"
Option (Uri‑Port)
   Option Delta = 0x4  (option# 3+4=7)
   Option Length = 0x2
   Option Value = 9085
 Option (Uri‑Path)
   Option Delta = 0x4   (option# 7+4=11)
   Option Length = 0x3
   Option Value = "est"
 Option (Uri‑Path)
   Option Delta = 0x0   (option# 11+0=11)
   Option Length = 0x4
   Option Value = "crts"
 Option (Accept)
   Option Delta = 0x6   (option# 11+6=17)
   Option Length = 0x2
   Option Value = 281
Payload = [Empty]



   The Uri-Host and Uri-Port Options can be omitted if they coincide
   with the transport protocol destination address and port
   respectively.  Explicit Uri-Host and Uri-Port Options are typically
   used when an endpoint hosts multiple virtual servers and uses the
   Options to route the requests accordingly.



   A 2.05 Content response with a cert in EST-coaps will then be



   2.05 Content (Content-Format: 281)

      {payload with certificate in binary format}



   with CoAP fields




Ver = 1
T = 2 (ACK)
Code = 0x45 (2.05 Content)
Token = 0x9a   (copied from request by server)
Options
  Option (Content‑Format)
    Option Delta = 0xC  (option# 12)
    Option Length = 0x2
    Option Value = 281

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]



     Payload =
   3082027a06092a864886f70d010702a082026b308202670201013100300b
   06092a864886f70d010701a082024d30820249308201efa0030201020208
   0b8bb0fe604f6a1e300a06082a8648ce3d0403023067310b300906035504
   0613025553310b300906035504080c024341310b300906035504070c024c
   4131143012060355040a0c0b4578616d706c6520496e6331163014060355
   040b0c0d63657274696669636174696f6e3110300e06035504030c07526f
   6f74204341301e170d3139303133313131323730335a170d333930313236
   3131323730335a3067310b3009060355040613025553310b300906035504
   080c024341310b300906035504070c024c4131143012060355040a0c0b45
   78616d706c6520496e6331163014060355040b0c0d636572746966696361
   74696f6e3110300e06035504030c07526f6f742043413059301306072a86
   48ce3d020106082a8648ce3d030107034200040c1b1e82ba8cc72680973f
   97edb8a0c72ab0d405f05d4fe29b997a14ccce89008313d09666b6ce375c
   595fcc8e37f8e4354497011be90e56794bd91ad951ab45a3818430818130
   1d0603551d0e041604141df1208944d77b5f1d9dcb51ee244a523f3ef5de
   301f0603551d230418301680141df1208944d77b5f1d9dcb51ee244a523f
   3ef5de300f0603551d130101ff040530030101ff300e0603551d0f0101ff
   040403020106301e0603551d110417301581136365727469667940657861
   6d706c652e636f6d300a06082a8648ce3d040302034800304502202b891d
   d411d07a6d6f621947635ba4c43165296b3f633726f02e51ecf464bd4002
   2100b4be8a80d08675f041fbc719acf3b39dedc85dc92b3035868cb2daa8
   f05db196a1003100



   The breakdown of the payload is shown in Appendix C.1.




A.2. enroll / reenroll

During the (re‑)enroll exchange the EST‑coaps client uses a CSR
(Content‑Format 286) request in the POST request payload.  The Accept
option tells the server that the client is expecting Content‑Format
281 (PKCS#7) in the response.  As shown in Appendix C.2, the CSR
contains a ChallengePassword which is used for PoP linking
(Section 4).

POST [2001:db8::2:321]:61616/est/sen
(Token: 0x45)
(Accept: 281)
(Content‑Format: 286)

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]



   3082018b30820131020100305c310b3009060355040613025553310b3009
   06035504080c024341310b300906035504070c024c413114301206035504
   0a0c0b6578616d706c6520496e63310c300a060355040b0c03496f54310f
   300d060355040513065774313233343059301306072a8648ce3d02010608
   2a8648ce3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f
   028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75
   f602f9152618f816a2b23b5638e59fd9a073303406092a864886f70d0109
   0731270c2576437630292a264a4b4a3bc3a2c280c2992f3e3c2e2c3d6b6e
   7634332323403d204e787e60303b06092a864886f70d01090e312e302c30
   2a0603551d1104233021a01f06082b06010505070804a013301106092b06
   010401b43b0a01040401020304300a06082a8648ce3d0403020348003045
   02210092563a546463bd9ecff170d0fd1f2ef0d3d012160e5ee90cffedab
   ec9b9a38920220179f10a3436109051abad17590a09bc87c4dce5453a6fc
   1135a1e84eed754377



   After verification of the CSR by the server, a 2.04 Changed response
   with the issued certificate will be returned to the client.



2.04 Changed
(Token: 0x45)
(Content‑Format: 281)

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]



   3082026e06092a864886f70d010702a082025f3082025b0201013100300b
   06092a864886f70d010701a08202413082023d308201e2a0030201020208
   7e7661d7b54e4632300a06082a8648ce3d040302305d310b300906035504
   0613025553310b300906035504080c02434131143012060355040a0c0b45
   78616d706c6520496e6331163014060355040b0c0d636572746966696361
   74696f6e3113301106035504030c0a3830322e3141522043413020170d31
   39303133313131323931365a180f39393939313233313233353935395a30
   5c310b3009060355040613025553310b300906035504080c024341310b30
   0906035504070c024c4131143012060355040a0c0b6578616d706c652049
   6e63310c300a060355040b0c03496f54310f300d06035504051306577431
   3233343059301306072a8648ce3d020106082a8648ce3d03010703420004
   c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50c
   ff958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b56
   38e59fd9a3818a30818730090603551d1304023000301d0603551d0e0416
   041496600d8716bf7fd0e752d0ac760777ad665d02a0301f0603551d2304
   183016801468d16551f951bfc82a431d0d9f08bc2d205b1160300e060355
   1d0f0101ff0404030205a0302a0603551d1104233021a01f06082b060105
   05070804a013301106092b06010401b43b0a01040401020304300a06082a
   8648ce3d0403020349003046022100c0d81996d2507d693f3c48eaa5ee94
   91bda6db214099d98117c63b361374cd86022100a774989f4c321a5cf25d
   832a4d336a08ad67df20f1506421188a0ade6d349236a1003100



   The breakdown of the request and response is shown in Appendix C.2.




A.3. serverkeygen

   In a serverkeygen exchange the CoAP POST request looks like



POST 192.0.2.1:8085/est/skg
(Token: 0xa5)
(Accept: 62)
(Content‑Format: 286)

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]

3081d03078020100301631143012060355040a0c0b736b67206578616d70
6c653059301306072a8648ce3d020106082a8648ce3d03010703420004c8
b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50cff
958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b5638
e59fd9a000300a06082a8648ce3d040302034800304502207c553981b1fe
349249d8a3f50a0346336b7dfaa099cf74e1ec7a37a0a760485902210084
79295398774b2ff8e7e82abb0c17eaef344a5088fa69fd63ee611850c34b
0a



   The response would follow [I-D.ietf-core-multipart-ct] and could look
   like



2.04 Changed
(Token: 0xa5)
(Content‑Format: 62)

[ The hexadecimal representations below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]

84                                   # array(4)
19 011C                              # unsigned(284)
58 8A                                # bytes(138)
308187020100301306072a8648ce3d020106082a8648ce3d030107046d30
6b020101042061336a86ac6e7af4a96f632830ad4e6aa0837679206094d7
679a01ca8c6f0c37a14403420004c8b421f11c25e47e3ac57123bf2d9fdc
494f028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95
cf75f602f9152618f816a2b23b5638e59fd9
19 0119                              # unsigned(281)
59 01D3                              # bytes(467)
308201cf06092a864886f70d010702a08201c0308201bc0201013100300b
06092a864886f70d010701a08201a23082019e30820144a0030201020209
00b3313e8f3fc9538e300a06082a8648ce3d040302301631143012060355
040a0c0b736b67206578616d706c65301e170d3139303930343037343430
335a170d3339303833303037343430335a301631143012060355040a0c0b
736b67206578616d706c653059301306072a8648ce3d020106082a8648ce
3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351
cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75f602f915
2618f816a2b23b5638e59fd9a37b307930090603551d1304023000302c06
096086480186f842010d041f161d4f70656e53534c2047656e6572617465
64204365727469666963617465301d0603551d0e0416041496600d8716bf
7fd0e752d0ac760777ad665d02a0301f0603551d2304183016801496600d
8716bf7fd0e752d0ac760777ad665d02a0300a06082a8648ce3d04030203
48003045022100e95bfa25a08976652246f2d96143da39fce0dc4c9b26b9
cce1f24164cc2b12b602201351fd8eea65764e3459d324e4345ff5b2a915
38c04976111796b3698bf6379ca1003100



   The private key in the response above is without CMS EnvelopedData
   and has no additional encryption beyond DTLS (Section 5.8).



   The breakdown of the request and response is shown in Appendix C.3




A.4. csrattrs

   Below is a csrattrs exchange



REQ:
GET example.com:61616/est/att

RES:
2.05 Content
(Content‑Format: 285)

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]



   307c06072b06010101011630220603883701311b131950617273652053455
   420617320322e3939392e31206461746106092a864886f70d010907302c06
   0388370231250603883703060388370413195061727365205345542061732
   0322e3939392e32206461746106092b240303020801010b06096086480165
   03040202



   A 2.05 Content response should contain attributes which are relevant
   for the authenticated client.  This example is copied from
   Section A.2 in [RFC7030], where the base64 representation is replaced
   with a hexadecimal representation of the equivalent binary format.
   The EST-coaps server returns attributes that the client can ignore if
   they are unknown to him.




Appendix B. EST-coaps Block message examples

   Two examples are presented in this section:



   1.  a cacerts exchange shows the use of Block2 and the block headers



   2.  an enroll exchange shows the Block1 and Block2 size negotiation
       for request and response payloads.



The payloads are shown unencrypted.  In practice the message contents
would be binary formatted and transferred over an encrypted DTLS
tunnel.  The corresponding CoAP headers are only shown in
Appendix B.1.  Creating CoAP headers is assumed to be generally
known.




B.1. cacerts

   This section provides a detailed example of the messages using DTLS
   and BLOCK option Block2.  The example block length is taken as 64
   which gives an SZX value of 2.



   The following is an example of a cacerts exchange over DTLS.  The
   content length of the cacerts response in appendix A.1 of [RFC7030]
   contains 639 bytes in binary in this example.  The CoAP message adds
   around 10 bytes in this exmple, the DTLS record around 29 bytes.  To
   avoid IP fragmentation, the CoAP Block Option is used and an MTU of
   127 is assumed to stay within one IEEE 802.15.4 packet.  To stay
   below the MTU of 127, the payload is split in 9 packets with a
   payload of 64 bytes each, followed by a last tenth packet of 63
   bytes.  The client sends an IPv6 packet containing a UDP datagram
   with DTLS record protection that encapsulates a CoAP request 10 times
   (one fragment of the request per block).  The server returns an IPv6
   packet containing a UDP datagram with the DTLS record that
   encapsulates the CoAP response.  The CoAP request-response exchange
   with block option is shown below.  Block Option is shown in a
   decomposed way (block-option:NUM/M/size) indicating the kind of Block
   Option (2 in this case) followed by a colon, and then the block
   number (NUM), the more bit (M = 0 in Block2 response means it is last
   block), and block size with exponent (2**(SZX+4)) separated by
   slashes.  The Length 64 is used with SZX=2.  The CoAP Request is sent
   confirmable (CON) and the Content-Format of the response, even though
   not shown, is 281 (application/pkcs7-mime; smime-type=certs-only).
   The transfer of the 10 blocks with partially filled block NUM=9 is
   shown below



GET example.com:9085/est/crts (2:0/0/64)  ‑‑>
              <‑‑   (2:0/1/64) 2.05 Content
GET example.com:9085/est/crts (2:1/0/64)  ‑‑>
              <‑‑   (2:1/1/64) 2.05 Content
                            |
                            |
                            |
GET example.com:9085/est/crts (2:9/0/64) ‑‑>
              <‑‑   (2:9/0/64) 2.05 Content



   The header of the GET request looks like



Ver = 1
T = 0 (CON)
Code = 0x01 (0.1 GET)
Token = 0x9a    (client generated)
Options
 Option (Uri‑Host)
   Option Delta = 0x3  (option# 3)
   Option Length = 0xB
   Option Value = "example.com"
 Option (Uri‑Port)
   Option Delta = 0x4   (option# 3+4=7)
   Option Length = 0x2
   Option Value = 9085
 Option (Uri‑Path)
   Option Delta = 0x4    (option# 7+4=11)
   Option Length = 0x3
   Option Value = "est"
 Option (Uri‑Path)Uri‑Path)
   Option Delta = 0x0    (option# 11+0=11)
   Option Length = 0x4
   Option Value = "crts"
 Option (Accept)
   Option Delta = 0x6   (option# 11+6=17)
   Option Length = 0x2
   Option Value = 281
Payload = [Empty]



   The Uri-Host and Uri-Port Options can be omitted if they coincide
   with the transport protocol destination address and port
   respectively.  Explicit Uri-Host and Uri-Port Options are typically
   used when an endpoint hosts multiple virtual servers and uses the
   Options to route the requests accordingly.



   For further detailing the CoAP headers, the first two and the last
   blocks are written out below.  The header of the first Block2
   response looks like



Ver = 1
T = 2 (ACK)
Code = 0x45 (2.05 Content)
Token = 0x9a     (copied from request by server)
Options
  Option
    Option Delta = 0xC  (option# 12 Content‑Format)
    Option Length = 0x2
    Option Value = 281
  Option
    Option Delta = 0xB  (option# 12+11=23 Block2)
    Option Length = 0x1
    Option Value = 0x0A (block#=0, M=1, SZX=2)

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]



     Payload =
   3082027b06092a864886f70d010702a082026c308202680201013100300b
   06092a864886f70d010701a082024e3082024a308201f0a0030201020209
   009189bc



   The second Block2:



Ver = 1
T = 2 (means ACK)
Code = 0x45 (2.05 Content)
Token = 0x9a     (copied from request by server)
Options
  Option
    Option Delta = 0xC  (option# 12 Content‑Format)
    Option Length = 0x2
    Option Value = 281
  Option
    Option Delta = 0xB  (option 12+11=23 Block2)
    Option Length = 0x1
    Option Value = 0x1A (block#=1, M=1, SZX=2)

[ The hexadecimal representation below would NOT be transported
in hex, but in binary. Hex is used because a binary representation
cannot be rendered well in text. ]



     Payload =
   df9c99244b300a06082a8648ce3d0403023067310b300906035504061302
   5553310b300906035504080c024341310b300906035504070c024c413114
   30120603



   The 10th and final Block2:



  Ver = 1
  T = 2 (means ACK)
  Code = 0x45      (2.05 Content)
  Token = 0x9a     (copied from request by server)
  Options
    Option
      Option Delta = 0xC  (option# 12 Content‑Format)
      Option Length = 0x2
      Option Value = 281
    Option
      Option Delta = 0xB  (option# 12+11=23 Block2 )
      Option Length = 0x1
      Option Value = 0x92 (block#=9, M=0, SZX=2)

  [ The hexadecimal representation below would NOT be transported
  in hex, but in binary. Hex is used because a binary representation
  cannot be rendered well in text. ]

  Payload =
2ec0b4af52d46f3b7ecc9687ddf267bcec368f7b7f1353272f022047a28a
e5c7306163b3c3834bab3c103f743070594c089aaa0ac870cd13b902caa1
003100




B.2. enroll / reenroll

   In this example, the requested Block2 size of 256 bytes, required by
   the client, is transferred to the server in the very first request
   message.  The block size 256=(2**(SZX+4)) which gives SZX=4.  The
   notation for block numbering is the same as in Appendix B.1.  The
   header fields and the payload are omitted for brevity.



POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} ‑‑>

       <‑‑ (ACK) (1:0/1/256) (2.31 Continue)
POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} ‑‑>
       <‑‑ (ACK) (1:1/1/256) (2.31 Continue)
                      .
                      .
                      .
POST [2001:db8::2:1]:61616/est/sen (CON)(1:N1/0/256){CSR(frag# N1+1)}‑‑>
                      |
    ...........Immediate response  .........
                      |
  <‑‑ (ACK) (1:N1/0/256)(2:0/1/256)(2.04 Changed){Cert resp (frag# 1)}
POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256)           ‑‑>
  <‑‑ (ACK) (2:1/1/256)(2.04 Changed) {Cert resp (frag# 2)}
                      .
                      .
                      .
POST [2001:db8::2:321]:61616/est/sen (CON)(2:N2/0/256)          ‑‑>
  <‑‑ (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}




            Figure 5: EST-COAP enrollment with multiple blocks



   N1+1 blocks have been transferred from client to the server and N2+1
   blocks have been transferred from server to client.




Appendix C. Message content breakdown

   This appendix presents the breakdown of the hexadecimal dumps of the
   binary payloads shown in Appendix A.




C.1. cacerts

   The breakdown of cacerts response containing one root CA certificate
   is



Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 831953162763987486 (0xb8bb0fe604f6a1e)
    Signature Algorithm: ecdsa‑with‑SHA256
        Issuer: C=US, ST=CA, L=LA, O=Example Inc,
                  OU=certification, CN=Root CA
        Validity
            Not Before: Jan 31 11:27:03 2019 GMT
            Not After : Jan 26 11:27:03 2039 GMT
        Subject: C=US, ST=CA, L=LA, O=Example Inc,
                     OU=certification, CN=Root CA
        Subject Public Key Info:
            Public Key Algorithm: id‑ecPublicKey
                Public‑Key: (256 bit)
                pub:
                    04:0c:1b:1e:82:ba:8c:c7:26:80:97:3f:97:ed:b8:
                    a0:c7:2a:b0:d4:05:f0:5d:4f:e2:9b:99:7a:14:cc:
                    ce:89:00:83:13:d0:96:66:b6:ce:37:5c:59:5f:cc:
                    8e:37:f8:e4:35:44:97:01:1b:e9:0e:56:79:4b:d9:
                    1a:d9:51:ab:45
                ASN1 OID: prime256v1
                NIST CURVE: P‑256
        X509v3 extensions:
            X509v3 Subject Key Identifier:
1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE
            X509v3 Authority Key Identifier:
                  keyid:
1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE

            X509v3 Basic Constraints: critical
                CA:TRUE
            X509v3 Key Usage: critical
                Certificate Sign, CRL Sign
            X509v3 Subject Alternative Name:
                email:certify@example.com
    Signature Algorithm: ecdsa‑with‑SHA256
         30:45:02:20:2b:89:1d:d4:11:d0:7a:6d:6f:62:19:47:63:5b:
         a4:c4:31:65:29:6b:3f:63:37:26:f0:2e:51:ec:f4:64:bd:40:
         02:21:00:b4:be:8a:80:d0:86:75:f0:41:fb:c7:19:ac:f3:b3:
         9d:ed:c8:5d:c9:2b:30:35:86:8c:b2:da:a8:f0:5d:b1:96




C.2. enroll / reenroll

   The breakdown of the enrollment request is



Certificate Request:
    Data:
        Version: 0 (0x0)
        Subject: C=US, ST=CA, L=LA, O=example Inc,
                    OU=IoT/serialNumber=Wt1234
        Subject Public Key Info:
            Public Key Algorithm: id‑ecPublicKey
                Public‑Key: (256 bit)
                pub:
                    04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                    9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                    0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                    be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                    56:38:e5:9f:d9
                ASN1 OID: prime256v1
                NIST CURVE: P‑256
        Attributes:
            challengePassword:   <256‑bit PoP linking value>
        Requested Extensions:
            X509v3 Subject Alternative Name:
                othername:<unsupported>
    Signature Algorithm: ecdsa‑with‑SHA256
         30:45:02:21:00:92:56:3a:54:64:63:bd:9e:cf:f1:70:d0:fd:
         1f:2e:f0:d3:d0:12:16:0e:5e:e9:0c:ff:ed:ab:ec:9b:9a:38:
         92:02:20:17:9f:10:a3:43:61:09:05:1a:ba:d1:75:90:a0:9b:
         c8:7c:4d:ce:54:53:a6:fc:11:35:a1:e8:4e:ed:75:43:77




   The CSR contains a ChallengePassword which is used for PoP linking
   (Section 4).  The CSR also contains an id-on-hardwareModuleName
   hardware identifier to customize the returned certificate to the
   requesting device (See [RFC7299] and [I-D.moskowitz-ecdsa-pki]).



   The breakdown of the issued certificate is



Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 9112578475118446130 (0x7e7661d7b54e4632)
    Signature Algorithm: ecdsa‑with‑SHA256
        Issuer: C=US, ST=CA, O=Example Inc,
                      OU=certification, CN=802.1AR CA
        Validity
            Not Before: Jan 31 11:29:16 2019 GMT
            Not After : Dec 31 23:59:59 9999 GMT
        Subject: C=US, ST=CA, L=LA, O=example Inc,
                OU=IoT/serialNumber=Wt1234
        Subject Public Key Info:
            Public Key Algorithm: id‑ecPublicKey
                Public‑Key: (256 bit)
                pub:
                    04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                    9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                    0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                    be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                    56:38:e5:9f:d9
                ASN1 OID: prime256v1
                NIST CURVE: P‑256
        X509v3 extensions:
            X509v3 Basic Constraints:
                CA:FALSE
            X509v3 Subject Key Identifier:
96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0
            X509v3 Authority Key Identifier:
                keyid:
68:D1:65:51:F9:51:BF:C8:2A:43:1D:0D:9F:08:BC:2D:20:5B:11:60

            X509v3 Key Usage: critical
                Digital Signature, Key Encipherment
            X509v3 Subject Alternative Name:
                othername:<unsupported>
    Signature Algorithm: ecdsa‑with‑SHA256
         30:46:02:21:00:c0:d8:19:96:d2:50:7d:69:3f:3c:48:ea:a5:
         ee:94:91:bd:a6:db:21:40:99:d9:81:17:c6:3b:36:13:74:cd:
         86:02:21:00:a7:74:98:9f:4c:32:1a:5c:f2:5d:83:2a:4d:33:
         6a:08:ad:67:df:20:f1:50:64:21:18:8a:0a:de:6d:34:92:36




C.3. serverkeygen

   The following is the breakdown of the server-side key generation
   request.



Certificate Request:
    Data:
        Version: 0 (0x0)
        Subject: O=skg example
        Subject Public Key Info:
            Public Key Algorithm: id‑ecPublicKey
                Public‑Key: (256 bit)
                pub:
                    04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                    9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                    0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                    be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                    56:38:e5:9f:d9
                ASN1 OID: prime256v1
                NIST CURVE: P‑256
        Attributes:
            a0:00
    Signature Algorithm: ecdsa‑with‑SHA256
         30:45:02:20:7c:55:39:81:b1:fe:34:92:49:d8:a3:f5:0a:03:
         46:33:6b:7d:fa:a0:99:cf:74:e1:ec:7a:37:a0:a7:60:48:59:
         02:21:00:84:79:29:53:98:77:4b:2f:f8:e7:e8:2a:bb:0c:17:
         ea:ef:34:4a:50:88:fa:69:fd:63:ee:61:18:50:c3:4b:0a



   Following is the breakdown of the private key content of the server-
   side key generation response.



Private‑Key: (256 bit)
priv:
    61:33:6a:86:ac:6e:7a:f4:a9:6f:63:28:30:ad:4e:
    6a:a0:83:76:79:20:60:94:d7:67:9a:01:ca:8c:6f:
    0c:37
pub:
    04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
    9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
    0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
    be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
    56:38:e5:9f:d9
ASN1 OID: prime256v1
NIST CURVE: P‑256



   The following is the breakdown of the certificate in the server-side
   key generation response payload.



Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            b3:31:3e:8f:3f:c9:53:8e
    Signature Algorithm: ecdsa‑with‑SHA256
        Issuer: O=skg example
        Validity
            Not Before: Sep  4 07:44:03 2019 GMT
            Not After : Aug 30 07:44:03 2039 GMT
        Subject: O=skg example
        Subject Public Key Info:
            Public Key Algorithm: id‑ecPublicKey
                Public‑Key: (256 bit)
                pub:
                    04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d:
                    9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5:
                    0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90:
                    be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b:
                    56:38:e5:9f:d9
                ASN1 OID: prime256v1
                NIST CURVE: P‑256
        X509v3 extensions:
            X509v3 Basic Constraints:
                CA:FALSE
            Netscape Comment:
                OpenSSL Generated Certificate
            X509v3 Subject Key Identifier:
96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0
            X509v3 Authority Key Identifier:
                keyid:
96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0



       Signature Algorithm: ecdsa-with-SHA256

            30:45:02:21:00:e9:5b:fa:25:a0:89:76:65:22:46:f2:d9:61:
            43:da:39:fc:e0:dc:4c:9b:26:b9:cc:e1:f2:41:64:cc:2b:12:
            b6:02:20:13:51:fd:8e:ea:65:76:4e:34:59:d3:24:e4:34:5f:
            f5:b2:a9:15:38:c0:49:76:11:17:96:b3:69:8b:f6:37:9c



Authors' Addresses



Peter van der Stok
Consultant



   Email: consultancy@vanderstok.org



Panos Kampanakis
Cisco Systems



   Email: pkampana@cisco.com




Michael C. Richardson
Sandelman Software Works

Email: mcr+ietf@sandelman.ca
URI:   http://www.sandelman.ca/


Shahid Raza
RISE SICS
Isafjordsgatan 22
Kista, Stockholm  16440
SE



   Email: shahid@sics.se


































draft-ietf-ace-cwt-proof-of-possession-11 - Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs) 






draft-ietf-ace-cwt-proof-of-possession-11 - Proof-of-Possession Key Semantics fo

Index
Prev
Next
Forward 5


ACE

Internet-Draft

Intended status: Standards Track

Expires: May 3, 2020
















M. Jones

Microsoft

L. Seitz

RISE SICS

G. Selander

Ericsson AB

S. Erdtman

Spotify

H. Tschofenig

Arm Ltd.

October 31, 2019

Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs)  

draft-ietf-ace-cwt-proof-of-possession-11


Abstract

   This specification describes how to declare in a CBOR Web Token (CWT)
   (which is defined by RFC 8392) that the presenter of the CWT
   possesses a particular proof-of-possession key.  Being able to prove
   possession of a key is also sometimes described as being the holder-
   of-key.  This specification provides equivalent functionality to
   "Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)" (RFC
   7800) but using Concise Binary Object Representation (CBOR) and CWTs
   rather than JavaScript Object Notation (JSON) and JSON Web Tokens
   (JWTs).




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 3, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Representations for Proof-of-Possession Keys
	 3.1.  Confirmation Claim


	 3.2.  Representation of an Asymmetric Proof-of-Possession Key


	 3.3.  Representation of an Encrypted Symmetric Proof-of- Possession Key


	 3.4.  Representation of a Key ID for a Proof-of-Possession Key


	 3.5.  Specifics Intentionally Not Specified



	4.  Security Considerations


	5.  Privacy Considerations


	6.  Operational Considerations


	7.  IANA Considerations
	 7.1.  CBOR Web Token Claims Registration
	  7.1.1.  Registry Contents



	 7.2.  CWT Confirmation Methods Registry
	  7.2.1.  Registration Template


	  7.2.2.  Initial Registry Contents





	8.  References
	 8.1.  Normative References


	 8.2.  Informative References



	Acknowledgements


	Document History


	Authors' Addresses




1. Introduction

   This specification describes how a CBOR Web Token (CWT) [RFC8392] can
   declare that the presenter of the CWT possesses a particular proof-
   of-possession (PoP) key.  Proof of possession of a key is also
   sometimes described as being the holder-of-key.  This specification
   provides equivalent functionality to "Proof-of-Possession Key
   Semantics for JSON Web Tokens (JWTs)" [RFC7800] but using Concise
   Binary Object Representation (CBOR) [RFC7049] and CWTs [RFC8392]
   rather than JavaScript Object Notation (JSON) [RFC8259] and JSON Web
   Tokens (JWTs) [JWT].




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   This specification uses terms defined in the CBOR Web Token (CWT)
   [RFC8392], CBOR Object Signing and Encryption (COSE) [RFC8152], and
   Concise Binary Object Representation (CBOR) [RFC7049] specifications.



   These terms are defined by this specification:



   Issuer

      Party that creates the CWT and binds the claims about the subject
      to the proof-of-possession key.



Presenter
   Party that proves possession of a private key (for asymmetric key
   cryptography) or secret key (for symmetric key cryptography) to a
   recipient of a CWT.
   In the context of OAuth, this party is also called the OAuth
   Client.

Recipient
   Party that receives the CWT containing the proof‑of‑possession key
   information from the presenter.
   In the context of OAuth, this party is also called the OAuth
   Resource Server.



   This specification provides examples in CBOR extended diagnostic
   notation, as defined in Appendix G of [RFC8610].  The examples
   include line breaks for readability.




3. Representations for Proof-of-Possession Keys

   By including a "cnf" (confirmation) claim in a CWT, the issuer of the
   CWT declares that the presenter possesses a particular key and that
   the recipient can cryptographically confirm that the presenter has
   possession of that key.  The value of the "cnf" claim is a CBOR map
   (which is defined in Section 2.1 of [RFC7049]) and the members of
   that map identify the proof-of-possession key.



   The presenter can be identified in one of several ways by the CWT,
   depending upon the application requirements.  For instance, some
   applications may use the CWT "sub" (subject) claim [RFC8392], to
   identify the presenter.  Other applications may use the "iss"
   (issuer) claim [RFC8392] to identify the presenter.  In some
   applications, the subject identifier might be relative to the issuer
   identified by the "iss" claim.  The actual mechanism used is
   dependent upon the application.  The case in which the presenter is
   the subject of the CWT is analogous to Security Assertion Markup
   Language (SAML) 2.0 [OASIS.saml-core-2.0-os] SubjectConfirmation
   usage.




3.1. Confirmation Claim

   The "cnf" claim in the CWT is used to carry confirmation methods.
   Some of them use proof-of-possession keys while others do not.  This
   design is analogous to the SAML 2.0 [OASIS.saml-core-2.0-os]
   SubjectConfirmation element in which a number of different subject
   confirmation methods can be included (including proof-of-possession
   key information).



   The set of confirmation members that a CWT must contain to be
   considered valid is context dependent and is outside the scope of
   this specification.  Specific applications of CWTs will require
   implementations to understand and process some confirmation members
   in particular ways.  However, in the absence of such requirements,
   all confirmation members that are not understood by implementations
   MUST be ignored.



   This specification establishes the IANA "CWT Confirmation Methods"
   registry for these members in Section 7.2 and registers the members
   defined by this specification.  Other specifications can register
   other members used for confirmation, including other members for
   conveying proof-of-possession keys using different key
   representations.



   The "cnf" claim value MUST represent only a single proof-of-
   possession key.  At most one of the "COSE_Key" and
   "Encrypted_COSE_Key" confirmation values defined in Figure 1 may be
   present.  Note that if an application needs to represent multiple
   proof-of-possession keys in the same CWT, one way for it to achieve
   this is to use other claim names, in addition to "cnf", to hold the
   additional proof-of-possession key information.  These claims could
   use the same syntax and semantics as the "cnf" claim.  Those claims
   would be defined by applications or other specifications and could be
   registered in the IANA "CBOR Web Token Claims" registry
   [IANA.CWT.Claims].



/‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Name               | Key | Value type                    |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| COSE_Key           | 1   | COSE_Key                      |
| Encrypted_COSE_Key | 2   | COSE_Encrypt or COSE_Encrypt0 |
| kid                | 3   | binary string                 |
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



         Figure 1: Summary of the cnf names, keys, and value types




3.2. Representation of an Asymmetric Proof-of-Possession Key

   When the key held by the presenter is an asymmetric private key, the
   "COSE_Key" member is a COSE_Key [RFC8152] representing the
   corresponding asymmetric public key.  The following example
   demonstrates such a declaration in the CWT Claims Set of a CWT:



 {
 /iss/ 1 : "coaps://server.example.com",
 /aud/ 3 : "coaps://client.example.org",
 /exp/ 4 : 1879067471,
 /cnf/ 8 :{
   /COSE_Key/ 1 :{
     /kty/ 1 : /EC2/ 2,
     /crv/ ‑1 : /P‑256/ 1,
     /x/ ‑2 : h'd7cc072de2205bdc1537a543d53c60a6acb62eccd890c7fa27c9
                e354089bbe13',
     /y/ ‑3 : h'f95e1d4b851a2cc80fff87d8e23f22afb725d535e515d020731e
                79a3b4e47120'
    }
  }
}



   The COSE_Key MUST contain the required key members for a COSE_Key of
   that key type and MAY contain other COSE_Key members, including the
   "kid" (Key ID) member.



   The "COSE_Key" member MAY also be used for a COSE_Key representing a
   symmetric key, provided that the CWT is encrypted so that the key is
   not revealed to unintended parties.  The means of encrypting a CWT is
   explained in [RFC8392].  If the CWT is not encrypted, the symmetric
   key MUST be encrypted as described in Section 3.3.  This procedure is
   equivalent to the one defined in section 3.3 of [RFC7800].




3.3. Representation of an Encrypted Symmetric Proof-of-Possession Key

   When the key held by the presenter is a symmetric key, the
   "Encrypted_COSE_Key" member is an encrypted COSE_Key [RFC8152]
   representing the symmetric key encrypted to a key known to the
   recipient using COSE_Encrypt or COSE_Encrypt0.



   The following example illustrates a symmetric key that could
   subsequently be encrypted for use in the "Encrypted_COSE_Key" member:



{
 /kty/ 1 : /Symmetric/ 4,
 /alg/ 3 : /HMAC 256‑256/ 5,
 /k/ ‑1 : h'6684523ab17337f173500e5728c628547cb37df
            e68449c65f885d1b73b49eae1'
}



   The COSE_Key representation is used as the plaintext when encrypting
   the key.



   The following example CWT Claims Set of a CWT illustrates the use of
   an encrypted symmetric key as the "Encrypted_COSE_Key" member value:



{
 /iss/ 1 : "coaps://server.example.com",
 /sub/ 2 : "24400320",
 /aud/ 3: "s6BhdRkqt3",
 /exp/ 4 : 1311281970,
 /iat/ 5 : 1311280970,
 /cnf/ 8 : {
 /Encrypted_COSE_Key/ 2 : [
     /protected header/ h'A1010A' /{ \alg\ 1:10 \AES‑CCM‑16‑64‑128\}/,
     /unprotected header/ { / iv / 5: h'636898994FF0EC7BFCF6D3F95B'},
     /ciphertext/  h'0573318A3573EB983E55A7C2F06CADD0796C9E584F1D0E3E
                     A8C5B052592A8B2694BE9654F0431F38D5BBC8049FA7F13F'
   ]
  }
}




   The example above was generated with the key:



             h'6162630405060708090a0b0c0d0e0f10'




3.4. Representation of a Key ID for a Proof-of-Possession Key

   The proof-of-possession key can also be identified using a Key ID
   instead of communicating the actual key, provided the recipient is
   able to obtain the identified key using the Key ID.  In this case,
   the issuer of a CWT declares that the presenter possesses a
   particular key and that the recipient can cryptographically confirm
   proof of possession of the key by the presenter by including a "cnf"
   claim in the CWT whose value is a CBOR map with the CBOR map
   containing a "kid" member identifying the key.



   The following example demonstrates such a declaration in the CWT
   Claims Set of a CWT:



{
 /iss/ 1 : "coaps://as.example.com",
 /aud/ 3 : "coaps://resource.example.org",
 /exp/ 4 : 1361398824,
 /cnf/ 8 : {
   /kid/ 3 : h'dfd1aa976d8d4575a0fe34b96de2bfad'
  }
}



   The content of the "kid" value is application specific.  For
   instance, some applications may choose to use a cryptographic hash of
   the public key value as the "kid" value.



   Note that the use of a Key ID to identify a proof-of-possession key
   needs to be carefully circumscribed, as described below and in
   Section 6.  In cases where the Key ID is not a cryptographic value
   derived from the key or where not all of the parties involved are
   validating the cryptographic derivation, implementers should expect
   collisions, where different keys are assigned the same Key ID.
   Recipients of a CWT with a PoP key linked through only a Key ID
   should be prepared to handle such situations.



   In the world of constrained Internet of Things (IoT) devices, there
   is frequently a restriction on the size of Key IDs, either because of
   table constraints or a desire to keep message sizes small.



   Note that the value of a Key ID for a specific key is not necessarily
   the same for different parties.  When sending a COSE encrypted
   message with a shared key, the Key ID may be different on both sides
   of the conversation, with the appropriate one being included in the
   message based on the recipient of the message.




3.5. Specifics Intentionally Not Specified

   Proof of possession is often demonstrated by having the presenter
   sign a value determined by the recipient using the key possessed by
   the presenter.  This value is sometimes called a "nonce" or a
   "challenge".  There are, however, also other means to demonstrate
   freshness of the exchange and to link the proof-of-possession key to
   the participating parties, as demonstrated by various authentication
   and key exchange protocols.



   The means of communicating the nonce and the nature of its contents
   are intentionally not described in this specification, as different
   protocols will communicate this information in different ways.
   Likewise, the means of communicating the signed nonce is also not
   specified, as this is also protocol specific.



   Note that other means of proving possession of the key exist, which
   could be used in conjunction with a CWT's confirmation key.
   Applications making use of such alternate means are encouraged to
   register them in the IANA "CWT Confirmation Methods" registry
   established in Section 7.2.




4. Security Considerations

   All the security considerations that are discussed in [RFC8392] also
   apply here.  In addition, proof of possession introduces its own
   unique security issues.  Possessing a key is only valuable if it is
   kept secret.  Appropriate means must be used to ensure that
   unintended parties do not learn private key or symmetric key values.



   Applications utilizing proof of possession SHOULD also utilize
   audience restriction, as described in Section 3.1.3 of [RFC8392], as
   it provides additional protections.  Audience restriction can be used
   by recipients to reject messages intended for different recipients.
   (Of course, applications not using proof of possession can also
   benefit from using audience restriction to reject messages intended
   for different recipients.)



   CBOR Web Tokens with proof-of-possession keys are used in context of
   an architecture, such as the ACE OAuth Framework
   [I-D.ietf-ace-oauth-authz], in which protocols are used by a
   presenter to request these tokens and to subsequently use them with
   recipients.  Proof of possession only provides the intended security
   gains when the proof is known to be current and not subject to replay
   attacks; security protocols using mechanisms such as nonces and
   timestamps can be used to avoid the risk of replay when performing
   proof of possession for a token.  Note that a discussion of the
   architecture or specific protocols that CWT proof-of-possession
   tokens are used with is beyond the scope of this specification.



   As is the case with other information included in a CWT, it is
   necessary to apply data origin authentication and integrity
   protection (via a keyed message digest or a digital signature).  Data
   origin authentication ensures that the recipient of the CWT learns
   about the entity that created the CWT since this will be important
   for any policy decisions.  Integrity protection prevents an adversary
   from changing any elements conveyed within the CWT payload.  Special
   care has to be applied when carrying symmetric keys inside the CWT
   since those not only require integrity protection but also
   confidentiality protection.



   As described in Section 6 (Key Identification) and Appendix D (Notes
   on Key Selection) of [JWS], it is important to make explicit trust
   decisions about the keys.  Proof-of-possession signatures made with
   keys not meeting the application's trust criteria MUST NOT be relied
   upon.




5. Privacy Considerations

   A proof-of-possession key can be used as a correlation handle if the
   same key is used on multiple occasions.  Thus, for privacy reasons,
   it is recommended that different proof-of-possession keys be used
   when interacting with different parties.




6. Operational Considerations

   The use of CWTs with proof-of-possession keys requires additional
   information to be shared between the involved parties in order to
   ensure correct processing.  The recipient needs to be able to use
   credentials to verify the authenticity and integrity of the CWT.
   Furthermore, the recipient may need to be able to decrypt either the
   whole CWT or the encrypted parts thereof (see Section 3.3).  This
   requires the recipient to know information about the issuer.
   Likewise, there needs to be agreement between the issuer and the
   recipient about the claims being used (which is also true of CWTs in
   general).



   When an issuer creates a CWT containing a Key ID claim, it needs to
   make sure that it does not issue another CWT with different claims
   containing the same Key ID within the lifetime of the CWTs, unless
   intentionally desired.  Failure to do so may allow one party to
   impersonate another party, with the potential to gain additional
   privileges.  A case where such reuse of a Key ID would be intentional
   is when a presenter obtains a CWT with different claims (e.g.,
   extended scope) for the same recipient, but wants to continue using
   an existing security association (e.g., a DTLS session) bound to the
   key identified by the Key ID.  Likewise, if PoP keys are used for
   multiple different kinds of CWTs in an application and the PoP keys
   are identified by Key IDs, care must be taken to keep the keys for
   the different kinds of CWTs segregated so that an attacker cannot
   cause the wrong PoP key to be used by using a valid Key ID for the
   wrong kind of CWT.  Using an audience restriction for the CWT would
   be one strategy to mitigate this risk.




7. IANA Considerations

   The following registration procedure is used for all the registries
   established by this specification.



   Values are registered on a Specification Required [RFC8126] basis
   after a three-week review period on the cwt-reg-review@ietf.org
   mailing list, on the advice of one or more Designated Experts.
   However, to allow for the allocation of values prior to publication,
   the Designated Experts may approve registration once they are
   satisfied that such a specification will be published.  [[ Note to
   the RFC Editor: The name of the mailing list should be determined in
   consultation with the IESG and IANA.  Suggested name: cwt-reg-
   review@ietf.org. ]]



   Registration requests sent to the mailing list for review should use
   an appropriate subject (e.g., "Request to Register CWT Confirmation
   Method: example").  Registration requests that are undetermined for a
   period longer than 21 days can be brought directly to IANA's
   attention (using the iana@iana.org mailing list) for resolution.



   Designated Experts should determine whether a registration request
   contains enough information for the registry to be populated with the
   new values and whether the proposed new functionality already exists.
   In the case of an incomplete registration or an attempt to register
   already existing functionality, the Designated Experts should ask for
   corrections or reject the registration.



   It is suggested that multiple Designated Experts be appointed who are
   able to represent the perspectives of different applications using
   this specification in order to enable broadly informed review of
   registration decisions.  In cases where a registration decision could
   be perceived as creating a conflict of interest for a particular
   Expert, that Expert should defer to the judgment of the other
   Experts.




7.1. CBOR Web Token Claims Registration

   This specification registers the "cnf" claim in the IANA "CBOR Web
   Token Claims" registry [IANA.CWT.Claims] established by [RFC8392].




7.1.1. Registry Contents

o  Claim Name: "cnf"
o  Claim Description: Confirmation
o  JWT Claim Name: "cnf"
o  Claim Key: TBD (maybe 8)
o  Claim Value Type(s): map
o  Change Controller: IESG
o  Specification Document(s): Section 3.1 of [[ this document ]]




7.2. CWT Confirmation Methods Registry

   This specification establishes the IANA "CWT Confirmation Methods"
   registry for CWT "cnf" member values.  The registry records the
   confirmation method member and a reference to the specification that
   defines it.




7.2.1. Registration Template

   Confirmation Method Name:

      The human-readable name requested (e.g., "kid").



   Confirmation Method Description:

      Brief description of the confirmation method (e.g., "Key
      Identifier").



   JWT Confirmation Method Name:

      Claim Name of the equivalent JWT confirmation method value, as
      registered in [IANA.JWT.Claims].  CWT claims should normally have
      a corresponding JWT claim.  If a corresponding JWT claim would not
      make sense, the Designated Experts can choose to accept
      registrations for which the JWT Claim Name is listed as "N/A".



   Confirmation Key:

      CBOR map key value for the confirmation method.



   Confirmation Value Type(s):

      CBOR types that can be used for the confirmation method value.



   Change Controller:

      For Standards Track RFCs, list the "IESG".  For others, give the
      name of the responsible party.



   Specification Document(s):

      Reference to the document or documents that specify the parameter,
      preferably including URIs that can be used to retrieve copies of
      the documents.  An indication of the relevant sections may also be
      included but is not required.  Note that the Designated Experts
      and IANA must be able to obtain copies of the specification
      document(s) to perform their work.




7.2.2. Initial Registry Contents

o  Confirmation Method Name: "COSE_Key"
o  Confirmation Method Description: COSE_Key Representing Public Key
o  JWT Confirmation Method Name: "jwk"
o  Confirmation Key: 1
o  Confirmation Value Type(s): COSE_Key structure
o  Change Controller: IESG
o  Specification Document(s): Section 3.2 of [[ this document ]]

o  Confirmation Method Name: "Encrypted_COSE_Key"
o  Confirmation Method Description: Encrypted COSE_Key
o  JWT Confirmation Method Name: "jwe"
o  Confirmation Key: 2
o  Confirmation Value Type(s): COSE_Encrypt or COSE_Encrypt0
   structure (with an optional corresponding COSE_Encrypt or
   COSE_Encrypt0 tag)
o  Change Controller: IESG
o  Specification Document(s): Section 3.3 of [[ this document ]]

o  Confirmation Method Name: "kid"
o  Confirmation Method Description: Key Identifier
o  JWT Confirmation Method Name: "kid"
o  Confirmation Key: 3
o  Confirmation Value Type(s): binary string
o  Change Controller: IESG
o  Specification Document(s): Section 3.4 of [[ this document ]]




8. References


8.1. Normative References


   [IANA.CWT.Claims]

              IANA, "CBOR Web Token Claims",
              <http://www.iana.org/assignments/cwt>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC7049]
  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.




   [RFC8126]
  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8392]
  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
              "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
              May 2018, <https://www.rfc-editor.org/info/rfc8392>.




8.2. Informative References


   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-21
              (work in progress), February 2019.




   [IANA.JWT.Claims]

              IANA, "JSON Web Token Claims",
              <http://www.iana.org/assignments/jwt>.




   [JWS]
      Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
              2015, <http://www.rfc-editor.org/info/rfc7515>.




   [JWT]
      Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
              <http://www.rfc-editor.org/info/rfc7519>.




   [OASIS.saml-core-2.0-os]

              Cantor, S., Kemp, J., Philpott, R., and E. Maler,
              "Assertions and Protocol for the OASIS Security Assertion
              Markup Language (SAML) V2.0", OASIS Standard saml-core-
              2.0-os, March 2005,
              <http://docs.oasis-open.org/security/saml/v2.0/>.




   [RFC7800]
  Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
              Possession Key Semantics for JSON Web Tokens (JWTs)",
              RFC 7800, DOI 10.17487/RFC7800, April 2016,
              <https://www.rfc-editor.org/info/rfc7800>.




   [RFC8259]
  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.




   [RFC8610]
  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/info/rfc8610>.




Acknowledgements

   Thanks to the following people for their reviews of the
   specification: Roman Danyliw, Christer Holmberg, Benjamin Kaduk,
   Mirja Kuehlewind, Yoav Nir, Michael Richardson, Adam Roach, Eric
   Vyncke, and Jim Schaad.



   Ludwig Seitz and Goeran Selander worked on this document as part of
   the CelticPlus projects CyberWI and CRITISEC, with funding from
   Vinnova.



Document History



   [[ to be removed by the RFC Editor before publication as an RFC ]]



   -11



   o  Addressed remaining IESG review comment by Mirja Kuehlewind.



   -10



   o  Addressed IESG review comments by Adam Roach and Eric Vyncke.



   -09



   o  Addressed Gen-ART review comments by Christer Holmberg and SecDir
      review comments by Yoav Nir.



   -08



   o  Addressed remaining Area Director review comments by Benjamin
      Kaduk.



   -07



   o  Addressed Area Director review by Benjamin Kaduk.



   -06



   o  Corrected nits identified by Roman Danyliw.



   -05



   o  Added text suggested by Jim Schaad describing considerations when
      using the Key ID confirmation method.



   -04



   o  Addressed additional WGLC comments by Jim Schaad and Roman
      Danyliw.



   -03



   o  Addressed review comments by Jim Schaad, see https://www.ietf.org/
      mail-archive/web/ace/current/msg02798.html



   o  Removed unnecessary sentence in the introduction regarding the use
      any strings that could be case-sensitive.



   o  Clarified the terms Presenter and Recipient.



   o  Clarified text about the confirmation claim.



   -02



   o  Changed "typically" to "often" when describing ways of performing
      proof of possession.



   o  Changed b64 to hex encoding in an example.



   o  Changed to using the RFC 8174 boilerplate instead of the RFC 2119
      boilerplate.



   -01



   o  Now uses CBOR diagnostic notation for the examples.



   o  Added a table summarizing the "cnf" names, keys, and value types.



   o  Addressed some of Jim Schaad's feedback on -00.



   -00



   o  Created the initial working group draft from draft-jones-ace-cwt-
      proof-of-possession-01.



Authors' Addresses



Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI:   http://self‑issued.info/


Ludwig Seitz
RISE SICS
Scheelevaegen 17
Lund  223 70
Sweden



   Email: ludwig@ri.se




Goeran Selander
Ericsson AB
Faeroegatan 6
Kista  164 80
Sweden



   Email: goran.selander@ericsson.com




Samuel Erdtman
Spotify



   Email: erdtman@spotify.com




Hannes Tschofenig
Arm Ltd.
Hall in Tirol  6060
Austria



   Email: Hannes.Tschofenig@arm.com










draft-ietf-ace-dtls-authorize-08 - Datagram Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Environments (ACE) 






draft-ietf-ace-dtls-authorize-08 - Datagram Transport Layer Security (DTLS) Prof

Index
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: October 14, 2019












S. Gerdes

O. Bergmann

C. Bormann

Universitaet Bremen TZI

G. Selander

Ericsson AB

L. Seitz

RISE

April 12, 2019

Datagram Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Environments (ACE)  

draft-ietf-ace-dtls-authorize-08


Abstract

   This specification defines a profile of the ACE framework that allows
   constrained servers to delegate client authentication and
   authorization.  The protocol relies on DTLS for communication
   security between entities in a constrained network using either raw
   public keys or pre-shared keys.  A resource-constrained server can
   use this protocol to delegate management of authorization information
   to a trusted host with less severe limitations regarding processing
   power and memory.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on October 14, 2019.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology



	2.  Protocol Overview


	3.  Protocol Flow
	 3.1.  Communication between C and AS


	 3.2.  RawPublicKey Mode
	  3.2.1.  DTLS Channel Setup Between C and RS



	 3.3.  PreSharedKey Mode
	  3.3.1.  DTLS Channel Setup Between C and RS



	 3.4.  Resource Access



	4.  Dynamic Update of Authorization Information


	5.  Token Expiration


	6.  Secure Communication with AS


	7.  Security Considerations


	8.  Privacy Considerations


	9.  IANA Considerations


	10. References
	 10.1.  Normative References


	 10.2.  Informative References



	Authors' Addresses




1. Introduction

   This specification defines a profile of the ACE framework
   [I-D.ietf-ace-oauth-authz].  In this profile, a client and a resource
   server use CoAP [RFC7252] over DTLS [RFC6347] to communicate.  The
   client obtains an access token, bound to a key (the proof-of-
   possession key), from an authorization server to prove its
   authorization to access protected resources hosted by the resource
   server.  Also, the client and the resource server are provided by the
   authorization server with the necessary keying material to establish
   a DTLS session.  The communication between client and authorization
   server may also be secured with DTLS.  This specification supports
   DTLS with Raw Public Keys (RPK) [RFC7250] and with Pre-Shared Keys
   (PSK) [RFC4279].



   The DTLS handshake requires the client and server to prove that they
   can use certain keying material.  In the RPK mode, the client proves
   with the DTLS handshake that it can use the RPK bound to the token
   and the server shows that it can use a certain RPK.  The access token
   must be presented to the resource server.  For the RPK mode, the
   access token needs to be uploaded to the resource server before the
   handshake is initiated, as described in Section 5.8.1 of the ACE
   framework [I-D.ietf-ace-oauth-authz].



   In the PSK mode, client and server show with the DTLS handshake that
   they can use the keying material that is bound to the access token.
   To transfer the access token from the client to the resource server,
   the "psk_identity" parameter in the DTLS PSK handshake may be used
   instead of uploading the token prior to the handshake.




1.1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Readers are expected to be familiar with the terms and concepts
   described in [I-D.ietf-ace-oauth-authz] and in
   [I-D.ietf-ace-oauth-params].



   The authorization information (authz-info) resource refers to the
   authorization information endpoint as specified in
   [I-D.ietf-ace-oauth-authz].




2. Protocol Overview

   The CoAP-DTLS profile for ACE specifies the transfer of
   authentication information and, if necessary, authorization
   information between the client (C) and the resource server (RS)
   during setup of a DTLS session for CoAP messaging.  It also specifies
   how C can use CoAP over DTLS to retrieve an access token from the
   authorization server (AS) for a protected resource hosted on the
   resource server.



   This profile requires the client to retrieve an access token for
   protected resource(s) it wants to access on RS as specified in
   [I-D.ietf-ace-oauth-authz].  Figure 1 shows the typical message flow
   in this scenario (messages in square brackets are optional):



C                                RS                   AS
| [‑‑‑‑ Resource Request ‑‑‑‑‑‑>]|                     |
|                                |                     |
| [<‑AS Request Creation Hints‑] |                     |
|                                |                     |
| ‑‑‑‑‑‑‑ Token Request  ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
|                                |                     |
| <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Access Token ‑‑‑‑‑‑‑‑‑ |
|                               + Access Information   |




                   Figure 1: Retrieving an Access Token



   To determine the AS in charge of a resource hosted at the RS, C MAY
   send an initial Unauthorized Resource Request message to the RS.  The
   RS then denies the request and sends an AS Request Creation Hints
   message containing the address of its AS back to the client as
   specified in Section 5.1.2 of [I-D.ietf-ace-oauth-authz].



   Once the client knows the authorization server's address, it can send
   an access token request to the token endpoint at the AS as specified
   in [I-D.ietf-ace-oauth-authz].  As the access token request as well
   as the response may contain confidential data, the communication
   between the client and the authorization server MUST be
   confidentiality-protected and ensure authenticity.  C may have been
   registered at the AS via the OAuth 2.0 client registration mechanism
   as outlined in Section 5.3 of [I-D.ietf-ace-oauth-authz].



   The access token returned by the authorization server can then be
   used by the client to establish a new DTLS session with the resource
   server.  When the client intends to use an asymmetric proof-of-
   possession key in the DTLS handshake with the resource server, the
   client MUST upload the access token to the authz-info resource, i.e.
   the authz-info endpoint, on the resource server before starting the
   DTLS handshake, as described in Section 5.8.1 of
   [I-D.ietf-ace-oauth-authz].  In case the client uses a symmetric
   proof-of-possession key in the DTLS handshake, the procedure as above
   MAY be used, or alternatively, the access token MAY instead be
   transferred in the DTLS ClientKeyExchange message (see
   Section 3.3.1).



   Figure 2 depicts the common protocol flow for the DTLS profile after
   the client C has retrieved the access token from the authorization
   server AS.



C                            RS                   AS
| [‑‑‑ Access Token ‑‑‑‑‑‑>] |                     |
|                            |                     |
| <== DTLS channel setup ==> |                     |
|                            |                     |
| == Authorized Request ===> |                     |
|                            |                     |
| <=== Protected Resource == |                     |




                        Figure 2: Protocol overview




3. Protocol Flow

   The following sections specify how CoAP is used to interchange
   access-related data between the resource server, the client and the
   authorization server so that the authorization server can provide the
   client and the resource server with sufficient information to
   establish a secure channel, and convey authorization information
   specific for this communication relationship to the resource server.



   Section 3.1 describes how the communication between C and AS must be
   secured.  Depending on the used CoAP security mode (see also
   Section 9 of [RFC7252], the Client-to-AS request, AS-to-Client
   response and DTLS session establishment carry slightly different
   information.  Section 3.2 addresses the use of raw public keys while
   Section 3.3 defines how pre-shared keys are used in this profile.




3.1. Communication between C and AS

   To retrieve an access token for the resource that the client wants to
   access, the client requests an access token from the authorization
   server.  Before C can request the access token, C and AS MUST
   establish a secure communication channel.  C MUST securely have
   obtained keying material to communicate with AS.  Furthermore, C MUST
   verify that AS is authorized to provide access tokens (including
   authorization information) about RS to C.  Also, AS MUST securely
   have obtained keying material for C, and obtained authorization rules
   approved by the resource owner (RO) concerning C and RS that relate
   to this keying material.  C and AS MUST use their respective keying
   material for all exchanged messages.  How the security association
   between C and AS is bootstrapped is not part of this document.  C and
   AS MUST ensure the confidentiality, integrity and authenticity of all
   exchanged messages.



   Section Section 6 specifies how communication with the AS is secured.




3.2. RawPublicKey Mode

   After C and AS mutually authenticated each other and validated each
   other's authorization, C sends a token request to AS's token
   endpoint.  The client MUST add a "req_cnf" object carrying either its
   raw public key or a unique identifier for a public key that it has
   previously made known to the authorization server.  To prove that the
   client is in possession of this key, C MUST use the same keying
   material that it uses to secure the communication with AS, e.g., the
   DTLS session.



   An example access token request from the client to the AS is depicted
   in Figure 3.



POST coaps://as.example.com/token
Content‑Format: application/ace+cbor
Payload:
{
  grant_type : client_credentials,
  req_aud    : "tempSensor4711",
  req_cnf    : {
    COSE_Key : {
      kty : EC2,
      crv : P‑256,
      x   : h'e866c35f4c3c81bb96a1...',
      y   : h'2e25556be097c8778a20...'
    }
  }
}



            Figure 3: Access Token Request Example for RPK Mode



   The example shows an access token request for the resource identified
   by the string "tempSensor4711" on the authorization server using a
   raw public key.



   AS MUST check if the client that it communicates with is associated
   with the RPK in the cnf object before issuing an access token to it.
   If AS determines that the request is to be authorized according to
   the respective authorization rules, it generates an access token
   response for C.  The access token MUST be bound to the RPK of the
   client by means of the cnf claim.  The response MAY contain a
   "profile" parameter with the value "coap_dtls" to indicate that this
   profile MUST be used for communication between the client C and the
   resource server.  The "profile" may be specified out-of-band, in
   which case it does not have to be sent.  The response also contains
   an access token and an "rs_cnf" parameter containing information
   about the public key that is used by the resource server.  AS MUST
   ascertain that the RPK specified in "rs_cnf" belongs to the resource
   server that C wants to communicate with.  AS MUST protect the
   integrity of the token.  If the access token contains confidential
   data, AS MUST also protect the confidentiality of the access token.



   C MUST ascertain that the access token response belongs to a certain
   previously sent access token request, as the request may specify the
   resource server with which C wants to communicate.



   An example access token response from the AS to the client is
   depicted in Figure 4.



2.01 Created
Content‑Format: application/ace+cbor
Max‑Age: 3600
Payload:
{
  access_token : b64'SlAV32hkKG...
   (remainder of CWT omitted for brevity;
   CWT contains clients RPK in the cnf claim)',
  expires_in : 3600,
  rs_cnf     : {
    COSE_Key : {
      kty : EC2,
      crv : P‑256,
      x   : h'd7cc072de2205bdc1537...',
      y   : h'f95e1d4b851a2cc80fff...'
    }
  }
}



           Figure 4: Access Token Response Example for RPK Mode




3.2.1. DTLS Channel Setup Between C and RS

Before the client initiates the DTLS handshake with the resource
server, C MUST send a "POST" request containing the new access token
to the authz‑info resource hosted by the resource server.  After the
client
receives a confirmation that the RS has accepted the access token, it
SHOULD proceed to establish a new DTLS channel with the resource
server.  To use the RawPublicKey mode, the client MUST specify the
public key that AS defined in the "cnf" field of the access token
response in the SubjectPublicKeyInfo structure in the DTLS handshake
as specified in [RFC7250].



   An implementation that supports the RPK mode of this profile MUST at
   least support the ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
   [RFC7251] with the ed25519 curve (cf.  [RFC8032], [RFC8422]).



Note:  According to [RFC7252], CoAP implementations MUST support the
   ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251] and the
   NIST P‑256 curve.  As discussed in [RFC7748], new ECC curves have
   been defined recently that are considered superior to the so‑
   called NIST curves.  The curve that is mandatory to implement in
   this specification is said to be efficient and less dangerous
   regarding implementation errors than the secp256r1 curve mandated
   in [RFC7252].



   RS MUST check if the access token is still valid, if RS is the
   intended destination, i.e., the audience, of the token, and if the
   token was issued by an authorized AS.  The access token is
   constructed by the authorization server such that the resource server
   can associate the access token with the Client's public key.  The
   "cnf" claim MUST contain either C's RPK or, if the key is already
   known by the resource server (e.g., from previous communication), a
   reference to this key.  If the authorization server has no certain
   knowledge that the Client's key is already known to the resource
   server, the Client's public key MUST be included in the access
   token's "cnf" parameter.  If CBOR web tokens [RFC8392] are used as
   recommended in [I-D.ietf-ace-oauth-authz], keys MUST be encoded as
   specified in [I-D.ietf-ace-cwt-proof-of-possession].  RS MUST use the
   keying material in the handshake that AS specified in the rs_cnf
   parameter in the access token.  Thus, the handshake only finishes if
   C and RS are able to use their respective keying material.




3.3. PreSharedKey Mode

   To retrieve an access token for the resource that the client wants to
   access, the client MAY include a "cnf" object carrying an identifier
   for a symmetric key in its access token request to the authorization
   server.  This identifier can be used by the authorization server to
   determine the shared secret to construct the proof-of-possession
   token.  AS MUST check if the identifier refers to a symmetric key
   that was previously generated by AS as a shared secret for the
   communication between this client and the resource server.



   The authorization server MUST determine the authorization rules for
   the C it communicates with as defined by RO and generate the access
   token accordingly.  If the authorization server authorizes the
   client, it returns an AS-to-Client response.  If the profile
   parameter is present, it is set to "coap_dtls".  AS MUST ascertain
   that the access token is generated for the resource server that C
   wants to communicate with.  Also, AS MUST protect the integrity of
   the access token.  If the token contains confidential data such as
   the symmetric key, the confidentiality of the token MUST also be
   protected.  Depending on the requested token type and algorithm in
   the access token request, the authorization server adds access
   Information to the response that provides the client with sufficient
   information to setup a DTLS channel with the resource server.  AS
   adds a "cnf" parameter to the access information carrying a
   "COSE_Key" object that informs the client about the symmetric key
   that is to be used between C and the resource server.  The access
   token MUST be bound to the same symmetric key by means of the cnf
   claim.



   An example access token request for an access token with a symmetric
   proof-of-possession key is illustrated in Figure 5.



POST coaps://as.example.com/token
Content‑Format: application/ace+cbor
Payload:
{
  audience    : "smokeSensor1807",
}



         Figure 5: Example Access Token Request, symmetric PoP-key



   An example access token response is illustrated in Figure 6.  In this
   example, the authorization server returns a 2.01 response containing
   a new access token and information for the client, including the
   symmetric key in the cnf claim.  The information is transferred as a
   CBOR data structure as specified in [I-D.ietf-ace-oauth-authz].



2.01 Created
Content‑Format: application/ace+cbor
Max‑Age: 86400
Payload:
{
   access_token : h'd08343a10...
   (remainder of CWT omitted for brevity)
   token_type : pop,
   expires_in : 86400,
   profile    : coap_dtls,
   cnf        : {
     COSE_Key : {
       kty : symmetric,
       kid : h'3d027833fc6267ce',
       k   : h'73657373696f6e6b6579'
     }
   }
}



        Figure 6: Example Access Token Response, symmetric PoP-key



   The access token also comprises a "cnf" claim.  This claim usually
   contains a "COSE_Key" object that carries either the symmetric key
   itself or a key identifier that can be used by the resource server to
   determine the secret key shared with the client.  If the access token
   carries a symmetric key, the access token MUST be encrypted using a
   "COSE_Encrypt0" structure.  The AS MUST use the keying material
   shared with the RS to encrypt the token.



   The "cnf" structure in the access token is provided in Figure 7.



cnf : {
  COSE_Key : {
    kty : symmetric,
    kid : h'6549694f464361396c4f6277'
  }
}



              Figure 7: Access Token without Keying Material



   A response that declines any operation on the requested resource is
   constructed according to Section 5.2 of [RFC6749], (cf.
   Section 5.6.3. of [I-D.ietf-ace-oauth-authz]).



4.00 Bad Request
Content‑Format: application/ace+cbor
Payload:
{
  error : invalid_request
}



            Figure 8: Example Access Token Response With Reject



   The method for how the resource server determines the symmetric key
   from an access token containing only a key identifier is application
   specific, the remainder of this section provides one example.



   The AS and the resource server are assumed to share a key derivation
   key used to derive the symmetric key shared with the client from the
   key identifier in the access token.  The key derivation key may be
   derived from some other secret key shared between the AS and the
   resource server.  This key needs to be securely stored and processed
   in the same way as the key used to protect the communication between
   AS and RS.



   Knowledge of the symmetric key shared with the client must not reveal
   any information about the key derivation key or other secret keys
   shared between AS and resource server.



   In order to generate a new symmetric key to be used by client and
   resource server, the AS generates a key identifier and uses the key
   derivation key shared with the resource server to derive the
   symmetric key as specified below.  Instead of providing the keying
   material in the access token, the AS includes the key identifier in
   the "kid" parameter, see Figure 7.  This key identifier enables the
   resource server to calculate the keying material for the
   communication with the client from the access token using the key
   derivation key and following Section 11 of [RFC8152] with parameters
   as specified here.  The KDF to be used needs to be defined by the
   application, for example HKDF-SHA-256.  The key identifier picked by
   the AS needs to be unique for each access token where a unique
   symmetric key is required.



The fields in the context information "COSE_KDF_Context"
(Section 11.2 of [RFC8152]) have the following values:



   o  AlgorithmID = "ACE-CoAP-DTLS-key-derivation"



   o  PartyUInfo = PartyVInfo = ( null, null, null )



   o  keyDataLength needs to be defined by the application



   o  protected MUST be a zero length bstr



   o  other is a zero length bstr



   o  SuppPrivInfo is omitted




3.3.1. DTLS Channel Setup Between C and RS

   When a client receives an access token response from an authorization
   server, C MUST ascertain that the access token response belongs to a
   certain previously sent access token request, as the request may
   specify the resource server with which C wants to communicate.



   C checks if the payload of the access token response contains an
   "access_token" parameter and a "cnf" parameter.  With this
   information the client can initiate the establishment of a new DTLS
   channel with a resource server.  To use DTLS with pre-shared keys,
   the client follows the PSK key exchange algorithm specified in
   Section 2 of [RFC4279] using the key conveyed in the "cnf" parameter
   of the AS response as PSK when constructing the premaster secret.



   In PreSharedKey mode, the knowledge of the shared secret by the
   client and the resource server is used for mutual authentication
   between both peers.  Therefore, the resource server must be able to
   determine the shared secret from the access token.  Following the
   general ACE authorization framework, the client can upload the access
   token to the resource server's authz-info resource before starting
   the DTLS handshake.  Alternatively, the client MAY provide the most
   recent access token in the "psk_identity" field of the
   ClientKeyExchange message.  To do so, the client MUST treat the
   contents of the "access_token" field from the AS-to-Client response
   as opaque data and not perform any re-coding.



Note:  As stated in Section 4.2 of [RFC7925], the PSK identity should
   be treated as binary data in the Internet of Things space and not
   assumed to have a human‑readable form of any sort.



   If a resource server receives a ClientKeyExchange message that
   contains a "psk_identity" with a length greater zero, it uses the
   contents as index for its key store (i.e., treat the contents as key
   identifier).  The resource server MUST check if it has one or more
   access tokens that are associated with the specified key.



   If no key with a matching identifier is found, the resource server
   MAY process the contents of the "psk_identity" field as access token
   that is stored with the authorization information endpoint, before
   continuing the DTLS handshake.  If the contents of the "psk_identity"
   do not yield a valid access token for the requesting client, the DTLS
   session setup is terminated with an "illegal_parameter" DTLS alert
   message.



Note1:  As a resource server cannot provide a client with a
   meaningful PSK identity hint in response to the client's
   ClientHello message, the resource server SHOULD NOT send a
   ServerKeyExchange message.

Note2:  According to [RFC7252], CoAP implementations MUST support the
   ciphersuite TLS_PSK_WITH_AES_128_CCM_8 [RFC6655].  A client is
   therefore expected to offer at least this ciphersuite to the
   resource server.



   When RS receives an access token, RS MUST check if the access token
   is still valid, if RS is the intended destination, i.e., the audience
   of the token, and if the token was issued by an authorized AS.  This
   specification assumes that the access token is a PoP token as
   described in [I-D.ietf-ace-oauth-authz] unless specifically stated
   otherwise.  Therefore, the access token is bound to a symmetric PoP
   key that is used as shared secret between the client and the resource
   server.



   While the client can retrieve the shared secret from the contents of
   the "cnf" parameter in the AS-to-Client response, the resource server
   uses the information contained in the "cnf" claim of the access token
   to determine the actual secret when no explicit "kid" was provided in
   the "psk_identity" field.  If key derivation is used, the RS uses the
   "COSE_KDF_Context" information as described above.




3.4. Resource Access

   Once a DTLS channel has been established as described in Section 3.2
   and Section 3.3, respectively, the client is authorized to access
   resources covered by the access token it has uploaded to the authz-
   info resource hosted by the resource server.



   With the successful establishment of the DTLS channel, C and RS have
   proven that they can use their respective keying material.  An access
   token that is bound to the client's keying material is associated
   with the channel.  Any request that the resource server receives on
   this channel MUST be checked against these authorization rules.  RS
   MUST check for every request if the access token is still valid.
   Incoming CoAP requests that are not authorized with respect to any
   access token that is associated with the client MUST be rejected by
   the resource server with 4.01 response as described in Section 5.1.1
   of [I-D.ietf-ace-oauth-authz].



   The resource server SHOULD treat an incoming CoAP request as
   authorized if the following holds:



   1.  The message was received on a secure channel that has been
       established using the procedure defined in this document.



   2.  The authorization information tied to the sending client is
       valid.



   3.  The request is destined for the resource server.



   4.  The resource URI specified in the request is covered by the
       authorization information.



   5.  The request method is an authorized action on the resource with
       respect to the authorization information.



   Incoming CoAP requests received on a secure DTLS channel that are not
   thus authorized MUST be rejected according to Section 5.8.2 of
   [I-D.ietf-ace-oauth-authz]



   1.  with response code 4.03 (Forbidden) when the resource URI
       specified in the request is not covered by the authorization
       information, and



   2.  with response code 4.05 (Method Not Allowed) when the resource
       URI specified in the request covered by the authorization
       information but not the requested action.



   The client cannot always know a priori if an Authorized Resource
   Request will succeed.  It MUST check the validity of its keying
   material before sending a request or processing a response.  If the
   client repeatedly gets error responses containing AS Creation Hints
   (cf.  Section 5.1.2 of [I-D.ietf-ace-oauth-authz] as response to its
   requests, it SHOULD request a new access token from the authorization
   server in order to continue communication with the resource server.



   Unauthorized requests that have been received over a DTLS session
   SHOULD be treated as non-fatal by the RS, i.e., the DTLS session
   SHOULD be kept alive until the associated access token has expired.




4. Dynamic Update of Authorization Information

   The client can update the authorization information stored at the
   resource server at any time without changing an established DTLS
   session.  To do so, the Client requests a new access token from the
   authorization server for the intended action on the respective
   resource and uploads this access token to the authz-info resource on
   the resource server.



   Figure 9 depicts the message flow where the C requests a new access
   token after a security association between the client and the
   resource server has been established using this protocol.  If the
   client wants to update the authorization information, the token
   request MUST specify the key identifier of the proof-of-possession
   key used for the existing DTLS channel between the client and the
   resource server in the "kid" parameter of the Client-to-AS request.
   The authorization server MUST verify that the specified "kid" denotes
   a valid verifier for a proof-of-possession token that has previously
   been issued to the requesting client.  Otherwise, the Client-to-AS
   request MUST be declined with the error code "unsupported_pop_key" as
   defined in Section 5.6.3 of [I-D.ietf-ace-oauth-authz].



   When the authorization server issues a new access token to update
   existing authorization information, it MUST include the specified
   "kid" parameter in this access token.  A resource server MUST replace
   the authorization information of any existing DTLS session that is
   identified by this key identifier with the updated authorization
   information.



Note:  By associating the access tokens with the identifier of an
   existing DTLS session, the authorization information can be
   updated without changing the cryptographic keys for the DTLS
   communication between the client and the resource server, i.e. an
   existing session can be used with updated permissions.

   C                            RS                   AS
   | <===== DTLS channel =====> |                     |
   |        + Access Token      |                     |
   |                            |                     |
   | ‑‑‑ Token Request  ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
   |                            |                     |
   | <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ New Access Token ‑ |
   |                           + Access Information   |
   |                            |                     |
   | ‑‑‑ Update /authz‑info ‑‑> |                     |
   |     New Access Token       |                     |
   |                            |                     |
   | == Authorized Request ===> |                     |
   |                            |                     |
   | <=== Protected Resource == |                     |




              Figure 9: Overview of Dynamic Update Operation




5. Token Expiration

   DTLS sessions that have been established in accordance with this
   profile are always tied to a specific access token.  As this token
   may become invalid at any time (e.g. because it has expired), the
   session may become useless at some point.  A resource server
   therefore MUST terminate existing DTLS sessions after the access
   token for this session has been deleted.



   As specified in Section 5.8.3 of [I-D.ietf-ace-oauth-authz], the
   resource server MUST notify the client with an error response with
   code 4.01 (Unauthorized) for any long running request before
   terminating the session.




6. Secure Communication with AS

   As specified in the ACE framework (sections 5.6 and 5.7 of
   [I-D.ietf-ace-oauth-authz]), the requesting entity (RS and/or client)
   and the AS communicate via the token endpoint or introspection
   endpoint.  The use of CoAP and DTLS for this communication is
   RECOMMENDED in this profile, other protocols (such as HTTP and TLS or
   CoAP and OSCORE) MAY be used instead.



   How credentials (e.g., PSK, RPK, X.509 cert) for using DTLS with the
   AS are established is out of scope for this profile.



   If other means of securing the communication with the AS are used,
   the security protocol MUST fulfill the communication security
   requirements in Section 6.2 of [I-D.ietf-ace-oauth-authz].




7. Security Considerations

   This document specifies a profile for the Authentication and
   Authorization for Constrained Environments (ACE) framework
   [I-D.ietf-ace-oauth-authz].  As it follows this framework's general
   approach, the general security considerations from section 6 also
   apply to this profile.



   When using pre-shared keys provisioned by the AS, the security level
   depends on the randomness of PSK, and the security of the TLS cipher
   suite and key exchange algorithm.



   Constrained devices that use DTLS [RFC6347] are inherently vulnerable
   to Denial of Service (DoS) attacks as the handshake protocol requires
   creation of internal state within the device.  This is specifically
   of concern where an adversary is able to intercept the initial cookie
   exchange and interject forged messages with a valid cookie to
   continue with the handshake.  A similar issue exists with the
   authorization information endpoint where the resource server needs to
   keep valid access tokens until their expiry.  Adversaries can fill up
   the constrained resource server's internal storage for a very long
   time with interjected or otherwise retrieved valid access tokens.



   The use of multiple access tokens for a single client increases the
   strain on the resource server as it must consider every access token
   and calculate the actual permissions of the client.  Also, tokens may
   contradict each other which may lead the server to enforce wrong
   permissions.  If one of the access tokens expires earlier than
   others, the resulting permissions may offer insufficient protection.
   Developers SHOULD avoid using multiple access tokens for a client.




8. Privacy Considerations

   This privacy considerations from section 7 of the
   [I-D.ietf-ace-oauth-authz] apply also to this profile.



   An unprotected response to an unauthorized request may disclose
   information about the resource server and/or its existing
   relationship with the client.  It is advisable to include as little
   information as possible in an unencrypted response.  When a DTLS
   session between the client and the resource server already exists,
   more detailed information MAY be included with an error response to
   provide the client with sufficient information to react on that
   particular error.



   Also, unprotected requests to the resource server may reveal
   information about the client, e.g., which resources the client
   attempts to request or the data that the client wants to provide to
   the resource server.  The client SHOULD NOT send confidential data in
   an unprotected request.



   Note that some information might still leak after DTLS session is
   established, due to observable message sizes, the source, and the
   destination addresses.




9. IANA Considerations

   The following registrations are done for the ACE OAuth Profile
   Registry following the procedure specified in
   [I-D.ietf-ace-oauth-authz].



   Note to RFC Editor: Please replace all occurrences of "[RFC-XXXX]"
   with the RFC number of this specification and delete this paragraph.



   Profile name: coap_dtls



   Profile Description: Profile for delegating client authentication and
   authorization in a constrained environment by establishing a Datagram
   Transport Layer Security (DTLS) channel between resource-constrained
   nodes.



   Profile ID: 1



   Change Controller: IESG



   Reference: [RFC-XXXX]




10. References


10.1. Normative References


   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-06 (work in progress), February 2019.




   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-24
              (work in progress), March 2019.




   [I-D.ietf-ace-oauth-params]

              Seitz, L., "Additional OAuth Parameters for Authorization
              in Constrained Environments (ACE)", draft-ietf-ace-oauth-
              params-05 (work in progress), March 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4279]
  Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
              Ciphersuites for Transport Layer Security (TLS)",
              RFC 4279, DOI 10.17487/RFC4279, December 2005,
              <https://www.rfc-editor.org/info/rfc4279>.




   [RFC6347]
  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.




   [RFC6749]
  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC6749, October 2012,
              <https://www.rfc-editor.org/info/rfc6749>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC7925]
  Tschofenig, H., Ed. and T. Fossati, "Transport Layer
              Security (TLS) / Datagram Transport Layer Security (DTLS)
              Profiles for the Internet of Things", RFC 7925,
              DOI 10.17487/RFC7925, July 2016,
              <https://www.rfc-editor.org/info/rfc7925>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




10.2. Informative References


   [RFC6655]
  McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
              Transport Layer Security (TLS)", RFC 6655,
              DOI 10.17487/RFC6655, July 2012,
              <https://www.rfc-editor.org/info/rfc6655>.




   [RFC7250]
  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
              Weiler, S., and T. Kivinen, "Using Raw Public Keys in
              Transport Layer Security (TLS) and Datagram Transport
              Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
              June 2014, <https://www.rfc-editor.org/info/rfc7250>.




   [RFC7251]
  McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
              CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
              TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
              <https://www.rfc-editor.org/info/rfc7251>.




   [RFC7748]
  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.




   [RFC8032]
  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <https://www.rfc-editor.org/info/rfc8032>.




   [RFC8392]
  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
              "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
              May 2018, <https://www.rfc-editor.org/info/rfc8392>.




   [RFC8422]
  Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
              Curve Cryptography (ECC) Cipher Suites for Transport Layer
              Security (TLS) Versions 1.2 and Earlier", RFC 8422,
              DOI 10.17487/RFC8422, August 2018,
              <https://www.rfc-editor.org/info/rfc8422>.



Authors' Addresses



Stefanie Gerdes
Universitaet Bremen TZI
Postfach 330440
Bremen  D‑28359
Germany

Phone: +49‑421‑218‑63906
Email: gerdes@tzi.org


Olaf Bergmann
Universitaet Bremen TZI
Postfach 330440
Bremen  D‑28359
Germany

Phone: +49‑421‑218‑63904
Email: bergmann@tzi.org


Carsten Bormann
Universitaet Bremen TZI
Postfach 330440
Bremen  D‑28359
Germany

Phone: +49‑421‑218‑63921
Email: cabo@tzi.org

Goeran Selander
Ericsson AB



   Email: goran.selander@ericsson.com




Ludwig Seitz
RISE
Scheelevaegen 17
Lund  223 70
Sweden



   Email: ludwig.seitz@ri.se









































draft-ietf-ace-key-groupcomm-03 - Key Provisioning for Group Communication using ACE 






draft-ietf-ace-key-groupcomm-03 - Key Provisioning for Group Communication using

Index
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 7, 2020




F. Palombini

Ericsson AB

M. Tiloca

RISE AB

November 04, 2019

Key Provisioning for Group Communication using ACE  

draft-ietf-ace-key-groupcomm-03


Abstract

   This document defines message formats and procedures for requesting
   and distributing group keying material using the ACE framework, to
   protect communications between group members.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 7, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology



	2.  Overview


	3.  Authorization to Join a Group
	 3.1.  Authorization Request


	 3.2.  Authorization Response


	 3.3.  Token Post



	4.  Keying Material Provisioning and Group Membership Management
	 4.1.  Interface at KDC


	 4.2.  Joining Exchange


	 4.3.  Retrieval of Updated Keying Material


	 4.4.  Retrieval of New Keying Material


	 4.5.  Retrieval of Public Keys for Group Members


	 4.6.  Retrieval of Group Policies


	 4.7.  Retrieval of Keying Material Version


	 4.8.  Group Leaving Request



	5.  Removal of a Node from the Group


	6.  ACE Groupcomm Parameters


	7.  Security Considerations
	 7.1.  Update of Keying Material


	 7.2.  Block-Wise Considerations



	8.  IANA Considerations
	 8.1.  ACE Authorization Server Request Creation Hints Registry


	 8.2.  ACE Groupcomm Parameters Registry


	 8.3.  ACE Groupcomm Key Registry


	 8.4.  ACE Groupcomm Profile Registry


	 8.5.  ACE Groupcomm Policy Registry


	 8.6.  Sequence Number Synchronization Method Registry


	 8.7.  Expert Review Instructions



	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Appendix A.  Requirements on Application Profiles


	Appendix B.  Document Updates
	 B.1.  Version -02 to -03


	 B.2.  Version -01 to -02


	 B.3.  Version -00 to -01



	Acknowledgments


	Authors' Addresses




1. Introduction

   This document expands the ACE framework [I-D.ietf-ace-oauth-authz] to
   define the message exchanges used to request, distribute and renew
   the keying material in a group communication scenario, e.g. based on
   multicast [RFC7390][I-D.dijk-core-groupcomm-bis] or on publishing-
   subscribing [I-D.ietf-core-coap-pubsub].  The ACE framework is based
   on CBOR [RFC7049], so CBOR is the format used in this specification.
   However, using JSON [RFC8259] instead of CBOR is possible, using the
   conversion method specified in Sections 4.1 and 4.2 of [RFC7049].



   Profiles that use group communication can build on this document, by
   defining a number of details such as the exact group communication
   protocol and security protocols used.  The specific list of details a
   profile needs to define is in Appendix A.



   If the application requires backward and forward security, updated
   keying material is generated and distributed to the group members
   (rekeying), when membership changes.  A key management scheme
   performs the actual distribution of the updated keying material to
   the group.  In particular, the key management scheme rekeys the
   current group members when a new node joins the group, and the
   remaining group members when a node leaves the group.  Rekeying
   mechanisms can be based on [RFC2093], [RFC2094] and [RFC2627].




1.1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Readers are expected to be familiar with the terms and concepts
   described in [I-D.ietf-ace-oauth-authz] and [RFC8152], such as
   Authorization Server (AS) and Resource Server (RS).



   This document additionally uses the following terminology:



   o  Transport profile, to indicate a profile of ACE as per
      Section 5.6.4.3 of [I-D.ietf-ace-oauth-authz].  A transport
      profile specifies the communication protocol and communication
      security protocol between an ACE Client and Resource Server, as
      well as proof-of-possession methods, if it supports proof-of-
      possession access tokens, etc.  Tranport profiles of ACE include,
      for instance, [I-D.ietf-ace-oscore-profile],
      [I-D.ietf-ace-dtls-authorize] and [I-D.ietf-ace-mqtt-tls-profile].



   o  Application profile, that defines how applications enforce and use
      supporting security services they require.  These services may
      include, for instance, provisioning, revocation and
      (re-)distribution of keying material.  An application profile may
      define specific procedures and message formats.




2. Overview

+‑‑‑‑‑‑‑‑‑‑‑‑+                  +‑‑‑‑‑‑‑‑‑‑‑+
|     AS     |                  |    KDC    |
|            |        .‑‑‑‑‑‑‑‑>|           |
+‑‑‑‑‑‑‑‑‑‑‑‑+       /          +‑‑‑‑‑‑‑‑‑‑‑+
      ^             /
      |            /
      v           /                           +‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑+   /      +‑‑‑‑‑‑‑‑‑‑‑‑+        |+‑‑‑‑‑‑‑‑‑‑‑+
|   Client   |<‑'       | Dispatcher |        ||+‑‑‑‑‑‑‑‑‑‑‑+
|            |<‑‑‑‑‑‑‑‑>|    (RS)    |<‑‑‑‑‑‑‑>||   Group   |
+‑‑‑‑‑‑‑‑‑‑‑‑+          +‑‑‑‑‑‑‑‑‑‑‑‑+         +|  members  |
                                                +‑‑‑‑‑‑‑‑‑‑‑+



                  Figure 1: Key Distribution Participants



   The following participants (see Figure 1) take part in the
   authorization and key distribution.



   o  Client (C): node that wants to join the group communication.  It
      can request write and/or read rights.



   o  Authorization Server (AS): same as AS in the ACE Framework; it
      enforces access policies, and knows if a node is allowed to join
      the group with write and/or read rights.



   o  Key Distribution Center (KDC): maintains the keying material to
      protect group communications, and provides it to Clients
      authorized to join the group.  During the first part of the
      exchange (Section 3), it takes the role of the RS in the ACE
      Framework.  During the second part (Section 4), which is not based
      on the ACE Framework, it distributes the keying material.  In
      addition, it provides the latest keying material to group members
      when requested.  If required by the application, the KDC renews
      and re-distributes the keying material in the group when
      membership changes.



   o  Dispatcher: entity through which the Clients communicate with the
      group and which distributes messages to the group members.
      Examples of dispatchers are: the Broker node in a pub-sub setting;
      a relayer node for group communication that delivers group
      messages as multiple unicast messages to all group members; an
      implicit entity as in a multicast communication setting, where
      messages are transmitted to a multicast IP address and delivered
      on the transport channel.



   This document specifies a mechanism for:



   o  Authorizing a new node to join the group (Section 3), and
      providing it with the group keying material to communicate with
      the other group members (Section 4).



   o  A node to leave the group of for the KDC to remove a current
      member of the group (Section 5).



   o  Retrieving keying material as a current group member (Section 4.3
      and Section 4.4).



   o  Renewing and re-distributing the group keying material (rekeying)
      upon a membership change in the group (Section 4.8 and Section 5).



   Figure 2 provides a high level overview of the message flow for a
   node joining a group communication setting.



            C                             AS  KDC                 Group
            |                             |    |                  Member
          / |                             |    |                     |
          | |    Authorization Request    |    |                     |
 Defined  | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|    |                     |
 in the   | |                             |    |                     |
   ACE    | |    Authorization Response   |    |                     |
framework | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|    |                     |
          | |                                  |                     |
          \ |‑‑‑‑‑‑‑‑‑‑‑ Token Post ‑‑‑‑‑‑‑‑‑‑>|                     |
            |                                  |                     |
            |‑‑‑‑‑‑‑‑ Joining Request ‑‑‑‑‑‑‑‑>|                     |
            |                                  |                     |
            |<‑‑‑‑‑‑‑ Joining Response ‑‑‑‑‑‑‑‑|‑‑ Group Rekeying ‑‑>|
            |                                  |                     |
            |                                       Dispatcher       |
            |                                           |            |
            |<====== Secure group communication ========|===========>|
            |                                           |            |



              Figure 2: Message Flow Upon New Node's Joining



   The exchange of Authorization Request and Authorization Response
   between Client and AS MUST be secured, as specified by the transport
   profile of ACE used between Client and KDC.



   The exchange of Joining Request and Joining Response between Client
   and KDC MUST be secured, as a result of the transport profile of ACE
   used between Client and KDC.



   All further communications between the Client and the KDC MUST be
   secured, for instance with the same security mechanism used for the
   Key Distribution exchange.



   All communications between a Client and the other group members MUST
   be secured using the keying material provided in Section 4.




3. Authorization to Join a Group

   This section describes in detail the format of messages exchanged by
   the participants when a node requests access to a group.  This
   exchange is based on ACE [I-D.ietf-ace-oauth-authz].



   As defined in [I-D.ietf-ace-oauth-authz], the Client requests from
   the AS an authorization to join the group through the KDC (see
   Section 3.1).  If the request is approved and authorization is
   granted, the AS provides the Client with a proof-of-possession access
   token and parameters to securely communicate with the KDC (see
   Section 3.2).



   Communications between the Client and the AS MUST be secured, as
   defined by the transport profile of ACE used.  The Content-Format
   used in the messages is the one specified by the used transport
   profile of ACE (e.g. application/ace+cbor for the first two messages
   and application/cwt for the third message, depending on the format of
   the access token).  The transport profile of ACE also defines a
   number of details such as the communication and security protocols
   used with the KDC (see Appendix C of [I-D.ietf-ace-oauth-authz]).



   Figure 3 gives an overview of the exchange described above.



Client                                            AS  KDC
   |                                               |   |
   |‑‑‑‑ Authorization Request: POST /token ‑‑‑‑‑‑>|   |
   |                                               |   |
   |<‑‑‑ Authorization Response: 2.01 (Created) ‑‑‑|   |
   |                                               |   |
   |‑‑‑‑‑ POST Token: POST /authz‑info ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
   |                                                   |



               Figure 3: Message Flow of Join Authorization




3.1. Authorization Request

   The Authorization Request sent from the Client to the AS is as
   defined in Section 5.6.1 of [I-D.ietf-ace-oauth-authz] and MAY
   contain the following parameters, which, if included, MUST have the
   corresponding values:



   o  'scope', containing the identifier of the specific group (or topic
      in the case of pub-sub) that the Client wishes to access, and
      optionally the role(s) that the Client wishes to take.  This value
      is a CBOR array encoded as a byte string, which contains:



      *  As first element, the identifier of the specific group or
         topic.



      *  Optionally, as second element, the role (or CBOR array of
         roles) the Client wishes to take in the group.



      The encoding of the group or topic identifier (REQ1) and of the
      role identifiers (REQ2) is application specific, and part of the
      requirements for the application profile.



   o  'audience', with an identifier of a KDC.



   o  'req_cnf', as defined in Section 3.1 of
      [I-D.ietf-ace-oauth-params], optionally containing the public key
      or a reference to the public key of the Client, if it wishes to
      communicate that to the AS.



   o  Other additional parameters as defined in
      [I-D.ietf-ace-oauth-authz], if necessary.



   As in [I-D.ietf-ace-oauth-authz], these parameters are included in
   the payload, which is formatted as a CBOR map.  The Content-Format
   "application/ace+cbor" defined in Section 8.14 of
   [I-D.ietf-ace-oauth-authz] is used.




3.2. Authorization Response

   The Authorization Response sent from the AS to the Client is as
   defined in Section 5.6.2 of [I-D.ietf-ace-oauth-authz] and MUST
   contain the following parameters:



   o  'access_token', containing the proof-of-possession access token.



   o  'cnf' if symmetric keys are used, not present if asymmetric keys
      are used.  This parameter is defined in Section 3.2 of
      [I-D.ietf-ace-oauth-params] and contains the symmetric proof-of-
      possession key that the Client is supposed to use with the KDC.



   o  'rs_cnf' if asymmetric keys are used, not present if symmetric
      keys are used.  This parameter is as defined in Section 3.2 of
      [I-D.ietf-ace-oauth-params] and contains information about the
      public key of the KDC.



   o  'exp', contains the lifetime in seconds of the access token.  This
      parameter MAY be omitted if the application defines how the
      expiration time is communicated to the Client via other means, or
      if it establishes a default value.



   Additionally, the Authorization Response MAY contain the following
   parameters, which, if included, MUST have the corresponding values:



   o  'scope', which mirrors the 'scope' parameter in the Authorization
      Request (see Section 3.1).  Its value is a CBOR array encoded as a
      byte string, containing:



      *  As first element, the identifier of the specific group or topic
         the Client is authorized to access.



      *  Optionally, as second element, the role (or CBOR array of
         roles) the Client is authorized to take in the group.



      The encoding of the group or topic identifier and of the role
      identifiers is the same as in Section 3.1.



   o  Other additional parameters as defined in
      [I-D.ietf-ace-oauth-authz], if necessary.



   The access token MUST contain all the parameters defined above
   (including the same 'scope' as in this message, if present, or the
   'scope' of the Authorization Request otherwise), and additionally
   other optional parameters that the transport profile of ACE requires.



   As in [I-D.ietf-ace-oauth-authz], these parameters are included in
   the payload, which is formatted as a CBOR map.  The Content-Format
   "application/ace+cbor" is used.



   When receiving an Authorization Request from a Client that was
   previously authorized, and which still owns a valid non expired
   access token, the AS replies with an Authorization Response with a
   new access token.




3.3. Token Post

   The Client sends a CoAP POST request including the access token to
   the KDC, as specified in Section 5.8.1 of [I-D.ietf-ace-oauth-authz].
   If the specific transport profile of ACE defines it, the Client MAY
   use a different endpoint than /authz-info at the KDC to post the
   access token to.



   Optionally, the Client might want to request necessary information
   concerning the public keys in the group, as well as concerning the
   algorithm and related parameters for computing signatures in the
   group.  In such a case, the joining node MAY ask for that information
   to the KDC in this same request.  To this end, it sends the CoAP POST
   request to the /authz-info endpoint using the Content-Format
   "application/ace+cbor".  The payload of the message MUST be formatted
   as a CBOR map, including the access token and the following
   parameters:



   o  'sign_info' defined in Section 3.3.1, encoding the CBOR simple
      value Null, to require information and parameters on the signature
      algorithm and on the public keys used in the group.



   o  'pub_key_enc' defined in Section 3.3.2, encoding the CBOR simple
      value Null, to require information on the exact encoding of public
      keys used in the group.



   The CDDL notation of the 'sign_info' and 'pub_key_enc' parameters
   formatted as in the request is given below.



      sign_info_req = nil



      pub_key_enc_req = nil



   Alternatively, the joining node may retrieve this information by
   other means.



   After successful verification, the Client is authorized to receive
   the group keying material from the KDC and join the group.  In
   particular, the KDC replies to the Client with a 2.01 (Created)
   response, using Content-Format "application/ace+cbor" defined in
   Section 8.14 of [I-D.ietf-ace-oauth-authz].



   The payload of the 2.01 response is a CBOR map, which MUST include
   the parameter 'rsnonce' defined in Section Section 3.3.3, specifying
   a dedicated nonce N_S generated by the KDC.  The Client may use this
   nonce for proving possession of its own private key (see the
   'client_cred_verify' parameter in Section 4).



   Optionally, if they were included in the request, the AS MAY include
   the 'sign_info' parameter as well as the 'pub_key_enc' parameter
   defined in Section 3.3.1 and Section 3.3.2 of this specification,
   respectively.



   The 'sign_info' parameter MUST be present if the POST request
   included the 'sign_info' parameter with value Null.  If present, the
   'sign_info' parameter of the 2.01 (Created) response is a CBOR array
   formatted as follows.



   o  The first element 'sign_alg' is an integer or a text string,
      indicating the signature algorithm used in the group.  It is
      REQUIRED of the application profiles to define specific values for
      this parameter (REQ3).



   o  The second element 'sign_parameters' indicates the parameters of
      the signature algorithm.  Its structure depends on the value of
      'sign_alg'.  It is REQUIRED of the application profiles to define
      specific values for this parameter (REQ4).  If no parameters of
      the signature algorithm are specified, 'sign_parameters' MUST be
      encoded as the CBOR simple value Null.



   o  The third element 'sign_key_parameters' indicates the parameters
      of the key used with the signature algorithm.  Its structure
      depends on the value of 'sign_alg'.  It is REQUIRED of the
      application profiles to define specific values for this parameter
      (REQ5).  If no parameters of the key used with the signature
      algorithm are specified, 'sign_key_parameters' MUST be encoded as
      the CBOR simple value Null.



   The 'pub_key_enc' parameter MUST be present if the POST request
   included the 'pub_key_enc' parameter with value Null.  If present,
   the 'pub_key_enc' parameter of the 2.01 (Created) response is a CBOR
   integer, indicating the encoding of public keys used in the group.
   Its acceptable values are taken from the "CWT Confirmation Method"
   Registry defined in [I-D.ietf-ace-cwt-proof-of-possession].  It is
   REQUIRED of the application profiles to define specific values to use
   for this parameter (REQ6).



   The CDDL notation of the 'sign_info' and 'pub_key_enc' parameters
   formatted as in the response is given below.



sign_info_res = [
  sign_alg : int / tstr,
  sign_parameters : any / nil,
  sign_key_parameters : any / nil
]



      pub_key_enc_res = int



   Note that the CBOR map specified as payload of the 2.01 (Created)
   response may include further parameters, e.g. according to the
   signalled transport profile of ACE.




3.3.1. 'sign_info' Parameter

   The 'sign_info' parameter is an OPTIONAL parameter of the AS Request
   Creation Hints message defined in Section 5.1.2. of
   [I-D.ietf-ace-oauth-authz].  This parameter contains information and
   parameters about the signature algorithm and the public keys to be
   used between the Client and the RS.  Its exact content is application
   specific.



   In this specification and in application profiles building on it,
   this parameter is used to ask and retrieve from the KDC information
   about the signature algorithm and related parameters used in the
   group.




3.3.2. 'pub_key_enc' Parameter

   The 'pub_key_enc' parameter is an OPTIONAL parameter of the AS
   Request Creation Hints message defined in Section 5.1.2. of
   [I-D.ietf-ace-oauth-authz].  This parameter contains information
   about the exact encoding of public keys to be used between the Client
   and the RS.  Its exact content is application specific.



   In this specification and in application profiles building on it,
   this parameter is used to ask and retrieve from the KDC information
   about the encoding of public keys used in the group.




3.3.3. 'rsnonce' Parameter

   The 'rsnonce' parameter is an OPTIONAL parameter of the AS Request
   Creation Hints message defined in Section 5.1.2. of
   [I-D.ietf-ace-oauth-authz].  This parameter contains a nonce
   generated by the RS and provided to the Client.  Its exact content is
   application specific.



   In this specification and in application profiles building on it,
   this parameter is used to provide a nonce that the Client may use to
   prove possession of its own private key in the Joining Request ((see
   the 'client_cred_verify' parameter in Section 4).




4. Keying Material Provisioning and Group Membership Management

   This section defines the interface available at the KDC.  Moreover,
   this section specifies how the clients can use this interface to join
   a group, leave a group, retrieve new keying material or policies.



   During the first exchange with the KDC ("Joining"), the Client sends
   a request to the KDC, specifying the group it wishes to join (see
   Section 4.2).  Then, the KDC verifies the access token and that the
   Client is authorized to join that group.  If so, it provides the
   Client with the keying material to securely communicate with the
   other members of the group.  Whenever used, the Content-Format in
   messages containing a payload is set to application/cbor.



   TODO: Do we need to define a new Content-Format cbor+ace-groupcomm?



   When the Client is already a group member, the Client can use the
   interface at the KDC to perform the following actions:



   o  The Client can (re-)get the current keying material, for cases
      such as expiration, loss or suspected mismatch, due to e.g. reboot
      or missed group rekeying.  This is described in Section 4.3.



   o  The Client can retrieve a new individual key, or new input
      material to derive it.  This is described in Section 4.4.



   o  The Client can (re-)get the public keys of other group members,
      e.g. if it is aware of new nodes joining the group after itself.
      This is described in Section 4.5.



   o  The Client can (re-)get the policies currently enforced in the
      group.  This is described in Section 4.6.



   o  The Client can (re-)get the version number of the keying material
      currently used in the group.  This is described in Section 4.7.



   o  The Client can request to leave the group.  This is further
      discussed in Section 4.8.



   Upon receiving a request from a Client, the KDC MUST check that it is
   storing a valid access token from that Client for the group
   identifier assiciated to the endpoint.  If that is not the case, i.e.
   the KDC does not store a valid access token or this is not valid for
   that Client for the group identifier at hand, the KDC MUST respond to
   the Client with a 4.01 (Unauthorized) error message.




4.1. Interface at KDC

   The KDC is configured with the following resources:



   o  /ace-group : this resource is fixed and indicates that this
      specification is used.  Other applications that run on a KDC
      implementing this specification MUST NOT use this same resource.



   o  /ace-group/gid : one sub-resource to /ace-group is implemented for
      each group the KDC manages.  These resources are identified by the
      group identifiers of the groups the KDC manages (in this example,



      the group identifier has value "gid").  These resources support
      GET and POST method.



   o  /ace-group/gid/pub-key : this sub-resource is fixed and supports
      GET and POST methods.



   o  /ace-group/gid/policies: this sub-resource is fixed and supports
      the GET method.



   o  /ace-group/gid/ctx-num: this sub-resource is fixed and supports
      the GET method.



   o  /ace-group/gid/node: this sub-resource is fixed and supports GET
      and POST methods.



   The details for the handlers of each resource are given in the
   following sections.  These endpoints are used to perform the
   operations introduced in Section 4.  Note that the url-path given
   here are default names: implementations are not required to use these
   names, and can define their own instead.




4.1.1. ace-group

   No handlers are implemented for this resource.




4.1.2. ace-group/gid

   This resource implements GET and POST handlers.




4.1.2.1. POST Handler

   The POST handler adds the public key of the client to the list of the
   group members' public keys and returns the symmetric group keying
   material for the group identified by "gid".



   The handler expects a request with payload formatted as a CBOR map
   which MAY contain the following fields, which, if included, MUST have
   the corresponding values:



   o  'scope', with value the specific resource that the Client is
      authorized to access (i.e. group or topic identifier) and role(s),
      encoded as in Section 3.1.



   o  'get_pub_keys', if the Client wishes to receive the public keys of
      the other nodes in the group from the KDC.  The value is an empty
      CBOR array.  This parameter may be present if the KDC stores the
      public keys of the nodes in the group and distributes them to the
      Client; it is useless to have here if the set of public keys of



      the members of the group is known in another way, e.g. it was
      provided by the AS.



   o  'client_cred', with value the public key or certificate of the
      Client, encoded as a CBOR byte string.  If the KDC is managing
      (collecting from/distributing to the Client) the public keys of
      the group members, this field contains the public key of the
      Client.  The default encoding for public keys is COSE Keys.
      Alternative specific encodings of this parameter MAY be defined in
      applications of this specification (OPT1).



   o  'cnonce', as defined in Section 5.1.2 of
      [I-D.ietf-ace-oauth-authz], and including a dedicated nonce N_C
      generated by the Client.  This parameter MUST be present if the
      'client_cred' parameter is present.



   o  'client_cred_verify', encoded as a CBOR byte string.  This
      parameter MUST be present if the 'client_cred' parameter is
      present.  This parameter contains a signature computed by the
      Client over N_S concatenated with N_C, where N_S is the nonce
      received from the KDC in the 'rsnonce' parameter of the 2.01
      (Created) response to the token POST request (see Section 3.3),
      while N_C is the nonce generated by the Client and specified in
      the 'cnonce' parameter above.  The Client computes the signature
      by using its own private key, whose corresponding public key is
      either directly specified in the 'client_cred' parameter or
      included in the certificate specified in the 'client_cred'
      parameter.



   o  'pub_keys_repos', can be present if a certificate is present in
      the 'client_cred' field, with value a list of public key
      repositories storing the certificate of the Client.  This
      parameter is encoded as a CBOR array of CBOR text strings, each of
      which specifies the URI of a key repository.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If the request is not formatted correctly (e.g. unknown fields
   present), the handler MUST respond with 4.00 (Bad Request) error
   message.



   If verification succeeds, the handler adds the public key indicated
   in "client_cred" to the list of public keys stored for the group
   identified by "gid".  The handler returns a 2.01 (Created) message
   containing the symmetric group keying material, the group policies
   and all the public keys of the current members of the group, if the
   KDC manages those and the Client requested them.  The payload of the
   response is formatted as a CBOR map which MAY contain the following
   fields, which, if included, MUST have the corresponding values:



   o  'kty', identifying the key type of the 'key' parameter.  The set
      of values can be found in the "Key Type" column of the "ACE
      Groupcomm Key" Registry.  Implementations MUST verify that the key
      type matches the application profile being used, if present, as
      registered in the "ACE Groupcomm Key" registry.



   o  'key', containing the keying material for the group communication,
      or information required to derive it.



   o  'num', containing the version number of the keying material for
      the group communication, formatted as an integer.  The initial
      version MUST be set to 0 at the KDC.



   The exact format of the 'key' value MUST be defined in applications
   of this specification (REQ7), as well as accepted values of 'kty' by
   the application (REQ8).  Additionally, documents specifying the key
   format MUST register it in the "ACE Groupcomm Key" registry defined
   in Section 8.3, including its name, type and application profile to
   be used with.



+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name     | Key Type Value | Profile | Description             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Reserved | 0              |         | This value is reserved  |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                         Figure 4: Key Type Values



   Optionally, the response MAY contain the following parameters, which,
   if included, MUST have the corresponding values:



   o  'profile', with value a CBOR integer that MUST be used to uniquely
      identify the application profile for group communication.  The
      value MUST be registered in the "ACE Groupcomm Profile" Registry.



   o  'exp', with value the expiration time of the keying material for
      the group communication, encoded as a CBOR unsigned integer or
      floating-point number.  This field contains a numeric value
      representing the number of seconds from 1970-01-01T00:00:00Z UTC
      until the specified UTC date/time, ignoring leap seconds,
      analogous to what specified in Section 2 of [RFC7519].



   o  'pub_keys', may only be present if 'get_pub_keys' was present in
      the request.  This parameter is a CBOR byte string, which encodes
      the public keys of all the group members paired with the
      respective member identifiers.  The default encoding for public
      keys is COSE Keys, so the default encoding for 'pub_keys' is a
      CBOR byte string wrapping a COSE_KeySet (see [RFC8152]), which
      contains the public keys of all the members of the group.  In
      particular, each COSE Key in the COSE_KeySet includes the
      identifier of the corresponding group member as value of its 'kid'
      key parameter.  Alternative specific encodings of this parameter
      MAY be defined in applications of this specification (OPT2).  The
      specific format of the identifiers of group members MUST be
      specified in the application profile (REQ8).



   o  'group_policies', with value a CBOR map, whose entries specify how
      the group handles specific management aspects.  These include, for
      instance, approaches to achieve synchronization of sequence
      numbers among group members.  The elements of this field are
      registered in the "ACE Groupcomm Policy" Registry.  This
      specification defines the two elements "Sequence Number
      Synchronization Method" and "Key Update Check Interval", which are
      summarized in Figure 5.  Application profiles that build on this
      document MUST specify the exact content format of included map
      entries (REQ9).



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑+
|      Name       | CBOR  |   CBOR   |    Description     | Reference  |
|                 | label |   type   |                    |            |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑|
| Sequence Number | TBD1  | tstr/int | Method for a re‑   | [[this     |
| Synchronization |       |          | cipient node to    | document]] |
| Method          |       |          | synchronize with   |            |
|                 |       |          | sequence numbers   |            |
|                 |       |          | of a sender node.  |            |
|                 |       |          | Its value is taken |            |
|                 |       |          | from the 'Value'   |            |
|                 |       |          | column of the      |            |
|                 |       |          | Sequence Number    |            |
|                 |       |          | Synchronization    |            |
|                 |       |          | Method registry    |            |
|                 |       |          |                    |            |
| Key Update      | TBD2  |   int    | Polling interval   | [[this     |
| Check Interval  |       |          | in seconds, to     | document]] |
|                 |       |          | check for new      |            |
|                 |       |          | keying material at |            |
|                 |       |          | the KDC            |            |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 5: ACE Groupcomm Policies



   o  'mgt_key_material', encoded as a CBOR byte string and containing
      the administrative keying material to participate in the group
      rekeying performed by the KDC.  The exact format and content
      depend on the specific rekeying scheme used in the group, which
      MAY be specified in the application profile (OPT3).



   Specific application profiles that build on this document MUST
   specify how exactly the keying material is used to protect the group
   communication (REQ10).



   CBOR labels for these fields are defined in Section 6.




4.1.2.2. GET Handler

   The GET handler returns the symmetric group keying material for the
   group identified by "gid".



   The handler expects a GET request.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If verification succeeds, the handler returns a 2.05 (Content)
   message containing the symmetric group keying material, the group
   policies and all the public keys of the current members of the group.
   The payload of the response is formatted as a CBOR map which MUST
   contain the parameters 'kty','key' and 'num' specified in
   Section 4.1.2.1.



   The payload MAY also include the parameters 'profile', 'exp' and
   'mgt_key_material' parameters specified in Section 4.1.2.1.




4.1.3. ace-group/gid/pub-key

   This resource implements GET and POST handlers.




4.1.3.1. POST Handler

   The POST handler receives identifiers of group members for the group
   identified by "gid" and returns the public keys of such group
   members.



   The handler expects a request with payload formatted as a CBOR map.
   The payload of this request is a CBOR Map that MUST contain the
   following fields:



   o  'get_pub_keys', whose value is a non-empty CBOR array.  Each
      element of the array is the identifier of a group member for the
      group identified by "gid".  The specific format of public keys as
      well as identifiers of group members MUST be specified by the
      application profile (REQ11, REQ8).



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   The handler verifies that the 'get_pub_keys' parameter is not an
   empty CBOR Array.  If verification fails, the KDC MUST treat the
   request as malformed and respond with a 4.00 (Bad Request) error
   message.



   If verification succeeds, the handler identifies the public keys of
   the current group members for which the identifier matches with one
   of those indicated in the request.  Then, the handler returns a 2.05
   (Content) message response with payload formatted as a CBOR map
   containing only the 'pub_keys' parameter from Section 4.1.2.1, which
   encodes the list of public keys of those group members including the
   respective member identifiers.  If the KDC does not store any public
   key associated with the specified member identifiers, the handler
   returns a response with payload formatted as a CBOR byte string of
   zero length.  The specific format of public keys as well as of
   identifiers of group members is specified by the application profile
   (REQ11, REQ8).



   The handler MAY enforce one of the following policies, in order to
   handle possible identifiers that are included in the 'get_pub_keys'
   parameter of the request but are not associated to any current group
   member.  Such a policy MUST be specified by the application profile
   (REQ12)



   o  The KDC silently ignores those identifiers.



   o  The KDC retains public keys of group members for a given amount of
      time after their leaving, before discarding them.  As long as such
      public keys are retained, the KDC provides them to a requesting
      Client.




4.1.3.2. GET Handler

   The handler expects a GET request.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If verification succeeds, the handler returns a 2.05 (Content)
   message containing the public keys of all the current group members,
   for the group identified by "gid".  The payload of the response is
   formatted as a CBOR map containing only the 'pub_keys' parameter from
   Section 4.1.2.1, which encodes the list of public keys of all the
   group members including the respective member identifiers.  If the
   KDC does not store any public key for the group, the handler returns
   a response with payload formatted as a CBOR byte string of zero
   length.  The specific format of public keys as well as of identifiers
   of group members is specified by the application profile (REQ11,
   REQ8).




4.1.4. ace-group/gid/policies

   This resource implements a GET handler.




4.1.4.1. GET Handler

   The handler expects a GET request.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If verification succeeds, the handler returns a 2.05 (Content)
   message containing the list of policies for the group identified by
   "gid".  The payload of the response is formatted as a CBOR map
   including only the parameter 'group_policies' defined in
   Section 4.1.2.1 and specifying the current policies in the group.  If
   the KDC does not store any policy, the payload is formatted as a
   zero-length CBOR byte string.



   The specific format and meaning of group policies MUST be specified
   in the application profile (REQ13).




4.1.5. ace-group/gid/ctx-num

   This resource implements a GET handler.




4.1.5.1. GET Handler

   The handler expects a GET request.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If verification succeeds, the handler returns a 2.05 (Content)
   message containing an integer that represents the version number of
   the symmetric group keying material.  This number is incremented on
   the KDC every time the KDC updates the symmetric group keying
   material.  The payload of the response is formatted as a CBOR
   integer.




4.1.6. ace-group/gid/node

   This resource implements GET and POST handlers.




4.1.6.1. POST Handler

   The POST handler removes the node from the group, for the group
   identified by "gid".



   The handler expects a request with payload formatted as a CBOR map.
   The payload of this request is a CBOR Map that MAY contain only the
   'scope' field as specified in Section 4.1.2.1.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If the request contained a 'scope' field, the handler MUST extract
   the roles for that client.  If the value is such that the KDC cannot
   extract all the necessary information to understand and process it
   correctly (e.g. unrecognized roles), the KDC MUST respond with a 4.00
   (Bad Request) error message.



   If verification succeeds, the handler removes the client from the
   group identified by "gid", for specific roles if roles were specified
   in the 'scope' field, or for all roles.  That includes removing the
   public key of the client if the KDC keep tracks of that.  Then, the
   handler returns a 2.05 (Content) message with empty payload.




4.1.6.2. GET Handler

   The handler expects a GET request.



   The handler verifies that the group identifier of the /ace-group/gid
   path is a subset of the 'scope' stored in the access token associated
   to this client.  If verification fails, the KDC MUST respond with a
   4.01 (Unauthorized) error message.



   If verification succeeds, the handler returns a 2.05 (Content)
   message containing newly-generated individual keying material for the
   Client, or information enabling the Client to derive it.  The payload
   of the response is formatted as a CBOR map.  The specific format of
   newly-generated individual keying material for group members, or of
   the information to derive it, and corresponding CBOR label, MUST be
   specified in the application profile (REQ14) and registered in
   Section 8.2.




4.2. Joining Exchange

   Figure 6 gives an overview of the Joining exchange between Client and
   KDC, when the Client first joins a group.



Client                                                     KDC
   |                                                        |
   |‑‑‑‑‑‑‑‑ Joining Request: POST /ace‑group/gid ‑‑‑‑‑‑‑‑‑>|
   |                                                        |
   |<‑‑‑‑‑‑‑‑‑ Joining Response: 2.01 (Created) ‑‑‑‑‑‑‑‑‑‑‑ |
   |                                                        |



        Figure 6: Message Flow of First Exchange for Group Joining



   If not previously established, the Client and the KDC MUST first
   establish a pairwise secure communication channel (REQ15).  This can
   be achieved, for instance, by using a transport profile of ACE.  The
   Joining exchange MUST occur over that secure channel.  The Client and
   the KDC MAY use that same secure channel to protect further pairwise
   communications that must be secured.



   The secure communication protocol is REQUIRED to establish the secure
   channel by using the proof-of-possession key bound to the access
   token.  As a result, the proof-of-possession to bind the access token
   to the Client is performed by using the proof-of-possession key bound
   to the access token for establishing secure communication between the
   Client and the KDC.



   To join the group, the Client sends a CoAP POST request to the /ace-
   group/gid endpoint at the KDC, where gid is the group identifier of
   the group to join, formatted as specified in Section 4.1.2.1.  This
   group identifier is the same as the 'scope' value of the
   Authorization Request/Response, or it can be retrieved from it.



   If the application requires backward security, the KDC MUST generate
   new group keying material and securely distribute it to all the
   current group members, upon a new node's joining the group.  To this
   end, the KDC uses the message format of the Joining Response (see
   Section 4.1.2.1).  Application profiles may define alternative ways
   of retrieving the keying material, such as sending separate requests
   to different resources at the KDC (Section 4.1.2.2, Section 4.1.3.2,
   Section 4.1.4.1).  After distributing the new group keying material,
   the KDC MUST increment the version number of the keying material.




4.3. Retrieval of Updated Keying Material

   A node stops using the group keying material upon its expiration,
   according to what indicated by the KDC with the 'exp' parameter in a
   Joining response, or to a pre-configured value.  Then, if it wants to
   continue participating in the group communication, the node has to
   request new updated keying material from the KDC.



   The Client may need to request the latest group keying material also
   upon receiving messages from other group members without being able
   to retrieve the material to correctly decrypt them.  This may be due
   to a previous update of the group keying material (rekeying)
   triggered by the KDC, that the Client was not able to receive or
   decrypt.  To this end, the Client sends a CoAP GET request to the
   /ace-group/gid endpoint at the KDC, formatted as specified in
   Section 4.1.2.2.



   Note that policies can be set up so that the Client sends a Key Re-
   Distribution Request to the KDC only after a given number of
   unsuccessfully decrypted incoming messages.  It is application
   dependent and pertaining to the particular message exchange (e.g.
   [I-D.ietf-core-oscore-groupcomm]) to set up policies that instruct
   clients to retain unsuccessfully decrypted messages and for how long,
   so that they can be decrypted after getting updated keying material,
   rather than just considered non valid messages to discard right away
   (OPT4).



   The same Key Distribution Request could also be sent by the Client
   without being triggered by a failed decryption of a message, if the
   Client wants to be sure that it has the latest group keying material.
   If that is the case, the Client will receive from the KDC the same
   group keying material it already has in memory.



   Figure 7 gives an overview of the exchange described above.



Client                                                     KDC
   |                                                        |
   |‑‑‑‑‑ Key Distribution Request: GET ace‑group/gid ‑‑‑‑‑>|
   |                                                        |
   |<‑‑‑‑‑ Key Distribution Response: 2.05 (Content) ‑‑‑‑‑‑‑|
   |                                                        |



        Figure 7: Message Flow of Key Distribution Request-Response



   Alternatively, the re-distribution of keying material can be
   initiated by the KDC, which e.g.:



   o  Can make the ace-group/gid resource Observable, and send
      notifications to Clients when the keying material is updated.



   o  Can send the Key Distribution Response as one or multiple
      multicast requests to the members of the group, using secure
      rekeying schemes such as [RFC2093][RFC2094][RFC2627].



   o  Can send unicast requests to each Client over a secure channel,
      with the same payload as the Key Distribution Response.



   o  Can act as a publisher in a pub-sub scenario, and update the
      keying material by publishing on a specific topic on a broker,
      which all the members of the group are subscribed to.



   Note that these methods of KDC-initiated key distribution have
   different security properties and require different security
   associations.




4.4. Retrieval of New Keying Material

   Beside possible expiration and depending on what part of the keying
   material is no longer eligible to be used, the client may need to
   communicate to the KDC its need for that part to be renewed.  For
   example, if the Client uses an individual key to protect outgoing
   traffic and has to renew it, the node may request a new one, or new
   input material to derive it, without renewing the whole group keying
   material.  To this end, the client performs a Key Renewal Request/
   Response exchange with the KDC, that is a CoAP GET request to the
   /ace-group/gid/node endpoint at the KDC, where gid is the group
   identifier, and formatted as defined in Section 4.1.6.2.



   Figure 8 gives an overview of the exchange described above.



Client                                                  KDC
   |                                                     |
   |‑‑‑‑ Key Renewal Request: GET ace‑group/gid/node ‑‑‑>|
   |                                                     |
   |<‑‑‑‑‑ Key Renewal Response: 2.05 (Content) ‑‑‑‑‑‑‑‑‑|
   |                                                     |



          Figure 8: Message Flow of Key Renewal Request-Response



   Note the difference between the Key Distribution Request and the Key
   Renewal Request: while the first one only triggers distribution (the
   renewal might have happened independently, e.g. because of
   expiration), the second one triggers the KDC to produce new
   individual keying material for the requesting node.




4.5. Retrieval of Public Keys for Group Members

   In case the KDC maintains the public keys of group members, a node in
   the group can contact the KDC to request public keys of either all
   group members or a specified subset, by sending a CoAP GET or POST
   request to the /ace-group/gid/pub-key endpoint at the KDC, where gid
   is the group identifier, and formatted as defined in Section 4.1.3.2
   and Section 4.1.3.1.



   Figure 9 and Figure 10 give an overview of the exchanges described
   above.



Client                                                     KDC
   |                                                        |
   |‑‑‑‑ Public Key Request: GET /ace‑group/gid/pub‑key ‑‑‑>|
   |                                                        |
   |<‑‑‑‑‑‑‑‑‑ Public Key Response: 2.05 (Content) ‑‑‑‑‑‑‑‑‑|
   |                                                        |



   Figure 9: Message Flow of Public Key Exchange to Request All Members

                                Public Keys



Client                                                     KDC
   |                                                        |
   |‑‑‑ Public Key Request: POST /ace‑group/gid/pub‑key ‑‑‑>|
   |                                                        |
   |<‑‑‑‑‑‑‑‑‑ Public Key Response: 2.01 (Created) ‑‑‑‑‑‑‑‑‑|
   |                                                        |



    Figure 10: Message Flow of Public Key Exchange to Request Specific

                            Members Public Keys




4.6. Retrieval of Group Policies

   A node in the group can contact the KDC to retrieve the current group
   policies, by sending a CoAP GET request to the /ace-group/gid/
   policies endpoint at the KDC, where gid is the group identifier, and
   formatted as defined in Section 4.1.4.1



   Figure 11 gives an overview of the exchange described above.



Client                                                   KDC
   |                                                      |
   |‑‑‑ Policies Request: GET ace‑group/gid/policies ‑‑‑‑>|
   |                                                      |
   |<‑‑‑‑‑‑‑‑‑ Policies Response: 2.05 (Content) ‑‑‑‑‑‑‑‑‑|
   |                                                      |



           Figure 11: Message Flow of Policies Request-Response




4.7. Retrieval of Keying Material Version

   A node in the group can contact the KDC to request information about
   the version number of the symmetric group keying material, by sending
   a CoAP GET request to the /ace-group/gid/ctx-num endpoint at the KDC,
   where gid is the group identifier, formatted as defined in
   Section 4.1.5.1.  In particular, the version is incremented by the
   KDC every time the group keying material is renewed.



   Figure 12 gives an overview of the exchange described above.



Client                                                    KDC
   |                                                       |
   |‑‑‑‑‑ Version Request: GET ace‑group/gid/ctx‑num ‑‑‑‑‑>|
   |                                                       |
   |<‑‑‑‑‑‑‑‑‑ Version Response: 2.05 (Content) ‑‑‑‑‑‑‑‑‑‑‑|
   |                                                       |



            Figure 12: Message Flow of Version Request-Response




4.8. Group Leaving Request

   A node can actively request to leave the group.  In this case, the
   Client sends a CoAP POST request to the endpoint /ace-group/gid/node
   at the KDC, where gid is the group identifier, formatted as defined
   in Section 4.1.6.1



   Alternatively, a node may be removed by the KDC, without having
   explicitly asked for it.  This is further discussed in Section 5.




5. Removal of a Node from the Group

   This section describes the different scenarios according to which a
   node ends up being removed from the group.



   If the application requires forward security, the KDC MUST generate
   new group keying material and securely distribute it to all the
   current group members but the leaving node, using the message format
   of the Key Distribution Response (see Section 4.3).  Application
   profiles may define alternative message formats.  Once distributed
   the new group keying material, the KDC MUST increment the version
   number of the keying material.



   Note that, after having left the group, a node may wish to join it
   again.  Then, as long as the node is still authorized to join the
   group, i.e. it still has a valid access token, it can re-request to
   join the group directly to the KDC without needing to retrieve a new
   access token from the AS.  This means that the KDC might decide to
   keep track of nodes with valid access tokens, before deleting all
   information about the leaving node.



   A node may be evicted from the group in the following cases.



   1.  The node explicitly asks to leave the group, as defined in
       Section 4.8.



   2.  The node has been found compromised or is suspected so.



   3.  The node's authorization to be a group member is expired.  If the
       AS provides Token introspection (see Section 5.7 of
       [I-D.ietf-ace-oauth-authz]), the KDC can optionally use and check
       whether:



       *  the node is not authorized anymore;



       *  the access token is still valid, upon its expiration.



       Either case, once aware that a node is not authorized anymore,
       the KDC has to remove the unauthorized node from the list of
       group members, if the KDC keeps track of that.




6. ACE Groupcomm Parameters

   This specification defines a number of fields used during the second
   part of the message exchange, after the ACE Token POST exchange.  The
   table below summarizes them, and specifies the CBOR key to use
   instead of the full descriptive name.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name               | CBOR   | CBOR Type             | Reference   |
|                    | Key    |                       |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| scope              | TBD    | array                 | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| get_pub_keys       | TBD    | array                 | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| client_cred        | TBD    | byte string           | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| cnonce             | TBD    | byte string           | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| client_cred_verify | TBD    | byte string           | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| pub_keys_repos     | TBD    | array                 | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| kty                | TBD    | int / byte string     | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| key                | TBD    | see "ACE Groupcomm    | Section     |
|                    |        | Key" Registry         | 4.1.2.1     |
|                    |        |                       |             |

| num                | TBD    | int                   | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| profile            | TBD    | int                   | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| exp                | TBD    | int / float           | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| pub_keys           | TBD    | byte string           | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| group_policies     | TBD    | map                   | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| mgt_key_material   | TBD    | byte string           | Section     |
|                    |        |                       | 4.1.2.1     |
|                    |        |                       |             |
| get_pub_keys       | TBD    | array                 | Section     |
|                    |        |                       | 4.1.3.1     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+




7. Security Considerations

When a Client receives a message from a sender for the first time, it
needs to have a mechanism in place to avoid replay, e.g.
Appendix B.2 of [RFC8613].



   The KDC must renew the group keying material upon its expiration.



   The KDC should renew the keying material upon group membership
   change, and should provide it to the current group members through
   the rekeying scheme used in the group.



   The KDC may enforce a rekeying policy that takes into account the
   overall time required to rekey the group, as well as the expected
   rate of changes in the group membership.



   That is, the KDC may not rekey the group at every membership change,
   for instance if members' joining and leaving occur frequently and
   performing a group rekeying takes too long.  Instead, the KDC may
   rekey the group after a minum number of group members have joined or
   left within a given time interval, or during predictable network
   inactivity periods.



   However, this would result in the KDC not constantly preserving
   backward and forward security.  In fact, newly joining group members
   could be able to access the keying material used before their
   joining, and thus could access past group communications.  Also,
   until the KDC performs a group rekeying, the newly leaving nodes
   would still be able to access upcoming group communications that are
   protected with the keying material that has not yet been updated.




7.1. Update of Keying Material

   A group member can receive a message shortly after the group has been
   rekeyed, and new keying material has been distributed by the KDC.  In
   the following two cases, this may result in misaligned keying
   material between the group members.



   In the first case, the sender protects a message using the old keying
   material.  However, the recipient receives the message after having
   received the new keying material, hence not being able to correctly
   process it.  A possible way to ameliorate this issue is to preserve
   the old, recent, keying material for a maximum amount of time defined
   by the application.  By doing so, the recipient can still try to
   process the received message using the old retained keying material
   as second attempt.  Note that a former (compromised) group member can
   take advantage of this by sending messages protected with the old
   retained keying material.  Therefore, a conservative application
   policy should not admit the storage of old keying material.



   In the second case, the sender protects a message using the new
   keying material, but the recipient receives that request before
   having received the new keying material.  Therefore, the recipient
   would not be able to correctly process the request and hence discards
   it.  If the recipient receives the new keying material shortly after
   that and the sender endpoint uses CoAP retransmissions, the former
   will still be able to receive and correctly process the message.  In
   any case, the recipient should actively ask the KDC for an updated
   keying material according to an application-defined policy, for
   instance after a given number of unsuccessfully decrypted incoming
   messages.



   A node that has left the group should not expect any of its outgoing
   messages to be successfully processed, if received after its leaving,
   due to a possible group rekeying occurred before the message
   reception.




7.2. Block-Wise Considerations

   If the block-wise options [RFC7959] are used, and the keying material
   is updated in the middle of a block-wise transfer, the sender of the
   blocks just changes the keying material to the updated one and
   continues the transfer.  As long as both sides get the new keying
   material, updating the keying material in the middle of a transfer
   will not cause any issue.  Otherwise, the sender will have to
   transmit the message again, when receiving an error message from the
   recipient.



   Compared to a scenario where the transfer does not use block-wise,
   depending on how fast the keying material is changed, the nodes might
   consume a larger amount of the network bandwidth resending the blocks
   again and again, which might be problematic.




8. IANA Considerations

   This document has the following actions for IANA.




8.1. ACE Authorization Server Request Creation Hints Registry

   IANA is asked to register the following entries in the "ACE
   Authorization Server Request Creation Hints" Registry defined in
   Section 8.1 of [I-D.ietf-ace-oauth-authz].



   o  Name: sign_info



   o  CBOR Key: TBD (range -256 to 255)



   o  Value Type: any



   o  Reference: [[This specification]]



   o  Name: pub_key_enc



   o  CBOR Key: TBD (range -256 to 255)



   o  Value Type: integer



   o  Reference: [[This specification]]



   o  Name: rsnonce



   o  CBOR Key: TBD (range -256 to 255)



   o  Value Type: byte string



   o  Reference: [[This specification]]




8.2. ACE Groupcomm Parameters Registry

   This specification establishes the "ACE Groupcomm Parameters" IANA
   Registry.  The Registry has been created to use the "Expert Review
   Required" registration procedure [RFC8126].  Expert review guidelines
   are provided in Section 8.7.



   The columns of this Registry are:



   o  Name: This is a descriptive name that enables easier reference to
      the item.  The name MUST be unique.  It is not used in the
      encoding.



   o  CBOR Key: This is the value used as CBOR key of the item.  These
      values MUST be unique.  The value can be a positive integer, a
      negative integer, or a string.



   o  CBOR Type: This contains the CBOR type of the item, or a pointer
      to the registry that defines its type, when that depends on
      another item.



   o  Reference: This contains a pointer to the public specification for
      the item.



   This Registry has been initially populated by the values in
   Section 6.  The Reference column for all of these entries refers to
   sections of this document.




8.3. ACE Groupcomm Key Registry

   This specification establishes the "ACE Groupcomm Key" IANA Registry.
   The Registry has been created to use the "Expert Review Required"
   registration procedure [RFC8126].  Expert review guidelines are
   provided in Section 8.7.



   The columns of this Registry are:



   o  Name: This is a descriptive name that enables easier reference to
      the item.  The name MUST be unique.  It is not used in the
      encoding.



   o  Key Type Value: This is the value used to identify the keying
      material.  These values MUST be unique.  The value can be a
      positive integer, a negative integer, or a string.



   o  Profile: This field may contain one or more descriptive strings of
      application profiles to be used with this item.  The values should
      be taken from the Name column of the "ACE Groupcomm Profile"
      Registry.



   o  Description: This field contains a brief description of the keying
      material.



   o  References: This contains a pointer to the public specification
      for the format of the keying material, if one exists.



   This Registry has been initially populated by the values in Figure 4.
   The specification column for all of these entries will be this
   document.




8.4. ACE Groupcomm Profile Registry

   This specification establishes the "ACE Groupcomm Profile" IANA
   Registry.  The Registry has been created to use the "Expert Review
   Required" registration procedure [RFC8126].  Expert review guidelines
   are provided in Section 8.7.  It should be noted that, in addition to
   the expert review, some portions of the Registry require a
   specification, potentially a Standards Track RFC, be supplied as
   well.



   The columns of this Registry are:



   o  Name: The name of the application profile, to be used as value of
      the profile attribute.



   o  Description: Text giving an overview of the application profile
      and the context it is developed for.



   o  CBOR Value: CBOR abbreviation for the name of this application
      profile.  Different ranges of values use different registration
      policies [RFC8126].  Integer values from -256 to 255 are
      designated as Standards Action.  Integer values from -65536 to
      -257 and from 256 to 65535 are designated as Specification
      Required.  Integer values greater than 65535 are designated as
      Expert Review.  Integer values less than -65536 are marked as
      Private Use.



   o  Reference: This contains a pointer to the public specification of
      the abbreviation for this application profile, if one exists.




8.5. ACE Groupcomm Policy Registry

   This specification establishes the "ACE Groupcomm Policy" IANA
   Registry.  The Registry has been created to use the "Expert Review
   Required" registration procedure [RFC8126].  Expert review guidelines
   are provided in Section 8.7.  It should be noted that, in addition to
   the expert review, some portions of the Registry require a
   specification, potentially a Standards Track RFC, be supplied as
   well.



   The columns of this Registry are:



   o  Name: The name of the group communication policy.



   o  CBOR label: The value to be used to identify this group
      communication policy.  Key map labels MUST be unique.  The label
      can be a positive integer, a negative integer or a string.
      Integer values between 0 and 255 and strings of length 1 are
      designated as Standards Track Document required.  Integer values
      from 256 to 65535 and strings of length 2 are designated as
      Specification Required.  Integer values of greater than 65535 and
      strings of length greater than 2 are designated as expert review.
      Integer values less than -65536 are marked as private use.



   o  CBOR type: the CBOR type used to encode the value of this group
      communication policy.



   o  Description: This field contains a brief description for this
      group communication policy.



   o  Reference: This field contains a pointer to the public
      specification providing the format of the group communication
      policy, if one exists.



   This registry will be initially populated by the values in Figure 5.




8.6. Sequence Number Synchronization Method Registry

   This specification establishes the "Sequence Number Synchronization
   Method" IANA Registry.  The Registry has been created to use the
   "Expert Review Required" registration procedure [RFC8126].  Expert
   review guidelines are provided in Section 8.7.  It should be noted
   that, in addition to the expert review, some portions of the Registry
   require a specification, potentially a Standards Track RFC, be
   supplied as well.



   The columns of this Registry are:



   o  Name: The name of the sequence number synchronization method.



   o  Value: The value to be used to identify this sequence number
      synchronization method.



   o  Description: This field contains a brief description for this
      sequence number synchronization method.



   o  Reference: This field contains a pointer to the public
      specification describing the sequence number synchronization
      method.




8.7. Expert Review Instructions

   The IANA Registries established in this document are defined as
   expert review.  This section gives some general guidelines for what
   the experts should be looking for, but they are being designated as
   experts for a reason so they should be given substantial latitude.



   Expert reviewers should take into consideration the following points:



   o  Point squatting should be discouraged.  Reviewers are encouraged
      to get sufficient information for registration requests to ensure
      that the usage is not going to duplicate one that is already
      registered and that the point is likely to be used in deployments.
      The zones tagged as private use are intended for testing purposes
      and closed environments, code points in other ranges should not be
      assigned for testing.



   o  Specifications are required for the standards track range of point
      assignment.  Specifications should exist for specification
      required ranges, but early assignment before a specification is
      available is considered to be permissible.  Specifications are
      needed for the first-come, first-serve range if they are expected
      to be used outside of closed environments in an interoperable way.
      When specifications are not provided, the description provided
      needs to have sufficient information to identify what the point is
      being used for.



   o  Experts should take into account the expected usage of fields when
      approving point assignment.  The fact that there is a range for
      standards track documents does not mean that a standards track
      document cannot have points assigned outside of that range.  The
      length of the encoded value should be weighed against how many
      code points of that length are left, the size of device it will be
      used on, and the number of code points left that encode to that
      size.




9. References


9.1. Normative References


   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-11 (work in progress), October 2019.




   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-25
              (work in progress), October 2019.




   [I-D.ietf-ace-oauth-params]

              Seitz, L., "Additional OAuth Parameters for Authorization
              in Constrained Environments (ACE)", draft-ietf-ace-oauth-
              params-05 (work in progress), March 2019.




   [I-D.ietf-core-oscore-groupcomm]

              Tiloca, M., Selander, G., Palombini, F., and J. Park,
              "Group OSCORE - Secure Group Communication for CoAP",
              draft-ietf-core-oscore-groupcomm-05 (work in progress),
              July 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC7049]
  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.




   [RFC8126]
  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




9.2. Informative References


   [I-D.dijk-core-groupcomm-bis]

              Dijk, E., Wang, C., and M. Tiloca, "Group Communication
              for the Constrained Application Protocol (CoAP)", draft-
              dijk-core-groupcomm-bis-01 (work in progress), July 2019.




   [I-D.ietf-ace-dtls-authorize]

              Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and
              L. Seitz, "Datagram Transport Layer Security (DTLS)
              Profile for Authentication and Authorization for
              Constrained Environments (ACE)", draft-ietf-ace-dtls-
              authorize-08 (work in progress), April 2019.




   [I-D.ietf-ace-mqtt-tls-profile]

              Sengul, C., Kirby, A., and P. Fremantle, "MQTT-TLS profile
              of ACE", draft-ietf-ace-mqtt-tls-profile-01 (work in
              progress), October 2019.




   [I-D.ietf-ace-oscore-profile]

              Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
              "OSCORE profile of the Authentication and Authorization
              for Constrained Environments Framework", draft-ietf-ace-
              oscore-profile-08 (work in progress), July 2019.




   [I-D.ietf-core-coap-pubsub]

              Koster, M., Keranen, A., and J. Jimenez, "Publish-
              Subscribe Broker for the Constrained Application Protocol
              (CoAP)", draft-ietf-core-coap-pubsub-09 (work in
              progress), September 2019.




   [RFC2093]
  Harney, H. and C. Muckenhirn, "Group Key Management
              Protocol (GKMP) Specification", RFC 2093,
              DOI 10.17487/RFC2093, July 1997,
              <https://www.rfc-editor.org/info/rfc2093>.




   [RFC2094]
  Harney, H. and C. Muckenhirn, "Group Key Management
              Protocol (GKMP) Architecture", RFC 2094,
              DOI 10.17487/RFC2094, July 1997,
              <https://www.rfc-editor.org/info/rfc2094>.




   [RFC2627]
  Wallner, D., Harder, E., and R. Agee, "Key Management for
              Multicast: Issues and Architectures", RFC 2627,
              DOI 10.17487/RFC2627, June 1999,
              <https://www.rfc-editor.org/info/rfc2627>.




   [RFC7390]
  Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
              the Constrained Application Protocol (CoAP)", RFC 7390,
              DOI 10.17487/RFC7390, October 2014,
              <https://www.rfc-editor.org/info/rfc7390>.




   [RFC7519]
  Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
              <https://www.rfc-editor.org/info/rfc7519>.




   [RFC7959]
  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
              the Constrained Application Protocol (CoAP)", RFC 7959,
              DOI 10.17487/RFC7959, August 2016,
              <https://www.rfc-editor.org/info/rfc7959>.




   [RFC8259]
  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.




   [RFC8613]
  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
              <https://www.rfc-editor.org/info/rfc8613>.




Appendix A. Requirements on Application Profiles

   TODO: fix req numbers in the text.



   This section lists the requirements on application profiles of this
   specification,for the convenience of application profile designers.



   o  REQ1: Specify the encoding and value of the identifier of group or
      topic of 'scope' (see Section 3.1).



   o  REQ2: Specify the encoding and value of roles of 'scope' (see
      Section 3.1).



   o  REQ3: Optionally, specify the acceptable values for 'sign_alg'
      (see Section 3.3).



   o  REQ4: Optionally, specify the acceptable values for
      'sign_parameters' (see Section 3.3).



   o  REQ5: Optionally, specify the acceptable values for
      'sign_key_parameters' (see Section 3.3).



   o  REQ6: Optionally, specify the acceptable values for 'pub_key_enc'
      (see Section 3.3).



   o  REQ7: Specify the exact format of the 'key' value (see
      Section 4.1.2.1).



   o  REQ8: Specify the acceptable values of 'kty' (see
      Section 4.1.2.1).



   o  REQ9: Specity the format of the identifiers of group members (see
      Section 4.1.2.1).



   o  REQ10: Optionally, specify the format and content of
      'group_policies' entries (see Section 4.1.2.1).



   o  REQ11: Specify the communication protocol the members of the group
      must use (e.g., multicast CoAP).



   o  REQ12: Specify the security protocol the group members must use to
      protect their communication (e.g., group OSCORE).  This must
      provide encryption, integrity and replay protection.



   o  REQ13: Specify and register the application profile identifier
      (see Section 4.1.2.1).



   o  REQ14: Optionally, specify the encoding of public keys, of
      'client_cred', and of 'pub_keys' if COSE_Keys are not used (see
      Section 4.1.2.1).



   o  REQ15: Specify policies at the KDC to handle id that are not
      included in get_pub_keys (see Section 4.1.3.1).



   o  REQ16: Specify the format and content of 'group_policies' (see
      Section 4.1.2.1).



   o  REQ17: Specify the format of newly-generated individual keying
      material for group members, or of the information to derive it,
      and corresponding CBOR label (see Section 4.1.6.2).



   o  REQ18: Specify how the communication is secured between Client and
      KDC.  Optionally, specify tranport profile of ACE
      [I-D.ietf-ace-oauth-authz] to use between Client and KDC (see
      Section 4.2.



   o  OPT1: Optionally, specify the encoding of public keys, of
      'client_cred', and of 'pub_keys' if COSE_Keys are not used (see
      Section 4.1.2.1).



   o  OPT2: Optionally, specify the negotiation of parameter values for
      signature algorithm and signature keys, if 'sign_info' and
      'pub_key_enc' are not used (see Section 3.3).



   o  OPT3: Optionally, specify the format and content of
      'mgt_key_material' (see Section 4.1.2.1).



   o  OPT4: Optionally, specify policies that instruct clients to retain
      unsuccessfully decrypted messages and for how long, so that they
      can be decrypted after getting updated keying material (OPT4).




Appendix B. Document Updates

   RFC EDITOR: PLEASE REMOVE THIS SECTION.




B.1. Version -02 to -03

   o  Exchange of information on the countersignature algorithm and
      related parameters, during the Token POST (Section 3.3).



o  Restructured KDC interface, with new possible operations
   (Section 4).



   o  Client PoP signature for the Joining Request upon joining
      (Section 4.1.2.1).



   o  Revised text on group member removal (Section 5).



   o  Added more profile requirements (Appendix A).




B.2. Version -01 to -02

   o  Editorial fixes.



   o  Distinction between transport profile and application profile
      (Section 1.1).



   o  New parameters 'sign_info' and 'pub_key_enc' to negotiate
      parameter values for signature algorithm and signature keys
      (Section 3.3).



   o  New parameter 'type' to distinguish different Key Distribution
      Request messages (Section 4.1).



   o  New parameter 'client_cred_verify' in the Key Distribution Request
      to convey a Client signature (Section 4.1).



   o  Encoding of 'pub_keys_repos' (Section 4.1).



   o  Encoding of 'mgt_key_material' (Section 4.1).



   o  Improved description on retrieval of new or updated keying
      material (Section 6).



   o  Encoding of 'get_pub_keys' in Public Key Request (Section 7.1).



   o  Extended security considerations (Sections 10.1 and 10.2).



   o  New "ACE Public Key Encoding" IANA Registry (Section 11.2).



   o  New "ACE Groupcomm Parameters" IANA Registry (Section 11.3),
      populated with the entries in Section 8.



   o  New "Ace Groupcomm Request Type" IANA Registry (Section 11.4),
      populated with the values in Section 9.



   o  New "ACE Groupcomm Policy" IANA Registry (Section 11.7) populated
      with two entries "Sequence Number Synchronization Method" and "Key
      Update Check Interval" (Section 4.2).



o  Improved list of requirements for application profiles
   (Appendix A).




B.3. Version -00 to -01

   o  Changed name of 'req_aud' to 'audience' in the Authorization
      Request (Section 3.1).



   o  Defined error handling on the KDC (Sections 4.2 and 6.2).



   o  Updated format of the Key Distribution Response as a whole
      (Section 4.2).



   o  Generalized format of 'pub_keys' in the Key Distribution Response
      (Section 4.2).



   o  Defined format for the message to request leaving the group
      (Section 5.2).



   o  Renewal of individual keying material and methods for group
      rekeying initiated by the KDC (Section 6).



   o  CBOR type for node identifiers in 'get_pub_keys' (Section 7.1).



   o  Added section on parameter identifiers and their CBOR keys
      (Section 8).



   o  Added request types for requests to a Join Response (Section 9).



   o  Extended security considerations (Section 10).



   o  New IANA registries "ACE Groupcomm Key Registry", "ACE Groupcomm
      Profile Registry", "ACE Groupcomm Policy Registry" and "Sequence
      Number Synchronization Method Registry" (Section 11).



   o  Added appendix about requirements for application profiles of ACE
      on group communication (Appendix A).



Acknowledgments



   The following individuals were helpful in shaping this document:
   Carsten Bormann, Rikard Hoeglund, Ben Kaduk, John Mattsson, Daniel
   Migault, Jim Schaad, Ludwig Seitz, Goeran Selander and Peter van der
   Stok.



   The work on this document has been partly supported by VINNOVA and
   the Celtic-Next project CRITISEC; and by the EIT-Digital High Impact
   Initiative ACTIVE.



Authors' Addresses



Francesca Palombini
Ericsson AB
Torshamnsgatan 23
Kista  SE‑16440 Stockholm
Sweden



   Email: francesca.palombini@ericsson.com




Marco Tiloca
RISE AB
Isafjordsgatan 22
Kista  SE‑16440 Stockholm
Sweden



   Email: marco.tiloca@ri.se

























draft-ietf-ace-key-groupcomm-oscore-03 - Key Management for OSCORE Groups in ACE 






draft-ietf-ace-key-groupcomm-oscore-03 - Key Management for OSCORE Groups in ACE

Index
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 7, 2020








M. Tiloca

RISE AB

J. Park

Universitaet Duisburg-Essen

F. Palombini

Ericsson AB

November 04, 2019

Key Management for OSCORE Groups in ACE  

draft-ietf-ace-key-groupcomm-oscore-03


Abstract

   This document describes a method to request and provision keying
   material in group communication scenarios where the group
   communication is based on CoAP and secured with Object Security for
   Constrained RESTful Environments (OSCORE).  The proposed method
   delegates the authentication and authorization of new client nodes
   that join an OSCORE group through a Group Manager server.  This
   approach builds on the ACE framework for Authentication and
   Authorization, and leverages protocol-specific transport profiles of
   ACE to achieve communication security, proof-of-possession and server
   authentication.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 7, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology



	2.  Protocol Overview
	 2.1.  Overview of the Joining Process


	 2.2.  Overview of the Group Rekeying Process



	3.  Joining Node to Authorization Server
	 3.1.  Authorization Request


	 3.2.  Authorization Response



	4.  Joining Node to Group Manager
	 4.1.  Token Post


	 4.2.  Joining Request


	 4.3.  Joining Response



	5.  Public Keys of Joining Nodes


	6.  Retrieval of Updated Keying Material


	7.  Retrieval of New Keying Material


	8.  Retrieval of Public Keys of Group Members


	9.  Retrieval of Group Policies


	10. Retrieval of Keying Material Version


	11. Request to Leave the Group


	12. Removal of a Group Member


	13. Group Rekeying Process


	14. Security Considerations


	15. IANA Considerations
	 15.1.  ACE Groupcomm Key Registry


	 15.2.  OSCORE Security Context Parameters Registry


	 15.3.  ACE Groupcomm Profile Registry


	 15.4.  Sequence Number Synchronization Method Registry


	 15.5.  ACE Groupcomm Parameters Registry



	16. References
	 16.1.  Normative References


	 16.2.  Informative References



	Appendix A.  Profile Requirements


	Appendix B.  Document Updates
	 B.1.  Version -02 to -03


	 B.2.  Version -01 to -02


	 B.3.  Version -00 to -01



	Acknowledgments


	Authors' Addresses




1. Introduction

   Object Security for Constrained RESTful Environments (OSCORE)
   [RFC8613] is a method for application-layer protection of the
   Constrained Application Protocol (CoAP) [RFC7252], using CBOR Object
   Signing and Encryption (COSE) [RFC8152] and enabling end-to-end
   security of CoAP payload and options.



   As described in [I-D.ietf-core-oscore-groupcomm], Group OSCORE is
   used to protect CoAP group communication over IP multicast
   [RFC7390][I-D.dijk-core-groupcomm-bis].  This relies on a Group
   Manager, which is responsible for managing an OSCORE group, where
   members exchange CoAP messages secured with Group OSCORE.  The Group
   Manager can be responsible for multiple groups, coordinates the
   joining process of new group members, and is entrusted with the
   distribution and renewal of group keying material.



   This specification builds on the ACE framework for Authentication and
   Authorization [I-D.ietf-ace-oauth-authz] and defines a method to:



   o  Authorize a node to join an OSCORE group, and provide it with the
      group keying material to communicate with other group members.



   o  Provide updated keying material to group members upon request.



   o  Renew the group keying material and distribute it to the OSCORE
      group (rekeying) upon changes in the group membership.



   A client node joins an OSCORE group through a resource server acting
   as Group Manager for that group.  The joining process relies on an
   Access Token, which is bound to a proof-of-possession key and
   authorizes the client to access a specific group-membership resource
   at the Group Manager.



   Message exchanges among the participants as well as message formats
   and processing follow what specified in [I-D.ietf-ace-key-groupcomm]
   for provisioning and renewing keying material in group communication
   scenarios.



   In order to achieve communication security, proof-of-possession and
   server authentication, the client and the Group Manager leverage
   protocol-specific transport profiles of ACE.  These include also
   possible forthcoming transport profiles that comply with the
   requirements in Appendix C of [I-D.ietf-ace-oauth-authz].




1.1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119][RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Readers are expected to be familiar with the terms and concepts
   described in the ACE framework for authentication and authorization
   [I-D.ietf-ace-oauth-authz].  The terminology for entities in the
   considered architecture is defined in OAuth 2.0 [RFC6749].  In
   particular, this includes Client (C), Resource Server (RS), and
   Authorization Server (AS).



   Readers are expected to be familiar with the terms and concepts
   related to the CoAP protocol described in
   [RFC7252][RFC7390][I-D.dijk-core-groupcomm-bis].  Note that, unless
   otherwise indicated, the term "endpoint" is used here following its
   OAuth definition, aimed at denoting resources such as /token and
   /introspect at the AS and /authz-info at the RS.  This document does
   not use the CoAP definition of "endpoint", which is "An entity
   participating in the CoAP protocol".



   Readers are expected to be familiar with the terms and concepts for
   protection and processing of CoAP messages through OSCORE [RFC8613]
   and through Group OSCORE [I-D.ietf-core-oscore-groupcomm] in group
   communication scenarios.  These include the concept of Group Manager,
   as the entity responsible for a set of groups where communications
   are secured with Group OSCORE.  In this specification, the Group
   Manager acts as Resource Server.



   This document refers also to the following terminology.



   o  Joining node: a network node intending to join an OSCORE group,
      where communication is based on CoAP
      [RFC7390][I-D.dijk-core-groupcomm-bis] and secured with Group
      OSCORE as described in [I-D.ietf-core-oscore-groupcomm].



   o  Joining process: the process through which a joining node becomes
      a member of an OSCORE group.  The joining process is enforced and
      assisted by the Group Manager responsible for that group.



   o  Group name: stable and invariant identifier of an OSCORE group.
      The group name MUST be unique under the same Group Manager, and
      MUST include only characters that are valid for a url-path
      segment, namely unreserved and pct-encoded characters [RFC3986].



   o  Group-membership resource: a resource hosted by the Group Manager,
      associated to an OSCORE group under that Group Manager.  A group-
      membership resource is identifiable with the name of the
      respective OSCORE group.  A joining node accesses a group-
      membership resource to start the joining process and become a
      member of that group.  The url-path of a group-membership resource
      is fixed, and ends with the segments /group-oscore/NAME , where
      "NAME" is the name of the associated OSCORE group.  This replaces
      the url-path /ace-group/gid at the KDC used in
      [I-D.ietf-ace-key-groupcomm], with "gid" indicating the group
      identifier.  The url-path /group-oscore/NAME is a default name:
      implementations are not required to use this name, and can define
      their own instead.



   o  Group-membership endpoint: an endpoint at the Group Manager
      associated to a group-membership resource.



   o  Requester: member of an OSCORE group that sends request messages
      to other members of the group.



   o  Responder: member of an OSCORE group that receives request
      messages from other members of the group.  A responder may reply
      back, by sending a response message to the requester which has
      sent the request message.



   o  Monitor: member of an OSCORE group that is configured as responder
      and never replies back to requesters after receiving request
      messages.  This corresponds to the term "silent server" used in
      [I-D.ietf-core-oscore-groupcomm].



   o  Group rekeying process: the process through which the Group
      Manager renews the security parameters and group keying material,
      and (re-)distributes them to the OSCORE group members.




2. Protocol Overview

   Group communication for CoAP over IP multicast has been enabled in
   [RFC7390][I-D.dijk-core-groupcomm-bis] and can be secured with Group
   Object Security for Constrained RESTful Environments (OSCORE)
   [RFC8613] as described in [I-D.ietf-core-oscore-groupcomm].  A
   network node joins an OSCORE group by interacting with the
   responsible Group Manager.  Once registered in the group, the new
   node can securely exchange messages with other group members.



   This specification describes how to use the ACE framework for
   authentication and authorization [I-D.ietf-ace-oauth-authz] to:



   o  Enable a node to join an OSCORE group through the Group Manager
      and receive the security parameters and keying material to
      communicate with the other members of the group.



   o  Enable members of OSCORE groups to retrieve updated group keying
      material and public key of other group members, from the Group
      Manager.



   o  Enable the Group Manager to renew the security parameters and
      group keying material, and to (re-)distribute them to the members
      of the OSCORE group (rekeying).



   With reference to the ACE framework and the terminology defined in
   OAuth 2.0 [RFC6749]:



   o  The Group Manager acts as Resource Server (RS), and hosts one
      group-membership resource for each OSCORE group it manages.  Each
      group-membership resource is exported by a distinct group-
      membership endpoint.  During the joining process, the Group
      Manager provides joining nodes with the parameters and keying
      material for taking part to secure communications in the OSCORE
      group.  The Group Manager also maintains the group keying material
      and performs the group rekeying process to distribute updated
      keying material to the group members.



   o  The joining node acts as Client (C), and requests to join an
      OSCORE group by accessing the related group-membership endpoint at
      the Group Manager.



   o  The Authorization Server (AS) authorizes joining nodes to join
      OSCORE groups under their respective Group Manager.  Multiple
      Group Managers can be associated to the same AS.  The AS MAY
      release Access Tokens for other purposes than joining OSCORE
      groups under registered Group Managers.  For example, the AS may
      also release Access Tokens for accessing resources hosted by
      members of OSCORE groups.



   All communications between the involved entities rely on the CoAP
   protocol and MUST be secured.



   In particular, communications between the joining node and the Group
   Manager leverage protocol-specific transport profiles of ACE to
   achieve communication security, proof-of-possession and server
   authentication.  To this end, the AS MAY signal the specific
   transport profile to use, consistently with requirements and
   assumptions defined in the ACE framework [I-D.ietf-ace-oauth-authz].
   Note that in the commonly referred base-case the transport profile to
   use is pre-configured and well-known to nodes participating in
   constrained applications.



   With reference to the AS, communications between the joining node and
   the AS (/token endpoint) as well as between the Group Manager and the
   AS (/introspect endpoint) can be secured by different means, for
   instance using DTLS [RFC6347] or OSCORE [RFC8613].  Further details
   on how the AS secures communications (with the joining node and the
   Group Manager) depend on the specifically used transport profile of
   ACE, and are out of the scope of this specification.




2.1. Overview of the Joining Process

   A node performs the following steps in order to join an OSCORE group.
   The format and processing of messages exchanged among the
   participants follow what is defined in [I-D.ietf-ace-key-groupcomm],
   and are further specified in Section 3 and Section 4 of this
   document.  The Group Manager acts as the Key Distribution Center
   (KDC) defined in [I-D.ietf-ace-key-groupcomm].



   1.  The joining node requests an Access Token from the AS, in order
       to access a group-membership resource on the Group Manager and
       hence join the associated OSCORE group (see Section 3).  The
       joining node will start or continue using a secure communication
       association with the Group Manager, according to the response
       from the AS.



   2.  The joining node transfers authentication and authorization
       information to the Group Manager, by posting the obtained Access
       Token to the /authz-info endpoint at the Group Manager (see
       Section 4).  After that, a joining node MUST have a secure
       communication association established with the Group Manager,
       before starting to join an OSCORE group under that Group Manager
       (see Section 4).  Possible ways to provide a secure communication
       association are DTLS [RFC6347] and OSCORE [RFC8613].



   3.  The joining node starts the joining process to become a member of
       the OSCORE group, by accessing the related group-membership
       resource hosted by the Group Manager (see Section 4).



   4.  At the end of the joining process, the joining node has received
       from the Group Manager the parameters and keying material to
       securely communicate with the other members of the OSCORE group.



   5.  The joining node and the Group Manager maintain the secure
       association, to support possible future communications.  These
       especially include key management operations, such as retrieval
       of updated keying material from the Group Manager or
       participation to a group rekeying process (see Section 2.2).



   All further communications between the joining node and the Group
   Manager MUST be secured, for instance with the same secure
   association mentioned in step 2.




2.2. Overview of the Group Rekeying Process

   If the application requires backward and forward security, the Group
   Manager MUST generate new security parameters and group keying
   material, and distribute them to the group (rekeying) upon membership
   changes.



   That is, the group is rekeyed when a node joins the group as a new
   member, or after a current member leaves the group.  By doing so, a
   joining node cannot access communications in the group prior its
   joining, while a leaving node cannot access communications in the
   group after its leaving.



   Parameters and group keying material include a new Group Identifier
   (Gid) for the group and a new Master Secret for the OSCORE Common
   Security Context of that group (see Section 2 of
   [I-D.ietf-core-oscore-groupcomm]).  Once completed a group rekeying,
   the GM MUST increment the version number of the group keying
   material.



   The Group Manager MUST support the Group Rekeying Process described
   in Section 13.  Future application profiles may define alternative
   message formats and distribution schemes to perform group rekeying.




3. Joining Node to Authorization Server

   This section describes how the joining node interacts with the AS in
   order to be authorized to join an OSCORE group under a given Group
   Manager.  In particular, it considers a joining node that intends to
   contact that Group Manager for the first time.



   The message exchange between the joining node and the AS consists of
   the messages Authorization Request and Authorization Response defined
   in Section 3 of [I-D.ietf-ace-key-groupcomm].



   In case the specific AS associated to the Group Manager is unknown to
   the joining node, the latter can rely on mechanisms like the
   Unauthorized Resource Request message described in Section 5.1.1 of
   [I-D.ietf-ace-oauth-authz] to discover the correct AS to contact.




3.1. Authorization Request

   The joining node contacts the AS, in order to request an Access Token
   for accessing the group-membership resource hosted by the Group
   Manager and associated to the OSCORE group.  The Access Token request
   sent to the /token endpoint follows the format of the Authorization
   Request message defined in Section 3.1 of
   [I-D.ietf-ace-key-groupcomm].  In particular:



   o  The 'scope' parameter MUST be present and MUST include:



      *  in the first element, the name of the OSCORE group to join
         under the Group Manager, encoded as a CBOR text string.



      *  in the second element, the role (encoded as a text string) or
         CBOR array of roles that the joining node intends to have in
         the group it intends to join.  Accepted values of roles are:
         "requester", "responder", and "monitor".  Possible combinations
         are: ["requester" , "responder"]; ["requester" , "monitor"].



   o  The 'audience' parameter MUST be present and is set to the
      identifier of the Group Manager.




3.2. Authorization Response

   The AS is responsible for authorizing the joining node to join
   specific OSCORE groups, according to join policies enforced on behalf
   of the respective Group Manager.



   In case of successful authorization, the AS releases an Access Token
   bound to a proof-of-possession key associated to the joining node.



   Then, the AS provides the joining node with the Access Token as part
   of an Access Token response, which follows the format of the
   Authorization Response message defined in Section 3.2 of
   [I-D.ietf-ace-key-groupcomm].



   The AS MUST include the 'exp' parameter in the response to the
   joining node.  Other means for the AS to specify the lifetime of
   Access Tokens are out of the scope of this specification.



   The AS must include the 'scope' parameter in the response to the
   joining node, when the value included in the Access Token differs
   from the one specified by the joining node in the request.  In such a
   case, the second element of 'scope' MUST be present and includes the
   role or CBOR array of roles that the joining node is actually
   authorized to take in the group, encoded as specified in Section 3.1
   of this document.



   The AS MAY also include the 'profile' parameter in the response to
   the joining node, in order to indicate the specific transport profile
   of ACE to use for securing communications between the joining node
   and the Group Manager (see Section 5.6.4.3 of
   [I-D.ietf-ace-oauth-authz]).



   In particular, if symmetric keys are used, the AS generates a proof-
   of-possession key, binds it to the Access Token, and provides it to
   the joining node in the 'cnf' parameter of the Access Token response.
   Instead, if asymmetric keys are used, the joining node provides its
   own public key to the AS in the 'req_cnf' parameter of the Access
   Token request.  Then, the AS uses it as proof-of-possession key bound
   to the Access Token, and provides the joining node with the Group
   Manager's public key in the 'rs_cnf' parameter of the Access Token
   response.




4. Joining Node to Group Manager

   The following subsections describe the interactions between the
   joining node and the Group Manager, i.e. the sending of the Access
   Token and the Request-Response exchange to join the OSCORE group.




4.1. Token Post

   The joining node posts the Access Token to the /authz-info endpoint
   at the Group Manager, according to the Token post defined in
   Section 3.3 of [I-D.ietf-ace-key-groupcomm].



   At this point in time, the joining node might not have all the
   necessary information concerning the public keys in the OSCORE group,
   as well as concerning the algorithm and related parameters for
   computing countersignatures in the OSCORE group.  In such a case, the
   joining node MAY use the 'sign_info' and 'pub_key_enc' parameters
   defined in Section 3.3 of [I-D.ietf-ace-key-groupcomm] to ask for
   such information.



   Alternatively, the joining node may retrieve this information by
   other means, e.g. by using the approach described in
   [I-D.tiloca-core-oscore-discovery].



   If the Access Token is valid, the Group Manager responds to the POST
   request with a 2.01 (Created) response, according to what is
   specified in the signalled transport profile of ACE.  The Group
   Manager MUST use the Content-Format "application/ace+cbor" defined in
   Section 8.14 of [I-D.ietf-ace-oauth-authz].



   The payload of the 2.01 (Created) response is a CBOR map, which MUST
   include the 'rsnonce' parameter defined in Section 3.3.3 of
   [I-D.ietf-ace-key-groupcomm], and MAY include the 'sign_info'
   parameter as well as the 'pub_key_enc' parameter, defined in its
   Sections 3.3.1 and 3.3.2, respectively.  Note that this deviates from
   the default payload format for this response message as defined in
   the ACE framework (see Section 5.8.1 of [I-D.ietf-ace-oauth-authz]).



   The 'rsnonce' parameter includes a dedicated nonce N_S generated by
   the Group Manager.  The joining node may use this nonce in order to
   prove the possession of its own private key, upon joining the group
   (see Section 4.2).



   If present in the response:



   o  'sign_alg', i.e. the first element of the 'sign_info' parameter,
      takes value from Tables 5 and 6 of [RFC8152].



   o  'sign_parameters', i.e. the second element of the 'sign_info'
      parameter, takes values from the "Counter Signature Parameters"
      Registry (see Section 9.1 of [I-D.ietf-core-oscore-groupcomm]).
      Its structure depends on the value of 'sign_alg'.  If no
      parameters of the counter signature algorithm are specified,
      'sign_parameters' MUST be encoding the CBOR simple value Null.



   o  'sign_key_parameters', i.e. the third element of the 'sign_info'
      parameter, takes values from the "Counter Signature Key
      Parameters" Registry (see Section 9.2 of
      [I-D.ietf-core-oscore-groupcomm]).  Its structure depends on the
      value of 'sign_alg'.  If no parameters of the key used with the
      counter signature algorithm are specified, 'sign_key_parameters'
      MUST be encoding the CBOR simple value Null.



   o  'pub_key_enc' takes value 1 ("COSE_Key") from the 'Confirmation
      Key' column of the "CWT Confirmation Method" Registry defined in
      [I-D.ietf-ace-cwt-proof-of-possession], so indicating that public
      keys in the OSCORE group are encoded as COSE Keys [RFC8152].
      Future specifications may define additional values for this
      parameter.



   The CBOR map specified as payload of the 2.01 (Created) response may
   include further parameters, e.g. according to the signalled transport
   profile of ACE.



   Finally, the joining node establishes a secure channel with the Group
   Manager, according to what is specified in the Access Token response
   and the signalled transport profile of ACE.




4.2. Joining Request

   Once a secure communication channel with the Group Manager has been
   established, the joining node requests to join the OSCORE group, by
   sending a Joining Request message to the related group-membership
   resource at the Group Manager, as per Section 4.2 of
   [I-D.ietf-ace-key-groupcomm].



   In particular, the joining node sends a CoAP POST request to the
   endpoint /group-oscore/NAME at the Group Manager, where NAME is the
   name of the OSCORE group to join.  This Joining Request is formatted
   as defined in Section 4.1.2.1 of [I-D.ietf-ace-key-groupcomm].
   Specifically:



   o  The 'scope' parameter MUST be present.



   o  The 'get_pub_keys' parameter is present only if the joining node
      wants to retrieve the public keys of the group members from the
      Group Manager during the joining process (see Section 5).
      Otherwise, this parameter MUST NOT be present.



   o  The 'client_cred' parameter, if present, includes the public key
      of the joining node.  In case the joining node knows the encoding
      of public keys in the OSCORE group, as well as the
      countersignature algorithm and possible associated parameters used
      in the OSCORE group, the included public key MUST be compatible
      with those criteria.  That is, the public key MUST be encoded
      according to the encoding of public keys in the OSCORE group, and
      MUST be compatible with the countersignature algorithm and
      possible associated parameters used in the OSCORE group.  This
      parameter MAY be omitted if: i) the joining node is asking to
      access the group exclusively as monitor; or ii) the Group Manager
      already acquired this information, for instance during a past
      joining process.  In any other case, this parameter MUST be
      present.



   Furthermore, if the 'client_cred' parameter is present, the CBOR map
   specified as payload of the Joining Request MUST also include the
   following parameters.



   o  'cnonce', as defined in Section 5.1.2 of
      [I-D.ietf-ace-oauth-authz], and including a dedicated nonce N_C
      generated by the Client.



   o  The 'client_cred_verify' parameter, including a signature encoded
      as a CBOR byte string, computed by the joining node to prove
      possession of its own private key.  The signature is computed over
      N_S concatenated with N_C, where N_S is the nonce received in the



      'rsnonce' parameter of the 2.01 (Created) response to the Token
      POST (see Section 4.1), while N_C is the nonce generated by the
      Client and specified in the 'cnonce' parameter above.  The joining
      node computes the signature by using the same private key and
      countersignature algorithm it intends to use for signing messages
      in the OSCORE group.




4.3. Joining Response

   The Group Manager processes the Joining Request as defined in
   Section 4.1.2.1 of [I-D.ietf-ace-key-groupcomm].  Also, the Group
   Manager MUST return a 4.00 (Bad Request) response in case the Joining
   Request includes the 'client_cred' parameter but does not include
   both the 'cnonce' and 'client_cred_verify' parameters.



   If the request processing yields a positive outcome, the Group
   Manager performs the further following checks.



   o  In case the Joining Request includes the 'client_cred' parameter,
      the Group Manager checks that the public key of the joining node
      has an accepted format.  That is, the public key has to be encoded
      as expected in the OSCORE group, and has to be compatible with the
      counter signature algorithm and possible associated parameters
      used in the OSCORE group.  The joining process fails if the public
      key of the joining node does not have an accepted format.



   o  In case the Joining Request does not include the 'client_cred'
      parameter, the Group Manager checks whether it is storing a public
      key for the joining node, which is compatible with the encoding,
      counter signature algorithm and possible associated parameters
      used in the OSCORE group.  The joining process fails if the Group
      Manager either: i) does not store a public key with an accepted
      format for the joining node; or ii) stores multiple public keys
      with an accepted format for the joining node.



   o  In case the Joining Request includes the 'client_cred_verify'
      parameter, the Group Manager verifies the signature contained in
      the parameter.  To this end, it considers: i) as signed value, N_S
      concatenated with N_C, where N_S is the nonce previously provided
      in the 'rsnonce' parameter of the 2.01 (Created) response to the
      Token POST (see Section 4.1), while N_C is the nonce provided in
      the 'cnonce' parameter of the Joining Request; ii) the
      countersignature algorithm used in the OSCORE group, and possible
      correponding parameters; and iii) the public key of the joining
      node, either retrieved from the 'client_cred' parameter, or
      already stored as acquired from previous interactions with the
      joining node.  The joining process fails if the Group Manager does
      not successfully verify the signature.



   If the joining process has failed, the Group Manager MUST reply to
   the joining node with a 4.00 (Bad Request) response.  The payload of
   this response is a CBOR map, which includes a 'sign_info' parameter
   and a 'pub_key_enc' parameter, formatted as in the Token POST
   response in Section 4.1.



   Upon receiving this response, the joining node SHOULD send a new
   Joining Request to the Group Manager, which contains:



   o  The 'client_cred' parameter, including a public key compatible
      with the encoding, countersignature algorithm and possible
      associated parameters indicated by the Group Manager.



   o  The 'client_cred_verify' parameter, including a signature computed
      as described in Section 4.2, by using the public key indicated in
      the current 'client_cred' parameter, with the countersignature
      algorithm and possible associated parameters indicated by the
      Group Manager.



   Otherwise, in case of success, the Group Manager updates the group
   membership by registering the joining node as a new member of the
   OSCORE group.  If the joining node is not exclusively configured as
   monitor, the Group Manager performs also the following actions.



   o  The Group Manager selects an available OSCORE Sender ID in the
      OSCORE group, and exclusively assigns it to the joining node.



   o  If the 'client_cred' parameter was present in the request, the
      Group Manager adds the specified public key of the joining node to
      the list of public keys of the current group members.



   o  If the 'client_cred' parameter was not present in the request, the
      Group Manager retrieves the already stored public key of the
      joining node, as acquired from previous interactions (see also
      Section 5).  Then, the Group Manager adds the retrieved public key
      to the list of public keys of the current group members.



   o  The Group Manager stores the association between i) the public key
      of the joining node; and ii) the Group Identifier (Gid) associated
      to the OSCORE group together with the OSCORE Sender ID assigned to
      the joining node in the group.  The Group Manager MUST keep this
      association updated over time.



   Then, the Group Manager replies to the joining node providing the
   updated security parameters and keying meterial necessary to
   participate in the group communication.  This success Joining
   Response is formatted as defined in Section 4.1.2.1 of
   [I-D.ietf-ace-key-groupcomm].  In particular:



   o  The 'kty' parameter identifies a key of type
      "Group_OSCORE_Security_Context object", defined in Section 15.1 of
      this specification.



   o  The 'key' parameter includes what the joining node needs in order
      to set up the OSCORE Security Context as per Section 2 of
      [I-D.ietf-core-oscore-groupcomm].  This parameter has as value a
      Group_OSCORE_Security_Context object, which is defined in this
      specification and extends the OSCORE_Security_Context object
      encoded in CBOR as defined in Section 3.2.1 of
      [I-D.ietf-ace-oscore-profile].  In particular, it contains the
      additional parameters 'cs_alg', 'cs_params', 'cs_key_params' and
      'cs_key_enc' defined in Section 15.2 of this specification.  More
      specifically, the 'key' parameter is composed as follows.



      *  The 'ms' parameter MUST be present and includes the OSCORE
         Master Secret value.



      *  The 'clientId' parameter, if present, has as value the OSCORE
         Sender ID assigned to the joining node by the Group Manager, as
         described above.  This parameter is not present if the node
         joins the group exclusively as monitor, according to what
         specified in the Access Token (see Section 3.2).  In any other
         case, this parameter MUST be present.



      *  The 'hkdf' parameter, if present, has as value the KDF
         algorithm used in the group.



      *  The 'alg' parameter, if present, has as value the AEAD
         algorithm used in the group.



      *  The 'salt' parameter, if present, has as value the OSCORE
         Master Salt.



      *  The 'contextId' parameter MUST be present and has as value the
         Group Identifier (Gid) associated to the OSCORE group.



      *  The 'rpl' parameter, if present, specifies the OSCORE Replay
         Window Size and Type value.



      *  The 'cs_alg' parameter MUST be present and specifies the
         algorithm used to countersign messages in the group.  This
         parameter takes values from Tables 5 and 6 of [RFC8152].



      *  The 'cs_params' parameter MAY be present and specifies the
         additional parameters for the counter signature algorithm.
         This parameter is a CBOR map whose content depends on the



         counter signature algorithm, as specified in Section 2 and
         Section 9.1 of [I-D.ietf-core-oscore-groupcomm].



      *  The 'cs_key_params' parameter MAY be present and specifies the
         additional parameters for the key used with the counter
         signature algorithm.  This parameter is a CBOR map whose
         content depends on the counter signature algorithm, as
         specified in Section 2 and Section 9.2 of
         [I-D.ietf-core-oscore-groupcomm].



      *  The 'cs_key_enc' parameter MAY be present and specifies the
         encoding of the public keys of the group members.  This
         parameter is a CBOR integer, whose value is 1 ("COSE_Key")
         taken from the 'Confirmation Key' column of the "CWT
         Confirmation Method" Registry defined in
         [I-D.ietf-ace-cwt-proof-of-possession], so indicating that
         public keys in the OSCORE group are encoded as COSE Keys
         [RFC8152].  Future specifications may define additional values
         for this parameter.  If this parameter is not present, 1
         ("COSE_Key") MUST be assumed as default value.



   o  The 'num' parameter MUST be present and specifies the current
      version number of the group keying material.



   o  The 'profile' parameter MUST be present and has value
      coap_group_oscore_app (TBD), which is defined in Section 15.3 of
      this specification.



   o  The 'exp' parameter MUST be present and specifies the expiration
      time in seconds after which the OSCORE Security Context derived
      from the 'key' parameter is not valid anymore.



   o  The 'pub_keys' parameter is present only if the 'get_pub_keys'
      parameter was present in the Joining Request.  If present, this
      parameter includes the public keys of the group members that are
      relevant to the joining node.  That is, it includes: i) the public
      keys of the responders currently in the group, in case the joining
      node is configured (also) as requester; and ii) the public keys of
      the requesters currently in the group, in case the joining node is
      configured (also) as responder or monitor.  If public keys are
      encoded as COSE_Keys, each of them has as 'kid' the Sender ID that
      the corresponding owner has in the group, thus used as group
      member identifier.



   o  The 'group_policies' parameter SHOULD be present and includes a
      list of parameters indicating particular policies enforced in the
      group.  In particular, if the field "Sequence Number
      Synchronization Method" is present, it indicates the method to



      achieve synchronization of sequence numbers among group members
      (see Appendix E of [I-D.ietf-core-oscore-groupcomm]), by
      specifying the corresponding value from the "Sequence Number
      Synchronization Method" Registry defined in Section 8.6 of
      [I-D.ietf-ace-key-groupcomm].



   Finally, the joining node uses the information received in the
   Joining Response to set up the OSCORE Security Context, as described
   in Section 2 of [I-D.ietf-core-oscore-groupcomm].  From then on, the
   joining node can exchange group messages secured with Group OSCORE as
   described in [I-D.ietf-core-oscore-groupcomm].



   If the application requires backward security, the Group Manager MUST
   generate updated security parameters and group keying material, and
   provide it to all the current group members (see Section 13).




5. Public Keys of Joining Nodes

   Source authentication of OSCORE messages exchanged within the group
   is ensured by means of digital counter signatures (see Sections 2 and
   3 of [I-D.ietf-core-oscore-groupcomm]).  Therefore, group members
   must be able to retrieve each other's public key from a trusted key
   repository, in order to verify source authenticity of incoming group
   messages.



   As also discussed in [I-D.ietf-core-oscore-groupcomm], the Group
   Manager acts as trusted repository of the public keys of the group
   members, and provides those public keys to group members if requested
   to.  Upon joining an OSCORE group, a joining node is thus expected to
   provide its own public key to the Group Manager.



   In particular, one of the following four cases can occur when a new
   node joins an OSCORE group.



   o  The joining node is going to join the group exclusively as
      monitor.  That is, it is not going to send messages to the group,
      and hence to produce signatures with its own private key.  In this
      case, the joining node is not required to provide its own public
      key to the Group Manager, which thus does not have to perform any
      check related to the public key encoding, or to a countersignature
      algorithm and possible associated parameters for that joining
      node.



   o  The Group Manager already acquired the public key of the joining
      node during a past joining process.  In this case, the joining
      node MAY choose not to provide again its own public key to the
      Group Manager, in order to limit the size of the Joining Request.
      The joining node MUST provide its own public key again if it has



      provided the Group Manager with multiple public keys during past
      joining processes, intended for different OSCORE groups.  If the
      joining node provides its own public key, the Group Manager
      performs consistency checks as per Section 4.3 and, in case of
      success, considers it as the public key associated to the joining
      node in the OSCORE group.



   o  The joining node and the Group Manager use an asymmetric proof-of-
      possession key to establish a secure communication channel.  Then,
      two cases can occur.



      1.  The proof-of-possession key is compatible with the encoding as
          well as with the counter signature algorithm and possible
          associated parameters used in the OSCORE group.  Then, the
          Group Manager considers the proof-of-possession key as the
          public key associated to the joining node in the OSCORE group.
          If the joining node is aware that the proof-of-possession key
          is also valid for the OSCORE group, it MAY not provide it
          again as its own public key to the Group Manager.  The joining
          node MUST provide its own public key again if it has provided
          the Group Manager with multiple public keys during past
          joining processes, intended for different OSCORE groups.  If
          the joining node provides its own public key in the
          'client_cred' parameter of the Joining Request (see
          Section 4.2), the Group Manager performs consistency checks as
          per Section 4.3 and, in case of success, considers it as the
          public key associated to the joining node in the OSCORE group.



      2.  The proof-of-possession key is not compatible with the
          encoding or with the counter signature algorithm and possible
          associated parameters used in the OSCORE group.  In this case,
          the joining node MUST provide a different compatible public
          key to the Group Manager in the 'client_cred' parameter of the
          Joining Request (see Section 4.2).  Then, the Group Manager
          performs consistency checks on this latest provided public key
          as per Section 4.3 and, in case of success, considers it as
          the public key associated to the joining node in the OSCORE
          group.



   o  The joining node and the Group Manager use a symmetric proof-of-
      possession key to establish a secure communication channel.  In
      this case, upon performing a joining process with that Group
      Manager for the first time, the joining node specifies its own
      public key in the 'client_cred' parameter of the Joining Request
      targeting the group-membership endpoint (see Section 4.2).




6. Retrieval of Updated Keying Material

   At some point, a group member considers the OSCORE Security Context
   invalid and to be renewed.  This happens, for instance, after a
   number of unsuccessful security processing of incoming messages from
   other group members, or when the Security Context expires as
   specified by the 'exp' parameter of the Joining Response.



   When this happens, the group member retrieves updated security
   parameters and group keying material, by sending a Key Distribution
   Request message to the Group Manager, as per Section 4.3 of
   [I-D.ietf-ace-key-groupcomm].  In particular, it sends a CoAP GET
   request to the endpoint /group-oscore/NAME at the Group Manager,
   where NAME is the name of the OSCORE group.  The Key Distribution
   Request is formatted as defined in Section 4.1.2.2 of
   [I-D.ietf-ace-key-groupcomm].



   The Group Manager processes the Key Distribution Request according to
   Section 4.1.2.2 of [I-D.ietf-ace-key-groupcomm].  The Key
   Distribution Response is formatted as defined in Section 4.1.2.2 of
   [I-D.ietf-ace-key-groupcomm].



   Upon receiving the Key Distribution Response, the group member
   retrieves the updated security parameters and group keying material,
   and use them to set up the new OSCORE Security Context as described
   in Section 2 of [I-D.ietf-core-oscore-groupcomm].




7. Retrieval of New Keying Material

   As discussed in Section 2.2 of [I-D.ietf-core-oscore-groupcomm], a
   group member may at some point experience a wrap-around of its own
   Sender Sequence Number in the group.



   When this happens, the group member MUST send a Key Renewal Request
   message to the Group Manager, as per Section 4.4 of
   [I-D.ietf-ace-key-groupcomm].  In particular, it sends a CoAP GET
   request to the endpoint /group-oscore/NAME/node at the Group Manager,
   where NAME is the name of the OSCORE group.



   Upon receiving the Key Renewal Request, the Group Manager processes
   it as defined in Section 4.1.6.2 of [I-D.ietf-ace-key-groupcomm], and
   performs one of the following actions.



   1.  The Group Manager replies to the group member with a 4.06 (Not
       Acceptable) error response, and rekeys the whole OSCORE group as
       discussed in Section 13.



   2.  The Group Manager generates a new Sender ID for that group member
       and replies with a Key Renewal Response, formatted as defined in
       Section 4.1.6.2 of [I-D.ietf-ace-key-groupcomm].  In particular,
       the CBOR Map in the response payload includes a single parameter
       'clientId' defined in Section 15.5 of this document, specifying
       the new Sender ID of the group member encoded as a CBOR byte
       string.




8. Retrieval of Public Keys of Group Members

   A group member may need to retrieve the public keys of other group
   members.  To this end, the group member sends a Public Key Request
   message to the Group Manager, as per Section 4.5 of
   [I-D.ietf-ace-key-groupcomm].  In particular, it sends the request to
   the endpoint /group-oscore/NAME/pub-key at the Group Manager, where
   NAME is the name of the OSCORE group.



   If the Public Key Request uses the method POST, the Public Key
   Request is formatted as defined in Section 4.1.3.1 of
   [I-D.ietf-ace-key-groupcomm].  In particular, each element of the
   'get_pub_keys' parameter is a CBOR byte string, which encodes the
   Sender ID of the group member for which the associated public key is
   requested.



   Upon receiving the Public Key Request, the Group Manager processes it
   as per Section 4.1.3.1 or 4.1.3.2 of [I-D.ietf-ace-key-groupcomm],
   depending on the request method being POST or GET, respectively.  If
   the Public Key Request uses the method POST, the Group Manager
   silently ignores identifiers included in the 'get_pub_keys' parameter
   of the request that are not associated to any current group member.



   The success Public Key Response is formatted as defined in
   Section 4.1.3.1 of [I-D.ietf-ace-key-groupcomm].




9. Retrieval of Group Policies

   A group member may request the current policies used in the OSCORE
   group.  To this end, the group member sends a Policies Request, as
   per Section 4.6 of [I-D.ietf-ace-key-groupcomm].  In particular, it
   sends a CoAP GET request to the endpoint /group-oscore/NAME/policies
   at the Group Manager, where NAME is the name of the OSCORE group.



   Upon receiving the Policies Request, the Group Manager processes it
   as per Section 4.1.4.1 of [I-D.ietf-ace-key-groupcomm].  The success
   Policies Response is formatted as defined in Section 4.1.4.1 of
   [I-D.ietf-ace-key-groupcomm].




10. Retrieval of Keying Material Version

   A group member may request the current version of the keying material
   used in the OSCORE group.  To this end, the group member sends a
   Version Request, as per Section 4.7 of [I-D.ietf-ace-key-groupcomm].
   In particular, it sends a CoAP GET request to the endpoint /group-
   oscore/NAME/ctx-num at the Group Manager, where NAME is the name of
   the OSCORE group.



   Upon receiving the Version Request, the Group Manager processes it as
   per Section 4.1.5.1 of [I-D.ietf-ace-key-groupcomm].  The success
   Version Response is formatted as defined in Section 4.1.5.1 of
   [I-D.ietf-ace-key-groupcomm].




11. Request to Leave the Group

   A group member may request to leave the OSCORE group.  To this end,
   the group member sends a Group Leaving Request, as per Section 4.8 of
   [I-D.ietf-ace-key-groupcomm].  In particular, it sends a CoAP POST
   request to the endpoint /group-oscore/NAME/node at the Group Manager,
   where NAME is the name of the OSCORE group to leave.



   The Leaving Request is formatted as defined in Section 4.1.6.1 of
   [I-D.ietf-ace-key-groupcomm], and MUST have an empty CBOR Map as
   payload.



   Upon receiving the Leaving Request, the Group Manager processes it as
   per Section 4.1.6.1 of [I-D.ietf-ace-key-groupcomm].




12. Removal of a Group Member

   Other than after a spontaneous request to the Group Manager as
   described in Section 11, a node may be forcibly removed from the
   OSCORE group, e.g. due to expired or revoked authorization.



   In either case, if the leaving node is not configured exclusively as
   monitor, the Group Manager performs the following actions.



   o  The Group Manager frees the OSCORE Sender ID value of the leaving
      node, which becomes available for possible upcoming joining nodes.



   o  The Group Manager cancels the association between, on one hand,
      the public key of the leaving node and, on the other hand, the
      Group Identifier (Gid) associated to the OSCORE group together
      with the freed OSCORE Sender ID value.  The Group Manager deletes
      the public key of the leaving node, if that public key has no
      remaining association with any pair (Group ID, Sender ID).



   If the application requires forward security, the Group Manager MUST
   generate updated security parameters and group keying material, and
   provide it to the remaining group members (see Section 13).  As a
   consequence, the leaving node is not able to acquire the new security
   parameters and group keying material distributed after its leaving.



   Same considerations in Section 5 of [I-D.ietf-ace-key-groupcomm]
   apply here as well, considering the Group Manager acting as KDC.




13. Group Rekeying Process

   In order to rekey the OSCORE group, the Group Manager distributes a
   new Group ID of the group and a new OSCORE Master Secret for that
   group.  When doing so, the Group Manager MUST increment the version
   number of the group keying material.  Also, the Group Manager MUST
   preserve the same unchanged Sender IDs for all group members.  This
   avoids affecting the retrieval of public keys from the Group Manager
   as well as the verification of message countersignatures.



   The Group Manager MUST support at least the following group rekeying
   scheme.  Future application profiles may define alternative message
   formats and distribution schemes.



   The Group Manager uses the same format of the Joining Response
   message in Section 4.3.  In particular:



   o  Only the parameters 'kty', 'key', 'num', 'profile' and 'exp' are
      present.



   o  The 'ms' parameter of the 'key' parameter specifies the new OSCORE
      Master Secret value.



   o  The 'contextId' parameter of the 'key' parameter specifies the new
      Group ID.



   The Group Manager separately sends a group rekeying message to each
   group member to be rekeyed.  Each rekeying message MUST be secured
   with the pairwise secure communication channel between the Group
   Manager and the group member used during the joining process.



   This approach requires group members to act (also) as servers, in
   order to correctly handle unsolicited group rekeying messages from
   the Group Manager.  In particular, if a group member and the Group
   Manager use OSCORE [RFC8613] to secure their pairwise communications,
   the group member MUST create a Replay Window in its own Recipient
   Context upon establishing the OSCORE Security Context with the Group
   Manager, e.g. by means of the OSCORE profile of ACE
   [I-D.ietf-ace-oscore-profile].



   Group members and the Group Manager SHOULD additionally support
   alternative rekeying approaches that do not require group members to
   act (also) as servers.  A number of such approaches are defined in
   Section 4 of [I-D.ietf-ace-key-groupcomm].  In particular, a group
   member may subscribe for updates to the group-membership resource of
   the group, at the endpoint /group-oscore/NAME of the Group Manager,
   where NAME is the name of the OSCORE group.  This can rely on CoAP
   Observe [RFC7641] or on a full-fledged Pub-Sub model
   [I-D.ietf-core-coap-pubsub] with the Group Manager acting as Broker.




14. Security Considerations

   The method described in this document leverages the following
   management aspects related to OSCORE groups and discussed in the
   sections of [I-D.ietf-core-oscore-groupcomm] referred below.



   o  Management of group keying material (see Section 2.1 of
      [I-D.ietf-core-oscore-groupcomm]).  The Group Manager is
      responsible for the renewal and re-distribution of the keying
      material in the groups of its competence (rekeying).  According to
      the specific application requirements, this can include rekeying
      the group upon changes in its membership.  In particular, renewing
      the group keying material is required upon a new node's joining or
      a current node's leaving, in case backward security and forward
      security have to be preserved, respectively.



   o  Provisioning and retrieval of public keys (see Section 2 of
      [I-D.ietf-core-oscore-groupcomm]).  The Group Manager acts as key
      repository of public keys of group members, and provides them upon
      request.



   o  Synchronization of sequence numbers (see Section 5 of
      [I-D.ietf-core-oscore-groupcomm]).  This concerns how a responder
      node that has just joined an OSCORE group can synchronize with the
      sequence number of requesters in the same group.



   Before sending the Joining Response, the Group Manager MUST verify
   that the joining node actually owns the associated private key.  To
   this end, the Group Manager can rely on the proof-of-possession
   challenge-response defined in Section 4.  Alternatively, the joining
   node can use its own public key as asymmetric proof-of-possession key
   to establish a secure channel with the Group Manager, e.g. as in
   Section 3.2 of [I-D.ietf-ace-dtls-authorize].  However, this requires
   such proof-of-possession key to be compatible with the encoding as
   well as with the countersignature algorithm and possible associated
   parameters used in the OSCORE group.



   A node may have joined multiple OSCORE groups under different non-
   synchronized Group Managers.  Therefore, it can happen that those
   OSCORE groups have the same Group Identifier (Gid).  It follows that,
   upon receiving a Group OSCORE message addressed to one of those
   groups, the node would have multiple Security Contexts matching with
   the Gid in the incoming message.  It is up to the application to
   decide how to handle such collisions of Group Identifiers, e.g. by
   trying to process the incoming message using one Security Context at
   the time until the right one is found.



   Further security considerations are inherited from
   [I-D.ietf-ace-key-groupcomm], the ACE framework for Authentication
   and Authorization [I-D.ietf-ace-oauth-authz], and the specific
   transport profile of ACE signalled by the AS, such as
   [I-D.ietf-ace-dtls-authorize] and [I-D.ietf-ace-oscore-profile].




15. IANA Considerations

   Note to RFC Editor: Please replace all occurrences of "[[This
   specification]]" with the RFC number of this specification and delete
   this paragraph.



   This document has the following actions for IANA.




15.1. ACE Groupcomm Key Registry

   IANA is asked to register the following entry in the "ACE Groupcomm
   Key" Registry defined in Section 8.3 of [I-D.ietf-ace-key-groupcomm].



   o  Name: Group_OSCORE_Security_Context object



   o  Key Type Value: TBD



   o  Profile: "coap_group_oscore_app", defined in Section 15.3 of this
      specification.



   o  Description: A Group_OSCORE_Security_Context object encoded as
      described in Section 4.3 of this specification.



   o  Reference: [[This specification]]




15.2. OSCORE Security Context Parameters Registry

   IANA is asked to register the following entries in the "OSCORE
   Security Context Parameters" Registry defined in Section 9.2 of
   [I-D.ietf-ace-oscore-profile].



   o  Name: cs_alg



   o  CBOR Label: TBD



   o  CBOR Type: tstr / int



   o  Registry: COSE Algorithm Values (ECDSA, EdDSA)



   o  Description: OSCORE Counter Signature Algorithm Value



   o  Reference: [[This specification]]



   o  Name: cs_params



   o  CBOR Label: TBD



   o  CBOR Type: map



   o  Registry: Counter Signatures Parameters



   o  Description: OSCORE Counter Signature Algorithm Additional
      Parameters



   o  Reference: [[This specification]]



   o  Name: cs_key_params



   o  CBOR Label: TBD



   o  CBOR Type: map



   o  Registry: Counter Signatures Key Parameters



   o  Description: OSCORE Counter Signature Key Additional Parameters



   o  Reference: [[This specification]]



   o  Name: cs_key_enc



   o  CBOR Label: TBD



   o  CBOR Type: integer



   o  Registry: ACE Public Key Encoding



   o  Description: Encoding of Public Keys to be used with the OSCORE
      Counter Signature Algorithm



   o  Reference: [[This specification]]




15.3. ACE Groupcomm Profile Registry

   IANA is asked to register the following entry in the "ACE Groupcomm
   Profile" Registry defined in Section 8.4 of
   [I-D.ietf-ace-key-groupcomm].



   o  Name: coap_group_oscore_app



   o  Description: Application profile to provision keying material for
      participating in group communication protected with Group OSCORE
      as per [I-D.ietf-core-oscore-groupcomm].



   o  CBOR Value: TBD



   o  Reference: [[This specification]]




15.4. Sequence Number Synchronization Method Registry

   IANA is asked to register the following entries in the "Sequence
   Number Synchronization Method" Registry defined in Section 8.6 of
   [I-D.ietf-ace-key-groupcomm].



   o  Name: Best effort



   o  Value: 1



   o  Description: No action is taken.



   o  Reference: [I-D.ietf-core-oscore-groupcomm] (Appendix E.1).



   o  Name: Baseline



   o  Value: 2



   o  Description: The first received request sets the baseline
      reference point, and is discarded with no delivery to the
      application.



   o  Reference: [I-D.ietf-core-oscore-groupcomm] (Appendix E.2).



   o  Name: Echo challenge-response



   o  Value: 3



   o  Description: Challenge response using the Echo Option for CoAP
      from [I-D.ietf-core-echo-request-tag].



   o  Reference: [I-D.ietf-core-oscore-groupcomm] (Appendix E.3).




15.5. ACE Groupcomm Parameters Registry

   IANA is asked to register the following entry in the "ACE Groupcomm
   Parameters" Registry defined in Section 8.2 of
   [I-D.ietf-ace-key-groupcomm].



   o  Name: clientId



   o  CBOR Key: TBD



   o  CBOR Type: Byte string



   o  Reference: [[This document]] (Section 7).




16. References


16.1. Normative References


   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-11 (work in progress), October 2019.




   [I-D.ietf-ace-key-groupcomm]

              Palombini, F. and M. Tiloca, "Key Provisioning for Group
              Communication using ACE", draft-ietf-ace-key-groupcomm-03
              (work in progress), November 2019.




   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-25
              (work in progress), October 2019.




   [I-D.ietf-ace-oscore-profile]

              Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
              "OSCORE profile of the Authentication and Authorization
              for Constrained Environments Framework", draft-ietf-ace-
              oscore-profile-08 (work in progress), July 2019.




   [I-D.ietf-core-oscore-groupcomm]

              Tiloca, M., Selander, G., Palombini, F., and J. Park,
              "Group OSCORE - Secure Group Communication for CoAP",
              draft-ietf-core-oscore-groupcomm-05 (work in progress),
              July 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3986]
  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8613]
  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
              <https://www.rfc-editor.org/info/rfc8613>.




16.2. Informative References


   [I-D.dijk-core-groupcomm-bis]

              Dijk, E., Wang, C., and M. Tiloca, "Group Communication
              for the Constrained Application Protocol (CoAP)", draft-
              dijk-core-groupcomm-bis-01 (work in progress), July 2019.




   [I-D.ietf-ace-dtls-authorize]

              Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and
              L. Seitz, "Datagram Transport Layer Security (DTLS)
              Profile for Authentication and Authorization for
              Constrained Environments (ACE)", draft-ietf-ace-dtls-
              authorize-08 (work in progress), April 2019.




   [I-D.ietf-core-coap-pubsub]

              Koster, M., Keranen, A., and J. Jimenez, "Publish-
              Subscribe Broker for the Constrained Application Protocol
              (CoAP)", draft-ietf-core-coap-pubsub-09 (work in
              progress), September 2019.




   [I-D.ietf-core-echo-request-tag]

              Amsuess, C., Mattsson, J., and G. Selander, "CoAP: Echo,
              Request-Tag, and Token Processing", draft-ietf-core-echo-
              request-tag-08 (work in progress), November 2019.




   [I-D.tiloca-core-oscore-discovery]

              Tiloca, M., Amsuess, C., and P. Stok, "Discovery of OSCORE
              Groups with the CoRE Resource Directory", draft-tiloca-
              core-oscore-discovery-03 (work in progress), July 2019.




   [RFC6347]
  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.




   [RFC6749]
  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC6749, October 2012,
              <https://www.rfc-editor.org/info/rfc6749>.




   [RFC7390]
  Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
              the Constrained Application Protocol (CoAP)", RFC 7390,
              DOI 10.17487/RFC7390, October 2014,
              <https://www.rfc-editor.org/info/rfc7390>.




   [RFC7641]
  Hartke, K., "Observing Resources in the Constrained
              Application Protocol (CoAP)", RFC 7641,
              DOI 10.17487/RFC7641, September 2015,
              <https://www.rfc-editor.org/info/rfc7641>.




Appendix A. Profile Requirements

   This appendix lists the specifications on this application profile of
   ACE, based on the requiremens defined in Appendix A of
   [I-D.ietf-ace-key-groupcomm].



   o  REQ1 - Specify the encoding and value of the identifier of group
      of 'scope': see Section 3.1.



   o  REQ2 - Specify the encoding and value of the identifier of roles
      of 'scope': see Section 3.1.



   o  REQ3 (Optional) - Specify the acceptable values for 'sign_alg':
      values from Tables 5 and 6 of [RFC8152].



   o  REQ4 (Optional) - Specify the acceptable values for
      'sign_parameters': values from the "Counter Signature Parameters"
      Registry (see Section 9.1 of [I-D.ietf-core-oscore-groupcomm]).



   o  REQ5 (Optional) - Specify the acceptable values for
      'sign_key_parameters': values from the "Counter Signature Key
      Parameters" Registry (see Section 9.2 of
      [I-D.ietf-core-oscore-groupcomm]).



   o  REQ6 (Optional) - Specify the acceptable values for 'pub_key_enc':
      1 ("COSE_Key") from the 'Confirmation Key' column of the "CWT
      Confirmation Method" Registry defined in
      [I-D.ietf-ace-cwt-proof-of-possession].  Future specifications may
      define additional values for this parameter.



   o  REQ7 - Format of the 'key' value: see Section 4.3.



   o  REQ8 - Acceptable values of 'kty': Group_OSCORE_Security_Context
      object (see Section 4.3).



   o  REQ9: Specify the format of the identifiers of group members: see
      Section 4.3 and Section 8.



   o  REQ10 (Optional) - Specify the format and content of
      'group_policies' entries: three values are defined and registered,
      as content of the entry "Sequence Number Synchronization Method"
      (see Section 15.4).



   o  REQ11 - Communication protocol that the members of the group must
      use: CoAP, possibly over IP multicast.



   o  REQ12 - Security protocols that the group members must use to
      protect their communication: Group OSCORE.



   o  REQ13 - Profile identifier: coap_group_oscore_app



   o  REQ14 (Optional) - Specify the encoding of public keys, of
      'client_cred', and of 'pub_keys' if COSE_Keys are not used: no.



   o  REQ15 - Specify policies at the KDC to handle member ids that are
      not included in 'get_pub_keys': see Section 8.



   o  REQ16 - Specify the format and content of 'group_policies': see
      Section 4.3.



   o  REQ17 - Specify the format of newly-generated individual keying
      material for group members, or of the information to derive it,
      and corresponding CBOR label: see Section 7.



   o  REQ18 - Specify how the communication is secured between the
      Client and KDC: by means of any transport profile of ACE
      [I-D.ietf-ace-oauth-authz] between Client and Group Manager that



      complies with the requirements in Appendix C of
      [I-D.ietf-ace-oauth-authz].



   o  OPT1 (Optional) - Specify the encoding of public keys, of
      'client_cred', and of 'pub_keys' if COSE_Keys are not used: no.



   o  OPT2 (Optional) - Specify the negotiation of parameter values for
      signature algorithm and signature keys, if 'sign_info' and
      'pub_key_enc' are not used: possible early discovery by using the
      approach based on the CoRE Resource Directory described in
      [I-D.tiloca-core-oscore-discovery].



   o  OPT3 (Optional) - Specify the format and content of
      'mgt_key_material': no.



   o  OPT4 (Optional) - Specify policies that instruct clients to retain
      unsuccessfully decrypted messages and for how long, so that they
      can be decrypted after getting updated keying material: no.




Appendix B. Document Updates

   RFC EDITOR: PLEASE REMOVE THIS SECTION.




B.1. Version -02 to -03

   o  New sections, aligned with the interface of ace-key-groupcomm .



   o  Exchange of information on the countersignature algorithm and
      related parameters, during the Token POST (Section 4.1).



o  Nonce 'rsnonce' from the Group Manager to the Client
   (Section 4.1).



   o  Client PoP signature in the Key Distribution Request upon joining
      (Section 4.2).



   o  Local actions on the Group Manager, upon a new node's joining
      (Section 4.2).



   o  Local actions on the Group Manager, upon a node's leaving
      (Section 12).



   o  IANA registration in ACE Groupcomm Parameters Registry.



   o  More fulfilled profile requirements (Appendix A).




B.2. Version -01 to -02

   o  Editorial fixes.



   o  Changed: "listener" to "responder"; "pure listener" to "monitor".



   o  Changed profile name to "coap_group_oscore_app", to reflect it is
      an application profile.



   o  Added the 'type' parameter for all requests to a Join Resource.



   o  Added parameters to indicate the encoding of public keys.



   o  Challenge-response for proof-of-possession of signature keys
      (Section 4).



   o  Renamed 'key_info' parameter to 'sign_info'; updated its format;
      extended to include also parameters of the countersignature key
      (Section 4.1).



   o  Code 4.00 (Bad request), in responses to joining nodes providing
      an invalid public key (Section 4.3).



   o  Clarifications on provisioning and checking of public keys
      (Sections 4 and 6).



   o  Extended discussion on group rekeying and possible different
      approaches (Section 7).



   o  Extended security considerations: proof-of-possession of signature
      keys; collision of OSCORE Group Identifiers (Section 8).



   o  Registered three entries in the IANA Registry "Sequence Number
      Synchronization Method Registry" (Section 9).



   o  Registered one public key encoding in the "ACE Public Key
      Encoding" IANA Registry (Section 9).




B.3. Version -00 to -01

   o  Changed name of 'req_aud' to 'audience' in the Authorization
      Request (Section 3.1).



   o  Added negotiation of countersignature algorithm/parameters between
      Client and Group Manager (Section 4).



   o  Updated format of the Key Distribution Response as a whole
      (Section 4.3).



   o  Added parameter 'cs_params' in the 'key' parameter of the Key
      Distribution Response (Section 4.3).



   o  New IANA registrations in the "ACE Authorization Server Request
      Creation Hints" Registry, "ACE Groupcomm Key" Registry, "OSCORE
      Security Context Parameters" Registry and "ACE Groupcomm Profile"
      Registry (Section 9).



Acknowledgments



   The authors sincerely thank Santiago Aragon, Stefan Beck, Carsten
   Bormann, Martin Gunnarsson, Rikard Hoeglund, Daniel Migault, Jim
   Schaad, Ludwig Seitz, Goeran Selander and Peter van der Stok for
   their comments and feedback.



   The work on this document has been partly supported by VINNOVA and
   the Celtic-Next project CRITISEC; and by the EIT-Digital High Impact
   Initiative ACTIVE.



Authors' Addresses



Marco Tiloca
RISE AB
Isafjordsgatan 22
Kista  SE‑164 29 Stockholm
Sweden



   Email: marco.tiloca@ri.se




Jiye Park
Universitaet Duisburg‑Essen
Schuetzenbahn 70
Essen  45127
Germany



   Email: ji-ye.park@uni-due.de




Francesca Palombini
Ericsson AB
Torshamnsgatan 23
Kista  SE‑16440 Stockholm
Sweden



   Email: francesca.palombini@ericsson.com








draft-ietf-ace-mqtt-tls-profile-02 - MQTT-TLS profile of ACE 






draft-ietf-ace-mqtt-tls-profile-02 - MQTT-TLS profile of ACE 

Index
Back 5
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 5, 2020








C. Sengul

Nominet

A. Kirby

Oxbotica

P. Fremantle

University of Portsmouth

November 2, 2019

MQTT-TLS profile of ACE  

draft-ietf-ace-mqtt-tls-profile-02


Abstract

   This document specifies a profile for the ACE (Authentication and
   Authorization for Constrained Environments) framework to enable
   authorization in an MQTT-based publish-subscribe messaging system.
   Proof-of-possession keys, bound to OAuth2.0 access tokens, are used
   to authenticate and authorize MQTT Clients.  The protocol relies on
   TLS for confidentiality and server authentication.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 5, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Requirements Language


	 1.2.  ACE-Related Terminology


	 1.3.  MQTT-Related Terminology



	2.  Authorizing Connection Requests
	 2.1.  Client Token Request to the Authorization Server (AS)


	 2.2.  Client Connection Request to the Broker (C)
	  2.2.1.  Client-Server Authentication over TLS and MQTT


	  2.2.2.  authz-info: The Authorization Information Topic


	  2.2.3.  Transporting Access Token Inside the MQTT CONNECT


	  2.2.4.  Authentication Using AUTH Property
	   2.2.4.1.  Proof-of-Possession Using a Challenge from the TLS session


	   2.2.4.2.  Proof-of-Possession via Broker-generated Challenge/Response


	   2.2.4.3.  Unauthorised Request: Authorisation Server Discovery



	  2.2.5.  Token Validation


	  2.2.6.  The Broker's Response to Client Connection Request





	3.  Authorizing PUBLISH Messages
	 3.1.  PUBLISH Messages from the Publisher Client to the Broker


	 3.2.  PUBLISH Messages from the Broker to the Subscriber Clients



	4.  Authorizing SUBSCRIBE Messages


	5.  Token Expiration and Reauthentication


	6.  Handling Disconnections and Retained Messages


	7.  Reduced Protocol Interactions for MQTT v3.1.1
	 7.1.  Token Transport


	 7.2.  Handling Authorization Errors



	8.  IANA Considerations


	9.  Security Considerations


	10. Privacy Considerations


	11. References
	 11.1.  Normative References


	 11.2.  Informative References



	Appendix A.  Checklist for profile requirements


	Appendix B.  Document Updates


	Acknowledgements


	Authors' Addresses




1. Introduction

   This document specifies a profile for the ACE framework
   [I-D.ietf-ace-oauth-authz].  In this profile, Clients and a Broker
   use MQTT to exchange Application Messages.  The protocol relies on
   TLS for communication security between entities.  The MQTT protocol
   interactions are described based on the MQTT v5.0 - the OASIS
   Standard [MQTT-OASIS-Standard-v5].  It is expected that MQTT
   deployments will retain backward compatibility for MQTT v3.1.1
   clients, and therefore, this document also describes a reduced set of
   protocol interactions suited to MQTT v3.1.1 - the OASIS Standard
   [MQTT-OASIS-Standard].  However, it is RECOMMENDED to use MQTT v5.0
   as it works more naturally with ACE-style authentication and
   authorization.



   MQTT is a publish-subscribe protocol and after connecting to the MQTT
   Broker, a Client can publish and subscribe to multiple topics.  The
   MQTT Broker is responsible for distributing messages published by the
   publishers to the appropriate subscribers.  Publisher messages
   contains a Topic Name, which is used by the Broker to filter the
   subscribers for the message.  Subscribers must subscribe to the
   topics to receive the corresponding messages.



   In this document, message topics are treated as resources.  The
   Clients are assumed to have identified the publish/subscribe topics
   of interest out-of-band (topic discovery is not a feature of the MQTT
   protocol).  A resource owner can pre-configure policies at the AS
   that give Clients publish or subscribe permissions to different
   topics.



   Clients use an access token, bound to a proof-of-possession (PoP) key
   to authorize with the MQTT Broker their connection and publish/
   subscribe permissions to topics.  In the context of this ACE profile,
   the MQTT Broker acts as the Resource Server (RS).  In the rest of the
   document RS and Broker are used interchangeably.  This document
   describes the following exchanges between Clients and the Broker.



   o  Authorizing connection requests from the Clients to the Broker



   o  Authorizing publish messages from the Clients to the Broker, and
      from the Broker to the Clients



   o  Authorizing subscribe messages from Clients to the Broker



   To provide communication confidentiality and Resource Server
   authentication, TLS is used, and TLS 1.3 is RECOMMENDED.  This
   document makes the same assumptions as the Section 4 of the ACE
   framework [I-D.ietf-ace-oauth-authz] regarding Client and RS
   registration with the Authorization Server (AS) and setting up keying
   material.  While the Client-Broker exchanges are only over MQTT, the
   required Client-AS and RS-AS interactions are described for HTTPS-
   based communication, using 'application/ace+json' content type, and
   unless otherwise specified, using JSON encoding.  The token may be a
   reference, or JSON Web Token (JWT).  For JWT tokens, this document
   follows RFC 7800 [RFC7800] for PoP semantics for JWTs.  The Client-AS
   and RS-AS may also be other than HTTPS e.g., CoAP or MQTT.  It may
   also be possible to use 'application/ace+cbor' content type, and CBOR
   encoding, and CBOR Web Token (CWT) and associated PoP semantics to
   reduce the protocol memory and bandwidth requirements.  For more
   information on Proof of Possession semantics for CWTs, see Proof-of-
   Possession Key Semantics for CBOR Web Tokens (CWTs)
   [I-D.ietf-ace-cwt-proof-of-possession].




1.1. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174], when, and only when, they appear in all
   capitals, as shown here.




1.2. ACE-Related Terminology

   The terminology for entities in the architecture is defined in OAuth
   2.0 RFC 6749 [RFC6749] such as "Client" (C), "Resource Server" (RS)
   and "Authorization Server" (AS).



   The term "endpoint" is used following its OAuth definition, to denote
   resources such as /token and /introspect at the AS.



   The term "Resource" is used to refer to an MQTT Topic Name, which is
   defined in Section 1.3.  Hence, the "Resource Owner" is any entity
   that can authoritatively speak for the topic.



   Certain security-related terms such as "authentication",
   "authorization", "confidentiality", "(data) integrity", "message
   authentication code", and "verify" are taken from RFC 4949 [RFC4949].




1.3. MQTT-Related Terminology

   The document describes message exchanges as MQTT protocol
   interactions.  The Clients are MQTT Clients, which connect to the
   Broker to publish and subscribe to Application Messages.  For
   additional information, please refer to the MQTT v5.0 - the OASIS
   Standard [MQTT-OASIS-Standard-v5] or the MQTT v3.1.1 - the OASIS
   Standard [MQTT-OASIS-Standard].



   MQTTS

           Secured transport profile of MQTT.  MQTTS runs over TLS.



   Broker

           The Server in MQTT.  It acts as an intermediary between
           Clients that publishes Application Messages, and the Clients
           that made Subscriptions.  The Broker acts as the Resource
           Server for the Clients.



   Application Message

           The data carried by the MQTT protocol.  The data has an
           associated QoS level and a Topic Name.



   QoS level

           The level of assurance for the delivery of an Application
           Message.  The QoS level can be 0-2, where "0" indicates "At
           most once delivery", "1" "At least once delivery", and "2"
           "Exactly once delivery".



   Topic Name

           The label attached to an Application Message, which is
           matched to a Subscription.



   Subscription

           A subscription comprises a Topic Filter and a maximum Quality
           of Service (QoS).



   Topic Filter

           An expression that indicates interest in one or more Topic
           Names.  Topic Filters may include wildcards.



   MQTT sends various control messages across a network connection.  The
   following is not an exhaustive list and the control packets that are
   not relevant for authorization are not explained.  These include, for
   instance, the PUBREL and PUBCOMP packets used in the 4-step handshake
   required for the QoS level 2.



   CONNECT

           Client request to connect to the Broker.  After a network
           connection is established, this is the first packet sent by a
           Client.



   CONNACK

           The Broker connection acknowledgment.  The first packet sent
           from the Broker to a Client is a CONNACK packet.  CONNACK
           packets contain return codes indicating either a success or
           an error state to a Client.



   AUTH

           Authentication Exchange.  An AUTH packet is sent from the
           Client to the Broker or to the Broker to the Client as part
           of an extended authentication exchange.  AUTH Properties
           include Authentication Method and Authentication Data.  The
           Authentication Method is set in the CONNECT packet, and
           consequent AUTH packets follow the same Authentication
           Method.  The contents of the Authentication Data are defined
           by the Authentication Method.



   PUBLISH

           Publish packet that can be sent from a Client to the Broker,
           or from the Broker to a Client.



   PUBACK

           Response to PUBLISH packet with QoS level 1.  PUBACK can be
           sent from the Broker to a Client or a Client to the Broker.



   PUBREC

           Response to PUBLISH packet with QoS level 2.  PUBREC can be
           sent from the Broker to a Client or a Client to the Broker.



   SUBSCRIBE

           The Client subscribe request.



   SUBACK

           Subscribe acknowledgment.



   PINGREQ

           A ping request sent from a Client to the Broker.  It signals
           to the Broker that the Client is alive, and is used to
           confirm that the Broker is still alive.  The "Keep Alive"
           period is set in the CONNECT message.



   PINGRESP

           Response sent by the Broker to the Client in response to
           PINGREQ.  It indicates the Broker is alive.



   Will

           If the network connection is not closed normally, the Server
           sends a last Will message for the Client, if the Client
           provided one in its CONNECT message.  If the Will Flag is
           set, then the payload of the CONNECT message includes
           information about the Will.  The information consists of the
           Will Properties, Will Topic, and Will Payload fields.




2. Authorizing Connection Requests

   This section specifies how Client connections can be authorized by an
   MQTT Broker.Figure 1 shows the basic protocol flow during connection
   set-up.The token request and response use the /token endpoint of the
   authorization server, specified in the Section 5.6 of the ACE
   framework [I-D.ietf-ace-oauth-authz].  Steps (D) and (E) are
   optional, and use the introspection endpoint, specified in the
   Section 5.7 of the ACE framework.  The Client and Broker use HTTPS to
   communicate to AS via these endpoints.  The Client and Broker use
   only MQTT to communicate between them.



   If the Client is resource-constrained, the Client's Authorisation
   Server may carry out the token request on behalf of the Client, and
   later, onboard the Client with the token.  Also, the C-AS and Broker-
   AS interfaces may be implemented using protocols other than HTTPS,
   e.g., CoAP or MQTT.  The interactions between a Client and its Client
   Authorization Server for token onboarding, and the MQTTS support for
   token requests are out of scope of this document.



                          +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
                          | Client              |
                          |                     |
   +‑‑‑(A) Token request‑‑| Client ‑            |
   |                      | Authorization       |
   |   +‑(B) Access token‑> Server Interface    |
   |   |                  |       (HTTPS)       |
   |   |                  |_____________________|
   |   |                  |                     |
+‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑+        |  Pub/Sub Interface  |
|  Authorization |        |     (MQTTS)         |
|  Server        |        +‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑+
|________________|            |       |
   |    ^             (C)Connection  (F)Connection
   |    |               request +    response
   |    |               access token  |
   |    |                     |       |
   |    |                 +‑‑‑v‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
   |    |                 |   Broker (MQTTS) |
   |    |                 |__________________|
   |    +(D)Introspection‑|                  |
   |   request (optional) | RS‑AS interface  |
   |                      |     (HTTPS)      |
   +‑(E)Introspection‑‑‑‑>|__________________|
     response (optional)



                        Figure 1: Connection set-up




2.1. Client Token Request to the Authorization Server (AS)

   The first step in the protocol flow (Figure 1 (A)) is the token
   acquisition by the Client from the AS.  When requesting an access
   token from the AS, the Client follows the token request as is
   described in Section 5.6.1 of the ACE framework
   [I-D.ietf-ace-oauth-authz], howevever, it MUST set the profile
   parameter to 'mqtt_tls'.  The media format is 'application/ace+json'.
   The AS uses a JSON structure in the payload of its responses both to
   the Client and the RS.



   If the AS successfully verifies the access token request and
   authorizes the Client for the indicated audience (i.e., RS) and
   scopes (i.e., publish/subscribe permissions over topics), the AS
   issues an access token (Figure 1 (B)).  The response includes the
   parameters described in Section 5.6.2 of the ACE framework
   [I-D.ietf-ace-oauth-authz].  The included token is assumed to be
   Proof-of-Possession (PoP) token by default.  This document follows
   RFC 7800 [RFC7800] for PoP semantics for JWTs.  The PoP token
   includes a 'cnf' parameter with a symmetric or asymmetric PoP key.
   The 'cnf' parameter in the web tokens are to be consumed by the
   resource server and not the Client.  The PoP token may include a
   'rs_cnf' parameter containing the information about the public key
   used by the RS to authenticate as described in
   [I-D.ietf-ace-oauth-params].



   In the case of an error, the AS returns error responses for HTTP-
   based interactions as ASCII codes in JSON content, as defined in
   Section 5.2 of RFC 6749 [RFC6749].




2.2. Client Connection Request to the Broker (C)


2.2.1. Client-Server Authentication over TLS and MQTT

   The Client and the Broker MUST perform mutual authentication.  The
   Client MAY authenticate to the Broker over MQTT or TLS.  For MQTT,
   the options are "None" and "ace".  For TLS, the options are "Anon"
   for anonynous client, and "Known(RPK/PSK)" for Raw Public Keys (RPK)
   and Pre-Shared Keys (PSK), respectively.  Combined, the Client
   authentication takes the following options:



   o  "TLS:Anon-MQTT:None": This option is used only for the topics that
      do not require authorization, including the "authz-info" topic.
      Publishing to the "authz-info" topic is described in
      Section 2.2.2.



   o  "TLS:Anon-MQTT:ace": The token is transported inside the CONNECT
      message, and MUST be validated using one of the methods described



      in Section 2.2.2.  This also supports a tokenless connection
      request for AS discovery.



   o  "TLS:Known(RPK/PSK)-MQTT:none": For the RPK, the token MUST have
      been published to the "authz-info" topic.  For the PSK, the token
      MAY have be provided in the "psk_identity".  The TLS session set-
      up is as described in DTLS profile for ACE
      [I-D.ietf-ace-dtls-authorize].



   o  "TLS:Known(RPK/PSK)-MQTT:ace": This option SHOULD NOT be chosen.
      In any case, the token transported in the CONNECT overwrites any
      permissions passed during the TLS authentication.



   It is RECOMMENDED that the Client follows TLS:Anon-MQTT:ace.



   The Broker MUST be authenticated during TLS handshake.  If the Client
   authentication included TLS:Known(RPK/PSK), then the Broker is
   authenticated using the respective method.  For the other Client
   Authentication cases, to authenticate the Broker, the client MAY
   either have the ability to receive and validate a server-side
   certificate or an RPK from the Broker against the 'rs_cnf' parameter
   in the token.




2.2.2. authz-info: The Authorization Information Topic

   In the cases when the Client MUST transport the token to the Broker
   before the TLS handshake, the Client connects to the Broker and
   publishes its token to the "authz-info" topic.  The "authz-info"
   topic MUST be publish-only for Clients (i.e., the Clients are not
   allowed to subscribe to it).  The Broker stores and indexes all
   tokens received to this topic in its key store similar to DTLS
   profile for ACE [I-D.ietf-ace-dtls-authorize].



   The Broker must verify the validity of the token (i.e., through local
   validation or introspection) as described in Section 2.2.5.  The
   Broker returns 'Not authorized' error to a PUBLISH request if the QoS
   level of this PUBLISH message is greater or equal to 1.  After
   publishing the token, the Client disconnects from the Broker and is
   expected to try reconnecting over TLS.




2.2.3. Transporting Access Token Inside the MQTT CONNECT

   This section describes how the Client transports the token to the
   Broker (RS) inside the CONNECT message.  If this method is used, the
   Client TLS connection is expected to be anonymous, and the Broker is
   authenticated during the TLS connection set-up.  The approach
   described in this section is similar to an earlier proposal by
   Fremantle et al.  [fremantle14].



   Figure 2 shows the structure of the MQTT CONNECT message used in MQTT
   v5.0.  A CONNECT message is composed of a fixed header, a variable
   header and a payload.  The fixed header contains Control Packet Type
   (CPT), Reserved, and Remaining Length.  The Variable Header contains
   the Protocol Name, Protocol Level, Connect Flags, Keep Alive, and
   Properties.  The Connect Flags in the variable header specify the
   behavior of the MQTT connection.  It also indicates the presence or
   absence of fields in the Payload.  The payload contains one or more
   encoded fields, namely a unique Client identifier for the Client, a
   Will Topic, Will Payload, User Name and Password.  All but the Client
   identifier can be omitted depending on flags in the Variable Header.



0            8            16            24            32
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|CPT=1 | Rsvd.|Remaining len.| Protocol  name len. = 4 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|                      'M' 'Q' 'T' 'T'                 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Proto.level=5|Connect flags|          Keep alive     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|                 Property length                      |
|          Auth. Method (0x15) | 'ace'                 |
|          Auth. Data (0x16)   | empty or token or     |
|                                token + PoP data      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|                     Payload                          |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



    Figure 2: MQTT v5 CONNECT control message with ACE authentication.

                         (CPT=Control Packet Type)



   The CONNECT message flags include Username, Password, Will retain,
   Will QoS, Will Flag, Clean Start, and Reserved.  Figure 6 shows how
   the MQTT connect flags MUST be set to use AUTH packets for
   authentication and authorisation.  For AUTH, the username and
   password flags MUST be set to 0.  The RS MAY support token transport
   using username and password (the CONNECT message for that option is
   described in Section 7 for MQTT v3.1.1).



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|User name|Pass.|Will retain|Will QoS|Will Flag|Clean| Rsvd.|
| flag    |flag |           |        |         |     |      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 0       | 0   |    X      |   X X  |   X     |  X   |  0  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 3: CONNECT flags for AUTH



   The Will Flag indicates that a Will message needs to be sent if
   network connection is not closed normally.  The situations in which
   the Will message is published include disconnections due to I/O or
   network failures, and the server closing the network connection due
   to a protocol error.  The Client may set the Will Flag as desired
   (marked as 'X' in Figure 3).  If the Will Flag is set to 1 and the
   Broker accepts the connection request, the Broker must store the Will
   message, and publish it when the network connection is closed
   according to Will QoS and Will retain parameters, and MQTT Will
   management rules.  To avoid publishing Will Messages in the case of
   temporary network disconnections, the Client may specify a Will Delay
   Interval in Will Properties.  Section 6 explains how the Broker deals
   with the retained messages in further detail.



   In MQTT v5, to achieve a clean session (i.e., the session starts
   without an existing session), the Client sets the Clean Start Flag to
   1 and, the Session Expiry Interval to 0 in the CONNECT message.
   However, in this profile, the Broker MUST always start with a clean
   session regardless of how these parameters are set.  The Broker MUST
   set the Session Present flag to 0 in the CONNACK packet as a
   response.




2.2.4. Authentication Using AUTH Property

   To use AUTH, the Client MUST set the Authentication Method as a
   property of a CONNECT packet by using the property identifier 21
   (0x15).  This is followed by a UTF-8 Encoded String containing the
   name of the Authentication Method, which MUST be set to 'ace'.  If
   the RS does not support this profile, it sends a CONNACK with a
   Reason Code of '0x8C (Bad authentication method)'.



   The Authentication Method is followed by the Authentication Data,
   which has a property identifier 22 (0x16) and is binary data.  Based
   on the Authentication Data, this profile allows:



   o  Proof-of-Possession using a challenge from the TLS session



   o  Proof-of-Possession via Broker generated challenge/response



   o  Unauthorised request: Authorisation Server discovery




2.2.4.1. Proof-of-Possession Using a Challenge from the TLS session

   For this option, the Authentication Data MUST contain the token and
   the keyed message digest (MAC) or the Client signature.  The
   challenge that is used as part of the proof-of-possession, i.e., to
   calculate the keyed message digest (MAC) or the Client signature, is
   obtained using using a TLS exporter ([RFC5705] for TLS 1.2 and for
   TLS 1.3, Section 7.5 of [RFC8446]).  The token is also validated as
   described in Section 2.2.5 and the server responds with a CONNACK
   with the appropriate response code.




2.2.4.2. Proof-of-Possession via Broker-generated Challenge/Response

   For this option, the RS follows a Broker-generated challenge/response
   protocol.  The success case is illustrated in Figure 4.  If the
   Authentication Data only includes the token, the RS MUST respond with
   an AUTH packet, with the Authenticate Reason Code set to '0x18
   (Continue Authentication)'.  This packet includes the Authentication
   Method, which MUST be set to 'ace' and Authentication Data.  The
   Authentication Data MUST NOT be empty and contains a challenge for
   the Client.  The Client responds to this with an AUTH packet with a
   reason code '0x18 (Continue Authentication)'.  Similarly, the Client
   packet sets the Authentication Method to 'ace'.  The Authentication
   Data in the Client's response contains the signature or MAC computed
   over the RS's challenge.  Next, the token is validated as described
   in Section 2.2.5.



            Resource
Client      Server
 |             |
 |<===========>| TLS connection set‑up
 |             |
 |             |
 +‑‑‑‑‑‑‑‑‑‑‑‑>| CONNECT with Authentication Data
 |             | contains only token
 |             |
 <‑‑‑‑‑‑‑‑‑‑‑‑‑+ AUTH '0x18 (Continue Authentication)'
 |             | challenge
 |             |
 |‑‑‑‑‑‑‑‑‑‑‑‑>| AUTH '0x18 (Continue Authentication)'
 |             | signature
 |             |
 |             |‑‑‑‑‑+ Token validation (may involve introspection)
 |             |     |
 |             |<‑‑‑‑+
 |             |
 |<‑‑‑‑‑‑‑‑‑‑‑‑+ CONNACK '0x00 (Success)'



         Figure 4: PoP Challenge/Response Protocol Flow - Success




2.2.4.3. Unauthorised Request: Authorisation Server Discovery

   Finally, this document allows the CONNECT message to have the
   Authentication Method set to 'ace' followed by an empty
   Authentication Data field.  This is the AS discovery option and the
   RS responds with the CONNACK reason code '0x87 (Not Authorized)' and
   includes a User Property (identified by 38 (0x26)) for the AS
   creation hints as defined in the Section 5.1.2 of the ACE framework
   [I-D.ietf-ace-oauth-authz].




2.2.5. Token Validation

   The RS MUST verify the validity of the token either locally (e.g., in
   the case of a self-contained token) or the RS MAY send an
   introspection request to the AS.  RS MUST verify the claims according
   to the rules set in the Section 5.8.1.1 of the ACE framework
   [I-D.ietf-ace-oauth-authz].



   To authenticate the Client, the RS validates the signature or the
   MAC, depending on how the PoP protocol is implemented.  Validation of
   the signature or MAC MUST fail if the signature algorithm is set to
   "none", when the key used for the signature algorithm cannot be
   determined, or the computed and received signature/MAC do not match.
   To authorize the Client, the Broker uses the scope field in the token
   (or in the introspection result).  The scope field contains the
   publish and subscribe permissions for the Client.



   Scope strings SHOULD be encoded as a permission, followed by an
   underscore, followed by a topic filter.  Two permissions apply to
   topics: 'publish' and 'subscribe'.  An example scope field may
   contain multiple such strings, space delimited, e.g., 'publish_topic1
   subscribe_topic2/#'.  Hence, this access token would give 'publish'
   permission to the 'topic1', 'subscribe' permission to all the
   subtopics of 'topic2'.  If the Will Flag is set,then the Broker MUST
   check that the token allows the publication of the Will message
   (i.e., the scope is "publish_" followed by the Will Topic).




2.2.6. The Broker's Response to Client Connection Request

   Based on the validation result (obtained either via local inspection
   or using the /introspection interface of the AS), the Broker MUST
   send a CONNACK message to the Client.  The reason code of the CONNACK
   is '0x00 (Success)' if the authentication is successful.  The Broker
   MUST also set Session Present to 0 in the CONNACK packet to signal a
   clean session to the Client.  In case of an invalid PoP token, the
   CONNACK reason code is '0x87 (Not Authorized)'.



   If the Broker accepts the connection, it MUST store the token until
   the end of connection.  On Client or Broker disconnection, the Client
   is expected to provide a token again inside the next CONNECT message.



   If the token is not self-contained and the Broker uses token
   introspection, it MAY cache the validation result to authorize the
   subsequent PUBLISH and SUBSCRIBE messages.  PUBLISH and SUBSCRIBE
   messages, which are sent after a connection set-up, do not contain
   access tokens.  If the introspection result is not cached, then the
   RS needs to introspect the saved token for each request.  The Broker
   SHOULD use a cache time out to introspect tokens regularly.




3. Authorizing PUBLISH Messages


3.1. PUBLISH Messages from the Publisher Client to the Broker

   On receiving the PUBLISH message, the Broker MUST use the type of
   message (i.e., PUBLISH) and the Topic name in the message header to
   compare against the cached token or its introspection result.



   If the Client is allowed to publish to the topic, the RS must publish
   the message to all valid subscribers of the topic.  The Broker may
   also return an acknowledgment message if the QoS level is greater
   than or equal to 1.



   In case of an authorization failure, an error MAY be returned to the
   Client.  For this the QoS level of the PUBLISH message, should be set
   to greater than or equal to 1.  This guarantees that RS responds with
   either a PUBACK or PUBREC packet with reason code '0x87 (Not
   authorized)'.



   On receiving a PUBACK with '0x87 (Not authorized)', the Client MAY
   reauthenticate as described in Section 5, and pass a new token
   following the same PoP methods as described in Figure 2.




3.2. PUBLISH Messages from the Broker to the Subscriber Clients

   To forward PUBLISH messages to the subscribing Clients, the Broker
   identifies all the subscribers that have valid matching topic
   subscriptions (i.e., the tokens are valid, and token scopes allow a
   subscription to the particular topic).  The Broker sends a PUBLISH
   message with the Topic name to all the valid subscribers.



   RS MUST stop forwarding messages to the unauthorized subscribers.
   There is no way to inform the Clients with invalid tokens that an
   authorization error has occurred other than sending a DISCONNECT
   message.  The RS SHOULD send a DISCONNECT message with the reason
   code '0x87 (Not authorized)'.  Note that the server-side DISCONNECT
   is a new feature of MQTT v5.0 (in MQTT v3.1.1, the server needs to
   drop the connection).




4. Authorizing SUBSCRIBE Messages

   In MQTT, a SUBSCRIBE message is sent from a Client to the Broker to
   create one or more subscriptions to one or more topics.  The
   SUBSCRIBE message may contain multiple Topic Filters.  The Topic
   Filters may include wildcard characters.



   On receiving the SUBSCRIBE message, the Broker MUST use the type of
   message (i.e., SUBSCRIBE) and the Topic Filter in the message header
   to compare against the stored token or introspection result.



   As a response to the SUBSCRIBE message, the Broker issues a SUBACK
   message.  For each Topic Filter, the SUBACK packet includes a return
   code matching the QoS level for the corresponding Topic Filter.  In
   the case of failure, the return code is 0x87, indicating that the
   Client is 'Not authorized'.  A reason code is returned for each Topic
   Filter.  Therefore, the Client may receive success codes for a subset
   of its Topic Filters while being unauthorized for the rest.




5. Token Expiration and Reauthentication

   The Broker MUST check for token expiration whenever a CONNECT,
   PUBLISH or SUBSCRIBE message is received or sent.  The Broker SHOULD
   check for token expiration on receiving a PINGREQUEST message.  The
   Broker MAY also check for token expiration periodically e.g., every
   hour.  This may allow for early detection of a token expiry.



   The token expiration is checked by checking the 'exp' claim of a JWT
   or introspection response, or via performing an introspection request
   with the AS as described in Section 5.7 of the ACE framework
   [I-D.ietf-ace-oauth-authz].  Token expirations may trigger the RS to
   send PUBACK, SUBACK and DISCONNECT messages with return code set to
   'Not authorised'.  After sending a DISCONNECT message, the network
   connection is closed, and no more messages can be sent.  However, as
   a response to the PUBACK and SUBACK, the Client MAY re-authenticate
   by sending an AUTH packet with a Reason Code of 0x19 (Re-
   authentication).



   To re-authenticate, the Client sends an AUTH packet with reason code
   '0x19 (Re-authentication)'.  The Client MUST set the Authentication
   Method as 'ace' and transport the new token in the Authentication
   Data.  The Client and the RS go through the same steps for proof of
   possession validation as described in Section 2.2.  If the re-
   authentication fails, the server MUST send a DISCONNECT with the
   reason code '0x87 (Not Authorized)'.  The Clients can also
   proactively update their tokens i.e., before they receive a message
   with 'Not authorized' return code.




6. Handling Disconnections and Retained Messages

   In the case of a Client DISCONNECT, the Broker deletes all session
   state but MUST keep the retained messages.  By setting a RETAIN flag
   in a PUBLISH message, the publisher indicates to the Broker that it
   should store the most recent message for the associated topic.
   Hence, the new subscribers can receive the last sent message from the
   publisher of that particular topic without waiting for the next
   PUBLISH message.  The Broker MUST continue publishing the retained
   messages as long as the associated tokens are valid.



   In case of disconnections due to network errors or server
   disconnection due to a protocol error (which includes authorization
   errors), the Will message must be sent if the Client supplied a Will
   in the CONNECT message.  The Client's token scopes MUST include the
   Will Topic.  The Will message MUST be published to the Will Topic
   regardless of whether the corresponding token has expired.  In the
   case of a server-side DISCONNECT, the server returns the '0x87 Not
   Authorized' return code to the Client.




7. Reduced Protocol Interactions for MQTT v3.1.1

   This section describes a reduced set of protocol interactions for the
   MQTT v3.1.1 Client.




7.1. Token Transport

   As in MQTT v5, The Token MAY either be transported before the TLS
   session publishing to the "authz-info" topic, or inside the CONNECT
   message.



   In MQTT v3.1.1, after the Client published to the "authz-info" topic,
   it is not possible for the Broker to communicate the result of the
   token verification.  In any case, any token authorization failure
   affect the subsequent TLS handshake, which can prompt the Client to
   obtain a valid token.



   To transport the token to the Broker inside the CONNECT message, the
   Client uses the username and password fields of the CONNECT message.
   Figure 5 shows the structure of the MQTT CONNECT message.



0            8            16            24            32
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|CPT=1 | Rsvd.|Remaining len.| Protocol  name len. = 4 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|                      'M' 'Q' 'T' 'T'                 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Proto.level=4|Connect flags|          Keep alive     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Payload                                              |
|     Client Identifier                                |
|     Username as access token (UTF‑8)                 |
|     Password length (2 Bytes)                        |
|     Password data as signature/MAC (binary)          |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



    Figure 5: MQTT CONNECT control message.  (CPT=Control Packet Type,

               Rsvd=Reserved, len.=length, Proto.=Protocol)



   Figure 6 shows how the MQTT connect flags MUST be set to initiate a
   connection with the Broker.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|User name|Pass.|Will retain|Will QoS|Will Flag|Clean| Rsvd.|
| flag    |flag |           |        |         |     |      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 1       | 1   |    X      |   X X  |   X     |  X   |  0  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



              Figure 6: MQTT CONNECT flags.  (Rsvd=Reserved)



   The Clean Session Flag is ignored, and the Broker always sets up a
   clean session.  On connection success, the Broker MUST set the
   Session Present flag to 0 in the CONNACK packet.



The Client may set the Will Flag as desired (marked as 'X' in
Figure 6).  Username and Password flags MUST be set to 1 to ensure
that the Payload of the CONNECT message includes both Username and
Password fields.



   The CONNECT message defaults to 'ace' for authentication and
   authorization as the header does not have a field to indicate the
   authentication method.  The Username field MUST be set to the access
   token.  The Password field MUST be set to the keyed message digest
   (MAC) or signature associated with the access token for proof-of-
   possession.  The Client MUST apply the PoP key on the challenge
   derived from the TLS session as described in Section 2.2.4.1.



   In MQTT v3.1.1, the MQTT Username as a UTF-8 encoded string (i.e., is
   prefixed by a 2-byte length field followed by UTF-8 encoded character
   data) and may be up to 65535 bytes.  Therefore, an access token that
   is not a valid UTF-8 MUST be Base64 [RFC4648] encoded.  (The MQTT
   Password allows binary data up to 65535 bytes.)




7.2. Handling Authorization Errors

   Handling errors are more primitive in MQTT v3.1.1 due to not having
   appropriate error fields, error codes, and server-side DISCONNECTS.
   In the following, we list how errors are handled without such
   protocol support.



   o  CONNECT without a token: It is not possible to support AS
      discovery via sending a tokenless CONNECT message to the Broker.
      This is because a CONNACK packet in MQTT v3.1.1 does not include a
      means to provide additional information to the Client.  Therefore,
      AS discovery needs to take place out-of-band.  CONNECT attempt
      MUST fail.



   o  Client-RS PUBLISH authorization failure: In case of a failure, it
      is not possible to return an error in MQTT v3.1.1.
      Acknowledgement messages only indicate success.  In the case of an
      authorization error, the Broker SHOULD disconnect the Client.
      Otherwise, it MUST ignore the PUBLISH message.  Also, DISCONNECT
      messages are only sent from a Client to the Broker.  So, server
      disconnection needs to take place below the application layer.



   o  SUBSCRIBE authorization failure: In the SUBACK packet, the return
      code must be 0x80 indicating 'Failure' for the unauthorized
      topic(s).  Note that, in both MQTT versions, a reason code is
      returned for each Topic Filter.



   o  RS-Client PUBLISH authorization failure: When RS is forwarding
      PUBLISH messages to the subscribed Clients, it may discover that
      some of the subscribers are no more authorized due to expired
      tokens.  These token expirations SHOULD lead to disconnecting the
      Client rather than silently dropping messages.




8. IANA Considerations

   The following registrations are done for the ACE OAuth Profile
   Registry following the procedure specified in
   [I-D.ietf-ace-oauth-authz].



   Note to the RFC editor: Please replace all occurrences of "[RFC-
   XXXX]" with the RFC number of this specification and delete this
   paragraph.



   Profile name: mqtt_tls



   Profile description: Profile for delegating Client authentication and
   authorization using MQTT as the application protocol and TLS For
   transport layer security.



   Profile ID:



   Change controller: IESG



   Reference: [RFC-XXXX]




9. Security Considerations

   This document specifies a profile for the Authentication and
   Authorization for Constrained Environments (ACE) framework
   [I-D.ietf-ace-oauth-authz].  Therefore, the security considerations
   outlined in [I-D.ietf-ace-oauth-authz] apply to this work.



   In addition, the security considerations outlined in MQTT v5.0 - the
   OASIS Standard [MQTT-OASIS-Standard-v5] and MQTT v3.1.1 - the OASIS
   Standard [MQTT-OASIS-Standard] apply.  Mainly, this document provides
   an authorization solution for MQTT, the responsibility of which is
   left to the specific implementation in MQTT v5.0 standard.  In the
   following, we comment on a few relevant issues based on the current
   MQTT specifications.



   To authorize a Client's publish and subscribe requests in an ongoing
   session, the RS caches the access token after accepting the
   connection from the Client.  However, if some permissions are revoked
   in the meantime, the RS may still grant publish/subscribe to revoked
   topics.  If the RS caches the token introspection responses, then the
   RS should use a reasonable cache timeout to introspect tokens
   regularly.  When permissions change dynamically, it is expected that
   AS also follows a reasonable expiration strategy for the access
   tokens.



   The RS may monitor Client behaviour to detect potential security
   problems, especially those affecting availability.  These include
   repeated token transfer attempts to the public "authz-info" topic,
   repeated connection attempts, abnormal terminations, and Clients that
   connect but do not send any data.  If the RS supports the public
   "authz-info" topic, described in Section 2.2.2, then this may be
   vulnerable to a DDoS attack, where many Clients use the "authz-info"
   public topic to transport fictitious tokens, which RS may need to
   store indefinitely.




10. Privacy Considerations

   The privacy considerations outlined in [I-D.ietf-ace-oauth-authz]
   apply to this work.



   In MQTT, the RS is a central trusted party and may forward
   potentially sensitive information between Clients.  Clients may
   choose to encrypt the payload of their messages.  However, this would
   not provide privacy for other properties of the message such as Topic
   Name.




11. References


11.1. Normative References


   [I-D.ietf-ace-dtls-authorize]

              Gerdes, S., Bergmann, O., Bormann, C., Selander, G., and
              L. Seitz, "Datagram Transport Layer Security (DTLS)
              Profile for Authentication and Authorization for
              Constrained Environments (ACE)", draft-ietf-ace-dtls-
              authorize-08 (work in progress), April 2019.




   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-25
              (work in progress), October 2019.




   [I-D.ietf-ace-oauth-params]

              Seitz, L., "Additional OAuth Parameters for Authorization
              in Constrained Environments (ACE)", draft-ietf-ace-oauth-
              params-05 (work in progress), March 2019.




   [MQTT-OASIS-Standard]

              Banks, A., Ed. and R. Gupta, Ed., "OASIS Standard MQTT
              Version 3.1.1 Plus Errata 01", 2015, <http://docs.oasis-
              open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html>.




   [MQTT-OASIS-Standard-v5]

              Banks, A., Ed., Briggs, E., Ed., Borgendale, K., Ed., and
              R. Gupta, Ed., "OASIS Standard MQTT Version 5.0", 2017,
              <http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-
              v5.0-os.html>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4648]
  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.




   [RFC5705]
  Rescorla, E., "Keying Material Exporters for Transport
              Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
              March 2010, <https://www.rfc-editor.org/info/rfc5705>.




   [RFC7250]
  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
              Weiler, S., and T. Kivinen, "Using Raw Public Keys in
              Transport Layer Security (TLS) and Datagram Transport
              Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
              June 2014, <https://www.rfc-editor.org/info/rfc7250>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8446]
  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.




11.2. Informative References


   [fremantle14]

              Fremantle, P., Aziz, B., Kopecky, J., and P. Scott,
              "Federated Identity and Access Management for the Internet
              of Things", research International Workshop on Secure
              Internet of Things, September 2014,
              <http://dx.doi.org/10.1109/SIoT.2014.8>.




   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-11 (work in progress), October 2019.




   [RFC4949]
  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.




   [RFC6749]
  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC6749, October 2012,
              <https://www.rfc-editor.org/info/rfc6749>.




   [RFC7800]
  Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
              Possession Key Semantics for JSON Web Tokens (JWTs)",
              RFC 7800, DOI 10.17487/RFC7800, April 2016,
              <https://www.rfc-editor.org/info/rfc7800>.




Appendix A. Checklist for profile requirements

   o  AS discovery: AS discovery is possible with the MQTT v5.0
      described in Section 2.2.



   o  The communication protocol between the Client and RS: MQTT



   o  The security protocol between the Client and RS: TLS



   o  Client and RS mutual authentication: Several options are possible
      and descibed in Section 2.2.1.



   o  Content format: For the HTTPS interactions with AS, "application/
      ace+json".



   o  PoP protocols: Either symmetric or asymmetric keys can be
      supported.



   o  Unique profile identifier: mqtt_tls



   o  Token introspection: RS uses HTTPS /introspect interface of AS.



   o  Token request: Client or its Client AS uses HTTPS /token interface
      of AS.



   o  /authz-info endpoint: It MAY be supported using the method
      described in Section 2.2.2, but is not protected.



   o  Token transport: Via "authz-info topic", or in MQTT CONNECT
      message for both versions of MQTT.  AUTH extensions also used for
      authentication and re-authentication for MQTT v5.0 as described in
      Section 2.2.




Appendix B. Document Updates

   Version 01 to 02:



   o  Expanded Client connection authorization to capture different
      options for Client and Broker authentication over TLS and MQTT



   o  Removed Payload (and specifically Client Identifier) from proof-
      of-possesion in favor of using tls-exporter for a TLS-session
      based challenge.



   o  Moved token transport via "authz-info" topic from the Appendix to
      the main text.



   o  Clarified Will scope.



   o  Added MQTT AUTH to terminology.



   o  Typo fixes, and simplification of figures.



   Version 00 to 01:



   o  Present the MQTTv5 as the RECOMMENDED version, and MQTT v3.1.1 for
      backward compatibility.



   o  Clarified Will message.



   o  Improved consistency in the use of terminology, and upper/lower
      case.



   o  Defined Broker and MQTTS.



   o  Clarified HTTPS use for C-AS and RS-AS communication.  Removed
      reference to actors document, and clarified the use of client
      authorization server.



   o  Clarified the Connect message payload and Client Identifier.



   o  Presented different methods for passing the token, and PoP.



   o  Added new figures to explain AUTH packets exchang, updated CONNECT
      message figure.




Acknowledgements

   The authors would like to thank Ludwig Seitz for his review and his
   input on the authorization information endpoint, presented in the
   appendix.



Authors' Addresses



Cigdem Sengul
Nominet
4 Kingdom Street
London  W2 6BD
UK



   Email: Cigdem.Sengul@nominet.uk




Anthony Kirby
Oxbotica
1a Milford House, Mayfield Road, Summertown
Oxford  OX2 7EL
UK



   Email: anthony@anthony.org




Paul Fremantle
University of Portsmouth
School of Computing, Buckingham House
Portsmouth  PO1 3HE
UK



   Email: paul.fremantle@port.ac.uk





























draft-ietf-ace-oauth-authz-27 - S. Erdtman Spotify AB H. Tschofenig Arm Ltd. November 21, 2019






draft-ietf-ace-oauth-authz-27 - S. Erdtman Spotify AB H. Tschofenig Arm Ltd. Nov

Index
Back 5
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 24, 2020




L. Seitz

RISE

G. Selander

Ericsson

E. Wahlstroem

S. Erdtman Spotify AB H. Tschofenig Arm Ltd. November 21, 2019 

  Authentication and Authorization for Constrained Environments (ACE)

               using the OAuth 2.0 Framework (ACE-OAuth)
                     draft-ietf-ace-oauth-authz-27




Abstract

   This specification defines a framework for authentication and
   authorization in Internet of Things (IoT) environments called ACE-
   OAuth.  The framework is based on a set of building blocks including
   OAuth 2.0 and CoAP, thus transforming a well-known and widely used
   authorization solution into a form suitable for IoT devices.
   Existing specifications are used where possible, but extensions are
   added and profiles are defined to better serve the IoT use cases.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 24, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Overview
	 3.1.  OAuth 2.0


	 3.2.  CoAP



	4.  Protocol Interactions


	5.  Framework
	 5.1.  Discovering Authorization Servers
	  5.1.1.  Unauthorized Resource Request Message


	  5.1.2.  AS Request Creation Hints
	   5.1.2.1.  The Client-Nonce Parameter





	 5.2.  Authorization Grants


	 5.3.  Client Credentials


	 5.4.  AS Authentication


	 5.5.  The Authorization Endpoint


	 5.6.  The Token Endpoint
	  5.6.1.  Client-to-AS Request


	  5.6.2.  AS-to-Client Response


	  5.6.3.  Error Response


	  5.6.4.  Request and Response Parameters
	   5.6.4.1.  Grant Type


	   5.6.4.2.  Token Type


	   5.6.4.3.  Profile


	   5.6.4.4.  Client-Nonce



	  5.6.5.  Mapping Parameters to CBOR



	 5.7.  The Introspection Endpoint
	  5.7.1.  Introspection Request


	  5.7.2.  Introspection Response


	  5.7.3.  Error Response


	  5.7.4.  Mapping Introspection parameters to CBOR



	 5.8.  The Access Token
	  5.8.1.  The Authorization Information Endpoint
	   5.8.1.1.  Verifying an Access Token


	   5.8.1.2.  Protecting the Authorization       Information Endpoint



	  5.8.2.  Client Requests to the RS


	  5.8.3.  Token Expiration


	  5.8.4.  Key Expiration





	6.  Security Considerations
	 6.1.  Protecting Tokens


	 6.2.  Communication Security


	 6.3.  Long-Term Credentials


	 6.4.  Unprotected AS Request Creation Hints


	 6.5.  Minimal security requirements        for communication


	 6.6.  Token Freshness and Expiration


	 6.7.  Combining profiles


	 6.8.  Unprotected Information


	 6.9.  Identifying audiences


	 6.10. Denial of service against or with      Introspection



	7.  Privacy Considerations


	8.  IANA Considerations
	 8.1.  ACE Authorization Server Request Creation Hints


	 8.2.  OAuth Extensions Error Registration


	 8.3.  OAuth Error Code CBOR Mappings Registry


	 8.4.  OAuth Grant Type CBOR Mappings


	 8.5.  OAuth Access Token Types


	 8.6.  OAuth Access Token Type CBOR Mappings
	  8.6.1.  Initial Registry Contents



	 8.7.  ACE Profile Registry


	 8.8.  OAuth Parameter Registration


	 8.9.  OAuth Parameters CBOR Mappings Registry


	 8.10. OAuth Introspection Response Parameter Registration


	 8.11. OAuth Token Introspection Response CBOR Mappings Registry


	 8.12. JSON Web Token Claims


	 8.13. CBOR Web Token Claims


	 8.14. Media Type Registrations


	 8.15. CoAP Content-Format Registry


	 8.16. Expert Review Instructions



	9.  Acknowledgments


	10. References
	 10.1.  Normative References


	 10.2.  Informative References



	Appendix A.  Design Justification


	Appendix B.  Roles and Responsibilities


	Appendix C.  Requirements on Profiles


	Appendix D.  Assumptions on AS knowledge about C and RS


	Appendix E.  Deployment Examples
	 E.1.  Local Token Validation


	 E.2.  Introspection Aided Token Validation



	Appendix F.  Document Updates
	 F.1.  Version -21 to 22


	 F.2.  Version -20 to 21


	 F.3.  Version -19 to 20


	 F.4.  Version -18 to -19


	 F.5.  Version -17 to -18


	 F.6.  Version -16 to -17


	 F.7.  Version -15 to -16


	 F.8.  Version -14 to -15


	 F.9.  Version -13 to -14


	 F.10. Version -12 to -13


	 F.11. Version -11 to -12


	 F.12. Version -10 to -11


	 F.13. Version -09 to -10


	 F.14. Version -08 to -09


	 F.15. Version -07 to -08


	 F.16. Version -06 to -07


	 F.17. Version -05 to -06


	 F.18. Version -04 to -05


	 F.19. Version -03 to -04


	 F.20. Version -02 to -03


	 F.21. Version -01 to -02


	 F.22. Version -00 to -01



	Authors' Addresses




1. Introduction

   Authorization is the process for granting approval to an entity to
   access a generic resource [RFC4949].  The authorization task itself
   can best be described as granting access to a requesting client, for
   a resource hosted on a device, the resource server (RS).  This
   exchange is mediated by one or multiple authorization servers (AS).
   Managing authorization for a large number of devices and users can be
   a complex task.



   While prior work on authorization solutions for the Web and for the
   mobile environment also applies to the Internet of Things (IoT)
   environment, many IoT devices are constrained, for example, in terms
   of processing capabilities, available memory, etc.  For web
   applications on constrained nodes, this specification RECOMMENDS the
   use of CoAP [RFC7252] as replacement for HTTP.



   A detailed treatment of constraints can be found in [RFC7228], and
   the different IoT deployments present a continuous range of device
   and network capabilities.  Taking energy consumption as an example:
   At one end there are energy-harvesting or battery powered devices
   which have a tight power budget, on the other end there are mains-
   powered devices, and all levels in between.



   Hence, IoT devices may be very different in terms of available
   processing and message exchange capabilities and there is a need to
   support many different authorization use cases [RFC7744].



   This specification describes a framework for authentication and
   authorization in constrained environments (ACE) built on re-use of
   OAuth 2.0 [RFC6749], thereby extending authorization to Internet of
   Things devices.  This specification contains the necessary building
   blocks for adjusting OAuth 2.0 to IoT environments.



   More detailed, interoperable specifications can be found in profiles.
   Implementations may claim conformance with a specific profile,
   whereby implementations utilizing the same profile interoperate while
   implementations of different profiles are not expected to be
   interoperable.  Some devices, such as mobile phones and tablets, may
   implement multiple profiles and will therefore be able to interact
   with a wider range of low end devices.  Requirements on profiles are
   described at contextually appropriate places throughout this
   specification, and also summarized in Appendix C.




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Certain security-related terms such as "authentication",
   "authorization", "confidentiality", "(data) integrity", "message
   authentication code", and "verify" are taken from [RFC4949].



   Since exchanges in this specification are described as RESTful
   protocol interactions, HTTP [RFC7231] offers useful terminology.



   Terminology for entities in the architecture is defined in OAuth 2.0
   [RFC6749] such as client (C), resource server (RS), and authorization
   server (AS).



   Note that the term "endpoint" is used here following its OAuth
   definition, which is to denote resources such as token and
   introspection at the AS and authz-info at the RS (see Section 5.8.1
   for a definition of the authz-info endpoint).  The CoAP [RFC7252]
   definition, which is "An entity participating in the CoAP protocol"
   is not used in this specification.



   The specifications in this document is called the "framework" or "ACE
   framework".  When referring to "profiles of this framework" it refers
   to additional specifications that define the use of this
   specification with concrete transport and communication security
   protocols (e.g., CoAP over DTLS).



   We use the term "Access Information" for parameters other than the
   access token provided to the client by the AS to enable it to access
   the RS (e.g. public key of the RS, profile supported by RS).



   We use the term "Authorization Information" to denote all
   information, including the claims of relevant access tokens, that an
   RS uses to determine whether an access request should be granted.




3. Overview

   This specification defines the ACE framework for authorization in the
   Internet of Things environment.  It consists of a set of building
   blocks.



   The basic block is the OAuth 2.0 [RFC6749] framework, which enjoys
   widespread deployment.  Many IoT devices can support OAuth 2.0
   without any additional extensions, but for certain constrained
   settings additional profiling is needed.



   Another building block is the lightweight web transfer protocol CoAP
   [RFC7252], for those communication environments where HTTP is not
   appropriate.  CoAP typically runs on top of UDP, which further
   reduces overhead and message exchanges.  While this specification
   defines extensions for the use of OAuth over CoAP, other underlying
   protocols are not prohibited from being supported in the future, such
   as HTTP/2 [RFC7540], MQTT [MQTT5.0], BLE [BLE] and QUIC
   [I-D.ietf-quic-transport].  Note that this document specifies
   protocol exchanges in terms of RESTful verbs such as GET and POST.
   Future profiles using protocols that do not support these verbs MUST
   specify how the corresponding protocol messages are transmitted
   instead.



   A third building block is CBOR [RFC7049], for encodings where JSON
   [RFC8259] is not sufficiently compact.  CBOR is a binary encoding
   designed for small code and message size, which may be used for
   encoding of self contained tokens, and also for encoding payloads
   transferred in protocol messages.



   A fourth building block is the CBOR-based secure message format COSE
   [RFC8152], which enables object-level layer security as an
   alternative or complement to transport layer security (DTLS [RFC6347]
   or TLS [RFC8446]).  COSE is used to secure self-contained tokens such
   as proof-of-possession (PoP) tokens, which are an extension to the
   OAuth bearer tokens.  The default token format is defined in CBOR web
   token (CWT) [RFC8392].  Application layer security for CoAP using
   COSE can be provided with OSCORE [RFC8613].



   With the building blocks listed above, solutions satisfying various
   IoT device and network constraints are possible.  A list of
   constraints is described in detail in [RFC7228] and a description of
   how the building blocks mentioned above relate to the various
   constraints can be found in Appendix A.



   Luckily, not every IoT device suffers from all constraints.  The ACE
   framework nevertheless takes all these aspects into account and
   allows several different deployment variants to co-exist, rather than
   mandating a one-size-fits-all solution.  It is important to cover the
   wide range of possible interworking use cases and the different
   requirements from a security point of view.  Once IoT deployments
   mature, popular deployment variants will be documented in the form of
   ACE profiles.




3.1. OAuth 2.0

   The OAuth 2.0 authorization framework enables a client to obtain
   scoped access to a resource with the permission of a resource owner.
   Authorization information, or references to it, is passed between the
   nodes using access tokens.  These access tokens are issued to clients
   by an authorization server with the approval of the resource owner.
   The client uses the access token to access the protected resources
   hosted by the resource server.



   A number of OAuth 2.0 terms are used within this specification:



The token and introspection Endpoints:
   The AS hosts the token endpoint that allows a client to request
   access tokens.  The client makes a POST request to the token
   endpoint on the AS and receives the access token in the response
   (if the request was successful).
   In some deployments, a token introspection endpoint is provided by
   the AS, which can be used by the RS if it needs to request
   additional information regarding a received access token.  The RS
   makes a POST request to the introspection endpoint on the AS and
   receives information about the access token in the response.  (See
   "Introspection" below.)





   Access Tokens:

      Access tokens are credentials needed to access protected
      resources.  An access token is a data structure representing
      authorization permissions issued by the AS to the client.  Access



      tokens are generated by the AS and consumed by the RS.  The access
      token content is opaque to the client.



      Access tokens can have different formats, and various methods of
      utilization e.g., cryptographic properties) based on the security
      requirements of the given deployment.





   Refresh Tokens:

      Refresh tokens are credentials used to obtain access tokens.
      Refresh tokens are issued to the client by the authorization
      server and are used to obtain a new access token when the current
      access token becomes invalid or expires, or to obtain additional
      access tokens with identical or narrower scope (such access tokens
      may have a shorter lifetime and fewer permissions than authorized
      by the resource owner).  Issuing a refresh token is optional at
      the discretion of the authorization server.  If the authorization
      server issues a refresh token, it is included when issuing an
      access token (i.e., step (B) in Figure 1).



      A refresh token in OAuth 2.0 is a string representing the
      authorization granted to the client by the resource owner.  The
      string is usually opaque to the client.  The token denotes an
      identifier used to retrieve the authorization information.  Unlike
      access tokens, refresh tokens are intended for use only with
      authorization servers and are never sent to resource servers.  In
      this framework, refresh tokens are encoded in binary instead of
      strings, if used.




   Proof of Possession Tokens:

      A token may be bound to a cryptographic key, which is then used to
      bind the token to a request authorized by the token.  Such tokens
      are called proof-of-possession tokens (or PoP tokens).



      The proof-of-possession (PoP) security concept used here assumes
      that the AS acts as a trusted third party that binds keys to
      tokens.  In the case of access tokens, these so called PoP keys
      are then used by the client to demonstrate the possession of the
      secret to the RS when accessing the resource.  The RS, when
      receiving an access token, needs to verify that the key used by
      the client matches the one bound to the access token.  When this
      specification uses the term "access token" it is assumed to be a
      PoP access token token unless specifically stated otherwise.



      The key bound to the token (the PoP key) may use either symmetric
      or asymmetric cryptography.  The appropriate choice of the kind of
      cryptography depends on the constraints of the IoT devices as well
      as on the security requirements of the use case.





      Symmetric PoP key:

         The AS generates a random symmetric PoP key.  The key is either
         stored to be returned on introspection calls or encrypted and
         included in the token.  The PoP key is also encrypted for the
         token recipient and sent to the recipient together with the
         token.





      Asymmetric PoP key:

         An asymmetric key pair is generated on the token's recipient
         and the public key is sent to the AS (if it does not already
         have knowledge of the recipient's public key).  Information
         about the public key, which is the PoP key in this case, is
         either stored to be returned on introspection calls or included
         inside the token and sent back to the requesting party.  The
         consumer of the token can identify the public key from the
         information in the token, which allows the recipient of the
         token to use the corresponding private key for the proof of
         possession.



      The token is either a simple reference, or a structured
      information object (e.g., CWT [RFC8392]) protected by a
      cryptographic wrapper (e.g., COSE [RFC8152]).  The choice of PoP
      key does not necessarily imply a specific credential type for the
      integrity protection of the token.





   Scopes and Permissions:

      In OAuth 2.0, the client specifies the type of permissions it is
      seeking to obtain (via the scope parameter) in the access token
      request.  In turn, the AS may use the scope response parameter to
      inform the client of the scope of the access token issued.  As the
      client could be a constrained device as well, this specification
      defines the use of CBOR encoding, see Section 5, for such requests
      and responses.



      The values of the scope parameter in OAuth 2.0 are expressed as a
      list of space-delimited, case-sensitive strings, with a semantic
      that is well-known to the AS and the RS.  More details about the
      concept of scopes is found under Section 3.3 in [RFC6749].



   Claims:

      Information carried in the access token or returned from
      introspection, called claims, is in the form of name-value pairs.
      An access token may, for example, include a claim identifying the
      AS that issued the token (via the "iss" claim) and what audience
      the access token is intended for (via the "aud" claim).  The
      audience of an access token can be a specific resource or one or
      many resource servers.  The resource owner policies influence what
      claims are put into the access token by the authorization server.



      While the structure and encoding of the access token varies
      throughout deployments, a standardized format has been defined
      with the JSON Web Token (JWT) [RFC7519] where claims are encoded
      as a JSON object.  In [RFC8392], an equivalent format using CBOR
      encoding (CWT) has been defined.





   Introspection:

      Introspection is a method for a resource server to query the
      authorization server for the active state and content of a
      received access token.  This is particularly useful in those cases
      where the authorization decisions are very dynamic and/or where
      the received access token itself is an opaque reference rather
      than a self-contained token.  More information about introspection
      in OAuth 2.0 can be found in [RFC7662].




3.2. CoAP

   CoAP is an application layer protocol similar to HTTP, but
   specifically designed for constrained environments.  CoAP typically
   uses datagram-oriented transport, such as UDP, where reordering and
   loss of packets can occur.  A security solution needs to take the
   latter aspects into account.



   While HTTP uses headers and query strings to convey additional
   information about a request, CoAP encodes such information into
   header parameters called 'options'.



   CoAP supports application-layer fragmentation of the CoAP payloads
   through blockwise transfers [RFC7959].  However, blockwise transfer
   does not increase the size limits of CoAP options, therefore data
   encoded in options has to be kept small.



   Transport layer security for CoAP can be provided by DTLS or TLS
   [RFC6347][RFC8446] [I-D.ietf-tls-dtls13].  CoAP defines a number of
   proxy operations that require transport layer security to be
   terminated at the proxy.  One approach for protecting CoAP
   communication end-to-end through proxies, and also to support
   security for CoAP over a different transport in a uniform way, is to
   provide security at the application layer using an object-based
   security mechanism such as COSE [RFC8152].



   One application of COSE is OSCORE [RFC8613], which provides end-to-
   end confidentiality, integrity and replay protection, and a secure
   binding between CoAP request and response messages.  In OSCORE, the
   CoAP messages are wrapped in COSE objects and sent using CoAP.



   This framework RECOMMENDS the use of CoAP as replacement for HTTP for
   use in constrained environments.  For communication security this
   framework does not make an explicit protocol recommendation, since
   the choice depends on the requirements of the specific application.
   DTLS [RFC6347], [I-D.ietf-tls-dtls13] and OSCORE [RFC8613] are
   mentioned as examples, other protocols fulfilling the requirements
   from Section 6.5 are also applicable.




4. Protocol Interactions

   The ACE framework is based on the OAuth 2.0 protocol interactions
   using the token endpoint and optionally the introspection endpoint.
   A client obtains an access token, and optionally a refresh token,
   from an AS using the token endpoint and subsequently presents the
   access token to a RS to gain access to a protected resource.  In most
   deployments the RS can process the access token locally, however in
   some cases the RS may present it to the AS via the introspection
   endpoint to get fresh information.  These interactions are shown in
   Figure 1.  An overview of various OAuth concepts is provided in
   Section 3.1.



   The OAuth 2.0 framework defines a number of "protocol flows" via
   grant types, which have been extended further with extensions to
   OAuth 2.0 (such as [RFC7521] and [RFC8628]).  What grant types works
   best depends on the usage scenario and [RFC7744] describes many
   different IoT use cases but there are two preferred grant types,
   namely the Authorization Code Grant (described in Section 4.1 of
   [RFC7521]) and the Client Credentials Grant (described in Section 4.4
   of [RFC7521]).  The Authorization Code Grant is a good fit for use
   with apps running on smart phones and tablets that request access to
   IoT devices, a common scenario in the smart home environment, where
   users need to go through an authentication and authorization phase
   (at least during the initial setup phase).  The native apps
   guidelines described in [RFC8252] are applicable to this use case.
   The Client Credential Grant is a good fit for use with IoT devices
   where the OAuth client itself is constrained.  In such a case, the
   resource owner has pre-arranged access rights for the client with the
   authorization server, which is often accomplished using a
   commissioning tool.



   The consent of the resource owner, for giving a client access to a
   protected resource, can be provided dynamically as in the traditional
   OAuth flows, or it could be pre-configured by the resource owner as
   authorization policies at the AS, which the AS evaluates when a token
   request arrives.  The resource owner and the requesting party (i.e.,
   client owner) are not shown in Figure 1.



   This framework supports a wide variety of communication security
   mechanisms between the ACE entities, such as client, AS, and RS.  It
   is assumed that the client has been registered (also called enrolled
   or onboarded) to an AS using a mechanism defined outside the scope of
   this document.  In practice, various techniques for onboarding have
   been used, such as factory-based provisioning or the use of
   commissioning tools.  Regardless of the onboarding technique, this
   provisioning procedure implies that the client and the AS exchange
   credentials and configuration parameters.  These credentials are used
   to mutually authenticate each other and to protect messages exchanged
   between the client and the AS.



   It is also assumed that the RS has been registered with the AS,
   potentially in a similar way as the client has been registered with
   the AS.  Established keying material between the AS and the RS allows
   the AS to apply cryptographic protection to the access token to
   ensure that its content cannot be modified, and if needed, that the
   content is confidentiality protected.



   The keying material necessary for establishing communication security
   between C and RS is dynamically established as part of the protocol
   described in this document.



   At the start of the protocol, there is an optional discovery step
   where the client discovers the resource server and the resources this
   server hosts.  In this step, the client might also determine what
   permissions are needed to access the protected resource.  A generic
   procedure is described in Section 5.1; profiles MAY define other
   procedures for discovery.



   In Bluetooth Low Energy, for example, advertisements are broadcasted
   by a peripheral, including information about the primary services.
   In CoAP, as a second example, a client can make a request to "/.well-
   known/core" to obtain information about available resources, which
   are returned in a standardized format as described in [RFC6690].



+‑‑‑‑‑‑‑‑+                               +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|        |‑‑‑(A)‑‑ Token Request ‑‑‑‑‑‑‑>|               |
|        |                               | Authorization |
|        |<‑‑(B)‑‑ Access Token ‑‑‑‑‑‑‑‑‑|    Server     |
|        |    + Access Information       |               |
|        |    + Refresh Token (optional) +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|        |                                      ^ | |
|        |            Introspection Request  (D)| |
| Client |                  (optional)          | |
|        |                         Response     | |(E)
|        |                         (optional)   | v
|        |                               +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|        |‑‑‑(C)‑‑ Token + Request ‑‑‑‑‑>|              |
|        |                               |   Resource   |
|        |<‑‑(F)‑‑ Protected Resource ‑‑‑|    Server    |
|        |                               |              |
+‑‑‑‑‑‑‑‑+                               +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Figure 1: Basic Protocol Flow.



   Requesting an Access Token (A):

      The client makes an access token request to the token endpoint at
      the AS.  This framework assumes the use of PoP access tokens (see
      Section 3.1 for a short description) wherein the AS binds a key to
      an access token.  The client may include permissions it seeks to
      obtain, and information about the credentials it wants to use
      (e.g., symmetric/asymmetric cryptography or a reference to a
      specific credential).





   Access Token Response (B):

      If the AS successfully processes the request from the client, it
      returns an access token and optionally a refresh token (note that
      only certain grant types support refresh tokens).  It can also
      return additional parameters, referred to as "Access Information".
      In addition to the response parameters defined by OAuth 2.0 and
      the PoP access token extension, this framework defines parameters
      that can be used to inform the client about capabilities of the
      RS, e.g. the profiles the RS supports.  More information about
      these parameters can be found in Section 5.6.4.





   Resource Request (C):

      The client interacts with the RS to request access to the
      protected resource and provides the access token.  The protocol to
      use between the client and the RS is not restricted to CoAP.



      HTTP, HTTP/2, QUIC, MQTT, Bluetooth Low Energy, etc., are also
      viable candidates.



      Depending on the device limitations and the selected protocol,
      this exchange may be split up into two parts:



         (1) the client sends the access token containing, or
         referencing, the authorization information to the RS, that may
         be used for subsequent resource requests by the client, and



         (2) the client makes the resource access request, using the
         communication security protocol and other Access Information
         obtained from the AS.



      The Client and the RS mutually authenticate using the security
      protocol specified in the profile (see step B) and the keys
      obtained in the access token or the Access Information.  The RS
      verifies that the token is integrity protected and originated by
      the AS.  It then compares the claims contained in the access token
      with the resource request.  If the RS is online, validation can be
      handed over to the AS using token introspection (see messages D
      and E) over HTTP or CoAP.





   Token Introspection Request (D):

      A resource server may be configured to introspect the access token
      by including it in a request to the introspection endpoint at that
      AS.  Token introspection over CoAP is defined in Section 5.7 and
      for HTTP in [RFC7662].



      Note that token introspection is an optional step and can be
      omitted if the token is self-contained and the resource server is
      prepared to perform the token validation on its own.





   Token Introspection Response (E):

      The AS validates the token and returns the most recent parameters,
      such as scope, audience, validity etc. associated with it back to
      the RS.  The RS then uses the received parameters to process the
      request to either accept or to deny it.





   Protected Resource (F):

      If the request from the client is authorized, the RS fulfills the
      request and returns a response with the appropriate response code.



      The RS uses the dynamically established keys to protect the
      response, according to the communication security protocol used.




5. Framework

   The following sections detail the profiling and extensions of OAuth
   2.0 for constrained environments, which constitutes the ACE
   framework.



   Credential Provisioning

      For IoT, it cannot be assumed that the client and RS are part of a
      common key infrastructure, so the AS provisions credentials or
      associated information to allow mutual authentication between
      client and RS.  The resulting security association between client
      and RS may then also be used to bind these credentials to the
      access tokens the client uses.





   Proof-of-Possession

      The ACE framework, by default, implements proof-of-possession for
      access tokens, i.e., that the token holder can prove being a
      holder of the key bound to the token.  The binding is provided by
      the "cnf" claim [I-D.ietf-ace-cwt-proof-of-possession] indicating
      what key is used for proof-of-possession.  If a client needs to
      submit a new access token, e.g., to obtain additional access
      rights, they can request that the AS binds this token to the same
      key as the previous one.





   ACE Profiles

      The client or RS may be limited in the encodings or protocols it
      supports.  To support a variety of different deployment settings,
      specific interactions between client and RS are defined in an ACE
      profile.  In ACE framework the AS is expected to manage the
      matching of compatible profile choices between a client and an RS.
      The AS informs the client of the selected profile using the
      "ace_profile" parameter in the token response.



   OAuth 2.0 requires the use of TLS both to protect the communication
   between AS and client when requesting an access token; between client
   and RS when accessing a resource and between AS and RS if
   introspection is used.  In constrained settings TLS is not always
   feasible, or desirable.  Nevertheless it is REQUIRED that the
   communications named above are encrypted, integrity protected and
   protected against message replay.  It is also REQUIRED that the
   communicating endpoints perform mutual authentication.  Furthermore
   it MUST be assured that responses are bound to the requests in the
   sense that the receiver of a response can be certain that the
   response actually belongs to a certain request.  Note that setting up
   such a secure communication may require some unprotected messages to
   be exchanged first (e.g. sending the token from the client to the
   RS).



   Profiles MUST specify a communication security protocol that provides
   the features required above.



   In OAuth 2.0 the communication with the Token and the Introspection
   endpoints at the AS is assumed to be via HTTP and may use Uri-query
   parameters.  When profiles of this framework use CoAP instead, it is
   REQUIRED to use of the following alternative instead of Uri-query
   parameters: The sender (client or RS) encodes the parameters of its
   request as a CBOR map and submits that map as the payload of the POST
   request.



   Profiles that use CBOR encoding of protocol message parameters at the
   outermost encoding layer MUST use the media format 'application/
   ace+cbor'.  If CoAP is used for communication, the Content-Format
   MUST be abbreviated with the ID: 19 (see Section 8.15).



   The OAuth 2.0 AS uses a JSON structure in the payload of its
   responses both to client and RS.  If CoAP is used, it is REQUIRED to
   use CBOR [RFC7049] instead of JSON.  Depending on the profile, the
   CBOR payload MAY be enclosed in a non-CBOR cryptographic wrapper.




5.1. Discovering Authorization Servers

   In order to determine the AS in charge of a resource hosted at the
   RS, C MAY send an initial Unauthorized Resource Request message to
   RS.  RS then denies the request and sends the address of its AS back
   to C.



   Instead of the initial Unauthorized Resource Request message, other
   discovery methods may be used, or the client may be pre-provisioned
   with an RS-to-AS mapping.




5.1.1. Unauthorized Resource Request Message

   An Unauthorized Resource Request message is a request for any
   resource hosted by RS for which the client does not have
   authorization granted.  RSes MUST treat any request for a protected
   resource as an Unauthorized Resource Request message when any of the
   following hold:



   o  The request has been received on an unprotected channel.



   o  The RS has no valid access token for the sender of the request
      regarding the requested action on that resource.



   o  The RS has a valid access token for the sender of the request, but
      that token does not authorize the requested action on the
      requested resource.



   Note: These conditions ensure that the RS can handle requests
   autonomously once access was granted and a secure channel has been
   established between C and RS.  The authz-info endpoint, as part of
   the process for authorizing to protected resources, is not itself a
   protected resource and MUST NOT be protected as specified above (cf.
   Section 5.8.1).



   Unauthorized Resource Request messages MUST be denied with an
   "unauthorized_client" error response.  In this response, the Resource
   Server SHOULD provide proper AS Request Creation Hints to enable the
   Client to request an access token from RS's AS as described in
   Section 5.1.2.



   The handling of all client requests (including unauthorized ones) by
   the RS is described in Section 5.8.2.




5.1.2. AS Request Creation Hints

   The AS Request Creation Hints message is sent by an RS as a response
   to an Unauthorized Resource Request message (see Section 5.1.1) to
   help the sender of the Unauthorized Resource Request message acquire
   a valid access token.  The AS Request Creation Hints message is a
   CBOR map, with a MANDATORY element "AS" specifying an absolute URI
   (see Section 4.3 of [RFC3986]) that identifies the appropriate AS for
   the RS.



   The message can also contain the following OPTIONAL parameters:



   o  A "audience" element containing a suggested audience that the
      client should request at the AS.



   o  A "kid" element containing the key identifier of a key used in an
      existing security association between the client and the RS.  The
      RS expects the client to request an access token bound to this
      key, in order to avoid having to re-establish the security
      association.



   o  A "cnonce" element containing a client-nonce.  See
      Section 5.1.2.1.



   o  A "scope" element containing the suggested scope that the client
      should request towards the AS.



   Figure 2 summarizes the parameters that may be part of the AS Request
   Creation Hints.



/‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Name      | CBOR Key | Value Type          |
|‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| AS        |     1    | text string         |
| kid       |     2    | byte string         |
| audience  |     5    | text string         |
| scope     |     9    | text or byte string |
| cnonce    |    39    | byte string         |
\‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



                    Figure 2: AS Request Creation Hints



   Note that the schema part of the AS parameter may need to be adapted
   to the security protocol that is used between the client and the AS.
   Thus the example AS value "coap://as.example.com/token" might need to
   be transformed to "coaps://as.example.com/token".  It is assumed that
   the client can determine the correct schema part on its own depending
   on the way it communicates with the AS.



   Figure 3 shows an example for an AS Request Creation Hints message
   payload using CBOR [RFC7049] diagnostic notation, using the parameter
   names instead of the CBOR keys for better human readability.



4.01 Unauthorized
Content‑Format: application/ace+cbor
Payload :
{
 "AS" : "coaps://as.example.com/token",
 "audience" : "coaps://rs.example.com"
 "scope" : "rTempC",
 "cnonce" : h'e0a156bb3f'
}



            Figure 3: AS Request Creation Hints payload example



   In this example, the attribute AS points the receiver of this message
   to the URI "coaps://as.example.com/token" to request access
   permissions.  The originator of the AS Request Creation Hints payload
   (i.e., RS) uses a local clock that is loosely synchronized with a
   time scale common between RS and AS (e.g., wall clock time).
   Therefore, it has included a parameter "nonce" (see Section 5.1.2.1).
   Figure 4 illustrates the mandatory to use binary encoding of the
   message payload shown in Figure 3.



a4                                   # map(4)
   01                                # unsigned(1) (=AS)
   78 1c                             # text(28)
      636f6170733a2f2f61732e657861
      6d706c652e636f6d2f746f6b656e   # "coaps://as.example.com/token"
   05                                # unsigned(5) (=audience)
   76                                # text(22)
      636f6170733a2f2f72732e657861
      6d706c652e636f6d               # "coaps://rs.example.com"
   09                                # unsigned(9) (=scope)
   66                                # text(6)
      7254656d7043                   # "rTempC"
   18 27                             # unsigned(39) (=cnonce)
   45                                # bytes(5)
      e0a156bb3f                     #



        Figure 4: AS Request Creation Hints example encoded in CBOR




5.1.2.1. The Client-Nonce Parameter

   If the RS does not synchronize its clock with the AS, it could be
   tricked into accepting old access tokens, that are either expired or
   have been compromised.  In order to ensure some level of token
   freshness in that case, the RS can use the "cnonce" (client-nonce)
   parameter.  The processing requirements for this parameter are as
   follows:



   o  A RS sending a "cnonce" parameter in an an AS Request Creation
      Hints message MUST store information to validate that a given
      cnonce is fresh.  How this is implemented internally is out of
      scope for this specification.  Expiration of client-nonces should
      be based roughly on the time it would take a client to obtain an
      access token after receiving the AS Request Creation Hints
      message, with some allowance for unexpected delays.



   o  A client receiving a "cnonce" parameter in an AS Request Creation
      Hints message MUST include this in the parameters when requesting
      an access token at the AS, using the "cnonce" parameter from
      Section 5.6.4.4.



   o  If an AS grants an access token request containing a "cnonce"
      parameter, it MUST include this value in the access token, using
      the "cnonce" claim specified in Section 5.8.



   o  A RS that is using the client-nonce mechanism and that receives an
      access token MUST verify that this token contains a cnonce claim,
      with a client-nonce value that is fresh according to the
      information stored at the first step above.  If the cnonce claim
      is not present or if the cnonce claim value is not fresh, the RS
      MUST discard the access token.  If this was an interaction with
      the authz-info endpoint the RS MUST also respond with an error
      message using a response code equivalent to the CoAP code 4.01
      (Unauthorized).




5.2. Authorization Grants

   To request an access token, the client obtains authorization from the
   resource owner or uses its client credentials as a grant.  The
   authorization is expressed in the form of an authorization grant.



   The OAuth framework [RFC6749] defines four grant types.  The grant
   types can be split up into two groups, those granted on behalf of the
   resource owner (password, authorization code, implicit) and those for
   the client (client credentials).  Further grant types have been added
   later, such as [RFC7521] defining an assertion-based authorization
   grant.



   The grant type is selected depending on the use case.  In cases where
   the client acts on behalf of the resource owner, the authorization
   code grant is recommended.  If the client acts on behalf of the
   resource owner, but does not have any display or has very limited
   interaction possibilities, it is recommended to use the device code
   grant defined in [RFC8628].  In cases where the client acts
   autonomously the client credentials grant is recommended.



   For details on the different grant types, see section 1.3 of
   [RFC6749].  The OAuth 2.0 framework provides an extension mechanism
   for defining additional grant types, so profiles of this framework
   MAY define additional grant types, if needed.




5.3. Client Credentials

   Authentication of the client is mandatory independent of the grant
   type when requesting an access token from the token endpoint.  In the
   case of the client credentials grant type, the authentication and
   grant coincide.



   Client registration and provisioning of client credentials to the
   client is out of scope for this specification.



   The OAuth framework defines one client credential type in section
   2.3.1 of [RFC6749]: client id and client secret.
   [I-D.erdtman-ace-rpcc] adds raw-public-key and pre-shared-key to the
   client credentials types.  Profiles of this framework MAY extend with
   an additional client credentials type using client certificates.




5.4. AS Authentication

   The client credential grant does not, by default, authenticate the AS
   that the client connects to.  In classic OAuth, the AS is
   authenticated with a TLS server certificate.



   Profiles of this framework MUST specify how clients authenticate the
   AS and how communication security is implemented.  By default, server
   side TLS certificates, as defined by OAuth 2.0, are required.




5.5. The Authorization Endpoint

   The OAuth 2.0 authorization endpoint is used to interact with the
   resource owner and obtain an authorization grant, in certain grant
   flows.  The primary use case for the ACE-OAuth framework is for
   machine-to-machine interactions that do not involve the resource
   owner in the authorization flow; therefore, this endpoint is out of
   scope here.  Future profiles may define constrained adaptation
   mechanisms for this endpoint as well.  Non-constrained clients
   interacting with constrained resource servers can use the
   specification in section 3.1 of [RFC6749] and the attack
   countermeasures suggested in section 4.2 of [RFC6819].




5.6. The Token Endpoint

   In standard OAuth 2.0, the AS provides the token endpoint for
   submitting access token requests.  This framework extends the
   functionality of the token endpoint, giving the AS the possibility to
   help the client and RS to establish shared keys or to exchange their
   public keys.  Furthermore, this framework defines encodings using
   CBOR, as a substitute for JSON.



   The endpoint may, however, be exposed over HTTPS as in classical
   OAuth or even other transports.  A profile MUST define the details of
   the mapping between the fields described below, and these transports.
   If HTTPS is used, JSON or CBOR payloads may be supported.  If JSON
   payloads are used, the semantics of Section 4 of the OAuth 2.0
   specification MUST be followed (with additions as described below).
   If CBOR payload is supported, the semantics described below MUST be
   followed.



   For the AS to be able to issue a token, the client MUST be
   authenticated and present a valid grant for the scopes requested.
   Profiles of this framework MUST specify how the AS authenticates the
   client and how the communication between client and AS is protected,
   fulfilling the requirements specified in Section 5.



   The default name of this endpoint in an url-path is '/token', however
   implementations are not required to use this name and can define
   their own instead.



   The figures of this section use CBOR diagnostic notation without the
   integer abbreviations for the parameters or their values for
   illustrative purposes.  Note that implementations MUST use the
   integer abbreviations and the binary CBOR encoding, if the CBOR
   encoding is used.




5.6.1. Client-to-AS Request

   The client sends a POST request to the token endpoint at the AS.  The
   profile MUST specify how the communication is protected.  The content
   of the request consists of the parameters specified in the relevant
   subsection of section 4 of the OAuth 2.0 specification [RFC6749],
   depending on the grant type, with the following exceptions and
   additions:



   o  The parameter "grant_type" is OPTIONAL in the context of this
      framework (as opposed to REQUIRED in RFC6749).  If that parameter
      is missing, the default value "client_credentials" is implied.



   o  The "audience" parameter from [I-D.ietf-oauth-token-exchange] is
      OPTIONAL to request an access token bound to a specific audience.



   o  The "cnonce" parameter defined in Section 5.6.4.4 is REQUIRED if
      the RS provided a client-nonce in the "AS Request Creation Hints"
      message Section 5.1.2



   o  The "scope" parameter MAY be encoded as a byte string instead of
      the string encoding specified in section 3.3 of [RFC6749], in
      order allow compact encoding of complex scopes.  The syntax of
      such a binary encoding is explicitly not specified here and left
      to profiles or applications, specifically note that a binary
      encoded scope does not necessarily use the space character '0x20'
      to delimit scope-tokens.



   o  The client can send an empty (null value) "ace_profile" parameter
      to indicate that it wants the AS to include the "ace_profile"
      parameter in the response.  See Section 5.6.4.3.



   o  A client MUST be able to use the parameters from
      [I-D.ietf-ace-oauth-params] in an access token request to the



      token endpoint and the AS MUST be able to process these additional
      parameters.



   The default behavior, is that the AS generates a symmetric proof-of-
   possession key for the client.  In order to use an asymmetric key
   pair or to re-use a key previously established with the RS, the
   client is supposed to use the "req_cnf" parameter from
   [I-D.ietf-ace-oauth-params].



   If CBOR is used then these parameters MUST be encoded as a CBOR map.



   When HTTP is used as a transport then the client makes a request to
   the token endpoint by sending the parameters using the "application/
   x-www-form-urlencoded" format with a character encoding of UTF-8 in
   the HTTP request entity-body, as defined in section 3.2 of [RFC6749].



   The following examples illustrate different types of requests for
   proof-of-possession tokens.



   Figure 5 shows a request for a token with a symmetric proof-of-
   possession key.  The content is displayed in CBOR diagnostic
   notation, without abbreviations for better readability.



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "token"
Content‑Format: "application/ace+cbor"
Payload:
{
  "client_id" : "myclient",
  "audience" : "tempSensor4711"
 }



    Figure 5: Example request for an access token bound to a symmetric

                                   key.



   Figure 6 shows a request for a token with an asymmetric proof-of-
   possession key.  Note that in this example OSCORE [RFC8613] is used
   to provide object-security, therefore the Content-Format is
   "application/oscore" wrapping the "application/ace+cbor" type
   content.  The OSCORE option has a decoded interpretation appended in
   parentheses for the reader's convenience.  Also note that in this
   example the audience is implicitly known by both client and AS.
   Furthermore note that this example uses the "req_cnf" parameter from
   [I-D.ietf-ace-oauth-params].



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "token"
OSCORE: 0x09, 0x05, 0x44, 0x6C
  (h=0, k=1, n=001, partialIV= 0x05, kid=[0x44, 0x6C])
Content‑Format: "application/oscore"
Payload:
  0x44025d1 ... (full payload omitted for brevity) ... 68b3825e

Decrypted payload:
{
  "client_id" : "myclient",
  "req_cnf" : {
    "COSE_Key" : {
      "kty" : "EC",
      "kid" : h'11',
      "crv" : "P‑256",
      "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
      "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
    }
  }
}



        Figure 6: Example token request bound to an asymmetric key.



   Figure 7 shows a request for a token where a previously communicated
   proof-of-possession key is only referenced using the "req_cnf"
   parameter from [I-D.ietf-ace-oauth-params].



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "token"
Content‑Format: "application/ace+cbor"
Payload:
{
  "client_id" : "myclient",
  "audience" : "valve424",
  "scope" : "read",
  "req_cnf" : {
    "kid" : b64'6kg0dXJM13U'
  }
}W



       Figure 7: Example request for an access token bound to a key

                                reference.



   Refresh tokens are typically not stored as securely as proof-of-
   possession keys in requesting clients.  Proof-of-possession based
   refresh token requests MUST NOT request different proof-of-possession
   keys or different audiences in token requests.  Refresh token
   requests can only use to request access tokens bound to the same
   proof-of-possession key and the same audience as access tokens issued
   in the initial token request.




5.6.2. AS-to-Client Response

   If the access token request has been successfully verified by the AS
   and the client is authorized to obtain an access token corresponding
   to its access token request, the AS sends a response with the
   response code equivalent to the CoAP response code 2.01 (Created).
   If client request was invalid, or not authorized, the AS returns an
   error response as described in Section 5.6.3.



Note that the AS decides which token type and profile to use when
issuing a successful response.  It is assumed that the AS has prior
knowledge of the capabilities of the client and the RS (see
Appendix D).  This prior knowledge may, for example, be set by the
use of a dynamic client registration protocol exchange [RFC7591].  If
the client has requested a specific proof‑of‑possession key using the
"req_cnf" parameter from [I‑D.ietf‑ace‑oauth‑params], this may also
influence which profile the AS selects, as it needs to support the
use of the key type requested the client.



   The content of the successful reply is the Access Information.  When
   using CBOR payloads, the content MUST be encoded as a CBOR map,
   containing parameters as specified in Section 5.1 of [RFC6749], with
   the following additions and changes:



   ace_profile:

      OPTIONAL unless the request included an empty ace_profile
      parameter in which case it is MANDATORY.  This indicates the
      profile that the client MUST use towards the RS.  See
      Section 5.6.4.3 for the formatting of this parameter.  If this
      parameter is absent, the AS assumes that the client implicitly
      knows which profile to use towards the RS.



   token_type:

      This parameter is OPTIONAL, as opposed to 'required' in [RFC6749].
      By default implementations of this framework SHOULD assume that
      the token_type is "PoP".  If a specific use case requires another
      token_type (e.g., "Bearer") to be used then this parameter is
      REQUIRED.



   Furthermore [I-D.ietf-ace-oauth-params] defines additional parameters
   that the AS MUST be able to use when responding to a request to the
   token endpoint.



   Figure 8 summarizes the parameters that can currently be part of the
   Access Information.  Future extensions may define additional
   parameters.



/‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Parameter name    | Specified in                  |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| access_token      |  RFC 6749                     |
| token_type        |  RFC 6749                     |
| expires_in        |  RFC 6749                     |
| refresh_token     |  RFC 6749                     |
| scope             |  RFC 6749                     |
| state             |  RFC 6749                     |
| error             |  RFC 6749                     |
| error_description |  RFC 6749                     |
| error_uri         |  RFC 6749                     |
| ace_profile       | [this document]               |
| cnf               | [I‑D.ietf‑ace‑oauth‑params]   |
| rs_cnf            | [I‑D.ietf‑ace‑oauth‑params]   |
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



                  Figure 8: Access Information parameters



   Figure 9 shows a response containing a token and a "cnf" parameter
   with a symmetric proof-of-possession key, which is defined in
   [I-D.ietf-ace-oauth-params].  Note that the key identifier 'kid' is
   only used to simplify indexing and retrieving the key, and no
   assumptions should be made that it is unique in the domains of either
   the client or the RS.



Header: Created (Code=2.01)
Content‑Format: "application/ace+cbor"
Payload:
{
  "access_token" : b64'SlAV32hkKG ...
   (remainder of CWT omitted for brevity;
   CWT contains COSE_Key in the "cnf" claim)',
  "ace_profile" : "coap_dtls",
  "expires_in" : "3600",
  "cnf" : {
    "COSE_Key" : {
      "kty" : "Symmetric",
      "kid" : b64'39Gqlw',
      "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
    }
  }
}



       Figure 9: Example AS response with an access token bound to a

                              symmetric key.




5.6.3. Error Response

   The error responses for CoAP-based interactions with the AS are
   generally equivalent to the ones for HTTP-based interactions as
   defined in Section 5.2 of [RFC6749], with the following exceptions:



   o  When using CBOR the raw payload before being processed by the
      communication security protocol MUST be encoded as a CBOR map.



   o  A response code equivalent to the CoAP code 4.00 (Bad Request)
      MUST be used for all error responses, except for invalid_client
      where a response code equivalent to the CoAP code 4.01
      (Unauthorized) MAY be used under the same conditions as specified
      in Section 5.2 of [RFC6749].



   o  The Content-Format (for CoAP-based interactions) or media type
      (for HTTP-based interactions) "application/ace+cbor" MUST be used
      for the error response.



   o  The parameters "error", "error_description" and "error_uri" MUST
      be abbreviated using the codes specified in Figure 12, when a CBOR
      encoding is used.



   o  The error code (i.e., value of the "error" parameter) MUST be
      abbreviated as specified in Figure 10, when a CBOR encoding is
      used.



/‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Name                   | CBOR Values |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑|
| invalid_request        |      1      |
| invalid_client         |      2      |
| invalid_grant          |      3      |
| unauthorized_client    |      4      |
| unsupported_grant_type |      5      |
| invalid_scope          |      6      |
| unsupported_pop_key    |      7      |
| incompatible_profiles  |      8      |
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑/



           Figure 10: CBOR abbreviations for common error codes



   In addition to the error responses defined in OAuth 2.0, the
   following behavior MUST be implemented by the AS:



o  If the client submits an asymmetric key in the token request that
   the RS cannot process, the AS MUST reject that request with a
   response code equivalent to the CoAP code 4.00 (Bad Request)
   including the error code "unsupported_pop_key" defined in
   Figure 10.



   o  If the client and the RS it has requested an access token for do
      not share a common profile, the AS MUST reject that request with a
      response code equivalent to the CoAP code 4.00 (Bad Request)
      including the error code "incompatible_profiles" defined in
      Figure 10.




5.6.4. Request and Response Parameters

   This section provides more detail about the new parameters that can
   be used in access token requests and responses, as well as
   abbreviations for more compact encoding of existing parameters and
   common parameter values.




5.6.4.1. Grant Type

   The abbreviations specified in the registry defined in Section 8.4
   MUST be used in CBOR encodings instead of the string values defined
   in [RFC6749], if CBOR payloads are used.



/‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Name               | CBOR Value | Original Specification |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| password           |      0     |       RFC6749          |
| authorization_code |      1     |       RFC6749          |
| client_credentials |      2     |       RFC6749          |
| refresh_token      |      3     |       RFC6749          |
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



           Figure 11: CBOR abbreviations for common grant types




5.6.4.2. Token Type

   The "token_type" parameter, defined in section 5.1 of [RFC6749],
   allows the AS to indicate to the client which type of access token it
   is receiving (e.g., a bearer token).



   This document registers the new value "PoP" for the OAuth Access
   Token Types registry, specifying a proof-of-possession token.  How
   the proof-of-possession by the client to the RS is performed MUST be
   specified by the profiles.



   The values in the "token_type" parameter MUST use the CBOR
   abbreviations defined in the registry specified by Section 8.6, if a
   CBOR encoding is used.



   In this framework the "pop" value for the "token_type" parameter is
   the default.  The AS may, however, provide a different value.




5.6.4.3. Profile

   Profiles of this framework MUST define the communication protocol and
   the communication security protocol between the client and the RS.
   The security protocol MUST provide encryption, integrity and replay
   protection.  It MUST also provide a binding between requests and
   responses.  Furthermore profiles MUST define a list of allowed proof-
   of-possession methods, if they support proof-of-possession tokens.



   A profile MUST specify an identifier that MUST be used to uniquely
   identify itself in the "ace_profile" parameter.  The textual
   representation of the profile identifier is just intended for human
   readability and MUST NOT be used in parameters and claims.  Profiles
   MUST register their identifier in the registry defined in
   Section 8.7.



   Profiles MAY define additional parameters for both the token request
   and the Access Information in the access token response in order to
   support negotiation or signaling of profile specific parameters.
   Clients that want the AS to provide them with the "ace_profile"
   parameter in the access token response can indicate that by sending a
   ace_profile parameter with a null value in the access token request.




5.6.4.4. Client-Nonce

   This parameter MUST be sent from the client to the AS, if it
   previously received a "cnonce" parameter in the AS Request Creation
   Hints Section 5.1.2.  The parameter is encoded as a byte string and
   copies the value from the cnonce parameter in the AS Request Creation
   Hints.




5.6.5. Mapping Parameters to CBOR

   If CBOR encoding is used, all OAuth parameters in access token
   requests and responses MUST be mapped to CBOR types as specified in
   the registry defined by Section 8.9, using the given integer
   abbreviation for the map keys.



   Note that we have aligned the abbreviations corresponding to claims
   with the abbreviations defined in [RFC8392].



   Note also that abbreviations from -24 to 23 have a 1 byte encoding
   size in CBOR.  We have thus chosen to assign abbreviations in that
   range to parameters we expect to be used most frequently in
   constrained scenarios.



/‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Name              | CBOR Key | Value Type          |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| access_token      | 1        | byte string         |
| expires_in        | 2        | unsigned integer    |
| audience          | 5        | text string         |
| scope             | 9        | text or byte string |
| client_id         | 24       | text string         |
| client_secret     | 25       | byte string         |
| response_type     | 26       | text string         |
| redirect_uri      | 27       | text string         |
| state             | 28       | text string         |
| code              | 29       | byte string         |
| error             | 30       | unsigned integer    |
| error_description | 31       | text string         |
| error_uri         | 32       | text string         |
| grant_type        | 33       | unsigned integer    |
| token_type        | 34       | unsigned integer    |
| username          | 35       | text string         |
| password          | 36       | text string         |
| refresh_token     | 37       | byte string         |
| ace_profile       | 38       | unsigned integer    |
| cnonce            | 39       | byte string         |
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



       Figure 12: CBOR mappings used in token requests and responses




5.7. The Introspection Endpoint

   Token introspection [RFC7662] can be OPTIONALLY provided by the AS,
   and is then used by the RS and potentially the client to query the AS
   for metadata about a given token, e.g., validity or scope.  Analogous
   to the protocol defined in [RFC7662] for HTTP and JSON, this section
   defines adaptations to more constrained environments using CBOR and
   leaving the choice of the application protocol to the profile.



   Communication between the requesting entity and the introspection
   endpoint at the AS MUST be integrity protected and encrypted.  The
   communication security protocol MUST also provide a binding between
   requests and responses.  Furthermore the two interacting parties MUST
   perform mutual authentication.  Finally the AS SHOULD verify that the
   requesting entity has the right to access introspection information
   about the provided token.  Profiles of this framework that support
   introspection MUST specify how authentication and communication
   security between the requesting entity and the AS is implemented.
   The default name of this endpoint in an url-path is '/introspect',
   however implementations are not required to use this name and can
   define their own instead.



   The figures of this section uses CBOR diagnostic notation without the
   integer abbreviations for the parameters or their values for better
   readability.



   Note that supporting introspection is OPTIONAL for implementations of
   this framework.




5.7.1. Introspection Request

   The requesting entity sends a POST request to the introspection
   endpoint at the AS.  The profile MUST specify how the communication
   is protected.  If CBOR is used, the payload MUST be encoded as a CBOR
   map with a "token" entry containing the access token.  Further
   optional parameters representing additional context that is known by
   the requesting entity to aid the AS in its response MAY be included.



   For CoAP-based interaction, all messages MUST use the content type
   "application/ace+cbor", while for HTTP-based interactions the
   equivalent media type "application/ace+cbor" MUST be used.



   The same parameters are required and optional as in Section 2.1 of
   [RFC7662].



   For example, Figure 13 shows a RS calling the token introspection
   endpoint at the AS to query about an OAuth 2.0 proof-of-possession
   token.  Note that object security based on OSCORE [RFC8613] is
   assumed in this example, therefore the Content-Format is
   "application/oscore".  Figure 14 shows the decoded payload.



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "introspect"
OSCORE: 0x09, 0x05, 0x25
Content‑Format: "application/oscore"
Payload:
... COSE content ...



                 Figure 13: Example introspection request.



{
  "token" : b64'7gj0dXJQ43U',
  "token_type_hint" : "PoP"
}



                        Figure 14: Decoded payload.




5.7.2. Introspection Response

   If the introspection request is authorized and successfully
   processed, the AS sends a response with the response code equivalent
   to the CoAP code 2.01 (Created).  If the introspection request was
   invalid, not authorized or couldn't be processed the AS returns an
   error response as described in Section 5.7.3.



   In a successful response, the AS encodes the response parameters in a
   map including with the same required and optional parameters as in
   Section 2.2 of [RFC7662] with the following addition:



ace_profile  OPTIONAL.  This indicates the profile that the RS MUST
   use with the client.  See Section 5.6.4.3 for more details on the
   formatting of this parameter.

cnonce  OPTIONAL.  A client‑nonce provided to the AS by the client.
   The RS MUST verify that this corresponds to the client‑nonce
   previously provided to the client in the AS Request Creation
   Hints.  See Section 5.1.2 and Section 5.6.4.4.

exi  OPTIONAL.  The "expires‑in" claim associated to this access
   token.  See Section 5.8.3.



   Furthermore [I-D.ietf-ace-oauth-params] defines more parameters that
   the AS MUST be able to use when responding to a request to the
   introspection endpoint.



   For example, Figure 15 shows an AS response to the introspection
   request in Figure 13.  Note that this example contains the "cnf"
   parameter defined in [I-D.ietf-ace-oauth-params].



Header: Created (Code=2.01)
Content‑Format: "application/ace+cbor"
Payload:
{
  "active" : true,
  "scope" : "read",
  "ace_profile" : "coap_dtls",
  "cnf" : {
    "COSE_Key" : {
      "kty" : "Symmetric",
      "kid" : b64'39Gqlw',
      "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
    }
  }
}



                Figure 15: Example introspection response.




5.7.3. Error Response

   The error responses for CoAP-based interactions with the AS are
   equivalent to the ones for HTTP-based interactions as defined in
   Section 2.3 of [RFC7662], with the following differences:



   o  If content is sent and CBOR is used the payload MUST be encoded as
      a CBOR map and the Content-Format "application/ace+cbor" MUST be
      used.



   o  If the credentials used by the requesting entity (usually the RS)
      are invalid the AS MUST respond with the response code equivalent
      to the CoAP code 4.01 (Unauthorized) and use the required and
      optional parameters from Section 5.2 in [RFC6749].



   o  If the requesting entity does not have the right to perform this
      introspection request, the AS MUST respond with a response code
      equivalent to the CoAP code 4.03 (Forbidden).  In this case no
      payload is returned.



   o  The parameters "error", "error_description" and "error_uri" MUST
      be abbreviated using the codes specified in Figure 12.



   o  The error codes MUST be abbreviated using the codes specified in
      the registry defined by Section 8.3.



   Note that a properly formed and authorized query for an inactive or
   otherwise invalid token does not warrant an error response by this
   specification.  In these cases, the authorization server MUST instead
   respond with an introspection response with the "active" field set to
   "false".




5.7.4. Mapping Introspection parameters to CBOR

   If CBOR is used, the introspection request and response parameters
   MUST be mapped to CBOR types as specified in the registry defined by
   Section 8.11, using the given integer abbreviation for the map key.



   Note that we have aligned abbreviations that correspond to a claim
   with the abbreviations defined in [RFC8392] and the abbreviations of
   parameters with the same name from Section 5.6.5.



/‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Parameter name    | CBOR Key | Value Type              |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| iss               | 1        | text string             |
| sub               | 2        | text string             |
| aud               | 3        | text string             |
| exp               | 4        | integer or              |
|                   |          |   floating‑point number |
| nbf               | 5        | integer or              |
|                   |          |   floating‑point number |
| iat               | 6        | integer or              |
|                   |          |   floating‑point number |
| cti               | 7        | byte string             |
| scope             | 9        | text or byte string     |
| active            | 10       | True or False           |
| token             | 11       | byte string             |
| client_id         | 24       | text string             |
| error             | 30       | unsigned integer        |
| error_description | 31       | text string             |
| error_uri         | 32       | text string             |
| token_type_hint   | 33       | text string             |
| token_type        | 34       | text string             |
| username          | 35       | text string             |
| ace_profile       | 38       | unsigned integer        |
| cnonce            | 39       | byte string             |
| exi               | 40       | unsigned integer        |
\‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



        Figure 16: CBOR Mappings to Token Introspection Parameters.




5.8. The Access Token

   This framework RECOMMENDS the use of CBOR web token (CWT) as
   specified in [RFC8392].



   In order to facilitate offline processing of access tokens, this
   document uses the "cnf" claim from
   [I-D.ietf-ace-cwt-proof-of-possession] and the "scope" claim from
   [I-D.ietf-oauth-token-exchange] for JWT- and CWT-encoded tokens.  In
   addition to string encoding specified for the "scope" claim, a binary
   encoding MAY be used.  The syntax of such an encoding is explicitly
   not specified here and left to profiles or applications, specifically
   note that a binary encoded scope does not necessarily use the space
   character '0x20' to delimit scope-tokens.



   If the AS needs to convey a hint to the RS about which profile it
   should use to communicate with the client, the AS MAY include an
   "ace_profile" claim in the access token, with the same syntax and
   semantics as defined in Section 5.6.4.3.



   If the client submitted a client-nonce parameter in the access token
   request Section 5.6.4.4, the AS MUST include the value of this
   parameter in the "cnonce" claim specified here.  The "cnonce" claim
   uses binary encoding.




5.8.1. The Authorization Information Endpoint

   The access token, containing authorization information and
   information about the proof-of-possession method used by the client,
   needs to be transported to the RS so that the RS can authenticate and
   authorize the client request.



   This section defines a method for transporting the access token to
   the RS using a RESTful protocol such as CoAP.  Profiles of this
   framework MAY define other methods for token transport.



   The method consists of an authz-info endpoint, implemented by the RS.
   A client using this method MUST make a POST request to the authz-info
   endpoint at the RS with the access token in the payload.  The RS
   receiving the token MUST verify the validity of the token.  If the
   token is valid, the RS MUST respond to the POST request with 2.01
   (Created).  Section Section 5.8.1.1 outlines how an RS MUST proceed
   to verify the validity of an access token.



   The RS MUST be prepared to store at least one access token for future
   use.  This is a difference to how access tokens are handled in OAuth
   2.0, where the access token is typically sent along with each
   request, and therefore not stored at the RS.



   This specification RECOMMENDS that an RS stores only one token per
   proof-of-possession key, meaning that an additional token linked to
   the same key will overwrite any existing token at the RS.  The reason
   is that this greatly simplifies (constrained) implementations, with
   respect to required storage and resolving a request to the applicable
   token.



   If the payload sent to the authz-info endpoint does not parse to a
   token, the RS MUST respond with a response code equivalent to the
   CoAP code 4.00 (Bad Request).



   The RS MAY make an introspection request to validate the token before
   responding to the POST request to the authz-info endpoint, e.g. if
   the token is an opaque reference.  Some transport protocols may
   provide a way to indicate that the RS is busy and the client should
   retry after an interval; this type of status update would be
   appropriate while the RS is waiting for an introspection response.



   Profiles MUST specify whether the authz-info endpoint is protected,
   including whether error responses from this endpoint are protected.
   Note that since the token contains information that allow the client
   and the RS to establish a security context in the first place, mutual
   authentication may not be possible at this point.



   The default name of this endpoint in an url-path is '/authz-info',
   however implementations are not required to use this name and can
   define their own instead.




5.8.1.1. Verifying an Access Token

   When an RS receives an access token, it MUST verify it before storing
   it.  The details of token verification depends on various aspects,
   including the token encoding, the type of token, the security
   protection applied to the token, and the claims.  The token encoding
   matters since the security wrapper differs between the token
   encodings.  For example, a CWT token uses COSE while a JWT token uses
   JOSE.  The type of token also has an influence on the verification
   procedure since tokens may be self-contained whereby token
   verification may happen locally at the RS while a token-by-reference
   requires further interaction with the authorization server, for
   example using token introspection, to obtain the claims associated
   with the token reference.  Self-contained tokens MUST, at a minimum,
   be integrity protected but they MAY also be encrypted.



   For self-contained tokens the RS MUST process the security protection
   of the token first, as specified by the respective token format.  For
   CWT the description can be found in [RFC8392] and for JWT the
   relevant specification is [RFC7519].  This MUST include a
   verification that security protection (and thus the token) was
   generated by an AS that has the right to issue access tokens for this
   RS.



   In case the token is communicated by reference the RS needs to obtain
   the claims first.  When the RS uses token introspection the relevant
   specification is [RFC7662] with CoAP transport specified in
   Section 5.7.



   Errors may happen during this initial processing stage:



   o  If token or claim verification fails, the RS MUST discard the
      token and, if this was an interaction with authz-info, return an
      error message with a response code equivalent to the CoAP code
      4.01 (Unauthorized).



   o  If the claims cannot be obtained the RS MUST discard the token
      and, in case of an interaction via the authz-info endpoint, return
      an error message with a response code equivalent to the CoAP code
      4.00 (Bad Request).



   Next, the RS MUST verify claims, if present, contained in the access
   token.  Errors are returned when claim checks fail, in the order of
   priority of this list:



iss  The issuer claim must identify an AS that has the authority to
   issue access tokens for the receiving RS.  If that is not the case
   the RS MUST discard the token.  If this was an interaction with
   authz‑info, the RS MUST also respond with a response code
   equivalent to the CoAP code 4.01 (Unauthorized).

exp  The expiration date must be in the future.  If that is not the
   case the RS MUST discard the token.  If this was an interaction
   with authz‑info the RS MUST also respond with a response code
   equivalent to the CoAP code 4.01 (Unauthorized).  Note that the RS
   has to terminate access rights to the protected resources at the
   time when the tokens expire.

aud  The audience claim must refer to an audience that the RS
   identifies with.  If that is not the case the RS MUST discard the
   token.  If this was an interaction with authz‑info, the RS MUST
   also respond with a response code equivalent to the CoAP code 4.03
   (Forbidden).

scope  The RS must recognize value of the scope claim.  If that is
   not the case the RS MUST discard the token.  If this was an
   interaction with authz‑info, the RS MUST also respond with a
   response code equivalent to the CoAP code 4.00 (Bad Request).  The
   RS MAY provide additional information in the error response, to
   clarify what went wrong.



   Additional processing may be needed for other claims in a way
   specific to a profile or the underlying application.



   Note that the Subject (sub) claim cannot always be verified when the
   token is submitted to the RS since the client may not have
   authenticated yet.  Also note that a counter for the expires_in (exi)
   claim MUST be initialized when the RS first verifies this token.



   Also note that profiles of this framework may define access token
   transport mechanisms that do not allow for error responses.
   Therefore the error messages specified here only apply if the token
   was sent to the authz-info endpoint.



   When sending error responses, the RS MAY use the error codes from
   Section 3.1 of [RFC6750], to provide additional details to the
   client.




5.8.1.2. Protecting the Authorization Information Endpoint

   As this framework can be used in RESTful environments, it is
   important to make sure that attackers cannot perform unauthorized
   requests on the authz-info endpoints, other than submitting access
   tokens.



   Specifically it SHOULD NOT be possible to perform GET, DELETE or PUT
   on the authz-info endpoint and on it's children (if any).



   The POST method SHOULD NOT be allowed on children of the authz-info
   endpoint.



   The RS SHOULD implement rate limiting measures to mitigate attacks
   aiming to overload the processing capacity of the RS by repeatedly
   submitting tokens.  For CoAP-based communication the RS could use the
   mechanisms from [RFC8516] to indicate that it is overloaded.




5.8.2. Client Requests to the RS

   Before sending a request to a RS, the client MUST verify that the
   keys used to protect this communication are still valid.  See
   Section 5.8.4 for details on how the client determines the validity
   of the keys used.



   If an RS receives a request from a client, and the target resource
   requires authorization, the RS MUST first verify that it has an
   access token that authorizes this request, and that the client has
   performed the proof-of-possession binding that token to the request.
   The response code MUST be 4.01 (Unauthorized) in case the client has
   not performed the proof-of-possession, or if RS has no valid access
   token for the client.  If RS has an access token for the client but
   the token does not authorize access for the resource that was
   requested, RS MUST reject the request with a 4.03 (Forbidden).  If RS
   has an access token for the client but it does not cover the action
   that was requested on the resource, RS MUST reject the request with a
   4.05 (Method Not Allowed).



   Note: The use of the response codes 4.03 and 4.05 is intended to
   prevent infinite loops where a dumb Client optimistically tries to
   access a requested resource with any access token received from AS.
   As malicious clients could pretend to be C to determine C's
   privileges, these detailed response codes must be used only when a
   certain level of security is already available which can be achieved
   only when the Client is authenticated.



   Note: The RS MAY use introspection for timely validation of an access
   token, at the time when a request is presented.



   Note: Matching the claims of the access token (e.g., scope) to a
   specific request is application specific.



   If the request matches a valid token and the client has performed the
   proof-of-possession for that token, the RS continues to process the
   request as specified by the underlying application.




5.8.3. Token Expiration

   Depending on the capabilities of the RS, there are various ways in
   which it can verify the expiration of a received access token.  Here
   follows a list of the possibilities including what functionality they
   require of the RS.



   o  The token is a CWT and includes an "exp" claim and possibly the
      "nbf" claim.  The RS verifies these by comparing them to values
      from its internal clock as defined in [RFC7519].  In this case the
      RS's internal clock must reflect the current date and time, or at
      least be synchronized with the AS's clock.  How this clock
      synchronization would be performed is out of scope for this
      specification.



   o  The RS verifies the validity of the token by performing an
      introspection request as specified in Section 5.7.  This requires
      the RS to have a reliable network connection to the AS and to be
      able to handle two secure sessions in parallel (C to RS and RS to
      AS).



   o  In order to support token expiration for devices that have no
      reliable way of synchronizing their internal clocks, this
      specification defines the following approach: The claim "exi"
      ("expires in") can be used, to provide the RS with the lifetime of
      the token in seconds from the time the RS first receives the
      token.  Processing this claim requires that the RS does the
      following:



      *  For each token the RS receives, that contains an "exi" claim:
         Keep track of the time it received that token and revisit that
         list regularly to expunge expired tokens.



      *  Keep track of the identifiers of tokens containing the "exi"
         claim that have expired (in order to avoid accepting them
         again).



   If a token that authorizes a long running request such as a CoAP
   Observe [RFC7641] expires, the RS MUST send an error response with
   the response code equivalent to the CoAP code 4.01 (Unauthorized) to
   the client and then terminate processing the long running request.




5.8.4. Key Expiration

   The AS provides the client with key material that the RS uses.  This
   can either be a common symmetric PoP-key, or an asymmetric key used
   by the RS to authenticate towards the client.  Since there is
   currently no expiration metadata associated to those keys, the client
   has no way of knowing if these keys are still valid.  This may lead
   to situations where the client sends requests containing sensitive
   information to the RS using a key that is expired and possibly in the
   hands of an attacker, or accepts responses from the RS that are not
   properly protected and could possibly have been forged by an
   attacker.



   In order to prevent this, the client must assume that those keys are
   only valid as long as the related access token is.  Since the access
   token is opaque to the client, one of the following methods MUST be
   used to inform the client about the validity of an access token:



   o  The client knows a default validity time for all tokens it is
      using (i.e. how long a token is valid after being issued).  This
      information could be provisioned to the client when it is
      registered at the AS, or published by the AS in a way that the
      client can query.



   o  The AS informs the client about the token validity using the
      "expires_in" parameter in the Access Information.



   A client that is not able to obtain information about the expiration
   of a token MUST NOT use this token.




6. Security Considerations

   Security considerations applicable to authentication and
   authorization in RESTful environments provided in OAuth 2.0 [RFC6749]
   apply to this work.  Furthermore [RFC6819] provides additional
   security considerations for OAuth which apply to IoT deployments as
   well.  If the introspection endpoint is used, the security
   considerations from [RFC7662] also apply.



   The following subsections address issues specific to this document
   and it's use in constrained environments.




6.1. Protecting Tokens

   A large range of threats can be mitigated by protecting the contents
   of the access token by using a digital signature or a keyed message
   digest (MAC) or an Authenticated Encryption with Associated Data
   (AEAD) algorithm.  Consequently, the token integrity protection MUST
   be applied to prevent the token from being modified, particularly
   since it contains a reference to the symmetric key or the asymmetric
   key used for proof-of-possession.  If the access token contains the
   symmetric key, this symmetric key MUST be encrypted by the
   authorization server so that only the resource server can decrypt it.
   Note that using an AEAD algorithm is preferable over using a MAC
   unless the token needs to be publicly readable.



   If the token is intended for multiple recipients (i.e. an audience
   that is a group), integrity protection of the token with a symmetric
   key, shared between the AS and the recipients, is not sufficient,
   since any of the recipients could modify the token undetected by the
   other recipients.  Therefore a token with a multi-recipient audience
   MUST be protected with an asymmetric signature.



   It is important for the authorization server to include the identity
   of the intended recipient (the audience), typically a single resource
   server (or a list of resource servers), in the token.  Using a single
   shared secret as proof-of-possession key with multiple resource
   servers is NOT RECOMMENDED since the benefit from using the proof-of-
   possession concept is then significantly reduced.



   If clients are capable of doing so, they should frequently request
   fresh access tokens, as this allows the AS to keep the lifetime of
   the tokens short.  This allows the AS to use shorter proof-of-
   possession key sizes, which translate to a performance benefit for
   the client and for the resource server.  Shorter keys also lead to
   shorter messages (particularly with asymmetric keying material).



   When authorization servers bind symmetric keys to access tokens, they
   SHOULD scope these access tokens to a specific permission.



   In certain situations it may be necessary to revoke an access token
   that is still valid.  Client-initiated revocation is specified in
   [RFC7009] for OAuth 2.0.  Other revocation mechanisms are currently
   not specified, as the underlying assumption in OAuth is that access
   tokens are issued with a relatively short lifetime.  This may not
   hold true for disconnected constrained devices, needing access tokens
   with relatively long lifetimes, and would therefore necessitate
   further standardization work that is out of scope for this document.




6.2. Communication Security

   The authorization server MUST offer confidentiality protection for
   any interactions with the client.  This step is extremely important
   since the client may obtain the proof-of-possession key from the
   authorization server for use with a specific access token.  Not using
   confidentiality protection exposes this secret (and the access token)
   to an eavesdropper thereby completely negating proof-of-possession
   security.  Profiles MUST specify how communication security according
   to the requirements in Section 5 is provided.



   Additional protection for the access token can be applied by
   encrypting it, for example encryption of CWTs is specified in
   Section 5.1 of [RFC8392].  Such additional protection can be
   necessary if the token is later transferred over an insecure
   connection (e.g. when it is sent to the authz-info endpoint).



   Developers MUST ensure that the ephemeral credentials (i.e., the
   private key or the session key) are not leaked to third parties.  An
   adversary in possession of the ephemeral credentials bound to the
   access token will be able to impersonate the client.  Be aware that
   this is a real risk with many constrained environments, since
   adversaries can often easily get physical access to the devices.
   This risk can also be mitigated to some extent by making sure that
   keys are refreshed more frequently.




6.3. Long-Term Credentials

   Both clients and RSs have long-term credentials that are used to
   secure communications, and authenticate to the AS.  These credentials
   need to be protected against unauthorized access.  In constrained
   devices, deployed in publicly accessible places, such protection can
   be difficult to achieve without specialized hardware (e.g. secure key
   storage memory).



   If credentials are lost or compromised, the operator of the affected
   devices needs to have procedures to invalidate any access these
   credentials give and to revoke tokens linked to such credentials.
   The loss of a credential linked to a specific device MUST NOT lead to
   a compromise of other credentials not linked to that device,
   therefore sharing secret keys between more than two parties is NOT
   RECOMMENDED.



   Operators of clients or RS should have procedures in place to replace
   credentials that are suspected to have been compromised or that have
   been lost.



   Operators also need to have procedures for decommissioning devices,
   that include securely erasing credentials and other security critical
   material in the devices being decommissioned.




6.4. Unprotected AS Request Creation Hints

   Initially, no secure channel exists to protect the communication
   between C and RS.  Thus, C cannot determine if the AS Request
   Creation Hints contained in an unprotected response from RS to an
   unauthorized request (see Section 5.1.2) are authentic.  It is
   therefore advisable to provide C with a (possibly hard-coded) list of
   trustworthy authorization servers, possibly including information
   used to authenticate the AS, such as a public key or certificate
   fingerprint.  AS Request Creation Hints referring to a URI not listed
   there would be ignored.



   A compromised RS may use the hints to trick a client into contacting
   an AS that is not supposed to be in charge of that RS.  Since this AS
   must be in the hard-coded list of trusted AS no violation of
   privileges and or exposure of credentials should happen, since a
   trusted AS is expected to refuse requestes for which it is not
   applicable and render a corresponding error response.  However a
   compromised RS may use this to perform a denial of service against a
   specific AS, by redirecting a large number of client requests to that
   AS.



   A compromised client can be made to contact any AS, including
   compromised ones.  This should not affect the RS, since it is
   supposed to keep track of which AS are trusted and have corresponding
   credentials to verify the source of access tokens it receives.




6.5. Minimal security requirements for communication

   This section summarizes the minimal requirements for the
   communication security of the different protocol interactions.



C‑AS  All communication between the client and the Authorization
   Server MUST be encrypted, integrity and replay protected.
   Furthermore responses from the AS to the client MUST be bound to
   the client's request to avoid attacks where the attacker swaps the
   intended response for an older one valid for a previous request.
   This requires that the client and the Authorization Server have
   previously exchanged either a shared secret or their public keys
   in order to negotiate a secure communication.  Furthermore the
   client MUST be able to determine whether an AS has the authority
   to issue access tokens for a certain RS.  This can for example be
   done through pre‑configured lists, or through an online lookup
   mechanism that in turn also must be secured.

RS‑AS  The communication between the Resource Server and the
   Authorization Server via the introspection endpoint MUST be
   encrypted, integrity and replay protected.  Furthermore responses
   from the AS to the RS MUST be bound to the RS's request.  This
   requires that the RS and the Authorization Server have previously
   exchanged either a shared secret, or their public keys in order to
   negotiate a secure communication.  Furthermore the RS MUST be able
   to determine whether an AS has the authority to issue access
   tokens itself.  This is usually configured out of band, but could
   also be performed through an online lookup mechanism provided that
   it is also secured in the same way.

C‑RS  The initial communication between the client and the Resource
   Server can not be secured in general, since the RS is not in
   possession of on access token for that client, which would carry
   the necessary parameters.  Certain security mechanisms (e.g.  DTLS
   with server‑side authentication via a certificate or a raw public
   key) can be possible and are RECOMMEND if supported by both
   parties.  After the client has successfully transmitted the access
   token to the RS, a secure communication protocol MUST be
   established between client and RS for the actual resource request.
   This protocol MUST provide confidentiality, integrity and replay
   protection as well as a binding between requests and responses.
   This requires that the client learned either the RS's public key
   or received a symmetric proof‑of‑possession key bound to the
   access token from the AS.  The RS must have learned either the
   client's public key or a shared symmetric key from the claims in
   the token or an introspection request.  Since ACE does not provide
   profile negotiation between C and RS, the client MUST have learned



      what profile the RS supports (e.g. from the AS or pre-configured)
      and initiate the communication accordingly.




6.6. Token Freshness and Expiration

   An RS that is offline faces the problem of clock drift.  Since it
   cannot synchronize its clock with the AS, it may be tricked into
   accepting old access tokens that are no longer valid or have been
   compromised.  In order to prevent this, an RS may use the nonce-based
   mechanism defined in Section 5.1.2 to ensure freshness of an Access
   Token subsequently presented to this RS.



   Another problem with clock drift is that evaluating the standard
   token expiration claim "exp" can give unpredictable results.



   The expiration mechanism implemented by the "exi" claim, based on the
   first time the RS sees the token was defined to provide a more
   predictable alternative.  The "exi" approach has some drawbacks that
   need to be considered:



      A malicious client may hold back tokens with the "exi" claim in
      order to prolong their lifespan.



      If an RS loses state (e.g. due to an unscheduled reboot), it may
      loose the current values of counters tracking the "exi" claims of
      tokens it is storing.



      The RS needs to keep state about expired tokens that used "exi" in
      order to be sure not to accept it again.  Attacker may use this to
      deplete the RS's storage resources.



   The first drawback is inherent to the deployment scenario and the
   "exi" solution.  It can therefore not be mitigated without requiring
   the the RS be online at times.  The second drawback can be mitigated
   by regularly storing the value of "exi" counters to persistent
   memory.  The third problem can be mitigated by the AS, by assigning
   identifiers (e.g. 'cti') to the tokens, that include a RS identifier
   and a sequence number.  The RS would then just have to store the
   highest sequence number of an expired token it has seen, thus
   limiting the necessary state.




6.7. Combining profiles

   There may be use cases were different profiles of this framework are
   combined.  For example, an MQTT-TLS profile is used between the
   client and the RS in combination with a CoAP-DTLS profile for
   interactions between the client and the AS.  The security of a
   profile MUST NOT depend on the assumption that the profile is used
   for all the different types of interactions in this framework.




6.8. Unprotected Information

   Communication with the authz-info endpoint, as well as the various
   error responses defined in this framework, all potentially include
   sending information over an unprotected channel.  These messages may
   leak information to an adversary.  For example error responses for
   requests to the Authorization Information endpoint can reveal
   information about an otherwise opaque access token to an adversary
   who has intercepted this token.



   As far as error messages are concerned, this framework is written
   under the assumption that, in general, the benefits of detailed error
   messages outweigh the risk due to information leakage.  For
   particular use cases, where this assessment does not apply, detailed
   error messages can be replaced by more generic ones.



   In some scenarios it may be possible to protect the communication
   with the authz-info endpoint (e.g. through DTLS with only server-side
   authentication).  In cases where this is not possible this framework
   RECOMMENDS to use encrypted CWTs or tokens that are opaque references
   and need to be subjected to introspection by the RS.



   If the initial unauthorized resource request message (see
   Section 5.1.1) is used, the client MUST make sure that it is not
   sending sensitive content in this request.  While GET and DELETE
   requests only reveal the target URI of the resource, POST and PUT
   requests would reveal the whole payload of the intended operation.



   Since the client is not authenticated at the point when it is
   submitting an access token to the authz-info endpoint, attackers may
   be pretending to be a client and trying to trick an RS to use an
   obsole profile that in turn specifies a vulnerable security mechanism
   via the authz-info endpoint.  Such an attack would require a valid
   access token containing a "profile" claim requesting the use of said
   obsolete profile.  Resource Owners should update the configuration of
   their RS's to prevent them from using such obsolete profiles.




6.9. Identifying audiences

   The audience claim as defined in [RFC7519] and the equivalent
   "audience" parameter from [I-D.ietf-oauth-token-exchange] are
   intentionally vague on how to match the audience value to a specific
   RS.  This is intended to allow application specific semantics to be
   used.  This section attempts to give some general guidance for the
   use of audiences in constrained environments.



   URLs are not a good way of identifying mobile devices that can switch
   networks and thus be associated with new URLs.  If the audience
   represents a single RS, and asymmetric keys are used, the RS can be
   uniquely identified by a hash of its public key.  If this approach is
   used this framework RECOMMENDS to apply the procedure from section 3
   of [RFC6920].



   If the audience addresses a group of resource servers, the mapping of
   group identifier to individual RS has to be provisioned to each RS
   before the group-audience is usable.  Managing dynamic groups could
   be an issue, if any RS is not always reachable when the groups'
   memberships change.  Furthermore, issuing access tokens bound to
   symmetric proof-of-possession keys that apply to a group-audience is
   problematic, as an RS that is in possession of the access token can
   impersonate the client towards the other RSs that are part of the
   group.  It is therefore NOT RECOMMENDED to issue access tokens bound
   to a group audience and symmetric proof-of possession keys.



   Even the client must be able to determine the correct values to put
   into the "audience" parameter, in order to obtain a token for the
   intended RS.  Errors in this process can lead to the client
   inadvertently obtaining a token for the wrong RS.  The correct values
   for "audience" can either be provisioned to the client as part of its
   configuration, or dynamically looked up by the client in some
   directory.  In the latter case the integrity and correctness of the
   directory data must be assured.  Note that the "audience" hint
   provided by the RS as part of the "AS Request Creation Hints"
   Section 5.1.2 is not typically source authenticated and integrity
   protected, and should therefore not be treated a trusted value.




6.10. Denial of service against or with Introspection

   The optional introspection mechanism provided by OAuth and supported
   in the ACE framework allows for two types of attacks that need to be
   considered by implementers.



   First, an attacker could perform a denial of service attack against
   the introspection endpoint at the AS in order to prevent validation
   of access tokens.  To maintain the security of the system, an RS that
   is configured to use introspection MUST NOT allow access based on a
   token for which it couldn't reach the introspection endpoint.



   Second, an attacker could use the fact that an RS performs
   introspection to perform a denial of service attack against that RS
   by repeatedly sending tokens to its authz-info endpoint that require
   an introspection call.  RS can mitigate such attacks by implementing
   rate limits on how many introspection requests they perform in a
   given time interval for a certain client IP address submitting tokens
   to /authz-info.  When that limit has been reached, incoming requests
   from that address are rejected for a certain amount of time.  A
   general rate limit on the introspection requests should also be
   considered, to mitigate distributed attacks.




7. Privacy Considerations

   Implementers and users should be aware of the privacy implications of
   the different possible deployments of this framework.



   The AS is in a very central position and can potentially learn
   sensitive information about the clients requesting access tokens.  If
   the client credentials grant is used, the AS can track what kind of
   access the client intends to perform.  With other grants this can be
   prevented by the Resource Owner.  To do so, the resource owner needs
   to bind the grants it issues to anonymous, ephemeral credentials that
   do not allow the AS to link different grants and thus different
   access token requests by the same client.



   The claims contained in a token can reveal privacy sensitive
   information about the client and the RS to any party having access to
   them (whether by processing the content of a self-contained token or
   by introspection).  The AS SHOULD be configured to minimize the
   information about clients and RSs disclosed in the tokens it issues.



   If tokens are only integrity protected and not encrypted, they may
   reveal information to attackers listening on the wire, or able to
   acquire the access tokens in some other way.  In the case of CWTs the
   token may, e.g., reveal the audience, the scope and the confirmation
   method used by the client.  The latter may reveal the identity of the
   device or application running the client.  This may be linkable to
   the identity of the person using the client (if there is a person and
   not a machine-to-machine interaction).



   Clients using asymmetric keys for proof-of-possession should be aware
   of the consequences of using the same key pair for proof-of-
   possession towards different RSs.  A set of colluding RSs or an
   attacker able to obtain the access tokens will be able to link the
   requests, or even to determine the client's identity.



   An unprotected response to an unauthorized request (see
   Section 5.1.2) may disclose information about RS and/or its existing
   relationship with C.  It is advisable to include as little
   information as possible in an unencrypted response.  If means of
   encrypting communication between C and RS already exist, more
   detailed information may be included with an error response to
   provide C with sufficient information to react on that particular
   error.




8. IANA Considerations

   This document creates several registries with a registration policy
   of "Expert Review"; guidelines to the experts are given in
   Section 8.16.




8.1. ACE Authorization Server Request Creation Hints

   This specification establishes the IANA "ACE Authorization Server
   Request Creation Hints" registry.  The registry has been created to
   use the "Expert Review" registration procedure [RFC8126].  It should
   be noted that, in addition to the expert review, some portions of the
   registry require a specification, potentially a Standards Track RFC,
   be supplied as well.



   The columns of the registry are:



Name  The name of the parameter

CBOR Key  CBOR map key for the parameter.  Different ranges of values
   use different registration policies [RFC8126].  Integer values
   from ‑256 to 255 are designated as Standards Action.  Integer
   values from ‑65536 to ‑257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than ‑65536 are
   marked as Private Use.

Value Type  The CBOR data types allowable for the values of this
   parameter.

Reference  This contains a pointer to the public specification of the
   request creation hint abbreviation, if one exists.



   This registry will be initially populated by the values in Figure 2.
   The Reference column for all of these entries will be this document.




8.2. OAuth Extensions Error Registration

   This specification registers the following error values in the OAuth
   Extensions Error registry [IANA.OAuthExtensionsErrorRegistry].



o  Error name: "unsupported_pop_key"
o  Error usage location: token error response
o  Related protocol extension: The ACE framework [this document]
o  Change Controller: IESG
o  Specification document(s): Section 5.6.3 of [this document]



   o  Error name: "incompatible_profiles"



o  Error usage location: token error response
o  Related protocol extension: The ACE framework [this document]
o  Change Controller: IESG
o  Specification document(s): Section 5.6.3 of [this document]




8.3. OAuth Error Code CBOR Mappings Registry

   This specification establishes the IANA "OAuth Error Code CBOR
   Mappings" registry.  The registry has been created to use the "Expert
   Review" registration procedure [RFC8126], except for the value range
   designated for private use.



   The columns of the registry are:



Name  The OAuth Error Code name, refers to the name in Section 5.2.
   of [RFC6749], e.g., "invalid_request".
CBOR Value  CBOR abbreviation for this error code.  Integer values
   less than ‑65536 are marked as "Private Use", all other values use
   the registration policy "Expert Review" [RFC8126].
Reference  This contains a pointer to the public specification of the
   error code abbreviation, if one exists.



   This registry will be initially populated by the values in Figure 10.
   The Reference column for all of these entries will be this document.




8.4. OAuth Grant Type CBOR Mappings

   This specification establishes the IANA "OAuth Grant Type CBOR
   Mappings" registry.  The registry has been created to use the "Expert
   Review" registration procedure [RFC8126], except for the value range
   designated for private use.



   The columns of this registry are:



Name  The name of the grant type as specified in Section 1.3 of
   [RFC6749].
CBOR Value  CBOR abbreviation for this grant type.  Integer values
   less than ‑65536 are marked as "Private Use", all other values use
   the registration policy "Expert Review" [RFC8126].
Reference  This contains a pointer to the public specification of the
   grant type abbreviation, if one exists.
Original Specification  This contains a pointer to the public
   specification of the grant type, if one exists.



   This registry will be initially populated by the values in Figure 11.
   The Reference column for all of these entries will be this document.




8.5. OAuth Access Token Types

   This section registers the following new token type in the "OAuth
   Access Token Types" registry [IANA.OAuthAccessTokenTypes].



o  Type name: "PoP"
o  Additional Token Endpoint Response Parameters: "cnf", "rs_cnf" see
   section 3.3 of [I‑D.ietf‑ace‑oauth‑params].
o  HTTP Authentication Scheme(s): N/A
o  Change Controller: IETF
o  Specification document(s): [this document]




8.6. OAuth Access Token Type CBOR Mappings

   This specification established the IANA "OAuth Access Token Type CBOR
   Mappings" registry.  The registry has been created to use the "Expert
   Review" registration procedure [RFC8126], except for the value range
   designated for private use.



   The columns of this registry are:



Name  The name of token type as registered in the OAuth Access Token
   Types registry, e.g., "Bearer".
CBOR Value  CBOR abbreviation for this token type.  Integer values
   less than ‑65536 are marked as "Private Use", all other values use
   the registration policy "Expert Review" [RFC8126].
Reference  This contains a pointer to the public specification of the
   OAuth token type abbreviation, if one exists.
Original Specification  This contains a pointer to the public
   specification of the OAuth token type, if one exists.




8.6.1. Initial Registry Contents

o  Name: "Bearer"
o  Value: 1
o  Reference: [this document]
o  Original Specification: [RFC6749]

o  Name: "PoP"
o  Value: 2
o  Reference: [this document]
o  Original Specification: [this document]




8.7. ACE Profile Registry

   This specification establishes the IANA "ACE Profile" registry.  The
   registry has been created to use the "Expert Review" registration
   procedure [RFC8126].  It should be noted that, in addition to the
   expert review, some portions of the registry require a specification,
   potentially a Standards Track RFC, be supplied as well.



   The columns of this registry are:



Name  The name of the profile, to be used as value of the profile
   attribute.
Description  Text giving an overview of the profile and the context
   it is developed for.
CBOR Value  CBOR abbreviation for this profile name.  Different
   ranges of values use different registration policies [RFC8126].
   Integer values from ‑256 to 255 are designated as Standards
   Action.  Integer values from ‑65536 to ‑257 and from 256 to 65535
   are designated as Specification Required.  Integer values greater
   than 65535 are designated as "Expert Review".  Integer values less
   than ‑65536 are marked as Private Use.
Reference  This contains a pointer to the public specification of the
   profile abbreviation, if one exists.



   This registry will be initially empty and will be populated by the
   registrations from the ACE framework profiles.




8.8. OAuth Parameter Registration

   This specification registers the following parameter in the "OAuth
   Parameters" registry [IANA.OAuthParameters]:



o  Name: "ace_profile"
o  Parameter Usage Location: token response
o  Change Controller: IESG
o  Reference: Section 5.6.4.3 of [this document]




8.9. OAuth Parameters CBOR Mappings Registry

   This specification establishes the IANA "OAuth Parameters CBOR
   Mappings" registry.  The registry has been created to use the "Expert
   Review" registration procedure [RFC8126], except for the value range
   designated for private use.



   The columns of this registry are:



Name  The OAuth Parameter name, refers to the name in the OAuth
   parameter registry, e.g., "client_id".
CBOR Key  CBOR map key for this parameter.  Integer values less than
   ‑65536 are marked as "Private Use", all other values use the
   registration policy "Expert Review" [RFC8126].
Value Type  The allowable CBOR data types for values of this
   parameter.

Reference  This contains a pointer to the public specification of the
   OAuth parameter abbreviation, if one exists.



   This registry will be initially populated by the values in Figure 12.
   The Reference column for all of these entries will be this document.




8.10. OAuth Introspection Response Parameter Registration

   This specification registers the following parameter in the OAuth
   Token Introspection Response registry
   [IANA.TokenIntrospectionResponse].



o  Name: "ace_profile"
o  Description: The communication and communication security profile
   used between client and RS, as defined in ACE profiles.
o  Change Controller: IESG
o  Reference: Section 5.7.2 of [this document]




8.11. OAuth Token Introspection Response CBOR Mappings Registry

   This specification establishes the IANA "OAuth Token Introspection
   Response CBOR Mappings" registry.  The registry has been created to
   use the "Expert Review" registration procedure [RFC8126], except for
   the value range designated for private use.



   The columns of this registry are:



Name  The OAuth Parameter name, refers to the name in the OAuth
   parameter registry, e.g., "client_id".
CBOR Key  CBOR map key for this parameter.  Integer values less than
   ‑65536 are marked as "Private Use", all other values use the
   registration policy "Expert Review" [RFC8126].
Value Type  The allowable CBOR data types for values of this
   parameter.
Reference  This contains a pointer to the public specification of the
   introspection response parameter abbreviation, if one exists.



   This registry will be initially populated by the values in Figure 16.
   The Reference column for all of these entries will be this document.



   Note that the mappings of parameters corresponding to claim names
   intentionally coincide with the CWT claim name mappings from
   [RFC8392].




8.12. JSON Web Token Claims

   This specification registers the following new claims in the JSON Web
   Token (JWT) registry of JSON Web Token Claims
   [IANA.JsonWebTokenClaims]:



o  Claim Name: "ace_profile"
o  Claim Description: The profile a token is supposed to be used
   with.
o  Change Controller: IESG
o  Reference: Section 5.8 of [this document]

o  Claim Name: "exi"
o  Claim Description: "Expires in".  Lifetime of the token in seconds
   from the time the RS first sees it.  Used to implement a weaker
   from of token expiration for devices that cannot synchronize their
   internal clocks.
o  Change Controller: IESG
o  Reference: Section 5.8.3 of [this document]

o  Claim Name: "cnonce"
o  Claim Description: "client‑nonce".  A nonce previously provided to
   the AS by the RS via the client.  Used to verify token freshness
   when the RS cannot synchronize its clock with the AS.
o  Change Controller: IESG
o  Reference: Section 5.8 of [this document]




8.13. CBOR Web Token Claims

   This specification registers the following new claims in the "CBOR
   Web Token (CWT) Claims" registry [IANA.CborWebTokenClaims].



o  Claim Name: "scope"
o  Claim Description: The scope of an access token as defined in
   [RFC6749].
o  JWT Claim Name: scope
o  Claim Key: TBD (suggested: 9)
o  Claim Value Type(s): byte string or text string
o  Change Controller: IESG
o  Specification Document(s): Section 4.2 of
   [I‑D.ietf‑oauth‑token‑exchange]

o  Claim Name: "ace_profile"
o  Claim Description: The profile a token is supposed to be used
   with.
o  JWT Claim Name: ace_profile
o  Claim Key: TBD (suggested: 38)
o  Claim Value Type(s): integer

o  Change Controller: IESG
o  Specification Document(s): Section 5.8 of [this document]

o  Claim Name: "exi"
o  Claim Description: The expiration time of a token measured from
   when it was received at the RS in seconds.
o  JWT Claim Name: exi
o  Claim Key: TBD (suggested: 40)
o  Claim Value Type(s): integer
o  Change Controller: IESG
o  Specification Document(s): Section 5.8.3 of [this document]

o  Claim Name: "cnonce"
o  Claim Description: The client‑nonce sent to the AS by the RS via
   the client.
o  JWT Claim Name: cnonce
o  Claim Key: TBD (suggested: 39)
o  Claim Value Type(s): byte string
o  Change Controller: IESG
o  Specification Document(s): Section 5.8 of [this document]




8.14. Media Type Registrations

   This specification registers the 'application/ace+cbor' media type
   for messages of the protocols defined in this document carrying
   parameters encoded in CBOR.  This registration follows the procedures
   specified in [RFC6838].



   Type name: application



   Subtype name: ace+cbor



   Required parameters: none



   Optional parameters: none



   Encoding considerations: Must be encoded as CBOR map containing the
   protocol parameters defined in [this document].



   Security considerations: See Section 6 of this document.



   Interoperability considerations: n/a



   Published specification: [this document]



   Applications that use this media type: The type is used by
   authorization servers, clients and resource servers that support the
   ACE framework as specified in [this document].



   Additional information:



   Magic number(s): n/a



   File extension(s): .ace



   Macintosh file type code(s): n/a



   Person & email address to contact for further information:
   <iesg@ietf.org>



   Intended usage: COMMON



   Restrictions on usage: None



   Author: Ludwig Seitz <ludwig.setiz@ri.se>



   Change controller: IESG




8.15. CoAP Content-Format Registry

   This specification registers the following entry to the "CoAP
   Content-Formats" registry:



   Media Type: application/ace+cbor



   Encoding



   ID: 19



   Reference: [this document]




8.16. Expert Review Instructions

   All of the IANA registries established in this document are defined
   to use a registration policy of Expert Review.  This section gives
   some general guidelines for what the experts should be looking for,
   but they are being designated as experts for a reason, so they should
   be given substantial latitude.



   Expert reviewers should take into consideration the following points:



   o  Point squatting should be discouraged.  Reviewers are encouraged
      to get sufficient information for registration requests to ensure
      that the usage is not going to duplicate one that is already
      registered, and that the point is likely to be used in
      deployments.  The zones tagged as private use are intended for



   testing purposes and closed environments; code points in other
   ranges should not be assigned for testing.
o  Experts should take into account the expected usage of fields when
   approving point assignment.  The fact that there is a range for
   standards track documents does not mean that a standards track
   document cannot have points assigned outside of that range.  The
   length of the encoded value should be weighed against how many
   code points of that length are left, the size of device it will be
   used on.
o  Since a high degree of overlap is expected between these
   registries and the contents of the OAuth parameters
   [IANA.OAuthParameters] registries, experts should require new
   registrations to maintain alignment with parameters from OAuth
   that have comparable functionality.  Deviation from this alignment
   should only be allowed if there are functional differences, that
   are motivated by the use case and that cannot be easily or
   efficiently addressed by comparable OAuth parameters.




9. Acknowledgments

   This document is a product of the ACE working group of the IETF.



   Thanks to Eve Maler for her contributions to the use of OAuth 2.0 and
   UMA in IoT scenarios, Robert Taylor for his discussion input, and
   Malisa Vucinic for his input on the predecessors of this proposal.



   Thanks to the authors of draft-ietf-oauth-pop-key-distribution, from
   where large parts of the security considerations where copied.



   Thanks to Stefanie Gerdes, Olaf Bergmann, and Carsten Bormann for
   contributing their work on AS discovery from draft-gerdes-ace-dcaf-
   authorize (see Section 5.1).



   Thanks to Jim Schaad and Mike Jones for their comprehensive reviews.



   Thanks to Benjamin Kaduk for his input on various questions related
   to this work.



   Thanks to Cigdem Sengul for some very useful review comments.



   Ludwig Seitz and Goeran Selander worked on this document as part of
   the CelticPlus project CyberWI, with funding from Vinnova.  Ludwig
   Seitz was also received further funding for this work by Vinnova in
   the context of the CelticNext project Critisec.




10. References


10.1. Normative References


   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-11 (work in progress), October 2019.




   [I-D.ietf-ace-oauth-params]

              Seitz, L., "Additional OAuth Parameters for Authorization
              in Constrained Environments (ACE)", draft-ietf-ace-oauth-
              params-06 (work in progress), November 2019.




   [I-D.ietf-oauth-token-exchange]

              Jones, M., Nadalin, A., Campbell, B., Bradley, J., and C.
              Mortimore, "OAuth 2.0 Token Exchange", draft-ietf-oauth-
              token-exchange-19 (work in progress), July 2019.




   [IANA.CborWebTokenClaims]

              IANA, "CBOR Web Token (CWT) Claims",
              <https://www.iana.org/assignments/cwt/
              cwt.xhtml#claims-registry>.




   [IANA.JsonWebTokenClaims]

              IANA, "JSON Web Token Claims",
              <https://www.iana.org/assignments/jwt/jwt.xhtml#claims>.




   [IANA.OAuthAccessTokenTypes]

              IANA, "OAuth Access Token Types",
              <https://www.iana.org/assignments/oauth-parameters/
              oauth-parameters.xhtml#token-types>.




   [IANA.OAuthExtensionsErrorRegistry]

              IANA, "OAuth Extensions Error Registry",
              <https://www.iana.org/assignments/oauth-parameters/
              oauth-parameters.xhtml#extensions-error>.




   [IANA.OAuthParameters]

              IANA, "OAuth Parameters",
              <https://www.iana.org/assignments/oauth-parameters/
              oauth-parameters.xhtml#parameters>.




   [IANA.TokenIntrospectionResponse]

              IANA, "OAuth Token Introspection Response",
              <https://www.iana.org/assignments/oauth-parameters/
              oauth-parameters.xhtml#token-introspection-response>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3986]
  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.




   [RFC4949]
  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.




   [RFC6347]
  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.




   [RFC6749]
  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC6749, October 2012,
              <https://www.rfc-editor.org/info/rfc6749>.




   [RFC6750]
  Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
              Framework: Bearer Token Usage", RFC 6750,
              DOI 10.17487/RFC6750, October 2012,
              <https://www.rfc-editor.org/info/rfc6750>.




   [RFC6838]
  Freed, N., Klensin, J., and T. Hansen, "Media Type
              Specifications and Registration Procedures", BCP 13,
              RFC 6838, DOI 10.17487/RFC6838, January 2013,
              <https://www.rfc-editor.org/info/rfc6838>.




   [RFC6920]
  Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
              Keranen, A., and P. Hallam-Baker, "Naming Things with
              Hashes", RFC 6920, DOI 10.17487/RFC6920, April 2013,
              <https://www.rfc-editor.org/info/rfc6920>.




   [RFC7049]
  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC7519]
  Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
              <https://www.rfc-editor.org/info/rfc7519>.




   [RFC7662]
  Richer, J., Ed., "OAuth 2.0 Token Introspection",
              RFC 7662, DOI 10.17487/RFC7662, October 2015,
              <https://www.rfc-editor.org/info/rfc7662>.




   [RFC8126]
  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8392]
  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
              "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
              May 2018, <https://www.rfc-editor.org/info/rfc8392>.




10.2. Informative References


   [BLE]
      Bluetooth SIG, "Bluetooth Core Specification v5.1",
              Section 4.4, January 2019,
              <https://www.bluetooth.com/specifications/
              bluetooth-core-specification/>.




   [I-D.erdtman-ace-rpcc]

              Seitz, L. and S. Erdtman, "Raw-Public-Key and Pre-Shared-
              Key as OAuth client credentials", draft-erdtman-ace-
              rpcc-02 (work in progress), October 2017.




   [I-D.ietf-quic-transport]

              Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
              and Secure Transport", draft-ietf-quic-transport-24 (work
              in progress), November 2019.




   [I-D.ietf-tls-dtls13]

              Rescorla, E., Tschofenig, H., and N. Modadugu, "The
              Datagram Transport Layer Security (DTLS) Protocol Version
              1.3", draft-ietf-tls-dtls13-34 (work in progress), November
              2019.




   [Margi10impact]

              Margi, C., de Oliveira, B., de Sousa, G., Simplicio Jr,
              M., Barreto, P., Carvalho, T., Naeslund, M., and R. Gold,
              "Impact of Operating Systems on Wireless Sensor Networks
              (Security) Applications and Testbeds", Proceedings of
              the 19th International Conference on Computer
              Communications and Networks (ICCCN), August 2010.




   [MQTT5.0]
  Banks, A., Briggs, E., Borgendale, K., and R. Gupta, "MQTT
              Version 5.0", OASIS Standard, March 2019,
              <https://docs.oasis-open.org/mqtt/mqtt/v5.0/
              mqtt-v5.0.html>.




   [RFC6690]
  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
              Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
              <https://www.rfc-editor.org/info/rfc6690>.




   [RFC6819]
  Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
              Threat Model and Security Considerations", RFC 6819,
              DOI 10.17487/RFC6819, January 2013,
              <https://www.rfc-editor.org/info/rfc6819>.




   [RFC7009]
  Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
              2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
              August 2013, <https://www.rfc-editor.org/info/rfc7009>.




   [RFC7228]
  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
              Constrained-Node Networks", RFC 7228,
              DOI 10.17487/RFC7228, May 2014,
              <https://www.rfc-editor.org/info/rfc7228>.




   [RFC7231]
  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
              DOI 10.17487/RFC7231, June 2014,
              <https://www.rfc-editor.org/info/rfc7231>.




   [RFC7521]
  Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
              "Assertion Framework for OAuth 2.0 Client Authentication
              and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
              May 2015, <https://www.rfc-editor.org/info/rfc7521>.




   [RFC7540]
  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
              DOI 10.17487/RFC7540, May 2015,
              <https://www.rfc-editor.org/info/rfc7540>.




   [RFC7591]
  Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
              P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
              RFC 7591, DOI 10.17487/RFC7591, July 2015,
              <https://www.rfc-editor.org/info/rfc7591>.




   [RFC7641]
  Hartke, K., "Observing Resources in the Constrained
              Application Protocol (CoAP)", RFC 7641,
              DOI 10.17487/RFC7641, September 2015,
              <https://www.rfc-editor.org/info/rfc7641>.




   [RFC7744]
  Seitz, L., Ed., Gerdes, S., Ed., Selander, G., Mani, M.,
              and S. Kumar, "Use Cases for Authentication and
              Authorization in Constrained Environments", RFC 7744,
              DOI 10.17487/RFC7744, January 2016,
              <https://www.rfc-editor.org/info/rfc7744>.




   [RFC7959]
  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
              the Constrained Application Protocol (CoAP)", RFC 7959,
              DOI 10.17487/RFC7959, August 2016,
              <https://www.rfc-editor.org/info/rfc7959>.




   [RFC8252]
  Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
              BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,
              <https://www.rfc-editor.org/info/rfc8252>.




   [RFC8259]
  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.




   [RFC8414]
  Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
              Authorization Server Metadata", RFC 8414,
              DOI 10.17487/RFC8414, June 2018,
              <https://www.rfc-editor.org/info/rfc8414>.




   [RFC8446]
  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.




   [RFC8516]
  Keranen, A., ""Too Many Requests" Response Code for the
              Constrained Application Protocol", RFC 8516,
              DOI 10.17487/RFC8516, January 2019,
              <https://www.rfc-editor.org/info/rfc8516>.




   [RFC8613]
  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
              <https://www.rfc-editor.org/info/rfc8613>.




   [RFC8628]
  Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,
              "OAuth 2.0 Device Authorization Grant", RFC 8628,
              DOI 10.17487/RFC8628, August 2019,
              <https://www.rfc-editor.org/info/rfc8628>.




Appendix A. Design Justification

   This section provides further insight into the design decisions of
   the solution documented in this document.  Section 3 lists several
   building blocks and briefly summarizes their importance.  The
   justification for offering some of those building blocks, as opposed
   to using OAuth 2.0 as is, is given below.



   Common IoT constraints are:



   Low Power Radio:



      Many IoT devices are equipped with a small battery which needs to
      last for a long time.  For many constrained wireless devices, the
      highest energy cost is associated to transmitting or receiving
      messages (roughly by a factor of 10 compared to AES)
      [Margi10impact].  It is therefore important to keep the total
      communication overhead low, including minimizing the number and
      size of messages sent and received, which has an impact of choice
      on the message format and protocol.  By using CoAP over UDP and
      CBOR encoded messages, some of these aspects are addressed.
      Security protocols contribute to the communication overhead and
      can, in some cases, be optimized.  For example, authentication and
      key establishment may, in certain cases where security
      requirements allow, be replaced by provisioning of security
      context by a trusted third party, using transport or application
      layer security.



   Low CPU Speed:



   Some IoT devices are equipped with processors that are
   significantly slower than those found in most current devices on
   the Internet.  This typically has implications on what timely
   cryptographic operations a device is capable of performing, which
   in turn impacts, e.g., protocol latency.  Symmetric key
   cryptography may be used instead of the computationally more
   expensive public key cryptography where the security requirements
   so allow, but this may also require support for trusted‑third‑
   party‑assisted secret key establishment using transport‑ or
   application‑layer security.
Small Amount of Memory:



      Microcontrollers embedded in IoT devices are often equipped with
      only a small amount of RAM and flash memory, which places
      limitations on what kind of processing can be performed and how
      much code can be put on those devices.  To reduce code size, fewer
      and smaller protocol implementations can be put on the firmware of
      such a device.  In this case, CoAP may be used instead of HTTP,
      symmetric-key cryptography instead of public-key cryptography, and
      CBOR instead of JSON.  An authentication and key establishment
      protocol, e.g., the DTLS handshake, in comparison with assisted
      key establishment, also has an impact on memory and code
      footprints.



   User Interface Limitations:



      Protecting access to resources is both an important security as
      well as privacy feature.  End users and enterprise customers may
      not want to give access to the data collected by their IoT device
      or to functions it may offer to third parties.  Since the
      classical approach of requesting permissions from end users via a
      rich user interface does not work in many IoT deployment
      scenarios, these functions need to be delegated to user-controlled
      devices that are better suitable for such tasks, such as smart
      phones and tablets.



   Communication Constraints:



      In certain constrained settings an IoT device may not be able to
      communicate with a given device at all times.  Devices may be
      sleeping, or just disconnected from the Internet because of
      general lack of connectivity in the area, for cost reasons, or for
      security reasons, e.g., to avoid an entry point for Denial-of-
      Service attacks.



      The communication interactions this framework builds upon (as
      shown graphically in Figure 1) may be accomplished using a variety
      of different protocols, and not all parts of the message flow are
      used in all applications due to the communication constraints.
      Deployments making use of CoAP are expected, but this framework is
      not limited to them.  Other protocols such as HTTP, or even
      protocols such as Bluetooth Smart communication that do not
      necessarily use IP, could also be used.  The latter raises the
      need for application layer security over the various interfaces.



   In the light of these constraints we have made the following design
   decisions:



   CBOR, COSE, CWT:



      This framework RECOMMENDS the use of CBOR [RFC7049] as data
      format.  Where CBOR data needs to be protected, the use of COSE
      [RFC8152] is RECOMMENDED.  Furthermore, where self-contained
      tokens are needed, this framework RECOMMENDS the use of CWT
      [RFC8392].  These measures aim at reducing the size of messages
      sent over the wire, the RAM size of data objects that need to be
      kept in memory and the size of libraries that devices need to
      support.



   CoAP:



      This framework RECOMMENDS the use of CoAP [RFC7252] instead of
      HTTP.  This does not preclude the use of other protocols
      specifically aimed at constrained devices, like, e.g., Bluetooth
      Low Energy (see Section 3.2).  This aims again at reducing the
      size of messages sent over the wire, the RAM size of data objects
      that need to be kept in memory and the size of libraries that
      devices need to support.



   Access Information:



      This framework defines the name "Access Information" for data
      concerning the RS that the AS returns to the client in an access
      token response (see Section 5.6.2).  This aims at enabling
      scenarios where a powerful client, supporting multiple profiles,
      needs to interact with a RS for which it does not know the
      supported profiles and the raw public key.



   Proof-of-Possession:



      This framework makes use of proof-of-possession tokens, using the
      "cnf" claim [I-D.ietf-ace-cwt-proof-of-possession].  A request
      parameter "cnf" and a Response parameter "cnf", both having a
      value space semantically and syntactically identical to the "cnf"
      claim, are defined for the token endpoint, to allow requesting and
      stating confirmation keys.  This aims at making token theft
      harder.  Token theft is specifically relevant in constrained use
      cases, as communication often passes through middle-boxes, which
      could be able to steal bearer tokens and use them to gain
      unauthorized access.




   Authz-Info endpoint:



      This framework introduces a new way of providing access tokens to
      a RS by exposing a authz-info endpoint, to which access tokens can
      be POSTed.  This aims at reducing the size of the request message
      and the code complexity at the RS.  The size of the request
      message is problematic, since many constrained protocols have
      severe message size limitations at the physical layer (e.g., in
      the order of 100 bytes).  This means that larger packets get
      fragmented, which in turn combines badly with the high rate of
      packet loss, and the need to retransmit the whole message if one
      packet gets lost.  Thus separating sending of the request and
      sending of the access tokens helps to reduce fragmentation.



   Client Credentials Grant:



      This framework RECOMMENDS the use of the client credentials grant
      for machine-to-machine communication use cases, where manual
      intervention of the resource owner to produce a grant token is not
      feasible.  The intention is that the resource owner would instead
      pre-arrange authorization with the AS, based on the client's own
      credentials.  The client can then (without manual intervention)
      obtain access tokens from the AS.



   Introspection:



      This framework RECOMMENDS the use of access token introspection in
      cases where the client is constrained in a way that it can not
      easily obtain new access tokens (i.e. it has connectivity issues
      that prevent it from communicating with the AS).  In that case
      this framework RECOMMENDS the use of a long-term token, that could
      be a simple reference.  The RS is assumed to be able to
      communicate with the AS, and can therefore perform introspection,
      in order to learn the claims associated with the token reference.
      The advantage of such an approach is that the resource owner can
      change the claims associated to the token reference without having
      to be in contact with the client, thus granting or revoking access
      rights.





Appendix B. Roles and Responsibilities

   Resource Owner



*  Make sure that the RS is registered at the AS.  This includes
   making known to the AS which profiles, token_type, scopes, and
   key types (symmetric/asymmetric) the RS supports.  Also making
   it known to the AS which audience(s) the RS identifies itself
   with.
*  Make sure that clients can discover the AS that is in charge of
   the RS.
*  If the client‑credentials grant is used, make sure that the AS
   has the necessary, up‑to‑date, access control policies for the
   RS.



   Requesting Party



*  Make sure that the client is provisioned the necessary
   credentials to authenticate to the AS.
*  Make sure that the client is configured to follow the security
   requirements of the Requesting Party when issuing requests
   (e.g., minimum communication security requirements, trust
   anchors).
*  Register the client at the AS.  This includes making known to
   the AS which profiles, token_types, and key types (symmetric/
   asymmetric) the client.



   Authorization Server



*  Register the RS and manage corresponding security contexts.
*  Register clients and authentication credentials.
*  Allow Resource Owners to configure and update access control
   policies related to their registered RSs.
*  Expose the token endpoint to allow clients to request tokens.
*  Authenticate clients that wish to request a token.
*  Process a token request using the authorization policies
   configured for the RS.
*  Optionally: Expose the introspection endpoint that allows RS's
   to submit token introspection requests.
*  If providing an introspection endpoint: Authenticate RSs that
   wish to get an introspection response.
*  If providing an introspection endpoint: Process token
   introspection requests.
*  Optionally: Handle token revocation.
*  Optionally: Provide discovery metadata.  See [RFC8414]
*  Optionally: Handle refresh tokens.



   Client



*  Discover the AS in charge of the RS that is to be targeted with
   a request.
*  Submit the token request (see step (A) of Figure 1).

   +  Authenticate to the AS.
   +  Optionally (if not pre‑configured): Specify which RS, which
      resource(s), and which action(s) the request(s) will target.
   +  If raw public keys (rpk) or certificates are used, make sure
      the AS has the right rpk or certificate for this client.
*  Process the access token and Access Information (see step (B)
   of Figure 1).

   +  Check that the Access Information provides the necessary
      security parameters (e.g., PoP key, information on
      communication security protocols supported by the RS).
   +  Safely store the proof‑of‑possession key.
   +  If provided by the AS: Safely store the refresh token.
*  Send the token and request to the RS (see step (C) of
   Figure 1).

   +  Authenticate towards the RS (this could coincide with the
      proof of possession process).
   +  Transmit the token as specified by the AS (default is to the
      authz‑info endpoint, alternative options are specified by
      profiles).
   +  Perform the proof‑of‑possession procedure as specified by
      the profile in use (this may already have been taken care of
      through the authentication procedure).
*  Process the RS response (see step (F) of Figure 1) of the RS.



   Resource Server



*  Expose a way to submit access tokens.  By default this is the
   authz‑info endpoint.
*  Process an access token.

   +  Verify the token is from a recognized AS.
   +  Check the token's integrity.
   +  Verify that the token applies to this RS.
   +  Check that the token has not expired (if the token provides
      expiration information).
   +  Store the token so that it can be retrieved in the context
      of a matching request.



         Note: The order proposed here is not normative, any process
         that arrives at an equivalent result can be used.  A noteworthy
         consideration is whether one can use cheap operations early on
         to quickly discard non-applicable or invalid tokens, before
         performing expensive cryptographic operations (e.g. doing an
         expiration check before verifying a signature).



      *  Process a request.



   +  Set up communication security with the client.
   +  Authenticate the client.
   +  Match the client against existing tokens.
   +  Check that tokens belonging to the client actually authorize
      the requested action.
   +  Optionally: Check that the matching tokens are still valid,
      using introspection (if this is possible.)

*  Send a response following the agreed upon communication
   security mechanism(s).
*  Safely store credentials such as raw public keys for
   authentication or proof‑of‑possession keys linked to access
   tokens.




Appendix C. Requirements on Profiles

   This section lists the requirements on profiles of this framework,
   for the convenience of profile designers.



o  Optionally define new methods for the client to discover the
   necessary permissions and AS for accessing a resource, different
   from the one proposed in Section 5.1.  Section 4
o  Optionally specify new grant types.  Section 5.2
o  Optionally define the use of client certificates as client
   credential type.  Section 5.3
o  Specify the communication protocol the client and RS the must use
   (e.g., CoAP).  Section 5 and Section 5.6.4.3
o  Specify the security protocol the client and RS must use to
   protect their communication (e.g., OSCORE or DTLS).  This must
   provide encryption, integrity and replay protection.
   Section 5.6.4.3
o  Specify how the client and the RS mutually authenticate.
   Section 4
o  Specify the proof‑of‑possession protocol(s) and how to select one,
   if several are available.  Also specify which key types (e.g.,
   symmetric/asymmetric) are supported by a specific proof‑of‑
   possession protocol.  Section 5.6.4.2
o  Specify a unique ace_profile identifier.  Section 5.6.4.3
o  If introspection is supported: Specify the communication and
   security protocol for introspection.  Section 5.7
o  Specify the communication and security protocol for interactions
   between client and AS.  This must provide encryption, integrity
   protection, replay protection and a binding between requests and
   responses.  Section 5 and Section 5.6
o  Specify how/if the authz‑info endpoint is protected, including how
   error responses are protected.  Section 5.8.1
o  Optionally define other methods of token transport than the authz‑
   info endpoint.  Section 5.8.1




Appendix D. Assumptions on AS knowledge about C and RS

   This section lists the assumptions on what an AS should know about a
   client and a RS in order to be able to respond to requests to the
   token and introspection endpoints.  How this information is
   established is out of scope for this document.



o  The identifier of the client or RS.
o  The profiles that the client or RS supports.
o  The scopes that the RS supports.
o  The audiences that the RS identifies with.
o  The key types (e.g., pre‑shared symmetric key, raw public key, key
   length, other key parameters) that the client or RS supports.
o  The types of access tokens the RS supports (e.g., CWT).
o  If the RS supports CWTs, the COSE parameters for the crypto
   wrapper (e.g., algorithm, key‑wrap algorithm, key‑length) that the
   RS supports.
o  The expiration time for access tokens issued to this RS (unless
   the RS accepts a default time chosen by the AS).
o  The symmetric key shared between client and AS (if any).
o  The symmetric key shared between RS and AS (if any).
o  The raw public key of the client or RS (if any).
o  Whether the RS has synchronized time (and thus is able to use the
   'exp' claim) or not.




Appendix E. Deployment Examples

   There is a large variety of IoT deployments, as is indicated in
   Appendix A, and this section highlights a few common variants.  This
   section is not normative but illustrates how the framework can be
   applied.



   For each of the deployment variants, there are a number of possible
   security setups between clients, resource servers and authorization
   servers.  The main focus in the following subsections is on how
   authorization of a client request for a resource hosted by a RS is
   performed.  This requires the security of the requests and responses
   between the clients and the RS to be considered.



   Note: CBOR diagnostic notation is used for examples of requests and
   responses.




E.1. Local Token Validation

   In this scenario, the case where the resource server is offline is
   considered, i.e., it is not connected to the AS at the time of the
   access request.  This access procedure involves steps A, B, C, and F
   of Figure 1.



   Since the resource server must be able to verify the access token
   locally, self-contained access tokens must be used.



   This example shows the interactions between a client, the
   authorization server and a temperature sensor acting as a resource
   server.  Message exchanges A and B are shown in Figure 17.



   A: The client first generates a public‑private key pair used for
   communication security with the RS.
   The client sends a CoAP POST request to the token endpoint at the
   AS.  The security of this request can be transport or application
   layer.  It is up the the communication security profile to define.
   In the example it is assumed that both client and AS have
   performed mutual authentication e.g. via DTLS.  The request
   contains the public key of the client and the Audience parameter
   set to "tempSensorInLivingRoom", a value that the temperature
   sensor identifies itself with.  The AS evaluates the request and
   authorizes the client to access the resource.
   B: The AS responds with a 2.05 Content response containing the
   Access Information, including the access token.  The PoP access
   token contains the public key of the client, and the Access
   Information contains the public key of the RS.  For communication
   security this example uses DTLS RawPublicKey between the client
   and the RS.  The issued token will have a short validity time,
   i.e., "exp" close to "iat", in order to mitigate attacks using
   stolen client credentials.  The token includes the claim such as
   "scope" with the authorized access that an owner of the
   temperature device can enjoy.  In this example, the "scope" claim,
   issued by the AS, informs the RS that the owner of the token, that
   can prove the possession of a key is authorized to make a GET
   request against the /temperature resource and a POST request on
   the /firmware resource.  Note that the syntax and semantics of the
   scope claim are application specific.
   Note: In this example it is assumed that the client knows what
   resource it wants to access, and is therefore able to request
   specific audience and scope claims for the access token.

         Authorization
  Client    Server
    |         |
    |<=======>| DTLS Connection Establishment
    |         |   and mutual authentication
    |         |
A:  +‑‑‑‑‑‑‑‑>| Header: POST (Code=0.02)
    |  POST   | Uri‑Path:"token"
    |         | Content‑Format: application/ace+cbor
    |         | Payload: <Request‑Payload>
    |         |
B:  |<‑‑‑‑‑‑‑‑+ Header: 2.05 Content
    |  2.05   | Content‑Format: application/ace+cbor
    |         | Payload: <Response‑Payload>
    |         |



      Figure 17: Token Request and Response Using Client Credentials.



   The information contained in the Request-Payload and the Response-
   Payload is shown in Figure 18 Note that the parameter "rs_cnf" from
   [I-D.ietf-ace-oauth-params] is used to inform the client about the
   resource server's public key.



Request‑Payload :
{
  "audience" : "tempSensorInLivingRoom",
  "client_id" : "myclient",
  "req_cnf" : {
    "COSE_Key" : {
      "kid" : b64'1Bg8vub9tLe1gHMzV76e8',
      "kty" : "EC",
      "crv" : "P‑256",
      "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',
      "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'
    }
  }
}

Response‑Payload :
{
  "access_token" : b64'0INDoQEKoQVNKkXfb7xaWqMTf6 ...',
  "rs_cnf" : {
    "COSE_Key" : {
      "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
      "kty" : "EC",
      "crv" : "P‑256",
      "x"   : b64'MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4',
      "y"   : b64'4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM'
    }
  }
}



             Figure 18: Request and Response Payload Details.



   The content of the access token is shown in Figure 19.



{
  "aud" : "tempSensorInLivingRoom",
  "iat" : "1563451500",
  "exp" : "1563453000",
  "scope" :  "temperature_g firmware_p",
  "cnf" : {
    "COSE_Key" : {
      "kid" : b64'1Bg8vub9tLe1gHMzV76e8',
      "kty" : "EC",
      "crv" : "P‑256",
      "x" : b64'f83OJ3D2xF1Bg8vub9tLe1gHMzV76e8Tus9uPHvRVEU',
      "y" : b64'x_FEzRu9m36HLN_tue659LNpXW6pCyStikYjKIWI5a0'
    }
  }
}



        Figure 19: Access Token including Public Key of the Client.



   Messages C and F are shown in Figure 20 - Figure 21.



      C: The client then sends the PoP access token to the authz-info
      endpoint at the RS.  This is a plain CoAP POST request, i.e., no
      transport or application layer security is used between client and
      RS since the token is integrity protected between the AS and RS.
      The RS verifies that the PoP access token was created by a known
      and trusted AS, that it applies to this RS, and that it is valid.
      The RS caches the security context together with authorization
      information about this client contained in the PoP access token.




           Resource
 Client     Server
    |         |
C:  +‑‑‑‑‑‑‑‑>| Header: POST (Code=0.02)
    |  POST   | Uri‑Path:"authz‑info"
    |         | Payload: 0INDoQEKoQVN ...
    |         |
    |<‑‑‑‑‑‑‑‑+ Header: 2.04 Changed
    |  2.04   |
    |         |

             Figure 20: Access Token provisioning to RS
   The client and the RS runs the DTLS handshake using the raw public
   keys established in step B and C.
   The client sends a CoAP GET request to /temperature on RS over
   DTLS.  The RS verifies that the request is authorized, based on
   previously established security context.



      F: The RS responds over the same DTLS channel with a CoAP 2.05
      Content response, containing a resource representation as payload.



           Resource
 Client     Server
    |         |
    |<=======>| DTLS Connection Establishment
    |         |   using Raw Public Keys
    |         |
    +‑‑‑‑‑‑‑‑>| Header: GET (Code=0.01)
    | GET     | Uri‑Path: "temperature"
    |         |
    |         |
    |         |
F:  |<‑‑‑‑‑‑‑‑+ Header: 2.05 Content
    | 2.05    | Payload: <sensor value>
    |         |



        Figure 21: Resource Request and Response protected by DTLS.




E.2. Introspection Aided Token Validation

   In this deployment scenario it is assumed that a client is not able
   to access the AS at the time of the access request, whereas the RS is
   assumed to be connected to the back-end infrastructure.  Thus the RS
   can make use of token introspection.  This access procedure involves
   steps A-F of Figure 1, but assumes steps A and B have been carried
   out during a phase when the client had connectivity to AS.



   Since the client is assumed to be offline, at least for a certain
   period of time, a pre-provisioned access token has to be long-lived.
   Since the client is constrained, the token will not be self contained
   (i.e. not a CWT) but instead just a reference.  The resource server
   uses its connectivity to learn about the claims associated to the
   access token by using introspection, which is shown in the example
   below.



In the example interactions between an offline client (key fob), a RS
(online lock), and an AS is shown.  It is assumed that there is a
provisioning step where the client has access to the AS.  This
corresponds to message exchanges A and B which are shown in
Figure 22.



   Authorization consent from the resource owner can be pre-configured,
   but it can also be provided via an interactive flow with the resource
   owner.  An example of this for the key fob case could be that the
   resource owner has a connected car, he buys a generic key that he
   wants to use with the car.  To authorize the key fob he connects it
   to his computer that then provides the UI for the device.  After that
   OAuth 2.0 implicit flow can used to authorize the key for his car at
   the the car manufacturers AS.



   Note: In this example the client does not know the exact door it will
   be used to access since the token request is not send at the time of
   access.  So the scope and audience parameters are set quite wide to
   start with, while tailored values narrowing down the claims to the
   specific RS being accessed can be provided to that RS during an
   introspection step.



A: The client sends a CoAP POST request to the token endpoint at
AS.  The request contains the Audience parameter set to "PACS1337"
(PACS, Physical Access System), a value the that identifies the
physical access control system to which the individual doors are
connected.  The AS generates an access token as an opaque string,
which it can match to the specific client and the targeted
audience.  It furthermore generates a symmetric proof‑of‑
possession key.  The communication security and authentication
between client and AS is assumed to have been provided at
transport layer (e.g. via DTLS) using a pre‑shared security
context (psk, rpk or certificate).
B: The AS responds with a CoAP 2.05 Content response, containing
as playload the Access Information, including the access token and
the symmetric proof‑of‑possession key.  Communication security
between C and RS will be DTLS and PreSharedKey.  The PoP key is
used as the PreSharedKey.



   Note: In this example we are using a symmetric key for a multi-RS
   audience, which is not recommended normally (see Section 6.9).
   However in this case the risk is deemed to be acceptable, since all
   the doors are part of the same physical access control system, and
   therefore the risk of a malicious RS impersonating the client towards
   another RS is low.



         Authorization
 Client     Server
    |         |
    |<=======>| DTLS Connection Establishment
    |         |   and mutual authentication
    |         |
A:  +‑‑‑‑‑‑‑‑>| Header: POST (Code=0.02)
    |  POST   | Uri‑Path:"token"
    |         | Content‑Format: application/ace+cbor
    |         | Payload: <Request‑Payload>
    |         |
B:  |<‑‑‑‑‑‑‑‑+ Header: 2.05 Content
    |         | Content‑Format: application/ace+cbor
    |  2.05   | Payload: <Response‑Payload>
    |         |



      Figure 22: Token Request and Response using Client Credentials.



   The information contained in the Request-Payload and the Response-
   Payload is shown in Figure 23.



Request‑Payload:
{
  "client_id" : "keyfob",
  "audience" : "PACS1337"
}

Response‑Payload:
{
  "access_token" : b64'VGVzdCB0b2tlbg==',
  "cnf" : {
    "COSE_Key" : {
      "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk',
      "kty" : "oct",
      "alg" : "HS256",
      "k": b64'ZoRSOrFzN_FzUA5XKMYoVHyzff5oRJxl‑IXRtztJ6uE'
    }
  }
}



           Figure 23: Request and Response Payload for C offline



   The access token in this case is just an opaque byte string
   referencing the authorization information at the AS.



      C: Next, the client POSTs the access token to the authz-info
      endpoint in the RS.  This is a plain CoAP request, i.e., no DTLS
      between client and RS.  Since the token is an opaque string, the



   RS cannot verify it on its own, and thus defers to respond the
   client with a status code until after step E.
   D: The RS sends the token to the introspection endpoint on the AS
   using a CoAP POST request.  In this example RS and AS are assumed
   to have performed mutual authentication using a pre shared
   security context (psk, rpk or certificate) with the RS acting as
   DTLS client.
   E: The AS provides the introspection response (2.05 Content)
   containing parameters about the token.  This includes the
   confirmation key (cnf) parameter that allows the RS to verify the
   client's proof of possession in step F.  Note that our example in
   Figure 25 assumes a pre‑established key (e.g. one used by the
   client and the RS for a previous token) that is now only
   referenced by its key‑identifier 'kid'.
   After receiving message E, the RS responds to the client's POST in
   step C with the CoAP response code 2.01 (Created).


           Resource
  Client    Server
    |         |
C:  +‑‑‑‑‑‑‑‑>| Header: POST (T=CON, Code=0.02)
    |  POST   | Uri‑Path:"authz‑info"
    |         | Payload: b64'VGVzdCB0b2tlbg=='
    |         |
    |         |     Authorization
    |         |       Server
    |         |          |
    |      D: +‑‑‑‑‑‑‑‑‑>| Header: POST (Code=0.02)
    |         |  POST    | Uri‑Path: "introspect"
    |         |          | Content‑Format: "application/ace+cbor"
    |         |          | Payload: <Request‑Payload>
    |         |          |
    |      E: |<‑‑‑‑‑‑‑‑‑+ Header: 2.05 Content
    |         |  2.05    | Content‑Format: "application/ace+cbor"
    |         |          | Payload: <Response‑Payload>
    |         |          |
    |         |
    |<‑‑‑‑‑‑‑‑+ Header: 2.01 Created
    |  2.01   |
    |         |

            Figure 24: Token Introspection for C offline
   The information contained in the Request‑Payload and the Response‑
   Payload is shown in Figure 25.

Request‑Payload:
{
  "token" : b64'VGVzdCB0b2tlbg==',
  "client_id" : "FrontDoor",
}

Response‑Payload:
{
  "active" : true,
  "aud" : "lockOfDoor4711",
  "scope" : "open, close",
  "iat" : 1563454000,
  "cnf" : {
    "kid" : b64'c29tZSBwdWJsaWMga2V5IGlk'
  }
}



         Figure 25: Request and Response Payload for Introspection



   The client uses the symmetric PoP key to establish a DTLS
   PreSharedKey secure connection to the RS.  The CoAP request PUT is
   sent to the uri‑path /state on the RS, changing the state of the
   door to locked.
   F: The RS responds with a appropriate over the secure DTLS
   channel.

           Resource
  Client    Server
    |         |
    |<=======>| DTLS Connection Establishment
    |         |   using Pre Shared Key
    |         |
    +‑‑‑‑‑‑‑‑>| Header: PUT (Code=0.03)
    | PUT     | Uri‑Path: "state"
    |         | Payload: <new state for the lock>
    |         |
F:  |<‑‑‑‑‑‑‑‑+ Header: 2.04 Changed
    | 2.04    | Payload: <new state for the lock>
    |         |



       Figure 26: Resource request and response protected by OSCORE




Appendix F. Document Updates

   RFC EDITOR: PLEASE REMOVE THIS SECTION.




F.1. Version -21 to 22

o  Provided section numbers in references to OAuth RFC.
o  Updated IANA mapping registries to only use "Private Use" and
   "Expert Review".
o  Made error messages optional for RS at token submission since it
   may not be able to send them depending on the profile.
o  Corrected errors in examples.




F.2. Version -20 to 21

   o  Added text about expiration of RS keys.




F.3. Version -19 to 20

o  Replaced "req_aud" with "audience" from the OAuth token exchange
   draft.
o  Updated examples to remove unnecessary elements.




F.4. Version -18 to -19

o  Added definition of "Authorization Information".
o  Explicitly state that ACE allows encoding refresh tokens in binary
   format in addition to strings.
o  Renamed "AS Information" to "AS Request Creation Hints" and added
   the possibility to specify req_aud and scope as hints.
o  Added the "kid" parameter to AS Request Creation Hints.
o  Added security considerations about the integrity protection of
   tokens with multi‑RS audiences.
o  Renamed IANA registries mapping OAuth parameters to reflect the
   mapped registry.
o  Added JWT claim names to CWT claim registrations.
o  Added expert review instructions.
o  Updated references to TLS from 1.2 to 1.3.




F.5. Version -17 to -18

o  Added OSCORE options in examples involving OSCORE.
o  Removed requirement for the client to send application/cwt, since
   the client has no way to know.
o  Clarified verification of tokens by the RS.
o  Added exi claim CWT registration.




F.6. Version -16 to -17

o  Added references to (D)TLS 1.3.
o  Added requirement that responses are bound to requests.

o  Specify that grant_type is OPTIONAL in C2AS requests (as opposed
   to REQUIRED in OAuth).
o  Replaced examples with hypothetical COSE profile with OSCORE.
o  Added requirement for content type application/ace+cbor in error
   responses for token and introspection requests and responses.
o  Reworked abbreviation space for claims, request and response
   parameters.
o  Added text that the RS may indicate that it is busy at the authz‑
   info resource.
o  Added section that specifies how the RS verifies an access token.
o  Added section on the protection of the authz‑info endpoint.
o  Removed the expiration mechanism based on sequence numbers.
o  Added reference to RFC7662 security considerations.
o  Added considerations on minimal security requirements for
   communication.
o  Added security considerations on unprotected information sent to
   authz‑info and in the error responses.




F.7. Version -15 to -16

o  Added text the RS using RFC6750 error codes.
o  Defined an error code for incompatible token request parameters.
o  Removed references to the actors draft.
o  Fixed errors in examples.




F.8. Version -14 to -15

o  Added text about refresh tokens.
o  Added text about protection of credentials.
o  Rephrased introspection so that other entities than RS can do it.
o  Editorial improvements.




F.9. Version -13 to -14

o  Split out the 'aud', 'cnf' and 'rs_cnf' parameters to
   [I‑D.ietf‑ace‑oauth‑params]
o  Introduced the "application/ace+cbor" Content‑Type.
o  Added claim registrations from 'profile' and 'rs_cnf'.
o  Added note on schema part of AS Information Section 5.1.2
o  Realigned the parameter abbreviations to push rarely used ones to
   the 2‑byte encoding size of CBOR integers.




F.10. Version -12 to -13

o  Changed "Resource Information" to "Access Information" to avoid
   confusion.
o  Clarified section about AS discovery.
o  Editorial changes




F.11. Version -11 to -12

o  Moved the Request error handling to a section of its own.
o  Require the use of the abbreviation for profile identifiers.
o  Added rs_cnf parameter in the introspection response, to inform
   RS' with several RPKs on which key to use.
o  Allowed use of rs_cnf as claim in the access token in order to
   inform an RS with several RPKs on which key to use.
o  Clarified that profiles must specify if/how error responses are
   protected.
o  Fixed label number range to align with COSE/CWT.
o  Clarified the requirements language in order to allow profiles to
   specify other payload formats than CBOR if they do not use CoAP.




F.12. Version -10 to -11

o  Fixed some CBOR data type errors.
o  Updated boilerplate text




F.13. Version -09 to -10

o  Removed CBOR major type numbers.
o  Removed the client token design.
o  Rephrased to clarify that other protocols than CoAP can be used.
o  Clarifications regarding the use of HTTP




F.14. Version -08 to -09

o  Allowed scope to be byte strings.
o  Defined default names for endpoints.
o  Refactored the IANA section for briefness and consistency.
o  Refactored tables that define IANA registry contents for
   consistency.
o  Created IANA registry for CBOR mappings of error codes, grant
   types and Authorization Server Information.
o  Added references to other document sections defining IANA entries
   in the IANA section.




F.15. Version -07 to -08

o  Moved AS discovery from the DTLS profile to the framework, see
   Section 5.1.
o  Made the use of CBOR mandatory.  If you use JSON you can use
   vanilla OAuth.
o  Made it mandatory for profiles to specify C‑AS security and RS‑AS
   security (the latter only if introspection is supported).
o  Made the use of CBOR abbreviations mandatory.

o  Added text to clarify the use of token references as an
   alternative to CWTs.
o  Added text to clarify that introspection must not be delayed, in
   case the RS has to return a client token.
o  Added security considerations about leakage through unprotected AS
   discovery information, combining profiles and leakage through
   error responses.
o  Added privacy considerations about leakage through unprotected AS
   discovery.
o  Added text that clarifies that introspection is optional.
o  Made profile parameter optional since it can be implicit.
o  Clarified that CoAP is not mandatory and other protocols can be
   used.
o  Clarified the design justification for specific features of the
   framework in appendix A.
o  Clarified appendix E.2.
o  Removed specification of the "cnf" claim for CBOR/COSE, and
   replaced with references to [I‑D.ietf‑ace‑cwt‑proof‑of‑possession]




F.16. Version -06 to -07

o  Various clarifications added.
o  Fixed erroneous author email.




F.17. Version -05 to -06

o  Moved sections that define the ACE framework into a subsection of
   the framework Section 5.
o  Split section on client credentials and grant into two separate
   sections, Section 5.2, and Section 5.3.
o  Added Section 5.4 on AS authentication.
o  Added Section 5.5 on the Authorization endpoint.




F.18. Version -04 to -05

o  Added RFC 2119 language to the specification of the required
   behavior of profile specifications.
o  Added Section 5.3 on the relation to the OAuth2 grant types.
o  Added CBOR abbreviations for error and the error codes defined in
   OAuth2.
o  Added clarification about token expiration and long‑running
   requests in Section 5.8.3
o  Added security considerations about tokens with symmetric PoP keys
   valid for more than one RS.
o  Added privacy considerations section.
o  Added IANA registry mapping the confirmation types from RFC 7800
   to equivalent COSE types.



   o  Added appendix D, describing assumptions about what the AS knows
      about the client and the RS.




F.19. Version -03 to -04

o  Added a description of the terms "framework" and "profiles" as
   used in this document.
o  Clarified protection of access tokens in section 3.1.
o  Clarified uses of the "cnf" parameter in section 6.4.5.
o  Clarified intended use of Client Token in section 7.4.




F.20. Version -02 to -03

o  Removed references to draft‑ietf‑oauth‑pop‑key‑distribution since
   the status of this draft is unclear.
o  Copied and adapted security considerations from draft‑ietf‑oauth‑
   pop‑key‑distribution.
o  Renamed "client information" to "RS information" since it is
   information about the RS.
o  Clarified the requirements on profiles of this framework.
o  Clarified the token endpoint protocol and removed negotiation of
   "profile" and "alg" (section 6).
o  Renumbered the abbreviations for claims and parameters to get a
   consistent numbering across different endpoints.
o  Clarified the introspection endpoint.
o  Renamed token, introspection and authz‑info to "endpoint" instead
   of "resource" to mirror the OAuth 2.0 terminology.
o  Updated the examples in the appendices.




F.21. Version -01 to -02

o  Restructured to remove communication security parts.  These shall
   now be defined in profiles.
o  Restructured section 5 to create new sections on the OAuth
   endpoints token, introspection and authz‑info.
o  Pulled in material from draft‑ietf‑oauth‑pop‑key‑distribution in
   order to define proof‑of‑possession key distribution.
o  Introduced the "cnf" parameter as defined in RFC7800 to reference
   or transport keys used for proof of possession.
o  Introduced the "client‑token" to transport client information from
   the AS to the client via the RS in conjunction with introspection.
o  Expanded the IANA section to define parameters for token request,
   introspection and CWT claims.
o  Moved deployment scenarios to the appendix as examples.




F.22. Version -00 to -01

o  Changed 5.1. from "Communication Security Protocol" to "Client
   Information".
o  Major rewrite of 5.1 to clarify the information exchanged between
   C and AS in the PoP access token request profile for IoT.

   *  Allow the client to indicate preferences for the communication
      security protocol.
   *  Defined the term "Client Information" for the additional
      information returned to the client in addition to the access
      token.
   *  Require that the messages between AS and client are secured,
      either with (D)TLS or with COSE_Encrypted wrappers.
   *  Removed dependency on OSCOAP and added generic text about
      object security instead.
   *  Defined the "rpk" parameter in the client information to
      transmit the raw public key of the RS from AS to client.
   *  (D)TLS MUST use the PoP key in the handshake (either as PSK or
      as client RPK with client authentication).
   *  Defined the use of x5c, x5t and x5tS256 parameters when a
      client certificate is used for proof of possession.
   *  Defined "tktn" parameter for signaling for how to transfer the
      access token.
o  Added 5.2. the CoAP Access‑Token option for transferring access
   tokens in messages that do not have payload.
o  5.3.2.  Defined success and error responses from the RS when
   receiving an access token.
o  5.6.:Added section giving guidance on how to handle token
   expiration in the absence of reliable time.
o  Appendix B Added list of roles and responsibilities for C, AS and
   RS.



Authors' Addresses



Ludwig Seitz
RISE
Scheelevaegen 17
Lund  223 70
Sweden



   Email: ludwig.seitz@ri.se



Goeran Selander
Ericsson
Faroegatan 6
Kista  164 80
Sweden



   Email: goran.selander@ericsson.com




Erik Wahlstroem
Sweden



   Email: erik@wahlstromstekniska.se




Samuel Erdtman
Spotify AB
Birger Jarlsgatan 61, 4tr
Stockholm  113 56
Sweden



   Email: erdtman@spotify.com




Hannes Tschofenig
Arm Ltd.
Absam  6067
Austria



   Email: Hannes.Tschofenig@arm.com
























draft-ietf-ace-oauth-params-06 - Additional OAuth Parameters for Authorization in Constrained Environments (ACE) 






draft-ietf-ace-oauth-params-06 - Additional OAuth Parameters for Authorization i

Index
Back 5
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 20, 2020


L. Seitz

RISE

November 17, 2019



Additional OAuth Parameters for Authorization in Constrained Environments (ACE)  

draft-ietf-ace-oauth-params-06


Abstract

   This specification defines new parameters for the OAuth 2.0 token and
   introspection endpoints when used with the framework for
   authentication and authorization for constrained environments (ACE).
   These are used to express the proof-of-possession key the client
   whishes to use, the proof-of-possession key that the AS has selected,
   and the key the RS should use to authenticate to the client.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 20, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Parameters for the Token Endpoint
	 3.1.  Client-to-AS Request


	 3.2.  AS-to-Client Response


	 3.3.  The Resource Server Confirmation Claim



	4.  Parameters for the Introspection Endpoint
	 4.1.  AS-to-RS Response



	5.  Confirmation Method Parameters


	6.  CBOR Mappings


	7.  Security Considerations


	8.  Privacy Considerations


	9.  IANA Considerations
	 9.1.  JSON Web Token Claims


	 9.2.  CBOR Web Token Claims


	 9.3.  OAuth Parameter Registration


	 9.4.  OAuth Introspection Response Parameter Registration


	 9.5.  OAuth Parameters CBOR Mappings Registraton


	 9.6.  OAuth Token Introspection Response CBOR Mappings Registration



	10. Acknowledgments


	11. References
	 11.1.  Normative References


	 11.2.  Informative References



	Appendix A.  Overlap with OAuth work


	Author's Address




1. Introduction

   The Authentication and Authorization for Constrained Environments
   (ACE) specification [I-D.ietf-ace-oauth-authz] requires some new
   parameters for interactions with the OAuth 2.0 [RFC6749] token and
   introspection endpoints, as well as some new claims to be used in
   access tokens.  These parameters and claims can also be used in other
   contexts, and may need to be updated to align them with ongoing OAuth
   work.  Therefore, these parameters and claims have been put into a
   dedicated document, to facilitate their use and any potential updates
   in a manner independent of [I-D.ietf-ace-oauth-authz].




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Readers are assumed to be familiar with the terminology from
   [I-D.ietf-ace-oauth-authz].



   Note that the term "endpoint" is used here following its OAuth 2.0
   [RFC6749] definition, which is to denote resources such as token and
   introspection at the AS and authz-info at the RS.  The CoAP [RFC7252]
   definition, which is "An entity participating in the CoAP protocol"
   is not used in this specification.




3. Parameters for the Token Endpoint


3.1. Client-to-AS Request

   This document defines the following additional parameters for
   requesting an access token from a token endpoint in the ACE framework
   [I-D.ietf-ace-oauth-authz]:



   req_cnf

      OPTIONAL.  This field contains information about the key the
      client would like to bind to the access token for proof-of-
      possession.  It is RECOMMENDED that an AS reject a request
      containing a symmetric key value in the 'req_cnf' field, since the
      AS is expected to be able to generate better symmetric keys than a
      constrained client.  The AS MUST verify that the client really is
      in possession of the corresponding key.  Values of this parameter
      follow the syntax of the "cnf" claim from section 3.1 of
      [I-D.ietf-ace-cwt-proof-of-possession].



   Figure 1 shows a request for an access token using the "req_cnf"
   parameter to request a specific public key as proof-of-possession
   key.  The content is displayed in CBOR diagnostic notation, without
   abbreviations for better readability.



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "token"
Content‑Format: "application/ace+cbor"
Payload:
{
   "req_cnf" : {
      "COSE_Key" : {
         "kty" : "EC",
         "kid" : h'11',
         "crv" : "P‑256",
         "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
         "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
      }
   }
 }



   Figure 1: Example request for an access token bound to an asymmetric

                                   key.




3.2. AS-to-Client Response

   This document defines the following additional parameters for an AS
   response to a request to the token endpoint:



   cnf

      REQUIRED if the token type is "pop" and a symmetric key is used.
      MAY be present for asymmetric proof-of-possession keys.  This
      field contains the proof-of-possession key that the AS selected
      for the token.  Values of this parameter follow the syntax of the
      "cnf" claim from section 3.1 of
      [I-D.ietf-ace-cwt-proof-of-possession].  See Section 5 for
      additional discussion of the usage of this parameter.




   rs_cnf

      OPTIONAL if the token type is "pop" and asymmetric keys are used.
      MUST NOT be present otherwise.  This field contains information
      about the public key used by the RS to authenticate.  If this
      parameter is absent, either the RS does not use a public key or
      the AS knows that the RS can authenticate itself to the client
      without additional information.  Values of this parameter follow
      the syntax of the "cnf" claim from section 3.1 of
      [I-D.ietf-ace-cwt-proof-of-possession].  See Section 5 for
      additional discussion of the usage of this parameter.



   Figure 2 shows an AS response containing a token and a "cnf"
   parameter with a symmetric proof-of-possession key.



Header: Created (Code=2.01)
Content‑Format: "application/ace+cbor"
Payload:
{
  "access_token" : b64'SlAV32hkKG ...
   (remainder of CWT omitted for brevity;
   CWT contains COSE_Key in the "cnf" claim)',
  "cnf" : {
    "COSE_Key" : {
      "kty" : "Symmetric",
      "kid" : b64'39Gqlw',
      "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'
    }
  }
}



       Figure 2: Example AS response with an access token bound to a

                              symmetric key.



   Figure 3 shows an AS response containing a token bound to a
   previously requested asymmetric proof-of-possession key (not shown)
   and a "rs_cnf" parameter containing the public key of the RS.



Header: Created (Code=2.01)
Content‑Format: "application/ace+cbor"
Payload:
{
  "access_token" : b64'0INDoQEKoQVNKkXfb7xaWqMTf6 ...
   (remainder of CWT omitted for brevity;
   CWT contains COSE_Key in the "cnf" claim)',
  "rs_cnf" : {
    "COSE_Key" : {
      "kty" : "EC",
      "kid" : h'12',
      "crv" : "P‑256",
      "x" : b64'vO5+qsFi+R5vMw9XcSEeIguLVGyWWJsKxK0P0kx34fE',
      "y" : b64'xkezjFXvu8TmLmUXIPAC1ddbLgwCzRMm5mK8oiK5BBY'
    }
  }
}



       Figure 3: Example AS response, including the RS's public key.




3.3. The Resource Server Confirmation Claim

   If the AS needs to convey a hint to the RS about which key it should
   use to authenticate towards the client, this specification defines
   the "rs_cnf" claim, which MAY be used in the access token, with the
   same syntax and semantics as defined in for the "rs_cnf" parameter.




4. Parameters for the Introspection Endpoint


4.1. AS-to-RS Response

   This document defines the following additional parameters for an AS
   response to a request to the introspection endpoint:



   cnf

      OPTIONAL.  This field contains information about the proof-of-
      possession key that binds the client to the access token.  Values
      of this parameter follow the syntax of the "cnf" claim from
      section 3.1 of [I-D.ietf-ace-cwt-proof-of-possession].  See
      Section 5 for additional discussion of the usage of this
      parameter.




   rs_cnf

      OPTIONAL.  If the RS uses asymmetric keys to authenticate towards
      the client (e.g. with a DTLS-RPK handshake) and it has several
      such keys (e.g. for different elliptic curves), the AS can give
      the RS a hint using this parameter, as to which key it should use.
      Values of this parameter follow the syntax of the "cnf" claim from
      section 3.1 of [I-D.ietf-ace-cwt-proof-of-possession].  See
      Section 5 for additional discussion of the usage of this
      parameter.



   Figure 4 shows an AS response to an introspection request including
   the "cnf" parameter to indicate the proof-of-possession key bound to
   the token and the "rs_cnf" parameter to indicate the key the RS is
   supposed to use to authenticate to the client.



Header: Created Code=2.01)
Content‑Format: "application/ace+cbor"
Payload:
{
  "active" : true,
  "scope" : "read",
  "aud" : "tempSensor4711",
  "cnf" : {
    "COSE_Key" : {
      "kty" : "EC",
      "kid" : h'11',
      "crv" : "P‑256",
      "x" : b64'usWxHK2PmfnHKwXPS54m0kTcGJ90UiglWiGahtagnv8',
      "y" : b64'IBOL+C3BttVivg+lSreASjpkttcsz+1rb7btKLv8EX4'
    }
  },
  "rs_cnf" : {
    "COSE_Key" : {
      "kty" : "EC",
      "kid" : h'12',
      "crv" : "P‑256",
      "x" : b64'vO5+qsFi+R5vMw9XcSEeIguLVGyWWJsKxK0P0kx34fE',
      "y" : b64'xkezjFXvu8TmLmUXIPAC1ddbLgwCzRMm5mK8oiK5BBY'
    }
  }
}



                 Figure 4: Example introspection response.




5. Confirmation Method Parameters

   The confirmation method parameters are used as follows:



   o  "req_cnf" in the access token request C -> AS, OPTIONAL to
      indicate the client's raw public key, or the key-identifier of a
      previously established key between C and RS that the client wishes
      to use for proof-of-possession of the access token.



   o  "cnf" in the token response AS -> C, OPTIONAL if using an
      asymmetric key or a key that the client requested via a key
      identifier in the request.  REQUIRED if the client didn't specify
      a "req_cnf" and symmetric keys are used.  Used to indicate the
      symmetric key generated by the AS for proof-of-possession of the
      access token.



   o  "cnf" in the introspection response AS -> RS, REQUIRED if the
      access token that was subject to introspection is a proof-of-



      possession token, absent otherwise.  Indicates the proof-of-
      possession key bound to the access token.



   o  "rs_cnf" in the token response AS -> C, OPTIONAL to indicate the
      public key of the RS, if it uses one to authenticate itself to the
      client and the binding between key and RS identity is not
      established through other means.



   o  "rs_cnf" in the introspection response AS -> RS, OPTIONAL,
      contains the public key that the RS should use for authenticating
      itself to the client (e.g. if the RS has several different public
      keys, and there may be ambiguity as to which key to use).



   Note that the COSE_Key structure in a confirmation claim or parameter
   may contain an "alg" or "key_ops" parameter.  If such parameters are
   present, a client MUST NOT use a key that is incompatible with the
   profile or proof-of-possession algorithm according to those
   parameters.  An RS MUST reject a proof-of-possession using such a
   key.



   If an access token is issued for an audience that includes several
   RS, the "rs_cnf" parameter MUST NOT be used, since the client cannot
   determine for which RS the key applies.  This document recommends to
   specify a different endpoint that the client can use to acquire RS
   authentication keys in such cases.  The specification of such an
   endpoint is out of scope for this document.




6. CBOR Mappings

   If CBOR is used, the new parameters and claims defined in this
   document MUST be mapped to CBOR types as specified in Figure 5, using
   the given integer abbreviation for the map key.



/‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑\
| Name     | CBOR Key | Value Type | Usage                  |
|‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| req_cnf  | TBD (4)  | map        | token request          |
| cnf      | TBD (8)  | map        | token response         |
| cnf      | TBD (8)  | map        | introspection response |
| rs_cnf   | TBD (41) | map        | token response         |
| rs_cnf   | TBD (41) | map        | introspection response |
| rs_cnf   | TBD (41) | map        | CWT claim              |
\‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/



          Figure 5: CBOR mappings for new parameters and claims.




7. Security Considerations

   This document is an extension to [I-D.ietf-ace-oauth-authz].  All
   security considerations from that document apply here as well.




8. Privacy Considerations

   This document is an extension to [I-D.ietf-ace-oauth-authz].  All
   privacy considerations from that document apply here as well.




9. IANA Considerations


9.1. JSON Web Token Claims

   This specification registers the following new claim in the JSON Web
   Token (JWT) registry of JSON Web Token Claims
   [IANA.JsonWebTokenClaims]:



o  Claim Name: "rs_cnf"
o  Claim Description: public key used by RS to authenticate itself to
   the client.
o  Change Controller: IESG
o  Reference: Section 3.3 of [this document]




9.2. CBOR Web Token Claims

   This specification registers the following new claim in the "CBOR Web
   Token (CWT) Claims" registry [IANA.CborWebTokenClaims].



o  Claim Name: "rs_cnf"
o  Claim Description: public key used by RS to authenticate itself to
   the client.
o  JWT Claim Name: rs_cnf
o  Claim Key: TBD (suggested: 41)
o  Claim Value Type(s): map
o  Change Controller: IESG
o  Specification Document(s): Section 3.3 of [this document]




9.3. OAuth Parameter Registration

   This section registers the following parameters in the "OAuth
   Parameters" registry [IANA.OAuthParameters]:



o  Name: "req_cnf"
o  Parameter Usage Location: token request
o  Change Controller: IESG
o  Reference: Section 5 of [this document]

o  Name: "rs_cnf"
o  Parameter Usage Location: token response
o  Change Controller: IESG
o  Reference: Section 5 of [this document]

o  Name: "cnf"
o  Parameter Usage Location: token response
o  Change Controller: IESG
o  Reference: Section 5 of [this document]




9.4. OAuth Introspection Response Parameter Registration

   This section registers the following parameters in the OAuth Token
   Introspection Response registry [IANA.TokenIntrospectionResponse].



o  Name: "cnf"
o  Description: Key to prove the right to use a PoP token.
o  Change Controller: IESG
o  Reference: Section 4.1 of [this document]

o  Name: "rs_cnf"
o  Description: public key used by RS to authenticate itself to the
   client.
o  Change Controller: IESG
o  Reference: Section 4.1 of [this document]




9.5. OAuth Parameters CBOR Mappings Registraton

   This section registers the following parameter mappings in the "OAuth
   Parameters CBOR Mappings" registry established in section 8.9. of
   [I-D.ietf-ace-oauth-authz].



o  Name: "req_cnf"
o  CBOR key: TBD (suggested: 4)
o  Change Controller: IESG
o  Reference: Section 3.1 of [this document]

o  Name: "cnf"
o  CBOR key: TBD (suggested: 8)
o  Change Controller: IESG
o  Reference: Section 3.2 of [this document]

o  Name: "rs_cnf"
o  CBOR key: TBD (suggested: 41)
o  Change Controller: IESG
o  Reference: Section 3.2 of [this document]




9.6. OAuth Token Introspection Response CBOR Mappings Registration

   This section registers the following parameter mappings in the "OAuth
   Token Introspection Response CBOR Mappings" registry established in
   section 8.11. of [I-D.ietf-ace-oauth-authz].



o  Name: "cnf"
o  CBOR key: TBD (suggested: 8)
o  Change Controller: IESG
o  Reference: Section 4.1 of [this document]

o  Name: "rs_cnf"
o  CBOR key: TBD (suggested: 41)
o  Change Controller: IESG
o  Reference: Section 4.1 of [this document]




10. Acknowledgments

   This document is a product of the ACE working group of the IETF.



   Ludwig Seitz worked on this document as part of the CelticNext
   projects CyberWI, and CRITISEC with funding from Vinnova.




11. References


11.1. Normative References


   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-11 (work in progress), October 2019.




   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-25
              (work in progress), October 2019.




   [IANA.CborWebTokenClaims]

              IANA, "CBOR Web Token (CWT) Claims",
              <https://www.iana.org/assignments/cwt/
              cwt.xhtml#claims-registry>.




   [IANA.JsonWebTokenClaims]

              IANA, "JSON Web Token Claims",
              <https://www.iana.org/assignments/jwt/jwt.xhtml#claims>.




   [IANA.OAuthParameters]

              IANA, "OAuth Parameters",
              <https://www.iana.org/assignments/oauth-parameters/
              oauth-parameters.xhtml#parameters>.




   [IANA.TokenIntrospectionResponse]

              IANA, "OAuth Token Introspection Response",
              <https://www.iana.org/assignments/oauth-parameters/
              oauth-parameters.xhtml#token-introspection-response>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC6749]
  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC6749, October 2012,
              <https://www.rfc-editor.org/info/rfc6749>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




11.2. Informative References


   [I-D.ietf-oauth-pop-key-distribution]

              Bradley, J., Hunt, P., Jones, M., Tschofenig, H., and M.
              Meszaros, "OAuth 2.0 Proof-of-Possession: Authorization
              Server to Client Key Distribution", draft-ietf-oauth-pop-
              key-distribution-07 (work in progress), March 2019.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




Appendix A. Overlap with OAuth work

   This document overlaps with draft work from OAuth on proof-of-
   possesion keys [I-D.ietf-oauth-pop-key-distribution].



   The OAuth draft specifies the use of "req_cnf" and "cnf" for
   requesting proof-of-possession tokens and indicating the key that the
   AS has selected.  It it was initially deemed that the work at OAuth
   had been discontinued and therefore equivalent functionality was
   defined here.  Work in OAuth has since resumed, but it is lagging
   behind the planned milestones of the ACE working group.  We have
   therefore split this work out into a separate document so that it can
   later be updated or obsoleted to align it with the final result of
   the OAuth work, without affecting [I-D.ietf-ace-oauth-authz].



Author's Address



Ludwig Seitz
RISE
Scheelevaegen 17
Lund  223 70
Sweden



   Email: ludwig.seitz@ri.se










































draft-ietf-ace-oscore-profile-08 - OSCORE profile of the Authentication and Authorization for Constrained Environments Framework 






draft-ietf-ace-oscore-profile-08 - OSCORE profile of the Authentication and Auth

Index
Back 5
Prev
Next
Forward 5


ACE Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 9, 2020












F. Palombini

Ericsson AB

L. Seitz

RISE

G. Selander

Ericsson AB

M. Gunnarsson

RISE SICS AB

July 8, 2019

OSCORE profile of the Authentication and Authorization for Constrained Environments Framework  

draft-ietf-ace-oscore-profile-08


Abstract

   This memo specifies a profile for the Authentication and
   Authorization for Constrained Environments (ACE) framework.  It
   utilizes Object Security for Constrained RESTful Environments
   (OSCORE) to provide communication security, server authentication,
   and proof-of-possession for a key owned by the client and bound to an
   OAuth 2.0 access token.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on January 9, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology



	2.  Protocol Overview


	3.  Client-AS Communication
	 3.1.  C-to-AS: POST to token endpoint


	 3.2.  AS-to-C: Access Token
	  3.2.1.  OSCORE_Security_Context Object





	4.  Client-RS Communication
	 4.1.  C-to-RS: POST to authz-info endpoint


	 4.2.  RS-to-C: 2.01 (Created)


	 4.3.  OSCORE Setup


	 4.4.  Access rights verification



	5.  Secure Communication with AS


	6.  Discarding the Security Context


	7.  Security Considerations


	8.  Privacy Considerations


	9.  IANA Considerations
	 9.1.  ACE OAuth Profile Registry


	 9.2.  OSCORE Security Context Parameters Registry


	 9.3.  CWT Confirmation Methods Registry


	 9.4.  JWT Confirmation Methods Registry


	 9.5.  Expert Review Instructions



	10. References
	 10.1.  Normative References


	 10.2.  Informative References



	Appendix A.  Profile Requirements


	Acknowledgments


	Authors' Addresses




1. Introduction

   This memo specifies a profile of the ACE framework
   [I-D.ietf-ace-oauth-authz].  In this profile, a client and a resource
   server use CoAP [RFC7252] to communicate.  The client uses an access
   token, bound to a key (the proof-of-possession key) to authorize its
   access to the resource server.  In order to provide communication
   security, proof of possession, and server authentication they use
   Object Security for Constrained RESTful Environments (OSCORE)
   [I-D.ietf-core-object-security].



   OSCORE specifies how to use CBOR Object Signing and Encryption (COSE)
   [RFC8152] to secure CoAP messages.  Note that OSCORE can be used to
   secure CoAP messages, as well as HTTP and combinations of HTTP and
   CoAP; a profile of ACE similar to the one described in this document,
   with the difference of using HTTP instead of CoAP as communication
   protocol, could be specified analogously to this one.




1.1. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   Certain security-related terms such as "authentication",
   "authorization", "confidentiality", "(data) integrity", "message
   authentication code", and "verify" are taken from [RFC4949].



   RESTful terminology follows HTTP [RFC7231].



   Terminology for entities in the architecture is defined in OAuth 2.0
   [RFC6749], such as client (C), resource server (RS), and
   authorization server (AS).  It is assumed in this document that a
   given resource on a specific RS is associated to a unique AS.



   Concise Data Definition Language (CDDL) [RFC8610] is used in this
   specification.



   Note that the term "endpoint" is used here, as in
   [I-D.ietf-ace-oauth-authz], following its OAuth definition, which is
   to denote resources such as token and introspect at the AS and authz-
   info at the RS.  The CoAP [RFC7252] definition, which is "An entity
   participating in the CoAP protocol" is not used in this memo.




2. Protocol Overview

   This section gives an overview on how to use the ACE Framework
   [I-D.ietf-ace-oauth-authz] to secure the communication between a
   client and a resource server using OSCORE
   [I-D.ietf-core-object-security].  The parameters needed by the client
   to negotiate the use of this profile with the authorization server,
   as well as OSCORE setup process, are described in detail in the
   following sections.



   This profile requires a client to retrieve an access token from the
   AS for the resource it wants to access on a RS, using the token
   endpoint, as specified in section 5.6 of [I-D.ietf-ace-oauth-authz].
   To determine the AS in charge of a resource hosted at the RS, the
   client C MAY send an initial Unauthorized Resource Request message to
   the RS.  The RS then denies the request and sends the address of its
   AS back to the client C as specified in section 5.1 of
   [I-D.ietf-ace-oauth-authz].  The access token request and response
   MUST be confidentiality-protected and ensure authenticity.  This
   profile RECOMMENDS the use of OSCORE between client and AS, but TLS
   or DTLS MAY be used additionally or instead.



   Once the client has retrieved the access token, it generates a nonce
   N1 and posts both the token and N1 to the RS using the authz-info
   endpoint and mechanisms specified in section 5.8 of
   [I-D.ietf-ace-oauth-authz] and Content-Format = application/ace+cbor.



   If the access token is valid, the RS replies to this request with a
   2.01 (Created) response with Content-Format = application/ace+cbor,
   which contains a nonce N2 in a CBOR map.  Moreover, the server
   concatenates N1 with N2 and appends the result to the Master Salt in
   the Security Context (see section 3 of
   [I-D.ietf-core-object-security]).  The RS then derives the complete
   Security Context associated with the received token from it plus the
   parameters received in the AS, following section 3.2 of
   [I-D.ietf-core-object-security].



   After receiving the nonce N2, the client concatenates it with N1 and
   appends the result to the Master Salt in its Security Context (see
   section 3 of [I-D.ietf-core-object-security]).  The client then
   derives the complete Security Context from the nonces plus the
   parameters received from the AS.



   Finally, the client sends a request protected with OSCORE to the RS.
   If the request verifies, then this Security Context is stored in the
   server, and used in the response, and in further communications with
   the client, until token expiration.  This Security Context is
   discarded if the same token is re-used to successfully derive a new
   Security Context.



   The use of random nonces during the exchange prevents the reuse of
   AEAD nonces and keys with different messages, in case of re-
   derivation of the Security Context both for Clients and Resource
   Servers from an old non-expired access token, e.g. in case of re-boot
   of either the client or RS.  In fact, by using random nonces as part
   of the Master Salt, the request to the authz-info endpoint posting
   the same token results in a different Security Context, since Master
   Secret, Sender ID and Recipient ID are the same but Master Salt is
   different.  Therefore, the main requirement for the nonces is that
   they have a good amount of randomness.  If random nonces were not
   used, a node re-using a non-expired old token would be susceptible to
   on-path attackers provoking the creation of OSCORE messages using old
   AEAD keys and nonces.



   An overview of the profile flow for the OSCORE profile is given in
   Figure 1.



  C                            RS                   AS
  | [‑‑ Resource Request ‑‑‑>] |                     |
  |                            |                     |
  | [<‑‑‑‑ AS Request  ‑‑‑‑‑‑] |                     |
  |      Creation Hints        |                     |
  |                            |                     |
  | ‑‑‑‑‑ POST /token  ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑> |
  |                            |                     |
  | <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Access Token ‑‑‑‑‑ |
  |                           + Access Information   |
  | ‑‑‑‑ POST /authz‑info ‑‑‑> |                     |
  |     (access_token, N1)     |                     |
  |                            |                     |
  | <‑‑‑ 2.01 Created (N2) ‑‑‑ |                     |
  |                            |                     |
/Sec Context             /Sec Context                |
  Derivation/              Derivation/               |
  |                            |                     |
  | ‑‑‑‑ OSCORE Request ‑‑‑‑‑> |                     |
  |                            |                     |
  | <‑‑‑ OSCORE Response ‑‑‑‑‑ |                     |
  |                            |                     |
  | ‑‑‑‑ OSCORE Request ‑‑‑‑‑> |                     |
  |                            |                     |
  | <‑‑‑ OSCORE Response ‑‑‑‑‑ |                     |
  |           ...              |                     |




                        Figure 1: Protocol Overview




3. Client-AS Communication

   The following subsections describe the details of the POST request
   and response to the token endpoint between client and AS.
   Section 3.2 of [I-D.ietf-core-object-security] defines how to derive
   a Security Context based on a shared master secret and a set of other
   parameters, established between client and server, which the client
   receives from the AS in this exchange.  The proof-of-possession key
   (pop-key) provisioned from the AS MUST be used as master secret in
   OSCORE.




3.1. C-to-AS: POST to token endpoint

   The client-to-AS request is specified in Section 5.6.1 of
   [I-D.ietf-ace-oauth-authz].



   The client MUST send this POST request to the token endpoint over a
   secure channel that guarantees authentication, message integrity and
   confidentiality (see Section 5).



   An example of such a request, in CBOR diagnostic notation without the
   tag and value abbreviations is reported in Figure 2



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "token"
Content‑Format: "application/ace+cbor"
Payload:
{
  "req_aud" : "tempSensor4711",
  "scope" : "read"
 }




     Figure 2: Example C-to-AS POST /token request for an access token

                         bound to a symmetric key.



   If the client wants to update its access rights without changing an
   existing OSCORE Security Context, it MUST include in its POST request
   to the token endpoint a req_cnf object.  The req_cnf MUST include a
   kid field carrying a CBOR array object containing the client's
   identifier (assigned in section Section 3.2) and optionally the
   context identifier (if assigned in section Section 3.2).  The CBOR
   array is defined in Figure 3, and follows the notation of [RFC8610].
   These identifiers can be used by the AS to determine the shared
   secret to construct the proof-of-possession token and therefore MUST
   identify a symmetric key that was previously generated by the AS as a
   shared secret for the communication between the client and the RS.
   The AS MUST verify that the received value identifies a proof-of-
   possession key and token that have previously been issued to the
   requesting client.  If that is not the case, the Client-to-AS request
   MUST be declined with the error code 'invalid_request' as defined in
   Section 5.6.3 of [I-D.ietf-ace-oauth-authz].



kid = [
  clientId,
  ?IdContext
  ]




        Figure 3: CDDL Notation of kid for Update of Access Rights



   An example of such a request, in CBOR diagnostic notation without the
   tag and value abbreviations is reported in Figure 4



Header: POST (Code=0.02)
Uri‑Host: "as.example.com"
Uri‑Path: "token"
Content‑Format: "application/ace+cbor"
Payload:
{
  "req_aud" : "tempSensor4711",
  "scope" : "write",
  "req_cnf" : {
    "kid" : ["myclient","contextid1"]
 }




   Figure 4: Example C-to-AS POST /token request for updating rights to

                 an access token bound to a symmetric key.




3.2. AS-to-C: Access Token

   After verifying the POST request to the token endpoint and that the
   client is authorized to obtain an access token corresponding to its
   access token request, the AS responds as defined in section 5.6.2 of
   [I-D.ietf-ace-oauth-authz].  If the client request was invalid, or
   not authorized, the AS returns an error response as described in
   section 5.6.3 of [I-D.ietf-ace-oauth-authz].



   The AS can signal that the use of OSCORE is REQUIRED for a specific
   access token by including the "profile" parameter with the value
   "coap_oscore" in the access token response.  This means that the
   client MUST use OSCORE towards all resource servers for which this
   access token is valid, and follow Section 4.3 to derive the security
   context to run OSCORE.  Usually it is assumed that constrained
   devices will be pre-configured with the necessary profile, so that
   this kind of profile negotiation can be omitted.



   Moreover, the AS MUST provision the following data:



   o  a master secret



   o  a server identifier



   Additionally, the AS MAY provision the following data, in the same
   response.



   o  a client identifier



   o  a context identifier



   o  an AEAD algorithm



   o  an HKDF algorithm



   o  a salt



   o  a replay window type and size



   The OSCORE_Security_Context is a CBOR map object, defined in
   Section 3.2.1.  The master secret MUST be communicated as the 'ms'
   field in the OSCORE_Security_Context in the 'cnf' parameter of the
   access token response as defined in Section 3.2 of
   [I-D.ietf-ace-oauth-params].  The AEAD algorithm MAY be included as
   the 'alg' parameter in the OSCORE_Security_Context; the HKDF
   algorithm MAY be included as the 'hkdf' parameter of the
   OSCORE_Security_Context, a salt MAY be included as the 'salt'
   parameter of the OSCORE_Security_Context, and the replay window type
   and size MAY be included as the 'rpl' of the OSCORE_Security_Context,
   as defined in Section 3.2.1.



   The same parameters MUST be included as metadata of the access token.
   This profile RECOMMENDS the use of CBOR web token (CWT) as specified
   in [RFC8392].  If the token is a CWT, the same
   OSCORE_Security_Context structure defined above MUST be placed in the
   'cnf' claim of this token.



   The AS MUST also assign an identifier to the RS (serverId), MAY
   assign an identifier to the client (clientId), and MAY assign an
   identifier to the context (contextId).  These identifiers are then
   used as Sender ID, Recipient ID and ID Context in the OSCORE context
   as described in section 3.1 of [I-D.ietf-core-object-security].  The
   couple (client identifier, context identifier) MUST be unique in the
   set of all clients on a single RS.  Moreover, when assigned,
   serverId, clientId and contextId MUST be included in the
   OSCORE_Security_Context, as defined in Section 3.2.1.



   We assume in this document that a resource is associated to one
   single AS, which makes it possible to assume unique identifiers for
   each client requesting a particular resource to a RS.  If this is not
   the case, collisions of identifiers may appear in the RS, in which
   case the RS needs to have a mechanism in place to disambiguate
   identifiers or mitigate their effect.



   Note that in Section 4.3 C sets the Sender ID of its Security Context
   to the clientId value received and the Recipient ID to the serverId
   value, and RS does the opposite.



   Figure 5 shows an example of such an AS response, in CBOR diagnostic
   notation without the tag and value abbreviations.



Header: Created (Code=2.01)
Content‑Type: "application/ace+cbor"
Payload:
{
  "access_token" : h'a5037674656d7053656e73 ...'
   (remainder of access token omitted for brevity)',
  "profile" : "coap_oscore",
  "expires_in" : "3600",
  "cnf" : {
    "OSCORE_Security_Context" : {
      "alg" : "AES‑CCM‑16‑64‑128",
      "clientId" : b64'qA',
      "serverId" : b64'Qg',
      "ms" : h'f9af838368e353e78888e1426bd94e6f'
    }
  }
}




   Figure 5: Example AS-to-C Access Token response with OSCORE profile.



   Figure 6 shows an example CWT, containing the necessary OSCORE
   parameters in the 'cnf' claim, in CBOR diagnostic notation without
   tag and value abbreviations.



{
  "aud" : "tempSensorInLivingRoom",
  "iat" : "1360189224",
  "exp" : "1360289224",
  "scope" :  "temperature_g firmware_p",
  "cnf" : {
    "OSCORE_Security_Context" : {
      "alg" : "AES‑CCM‑16‑64‑128",
      "clientId" : h'636C69656E74',
      "serverId" : h'736572766572',
      "ms" : h'f9af838368e353e78888e1426bd94e6f'
  }
}




               Figure 6: Example CWT with OSCORE parameters.



   The same CWT token as in Figure 6, using the value abbreviations
   defined in [I-D.ietf-ace-oauth-authz] and
   [I-D.ietf-ace-cwt-proof-of-possession] and encoded in CBOR is shown
   in Figure 7.



   NOTE TO THE RFC EDITOR: before publishing, it should be checked (and
   in case fixed) that the values used below (which are not yet
   registered) are the final values registered in IANA.



A5                                      # map(5)
   03                                   # unsigned(3)
   76                                   # text(22)
      74656D7053656E736F72496E4C6976696E67526F6F6D
                                        # "tempSensorInLivingRoom"
   06                                   # unsigned(6)
   1A 5112D728                          # unsigned(1360189224)
   04                                   # unsigned(4)
   1A 51145DC8                          # unsigned(1360289224)
   09                                   # unsigned(9)
   78 18                                # text(24)
      74656D70657261747572655F67206669726D776172655F70
                                        # "temperature_g firmware_p"
   08                                   # unsigned(8)
   A1                                   # map(1)
      04                                # unsigned(4)
      A4                                # map(4)
         05                             # unsigned(5)
         0A                             # unsigned(10)
         02                             # unsigned(2)
         46                             # bytes(6)
            636C69656E74                # "client"
         03                             # unsigned(3)
         46                             # bytes(6)
            736572766572                # "server"
         01                             # unsigned(1)
         50                             # bytes(16)
            F9AF838368E353E78888E1426BD94E6F
                                        # "\xF9\xAF\x83\x83h\xE3S\xE7
                                           \x88\x88\xE1Bk\xD9No"





               Figure 7: Example CWT with OSCORE parameters.



   If the client has requested an update to its access rights using the
   same OSCORE Security Context, which is valid and authorized, the AS
   MUST omit the 'cnf' parameter in the response, and MUST carry the
   client identifier and optionally the context identifier in the 'kid'
   field in the 'cnf' parameter of the token, with the same structure
   defined in Figure 3.  These identifiers need to be provisioned, in
   order for the RS to identify the previously generated Security
   Context.



   Figure 8 shows an example of such an AS response, in CBOR diagnostic
   notation without the tag and value abbreviations.



Header: Created (Code=2.01)
Content‑Type: "application/ace+cbor"
Payload:
{
  "access_token" : h'a5037674656d7053656e73 ...'
   (remainder of access token omitted for brevity)',
  "profile" : "coap_oscore",
  "expires_in" : "3600"
}




   Figure 8: Example AS-to-C Access Token response with OSCORE profile,

                       for update of access rights.



   Figure 9 shows an example CWT, containing the necessary OSCORE
   parameters in the 'cnf' claim for update of access rights, in CBOR
   diagnostic notation without tag and value abbreviations.



{
  "aud" : "tempSensorInLivingRoom",
  "iat" : "1360189224",
  "exp" : "1360289224",
  "scope" :  "temperature_h",
  "cnf" : {
    "kid" : b64'qA'
  }
}




     Figure 9: Example CWT with OSCORE parameters for update of access

                                  rights.




3.2.1. OSCORE_Security_Context Object

   An OSCORE_Security_Context is an object that represents part or all
   of an OSCORE Security Context (Section 3.1 of
   [I-D.ietf-core-object-security]).  The OSCORE_Security_Context object
   can either be encoded as JSON object or as CBOR map.  In both cases,
   the set of common parameters that can appear in an
   OSCORE_Security_Context object can be found in the IANA "OSCORE
   Security Context Parameters" registry (Section Section 9.2) and is
   defined below.  All parameters are optional.  Table 1 provides a
   summary of the OSCORE_Security_Context parameters defined in this
   section.



+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name      | CBOR  | CBOR type      | registry     | description   |
|           | label |                |              |               |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ms        | 1     | bstr           |              | OSCORE Master |
|           |       |                |              | Secret value  |
|           |       |                |              |               |
| clientId  | 2     | bstr           |              | OSCORE Sender |
|           |       |                |              | ID value of   |
|           |       |                |              | the client,   |
|           |       |                |              | OSCORE        |
|           |       |                |              | Recipient ID  |
|           |       |                |              | value of the  |
|           |       |                |              | server        |
|           |       |                |              |               |
| serverId  | 3     | bstr           |              | OSCORE Sender |
|           |       |                |              | ID value of   |
|           |       |                |              | the server,   |
|           |       |                |              | OSCORE        |
|           |       |                |              | Recipient ID  |
|           |       |                |              | value of the  |
|           |       |                |              | client        |
|           |       |                |              |               |
| hkdf      | 4     | bstr / int     | COSE         | OSCORE HKDF   |
|           |       |                | Algorithm    | value         |
|           |       |                | Values       |               |
|           |       |                | (HMAC‑based) |               |
|           |       |                |              |               |
| alg       | 5     | tstr / int     | COSE         | OSCORE AEAD   |
|           |       |                | Algorithm    | Algorithm     |
|           |       |                | Values       | value         |
|           |       |                | (AEAD)       |               |
|           |       |                |              |               |
| salt      | 6     | bstr           |              | OSCORE Master |
|           |       |                |              | Salt value    |
|           |       |                |              |               |
| contextId | 7     | bstr           |              | OSCORE ID     |
|           |       |                |              | Context value |
|           |       |                |              |               |
| rpl       | 8     | bstr / int     |              | OSCORE Replay |
|           |       |                |              | Window Type   |
|           |       |                |              | and Size      |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                Table 1: OSCORE_Security_Context Parameters



ms:  This parameter identifies the OSCORE Master Secret value, which
   is a byte string.  For more information about this field, see



      section 3.1 of [I-D.ietf-core-object-security].  In JSON, the "ms"
      value is a Base64 encoded byte string.  In CBOR, the "ms" type is
      bstr, and has label 1.



clientId:  This parameter identifies a client identifier as a byte
   string.  This identifier is used as OSCORE Sender ID in the client
   and OSCORE Recipient ID in the server.  For more information about
   this field, see section 3.1 of [I‑D.ietf‑core‑object‑security].
   In JSON, the "clientId" value is a Base64 encoded byte string.  In
   CBOR, the "clientId" type is bstr, and has label 2.

serverId:  This parameter identifies a server identifier as a byte
   string.  This identifier is used as OSCORE Sender ID in the server
   and OSCORE Recipient ID in the client.  For more information about
   this field, see section 3.1 of [I‑D.ietf‑core‑object‑security].
   In JSON, the "serverId" value is a Base64 encoded byte string.  In
   CBOR, the "serverId" type is bstr, and has label 3.

hkdf:  This parameter identifies the OSCORE HKDF Algorithm.  For more
   information about this field, see section 3.1 of
   [I‑D.ietf‑core‑object‑security].  The values used MUST be
   registered in the IANA "COSE Algorithms" registry and MUST be
   HMAC‑based HKDF algorithms.  The value can either be the integer
   or the text string value of the HMAC‑based HKDF algorithm in the
   "COSE Algorithms" registry.  In JSON, the "hkdf" value is a case‑
   sensitive ASCII string or an integer.  In CBOR, the "hkdf" type is
   tstr or int, and has label 4.

alg:  This parameter identifies the OSCORE AEAD Algorithm.  For more
   information about this field, see section 3.1 of
   [I‑D.ietf‑core‑object‑security] The values used MUST be registered
   in the IANA "COSE Algorithms" registry and MUST be AEAD
   algorithms.  The value can either be the integer or the text
   string value of the HMAC‑based HKDF algorithm in the "COSE
   Algorithms" registry.  In JSON, the "alg" value is a case‑
   sensitive ASCII string or an integer.  In CBOR, the "alg" type is
   tstr or int, and has label 5.

salt:  This parameter identifies the OSCORE Master Salt value, which
   is a byte string.  For more information about this field, see
   section 3.1 of [I‑D.ietf‑core‑object‑security].  In JSON, the
   "salt" value is a Base64 encoded byte string.  In CBOR, the "salt"
   type is bstr, and has label 6.

contextId:  This parameter identifies the security context as a byte
   string.  This identifier is used as OSCORE ID Context.  For more
   information about this field, see section 3.1 of
   [I‑D.ietf‑core‑object‑security].  In JSON, the "contextID" value



      is a Base64 encoded byte string.  In CBOR, the "contextID" type is
      bstr, and has label 7.



rpl:  This parameter is used to carry the OSCORE value, encoded as a
   bstr.  This parameter identifies the OSCORE Replay Window Size and
   Type value, which is a byte string.  For more information about
   this field, see section 3.1 of [I‑D.ietf‑core‑object‑security].
   In JSON, the "rpl" value is a Base64 encoded byte string.  In
   CBOR, the "rpl" type is bstr, and has label 8.



   An example of JSON OSCORE_Security_Context is given in Figure 10.



"OSCORE_Security_Context" : {
  "alg" : "AES‑CCM‑16‑64‑128",
  "clientId" : b64'qA',
  "serverId" : b64'Qg',
  "ms" : b64'+a+Dg2jjU+eIiOFCa9lObw'
}




          Figure 10: Example JSON OSCORE_Security_Context object



   The CDDL grammar describing the CBOR OSCORE_Security_Context object
   is:



OSCORE_Security_Context = {
    ? 1 => bstr,              ; ms
    ? 2 => bstr,              ; clientId
    ? 3 => bstr,              ; serverId
    ? 4 => tstr / int,        ; hkdf
    ? 5 => tstr / int,        ; alg
    ? 6 => bstr,              ; salt
    ? 7 => bstr,              ; contextId
    ? 8 => bstr / tstr,       ; rpl
    * int / tstr => any
}




4. Client-RS Communication

   The following subsections describe the details of the POST request
   and response to the authz-info endpoint between client and RS.  The
   client generates a nonce N1 and posts it together with the token that
   includes the materials provisioned by the AS to the RS.  The RS then
   derives a nonce N2 and use Section 3.2 of
   [I-D.ietf-core-object-security] to derive a security context based on
   a shared master secret and the two nonces, established between client
   and server.



   Note that the proof-of-possession required to bind the access token
   to the client is implicitly performed by generating the shared OSCORE
   Security Context using the pop-key as master secret, for both client
   and RS.  An attacker using a stolen token will not be able to
   generate a valid OSCORE context and thus not be able to prove
   possession of the pop-key.




4.1. C-to-RS: POST to authz-info endpoint

   The client MUST generate a nonce N1 very unlikely to have been
   previously used with the same input keying material.  This profile
   RECOMMENDS to use a 64-bit long random number as nonce.  The client
   MUST store this nonce as long as the response from the RS is not
   received and the access token related to it is still valid.  The
   client MUST use CoAP and the Authorization Information resource as
   described in section 5.8.1 of [I-D.ietf-ace-oauth-authz] to transport
   the token and N1 to the RS.



   Note that the use of the payload and the Content-Format is different
   from what described in section 5.8.1 of [I-D.ietf-ace-oauth-authz],
   which only transports the token without any CBOR wrapping.  In this
   profile, the client MUST wrap the token and N1 in a CBOR map.  The
   client MUST use the Content-Format "application/ace+cbor" defined in
   section 8.14 of [I-D.ietf-ace-oauth-authz].  The client MUST include
   the access token using the correct CBOR label (e.g., "cwt" for CWT,
   "jwt" for JWT) and N1 using the 'cnonce' parameter defined in section
   5.1.2 of [I-D.ietf-ace-oauth-authz].



   The authz-info endpoint is not protected, nor are the responses from
   this resource.



   The access token MUST be encrypted, since it is transferred from the
   client to the RS over an unprotected channel.



   Note that a client may be required to re-POST the access token, since
   an RS may delete a stored access token, due to lack of memory.



   Figure 11 shows an example of the request sent from the client to the
   RS, in CBOR diagnostic notation without the tag and value
   abbreviations.



Header: POST (Code=0.02)
Uri‑Host: "rs.example.com"
Uri‑Path: "authz‑info"
Content‑Format: "application/ace+cbor"
Payload:
  {
    "access_token": h'a5037674656d7053656e73 ...'
 (remainder of access token omitted for brevity)',
    "cnonce": h'018a278f7faab55a'
  }




       Figure 11: Example C-to-RS POST /authz-info request using CWT




4.2. RS-to-C: 2.01 (Created)

   The RS MUST follow the procedures defined in section 5.8.1 of
   [I-D.ietf-ace-oauth-authz]: the RS MUST verify the validity of the
   token.  If the token is valid, the RS MUST respond to the POST
   request with 2.01 (Created).  If the token is valid but is associated
   to claims that the RS cannot process (e.g., an unknown scope), or if
   any of the expected parameters in the OSCORE_Security_Context is
   missing (e.g. any of the mandatory parameters from the AS), or if any
   parameters received in the OSCORE_Security_Context is unrecognized,
   the RS MUST respond with an error response code equivalent to the
   CoAP code 4.00 (Bad Request).  In the latter two cases, the RS MAY
   provide additional information in the error response, in order to
   clarify what went wrong.  The RS MAY make an introspection request to
   validate the token before responding to the POST request to the
   authz-info endpoint.



   Additionally, the RS MUST generate a nonce N2 very unlikely to have
   been previously used with the same input keying material, and send it
   within the 2.01 (Created) response.  The payload of the 2.01
   (Created) response MUST be a CBOR map containing the 'cnonce'
   parameter defined in section 5.1.2 of [I-D.ietf-ace-oauth-authz], set
   to N2.  This profile RECOMMENDS to use a 64-bit long random number as
   nonce.  Moreover, if the OSCORE_Security_Context in the token did not
   contain a 'clientId' parameter, the RS MUST generate an identifier,
   unique in the set of all its existing client identifiers, and send it
   in a 'clientId' parameter in the CBOR map as a CBOR bstr.  The RS MAY
   generate and send a 'ClientId' identifier even though the
   OSCORE_Security_Context contained such a parameter, in order to
   guarantee the uniqueness of the client identifier.  The RS MUST use
   the Content-Format "application/ace+cbor" defined in section 8.14 of
   [I-D.ietf-ace-oauth-authz].



   Figure 12 shows an example of the response sent from the RS to the
   client, in CBOR diagnostic notation without the tag and value
   abbreviations.



Header: Created (Code=2.01)
Content‑Format: "application/ace+cbor"
Payload:
  {
    "cnonce": h'25a8991cd700ac01'
  }




            Figure 12: Example RS-to-C 2.01 (Created) response



   When receiving an updated access token with updated authorization
   information from the client (see section Section 3.1), it is
   RECOMMENDED that the RS overwrites the previous token, that is only
   the latest authorization information in the token received by the RS
   is valid.  This simplifies for the RS to keep track of authorization
   information for a given client.



   As specified in section 5.8.3 of [I-D.ietf-ace-oauth-authz], the RS
   MUST notify the client with an error response with code 4.01
   (Unauthorized) for any long running request before terminating the
   session, when the access token expires.




4.3. OSCORE Setup

   Once receiving the 2.01 (Created) response from the RS, following the
   POST request to authz-info endpoint, the client MUST extract the
   nonce N2 from the 'cnonce' parameter and the client identifier from
   the 'clientId' in the CBOR map in the payload of the response.  Then,
   the client MUST set the Master Salt of the Security Context created
   to communicate with the RS to the concatenation of salt, N1, and N2,
   in this order: Master Salt = salt | N1 | N2, where | denotes byte
   string concatenation, and where salt was received from the AS in
   Section 3.2.  The client MUST set the Master Secret and Recipient ID
   from the parameters received from the AS in Section 3.2.  The client
   MUST set the AEAD Algorithm, ID Context, HKDF, and Replay Window from
   the parameters received from the AS in Section 3.2, if present.  In
   case these parameters are omitted, the default values are used as
   described in section 3.2 of [I-D.ietf-core-object-security].  The
   client MUST set the Sender ID from the 'clientId in the 2.01
   (Created) response, if present; otherwise, the client MUST set the
   Sender ID from the parameters received from the AS in Section 3.2.
   After that, the client MUST derive the complete Security Context
   following section 3.2.1 of [I-D.ietf-core-object-security].  From
   this point on, the client MUST use this Security Context to
   communicate with the RS when accessing the resources as specified by
   the authorization information.



   If any of the expected parameters is missing (e.g. any of the
   mandatory parameters from the AS, or the 'clientId', either received
   from the AS or in the 2.01 (Created) response from the RS), the
   client MUST stop the exchange, and MUST NOT derive the Security
   Context.  The client MAY restart the exchange, to get the correct
   security material.



   The client then uses this Security Context to send requests to RS
   using OSCORE.



   After sending the 2.01 (Created) response, the RS MUST set the Master
   Salt of the Security Context created to communicate with the client
   to the concatenation of salt, N1, and N2, in this order: Master Salt
   = salt | N1 | N2, where | denotes byte string concatenation, and
   where salt was received from the AS in Section 4.2.  The RS MUST set
   the Master Secret, Sender ID and Recipient ID from the parameters,
   received from the client in the access token in Section 4.1 after
   validation of the token as specified in Section 4.2.  The RS MUST set
   the AEAD Algorithm, ID Context, HKDF, and Replay Window from the
   parameters received from the client in the access token in
   Section 4.1 after validation of the token as specified in
   Section 4.2, if present.  In case these parameters are omitted, the
   default values are used as described in section 3.2 of
   [I-D.ietf-core-object-security].  After that, the RS MUST derive the
   complete Security Context following section 3.2.1 of
   [I-D.ietf-core-object-security], and MUST associate this Security
   Context with the authorization information from the access token.



   The RS then uses this Security Context to verify the request and send
   responses to C using OSCORE.  If OSCORE verification fails, error
   responses are used, as specified in section 8 of
   [I-D.ietf-core-object-security].  Additionally, if OSCORE
   verification succeeds, the verification of access rights is performed
   as described in section Section 4.4.  The RS MUST NOT use the
   Security Context after the related token has expired, and MUST
   respond with a unprotected 4.01 (Unauthorized) error message.



   If the exchange was an update of access rights, i.e. a new Security
   Context was derived from a client that already had a Security Context
   in place, the is RECOMMENDED to delete the old Security Context after
   OSCORE verification and verification of access rights succeed.  The
   RS MUST delete the Security Context if it deletes the access token
   associated to it.




4.4. Access rights verification

   The RS MUST follow the procedures defined in section 5.8.2 of
   [I-D.ietf-ace-oauth-authz]: if an RS receives an OSCORE-protected
   request from a client, then the RS processes it according to
   [I-D.ietf-core-object-security].  If OSCORE verification succeeds,
   and the target resource requires authorization, the RS retrieves the
   authorization information from the access token associated to the
   Security Context.  The RS then MUST verify that the authorization
   information covers the resource and the action requested.



   The response code MUST be 4.01 (Unauthorized) in case the client has
   not used the Security Context associated with the access token, or if
   RS has no valid access token for the client.  If RS has an access
   token for the client but not for the resource that was requested, RS
   MUST reject the request with a 4.03 (Forbidden).  If RS has an access
   token for the client but it does not cover the action that was
   requested on the resource, RS MUST reject the request with a 4.05
   (Method Not Allowed).




5. Secure Communication with AS

   As specified in the ACE framework (section 5.7 of
   [I-D.ietf-ace-oauth-authz]), the requesting entity (RS and/or client)
   and the AS communicates via the introspection or token endpoint.  The
   use of CoAP and OSCORE for this communication is RECOMMENDED in this
   profile, other protocols (such as HTTP and DTLS or TLS) MAY be used
   instead.



   If OSCORE is used, the requesting entity and the AS are expected to
   have pre-established security contexts in place.  How these security
   contexts are established is out of scope for this profile.
   Furthermore the requesting entity and the AS communicate using OSCORE
   ([I-D.ietf-core-object-security]) through the introspection endpoint
   as specified in section 5.7 of [I-D.ietf-ace-oauth-authz] and through
   the token endpoint as specified in section 5.6 of
   [I-D.ietf-ace-oauth-authz].




6. Discarding the Security Context

   There are a number of scenarios where a client or RS needs to discard
   the OSCORE security context, and acquire a new one.



   The client MUST discard the current security context associated with
   an RS when:



   o  the Sequence Number space ends.



   o  the access token associated with the context expires.



   o  the client receives a number of 4.01 Unauthorized responses to
      OSCORE requests using the same security context.  The exact number
      needs to be specified by the application.



   o  the client receives a new nonce in the 2.01 (Created) response
      (see Section 4.2) to a POST request to the authz-info endpoint,
      when re-posting a non-expired token associated to the existing
      context.



   The RS MUST discard the current security context associated with a
   client when:



   o  Sequence Number space ends.



   o  Access token associated with the context expires.




7. Security Considerations

   This document specifies a profile for the Authentication and
   Authorization for Constrained Environments (ACE) framework
   [I-D.ietf-ace-oauth-authz].  Thus the general security considerations
   from the framework also apply to this profile.



   Furthermore the general security considerations of OSCORE
   [I-D.ietf-core-object-security] also apply to this specific use of
   the OSCORE protocol.



   OSCORE is designed to secure point-to-point communication, providing
   a secure binding between the request and the response(s).  Thus the
   basic OSCORE protocol is not intended for use in point-to-multipoint
   communication (e.g. multicast, publish-subscribe).  Implementers of
   this profile should make sure that their usecase corresponds to the
   expected use of OSCORE, to prevent weakening the security assurances
   provided by OSCORE.



   Since the use of nonces in the exchange guarantees uniqueness of AEAD
   keys and nonces, it is REQUIRED that nonces are not reused with the
   same input keying material even in case of re-boots.  This document
   RECOMMENDS the use of 64 bit random nonces to guarantee non-reuse; if
   applications use something else, such as a counter, they need to
   guarantee that reboot and lost of state on either node does not
   provoke re-use.  If that is not guaranteed, nodes are still
   susceptible to re-using AEAD nonces and keys, in case the Security
   Context is lost, and on-path attacker replay messages.



   This profiles recommends that the RS maintains a single access token
   for a client.  The use of multiple access tokens for a single client
   increases the strain on the resource server as it must consider every
   access token and calculate the actual permissions of the client.
   Also, tokens may contradict each other which may lead the server to
   enforce wrong permissions.  If one of the access tokens expires
   earlier than others, the resulting permissions may offer insufficient
   protection.  Developers should avoid using multiple access tokens for
   a client.




8. Privacy Considerations

   This document specifies a profile for the Authentication and
   Authorization for Constrained Environments (ACE) framework
   [I-D.ietf-ace-oauth-authz].  Thus the general privacy considerations
   from the framework also apply to this profile.



   As this document uses OSCORE, thus the privacy considerations from
   [I-D.ietf-core-object-security] apply here as well.



   An unprotected response to an unauthorized request may disclose
   information about the resource server and/or its existing
   relationship with the client.  It is advisable to include as little
   information as possible in an unencrypted response.  When an OSCORE
   Security Context already exists between the client and the resource
   server, more detailed information may be included.



   Note that some information might still leak after OSCORE is
   established, due to observable message sizes, the source, and the
   destination addresses.




9. IANA Considerations

   Note to RFC Editor: Please replace all occurrences of "[[this
   specification]]" with the RFC number of this specification and delete
   this paragraph.




9.1. ACE OAuth Profile Registry

   The following registration is done for the ACE OAuth Profile Registry
   following the procedure specified in section 8.7 of
   [I-D.ietf-ace-oauth-authz]:



o  Profile name: coap_oscore
o  Profile Description: Profile for using OSCORE to secure
   communication between constrained nodes using the Authentication
   and Authorization for Constrained Environments framework.
o  Profile ID: TBD (value between 1 and 255)

o  Change Controller: IESG
o  Specification Document(s): [[this specification]]




9.2. OSCORE Security Context Parameters Registry

   It is requested that IANA create a new registry entitled "OSCORE
   Security Context Parameters" registry.  The registry is to be created
   as Expert Review Required.  Guidelines for the experts is provided
   Section 9.5.  It should be noted that in addition to the expert
   review, some portions of the registry require a specification,
   potentially on standards track, be supplied as well.



   The columns of the registry are:



name  The JSON name requested (e.g., "ms").  Because a core goal of
   this specification is for the resulting representations to be
   compact, it is RECOMMENDED that the name be short.  This name is
   case sensitive.  Names may not match other registered names in a
   case‑insensitive manner unless the Designated Experts state that
   there is a compelling reason to allow an exception.  The name is
   not used in the CBOR encoding.
CBOR label  The value to be used to identify this algorithm.  Key map
   labels MUST be unique.  The label can be a positive integer, a
   negative integer or a string.  Integer values between 0 and 255
   and strings of length 1 are designated as Standards Track Document
   required.  Integer values from 256 to 65535 and strings of length
   2 are designated as Specification Required.  Integer values of
   greater than 65535 and strings of length greater than 2 are
   designated as expert review.  Integer values less than ‑65536 are
   marked as private use.
CBOR Type  This field contains the CBOR type for the field.
registry  This field denotes the registry that values may come from,
   if one exists.
description  This field contains a brief description for the field.
specification  This contains a pointer to the public specification
   for the field if one exists



   This registry will be initially populated by the values in Table 1.
   The specification column for all of these entries will be this
   document.




9.3. CWT Confirmation Methods Registry

   The following registration is done for the CWT Confirmation Methods
   Registry following the procedure specified in section 7.2.1 of
   [I-D.ietf-ace-cwt-proof-of-possession]:



   o  Confirmation Method Name: "OSCORE_Security_Context"



o  Confirmation Method Description: OSCORE_Security_Context carrying
   the OSCORE Security Context parameters
o  Confirmation Key: TBD (value between 4 and 255)
o  Confirmation Value Type(s): map
o  Change Controller: IESG
o  Specification Document(s): Section 3.2.1 of [[this specification]]




9.4. JWT Confirmation Methods Registry

   The following registration is done for the JWT Confirmation Methods
   Registry following the procedure specified in section 6.2.1 of
   [RFC7800]:



o  Confirmation Method Value: "osc"
o  Confirmation Method Description: OSCORE_Security_Context carrying
   the OSCORE Security Context parameters
o  Change Controller: IESG
o  Specification Document(s): Section 3.2.1 of [[this specification]]




9.5. Expert Review Instructions

   The IANA registry established in this document is defined as expert
   review.  This section gives some general guidelines for what the
   experts should be looking for, but they are being designated as
   experts for a reason so they should be given substantial latitude.



   Expert reviewers should take into consideration the following points:



o  Point squatting should be discouraged.  Reviewers are encouraged
   to get sufficient information for registration requests to ensure
   that the usage is not going to duplicate one that is already
   registered and that the point is likely to be used in deployments.
   The zones tagged as private use are intended for testing purposes
   and closed environments, code points in other ranges should not be
   assigned for testing.
o  Specifications are required for the standards track range of point
   assignment.  Specifications should exist for specification
   required ranges, but early assignment before a specification is
   available is considered to be permissible.  Specifications are
   needed for the first‑come, first‑serve range if they are expected
   to be used outside of closed environments in an interoperable way.
   When specifications are not provided, the description provided
   needs to have sufficient information to identify what the point is
   being used for.
o  Experts should take into account the expected usage of fields when
   approving point assignment.  The fact that there is a range for
   standards track documents does not mean that a standards track
   document cannot have points assigned outside of that range.  The



      length of the encoded value should be weighed against how many
      code points of that length are left, the size of device it will be
      used on, and the number of code points left that encode to that
      size.




10. References


10.1. Normative References


   [I-D.ietf-ace-oauth-authz]

              Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
              H. Tschofenig, "Authentication and Authorization for
              Constrained Environments (ACE) using the OAuth 2.0
              Framework (ACE-OAuth)", draft-ietf-ace-oauth-authz-24
              (work in progress), March 2019.




   [I-D.ietf-ace-oauth-params]

              Seitz, L., "Additional OAuth Parameters for Authorization
              in Constrained Environments (ACE)", draft-ietf-ace-oauth-
              params-05 (work in progress), March 2019.




   [I-D.ietf-core-object-security]

              Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", draft-ietf-core-object-security-16 (work in
              progress), March 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8392]
  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
              "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
              May 2018, <https://www.rfc-editor.org/info/rfc8392>.




   [RFC8610]
  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/info/rfc8610>.




10.2. Informative References


   [I-D.ietf-ace-cwt-proof-of-possession]

              Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
              Tschofenig, "Proof-of-Possession Key Semantics for CBOR
              Web Tokens (CWTs)", draft-ietf-ace-cwt-proof-of-
              possession-06 (work in progress), February 2019.




   [RFC4949]
  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.




   [RFC6749]
  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC6749, October 2012,
              <https://www.rfc-editor.org/info/rfc6749>.




   [RFC7231]
  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
              DOI 10.17487/RFC7231, June 2014,
              <https://www.rfc-editor.org/info/rfc7231>.




   [RFC7800]
  Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
              Possession Key Semantics for JSON Web Tokens (JWTs)",
              RFC 7800, DOI 10.17487/RFC7800, April 2016,
              <https://www.rfc-editor.org/info/rfc7800>.




Appendix A. Profile Requirements

   This section lists the specifications on this profile based on the
   requirements on the framework, as requested in Appendix C of
   [I-D.ietf-ace-oauth-authz].



o  (Optional) discovery process of how the client finds the right AS
   for an RS it wants to send a request to: Not specified
o  communication protocol the client and the RS must use: CoAP
o  security protocol the client and RS must use: OSCORE
o  how the client and the RS mutually authenticate: Implicitly by
   possession of a common OSCORE security context
o  Content‑format of the protocol messages: "application/ace+cbor"
o  proof‑of‑possession protocol(s) and how to select one; which key
   types (e.g. symmetric/asymmetric) supported: OSCORE algorithms;
   pre‑established symmetric keys

o  profile identifier: coap_oscore
o  (Optional) how the RS talks to the AS for introspection: HTTP/CoAP
   (+ TLS/DTLS/OSCORE)
o  how the client talks to the AS for requesting a token: HTTP/CoAP
   (+ TLS/DTLS/OSCORE)
o  how/if the authz‑info endpoint is protected: Security protocol
   above
o  (Optional)other methods of token transport than the authz‑info
   endpoint: no



Acknowledgments



   The authors wish to thank Jim Schaad and Marco Tiloca for the input
   on this memo.



Authors' Addresses



Francesca Palombini
Ericsson AB



   Email: francesca.palombini@ericsson.com




Ludwig Seitz
RISE
Scheelevagen 17
Lund  22370
Sweden



   Email: ludwig.seitz@ri.se




Goeran Selander
Ericsson AB



   Email: goran.selander@ericsson.com




Martin Gunnarsson
RISE SICS AB
Scheelevagen 17
Lund  22370
Sweden



   Email: martin.gunnarsson@ri.se









draft-ietf-acme-authority-token-04 - ACME Challenges Using an Authority Token 






draft-ietf-acme-authority-token-04 - ACME Challenges Using an Authority Token 

Index
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Informational

Expires: May 7, 2020










J. Peterson

Neustar

M. Barnes

Independent

D. Hancock

C. Wendt

Comcast

November 4, 2019

ACME Challenges Using an Authority Token  

draft-ietf-acme-authority-token-04.txt


Abstract

   Some proposed extensions to the Automated Certificate Management
   Environment (ACME) rely on proving eligibility for certificates
   through consulting an external authority that issues a token
   according to a particular policy.  This document specifies a generic
   Authority Token challenge for ACME which supports subtype claims for
   different identifiers or namespaces that can be defined separately
   for specific applications.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 7, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Challenges for an Authority Token
	 3.1.  Token Type Requirements


	 3.2.  Authority Token Scope


	 3.3.  Binding Challenges



	4.  ATC tkauth-type Registration


	5.  Acquiring a Token
	 5.1.  Basic REST Interface



	6.  Using an Authority Token in a Challenge


	7.  Acknowledgements


	8.  IANA Considerations


	9.  Security Considerations


	10. Normative References


	Authors' Addresses




1. Introduction

   ACME [I-D.ietf-acme-acme] is a mechanism for automating certificate
   management on the Internet.  It enables administrative entities to
   prove effective control over resources like domain names, and
   automates the process of generating and issuing certificates.



   In some cases, proving effective control over an identifier requires
   an attestation from a third party who has authority over the
   resource, for example, an external policy administrator for a
   namespace other than the DNS application ACME was originally designed
   to support.  In order to automate the process of issuing certificates
   for those resources, this specification defines a generic Authority
   Token challenge that ACME servers can issue in order to require
   clients to return such a token.  The challenge contains a type
   indication that tells the client what sort of token it needs to
   acquire.  It is expected that the Authority Token challenge will be
   usable for a variety of identifier types.



   For example, the system of [I-D.ietf-acme-authority-token-tnauthlist]
   provides a mechanism that allows service providers to acquire
   certificates corresponding to a Service Provider Code (SPC) as
   defined in [RFC8226] by consulting an external authority responsible
   for those codes.  Furthermore, Communications Service Providers
   (CSPs) can delegate authority over numbers to their customers, and
   those CSPs who support ACME can then help customers to acquire
   certificates for those numbering resources with ACME.  This can
   permit number acquisition flows compatible with those shown in
   [RFC8396].  Another, similar example would a mechanism that permits
   CSPs to delegate authority for particular telephone numbers to
   customers, as described in [I-D.ietf-acme-telephone].




2. Terminology

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
   RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
   described in [RFC2119].




3. Challenges for an Authority Token

   Proving that a device on the Internet has effective control over a
   non-Internet resource is not as straightforward as proving control
   over an Internet resources like a DNS zone or a web page.  Provided
   that the issuer of identifiers in a namespace, or someone acting on
   the issuer's behalf, can implement a service that grants Authority
   Tokens to the people to whom it has issued identifiers, a generic
   token could be used as a response to an ACME challenge.  This
   specification, therefore, defines an Authority Token issued by an
   authority over a namespace to an ACME client for delivery to a CA in
   response to a challenge.  Authority over a hierarchical namespace can
   also be delegated, so that delegates of a root authority can
   themselves act as Token Authorities for certain types of names.



   This architecture assumes a trust relationship between CAs and Token
   Authorities: that CAs are willing to accept the attestation of Token
   Authorities for particular types of identifiers as sufficient proof
   to issue a credential.  It furthermore assumes that ACME clients have
   a relationship with Token Authorities which permits them to
   authenticate and authorize the issuance of Authority Tokens to the
   proper entities.  This ACME challenge has no applicability to
   identifiers or authorities where those pre-associations cannot be
   assumed.



   ACME challenges that support Authority Tokens therefore need to
   specify the type of token they require; CAs can even provide a hint
   in their challenges to ACME clients that tells them how to find a
   Token Authority who can issue tokens for a given namespace.  This
   challenge type thus requires a new "tkauth-type" element, and may
   optionally supply a "token-authority" designating a location where
   tokens can be acquired.  The set of "tkauth-type" values and the
   semantic requirements for those tokens are tracked by an IANA
   registry.




3.1. Token Type Requirements

   The IANA will maintain a registry of tkauth-types under a policy of
   Specification Required.  In order to register a new tkauth-type,
   specifications must address the following requirements.



   While Authority Token types do not need to be specific to a
   namespace, every token must carry enough information for a CA to
   determine the name that it will issue a certificate for.  Some types
   of Authority Token types might be reusable for a number of different
   namespaces; other might be specific to a particular type of name.
   Therefore, in defining tkauth-types, future specifications must
   indicate how a token conveys to the CA the name(s) that the Token
   Authority is attesting that the ACME client controls.



   While nothing precludes use cases where an ACME client is itself a
   Token Authority, an ACME client will typically need a protocol to
   request and retrieve an Authority Token.  The Token Authority will
   require certain information from an ACME client in order to ascertain
   that it is the right entity to request a certificate for a particular
   name.  The protocols used to request an Authority Token MUST convey
   to the Token Authority the identifier type and value from the ACME
   challenge, as well as the binding (see Section 3.3), and those MUST
   be reflected in the Authority Token.  A baseline mechanism for how
   the Token Authority authenticates and authorizes ACME clients to
   receive Authority Tokens is given in Section 5.



   Because the assignment of resources can change over time,
   demonstrations of authority must be regularly refreshed.  Definitions
   of a tkauth-type MUST specify how they manage the freshness of
   authority assignments.  Typically, a CA will expect a regular
   refreshing of the token.




3.2. Authority Token Scope

   An Authority Token is used to answer a challenge from an ACME server,
   upon a request for the issuance of a certificate.  It could be that
   the AT is requested from the Token Authority after a challenge has
   been received, or it could be that the AT was acquired prior to the
   initial ACME client request.  A Token Authority could grant to a
   client a Token that has the exact same scope as the requested
   certificate; alternatively, an Authority Token could attest to all of
   the resources that the client is eligible to receive certificates
   for, which could be a superset of the scope of the requested
   certificate.



   For example, imagine a case where an Authority for DNS names knows
   that a client is eligible to receive certificates for "example.com"
   and "example.net".  The client asks an ACME server for a certificate
   for "example.com", the server directs the client to acquire an
   Authority Token from the Authority.  When the client sends an
   acquisition request (see Section 5) to the Authority, the Authority
   could issue a token scoped just to "example.com", or a token that
   attests the client is eligible to receive certificates for both
   "example.com" or "example.net".  The advantage of the latter is that
   if, at a later time (but one within the expiry of the JWT), the
   client wanted to acquire a certificate for "example.net", it would
   not have to return to the Authority, as the Token effectively pre-
   authorized the issuance of that certificate.



   Applications of the Authority Token to different identifier types
   might require different scopes, so registrations of tkauth-types
   should be clear if and how a scope greater than that of the requested
   certificate would be conveyed in a token.




3.3. Binding Challenges

   Applications that use the Authority Token need a way to correlate
   tokens issued by an Authority with the proper ACME client, to prevent
   replay or cut-and-paste attacks using a token issued for a different
   purpose.  To mitigate this, Authority Tokens contain a binding signed
   by an Authority; an ACME server can use the binding to determine that
   a Token presented by a client was in fact granted by the Authority
   based on a request from the client, and not from some other entity.



   Binding an Authority Token to a particular ACME account entails that
   the Token could be reused up until its expiry for multiple challenges
   issued by an ACME server.  This might be a desirable property when
   using short-lived certificates, for example, or in any cases where
   the ACME server issues challenges more frequently that an Authority
   Token can or should issue tokens, or in cases where the Authority
   Token scope (see Section 3.2) is broad, so certificates with a more
   narrow scope may periodically be issued.



   For some identifier types, it may be more appropriate to bind the
   Authority Token to a nonce specific to the challenge rather than to
   an ACME account fingerprint.  Any specification of the use of the
   nonce for this purpose is left to the identifier type profile for the
   Authority Token.




4. ATC tkauth-type Registration

   This draft registers a tkauth-type of "atc", for the Authority Token
   Challenge.  Here the "atc" tkauth-type signifies a standard JWT token
   [RFC7519] using a JWS-defined signature string [RFC7515].  This may
   be used for any number of different identifier types given in ACME
   challenges.  The "atc" element (defined below) lists the identifier
   type used by tokens based on ATC.  The use of "atc" is restricted to
   JWTs, if non-JWT tokens were desired for ACME challenges, a different
   tkauth-type should be defined for them.



   For this ACME Authority Token usage of JWT, the payload of the JWT
   OPTIONALLY contain an "iss" indicating the Token Authority that
   generated the token, if the "x5u" element in the header does not
   already convey that information; typically, this will be the same
   location that appeared in the "token-authority" field of the ACME
   challenge.  In order to satisfy the requirement for replay prevention
   the JWT MUST contain a "jti" element, and an "exp" claim.  In
   addition to helping to manage replay, the "jti" provides a convenient
   way to reliably track with the same "atc" Authority Token is being
   used for multiple challenges over time within its set expiry.



   The JWT payload must also contain a new JWT claim, "atc", for
   Authority Token Challenge, which contains three mandatory elements in
   an array: the identifier type ("tktype"), the identifier value
   ("tkvalue"), and the binding ("fingerprint").  The identifier type
   and value are those given in the ACME challenge and conveyed to the
   Token Authority by the ACME client.  Following the example of
   [I-D.ietf-acme-authority-token-tnauthlist], the "tkvalue" identifier
   type could be the TNAuthList, with a "tkvalue" as defined in
   [RFC8226] that the Token Authority is attesting.  Practically
   speaking, that scope may comprise a list of Service Provider Code
   elements, telephone number range elements, and/or individual
   telephone numbers.  For the purposes of the "atc" tkauth-type, the
   binding "fingerprint" is assumed to be a fingerprint of the ACME
   credential for the account used to request the certificate, but the
   specification of how the binding is generated is left to the
   identifier type profile for the Authority Token.



   So for example:



{ "typ":"JWT",
 "alg":"ES256",
 "x5u":"https://authority.example.org/cert"}
{
"iss":"https://authority.example.org/authz",
"exp":1300819380,
"jti":"id6098364921",
"atc":{"tktype":"TnAuthList","tkvalue":"F83n2a...avn27DN3==","fingerprint":
"SHA256 56:3E:CF:AE:83:CA:4D:15:B0:29:FF:1B:71:D3:BA:B9:19:81:F8:50:
 9B:DF:4A:D4:39:72:E2:B1:F0:B9:38:E3"} }



   Optionally, the "atc" element may contain a fourth element, "ca".  If
   set to "true", the "ca" element indicates that the Token Authority is
   granting permission to issue a certification authority certificate
   rather than an end-entity certificate for the names in question.
   This permits subordinate delegations from the issued certificate.  If
   the "ca" element is absent, the Token Authority is explicitly
   withholding permission.  The "atc" object in the example above would
   then look like:



   "atc":{"tktype":"TnAuthList","tkvalue":"F83n2a...avn27DN3==","ca":true,
   "fingerprint":"SHA256 56:3E:CF:AE:83:CA:4D:15:B0:29:FF:1B:71:D3:BA:B9:19:81:F8:50:
   9B:DF:4A:D4:39:72:E2:B1:F0:B9:38:E3"} }



   Specifications of "tktype" identifier type may define additional
   optional "atc" elements.




5. Acquiring a Token

   The acquisition of a Authority Token requires a network interface,
   apart from potential use cases where the entity that acts as an ACME
   client itself also acts as a Token Authority trusted by the ACME
   server.  Implementations compliant with this specification MUST
   support an HTTPS REST interface for Authority Token acquisition as
   described below, though other interfaces MAY be supported as well.




5.1. Basic REST Interface

   In order to request an Authority Token from a Token Authority, a
   client sends an HTTPS POST request.  Different services may organize
   their web resources in domain-specific ways, but the resource locator
   should specify the account of the client, an identifier for the
   service provider, and finally a locator for the token.



POST /at/account/:id/token HTTP/1.1
Host: authority.example.com
Content‑Type: application/json



   The body of the POST request will contain the ATC element that the
   client is requesting the Token Authority generate.



{
"atc":{"tktype":"TnAuthList","tkvalue":"F83n2a...avn27DN3==",
"fingerprint":"SHA256 56:3E:CF:AE:83:CA:4D:15:B0:29:FF:1B:71:D3:BA:B9:19:81:F8:50:
9B:DF:4A:D4:39:72:E2:B1:F0:B9:38:E3"} }
}




   In common use cases, the "tkvalue" in this request is asking that the
   Token Authority issue a token that attests the entire scope of
   authority to which the client is entitled.  The client may also
   request an AT with some subset of its own authority via the "tkvalue"
   element in the ATC object.  The way that "tkvalue" is defined will
   necessarily be specific to the identifier type.  For the TNAuthlist
   identifier type, for example, an object requesting an AT could
   request authority for only a single telephone number in a way that is
   defined in the TNAuthList specification.



   Finally, the JSON object may also contain a optional boolean element
   "ca" which signifies that the client is requesting that the Token
   Authority issue an AT with the "ca" flag set, as described in
   Section 4.



   After an HTTPS-level challenge to verify the identity of the client
   and subsequently making an authorization decision, in the success
   case the Token Authority returns a 200 OK with a body of type
   "application/json" containing the Authority Token.




6. Using an Authority Token in a Challenge

   Taking the identifier example of TNAuthList from
   [I-D.ietf-acme-authority-token-tnauthlist], an ACME for this tkauth-
   type challenge might for example look as follows:



HTTP/1.1 200 OK
Content‑Type: application/json
Link: <https://example.com/acme/some‑directory>;rel="directory"



       {

        "status": "pending",



 "identifier": {
    "type": "TNAuthList",
    "value": "F83n2a...avn27DN3=="
  },
  "challenges": [
  {
    "type": "tkauth‑01",
    "tkauth‑type": "atc",
    "token‑authority": "https://authority.example.org/authz",
    "url": "https://boulder.example.com/authz/asdf/0"
    "token": "IlirfxKKXAsHtmzK29Pj8A" }
  ],
}



   Entities receiving this challenge know that they can, as a proof,
   acquire an ATC token from the designated Token Authority (specified
   in the "token-authority" field), and that this authority can provide
   tokens corresponding to the identifier type of "TNAuthList".



   Once the ATC has been acquired by the ACME Client, it can be posted
   back to the URL given by the ACME challenge.



POST /acme/authz/asdf/0 HTTP/1.1
Host: boulder.example.com
Content‑Type: application/jose+json

 {
  "protected": base64url({
  "alg": "ES256",
  "kid": "https://boulder.example.com/acme/reg/asdf",
  "nonce": "Q_s3MWoqT05TrdkM2MTDcw",
  "url": "https://boulder.example.com/acme/authz/asdf/0"
   }),
  "payload": base64url({
  "atc": "evaGxfADs...62jcerQ"
     }),
  "signature": "5wUrDI3eAaV4wl2Rfj3aC0Pp‑‑XB3t4YYuNgacv_D3U"
 }




   The "atc" field in this response contains the Authority Token.




7. Acknowledgements

   We would like to thank you for your contributions to this problem
   statement and framework.




8. IANA Considerations

   This document requests that the IANA registers a new ACME identifier
   type (per [I-D.ietf-acme-acme]) for the label "atc", for which the
   reference is [RFCThis].



   This document further requests that the IANA create a registry for
   "token types" as used in these challenges, following the requirements
   in Section 3.1, pre-populated with the label of "atc" per Section 4
   with a value of [RFCThis].




9. Security Considerations

   Per the guidance in [I-D.ietf-acme-acme], ACME transactions MUST use
   TLS, and similarly the HTTPS REST transactions used to request and
   acquire authority tokens MUST use TLS.  These measures are intended
   to prevent the capture of Authority Tokens by eavesdroppers.



   The capture of Authority Tokens by an adversary could enable an
   attacker to acquire a certificate from a CA.  Therefore, all
   Authority Tokens MUST contain a field that identifies to the CA which
   ACME client requested the token from the authority; here that is the
   fingerprint specified in Section 4).  All Authority Tokens must
   specify an expiry (of the token itself as proof for a CA, as opposed
   to the expiry of the name), and for some application, it may make
   sense of that expiry to be quite short.  Any protocol used to
   retrieve Authority Tokens from an authority MUST use confidentiality
   to prevent eavesdroppers from acquiring an Authority Token.




10. Normative References


   [I-D.ietf-acme-acme]

              Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", draft-ietf-acme-acme-18 (work in progress),
              December 2018.




   [I-D.ietf-acme-authority-token-tnauthlist]

              Wendt, C., Hancock, D., Barnes, M., and J. Peterson,
              "TNAuthList profile of ACME Authority Token", draft-ietf-
              acme-authority-token-tnauthlist-04 (work in progress),
              September 2019.




   [I-D.ietf-acme-service-provider]

              Barnes, M. and C. Wendt, "ACME Identifiers and Challenges
              for VoIP Service Providers", draft-ietf-acme-service-
              provider-02 (work in progress), October 2017.




   [I-D.ietf-acme-star]

              Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
              Fossati, "Support for Short-Term, Automatically-Renewed
              (STAR) Certificates in Automated Certificate Management
              Environment (ACME)", draft-ietf-acme-star-11 (work in
              progress), October 2019.




   [I-D.ietf-acme-telephone]

              Peterson, J. and R. Barnes, "ACME Identifiers and
              Challenges for Telephone Numbers", draft-ietf-acme-
              telephone-01 (work in progress), October 2017.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC7340]
  Peterson, J., Schulzrinne, H., and H. Tschofenig, "Secure
              Telephone Identity Problem Statement and Requirements",
              RFC 7340, DOI 10.17487/RFC7340, September 2014,
              <https://www.rfc-editor.org/info/rfc7340>.




   [RFC7515]
  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
              2015, <https://www.rfc-editor.org/info/rfc7515>.




   [RFC7519]
  Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
              <https://www.rfc-editor.org/info/rfc7519>.




   [RFC8224]
  Peterson, J., Jennings, C., Rescorla, E., and C. Wendt,
              "Authenticated Identity Management in the Session
              Initiation Protocol (SIP)", RFC 8224,
              DOI 10.17487/RFC8224, February 2018,
              <https://www.rfc-editor.org/info/rfc8224>.




   [RFC8225]
  Wendt, C. and J. Peterson, "PASSporT: Personal Assertion
              Token", RFC 8225, DOI 10.17487/RFC8225, February 2018,
              <https://www.rfc-editor.org/info/rfc8225>.




   [RFC8226]
  Peterson, J. and S. Turner, "Secure Telephone Identity
              Credentials: Certificates", RFC 8226,
              DOI 10.17487/RFC8226, February 2018,
              <https://www.rfc-editor.org/info/rfc8226>.




   [RFC8396]
  Peterson, J. and T. McGarry, "Managing, Ordering,
              Distributing, Exposing, and Registering Telephone Numbers
              (MODERN): Problem Statement, Use Cases, and Framework",
              RFC 8396, DOI 10.17487/RFC8396, July 2018,
              <https://www.rfc-editor.org/info/rfc8396>.



Authors' Addresses



Jon Peterson
Neustar, Inc.
1800 Sutter St Suite 570
Concord, CA  94520
US



   Email: jon.peterson@team.neustar




Mary Barnes
Independent



   Email: mary.ietf.barnes@gmail.com




David Hancock
Comcast



   Email: davidhancock.ietf@gmail.com




Chris Wendt
Comcast
One Comcast Center
Philadelphia, PA  19103
USA



   Email: chris-ietf@chriswendt.net













draft-ietf-acme-authority-token-tnauthlist-05 - TNAuthList profile of ACME Authority Token 






draft-ietf-acme-authority-token-tnauthlist-05 - TNAuthList profile of ACME Autho

Index
Prev
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 7, 2020










C. Wendt

D. Hancock

Comcast

M. Barnes

Independent

J. Peterson

Neustar Inc.

November 04, 2019

TNAuthList profile of ACME Authority Token  

draft-ietf-acme-authority-token-tnauthlist-05


Abstract

   This document defines a profile of the Automated Certificate
   Management Environment (ACME) Authority Token for the automated and
   authorized creation of certificates for VoIP Telephone Providers to
   support Secure Telephony Identity (STI) using the TNAuthList defined
   by STI certificates.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 7, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  ACME new-order identifiers for TNAuthList


	4.  TNAuthList Identifier Authorization


	5.  TNAuthList Authority Token
	 5.1.  "iss" claim


	 5.2.  "exp" claim


	 5.3.  "jti" claim


	 5.4.  "atc" claim


	 5.5.  Acquiring the token from the Token Authority


	 5.6.  Token Authority Responsibilities


	 5.7.  Scope of the TNAuthList token authority



	6.  Validating the TNAuthList Authority Token


	7.  Usage Considerations
	 7.1.  Large number of Non-contiguous TNAuthList values



	8.  Security Considerations


	9.  IANA Considerations


	10. Acknowledgements


	11. References
	 11.1.  Normative References


	 11.2.  Informative References



	Authors' Addresses




1. Introduction

   [RFC8555] is a mechanism for automating certificate management on the
   Internet.  It enables administrative entities to prove effective
   control over resources like domain names, and automates the process
   of generating and issuing certificates.
   [I-D.ietf-acme-authority-token] extends ACME to provide a general
   method of extending the authority and authorization of entities to
   control a resource via a third party Token Authority beyond the
   Certification Authority.



   This document addresses the STIR problem statement [RFC7340] which
   identifies the need for Internet credentials that can attest
   authority for the originator of VoIP calls in order to detect
   impersonation, which is currently an enabler for common attacks
   associated with illegal robocalling, voicemail hacking, and swatting.
   These credentials are used to sign PASSporTs [RFC8225], which can be
   carried in using protocols such as SIP [RFC8224].  Currently, the
   only defined credentials for this purpose are the certificates
   specified in [RFC8226].



   [RFC8226] describes certificate extensions suitable for associating
   telephone numbers and service provider codes with certificates.
   Specifically, the TN Authorization List defined in [RFC8226]
   Section 9, defines the ability to associate a STI certificate with a
   specific set of Service Provider Codes (SPCs), Telephone Numbers
   (TNs), or Telephone Number ranges (TN ranges).  Typically, these
   identifiers have been assigned to a Communications Service Provider
   (CSP) that is authorized to use a set of telephone numbers or
   telephone number ranges in association with a Service Provider Code
   as defined in [RFC8226].  The SPC is a unique code or string managed
   by a national regulatory body that has the authority over those code-
   to-CSP associations.



   This document will also incorporate the ability for a telephone
   authority to authorize the creation of CA types of certificates for
   delegation as defined in [I-D.ietf-stir-cert-delegation].




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].




3. ACME new-order identifiers for TNAuthList

   In [RFC8555], Section 7.4 defines the procedure that an ACME client
   uses to order a new certificate from a Certification Authority.  The
   new-order request contains an identifier field that specifies the
   identifier objects the order corresponds to.  This draft defines a
   new type of identifier object called TNAuthList.  A TNAuthList
   identifier contains the identity information to be populated in the
   TN Authorization List of the new certificate.  For the TNAuthList
   identifier, the new-order request MUST include a type set to the
   string "TNAuthList".  The value of the TNAuthList identifier MUST be
   set to the details of the TNAuthList requested.



   The format of the string that represents the TNAuthList MUST be
   constructed as a base64 [RFC4648] encoding of the TN Authorization
   List certificate extension ASN.1 object.  The TN Authorization List
   certificate extension ASN.1 syntax is defined in [RFC8226] section 9.



   An example of an ACME order object "identifiers" field containing a
   TNAuthList certificate would look as follows,



    "identifiers": [{"type":"TNAuthList","value":"F83n2a...avn27DN3=="}]



   where the "value" object string represents the arbitrary length
   base64 encoded string.



   A full new-order request would look as follows,



POST /acme/new‑order HTTP/1.1
Host: example.com
Content‑Type: application/jose+json

{
  "protected": base64url({
    "alg": "ES256",
    "kid": "https://example.com/acme/acct/1",
    "nonce": "5XJ1L3lEkMG7tR6pA00clA",
    "url": "https://example.com/acme/new‑order"
  }),
  "payload": base64url({
    "identifiers": [{"type:"TNAuthList","value":"F83n2a...avn27DN3=="}],
    "notBefore": "2016‑01‑01T00:00:00Z",
    "notAfter": "2016‑01‑08T00:00:00Z"
  }),
  "signature": "H6ZXtGjTZyUnPeKn...wEA4TklBdh3e454g"
}



   On receiving a valid new-order request, the CA creates an
   authorization object containing the challenge that the ACME client
   must satisfy to demonstrate authority for the identifiers specified
   by the new order (in this case, the TNAuthList identifier).  The CA
   adds the authorization object URL to the "authorizations" field of
   the order object, and returns the order object to the ACME client in
   the body of a 201 (Created) response.



HTTP/1.1 201 Created
Replay‑Nonce: MYAuvOpaoIiywTezizk5vw
Location: https://example.com/acme/order/1234

{
  "status": "pending",
  "expires": "2015‑03‑01T14:09:00Z",

  "notBefore": "2016‑01‑01T00:00:00Z",
  "notAfter": "2016‑01‑08T00:00:00Z",
  "identifiers":[{"type:"TNAuthList",
                 "value":"F83n2a...avn27DN3=="}],

  "authorizations": [
   "https://example.com/acme/authz/1234"
  ],
  "finalize": "https://example.com/acme/order/1234/finalize"
}




4. TNAuthList Identifier Authorization

   On receiving the new-order response, the ACME client queries the
   referenced authorization object to obtain the challenges for the
   identifier contained in the new-order request as shown in the
   following example request and response.



POST /acme/authz/1234 HTTP/1.1
    Host: example.com
    Content‑Type: application/jose+json

    {
      "protected": base64url({
        "alg": "ES256",
        "kid": " https://example.com/acme/acct/1",
        "nonce": "uQpSjlRb4vQVCjVYAyyUWg",
        "url": "https://example.com/acme/authz/1234",
      }),
      "payload": "",
      "signature": "nuSDISbWG8mMgE7H...QyVUL68yzf3Zawps"
    }

HTTP/1.1 200 OK
Content‑Type: application/json
Link: <https://example.com/acme/some‑directory>;rel="index"

{
  "status": "pending",
  "expires": "2018‑03‑03T14:09:00Z",

  "identifier": {
    "type:"TNAuthList",
    "value":"F83n2a...avn27DN3=="
  },

  "challenges": [
    {
      "type": "tkauth‑01",
      "tkauth‑type": "atc",
      "token‑authority": "https://authority.example.org/authz",
      "url": "https://boulder.example.com/authz/asdf/0"
      "token": "IlirfxKKXAsHtmzK29Pj8A"
    }
  ]
}



   When processing a certificate order containing an identifier of type
   "TNAuthList", a CA MUST use the Authority Token challenge mechanism
   defined in [I-D.ietf-acme-authority-token] to verify that the
   requesting ACME client has authenticated and authorized control over
   the requested resources represented by the "TNAuthList" value.



   The challenge "token-authority" parameter is optional and only used
   in cases where the VoIP telephone network requires the CA to identify
   the Token Authority.  This is currently not the case for the SHAKEN
   [ATIS-1000080] certificate framework governance, but may be used by
   other frameworks.  If a "token-authority" parameter is present, then
   the ACME client MAY use the "token-authority" value to identify the
   URL representing the Token Authority that will provide the TNAuthList
   Authority Token response to the challenge.  If the "token-authority"
   parameter is not present, then the ACME client MUST identify the
   Token Authority based on locally configured information or local
   policies.



   The ACME client MUST respond to the challenge by posting the
   TNAuthList Authority Token to the challenge URL identified in the
   returned ACME authorization object, an example of which follows.



POST /acme/authz/asdf/0 HTTP/1.1
Host: boulder.example.com
Content‑Type: application/jose+json

{
  "protected": base64url({
  "alg": "ES256",
  "kid": "https://example.com/acme/acct/1",
  "nonce": "Q_s3MWoqT05TrdkM2MTDcw",
  "url": "https://boulder.example.com/acme/authz/asdf/0"
  }),
  "payload": base64url({
  "atc": "DGyRejmCefe7v4N...vb29HhjjLPSggwiE"
  }),
  "signature": "9cbg5JO1Gf5YLjjz...SpkUfcdPai9uVYYQ"
}



   The specifics of the construction of the TNAuthList specific "atc"
   token is defined in the next section.




5. TNAuthList Authority Token

   The Telephone Number Authority List Authority Token (TNAuthList
   Authority Token) is an extension of the ACME Authority Token defined
   in [I-D.ietf-acme-authority-token].



   The TNAuthList Authority Token Protected header MUST comply with the
   Authority Token Protected header as defined in
   [I-D.ietf-acme-authority-token].



   The TNAuthList Authority Token Payload MUST include the mandatory
   claims and MAY include the optional claims defined for the Authority
   Token detailed in the next subsections.




5.1. "iss" claim

   The "iss" claim is an optional claim.  It can be used as a URL
   identifying the Token Authority that issued the TNAuthList Authority
   Token beyond the "x5u" Header claim that identifies the location of
   the certificate of the Token Authority used to validate the
   TNAuthList Authority Token.




5.2. "exp" claim

   The "exp" claim contains the DateTime value of the ending date and
   time that the TNAuthList Authority Token expires.




5.3. "jti" claim

   The "jti" claim contains a unique identifier for this TNAuthList
   Authority Token transaction.




5.4. "atc" claim

   The "atc" claim is the only claim specifically defined in this
   document.  It contains a JSON object of three elements.



   o  a "tktype" key that is required with a string value equal to
      "TNAuthList" to represent a TNAuthList profile of the authority
      token [I-D.ietf-acme-authority-token] defined by this document.



   o  a "tkvalue" key with a string value equal to the TNAuthList
      identifier "value" string which MUST contain the base64 encoding
      of the TN Authorization List certificate extension ASN.1 object.
      "tkvalue" is a required key and MUST be included.



   o  a "ca" key with a boolean value set to either true when the
      requested certificate is allowed to be a CA cert for delegation
      uses or false when the requested certificate MUST NOT be a CA cert
      and only an end-entity certificate. "ca" is an optional key, if it
      not included the "ca" value is considered false by default.



   o  a "fingerprint" key with a fingerprint value equal to the
      fingerprint, as defined in [RFC4949], of the ACME account
      credentials.  Specifically, the fingerprint value is a secure one-
      way hash of the Distinguished Encoding Rules (DER) form of the
      public key corresponding to the key pair the SP used to create the
      account with the ACME server.  The fingerprint value consists of
      the name of the hash function, which shall be 'SHA256' for this
      specification, followed by the hash value itself.  The hash value
      is represented as a sequence of uppercase hexadecimal bytes,
      separated by colons.  The number of bytes is defined by the hash
      function. "fingerprint" is a required key and MUST be included.



   An example of the TNAuthList Authority Token is as follows,



{ "typ":"JWT",
 "alg":"ES256",
 "x5u":https://authority.example.org/cert
}

{ "iss":"https://authority.example.org/authz",
 "exp":1300819380,
 "jti":"id6098364921",
 "atc":{"tktype":"TNAuthList",
   "tkvalue":"F83n2a...avn27DN3==",
   "ca":false,
   "fingerprint":"SHA256 56:3E:CF:AE:83:CA:4D:15:B0:29:FF:1B:71:
    D3:BA:B9:19:81:F8:50:9B:DF:4A:D4:39:72:E2:B1:F0:B9:38:E3"}
}




5.5. Acquiring the token from the Token Authority

   Following [I-D.ietf-acme-authority-token] Section 5, the authority
   token should be acquired using a RESTful HTTP POST transaction as
   follows



POST /at/account/:id/token HTTP/1.1
Host: authority.example.com
Content‑Type: application/json



   The request will pass the account id as a string in the request
   parameter "id".  This string will be managed as an identifier
   specific to the authorities relationship with a CSP.  There is
   assumed to also be a corresponding authentication procedure that can
   be verified for the success of this transaction.  For example, an
   HTTP authorization header containing a valid authorization
   credentials as defined in [RFC2616] Section 14.8.



   The body of the POST request MUST contain the "atc" JSON object that
   should be embedded in the token that is requested, for example the
   body should contain a JSON object as shown:



{
  "atc":{"tktype":"TNAuthList",
    "tkvalue":"F83n2a...avn27DN3==",
    "ca":false,
    "fingerprint":"SHA256 56:3E:CF:AE:83:CA:4D:15:B0:29:FF:1B:71:D3 \
    :BA:B9:19:81:F8:50:9B:DF:4A:D4:39:72:E2:B1:F0:B9:38:E3"}
}



   The response to the POST request if successful MUST return a 200 OK
   with a JSON body that contains the TNAuthList Authority Token as a
   JSON object with a single key of "atc" and the base64 encoded string
   representing the atc token.



   An example successful response would be as follows:



HTTP/1.1 200 OK
Content‑Type: application/json



   {"atc": "DGyRejmCefe7v4N...vb29HhjjLPSggwiE"}



   If the request is not successful, the response should indicate the
   error condition.  Specifically, for the case that the authorization
   credentials are invalid, the response code MUST be 403 - Forbidden.
   If the Account ID provided does not exist or does not match
   credentials in Authorization header, the response MUST be 404 -
   Invalid account ID.  Other 4xx and 5xx responses SHOULD follow
   standard [RFC2616] HTTP error condition conventions.




5.6. Token Authority Responsibilities

   When the Token Authority creates the TNAuthList Authority Token, it
   is the responsibility of the Token Authority to validate that the
   information contained in the ASN.1 TNAuthList accurately represents
   the SPC or telephone number resources the ACME client is authorized
   to represent.




5.7. Scope of the TNAuthList token authority

   Because this specification specifically involves the TNAuthList
   defined in [RFC8226] which involves SPC, TNBlock, and individual TNs,
   the client may also request an Authority Token with some subset of
   its own authority the TNAuthList provided in the "tkvalue" element in
   the "atc" JSON object.  Generally, the scope of authority of
   telephone numbers is that a communications service provider which is
   represented by a particular SPC (e.g.  OCN or SPID) is associated
   with a particular set of different TN Blocks and/or TNs, although
   more often the former.  TNAuthList can be constructed to define a
   limited scope of the TNBlocks or TNs either associated with an SPC or
   with the scope of TN Blocks or TNs the client has authority over.




6. Validating the TNAuthList Authority Token

   Upon receiving a response to the challenge, the ACME server MUST
   perform the following steps to determine the validity of the
   response.



   o  Verify that the token contained in the Payload "atc" field is an
      TNAuthList Authority Token.



   o  Verify the TNAuthList Authority Token signature using the public
      key of the certificate referenced by the token's "x5u" parameter.



   o  Verify that "atc" claim contains an identifier type of
      "TNAuthList",



   o  Verify that the "atc" claim contains the equivalent base64 encoded
      TNAuthList certificate extension string value as the Identifier
      specified in the original challenge.



   o  Verify that the remaining claims are valid (e.g., verify that
      token has not expired)



   o  Verify that the "atc" claim "fingerprint" is valid



   o  Verify that the "ca" claim boolean corresponds to the CSR request
      for either CA certificate or end-entity certificate



   If all steps in the token validation process pass, then the CA MUST
   set the challenge object "status" to "valid".  If any step of the
   validation process fails, the "status" in the challenge object MUST
   be set to "invalid".




7. Usage Considerations


7.1. Large number of Non-contiguous TNAuthList values

   There are many scenarios and reasons to have various combinations of
   SPCs, TNs, and TN Ranges.  [RFC8226] has provided a somewhat
   unbounded set of combinations.  It's possible that a complex non-
   contiguous set of telephone numbers are being managed by a CSP.  Best
   practice may be simply to split a set of non-contiguous numbers under
   management into multiple STI certificates to represent the various
   contiguous parts of the greater non-contiguous set of TNs,
   particularly if length of the set of values in identifier object
   grows to be too large.




8. Security Considerations

   The token represented by this document obviously has the credentials
   to represent the scope of a telephone number, a block of telephone
   numbers, or an entire set of telephone numbers represented by a SPC.
   The creation, transport, and any storage of this token MUST follow
   the strictest of security best practices beyond the recommendations
   of the use of encrypted transport protocols in this document to
   protect it from getting in the hands of bad actors with illegitimate
   intent to impersonate telephone numbers.




9. IANA Considerations

   This document requests the addition of a new identifier object type
   that can be present in the identifier field of the ACME authorization
   object defined in [RFC8555].



+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|   Label    | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| TNAuthList |  RFCThis  |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




10. Acknowledgements

   We would like to thank Richard Barnes and Russ Housley for valuable
   contributions to this document.




11. References


11.1. Normative References


   [I-D.ietf-acme-authority-token]

              Peterson, J., Barnes, M., Hancock, D., and C. Wendt, "ACME
              Challenges Using an Authority Token", draft-ietf-acme-
              authority-token-03 (work in progress), March 2019.




   [I-D.ietf-stir-cert-delegation]

              Peterson, J., "STIR Certificate Delegation", draft-ietf-
              stir-cert-delegation-00 (work in progress), July 2019.




   [RFC2616]
  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616,
              DOI 10.17487/RFC2616, June 1999,
              <https://www.rfc-editor.org/info/rfc2616>.




   [RFC4648]
  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.




   [RFC4949]
  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.




   [RFC7340]
  Peterson, J., Schulzrinne, H., and H. Tschofenig, "Secure
              Telephone Identity Problem Statement and Requirements",
              RFC 7340, DOI 10.17487/RFC7340, September 2014,
              <https://www.rfc-editor.org/info/rfc7340>.




   [RFC8224]
  Peterson, J., Jennings, C., Rescorla, E., and C. Wendt,
              "Authenticated Identity Management in the Session
              Initiation Protocol (SIP)", RFC 8224,
              DOI 10.17487/RFC8224, February 2018,
              <https://www.rfc-editor.org/info/rfc8224>.




   [RFC8225]
  Wendt, C. and J. Peterson, "PASSporT: Personal Assertion
              Token", RFC 8225, DOI 10.17487/RFC8225, February 2018,
              <https://www.rfc-editor.org/info/rfc8225>.




   [RFC8226]
  Peterson, J. and S. Turner, "Secure Telephone Identity
              Credentials: Certificates", RFC 8226,
              DOI 10.17487/RFC8226, February 2018,
              <https://www.rfc-editor.org/info/rfc8226>.




   [RFC8555]
  Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
              <https://www.rfc-editor.org/info/rfc8555>.




11.2. Informative References


   [ATIS-1000074]

              ATIS/SIP Forum NNI Task Group, "Signature-based Handling
              of Asserted information using toKENs (SHAKEN)
              <https://access.atis.org/apps/group_public/
              download.php/32237/ATIS-1000074.pdf>", January 2017.




   [ATIS-1000080]

              ATIS/SIP Forum NNI Task Group, "Signature-based Handling
              of Asserted information using toKENs (SHAKEN) Governance
              Model and Certificate Management
              <https://access.atis.org/apps/group_public/
              download.php/32237/ATIS-1000080.pdf>", July 2017.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC8588]
  Wendt, C. and M. Barnes, "Personal Assertion Token
              (PaSSporT) Extension for Signature-based Handling of
              Asserted information using toKENs (SHAKEN)", RFC 8588,
              DOI 10.17487/RFC8588, May 2019,
              <https://www.rfc-editor.org/info/rfc8588>.



Authors' Addresses



Chris Wendt
Comcast
One Comcast Center
Philadelphia, PA  19103
USA



   Email: chris-ietf@chriswendt.net




David Hancock
Comcast



   Email: davidhancock.ietf@gmail.com




Mary Barnes
Independent



   Email: mary.ietf.barnes@gmail.com




Jon Peterson
Neustar Inc.
1800 Sutter St Suite 570
Concord, CA  94520
US



   Email: jon.peterson@neustar.biz
























draft-ietf-acme-email-smime-06 - Extensions to Automatic Certificate Management Environment for end user S/MIME certificates 






draft-ietf-acme-email-smime-06 - Extensions to Automatic Certificate Management 

Index
Prev
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Informational

Expires: May 4, 2020


A. Melnikov

Isode Ltd

November 1, 2019



Extensions to Automatic Certificate Management Environment for end user S/MIME certificates  

draft-ietf-acme-email-smime-06


Abstract

   This document specifies identifiers and challenges required to enable
   the Automated Certificate Management Environment (ACME) to issue
   certificates for use by email users that want to use S/MIME.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 4, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Conventions Used in This Document


	3.  Use of ACME for issuing end user S/MIME certificates
	 3.1.  ACME challenge email


	 3.2.  ACME response email



	4.  Open Issues


	5.  Internationalization Considerations


	6.  IANA Considerations


	7.  Security Considerations


	8.  Normative References


	Appendix A.  Acknowledgements


	Author's Address




1. Introduction

   ACME [RFC8555] is a mechanism for automating certificate management
   on the Internet.  It enables administrative entities to prove
   effective control over resources like domain names, and automates the
   process of generating and issuing certificates.



   This document describes an extension to ACME for use by S/MIME.
   Section 3 defines extensions for issuing end user S/MIME [RFC8550]
   certificates.




2. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].




3. Use of ACME for issuing end user S/MIME certificates

   ACME [RFC8555] defines "dns" Identifier Type that is used to verify
   that a particular entity has control over a domain or specific
   service associated with the domain.  In order to be able to issue
   end-user S/MIME certificates, ACME needs a new Identifier Type that
   proves ownership of an email address.



   This document defines a new Identifier Type "email" which corresponds
   to an (all ASCII) email address [RFC5321] or Internationalized Email
   addresses [RFC6531].  (When Internationalized Email addresses are
   used, both U-labels and A-labels [RFC5890] are allowed in the domain
   part.)  This can be used with S/MIME or other similar service that
   requires posession of a certificate tied to an email address.



   Any identifier of type "email" in a newOrder request MUST NOT have a
   wildcard ("*") character in its value.



   A new challenge type "email-reply-00" is used with "email" Identifier
   Type, which provides proof that an ACME client has control over an
   email address:



   1.  ACME server generates a "challenge" email message with the
       subject "ACME: <token-part1>", where <token-part1> is the
       base64url encoded [RFC4648] first part of the token, which
       contains at least 64 bit of entropy.  The challenge email message
       structure is described in more details in Section 3.1.  The
       second part of the token (token-part2, which also contains at
       least 64 bit of entropy) is returned over HTTPS [RFC2818] to the
       ACME client.



   2.  ACME client concatenates "token-part1" and "token-part2" to
       create "token", calculates key-authz (as per Section 8.1 of
       [RFC8555]), then includes the base64url encoded SHA-256 digest
       [FIPS180-4] of the key authorization in the body of a response
       email message containing a single text/plain MIME body part
       [RFC2045].  The response email message structure is described in
       more details in Section 3.2



   For an identifier of type "email", CSR MUST contain the request email
   address in an extensionRequest attribute [RFC2985] requesting a
   subjectAltName extension.




3.1. ACME challenge email

   A "challenge" email message MUST have the following structure:



   1.  The message Subject header field has the following syntax: "ACME:
       <token-part1>", where the prefix "ACME:" is followed by folding
       white space (FWS, see [RFC5322]) and then by <token-part1> is the
       base64url encoded first part of the ACME token that MUST be at
       least 64 octet long after decoding.  Due to recommended 78 octet
       line length limit in [RFC5322], the subject line can be folded,
       so whitespaces (if any) within the <token-part1> MUST be ignored.
       [RFC2231] encoding of subject MUST be supported, but when used,
       only "UTF-8" and "US-ASCII" charsets MUST be used (i.e. other
       charsets MUST NOT be used).



   2.  The message MUST include the "Auto-Submitted: auto-generated"
       header field [RFC3834].  The "Auto-Submitted" header field SHOULD
       include "type=acme" parameter.  It MAY include other optional
       parameters as allowed by syntax of Auto-Submitted header field.



   3.  The message MAY contain Reply-To header field.



   4.  In order to prove authenticity of a challenge message, it MUST be
       either DKIM [RFC6376] signed or S/MIME [RFC8551] signed.  If DKIM
       signing is used, the resulting DKIM-Signature header field MUST
       contain the "h=" tag that includes at least "From", "Sender",
       "Reply-To", "To", "CC", "Subject", "Date", "In-Reply-To",
       "References", "Message-ID", "Content-Type" and "Content-Transfer-
       Encoding" header fields.  The message MUST also pass DMARC
       validation [RFC7489], which implies DKIM and SPF validation
       [RFC7208].



   5.  If S/MIME signing is not used to prove authenticity of the
       challenge message, then the message MUST have a single text/plain
       MIME body part [RFC2045], that contains human readable
       explanation of the purpose of the message.  If S/MIME signing is
       used, then the text/plain message is used to construct a
       multipart/signed or "application/pkcs7-mime; smime-type=signed-
       data;".  Either way, it MUST use S/MIME header protection.



   Example ACME "challenge" email (note that DKIM related header fields
   are not included for simplicity).




Auto‑Submitted: auto‑generated; type=acme
Date: Sat, 1 Sep 2018 10:08:55 +0100
Message‑ID: <A2299BB.FF7788@example.org>
From: acme‑generator@example.org
To: alexey@example.com
Subject: ACME: <base64url‑encoded‑token‑with‑64‑octets‑of‑entropy>
Content‑Type: text/plain
MIME‑Version: 1.0

This is an automatically generated ACME challenge for email address
"alexey@example.com". If you haven't requested an S/MIME
certificate generation for this email address, be very afraid.
If you did request it, your email client might be able to process
this request automatically, or you might have to paste the first
token part into an external program.



                                 Figure 1




3.2. ACME response email

   A "response" email message MUST have the following structure:



   1.  The message Subject header field has the following syntax:
       "<Reply-prefix> ACME: <token-part1>", where <Reply-prefix> is
       typically the reply prefix "Re: " and the string "ACME:" is
       followed by folding white space (FWS, see [RFC5322]) and then by
       <token-part1>. <token-part1> is the base64url encoded first part
       of the ACME token (as received in the ACME challenge) that MUST
       be at least 64 octet long after decoding.  Due to recommended 78
       octet line length limit in [RFC5322], the subject line can be
       folded, so whitespaces (if any) within the <token-part1> MUST be
       ignored.  [RFC2231] encoding of subject MUST be supported, but
       when used, only "UTF-8" and "US-ASCII" charsets MUST be used
       (i.e. other charsets MUST NOT be used).



   2.  The From: header field contains the email address of the user
       that is requesting S/MIME certificate issuance.



   3.  The To: header field of the response contains the value from the
       Reply-To: header field from the challenge message (if set) or
       from the From: header field of the challenge message otherwise.



   4.  The Cc: header field is ignored if present in the "response"
       email message.



   5.  The In-Reply-To: header field SHOULD be set to the Message-ID
       header field of the challenge message according to rules in
       Section 3.6.4 of [RFC5322].



   6.  Media type of the "response" email message is either text/plain
       or multipart/alternative containing text/plain as one of the
       alternatives.  The text/plain body part MUST start with the line
       "-----BEGIN ACME RESPONSE-----", followed by one or more line
       containing base64url encoded SHA-256 digest [FIPS180-4] of the
       key authorization, calculated based on token-part1 (received over
       email) and token-part2 (received over HTTPS).  (Note that due to
       historic line length limitations in email, line endings (CRLFs)
       can be freely inserted in the middle of the encoded digest, so
       they MUST be ignored when processing it.).  The final line of the
       encoded digest is followed by the line containing "-----END ACME
       RESPONSE-----".  There should not be any text after the
       terminating line, but if any text is found, it is ignored.



   7.  There is no need to use any Content-Transfer-Encoding other than
       7bit for the text/plain body part, however use of Quoted-
       Printable or base64 is not prohibited in a "response" email
       message.



   8.  In order to prove authenticity of a response message, it MUST be
       DKIM [RFC6376] signed.  The resulting DKIM-Signature header field
       MUST contain the "h=" tag that includes at least "From",
       "Sender", "Reply-To", "To", "CC", "Subject", "Date", "In-Reply-
       To", "References", "Message-ID", "Content-Type" and "Content-
       Transfer-Encoding" header fields.



   Example ACME "response" email (note that DKIM related header fields
   are not included for simplicity).




Date: Sat, 1 Sep 2018 11:12:00 +0100
Message‑ID: <111‑22222‑3333333@example.com>
From: alexey@example.com
To: acme‑generator@example.org
Subject: Re: ACME: <base64url‑encoded‑token‑with‑enough‑entropy>
Content‑Type: text/plain
MIME‑Version: 1.0

‑‑‑‑‑BEGIN ACME RESPONSE‑‑‑‑‑
LoqXcYV8q5ONbJQxbmR7SCTNo3tiAXDfowy
jxAjEuX0.9jg46WB3rR_AHD‑EBXdN7cBkH1WOu0tA3M9
fm21mqTI
‑‑‑‑‑END ACME RESPONSE‑‑‑‑‑



                                 Figure 2




4. Open Issues

   [[This section should be empty before publication]]



   1.  Do we need to handle text/html or multipart/alternative in email
       challenge?  Simplicity suggests "no".  Also, for automated
       processing it might be better to define a special MIME type that
       is included as one of body parts inside multipart/mixed
       container.




5. Internationalization Considerations

   [RFC8616] updated/clarified use of DKIM/SPF/DMARC with
   Internationalized Email addresses [RFC6531].  Please consult RFC 8616
   in regards to any changes that need to be implemented.



   Use of non ASCII characters in left hand sides of Internationalized
   Email addresses requires putting Internationalized Email Addresses in
   X.509 Certificates [RFC8398].




6. IANA Considerations

   IANA is requested to register a new Identifier Type "email" which
   corresponds to an (all ASCII) email address [RFC5321] or
   Internationalized Email addresses [RFC6531].



   And finally, IANA is requested to register the following ACME
   challenge types that are used with Identifier Type "email": "email-
   reply".  The reference for it is this document.




7. Security Considerations

   Please see Security Considerations of [RFC8555] for general security
   considerations related to use of ACME.



   Security of "email-reply-00" challenge type depends on security of
   email system.  A third party that can can read and reply to user's
   email messages (by posessing user's password or a secret derived from
   it that can give read and reply access ("password equivalent"
   information), or by being given permissions to act on user's behalf
   using email delegation feature) can request S/MIME certificates and
   is indistinguishable from the email account owner.



   Email system in its turn depends on DNS.  A third party that can
   manipulate DNS MX records for a domain might be able to redirect
   email and can get (at least temporary) read and reply access to it.
   Similar considerations apply to SPF and DMARC TXT records in DNS.
   Use of DNSSEC by email system administrators is recommended to avoid
   easy spoofing of DNS records affecting email system.




8. Normative References


   [FIPS180-4]

              National Institute of Standards and Technology, "Secure
              Hash Standard (SHS)", FIPS PUB 180-4, August 2015,
              <https://csrc.nist.gov/publications/detail/fips/180/4/
              final>.




   [RFC2045]
  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part One: Format of Internet Message
              Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
              <https://www.rfc-editor.org/info/rfc2045>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC2231]
  Freed, N. and K. Moore, "MIME Parameter Value and Encoded
              Word Extensions: Character Sets, Languages, and
              Continuations", RFC 2231, DOI 10.17487/RFC2231, November
              1997, <https://www.rfc-editor.org/info/rfc2231>.




   [RFC2818]
  Rescorla, E., "HTTP Over TLS", RFC 2818,
              DOI 10.17487/RFC2818, May 2000,
              <https://www.rfc-editor.org/info/rfc2818>.




   [RFC2985]
  Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
              Classes and Attribute Types Version 2.0", RFC 2985,
              DOI 10.17487/RFC2985, November 2000,
              <https://www.rfc-editor.org/info/rfc2985>.




   [RFC3834]
  Moore, K., "Recommendations for Automatic Responses to
              Electronic Mail", RFC 3834, DOI 10.17487/RFC3834, August
              2004, <https://www.rfc-editor.org/info/rfc3834>.




   [RFC4648]
  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.




   [RFC5321]
  Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
              DOI 10.17487/RFC5321, October 2008,
              <https://www.rfc-editor.org/info/rfc5321>.




   [RFC5322]
  Resnick, P., Ed., "Internet Message Format", RFC 5322,
              DOI 10.17487/RFC5322, October 2008,
              <https://www.rfc-editor.org/info/rfc5322>.




   [RFC5890]
  Klensin, J., "Internationalized Domain Names for
              Applications (IDNA): Definitions and Document Framework",
              RFC 5890, DOI 10.17487/RFC5890, August 2010,
              <https://www.rfc-editor.org/info/rfc5890>.




   [RFC6376]
  Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
              "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
              RFC 6376, DOI 10.17487/RFC6376, September 2011,
              <https://www.rfc-editor.org/info/rfc6376>.




   [RFC6531]
  Yao, J. and W. Mao, "SMTP Extension for Internationalized
              Email", RFC 6531, DOI 10.17487/RFC6531, February 2012,
              <https://www.rfc-editor.org/info/rfc6531>.




   [RFC7208]
  Kitterman, S., "Sender Policy Framework (SPF) for
              Authorizing Use of Domains in Email, Version 1", RFC 7208,
              DOI 10.17487/RFC7208, April 2014,
              <https://www.rfc-editor.org/info/rfc7208>.




   [RFC7489]
  Kucherawy, M., Ed. and E. Zwicky, Ed., "Domain-based
              Message Authentication, Reporting, and Conformance
              (DMARC)", RFC 7489, DOI 10.17487/RFC7489, March 2015,
              <https://www.rfc-editor.org/info/rfc7489>.




   [RFC8398]
  Melnikov, A., Ed. and W. Chuang, Ed., "Internationalized
              Email Addresses in X.509 Certificates", RFC 8398,
              DOI 10.17487/RFC8398, May 2018,
              <https://www.rfc-editor.org/info/rfc8398>.




   [RFC8550]
  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Certificate Handling", RFC 8550, DOI 10.17487/RFC8550,
              April 2019, <https://www.rfc-editor.org/info/rfc8550>.




   [RFC8551]
  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Message Specification", RFC 8551, DOI 10.17487/RFC8551,
              April 2019, <https://www.rfc-editor.org/info/rfc8551>.




   [RFC8555]
  Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
              <https://www.rfc-editor.org/info/rfc8555>.




   [RFC8616]
  Levine, J., "Email Authentication for Internationalized
              Mail", RFC 8616, DOI 10.17487/RFC8616, June 2019,
              <https://www.rfc-editor.org/info/rfc8616>.




Appendix A. Acknowledgements

   Thank you to Andreas Schulze, Gerd v.  Egidy and James A Baker for
   suggestions, comments and corrections on this document.



Author's Address



Alexey Melnikov
Isode Ltd
14 Castle Mews
Hampton, Middlesex  TW12 2NP
UK



   EMail: alexey.melnikov@isode.com








































draft-ietf-acme-ip-08 - ACME IP Identifier Validation Extension 






draft-ietf-acme-ip-08 - ACME IP Identifier Validation Extension 

Index
Prev
Next
Forward 5


ACME Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 3, 2020


R. Shoemaker

ISRG

October 01, 2019



ACME IP Identifier Validation Extension  

draft-ietf-acme-ip-08


Abstract

   This document specifies identifiers and challenges required to enable
   the Automated Certificate Management Environment (ACME) to issue
   certificates for IP addresses.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 3, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  IP Identifier


	4.  Identifier Validation Challenges


	5.  HTTP Challenge


	6.  TLS with Application Level Protocol Negotiation (TLS ALPN) Challenge


	7.  DNS Challenge


	8.  IANA Considerations
	 8.1.  Identifier Types


	 8.2.  Challenge Types



	9.  Security Considerations
	 9.1.  CA Policy Considerations



	10. Acknowledgments


	11. Normative References


	Author's Address




1. Introduction

   The Automatic Certificate Management Environment (ACME) [RFC8555]
   only defines challenges for validating control of DNS host name
   identifiers, which limits its use to being used for issuing
   certificates for DNS identifiers.  In order to allow validation of
   IPv4 and IPv6 identifiers for inclusion in X.509 certificates, this
   document specifies how challenges defined in the original ACME
   specification and the TLS-ALPN extension specification
   [I-D.ietf-acme-tls-alpn] can be used to validate IP identifiers.




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




3. IP Identifier


   [RFC8555]
 only defines the identifier type "dns", which is used to
   refer to fully qualified domain names.  If an ACME server wishes to
   request proof that a user controls a IPv4 or IPv6 address, it MUST
   create an authorization with the identifier type "ip".  The value
   field of the identifier MUST contain the textual form of the address
   as defined in [RFC1123] Section 2.1 for IPv4 and in [RFC5952]
   Section 4 for IPv6.



   An identifier for the IPv6 address 2001:db8::1 would be formatted
   like so:



   {"type": "ip", "value": "2001:db8::1"}




4. Identifier Validation Challenges

   IP identifiers MAY be used with the existing "http-01" (see
   Section 8.3 of [RFC8555]) and "tls-alpn-01" (see Section 3 of
   [I-D.ietf-acme-tls-alpn]).  To use IP identifiers with these
   challenges, their initial DNS resolution step MUST be skipped, and
   the IP address used for validation MUST be the value of the
   identifier.




5. HTTP Challenge

   For the "http-01" challenge, the Host header field MUST be set to the
   IP address being used for validation per [RFC7230].  The textual form
   of this address MUST be as defined in [RFC1123] Section 2.1 for IPv4
   and in [RFC5952] Section 4 for IPv6.




6. TLS with Application Level Protocol Negotiation (TLS ALPN) Challenge

   For the "tls-alpn-01" challenge, the subjectAltName extension in the
   validation certificate MUST contain a single iPAddress that matches
   the address being validated.  As [RFC6066] does not permit IP
   addresses to be used in the SNI extension HostName field, the server
   MUST instead use the IN-ADDR.ARPA [RFC1034] or IP6.ARPA [RFC3596]
   reverse mapping of the IP address as the HostName field value instead
   of the IP address string representation itself.  For example, if the
   IP address being validated is 2001:db8::1, the SNI HostName field
   should contain "1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d
   .0.1.0.0.2.ip6.arpa".




7. DNS Challenge

   The existing "dns-01" challenge MUST NOT be used to validate IP
   identifiers.




8. IANA Considerations


8.1. Identifier Types

   Adds a new type to the "ACME Identifier Types" registry defined in
   Section 9.7.7 of [RFC8555] with Label "ip" and Reference "I-D.ietf-
   acme-ip".




8.2. Challenge Types

   Adds two new entries to the "ACME Validation Methods" registry
   defined in Section 9.7.8 of [RFC8555].  These entries are defined
   below:



+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Label       | Identifier Type | ACME | Reference        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| http‑01     | ip              | Y    | I‑D.ietf‑acme‑ip |
|             |                 |      |                  |
| tls‑alpn‑01 | ip              | Y    | I‑D.ietf‑acme‑ip |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




9. Security Considerations

   The extensions to ACME described in this document do not deviate from
   the broader threat model described in [RFC8555] Section 10.1.




9.1. CA Policy Considerations

   This document only specifies how a ACME server may validate that a
   certificate applicant controls a IP identifier at the time of
   validation.  The CA may wish to perform additional checks not
   specified in this document.  For example, if the CA believes an IP
   identifier belongs to a ISP or cloud service provider with short
   delegation periods, they may wish to impose additional restrictions
   on certificates requested for that identifier.




10. Acknowledgments

   The author would like to thank those who contributed to this document
   and offered editorial and technical input, especially Jacob Hoffman-
   Andrews and Daniel McCarney.




11. Normative References


   [I-D.ietf-acme-tls-alpn]

              Shoemaker, R., "ACME TLS ALPN Challenge Extension", draft-
              ietf-acme-tls-alpn-06 (work in progress), September 2019.




   [RFC1034]
  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
              <https://www.rfc-editor.org/info/rfc1034>.




   [RFC1123]
  Braden, R., Ed., "Requirements for Internet Hosts -
              Application and Support", STD 3, RFC 1123,
              DOI 10.17487/RFC1123, October 1989,
              <https://www.rfc-editor.org/info/rfc1123>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3596]
  Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
              "DNS Extensions to Support IP Version 6", STD 88,
              RFC 3596, DOI 10.17487/RFC3596, October 2003,
              <https://www.rfc-editor.org/info/rfc3596>.




   [RFC5952]
  Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
              Address Text Representation", RFC 5952,
              DOI 10.17487/RFC5952, August 2010,
              <https://www.rfc-editor.org/info/rfc5952>.




   [RFC6066]
  Eastlake 3rd, D., "Transport Layer Security (TLS)
              Extensions: Extension Definitions", RFC 6066,
              DOI 10.17487/RFC6066, January 2011,
              <https://www.rfc-editor.org/info/rfc6066>.




   [RFC7230]
  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8555]
  Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
              <https://www.rfc-editor.org/info/rfc8555>.



Author's Address



Roland Bracewell Shoemaker
Internet Security Research Group



   Email: roland@letsencrypt.org








draft-ietf-acme-star-11 - Support for Short-Term, Automatically-Renewed (STAR) Certificates in Automated Certificate Management Environment (ACME) 






draft-ietf-acme-star-11 - Support for Short-Term, Automatically-Renewed (STAR) C

Index
Prev
Next
Forward 5


ACME Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 26, 2020












Y. Sheffer

Intuit

D. Lopez

O. Gonzalez de Dios

A. Pastor Perales

Telefonica I+D

T. Fossati

ARM

October 24, 2019

Support for Short-Term, Automatically-Renewed (STAR) Certificates in Automated Certificate Management Environment (ACME)  

draft-ietf-acme-star-11


Abstract

   Public-key certificates need to be revoked when they are compromised,
   that is, when the associated private key is exposed to an
   unauthorized entity.  However the revocation process is often
   unreliable.  An alternative to revocation is issuing a sequence of
   certificates, each with a short validity period, and terminating this
   sequence upon compromise.  This memo proposes an ACME extension to
   enable the issuance of short-term and automatically renewed (STAR)
   X.509 certificates.



   [RFC Editor: please remove before publication]



   While the draft is being developed, the editor's version can be found
   at https://github.com/yaronf/I-D/tree/master/STAR.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 26, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Name Delegation Use Case


	 1.2.  Terminology


	 1.3.  Conventions used in this document



	2.  Protocol Flow
	 2.1.  Bootstrap


	 2.2.  Refresh


	 2.3.  Termination



	3.  Protocol Details
	 3.1.  ACME Extensions
	  3.1.1.  Extending the Order Resource


	  3.1.2.  Canceling an Auto-renewal Order



	 3.2.  Capability Discovery


	 3.3.  Fetching the Certificates


	 3.4.  Negotiating an unauthenticated GET


	 3.5.  Computing notBefore and notAfter of STAR Certificates
	  3.5.1.  Example





	4.  Operational Considerations
	 4.1.  The Meaning of "Short Term" and the Impact of Skewed Clocks


	 4.2.  Impact on Certificate Transparency (CT) Logs


	 4.3.  HTTP Caching and Dependability



	5.  Implementation Status
	 5.1.  Overview
	  5.1.1.  ACME Server with STAR extension


	  5.1.2.  STAR Proxy



	 5.2.  Level of Maturity


	 5.3.  Coverage


	 5.4.  Version Compatibility


	 5.5.  Licensing


	 5.6.  Implementation experience


	 5.7.  Contact Information



	6.  IANA Considerations
	 6.1.  New Registries


	 6.2.  New Error Types


	 6.3.  New fields in Order Objects


	 6.4.  Fields in the "auto-renewal" Object within an Order Object


	 6.5.  New fields in the "meta" Object within a Directory Object


	 6.6.  Fields in the "auto-renewal" Object within a Directory Metadata Object


	 6.7.  Cert-Not-Before and Cert-Not-After HTTP Headers



	7.  Security Considerations
	 7.1.  No revocation


	 7.2.  Denial of Service Considerations


	 7.3.  Privacy Considerations



	8.  Acknowledgments


	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Appendix A.  Document History
	 A.1.  draft-ietf-acme-star-11


	 A.2.  draft-ietf-acme-star-10


	 A.3.  draft-ietf-acme-star-09


	 A.4.  draft-ietf-acme-star-08


	 A.5.  draft-ietf-acme-star-07


	 A.6.  draft-ietf-acme-star-06


	 A.7.  draft-ietf-acme-star-05


	 A.8.  draft-ietf-acme-star-04


	 A.9.  draft-ietf-acme-star-03


	 A.10. draft-ietf-acme-star-02


	 A.11. draft-ietf-acme-star-01


	 A.12. draft-ietf-acme-star-00


	 A.13. draft-sheffer-acme-star-02


	 A.14. draft-sheffer-acme-star-01


	 A.15. draft-sheffer-acme-star-00


	 A.16. draft-sheffer-acme-star-lurk-00



	Authors' Addresses




1. Introduction

   The ACME protocol [RFC8555] automates the process of issuing a
   certificate to a named entity (an Identifier Owner or IdO).
   Typically, but not always, the identifier is a domain name.



   If the IdO wishes to obtain a string of short-term certificates
   originating from the same private key (see [Topalovic] about why
   using short-lived certificates might be preferable to explicit
   revocation), she must go through the whole ACME protocol each time a
   new short-term certificate is needed - e.g., every 2-3 days.  If done
   this way, the process would involve frequent interactions between the
   registration function of the ACME Certification Authority (CA) and
   the identity provider infrastructure (e.g.: DNS, web servers),
   therefore making the issuance of short-term certificates exceedingly
   dependent on the reliability of both.



   This document presents an extension of the ACME protocol that
   optimizes this process by making short-term certificates first class
   objects in the ACME ecosystem.  Once the Order for a string of short-
   term certificates is accepted, the CA is responsible for publishing
   the next certificate at an agreed upon URL before the previous one
   expires.  The IdO can terminate the automatic renewal before the
   negotiated deadline, if needed - e.g., on key compromise.



   For a more generic treatment of STAR certificates, readers are
   referred to [I-D.nir-saag-star].




1.1. Name Delegation Use Case

   The proposed mechanism can be used as a building block of an
   efficient name-delegation protocol, for example one that exists
   between a CDN or a cloud provider and its customers
   [I-D.ietf-acme-star-delegation].  At any time, the service customer
   (i.e., the IdO) can terminate the delegation by simply instructing
   the CA to stop the automatic renewal and letting the currently active
   certificate expire shortly thereafter.



   Note that in the name delegation use case the delegated entity needs
   to access the auto-renewed certificate without being in possession of
   the ACME account key that was used for initiating the STAR issuance.
   This leads to the optional use of unauthenticated GET in this
   protocol (Section 3.4).




1.2. Terminology

IdO  Identifier Owner, the owner of an identifier, e.g.: a domain
   name, a telephone number.
STAR  Short‑Term and Automatically Renewed X.509 certificates.




1.3. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




2. Protocol Flow

   The following subsections describe the three main phases of the
   protocol:



o  Bootstrap: the IdO asks an ACME CA to create a short‑term and
   automatically‑renewed (STAR) certificate (Section 2.1);
o  Auto‑renewal: the ACME CA periodically re‑issues the short‑term
   certificate and posts it to the star‑certificate URL
   (Section 2.2);
o  Termination: the IdO requests the ACME CA to discontinue the
   automatic renewal of the certificate (Section 2.3).




2.1. Bootstrap

   The IdO, in its role as an ACME client, requests the CA to issue a
   STAR certificate, i.e., one that:



o  Has a short validity, e.g., 24 to 72 hours.  Note that the exact
   definition of "short" depends on the use case;
o  Is automatically renewed by the CA for a certain period of time;
o  Is downloadable from a (highly available) location.



   Other than that, the ACME protocol flows as usual between IdO and CA.
   In particular, IdO is responsible for satisfying the requested ACME
   challenges until the CA is willing to issue the requested
   certificate.  Per normal ACME processing, the IdO is given back an
   Order resource associated with the STAR certificate to be used in
   subsequent interaction with the CA (e.g., if the certificate needs to
   be terminated.)



   The bootstrap phase ends when the ACME CA updates the Order resource
   to include the URL for the issued STAR certificate.




2.2. Refresh

The CA issues the initial certificate after the authorization
completes successfully.  It then automatically re‑issues the
certificate using the same CSR (and therefore the same identifier and
public key) before the previous one expires, and publishes it to the
URL that was returned to the IdO at the end of the bootstrap phase.
The certificate user, which could be either the IdO itself or a
delegated third party, as described in
[I‑D.ietf‑acme‑star‑delegation], obtains the certificate
(Section 3.3) and uses it.



   The refresh process (Figure 1) goes on until either:



o  IdO explicitly terminates the automatic renewal (Section 2.3); or
o  Automatic renewal expires.

   Certificate             ACME/STAR
   User                    Server
   |     Retrieve cert     |                     [...]
   |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|                      |
   |                       +‑‑‑‑‑‑.              /
   |                       |      |             /
   |                       | Automatic renewal :
   |                       |      |             \
   |                       |<‑‑‑‑‑'              \
   |     Retrieve cert     |                      |
   |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|            short validity period
   |                       |                      |
   |                       +‑‑‑‑‑‑.              /
   |                       |      |             /
   |                       | Automatic renewal :
   |                       |      |             \
   |                       |<‑‑‑‑‑'              \
   |     Retrieve cert     |                      |
   |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|            short validity period
   |                       |                      |
   |                       +‑‑‑‑‑‑.              /
   |                       |      |             /
   |                       | Automatic renewal :
   |                       |      |             \
   |                       |<‑‑‑‑‑'              \
   |                       |                      |
   |         [...]         |                    [...]



                          Figure 1: Auto renewal




2.3. Termination

   The IdO may request early termination of the STAR certificate by
   sending a cancellation request to the Order resource, as described in
   Section 3.1.2.  After the CA receives and verifies the request, it
   shall:



o  Cancel the automatic renewal process for the STAR certificate;
o  Change the certificate publication resource to return an error
   indicating the termination of the issuance;
o  Change the status of the Order to "canceled".



   Note that it is not necessary to explicitly revoke the short-term
   certificate.



Certificate                                     ACME/STAR
User                    IdO                     Server
|                       |                       |
|                       |      Cancel Order     |
|                       +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
|                       |                       +‑‑‑‑‑‑‑.
|                       |                       |       |
|                       |                       |  End auto renewal
|                       |                       |  Remove cert link
|                       |                       |  etc.
|                       |                       |       |
|                       |         Done          |<‑‑‑‑‑‑'
|                       |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|                       |                       |
|                                               |
|              Retrieve cert                    |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
|              Error: autoRenewalCanceled       |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|                                               |



                           Figure 2: Termination




3. Protocol Details

   This section describes the protocol details, namely the extensions to
   the ACME protocol required to issue STAR certificates.




3.1. ACME Extensions

   This protocol extends the ACME protocol, to allow for automatically
   renewed Orders.




3.1.1. Extending the Order Resource

   The Order resource is extended with a new "auto-renewal" object that
   MUST be present for STAR certificates.  The "auto-renewal" object has
   the following structure:



o  start‑date (optional, string): the earliest date of validity of
   the first certificate issued, in [RFC3339] format.  When omitted,
   the start date is as soon as authorization is complete.
o  end‑date (required, string): the latest date of validity of the
   last certificate issued, in [RFC3339] format.
o  lifetime (required, integer): the maximum validity period of each
   STAR certificate, an integer that denotes a number of seconds.
   This is a nominal value which does not include any extra validity
   time due to server or client adjustment (see below).

o  lifetime‑adjust (optional, integer): amount of "left pad" added to
   each STAR certificate, an integer that denotes a number of
   seconds.  The default is 0.  If present, the value of the
   notBefore field that would otherwise appear in the STAR
   certificates is pre‑dated by the specified number of seconds.  See
   also Section 4.1 for why a client might want to use this control
   and Section 3.5 for how the effective certificate lifetime is
   computed.  The value reflected by the server, together with the
   value of the lifetime attribute, can be used by the client as a
   hint to configure its polling timer.
o  allow‑certificate‑get (optional, boolean): see Section 3.4.



   These attributes are included in a POST message when creating the
   Order, as part of the "payload" encoded object.  They are returned
   when the Order has been created, and the ACME server MAY adjust them
   at will, according to its local policy (see also Section 3.2).



   The optional notBefore and notAfter fields defined in Section 7.1.3
   of [RFC8555] MUST NOT be present in a STAR Order.  If they are
   included, the server MUST return an error with status code 400 "Bad
   Request" and type "malformedRequest".



   Section 7.1.6 of [RFC8555] defines the following values for the Order
   resource's status: "pending", "ready", "processing", "valid", and
   "invalid".  In the case of auto-renewal Orders, the status MUST be
   "valid" as long as STAR certificates are being issued.  We add a new
   status value: "canceled", see Section 3.1.2.



   A STAR certificate is by definition a dynamic resource, i.e., it
   refers to an entity that varies over time.  Instead of overloading
   the semantics of the "certificate" attribute, this document defines a
   new attribute "star-certificate" to be used instead of "certificate".



   o  star-certificate (optional, string): A URL for the (rolling) STAR
      certificate that has been issued in response to this Order.




3.1.2. Canceling an Auto-renewal Order

   An important property of the auto-renewal Order is that it can be
   canceled by the IdO, with no need for certificate revocation.  To
   cancel the Order, the ACME client sends a POST to the Order URL as
   shown in Figure 3.



POST /acme/order/ogfr8EcolOT HTTP/1.1
Host: example.org
Content‑Type: application/jose+json

{
  "protected": base64url({
    "alg": "ES256",
    "kid": "https://example.com/acme/acct/gw06UNhKfOve",
    "nonce": "Alc00Ap6Rt7GMkEl3L1JX5",
    "url": "https://example.com/acme/order/ogfr8EcolOT"
  }),
  "payload": base64url({
    "status": "canceled"
  }),
  "signature": "g454e3hdBlkT4AEw...nKePnUyZTjGtXZ6H"
}



                 Figure 3: Canceling an Auto-renewal Order



   After a successful cancellation, the server MUST NOT issue any
   additional certificates for this Order.



   When the Order is canceled, the server:



o  MUST update the status of the Order resource to "canceled" and
   MUST set an appropriate "expires" date;
o  MUST respond with 403 (Forbidden) to any requests to the star‑
   certificate endpoint.  The response SHOULD provide additional
   information using a problem document [RFC7807] with type
   "urn:ietf:params:acme:error:autoRenewalCanceled".



   Issuing a cancellation for an Order that is not in "valid" state is
   not allowed.  A client MUST NOT send such a request, and a server
   MUST return an error response with status code 400 (Bad Request) and
   type "urn:ietf:params:acme:error:autoRenewalCancellationInvalid".



   The state machine described in Section 7.1.6 of [RFC8555] is extended
   as illustrated in Figure 4 (State Transitions for Order Objects).



 pending ‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
    |                  |
    | All authz        |
    | "valid"          |
    V                  |
  ready ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
    |                  |
    | Receive          |
    | finalize         |
    | request          |
    V                  |
processing ‑‑‑‑‑‑‑‑‑‑‑‑+
    |                  |
    | First            |
    | certificate      | Error or
    | issued           | Authorization failure
    V                  V
  valid             invalid
    |
    | STAR
    | Certificate
    | canceled
    V
 canceled




                                 Figure 4



   Explicit certificate revocation using the revokeCert interface
   (Section 7.6 of [RFC8555]) is not supported for STAR certificates.  A
   server receiving a revocation request for a STAR certificate MUST
   return an error response with status code 403 (Forbidden) and type
   "urn:ietf:params:acme:error:autoRenewalRevocationNotSupported".




3.2. Capability Discovery

   In order to support the discovery of STAR capabilities, the "meta"
   field inside the directory object defined in Section 9.7.6 of
   [RFC8555] is extended with a new "auto-renewal" object.  The "auto-
   renewal" object MUST be present if the server supports STAR.  Its
   structure is as follows:



o  min‑lifetime (required, integer): minimum acceptable value for
   auto‑renewal lifetime, in seconds.
o  max‑duration (required, integer): maximum delta between the auto‑
   renewal end‑date and start‑date, in seconds.
o  allow‑certificate‑get (optional, boolean): see Section 3.4.



   An example directory object advertising STAR support with one day
   min-lifetime and one year max-duration, and supporting certificate
   fetching with an HTTP GET is shown in Figure 5.



{
   "new‑nonce": "https://example.com/acme/new‑nonce",
   "new‑account": "https://example.com/acme/new‑account",
   "new‑order": "https://example.com/acme/new‑order",
   "new‑authz": "https://example.com/acme/new‑authz",
   "revoke‑cert": "https://example.com/acme/revoke‑cert",
   "key‑change": "https://example.com/acme/key‑change",
   "meta": {
     "terms‑of‑service": "https://example.com/acme/terms/2017‑5‑30",
     "website": "https://www.example.com/",
     "caa‑identities": ["example.com"],
     "auto‑renewal": {
       "min‑lifetime": 86400,
       "max‑duration":  31536000,
       "allow‑certificate‑get": true
     }
   }
}



               Figure 5: Directory object with STAR support




3.3. Fetching the Certificates

   The certificate is fetched from the star-certificate endpoint with
   POST-as-GET as per [RFC8555] Section 7.4.2, unless client and server
   have successfully negotiated the "unauthenticated GET" option
   described in Section 3.4.  In such case, the client can simply issue
   a GET to the star-certificate resource without authenticating itself
   to the server as illustrated in Figure 6.



GET /acme/cert/g7m3ZQeTEqa HTTP/1.1
Host: example.org
Accept: application/pem‑certificate‑chain

HTTP/1.1 200 OK
Content‑Type: application/pem‑certificate‑chain
Link: <https://example.com/acme/some‑directory>;rel="index"
Cert‑Not‑Before: Thu, 3 Oct 2019 00:00:00 GMT
Cert‑Not‑After: Thu, 10 Oct 2019 00:00:00 GMT

‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
[End‑entity certificate contents]
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑
‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
[Issuer certificate contents]
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑
‑‑‑‑‑BEGIN CERTIFICATE‑‑‑‑‑
[Other certificate contents]
‑‑‑‑‑END CERTIFICATE‑‑‑‑‑



      Figure 6: Fetching a STAR certificate with unauthenticated GET



   The Server SHOULD include the "Cert-Not-Before" and "Cert-Not-After"
   HTTP header fields in the response.  When they exist, they MUST be
   equal to the respective fields inside the end-entity certificate.
   Their format is "HTTP-date" as defined in Section 7.1.1.2 of
   [RFC7231].  Their purpose is to enable client implementations that do
   not parse the certificate.



   Following are further clarifications regarding usage of these header
   fields, as per [RFC7231] Sec. 8.3.1.  All apply to both headers.



o  This header field is a single value, not a list.
o  The header field is used only in responses to GET, HEAD and POST‑
   as‑GET requests, and only for MIME types that denote public key
   certificates.
o  Header field semantics are independent of context.
o  The header field is not hop‑by‑hop.
o  Intermediaries MAY insert or delete the value;
o  If an intermediary inserts the value, it MUST ensure that the
   newly added value matches the corresponding value in the
   certificate.
o  The header field is not appropriate for a Vary field.
o  The header field is allowed within message trailers.
o  The header field is not appropriate within redirects.
o  The header field does not introduce additional security
   considerations.  It discloses in a simpler form information that
   is already available inside the certificate.



   To improve robustness, the next certificate MUST be made available by
   the ACME CA at the URL pointed by "star-certificate" at the latest
   halfway through the lifetime of the currently active certificate.  It
   is worth noting that this has an implication in case of cancellation:
   in fact, from the time the next certificate is made available, the
   cancellation is not completely effective until the "next" certificate
   also expires.  To avoid the client accidentally entering a broken
   state, the notBefore of the "next" certificate MUST be set so that
   the certificate is already valid when it is published at the "star-
   certificate" URL.  Note that the server might need to increase the
   auto-renewal lifetime-adjust value to satisfy the latter requirement.
   For a detailed description of the renewal scheduling logic, see
   Section 3.5.  For further rationale on the need for adjusting the
   certificate validity, see Section 4.1.



   The server MUST NOT issue any certificates for this Order with
   notAfter after the auto-renewal end-date.



   For expired Orders, the server MUST respond with 403 (Forbidden) to
   any requests to the star-certificate endpoint.  The response SHOULD
   provide additional information using a problem document [RFC7807]
   with type "urn:ietf:params:acme:error:autoRenewalExpired".  Note that
   the Order resource's state remains "valid", as per the base protocol.




3.4. Negotiating an unauthenticated GET

   In order to enable the name delegation workflow defined in
   [I-D.ietf-acme-star-delegation] as well as to increase the
   reliability of the STAR ecosystem (see Section 4.3 for details), this
   document defines a mechanism that allows a server to advertise
   support for accessing star-certificate resources via unauthenticated
   GET (in addition to POST-as-GET), and a client to enable this service
   with per-Order granularity.



   Specifically, a server states its availability to grant
   unauthenticated access to a client's Order star-certificate by
   setting the allow-certificate-get attribute to true in the auto-
   renewal object of the meta field inside the Directory object:



   o  allow-certificate-get (optional, boolean): If this field is
      present and set to true, the server allows GET (and HEAD) requests
      to star-certificate URLs.



   A client states its desire to access the issued star-certificate via
   unauthenticated GET by adding an allow-certificate-get attribute to
   the auto-renewal object of the payload of its newOrder request and
   setting it to true.



   o  allow-certificate-get (optional, boolean): If this field is
      present and set to true, the client requests the server to allow
      unauthenticated GET (and HEAD) to the star-certificate associated
      with this Order.



   If the server accepts the request, it MUST reflect the attribute
   setting in the resulting Order object.



   Note that even when the use of unauthenticated GET has been agreed,
   the server MUST also allow POST-as-GET requests to the star-
   certificate resource.




3.5. Computing notBefore and notAfter of STAR Certificates

   We define "nominal renewal date" as the point in time when a new
   short-term certificate for a given STAR Order is due.  Its cadence is
   a multiple of the Order's auto-renewal lifetime that starts with the
   issuance of the first short-term certificate and is upper-bounded by
   the Order's auto-renewal end-date (Figure 7).



T      ‑ STAR Order's auto‑renewal lifetime
end    ‑ STAR Order's auto‑renewal end‑date
nrd[i] ‑ nominal renewal date of the i‑th STAR certificate


             .‑ T ‑.   .‑ T ‑.   .‑ T ‑.   .__.
            /       \ /       \ /       \ /  end
‑‑‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑‑‑‑o‑‑‑‑‑‑‑‑‑o‑‑‑‑X‑‑‑‑‑‑‑> t
          nrd[0]    nrd[1]    nrd[2]    nrd[3]



                      Figure 7: Nominal Renewal Date



   The rules to determine the notBefore and notAfter values of the i-th
   STAR certificate are as follows:



notAfter  = min(nrd[i] + T, end)
notBefore = nrd[i] ‑ max(adjust_client, adjust_server)



   Where "adjust_client" is the min between the auto-renewal lifetime-
   adjust value ("la"), optionally supplied by the client, and the auto-
   renewal lifetime of each short-term certificate ("T");
   "adjust_server" is the amount of padding added by the ACME server to
   make sure that all certificates being published are valid at the time
   of publication.  The server padding is a fraction f of T (i.e., f * T
   with .5 <= f < 1, see Section 3.3):



adjust_client = min(T, la)
adjust_server = f * T



   Note that the ACME server MUST NOT set the notBefore of the first
   STAR certificate to a date prior to the auto-renewal start-date.




3.5.1. Example

   Given a server that intends to publish the next STAR certificate
   halfway through the lifetime of the previous one, and a STAR Order
   with the following attributes:



"auto‑renewal": {
  "start‑date": "2019‑01‑10T00:00:00Z",
  "end‑date": "2019‑01‑20T00:00:00Z",
  "lifetime": 345600,          // 4 days
  "lifetime‑adjust": 259200    // 3 days
}



   The amount of time that needs to be subtracted from each nominal
   renewal date is 3 days - i.e., max(min(345600, 259200), 345600 * .5).



   The notBefore and notAfter of each short-term certificate are:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| notBefore            | notAfter             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 2019‑01‑10T00:00:00Z | 2019‑01‑14T00:00:00Z |
| 2019‑01‑11T00:00:00Z | 2019‑01‑18T00:00:00Z |
| 2019‑01‑15T00:00:00Z | 2019‑01‑20T00:00:00Z |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



   The value of the notBefore is also the time at which the client
   should expect the new certificate to be available from the star-
   certificate endpoint.




4. Operational Considerations


4.1. The Meaning of "Short Term" and the Impact of Skewed Clocks

   "Short Term" is a relative concept, therefore trying to define a cut-
   off point that works in all cases would be a useless exercise.  In
   practice, the expected lifetime of a STAR certificate will be counted
   in minutes, hours or days, depending on different factors: the
   underlying requirements for revocation, how much clock
   synchronization is expected among relying parties and the issuing CA,
   etc.



   Nevertheless, this section attempts to provide reasonable suggestions
   for the Web use case, informed by current operational and research
   experience.



   Acer et al.  [Acer] find that one of the main causes of "HTTPS error"
   warnings in browsers is misconfigured client clocks.  In particular,
   they observe that roughly 95% of the "severe" clock skews - the 6.7%
   of clock-related breakage reports which account for clients that are
   more than 24 hours behind - happen to be within 6-7 days.



   In order to avoid these spurious warnings about a not (yet) valid
   server certificate, site owners could use the auto-renewal lifetime-
   adjust attribute to control the effective lifetime of their Web
   facing certificates.  The exact number depends on the percentage of
   the "clock-skewed" population that the site owner expects to protect
   - 5 days cover 97.3%, 7 days cover 99.6% - as well as the nominal
   auto-renewal lifetime of the STAR Order.  Note that exact choice is
   also likely to depend on the kinds of client that is prevalent for a
   given site or app - for example, Android and Mac OS clients are known
   to behave better than Windows clients.  These considerations are
   clearly out of scope of the present document.



   In terms of security, STAR certificates and certificates with OCSP
   must-staple [RFC7633] can be considered roughly equivalent if the
   STAR certificate's and the OCSP response's lifetimes are the same.
   Given OCSP responses can be cached on average for 4 days [Stark], it
   is RECOMMENDED that a STAR certificate that is used on the Web has an
   "effective" lifetime (excluding any adjustment to account for clock
   skews) no longer than 4 days.




4.2. Impact on Certificate Transparency (CT) Logs

   Even in the highly unlikely case STAR becomes the only certificate
   issuance model, discussion with the IETF TRANS Working Group and
   Certificate Transparency (CT) logs implementers suggests that
   existing CT Log Server implementations are capable of sustaining the
   resulting 100-fold increase in ingestion rate.  Additionally, such a
   future, higher load could be managed with a variety of techniques
   (e.g., sharding by modulo of certificate hash, using "smart" load-
   balancing CT proxies, etc.).  With regards to the increase in the log
   size, current CT log growth is already being managed with schemes
   like Chrome's Log Policy [OBrien] which allow Operators to define
   their log life-cycle; and allowing the CAs, User Agents, Monitors,
   and any other interested entities to build-in support for that life-
   cycle ahead of time.




4.3. HTTP Caching and Dependability

   When using authenticated POST-as-GET, the HTTPS endpoint from where
   the STAR certificate is fetched can't be easily replicated by an on-
   path HTTP cache.  Reducing the caching properties of the protocol
   makes STAR clients increasingly dependent on the ACME server
   availability.  This might be problematic given the relatively high
   rate of client-server interactions in a STAR ecosystem and especially
   when multiple endpoints (e.g., a high number of CDN edge nodes) end
   up requesting the same certificate.  Clients and servers should
   consider using the mechanism described in Section 3.4 to mitigate the
   risk.



   When using unauthenticated GET to fetch the STAR certificate, the
   server SHALL use the appropriate cache directives to set the
   freshness lifetime of the response (Section 5.2 of [RFC7234]) such
   that on-path caches will consider it stale before or at the time its
   effective lifetime is due to expire.




5. Implementation Status

   Note to RFC Editor: please remove this section before publication,
   including the reference to [RFC7942] and
   [I-D.sheffer-acme-star-request].



   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC7942].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.



   According to [RFC7942], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".




5.1. Overview

   The implementation is constructed around 3 elements: STAR Client for
   the Name Delegation Client (NDC), STAR Proxy for IdO and ACME Server
   for CA.  The communication between them is over an IP network and the
   HTTPS protocol.



   The software of the implementation is available at:
   https://github.com/mami-project/lurk



   The following subsections offer a basic description, detailed
   information is available in https://github.com/mami-
   project/lurk/blob/master/proxySTAR_v2/README.md




5.1.1. ACME Server with STAR extension

   This is a fork of the Let's Encrypt Boulder project that implements
   an ACME compliant CA.  It includes modifications to extend the ACME
   protocol as it is specified in this draft, to support recurrent
   Orders and cancelling Orders.



   The implementation understands the new "recurrent" attributes as part
   of the Certificate issuance in the POST request for a new resource.
   An additional process "renewalManager.go" has been included in
   parallel that reads the details of each recurrent request,
   automatically produces a "cron" Linux based task that issues the
   recurrent certificates, until the lifetime ends or the Order is
   canceled.  This process is also in charge of maintaining a fixed URI
   to enable the NDC to download certificates, unlike Boulder's regular
   process of producing a unique URI per certificate.




5.1.2. STAR Proxy

   The STAR Proxy has a double role as ACME client and STAR Server.  The
   former is a fork of the EFF Certbot project that implements an ACME
   compliant client with the STAR extension.  The latter is a basic HTTP
   REST API server.



   The STAR Proxy understands the basic API request with a server.  The
   current implementation of the API is defined in draft-ietf-acme-star-
   01.  Registration or Order cancellation triggers the modified Certbot
   client that requests, or cancels, the recurrent generation of
   certificates using the STAR extension over ACME protocol.  The URI
   with the location of the recurrent certificate is delivered to the
   STAR client as a response.




5.2. Level of Maturity

   This is a prototype.




5.3. Coverage

   A STAR Client is not included in this implementation, but done by
   direct HTTP request with any open HTTP REST API tool.  This is
   expected to be covered as part of the [I-D.sheffer-acme-star-request]
   implementation.



   This implementation completely covers STAR Proxy and ACME Server with
   STAR extension.




5.4. Version Compatibility

   The implementation is compatible with version draft-ietf-acme-star-
   01.  The implementation is based on the Boulder and Certbot code
   release from 7-Aug-2017.




5.5. Licensing

   This implementation inherits the Boulder license (Mozilla Public
   License 2.0) and Certbot license (Apache License Version 2.0 ).




5.6. Implementation experience

   To prove the concept all the implementation has been done with a
   self-signed CA, to avoid impact on real domains.  To be able to do it
   we use the FAKE_DNS property of Boulder and static /etc/hosts entries
   with domains names.  Nonetheless this implementation should run with
   real domains.



   Most of the implementation has been made to avoid deep changes inside
   of Boulder or Certbot, for example, the recurrent certificates
   issuance by the CA is based on an external process that auto-
   configures the standard Linux "cron" daemon in the ACME CA server.



   The reference setup recommended is one physical host with 3 virtual
   machines, one for each of the 3 components (client, proxy and server)
   and the connectivity based on host bridge.



   Network security is not enabled (iptables default policies are
   "accept" and all rules removed) in this implementation to simplify
   and test the protocol.




5.7. Contact Information

   See author details below.




6. IANA Considerations

   [[RFC Editor: please replace XXXX below by the RFC number.]]




6.1. New Registries

   This document requests that IANA create the following new registries:



   o  ACME Order Auto Renewal Fields (Section 6.4)



   o  ACME Directory Metadata Auto Renewal Fields (Section 6.6)



   All of these registries are administered under a Specification
   Required policy [RFC8126].




6.2. New Error Types

   This document adds the following entries to the ACME Error Type
   registry:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Type                              | Description       | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| autoRenewalCanceled               | The short‑term    | RFC XXXX  |
|                                   | certificate is no |           |
|                                   | longer available  |           |
|                                   | because the auto‑ |           |
|                                   | renewal Order has |           |
|                                   | been explicitly   |           |
|                                   | canceled by the   |           |
|                                   | IdO               |           |
| autoRenewalExpired                | The short‑term    | RFC XXXX  |
|                                   | certificate is no |           |
|                                   | longer available  |           |
|                                   | because the auto‑ |           |
|                                   | renewal Order has |           |
|                                   | expired           |           |
| autoRenewalCancellationInvalid    | A request to      | RFC XXXX  |
|                                   | cancel a auto‑    |           |
|                                   | renewal Order     |           |
|                                   | that is not in    |           |
|                                   | state "valid" has |           |
|                                   | been received     |           |
| autoRenewalRevocationNotSupported | A request to      | RFC XXXX  |
|                                   | revoke a auto‑    |           |
|                                   | renewal Order has |           |
|                                   | been received     |           |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




6.3. New fields in Order Objects

   This document adds the following entries to the ACME Order Object
   Fields registry:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Field Name       | Field Type | Configurable | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| auto‑renewal     | object     | true         | RFC XXXX  |
| star‑certificate | string     | false        | RFC XXXX  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




6.4. Fields in the "auto-renewal" Object within an Order Object

   The "ACME Order Auto Renewal Fields" registry lists field names that
   are defined for use in the JSON object included in the "auto-renewal"
   field of an ACME order object.



   Template:



o  Field name: The string to be used as a field name in the JSON
   object
o  Field type: The type of value to be provided, e.g., string,
   boolean, array of string
o  Configurable: Boolean indicating whether the server should accept
   values provided by the client
o  Reference: Where this field is defined



   Initial contents: The fields and descriptions defined in
   Section 3.1.1.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Field Name            | Field Type | Configurable | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| start‑date            | string     | true         | RFC XXXX  |
| end‑date              | string     | true         | RFC XXXX  |
| lifetime              | integer    | true         | RFC XXXX  |
| lifetime‑adjust       | integer    | true         | RFC XXXX  |
| allow‑certificate‑get | boolean    | true         | RFC XXXX  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




6.5. New fields in the "meta" Object within a Directory Object

   This document adds the following entry to the ACME Directory Metadata
   Fields:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Field Name   | Field Type | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| auto‑renewal | object     | RFC XXXX  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+



6.6.  Fields in the "auto-renewal" Object within a Directory Metadata
      Object



   The "ACME Directory Metadata Auto Renewal Fields" registry lists
   field names that are defined for use in the JSON object included in
   the "auto-renewal" field of an ACME directory "meta" object.



   Template:



o  Field name: The string to be used as a field name in the JSON
   object
o  Field type: The type of value to be provided, e.g., string,
   boolean, array of string
o  Reference: Where this field is defined



   Initial contents: The fields and descriptions defined in Section 3.2.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Field Name            | Field Type | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| min‑lifetime          | integer    | RFC XXXX  |
| max‑duration          | integer    | RFC XXXX  |
| allow‑certificate‑get | boolean    | RFC XXXX  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




6.7. Cert-Not-Before and Cert-Not-After HTTP Headers

   The "Message Headers" registry should be updated with the following
   additional values:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Header Field Name | Protocol | Status   | Reference             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Cert‑Not‑Before   | http     | standard | RFC XXXX, Section 3.3 |
| Cert‑Not‑After    | http     | standard | RFC XXXX, Section 3.3 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




7. Security Considerations


7.1. No revocation

   STAR certificates eliminate an important security feature of PKI
   which is the ability to revoke certificates.  Revocation allows the
   administrator to limit the damage done by a rogue node or an
   adversary who has control of the private key.  With STAR
   certificates, expiration replaces revocation so there is potential
   for lack of timeliness in the revocation taking effect.  To that end,
   see also the discussion on clock skew in Section 4.1.



   It should be noted that revocation also has timeliness issues,
   because both CRLs and OCSP responses have nextUpdate fields that tell
   relying parties (RPs) how long they should trust this revocation
   data.  These fields are typically set to hours, days, or even weeks
   in the future.  Any revocation that happens before the time in
   nextUpdate goes unnoticed by the RP.



   One situation where the lack of explicit revocation could create a
   security risk to the IdO is when the Order is created with start-date
   some appreciable amount of time in the future.  Recall that when
   authorizations have been fulfilled, the Order moves to the "valid"
   state and the star-certificate endpoint is populated with the first
   cert (Figure 4).  So, if an attacker manages to get hold of the
   private key as well as of the first (post-dated) certificate, there
   is a time window in the future when they will be able to successfully
   impersonate the IdO.  Note that cancellation is pointless in this
   case.  In order to mitigate the described threat, it is RECOMMENDED
   that IdO place their Orders at a time that is close to the Order's
   start-date.



   More discussion of the security of STAR certificates is available in
   [Topalovic].




7.2. Denial of Service Considerations

   STAR adds a new attack vector that increases the threat of denial of
   service attacks, caused by the change to the CA's behavior.  Each
   STAR request amplifies the resource demands upon the CA, where one
   Order produces not one, but potentially dozens or hundreds of
   certificates, depending on the auto-renewal "lifetime" parameter.  An
   attacker can use this property to aggressively reduce the auto-
   renewal "lifetime" (e.g. 1 sec.) jointly with other ACME attack
   vectors identified in Sec. 10 of [RFC8555].  Other collateral impact
   is related to the certificate endpoint resource where the client can
   retrieve the certificates periodically.  If this resource is external
   to the CA (e.g. a hosted web server), the previous attack will be
   reflected to that resource.



   Mitigation recommendations from ACME still apply, but some of them
   need to be adjusted.  For example, applying rate limiting to the
   initial request, by the nature of the auto-renewal behavior cannot
   solve the above problem.  The CA server needs complementary
   mitigation and specifically, it SHOULD enforce a minimum value on
   auto-renewal "lifetime".  Alternatively, the CA can set an internal
   certificate generation processes rate limit.  Note that this limit
   has to take account of already-scheduled renewal issuances as well as
   new incoming requests.




7.3. Privacy Considerations

   In order to avoid correlation of certificates by account, if
   unauthenticated GET is negotiated (Section 3.4) the recommendation in
   Section 10.5 of [RFC8555] regarding the choice of URL structure
   applies, i.e. servers SHOULD choose URLs of certificate resources in
   a non-guessable way, for example using capability URLs
   [W3C.WD-capability-urls-20140218].




8. Acknowledgments

   This work is partially supported by the European Commission under
   Horizon 2020 grant agreement no. 688421 Measurement and Architecture
   for a Middleboxed Internet (MAMI).  This support does not imply
   endorsement.



   Thanks to Ben Kaduk, Richard Barnes, Roman Danyliw, Jon Peterson,
   Eric Rescorla, Ryan Sleevi, Sean Turner, Alexey Melnikov, Adam Roach,
   Martin Thomson and Mehmet Ersue for helpful comments and discussions
   that have shaped this document.




9. References


9.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3339]
  Klyne, G. and C. Newman, "Date and Time on the Internet:
              Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
              <https://www.rfc-editor.org/info/rfc3339>.




   [RFC7231]
  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
              DOI 10.17487/RFC7231, June 2014,
              <https://www.rfc-editor.org/info/rfc7231>.




   [RFC7234]
  Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
              Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
              RFC 7234, DOI 10.17487/RFC7234, June 2014,
              <https://www.rfc-editor.org/info/rfc7234>.




   [RFC7807]
  Nottingham, M. and E. Wilde, "Problem Details for HTTP
              APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
              <https://www.rfc-editor.org/info/rfc7807>.




   [RFC8126]
  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8555]
  Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
              <https://www.rfc-editor.org/info/rfc8555>.




9.2. Informative References


   [Acer]
     Acer, M., Stark, E., Felt, A., Fahl, S., Bhargava, R.,
              Dev, B., Braithwaite, M., Sleevi, R., and P. Tabriz,
              "Where the Wild Warnings Are: Root Causes of Chrome HTTPS
              Certificate Errors", DOI 10.1145/3133956.3134007, 2017,
              <https://acmccs.github.io/papers/p1407-acerA.pdf>.




   [I-D.ietf-acme-star-delegation]

              Sheffer, Y., Lopez, D., Pastor, A., and T. Fossati, "An
              ACME Profile for Generating Delegated STAR Certificates",
              draft-ietf-acme-star-delegation-01 (work in progress),
              August 2019.




   [I-D.nir-saag-star]

              Nir, Y., Fossati, T., Sheffer, Y., and T. Eckert,
              "Considerations For Using Short Term Certificates", draft-
              nir-saag-star-01 (work in progress), March 2018.




   [I-D.sheffer-acme-star-request]

              Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
              Fossati, "Generating Certificate Requests for Short-Term,
              Automatically-Renewed (STAR) Certificates", draft-sheffer-
              acme-star-request-02 (work in progress), June 2018.




   [OBrien]
   O'Brien, D. and R. Sleevi, "Chromium Certificate
              Transparency Log Policy", 2017,
              <https://github.com/chromium/ct-policy>.




   [RFC7633]
  Hallam-Baker, P., "X.509v3 Transport Layer Security (TLS)
              Feature Extension", RFC 7633, DOI 10.17487/RFC7633,
              October 2015, <https://www.rfc-editor.org/info/rfc7633>.




   [RFC7942]
  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", BCP 205,
              RFC 7942, DOI 10.17487/RFC7942, July 2016,
              <https://www.rfc-editor.org/info/rfc7942>.




   [Stark]
    Stark, E., Huang, L., Israni, D., Jackson, C., and D.
              Boneh, "The case for prefetching and prevalidating TLS
              server certificates", 2012,
              <http://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-
              prefetch.html>.




   [Topalovic]

              Topalovic, E., Saeta, B., Huang, L., Jackson, C., and D.
              Boneh, "Towards Short-Lived Certificates", 2012,
              <http://www.ieee-security.org/TC/W2SP/2012/papers/
              w2sp12-final9.pdf>.




   [W3C.WD-capability-urls-20140218]

              Tennison, J., "Good Practices for Capability URLs", World
              Wide Web Consortium WD WD-capability-urls-20140218,
              February 2014,
              <http://www.w3.org/TR/2014/WD-capability-urls-20140218>.




Appendix A. Document History

   [[Note to RFC Editor: please remove before publication.]]




A.1. draft-ietf-acme-star-11

   o  One more nit re: random URL




A.2. draft-ietf-acme-star-10

   IESG processing:



o  More clarity on IANA registration (Alexey);
o  HTTP header requirements adjustments (Adam);
o  Misc editorial (Ben)




A.3. draft-ietf-acme-star-09

   Richard and Ryan's review resulted in the following updates:



o  STAR Order and Directory Meta attributes renamed slightly and
   grouped under two brand new "auto‑renewal" objects;
o  IANA registration updated accordingly (note that two new
   registries have been added as a consequence);
o  Unbounded pre‑dating of certificates removed so that STAR certs
   are never issued with their notBefore in the past;
o  Changed "recurrent" to "autoRenewal" in error codes;
o  Changed "recurrent" to "auto‑renewal" in reference to Orders;
o  Added operational considerations for HTTP caches.




A.4. draft-ietf-acme-star-08

   o  Improved text on interaction with CT Logs, responding to Mehmet
      Ersue's review.




A.5. draft-ietf-acme-star-07

   o  Changed the HTTP headers names and clarified the IANA
      registration, following feedback from the IANA expert reviewer




A.6. draft-ietf-acme-star-06

   o  Roman's AD review




A.7. draft-ietf-acme-star-05

o  EKR's AD review
o  A detailed example of the timing of certificate issuance and
   predating
o  Added an explicit client‑side parameter for predating
o  Security considerations around unauthenticated GET




A.8. draft-ietf-acme-star-04

o  WG last call comments by Sean Turner
o  revokeCert interface handling
o  Allow negotiating plain‑GET for certs
o  In STAR Orders, use star‑certificate instead of certificate




A.9. draft-ietf-acme-star-03

o  Clock skew considerations
o  Recommendations for "short" in the Web use case
o  CT log considerations




A.10. draft-ietf-acme-star-02

o  Discovery of STAR capabilities via the directory object
o  Use the more generic term Identifier Owner (IdO) instead of Domain
   Name Owner (DNO)
o  More precision about what goes in the order
o  Detail server side behavior on cancellation




A.11. draft-ietf-acme-star-01

o  Generalized the introduction, separating out the specifics of
   CDNs.
o  Clean out LURK‑specific text.
o  Using a POST to ensure cancellation is authenticated.
o  First and last date of recurrent cert, as absolute dates.
   Validity of certs in seconds.
o  Use RFC7807 "Problem Details" in error responses.
o  Add IANA considerations.
o  Changed the document's title.




A.12. draft-ietf-acme-star-00

o  Initial working group version.
o  Removed the STAR interface, the protocol between NDC and DNO.
   What remains is only the extended ACME protocol.




A.13. draft-sheffer-acme-star-02

o  Using a more generic term for the delegation client, NDC.
o  Added an additional use case: public cloud services.
o  More detail on ACME authorization.




A.14. draft-sheffer-acme-star-01

o  A terminology section.
o  Some cleanup.




A.15. draft-sheffer-acme-star-00

o  Renamed draft to prevent confusion with other work in this space.
o  Added an initial STAR protocol: a REST API.
o  Discussion of CDNI use cases.




A.16. draft-sheffer-acme-star-lurk-00

   o  Initial version.



Authors' Addresses



Yaron Sheffer
Intuit



   EMail: yaronf.ietf@gmail.com




Diego Lopez
Telefonica I+D



   EMail: diego.r.lopez@telefonica.com




Oscar Gonzalez de Dios
Telefonica I+D



   EMail: oscar.gonzalezdedios@telefonica.com




Antonio Agustin Pastor Perales
Telefonica I+D



   EMail: antonio.pastorperales@telefonica.com



Thomas Fossati
ARM



   EMail: thomas.fossati@arm.com


















































draft-ietf-acme-star-delegation-01 - An ACME Profile for Generating Delegated STAR Certificates 






draft-ietf-acme-star-delegation-01 - An ACME Profile for Generating Delegated ST

Index
Back 5
Prev
Next
Forward 5


ACME

Internet-Draft

Intended status: Standards Track

Expires: February 27, 2020










Y. Sheffer

Intuit

D. Lopez

A. Pastor Perales

Telefonica I+D

T. Fossati

Nokia

August 26, 2019

An ACME Profile for Generating Delegated STAR Certificates  

draft-ietf-acme-star-delegation-01


Abstract

   This memo proposes a profile of the ACME protocol that allows the
   owner of an identifier (e.g., a domain name) to delegate to a third
   party access to a certificate associated with said identifier.  A
   primary use case is that of a CDN (the third party) terminating TLS
   sessions on behalf of a content provider (the owner of a domain
   name).  The presented mechanism allows the owner of the identifier to
   retain control over the delegation and revoke it at any time by
   cancelling the associated STAR certificate renewal with the ACME CA.
   Another key property of this mechanism is it does not require any
   modification to the deployed TLS ecosystem.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on February 27, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Terminology


	 1.2.  Conventions used in this document



	2.  Protocol Flow
	 2.1.  Preconditions


	 2.2.  Overview


	 2.3.  Delegated Identity Profile
	  2.3.1.  Order Object on the NDC-IdO side


	  2.3.2.  Order Object on the IdO-CA side


	  2.3.3.  Capability Discovery


	  2.3.4.  On Cancelation





	3.  CSR Template
	 3.1.  Rules


	 3.2.  Example



	4.  Further Use Cases
	 4.1.  CDNI
	  4.1.1.  Multiple Parallel Delegates


	  4.1.2.  Chained Delegation



	 4.2.  STIR



	5.  IANA Considerations
	 5.1.  New fields in the "meta" Object within a Directory Object


	 5.2.  CSR Template Registry



	6.  Security Considerations
	 6.1.  Restricting CDNs to the Delegation Mechanism


	 6.2.  TBC



	7.  Acknowledgments


	8.  References
	 8.1.  Normative References


	 8.2.  Informative References



	Appendix A.  Document History
	 A.1.  draft-ietf-acme-star-delegation-01


	 A.2.  draft-ietf-acme-star-delegation-00


	 A.3.  draft-sheffer-acme-star-delegation-01


	 A.4.  draft-sheffer-acme-star-delegation-00



	Authors' Addresses




1. Introduction

   This document is a companion document to [I-D.ietf-acme-star].  To
   avoid duplication, we give here a bare-bones description of the
   motivation for this solution.  For more details and further use
   cases, please refer to the introductory sections of
   [I-D.ietf-acme-star].



   An Identifier Owner (IdO), that we can associate in the primary use
   case to a content provider (also referred to as Domain Name Owner,
   DNO), has agreements in place with one or more NDC (Name Delegation
   Consumer) to use and attest its identity.  In the primary use case,
   we consider a CDN provider contracted to serve the IdO content over
   HTTPS.  The CDN terminates the HTTPS connection at one of its edge
   cache servers and needs to present its clients (browsers, mobile
   apps, set-top-boxes) a certificate whose name matches the authority
   of the URL that is requested, i.e., that of the IdO.  Understandably,
   most IdOs balk at sharing their long-term private keys with another
   organization and, equally, delegates would rather not have to handle
   other parties' long-term secrets.



   Other relevant use cases are discussed in Section 4.



   This document describes a profile of the ACME protocol
   [I-D.ietf-acme-acme] that allows the NDC to request the IdO, acting
   as a profiled ACME server, a certificate for a delegated identity -
   i.e., one belonging to the IdO.  The IdO then uses the ACME protocol
   (with the extensions described in [I-D.ietf-acme-star]) to request
   issuance of a STAR certificate for the same delegated identity.  The
   generated short-term certificate is automatically renewed by the ACME
   Certification Authority (CA), periodically fetched by the NDC and
   used to terminate HTTPS connections in lieu of the IdO.  The IdO can
   end the delegation at any time by simply instructing the CA to stop
   the automatic renewal and letting the certificate expire shortly
   thereafter.



   In case the delegated identity is a domain name, this document also
   provides a way for the NDC to inform the IdO about the CNAME mappings
   that need to be installed in the IdO's DNS zone to enable the
   aliasing of the delegated name, thus allowing the complete name
   delegation workflow to be handled using a single interface.




1.1. Terminology

IdO  Identifier Owner, the owner of an identifier (e.g., a domain
   name) that needs to be delegated.
DNO  Domain Name Owner, a specific kind of IdO whose identifier is a
   domain name

NDC  Name Delegation Consumer, the entity to which the domain name is
   delegated for a limited time.  This is a CDN in the primary use
   case (in fact, readers may note the symmetry of the two acronyms).
CDN  Content Delivery Network, a widely distributed network that
   serves the domain's web content to a wide audience at high
   performance.
STAR  Short‑Term, Automatically Renewed X.509 certificates.
ACME  The IETF Automated Certificate Management Environment, a
   certificate management protocol.
CA A Certificate Authority that implements the ACME protocol.




1.2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




2. Protocol Flow

   This section presents the protocol flow.  For completeness, we
   include the ACME profile proposed in this draft as well as the
   extended ACME protocol described in [I-D.ietf-acme-star].




2.1. Preconditions

   The protocol assumes the following preconditions are met:



o  The IdO exposes an ACME server interface to the NDC(s) comprising
   the account management interface;
o  The NDC has registered an ACME account with the IdO;
o  NDC and IdO have agreed on a "CSR template" to use, including at a
   minimum: subject name (e.g., "somesite.example.com"), requested
   algorithms and key length, key usage, extensions (e.g.,
   TNAuthList).  The NDC is required to use this template for every
   CSR created under the same delegation;
o  IdO has registered an ACME account with the Certificate Authority
   (CA)



   Note that even if the IdO implements the ACME server role, it is not
   acting as a CA: in fact, from the point of view of the certificate
   issuance process, the IdO only works as a "policing" forwarder of the
   NDC's key-pair and is responsible for completing the identity
   verification process towards the ACME CA.




2.2. Overview

   The interaction between the NDC and the IdO is governed by the
   profiled ACME workflow detailed in Section 2.3.  The interaction
   between the IdO and the CA is ruled by ACME STAR [I-D.ietf-acme-star]
   as well as any other ACME extension that applies (e.g.,
   [I-D.ietf-acme-authority-token-tnauthlist] for STIR).



   The outline of the combined protocol is as follow (Figure 1):



o  NDC sends an Order for the delegated identifier to IdO;
o  IdO creates an Order resource in state "ready" with a "finalize"
   URL;
o  NDC immediately sends a finalize request (which includes the CSR)
   to the IdO;
o  IdO verifies the CSR according to the agreed CSR template;
o  If the CSR verification fails, the Order is moved to an "invalid"
   state and everything stops;
o  If the CSR verification is successful, IdO moves the Order to
   state "processing", and sends an Order' (using its own account)
   for the delegated identifier to the ACME STAR CA;
o  If the ACME STAR protocol fails, Order' moves to "invalid" and the
   same state is reflected in the NDC Order;
o  If the ACME STAR run is successful (i.e., Order' is "valid"), IdO
   copies the "star‑certificate" URL from Order' to Order and moves
   its state "valid".



   The NDC can now download, install and use the certificate bearing the
   name delegated by the IdO.



   Note that, because the identity validation is suppressed, the NDC
   sends the finalize request, including the CSR, to the IdO immediately
   after the Order has been acknowledged.  The IdO must buffer a (valid)
   CSR until the Validation phase completes successfully.



NDC                      IdO                   CA
Client              Server  Client             Server

Order
Signature ‑‑‑‑‑‑‑>



        [ No identity validation ]



CSR
Signature ‑‑‑‑‑‑‑>

                            Order'
                            Signature ‑‑‑‑‑‑‑>
                                      <‑‑‑‑‑‑‑ Required
                                               Authorizations

                            Responses
                            Signature ‑‑‑‑‑‑‑>



                                    <~~~~~~~~Validation~~~~~~~~>




CSR
Signature ‑‑‑‑‑‑‑>



       <~~~~~~Await issuance~~~~~~> <~~~~~~Await issuance~~~~~~>



<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Certificate



                         Figure 1: End to end flow




2.3. Delegated Identity Profile


2.3.1. Order Object on the NDC-IdO side

   The Order object created by the NDC:



o  MUST contain identifiers with the new "delegated" field set to
   true;
o  MUST NOT contain the notBefore and notAfter fields;
o  MAY contain any of the "recurrent‑*" fields listed in
   Section 3.1.1 of [I‑D.ietf‑acme‑star];
o  In case the identifier type is "dns", it MAY contain a "cname"
   field with the alias of the identifier in the NDC domain.  This
   field is used by the IdO to create the DNS aliasing needed to
   redirect the resolvers to the delegated entity.

   POST /acme/new‑order HTTP/1.1
   Host: acme.dno.example
   Content‑Type: application/jose+json

   {
     "protected": base64url({
       "alg": "ES256",
       "kid": "https://acme.dno.example/acme/acct/evOfKhNU60wg",
       "nonce": "5XJ1L3lEkMG7tR6pA00clA",
       "url": "https://acme.dno.example/acme/new‑order"
     }),
     "payload": base64url({
       "identifiers": [
         {
           "type": "dns",
           "value": "abc.ndc.dno.example.",
           "delegated": true,
           "cname": "abc.ndc.example."
         }
       ],
     }),
     "signature": "H6ZXtGjTZyUnPeKn...wEA4TklBdh3e454g"
   }



   The Order object that is created on the IdO:



o  MUST start in the "ready" state;
o  MUST contain an "authorizations" array with zero elements;
o  MUST NOT contain the "notBefore" and "notAfter" fields.

 {
   "status": "ready",
   "expires": "2016‑01‑01T00:00:00Z",

   "identifiers": [
    {
      "type": "dns",
      "value": "abc.ndc.dno.example.",
      "delegated": true,
      "cname": "abc.ndc.example."
    }
   ],



      "authorizations": [],



      "finalize": "https://acme.dno.example/acme/order/TO8rfgo/finalize"
    }



   The IdO SHOULD copy any "recurrent-*" field from the NDC request into
   the related STAR request to the ACME CA.



   When the validation of the identifiers has been successfully
   completed and the certificate has been issued by the CA, the IdO:



o  MUST move its Order resource status to "valid";
o  MUST copy the "star‑certificate" field from the STAR Order;



   The latter indirectly includes (via the NotBefore and NotAfter HTTP
   headers) the renewal timers needed by the NDC to inform its
   certificate reload logic.



{
  "status": "valid",
  "expires": "2016‑01‑01T00:00:00Z",

  "identifiers": [
   {
     "type": "dns",
     "value": "abc.ndc.dno.example.",
     "delegated": true,
     "cname": "abc.ndc.example."
   }
  ],



     "authorizations": [],



     "finalize": "https://acme.dno.example/acme/order/TO8rfgo/finalize",



     "star-certificate": "https://acme.ca.example/acme/order/yTr23sSDg9"
   }



   If an "identifier" object of type "dns" was included, the IdO MUST
   validate the specified CNAME at this point in the flow.  The NDC and
   IdO may have a pre-established list of valid CNAME values.  At the
   minimum, the IdO MUST verify that both DNS names are syntactically
   valid.



   Following this validation, the IdO can add the CNAME records to its
   zone:



      abc.ndc.dno.example. CNAME abc.ndc.example.




2.3.2. Order Object on the IdO-CA side

   When sending the Order to the ACME CA, the IdO SHOULD strip the
   "delegated" and "cname" attributes sent by the NDC (Section 2.3.1).
   The IdO MUST add the necessary STAR extensions to the Order.  In
   addition, to allow the NDC to download the certificate using
   unauthenticated GET, the IdO MUST add the recurrent-certificate-get
   attribute and set it to true.




2.3.3. Capability Discovery

   In order to help a client to discover support for this profile, the
   directory object of an ACME server MUST contain the following
   attribute inside the "meta" field:



   o  star-delegation-enabled: boolean flag indicating support for the
      profile specified in this memo.  An ACME server that supports this
      delegation profile MUST include this key, and MUST set it to true.




2.3.4. On Cancelation

   It is worth noting that cancelation of the ACME STAR certificate is a
   prerogative of the IdO.  The NDC does not own the relevant account
   key on the ACME CA, therefore it can't issue a cancelation request
   for the STAR cert.  Potentially, since it holds the STAR cert private
   key, it could request the revocation of a single STAR certificate.
   However, STAR explicitly disables the revokeCert interface.




3. CSR Template

   The CSR template is used to express and constrain the shape of the
   CSR that the NDC uses to request the certificate.  The CSR is used
   for every CSR created under the same delegation.  Its validation is a
   critical element in the security of the whole delegation mechanism.



   The CSR template is defined using JSON Schema
   [I-D.handrews-json-schema], a mature, widely used format, which is a
   natural fit for the JSON-centric ACME.



   Instead of defining every possible CSR attribute, this document takes
   a minimalist approach by declaring only the minimum attribute set and
   deferring the registration of further, more specific, attributes to
   future documents.  Critically, this document establishes the
   necessary IANA registry and registration rules (see Section 5.2).




3.1. Rules

   TODO




3.2. Example

   The CSR template in Figure 2 represents one possible CSR template
   governing the delegation exchanges provided in the rest of this
   document.



{
    "type": "object",
    "properties": {
        "san": {
            "type": "string",
            "pattern": "*.ndc.dno.example."
        },
        "requested‑algorithms": {
            "type": "object",
            "properties": {
                "sigAlgo": {
                    "type": "string",
                    "enum": [
                        "ecdsa‑with‑sha256"
                    ]
                },
            },
            "required": [
                "sigAlgo"
            ]
        },
        "key‑usage": {
            "type": "string",
            "enum": [
                "digitalSignature"
            ]
        }
    },
    "required": [
        "san",
        "requested‑algorithms",
        "key‑length",
        "key‑usage"
    ],
    "title": "csr‑template",
    "description": "Example CSR Template for IETF ACME STAR Delegation"
}



                      Figure 2: Example CSR template




4. Further Use Cases


4.1. CDNI

   [I-D.ietf-cdni-interfaces-https-delegation] discusses several
   solutions addressing different delegation requirements for the CDNI
   (CDN Interconnection) environment.  This section discusses two of the
   stated requirements in the context of the STAR delegation workflow.




4.1.1. Multiple Parallel Delegates

   In some cases the content owner (IdO) would like to delegate
   authority over a web site to multiple NDCs (CDNs).  This could happen
   if the IdO has agreements in place with different regional CDNs for
   different geographical regions, or if a "backup" CDN is used to
   handle overflow traffic by temporarily altering some of the CNAME
   mappings in place.  The STAR delegation flow enables this use case
   naturally, since each CDN can authenticate separately to the IdO (via
   its own separate account) specifying its CSR, and the IdO is free to
   allow or deny each certificate request according to its own policy.




4.1.2. Chained Delegation

   In other cases, a content owner (IdO) delegates some domains to a
   large CDN (uCDN), which in turn delegates to a smaller regional CDN,
   dCDN.  The DNO has a contractual relationship with uCDN, and uCDN has
   a similar relationship with dCDN.  However IdO may not even know
   about dCDN.



   The STAR protocol can be chained to support this use case: uCDN could
   forward requests from dCDN to DNO, and forward responses back to
   dCDN.  Whether such proxying is allowed is governed by policy and
   contracts between the parties.



   A mechanism is necessary at the interface between uCDN and dCDN by
   which the uCDN can advertise:



o  The namespace that is made available to the dCDN to mint its
   delegated names;
o  The policy for creating the key material (allowed algorithms,
   minimum key lengths, key usage, etc.) that the dCDN needs to
   satisfy.



   Note that such mechanism is provided by the CSR template.




4.2. STIR

   As a second use case, we consider the delegation of credentials in
   the STIR ecosystem [I-D.ietf-stir-cert-delegation].



   In the STIR "delegated" model, a service provider, the NDC, needs to
   sign PASSPorT's [RFC8225] for telephone numbers (e.g., TN=+123)
   belonging to another service provider, the IdO.  In order to do that,
   it needs a STIR certificate, and private key, that includes TN=+123
   in the TNAuthList [RFC8226] cert extension.



   The STAR delegation profile described in this document applies
   straightforwardly, the only extra requirement being the ability to
   instruct the NDC about the allowed TNAuthList values.  This can be
   achieved by a simple extension of the CSR template.




5. IANA Considerations

   [[RFC Editor: please replace XXXX below by the RFC number.]]




5.1. New fields in the "meta" Object within a Directory Object

   This document adds the following entries to the ACME Directory
   Metadata Fields:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Field Name              | Field Type | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| star‑delegation‑enabled | boolean    | RFC XXXX  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




5.2. CSR Template Registry

   TODO




6. Security Considerations


6.1. Restricting CDNs to the Delegation Mechanism

   When a web site is delegated to a CDN, the CDN can in principle
   modify the web site at will, create and remove pages.  This means
   that a malicious or breached CDN can pass the ACME (as well as common
   non-ACME) HTTPS-based validation challenges and generate a
   certificate for the site.  This is true regardless of whether the
   CNAME mechanisms defined in the current document is used or not.



   In some cases, this is the desired behavior: the domain owner trusts
   the CDN to have full control of the cryptographic credentials for the
   site.  The current document however assumes that the domain owner
   only wants to delegate restricted control, and wishes to retain the
   capability to cancel the CDN's credentials at a short notice.



   To restrict certificate delegation only to the protocol defined here:



   o  The domain owner MUST make sure that the CDN cannot modify the DNS
      records for the domain.  The domain owner should ensure it is the
      only entity authorized to modify the DNS zone.  Typically, it
      establishes a CNAME resource record from a subdomain into a CDN-
      managed domain.



o  The domain owner MUST use a CAA record [RFC6844] to restrict
   certificate issuance for the domain to specific CAs that comply
   with ACME.
o  The domain owner MUST use the ACME‑specific CAA mechanism
   [I‑D.ietf‑acme‑caa] to restrict issuance to a specific account key
   which is controlled by it, and MUST require "dns‑01" as the sole
   validation method.




6.2. TBC

o  CSR validation
o  CNAME mappings
o  Composition with ACME STAR
o  Composition with other ACME extensions
o  Channel security




7. Acknowledgments

   This work is partially supported by the European Commission under
   Horizon 2020 grant agreement no. 688421 Measurement and Architecture
   for a Middleboxed Internet (MAMI).  This support does not imply
   endorsement.




8. References


8.1. Normative References


   [I-D.handrews-json-schema]

              Wright, A. and H. Andrews, "JSON Schema: A Media Type for
              Describing JSON Documents", draft-handrews-json-schema-01
              (work in progress), March 2018.




   [I-D.ietf-acme-acme]

              Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", draft-ietf-acme-acme-18 (work in progress),
              December 2018.




   [I-D.ietf-acme-caa]

              Landau, H., "CAA Record Extensions for Account URI and
              ACME Method Binding", draft-ietf-acme-caa-10 (work in
              progress), June 2019.




   [I-D.ietf-acme-star]

              Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
              Fossati, "Support for Short-Term, Automatically-Renewed
              (STAR) Certificates in Automated Certificate Management
              Environment (ACME)", draft-ietf-acme-star-07 (work in
              progress), August 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC6844]
  Hallam-Baker, P. and R. Stradling, "DNS Certification
              Authority Authorization (CAA) Resource Record", RFC 6844,
              DOI 10.17487/RFC6844, January 2013,
              <https://www.rfc-editor.org/info/rfc6844>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




8.2. Informative References


   [I-D.ietf-acme-authority-token-tnauthlist]

              Wendt, C., Hancock, D., Barnes, M., and J. Peterson,
              "TNAuthList profile of ACME Authority Token", draft-ietf-
              acme-authority-token-tnauthlist-03 (work in progress),
              March 2019.




   [I-D.ietf-cdni-interfaces-https-delegation]

              Fieau, F., Emile, S., and S. Mishra, "CDNI extensions for
              HTTPS delegation", draft-ietf-cdni-interfaces-https-
              delegation-01 (work in progress), May 2019.




   [I-D.ietf-stir-cert-delegation]

              Peterson, J., "STIR Certificate Delegation", draft-ietf-
              stir-cert-delegation-00 (work in progress), July 2019.




   [RFC8225]
  Wendt, C. and J. Peterson, "PASSporT: Personal Assertion
              Token", RFC 8225, DOI 10.17487/RFC8225, February 2018,
              <https://www.rfc-editor.org/info/rfc8225>.




   [RFC8226]
  Peterson, J. and S. Turner, "Secure Telephone Identity
              Credentials: Certificates", RFC 8226,
              DOI 10.17487/RFC8226, February 2018,
              <https://www.rfc-editor.org/info/rfc8226>.




Appendix A. Document History

   [[Note to RFC Editor: please remove before publication.]]




A.1. draft-ietf-acme-star-delegation-01

o  Addition of the STIR use case.
o  Refinement of the CDNI use case.
o  Addition of the CSR template (partial, more work required).
o  Further security considerations (work in progress).




A.2. draft-ietf-acme-star-delegation-00

   o  Republished as a working group draft.




A.3. draft-sheffer-acme-star-delegation-01

   o  Added security considerations about disallowing CDNs from issuing
      certificates for a delegated domain.




A.4. draft-sheffer-acme-star-delegation-00

   o  Initial version, some text extracted from draft-sheffer-acme-star-
      requests-02



Authors' Addresses



Yaron Sheffer
Intuit



   EMail: yaronf.ietf@gmail.com




Diego Lopez
Telefonica I+D



   EMail: diego.r.lopez@telefonica.com




Antonio Agustin Pastor Perales
Telefonica I+D



   EMail: antonio.pastorperales@telefonica.com



Thomas Fossati
Nokia



   EMail: thomas.fossati@nokia.com


















































draft-ietf-acme-tls-alpn-07 - ACME TLS ALPN Challenge Extension 






draft-ietf-acme-tls-alpn-07 - ACME TLS ALPN Challenge Extension 

Index
Back 5
Prev
Next
Forward 5


ACME Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 3, 2020


R. Shoemaker

ISRG

October 01, 2019



ACME TLS ALPN Challenge Extension  

draft-ietf-acme-tls-alpn-07


Abstract

   This document specifies a new challenge for the Automated Certificate
   Management Environment (ACME) protocol that allows for domain control
   validation using TLS.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 3, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  TLS with Application Layer Protocol Negotiation (TLS ALPN) Challenge


	4.  acme-tls/1 Protocol Definition


	5.  Security Considerations


	6.  IANA Considerations
	 6.1.  SMI Security for PKIX Certificate Extension OID


	 6.2.  ALPN Protocol ID


	 6.3.  ACME Validation Method



	7.  Acknowledgements


	8.  Normative References


	Appendix A.  Design Rationale


	Author's Address




1. Introduction

   The Automatic Certificate Management Environment (ACME) [RFC8555]
   specification describes methods for validating control of domain
   names via HTTP and DNS.  Deployment experience has shown it is also
   useful to be able to validate domain control using the TLS layer
   alone.  In particular, this allows hosting providers, CDNs, and TLS-
   terminating load balancers to validate domain control without
   modifying the HTTP handling behavior of their backends.



   This document specifies a new TLS-based challenge type, tls-alpn-01.
   This challenge requires negotiating a new application-layer protocol
   using the TLS Application-Layer Protocol Negotiation (ALPN) Extension
   [RFC7301].  Because this protocol does not build on a preexisting
   deployment base, the ability to fulfill tls-alpn-01 challenges is
   effectively opt-in.  A service provider must proactively deploy new
   code in order to implement tls-alpn-01, so we can specify stronger
   controls in that code, resulting in a stronger validation method.




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




3. TLS with Application Layer Protocol Negotiation (TLS ALPN) Challenge

   The TLS with Application Layer Protocol Negotiation (TLS ALPN)
   validation method proves control over a domain name by requiring the
   ACME client to configure a TLS server to respond to specific
   connection attempts using the ALPN extension with identifying
   information.  The ACME server validates control of the domain name by
   connecting to a TLS server at one of the addresses resolved for the
   domain name and verifying that a certificate with specific content is
   presented.



   The tls-alpn-01 ACME challenge object has the following format:



type (required, string):  The string "tls‑alpn‑01"

token (required, string):  A random value that uniquely identifies
   the challenge.  This value MUST have at least 128 bits of entropy.
   It MUST NOT contain any characters outside the base64url alphabet
   as described in [RFC4648] Section 5.  Trailing '=' padding
   characters MUST be stripped.  See [RFC4086] for additional
   information on randomness requirements.



   The client prepares for validation by constructing a self-signed
   certificate that MUST contain an acmeIdentifier extension and a
   subjectAlternativeName extension [RFC5280].  The
   subjectAlternativeName extension MUST contain a single dNSName entry
   where the value is the domain name being validated.  The
   acmeIdentifier extension MUST contain the SHA-256 digest [FIPS180-4]
   of the key authorization [RFC8555] for the challenge.  The
   acmeIdentifier extension MUST be critical so that the certificate
   isn't inadvertently used by non-ACME software.



   The acmeIdentifier extension is identified by the id-pe-
   acmeIdentifier object identifier (OID) in the id-pe arc [RFC5280]:



id‑pe‑acmeIdentifier OBJECT IDENTIFIER ::=  { id‑pe 31 }



   The extension has the following ASN.1 [X.680] format :



   Authorization ::= OCTET STRING (SIZE (32))



   The extnValue of the id-pe-acmeIdentifier extension is the ASN.1 DER
   encoding [X.690] of the Authorization structure, which contains the
   SHA-256 digest of the key authorization for the challenge.



   Once this certificate has been created it MUST be provisioned such
   that it is returned during a TLS handshake where the "acme-tls/1"
   application-layer protocol has been negotiated and a Server Name
   Indication (SNI) extension [RFC6066] has been provided containing the
   domain name being validated.



   A client responds by POSTing an empty JSON object ({}) to the
   challenge URL to acknowledge that the challenge is ready to be
   validated by the server.  The base64url encoding of the protected
   headers and payload is described in [RFC8555] Section 6.1.



POST /acme/authz/1234/1
Host: example.com
Content‑Type: application/jose+json

{
  "protected": base64url({
    "alg": "ES256",
    "kid": "https://example.com/acme/acct/1",
    "nonce": "JHb54aT_KTXBWQOzGYkt9A",
    "url": "https://example.com/acme/authz/1234/1"
  }),
  "payload": base64url({}),
  "signature": "Q1bURgJoEslbD1c5...3pYdSMLio57mQNN4"
}



   On receiving this request from a client the server constructs and
   stores the key authorization from the challenge "token" value and the
   current client account key.



   The server then verifies the client's control over the domain by
   verifying that the TLS server was configured as expected using the
   following steps:



   1.  The ACME server computes the expected SHA-256 digest of the key
       authorization.



   2.  The ACME server resolves the domain name being validated and
       chooses one of the IP addresses returned for validation (the
       server MAY validate against multiple addresses if more than one
       is returned).



   3.  The ACME server initiates a TLS connection to the chosen IP
       address.  This connection MUST use TCP port 443.  The ACME server
       MUST provide an ALPN extension with the single protocol name
       "acme-tls/1" and an SNI extension containing only the domain name
       being validated during the TLS handshake.



   4.  The ACME server verifies that during the TLS handshake the
       application-layer protocol "acme-tls/1" was successfully
       negotiated (and that the ALPN extension contained only the value
       "acme-tls/1") and that the certificate returned contains:



       *  a subjectAltName extension containing the dNSName being
          validated and no other entries



       *  a critical acmeIdentifier extension containing the expected
          SHA-256 digest computed in step 1



   The comparison of dNSNames MUST be case insensitive [RFC4343].  Note
   that as ACME doesn't support Unicode identifiers all dNSNames MUST be
   encoded using [RFC3492] rules.



   If all of the above steps succeed then the validation is successful,
   otherwise it fails.




4. acme-tls/1 Protocol Definition

   The "acme-tls/1" protocol MUST only be used for validating ACME tls-
   alpn-01 challenges.  The protocol consists of a TLS handshake in
   which the required validation information is transmitted.  The "acme-
   tls/1" protocol does not carry application data, once the handshake
   is completed the client MUST NOT exchange any further data with the
   server and MUST immediately close the connection.  While this
   protocol uses X.509 certificates, it does not use the authentication
   method described in [RFC5280] and as such does not require a valid
   signature on the provided certificate nor require the TLS handshake
   to complete successfully.  An ACME server may wish to use an off the
   shelf TLS stack where it is not simple to allow these divergences in
   the protocol as defined.  Because of this, an ACME server MAY choose
   to withhold authorization if either the certificate signature is
   invalid or the handshake doesn't fully complete.



   ACME servers that implement "acme-tls/1" MUST only negotiate TLS 1.2
   [RFC5246] or higher when connecting to clients for validation.




5. Security Considerations

   The design of this challenge relies on some assumptions centered
   around how a HTTPS server behaves during validation.



   The first assumption is that when a HTTPS server is being used to
   serve content for multiple DNS names from a single IP address it
   properly segregates control of those names to the users that own
   them.  This means that if User A registers Host A and User B
   registers Host B the HTTPS server should not allow a TLS request
   using an SNI value for Host A to be served by User B or a TLS
   connection with a server_name extension identifying Host B to be
   answered by User A.  If the HTTPS server allows User B to serve this
   request it allows them to illegitimately validate control of Host A
   to the ACME server.



   The second assumption is that a server will not violate [RFC7301] by
   blindly agreeing to use the "acme-tls/1" protocol without actually
   understanding it.



   To further mitigate the risk of users claiming domain names used by
   other users on the same infrastructure hosting providers, CDNs, and
   other service providers SHOULD NOT allow users to provide their own
   certificates for the TLS ALPN validation process.  If providers wish
   to implement TLS ALPN validation they SHOULD only generate
   certificates used for validation themselves and not expose this
   functionality to users.



   The extensions to the ACME protocol described in this document build
   upon the Security Considerations and threat model defined in
   [RFC8555] Section 10.1.




6. IANA Considerations

   [[RFC Editor: please replace I-D.ietf-acme-tls-alpn below by the RFC
   number.]]




6.1. SMI Security for PKIX Certificate Extension OID

   Within the SMI-numbers registry, the "SMI Security for PKIX
   Certificate Extension (1.3.6.1.5.5.7.1)" table is to be updated to
   add the following entry:



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Decimal | Description          | References             |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 31      | id‑pe‑acmeIdentifier | I‑D.ietf‑acme‑tls‑alpn |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




6.2. ALPN Protocol ID

   Within the Transport Layer Security (TLS) Extensions registry, the
   "Application-Layer Protocol Negotiation (ALPN) Protocol IDs" table is
   to be updated to add the following entry:



+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Protocol   | Identification Sequence     | Reference              |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| acme‑tls/1 | 0x61 0x63 0x6d 0x65 0x2d    | I‑D.ietf‑acme‑tls‑alpn |
|            | 0x74 0x6c 0x73 0x2f 0x31    |                        |
|            | ("acme‑tls/1")              |                        |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




6.3. ACME Validation Method

   The "ACME Validation Methods" registry is to be updated to include
   the following entry:



+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Label       | Identifier Type | ACME | Reference              |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| tls‑alpn‑01 | dns             | Y    | I‑D.ietf‑acme‑tls‑alpn |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




7. Acknowledgements

   The author would like to thank all those whom have provided design
   insights and editorial review of this document, including Richard
   Barnes, Ryan Hurst, Adam Langley, Ryan Sleevi, Jacob Hoffman-Andrews,
   Daniel McCarney, Marcin Walas, Martin Thomson and especially Frans
   Rosen, who discovered the vulnerability in the TLS SNI method that
   necessitated the writing of this specification.




8. Normative References


   [FIPS180-4]

              Department of Commerce, National., "NIST FIPS 180-4,
              Secure Hash Standard", March 2012,
              <http://csrc.nist.gov/publications/fips/fips180-4/
              fips-180-4.pdf>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3492]
  Costello, A., "Punycode: A Bootstring encoding of Unicode
              for Internationalized Domain Names in Applications
              (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
              <https://www.rfc-editor.org/info/rfc3492>.




   [RFC4086]
  Eastlake 3rd, D., Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106, RFC 4086,
              DOI 10.17487/RFC4086, June 2005,
              <https://www.rfc-editor.org/info/rfc4086>.




   [RFC4343]
  Eastlake 3rd, D., "Domain Name System (DNS) Case
              Insensitivity Clarification", RFC 4343,
              DOI 10.17487/RFC4343, January 2006,
              <https://www.rfc-editor.org/info/rfc4343>.




   [RFC4648]
  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.




   [RFC5246]
  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <https://www.rfc-editor.org/info/rfc5246>.




   [RFC5280]
  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.




   [RFC6066]
  Eastlake 3rd, D., "Transport Layer Security (TLS)
              Extensions: Extension Definitions", RFC 6066,
              DOI 10.17487/RFC6066, January 2011,
              <https://www.rfc-editor.org/info/rfc6066>.




   [RFC7301]
  Friedl, S., Popov, A., Langley, A., and E. Stephan,
              "Transport Layer Security (TLS) Application-Layer Protocol
              Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
              July 2014, <https://www.rfc-editor.org/info/rfc7301>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8555]
  Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
              Kasten, "Automatic Certificate Management Environment
              (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
              <https://www.rfc-editor.org/info/rfc8555>.




   [X.680]
    International Telecommunication Union, ., "Information
              technology -- Abstract Syntax Notation One (ASN.1):
              Specification of basic notation", 2015,
              <https://www.itu.int/ITU-T/studygroups/com17/languages/
              X.680-0207.pdf>.




   [X.690]
    International Telecommunication Union, ., "Information
              Technology -- ASN.1 encoding rules: Specification of Basic
              Encoding Rules (BER), Canonical Encoding Rules (CER) and
              Distinguished Encoding Rules (DER)", 2015,
              <https://www.itu.int/ITU-T/studygroups/com17/languages/
              X.690-0207.pdf>.




Appendix A. Design Rationale

   The TLS ALPN challenge exists to iterate on the TLS SNI challenge
   defined in the early ACME drafts.  The TLS SNI challenge was
   convenient for service providers who were either operating large TLS
   layer load balancing systems at which they wanted to perform
   validation or running servers fronting large numbers of DNS names
   from a single host as it allowed validation purely within the TLS
   layer.  The value provided by the TLS SNI challenge was considered
   large enough that this document was written in order to provide a new
   challenge type that addressed the existing security concerns.



   A security issue in the TLS SNI challenge was discovered by Frans
   Rosen, which allowed users of various service providers to
   illegitimately validate control of the DNS names of other users of
   the provider.  When the TLS SNI challenge was designed it was assumed
   that a user would only be able to respond to TLS traffic via SNI for
   domain names they had registered with a service provider (i.e., if a
   user registered 'a.example' they would only be able to respond to SNI
   requests for 'a.example' and not for SNI requests for 'b.example').
   It turns out that a number of large service providers do not honor
   this property.  Because of this, users were able to respond to SNI
   requests for the names used by the TLS SNI challenge validation
   process.  This meant that if User A and User B had registered Host A
   and Host B, respectively, User A would be able to claim the
   constructed SNI challenge name for Host B and when the validation
   connection was made that User A would be able to answer, proving
   'control' of Host B.  As the SNI name used was a subdomain of the
   domain name being validated, rather than the domain name itself, it
   was likely to not already be registered with the service provider for
   traffic routing, making it much easier for a hijack to occur.



Author's Address



Roland Bracewell Shoemaker
Internet Security Research Group



   Email: roland@letsencrypt.org
















































draft-ietf-cose-hash-algs-02 - CBOR Object Signing and Encryption (COSE): Hash Algorithms 






draft-ietf-cose-hash-algs-02 - CBOR Object Signing and Encryption (COSE): Hash A

Index
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Informational

Expires: 7 May 2020


J. Schaad

August Cellars

4 November 2019



CBOR Object Signing and Encryption (COSE): Hash Algorithms  

draft-ietf-cose-hash-algs-02


Abstract

   The CBOR Object Signing and Encryption (COSE) syntax
   [I-D.ietf-cose-rfc8152bis-struct] does not define any direct methods
   for using hash algorithms.  There are however circumstances where
   hash algorithms are used: Indirect signatures where the hash of one
   or more contents are signed.  X.509 certificate or other object
   identification by the use of a thumbprint.  This document defines a
   set of hash algorithms that are identified by COSE Algorithm
   Identifiers.



Contributing to this document



   This note is to be removed before publishing as an RFC.



   The source for this draft is being maintained in GitHub.  Suggested
   changes should be submitted as pull requests at https://github.com/
   cose-wg/X509 Editorial changes can be managed in GitHub, but any
   substantial issues need to be discussed on the COSE mailing list.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on 7 May 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Requirements Terminology


	 1.2.  Open Issues



	2.  Hash Algorithm Usage
	 2.1.  Example CBOR hash structure



	3.  Hash Algorithm Identifiers
	 3.1.  SHA-1 Hash Algorithm


	 3.2.  SHA-2 Hash Algorithms


	 3.3.  SHAKE Algorithms



	4.  IANA Considerations
	 4.1.  COSE Algorithm Registry



	5.  Security Considerations


	6.  Normative References


	7.  Informative References


	Author's Address




1. Introduction

   The CBOR Object Signing and Encryption (COSE) syntax does not define
   any direct methods for the use of hash algorithms.  It also does not
   define a structure syntax that is used to encode a digested object
   structure along the lines of the DigestedData ASN.1 structure in
   [CMS].  This omission was intentional as a structure consisting of
   just a digest identifier, the content, and a digest value does not by
   itself provide any strong security service.  Additionally, an
   application is going to be better off defining this type of structure
   so that it can include any additional data that needs to be hashed,
   as well as methods of obtaining the data.



   While the above is true, there are some cases where having some
   standard hash algorithms defined for COSE with a common identifier
   makes a great deal of sense.  Two of the cases where these are going
   to be used are:



   *  Indirect signing of content, and



   *  Object identification.



   Indirect signing of content is a paradigm where the content is not
   directly signed, but instead a hash of the content is computed and
   that hash value, along with the hash algorithm, is included in the
   content that will be signed.  Doing indirect signing allows for a
   signature to be validated without first downloading all of the
   content associated with the signature.  This capability can be of
   even greater importance in a constrained environment as not all of
   the content signed may be needed by the device.



   The use of hashes to identify objects is something that has been very
   common.  One of the primary things that has been identified by a hash
   function for secure message is a certificate.  Two examples of this
   can be found in [ESS] and the newly defined COSE equivalents in
   [I-D.ietf-cose-x509].




1.1. Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




1.2. Open Issues

   This section is to be removed before publishing as an RFC.



   *  No Open Issues




2. Hash Algorithm Usage

   As noted in the previous section, hash functions can be used for a
   variety of purposes.  Some of these purposes require that a hash
   function be cryptographically strong, these include direct and
   indirect signatures.  That is, using the hash as part of the
   signature or using the hash as part of the body to be signed.  Other
   uses of hash functions do not require the same level of strength.



   This document contains some hash functions that are not designed to
   be used for cryptographic operations.  An application that is using a
   hash function needs to carefully evaluate exactly what hash
   properties are needed and which hash functions are going to provide
   them.  Applications should also make sure that the ability to change
   hash functions is part of the base design as cryptographic advances
   are sure to reduce the strength of a hash function.



   A hash function is a map from one, normally large, bit string to a
   second, usually smaller, bit string.  There are going to be
   collisions by a hash function, the trick is to make sure that it is
   difficult to find two values that are going to map to the same output
   value.  The standard "Collision Attack" is one where an attacker can
   find two different messages that have the same hash value.  If a
   collision attack exists, then the function SHOULD NOT be used for a
   cryptographic purpose.  The only reason why such a hash function is
   used is when there is absolutely no other choice (e.g. a Hardware
   Security Module (HSM) that cannot be replaced), and only after
   looking at the possible security issues.  Cryptographic purposes
   would include the creation of signatures or the use of hashes for
   indirect signatures.  These functions may still be usable for non-
   cryptographic purposes.



   An example of a non-cryptographic use of a hash is for filtering from
   a collection of values to find possible candidates that can later be
   checked to see if they are the correct one.  A simple example of this
   is the classic thumbprint of a certificate.  If the thumbprint is
   used to verify that it is the correct certificate, then that usage is
   subject to a collision attack as above.  If however, the thumbprint
   is used to sort through a collection of certificates to find those
   that might be used for the purpose of verifying a signature, a simple
   filter capability is sufficient.  In this case, one still needs to
   validate that the public key validates the signature (and the
   certificate is trusted), and all certificates that don't contain a
   key that validates the signature can be discarded as false positives.



   To distinguish between these two cases, a new value in the
   recommended column of the COSE Algorithms registry is to be added.
   "Filter Only" indicates that the only purpose of a hash function
   should be to filter results and not those which require collision
   resistance.




2.1. Example CBOR hash structure

   [COSE] did not provide a default structure for holding a hash value
   not only because no separate hash algorithms were defined, but
   because how the structure is setup is frequently application
   specific.  There are four fields that are often included as part of a
   hash structure:



   *  The hash algorithm identifier.



   *  The hash value.



   *  A pointer to the value that was hashed, this could be a pointer to
      a file, an object that can be obtained from the network, or a
      pointer to someplace in the message, or something very application
      specific.



   *  Additional data, this can be something as simple as a random value
      to make finding hash collisions slightly harder as the value
      handed to the application cannot have been selected to have a
      collision, or as complicated as a set of processing instructions
      that are used with the object that is pointed to.  The additional
      data can be dealt with in a number of ways, prepending or
      appending to the content, but it is strongly suggested to it
      either be a fixed known size, or the lengths of the pieces being
      hashed be included.  (Encoding as a CBOR array accomplished this
      requirement.)



   An example of a structure which permits all of the above fields to
   exist would look like the following.



   COSE_Hash_V = ( 1 : int / tstr, # Algorithm identifier 2 : bstr, # Hash value 3 : tstr ?, # Location of object hashed 4 : any ?   # object containing other details and things )



   An alternate structure that could be used for situations where one is
   searching a group of objects for a match.  In this case, the location
   would not be needed and adding extra data to the hash would be
   counterproductive.  This results in a structure that looks like this:



   COSE_Hash_Find = [ hashAlg : int / tstr, hashValue : bstr ]




3. Hash Algorithm Identifiers


3.1. SHA-1 Hash Algorithm

   The SHA-1 hash algorithm [RFC3174] was designed by the United States
   National Security Agency and published in 1995.  Since that time a
   large amount of cryptographic analysis has been applied to this
   algorithm and a successful collision attack has been created
   ([SHA-1-collision]).  The IETF formally started discouraging the use
   of SHA-1 with the publishing of [RFC6194].



   Despite the above, there are still times where SHA-1 needs to be used
   and therefore it makes sense to assign a point for the use of this
   hash algorithm.  Some of these situations are with historic HSMs
   where only SHA-1 is implemented or where the SHA-1 value is used for
   the purpose of filtering and thus the collision resistance property
   is not needed.



   Because of the known issues for SHA-1 and the fact that is should no
   longer be used, the algorithm will be registered with the
   recommendation of "Filter Only".



+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name  | Value | Description | Reference       | Recommended |
+=======+=======+=============+=================+=============+
| SHA‑1 | TBD6  | SHA‑1 Hash  | [This Document] | Filter Only |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                       Table 1: SHA-1 Hash Algorithm




3.2. SHA-2 Hash Algorithms

   The family of SHA-2 hash algorithms [FIPS-180-4] was designed by the
   United States National Security Agency and published in 2001.  Since
   that time some additional algorithms have been added to the original
   set to deal with length extension attacks and some performance
   issues.  While the SHA-3 hash algorithms have been published since
   that time, the SHA-2 algorithms are still broadly used.



   There are a number of different parameters for the SHA-2 hash
   functions.  The set of hash functions which have been chosen for
   inclusion in this document are based on those different parameters
   and some of the trade-offs involved.



   *  *SHA-256/64* provides a truncated hash.  The length of the
      truncation is designed to allow for smaller transmission size.
      The trade-off is that the odds that a collision will occur
      increase proportionally.  Locations that use this hash function
      need either to analysis the potential problems with having a
      collision occur, or where the only function of the hash is to
      narrow the possible choices.



      The latter is the case for [I-D.ietf-cose-x509], the hash value is
      used to select possible certificates and, if there are multiple
      choices then, each choice can be tested by using the public key.



   *  *SHA-256* is probably the most common hash function used
      currently.  SHA-256 is an efficient hash algorithm for 32-bit
      hardware.



   *  *SHA-384* and *SHA-512* hash functions are efficient for 64-bit
      hardware.



   *  *SHA-512/256* provides a hash function that runs more efficiently
      on 64-bit hardware, but offers the same security levels as SHA-
      256.



+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name        | Value | Description    | Reference | Recommended |
+=============+=======+================+===========+=============+
| SHA‑256/64  | TBD1  | SHA‑2 256‑bit  | [This     | Filter Only |
|             |       | Hash truncated | Document] |             |
|             |       | to 64‑bits     |           |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SHA‑256     | TBD2  | SHA‑2 256‑bit  | [This     | Yes         |
|             |       | Hash           | Document] |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SHA‑384     | TBD3  | SHA‑2 384‑bit  | [This     | Yes         |
|             |       | Hash           | Document] |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SHA‑512     | TBD4  | SHA‑2 512‑bit  | [This     | Yes         |
|             |       | Hash           | Document] |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SHA‑512/256 | TBD5  | SHA‑2 512‑bit  | [This     | Yes         |
|             |       | Hash truncated | Document] |             |
|             |       | to 256‑bits    |           |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 2: SHA-2 Hash Algorithms




3.3. SHAKE Algorithms

   The family SHA-3 hash algorithms [FIPS-202] was the result of a
   competition run by NIST.  The pair of algorithms known as SHAKE-128
   and SHAKE-256 are the instances of SHA-3 that are currently being
   standardized in the IETF.



   The SHA-3 hash algorithms have a significantly different structure
   than the SHA-2 hash algorithms.  One of the benefits of this
   differences is that when computing a shorter SHAKE hash value, the
   value is not a prefix of the result of computing the longer hash.



   Unlike the SHA-2 hash functions, no algorithm identifier is created
   for shorter lengths.  Applications can specify a minimum length for
   any hash function.  A validator can infer the actual length from the
   hash value in these cases.



+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name     | Value | Description   | Reference       | Recommended |
+==========+=======+===============+=================+=============+
| SHAKE128 | TBD10 | 128‑bit SHAKE | [This Document] | Yes         |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| SHAKE256 | TBD11 | 256‑bit SHAKE | [This Document] | Yes         |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 3: SHAKE Hash Functions




4. IANA Considerations


4.1. COSE Algorithm Registry

   IANA is requested to register the following algorithms in the "COSE
   Algorithms" registry.



   *  The SHA-1 hash function found in Table 1.



   *  The set of SHA-2 hash functions found in Table 2.



   *  The set of SHAKE hash functions found in Table 3.



   Many of the hash values produced are relatively long and as such the
   use of a two byte algorithm identifier seems reasonable.  SHA-1 is
   tagged as deprecated and thus a longer algorithm identifier is
   appropriate even though it is a shorter hash value.



   In addition, IANA is to add the value of 'Filter Only' to the set of
   legal values for the 'Recommended' column.  This value is only to be
   used for hash functions and indicates that it is not to be used for
   purposes which require collision resistance.




5. Security Considerations

   The security considerations have already been called out as part of
   the previous text.  The following issues need to be dealt with:



   *  Protocols need to perform a careful analysis of the properties of
      a hash function that are needed and how they map onto the possible
      attacks.  In particular, one needs to distinguish between those
      uses that need the cryptographic properties, i.e. collision
      resistance, and properties that correspond to possible object
      identification.  The different attacks correspond to who or what
      is being protected, is it the originator that is the attacker or a
      third party?  This is the difference between collision resistance
      and second pre-image resistance.  As a general rule, longer hash
      values are "better" than short ones, but trade-offs of



      transmission size, timeliness, and security all need to be
      included as part of this analysis.  In many cases the value being
      hashed is a public value, as such pre-image resistance is not part
      of this analysis.



   *  Algorithm agility needs to be considered a requirement for any use
      of hash functions.  As with any cryptographic function, hash
      functions are under constant attack and the strength of hash
      algorithms will be reduced over time.




6. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [I-D.ietf-cose-rfc8152bis-struct]

              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Structures and Process", Work in Progress, Internet-Draft,
              draft-ietf-cose-rfc8152bis-struct-06, 11 September 2019,
              <https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
              struct-06>.




   [FIPS-180-4]

              National Institute of Standards and Technology, "Secure
              Hash Standard", FIPS PUB 180-4, August 2015.




   [FIPS-202]
 National Institute of Standards and Technology, "SHA-3
              Standard: Permutation-Based Hash and Extendable-Output
              Functions", FIPS PUB 202, August 2015.




   [COSE]
     Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




7. Informative References


   [CMS]
      Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.




   [ESS]
      Hoffman, P., Ed., "Enhanced Security Services for S/MIME",



              RFC 2634, DOI 10.17487/RFC2634, June 1999,
              <https://www.rfc-editor.org/info/rfc2634>.




   [I-D.ietf-cose-x509]

              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Headers for carrying and referencing X.509 certificates",
              Work in Progress, Internet-Draft, draft-ietf-cose-x509-04,
              12 September 2019,
              <https://tools.ietf.org/html/draft-ietf-cose-x509-04>.




   [RFC3174]
  Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
              (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
              <https://www.rfc-editor.org/info/rfc3174>.




   [RFC6194]
  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
              Considerations for the SHA-0 and SHA-1 Message-Digest
              Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
              <https://www.rfc-editor.org/info/rfc6194>.




   [SHA-1-collision]

              Stevens, M., Bursztein, E., Karpman, P., Albertini, A.,
              and Y. Markov, "The first collision for full SHA-1",
              February 2017,
              <https://shattered.io/static/shattered.pdf>.



Author's Address



Jim Schaad
August Cellars



   Email: ietf@augustcellars.com























draft-ietf-cose-hash-sig-07 - Use of the HSS/LMS Hash-based Signature Algorithm with CBOR Object Signing and Encryption (COSE) 






draft-ietf-cose-hash-sig-07 - Use of the HSS/LMS Hash-based Signature Algorithm 

Index
Prev
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 6, 2020


R. Housley

Vigil Security

November 03, 2019



Use of the HSS/LMS Hash-based Signature Algorithm with CBOR Object Signing and Encryption (COSE)  

draft-ietf-cose-hash-sig-07


Abstract

   This document specifies the conventions for using the Hierarchical
   Signature System (HSS) / Leighton-Micali Signature (LMS) hash-based
   signature algorithm with the CBOR Object Signing and Encryption
   (COSE) syntax.  The HSS/LMS algorithm is one form of hash-based
   digital signature; it is described in RFC 8554.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 6, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Motivation


	 1.2.  Terminology



	2.  LMS Digital Signature Algorithm Overview
	 2.1.  Hierarchical Signature System (HSS)


	 2.2.  Leighton-Micali Signature (LMS)


	 2.3.  Leighton-Micali One-time Signature Algorithm (LM-OTS)



	3.  Hash-based Signature Algorithm Identifiers


	4.  Security Considerations
	 4.1.  Implementation Security Considerations



	5.  Operational Considerations


	6.  IANA Considerations
	 6.1.  COSE Algorithms Registry Entry


	 6.2.  COSE Key Types Registry Entry



	7.  References
	 7.1.  Normative References


	 7.2.  Informative References



	Appendix A.  Examples
	 A.1.  Example COSE Full Message Signature


	 A.2.  Example COSE_Sign1 Message



	Appendix B.  Acknowledgements


	Author's Address




1. Introduction

   This document specifies the conventions for using the Hierarchical
   Signature System (HSS) / Leighton-Micali Signature (LMS) hash-based
   signature algorithm with with the CBOR Object Signing and Encryption
   (COSE) [RFC8152] syntax.  The LMS system provides a one-time digital
   signature that is a variant of Merkle Tree Signatures (MTS).  The HSS
   is built on top of the LMS system to efficiently scale for a larger
   numbers of signatures.  The HSS/LMS algorithm is one form of hash-
   based digital signature, and it is described in [HASHSIG].  The HSS/
   LMS signature algorithm can only be used for a fixed number of
   signing operations.  The number of signing operations depends upon
   the size of the tree.  The HSS/LMS signature algorithm uses small
   public keys, and it has low computational cost; however, the
   signatures are quite large.  The HSS/LMS private key can be very
   small when the signer is willing to perform additional computation at
   signing time; alternatively, the private key can consume additional
   memory and provide a faster signing time.  The HSS/LMS signatures
   [HASHSIG] are currently defined to use exclusively SHA-256 [SHS].




1.1. Motivation

   Recent advances in cryptanalysis [BH2013] and progress in the
   development of quantum computers [NAS2019] pose a threat to widely
   deployed digital signature algorithms.  As a result, there is a need
   to prepare for a day that cryptosystems such as RSA and DSA that
   depend on discrete logarithm and factoring cannot be depended upon.



   If large-scale quantum computers are ever built, these computers will
   be able to break many of the public-key cryptosystems currently in
   use.  A post-quantum cryptosystem [PQC] is a system that is secure
   against quantum computers that have more than a trivial number of
   quantum bits (qubits).  It is open to conjecture when it will be
   feasible to build such computers; however, RSA, DSA, ECDSA, and EdDSA
   are all vulnerable if large-scale quantum computers come to pass.



   Since the HSS/LMS signature algorithm does not depend on the
   difficulty of discrete logarithm or factoring, the HSS/LMS signature
   algorithm is considered to be post-quantum secure.  The use of HSS/
   LMS hash-based signatures to protect software update distribution,
   perhaps using the format that is being specified by the IETF SUIT
   Working Group, will allow the deployment of software that implements
   new cryptosystems.




1.2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




2. LMS Digital Signature Algorithm Overview

   This specification makes use of the hash-based signature algorithm
   specified in [HASHSIG], which is the Leighton and Micali adaptation
   [LM] of the original Lamport-Diffie-Winternitz-Merkle one-time
   signature system [M1979][M1987][M1989a][M1989b].



   The hash-based signature algorithm has three major components:



      o  Hierarchical Signature System (HSS) -- see Section 2.1;



      o  Leighton-Micali Signature (LMS) -- see Section 2.2; and



      o  Leighton-Micali One-time Signature Algorithm (LM-OTS) -- see
            Section 2.3.



   As implied by the name, the hash-based signature algorithm depends on
   a collision-resistant hash function.  The the hash-based signature
   algorithm specified in [HASHSIG] currently makes use of the SHA-256
   one-way hash function [SHS], but it also establishes an IANA registry
   to permit the registration of additional one-way hash functions in
   the future.




2.1. Hierarchical Signature System (HSS)

   The hash-based signature algorithm specified in [HASHSIG] uses a
   hierarchy of trees.  The Hierarchical N-time Signature System (HSS)
   allows subordinate trees to be generated when needed by the signer.
   Otherwise, generation of the entire tree might take weeks or longer.



   An HSS signature as specified in [HASHSIG] carries the number of
   signed public keys (Nspk), followed by that number of signed public
   keys, followed by the LMS signature as described in Section 2.2.  The
   public key for the top-most LMS tree is the public key of the HSS
   system.  The LMS private key in the parent tree signs the LMS public
   key in the child tree, and the LMS private key in the bottom-most
   tree signs the actual message.  The signature over the public key and
   the signature over the actual message are LMS signatures as described
   in Section 2.2.



   The elements of the HSS signature value for a stand-alone tree (a top
   tree with no children) can be summarized as:



u32str(0) ||
lms_signature  /* signature of message */



   The elements of the HSS signature value for a tree with Nspk signed
   public keys can be summarized as:



u32str(Nspk) ||
signed_public_key[0] ||
signed_public_key[1] ||
   ...
signed_public_key[Nspk‑2] ||
signed_public_key[Nspk‑1] ||
lms_signature  /* signature of message */



   where, as defined in Section 3.3 of [HASHSIG], a signed_public_key is
   the lms_signature over the public key followed by the public key
   itself.  Note that Nspk is the number of levels in the hierarchy of
   trees minus 1.




2.2. Leighton-Micali Signature (LMS)

   Each tree in the hash-based signature algorithm specified in
   [HASHSIG] uses the Leighton-Micali Signature (LMS) system.  LMS
   systems have two parameters.  The first parameter is the height of
   the tree, h, which is the number of levels in the tree minus one.
   The [HASHSIG] includes support for five values of this parameter:
   h=5; h=10; h=15; h=20; and h=25.  Note that there are 2^h leaves in
   the tree.  The second parameter is the number of bytes output by the
   hash function, m, which is the amount of data associated with each
   node in the tree.  This specification supports only SHA-256, with
   m=32.  An IANA registry is defined so that other hash functions could
   be used in the future.



   The [HASHSIG] specification supports five tree sizes:



LMS_SHA256_M32_H5;
LMS_SHA256_M32_H10;
LMS_SHA256_M32_H15;
LMS_SHA256_M32_H20; and
LMS_SHA256_M32_H25.



   The [HASHSIG] specification establishes an IANA registry to permit
   the registration of additional hash functions and additional tree
   sizes in the future.



   The [HASHSIG] specification defines the value I as the private key
   identifier, and the same I value is used for all computations with
   the same LMS tree.  In addition, the [HASHSIG] specification defines
   the value T[i] as the m-byte string associated with the ith node in
   the LMS tree, where and the nodes are indexed from 1 to 2^(h+1)-1.
   Thus, T[1] is the m-byte string associated with the root of the LMS
   tree.



   The LMS public key can be summarized as:



      u32str(lms_algorithm_type) || u32str(otstype) || I || T[1]



   As specified in [HASHSIG], the LMS signature consists of four
   elements: the number of the leaf associated with the LM-OTS
   signature, an LM-OTS signature as described in Section 2.3, a
   typecode indicating the particular LMS algorithm, and an array of
   values that is associated with the path through the tree from the
   leaf associated with the LM-OTS signature to the root.  The array of
   values contains the siblings of the nodes on the path from the leaf
   to the root but does not contain the nodes on the path itself.  The
   array for a tree with height h will have h values.  The first value
   is the sibling of the leaf, the next value is the sibling of the
   parent of the leaf, and so on up the path to the root.



   The four elements of the LMS signature value can be summarized as:



u32str(q) ||
ots_signature ||
u32str(type) ||
path[0] || path[1] || ... || path[h‑1]




2.3. Leighton-Micali One-time Signature Algorithm (LM-OTS)

   The hash-based signature algorithm depends on a one-time signature
   method.  This specification makes use of the Leighton-Micali One-time
   Signature Algorithm (LM-OTS) [HASHSIG].  An LM-OTS has five
   parameters:



n ‑  The number of bytes output by the hash function.  This
     specification supports only SHA‑256 [SHS], with n=32.

H ‑  A preimage‑resistant hash function that accepts byte strings
     of any length, and returns an n‑byte string.  This
     specification supports only SHA‑256 [SHS].

w ‑  The width in bits of the Winternitz coefficients.  [HASHSIG]
     supports four values for this parameter: w=1; w=2; w=4; and
     w=8.

p ‑  The number of n‑byte string elements that make up the LM‑OTS
     signature.



      ls - The number of left-shift bits used in the checksum function,

           which is defined in Section 4.5 of [HASHSIG].



   The values of p and ls are dependent on the choices of the parameters
   n and w, as described in Appendix B of [HASHSIG].



   The [HASHSIG] specification supports four LM-OTS variants:



LMOTS_SHA256_N32_W1;
LMOTS_SHA256_N32_W2;
LMOTS_SHA256_N32_W4; and
LMOTS_SHA256_N32_W8.



   The [HASHSIG] specification establishes an IANA registry to permit
   the registration of additional hash functions and additional
   parameter sets in the future.



   Signing involves the generation of C, which is an n-byte random
   value.



   The LM-OTS signature value can be summarized as the identifier of the
   LM-OTS variant, the random value, and a sequence of hash values (y[0]
   through y[p-1]) that correspond to the elements of the public key as
   described in Section 4.5 of [HASHSIG]:



u32str(otstype) || C || y[0] || ... || y[p‑1]




3. Hash-based Signature Algorithm Identifiers

   The CBOR Object Signing and Encryption (COSE) [RFC8152] supports two
   signature algorithm schemes.  This specification makes use of the
   signature with appendix scheme for hash-based signatures.



   The signature value is a large byte string as described in Section 2.
   The byte string is designed for easy parsing.  The HSS, LMS, and
   LMOTS components of the signature value format include counters and
   type codes that indirectly provide all of the information that is
   needed to parse the byte string during signature validation.



   When using a COSE key for this algorithm, the following checks are
   made:



      o  The 'kty' field MUST be present, and it MUST be 'HSS-LMS'.



      o  If the 'alg' field is present, and it MUST be 'HSS-LMS'.



      o  If the 'key_ops' field is present, it MUST include 'sign' when
           creating a hash-based signature.



      o  If the 'key_ops' field is present, it MUST include 'verify'
           when verifying a hash-based signature.



      o  If the 'kid' field is present, it MAY be used to identify the
           top of the HSS tree.  In [HASHSIG], this identifier is called
           'I', and it is the 16-byte identifier of the LMS public key
           for the tree.




4. Security Considerations


4.1. Implementation Security Considerations

   Implementations MUST protect the private keys.  Compromise of the
   private keys may result in the ability to forge signatures.  Along
   with the private key, the implementation MUST keep track of which
   leaf nodes in the tree have been used.  Loss of integrity of this
   tracking data can cause a one-time key to be used more than once.  As
   a result, when a private key and the tracking data are stored on non-
   volatile media or stored in a virtual machine environment, failed
   writes, virtual machine snapshotting or cloning, and other
   operational concerns must be considered to ensure confidentiality and
   integrity.



   When generating an LMS key pair, an implementation MUST generate each
   key pair independently of all other key pairs in the HSS tree.



   An implementation MUST ensure that a LM-OTS private key is used to
   generate a signature only one time, and ensure that it cannot be used
   for any other purpose.



   The generation of private keys relies on random numbers.  The use of
   inadequate pseudo-random number generators (PRNGs) to generate these
   values can result in little or no security.  An attacker may find it
   much easier to reproduce the PRNG environment that produced the keys,
   searching the resulting small set of possibilities, rather than brute
   force searching the whole key space.  The generation of quality
   random numbers is difficult, and [RFC4086] offers important guidance
   in this area.



   The generation of hash-based signatures also depends on random
   numbers.  While the consequences of an inadequate pseudo-random
   number generator (PRNG) to generate these values is much less severe
   than in the generation of private keys, the guidance in [RFC4086]
   remains important.




5. Operational Considerations

   The public key for the hash-based signature is the key at the root of
   Hierarchical Signature System (HSS).  In the absence of a public key
   infrastructure [RFC5280], this public key is a trust anchor, and the
   number of signatures that can be generated is bounded by the size of
   the overall HSS set of trees.  When all of the LM-OTS signatures have
   been used to produce a signature, then the establishment of a new
   trust anchor is required.



   To ensure that none of tree nodes are used to generate more than one
   signature, the signer maintains state across different invocations of
   the signing algorithm.  Section 12.2 of [HASHSIG] offers some
   practical implementation approaches around this statefulness.  In
   some of these approaches, nodes are sacrificed to ensure that none
   are used more than once.  As a result, the total number of signatures
   that can be generated might be less than the overall HSS set of
   trees.




6. IANA Considerations

   IANA is requested to add entries for hash-based signatures in the
   "COSE Algorithms" registry and hash-based public keys in the "COSE
   Key Types" registry.




6.1. COSE Algorithms Registry Entry

   The new entry in the "COSE Algorithms" registry has the following
   columns:



Name:  HSS‑LMS

Value:  TBD (Value between ‑256 and 255 to be assigned by IANA)

Description:  HSS/LMS hash‑based digital signature

Reference:  This document (Number to be assigned by RFC Editor)

Recommended:  Yes




6.2. COSE Key Types Registry Entry

   The new entry in the "COSE Key Types" registry has the following
   columns:



Name:  HSS‑LMS

Value:  TBD (Value to be assigned by IANA)

Description:  Public key for HSS/LMS hash‑based digital signature

Reference:  This document (Number to be assigned by RFC Editor)




7. References


7.1. Normative References


   [HASHSIG]
  McGrew, D., Curcio, M., and S. Fluhrer, "Leighton-Micali
              Hash-Based Signatures", RFC 8554, April 2019,
              <https://rfc-editor.org/rfc/rfc8554.txt>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [SHS]
      National Institute of Standards and Technology (NIST),
              "Secure Hash Standard", FIPS Publication 180-3, 2008.




7.2. Informative References


   [BH2013]
   Ptacek, T., Ritter, T., Samuel, J., and A. Stamos, "The
              Factoring Dead: Preparing for the Cryptopocalypse", August
              2013, <https://media.blackhat.com/us-13/us-13-Stamos-The-
              Factoring-Dead.pdf>.




   [LM]
       Leighton, F. and S. Micali, "Large provably fast and
              secure digital signature schemes from secure hash
              functions", U.S. Patent 5,432,852, July 1995.




   [M1979]
    Merkle, R., "Secrecy, Authentication, and Public Key
              Systems", Stanford University Information Systems
              Laboratory Technical Report 1979-1, 1979.




   [M1987]
    Merkle, R., "A Digital Signature Based on a Conventional
              Encryption Function", Lecture Notes in Computer
              Science crypto87, 1988.




   [M1989a]
   Merkle, R., "A Certified Digital Signature", Lecture Notes
              in Computer Science crypto89, 1990.




   [M1989b]
   Merkle, R., "One Way Hash Functions and DES", Lecture
              Notes in Computer Science crypto89, 1990.




   [NAS2019]
  National Academies of Sciences, Engineering, and Medicine,
              "Quantum Computing: Progress and Prospects", 2019,
              <http://dx.doi.org/10.17226/25196>.




   [PQC]
      Bernstein, D., "Introduction to post-quantum
              cryptography", 2009,
              <http://www.pqcrypto.org/www.springer.com/cda/content/
              document/cda_downloaddocument/9783540887010-c1.pdf>.




   [RFC4086]
  Eastlake 3rd, D., Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106, RFC 4086,
              DOI 10.17487/RFC4086, June 2005,
              <https://www.rfc-editor.org/info/rfc4086>.




   [RFC5280]
  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.




Appendix A. Examples

   This appendix provides a non-normative example of a COSE full message
   signature and an example of a COSE_Sign1 message.  This section
   follows the formatting used in [RFC8152].



   The programs that were used to generate the examples can be found at
   https://github.com/cose-wg/Examples.




A.1. Example COSE Full Message Signature

   This section provides an example of a COSE full message signature.



   Size of binary file is 2560 bytes.



98(
  [
    / protected / h'a10300' / {
        \ content type \ 3:0
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / signatures / [
      [
        / protected / h'a101382d' / {
            \ alg \ 1:‑46 \ HSS‑LMS \
          } / ,
        / unprotected / {
          / kid / 4:'ItsBig'
        },
        / signature / h'00000000000000010000000391291de76ce6e24d1e2a
9b60266519bc8ce889f814deb0fc00edd3129de3ab9b6bfa3bf47d007d844af7db74
9ea97215e82f456cbdd473812c6a042ae39539898752c89b60a276ec8a9feab900e2
5bdfe0ab8e773aa1c36ae214d67c65bb68630450a5db2c7c6403b77f6a9bf4d30a02
19db5cced884d7514f3cbd19220020bf3045b0e5c6955b32864f16f97da02f0cbfea
70458b07032e30b0342d75b8f3dc6871442e6384b10f559f5dc594a214924c48ccc3
37078665653fc740340428138b0fb5154f2f2cb291ad05ace7acae60031b2d09b2f4



   17712d1c01e34b165af2e070f5a521a85a5fb3dd2a6288947bcbd5e2265d3670bd61
   92eb2bf643964e2783d84aec343f8e3571e4fcf09cbeea94e80470aa7252d1c733a5
   535907e66c7b9f0b88b159dc2a7370ee47f13e7e134d3d05e5f53fac640b784a9b0f
   183fe14217325626f487cc8d8cb9eaf0abb174ee0b7076cf39c45037cefdf3f1e61b
   5174581214c09870b72c39737ec4c46a96199b66cad2990bcbe5bb1abfde99107c7f
   7289395bf2a433598ede0b1969f23db949afb5b4d33831dae6c641a6355f8f9bf16c
   dffc4bf86891b93a557c2152ac8a1de51c995344cc10cc4bc9ecfbb4e418bed0f334
   af165339e6725dc4fc1e995521e1be8a566d59b57cd130903b42d07087d63646ef8f
   c1e9e9071bb67a123fdec3f37638cdaf0f4bf3084074069171c17885b9431ad908d3
   6a6f8a826256d2aa34f8aa0731a357c060db8e80fefd61b1c323890e640633b98d17
   5d4d6ebff800a71cfc864ec02837de9d0e079f0f400acafd56805cb273e631ba395d
   23e86acf6eae63181a5afe1f0a361cbbd5fefeb7db0c95591ec3128e80dfbea9ca0f
   89fc035d761c05d41e7a010892c42e8e2af62aa604f4e214c0bb08075481f9cc307a
   555adf333b9424f209b89f161032e413b047ae5ab0aa15643bb4c643446d2c9829eb
   256e7375ce9639047a24a44f4da446b7359556f3ab3484c56511c68a140dc0531f65
   3105800d9f20990d4ebdc5ceea918d7ae95c0d7ec69a00d6a936b25fc19b9dfc5561
   400f046191136c367038d6a9d0e0ae30dcdc4733712cbd5a2aee35315eff5c1a7e08
   5b68c5cf0c64c495df2ca6f030db04480a2e11d4a0a0dbf29d9463d5b9e41e346e49
   c894d5e43993c834c4746309c886d6131f2f92155ca1160bac9660802a947b5aba94
   b35357d13fdf02d2aeabef568912f68ae5d3a60214f6d00c4dd9f0af09eb0bf961cd
   9f27251d46899c28d87080ba2ead3e8193f51a789706ec32aacee9f4b14eeca91a25
   2fe894b30dc3938abbbe7d217948cae79ce3adb4d7d7df6756f3099f2543ed3b522b
   acab257503c9e07fcd32cc32fa9aa17977ec05bc5fe0f5954d51f160f52d33f93166
   af68aa90261b3f5ad273adacf2d0cb5b0c5402bfa62da67a52dcddfa463e72d2c005
   f1ac0ea3cb62364ee3419333612e07bf685006137a592e2fcd58398265c4ff9e11e7
   0c2b79152e4604b4f94676e955bcff4dfc429a8a88728b95bfc2826e25ba6eab9cfb
   066c9911693efff242f7b51c3cb88546143b8ab2142dd3c9bda55d16fe3084a86b74
   3f294dd9d0aa84f3ce3b083a5879a4762a756e9b41f4bdf8b71418073b0a0d4a9c13
   1882455ece23e50324c5feea217920b0f3109dcbdc81762e41b7ca271efac8e39cc2
   6ebe085abdbf6b314a38929799fb7feebee2e20b97056ed17ef3881e6e89330314dd
   7e9c629c46dfdb925c7c5f5d243f159d964691745cd46579fd0696479e1c49cbd2af
   879a2bce8576619cca7b6e516e6c94c1087441a81f11b9a83535b24ddc725a81a9d1
   ff62da2804c8d84c6e382065574282ea1f23eaf648cfa9767afb098fd81654d76133
   f5f39bcc762c9bc31f7f4665cc0efa929b5c05dedd76143c63dc7018ab130c108ea9
   01be32b9d911b66da13a1528c32a9694c899a772f8e1fe00c17eceb343e737d72cba
   06cf5ddac9a4d3df7ef391cf6595a6d8c14b0d80f93023b1b3d4371239da98b67a1b
   6a379422616282a16e8d1f97a130baf21e572bcca91abb760eac6957f9b1b05e49e2
   d181874ac6dd160d1c717b73bd28ef55f08d47466d5aef754814c7e206fa9e2ec533
   85d14d52f7769d95ea50524ffb20dc7275b04d71d1967e3bbc6ed481f1fc5a15e78a
   1fd967d96045625645dbd173cccdd97661e995ce47d6b3ead96ee6d006a5ce6f4c97
   77fe2e3f91bebe877cac8c6486dfce0315dc71bbb93879759b8981c5ff2e11deb809
   abf4280ee93d1711e73645b410acb518538ce3d4bda1e355c988f068165668e99d6a
   8de356b4b13298036ad05d526c4a5e2591612a477b7e86550adde128cd71ee651d44
   99699000a02979e42bbccf32c83b1eb0ff99aa4d352e20e0b3382422df2c2ed4ce90
   c94cf1a359e92ef971dc6db06047a333c2ebe827eb6d5f2811fdbe0bf0f12bf2094e
   0dcd8e418f3f691a60ceb0cefb6f45f47883d6b9f320950e91266740c6dbfad6b3cf
   e56de0aa6658b0dc893bb6e49e6294537a7878e86cfc8e6c150675db1a89d188ea6e
   fe7d88ff57b39b8610e392811ee097ca61c4841e0fbd346ed3ff6a5e412acb0d9f13



022df2e7fdaa8e0face7366c8ffe6f446995b564fc3d59c70fecdb60a25e28650417
157f43f3e72c3afc601509641cfd099a78130e1f7ba8333502ad4f036f46411a43d0
35e2ca0ed0c346d9aac5df05196c95c38e6e52763ed896b6d02464a910dda6cca340
24e3b9c3723d26e2886ad724dd56ea285e8e4b60beec924d55dd700c38877b74552f
ea1f8741579b02061416131db390f628522885236b51f7aef23167d3a5fe5eadcd88
b0e99b2b6bc56b0dea4fb22146294766c28e5e7c834dbdcb6bfdd7bd8455252522ff
2e974f6fd3fda176749b7cdced5b9aba092b2982c89cb7d2b36348928c8f01170618
ecff14d9e0eed9d88d97e38bcf7a837f674be5243fc624c8afd3d105f462bfa939b8
143a3a98f78fbb8c915e00bdbbf707b12c45784f4d1cb1426b583a0d5fbec1f5ea6d
0067c090168cb788e532aca770c7be366ec07e7808f1892b00000006ed1ce8c6e437
918d43fba7bd9385694c41182703f6b7f704deedd9384ba6f8bc362c948646b3c984
8803e6d9ba1f7d3967f709cddd35dc77d60356f0c36808900b491cb4ecbbabec128e
7c81a46e62a67b57640a0a78be1cbf7dd9d419a10cd8686d16621a80816bfdb5bdc5
6211d72ca70b81f1117d129529a7570cf79cf52a7028a48538ecdd3b38d3d5d62d26
246595c4fb73a525a5ed2c30524ebb1d8cc82e0c19bc4977c6898ff95fd3d310b0ba
e71696cef93c6a552456bf96e9d075e383bb7543c675842bafbfc7cdb88483b3276c
29d4f0a341c2d406e40d4653b7e4d045851acf6a0a0ea9c710b805cced4635ee8c10
7362f0fc8d80c14d0ac49c516703d26d14752f34c1c0d2c4247581c18c2cf4de48e9
ce949be7c888e9caebe4a415e291fd107d21dc1f084b1158208249f28f4f7c7e931b
a7b3bd0d824a4570'
      ]
    ]
  ]
)




A.2. Example COSE_Sign1 Message

   This section provides an example of a COSE_Sign1 message.



   Size of binary file is 2552 bytes.



18(
  [
    / protected / h'a101382d' / {
        \ alg \ 1:‑46 \ HSS‑LMS \
      } / ,
    / unprotected / {
      / kid / 4:'ItsBig'
    },
    / payload / 'This is the content.',
    / signature / h'00000000000000000000000391291de76ce6e24d1e2a9b60
266519bc8ce889f814deb0fc00edd3129de3ab9b9aa5b5ac783bdf0fe689f57fb204
f1992dbc1ce2484f316c74bce3f2094cfa8e96a4a9548cead0f78ee5d549510d1910
f647320448ae27ecce77249802a0c39c645bf8db08573af52c93d91fd0e217f245c7
52c176b81514eb6e3067e0fbb329225eaa88c7d21635e32ae84213f89018cb06f1b8
4e61eac348b690d7c6265c19f9d868952d99826aecd417b5279dd674cd951c306016
cfee4fee3bfcf5ee5a5ad08b5b4f53bc93995f26cfe7c0c1c5ba2574c1f2d8470993
e8bd47ef9b9cf309ef895226e92be60683459009611defbb9a43217956a0ab2959bb



   da0feca39de37e7c4a6cd8a5314d6b02b377406d5a5e589e91feaa9f2e4ec1682ba1
   f633c7784499323e40da651f71d3c19e38c634d898b0c508324c0bfcf7c5f0a8c014
   b4af200a739f96cddba94daf86ce80c76158d4f5cf3cd2ba9f1393df47e556887f91
   68540485242a05ec6bcc76659ec3d0d2fedae3fd1608a701c226f5fd83c9b1ed3152
   ddac7426c30e3390bec8f1da6174abe8d3568c9b76b149eb077d61ac15b8fb11b8ce
   5f9d14e448e216f375e1f96a52d39619459b131026143e8809bad408f5ef66cd3da2
   27431e68670c0b4b2c3801e1e9025b1ebed218e0956967158ccc274c704adcd8cc23
   c149a89eda25478742dadc15f233844535e4021000b5d557313d4f271875680e6d5e
   7f6681fdd19f8b9a748cabb2377aac1387fdb80e618eb7d69a368729ca9a092af91e
   be1c584c35fe62734d1d53d10b35dd02093a201c889ad37a558b610f1ab00179a11f
   881600e944cedc47a7ae6d828009d7c61ffea9dd5aa5406408e2e85dc056e47b5758
   9eaba18e792f4631af62d4588a1818167274273c69e7a0735be5dada7e224e3b178b
   3b093212eb74e762f564a26d577aa22ebd8c7b4a999419908e2f2d9c8689dc923905
   c198b9ee335d1e0de6d689655f446dffea997b6e58f5f648415233ede3b9d8a2db29
   e8c3dde5d8dbd55e6348cd9f421783db090e087de46425d62d513597b00d7de32fad
   87752a79cee8b2a38b1e0f2562836721cbbfba20f131130c009a436b93a0bb44fcbb
   86228b1bf1a35f4fc626817924eaebd5b78d64a7970d18dade90cf0ad759b1c45d95
   3c08cd1189685077c5a56069da0944669d797496f8f886fea6f792598db2ac66b657
   af838ed3c3a914dffbb164170a1f63250b125eda53ecaeaf6ee0d2b8a3c804104d7e
   d575b66469bc59f37eec6c6f6fb19e0f7ea02d7c85306230063adb58950589f6ffaf
   f1407233828ae0dfbe5889e5de00bb640a4bc24c3f704488fa669676a9ebbbed399b
   8a9ac0ee4cc944f864b21f642e04f610319ac9271f8bd820e77e41dac6553d234d94
   80e26142c0fa37416651d6450e1f2082bd0213d6783e1ae3cc5c5af677c3316e173b
   a4716d6bc8a9d89383f8b025a0859b99a43daeaf8ddaed46d223b9b503651a67560b
   feb2f35ba544722620ec4086dcc77e6e87bb53f1f18c38368662be460ede31325cae
   aebf018a6fa9d32e3c3a6898e15fe114dcce51241c61afabc36de3608b4d342712a8
   33615c6131e89e1d46b713d9638a08b5a768d53af0298b9c874ded7084358223840c
   2e78cd6fbfca695279a4c1883bb7de81b04a069de8277f7f5109c16938347a643713
   c9ac36fffc8bf141e899f48bc25c7b636d43bebcfa7742d4e1462263e56732ad2021
   eef8ce84023c4959cfd250343d62074724907de9d49ea2f6c968fd9e9bf28feafcdc
   81702108805dec60f2781272d2425a6ee29c66122d2c557867c1a5aed82131e06fc3
   84ecf49017e1c9d6cf63b9f2285ccf890cbb9bbf796e0fd02101948b7ef663849367
   7b33fd787d9d3fc2c7cc7babc21af8c748afb80cf86b45dc89f0b9c7959621e85b98
   b542dc263db9255273bb9054a7f194748f28373ba123d73fc71fef43e7e2ac9a8000
   8e85cf2f04aa433075dfc54c4de24a341ebf7cf1e6b383dbba85898fdc368017fd67
   c153e7a991a3a3cee6dae4fbe2fe6f25a8df314140a8176c8e6fd0c6f042ca66eb6a
   bba9a2502bb6dfa52960ae86a942a673e4e45439594fefcd2974e20554d1dc70b8e0
   34fd1787801343d5f6edc95ce0348c25727c771526e3fd4effb5f16e25a1ea3dcd82
   82e778e91ae9b339a5013c77fd6ea2432704e293f5e82a24121c73900bea4b4ef14a
   2adc1ab3c68224bae1de9c61a48b84e84c1b0e83701be3d988012a24fa40268c8d6e
   f1fd2818ae8e4b6f52f89beab6bfdd1ff1b7ecd573edff3703b800b5b2a206f451f1
   bf2713b4ae9085bd7fe34ad4306a290e4cdb7817ee9ab7ccfb816d002b619f77d46d
   7dd0f8eefe10f5c0f9723ffdb14ca75a185543770f41508b9983d5eed78225bc6e21
   f876bfdd08fe8bc63e0cb253c7dfc67c330897c515244f3f631682f2141eba48ca86
   dfff9206f78edcb9dec4b2371aeddbe141ef96a10957e29a94747c4438fb30b14d37
   e7428eb7fbe4f9d870e72f35f55847f230374bdf56dcae6c129b4468ebaedc340ff4
   cc160c6b410e2d8989488ac8ef9a9febbf65ad4fdfba532a8122ef82dc1a4ffc361c
   bf9f752b36aa9821683d5f3f5842f90134eb423d5cbc76858b4c0a7ba798ec94a089



fdb24b5b25f42d7b6bb8192f07b98eb2de1fe7bc8b6c740fa5cde6fb4890d2f17916
64a96c25a0a71a541025b5ec825eed91f393505473e21d0620177993982e6c1b6bf9
1b777b5ab5739b84946c518c7e6aa0e689e9ad1d34e6ef6ca0e709c4aefecd6f2594
b017940742aceb72c5a52d7d47a3a74f9d09eb84cf82b349de32278a771cebc31ebc
580c09b11799b1f0e6d11d75b17e389d259c531f957a1e699250711df2e36f64f21c
92eff698a392d92df0b2f91991408a076b83149e025a9ffba1ff1caed916a2fc1ac5
d3081c30b5c64b7d677c314b6e76ac20ed8bb4a4c0eb465ae5c0c265969264b27e6d
54c266f79e58e2fa6a381069090bec00189562abcf831adc86a05a2fc7ffaa70dbd3
fa60e09d447cd76b2ff2b851c38e72650ade093ba8bd000000067b95de445abf8916
1dff4b91a4a9e3bf156a39a4660f98f06bf3f017686d9dfc362c948646b3c9848803
e6d9ba1f7d3967f709cddd35dc77d60356f0c36808900b491cb4ecbbabec128e7c81
a46e62a67b57640a0a78be1cbf7dd9d419a10cd8686d16621a80816bfdb5bdc56211
d72ca70b81f1117d129529a7570cf79cf52a7028a48538ecdd3b38d3d5d62d262465
95c4fb73a525a5ed2c30524ebb1d8cc82e0c19bc4977c6898ff95fd3d310b0bae716
96cef93c6a552456bf96e9d075e383bb7543c675842bafbfc7cdb88483b3276c29d4
f0a341c2d406e40d4653b7e4d045851acf6a0a0ea9c710b805cced4635ee8c107362
f0fc8d80c14d0ac49c516703d26d14752f34c1c0d2c4247581c18c2cf4de48e9ce94
9be7c888e9caebe4a415e291fd107d21dc1f084b1158208249f28f4f7c7e931ba7b3
bd0d824a4570'
  ]
)




Appendix B. Acknowledgements

   Many thanks to Roman Danyliw, Scott Fluhrer, Laurence Lundblade, John
   Mattsson, Jim Schaad, and Tony Putman for their valuable review and
   insights.  In addition, an extra special thank you to Jim Schaad for
   generating the examples in Appendix A.



Author's Address



Russ Housley
Vigil Security, LLC
516 Dranesville Road
Herndon, VA  20170
US



   Email: housley@vigilsec.com
















draft-ietf-cose-rfc8152bis-algs-06 - CBOR Object Signing and Encryption (COSE): Initial Algorithms 






draft-ietf-cose-rfc8152bis-algs-06 - CBOR Object Signing and Encryption (COSE): 

Index
Prev
Next
Forward 5


COSE Working Group

Internet-Draft

Obsoletes: 8152 (if approved)

Intended status: Standards Track

Expires: 7 May 2020


J. Schaad

August Cellars

4 November 2019





CBOR Object Signing and Encryption (COSE): Initial Algorithms  

draft-ietf-cose-rfc8152bis-algs-06


Abstract

   Concise Binary Object Representation (CBOR) is a data format designed
   for small code size and small message size.  There is a need for the
   ability to have basic security services defined for this data format.
   This document defines the CBOR Object Signing and Encryption (COSE)
   protocol.  This specification describes how to create and process
   signatures, message authentication codes, and encryption using CBOR
   for serialization.  COSE additionally describes how to represent
   cryptographic keys using CBOR.



   In this specification the conventions for the use of a number of
   cryptographic algorithms with COSE.  The details of the structure of
   COSE are defined in [I-D.ietf-cose-rfc8152bis-struct].



   This document along with [I-D.ietf-cose-rfc8152bis-struct] obsoletes
   RFC8152.



Contributing to this document



   This note is to be removed before publishing as an RFC.



   The source for this draft is being maintained in GitHub.  Suggested
   changes should be submitted as pull requests at https://github.com/
   cose-wg/cose-rfc8152bis.  Instructions are on that page as well.
   Editorial changes can be managed in GitHub, but any substantial
   issues need to be discussed on the COSE mailing list.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.
   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on 7 May 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Requirements Terminology


	 1.2.  Changes from RFC8152


	 1.3.  Document Terminology


	 1.4.  CBOR Grammar


	 1.5.  Examples



	2.  Signature Algorithms
	 2.1.  ECDSA
	  2.1.1.  Security Considerations



	 2.2.  Edwards-Curve Digital Signature Algorithms (EdDSAs)
	  2.2.1.  Security Considerations





	3.  Message Authentication Code (MAC) Algorithms
	 3.1.  Hash-Based Message Authentication Codes (HMACs)
	  3.1.1.  Security Considerations



	 3.2.  AES Message Authentication Code (AES-CBC-MAC)
	  3.2.1.  Security Considerations





	4.  Content Encryption Algorithms
	 4.1.  AES GCM
	  4.1.1.  Security Considerations



	 4.2.  AES CCM
	  4.2.1.  Security Considerations



	 4.3.  ChaCha20 and Poly1305
	  4.3.1.  Security Considerations





	5.  Key Derivation Functions (KDFs)
	 5.1.  HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)


	 5.2.  Context Information Structure



	6.  Content Key Distribution Methods
	 6.1.  Direct Encryption
	  6.1.1.  Direct Key


	  6.1.2.  Direct Key with KDF



	 6.2.  AES Key Wrap
	  6.2.1.  Security Considerations for AES-KW



	 6.3.  Direct ECDH
	  6.3.1.  Security Considerations



	 6.4.  ECDH with Key Wrap



	7.  Key Object Parameters
	 7.1.  Elliptic Curve Keys
	  7.1.1.  Double Coordinate Curves



	 7.2.  Octet Key Pair


	 7.3.  Symmetric Keys



	8.  COSE Capabilities
	 8.1.  Assignments for Existing Key Types


	 8.2.  Assignments for Existing Algorithms



	9.  CBOR Encoding Restrictions


	10. IANA Considerations
	 10.1.  Changes to "COSE Key Types" registry


	 10.2.  Changes to "COSE Algorithms" registry



	11. Security Considerations


	12. References
	 12.1.  Normative References


	 12.2.  Informative References



	Acknowledgments


	Author's Address




1. Introduction

   There has been an increased focus on small, constrained devices that
   make up the Internet of Things (IoT).  One of the standards that has
   come out of this process is "Concise Binary Object Representation
   (CBOR)" [RFC7049].  CBOR extended the data model of the JavaScript
   Object Notation (JSON) [RFC8259] by allowing for binary data, among
   other changes.  CBOR is being adopted by several of the IETF working
   groups dealing with the IoT world as their encoding of data
   structures.  CBOR was designed specifically to be both small in terms
   of messages transport and implementation size and be a schema-free
   decoder.  A need exists to provide message security services for IoT,
   and using CBOR as the message-encoding format makes sense.



   The core COSE specification consists of two documents.
   [I-D.ietf-cose-rfc8152bis-struct] contains the serialization
   structures and the procedures for using the different cryptographic
   algorithms.  This document provides an initial set of algorithms for
   use with those structures.  Additional algorithms beyond what are in
   this document are defined elsewhere.




1.1. Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




1.2. Changes from RFC8152

   *  Extract the sections dealing with specific algorithms into this
      document.  The sections dealing with structure and general
      processing rules are placed in [I-D.ietf-cose-rfc8152bis-struct].




1.3. Document Terminology

   In this document, we use the following terminology:



   Byte is a synonym for octet.



   Constrained Application Protocol (CoAP) is a specialized web transfer
   protocol for use in constrained systems.  It is defined in [RFC7252].



   Authenticated Encryption (AE) [RFC5116] algorithms are those
   encryption algorithms that provide an authentication check of the
   plain text contents as part of the encryption service.



   Authenticated Encryption with Associated Data (AEAD) [RFC5116]
   algorithms provide the same content authentication service as AE
   algorithms, but they additionally provide for authentication of non-
   encrypted data as well.




1.4. CBOR Grammar

   At the time that [RFC8152] was initially published, the CBOR Data
   Definition Language (CDDL) [RFC8610] had not yet been published.
   This document uses a variant of CDDL which is described in
   [I-D.ietf-cose-rfc8152bis-struct]




1.5. Examples

   A GitHub project has been created at <https://github.com/cose-wg/
   Examples> that contains a set of testing examples as well.  Each
   example is found in a JSON file that contains the inputs used to
   create the example, some of the intermediate values that can be used
   in debugging the example and the output of the example presented in
   both a hex and a CBOR diagnostic notation format.  Some of the
   examples at the site are designed failure testing cases; these are
   clearly marked as such in the JSON file.  If errors in the examples
   in this document are found, the examples on GitHub will be updated,
   and a note to that effect will be placed in the JSON file.




2. Signature Algorithms

   Appendix Section 9.1 of [I-D.ietf-cose-rfc8152bis-struct] contains a
   generic description of signature algorithms.  The document defines
   signature algorithm identifiers for two signature algorithms.




2.1. ECDSA

   ECDSA [DSS] defines a signature algorithm using ECC.  Implementations
   SHOULD use a deterministic version of ECDSA such as the one defined
   in [RFC6979].  The use of a deterministic signature algorithm allows
   for systems to avoid relying on random number generators in order to
   avoid generating the same value of 'k' (the per-message random
   value).  Biased generation of the value 'k' can be attacked, and
   collisions of this value leads to leaked keys.  It additionally
   allows for doing deterministic tests for the signature algorithm.
   The use of deterministic ECDSA does not lessen the need to have good
   random number generation when creating the private key.



   The ECDSA signature algorithm is parameterized with a hash function
   (h).  In the event that the length of the hash function output is
   greater than the group of the key, the leftmost bytes of the hash
   output are used.



   The algorithms defined in this document can be found in Table 1.



+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name  | Value | Hash    | Description      |
+=======+=======+=========+==================+
| ES256 | ‑7    | SHA‑256 | ECDSA w/ SHA‑256 |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ES384 | ‑35   | SHA‑384 | ECDSA w/ SHA‑384 |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ES512 | ‑36   | SHA‑512 | ECDSA w/ SHA‑512 |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 1: ECDSA Algorithm Values



   This document defines ECDSA to work only with the curves P-256,
   P-384, and P-521.  This document requires that the curves be encoded
   using the 'EC2' (2 coordinate elliptic curve) key type.
   Implementations need to check that the key type and curve are correct
   when creating and verifying a signature.  Other documents can define
   it to work with other curves and points in the future.



   In order to promote interoperability, it is suggested that SHA-256 be
   used only with curve P-256, SHA-384 be used only with curve P-384,
   and SHA-512 be used with curve P-521.  This is aligned with the
   recommendation in Section 4 of [RFC5480].



   The signature algorithm results in a pair of integers (R, S).  These
   integers will be the same length as the length of the key used for
   the signature process.  The signature is encoded by converting the
   integers into bit strings of the same length as the key size.  The
   length is rounded up to the nearest byte and is left padded with zero
   bits to get to the correct length.  The two integers are then
   concatenated together to form a byte string that is the resulting
   signature.



   Using the function defined in [RFC8017], the signature is:



   Signature = I2OSP(R, n) | I2OSP(S, n)



   where n = ceiling(key_length / 8)



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'EC2'.



   *  If the 'alg' field is present, it MUST match the ECDSA signature
      algorithm being used.



   *  If the 'key_ops' field is present, it MUST include 'sign' when
      creating an ECDSA signature.



   *  If the 'key_ops' field is present, it MUST include 'verify' when
      verifying an ECDSA signature.




2.1.1. Security Considerations

   The security strength of the signature is no greater than the minimum
   of the security strength associated with the bit length of the key
   and the security strength of the hash function.



   Note: Use of a deterministic signature technique is a good idea even
   when good random number generation exists.  Doing so both reduces the
   possibility of having the same value of 'k' in two signature
   operations and allows for reproducible signature values, which helps
   testing.



   There are two substitution attacks that can theoretically be mounted
   against the ECDSA signature algorithm.



   *  Changing the curve used to validate the signature: If one changes
      the curve used to validate the signature, then potentially one
      could have two messages with the same signature, each computed
      under a different curve.  The only requirement on the new curve is
      that its order be the same as the old one and it be acceptable to
      the client.  An example would be to change from using the curve
      secp256r1 (aka P-256) to using secp256k1.  (Both are 256-bit
      curves.)  We currently do not have any way to deal with this
      version of the attack except to restrict the overall set of curves
      that can be used.



   *  Change the hash function used to validate the signature: If one
      either has two different hash functions of the same length or can
      truncate a hash function down, then one could potentially find
      collisions between the hash functions rather than within a single
      hash function (for example, truncating SHA-512 to 256 bits might
      collide with a SHA-256 bit hash value).  As the hash algorithm is
      part of the signature algorithm identifier, this attack is
      mitigated by including a signature algorithm identifier in the
      protected header.




2.2. Edwards-Curve Digital Signature Algorithms (EdDSAs)

   [RFC8032] describes the elliptic curve signature scheme Edwards-curve
   Digital Signature Algorithm (EdDSA).  In that document, the signature
   algorithm is instantiated using parameters for edwards25519 and
   edwards448 curves.  The document additionally describes two variants
   of the EdDSA algorithm: Pure EdDSA, where no hash function is applied
   to the content before signing, and HashEdDSA, where a hash function
   is applied to the content before signing and the result of that hash
   function is signed.  For EdDSA, the content to be signed (either the
   message or the pre-hash value) is processed twice inside of the
   signature algorithm.  For use with COSE, only the pure EdDSA version
   is used.  This is because it is not expected that extremely large
   contents are going to be needed and, based on the arrangement of the
   message structure, the entire message is going to need to be held in
   memory in order to create or verify a signature.  This means that
   there does not appear to be a need to be able to do block updates of
   the hash, followed by eliminating the message from memory.
   Applications can provide the same features by defining the content of
   the message as a hash value and transporting the COSE object (with
   the hash value) and the content as separate items.



   The algorithms defined in this document can be found in Table 2.  A
   single signature algorithm is defined, which can be used for multiple
   curves.



+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name  | Value | Description |
+=======+=======+=============+
| EdDSA | ‑8    | EdDSA       |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 2: EdDSA Algorithm Values



   [RFC8032] describes the method of encoding the signature value.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'OKP' (Octet Key
      Pair).



   *  The 'crv' field MUST be present, and it MUST be a curve defined
      for this signature algorithm.



   *  If the 'alg' field is present, it MUST match 'EdDSA'.



   *  If the 'key_ops' field is present, it MUST include 'sign' when
      creating an EdDSA signature.



   *  If the 'key_ops' field is present, it MUST include 'verify' when
      verifying an EdDSA signature.




2.2.1. Security Considerations

   How public values are computed is not the same when looking at EdDSA
   and Elliptic Curve Diffie-Hellman (ECDH); for this reason, they
   should not be used with the other algorithm.



   If batch signature verification is performed, a well-seeded
   cryptographic random number generator is REQUIRED.  Signing and non-
   batch signature verification are deterministic operations and do not
   need random numbers of any kind.




3. Message Authentication Code (MAC) Algorithms

   Appendix Section 9.2 of [I-D.ietf-cose-rfc8152bis-struct] contains a
   generic description of MAC algorithms.  This section defines the
   conventions for two MAC algorithms.




3.1. Hash-Based Message Authentication Codes (HMACs)

   HMAC [RFC2104] [RFC4231] was designed to deal with length extension
   attacks.  The algorithm was also designed to allow for new hash
   algorithms to be directly plugged in without changes to the hash
   function.  The HMAC design process has been shown as solid since,
   while the security of hash algorithms such as MD5 has decreased over
   time; the security of HMAC combined with MD5 has not yet been shown
   to be compromised [RFC6151].



   The HMAC algorithm is parameterized by an inner and outer padding, a
   hash function (h), and an authentication tag value length.  For this
   specification, the inner and outer padding are fixed to the values
   set in [RFC2104].  The length of the authentication tag corresponds
   to the difficulty of producing a forgery.  For use in constrained
   environments, we define one HMAC algorithm that is truncated.  There
   are currently no known issues with truncation; however, the security
   strength of the message tag is correspondingly reduced in strength.
   When truncating, the leftmost tag length bits are kept and
   transmitted.



   The algorithms defined in this document can be found in Table 3.



+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name        | Value | Hash    | Tag Length | Description          |
+=============+=======+=========+============+======================+
| HMAC        | 4     | SHA‑256 | 64         | HMAC w/ SHA‑256      |
| 256/64      |       |         |            | truncated to 64 bits |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HMAC        | 5     | SHA‑256 | 256        | HMAC w/ SHA‑256      |
| 256/256     |       |         |            |                      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HMAC        | 6     | SHA‑384 | 384        | HMAC w/ SHA‑384      |
| 384/384     |       |         |            |                      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HMAC        | 7     | SHA‑512 | 512        | HMAC w/ SHA‑512      |
| 512/512     |       |         |            |                      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                       Table 3: HMAC Algorithm Values



   Some recipient algorithms carry the key while others derive a key
   from secret data.  For those algorithms that carry the key (such as
   AES Key Wrap), the size of the HMAC key SHOULD be the same size as
   the underlying hash function.  For those algorithms that derive the
   key (such as ECDH), the derived key MUST be the same size as the
   underlying hash function.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the HMAC algorithm
      being used.



   *  If the 'key_ops' field is present, it MUST include 'MAC create'
      when creating an HMAC authentication tag.



   *  If the 'key_ops' field is present, it MUST include 'MAC verify'
      when verifying an HMAC authentication tag.



   Implementations creating and validating MAC values MUST validate that
   the key type, key length, and algorithm are correct and appropriate
   for the entities involved.




3.1.1. Security Considerations

   HMAC has proved to be resistant to attack even when used with
   weakened hash algorithms.  The current best known attack is to brute
   force the key.  This means that key size is going to be directly
   related to the security of an HMAC operation.




3.2. AES Message Authentication Code (AES-CBC-MAC)

   AES-CBC-MAC is defined in [MAC].  (Note that this is not the same
   algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC)
   [RFC4493].)



   AES-CBC-MAC is parameterized by the key length, the authentication
   tag length, and the IV used.  For all of these algorithms, the IV is
   fixed to all zeros.  We provide an array of algorithms for various
   key lengths and tag lengths.  The algorithms defined in this document
   are found in Table 4.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Value | Key Length | Tag Length | Description      |
+=========+=======+============+============+==================+
| AES‑MAC | 14    | 128        | 64         | AES‑MAC 128‑bit  |
| 128/64  |       |            |            | key, 64‑bit tag  |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑MAC | 15    | 256        | 64         | AES‑MAC 256‑bit  |
| 256/64  |       |            |            | key, 64‑bit tag  |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑MAC | 25    | 128        | 128        | AES‑MAC 128‑bit  |
| 128/128 |       |            |            | key, 128‑bit tag |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑MAC | 26    | 256        | 128        | AES‑MAC 256‑bit  |
| 256/128 |       |            |            | key, 128‑bit tag |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Table 4: AES-MAC Algorithm Values



   Keys may be obtained either from a key structure or from a recipient
   structure.  Implementations creating and validating MAC values MUST
   validate that the key type, key length, and algorithm are correct and
   appropriate for the entities involved.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the AES-MAC algorithm
      being used.



   *  If the 'key_ops' field is present, it MUST include 'MAC create'
      when creating an AES-MAC authentication tag.



   *  If the 'key_ops' field is present, it MUST include 'MAC verify'
      when verifying an AES-MAC authentication tag.




3.2.1. Security Considerations

   A number of attacks exist against Cipher Block Chaining Message
   Authentication Code (CBC-MAC) that need to be considered.



   *  A single key must only be used for messages of a fixed or known
      length.  If this is not the case, an attacker will be able to
      generate a message with a valid tag given two message and tag
      pairs.  This can be addressed by using different keys for messages
      of different lengths.  The current structure mitigates this
      problem, as a specific encoding structure that includes lengths is
      built and signed.  (CMAC also addresses this issue.)



   *  Cipher Block Chaining (CBC) mode, if the same key is used for both
      encryption and authentication operations, an attacker can produce
      messages with a valid authentication code.



   *  If the IV can be modified, then messages can be forged.  This is
      addressed by fixing the IV to all zeros.




4. Content Encryption Algorithms

   Appendix Section 9.3 of [I-D.ietf-cose-rfc8152bis-struct] contains a
   generic description of Content Encryption algorithms.  This document
   defines the identifier and usages for three content encryption
   algorithms.




4.1. AES GCM

   The Galois/Counter Mode (GCM) mode is a generic authenticated
   encryption block cipher mode defined in [AES-GCM].  The GCM mode is
   combined with the AES block encryption algorithm to define an AEAD
   cipher.



   The GCM mode is parameterized by the size of the authentication tag
   and the size of the nonce.  This document fixes the size of the nonce
   at 96 bits.  The size of the authentication tag is limited to a small
   set of values.  For this document however, the size of the
   authentication tag is fixed at 128 bits.



   The set of algorithms defined in this document are in Table 5.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Value | Description                              |
+=========+=======+==========================================+
| A128GCM | 1     | AES‑GCM mode w/ 128‑bit key, 128‑bit tag |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| A192GCM | 2     | AES‑GCM mode w/ 192‑bit key, 128‑bit tag |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| A256GCM | 3     | AES‑GCM mode w/ 256‑bit key, 128‑bit tag |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 5: Algorithm Value for AES-GCM



   Keys may be obtained either from a key structure or from a recipient
   structure.  Implementations encrypting and decrypting MUST validate
   that the key type, key length, and algorithm are correct and
   appropriate for the entities involved.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the AES-GCM algorithm
      being used.



   *  If the 'key_ops' field is present, it MUST include 'encrypt' or
      'wrap key' when encrypting.



   *  If the 'key_ops' field is present, it MUST include 'decrypt' or
      'unwrap key' when decrypting.




4.1.1. Security Considerations

   When using AES-GCM, the following restrictions MUST be enforced:



   *  The key and nonce pair MUST be unique for every message encrypted.



   *  The total amount of data encrypted for a single key MUST NOT
      exceed 2^39 - 256 bits.  An explicit check is required only in
      environments where it is expected that it might be exceeded.



   Consideration was given to supporting smaller tag values; the
   constrained community would desire tag sizes in the 64-bit range.
   Doing so drastically changes both the maximum messages size
   (generally not an issue) and the number of times that a key can be
   used.  Given that Counter with CBC-MAC (CCM) is the usual mode for
   constrained environments, restricted modes are not supported.




4.2. AES CCM

   CCM is a generic authentication encryption block cipher mode defined
   in [RFC3610].  The CCM mode is combined with the AES block encryption
   algorithm to define a commonly used content encryption algorithm used
   in constrained devices.



   The CCM mode has two parameter choices.  The first choice is M, the
   size of the authentication field.  The choice of the value for M
   involves a trade-off between message growth (from the tag) and the
   probability that an attacker can undetectably modify a message.  The
   second choice is L, the size of the length field.  This value
   requires a trade-off between the maximum message size and the size of
   the Nonce.



   It is unfortunate that the specification for CCM specified L and M as
   a count of bytes rather than a count of bits.  This leads to possible
   misunderstandings where AES-CCM-8 is frequently used to refer to a
   version of CCM mode where the size of the authentication is 64 bits
   and not 8 bits.  These values have traditionally been specified as
   bit counts rather than byte counts.  This document will follow the
   convention of using bit counts so that it is easier to compare the
   different algorithms presented in this document.



   We define a matrix of algorithms in this document over the values of
   L and M.  Constrained devices are usually operating in situations
   where they use short messages and want to avoid doing recipient-
   specific cryptographic operations.  This favors smaller values of
   both L and M.  Less-constrained devices will want to be able to use
   larger messages and are more willing to generate new keys for every
   operation.  This favors larger values of L and M.



   The following values are used for L:



16 bits (2):  This limits messages to 2^16 bytes (64 KiB) in length.
   This is sufficiently long for messages in the constrained world.
   The nonce length is 13 bytes allowing for 2^104 possible values of
   the nonce without repeating.

64 bits (8):  This limits messages to 2^64 bytes in length.  The
   nonce length is 7 bytes allowing for 2^56 possible values of the
   nonce without repeating.



   The following values are used for M:



64 bits (8):  This produces a 64‑bit authentication tag.  This
   implies that there is a 1 in 2^64 chance that a modified message
   will authenticate.

128 bits (16):  This produces a 128‑bit authentication tag.  This
   implies that there is a 1 in 2^128 chance that a modified message
   will authenticate.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name               | Value | L  | M   | k   | Description         |
+====================+=======+====+=====+=====+=====================+
| AES‑CCM‑16‑64‑128  | 10    | 16 | 64  | 128 | AES‑CCM mode        |
|                    |       |    |     |     | 128‑bit key,        |
|                    |       |    |     |     | 64‑bit tag,         |
|                    |       |    |     |     | 13‑byte nonce       |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑16‑64‑256  | 11    | 16 | 64  | 256 | AES‑CCM mode        |
|                    |       |    |     |     | 256‑bit key,        |
|                    |       |    |     |     | 64‑bit tag,         |
|                    |       |    |     |     | 13‑byte nonce       |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑64‑64‑128  | 12    | 64 | 64  | 128 | AES‑CCM mode        |
|                    |       |    |     |     | 128‑bit key,        |
|                    |       |    |     |     | 64‑bit tag,         |
|                    |       |    |     |     | 7‑byte nonce        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑64‑64‑256  | 13    | 64 | 64  | 256 | AES‑CCM mode        |
|                    |       |    |     |     | 256‑bit key,        |
|                    |       |    |     |     | 64‑bit tag,         |
|                    |       |    |     |     | 7‑byte nonce        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑16‑128‑128 | 30    | 16 | 128 | 128 | AES‑CCM mode        |
|                    |       |    |     |     | 128‑bit key,        |
|                    |       |    |     |     | 128‑bit tag,        |
|                    |       |    |     |     | 13‑byte nonce       |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑16‑128‑256 | 31    | 16 | 128 | 256 | AES‑CCM mode        |
|                    |       |    |     |     | 256‑bit key,        |
|                    |       |    |     |     | 128‑bit tag,        |
|                    |       |    |     |     | 13‑byte nonce       |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑64‑128‑128 | 32    | 64 | 128 | 128 | AES‑CCM mode        |
|                    |       |    |     |     | 128‑bit key,        |
|                    |       |    |     |     | 128‑bit tag,        |
|                    |       |    |     |     | 7‑byte nonce        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| AES‑CCM‑64‑128‑256 | 33    | 64 | 128 | 256 | AES‑CCM mode        |
|                    |       |    |     |     | 256‑bit key,        |
|                    |       |    |     |     | 128‑bit tag,        |
|                    |       |    |     |     | 7‑byte nonce        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 6: Algorithm Values for AES-CCM



   Keys may be obtained either from a key structure or from a recipient
   structure.  Implementations encrypting and decrypting MUST validate
   that the key type, key length, and algorithm are correct and
   appropriate for the entities involved.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the AES-CCM algorithm
      being used.



   *  If the 'key_ops' field is present, it MUST include 'encrypt' or
      'wrap key' when encrypting.



   *  If the 'key_ops' field is present, it MUST include 'decrypt' or
      'unwrap key' when decrypting.




4.2.1. Security Considerations

   When using AES-CCM, the following restrictions MUST be enforced:



   *  The key and nonce pair MUST be unique for every message encrypted.
      Note that the value of L influences the number of unique nonces.



   *  The total number of times the AES block cipher is used MUST NOT
      exceed 2^61 operations.  This limitation is the sum of times the
      block cipher is used in computing the MAC value and in performing
      stream encryption operations.  An explicit check is required only
      in environments where it is expected that it might be exceeded.



   [RFC3610] additionally calls out one other consideration of note.  It
   is possible to do a pre-computation attack against the algorithm in
   cases where portions of the plaintext are highly predictable.  This
   reduces the security of the key size by half.  Ways to deal with this
   attack include adding a random portion to the nonce value and/or
   increasing the key size used.  Using a portion of the nonce for a
   random value will decrease the number of messages that a single key
   can be used for.  Increasing the key size may require more resources
   in the constrained device.  See Sections 5 and 10 of [RFC3610] for
   more information.




4.3. ChaCha20 and Poly1305

   ChaCha20 and Poly1305 combined together is an AEAD mode that is
   defined in [RFC8439].  This is an algorithm defined to be a cipher
   that is not AES and thus would not suffer from any future weaknesses
   found in AES.  These cryptographic functions are designed to be fast
   in software-only implementations.



   The ChaCha20/Poly1305 AEAD construction defined in [RFC8439] has no
   parameterization.  It takes a 256-bit key and a 96-bit nonce, as well
   as the plaintext and additional data as inputs and produces the
   ciphertext as an option.  We define one algorithm identifier for this
   algorithm in Table 7.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name              | Value | Description              |
+===================+=======+==========================+
| ChaCha20/Poly1305 | 24    | ChaCha20/Poly1305 w/     |
|                   |       | 256‑bit key, 128‑bit tag |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 7: Algorithm Value for AES-GCM



   Keys may be obtained either from a key structure or from a recipient
   structure.  Implementations encrypting and decrypting MUST validate
   that the key type, key length, and algorithm are correct and
   appropriate for the entities involved.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the ChaCha20/Poly1305
      algorithm being used.



   *  If the 'key_ops' field is present, it MUST include 'encrypt' or
      'wrap key' when encrypting.



   *  If the 'key_ops' field is present, it MUST include 'decrypt' or
      'unwrap key' when decrypting.




4.3.1. Security Considerations

   The key and nonce values MUST be a unique pair for every invocation
   of the algorithm.  Nonce counters are considered to be an acceptable
   way of ensuring that they are unique.




5. Key Derivation Functions (KDFs)

   Appendix Section 9.4 of [I-D.ietf-cose-rfc8152bis-struct] contains a
   generic description of Key Derivation Functions.  This document
   defines a single context structure and a single KDF.  These elements
   are used for all of the recipient algorithms defined in this document
   that require a KDF process.  These algorithms are defined in Sections
   6.1.2, 6.3, and 6.4.




5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

   The HKDF key derivation algorithm is defined in [RFC5869].



   The HKDF algorithm takes these inputs:



      secret -- a shared value that is secret.  Secrets may be either
      previously shared or derived from operations like a Diffie-Hellman
      (DH) key agreement.



      salt -- an optional value that is used to change the generation
      process.  The salt value can be either public or private.  If the
      salt is public and carried in the message, then the 'salt'
      algorithm header parameter defined in Table 9 is used.  While
      [RFC5869] suggests that the length of the salt be the same as the
      length of the underlying hash value, any positive salt length will
      improve the security as different key values will be generated.
      This parameter is protected by being included in the key
      computation and does not need to be separately authenticated.  The
      salt value does not need to be unique for every message sent.



      length -- the number of bytes of output that need to be generated.



      context information -- Information that describes the context in
      which the resulting value will be used.  Making this information
      specific to the context in which the material is going to be used
      ensures that the resulting material will always be tied to that
      usage.  The context structure defined in Section 5.2 is used by
      the KDFs in this document.



      PRF -- The underlying pseudorandom function to be used in the HKDF
      algorithm.  The PRF is encoded into the HKDF algorithm selection.



   HKDF is defined to use HMAC as the underlying PRF.  However, it is
   possible to use other functions in the same construct to provide a
   different KDF that is more appropriate in the constrained world.
   Specifically, one can use AES-CBC-MAC as the PRF for the expand step,
   but not for the extract step.  When using a good random shared secret
   of the correct length, the extract step can be skipped.  For the AES
   algorithm versions, the extract step is always skipped.



   The extract step cannot be skipped if the secret is not uniformly
   random, for example, if it is the result of an ECDH key agreement
   step.  This implies that the AES HKDF version cannot be used with
   ECDH.  If the extract step is skipped, the 'salt' value is not used
   as part of the HKDF functionality.



   The algorithms defined in this document are found in Table 8.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name         | PRF               | Description            |
+==============+===================+========================+
| HKDF SHA‑256 | HMAC with SHA‑256 | HKDF using HMAC        |
|              |                   | SHA‑256 as the PRF     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HKDF SHA‑512 | HMAC with SHA‑512 | HKDF using HMAC        |
|              |                   | SHA‑512 as the PRF     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HKDF AES‑    | AES‑CBC‑MAC‑128   | HKDF using AES‑MAC as  |
| MAC‑128      |                   | the PRF w/ 128‑bit key |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| HKDF AES‑    | AES‑CBC‑MAC‑256   | HKDF using AES‑MAC as  |
| MAC‑256      |                   | the PRF w/ 256‑bit key |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                          Table 8: HKDF Algorithms



+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name | Label | Type | Algorithm                  | Description |
+======+=======+======+============================+=============+
| salt | ‑20   | bstr | direct+HKDF‑SHA‑256,       | Random salt |
|      |       |      | direct+HKDF‑SHA‑512,       |             |
|      |       |      | direct+HKDF‑AES‑128,       |             |
|      |       |      | direct+HKDF‑AES‑256, ECDH‑ |             |
|      |       |      | ES+HKDF‑256, ECDH‑ES+HKDF‑ |             |
|      |       |      | 512, ECDH‑SS+HKDF‑256,     |             |
|      |       |      | ECDH‑SS+HKDF‑512, ECDH‑    |             |
|      |       |      | ES+A128KW, ECDH‑ES+A192KW, |             |
|      |       |      | ECDH‑ES+A256KW, ECDH‑      |             |
|      |       |      | SS+A128KW, ECDH‑SS+A192KW, |             |
|      |       |      | ECDH‑SS+A256KW             |             |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Table 9: HKDF Algorithm Parameters




5.2. Context Information Structure

   The context information structure is used to ensure that the derived
   keying material is "bound" to the context of the transaction.  The
   context information structure used here is based on that defined in
   [SP800-56A].  By using CBOR for the encoding of the context
   information structure, we automatically get the same type and length
   separation of fields that is obtained by the use of ASN.1.  This
   means that there is no need to encode the lengths for the base
   elements, as it is done by the encoding used in JOSE (Section 4.6.2
   of [RFC7518]).



   The context information structure refers to PartyU and PartyV as the
   two parties that are doing the key derivation.  Unless the
   application protocol defines differently, we assign PartyU to the
   entity that is creating the message and PartyV to the entity that is
   receiving the message.  By doing this association, different keys
   will be derived for each direction as the context information is
   different in each direction.



   The context structure is built from information that is known to both
   entities.  This information can be obtained from a variety of
   sources:



   *  Fields can be defined by the application.  This is commonly used
      to assign fixed names to parties, but it can be used for other
      items such as nonces.



   *  Fields can be defined by usage of the output.  Examples of this
      are the algorithm and key size that are being generated.



   *  Fields can be defined by parameters from the message.  We define a
      set of parameters in Table 10 that can be used to carry the values
      associated with the context structure.  Examples of this are
      identities and nonce values.  These parameters are designed to be
      placed in the unprotected bucket of the recipient structure; they
      do not need to be in the protected bucket since they already are
      included in the cryptographic computation by virtue of being
      included in the context structure.



+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name     | Label | Type | Algorithm                 | Description |
+==========+=======+======+===========================+=============+
| PartyU   | ‑21   | bstr | direct+HKDF‑SHA‑256,      | Party U     |
| identity |       |      | direct+HKDF‑SHA‑512,      | identity    |
|          |       |      | direct+HKDF‑AES‑128,      | information |
|          |       |      | direct+HKDF‑AES‑256,      |             |
|          |       |      | ECDH‑ES+HKDF‑256,         |             |
|          |       |      | ECDH‑ES+HKDF‑512,         |             |
|          |       |      | ECDH‑SS+HKDF‑256,         |             |
|          |       |      | ECDH‑SS+HKDF‑512,         |             |
|          |       |      | ECDH‑ES+A128KW,           |             |
|          |       |      | ECDH‑ES+A192KW,           |             |
|          |       |      | ECDH‑ES+A256KW,           |             |
|          |       |      | ECDH‑SS+A128KW,           |             |
|          |       |      | ECDH‑SS+A192KW,           |             |
|          |       |      | ECDH‑SS+A256KW            |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| PartyU   | ‑22   | bstr | direct+HKDF‑SHA‑256,      | Party U     |
| nonce    |       | /    | direct+HKDF‑SHA‑512,      | provided    |

|          |       | int  | direct+HKDF‑AES‑128,      | nonce       |
|          |       |      | direct+HKDF‑AES‑256,      |             |
|          |       |      | ECDH‑ES+HKDF‑256,         |             |
|          |       |      | ECDH‑ES+HKDF‑512,         |             |
|          |       |      | ECDH‑SS+HKDF‑256,         |             |
|          |       |      | ECDH‑SS+HKDF‑512,         |             |
|          |       |      | ECDH‑ES+A128KW,           |             |
|          |       |      | ECDH‑ES+A192KW,           |             |
|          |       |      | ECDH‑ES+A256KW,           |             |
|          |       |      | ECDH‑SS+A128KW,           |             |
|          |       |      | ECDH‑SS+A192KW,           |             |
|          |       |      | ECDH‑SS+A256KW            |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| PartyU   | ‑23   | bstr | direct+HKDF‑SHA‑256,      | Party U     |
| other    |       |      | direct+HKDF‑SHA‑512,      | other       |
|          |       |      | direct+HKDF‑AES‑128,      | provided    |
|          |       |      | direct+HKDF‑AES‑256,      | information |
|          |       |      | ECDH‑ES+HKDF‑256,         |             |
|          |       |      | ECDH‑ES+HKDF‑512,         |             |
|          |       |      | ECDH‑SS+HKDF‑256,         |             |
|          |       |      | ECDH‑SS+HKDF‑512,         |             |
|          |       |      | ECDH‑ES+A128KW,           |             |
|          |       |      | ECDH‑ES+A192KW,           |             |
|          |       |      | ECDH‑ES+A256KW,           |             |
|          |       |      | ECDH‑SS+A128KW,           |             |
|          |       |      | ECDH‑SS+A192KW,           |             |
|          |       |      | ECDH‑SS+A256KW            |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| PartyV   | ‑24   | bstr | direct+HKDF‑SHA‑256,      | Party V     |
| identity |       |      | direct+HKDF‑SHA‑512,      | identity    |
|          |       |      | direct+HKDF‑AES‑128,      | information |
|          |       |      | direct+HKDF‑AES‑256,      |             |
|          |       |      | ECDH‑ES+HKDF‑256,         |             |
|          |       |      | ECDH‑ES+HKDF‑512,         |             |
|          |       |      | ECDH‑SS+HKDF‑256,         |             |
|          |       |      | ECDH‑SS+HKDF‑512,         |             |
|          |       |      | ECDH‑ES+A128KW,           |             |
|          |       |      | ECDH‑ES+A192KW,           |             |
|          |       |      | ECDH‑ES+A256KW,           |             |
|          |       |      | ECDH‑SS+A128KW,           |             |
|          |       |      | ECDH‑SS+A192KW,           |             |
|          |       |      | ECDH‑SS+A256KW            |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| PartyV   | ‑25   | bstr | direct+HKDF‑SHA‑256,      | Party V     |
| nonce    |       | /    | direct+HKDF‑SHA‑512,      | provided    |
|          |       | int  | direct+HKDF‑AES‑128,      | nonce       |
|          |       |      | direct+HKDF‑AES‑256,      |             |
|          |       |      | ECDH‑ES+HKDF‑256,         |             |

|          |       |      | ECDH‑ES+HKDF‑512,         |             |
|          |       |      | ECDH‑SS+HKDF‑256,         |             |
|          |       |      | ECDH‑SS+HKDF‑512,         |             |
|          |       |      | ECDH‑ES+A128KW,           |             |
|          |       |      | ECDH‑ES+A192KW,           |             |
|          |       |      | ECDH‑ES+A256KW,           |             |
|          |       |      | ECDH‑SS+A128KW,           |             |
|          |       |      | ECDH‑SS+A192KW,           |             |
|          |       |      | ECDH‑SS+A256KW            |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| PartyV   | ‑26   | bstr | direct+HKDF‑SHA‑256,      | Party V     |
| other    |       |      | direct+HKDF‑SHA‑512,      | other       |
|          |       |      | direct+HKDF‑AES‑128,      | provided    |
|          |       |      | direct+HKDF‑AES‑256,      | information |
|          |       |      | ECDH‑ES+HKDF‑256,         |             |
|          |       |      | ECDH‑ES+HKDF‑512,         |             |
|          |       |      | ECDH‑SS+HKDF‑256,         |             |
|          |       |      | ECDH‑SS+HKDF‑512,         |             |
|          |       |      | ECDH‑ES+A128KW,           |             |
|          |       |      | ECDH‑ES+A192KW,           |             |
|          |       |      | ECDH‑ES+A256KW,           |             |
|          |       |      | ECDH‑SS+A128KW,           |             |
|          |       |      | ECDH‑SS+A192KW,           |             |
|          |       |      | ECDH‑SS+A256KW            |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 10: Context Algorithm Parameters



   We define a CBOR object to hold the context information.  This object
   is referred to as COSE_KDF_Context.  The object is based on a CBOR
   array type.  The fields in the array are:



AlgorithmID:  This field indicates the algorithm for which the key
   material will be used.  This normally is either a key wrap
   algorithm identifier or a content encryption algorithm identifier.
   The values are from the "COSE Algorithms" registry.  This field is
   required to be present.  The field exists in the context
   information so that a different key is generated for each
   algorithm even of all of the other context information is the
   same.  In practice, this means if algorithm A is broken and thus
   finding the key is relatively easy, the key derived for algorithm
   B will not be the same as the key derived for algorithm A.

PartyUInfo:  This field holds information about party U.  The
   PartyUInfo is encoded as a CBOR array.  The elements of PartyUInfo
   are encoded in the order presented below.  The elements of the
   PartyUInfo array are:

   identity:  This contains the identity information for party U.
      The identities can be assigned in one of two manners.  First, a
      protocol can assign identities based on roles.  For example,
      the roles of "client" and "server" may be assigned to different
      entities in the protocol.  Each entity would then use the
      correct label for the data they send or receive.  The second
      way for a protocol to assign identities is to use a name based
      on a naming system (i.e., DNS, X.509 names).



         We define an algorithm parameter 'PartyU identity' that can be
         used to carry identity information in the message.  However,
         identity information is often known as part of the protocol and
         can thus be inferred rather than made explicit.  If identity
         information is carried in the message, applications SHOULD have
         a way of validating the supplied identity information.  The
         identity information does not need to be specified and is set
         to nil in that case.



nonce:  This contains a nonce value.  The nonce can either be
   implicit from the protocol or be carried as a value in the
   unprotected headers.



         We define an algorithm parameter 'PartyU nonce' that can be
         used to carry this value in the message; however, the nonce
         value could be determined by the application and the value
         determined from elsewhere.



         This option does not need to be specified and is set to nil in
         that case.



   other:  This contains other information that is defined by the
      protocol.  This option does not need to be specified and is set
      to nil in that case.

PartyVInfo:  This field holds information about party V.  The content
   of the structure is the same as for the PartyUInfo but for party
   V.

SuppPubInfo:  This field contains public information that is mutually
   known to both parties.

   keyDataLength:  This is set to the number of bits of the desired
      output value.  This practice means if algorithm A can use two
      different key lengths, the key derived for longer key size will
      not contain the key for shorter key size as a prefix.

   protected:  This field contains the protected parameter field.  If
      there are no elements in the protected field, then use a zero‑



         length bstr.



   other:  This field is for free form data defined by the
      application.  An example is that an application could define
      two different strings to be placed here to generate different
      keys for a data stream versus a control stream.  This field is
      optional and will only be present if the application defines a
      structure for this information.  Applications that define this
      SHOULD use CBOR to encode the data so that types and lengths
      are correctly included.

SuppPrivInfo:  This field contains private information that is
   mutually known private information.  An example of this
   information would be a preexisting shared secret.  (This could,
   for example, be used in combination with an ECDH key agreement to
   provide a secondary proof of identity.)  The field is optional and
   will only be present if the application defines a structure for
   this information.  Applications that define this SHOULD use CBOR
   to encode the data so that types and lengths are correctly
   included.



   The following CDDL fragment corresponds to the text above.



PartyInfo = (
    identity : bstr / nil,
    nonce : bstr / int / nil,
    other : bstr / nil
)

COSE_KDF_Context = [
    AlgorithmID : int / tstr,
    PartyUInfo : [ PartyInfo ],
    PartyVInfo : [ PartyInfo ],
    SuppPubInfo : [
        keyDataLength : uint,
        protected : empty_or_serialized_map,
        ? other : bstr
    ],
    ? SuppPrivInfo : bstr
]




6. Content Key Distribution Methods

   Appendix Section 9.5 of [I-D.ietf-cose-rfc8152bis-struct] contains a
   generic description of content key distribution methods.  This
   document defines the identifiers and usage for a number of content
   key distribution methods.




6.1. Direct Encryption

   Direct encryption algorithm is defined in Appendix Section 9.5.1 of
   [I-D.ietf-cose-rfc8152bis-struct].  Information about how to fill in
   the COSE_Recipient structure are detailed there.




6.1.1. Direct Key

   This recipient algorithm is the simplest; the identified key is
   directly used as the key for the next layer down in the message.
   There are no algorithm parameters defined for this algorithm.  The
   algorithm identifier value is assigned in Table 11.



   When this algorithm is used, the protected field MUST be zero length.
   The key type MUST be 'Symmetric'.



+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name   | Value | Description       |
+========+=======+===================+
| direct | ‑6    | Direct use of CEK |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                           Table 11: Direct Key




6.1.1.1. Security Considerations

   This recipient algorithm has several potential problems that need to
   be considered:



   *  These keys need to have some method to be regularly updated over
      time.  All of the content encryption algorithms specified in this
      document have limits on how many times a key can be used without
      significant loss of security.



   *  These keys need to be dedicated to a single algorithm.  There have
      been a number of attacks developed over time when a single key is
      used for multiple different algorithms.  One example of this is
      the use of a single key for both the CBC encryption mode and the
      CBC-MAC authentication mode.



   *  Breaking one message means all messages are broken.  If an
      adversary succeeds in determining the key for a single message,
      then the key for all messages is also determined.




6.1.2. Direct Key with KDF

   These recipient algorithms take a common shared secret between the
   two parties and applies the HKDF function (Section 5.1), using the
   context structure defined in Section 5.2 to transform the shared
   secret into the CEK.  The 'protected' field can be of non-zero
   length.  Either the 'salt' parameter of HKDF or the 'PartyU nonce'
   parameter of the context structure MUST be present.  The salt/nonce
   parameter can be generated either randomly or deterministically.  The
   requirement is that it be a unique value for the shared secret in
   question.



   If the salt/nonce value is generated randomly, then it is suggested
   that the length of the random value be the same length as the hash
   function underlying HKDF.  While there is no way to guarantee that it
   will be unique, there is a high probability that it will be unique.
   If the salt/nonce value is generated deterministically, it can be
   guaranteed to be unique, and thus there is no length requirement.



   A new IV must be used for each message if the same key is used.  The
   IV can be modified in a predictable manner, a random manner, or an
   unpredictable manner (i.e., encrypting a counter).



   The IV used for a key can also be generated from the same HKDF
   functionality as the key is generated.  If HKDF is used for
   generating the IV, the algorithm identifier is set to "IV-
   GENERATION".



   When these algorithms are used, the key type MUST be 'symmetric'.



The set of algorithms defined in this document can be found in
Table 12.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name                | Value | KDF          | Description         |
+=====================+=======+==============+=====================+
| direct+HKDF‑SHA‑256 | ‑10   | HKDF SHA‑256 | Shared secret w/    |
|                     |       |              | HKDF and SHA‑256    |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| direct+HKDF‑SHA‑512 | ‑11   | HKDF SHA‑512 | Shared secret w/    |
|                     |       |              | HKDF and SHA‑512    |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| direct+HKDF‑AES‑128 | ‑12   | HKDF AES‑    | Shared secret w/    |
|                     |       | MAC‑128      | AES‑MAC 128‑bit key |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| direct+HKDF‑AES‑256 | ‑13   | HKDF AES‑    | Shared secret w/    |
|                     |       | MAC‑256      | AES‑MAC 256‑bit key |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 12: Direct Key with KDF



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the algorithm being
      used.



   *  If the 'key_ops' field is present, it MUST include 'deriveKey' or
      'deriveBits'.




6.1.2.1. Security Considerations

   The shared secret needs to have some method to be regularly updated
   over time.  The shared secret forms the basis of trust.  Although not
   used directly, it should still be subject to scheduled rotation.



   While these methods do not provide for perfect forward secrecy, as
   the same shared secret is used for all of the keys generated, if the
   key for any single message is discovered, only the message (or series
   of messages) using that derived key are compromised.  A new key
   derivation step will generate a new key that requires the same amount
   of work to get the key.




6.2. AES Key Wrap

   The AES Key Wrap algorithm is defined in [RFC3394].  This algorithm
   uses an AES key to wrap a value that is a multiple of 64 bits.  As
   such, it can be used to wrap a key for any of the content encryption
   algorithms defined in this document.  The algorithm requires a single
   fixed parameter, the initial value.  This is fixed to the value
   specified in Section 2.2.3.1 of [RFC3394].  There are no public
   parameters that vary on a per-invocation basis.  The protected header
   field MUST be empty.



   Keys may be obtained either from a key structure or from a recipient
   structure.  Implementations encrypting and decrypting MUST validate
   that the key type, key length, and algorithm are correct and
   appropriate for the entities involved.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'Symmetric'.



   *  If the 'alg' field is present, it MUST match the AES Key Wrap
      algorithm being used.



   *  If the 'key_ops' field is present, it MUST include 'encrypt' or
      'wrap key' when encrypting.



   *  If the 'key_ops' field is present, it MUST include 'decrypt' or
      'unwrap key' when decrypting.



+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name   | Value | Key Size | Description                 |
+========+=======+==========+=============================+
| A128KW | ‑3    | 128      | AES Key Wrap w/ 128‑bit key |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| A192KW | ‑4    | 192      | AES Key Wrap w/ 192‑bit key |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| A256KW | ‑5    | 256      | AES Key Wrap w/ 256‑bit key |
+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                  Table 13: AES Key Wrap Algorithm Values




6.2.1. Security Considerations for AES-KW

   The shared secret needs to have some method to be regularly updated
   over time.  The shared secret is the basis of trust.




6.3. Direct ECDH

   The mathematics for ECDH can be found in [RFC6090].  In this
   document, the algorithm is extended to be used with the two curves
   defined in [RFC7748].



   ECDH is parameterized by the following:



   *  Curve Type/Curve: The curve selected controls not only the size of
      the shared secret, but the mathematics for computing the shared
      secret.  The curve selected also controls how a point in the curve
      is represented and what happens for the identity points on the
      curve.  In this specification, we allow for a number of different
      curves to be used.  A set of curves are defined in Table 18.



      The math used to obtain the computed secret is based on the curve
      selected and not on the ECDH algorithm.  For this reason, a new
      algorithm does not need to be defined for each of the curves.



   *  Computed Secret to Shared Secret: Once the computed secret is
      known, the resulting value needs to be converted to a byte string
      to run the KDF.  The x-coordinate is used for all of the curves
      defined in this document.  For curves X25519 and X448, the
      resulting value is used directly as it is a byte string of a known
      length.  For the P-256, P-384, and P-521 curves, the x-coordinate
      is run through the I2OSP function defined in [RFC8017], using the
      same computation for n as is defined in Section 2.1.



   *  Ephemeral-Static or Static-Static: The key agreement process may
      be done using either a static or an ephemeral key for the sender's
      side.  When using ephemeral keys, the sender MUST generate a new
      ephemeral key for every key agreement operation.  The ephemeral
      key is placed in the 'ephemeral key' parameter and MUST be present
      for all algorithm identifiers that use ephemeral keys.  When using
      static keys, the sender MUST either generate a new random value or
      create a unique value.  For the KDFs used, this means either the
      'salt' parameter for HKDF (Table 9) or the 'PartyU nonce'
      parameter for the context structure (Table 10) MUST be present
      (both can be present if desired).  The value in the parameter MUST
      be unique for the pair of keys being used.  It is acceptable to
      use a global counter that is incremented for every static-static
      operation and use the resulting value.  When using static keys,
      the static key should be identified to the recipient.  The static
      key can be identified either by providing the key ('static key')
      or by providing a key identifier for the static key ('static key
      id').  Both of these parameters are defined in Table 15.



   *  Key Derivation Algorithm: The result of an ECDH key agreement
      process does not provide a uniformly random secret.  As such, it
      needs to be run through a KDF in order to produce a usable key.
      Processing the secret through a KDF also allows for the
      introduction of context material: how the key is going to be used
      and one-time material for static-static key agreement.  All of the
      algorithms defined in this document use one of the HKDF algorithms
      defined in Section 5.1 with the context structure defined in
      Section 5.2.



   *  Key Wrap Algorithm: No key wrap algorithm is used.  This is
      represented in Table 14 as 'none'.  The key size for the context
      structure is the content layer encryption algorithm size.



   COSE does not have an Ephemeral-Ephemeral version defined.  The
   reason for this is that COSE is not an online protocol by itself and
   thus does not have a method to establish ephemeral secrets on both
   sides.  The expectation is that a protocol would establish the
   secrets for both sides, and then they would be used as static-static
   for the purposes of COSE, or that the protocol would generate a
   shared secret and a direct encryption would be used.



   The set of direct ECDH algorithms defined in this document are found
   in Table 14.



+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name      | Value | KDF     | Ephemeral‑ | Key  | Description     |
|           |       |         | Static     | Wrap |                 |
+===========+=======+=========+============+======+=================+
| ECDH‑ES   | ‑25   | HKDF ‑  | yes        | none | ECDH ES w/ HKDF |
| +         |       | SHA‑256 |            |      | ‑ generate key  |
| HKDF‑256  |       |         |            |      | directly        |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑ES   | ‑26   | HKDF ‑  | yes        | none | ECDH ES w/ HKDF |
| +         |       | SHA‑512 |            |      | ‑ generate key  |
| HKDF‑512  |       |         |            |      | directly        |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑SS   | ‑27   | HKDF ‑  | no         | none | ECDH SS w/ HKDF |
| +         |       | SHA‑256 |            |      | ‑ generate key  |
| HKDF‑256  |       |         |            |      | directly        |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑SS   | ‑28   | HKDF ‑  | no         | none | ECDH SS w/ HKDF |
| +         |       | SHA‑512 |            |      | ‑ generate key  |
| HKDF‑512  |       |         |            |      | directly        |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 14: ECDH Algorithm Values



+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name      | Label | Type     | Algorithm         | Description |
+===========+=======+==========+===================+=============+
| ephemeral | ‑1    | COSE_Key | ECDH‑ES+HKDF‑256, | Ephemeral   |
| key       |       |          | ECDH‑ES+HKDF‑512, | public key  |
|           |       |          | ECDH‑ES+A128KW,   | for the     |
|           |       |          | ECDH‑ES+A192KW,   | sender      |
|           |       |          | ECDH‑ES+A256KW    |             |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| static    | ‑2    | COSE_Key | ECDH‑SS+HKDF‑256, | Static      |
| key       |       |          | ECDH‑SS+HKDF‑512, | public key  |
|           |       |          | ECDH‑SS+A128KW,   | for the     |
|           |       |          | ECDH‑SS+A192KW,   | sender      |
|           |       |          | ECDH‑SS+A256KW    |             |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| static    | ‑3    | bstr     | ECDH‑SS+HKDF‑256, | Static      |
| key id    |       |          | ECDH‑SS+HKDF‑512, | public key  |
|           |       |          | ECDH‑SS+A128KW,   | identifier  |
|           |       |          | ECDH‑SS+A192KW,   | for the     |
|           |       |          | ECDH‑SS+A256KW    | sender      |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 15: ECDH Algorithm Parameters



   This document defines these algorithms to be used with the curves
   P-256, P-384, P-521, X25519, and X448.  Implementations MUST verify
   that the key type and curve are correct.  Different curves are
   restricted to different key types.  Implementations MUST verify that
   the curve and algorithm are appropriate for the entities involved.



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.



   *  If the 'alg' field is present, it MUST match the key agreement
      algorithm being used.



   *  If the 'key_ops' field is present, it MUST include 'derive key' or
      'derive bits' for the private key.



   *  If the 'key_ops' field is present, it MUST be empty for the public
      key.




6.3.1. Security Considerations

   There is a method of checking that points provided from external
   entities are valid.  For the 'EC2' key format, this can be done by
   checking that the x and y values form a point on the curve.  For the
   'OKP' format, there is no simple way to do point validation.



   Consideration was given to requiring that the public keys of both
   entities be provided as part of the key derivation process (as
   recommended in Section 6.1 of [RFC7748]).  This was not done as COSE
   is used in a store and forward format rather than in online key
   exchange.  In order for this to be a problem, either the receiver
   public key has to be chosen maliciously or the sender has to be
   malicious.  In either case, all security evaporates anyway.



   A proof of possession of the private key associated with the public
   key is recommended when a key is moved from untrusted to trusted
   (either by the end user or by the entity that is responsible for
   making trust statements on keys).




6.4. ECDH with Key Wrap

   These algorithms are defined in Table 16.



   ECDH with Key Agreement is parameterized by the same parameters as
   for ECDH; see Section 6.3, with the following modifications:



   *  Key Wrap Algorithm: Any of the key wrap algorithms defined in
      Section 6.2 are supported.  The size of the key used for the key
      wrap algorithm is fed into the KDF.  The set of identifiers are
      found in Table 16.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Value | KDF     | Ephemeral‑ | Key    | Description    |
|         |       |         | Static     | Wrap   |                |
+=========+=======+=========+============+========+================+
| ECDH‑ES | ‑29   | HKDF ‑  | yes        | A128KW | ECDH ES w/     |
| +       |       | SHA‑256 |            |        | Concat KDF and |
| A128KW  |       |         |            |        | AES Key Wrap   |
|         |       |         |            |        | w/ 128‑bit key |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑ES | ‑30   | HKDF ‑  | yes        | A192KW | ECDH ES w/     |
| +       |       | SHA‑256 |            |        | Concat KDF and |
| A192KW  |       |         |            |        | AES Key Wrap   |
|         |       |         |            |        | w/ 192‑bit key |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑ES | ‑31   | HKDF ‑  | yes        | A256KW | ECDH ES w/     |
| +       |       | SHA‑256 |            |        | Concat KDF and |
| A256KW  |       |         |            |        | AES Key Wrap   |
|         |       |         |            |        | w/ 256‑bit key |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑SS | ‑32   | HKDF ‑  | no         | A128KW | ECDH SS w/     |
| +       |       | SHA‑256 |            |        | Concat KDF and |
| A128KW  |       |         |            |        | AES Key Wrap   |
|         |       |         |            |        | w/ 128‑bit key |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑SS | ‑33   | HKDF ‑  | no         | A192KW | ECDH SS w/     |
| +       |       | SHA‑256 |            |        | Concat KDF and |
| A192KW  |       |         |            |        | AES Key Wrap   |
|         |       |         |            |        | w/ 192‑bit key |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ECDH‑SS | ‑34   | HKDF ‑  | no         | A256KW | ECDH SS w/     |
| +       |       | SHA‑256 |            |        | Concat KDF and |
| A256KW  |       |         |            |        | AES Key Wrap   |
|         |       |         |            |        | w/ 256‑bit key |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



              Table 16: ECDH Algorithm Values with Key Wrap



   When using a COSE key for this algorithm, the following checks are
   made:



   *  The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.



   *  If the 'alg' field is present, it MUST match the key agreement
      algorithm being used.



   *  If the 'key_ops' field is present, it MUST include 'derive key' or
      'derive bits' for the private key.



   *  If the 'key_ops' field is present, it MUST be empty for the public
      key.




7. Key Object Parameters

   The COSE_Key object defines a way to hold a single key object.  It is
   still required that the members of individual key types be defined.
   This section of the document is where we define an initial set of
   members for specific key types.



   For each of the key types, we define both public and private members.
   The public members are what is transmitted to others for their usage.
   Private members allow for the archival of keys by individuals.
   However, there are some circumstances in which private keys may be
   distributed to entities in a protocol.  Examples include: entities
   that have poor random number generation, centralized key creation for
   multi-cast type operations, and protocols in which a shared secret is
   used as a bearer token for authorization purposes.



   Key types are identified by the 'kty' member of the COSE_Key object.
   In this document, we define four values for the member:



+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name      | Value | Description              |
+===========+=======+==========================+
| OKP       | 1     | Octet Key Pair           |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| EC2       | 2     | Elliptic Curve Keys w/   |
|           |       | x‑ and y‑coordinate pair |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Symmetric | 4     | Symmetric Keys           |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Reserved  | 0     | This value is reserved   |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                        Table 17: Key Type Values




7.1. Elliptic Curve Keys

   Two different key structures are defined for elliptic curve keys.
   One version uses both an x-coordinate and a y-coordinate, potentially
   with point compression ('EC2').  This is the traditional EC point
   representation that is used in [RFC5480].  The other version uses
   only the x-coordinate as the y-coordinate is either to be recomputed
   or not needed for the key agreement operation ('OKP').



   Applications MUST check that the curve and the key type are
   consistent and reject a key if they are not.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Value | Key Type | Description                        |
+=========+=======+==========+====================================+
| P‑256   | 1     | EC2      | NIST P‑256 also known as secp256r1 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| P‑384   | 2     | EC2      | NIST P‑384 also known as secp384r1 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| P‑521   | 3     | EC2      | NIST P‑521 also known as secp521r1 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| X25519  | 4     | OKP      | X25519 for use w/ ECDH only        |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| X448    | 5     | OKP      | X448 for use w/ ECDH only          |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Ed25519 | 6     | OKP      | Ed25519 for use w/ EdDSA only      |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Ed448   | 7     | OKP      | Ed448 for use w/ EdDSA only        |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                         Table 18: Elliptic Curves




7.1.1. Double Coordinate Curves

   The traditional way of sending ECs has been to send either both the
   x-coordinate and y-coordinate or the x-coordinate and a sign bit for
   the y-coordinate.  The latter encoding has not been recommended in
   the IETF due to potential IPR issues.  However, for operations in
   constrained environments, the ability to shrink a message by not
   sending the y-coordinate is potentially useful.



   For EC keys with both coordinates, the 'kty' member is set to 2
   (EC2).  The key parameters defined in this section are summarized in
   Table 19.  The members that are defined for this key type are:



crv:  This contains an identifier of the curve to be used with the
     key.  The curves defined in this document for this key type can
     be found in Table 18.  Other curves may be registered in the
     future, and private curves can be used as well.

x:   This contains the x‑coordinate for the EC point.  The integer is
     converted to an octet string as defined in [SEC1].  Leading zero
     octets MUST be preserved.

y:   This contains either the sign bit or the value of the
     y‑coordinate for the EC point.  When encoding the value y, the
     integer is converted to an octet string (as defined in [SEC1])
     and encoded as a CBOR bstr.  Leading zero octets MUST be
     preserved.  The compressed point encoding is also supported.
     Compute the sign bit as laid out in the Elliptic‑Curve‑Point‑to‑



        Octet-String Conversion function of [SEC1].  If the sign bit is
        zero, then encode y as a CBOR false value; otherwise, encode y
        as a CBOR true value.  The encoding of the infinity point is not
        supported.



d:   This contains the private key.



   For public keys, it is REQUIRED that 'crv', 'x', and 'y' be present
   in the structure.  For private keys, it is REQUIRED that 'crv' and
   'd' be present in the structure.  For private keys, it is RECOMMENDED
   that 'x' and 'y' also be present, but they can be recomputed from the
   required elements and omitting them saves on space.



+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Key  | Name | Label | CBOR   | Description                     |
| Type |      |       | Type   |                                 |
+======+======+=======+========+=================================+
| 2    | crv  | ‑1    | int /  | EC identifier ‑ Taken from the  |
|      |      |       | tstr   | "COSE Elliptic Curves" registry |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 2    | x    | ‑2    | bstr   | x‑coordinate                    |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 2    | y    | ‑3    | bstr / | y‑coordinate                    |
|      |      |       | bool   |                                 |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 2    | d    | ‑4    | bstr   | Private key                     |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                       Table 19: EC Key Parameters




7.2. Octet Key Pair

   A new key type is defined for Octet Key Pairs (OKP).  Do not assume
   that keys using this type are elliptic curves.  This key type could
   be used for other curve types (for example, mathematics based on
   hyper-elliptic surfaces).



The key parameters defined in this section are summarized in
Table 20.  The members that are defined for this key type are:

crv:  This contains an identifier of the curve to be used with the
     key.  The curves defined in this document for this key type can
     be found in Table 18.  Other curves may be registered in the
     future and private curves can be used as well.

x:   This contains the x‑coordinate for the EC point.  The octet
     string represents a little‑endian encoding of x.

d:   This contains the private key.



   For public keys, it is REQUIRED that 'crv' and 'x' be present in the
   structure.  For private keys, it is REQUIRED that 'crv' and 'd' be
   present in the structure.  For private keys, it is RECOMMENDED that
   'x' also be present, but it can be recomputed from the required
   elements and omitting it saves on space.



+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name | Key      | Label | Type  | Description                     |
|      | Type     |       |       |                                 |
+======+==========+=======+=======+=================================+
| crv  | 1        | ‑1    | int / | EC identifier ‑ Taken from the  |
|      |          |       | tstr  | "COSE Elliptic Curves" registry |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| x    | 1        | ‑2    | bstr  | x‑coordinate                    |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| d    | 1        | ‑4    | bstr  | Private key                     |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Table 20: Octet Key Pair Parameters




7.3. Symmetric Keys

   Occasionally it is required that a symmetric key be transported
   between entities.  This key structure allows for that to happen.



   For symmetric keys, the 'kty' member is set to 4 ('Symmetric').  The
   member that is defined for this key type is:



k:  This contains the value of the key.



   This key structure does not have a form that contains only public
   members.  As it is expected that this key structure is going to be
   transmitted, care must be taken that it is never transmitted
   accidentally or insecurely.  For symmetric keys, it is REQUIRED that
   'k' be present in the structure.



+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name | Key Type | Label | Type | Description |
+======+==========+=======+======+=============+
| k    | 4        | ‑1    | bstr | Key Value   |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Table 21: Symmetric Key Parameters




8. COSE Capabilities

   There are some situations that have been identified where
   identification of capabilities of an algorithm need to be specified.
   One example of this is in [I-D.ietf-core-oscore-groupcomm] where the
   capabilities of the counter signature algorithm are mixed into the
   traffic key derivation process.  This has a counterpart in the S/MIME
   specifications where SMIMECapabilities is defined in Section 2.5.2 of
   [RFC8551].  The concept is being pulled forward and defined now for
   COSE.



   Two different types of capabilities are defined: Capabilities for
   algorithms and capabilities for key structures.  Once defined by
   registration with IANA, the list capabilities is immutable.  As a
   general rule, the capabilities are going to correspond to algorithm
   or key fields, but they do not need to do so.  An example of this is
   the HSS-LMS key capabilities defined below where the hash algorithm
   used is included.



   The capability structure is an array of values, the order being
   dependent on the specific algorithm or key.  For an algorithm, the
   first element should always be a key type value, but the items that
   are specific to a key should not be included in the algorithm
   capabilities.  This means that if one wishes to enumerate all of the
   capabilities for a device which implements ECDH, it requires multiple
   pairs of capability structures (algorithm, key) to deal with the
   different key types and curves that are supported.  For a key, the
   first element should also be a key type value, while this means that
   this value will be duplicated if both an algorithm and key capability
   are used, the key type is needed in order to understand the rest of
   the values.




8.1. Assignments for Existing Key Types

   There are a number of pre-existing key types, the following deals
   with creating the capability definition for those structures:



   *  OKP, EC2: The list of capabilities is:



      -  The key type value,



      -  One curve for that key type.



   *  RSA: The list of capabilities is:



      -  The key type value.



   *  Symmetric: The list of capabilities is:



      -  The key type value.



   *  HSS-LMS: The list of capabilities is:



      -  The key type value,



      -  Algorithm identifier for the underlying hash function.




8.2. Assignments for Existing Algorithms

   For the current set of algorithms in the registry, those in this
   document as well as those in [RFC8230] and [I-D.ietf-cose-hash-sig],
   the capabilities is set to the single entry of the key type that will
   be accepted.  It is expected other algorithms will have no items or
   multiple items.




9. CBOR Encoding Restrictions

   There has been an attempt to limit the number of places where the
   document needs to impose restrictions on how the CBOR Encoder needs
   to work.  We have managed to narrow it down to the following
   restrictions:



   *  The restriction applies to the encoding of the COSE_KDF_Context.



   *  Encoding MUST be done using definite lengths and the length of the
      MUST be the minimum possible length.  This means that the integer
      1 is encoded as "0x01" and not "0x1801".



   *  Applications MUST NOT generate messages with the same label used
      twice as a key in a single map.  Applications MUST NOT parse and
      process messages with the same label used twice as a key in a
      single map.  Applications can enforce the parse and process
      requirement by using parsers that will fail the parse step or by
      using parsers that will pass all keys to the application, and the
      application can perform the check for duplicate keys.




10. IANA Considerations


10.1. Changes to "COSE Key Types" registry.

   IANA is requested to create a new column in the "COSE Key Types"
   registry.  The new column is to be labeled "Capabilities".  The new
   column is to be populated according the the entries in Table 22.



+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name | Value     | Capabilities        |
+======+===========+=====================+
| 1    | OKP       | kty, crv            |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 2    | EC2       | kty, crv            |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 3    | RSA       | kty                 |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 4    | Symmetric | kty                 |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 5    | HSS‑LMS   | kty, hash algorithm |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 22: Key Type Capabilities




10.2. Changes to "COSE Algorithms" registry

   IANA is requested to create a new column in the "COSE Algorithms"
   registry.  The new column is to be labeled "Capabilities".  The new
   column is populated with "kty" for all current, non-provisional,
   registrations.  It is expected that the documents which define those
   algorithms will be expanded to include this registration, if this is
   not done then the DE should be consulted at the time of final
   registration.




11. Security Considerations

   There are a number of security considerations that need to be taken
   into account by implementers of this specification.  The security
   considerations that are specific to an individual algorithm are
   placed next to the description of the algorithm.  While some
   considerations have been highlighted here, additional considerations
   may be found in the documents listed in the references.



   Implementations need to protect the private key material for any
   individuals.  There are some cases in this document that need to be
   highlighted on this issue.



   *  Using the same key for two different algorithms can leak
      information about the key.  It is therefore recommended that keys
      be restricted to a single algorithm.



   *  Use of 'direct' as a recipient algorithm combined with a second
      recipient algorithm exposes the direct key to the second
      recipient.



   *  Several of the algorithms in this document have limits on the
      number of times that a key can be used without leaking information
      about the key.



   The use of ECDH and direct plus KDF (with no key wrap) will not
   directly lead to the private key being leaked; the one way function
   of the KDF will prevent that.  There is, however, a different issue
   that needs to be addressed.  Having two recipients requires that the
   CEK be shared between two recipients.  The second recipient therefore
   has a CEK that was derived from material that can be used for the
   weak proof of origin.  The second recipient could create a message
   using the same CEK and send it to the first recipient; the first
   recipient would, for either static-static ECDH or direct plus KDF,
   make an assumption that the CEK could be used for proof of origin
   even though it is from the wrong entity.  If the key wrap step is
   added, then no proof of origin is implied and this is not an issue.



   Although it has been mentioned before, the use of a single key for
   multiple algorithms has been demonstrated in some cases to leak
   information about a key, provide the opportunity for attackers to
   forge integrity tags, or gain information about encrypted content.
   Binding a key to a single algorithm prevents these problems.  Key
   creators and key consumers are strongly encouraged not only to create
   new keys for each different algorithm, but to include that selection
   of algorithm in any distribution of key material and strictly enforce
   the matching of algorithms in the key structure to algorithms in the
   message structure.  In addition to checking that algorithms are
   correct, the key form needs to be checked as well.  Do not use an
   'EC2' key where an 'OKP' key is expected.



   Before using a key for transmission, or before acting on information
   received, a trust decision on a key needs to be made.  Is the data or
   action something that the entity associated with the key has a right
   to see or a right to request?  A number of factors are associated
   with this trust decision.  Some of the ones that are highlighted here
   are:



   *  What are the permissions associated with the key owner?



   *  Is the cryptographic algorithm acceptable in the current context?



   *  Have the restrictions associated with the key, such as algorithm
      or freshness, been checked and are they correct?



   *  Is the request something that is reasonable, given the current
      state of the application?



   *  Have any security considerations that are part of the message been
      enforced (as specified by the application or 'crit' parameter)?



   There are a large number of algorithms presented in this document
   that use nonce values.  For all of the nonces defined in this
   document, there is some type of restriction on the nonce being a
   unique value either for a key or for some other conditions.  In all
   of these cases, there is no known requirement on the nonce being both
   unique and unpredictable; under these circumstances, it's reasonable
   to use a counter for creation of the nonce.  In cases where one wants
   the pattern of the nonce to be unpredictable as well as unique, one
   can use a key created for that purpose and encrypt the counter to
   produce the nonce value.



   One area that has been starting to get exposure is doing traffic
   analysis of encrypted messages based on the length of the message.
   This specification does not provide for a uniform method of providing
   padding as part of the message structure.  An observer can
   distinguish between two different strings (for example, 'YES' and
   'NO') based on the length for all of the content encryption
   algorithms that are defined in this document.  This means that it is
   up to the applications to document how content padding is to be done
   in order to prevent or discourage such analysis.  (For example, the
   strings could be defined as 'YES' and 'NO '.)




12. References


12.1. Normative References


   [I-D.ietf-cose-rfc8152bis-struct]

              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Structures and Process", Work in Progress, Internet-Draft,
              draft-ietf-cose-rfc8152bis-struct-06, 11 September 2019,
              <https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
              struct-06>.




   [RFC2104]
  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/info/rfc2104>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.



[RFC3394]  Schaad, J. and R. Housley, "Advanced Encryption Standard



              (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
              September 2002, <https://www.rfc-editor.org/info/rfc3394>.




   [RFC3610]
  Whiting, D., Housley, R., and N. Ferguson, "Counter with
              CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September
              2003, <https://www.rfc-editor.org/info/rfc3610>.




   [RFC5869]
  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869,
              DOI 10.17487/RFC5869, May 2010,
              <https://www.rfc-editor.org/info/rfc5869>.




   [RFC6090]
  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
              Curve Cryptography Algorithms", RFC 6090,
              DOI 10.17487/RFC6090, February 2011,
              <https://www.rfc-editor.org/info/rfc6090>.




   [RFC6979]
  Pornin, T., "Deterministic Usage of the Digital Signature
              Algorithm (DSA) and Elliptic Curve Digital Signature
              Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
              2013, <https://www.rfc-editor.org/info/rfc6979>.




   [RFC7049]
  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.




   [RFC8439]
  Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
              Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
              <https://www.rfc-editor.org/info/rfc8439>.




   [RFC7748]
  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [AES-GCM]
  National Institute of Standards and Technology,
              "Recommendation for Block Cipher Modes of Operation:
              Galois/Counter Mode (GCM) and GMAC",
              DOI 10.6028/NIST.SP.800-38D, NIST Special
              Publication 800-38D, November 2007,
              <https://csrc.nist.gov/publications/nistpubs/800-38D/SP-
              800-38D.pdf>.




   [DSS]
      National Institute of Standards and Technology, "Digital
              Signature Standard (DSS)", DOI 10.6028/NIST.FIPS.186-4,



              FIPS PUB 186-4, July 2013,
              <http://nvlpubs.nist.gov/nistpubs/FIPS/
              NIST.FIPS.186-4.pdf>.




   [MAC]
      National Institute of Standards and Technology, "Computer
              Data Authentication", FIPS PUB 113, May 1985,
              <http://csrc.nist.gov/publications/fips/fips113/
              fips113.html>.




   [SEC1]
     Certicom Research, "SEC 1: Elliptic Curve Cryptography",
              May 2009, <http://www.secg.org/sec1-v2.pdf>.




   [RFC8032]
  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <https://www.rfc-editor.org/info/rfc8032>.




12.2. Informative References


   [RFC8610]
  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/info/rfc8610>.




   [RFC4231]
  Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
              224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
              RFC 4231, DOI 10.17487/RFC4231, December 2005,
              <https://www.rfc-editor.org/info/rfc4231>.




   [RFC4493]
  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
              AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
              2006, <https://www.rfc-editor.org/info/rfc4493>.




   [RFC5116]
  McGrew, D., "An Interface and Algorithms for Authenticated
              Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
              <https://www.rfc-editor.org/info/rfc5116>.




   [RFC5480]
  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
              <https://www.rfc-editor.org/info/rfc5480>.




   [RFC6151]
  Turner, S. and L. Chen, "Updated Security Considerations
              for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
              RFC 6151, DOI 10.17487/RFC6151, March 2011,
              <https://www.rfc-editor.org/info/rfc6151>.




   [RFC8259]
  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC7518]
  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
              DOI 10.17487/RFC7518, May 2015,
              <https://www.rfc-editor.org/info/rfc7518>.




   [RFC8017]
  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/info/rfc8017>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8551]
  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Message Specification", RFC 8551, DOI 10.17487/RFC8551,
              April 2019, <https://www.rfc-editor.org/info/rfc8551>.




   [RFC8230]
  Jones, M., "Using RSA Algorithms with CBOR Object Signing
              and Encryption (COSE) Messages", RFC 8230,
              DOI 10.17487/RFC8230, September 2017,
              <https://www.rfc-editor.org/info/rfc8230>.




   [I-D.ietf-core-oscore-groupcomm]

              Tiloca, M., Selander, G., Palombini, F., and J. Park,
              "Group OSCORE - Secure Group Communication for CoAP", Work
              in Progress, Internet-Draft, draft-ietf-core-oscore-
              groupcomm-05, 5 July 2019, <https://tools.ietf.org/html/
              draft-ietf-core-oscore-groupcomm-05>.




   [I-D.ietf-cose-hash-sig]

              Housley, R., "Use of the HSS/LMS Hash-based Signature
              Algorithm with CBOR Object Signing and Encryption (COSE)",
              Work in Progress, Internet-Draft, draft-ietf-cose-hash-
              sig-06, 1 November 2019,
              <https://tools.ietf.org/html/draft-ietf-cose-hash-sig-06>.




   [SP800-56A]

              Barker, E., Chen, L., Roginsky, A., and M. Smid,
              "Recommendation for Pair-Wise Key Establishment Schemes
              Using Discrete Logarithm Cryptography",
              DOI 10.6028/NIST.SP.800-56Ar2, NIST Special Publication
              800-56A, Revision 2, May 2013,
              <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-56Ar2.pdf>.



Acknowledgments



   This document is a product of the COSE working group of the IETF.



   The following individuals are to blame for getting me started on this
   project in the first place: Richard Barnes, Matt Miller, and Martin
   Thomson.



   The initial version of the specification was based to some degree on
   the outputs of the JOSE and S/MIME working groups.



   The following individuals provided input into the final form of the
   document: Carsten Bormann, John Bradley, Brain Campbell, Michael B.
   Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Goran
   Selander.



Author's Address



Jim Schaad
August Cellars



   Email: ietf@augustcellars.com























draft-ietf-cose-rfc8152bis-struct-07 - CBOR Object Signing and Encryption (COSE): Structures and Process 






draft-ietf-cose-rfc8152bis-struct-07 - CBOR Object Signing and Encryption (COSE)

Index
Prev
Next
Forward 5


COSE Working Group

Internet-Draft

Obsoletes: 8152 (if approved)

Intended status: Standards Track

Expires: 20 May 2020


J. Schaad

August Cellars

17 November 2019





CBOR Object Signing and Encryption (COSE): Structures and Process  

draft-ietf-cose-rfc8152bis-struct-07


Abstract

   Concise Binary Object Representation (CBOR) is a data format designed
   for small code size and small message size.  There is a need for the
   ability to have basic security services defined for this data format.
   This document defines the CBOR Object Signing and Encryption (COSE)
   protocol.  This specification describes how to create and process
   signatures, message authentication codes, and encryption using CBOR
   for serialization.  This specification additionally describes how to
   represent cryptographic keys using CBOR.



   This document along with [I-D.ietf-cose-rfc8152bis-algs] obsoletes
   RFC8152.



Contributing to this document



   This note is to be removed before publishing as an RFC.



   The source for this draft is being maintained in GitHub.  Suggested
   changes should be submitted as pull requests at https://github.com/
   cose-wg/cose-rfc8152bis.  Instructions are on that page as well.
   Editorial changes can be managed in GitHub, but any substantial
   issues need to be discussed on the COSE mailing list.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on 20 May 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Design Changes from JOSE


	 1.2.  Changes from RFC8152


	 1.3.  Requirements Terminology


	 1.4.  CBOR Grammar


	 1.5.  CBOR-Related Terminology


	 1.6.  Document Terminology



	2.  Basic COSE Structure


	3.  Header Parameters
	 3.1.  Common COSE Headers Parameters



	4.  Signing Objects
	 4.1.  Signing with One or More Signers


	 4.2.  Signing with One Signer


	 4.3.  Externally Supplied Data


	 4.4.  Signing and Verification Process



	5.  Counter Signatures
	 5.1.  Full Countersignatures


	 5.2.  Abbreviated Countersignatures



	6.  Encryption Objects
	 6.1.  Enveloped COSE Structure
	  6.1.1.  Content Key Distribution Methods



	 6.2.  Single Recipient Encrypted


	 6.3.  How to Encrypt and Decrypt for AEAD Algorithms


	 6.4.  How to Encrypt and Decrypt for AE Algorithms



	7.  MAC Objects
	 7.1.  MACed Message with Recipients


	 7.2.  MACed Messages with Implicit Key


	 7.3.  How to Compute and Verify a MAC



	8.  Key Objects
	 8.1.  COSE Key Common Parameters



	9.  Taxonomy of Algorithms used by COSE
	 9.1.  Signature Algorithms


	 9.2.  Message Authentication Code (MAC) Algorithms


	 9.3.  Content Encryption Algorithms


	 9.4.  Key Derivation Functions (KDFs)


	 9.5.  Content Key Distribution Methods
	  9.5.1.  Direct Encryption


	  9.5.2.  Key Wrap


	  9.5.3.  Key Transport


	  9.5.4.  Direct Key Agreement


	  9.5.5.  Key Agreement with Key Wrap





	10. CBOR Encoding Restrictions


	11. Application Profiling Considerations


	12. IANA Considerations
	 12.1.  CBOR Tag Assignment


	 12.2.  COSE Header Parameters Registry


	 12.3.  COSE Header Algorithm Parameters Registry


	 12.4.  COSE Key Common Parameters Registry


	 12.5.  Media Type Registrations
	  12.5.1.  COSE Security Message


	  12.5.2.  COSE Key Media Type



	 12.6.  CoAP Content-Formats Registry



	13. Security Considerations


	14. Implementation Status
	 14.1.  Author's Versions


	 14.2.  JavaScript Version


	 14.3.  Python Version


	 14.4.  COSE Testing Library



	15. References
	 15.1.  Normative References


	 15.2.  Informative References



	Appendix A.  Guidelines for External Data Authentication of Algorithms


	Appendix B.  Two Layers of Recipient Information


	Appendix C.  Examples
	 C.1.  Examples of Signed Messages
	  C.1.1.  Single Signature


	  C.1.2.  Multiple Signers


	  C.1.3.  Counter Signature


	  C.1.4.  Signature with Criticality



	 C.2.  Single Signer Examples
	  C.2.1.  Single ECDSA Signature



	 C.3.  Examples of Enveloped Messages
	  C.3.1.  Direct ECDH


	  C.3.2.  Direct Plus Key Derivation


	  C.3.3.  Counter Signature on Encrypted Content


	  C.3.4.  Encrypted Content with External Data



	 C.4.  Examples of Encrypted Messages
	  C.4.1.  Simple Encrypted Message


	  C.4.2.  Encrypted Message with a Partial IV



	 C.5.  Examples of MACed Messages
	  C.5.1.  Shared Secret Direct MAC


	  C.5.2.  ECDH Direct MAC


	  C.5.3.  Wrapped MAC


	  C.5.4.  Multi-Recipient MACed Message



	 C.6.  Examples of MAC0 Messages
	  C.6.1.  Shared Secret Direct MAC



	 C.7.  COSE Keys
	  C.7.1.  Public Keys


	  C.7.2.  Private Keys





	Acknowledgments


	Author's Address




1. Introduction

   There has been an increased focus on small, constrained devices that
   make up the Internet of Things (IoT).  One of the standards that has
   come out of this process is "Concise Binary Object Representation
   (CBOR)" [RFC7049].  CBOR extended the data model of the JavaScript
   Object Notation (JSON) [RFC8259] by allowing for binary data, among
   other changes.  CBOR has been adopted by several of the IETF working
   groups dealing with the IoT world as their encoding of data
   structures.  CBOR was designed specifically to be both small in terms
   of messages transport and implementation size and be a schema-free
   decoder.  A need exists to provide message security services for IoT,
   and using CBOR as the message-encoding format makes sense.



   The JOSE working group produced a set of documents [RFC7515]
   [RFC7516] [RFC7517] [RFC7518] using JSON that specified how to
   process encryption, signatures, and Message Authentication Code (MAC)
   operations and how to encode keys using JSON.  This document along
   with [I-D.ietf-cose-rfc8152bis-algs] defines the CBOR Object Signing
   and Encryption (COSE) standard, which does the same thing for the
   CBOR encoding format.  While there is a strong attempt to keep the
   flavor of the original JSON Object Signing and Encryption (JOSE)
   documents, two considerations are taken into account:



   *  CBOR has capabilities that are not present in JSON and are
      appropriate to use.  One example of this is the fact that CBOR has
      a method of encoding binary directly without first converting it
      into a base64-encoded string.



   *  COSE is not a direct copy of the JOSE specification.  In the
      process of creating COSE, decisions that were made for JOSE were
      re-examined.  In many cases, different results were decided on as
      the criteria were not always the same.



   This document contains:



   *  The description of the structure for the CBOR objects which are
      transmitted over the wire.  Two objects are defined for
      encryption, signing and message authentication.  One object is
      defined for transporting keys and one for transporting groups of
      keys.



   *  The procedures used to build the inputs to the cryptographic
      functions required for each of the structures.



   *  A starting set of attributes that apply to the different security
      objects.



   This document does not contain the rules and procedures for using
   specific cryptographic algorithms.  Details on specific algorithms
   can be found in [I-D.ietf-cose-rfc8152bis-algs] and [RFC8230].
   Details for additional algorithms are expected to be defined in
   future documents.



   One feature that is present in CMS [RFC5652] that is not present in
   this standard is a digest structure.  This omission is deliberate.
   It is better for the structure to be defined in each document as
   different protocols will want to include a different set of fields as
   part of the structure.  While an algorithm identifier and the digesst
   value are going to be common to all applications, the two values may
   not always be adjacent as the algorithm could be defined once with
   multiple values.  Applications may additionally want to define
   additional data fields as part of the stucture.  A common structure
   is going to include a URI or other pointer to where the data that is
   being hashed is kept, allowing this to be application specific.




1.1. Design Changes from JOSE

   *  Define a single top message structure so that encrypted, signed,
      and MACed messages can easily be identified and still have a
      consistent view.



   *  Signed messages distinguish between the protected and unprotected
      parameters that relate to the content from those that relate to
      the signature.



   *  MACed messages are separated from signed messages.



   *  MACed messages have the ability to use the same set of recipient
      algorithms as enveloped messages for obtaining the MAC
      authentication key.



   *  Use binary encodings for binary data rather than base64url
      encodings.



   *  Combine the authentication tag for encryption algorithms with the
      ciphertext.



   *  The set of cryptographic algorithms has been expanded in some
      directions and trimmed in others.




1.2. Changes from RFC8152

   *  Split the orignal document into this document and
      [I-D.ietf-cose-rfc8152bis-algs].



   *  Add some text describing why there is no digest structure defined
      by COSE.



   *  Rearrange the text around counter signatures and define a CBOR Tag
      for a standalone countersignature.




1.3. Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




1.4. CBOR Grammar

   There was not a standard CBOR grammar available when COSE was
   originally written.  For that reason the CBOR structures defined here
   are described in prose.  Since that time CBOR Data Definition
   Language (CDDL) [RFC8610] has been published as an RFC.  The CBOR
   grammar presented in this document is compatible with CDDL.



   The document was developed by first working on the grammar and then
   developing the prose to go with it.  An artifact of this is that the
   prose was written using the primitive type strings defined by CBOR
   Data Definition Language (CDDL) [RFC8610].  In this specification,
   the following primitive types are used:



      any -- non-specific value that permits all CBOR values to be
      placed here.



      bool -- a boolean value (true: major type 7, value 21; false:
      major type 7, value 20).



      bstr -- byte string (major type 2).



      int -- an unsigned integer or a negative integer.



      nil -- a null value (major type 7, value 22).



      nint -- a negative integer (major type 1).



      tstr -- a UTF-8 text string (major type 3).



      uint -- an unsigned integer (major type 0).



   Two syntaxes from CDDL appear in this document as shorthand.  These
   are:



      FOO / BAR -- indicates that either FOO or BAR can appear here.



      [+ FOO] -- indicates that the type FOO appears one or more times
      in an array.



   Two of the constraints defined by CDDL are also used in this
   document.  These are:



      type1 .cbor type2 -- indicates that the contents of type1, usually
      bstr, contains a value of type2.



      type1 .size integer -- indicates that the contents of type1 is
      integer bytes long



   As well as the prose description, a version of a CBOR grammar is
   presented in CDDL.  The CDDL grammar is informational; the prose
   description is normative.



   The collected CDDL can be extracted from the XML version of this
   document via the following XPath expression below.  (Depending on the
   XPath evaluator one is using, it may be necessary to deal with &gt;
   as an entity.)



   //sourcecode[@type='CDDL']/text()



   CDDL expects the initial non-terminal symbol to be the first symbol
   in the file.  For this reason, the first fragment of CDDL is
   presented here.



   start = COSE_Messages / COSE_Key / COSE_KeySet / Internal_Types



; This is defined to make the tool quieter:
Internal_Types = Sig_structure / Enc_structure / MAC_structure



   The non-terminal Internal_Types is defined for dealing with the
   automated validation tools used during the writing of this document.
   It references those non-terminals that are used for security
   computations but are not emitted for transport.




1.5. CBOR-Related Terminology

   In JSON, maps are called objects and only have one kind of map key: a
   string.  In COSE, we use strings, negative integers, and unsigned
   integers as map keys.  The integers are used for compactness of
   encoding and easy comparison.  The inclusion of strings allows for an
   additional range of short encoded values to be used as well.  Since
   the word "key" is mainly used in its other meaning, as a
   cryptographic key, we use the term "label" for this usage as a map
   key.



   The presence of a label in a COSE map that is not a string or an
   integer is an error.  Applications can either fail processing or
   process messages by ignoring incorrect labels; however, they MUST NOT
   create messages with incorrect labels.



   A CDDL grammar fragment defines the non-terminal 'label', as in the
   previous paragraph, and 'values', which permits any value to be used.



label = int / tstr
values = any




1.6. Document Terminology

   In this document, we use the following terminology:



   Byte is a synonym for octet.



   Constrained Application Protocol (CoAP) is a specialized web transfer
   protocol for use in constrained systems.  It is defined in [RFC7252].



   Authenticated Encryption (AE) [RFC5116] algorithms are those
   encryption algorithms that provide an authentication check of the
   contents algorithm with the encryption service.



   Authenticated Encryption with Associated Data (AEAD) [RFC5116]
   algorithms provide the same content authentication service as AE
   algorithms, but they additionally provide for authentication of non-
   encrypted data as well.



   Context is used throughout the document to represent information that
   is not part of the COSE message.  Information which is part of the
   context can come from several different sources including: Protocol
   interactions, associated key structures and program configuration.
   The context to use can be implicit, identified using the 'kid
   context' header field defined in [RFC8613], or identified by a
   protocol specific identifier.  Context should generally be included
   in the cryptographic configuration, for more details see Section 4.3.




2. Basic COSE Structure

   The COSE object structure is designed so that there can be a large
   amount of common code when parsing and processing the different types
   of security messages.  All of the message structures are built on the
   CBOR array type.  The first three elements of the array always
   contain the same information:



   1.  The set of protected header parameters wrapped in a bstr.



   2.  The set of unprotected header parameters as a map.



   3.  The content of the message.  The content is either the plaintext
       or the ciphertext as appropriate.  The content may be detached
       (i.e. transported separately from the COSE structure), but the
       location is still used.  The content is wrapped in a bstr when
       present and is a nil value when detached.



   Elements after this point are dependent on the specific message type.



   COSE messages are built using the concept of layers to separate
   different types of cryptographic concepts.  As an example of how this
   works, consider the COSE_Encrypt message (Section 6.1).  This message
   type is broken into two layers: the content layer and the recipient
   layer.  In the content layer, the plaintext is encrypted and
   information about the encrypted message is placed.  In the recipient
   layer, the content encryption key (CEK) is encrypted and information
   about how it is encrypted for each recipient is placed.  A single
   layer version of the encryption message COSE_Encrypt0 (Section 6.2)
   is provided for cases where the CEK is pre-shared.



   Identification of which type of message has been presented is done by
   the following methods:



   1.  The specific message type is known from the context.  This may be
       defined by a marker in the containing structure or by
       restrictions specified by the application protocol.



   2.  The message type is identified by a CBOR tag.  Messages with a
       CBOR tag are known in this specification as tagged messages,
       while those without the CBOR tag are known as untagged messages.
       This document defines a CBOR tag for each of the message
       structures.  These tags can be found in Table 1.



   3.  When a COSE object is carried in a media type of 'application/
       cose', the optional parameter 'cose-type' can be used to identify
       the embedded object.  The parameter is OPTIONAL if the tagged
       version of the structure is used.  The parameter is REQUIRED if
       the untagged version of the structure is used.  The value to use
       with the parameter for each of the structures can be found in
       Table 1.



   4.  When a COSE object is carried as a CoAP payload, the CoAP
       Content-Format Option can be used to identify the message
       content.  The CoAP Content-Format values can be found in Table 2.
       The CBOR tag for the message structure is not required as each
       security message is uniquely identified.



+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| CBOR | cose‑type        | Data Item             | Semantics   |
| Tag  |                  |                       |             |
+======+==================+=======================+=============+
| 98   | cose‑sign        | COSE_Sign             | COSE Signed |
|      |                  |                       | Data Object |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 18   | cose‑sign1       | COSE_Sign1            | COSE Single |
|      |                  |                       | Signer Data |
|      |                  |                       | Object      |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 96   | cose‑encrypt     | COSE_Encrypt          | COSE        |
|      |                  |                       | Encrypted   |
|      |                  |                       | Data Object |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 16   | cose‑encrypt0    | COSE_Encrypt0         | COSE Single |
|      |                  |                       | Recipient   |
|      |                  |                       | Encrypted   |
|      |                  |                       | Data Object |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 97   | cose‑mac         | COSE_Mac              | COSE MACed  |
|      |                  |                       | Data Object |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| 17   | cose‑mac0        | COSE_Mac0             | COSE Mac w/ |
|      |                  |                       | o           |
|      |                  |                       | Recipients  |
|      |                  |                       | Object      |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| TBD0 | cose‑countersign | COSE_Countersignature | COSE        |
|      |                  |                       | standalone  |
|      |                  |                       | counter     |
|      |                  |                       | signature   |
+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                    Table 1: COSE Message Identification



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| Media Type                | Encoding | ID  | Reference  |
+===========================+==========+=====+============+
| application/cose; cose‑   |          | 98  | [[THIS     |
| type="cose‑sign"          |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose; cose‑   |          | 18  | [[THIS     |
| type="cose‑sign1"         |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose; cose‑   |          | 96  | [[THIS     |
| type="cose‑encrypt"       |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose; cose‑   |          | 16  | [[THIS     |
| type="cose‑encrypt0"      |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose; cose‑   |          | 97  | [[THIS     |
| type="cose‑mac"           |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose; cose‑   |          | 17  | [[THIS     |
| type="cose‑mac0"          |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose‑key      |          | 101 | [[THIS     |
|                           |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| application/cose‑key‑set  |          | 102 | [[THIS     |
|                           |          |     | DOCUMENT]] |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 2: CoAP Content-Formats for COSE



   The following CDDL fragment identifies all of the top messages
   defined in this document.  Separate non-terminals are defined for the
   tagged and the untagged versions of the messages.



   COSE_Messages = COSE_Untagged_Message / COSE_Tagged_Message



COSE_Untagged_Message = COSE_Sign / COSE_Sign1 /
    COSE_Encrypt / COSE_Encrypt0 /
    COSE_Mac / COSE_Mac0 / COSE_Countersignature

COSE_Tagged_Message = COSE_Sign_Tagged / COSE_Sign1_Tagged /
    COSE_Encrypt_Tagged / COSE_Encrypt0_Tagged /
    COSE_Mac_Tagged / COSE_Mac0_Tagged / COSE_Countersignature_Tagged




3. Header Parameters

   The structure of COSE has been designed to have two buckets of
   information that are not considered to be part of the payload itself,
   but are used for holding information about content, algorithms, keys,
   or evaluation hints for the processing of the layer.  These two
   buckets are available for use in all of the structures except for
   keys.  While these buckets are present, they may not all be usable in
   all instances.  For example, while the protected bucket is defined as
   part of the recipient structure, some of the algorithms used for
   recipient structures do not provide for authenticated data.  If this
   is the case, the protected bucket is left empty.



Both buckets are implemented as CBOR maps.  The map key is a 'label'
(Section 1.5).  The value portion is dependent on the definition for
the label.  Both maps use the same set of label/value pairs.  The
integer and string values for labels have been divided into several
sections including a standard range, a private range, and a range
that is dependent on the algorithm selected.  The defined labels can
be found in the "COSE Header Parameters" IANA registry
(Section 12.2).



   The two buckets are:



protected:  Contains parameters about the current layer that are
   cryptographically protected.  This bucket MUST be empty if it is
   not going to be included in a cryptographic computation.  This
   bucket is encoded in the message as a binary object.  This value
   is obtained by CBOR encoding the protected map and wrapping it in
   a bstr object.  Senders SHOULD encode a zero‑length map as a zero‑
   length byte string rather than as a zero‑length map (encoded as
   h'a0').  The zero‑length binary encoding is preferred because it
   is both shorter and the version used in the serialization
   structures for cryptographic computation.  After encoding the map,
   the value is wrapped in the binary object.  Recipients MUST accept
   both a zero‑length binary value and a zero‑length map encoded in
   the binary value.  The wrapping allows for the encoding of the
   protected map to be transported with a greater chance that it will
   not be altered in transit.  (Badly behaved intermediates could
   decode and re‑encode, but this will result in a failure to verify
   unless the re‑encoded byte string is identical to the decoded byte
   string.)  This avoids the problem of all parties needing to be
   able to do a common canonical encoding.

unprotected:  Contains parameters about the current layer that are
   not cryptographically protected.



   Only parameters that deal with the current layer are to be placed at
   that layer.  As an example of this, the parameter 'content type'
   describes the content of the message being carried in the message.
   As such, this parameter is placed only in the content layer and is
   not placed in the recipient or signature layers.  In principle, one
   should be able to process any given layer without reference to any
   other layer.  With the exception of the COSE_Sign structure, the only
   data that needs to cross layers is the cryptographic key.



   The buckets are present in all of the security objects defined in
   this document.  The fields in order are the 'protected' bucket (as a
   CBOR 'bstr' type) and then the 'unprotected' bucket (as a CBOR 'map'
   type).  The presence of both buckets is required.  The parameters
   that go into the buckets come from the IANA "COSE Header Parameters"
   registry (Section 12.2).  Some common parameters are defined in the
   next section.



   Labels in each of the maps MUST be unique.  When processing messages,
   if a label appears multiple times, the message MUST be rejected as
   malformed.  Applications SHOULD verify that the same label does not
   occur in both the protected and unprotected headers.  If the message
   is not rejected as malformed, attributes MUST be obtained from the
   protected bucket before they are obtained from the unprotected
   bucket.



   The following CDDL fragment represents the two header buckets.  A
   group "Headers" is defined in CDDL that represents the two buckets in
   which attributes are placed.  This group is used to provide these two
   fields consistently in all locations.  A type is also defined that
   represents the map of common headers.



Headers = (
    protected : empty_or_serialized_map,
    unprotected : header_map
)

header_map = {
    Generic_Headers,
    * label => values
}



   empty_or_serialized_map = bstr .cbor header_map / bstr .size 0




3.1. Common COSE Headers Parameters

   This section defines a set of common header parameters.  A summary of
   these parameters can be found in Table 3.  This table should be
   consulted to determine the value of label and the type of the value.
   The set of header parameters defined in this section are:



alg:  This parameter is used to indicate the algorithm used for the
   security processing.  This parameter MUST be authenticated where
   the ability to do so exists.  This support is provided by AEAD
   algorithms or construction (COSE_Sign, COSE_Sign1, COSE_Mac, and
   COSE_Mac0).  This authentication can be done either by placing the
   parameter in the protected header bucket or as part of the
   externally supplied data.  The value is taken from the "COSE
   Algorithms" registry (see [COSE.Algorithms]).

crit:  The parameter is used to indicate which protected header
   labels an application that is processing a message is required to
   understand.  Parameters defined in this document do not need to be
   included as they should be understood by all implementations.
   When present, this parameter MUST be placed in the protected
   header bucket.  The array MUST have at least one value in it.



      Not all labels need to be included in the 'crit' parameter.  The
      rules for deciding which header labels are placed in the array
      are:



      *  Integer labels in the range of 0 to 7 SHOULD be omitted.



      *  Integer labels in the range -1 to -128 can be omitted as they
         are algorithm dependent.  If an application can correctly
         process an algorithm, it can be assumed that it will correctly
         process all of the common parameters associated with that
         algorithm.  Integer labels in the range -129 to -65536 SHOULD
         be included as these would be less common parameters that might
         not be generally supported.



      *  Labels for parameters required for an application MAY be
         omitted.  Applications should have a statement if the label can
         be omitted.



      The header parameter values indicated by 'crit' can be processed
      by either the security library code or an application using a
      security library; the only requirement is that the parameter is
      processed.  If the 'crit' value list includes a value for which
      the parameter is not in the protected bucket, this is a fatal
      error in processing the message.



content type:  This parameter is used to indicate the content type of
   the data in the payload or ciphertext fields.  Integers are from
   the "CoAP Content‑Formats" IANA registry table [COAP.Formats].
   Text values following the syntax of "<type‑name>/<subtype‑name>"
   where <type‑name> and <subtype‑name> are defined in Section 4.2 of




      [RFC6838]
.  Leading and trailing whitespace is also omitted.
      Textual content values along with parameters and subparameters can
      be located using the IANA "Media Types" registry.  Applications
      SHOULD provide this parameter if the content structure is
      potentially ambiguous.



kid:  This parameter identifies one piece of data that can be used as
   input to find the needed cryptographic key.  The value of this
   parameter can be matched against the 'kid' member in a COSE_Key
   structure.  Other methods of key distribution can define an
   equivalent field to be matched.  Applications MUST NOT assume that
   'kid' values are unique.  There may be more than one key with the
   same 'kid' value, so all of the keys associated with this 'kid'
   may need to be checked.  The internal structure of 'kid' values is
   not defined and cannot be relied on by applications.  Key
   identifier values are hints about which key to use.  This is not a
   security‑critical field.  For this reason, it can be placed in the
   unprotected headers bucket.

IV:  This parameter holds the Initialization Vector (IV) value.  For
   some symmetric encryption algorithms, this may be referred to as a
   nonce.  The IV can be placed in the unprotected header as
   modifying the IV will cause the decryption to yield plaintext that
   is readily detectable as garbled.

Partial IV:  This parameter holds a part of the IV value.  When using
   the COSE_Encrypt0 structure, a portion of the IV can be part of
   the context associated with the key (Context IV) while a portion
   can be changed with each message (Parital IV).  This field is used
   to carry a value that causes the IV to be changed for each
   message.  The Parital IV can be placed in the unprotected header
   as modifying the value will cause the decryption to yield
   plaintext that is readily detectable as garbled.  The
   'Initialization Vector' and 'Partial Initialization Vector'
   parameters MUST NOT both be present in the same security layer.



      The message IV is generated by the following steps:



      1.  Left-pad the Partial IV with zeros to the length of IV.



      2.  XOR the padded Partial IV with the context IV.



counter signature:  This parameter holds one or more counter
   signature values.  Counter signatures provide a method of having a
   second party sign some data.  The counter signature parameter can
   occur as an unprotected attribute in any of the following
   structures: COSE_Sign1, COSE_Signature, COSE_Encrypt,
   COSE_recipient, COSE_Encrypt0, COSE_Mac, and COSE_Mac0.  These



      structures all have the same beginning elements, so that a
      consistent calculation of the counter signature can be computed.
      Details on counter signatures are found in Section 5.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    |Label| Value Type     | Value Registry  | Description    |
+=========+=====+================+=================+================+
| alg     | 1   | int / tstr     | COSE Algorithms | Cryptographic  |
|         |     |                | registry        |algorithm to use|
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| crit    | 2   | [+ label]      | COSE Header     |Critical headers|
|         |     |                | Parameters      |to be understood|
|         |     |                | registry        |                |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| content | 3   | tstr / uint    | CoAP Content‑   |Content type of |
| type    |     |                |Formats or Media | the payload    |
|         |     |                |Types registries |                |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| kid     | 4   | bstr           |                 | Key identifier |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IV      | 5   | bstr           |                 | Full           |
|         |     |                |                 | Initialization |
|         |     |                |                 | Vector         |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Partial | 6   | bstr           |                 | Partial        |
| IV      |     |                |                 | Initialization |
|         |     |                |                 | Vector         |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| counter | 7   |COSE_Signature /|                 | CBOR‑encoded   |
|signature|     | [+             |                 | signature      |
|         |     |COSE_Signature ]|                 | structure      |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 3: Common Header Parameters



   The CDDL fragment that represents the set of headers defined in this
   section is given below.  Each of the headers is tagged as optional
   because they do not need to be in every map; headers required in
   specific maps are discussed above.



Generic_Headers = (
    ? 1 => int / tstr,  ; algorithm identifier
    ? 2 => [+label],    ; criticality
    ? 3 => tstr / int,  ; content type
    ? 4 => bstr,        ; key identifier
    ? 5 => bstr,        ; IV
    ? 6 => bstr,        ; Partial IV
    ? 7 => COSE_Signature / [+COSE_Signature] ; Counter signature
)




4. Signing Objects

   COSE supports two different signature structures.  COSE_Sign allows
   for one or more signatures to be applied to the same content.
   COSE_Sign1 is restricted to a single signer.  The structures cannot
   be converted between each other; as the signature computation
   includes a parameter identifying which structure is being used, the
   converted structure will fail signature validation.




4.1. Signing with One or More Signers

   The COSE_Sign structure allows for one or more signatures to be
   applied to a message payload.  Parameters relating to the content and
   parameters relating to the signature are carried along with the
   signature itself.  These parameters may be authenticated by the
   signature, or just present.  An example of a parameter about the
   content is the content type.  Examples of parameters about the
   signature would be the algorithm and key used to create the signature
   and counter signatures.



   RFC 5652 indicates that:



|  When more than one signature is present, the successful validation
|  of one signature associated with a given signer is usually treated
|  as a successful signature by that signer.  However, there are some
|  application environments where other rules are needed.  An
|  application that employs a rule other than one valid signature for
|  each signer must specify those rules.  Also, where simple matching
|  of the signer identifier is not sufficient to determine whether
|  the signatures were generated by the same signer, the application
|  specification must describe how to determine which signatures were
|  generated by the same signer.  Support for different communities
|  of recipients is the primary reason that signers choose to include
|  more than one signature.



   For example, the COSE_Sign structure might include signatures
   generated with the Edwards-curve Digital Signature Algorithm (EdDSA)
   [RFC8032] and with the Elliptic Curve Digital Signature Algorithm
   (ECDSA) [DSS].  This allows recipients to verify the signature
   associated with one algorithm or the other.  More-detailed
   information on multiple signature evaluations can be found in
   [RFC5752].



   The signature structure can be encoded as either tagged or untagged
   depending on the context it will be used in.  A tagged COSE_Sign
   structure is identified by the CBOR tag 98.  The CDDL fragment that
   represents this is:



   COSE_Sign_Tagged = #6.98(COSE_Sign)



   A COSE Signed Message is defined in two parts.  The CBOR object that
   carries the body and information about the body is called the
   COSE_Sign structure.  The CBOR object that carries the signature and
   information about the signature is called the COSE_Signature
   structure.  Examples of COSE Signed Messages can be found in
   Appendix C.1.



   The COSE_Sign structure is a CBOR array.  The fields of the array in
   order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

payload:  This field contains the serialized content to be signed.
   If the payload is not present in the message, the application is
   required to supply the payload separately.  The payload is wrapped
   in a bstr to ensure that it is transported without changes.  If
   the payload is transported separately ("detached content"), then a
   nil CBOR object is placed in this location, and it is the
   responsibility of the application to ensure that it will be
   transported without changes.



      Note: When a signature with a message recovery algorithm is used
      (Section 9.1), the maximum number of bytes that can be recovered
      is the length of the payload.  The size of the payload is reduced
      by the number of bytes that will be recovered.  If all of the
      bytes of the payload are consumed, then the payload is encoded as
      a zero-length binary string rather than as being absent.



signatures:  This field is an array of signatures.  Each signature is
   represented as a COSE_Signature structure.



   The CDDL fragment that represents the above text for COSE_Sign
   follows.



COSE_Sign = [
    Headers,
    payload : bstr / nil,
    signatures : [+ COSE_Signature]
]



   The COSE_Signature structure is a CBOR array.  The fields of the
   array in order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

signature:  This field contains the computed signature value.  The
   type of the field is a bstr.  Algorithms MUST specify padding if
   the signature value is not a multiple of 8 bits.



   The CDDL fragment that represents the above text for COSE_Signature
   follows.



COSE_Signature =  [
    Headers,
    signature : bstr
]




4.2. Signing with One Signer

   The COSE_Sign1 signature structure is used when only one signature is
   going to be placed on a message.  The parameters dealing with the
   content and the signature are placed in the same pair of buckets
   rather than having the separation of COSE_Sign.



   The structure can be encoded as either tagged or untagged depending
   on the context it will be used in.  A tagged COSE_Sign1 structure is
   identified by the CBOR tag 18.  The CDDL fragment that represents
   this is:



   COSE_Sign1_Tagged = #6.18(COSE_Sign1)



The CBOR object that carries the body, the signature, and the
information about the body and signature is called the COSE_Sign1
structure.  Examples of COSE_Sign1 messages can be found in
Appendix C.2.



   The COSE_Sign1 structure is a CBOR array.  The fields of the array in
   order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

payload:  This is as described in Section 4.1.

signature:  This field contains the computed signature value.  The
   type of the field is a bstr.



   The CDDL fragment that represents the above text for COSE_Sign1
   follows.



COSE_Sign1 = [
    Headers,
    payload : bstr / nil,
    signature : bstr
]




4.3. Externally Supplied Data

   One of the features offered in the COSE document is the ability for
   applications to provide additional data to be authenticated, but that
   is not carried as part of the COSE object.  The primary reason for
   supporting this can be seen by looking at the CoAP message structure
   [RFC7252], where the facility exists for options to be carried before
   the payload.  Examples of data that can be placed in this location
   would be the CoAP code or CoAP options.  If the data is in the header
   section, then it is available for proxies to help in performing its
   operations.  For example, the Accept Option can be used by a proxy to
   determine if an appropriate value is in the proxy's cache.  But the
   sender can cause a failure at the server if a proxy, or an attacker,
   changes the set of accept values by including the field in the
   application supplied data.



   This document describes the process for using a byte array of
   externally supplied authenticated data; the method of constructing
   the byte array is a function of the application.  Applications that
   use this feature need to define how the externally supplied
   authenticated data is to be constructed.  Such a construction needs
   to take into account the following issues:



   *  If multiple items are included, applications need to ensure that
      the same byte string cannot produced if there are different
      inputs.  This would occur by appending the strings 'AB' and 'CDE'
      or by appending the strings 'ABC' and 'DE'.  This is usually
      addressed by making fields a fixed width and/or encoding the
      length of the field as part of the output.  Using options from
      CoAP [RFC7252] as an example, these fields use a TLV structure so
      they can be concatenated without any problems.



   *  If multiple items are included, an order for the items needs to be
      defined.  Using options from CoAP as an example, an application
      could state that the fields are to be ordered by the option
      number.



   *  Applications need to ensure that the byte string is going to be
      the same on both sides.  Using options from CoAP might give a
      problem if the same relative numbering is kept.  An intermediate
      node could insert or remove an option, changing how the relative
      number is done.  An application would need to specify that the
      relative number must be re-encoded to be relative only to the
      options that are in the external data.




4.4. Signing and Verification Process

   In order to create a signature, a well-defined byte string is needed.
   The Sig_structure is used to create the canonical form.  This signing
   and verification process takes in the body information (COSE_Sign or
   COSE_Sign1), the signer information (COSE_Signature), and the
   application data (external source).  A Sig_structure is a CBOR array.
   The fields of the Sig_structure in order are:



   1.  A text string identifying the context of the signature.  The
       context string is:



          "Signature" for signatures using the COSE_Signature structure.



          "Signature1" for signatures using the COSE_Sign1 structure.



          "CounterSignature" for signatures used as counter signature
          attributes.



          "CounterSignature0" for signatures used as CounterSignature0
          attributes.



   2.  The protected attributes from the body structure encoded in a
       bstr type.  If there are no protected attributes, a bstr of
       length zero is used.



   3.  The protected attributes from the signer structure encoded in a
       bstr type.  If there are no protected attributes, a bstr of
       length zero is used.  This field is omitted for the COSE_Sign1
       signature structure and CounterSignature0 attributes.



   4.  The protected attributes from the application encoded in a bstr
       type.  If this field is not supplied, it defaults to a zero-
       length binary string.  (See Section 4.3 for application guidance
       on constructing this field.)



   5.  The payload to be signed encoded in a bstr type.  The payload is
       placed here independent of how it is transported.



   The CDDL fragment that describes the above text is:



Sig_structure = [
    context : "Signature" / "Signature1" / "CounterSignature" /
              "CounterSignature0",
    body_protected : empty_or_serialized_map,
    ? sign_protected : empty_or_serialized_map,
    external_aad : bstr,
    payload : bstr
]



   How to compute a signature:



   1.  Create a Sig_structure and populate it with the appropriate
       fields.



   2.  Create the value ToBeSigned by encoding the Sig_structure to a
       byte string, using the encoding described in Section 10.



   3.  Call the signature creation algorithm passing in K (the key to
       sign with), alg (the algorithm to sign with), and ToBeSigned (the
       value to sign).



   4.  Place the resulting signature value in the correct location.
       This is the 'signature' field of the COSE_Signature, COSE_Sign1
       or COSE_Countersignature structures.  This is the value of the
       Countersignature0 attribute.



   The steps for verifying a signature are:



   1.  Create a Sig_structure object and populate it with the
       appropriate fields.



   2.  Create the value ToBeSigned by encoding the Sig_structure to a
       byte string, using the encoding described in Section 10.



   3.  Call the signature verification algorithm passing in K (the key
       to verify with), alg (the algorithm used sign with), ToBeSigned
       (the value to sign), and sig (the signature to be verified).



   In addition to performing the signature verification, the application
   performs the appropriate checks to ensure that the key is correctly
   paired with the signing identity and that the signing identity is
   authorized before performing actions.




5. Counter Signatures

   COSE supports two different forms for counter signatures.  Full
   countersignatures use the structure COSE_Countersign.  This is same
   structure as COSE_Signature and thus it can have protected
   attributes, chained countersignatures and information about
   identifying the key.  Abbreviated countersignatures use the structure
   COSE_Countersign1.  This structure only contains the signature value
   and nothing else.  The structures cannot be converted between each
   other; as the signature computation includes a parameter identifying
   which structure is being used, the converted structure will fail
   signature validation.



   COSE was designed for uniformity in how the data strutures are
   specified.  One result of this is that for COSE one can expand the
   concept of countersignatures beyond just the idea of signing a
   signature to being able to sign most of the structures without having
   to create a new signing layer.  When creating a countersignature, one
   needs to be clear about the security properties that result.  When
   done on a COSE_Signature, the normal countersignature semantics are
   preserved.  That is the countersignature makes a statement about the
   existence of a signature and, when used as a timestamp, a time point
   at which the signature exists.  When done on a COSE_Mac or a
   COSE_Mac0, one effectively upgrades the MAC operation to a signature
   operation.  When done on a COSE_Encrypt or COSE_Encrypt0, the
   existence of the encrypted data is attested to.  It should be noted
   that there is a big difference between attesting to the encrypted
   data as opposed to attesting to the unencrypted data.  If the latter
   is what is desired, then one needs to apply a signature to the data
   and then encrypt that.  It is always possible to construct cases
   where the decryption is successful, while providing completely
   different answers by using a different key.  This situation is not
   detectable by a countersignature on the encrypted data.




5.1. Full Countersignatures

   The COSE_Countersignature structure allows for the same set of
   capabilities of a COSE_Signature.  This means that all of the
   capabilities of a signature are duplicated with this structure.
   Specifically, the countersigner does not need to be related to the
   producer of what is being counter signed as key and algorithm
   identification can be placed in the countersignature attributes.
   This also means that the countersignature can itself be
   countersigned.  This is a feature required by protocols such as long-
   term archiving services.  More information on how this is used can be
   found in the evidence record syntax described in [RFC4998].



   The full countersignature structure can be encoded as either a tagged
   or untagged depending on the context it is used in.  A tagged
   COSE_Countersign structure is identified by the CBOR tag TBD0.  The
   CDDL fragment for full countersignatures is:



   COSE_CounterSignature_Tagged = #6.98(COSE_CounterSignature)
   COSE_CounterSignature = COSE_Signature



   The details of the fields of a countersignature can be found in
   Section 4.1.  The process of creating and validating abbreviated
   countersignatures is defined in Section 4.4.



   An example of a counter signature on a signature can be found in
   Appendix C.1.3.  An example of a counter signature in an encryption
   object can be found in Appendix C.3.3.



   It should be noted that only a signature algorithm with appendix (see
   Section 9.1) can be used for counter signatures.  This is because the
   body should be able to be processed without having to evaluate the
   counter signature, and this is not possible for signature schemes
   with message recovery.




5.2. Abbreviated Countersignatures

   Abbreviated countersignatures were designed primarily to deal with
   the problem of having group encrypted messaging, but still needing to
   know who originated the message.  The objective was to keep the
   countersignature as small as possible while still providing the
   needed security.  For abbreviated countersignatures, there is no
   provision for any protected attributes related to the signing
   operation.  Instead, the parameters for computing or verifying the
   abbreviated countersignature are inferred from the same context used
   to describe the encryption, signature, or MAC processing.



   The byte string representing the signature value is placed in the
   CounterSignature0 attribute.  This attribute is then encoded as an
   unprotected header.  The attribute is defined below.



   The process of creating and validating abbreviated countersignatures
   is defined in Section 4.4.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name              | Label | Value      | Value | Description      |
|                   |       | Type       |       |                  |
+===================+=======+============+=======+==================+
| CounterSignature0 | 9     | bstr       |       | Abbreviated      |
|                   |       |            |       | Countersignature |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



              Table 4: Header Parameter for CounterSignature0




6. Encryption Objects

   COSE supports two different encryption structures.  COSE_Encrypt0 is
   used when a recipient structure is not needed because the key to be
   used is known implicitly.  COSE_Encrypt is used the rest of the time.
   This includes cases where there are multiple recipients or a
   recipient algorithm other than direct (i.e. pre-shared secret) is
   used.




6.1. Enveloped COSE Structure

   The enveloped structure allows for one or more recipients of a
   message.  There are provisions for parameters about the content and
   parameters about the recipient information to be carried in the
   message.  The protected parameters associated with the content are
   authenticated by the content encryption algorithm.  The protected
   parameters associated with the recipient are authenticated by the
   recipient algorithm (when the algorithm supports it).  Examples of
   parameters about the content are the type of the content and the
   content encryption algorithm.  Examples of parameters about the
   recipient are the recipient's key identifier and the recipient's
   encryption algorithm.



The same techniques and nearly the same structure is used for
encrypting both the plaintext and the keys.  This is different from
the approach used by both "Cryptographic Message Syntax (CMS)"
[RFC5652] and "JSON Web Encryption (JWE)" [RFC7516] where different
structures are used for the content layer and for the recipient
layer.  Two structures are defined: COSE_Encrypt to hold the
encrypted content and COSE_recipient to hold the encrypted keys for
recipients.  Examples of encrypted messages can be found in
Appendix C.3.



   The COSE_Encrypt structure can be encoded as either tagged or
   untagged depending on the context it will be used in.  A tagged
   COSE_Encrypt structure is identified by the CBOR tag 96.  The CDDL
   fragment that represents this is:



   COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)



   The COSE_Encrypt structure is a CBOR array.  The fields of the array
   in order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

ciphertext:  This field contains the ciphertext encoded as a bstr.
   If the ciphertext is to be transported independently of the
   control information about the encryption process (i.e., detached
   content), then the field is encoded as a nil value.

recipients:  This field contains an array of recipient information
   structures.  The type for the recipient information structure is a
   COSE_recipient.



   The CDDL fragment that corresponds to the above text is:



COSE_Encrypt = [
    Headers,
    ciphertext : bstr / nil,
    recipients : [+COSE_recipient]
]



   The COSE_recipient structure is a CBOR array.  The fields of the
   array in order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

ciphertext:  This field contains the encrypted key encoded as a bstr.
   All encoded keys are symmetric keys; the binary value of the key
   is the content.  If there is not an encrypted key, then this field
   is encoded as a nil value.

recipients:  This field contains an array of recipient information
   structures.  The type for the recipient information structure is a
   COSE_recipient (an example of this can be found in Appendix B).
   If there are no recipient information structures, this element is
   absent.



   The CDDL fragment that corresponds to the above text for
   COSE_recipient is:



COSE_recipient = [
    Headers,
    ciphertext : bstr / nil,
    ? recipients : [+COSE_recipient]
]




6.1.1. Content Key Distribution Methods

   An encrypted message consists of an encrypted content and an
   encrypted CEK for one or more recipients.  The CEK is encrypted for
   each recipient, using a key specific to that recipient.  The details
   of this encryption depend on which class the recipient algorithm
   falls into.  Specific details on each of the classes can be found in
   Section 9.5.  A short summary of the five content key distribution
   methods is:



direct:  The CEK is the same as the identified previously distributed
   symmetric key or is derived from a previously distributed secret.
   No CEK is transported in the message.

symmetric key‑encryption keys (KEK):  The CEK is encrypted using a
   previously distributed symmetric KEK.  Also known as key wrap.

key agreement:  The recipient's public key and a sender's private key
   are used to generate a pairwise secret, a Key Derivation Function
   (KDF) is applied to derive a key, and then the CEK is either the
   derived key or encrypted by the derived key.

key transport:  The CEK is encrypted with the recipient's public key.

passwords:  The CEK is encrypted in a KEK that is derived from a
   password.  As of when this document was published, no password
   algorithms have been defined.




6.2. Single Recipient Encrypted

   The COSE_Encrypt0 encrypted structure does not have the ability to
   specify recipients of the message.  The structure assumes that the
   recipient of the object will already know the identity of the key to
   be used in order to decrypt the message.  If a key needs to be
   identified to the recipient, the enveloped structure ought to be
   used.



   Examples of encrypted messages can be found in Appendix C.3.



   The COSE_Encrypt0 structure can be encoded as either tagged or
   untagged depending on the context it will be used in.  A tagged
   COSE_Encrypt0 structure is identified by the CBOR tag 16.  The CDDL
   fragment that represents this is:



   COSE_Encrypt0_Tagged = #6.16(COSE_Encrypt0)



   The COSE_Encrypt0 structure is a CBOR array.  The fields of the array
   in order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

ciphertext:  This is as described in Section 6.1.



   The CDDL fragment for COSE_Encrypt0 that corresponds to the above
   text is:



COSE_Encrypt0 = [
    Headers,
    ciphertext : bstr / nil,
]




6.3. How to Encrypt and Decrypt for AEAD Algorithms

   The encryption algorithm for AEAD algorithms is fairly simple.  The
   first step is to create a consistent byte string for the
   authenticated data structure.  For this purpose, we use an
   Enc_structure.  The Enc_structure is a CBOR array.  The fields of the
   Enc_structure in order are:



   1.  A text string identifying the context of the authenticated data
       structure.  The context string is:



          "Encrypt0" for the content encryption of a COSE_Encrypt0 data
          structure.



          "Encrypt" for the first layer of a COSE_Encrypt data structure
          (i.e., for content encryption).



          "Enc_Recipient" for a recipient encoding to be placed in an
          COSE_Encrypt data structure.



          "Mac_Recipient" for a recipient encoding to be placed in a
          MACed message structure.



          "Rec_Recipient" for a recipient encoding to be placed in a
          recipient structure.



   2.  The protected attributes from the body structure encoded in a
       bstr type.  If there are no protected attributes, a bstr of
       length zero is used.



   3.  The protected attributes from the application encoded in a bstr
       type.  If this field is not supplied, it defaults to a zero-
       length bstr.  (See Section 4.3 for application guidance on
       constructing this field.)



   The CDDL fragment that describes the above text is:



Enc_structure = [
    context : "Encrypt" / "Encrypt0" / "Enc_Recipient" /
        "Mac_Recipient" / "Rec_Recipient",
    protected : empty_or_serialized_map,
    external_aad : bstr
]



   How to encrypt a message:



   1.  Create an Enc_structure and populate it with the appropriate
       fields.



   2.  Encode the Enc_structure to a byte string (Additional
       Authenticated Data (AAD)), using the encoding described in
       Section 10.



   3.  Determine the encryption key (K).  This step is dependent on the
       class of recipient algorithm being used.  For:



No Recipients:  The key to be used is determined by the algorithm
   and key at the current layer.  Examples are key transport keys
   (Section 9.5.3), key wrap keys (Section 9.5.2), or pre‑shared
   secrets.

Direct Encryption and Direct Key Agreement:  The key is
   determined by the key and algorithm in the recipient
   structure.  The encryption algorithm and size of the key to be
   used are inputs into the KDF used for the recipient.  (For
   direct, the KDF can be thought of as the identity operation.)
   Examples of these algorithms are found in Sections 6.1.2 and
   6.3 of [I‑D.ietf‑cose‑rfc8152bis‑algs].

Other:  The key is randomly or pseudorandomly generated.



   4.  Call the encryption algorithm with K (the encryption key), P (the
       plaintext), and AAD.  Place the returned ciphertext into the
       'ciphertext' field of the structure.



   5.  For recipients of the message, recursively perform the encryption
       algorithm for that recipient, using K (the encryption key) as the
       plaintext.



   How to decrypt a message:



   1.  Create an Enc_structure and populate it with the appropriate
       fields.



   2.  Encode the Enc_structure to a byte string (AAD), using the
       encoding described in Section 10.



   3.  Determine the decryption key.  This step is dependent on the
       class of recipient algorithm being used.  For:



No Recipients:  The key to be used is determined by the algorithm
   and key at the current layer.  Examples are key transport keys
   (Section 9.5.3), key wrap keys (Section 9.5.2), or pre‑shared
   secrets.

Direct Encryption and Direct Key Agreement:  The key is
   determined by the key and algorithm in the recipient
   structure.  The encryption algorithm and size of the key to be
   used are inputs into the KDF used for the recipient.  (For
   direct, the KDF can be thought of as the identity operation.)

Other:  The key is determined by decoding and decrypting one of
   the recipient structures.



   4.  Call the decryption algorithm with K (the decryption key to use),
       C (the ciphertext), and AAD.




6.4. How to Encrypt and Decrypt for AE Algorithms

   How to encrypt a message:



   1.  Verify that the 'protected' field is empty.



   2.  Verify that there was no external additional authenticated data
       supplied for this operation.



   3.  Determine the encryption key.  This step is dependent on the
       class of recipient algorithm being used.  For:



No Recipients:  The key to be used is determined by the algorithm
   and key at the current layer.  Examples are key transport keys
   (Section 9.5.3), key wrap keys (Section 9.5.2), or pre‑shared
   secrets.

Direct Encryption and Direct Key Agreement:  The key is
   determined by the key and algorithm in the recipient
   structure.  The encryption algorithm and size of the key to be
   used are inputs into the KDF used for the recipient.  (For
   direct, the KDF can be thought of as the identity operation.)
   Examples of these algorithms are found in Sections 6.1.2 and
   6.3 of [I‑D.ietf‑cose‑rfc8152bis‑algs].

Other:  The key is randomly generated.



   4.  Call the encryption algorithm with K (the encryption key to use)
       and P (the plaintext).  Place the returned ciphertext into the
       'ciphertext' field of the structure.



   5.  For recipients of the message, recursively perform the encryption
       algorithm for that recipient, using K (the encryption key) as the
       plaintext.



   How to decrypt a message:



   1.  Verify that the 'protected' field is empty.



   2.  Verify that there was no external additional authenticated data
       supplied for this operation.



   3.  Determine the decryption key.  This step is dependent on the
       class of recipient algorithm being used.  For:



No Recipients:  The key to be used is determined by the algorithm
   and key at the current layer.  Examples are key transport keys
   (Section 9.5.3), key wrap keys (Section 9.5.2), or pre‑shared
   secrets.

Direct Encryption and Direct Key Agreement:  The key is
   determined by the key and algorithm in the recipient
   structure.  The encryption algorithm and size of the key to be
   used are inputs into the KDF used for the recipient.  (For
   direct, the KDF can be thought of as the identity operation.)
   Examples of these algorithms are found in Sections 6.1.2 and
   6.3 of [I‑D.ietf‑cose‑rfc8152bis‑algs].

Other:  The key is determined by decoding and decrypting one of
   the recipient structures.



   4.  Call the decryption algorithm with K (the decryption key to use)
       and C (the ciphertext).




7. MAC Objects

   COSE supports two different MAC structures.  COSE_MAC0 is used when a
   recipient structure is not needed because the key to be used is
   implicitly known.  COSE_MAC is used for all other cases.  These
   include a requirement for multiple recipients, the key being unknown,
   or a recipient algorithm of other than direct.



   In this section, we describe the structure and methods to be used
   when doing MAC authentication in COSE.  This document allows for the
   use of all of the same classes of recipient algorithms as are allowed
   for encryption.



   When using MAC operations, there are two modes in which they can be
   used.  The first is just a check that the content has not been
   changed since the MAC was computed.  Any class of recipient algorithm
   can be used for this purpose.  The second mode is to both check that
   the content has not been changed since the MAC was computed and to
   use the recipient algorithm to verify who sent it.  The classes of
   recipient algorithms that support this are those that use a pre-
   shared secret or do static-static (SS) key agreement (without the key
   wrap step).  In both of these cases, the entity that created and sent
   the message MAC can be validated.  (This knowledge of the sender
   assumes that there are only two parties involved and that you did not
   send the message to yourself.)  The origination property can be
   obtained with both of the MAC message structures.




7.1. MACed Message with Recipients

   The multiple recipient MACed message uses two structures: the
   COSE_Mac structure defined in this section for carrying the body and
   the COSE_recipient structure (Section 6.1) to hold the key used for
   the MAC computation.  Examples of MACed messages can be found in
   Appendix C.5.



   The MAC structure can be encoded as either tagged or untagged
   depending on the context it will be used in.  A tagged COSE_Mac
   structure is identified by the CBOR tag 97.  The CDDL fragment that
   represents this is:



   COSE_Mac_Tagged = #6.97(COSE_Mac)



   The COSE_Mac structure is a CBOR array.  The fields of the array in
   order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

payload:  This field contains the serialized content to be MACed.  If
   the payload is not present in the message, the application is
   required to supply the payload separately.  The payload is wrapped
   in a bstr to ensure that it is transported without changes.  If
   the payload is transported separately (i.e., detached content),
   then a nil CBOR value is placed in this location, and it is the
   responsibility of the application to ensure that it will be
   transported without changes.

tag:  This field contains the MAC value.

recipients:  This is as described in Section 6.1.



   The CDDL fragment that represents the above text for COSE_Mac
   follows.



COSE_Mac = [
   Headers,
   payload : bstr / nil,
   tag : bstr,
   recipients :[+COSE_recipient]
]




7.2. MACed Messages with Implicit Key

   In this section, we describe the structure and methods to be used
   when doing MAC authentication for those cases where the recipient is
   implicitly known.



   The MACed message uses the COSE_Mac0 structure defined in this
   section for carrying the body.  Examples of MACed messages with an
   implicit key can be found in Appendix C.6.



   The MAC structure can be encoded as either tagged or untagged
   depending on the context it will be used in.  A tagged COSE_Mac0
   structure is identified by the CBOR tag 17.  The CDDL fragment that
   represents this is:



   COSE_Mac0_Tagged = #6.17(COSE_Mac0)



   The COSE_Mac0 structure is a CBOR array.  The fields of the array in
   order are:



protected:  This is as described in Section 3.

unprotected:  This is as described in Section 3.

payload:  This is as described in Section 7.1.

tag:  This field contains the MAC value.



   The CDDL fragment that corresponds to the above text is:



COSE_Mac0 = [
   Headers,
   payload : bstr / nil,
   tag : bstr,
]




7.3. How to Compute and Verify a MAC

   In order to get a consistent encoding of the data to be
   authenticated, the MAC_structure is used to have a canonical form.
   The MAC_structure is a CBOR array.  The fields of the MAC_structure
   in order are:



   1.  A text string that identifies the structure that is being
       encoded.  This string is "MAC" for the COSE_Mac structure.  This
       string is "MAC0" for the COSE_Mac0 structure.



   2.  The protected attributes from the COSE_MAC structure.  If there
       are no protected attributes, a zero-length bstr is used.



   3.  The protected attributes from the application encoded as a bstr
       type.  If this field is not supplied, it defaults to a zero-
       length binary string.  (See Section 4.3 for application guidance
       on constructing this field.)



   4.  The payload to be MACed encoded in a bstr type.  The payload is
       placed here independent of how it is transported.



   The CDDL fragment that corresponds to the above text is:



MAC_structure = [
     context : "MAC" / "MAC0",
     protected : empty_or_serialized_map,
     external_aad : bstr,
     payload : bstr
]



   The steps to compute a MAC are:



   1.  Create a MAC_structure and populate it with the appropriate
       fields.



   2.  Create the value ToBeMaced by encoding the MAC_structure to a
       byte string, using the encoding described in Section 10.



   3.  Call the MAC creation algorithm passing in K (the key to use),
       alg (the algorithm to MAC with), and ToBeMaced (the value to
       compute the MAC on).



   4.  Place the resulting MAC in the 'tag' field of the COSE_Mac or
       COSE_Mac0 structure.



   5.  For COSE_Mac structures, encrypt and encode the MAC key for each
       recipient of the message.



   The steps to verify a MAC are:



   1.  Create a MAC_structure object and populate it with the
       appropriate fields.



   2.  Create the value ToBeMaced by encoding the MAC_structure to a
       byte string, using the encoding described in Section 10.



   3.  For COSE_Mac structures, obtain the cryptographic key from one of
       the recipients of the message.



   4.  Call the MAC creation algorithm passing in K (the key to use),
       alg (the algorithm to MAC with), and ToBeMaced (the value to
       compute the MAC on).



   5.  Compare the MAC value to the 'tag' field of the COSE_Mac or
       COSE_Mac0 structure.




8. Key Objects

   A COSE Key structure is built on a CBOR map object.  The set of
   common parameters that can appear in a COSE Key can be found in the
   IANA "COSE Key Common Parameters" registry (Section 12.4).
   Additional parameters defined for specific key types can be found in
   the IANA "COSE Key Type Parameters" registry ([COSE.KeyParameters]).



   A COSE Key Set uses a CBOR array object as its underlying type.  The
   values of the array elements are COSE Keys.  A COSE Key Set MUST have
   at least one element in the array.  Examples of COSE Key Sets can be
   found in Appendix C.7.



   Each element in a COSE Key Set MUST be processed independently.  If
   one element in a COSE Key Set is either malformed or uses a key that
   is not understood by an application, that key is ignored and the
   other keys are processed normally.



   The element "kty" is a required element in a COSE_Key map.



   The CDDL grammar describing COSE_Key and COSE_KeySet is:



COSE_Key = {
    1 => tstr / int,          ; kty
    ? 2 => bstr,              ; kid
    ? 3 => tstr / int,        ; alg
    ? 4 => [+ (tstr / int) ], ; key_ops
    ? 5 => bstr,              ; Base IV
    * label => values
}



   COSE_KeySet = [+COSE_Key]




8.1. COSE Key Common Parameters

   This document defines a set of common parameters for a COSE Key
   object.  Table 5 provides a summary of the parameters defined in this
   section.  There are also parameters that are defined for specific key
   types.  Key-type-specific parameters can be found in
   [I-D.ietf-cose-rfc8152bis-algs].



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Label | CBOR   | Value      | Description        |
|         |       | Type   | Registry   |                    |
+=========+=======+========+============+====================+
| kty     | 1     | tstr / | COSE Key   | Identification of  |
|         |       | int    | Types      | the key type       |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| kid     | 2     | bstr   |            | Key identification |
|         |       |        |            | value ‑‑ match to  |
|         |       |        |            | kid in message     |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| alg     | 3     | tstr / | COSE       | Key usage          |
|         |       | int    | Algorithms | restriction to     |
|         |       |        |            | this algorithm     |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| key_ops | 4     | [+     |            | Restrict set of    |
|         |       | (tstr/ |            | permissible        |
|         |       | int)]  |            | operations         |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Base IV | 5     | bstr   |            | Base IV to be xor‑ |
|         |       |        |            | ed with Partial    |
|         |       |        |            | IVs                |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                         Table 5: Key Map Labels



kty:  This parameter is used to identify the family of keys for this
   structure and, thus, the set of key‑type‑specific parameters to be
   found.  The set of values defined in this document can be found in
   [COSE.KeyTypes].  This parameter MUST be present in a key object.
   Implementations MUST verify that the key type is appropriate for
   the algorithm being processed.  The key type MUST be included as
   part of the trust decision process.

alg:  This parameter is used to restrict the algorithm that is used
   with the key.  If this parameter is present in the key structure,
   the application MUST verify that this algorithm matches the
   algorithm for which the key is being used.  If the algorithms do
   not match, then this key object MUST NOT be used to perform the
   cryptographic operation.  Note that the same key can be in a
   different key structure with a different or no algorithm
   specified; however, this is considered to be a poor security
   practice.

kid:  This parameter is used to give an identifier for a key.  The
   identifier is not structured and can be anything from a user‑
   provided string to a value computed on the public portion of the
   key.  This field is intended for matching against a 'kid'
   parameter in a message in order to filter down the set of keys
   that need to be checked.

key_ops:  This parameter is defined to restrict the set of operations
   that a key is to be used for.  The value of the field is an array
   of values from Table 6.  Algorithms define the values of key ops
   that are permitted to appear and are required for specific
   operations.  The set of values matches that in [RFC7517] and
   [W3C.WebCrypto].

Base IV:  This parameter is defined to carry the base portion of an
   IV.  It is designed to be used with the Partial IV header
   parameter defined in Section 3.1.  This field provides the ability
   to associate a Partial IV with a key that is then modified on a
   per message basis with the Partial IV.



      Extreme care needs to be taken when using a Base IV in an
      application.  Many encryption algorithms lose security if the same
      IV is used twice.



      If different keys are derived for each sender, using the same Base
      IV with Partial IVs starting at zero is likely to ensure that the
      IV would not be used twice for a single key.  If different keys
      are derived for each sender, starting at the same Base IV is
      likely to satisfy this condition.  If the same key is used for
      multiple senders, then the application needs to provide for a
      method of dividing the IV space up between the senders.  This
      could be done by providing a different base point to start from or
      a different Partial IV to start with and restricting the number of
      messages to be sent before rekeying.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Value | Description                                  |
+=========+=======+==============================================+
| sign    | 1     | The key is used to create signatures.        |
|         |       | Requires private key fields.                 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| verify  | 2     | The key is used for verification of          |
|         |       | signatures.                                  |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| encrypt | 3     | The key is used for key transport            |
|         |       | encryption.                                  |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| decrypt | 4     | The key is used for key transport            |
|         |       | decryption.  Requires private key fields.    |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| wrap    | 5     | The key is used for key wrap encryption.     |
| key     |       |                                              |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| unwrap  | 6     | The key is used for key wrap decryption.     |
| key     |       | Requires private key fields.                 |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| derive  | 7     | The key is used for deriving keys.  Requires |
| key     |       | private key fields.                          |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| derive  | 8     | The key is used for deriving bits not to be  |
| bits    |       | used as a key.  Requires private key fields. |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MAC     | 9     | The key is used for creating MACs.           |
| create  |       |                                              |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| MAC     | 10    | The key is used for validating MACs.         |
| verify  |       |                                              |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 6: Key Operation Values




9. Taxonomy of Algorithms used by COSE

   In this section, a taxonomy of the different algorithm types that can
   be used in COSE is laid out.  This taxonomy should not be considered
   to be exhaustive as there are new algorithm structures that could be
   found or are not known to the author.




9.1. Signature Algorithms

   There are two signature algorithm schemes.  The first is signature
   with appendix.  In this scheme, the message content is processed and
   a signature is produced; the signature is called the appendix.  This
   is the scheme used by algorithms such as ECDSA and the RSA
   Probabilistic Signature Scheme (RSASSA-PSS).  (In fact, the SSA in
   RSASSA-PSS stands for Signature Scheme with Appendix.)



   The signature functions for this scheme are:



   signature = Sign(message content, key)



   valid = Verification(message content, key, signature)



   The second scheme is signature with message recovery (an example of
   such an algorithm is [PVSig]).  In this scheme, the message content
   is processed, but part of it is included in the signature.  Moving
   bytes of the message content into the signature allows for smaller
   signatures; the signature size is still potentially large, but the
   message content has shrunk.  This has implications for systems
   implementing these algorithms and for applications that use them.
   The first is that the message content is not fully available until
   after a signature has been validated.  Until that point, the part of
   the message contained inside of the signature is unrecoverable.  The
   second is that the security analysis of the strength of the signature
   is very much based on the structure of the message content.  Messages
   that are highly predictable require additional randomness to be
   supplied as part of the signature process.  In the worst case, it
   becomes the same as doing a signature with appendix.  Finally, in the
   event that multiple signatures are applied to a message, all of the
   signature algorithms are going to be required to consume the same
   number of bytes of message content.  This means that the mixing of
   the different schemes in a single message is not supported, and if a
   recovery signature scheme is used, then the same amount of content
   needs to be consumed by all of the signatures.



   The signature functions for this scheme are:



   signature, message sent = Sign(message content, key)



   valid, message content = Verification(message sent, key, signature)



   Signature algorithms are used with the COSE_Signature and COSE_Sign1
   structures.  At this time, only signatures with appendixes are
   defined for use with COSE; however, considerable interest has been
   expressed in using a signature with message recovery algorithm due to
   the effective size reduction that is possible.  Implementations will
   need to keep this in mind for later possible integration.




9.2. Message Authentication Code (MAC) Algorithms

   Message Authentication Codes (MACs) provide data authentication and
   integrity protection.  They provide either no or very limited data
   origination.  A MAC, for example, cannot be used to prove the
   identity of the sender to a third party.



   MACs use the same scheme as signature with appendix algorithms.  The
   message content is processed and an authentication code is produced.
   The authentication code is frequently called a tag.



   The MAC functions are:



   tag = MAC_Create(message content, key)



   valid = MAC_Verify(message content, key, tag)



   MAC algorithms can be based on either a block cipher algorithm (i.e.,
   AES-MAC) or a hash algorithm (i.e., a Hash-based Message
   Authentication Code (HMAC)).  [I-D.ietf-cose-rfc8152bis-algs] defines
   a MAC algorithm using each of these constructions.



   MAC algorithms are used in the COSE_Mac and COSE_Mac0 structures.




9.3. Content Encryption Algorithms

   Content encryption algorithms provide data confidentiality for
   potentially large blocks of data using a symmetric key.  They provide
   integrity on the data that was encrypted; however, they provide
   either no or very limited data origination.  (One cannot, for
   example, be used to prove the identity of the sender to a third
   party.)  The ability to provide data origination is linked to how the
   CEK is obtained.



   COSE restricts the set of legal content encryption algorithms to
   those that support authentication both of the content and additional
   data.  The encryption process will generate some type of
   authentication value, but that value may be either explicit or
   implicit in terms of the algorithm definition.  For simplicity's
   sake, the authentication code will normally be defined as being
   appended to the ciphertext stream.  The encryption functions are:



   ciphertext = Encrypt(message content, key, additional data)



   valid, message content = Decrypt(ciphertext, key, additional data)



   Most AEAD algorithms are logically defined as returning the message
   content only if the decryption is valid.  Many but not all
   implementations will follow this convention.  The message content
   MUST NOT be used if the decryption does not validate.



   These algorithms are used in COSE_Encrypt and COSE_Encrypt0.




9.4. Key Derivation Functions (KDFs)

   KDFs are used to take some secret value and generate a different one.
   The secret value comes in three flavors:



   *  Secrets that are uniformly random: This is the type of secret that
      is created by a good random number generator.



   *  Secrets that are not uniformly random: This is type of secret that
      is created by operations like key agreement.



   *  Secrets that are not random: This is the type of secret that
      people generate for things like passwords.



   General KDFs work well with the first type of secret, can do
   reasonably well with the second type of secret, and generally do
   poorly with the last type of secret.  Functions like PBES2 [RFC8018]
   need to be used for non-random secrets.



   The same KDF can be set up to deal with the first two types of
   secrets in a different way.  The KDF defined in section 5.1 of
   [I-D.ietf-cose-rfc8152bis-algs] is such a function.  This is
   reflected in the set of algorithms defined around the HMAC-based
   Extract-and-Expand Key Derivation Function (HKDF).



   When using KDFs, one component that is included is context
   information.  Context information is used to allow for different
   keying information to be derived from the same secret.  The use of
   context-based keying material is considered to be a good security
   practice.




9.5. Content Key Distribution Methods

   Content key distribution methods (recipient algorithms) can be
   defined into a number of different classes.  COSE has the ability to
   support many classes of recipient algorithms.  In this section, a
   number of classes are listed.  The names of the recipient algorithm
   classes used here are the same as those defined in [RFC7516].  Other
   specifications use different terms for the recipient algorithm
   classes or do not support some of the recipient algorithm classes.




9.5.1. Direct Encryption

   The direct encryption class algorithms share a secret between the
   sender and the recipient that is used either directly or after
   manipulation as the CEK.  When direct encryption mode is used, it
   MUST be the only mode used on the message.



   The COSE_Recipient structure for the recipient is organized as
   follows:



   *  The 'protected' field MUST be a zero-length item unless it is used
      in the computation of the content key.



   *  The 'alg' parameter MUST be present.



   *  A parameter identifying the shared secret SHOULD be present.



   *  The 'ciphertext' field MUST be a zero-length item.



   *  The 'recipients' field MUST be absent.




9.5.2. Key Wrap

   In key wrap mode, the CEK is randomly generated and that key is then
   encrypted by a shared secret between the sender and the recipient.
   All of the currently defined key wrap algorithms for COSE are AE
   algorithms.  Key wrap mode is considered to be superior to direct
   encryption if the system has any capability for doing random key
   generation.  This is because the shared key is used to wrap random
   data rather than data that has some degree of organization and may in
   fact be repeating the same content.  The use of key wrap loses the
   weak data origination that is provided by the direct encryption
   algorithms.



   The COSE_Encrypt structure for the recipient is organized as follows:



   *  The 'protected' field MUST be absent if the key wrap algorithm is
      an AE algorithm.



   *  The 'recipients' field is normally absent, but can be used.
      Applications MUST deal with a recipient field being present that
      has an unsupported algorithm, not being able to decrypt that
      recipient is an acceptable way of dealing with it.  Failing to
      process the message is not an acceptable way of dealing with it.



   *  The plaintext to be encrypted is the key from next layer down
      (usually the content layer).



   *  At a minimum, the 'unprotected' field MUST contain the 'alg'
      parameter and SHOULD contain a parameter identifying the shared
      secret.




9.5.3. Key Transport

   Key transport mode is also called key encryption mode in some
   standards.  Key transport mode differs from key wrap mode in that it
   uses an asymmetric encryption algorithm rather than a symmetric
   encryption algorithm to protect the key.  A set of key transport
   algorithms are defined in [RFC8230].



   When using a key transport algorithm, the COSE_Encrypt structure for
   the recipient is organized as follows:



   *  The 'protected' field MUST be absent.



   *  The plaintext to be encrypted is the key from the next layer down
      (usually the content layer).



   *  At a minimum, the 'unprotected' field MUST contain the 'alg'
      parameter and SHOULD contain a parameter identifying the
      asymmetric key.




9.5.4. Direct Key Agreement

   The 'direct key agreement' class of recipient algorithms uses a key
   agreement method to create a shared secret.  A KDF is then applied to
   the shared secret to derive a key to be used in protecting the data.
   This key is normally used as a CEK or MAC key, but could be used for
   other purposes if more than two layers are in use (see Appendix B).



   The most commonly used key agreement algorithm is Diffie-Hellman, but
   other variants exist.  Since COSE is designed for a store and forward
   environment rather than an online environment, many of the DH
   variants cannot be used as the receiver of the message cannot provide
   any dynamic key material.  One side effect of this is that perfect
   forward secrecy (see [RFC4949]) is not achievable.  A static key will
   always be used for the receiver of the COSE object.



   Two variants of DH that are supported are:



      Ephemeral-Static (ES) DH: where the sender of the message creates
      a one-time DH key and uses a static key for the recipient.  The
      use of the ephemeral sender key means that no additional random
      input is needed as this is randomly generated for each message.
      Static-Static (SS) DH: where a static key is used for both the
      sender and the recipient.  The use of static keys allows for the
      recipient to get a weak version of data origination for the
      message.  When static-static key agreement is used, then some
      piece of unique data for the KDF is required to ensure that a
      different key is created for each message.



   When direct key agreement mode is used, there MUST be only one
   recipient in the message.  This method creates the key directly, and
   that makes it difficult to mix with additional recipients.  If
   multiple recipients are needed, then the version with key wrap needs
   to be used.



   The COSE_Encrypt structure for the recipient is organized as follows:



   *  At a minimum, headers MUST contain the 'alg' parameter and SHOULD
      contain a parameter identifying the recipient's asymmetric key.



   *  The headers SHOULD identify the sender's key for the static-static
      versions and MUST contain the sender's ephemeral key for the
      ephemeral-static versions.




9.5.5. Key Agreement with Key Wrap

   Key Agreement with Key Wrap uses a randomly generated CEK.  The CEK
   is then encrypted using a key wrap algorithm and a key derived from
   the shared secret computed by the key agreement algorithm.  The
   function for this would be:



   encryptedKey = KeyWrap(KDF(DH-Shared, context), CEK)



   The COSE_Encrypt structure for the recipient is organized as follows:



   *  The 'protected' field is fed into the KDF context structure.



   *  The plaintext to be encrypted is the key from the next layer down
      (usually the content layer).



   *  The 'alg' parameter MUST be present in the layer.



   *  A parameter identifying the recipient's key SHOULD be present.  A
      parameter identifying the sender's key SHOULD be present.




10. CBOR Encoding Restrictions

   There has been an attempt to limit the number of places where the
   document needs to impose restrictions on how the CBOR Encoder needs
   to work.  We have managed to narrow it down to the following
   restrictions:



   *  The restriction applies to the encoding of the Sig_structure, the
      Enc_structure, and the MAC_structure.



   *  Encoding MUST be done using definite lengths and values MUST be
      the minimum possible length.  This means that the integer 1 is
      encoded as "0x01" and not "0x1801".



   *  Applications MUST NOT generate messages with the same label used
      twice as a key in a single map.  Applications MUST NOT parse and
      process messages with the same label used twice as a key in a
      single map.  Applications can enforce the parse and process
      requirement by using parsers that will fail the parse step or by
      using parsers that will pass all keys to the application, and the
      application can perform the check for duplicate keys.




11. Application Profiling Considerations

   This document is designed to provide a set of security services, but
   not impose algorithm implementation requirements for specific usage.
   The interoperability requirements are provided for how each of the
   individual services are used and how the algorithms are to be used
   for interoperability.  The requirements about which algorithms and
   which services are needed are deferred to each application.



   An example of a profile can be found in [RFC8613] where one was
   developed for carrying content in combination with CoAP headers.



   It is intended that a profile of this document be created that
   defines the interoperability requirements for that specific
   application.  This section provides a set of guidelines and topics
   that need to be considered when profiling this document.



   *  Applications need to determine the set of messages defined in this
      document that they will be using.  The set of messages corresponds
      fairly directly to the set of security services that are needed
      and to the security levels needed.



   *  Applications may define new header parameters for a specific
      purpose.  Applications will often times select specific header
      parameters to use or not to use.  For example, an application
      would normally state a preference for using either the IV or the



      Partial IV parameter.  If the Partial IV parameter is specified,
      then the application also needs to define how the fixed portion of
      the IV is determined.



   *  When applications use externally defined authenticated data, they
      need to define how that data is encoded.  This document assumes
      that the data will be provided as a byte string.  More information
      can be found in Section 4.3.



   *  Applications need to determine the set of security algorithms that
      are to be used.  When selecting the algorithms to be used as the
      mandatory-to-implement set, consideration should be given to
      choosing different types of algorithms when two are chosen for a
      specific purpose.  An example of this would be choosing HMAC-
      SHA512 and AES-CMAC as different MAC algorithms; the construction
      is vastly different between these two algorithms.  This means that
      a weakening of one algorithm would be unlikely to lead to a
      weakening of the other algorithms.  Of course, these algorithms do
      not provide the same level of security and thus may not be
      comparable for the desired security functionality.



   *  Applications may need to provide some type of negotiation or
      discovery method if multiple algorithms or message structures are
      permitted.  The method can be as simple as requiring
      preconfiguration of the set of algorithms to providing a discovery
      method built into the protocol.  S/MIME provided a number of
      different ways to approach the problem that applications could
      follow:



      -  Advertising in the message (S/MIME capabilities) [RFC5751].



      -  Advertising in the certificate (capabilities extension)
         [RFC4262].



      -  Minimum requirements for the S/MIME, which have been updated
         over time [RFC2633] [RFC5751] (note that [RFC2633] has been
         obsoleted by [RFC5751]).




12. IANA Considerations

   The registeries and registrations listed below were created during
   processing of RFC 8152 [RFC8152].  The only known action at this time
   is to update the references.




12.1. CBOR Tag Assignment

   IANA assigned tags in the "CBOR Tags" registry as part of processing
   [RFC8152].  IANA is requested to update the references from [RFC8152]
   to this document.



   IANA is requested to register a new tag for the CounterSignature
   type.



   *  Tag: TBD0



   *  Data Item: COSE_Signature



   *  Semantics: COSE standalone counter signature



   *  Reference: [[this document]]




12.2. COSE Header Parameters Registry

   IANA created a registry titled "COSE Header Parameters" as part of
   processing [RFC8152].  The registry has been created to use the
   "Expert Review Required" registration procedure [RFC8126].



   IANA is requested to update the reference for entries in the table
   from [RFC8152] to this document.  This document does not update the
   expert review guidelines provided in [RFC8152].




12.3. COSE Header Algorithm Parameters Registry

   IANA created a registry titled "COSE Header Algorithm Parameters" as
   part of processing [RFC8152].  The registry has been created to use
   the "Expert Review Required" registration procedure [RFC8126].



   IANA is requested to update the references from [RFC8152] to this
   document.  This document does not update the expert review guidelines
   provided in [RFC8152].




12.4. COSE Key Common Parameters Registry

   IANA created a registry titled "COSE Key Common Parameters" as part
   of the processing of [RFC8152].  The registry has been created to use
   the "Expert Review Required" registration procedure [RFC8126].



   IANA is requested to update the reference for entries in the table
   from [RFC8152] to this document.  This document does not update the
   expert review guidelines provided in [RFC8152].




12.5. Media Type Registrations


12.5.1. COSE Security Message

   This section registers the 'application/cose' media type in the
   "Media Types" registry.  These media types are used to indicate that
   the content is a COSE message.



      Type name: application



      Subtype name: cose



      Required parameters: N/A



      Optional parameters: cose-type



      Encoding considerations: binary



      Security considerations: See the Security Considerations section
      of [[This Document]].



      Interoperability considerations: N/A



      Published specification: [[this document]]



      Applications that use this media type: IoT applications sending
      security content over HTTP(S) transports.



      Fragment identifier considerations: N/A



      Additional information:



      -  Deprecated alias names for this type: N/A



      -  Magic number(s): N/A



      -  File extension(s): cbor



      -  Macintosh file type code(s): N/A



      Person & email address to contact for further information:
      iesg@ietf.org



      Intended usage: COMMON



      Restrictions on usage: N/A



      Author: Jim Schaad, ietf@augustcellars.com



      Change Controller: IESG



      Provisional registration?  No




12.5.2. COSE Key Media Type

   This section registers the 'application/cose-key' and 'application/
   cose-key-set' media types in the "Media Types" registry.  These media
   types are used to indicate, respectively, that content is a COSE_Key
   or COSE_KeySet object.



   The template for registering 'application/cose-key' is:



      Type name: application



      Subtype name: cose-key



      Required parameters: N/A



      Optional parameters: N/A



      Encoding considerations: binary



      Security considerations: See the Security Considerations section
      of [[This Document]].



      Interoperability considerations: N/A



      Published specification: [[this document]]



      Applications that use this media type: Distribution of COSE based
      keys for IoT applications.



      Fragment identifier considerations: N/A



      Additional information:



      -  Deprecated alias names for this type: N/A



      -  Magic number(s): N/A



      -  File extension(s): cbor



      -  Macintosh file type code(s): N/A



      Person & email address to contact for further information:
      iesg@ietf.org



      Intended usage: COMMON



      Restrictions on usage: N/A



      Author: Jim Schaad, ietf@augustcellars.com



      Change Controller: IESG



      Provisional registration?  No



   The template for registering 'application/cose-key-set' is:



      Type name: application



      Subtype name: cose-key-set



      Required parameters: N/A



      Optional parameters: N/A



      Encoding considerations: binary



      Security considerations: See the Security Considerations section
      of [[This Document]].



      Interoperability considerations: N/A



      Published specification: [[this document]]



      Applications that use this media type: Distribution of COSE based
      keys for IoT applications.



      Fragment identifier considerations: N/A



      Additional information:



      -  Deprecated alias names for this type: N/A



      -  Magic number(s): N/A



      -  File extension(s): cbor



      -  Macintosh file type code(s): N/A



      Person & email address to contact for further information:
      iesg@ietf.org



      Intended usage: COMMON



      Restrictions on usage: N/A



      Author: Jim Schaad, ietf@augustcellars.com



      Change Controller: IESG



      Provisional registration?  No




12.6. CoAP Content-Formats Registry

   IANA added the following entries to the "CoAP Content-Formats"
   registry while processing [RFC8152].  IANA is requested to update the
   reference value from [RFC8152] to [[This Document]].




13. Security Considerations

   There are a number of security considerations that need to be taken
   into account by implementers of this specification.  The security
   considerations that are specific to an individual algorithm are
   placed next to the description of the algorithm.  While some
   considerations have been highlighted here, additional considerations
   may be found in the documents listed in the references.



   Implementations need to protect the private key material for any
   individuals.  There are some cases that need to be highlighted on
   this issue.



   *  Using the same key for two different algorithms can leak
      information about the key.  It is therefore recommended that keys
      be restricted to a single algorithm.



   *  Use of 'direct' as a recipient algorithm combined with a second
      recipient algorithm exposes the direct key to the second
      recipient.



   *  Several of the algorithms in [I-D.ietf-cose-rfc8152bis-algs] have
      limits on the number of times that a key can be used without
      leaking information about the key.



   The use of ECDH and direct plus KDF (with no key wrap) will not
   directly lead to the private key being leaked; the one way function
   of the KDF will prevent that.  There is, however, a different issue
   that needs to be addressed.  Having two recipients requires that the
   CEK be shared between two recipients.  The second recipient therefore
   has a CEK that was derived from material that can be used for the
   weak proof of origin.  The second recipient could create a message
   using the same CEK and send it to the first recipient; the first
   recipient would, for either static-static ECDH or direct plus KDF,
   make an assumption that the CEK could be used for proof of origin
   even though it is from the wrong entity.  If the key wrap step is
   added, then no proof of origin is implied and this is not an issue.



   Although it has been mentioned before, the use of a single key for
   multiple algorithms has been demonstrated in some cases to leak
   information about that key, provide the opportunity for attackers to
   forge integrity tags, or gain information about encrypted content.
   Binding a key to a single algorithm prevents these problems.  Key
   creators and key consumers are strongly encouraged not only to create
   new keys for each different algorithm, but to include that selection
   of algorithm in any distribution of key material and strictly enforce
   the matching of algorithms in the key structure to algorithms in the
   message structure.  In addition to checking that algorithms are
   correct, the key form needs to be checked as well.  Do not use an
   'EC2' key where an 'OKP' key is expected.



   Before using a key for transmission, or before acting on information
   received, a trust decision on a key needs to be made.  Is the data or
   action something that the entity associated with the key has a right
   to see or a right to request?  A number of factors are associated
   with this trust decision.  Some of the ones that are highlighted here
   are:



   *  What are the permissions associated with the key owner?



   *  Is the cryptographic algorithm acceptable in the current context?



   *  Have the restrictions associated with the key, such as algorithm
      or freshness, been checked and are they correct?



   *  Is the request something that is reasonable, given the current
      state of the application?



   *  Have any security considerations that are part of the message been
      enforced (as specified by the application or 'crit' parameter)?



   There are a large number of algorithms presented in
   [I-D.ietf-cose-rfc8152bis-algs] that use nonce values.  Nonces
   generally have some type of restriction on their values.  Generally a
   nonce needs to be a unique value either for a key or for some other
   conditions.  In all of these cases, there is no known requirement on
   the nonce being both unique and unpredictable; under these
   circumstances, it's reasonable to use a counter for creation of the
   nonce.  In cases where one wants the pattern of the nonce to be
   unpredictable as well as unique, one can use a key created for that
   purpose and encrypt the counter to produce the nonce value.



   One area that has been starting to get exposure is doing traffic
   analysis of encrypted messages based on the length of the message.
   This specification does not provide for a uniform method of providing
   padding as part of the message structure.  An observer can
   distinguish between two different strings (for example, 'YES' and
   'NO') based on the length for all of the content encryption
   algorithms that are defined in [I-D.ietf-cose-rfc8152bis-algs]
   document.  This means that it is up to the applications to document
   how content padding is to be done in order to prevent or discourage
   such analysis.  (For example, the strings could be defined as 'YES'
   and 'NO '.)




14. Implementation Status

   This section is to be removed before publishing as an RFC.



   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC7942].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.



   According to [RFC7942], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".




14.1. Author's Versions

   There are three different implementations that have been created by
   the author of the document both to create the examples that are
   included in the document and to validate the structures and
   methodology used in the design of COSE.



   *  Implementation Location: https://github.com/cose-wg



   *  Primary Maintainer: Jim Schaad



   *  Languages: There are three different languages that are currently
      supported: Java, C# and C.



   *  Cryptography: The Java and C# libraries use Bouncy Castle to
      provide the required cryptography.  The C version uses OPENSSL
      Version 1.0 for the cryptography.



   *  Coverage: The C version currently does not have full countersign
      support.  The other two versions do.  They do have support to
      allow for implicit algorithm support as they allow for the
      application to set attributes that are not to be sent in the
      message.



   *  Testing: All of the examples in the example library are generated
      by the C# library and then validated using the Java and C
      libraries.  All three libraries have tests to allow for the
      creating of the same messages that are in the example library
      followed by validating them.  These are not compared against the
      example library.  The Java and C# libraries have unit testing
      included.  Not all of the MUST statements in the document have
      been implemented as part of the libraries.  One such statement is
      the requirement that unique labels be present.



   *  Licensing: Revised BSD License




14.2. JavaScript Version

   *  Implementation Location: https://github.com/erdtman/cose-js



   *  Primary Maintainer: Samuel Erdtman



   *  Languages: JavaScript



   *  Cryptography: TBD



   *  Coverage: Full Encrypt, Signature and MAC objects are supported.



   *  Testing: Basic testing against the common example library.



   *  Licensing: Apache License 2.0




14.3. Python Version

   *  Implementation Location: https://github.com/TimothyClaeys/COSE-
      PYTHON



   *  Primary Maintainer: Timothy Claeys



   *  Languages: Python



   *  Cryptography: pyecdsak, crypto python libraries



   *  Coverage: TBD



   *  Testing: Basic testing plus running against the common example
      library.



   *  Licensing: BSD 3-Clause License




14.4. COSE Testing Library

   *  Implementation Location: https://github.com/cose-wg/Examples



   *  Primary Maintainer: Jim Schaad



   *  Description: A set of tests for the COSE library is provided as
      part of the implementation effort.  Both success and fail tests
      have been provided.  All of the examples in this document are part
      of this example set.



   *  Coverage: An attempt has been made to have test cases for every
      message type and algorithm in the document.  Currently examples
      dealing with counter signatures, and ECDH with Curve24459 and
      Goldilocks are missing.



   *  Licensing: Public Domain




15. References


15.1. Normative References


   [COAP.Formats]

              IANA, "CoAP Content-Formats",
              <https://www.iana.org/assignments/core-parameters/core-
              parameters.xhtml#content-formats>.




   [COSE.Algorithms]

              IANA, "COSE Algorithms",
              <https://www.iana.org/assignments/cose/
              cose.xhtml#algorithms>.




   [COSE.KeyParameters]

              IANA, "COSE Key Parameters",
              <https://www.iana.org/assignments/cose/cose.xhtml#key-
              common-parameters>.




   [COSE.KeyTypes]

              IANA, "COSE Key Types",
              <https://www.iana.org/assignments/cose/cose.xhtml#key-
              type>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC7049]
  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [DSS]
      National Institute of Standards and Technology, "Digital
              Signature Standard (DSS)", DOI 10.6028/NIST.FIPS.186-4,
              FIPS PUB 186-4, July 2013,
              <http://nvlpubs.nist.gov/nistpubs/FIPS/
              NIST.FIPS.186-4.pdf>.




   [RFC8032]
  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <https://www.rfc-editor.org/info/rfc8032>.




   [I-D.ietf-cose-rfc8152bis-algs]

              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Initial Algorithms", Work in Progress, Internet-Draft,
              draft-ietf-cose-rfc8152bis-algs-05, 11 September 2019,
              <https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
              algs-05>.




15.2. Informative References


   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8610]
  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/info/rfc8610>.




   [RFC8018]
  Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:
              Password-Based Cryptography Specification Version 2.1",
              RFC 8018, DOI 10.17487/RFC8018, January 2017,
              <https://www.rfc-editor.org/info/rfc8018>.




   [RFC2633]
  Ramsdell, B., Ed., "S/MIME Version 3 Message
              Specification", RFC 2633, DOI 10.17487/RFC2633, June 1999,
              <https://www.rfc-editor.org/info/rfc2633>.




   [RFC4262]
  Santesson, S., "X.509 Certificate Extension for Secure/
              Multipurpose Internet Mail Extensions (S/MIME)
              Capabilities", RFC 4262, DOI 10.17487/RFC4262, December
              2005, <https://www.rfc-editor.org/info/rfc4262>.




   [RFC4949]
  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.




   [RFC5116]
  McGrew, D., "An Interface and Algorithms for Authenticated
              Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
              <https://www.rfc-editor.org/info/rfc5116>.




   [RFC5652]
  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.




   [RFC5751]
  Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
              Mail Extensions (S/MIME) Version 3.2 Message
              Specification", RFC 5751, DOI 10.17487/RFC5751, January
              2010, <https://www.rfc-editor.org/info/rfc5751>.




   [RFC5752]
  Turner, S. and J. Schaad, "Multiple Signatures in
              Cryptographic Message Syntax (CMS)", RFC 5752,
              DOI 10.17487/RFC5752, January 2010,
              <https://www.rfc-editor.org/info/rfc5752>.




   [RFC5990]
  Randall, J., Kaliski, B., Brainard, J., and S. Turner,
              "Use of the RSA-KEM Key Transport Algorithm in the
              Cryptographic Message Syntax (CMS)", RFC 5990,
              DOI 10.17487/RFC5990, September 2010,
              <https://www.rfc-editor.org/info/rfc5990>.




   [RFC6838]
  Freed, N., Klensin, J., and T. Hansen, "Media Type
              Specifications and Registration Procedures", BCP 13,
              RFC 6838, DOI 10.17487/RFC6838, January 2013,
              <https://www.rfc-editor.org/info/rfc6838>.




   [RFC8259]
  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.




   [RFC7252]
  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.




   [RFC7515]
  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
              2015, <https://www.rfc-editor.org/info/rfc7515>.




   [RFC7516]
  Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
              RFC 7516, DOI 10.17487/RFC7516, May 2015,
              <https://www.rfc-editor.org/info/rfc7516>.




   [RFC7517]
  Jones, M., "JSON Web Key (JWK)", RFC 7517,
              DOI 10.17487/RFC7517, May 2015,
              <https://www.rfc-editor.org/info/rfc7517>.




   [RFC7518]
  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
              DOI 10.17487/RFC7518, May 2015,
              <https://www.rfc-editor.org/info/rfc7518>.




   [RFC8126]
  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.




   [PVSig]
    Brown, D. and D. Johnson, "Formal Security Proofs for a
              Signature Scheme with Partial Message Recovery",
              DOI 10.1007/3-540-45353-9_11, LNCS Volume 2020, June 2000,
              <https://doi.org/10.1007/3-540-45353-9_11>.




   [W3C.WebCrypto]

              Watson, M., "Web Cryptography API", W3C Recommendation,
              January 2017, <https://www.w3.org/TR/WebCryptoAPI/>.




   [RFC8613]
  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
              <https://www.rfc-editor.org/info/rfc8613>.




   [RFC8230]
  Jones, M., "Using RSA Algorithms with CBOR Object Signing
              and Encryption (COSE) Messages", RFC 8230,



              DOI 10.17487/RFC8230, September 2017,
              <https://www.rfc-editor.org/info/rfc8230>.




   [RFC7942]
  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", BCP 205,
              RFC 7942, DOI 10.17487/RFC7942, July 2016,
              <https://www.rfc-editor.org/info/rfc7942>.




   [RFC4998]
  Gondrom, T., Brandner, R., and U. Pordesch, "Evidence
              Record Syntax (ERS)", RFC 4998, DOI 10.17487/RFC4998,
              August 2007, <https://www.rfc-editor.org/info/rfc4998>.




Appendix A. Guidelines for External Data Authentication of Algorithms

   During development of COSE, the requirement that the algorithm
   identifier be located in the protected attributes was relaxed from a
   must to a should.  There were two basic reasons that have been
   advanced to support this position.  First, the resulting message will
   be smaller if the algorithm identifier is omitted from the most
   common messages in a CoAP environment.  Second, there is a potential
   bug that will arise if full checking is not done correctly between
   the different places that an algorithm identifier could be placed
   (the message itself, an application statement, the key structure that
   the sender possesses, and the key structure the recipient possesses).



   This appendix lays out how such a change can be made and the details
   that an application needs to specify in order to use this option.
   Two different sets of details are specified: those needed to omit an
   algorithm identifier and those needed to use a variant on the counter
   signature attribute that contains no attributes about itself.



   Three sets of recommendations are laid out.  The first set of
   recommendations apply to having an implicit algorithm identified for
   a single layer of a COSE object.  The second set of recommendations
   apply to having multiple implicit algorithms identified for multiple
   layers of a COSE object.  The third set of recommendations apply to
   having implicit algorithms for multiple COSE object constructs.



   The key words from [RFC2119] are deliberately not used here.  This
   specification can provide recommendations, but it cannot enforce
   them.



   This set of recommendations applies to the case where an application
   is distributing a fixed algorithm along with the key information for
   use in a single COSE object.  This normally applies to the smallest
   of the COSE objects, specifically COSE_Sign1, COSE_Mac0, and
   COSE_Encrypt0, but could apply to the other structures as well.



   The following items should be taken into account:



   *  Applications need to list the set of COSE structures that implicit
      algorithms are to be used in.  Applications need to require that
      the receipt of an explicit algorithm identifier in one of these
      structures will lead to the message being rejected.  This
      requirement is stated so that there will never be a case where
      there is any ambiguity about the question of which algorithm
      should be used, the implicit or the explicit one.  This applies
      even if the transported algorithm identifier is a protected
      attribute.  This applies even if the transported algorithm is the
      same as the implicit algorithm.



   *  Applications need to define the set of information that is to be
      considered to be part of a context when omitting algorithm
      identifiers.  At a minimum, this would be the key identifier (if
      needed), the key, the algorithm, and the COSE structure it is used
      with.  Applications should restrict the use of a single key to a
      single algorithm.  As noted for some of the algorithms in
      [I-D.ietf-cose-rfc8152bis-algs], the use of the same key in
      different related algorithms can lead to leakage of information
      about the key, leakage about the data or the ability to perform
      forgeries.



   *  In many cases, applications that make the algorithm identifier
      implicit will also want to make the context identifier implicit
      for the same reason.  That is, omitting the context identifier
      will decrease the message size (potentially significantly
      depending on the length of the identifier).  Applications that do
      this will need to describe the circumstances where the context
      identifier is to be omitted and how the context identifier is to
      be inferred in these cases.  (An exhaustive search over all of the
      keys would normally not be considered to be acceptable.)  An
      example of how this can be done is to tie the context to a
      transaction identifier.  Both would be sent on the original
      message, but only the transaction identifier would need to be sent
      after that point as the context is tied into the transaction
      identifier.  Another way would be to associate a context with a
      network address.  All messages coming from a single network
      address can be assumed to be associated with a specific context.
      (In this case, the address would normally be distributed as part
      of the context.)



   *  Applications cannot rely on key identifiers being unique unless
      they take significant efforts to ensure that they are computed in
      such a way as to create this guarantee.  Even when an application
      does this, the uniqueness might be violated if the application is
      run in different contexts (i.e., with a different context



      provider) or if the system combines the security contexts from
      different applications together into a single store.



   *  Applications should continue the practice of protecting the
      algorithm identifier.  Since this is not done by placing it in the
      protected attributes field, applications should define an
      application-specific external data structure that includes this
      value.  This external data field can be used as such for content
      encryption, MAC, and signature algorithms.  It can be used in the
      SuppPrivInfo field for those algorithms that use a KDF to derive a
      key value.  Applications may also want to protect other
      information that is part of the context structure as well.  It
      should be noted that those fields, such as the key or a Base IV,
      are protected by virtue of being used in the cryptographic
      computation and do not need to be included in the external data
      field.



   The second case is having multiple implicit algorithm identifiers
   specified for a multiple layer COSE object.  An example of how this
   would work is the encryption context that an application specifies,
   which contains a content encryption algorithm, a key wrap algorithm,
   a key identifier, and a shared secret.  The sender omits sending the
   algorithm identifier for both the content layer and the recipient
   layer leaving only the key identifier.  The receiver then uses the
   key identifier to get the implicit algorithm identifiers.



   The following additional items need to be taken into consideration:



   *  Applications that want to support this will need to define a
      structure that allows for, and clearly identifies, both the COSE
      structure to be used with a given key and the structure and
      algorithm to be used for the secondary layer.  The key for the
      secondary layer is computed as normal from the recipient layer.



   The third case is having multiple implicit algorithm identifiers, but
   targeted at potentially unrelated layers or different COSE objects.
   There are a number of different scenarios where this might be
   applicable.  Some of these scenarios are:



   *  Two contexts are distributed as a pair.  Each of the contexts is
      for use with a COSE_Encrypt message.  Each context will consist of
      distinct secret keys and IVs and potentially even different
      algorithms.  One context is for sending messages from party A to
      party B, and the second context is for sending messages from party
      B to party A.  This means that there is no chance for a reflection
      attack to occur as each party uses different secret keys to send
      its messages; a message that is reflected back to it would fail to
      decrypt.



   *  Two contexts are distributed as a pair.  The first context is used
      for encryption of the message, and the second context is used to
      place a counter signature on the message.  The intention is that
      the second context can be distributed to other entities
      independently of the first context.  This allows these entities to
      validate that the message came from an individual without being
      able to decrypt the message and see the content.



   *  Two contexts are distributed as a pair.  The first context
      contains a key for dealing with MACed messages, and the second
      context contains a different key for dealing with encrypted
      messages.  This allows for a unified distribution of keys to
      participants for different types of messages that have different
      keys, but where the keys may be used in a coordinated manner.



   For these cases, the following additional items need to be
   considered:



   *  Applications need to ensure that the multiple contexts stay
      associated.  If one of the contexts is invalidated for any reason,
      all of the contexts associated with it should also be invalidated.




Appendix B. Two Layers of Recipient Information

   All of the currently defined recipient algorithm classes only use two
   layers of the COSE_Encrypt structure.  The first layer is the message
   content, and the second layer is the content key encryption.
   However, if one uses a recipient algorithm such as the RSA Key
   Encapsulation Mechanism (RSA-KEM) (see Appendix A of RSA-KEM
   [RFC5990]), then it makes sense to have three layers of the
   COSE_Encrypt structure.



   These layers would be:



   *  Layer 0: The content encryption layer.  This layer contains the
      payload of the message.



   *  Layer 1: The encryption of the CEK by a KEK.



   *  Layer 2: The encryption of a long random secret using an RSA key
      and a key derivation function to convert that secret into the KEK.



   This is an example of what a triple layer message would look like.
   The message has the following layers:



   *  Layer 0: Has a content encrypted with AES-GCM using a 128-bit key.



   *  Layer 1: Uses the AES Key Wrap algorithm with a 128-bit key.



   *  Layer 2: Uses ECDH Ephemeral-Static direct to generate the layer 1
      key.



   In effect, this example is a decomposed version of using the
   ECDH-ES+A128KW algorithm.



   Size of binary file is 183 bytes



96(
  [
    / protected / h'a10101' / {
        \ alg \ 1:1 \ AES‑GCM 128 \
      } / ,
    / unprotected / {
      / iv / 5:h'02d1f7e6f26c43d4868d87ce'
    },
    / ciphertext / h'64f84d913ba60a76070a9a48f26e97e863e2852948658f0
811139868826e89218a75715b',
    / recipients / [
      [
        / protected / h'',
        / unprotected / {
          / alg / 1:‑3 / A128KW /
        },
        / ciphertext / h'dbd43c4e9d719c27c6275c67d628d493f090593db82
18f11',
        / recipients / [
          [
            / protected / h'a1013818' / {
                \ alg \ 1:‑25 \ ECDH‑ES + HKDF‑256 \
              } / ,
            / unprotected / {
              / ephemeral / ‑1:{
                / kty / 1:2,
                / crv / ‑1:1,
                / x / ‑2:h'b2add44368ea6d641f9ca9af308b4079aeb519f11
e9b8a55a600b21233e86e68',
                / y / ‑3:false
              },
              / kid / 4:'meriadoc.brandybuck@buckland.example'
            },
            / ciphertext / h''
          ]
        ]
      ]
    ]
  ]
)




Appendix C. Examples

   This appendix includes a set of examples that show the different
   features and message types that have been defined in this document.
   To make the examples easier to read, they are presented using the
   extended CBOR diagnostic notation (defined in [RFC8610]) rather than
   as a binary dump.



   A GitHub project has been created at <https://github.com/cose-wg/
   Examples> that contains not only the examples presented in this
   document, but a more complete set of testing examples as well.  Each
   example is found in a JSON file that contains the inputs used to
   create the example, some of the intermediate values that can be used
   in debugging the example and the output of the example presented both
   as a hex dump and in CBOR diagnostic notation format.  Some of the
   examples at the site are designed failure testing cases; these are
   clearly marked as such in the JSON file.  If errors in the examples
   in this document are found, the examples on GitHub will be updated,
   and a note to that effect will be placed in the JSON file.



   As noted, the examples are presented using the CBOR's diagnostic
   notation.  A Ruby-based tool exists that can convert between the
   diagnostic notation and binary.  This tool can be installed with the
   command line:



   gem install cbor-diag



   The diagnostic notation can be converted into binary files using the
   following command line:



   diag2cbor.rb < inputfile > outputfile



   The examples can be extracted from the XML version of this document
   via an XPath expression as all of the sourcecode is tagged with the
   attribute type='CBORdiag'.  (Depending on the XPath evaluator one is
   using, it may be necessary to deal with &gt; as an entity.)



   //sourcecode[@type='CDDL']/text()




C.1. Examples of Signed Messages


C.1.1. Single Signature

   This example uses the following:



   *  Signature Algorithm: ECDSA w/ SHA-256, Curve P-256



   Size of binary file is 103 bytes



98(
  [
    / protected / h'',
    / unprotected / {},
    / payload / 'This is the content.',
    / signatures / [
      [
        / protected / h'a10126' / {
            \ alg \ 1:‑7 \ ECDSA 256 \
          } / ,
        / unprotected / {
          / kid / 4:'11'
        },
        / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
98f53afd2fa0f30a'
      ]
    ]
  ]
)




C.1.2. Multiple Signers

   This example uses the following:



   *  Signature Algorithm: ECDSA w/ SHA-256, Curve P-256



   *  Signature Algorithm: ECDSA w/ SHA-512, Curve P-521



   Size of binary file is 277 bytes



98(
  [
    / protected / h'',
    / unprotected / {},
    / payload / 'This is the content.',
    / signatures / [
      [
        / protected / h'a10126' / {
            \ alg \ 1:‑7 \ ECDSA 256 \
          } / ,
        / unprotected / {
          / kid / 4:'11'
        },
        / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
98f53afd2fa0f30a'
      ],
      [
        / protected / h'a1013823' / {
            \ alg \ 1:‑36
          } / ,
        / unprotected / {
          / kid / 4:'bilbo.baggins@hobbiton.example'
        },
        / signature / h'00a2d28a7c2bdb1587877420f65adf7d0b9a06635dd1
de64bb62974c863f0b160dd2163734034e6ac003b01e8705524c5c4ca479a952f024
7ee8cb0b4fb7397ba08d009e0c8bf482270cc5771aa143966e5a469a09f613488030
c5b07ec6d722e3835adb5b2d8c44e95ffb13877dd2582866883535de3bb03d01753f
83ab87bb4f7a0297'
      ]
    ]
  ]
)




C.1.3. Counter Signature

   This example uses the following:



   *  Signature Algorithm: ECDSA w/ SHA-256, Curve P-256



   *  The same parameters are used for both the signature and the
      counter signature.



   Size of binary file is 180 bytes



98(
  [
    / protected / h'',
    / unprotected / {
      / countersign / 7:[
        / protected / h'a10126' / {
            \ alg \ 1:‑7 \ ECDSA 256 \
          } / ,
        / unprotected / {
          / kid / 4:'11'
        },
        / signature / h'5ac05e289d5d0e1b0a7f048a5d2b643813ded50bc9e4
9220f4f7278f85f19d4a77d655c9d3b51e805a74b099e1e085aacd97fc29d72f887e
8802bb6650cceb2c'
      ]
    },
    / payload / 'This is the content.',
    / signatures / [
      [
        / protected / h'a10126' / {
            \ alg \ 1:‑7 \ ECDSA 256 \
          } / ,
        / unprotected / {
          / kid / 4:'11'
        },
        / signature / h'e2aeafd40d69d19dfe6e52077c5d7ff4e408282cbefb
5d06cbf414af2e19d982ac45ac98b8544c908b4507de1e90b717c3d34816fe926a2b
98f53afd2fa0f30a'
      ]
    ]
  ]
)




C.1.4. Signature with Criticality

   This example uses the following:



   *  Signature Algorithm: ECDSA w/ SHA-256, Curve P-256



   *  There is a criticality marker on the "reserved" header parameter



   Size of binary file is 125 bytes



98(
  [
    / protected / h'a2687265736572766564f40281687265736572766564' /
{
        "reserved":false,
        \ crit \ 2:[
          "reserved"
        ]
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / signatures / [
      [
        / protected / h'a10126' / {
            \ alg \ 1:‑7 \ ECDSA 256 \
          } / ,
        / unprotected / {
          / kid / 4:'11'
        },
        / signature / h'3fc54702aa56e1b2cb20284294c9106a63f91bac658d
69351210a031d8fc7c5ff3e4be39445b1a3e83e1510d1aca2f2e8a7c081c7645042b
18aba9d1fad1bd9c'
      ]
    ]
  ]
)




C.2. Single Signer Examples


C.2.1. Single ECDSA Signature

   This example uses the following:



   *  Signature Algorithm: ECDSA w/ SHA-256, Curve P-256



   Size of binary file is 98 bytes



18(
  [
    / protected / h'a10126' / {
        \ alg \ 1:‑7 \ ECDSA 256 \
      } / ,
    / unprotected / {
      / kid / 4:'11'
    },
    / payload / 'This is the content.',
    / signature / h'8eb33e4ca31d1c465ab05aac34cc6b23d58fef5c083106c4
d25a91aef0b0117e2af9a291aa32e14ab834dc56ed2a223444547e01f11d3b0916e5
a4c345cacb36'
  ]
)




C.3. Examples of Enveloped Messages


C.3.1. Direct ECDH

   This example uses the following:



   *  CEK: AES-GCM w/ 128-bit key



   *  Recipient class: ECDH Ephemeral-Static, Curve P-256



   Size of binary file is 151 bytes



96(
  [
    / protected / h'a10101' / {
        \ alg \ 1:1 \ AES‑GCM 128 \
      } / ,
    / unprotected / {
      / iv / 5:h'c9cf4df2fe6c632bf7886413'
    },
    / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0
c52a357da7a644b8070a151b0',
    / recipients / [
      [
        / protected / h'a1013818' / {
            \ alg \ 1:‑25 \ ECDH‑ES + HKDF‑256 \
          } / ,
        / unprotected / {
          / ephemeral / ‑1:{
            / kty / 1:2,
            / crv / ‑1:1,
            / x / ‑2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf
bf054e1c7b4d91d6280',
            / y / ‑3:true
          },
          / kid / 4:'meriadoc.brandybuck@buckland.example'
        },
        / ciphertext / h''
      ]
    ]
  ]
)




C.3.2. Direct Plus Key Derivation

   This example uses the following:



   *  CEK: AES-CCM w/ 128-bit key, truncate the tag to 64 bits



   *  Recipient class: Use HKDF on a shared secret with the following
      implicit fields as part of the context.



      -  salt: "aabbccddeeffgghh"



      -  PartyU identity: "lighting-client"



      -  PartyV identity: "lighting-server"



      -  Supplementary Public Other: "Encryption Example 02"



   Size of binary file is 91 bytes



96(
  [
    / protected / h'a1010a' / {
        \ alg \ 1:10 \ AES‑CCM‑16‑64‑128 \
      } / ,
    / unprotected / {
      / iv / 5:h'89f52f65a1c580933b5261a76c'
    },
    / ciphertext / h'753548a19b1307084ca7b2056924ed95f2e3b17006dfe93
1b687b847',
    / recipients / [
      [
        / protected / h'a10129' / {
            \ alg \ 1:‑10
          } / ,
        / unprotected / {
          / salt / ‑20:'aabbccddeeffgghh',
          / kid / 4:'our‑secret'
        },
        / ciphertext / h''
      ]
    ]
  ]
)




C.3.3. Counter Signature on Encrypted Content

   This example uses the following:



   *  CEK: AES-GCM w/ 128-bit key



   *  Recipient class: ECDH Ephemeral-Static, Curve P-256



   Size of binary file is 326 bytes



96(
  [
    / protected / h'a10101' / {
        \ alg \ 1:1 \ AES‑GCM 128 \
      } / ,
    / unprotected / {
      / iv / 5:h'c9cf4df2fe6c632bf7886413',
      / countersign / 7:[
        / protected / h'a1013823' / {
            \ alg \ 1:‑36
          } / ,
        / unprotected / {
          / kid / 4:'bilbo.baggins@hobbiton.example'
        },
        / signature / h'00929663c8789bb28177ae28467e66377da12302d7f9
594d2999afa5dfa531294f8896f2b6cdf1740014f4c7f1a358e3a6cf57f4ed6fb02f
cf8f7aa989f5dfd07f0700a3a7d8f3c604ba70fa9411bd10c2591b483e1d2c31de00
3183e434d8fba18f17a4c7e3dfa003ac1cf3d30d44d2533c4989d3ac38c38b71481c
c3430c9d65e7ddff'
      ]
    },
    / ciphertext / h'7adbe2709ca818fb415f1e5df66f4e1a51053ba6d65a1a0
c52a357da7a644b8070a151b0',
    / recipients / [
      [
        / protected / h'a1013818' / {
            \ alg \ 1:‑25 \ ECDH‑ES + HKDF‑256 \
          } / ,
        / unprotected / {
          / ephemeral / ‑1:{
            / kty / 1:2,
            / crv / ‑1:1,
            / x / ‑2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbf
bf054e1c7b4d91d6280',
            / y / ‑3:true
          },
          / kid / 4:'meriadoc.brandybuck@buckland.example'
        },
        / ciphertext / h''
      ]
    ]
  ]
)




C.3.4. Encrypted Content with External Data

   This example uses the following:



   *  CEK: AES-GCM w/ 128-bit key



   *  Recipient class: ECDH static-Static, Curve P-256 with AES Key Wrap



   *  Externally Supplied AAD: h'0011bbcc22dd44ee55ff660077'



   Size of binary file is 173 bytes



96(
  [
    / protected / h'a10101' / {
        \ alg \ 1:1 \ AES‑GCM 128 \
      } / ,
    / unprotected / {
      / iv / 5:h'02d1f7e6f26c43d4868d87ce'
    },
    / ciphertext / h'64f84d913ba60a76070a9a48f26e97e863e28529d8f5335
e5f0165eee976b4a5f6c6f09d',
    / recipients / [
      [
        / protected / h'a101381f' / {
            \ alg \ 1:‑32 \ ECHD‑SS+A128KW \
          } / ,
        / unprotected / {
          / static kid / ‑3:'peregrin.took@tuckborough.example',
          / kid / 4:'meriadoc.brandybuck@buckland.example',
          / U nonce / ‑22:h'0101'
        },
        / ciphertext / h'41e0d76f579dbd0d936a662d54d8582037de2e366fd
e1c62'
      ]
    ]
  ]
)




C.4. Examples of Encrypted Messages


C.4.1. Simple Encrypted Message

   This example uses the following:



   *  CEK: AES-CCM w/ 128-bit key and a 64-bit tag



   Size of binary file is 52 bytes



16(
  [
    / protected / h'a1010a' / {
        \ alg \ 1:10 \ AES‑CCM‑16‑64‑128 \
      } / ,
    / unprotected / {
      / iv / 5:h'89f52f65a1c580933b5261a78c'
    },
    / ciphertext / h'5974e1b99a3a4cc09a659aa2e9e7fff161d38ce71cb45ce
460ffb569'
  ]
)




C.4.2. Encrypted Message with a Partial IV

   This example uses the following:



   *  CEK: AES-CCM w/ 128-bit key and a 64-bit tag



   *  Prefix for IV is 89F52F65A1C580933B52



   Size of binary file is 41 bytes



16(
  [
    / protected / h'a1010a' / {
        \ alg \ 1:10 \ AES‑CCM‑16‑64‑128 \
      } / ,
    / unprotected / {
      / partial iv / 6:h'61a7'
    },
    / ciphertext / h'252a8911d465c125b6764739700f0141ed09192de139e05
3bd09abca'
  ]
)




C.5. Examples of MACed Messages


C.5.1. Shared Secret Direct MAC

   This example uses the following:



   *  MAC: AES-CMAC, 256-bit key, truncated to 64 bits



   *  Recipient class: direct shared secret



   Size of binary file is 57 bytes



97(
  [
    / protected / h'a1010f' / {
        \ alg \ 1:15 \ AES‑CBC‑MAC‑256//64 \
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / tag / h'9e1226ba1f81b848',
    / recipients / [
      [
        / protected / h'',
        / unprotected / {
          / alg / 1:‑6 / direct /,
          / kid / 4:'our‑secret'
        },
        / ciphertext / h''
      ]
    ]
  ]
)




C.5.2. ECDH Direct MAC

   This example uses the following:



   *  MAC: HMAC w/SHA-256, 256-bit key



   *  Recipient class: ECDH key agreement, two static keys, HKDF w/
      context structure



   Size of binary file is 214 bytes



97(
  [
    / protected / h'a10105' / {
        \ alg \ 1:5 \ HMAC 256//256 \
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / tag / h'81a03448acd3d305376eaa11fb3fe416a955be2cbe7ec96f012c99
4bc3f16a41',
    / recipients / [
      [
        / protected / h'a101381a' / {
            \ alg \ 1:‑27 \ ECDH‑SS + HKDF‑256 \
          } / ,
        / unprotected / {
          / static kid / ‑3:'peregrin.took@tuckborough.example',
          / kid / 4:'meriadoc.brandybuck@buckland.example',
          / U nonce / ‑22:h'4d8553e7e74f3c6a3a9dd3ef286a8195cbf8a23d
19558ccfec7d34b824f42d92bd06bd2c7f0271f0214e141fb779ae2856abf585a583
68b017e7f2a9e5ce4db5'
        },
        / ciphertext / h''
      ]
    ]
  ]
)




C.5.3. Wrapped MAC

   This example uses the following:



   *  MAC: AES-MAC, 128-bit key, truncated to 64 bits



   *  Recipient class: AES Key Wrap w/ a pre-shared 256-bit key



   Size of binary file is 109 bytes



97(
  [
    / protected / h'a1010e' / {
        \ alg \ 1:14 \ AES‑CBC‑MAC‑128//64 \
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / tag / h'36f5afaf0bab5d43',
    / recipients / [
      [
        / protected / h'',
        / unprotected / {
          / alg / 1:‑5 / A256KW /,
          / kid / 4:'018c0ae5‑4d9b‑471b‑bfd6‑eef314bc7037'
        },
        / ciphertext / h'711ab0dc2fc4585dce27effa6781c8093eba906f227
b6eb0'
      ]
    ]
  ]
)




C.5.4. Multi-Recipient MACed Message

   This example uses the following:



   *  MAC: HMAC w/ SHA-256, 128-bit key



   *  Recipient class: Uses three different methods



      1.  ECDH Ephemeral-Static, Curve P-521, AES Key Wrap w/ 128-bit
          key



      2.  AES Key Wrap w/ 256-bit key



   Size of binary file is 309 bytes



97(
  [
    / protected / h'a10105' / {
        \ alg \ 1:5 \ HMAC 256//256 \
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / tag / h'bf48235e809b5c42e995f2b7d5fa13620e7ed834e337f6aa43df16
1e49e9323e',
    / recipients / [
      [
        / protected / h'a101381c' / {
            \ alg \ 1:‑29 \ ECHD‑ES+A128KW \
          } / ,
        / unprotected / {
          / ephemeral / ‑1:{
            / kty / 1:2,
            / crv / ‑1:3,
            / x / ‑2:h'0043b12669acac3fd27898ffba0bcd2e6c366d53bc4db
71f909a759304acfb5e18cdc7ba0b13ff8c7636271a6924b1ac63c02688075b55ef2
d613574e7dc242f79c3',
            / y / ‑3:true
          },
          / kid / 4:'bilbo.baggins@hobbiton.example'
        },
        / ciphertext / h'339bc4f79984cdc6b3e6ce5f315a4c7d2b0ac466fce
a69e8c07dfbca5bb1f661bc5f8e0df9e3eff5'
      ],
      [
        / protected / h'',
        / unprotected / {
          / alg / 1:‑5 / A256KW /,
          / kid / 4:'018c0ae5‑4d9b‑471b‑bfd6‑eef314bc7037'
        },
        / ciphertext / h'0b2c7cfce04e98276342d6476a7723c090dfdd15f9a
518e7736549e998370695e6d6a83b4ae507bb'
      ]
    ]
  ]
)




C.6. Examples of MAC0 Messages


C.6.1. Shared Secret Direct MAC

   This example uses the following:



   *  MAC: AES-CMAC, 256-bit key, truncated to 64 bits



   *  Recipient class: direct shared secret



   Size of binary file is 37 bytes



17(
  [
    / protected / h'a1010f' / {
        \ alg \ 1:15 \ AES‑CBC‑MAC‑256//64 \
      } / ,
    / unprotected / {},
    / payload / 'This is the content.',
    / tag / h'726043745027214f'
  ]
)



   Note that this example uses the same inputs as Appendix C.5.1.




C.7. COSE Keys


C.7.1. Public Keys

   This is an example of a COSE Key Set.  This example includes the
   public keys for all of the previous examples.



   In order the keys are:



   *  An EC key with a kid of "meriadoc.brandybuck@buckland.example"



   *  An EC key with a kid of "peregrin.took@tuckborough.example"



   *  An EC key with a kid of "bilbo.baggins@hobbiton.example"



   *  An EC key with a kid of "11"



   Size of binary file is 481 bytes



[
  {
    ‑1:1,
    ‑2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c0
8551d',
    ‑3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd008
4d19c',
    1:2,
    2:'meriadoc.brandybuck@buckland.example'
  },
  {
    ‑1:1,
    ‑2:h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a
09eff',
    ‑3:h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbf
c117e',
    1:2,
    2:'11'
  },
  {
    ‑1:3,
    ‑2:h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737bf5de
7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620085e5c8
f42ad',
    ‑3:h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e247e
60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f3fe1ea1
d9475',
    1:2,
    2:'bilbo.baggins@hobbiton.example'
  },
  {
    ‑1:1,
    ‑2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b4d91
d6280',
    ‑3:h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e03bf
822bb',
    1:2,
    2:'peregrin.took@tuckborough.example'
  }
]




C.7.2. Private Keys

   This is an example of a COSE Key Set.  This example includes the
   private keys for all of the previous examples.



   In order the keys are:



   *  An EC key with a kid of "meriadoc.brandybuck@buckland.example"



   *  A shared-secret key with a kid of "our-secret"



   *  An EC key with a kid of "peregrin.took@tuckborough.example"



   *  A shared-secret key with a kid of "018c0ae5-4d9b-471b-
      bfd6-eef314bc7037"



   *  An EC key with a kid of "bilbo.baggins@hobbiton.example"



   *  An EC key with a kid of "11"



   Size of binary file is 816 bytes



[
  {
    1:2,
    2:'meriadoc.brandybuck@buckland.example',
    ‑1:1,
    ‑2:h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c0
8551d',
    ‑3:h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd008
4d19c',
    ‑4:h'aff907c99f9ad3aae6c4cdf21122bce2bd68b5283e6907154ad911840fa
208cf'
  },
  {
    1:2,
    2:'11',
    ‑1:1,
    ‑2:h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a
09eff',
    ‑3:h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbf
c117e',
    ‑4:h'57c92077664146e876760c9520d054aa93c3afb04e306705db609030850
7b4d3'
  },
  {
    1:2,
    2:'bilbo.baggins@hobbiton.example',
    ‑1:3,
    ‑2:h'0072992cb3ac08ecf3e5c63dedec0d51a8c1f79ef2f82f94f3c737bf5de
7986671eac625fe8257bbd0394644caaa3aaf8f27a4585fbbcad0f2457620085e5c8
f42ad',
    ‑3:h'01dca6947bce88bc5790485ac97427342bc35f887d86d65a089377e247e
60baa55e4e8501e2ada5724ac51d6909008033ebc10ac999b9d7f5cc2519f3fe1ea1
d9475',

    ‑4:h'00085138ddabf5ca975f5860f91a08e91d6d5f9a76ad4018766a476680b
55cd339e8ab6c72b5facdb2a2a50ac25bd086647dd3e2e6e99e84ca2c3609fdf177f
eb26d'
  },
  {
    1:4,
    2:'our‑secret',
    ‑1:h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dcea6c4
27188'
  },
  {
    1:2,
    ‑1:1,
    2:'peregrin.took@tuckborough.example',
    ‑2:h'98f50a4ff6c05861c8860d13a638ea56c3f5ad7590bbfbf054e1c7b4d91
d6280',
    ‑3:h'f01400b089867804b8e9fc96c3932161f1934f4223069170d924b7e03bf
822bb',
    ‑4:h'02d1f7e6f26c43d4868d87ceb2353161740aacf1f7163647984b522a848
df1c3'
  },
  {
    1:4,
    2:'our‑secret2',
    ‑1:h'849b5786457c1491be3a76dcea6c4271'
  },
  {
    1:4,
    2:'018c0ae5‑4d9b‑471b‑bfd6‑eef314bc7037',
    ‑1:h'849b57219dae48de646d07dbb533566e976686457c1491be3a76dcea6c4
27188'
  }
]



Acknowledgments



   This document is a product of the COSE working group of the IETF.



   The following individuals are to blame for getting me started on this
   project in the first place: Richard Barnes, Matt Miller, and Martin
   Thomson.



   The initial version of the specification was based to some degree on
   the outputs of the JOSE and S/MIME working groups.



   The following individuals provided input into the final form of the
   document: Carsten Bormann, John Bradley, Brain Campbell, Michael B.
   Jones, Ilari Liusvaara, Francesca Palombini, Ludwig Seitz, and Goran
   Selander.



Author's Address



Jim Schaad
August Cellars



   Email: ietf@augustcellars.com













































draft-ietf-cose-webauthn-algorithms-03 - COSE and JOSE Registrations for WebAuthn Algorithms 






draft-ietf-cose-webauthn-algorithms-03 - COSE and JOSE Registrations for WebAuth

Index
Prev
Next
Forward 5


COSE Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 4, 2020


M. Jones

Microsoft

November 1, 2019



COSE and JOSE Registrations for WebAuthn Algorithms  

draft-ietf-cose-webauthn-algorithms-03


Abstract

   The W3C Web Authentication (WebAuthn) specification and the FIDO
   Alliance Client to Authenticator Protocol (CTAP) specification use
   CBOR Object Signing and Encryption (COSE) algorithm identifiers.
   This specification registers the following algorithms in the IANA
   "COSE Algorithms" registry, which are used by WebAuthn and CTAP
   implementations: RSASSA-PKCS1-v1_5 using SHA-256, SHA-384, SHA-512,
   and SHA-1, and ECDSA using the secp256k1 curve and SHA-256.  It
   registers the secp256k1 elliptic curve in the IANA "COSE Elliptic
   Curves" registry.  Also, for use with JSON Object Signing and
   Encryption (JOSE), it registers the algorithm ECDSA using the
   secp256k1 curve and SHA-256 in the IANA "JSON Web Signature and
   Encryption Algorithms" registry and the secp256k1 elliptic curve in
   the IANA "JSON Web Key Elliptic Curve" registry.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 4, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Requirements Notation and Conventions



	2.  RSASSA-PKCS1-v1_5 Signature Algorithm


	3.  Using secp256k1 with JOSE and COSE
	 3.1.  JOSE and COSE secp256k1 Curve Key Representations


	 3.2.  ECDSA Signature with secp256k1 Curve


	 3.3.  Other Uses of the secp256k1 Elliptic Curve



	4.  IANA Considerations
	 4.1.  COSE Algorithms Registrations


	 4.2.  COSE Elliptic Curves Registrations


	 4.3.  JOSE Algorithms Registrations


	 4.4.  JSON Web Key Elliptic Curves Registrations



	5.  Security Considerations
	 5.1.  RSA Key Size Security Considerations


	 5.2.  RSASSA-PKCS1-v1_5 with SHA-2 Security Considerations


	 5.3.  RSASSA-PKCS1-v1_5 with SHA-1 Security Considerations


	 5.4.  secp256k1 Security Considerations



	6.  References
	 6.1.  Normative References


	 6.2.  Informative References



	Acknowledgements


	Document History


	Author's Address




1. Introduction

   This specification defines how to use several algorithms with CBOR
   Object Signing and Encryption (COSE) [RFC8152] that are used by
   implementations of the W3C Web Authentication (WebAuthn) [WebAuthn]
   and FIDO Alliance FIDO2 Client to Authenticator Protocol (CTAP)
   [CTAP] specifications.  These specification registers these
   algorithms in the IANA "COSE Algorithms" registry
   [IANA.COSE.Algorithms] and registers an elliptic curve in the IANA
   "COSE Elliptic Curves" registry [IANA.COSE.Curves].  This
   specification also registers a corresponding algorithm for use with
   JSON Object Signing and Encryption (JOSE) [RFC7515] in the IANA "JSON



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




   Web Signature and Encryption Algorithms" registry
   [IANA.JOSE.Algorithms] and registers an elliptic curve in the IANA
   "JSON Web Key Elliptic Curve" registry [IANA.JOSE.Curves].




1.1. Requirements Notation and Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




2. RSASSA-PKCS1-v1_5 Signature Algorithm

   The RSASSA-PKCS1-v1_5 signature algorithm is defined in [RFC8017].
   The RSASSA-PKCS1-v1_5 signature algorithm is parameterized with a
   hash function (h).



   A key of size 2048 bits or larger MUST be used with these algorithms.
   Implementations need to check that the key type is 'RSA' when
   creating or verifying a signature.



   The RSASSA-PKCS1-v1_5 algorithms specified in this document are in
   the following table.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name  | Value         | Hash    | Description       | Recommended |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RS256 | TBD           | SHA‑256 | RSASSA‑PKCS1‑v1_5 | No          |
|       | (temporary    |         | using SHA‑256     |             |
|       | assignment    |         |                   |             |
|       | ‑257 already  |         |                   |             |
|       | in place)     |         |                   |             |
| RS384 | TBD           | SHA‑384 | RSASSA‑PKCS1‑v1_5 | No          |
|       | (temporary    |         | using SHA‑384     |             |
|       | assignment    |         |                   |             |
|       | ‑258 already  |         |                   |             |
|       | in place)     |         |                   |             |
| RS512 | TBD           | SHA‑512 | RSASSA‑PKCS1‑v1_5 | No          |
|       | (temporary    |         | using SHA‑512     |             |
|       | assignment    |         |                   |             |
|       | ‑259 already  |         |                   |             |
|       | in place)     |         |                   |             |
| RS1   | TBD           | SHA‑1   | RSASSA‑PKCS1‑v1_5 | Deprecated  |
|       | (temporary    |         | using SHA‑1       |             |
|       | assignment    |         |                   |             |
|       | ‑65535        |         |                   |             |
|       | already in    |         |                   |             |
|       | place)        |         |                   |             |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                Table 1: RSASSA-PKCS1-v1_5 Algorithm Values



   Security considerations for use of the first three algorithms are in
   Section 5.2.  Security considerations for use of the last algorithm
   are in Section 5.3.



   Note that these algorithms are already present in the IANA "JSON Web
   Signature and Encryption Algorithms" registry [IANA.JOSE.Algorithms],
   and so these registrations are only for the IANA "COSE Algorithms"
   registry [IANA.COSE.Algorithms].




3. Using secp256k1 with JOSE and COSE

   This section defines algorithm encodings and representations enabling
   the Standards for Efficient Cryptography Group (SECG) elliptic curve
   secp256k1 [SEC2] to be used for JOSE [RFC7515] and COSE [RFC8152]
   messages.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019





3.1. JOSE and COSE secp256k1 Curve Key Representations

   The Standards for Efficient Cryptography Group (SECG) elliptic curve
   secp256k1 [SEC2] is represented in a JSON Web Key (JWK) [RFC7517]
   using these values:



o  "kty": "EC"
o  "crv": "secp256k1"



   plus the values needed to represent the curve point, as defined in
   Section 6.2.1 of [RFC7518].  As a compressed point encoding
   representation is not defined for JWK elliptic curve points, the
   uncompressed point encoding defined there MUST be used.  The "x" and
   "y" values represented MUST both be exactly 256 bits, with any
   leading zeros preserved.  Other optional values such as "alg" MAY
   also be present.



   It is represented in a COSE_Key [RFC8152] using these values:



o  "kty" (1): "EC2" (2)
o  "crv" (‑1): "secp256k1" (TBD ‑ requested assignment 8)



   plus the values needed to represent the curve point, as defined in
   Section 13.1.1 of [RFC8152].  Either the uncompressed or compressed
   point encoding representations defined there can be used.  The "x"
   value represented MUST be exactly 256 bits, with any leading zeros
   preserved.  If the uncompressed representation is used, the "y" value
   represented MUST likewise be exactly 256 bits, with any leading zeros
   preserved; if the compressed representation is used, the "y" value
   MUST be a boolean value, as specified in Section 13.1.1 of [RFC8152].
   Other optional values such as "alg" (3) MAY also be present.




3.2. ECDSA Signature with secp256k1 Curve

   The ECDSA signature algorithm is defined in [DSS].  This
   specification defines the "ES256K" algorithm identifier, which is
   used to specify the use of ECDSA with the secp256k1 curve and the
   SHA-256 [DSS] cryptographic hash function.  Implementations need to
   check that the key type is "EC" for JOSE or "EC2" (2) for COSE and
   that the curve of the key is secp256k1 when creating or verifying a
   signature.



   The ECDSA secp256k1 SHA-256 digital signature is generated as
   follows:



   1.  Generate a digital signature of the JWS Signing Input or the COSE
       Sig_structure using ECDSA secp256k1 SHA-256 with the desired



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




       private key.  The output will be the pair (R, S), where R and S
       are 256-bit unsigned integers.



   2.  Turn R and S into octet sequences in big-endian order, with each
       array being be 32 octets long.  The octet sequence
       representations MUST NOT be shortened to omit any leading zero
       octets contained in the values.



   3.  Concatenate the two octet sequences in the order R and then S.
       (Note that many ECDSA implementations will directly produce this
       concatenation as their output.)



   4.  The resulting 64-octet sequence is the JWS Signature or COSE
       signature value.



   Implementations SHOULD use a deterministic algorithm to generate the
   ECDSA nonce, k, such as [RFC6979].  However, in situations where
   devices are vulnerable to physical attacks, deterministic ECDSA has
   been shown to be susceptible to fault injection attacks [Kudelski17]
   [EuroSP18].  Where this is a possibility, implementations SHOULD
   implement appropriate countermeasures.  Where there are specific
   certification requirements (such as FIPS approval), implementors
   should check whether deterministic ECDSA is an approved nonce
   generation method.



   The ECDSA secp256k1 SHA-256 algorithm specified in this document uses
   these identifiers:



+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| JOSE Alg | COSE Alg Value    | Description          | Recommended |
| Name     |                   |                      |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ES256K   | TBD (requested    | ECDSA using          | Yes         |
|          | assignment ‑46)   | secp256k1 curve and  |             |
|          |                   | SHA‑256              |             |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 2: ECDSA Algorithm Values



   Implementation of this algorithm is recommended because of its
   widespread use in decentralized systems and those that chose it over
   the NIST curves.



   When using a JWK or COSE_Key for this algorithm, the following checks
   are made:



   o  The "kty" field MUST be present and it MUST be "EC" for JOSE or
      "EC2" for COSE.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




   o  The "crv" field MUST be present and it MUST represent the
      "secp256k1" elliptic curve.



   o  If the "alg" field is present, it MUST represent the "ES256K"
      algorithm.



   o  If the "key_ops" field is present, it MUST include "sign" when
      creating an ECDSA signature.



   o  If the "key_ops" field is present, it MUST include "verify" when
      verifying an ECDSA signature.



   o  If the JWK _use_ field is present, its value MUST be "sig".




3.3. Other Uses of the secp256k1 Elliptic Curve

   This specification defines how to use the secp256k1 curve for ECDSA
   signatures for both JOSE and COSE implementations.  While in theory,
   the curve could also be used for ECDH-ES key agreement, it is beyond
   the scope of this specification to state whether this is or is not
   advisable.  Thus, whether to recommend its use with ECDH-ES is left
   for experts to decide in future specifications.



   When used for ECDSA, the secp256k1 curve MUST be used only with the
   "ES256K" algorithm identifier and not any others, including not with
   "ES256".




4. IANA Considerations


4.1. COSE Algorithms Registrations

   This section registers the following values in the IANA "COSE
   Algorithms" registry [IANA.COSE.Algorithms].



o  Name: RS256
o  Value: TBD (temporary assignment ‑257 already in place)
o  Description: RSASSA‑PKCS1‑v1_5 using SHA‑256
o  Reference: Section 2 of this document
o  Recommended: No

o  Name: RS384
o  Value: TBD (temporary assignment ‑258 already in place)
o  Description: RSASSA‑PKCS1‑v1_5 using SHA‑384
o  Reference: Section 2 of this document
o  Recommended: No

o  Name: RS512
o  Value: TBD (temporary assignment ‑259 already in place)



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




o  Description: RSASSA‑PKCS1‑v1_5 using SHA‑512
o  Reference: Section 2 of this document
o  Recommended: No

o  Name: RS1
o  Value: TBD (temporary assignment ‑65535 already in place)
o  Description: RSASSA‑PKCS1‑v1_5 using SHA‑1
o  Reference: Section 2 of this document
o  Recommended: Deprecated

o  Name: ES256K
o  Value: TBD (requested assignment ‑46)
o  Description: ECDSA using secp256k1 curve and SHA‑256
o  Reference: Section 3.2 of this document
o  Recommended: Yes




4.2. COSE Elliptic Curves Registrations

   This section registers the following value in the IANA "COSE Elliptic
   Curves" registry [IANA.COSE.Curves].



o  Name: secp256k1
o  Value: TBD (requested assignment 8)
o  Key Type: EC2
o  Description: SECG secp256k1 curve
o  Change Controller: IESG
o  Reference: Section 3.1 of [[ this specification ]]
o  Recommended: Yes




4.3. JOSE Algorithms Registrations

   This section registers the following value in the IANA "JSON Web
   Signature and Encryption Algorithms" registry [IANA.JOSE.Algorithms].



o  Algorithm Name: ES256K
o  Algorithm Description: ECDSA using secp256k1 curve and SHA‑256
o  Algorithm Usage Locations: alg
o  JOSE Implementation Requirements: Optional
o  Change Controller: IESG
o  Reference: Section 3.2 of [[ this specification ]]
o  Algorithm Analysis Document(s): [SEC2]




4.4. JSON Web Key Elliptic Curves Registrations

   This section registers the following value in the IANA "JSON Web Key
   Elliptic Curve" registry [IANA.JOSE.Curves].



   o  Curve Name: secp256k1



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




o  Curve Description: SECG secp256k1 curve
o  JOSE Implementation Requirements: Optional
o  Change Controller: IESG
o  Specification Document(s): Section 3.1 of [[ this specification ]]




5. Security Considerations


5.1. RSA Key Size Security Considerations

   The security considerations on key sizes for RSA algorithms from
   Section 6.1 of [RFC8230] also apply to the RSA algorithms in this
   specification.




5.2. RSASSA-PKCS1-v1_5 with SHA-2 Security Considerations

   The security considerations on the use of RSASSA-PKCS1-v1_5 with
   SHA-2 hash functions from Section 8.3 of [RFC7518] also apply to
   their use in this specification.  For that reason, these algorithms
   are registered as being "Not Recommended".




5.3. RSASSA-PKCS1-v1_5 with SHA-1 Security Considerations

   The security considerations on the use of the SHA-1 hash function
   from [RFC6194] apply in this specification.  For that reason, the
   "RS1" algorithm is registered as "Deprecated".  Likewise, the
   exponent restrictions described in Section 8.3 of [RFC7518] also
   apply.



   A COSE algorithm identifier for this algorithm is nonetheless being
   registered because deployed TPMs continue to use it, and therefore
   WebAuthn implementations need a COSE algorithm identifier for "RS1"
   when TPM attestations using this algorithm are being represented.
   New COSE applications MUST NOT use this algorithm.




5.4. secp256k1 Security Considerations

   Care should be taken that a secp256k1 key is not mistaken for a P-256
   [RFC7518] key, given that their representations are the same except
   for the "crv" value.



   The procedures and security considerations described in the [SEC1],
   [SEC2], and [DSS] specifications apply to implementations of this
   specification.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019





6. References


6.1. Normative References


   [DSS]
      National Institute of Standards and Technology (NIST),
              "Digital Signature Standard (DSS)", FIPS PUB 186-4, July
              2013, <http://nvlpubs.nist.gov/nistpubs/FIPS/
              NIST.FIPS.186-4.pdf>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC6194]
  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
              Considerations for the SHA-0 and SHA-1 Message-Digest
              Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
              <https://www.rfc-editor.org/info/rfc6194>.




   [RFC7049]
  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <https://www.rfc-editor.org/info/rfc7049>.




   [RFC7515]
  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
              2015, <https://www.rfc-editor.org/info/rfc7515>.




   [RFC7517]
  Jones, M., "JSON Web Key (JWK)", RFC 7517,
              DOI 10.17487/RFC7517, May 2015,
              <https://www.rfc-editor.org/info/rfc7517>.




   [RFC7518]
  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
              DOI 10.17487/RFC7518, May 2015,
              <https://www.rfc-editor.org/info/rfc7518>.




   [RFC8017]
  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/info/rfc8017>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019





   [RFC8230]
  Jones, M., "Using RSA Algorithms with CBOR Object Signing
              and Encryption (COSE) Messages", RFC 8230,
              DOI 10.17487/RFC8230, September 2017,
              <https://www.rfc-editor.org/info/rfc8230>.




   [SEC1]
     Standards for Efficient Cryptography Group, "SEC 1:
              Elliptic Curve Cryptography", Version 2.0, May 2009,
              <http://www.secg.org/sec1-v2.pdf>.




   [SEC2]
     Standards for Efficient Cryptography Group, "SEC 2:
              Recommended Elliptic Curve Domain Parameters",
              Version 2.0, January 2010,
              <http://www.secg.org/sec2-v2.pdf>.




6.2. Informative References


   [CTAP]
     Brand, C., Czeskis, A., Ehrensvaerd, J., Jones, M., Kumar,
              A., Lindemann, R., Powers, A., and J. Verrept, "Client to
              Authenticator Protocol (CTAP)", FIDO Alliance Proposed
              Standard, January 2019, <https://fidoalliance.org/specs/
              fido-v2.0-ps-20190130/fido-client-to-authenticator-
              protocol-v2.0-ps-20190130.html>.




   [EuroSP18]

              Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M.,
              and P. Roesler, "Attacking Deterministic Signature Schemes
              using Fault Attacks", IEEE European Symposium on Security
              and Privacy (EuroS&P) 2018, April 2018,
              <https://eprint.iacr.org/2017/1014.pdf>.




   [IANA.COSE.Algorithms]

              IANA, "COSE Algorithms",
              <https://www.iana.org/assignments/cose/
              cose.xhtml#algorithms>.




   [IANA.COSE.Curves]

              IANA, "COSE Elliptic Curves",
              <https://www.iana.org/assignments/cose/
              cose.xhtml#elliptic-curves>.




   [IANA.JOSE.Algorithms]

              IANA, "JSON Web Signature and Encryption Algorithms",
              <https://www.iana.org/assignments/jose/jose.xhtml#web-
              signature-encryption-algorithms>.



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019





   [IANA.JOSE.Curves]

              IANA, "JSON Web Key Elliptic Curve",
              <https://www.iana.org/assignments/jose/jose.xhtml#web-key-
              elliptic-curve>.




   [Kudelski17]

              Romailler, Y., "How to defeat Ed25519 and EdDSA using
              faults", October 2017,
              <https://research.kudelskisecurity.com/2017/10/04/
              defeating-eddsa-with-faults/>.




   [RFC6979]
  Pornin, T., "Deterministic Usage of the Digital Signature
              Algorithm (DSA) and Elliptic Curve Digital Signature
              Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
              2013, <https://www.rfc-editor.org/info/rfc6979>.




   [WebAuthn]

              Balfanz, D., Czeskis, A., Hodges, J., Jones, J., Jones,
              M., Kumar, A., Liao, A., Lindemann, R., and E. Lundberg,
              "Web Authentication: An API for accessing Public Key
              Credentials - Level 1", World Wide Web Consortium
              (W3C) Recommendation, March 2019,
              <https://www.w3.org/TR/2019/REC-webauthn-1-20190304/>.




Acknowledgements

   Thanks to Stephen Farrell, John Fontana, Jeff Hodges, Kevin Jacobs,
   J.C.  Jones, Benjamin Kaduk, Neil Madden, John Mattsson, Tony
   Nadalin, Matt Palmer, Jim Schaad, Goeran Selander, Wendy Seltzer,
   Sean Turner, and Samuel Weiler for their roles in registering these
   algorithm identifiers.



Document History



   [[ to be removed by the RFC Editor before publication as an RFC ]]



   -03



   o  Addressed review of -02 by Jim Schaad.



   -02



   o  Addressed working group last call comments.  Thanks to J.C.
      Jones, Kevin Jacobs, Jim Schaad, Neil Madden, and Benjamin Kaduk
      for their useful feedback.



   -01



Internet-Draft COSE & JOSE Registrations for WebAuthn Algs November 2019




   o  Changed the JOSE curve identifier from "P-256K" to "secp256k1".



   o  Specified that secp256k1 signing is done using the SHA-256 hash
      function.



   -00



   o  Created the initial working group draft from draft-jones-cose-
      additional-algorithms-00, changing only the title, date, and
      history entry.



Author's Address



Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI:   http://self‑issued.info/




































draft-ietf-cose-x509-05 - CBOR Object Signing and Encryption (COSE): Headers for carrying and referencing X.509 certificates 






draft-ietf-cose-x509-05 - CBOR Object Signing and Encryption (COSE): Headers for

Index
Back 5
Prev
Next


Network Working Group

Internet-Draft

Intended status: Informational

Expires: 7 May 2020


J. Schaad

August Cellars

4 November 2019



CBOR Object Signing and Encryption (COSE): Headers for carrying and referencing X.509 certificates  

draft-ietf-cose-x509-05


Abstract

   The CBOR Signing And Encrypted Message (COSE) structure uses
   references to keys in general.  For some algorithms, additional
   properties are defined which carry parts of keys as needed.  The COSE
   Key structure is used for transporting keys outside of COSE messages.
   This document extends the way that keys can be identified and
   transported by providing attributes that refer to or contain X.509
   certificates.



Contributing to this document



   This note is to be removed before publishing as an RFC.



   The source for this draft is being maintained in GitHub.  Suggested
   changes should be submitted as pull requests at https://github.com/
   cose-wg/X509.  Instructions are on that page as well.  Editorial
   changes can be managed in GitHub, but any substantial issues need to
   be discussed on the COSE mailing list.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on 7 May 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Requirements Terminology



	2.  X.509 COSE Headers


	3.  X.509 certificates and static-static ECDH


	4.  IANA Considerations
	 4.1.  COSE Header Parameter Registry


	 4.2.  COSE Header Algorithm Parameter Registry



	5.  Security Considerations


	6.  References
	 6.1.  Normative References


	 6.2.  Informative References



	Author's Address




1. Introduction

   In the process of writing [RFC8152] discussions where held on the
   question of X.509 certificates [RFC5280] and if there was a needed to
   provide for them.  At the time there were no use cases presented that
   appeared to have a sufficient need for these attributes.  Since that
   time a number of cases where X.509 certificate support is necessary
   have been defined.  This document provides a set of attributes that
   will allow applications to transport and refer to X.509 certificates
   in a consistent manner.



   Some of the constrained device situations are being used where an
   X.509 PKI is already installed.  One of these situations is the
   6TiSCH environment for enrollment of devices where the certificates
   are installed at the factory.  The [I-D.selander-ace-cose-ecdhe]
   draft was also written with the idea that long term certificates
   could be used to provide for authentication of devices and uses them
   to establish session keys.  A final scenario is the use of COSE as a
   messaging application where long term existence of keys can be used
   along with a central authentication authority.  The use of
   certificates in this scenario allows for key management to be used
   which is well understood.



   Example COSE messages for the various headers defined below can be
   found at https://github.com/cose-wg/Examples.




1.1. Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




2. X.509 COSE Headers

   The use of X.509 certificates allows for an existing trust
   infrastructure to be used with COSE.  This includes the full suite of
   enrollment protocols, trust anchors, trust chaining and revocation
   checking that have been defined over time by the IETF and other
   organizations.  The key structures that have been defined in COSE
   currently do not support all of these properties although some may be
   found in COSE Web Tokens (CWT) [RFC8392].



   It is not necessarily expected that constrained devices will fully
   support the evaluation and processing of X.509 certificates, it is
   perfectly reasonable for a certificate to be assigned to a device
   which it can then provide to a relying party along with a signature
   or encrypted message, the relying party not being a constrained
   device.



   Certificates obtained from any of these methods MUST still be
   validated.  This validation can be done via the PKIX rules in
   [RFC5280] or by using a different trust structure, such as a trusted
   certificate distributer for self-signed certificates.  The PKIX
   validation includes matching against the trust anchors configured for
   the application.  These rules apply to certificates of a chain length
   of one as well as longer chains.  If the application cannot establish
   a trust in the certificate, then it cannot be used.



   The header attributes defined in this document are:



x5bag:  This header attributes contains a bag of X.509 certificates.
   The set of certificates in this header are unordered and may
   contain self‑signed certificates.  The certificate bag can contain
   certificates which are completely extraneous to the message.  (An
   example of this would be to carry a certificate with a key



      agreement key usage in a signed message.)  As the certificates are
      unordered, the party evaluating the signature will need to do the
      necessary path building.  Certificates needed for any particular
      chain to be built may be absent from the bag.



      As this header element does not provide any trust, the header
      attribute can be in either a protected or unprotected header
      attribute.



      This header attribute allows for a single or a bag of X.509
      certificates to be carried in the message.



      *  If a single certificate is conveyed, it is placed in a CBOR
         bstr.



      *  If multiple certificates are conveyed, a CBOR array of bstrs is
         used, with each certificate being in its own bstr.



x5chain:  This header attribute contains an ordered array of X.509
   certificates.  The certificates are to be ordered starting with
   the certificate containing the end‑entity key followed by the
   certificate which signed it and so on.  There is no requirement
   for the entire chain to be present in the element if there is
   reason to believe that the relying party will already have it.
   This means that the relying party is still required to do path
   building, but that a candidate path is proposed in this attribute.



      As this header element does not provide any trust, the header
      attribute can be in either a protected or unprotected header
      attribute.



      This header attribute allows for a single or a chain of X.509
      certificates to be carried in the message.



      *  If a single certificate is conveyed, it is placed in a CBOR
         bstr.



      *  If multiple certificates are conveyed, a CBOR array of bstrs is
         used, with each certificate being in its own bstr.



x5t:  This header attribute provides the ability to identify an X.509
   certificate by a hash value.  The attribute is an array of two
   elements.  The first element is an algorithm identifier which is
   an integer or a string containing the hash algorithm identifier.
   The second element is a binary string containing the hash value.



      As this header element does not provide any trust, the header
      attribute can be in either a protected or unprotected header
      attribute.



      For interoperability, applications which use this header attribute
      MUST support the hash algorithm 'SHA-256', but can use other hash
      algorithms.



x5u:  This header attribute provides the ability to identify an X.509
   certificate by a URI.  The referenced resource can be any of the
   following media types:



      *  application/pkix-cert [RFC2585]



      *  application/pkcs7-mime; smime-type="certs-only" [RFC8551]



      As this header attribute implies a trust relationship, the
      attribute MUST be in the protected attributes.



      The URI provided MUST provide integrity protection and server
      authentication.  For example, an HTTP or CoAP GET request to
      retrieve a certificate MUST use TLS [RFC8446] or DTLS
      [I-D.ietf-tls-dtls13].  If the certificate does not chain to an
      existing trust anchor, the certificate MUST NOT be trusted unless
      the server is configured as trusted to provide new trust anchors.
      This will normally be the situation when self-signed certificates
      are used.



   The header attributes are used in the following locations:



   *  COSE_Signature and COSE_Sign0 objects, in these objects they
      identify the certificate to be used for validation the signature.



   *  COSE_recipient objects, in this location they identify the
      certificate for the recipient of the message.



+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name    | Label | Value Type    | Description         |
+=========+=======+===============+=====================+
| x5bag   | TBD4  | COSE_X509     | An unordered bag of |
|         |       |               | X.509 certificates  |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| x5chain | TBD3  | COSE_X509     | An ordered chain of |
|         |       |               | X.509 certificates  |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| x5t     | TBD1  | COSE_CertHash | Hash of an X.509    |
|         |       |               | certificate         |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| x5u     | TBD2  | uri           | URI pointing to an  |
|         |       |               | X.509 certificate   |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                        Table 1: X.509 COSE Headers



   Below is an equivalent CDDL [RFC8610] description of the text above.



COSE_X509 = bstr / [ 2*certs: bstr ]
COSE_CertHash = [ hashAlg: (int / tstr), hashValue: bstr ]




3. X.509 certificates and static-static ECDH

   The header attributes defined in the previous section are used to
   identify the recipient certificates for the ECDH key agreement
   algorithms.  In this section we define the algorithm specific
   parameters that are used for identifying or transporting the senders
   key for static-static key agreement algorithms.



   These attributes are defined analogously to those in the previous
   section.  There is no definition for the certificate bag as the same
   attribute would be used for both the sender and recipient
   certificates.



x5chain‑sender:  This header attribute contains the chain of
   certificates starting with the sender's key exchange certificate.
   The structure is the same as 'x5chain'.

x5t‑sender:  This header attribute contains the hash value for the
   sender's key exchange certificate.  The structure is the same as
   'x5t'.

x5u‑sender:  This header attribute contains a URI for the sender's
   key exchange certificate.  The structure and processing are the
   same as 'x5u'.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Name          |Label| Type        | Algorithm         |Description|
+===============+=====+=============+===================+===========+
| x5t‑sender    | TBD |COSE_CertHash| ECDH‑SS+HKDF‑256, |Thumbprint |
|               |     |             | ECDH‑SS+HKDF‑512, | for the   |
|               |     |             | ECDH‑SS+A128KW,   | senders   |
|               |     |             | ECDH‑SS+AES192KW, | X.509     |
|               |     |             | ECDH‑SS+AES256KW  |certificate|
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| x5u‑sender    | TBD | uri         | ECDH‑SS+HKDF‑256, |URI for the|
|               |     |             | ECDH‑SS+HKDF‑512, | senders   |
|               |     |             | ECDH‑SS+A128KW,   | X.509     |
|               |     |             | ECDH‑SS+AES192KW, |certificate|
|               |     |             | ECDH‑SS+AES256KW  |           |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
|x5chain‑sender | TBD | COSE_X509   | ECDH‑SS+HKDF‑256, |static key |
|               |     |             | ECDH‑SS+HKDF‑512, | X.509     |
|               |     |             | ECDH‑SS+A128KW,   |certificate|
|               |     |             | ECDH‑SS+AES192KW, | chain     |
|               |     |             | ECDH‑SS+AES256KW  |           |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+



                   Table 2: Static ECDH Algorithm Values




4. IANA Considerations


4.1. COSE Header Parameter Registry

   IANA is requested to register the new COSE Header items in Table 1 in
   the "COSE Header Parameters" registry.  The "Value Registry" field is
   empty for all of the items.  For each item, the 'Reference' field
   points to this document.




4.2. COSE Header Algorithm Parameter Registry

   IANA is requested to register the new COSE Header items in Table 2 in
   the "COSE Header Algorithm Parameters" registry.  For each item, the
   'Reference' field points to this document.




5. Security Considerations

   Establishing trust in a certificate is a vital part of processing.
   Trust cannot be assumed whenever a new self-signed certificate
   appears on the client, instead a well defined process is required.
   One common way for a new trust anchor to be added (or removed) from a
   device is by doing a new firmware upgrade.



   In constrained systems, there is a trade-off between the order of
   checking the signature and checking the certificate for validity.
   Validating certificates can require that network resources be
   accessed in order to get revocation information or retrieve
   certificates during path building.  Doing the network access can
   consume resources dealing with power and network bandwidth.  On the
   other hand, an oracle can potentially be built based on if the
   network resources are only accessed if the signature validation
   passes.  In any event, both the signature and certificate validation
   MUST be checked before acting on any requests.



   As called out in the COSE algorithms document
   [I-D.ietf-cose-rfc8152bis-algs] basic checking on the keys in a
   certificate needs to be performed prior to using them.  These can
   include validating that points are on curves for elliptical curve
   algorithms and that sizes of keys are acceptable for RSA.  The use of
   unvalidated keys can lead either to loss of security or excessive
   consumption of resources.




6. References


6.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC5280]
  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




6.2. Informative References


   [RFC8446]
  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.




   [I-D.ietf-tls-dtls13]

              Rescorla, E., Tschofenig, H., and N. Modadugu, "The
              Datagram Transport Layer Security (DTLS) Protocol Version
              1.3", Work in Progress, Internet-Draft, draft-ietf-tls-



              dtls13-33, 11 October 2019,
              <https://tools.ietf.org/html/draft-ietf-tls-dtls13-33>.




   [RFC8551]
  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Message Specification", RFC 8551, DOI 10.17487/RFC8551,
              April 2019, <https://www.rfc-editor.org/info/rfc8551>.




   [RFC2585]
  Housley, R. and P. Hoffman, "Internet X.509 Public Key
              Infrastructure Operational Protocols: FTP and HTTP",
              RFC 2585, DOI 10.17487/RFC2585, May 1999,
              <https://www.rfc-editor.org/info/rfc2585>.




   [I-D.selander-ace-cose-ecdhe]

              Selander, G., Mattsson, J., and F. Palombini, "Ephemeral
              Diffie-Hellman Over COSE (EDHOC)", Work in Progress,
              Internet-Draft, draft-selander-ace-cose-ecdhe-14, 11
              September 2019, <https://tools.ietf.org/html/draft-
              selander-ace-cose-ecdhe-14>.




   [RFC8392]
  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
              "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
              May 2018, <https://www.rfc-editor.org/info/rfc8392>.




   [RFC8152]
  Schaad, J., "CBOR Object Signing and Encryption (COSE)",
              RFC 8152, DOI 10.17487/RFC8152, July 2017,
              <https://www.rfc-editor.org/info/rfc8152>.




   [RFC8610]
  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
              Definition Language (CDDL): A Notational Convention to
              Express Concise Binary Object Representation (CBOR) and
              JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
              June 2019, <https://www.rfc-editor.org/info/rfc8610>.




   [I-D.ietf-cose-rfc8152bis-algs]

              Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Initial Algorithms", Work in Progress, Internet-Draft,
              draft-ietf-cose-rfc8152bis-algs-05, 11 September 2019,
              <https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
              algs-05>.



Author's Address



Jim Schaad
August Cellars



   Email: ietf@augustcellars.com







draft-ietf-curdle-gss-keyex-sha2-10 - GSS-API Key Exchange with SHA2 






draft-ietf-curdle-gss-keyex-sha2-10 - GSS-API Key Exchange with SHA2 

Index
Next
Forward 5


Internet Engineering Task Force

Internet-Draft

Updates: 4462 (if approved)

Intended status: Standards Track

Expires: January 23, 2020


S. Sorce

H. Kario

Red Hat, Inc.

Jul 22, 2019



GSS-API Key Exchange with SHA2  

draft-ietf-curdle-gss-keyex-sha2-10


Abstract

   This document specifies additions and amendments to RFC4462.  It
   defines a new key exchange method that uses SHA-2 for integrity and
   deprecates weak DH groups.  The purpose of this specification is to
   modernize the cryptographic primitives used by GSS Key Exchanges.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on January 23, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Rationale


	3.  Document Conventions


	4.  New Diffie-Hellman Key Exchange methods


	5.  New Elliptic Curve Diffie-Hellman Key Exchange methods
	 5.1.  Generic GSS-API Key Exchange with ECDH


	 5.2.  ECDH Key Exchange Methods



	6.  Deprecated Algorithms


	7.  IANA Considerations


	8.  Security Considerations
	 8.1.  New Finite Field DH mechanisms


	 8.2.  New Elliptic Curve DH mechanisms


	 8.3.  GSSAPI Delegation



	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Authors' Addresses




1. Introduction

   SSH GSS-API Methods [RFC4462] allows the use of GSSAPI [RFC2743] for
   authentication and key exchange in SSH.  It defines three exchange
   methods all based on DH groups and SHA-1.  This document updates
   RFC4462 with new methods intended to support environments that desire
   to use the SHA-2 cryptographic hash functions.




2. Rationale

   Due to security concerns with SHA-1 [RFC6194] and with MODP groups
   with less than 2048 bits [NIST-SP-800-131Ar1] we propose the use of
   hashes based on SHA-2 [RFC6234] with DH group14, group15, group16,
   group17 and group18 [RFC3526].  Additionally we add support for key
   exchange based on Elliptic Curve Diffie Hellman with the NIST P-256,
   P-384 and P-521 [SEC2v2] as well as the X25519 and X448 [RFC7748]
   curves.  Following the practice of [RFC8268] only SHA-256 and SHA-512
   hashes are used for DH groups.  For NIST curves the same curve-to-
   hashing algorithm pairing used in [RFC5656] is adopted for
   consistency.




3. Document Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 RFC2119 [RFC2119] RFC8174 [RFC8174] when, and only when, they
   appear in all capitals, as shown here.




4. New Diffie-Hellman Key Exchange methods

   This document adopts the same naming convention defined in [RFC4462]
   to define families of methods that cover any GSS-API mechanism used
   with a specific Diffie-Hellman group and SHA-2 Hash combination.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Key Exchange Method Name | Implementation Recommendations |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| gss‑group14‑sha256‑*     | SHOULD/RECOMMENDED             |
| gss‑group15‑sha512‑*     | MAY/OPTIONAL                   |
| gss‑group16‑sha512‑*     | SHOULD/RECOMMENDED             |
| gss‑group17‑sha512‑*     | MAY/OPTIONAL                   |
| gss‑group18‑sha512‑*     | MAY/OPTIONAL                   |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Table 1: New key exchange algorithms



   Each key exchange method prefix is registered by this document.  The
   IESG is the change controller of all these key exchange methods; this
   does NOT imply that the IESG is considered to be in control of the
   corresponding GSS-API mechanism.



   Each method in any family of methods (Table 2) specifies GSS-API-
   authenticated Diffie-Hellman key exchanges as described in
   Section 2.1 of [RFC4462].  The method name for each method (Table 1)
   is the concatenation of the family name prefix with the Base64
   encoding of the MD5 hash [RFC1321] of the ASN.1 DER encoding
   [ISO-IEC-8825-1] of the corresponding GSS-API mechanism's OID.
   Base64 encoding is described in Section 4 of [RFC4648].



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Family Name prefix  | Hash        | Group       | Reference       |
|                     | Function    |             |                 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| gss‑group14‑sha256‑ | SHA‑256     | 2048‑bit    | Section 3 of    |
|                     |             | MODP        | [RFC3526]       |
| gss‑group15‑sha512‑ | SHA‑512     | 3072‑bit    | Section 4 of    |
|                     |             | MODP        | [RFC3526]       |
| gss‑group16‑sha512‑ | SHA‑512     | 4096‑bit    | Section 5 of    |
|                     |             | MODP        | [RFC3526]       |
| gss‑group17‑sha512‑ | SHA‑512     | 6144‑bit    | Section 6 of    |
|                     |             | MODP        | [RFC3526]       |
| gss‑group18‑sha512‑ | SHA‑512     | 8192‑bit    | Section 7 of    |
|                     |             | MODP        | [RFC3526]       |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 2: Family method references




5. New Elliptic Curve Diffie-Hellman Key Exchange methods

   In [RFC5656] new SSH key exchange algorithms based on Elliptic Curve
   Cryptography are introduced.  We reuse much of section 4 of [RFC5656]
   to define GSS-API-authenticated ECDH Key Exchanges.



   Additionally, we also utilize the curves defined in
   [I-D.ietf-curdle-ssh-curves] to complement the three classic NIST-
   defined curves required by [RFC5656].




5.1. Generic GSS-API Key Exchange with ECDH

   This section reuses much of the scheme defined in Section 2.1 of
   [RFC4462] and combines it with the scheme defined in Section 4 of
   [RFC5656]; in particular, all checks and verification steps
   prescribed in Section 4 of [RFC5656] apply here as well.



   Key-agreement schemes ECDHE-Curve25519 and ECDHE-Curve448 perform the
   Diffie-Helman protocol using the functions X25519 and X448,
   respectively.  Implementations MUST compute these functions using the
   algorithms described in [RFC7748].  When they do so, implementations
   MUST check whether the computed Diffie-Hellman shared secret is the
   all-zero value and abort if so, as described in Section 6 of
   [RFC7748].  Alternative implementations of these functions SHOULD
   abort when either input forces the shared secret to one of a small
   set of values, as discussed in Section 7 of [RFC7748].



   This section defers to [RFC7546] as the source of information on GSS-
   API context establishment operations, Section 3 being the most
   relevant.  All Security Considerations described in [RFC7546] apply
   here too.



   The parties each generate an ephemeral key pair, according to
   Section 3.2.1 of [SEC1v2].  Keys are verified upon receipt by the
   parties according to Section 3.2.3.1 of [SEC1v2].



   For NIST Curves the keys use the uncompressed point representation
   and MUST be converted using the algorithm in Section 2.3.4 of
   [SEC1v2].  If the conversion fails or the point is transmitted using
   the compressed representation, the key exchange MUST fail.



   A GSS Context is established according to Section 4 of [RFC5656]; The
   client initiates the establishment using GSS_Init_sec_context() and
   the server responds to it using GSS_Accept_sec_context().  For the
   negotiation, the client MUST set mutual_req_flag and integ_req_flag
   to "true".  In addition, deleg_req_flag MAY be set to "true" to
   request access delegation, if requested by the user.  Since the key
   exchange process authenticates only the host, the setting of
   anon_req_flag is immaterial to this process.  If the client does not
   support the "gssapi-keyex" user authentication method described in
   Section 4 of [RFC4462], or does not intend to use that method in
   conjunction with the GSS-API context established during key exchange,
   then anon_req_flag SHOULD be set to "true".  Otherwise, this flag MAY
   be set to true if the client wishes to hide its identity.  This key
   exchange process will exchange only a single message token once the
   context has been established, therefore the replay_det_req_flag and
   sequence_req_flag SHOULD be set to "false".



   The client MUST include its public key with the first message it
   sends to the server during this process; if the server receives more
   than one key or none at all, the key exchange MUST fail.



   During GSS Context establishment multiple tokens may be exchanged by
   the client and the server.  When the GSS Context is established
   (major_status is GSS_S_COMPLETE) the parties check that mutual_state
   and integ_avail are both "true".  If not the key exchange MUST fail.



   Once a party receives the peer's public key it proceeds to compute a
   shared secret K.  For NIST Curves the computation is done according
   to Section 3.3.1 of [SEC1v2] and the resulting value z is converted
   to the octet string K using the conversion defined in Section 2.3.5
   of [SEC1v2].  For curve25519 and curve448 the algorithms in Section 6
   of [RFC7748] are used instead.



   To verify the integrity of the handshake, peers use the Hash Function
   defined by the selected Key Exchange method to calculate H:



   H = hash(V_C || V_S || I_C || I_S || K_S || Q_C || Q_S || K).



   The GSS_GetMIC() call is used by the server with H as the payload and
   generates a MIC.  The GSS_VerifyMIC() call is used by the client to
   verify the MIC.



   If any GSS_Init_sec_context() or GSS_Accept_sec_context() returns a
   major_status other than GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED, or
   any other GSS-API call returns a major_status other than
   GSS_S_COMPLETE, the key exchange MUST fail.  The same recommendations
   expressed in Section 2.1 of [RFC4462] are followed with regards to
   error reporting.



   The following is an overview of the key exchange process:



    Client                                                Server
    ‑‑‑‑‑‑                                                ‑‑‑‑‑‑
    Generate ephemeral key pair.
    Calls GSS_Init_sec_context().
    SSH_MSG_KEXGSS_INIT  ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>

                                    Verify received key is valid.
(Optional)                  <‑‑‑‑‑‑‑‑‑‑‑‑‑ SSH_MSG_KEXGSS_HOSTKEY

(Loop)
|                                 Calls GSS_Accept_sec_context().
|                           <‑‑‑‑‑‑‑‑‑‑‑‑ SSH_MSG_KEXGSS_CONTINUE
|   Calls GSS_Init_sec_context().
|   SSH_MSG_KEXGSS_CONTINUE ‑‑‑‑‑‑‑‑‑‑‑‑>

                                  Calls GSS_Accept_sec_context().
                                     Generate ephemeral key pair.
                                           Compute shared secret.
                                                 Computes hash H.
                                     Calls GSS_GetMIC( H ) = MIC.
                            <‑‑‑‑‑‑‑‑‑‑‑‑ SSH_MSG_KEXGSS_COMPLETE

    Verify received key is valid.
    Compute shared secret.
    Compute hash = H
    Calls GSS_VerifyMIC( MIC, H )



   This is implemented with the following messages:



   The client sends:



byte      SSH_MSG_KEXGSS_INIT
string    output_token (from GSS_Init_sec_context())
string    Q_C, client's ephemeral public key octet string



   The server may respond with:



byte      SSH_MSG_KEXGSS_HOSTKEY
string    server public host key and certificates (K_S)



   The server sends:



byte      SSH_MSG_KEXGSS_CONTINUE
string    output_token (from GSS_Accept_sec_context())



   Each time the client receives the message described above, it makes
   another call to GSS_Init_sec_context().



   The client sends:



byte      SSH_MSG_KEXGSS_CONTINUE
string    output_token (from GSS_Init_sec_context())



   As the final message the server sends either:



byte      SSH_MSG_KEXGSS_COMPLETE
string    Q_S, server's ephemeral public key octet string
string    mic_token (MIC of H)
boolean   TRUE
string    output_token (from GSS_Accept_sec_context())



   Or the following if no output_token is available:



byte      SSH_MSG_KEXGSS_COMPLETE
string    Q_S, server's ephemeral public key octet string
string    mic_token (MIC of H)
boolean   FALSE



   The hash H is computed as the HASH hash of the concatenation of the
   following:



string    V_C, the client's version string (CR, NL excluded)
string    V_S, server's version string (CR, NL excluded)
string    I_C, payload of the client's SSH_MSG_KEXINIT
string    I_S, payload of the server's SSH_MSG_KEXINIT
string    K_S, server's public host key
string    Q_C, client's ephemeral public key octet string
string    Q_S, server's ephemeral public key octet string
mpint     K,   shared secret



   This value is called the exchange hash, and it is used to
   authenticate the key exchange.  The exchange hash SHOULD be kept
   secret.  If no SSH_MSG_KEXGSS_HOSTKEY message has been sent by the
   server or received by the client, then the empty string is used in
   place of K_S when computing the exchange hash.



   Since this key exchange method does not require the host key to be
   used for any encryption operations, the SSH_MSG_KEXGSS_HOSTKEY
   message is OPTIONAL.  If the "null" host key algorithm described in
   Section 5 of [RFC4462] is used, this message MUST NOT be sent.



   If the client receives a SSH_MSG_KEXGSS_CONTINUE message after a call
   to GSS_Init_sec_context() has returned a major_status code of
   GSS_S_COMPLETE, a protocol error has occurred and the key exchange
   MUST fail.



   If the client receives a SSH_MSG_KEXGSS_COMPLETE message and a call
   to GSS_Init_sec_context() does not result in a major_status code of
   GSS_S_COMPLETE, a protocol error has occurred and the key exchange
   MUST fail.




5.2. ECDH Key Exchange Methods

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Key Exchange Method Name | Implementation Recommendations |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| gss‑nistp256‑sha256‑*    | SHOULD/RECOMMENDED             |
| gss‑nistp384‑sha384‑*    | MAY/OPTIONAL                   |
| gss‑nistp521‑sha512‑*    | MAY/OPTIONAL                   |
| gss‑curve25519‑sha256‑*  | SHOULD/RECOMMENDED             |
| gss‑curve448‑sha512‑*    | MAY/OPTIONAL                   |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 3: New key exchange methods



   Each key exchange method prefix is registered by this document.  The
   IESG is the change controller of all these key exchange methods; this
   does NOT imply that the IESG is considered to be in control of the
   corresponding GSS-API mechanism.



   Each method in any family of methods (Table 4) specifies GSS-API-
   authenticated Elliptic Curve Diffie-Hellman key exchanges as
   described in Section 5.1.  The method name for each method (Table 3)
   is the concatenation of the family method name with the Base64
   encoding of the MD5 hash [RFC1321] of the ASN.1 DER encoding
   [ISO-IEC-8825-1] of the corresponding GSS-API mechanism's OID.
   Base64 encoding is described in Section 4 of [RFC4648].



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Family Name prefix     | Hash     | Parameters /  | Definition    |
|                        | Function | Function Name |               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| gss‑nistp256‑sha256‑   | SHA‑256  | secp256r1     | Section 2.4.2 |
|                        |          |               | of [SEC2v2]   |
| gss‑nistp384‑sha384‑   | SHA‑384  | secp384r1     | Section 2.5.1 |
|                        |          |               | of [SEC2v2]   |
| gss‑nistp521‑sha512‑   | SHA‑512  | secp521r1     | Section 2.6.1 |
|                        |          |               | of [SEC2v2]   |
| gss‑curve25519‑sha256‑ | SHA‑256  | X22519        | Section 5 of  |
|                        |          |               | [RFC7748]     |
| gss‑curve448‑sha512‑   | SHA‑512  | X448          | Section 5 of  |
|                        |          |               | [RFC7748]     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Table 4: Family method refences




6. Deprecated Algorithms

   Because they have small key lengths and are no longer strong in the
   face of brute-force attacks, the algorithms in the following table
   are considered deprecated and SHOULD NOT be used.



                           Deprecated Algorithms



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Key Exchange Method Name | Implementation Recommendations |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| gss‑group1‑sha1‑*        | SHOULD NOT                     |
| gss‑group14‑sha1‑*       | SHOULD NOT                     |
| gss‑gex‑sha1‑*           | SHOULD NOT                     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




7. IANA Considerations

   This document augments the SSH Key Exchange Method Names in
   [RFC4462].



          IANA is requested to update the SSH Protocol Parameters

           [IANA-KEX-NAMES] registry with the following entries:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| Key Exchange Method Name | Reference  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+
| gss‑group1‑sha1‑*        | This draft |
| gss‑group14‑sha1‑*       | This draft |
| gss‑gex‑sha1‑*           | This draft |
| gss‑group14‑sha256‑*     | This draft |
| gss‑group15‑sha512‑*     | This draft |
| gss‑group16‑sha512‑*     | This draft |
| gss‑group17‑sha512‑*     | This draft |
| gss‑group18‑sha512‑*     | This draft |
| gss‑nistp256‑sha256‑*    | This draft |
| gss‑nistp384‑sha384‑*    | This draft |
| gss‑nistp521‑sha512‑*    | This draft |
| gss‑curve25519‑sha256‑*  | This draft |
| gss‑curve448‑sha512‑*    | This draft |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+




8. Security Considerations


8.1. New Finite Field DH mechanisms

   Except for the use of a different secure hash function and larger DH
   groups, no significant changes has been made to the protocol
   described by [RFC4462]; therefore all the original Security
   Considerations apply.




8.2. New Elliptic Curve DH mechanisms

   Although a new cryptographic primitive is used with these methods the
   actual key exchange closely follows the key exchange defined in
   [RFC5656]; therefore all the original Security Considerations as well
   as those expressed in [RFC5656] apply.




8.3. GSSAPI Delegation

   Some GSSAPI mechanisms can act on a request to delegate credentials
   to the target host when the deleg_req_flag is set.  In this case,
   extra care must be taken to ensure that the acceptor being
   authenticated matches the target the user intended.  Some mechanism
   implementations (such as commonly used krb5 libraries) may use
   insecure DNS resolution to canonicalize the target name; in these
   cases spoofing a DNS response that points to an attacker-controlled
   machine may result in the user silently delegating credentials to the
   attacker, who can then impersonate the user at will.




9. References


9.1. Normative References


   [I-D.ietf-curdle-ssh-curves]

              Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure
              Shell (SSH) Key Exchange Method using Curve25519 and
              Curve448", draft-ietf-curdle-ssh-curves-08 (work in
              progress), June 2018.




   [RFC1321]
  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
              DOI 10.17487/RFC1321, April 1992,
              <https://www.rfc-editor.org/info/rfc1321>.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC2743]
  Linn, J., "Generic Security Service Application Program
              Interface Version 2, Update 1", RFC 2743,
              DOI 10.17487/RFC2743, January 2000,
              <https://www.rfc-editor.org/info/rfc2743>.




   [RFC3526]
  Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
              Diffie-Hellman groups for Internet Key Exchange (IKE)",
              RFC 3526, DOI 10.17487/RFC3526, May 2003,
              <https://www.rfc-editor.org/info/rfc3526>.




   [RFC4462]
  Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
              "Generic Security Service Application Program Interface
              (GSS-API) Authentication and Key Exchange for the Secure
              Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462, May
              2006, <https://www.rfc-editor.org/info/rfc4462>.




   [RFC4648]
  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.




   [RFC5656]
  Stebila, D. and J. Green, "Elliptic Curve Algorithm
              Integration in the Secure Shell Transport Layer",
              RFC 5656, DOI 10.17487/RFC5656, December 2009,
              <https://www.rfc-editor.org/info/rfc5656>.




   [RFC7546]
  Kaduk, B., "Structure of the Generic Security Service
              (GSS) Negotiation Loop", RFC 7546, DOI 10.17487/RFC7546,
              May 2015, <https://www.rfc-editor.org/info/rfc7546>.




   [RFC7748]
  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [SEC1v2]
   Certicom Research, "SEC 1: Elliptic Curve Cryptography",
              Standards for Efficient Cryptography SEC 1, Version 2.0,
              2009.




   [SEC2v2]
   Certicom Research, "SEC 2: Recommended Elliptic Curve
              Domain Parameters", Standards for Efficient
              Cryptography SEC 2, Version 2.0, 2010.




9.2. Informative References


   [IANA-KEX-NAMES]

              Internet Assigned Numbers Authority, "Secure Shell (SSH)
              Protocol Parameters: Key Exchange Method Names", June
              2005, <https://www.iana.org/assignments/ssh-parameters/
              ssh-parameters.xhtml#ssh-parameters-16>.




   [ISO-IEC-8825-1]

              International Organization for Standardization /
              International Electrotechnical Commission, "ASN.1 encoding
              rules: Specification of Basic Encoding Rules (BER),
              Canonical Encoding Rules (CER) and Distinguished Encoding
              Rules (DER)", ISO/IEC 8825-1, November 2015,
              <http://standards.iso.org/ittf/PubliclyAvailableStandards/
              c068345_ISO_IEC_8825-1_2015.zip>.




   [NIST-SP-800-131Ar1]

              National Institute of Standards and Technology,
              "Transitions: Recommendation for Transitioning of the Use
              of Cryptographic Algorithms and Key Lengths", NIST Special
              Publication 800-131A Revision 1, November 2015,
              <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-131Ar1.pdf>.




   [RFC6194]
  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
              Considerations for the SHA-0 and SHA-1 Message-Digest
              Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
              <https://www.rfc-editor.org/info/rfc6194>.




   [RFC6234]
  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.




   [RFC8268]
  Baushke, M., "More Modular Exponentiation (MODP) Diffie-
              Hellman (DH) Key Exchange (KEX) Groups for Secure Shell
              (SSH)", RFC 8268, DOI 10.17487/RFC8268, December 2017,
              <https://www.rfc-editor.org/info/rfc8268>.



Authors' Addresses



Simo Sorce
Red Hat, Inc.
140 Broadway
24th Floor
New York, NY  10025
USA



   Email: simo@redhat.com




Hubert Kario
Red Hat, Inc.
Purkynova 115
Brno  612 00
Czech Republic



   Email: hkario@redhat.com

























draft-ietf-curdle-rc4-die-die-die-17 - Deprecating RC4 in Secure Shell (SSH) 






draft-ietf-curdle-rc4-die-die-die-17 - Deprecating RC4 in Secure Shell (SSH) 

Index
Prev
Next
Forward 5


Internet Engineering Task Force

Internet-Draft

Updates: 4253 (if approved)

Intended status: Best Current Practice

Expires: April 23, 2020


L. Camara



L. Velvindron

cyberstorm.mu

October 21, 2019

Deprecating RC4 in Secure Shell (SSH)  

draft-ietf-curdle-rc4-die-die-die-17


Abstract

   This document deprecates RC4 in Secure Shell (SSH).  Therefore, this
   document formally moves RFC4345 to historic status.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on April 23, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  Requirements Language



	2.  Updates to RFC 4253


	3.  IANA Considerations


	4.  Acknowledgements


	5.  Security Considerations


	6.  References
	 6.1.  Normative References


	 6.2.  Informative References



	Authors' Addresses




1. Introduction

   The usage of RC4 suites ( also designated as arcfour ) for SSH are
   specified in [RFC4253] and [RFC4345].  [RFC4253] specifies the
   allocation of the "arcfour" cipher for SSH.  [RFC4345] specifies and
   allocates the "arcfour128" and "arcfour256" ciphers for SSH.  RC4
   encryption has known weaknesses [RFC7465] [RFC8429], and the
   deprecation process should be begun for their use in Secure Shell
   (SSH) [RFC4253].  Accordingly, [RFC4253] is updated to note the
   deprecation of the RC4 ciphers and [RFC4345] is moved to Historic as
   all ciphers it specifies MUST NOT be used.




1.1. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119]RFC
   8174 [RFC8174] when, and only when, they appear in all capitals, as
   shown here.




2. Updates to RFC 4253


   [RFC4253]
 is updated to prohibit arcfour's use in SSH.  [RFC4253]
   allocates the "arcfour" cipher in Section 6.3 by defining a list of
   defined ciphers where the "arcfour" cipher appears as optional as
   mentioned below:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| arcfour       | OPTIONAL        | the ARCFOUR stream cipher with  |
|               |                 | a 128‑bit key                   |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



   This current document updates the status of the "arcfour" ciphers in
   the list of [RFC4253] Section 6.3 by moving it from OPTIONAL to MUST
   NOT.



+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| arcfour  | MUST NOT  | the ARCFOUR stream cipher with a 128‑bit   |
|          |           | key                                        |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+




   [RFC4253]
 defines the "arcfour" ciphers with the text mentioned
   below:



   The "arcfour" cipher is the Arcfour stream cipher with 128-bit keys.
   The Arcfour cipher is compatible with the RC4 cipher [SCHNEIER].
   Arcfour (and RC4) has problems with weak keys, and should be used
   with caution.



   This current document updates [RFC4253] Section 6.3 by replacing the
   text above with the following text:



   The "arcfour" cipher is the Arcfour stream cipher with 128-bit keys.
   The Arcfour cipher is compatible with the RC4 cipher [SCHNEIER].
   Arcfour (and RC4) has known weaknesses [RFC7465] [RFC8429], and MUST
   NOT be used.




3. IANA Considerations

   The IANA is requested to update the Encryption Algorithm Name
   Registry of the Secure Shell (SSH) Protocol Parameters [IANA].  The
   Registration procedure is IETF Review which is achieved by this
   document.  The registry should be updated as follows:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+
| Encryption  Algorithm  Name  | Reference  | Note |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+
| arcfour                      | [RFC‑TBD]  |      |
| arcfour128                   | [RFC‑TBD]  |      |
| arcfour256                   | [RFC‑TBD]  |      |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+



   Where TBD is the RFC number assigned to the document.




4. Acknowledgements

   The authors would like to thank Eric Rescorla, Daniel Migault and
   Rich Salz.




5. Security Considerations

   This document only prohibits the use of RC4 in SSH, and introduces no
   new security considerations.




6. References


6.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




6.2. Informative References


   [IANA]
     "Secure Shell (SSH) Protocol Parameters: Encryption
              Algorithm Names", <https://www.iana.org/assignments/ssh-
              parameters/ssh-parameters.xhtml#ssh-parameters-17>.




   [RFC4253]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
              January 2006, <https://www.rfc-editor.org/info/rfc4253>.




   [RFC4345]
  Harris, B., "Improved Arcfour Modes for the Secure Shell
              (SSH) Transport Layer Protocol", RFC 4345,
              DOI 10.17487/RFC4345, January 2006,
              <https://www.rfc-editor.org/info/rfc4345>.




   [RFC7465]
  Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
              DOI 10.17487/RFC7465, February 2015,
              <https://www.rfc-editor.org/info/rfc7465>.




   [RFC8429]
  Kaduk, B. and M. Short, "Deprecate Triple-DES (3DES) and
              RC4 in Kerberos", BCP 218, RFC 8429, DOI 10.17487/RFC8429,
              October 2018, <https://www.rfc-editor.org/info/rfc8429>.




   [SCHNEIER]

              Schneier, B., "Applied Cryptography Second Edition:
              protocols algorithms and source in code in C",  , 1996,
              <SCHNEIER>.



Authors' Addresses



   Luis Camara



   Email: luis.camara@live.com.pt



Loganaden Velvindron
cyberstorm.mu
Mauritius



   Email: logan@cyberstorm.mu

















































draft-ietf-curdle-ssh-curves-12 - Secure Shell (SSH) Key Exchange Method using Curve25519 and Curve448 






draft-ietf-curdle-ssh-curves-12 - Secure Shell (SSH) Key Exchange Method using C

Index
Prev
Next
Forward 5


Internet Engineering Task Force

Internet-Draft

Intended status: Standards Track

Expires: March 7, 2020








A. Adamantiadis

libssh

S. Josefsson

SJD AB

M. Baushke

Juniper Networks, Inc.

September 4, 2019

Secure Shell (SSH) Key Exchange Method using Curve25519 and Curve448  

draft-ietf-curdle-ssh-curves-12


Abstract

   This document describes the specification for using Curve25519 and
   Curve448 key exchange methods in the Secure Shell (SSH) protocol.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on March 7, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Requirements Language


	3.  Key Exchange Methods
	 3.1.  Shared Secret Encoding



	4.  Acknowledgements


	5.  Security Considerations


	6.  IANA Considerations


	7.  References
	 7.1.  Normative References


	 7.2.  Informative References



	Authors' Addresses




1. Introduction

   Secure Shell (SSH) [RFC4251] is a secure remote login protocol.  The
   key exchange protocol described in [RFC4253] supports an extensible
   set of methods.  [RFC5656] defines how elliptic curves are integrated
   into this extensible SSH framework, and this document reuses the
   Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol messages
   defined in section 7.1 "ECDH Message Numbers" [RFC5656].  Other parts
   of [RFC5656], such as Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key
   agreement, and Elliptic Curve Digital Signature Algorithm (ECDSA) are
   not considered in this document.



   This document describes how to implement key exchange based on
   Curve25519 and Curve448 [RFC7748] in SSH.  For Curve25519 with
   SHA-256 [RFC6234] and [SHS], the algorithm described is equivalent to
   the privately defined algorithm "curve25519-sha256@libssh.org", which
   at the time of publication was implemented and widely deployed in
   libssh [libssh] and OpenSSH [OpenSSH].  The Curve448 key exchange
   method is similar but uses SHA-512 [RFC6234] and [SHS].




2. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.




3. Key Exchange Methods

   The key exchange procedure is similar to the ECDH method described in
   chapter 4 of [RFC5656], though with a different wire encoding used
   for public values and the final shared secret.  Public ephemeral keys
   are encoded for transmission as standard SSH strings.



   The protocol flow, the SSH_MSG_KEX_ECDH_INIT and
   SSH_MSG_KEX_ECDH_REPLY messages, and the structure of the exchange
   hash are identical to chapter 4 of [RFC5656].



   The method names registered by this document are "curve25519-sha256"
   and "curve448-sha512".



   The methods are based on Curve25519 and Curve448 scalar
   multiplication, as described in [RFC7748].  Private and public keys
   are generated as described therein.  Public keys are defined as
   strings of 32 bytes for Curve25519 and 56 bytes for Curve448.



   Key-agreement schemes "curve25519-sha256" and "curve448-sha512"
   perform the Diffie-Hellman protocol using the functions X25519 and
   X448, respectively.  Implementations SHOULD compute these functions
   using the algorithms described in [RFC7748].  When they do so,
   implementations MUST check whether the computed Diffie-Hellman shared
   secret is the all-zero value and abort if so, as described in
   Section 6 of [RFC7748].  Alternative implementations of these
   functions SHOULD abort when either input forces the shared secret to
   one of a small set of values, as described in Section 7 of [RFC7748].
   Clients and servers MUST also abort if the length of the received
   public keys are not the expected lengths.  An abort for these
   purposes is defined as a disconnect (SSH_MSG_DISCONNECT) of the
   session and SHOULD use the SSH_DISCONNECT_KEY_EXCHANGE_FAILED reason
   for the message [IANA-REASON].  No further validation is required
   beyond what is described in [RFC7748].  The derived shared secret is
   32 bytes when "curve25519-sha256" is used and 56 bytes when
   "curve448-sha512" is used.  The encodings of all values are defined
   in [RFC7748].  The hash used is SHA-256 for "curve25519-sha256" and
   SHA-512 for "curve448-sha512".




3.1. Shared Secret Encoding

   The following step differs from [RFC5656], which uses a different
   conversion.  This is not intended to modify that text generally, but
   only to be applicable to the scope of the mechanism described in this
   document.



   The shared secret, K, is defined in [RFC4253] and [RFC5656] as an
   integer encoded as a multiple precision integer (mpint).
   Curve25519/448 outputs a binary string X, which is the 32 or 56 byte
   point obtained by scalar multiplication of the other side's public
   key and the local private key scalar.  The 32 or 56 bytes of X are
   converted into K by interpreting the octets as an unsigned fixed-
   length integer encoded in network byte order.



   The integer K is then encoded as an mpint using the process described
   in section 5 of [RFC4251] and the resulting bytes are fed as
   described in [RFC4253] to the key exchange method's hash function to
   generate encryption keys.



   When performing the X25519 or X448 operations, the integer values
   there will be encoded into byte strings by doing a fixed-length
   unsigned little-endian conversion, per [RFC7748].  It is only later
   when these byte strings are then passed to the ECDH function in SSH
   that the bytes are re-interpreted as a fixed-length unsigned big-
   endian integer value K, and then later that K value is encoded as a
   variable-length signed "mpint" before being fed to the hash algorithm
   used for key generation.  The mpint K is then fed along with other
   data to the key exchange method's hash function to generate
   encryption keys.




4. Acknowledgements

   The "curve25519-sha256" key exchange method is identical to the
   "curve25519-sha256@libssh.org" key exchange method created by Aris
   Adamantiadis and implemented in libssh and OpenSSH.



   Thanks to the following people for review and comments: Denis Bider,
   Damien Miller, Niels Moeller, Matt Johnston, Eric Rescorla, Ron
   Frederick, Stefan Buehler.




5. Security Considerations

   The security considerations of [RFC4251], [RFC5656], and [RFC7748]
   are inherited.



   Curve25519 with SHA-256 provides strong (~128 bits) security and is
   efficient on a wide range of architectures, and has properties that
   allows better implementation properties compared to traditional
   elliptic curves.  Curve448 with SHA-512 provides stronger (~224 bits)
   security with similar implementation properties, but has not received
   the same cryptographic review as Curve25519, and is slower (larger
   key material and larger secure hash algorithm), but it is provided as
   a hedge to combat unforeseen analytical advances against Curve25519
   and SHA-256 due to the larger number of security bits.



   The way the derived binary secret string is encoded into a mpint
   before it is hashed (i.e., adding or removing zero-bytes for
   encoding) raises the potential for a side-channel attack which could
   determine the length of what is hashed.  This would leak the most
   significant bit of the derived secret, and/or allow detection of when
   the most significant bytes are zero.  For backwards compatibility
   reasons it was decided not to address this potential problem.



   This document provides "curve25519-sha256" as the preferred choice,
   but suggests that the "curve448-sha512" is implemented to provide
   more than 128 bits of security strength should that become a
   requirement.




6. IANA Considerations

   IANA is requested to add "curve25519-sha256" and "curve448-sha512" to
   the "Key Exchange Method Names" registry for SSH [IANA-KEX] that was
   created in RFC 4250 section 4.10 [RFC4250].




7. References


7.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4250]
  Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Protocol Assigned Numbers", RFC 4250,
              DOI 10.17487/RFC4250, January 2006,
              <https://www.rfc-editor.org/info/rfc4250>.




   [RFC4251]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
              January 2006, <https://www.rfc-editor.org/info/rfc4251>.




   [RFC4253]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
              January 2006, <https://www.rfc-editor.org/info/rfc4253>.




   [RFC5656]
  Stebila, D. and J. Green, "Elliptic Curve Algorithm
              Integration in the Secure Shell Transport Layer",
              RFC 5656, DOI 10.17487/RFC5656, December 2009,
              <https://www.rfc-editor.org/info/rfc5656>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [SHS]
      Information Technology Laboratory National Institute of
              Standards and Technology, "Secure Hash Standard (SHS)",
              August 2015, <http://dx.doi.org/10.6028/NIST.FIPS.180-4>.




7.2. Informative References


   [IANA-KEX]

              Internet Assigned Numbers Authority (IANA), "Secure Shell
              (SSH) Protocol Parameters: Key Exchange Method Names",
              August 2019, <http://www.iana.org/assignments/ssh-
              parameters/ssh-parameters.xhtml#ssh-parameters-16>.




   [IANA-REASON]

              Internet Assigned Numbers Authority (IANA), "Secure Shell
              (SSH) Protocol Parameters: Disconnection Messages Reason
              Codes and Descriptions", August 2019,
              <http://www.iana.org/assignments/ssh-parameters/
              ssh-parameters.xhtml#ssh-parameters-3>.




   [libssh]
   libssh, "The SSH Library", September 2019,
              <https://www.libssh.org/>.




   [OpenSSH]
  OpenSSH group of OpenBSD, "The OpenSSH Project", September
              2019, <https://www.openssh.com/>.




   [RFC6234]
  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.




   [RFC7748]
  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.



Authors' Addresses



Aris Adamantiadis
libssh



   Email: aris@badcode.be




Simon Josefsson
SJD AB



   Email: simon@josefsson.org




Mark D. Baushke
Juniper Networks, Inc.



   Email: mdb@juniper.net






draft-ietf-curdle-ssh-ed25519-ed448-11 - Ed25519 and Ed448 public key algorithms for the Secure Shell (SSH) protocol 






draft-ietf-curdle-ssh-ed25519-ed448-11 - Ed25519 and Ed448 public key algorithms

Index
Prev
Next
Forward 5


Internet Engineering Task Force

Internet-Draft

Updates: RFC4253 (if approved)

Intended status: Standards Track

Expires: March 12, 2020


B. Harris



L. Velvindron

cyberstorm.mu

September 9, 2019

Ed25519 and Ed448 public key algorithms for the Secure Shell (SSH) protocol  

draft-ietf-curdle-ssh-ed25519-ed448-11


Abstract

   This document describes the use of the Ed25519 and Ed448 digital
   signature algorithm in the Secure Shell (SSH) protocol.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on March 12, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




1. Introduction

   Secure Shell (SSH) [RFC4251] is a secure remote-login protocol.  It
   provides for an extensible variety of public key algorithms for
   identifying servers and users to one another.  Ed25519 [RFC8032] is a
   digital signature system.  OpenSSH 6.5 [OpenSSH-6.5] introduced
   support for using Ed25519 for server and user authentication and was
   then followed by other SSH implementations.



   This document describes the method implemented by OpenSSH and others,
   and formalizes its use of the name "ssh-ed25519".  Additionally, it
   also describes the use of Ed448 and formalizes its use of the name
   "ssh-ed448".



   [TO BE REMOVED: Please send comments on this draft to
   curdle@ietf.org.]




2. Conventions Used in This Document

   The descriptions of key and signature formats use the notation
   introduced in [RFC4251], Section 3 [RFC4251] and the string data type
   from [RFC4251], Section 5 [RFC4251].




2.1. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119] RFC
   8174 [RFC8174] when, and only when, they appear in all capitals, as
   shown here.




3. Public Key Algorithm

   This document describes a public key algorithm for use with SSH in
   accordance with [RFC4253], Section 6.6 [RFC4253].  The name of the
   algorithm is "ssh-ed25519".  This algorithm only supports signing and
   not encryption.



   Additionally, this document describes another public key algorithm.
   The name of the algorithm is "ssh-ed448".  This algorithm only
   supports signing and not encryption.



   Standard implementations of SSH SHOULD implement these signature
   algorithms.




4. Public Key Format

   The "ssh-ed25519" key format has the following encoding:



string    "ssh‑ed25519"
string    key



   Here 'key' is the 32-octet public key described by [RFC8032],
   Section 5.1.5 [RFC8032].



   The "ssh-ed448" key format has the following encoding:



string    "ssh‑ed448"
string    key



   Here 'key' is the 57-octet public key described by [RFC8032],
   Section 5.2.5 [RFC8032].




5. Signature Algorithm

   Signatures are generated according to the procedure in [RFC8032],
   Section 5.1.6 and Section 5.2.6 [RFC8032].




6. Signature Format

   The "ssh-ed25519" key format has the following encoding:



string    "ssh‑ed25519"
string    signature



   Here 'signature' is the 64-octet signature produced in accordance
   with [RFC8032], Section 5.1.6 [RFC8032].



   The "ssh-ed448" key format has the following encoding:



string    "ssh‑ed448"
string    signature



   Here 'signature' is the 114-octet signature produced in accordance
   with [RFC8032], Section 5.2.6 [RFC8032].




7. Verification Algorithm

   Ed25519 signatures are verified according to the procedure in
   [RFC8032], Section 5.1.7 [RFC8032].



   Ed448 signatures are verified according to the procedure in
   [RFC8032], Section 5.2.7 [RFC8032].




8. SSHFP DNS resource records

   Usage and generation of SSHFP DNS resource record is described in
   [RFC4255].  The generation of SSHFP resource records for "ssh-
   ed25519" keys is described in [RFC7479].  This section illustrates
   the generation of SSHFP resource records for "ssh-ed448" keys and the
   document specifies the corresponding Ed448 code point to the "SSHFP
   RR Types for public key algorithms" IANA registry.



   The generation of SSHFP resource records for "ssh-ed25519" keys is
   described in [RFC7479].



   The generation of SSHFP resource records for "ssh-ed448" keys is
   described as follows.



   The encoding of Ed448 public keys is described in [ED448].  In brief,
   an Ed448 public key is a 57-octet value representing a 455-bit
   y-coordinate of an elliptic curve point, and a sign bit indicating
   the the corresponding x-coordinate.



   The SSHFP Resource Record for the Ed448 public key with SHA-256
   fingerprint would for example be:



   example.com.  IN SSHFP TBD 2 ( a87f1b687ac0e57d2a081a2f2826723
   34d90ed316d2b818ca9580ea384d924 01 )



   The 2 here indicates SHA-256 [RFC6594].




9. IANA Considerations

   This document augments the Public Key Algorithm Names in [RFC4250],
   Section 4.6.2 [RFC4250].



   IANA is requested to add to the Public Key Algorithm Names registry
   [IANA-PKA] with the following entry:



Public Key Algorithm Name Reference
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
ssh‑ed25519               This Draft
ssh‑ed448                 This Draft



   IANA is requested to add the following entry to the "SSHFP RR Types
   for public key algorithms" registry [IANA-SSHFP]:



+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+



   | Value | Description | Reference |



+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+



   | TBD | Ed448 | [this-draft] |



+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+



   We strongly suggest 6 as value.



   [TO BE REMOVED: This registration should take place at the following
   location: <http://www.iana.org/assignments/ssh-parameters/ssh-
   parameters.xhtml#ssh-parameters-19>]




10. Security Considerations

   The security considerations in [RFC4251], Section 9 [RFC4251] apply
   to all SSH implementations, including those using Ed25519 and Ed448.



   The security considerations in [RFC8032], Section 8 [RFC8032] and
   [RFC7479] apply to all uses of Ed25519 and Ed448 including those in
   SSH.




11. Acknowledgements

   The OpenSSH implementation of Ed25519 in SSH was written by Markus
   Friedl.  We are also grateful to Mark Baushke, Benjamin Kaduk and
   Daniel Migault for their comments.




12. References


12.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC4250]
  Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Protocol Assigned Numbers", RFC 4250,
              DOI 10.17487/RFC4250, January 2006,
              <https://www.rfc-editor.org/info/rfc4250>.




   [RFC4251]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
              January 2006, <https://www.rfc-editor.org/info/rfc4251>.




   [RFC4253]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
              January 2006, <https://www.rfc-editor.org/info/rfc4253>.




   [RFC4255]
  Schlyter, J. and W. Griffin, "Using DNS to Securely
              Publish Secure Shell (SSH) Key Fingerprints", RFC 4255,
              DOI 10.17487/RFC4255, January 2006,
              <https://www.rfc-editor.org/info/rfc4255>.




   [RFC6594]
  Sury, O., "Use of the SHA-256 Algorithm with RSA, Digital
              Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA)
              in SSHFP Resource Records", RFC 6594,
              DOI 10.17487/RFC6594, April 2012,
              <https://www.rfc-editor.org/info/rfc6594>.




   [RFC8032]
  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <https://www.rfc-editor.org/info/rfc8032>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




12.2. Informative References


   [ED448]
    Hamburg, M., "Ed448-Goldilocks, a new elliptic curve",
              January 2015, <https://eprint.iacr.org/2015/625.pdf>.




   [IANA-PKA]

              Internet Assigned Numbers Authority (IANA), "Secure Shell
              (SSH) Protocol Parameters: Public Key Algorithm Names",
              May 2017, <http://www.iana.org/assignments/ssh-parameters/
              ssh-parameters.xhtml#ssh-parameters-19>.




   [IANA-SSHFP]

              Internet Assigned Numbers Authority (IANA), "Secure Shell
              (SSH) Protocol Parameters: Public Key Algorithm Names",
              May 2017, <https://www.iana.org/assignments/dns-sshfp-rr-
              parameters/
              dns-sshfp-rr-parameters.xhtml#dns-sshfp-rr-parameters-1>.




   [OpenSSH-6.5]

              Friedl, M., Provos, N., de Raadt, T., Steves, K., Miller,
              D., Tucker, D., Rice, T., and B. Lindstrom, "OpenSSH 6.5
              release notes", January 2014,
              <http://www.openssh.com/txt/release-6.5>.




   [RFC7479]
  Moonesamy, S., "Using Ed25519 in SSHFP Resource Records",
              RFC 7479, DOI 10.17487/RFC7479, March 2015,
              <https://www.rfc-editor.org/info/rfc7479>.



Authors' Addresses



Ben Harris
2A Eachard Road
CAMBRIDGE  CB3 0HY
UNITED KINGDOM



   Email: bjh21@bjh21.me.uk




Loganaden Velvindron
cyberstorm.mu
88, Avenue De Plevitz
Roches Brunes
Mauritius



   Email: logan@cyberstorm.mu





































draft-ietf-curdle-ssh-kex-sha2-10 - Key Exchange (KEX) Method Updates and Recommendations for Secure Shell (SSH) 






draft-ietf-curdle-ssh-kex-sha2-10 - Key Exchange (KEX) Method Updates and Recomm

Index
Prev
Next
Forward 5


Internet Engineering Task Force

Internet-Draft

Updates: 4250 (if approved)

Intended status: Standards Track

Expires: July 6, 2018


M. Baushke

Juniper Networks, Inc.

January 2, 2018





Key Exchange (KEX) Method Updates and Recommendations for Secure Shell (SSH)  

draft-ietf-curdle-ssh-kex-sha2-10


Abstract

   This document is intended to update the recommended set of key
   exchange methods for use in the Secure Shell (SSH) protocol to meet
   evolving needs for stronger security.  This document updates RFC
   4250.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on July 6, 2018.




Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Overview and Rationale


	2.  Requirements Language


	3.  Key Exchange Methods
	 3.1.  curve25519-sha256


	 3.2.  curve448-sha512


	 3.3.  diffie-hellman-group-exchange-sha1


	 3.4.  diffie-hellman-group-exchange-sha256


	 3.5.  diffie-hellman-group1-sha1


	 3.6.  diffie-hellman-group14-sha1


	 3.7.  diffie-hellman-group14-sha256


	 3.8.  diffie-hellman-group15-sha512


	 3.9.  diffie-hellman-group16-sha512


	 3.10. diffie-hellman-group17-sha512


	 3.11. diffie-hellman-group18-sha512


	 3.12. ecdh-sha2-nistp256


	 3.13. ecdh-sha2-nistp384


	 3.14. ecdh-sha2-nistp521


	 3.15. gss-gex-sha1-*


	 3.16. gss-group1-sha1-*


	 3.17. gss-group14-sha1-*


	 3.18. gss-group14-sha256-*


	 3.19. gss-group15-sha512-*


	 3.20. gss-group16-sha512-*


	 3.21. gss-group17-sha512-*


	 3.22. gss-group18-sha512-*


	 3.23. gss-nistp256-sha256-*


	 3.24. gss-nistp384-sha384-*


	 3.25. gss-nistp521-sha512-*


	 3.26. gss-curve25519-sha256-*


	 3.27. gss-curve448-sha512-*


	 3.28. rsa1024-sha1


	 3.29. rsa2048-sha256



	4.  Selecting an appropriate hashing algorithm


	5.  Summary Guidance for Key Exchange Method Names


	6.  Acknowledgements


	7.  Security Considerations


	8.  IANA Considerations


	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Author's Address




1. Overview and Rationale

   Secure Shell (SSH) is a common protocol for secure communication on
   the Internet.  In [RFC4253], SSH originally defined two Key Exchange
   Method Names that MUST be implemented.  Over time, what was once
   considered secure, is no longer considered secure.  The purpose of
   this RFC is to recommend that some published key exchanges be
   deprecated as well as recommending some that SHOULD and one that MUST
   be adopted.  This document updates [RFC4250].



   This document adds recommendations for adoption of Key Exchange
   Methods which MUST, SHOULD, MAY, SHOULD NOT, and MUST NOT be
   implemented.  New key exchange methods will use the SHA-2 family of
   hashes found in [RFC6234] and are drawn from these ssh-curves from
   [I-D.ietf-curdle-ssh-curves] and DH MODP primes from the [RFC8268]
   and gss-keyex [I-D.ietf-curdle-gss-keyex-sha2].




2. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].




3. Key Exchange Methods

   This memo adopts the style and conventions of [RFC4253] in specifying
   how the use of data key exchange is indicated in SSH.



   This RFC also collects Key Exchange Method Names in various existing
   RFCs [RFC4253], [RFC4419], [RFC4432], [RFC4462], [RFC5656],
   [RFC8268], [I-D.ietf-curdle-gss-keyex-sha2], and
   [I-D.ietf-curdle-ssh-curves] and provides a suggested suitability for
   implementation of MUST, SHOULD, SHOULD NOT, and MUST NOT.  Any method
   not explicitly listed, MAY be implemented.



   This document is intended to provide guidance as to what Key Exchange
   Algorithms are to be considered for new or updated SSH
   implementations.  This document will be superseded when one or more
   of the listed algorithms are considered too weak to continue to use
   securely, in which case they will likely be downgraded to SHOULD NOT
   or MUST NOT.  Or, when newer methods have been analyzed and found to
   be secure with wide enough adoption to upgrade their recommendation
   from MAY to SHOULD or MUST.




3.1. curve25519-sha256

   The Curve25519 provides strong security and is efficient on a wide
   range of architectures with properties that allow better
   implementation properties compared to traditional elliptic curves.
   The use of SHA2-256 (also known as SHA-256) as defined in [RFC6234]
   for integrity is a reasonable one for this method.  This Key Exchange
   Method is described in [I-D.ietf-curdle-ssh-curves] and is similar to
   the IKEv2 Key Agreement described in [RFC8031].  This Key Exchange
   Method has multiple implementations and SHOULD be implemented in any
   SSH interested in using elliptic curve based key exchanges.




3.2. curve448-sha512

   The Curve448 provides very strong security.  It uses SHA2-512 (also
   known as SHA-256) defined in [RFC6234] for integrity.  It is probably
   stronger and more work than is currently needed.  This Key Exchange
   Method is described in [I-D.ietf-curdle-ssh-curves] and is similar to
   the IKEv2 Key Agreement described in [RFC8031].  This method MAY be
   implemented.




3.3. diffie-hellman-group-exchange-sha1

   This set of ephemerally generated key exchange groups uses SHA-1 as
   defined in [RFC4419].  However, SHA-1 has security concerns provided
   in [RFC6194], so it would be better to use a key exchange method
   which uses a SHA-2 hash as in [RFC6234] for integrity.  This key
   exchange SHOULD NOT be used.




3.4. diffie-hellman-group-exchange-sha256

   This set of ephemerally generated key exchange groups uses SHA2-256
   as defined in [RFC4419].  [RFC8270] mandates implementations avoid
   any MODP group with less than 2048 bits.  This key exchange MAY be
   used.




3.5. diffie-hellman-group1-sha1

   This method is decribed in [RFC4253] and uses [RFC7296] Oakley Group
   2 (a 1024-bit MODP group) and SHA-1 [RFC3174].  Due to recent
   security concerns with SHA-1 [RFC6194] and with MODP groups with less
   than 2048 bits (see [LOGJAM] and [NIST-SP-800-131Ar1]), this method
   is considered insecure.  This method is being moved from MUST to
   SHOULD NOT instead of MUST NOT only to allow a transition time to get
   off of it.  There are many old implementations out there that may
   still need to use this key exchange, it should be removed from server
   implementations as quickly as possible.




3.6. diffie-hellman-group14-sha1

   This method uses [RFC3526] group14 (a 2048-bit MODP group) which is
   still a reasonable size.  This key exchange group uses SHA-1 which
   has security concerns [RFC6194].  However, this group is still strong
   enough and is widely deployed.  This method is being moved from MUST
   to SHOULD to aid in transition to stronger SHA-2 based hashes.  This
   method will transition to SHOULD NOT when SHA-2 alternatives are more
   generally available.




3.7. diffie-hellman-group14-sha256

   This key exchange method is defined in [RFC8268] and uses the group14
   (a 2048-bit MODP group) along with a SHA-2 (SHA2-256) hash as in
   [RFC6234] for integrity.  This represents the smallest Finite Field
   Cryptography (FFC) Diffie-Hellman (DH) key exchange method considered
   to be secure.  It is a reasonably simple transition to move from
   SHA-1 to SHA-2.  This method MUST be implemented.




3.8. diffie-hellman-group15-sha512

   This key exchange method is defined in [RFC8268] and uses group15
   along with a SHA-2 (SHA2-512) hash as in [RFC6234] for integrity.
   Note: The use of this 3072-bit MODP group would be equally justified
   to use SHA2-384 as the hash rather than SHA2-512.  However, some
   small implementations would rather only worry about two rather than
   three new hashing functions.  This group does not really provide much
   additional head room over the 2048-bit group14 FFC DH and the
   predominate open source implementations are not adopting it.  This
   method MAY be implemented.




3.9. diffie-hellman-group16-sha512

   This key exchange method is defined in [RFC8268] and uses group16
   along with a SHA-2 (SHA2-512) hash as in [RFC6234] for integrity.
   The use of FFC DH is well understood and trusted.  Adding larger
   modulus sizes and protecting with SHA2-512 should give enough head
   room to be ready for the next scare that someone has pre-computed it.
   This modulus (4096-bit) is larger than that required by [CNSA-SUITE]
   and should be sufficient to inter-operate with more paranoid nation-
   states.  This method SHOULD be implemented.




3.10. diffie-hellman-group17-sha512

   This key exchange method is defined in [RFC8268] and uses group17
   along with a SHA-2 (SHA2-512) hash as in [RFC6234] for integrity.
   The use of this 6144-bit MODP group is going to be slower than what
   may be desirable.  It is provided to help those who wish to avoid
   using ECC algorithms.  This method MAY be implemented.




3.11. diffie-hellman-group18-sha512

   This key exchange method is defined in [RFC8268] and uses group18
   along with a SHA-2 (SHA2-512) hash as in [RFC6234] for integrity.
   The use of this 8192-bit MODP group is going to be slower than what
   may be desirable.  It is provided to help those who wish to avoid
   using ECC algorithms.  This method MAY be implemented.




3.12. ecdh-sha2-nistp256

   This key exchange method is defined in [RFC5656].  Elliptic Curve
   Diffie-Hellman (ECDH) are often implemented because they are smaller
   and faster than using large FFC primes with traditional Diffie-
   Hellman (DH).  However, given [CNSA-SUITE] and [safe-curves], this
   curve may not be as useful and strong as desired for handling TOP
   SECRET information for some applications.  The SSH development
   community is divided on this and many implementations do exist.  If
   traditional ECDH key exchange methods are implemented, then this
   method SHOULD be implemented.



   It is advisable to match the ECDSA and ECDH algorithms to use the
   same curve for both.




3.13. ecdh-sha2-nistp384

   This key exchange method is defined in [RFC5656].  This ECDH method
   should be implemented because it is smaller and faster than using
   large FFC primes with traditional Diffie-Hellman (DH).  Given
   [CNSA-SUITE], it is considered good enough for TOP SECRET.  If
   traditional ECDH key exchange methods are implemented, then this
   method SHOULD be implemented.



   Research into ways of breaking ECDSA continues.  Papers such as
   [ECDSA-Nonce-Leak] as well as concerns raised in [safe-curves] may
   mean that this algorithm will need to be downgraded in the future
   along the other ECDSA nistp curves.




3.14. ecdh-sha2-nistp521

   This key exchange method is defined in [RFC5656].  This ECDH method
   may be implemented because it is smaller and faster than using large
   FFC primes with traditional Diffie-Hellman (DH).  It is not listed in
   [CNSA-SUITE], so it is not currently appropriate for TOP SECRET.  It
   is possible that the mismatch between the 521-bit key and the 512-bit
   hash could mean that as many as nine bits of this key could be at
   risk of leaking if appropriate padding measures are not taken.  This
   method MAY be implemented, but is not recommended.




3.15. gss-gex-sha1-*

   This key exchange method is defined in [RFC4462].  This set of
   ephemerally generated key exchange groups uses SHA-1 which has
   security concerns [RFC6194].  It is recommended that these key
   exchange groups NOT be used.  This key exchange SHOULD NOT be used.
   It is intended that it move to MUST NOT as soon as the majority of
   server implementations no longer offer it.  It should be removed from
   server implementations as quickly as possible.




3.16. gss-group1-sha1-*

   This key exchange method is defined in [RFC4462].  This method
   suffers from the same problems of diffie-hellman-group1-sha1.  It
   uses [RFC7296] Oakley Group 2 (a 1024-bit MODP group) and SHA-1
   [RFC3174].  Due to recent security concerns with SHA-1 [RFC6194] and
   with MODP groups with less than 2048 bits (see [LOGJAM] and
   [NIST-SP-800-131Ar1]), this method is considered insecure.  This
   method SHOULD NOT be implemented.  It is intended that it move to
   MUST NOT as soon as the majority of server implementations no longer
   offer it.  It should be removed from server implementations as
   quickly as possible.




3.17. gss-group14-sha1-*

   This key exchange method is defined in [RFC4462].  This generated key
   exchange groups uses SHA-1 which has security concerns [RFC6194].  If
   GSS-API key exchange methods are being used, then this one SHOULD be
   implemented until such time as SHA-2 variants may be implemented and
   deployed.  This method will transition to SHOULD NOT when SHA-2
   alternatives are more generally available.  No other standard
   indicated that this method was anything other than optional even
   though it was implemented in all GSS-API systems.  This method MAY be
   implemented.




3.18. gss-group14-sha256-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  This key exchange uses the group14
   (a 2048-bit MODP group) along with a SHA-2 (SHA2-256) hash.  This
   represents the smallest Finite Field Cryptography (FFC) Diffie-
   Hellman (DH) key exchange method considered to be secure.  It is a
   reasonably simple transition to move from SHA-1 to SHA-2.  If the
   GSS-API is to be used, then this method SHOULD be implemented.




3.19. gss-group15-sha512-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  The use of this 3072-bit MODP
   group does not really provide much additional head room over the
   2048-bit group14 FFC DH.  If the GSS-API is to be used, then this
   method MAY be implemented.




3.20. gss-group16-sha512-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  The use of FFC DH is well
   understood and trusted.  Adding larger modulus sizes and protecting
   with SHA2-512 should give enough head room to be ready for the next
   scare that someone has pre-computed.  This modulus (4096-bit) is
   larger than that required by [CNSA-SUITE] and should be sufficient to
   inter-operate with more paranoid nation-states.  If the GSS-API is to
   be used, then this method SHOULD be implemented.




3.21. gss-group17-sha512-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  The use of this 6144-bit MODP
   group is going to be slower than what may be desirable.  It is
   provided to help those who wish to avoid using ECC algorithms.  If
   the GSS-API is to be used, then this method MAY be implemented.




3.22. gss-group18-sha512-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  The use of this 8192-bit MODP
   group is going to be slower than what may be desirable.  It is
   provided to help those who prefer to avoid using ECC algorithms.  If
   the GSS-API is to be used, then this method MAY be implemented.




3.23. gss-nistp256-sha256-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  If the GSS-API is to be used with
   ECC algorithms, then this method SHOULD be implemented.




3.24. gss-nistp384-sha384-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  If the GSS-API is to be used with
   ECC algorithms, then this method SHOULD be implemented to permit TOP
   SECRET information to be communicated.




3.25. gss-nistp521-sha512-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  If the GSS-API is to be used with
   ECC algorithms, then this method MAY be implemented.




3.26. gss-curve25519-sha256-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  If the GSS-API is to be used with
   ECC algorithms, then this method SHOULD be implemented.




3.27. gss-curve448-sha512-*

   This key exchange method is defined in
   [I-D.ietf-curdle-gss-keyex-sha2].  If the GSS-API is to be used with
   ECC algorithms, then this method MAY be implemented.




3.28. rsa1024-sha1

   This key exchange method is defined in [RFC4432].  The security of
   RSA 1024-bit modulus keys is not good enough any longer.  A key size
   should be 2048-bits.  This generated key exchange groups uses SHA-1
   which has security concerns [RFC6194].  This method MUST NOT be
   implemented.




3.29. rsa2048-sha256

   This key exchange method is defined in [RFC4432].  An RSA 2048-bit
   modulus key with a SHA2-256 hash.  At the present time, a 2048-bit
   RSA key is considered to be suffiently strong in [NIST-SP-800-131Ar1]
   to be permitted.  In addition, the use of a SHA-2 hash as defined in
   [RFC6234] is a good integrity measure.  This method MAY be
   implemented.




4. Selecting an appropriate hashing algorithm

   As may be seen from the above, the Key Exchange Methods area all
   using either SHA256 or SHA512 with the exception of the ecdh-
   sha2-nistp384 which uses SHA384.



   The cited CNSA Suite specifies the use of SHA384 and says that SHA256
   is no longer good enough for TOP SECRET.  Nothing is said about the
   use of SHA512.  It may be that the internal state of 1024 bits in
   both SHA384 and SHA512 makes the SHA384 more secure because it does
   not leak an additional 128 bits of state.  Of course, the use of
   SHA384 also reduces the security strength to 384 bits instead of
   being 512 bits.  This seems to contradict the desire to double the
   symmetric key strength in order to try to be safe from Post Quantum
   Computing (PQC) attacks given a session key derived from the key
   exchange will be limited to the security strength of the hash being
   used.



   The move away from SHA256 to SHA512 for the newer key exchange
   methods is more to try to slow Grover's algorithm (a PQC attack)
   slightly.  It is also the case that SHA2-512 may, in many modern
   CPUs, be implemented more efficiently using 64-bit arithmetic than
   SHA256 which is faster on 32-bit CPUs.  The selection of SHA384 vs
   SHA512 is more about reducing the number of code point alternatives
   to negotiate.  There seemed to be consensus in favor of SHA2-512 over
   SHA2-384 for key exchanges.




5. Summary Guidance for Key Exchange Method Names

   The Implement column is the current recommendations of this RFC.  Key
   Exchange Method Names are listed alphabetically.



Key Exchange Method Name           Reference  Implement
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
curve25519‑sha256                  ssh‑curves SHOULD
diffie‑hellman‑group‑exchange‑sha1 RFC4419    SHOULD NOT
diffie‑hellman‑group1‑sha1         RFC4253    SHOULD NOT
diffie‑hellman‑group14‑sha1        RFC4253    SHOULD
diffie‑hellman‑group14‑sha256      RFC8268    MUST
diffie‑hellman‑group16‑sha512      RFC8268    SHOULD
ecdh‑sha2‑nistp256                 RFC5656    SHOULD
ecdh‑sha2‑nistp384                 RFC5656    SHOULD
gss‑gex‑sha1‑*                     RFC4462    SHOULD NOT
gss‑group1‑sha1‑*                  RFC4462    SHOULD NOT
gss‑group14‑sha256‑*               gss‑keyex  SHOULD
gss‑group16‑sha512‑*               gss‑keyex  SHOULD
gss‑nistp256‑sha256‑*              gss‑keyex  SHOULD
gss‑nistp384‑sha384‑*              gss‑keyex  SHOULD
gss‑curve25519‑sha256‑*            gss‑keyex  SHOULD
rsa1024‑sha1                       RFC4432    MUST NOT



   The full set of official [IANA-KEX] key algorithm method names not
   otherwise mentioned in this document MAY be implemented.



   The guidance of this document is that the SHA-1 algorithm hashing
   SHOULD NOT be used.  If it is used in implementations, it should only
   be provided for backwards compatibility, should not be used in new
   designs, and should be phased out of existing key exchanges as
   quickly as possible because of its known weaknesses.  Any key
   exchange using SHA-1 should not be in a default key exchange list if
   at all possible.  If they are needed for backward compatibility, they
   SHOULD be listed after all of the SHA-2 based key exchanges.



   The [RFC4253] MUST diffie-hellman-group14-sha1 method SHOULD be
   retained for compatibility with older Secure Shell implementations.
   It is intended that this key exchange method be phased out as soon as
   possible.  It SHOULD be listed after all possible SHA-2 based key
   exchanges.



   It is believed that all current SSH implementations should be able to
   achieve an implementation of the "diffie-hellman-group14-sha256"
   method.  To that end, this is one method that MUST be implemented.



   [TO BE REMOVED: This registration should take place at the following
   location: <http://www.iana.org/assignments/ssh-parameters/ssh-
   parameters.xhtml#ssh-parameters-16>]




6. Acknowledgements

   Thanks to the following people for review and comments: Denis Bider,
   Peter Gutmann, Damien Miller, Niels Moeller, Matt Johnston, Iwamoto
   Kouichi, Simon Josefsson, Dave Dugal, Daniel Migault, Anna Johnston,
   and Tero Kivinen.



   Thanks to the following people for code to implement inter-operable
   exchanges using some of these groups as found in an this draft:
   Darren Tucker for OpenSSH and Matt Johnston for Dropbear.  And thanks
   to Iwamoto Kouichi for information about RLogin, Tera Term (ttssh)
   and Poderosa implementations also adopting new Diffie-Hellman groups
   based on this draft.




7. Security Considerations

   This SSH protocol provides a secure encrypted channel over an
   insecure network.  It performs server host authentication, key
   exchange, encryption, and integrity protection.  It also derives a
   unique session ID that may be used by higher-level protocols.



   Full security considerations for this protocol are provided in
   [RFC4251]



   It is desirable to deprecate or remove key exchange method name that
   are considered weak.  A key exchange method may be weak because too
   few bits are used, or the hashing algorithm is considered too weak.



   The diffie-hellman-group1-sha1 is being moved from MUST to MUST NOT.
   This method used [RFC7296] Oakley Group 2 (a 1024-bit MODP group) and
   SHA-1 [RFC3174].  Due to recent security concerns with SHA-1
   [RFC6194] and with MODP groups with less than 2048 bits
   [NIST-SP-800-131Ar1], this method is no longer considered secure.



   The United States Information Assurance Directorate (IAD) at the
   National Security Agency (NSA) has published a FAQ
   [MFQ-U-OO-815099-15] suggesting that the use of Elliptic Curve
   Diffie-Hellman (ECDH) using the nistp256 curve and SHA-2 based hashes
   less than SHA2-384 are no longer sufficient for transport of TOP
   SECRET information.  If your systems need to be concerned with TOP
   SECRET information, then the guidance for supporting lesser security
   strength key exchanges may be omitted for your implementations.



   The MODP group14 is already required for SSH implementations and most
   implementations already have a SHA2-256 implementation, so diffie-
   hellman-group14-sha256 is provided as an easy to implement and faster
   to use key exchange.  Small embedded applications may find this KEX
   desirable to use.



   The NSA Information Assurance Directorate (IAD) has also published
   the Commercial National Security Algorithm Suite (CNSA Suite)
   [CNSA-SUITE] in which the 3072-bit MODP Group 15 in [RFC3526] is
   explicitly mentioned as the minimum modulus to protect TOP SECRET
   communications.



   It has been observed in [safe-curves] that the NIST Elliptic Curve
   Prime Curves (P-256, P-384, and P-521) are perhaps not the best
   available for Elliptic Curve Cryptography (ECC) Security.  For this
   reason, none of the [RFC5656] curves are mandatory to implement.
   However, the requirement that "every compliant SSH ECC implementation
   MUST implement ECDH key exchange" is now taken to mean that if ecdsa-
   sha2-[identifier] is implemented, then ecdh-sha2-[identifier] MUST be
   implemented.



   In a Post-Quantum Computing (PQC) world, it will be desirable to use
   larger cyclic subgroups.  To do this using Elliptic Curve
   Cryptography will require much larger prime base fields, greatly
   reducing their efficiency.  Finite Field based Cryptography already
   requires large enough base fields to accommodate larger cyclic
   subgroups.  Until such time as a PQC method of key exchange is
   developed and adopted, it may be desirable to generate new and larger
   DH groups to avoid pre-calculation attacks that are provably not
   backdoored.




8. IANA Considerations

   IANA is requested to annotate entries in [IANA-KEX] which MUST NOT be
   implemented as being deprecated by this document.




9. References


9.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3526]
  Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
              Diffie-Hellman groups for Internet Key Exchange (IKE)",
              RFC 3526, DOI 10.17487/RFC3526, May 2003,
              <https://www.rfc-editor.org/info/rfc3526>.




   [RFC4250]
  Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Protocol Assigned Numbers", RFC 4250,
              DOI 10.17487/RFC4250, January 2006,
              <https://www.rfc-editor.org/info/rfc4250>.




   [RFC4253]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
              January 2006, <https://www.rfc-editor.org/info/rfc4253>.




   [RFC8031]
  Nir, Y. and S. Josefsson, "Curve25519 and Curve448 for the
              Internet Key Exchange Protocol Version 2 (IKEv2) Key
              Agreement", RFC 8031, DOI 10.17487/RFC8031, December 2016,
              <https://www.rfc-editor.org/info/rfc8031>.




   [RFC8268]
  Baushke, M., "More Modular Exponentiation (MODP) Diffie-
              Hellman (DH) Key Exchange (KEX) Groups for Secure Shell
              (SSH)", RFC 8268, DOI 10.17487/RFC8268, December 2017,
              <https://www.rfc-editor.org/info/rfc8268>.




   [RFC8270]
  Velvindron, L. and M. Baushke, "Increase the Secure Shell
              Minimum Recommended Diffie-Hellman Modulus Size to 2048
              Bits", RFC 8270, DOI 10.17487/RFC8270, December 2017,
              <https://www.rfc-editor.org/info/rfc8270>.




9.2. Informative References


   [CNSA-SUITE]

              "Information Assurance by the National Security Agency",
              "Commercial National Security Algorithm Suite", September
              2016, <https://www.iad.gov/iad/programs/iad-initiatives/
              cnsa-suite.cfm>.




   [ECDSA-Nonce-Leak]

              De Mulder, Hutter, Marson, and Pearson, "Using
              Bleichenbacher's Solution to the Hidden Number Problem to
              Attack Nonce Leaks in 384-Bit ECDSA", IACR Cryptology
              ePrint Archive 2013, August 2013,
              <https://eprint.iacr.org/2013/346.pdf>.




   [I-D.ietf-curdle-gss-keyex-sha2]

              Sorce, S. and H. Kario, "GSS-API Key Exchange with SHA2",
              draft-ietf-curdle-gss-keyex-sha2-03 (work in progress),
              December 2017.




   [I-D.ietf-curdle-ssh-curves]

              Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure
              Shell (SSH) Key Exchange Method using Curve25519 and
              Curve448", draft-ietf-curdle-ssh-curves-06 (work in
              progress), November 2017.




   [IANA-KEX]

              Internet Assigned Numbers Authority (IANA), "Secure Shell
              (SSH) Protocol Parameters: Key Exchange Method Names",
              January 2018, <http://www.iana.org/assignments/ssh-
              parameters/ssh-parameters.xhtml#ssh-parameters-16>.




   [LOGJAM]
   Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P.,
              Green, M., Halderman, J., Heninger, N., Springall, D.,
              Thome, E., Valenta, L., VanderSloot, B., Wustrow, E.,
              Zanella-Beguelin, S., and P. Zimmermann, "Imperfect
              Forward Secrecy: How Diffie-Hellman Fails in Practice",
              ACM Conference on Computer and Communications Security
              (CCS) 2015, 2015,
              <https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf>.




   [MFQ-U-OO-815099-15]

              "National Security Agency/Central Security Service", "CNSA
              Suite and Quantum Computing FAQ", January 2016,
              <https://www.iad.gov/iad/library/ia-guidance/
              ia-solutions-for-classified/algorithm-guidance/
              cnsa-suite-and-quantum-computing-faq.cfm>.




   [NIST-SP-800-131Ar1]

              Barker and Roginsky, "Transitions: Recommendation for the
              Transitioning of the Use of Cryptographic Algorithms and
              Key Lengths", NIST Special Publication 800-131A Revision
              1, November 2015,
              <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-131Ar1.pdf>.




   [RFC3174]
  Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
              (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
              <https://www.rfc-editor.org/info/rfc3174>.




   [RFC4251]
  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
              Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
              January 2006, <https://www.rfc-editor.org/info/rfc4251>.




   [RFC4419]
  Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
              Group Exchange for the Secure Shell (SSH) Transport Layer
              Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,
              <https://www.rfc-editor.org/info/rfc4419>.




   [RFC4432]
  Harris, B., "RSA Key Exchange for the Secure Shell (SSH)
              Transport Layer Protocol", RFC 4432, DOI 10.17487/RFC4432,
              March 2006, <https://www.rfc-editor.org/info/rfc4432>.




   [RFC4462]
  Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
              "Generic Security Service Application Program Interface
              (GSS-API) Authentication and Key Exchange for the Secure
              Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462, May
              2006, <https://www.rfc-editor.org/info/rfc4462>.




   [RFC5656]
  Stebila, D. and J. Green, "Elliptic Curve Algorithm
              Integration in the Secure Shell Transport Layer",
              RFC 5656, DOI 10.17487/RFC5656, December 2009,
              <https://www.rfc-editor.org/info/rfc5656>.




   [RFC6194]
  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
              Considerations for the SHA-0 and SHA-1 Message-Digest
              Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
              <https://www.rfc-editor.org/info/rfc6194>.




   [RFC6234]
  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.




   [RFC7296]
  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.




   [safe-curves]

              Bernstein and Lange, "SafeCurves: choosing safe curves for
              elliptic-curve cryptography.", February 2016,
              <https://safecurves.cr.yp.to/>.



Author's Address



Mark D.     Baushke
Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, CA  94089‑1228
US

Email: mdb@juniper.net
URI:   http://www.juniper.net/












































draft-ietf-dots-architecture-14 - Distributed-Denial-of-Service Open Threat Signaling (DOTS) Architecture 






draft-ietf-dots-architecture-14 - Distributed-Denial-of-Service Open Threat Sign

Index
Next
Forward 5


DOTS

Internet-Draft

Intended status: Informational

Expires: November 30, 2019
















A. Mortensen, Ed.

Forcepoint

T. Reddy, Ed.

McAfee, Inc.

F. Andreasen

Cisco

N. Teague

Iron Mountain

R. Compton

Charter

May 29, 2019

Distributed-Denial-of-Service Open Threat Signaling (DOTS) Architecture  

draft-ietf-dots-architecture-14


Abstract

   This document describes an architecture for establishing and
   maintaining Distributed Denial of Service (DDoS) Open Threat
   Signaling (DOTS) within and between domains.  The document does not
   specify protocols or protocol extensions, instead focusing on
   defining architectural relationships, components and concepts used in
   a DOTS deployment.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on November 30, 2019.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Context and Motivation
	 1.1.  Terminology
	  1.1.1.  Key Words


	  1.1.2.  Definition of Terms



	 1.2.  Scope


	 1.3.  Assumptions



	2.  DOTS Architecture
	 2.1.  DOTS Operations


	 2.2.  Components
	  2.2.1.  DOTS Client


	  2.2.2.  DOTS Server


	  2.2.3.  DOTS Gateway



	 2.3.  DOTS Agent Relationships
	  2.3.1.  Gatewayed Signaling





	3.  Concepts
	 3.1.  DOTS Sessions
	  3.1.1.  Preconditions


	  3.1.2.  Establishing the DOTS Session


	  3.1.3.  Maintaining the DOTS Session



	 3.2.  Modes of Signaling
	  3.2.1.  Direct Signaling


	  3.2.2.  Redirected Signaling


	  3.2.3.  Recursive Signaling


	  3.2.4.  Anycast Signaling


	  3.2.5.  Signaling Considerations for Network Address Translation



	 3.3.  Triggering Requests for Mitigation
	  3.3.1.  Manual Mitigation Request


	  3.3.2.  Automated Conditional Mitigation Request


	  3.3.3.  Automated Mitigation on Loss of Signal





	4.  IANA Considerations


	5.  Security Considerations


	6.  Contributors


	7.  Acknowledgments


	8.  References
	 8.1.  Normative References


	 8.2.  Informative References



	Authors' Addresses




1. Context and Motivation

   Signaling the need for help defending against an active distributed
   denial of service (DDoS) attack requires a common understanding of
   mechanisms and roles among the parties coordinating defensive
   response.  The signaling layer and supplementary messaging is the
   focus of DDoS Open Threat Signaling (DOTS).  DOTS defines a method of
   coordinating defensive measures among willing peers to mitigate
   attacks quickly and efficiently, enabling hybrid attack responses
   coordinated locally at or near the target of an active attack, or
   anywhere in-path between attack sources and target.  Sample DOTS use
   cases are elaborated in [I-D.ietf-dots-use-cases].



   This document describes an architecture used in establishing,
   maintaining or terminating a DOTS relationship within a domain or
   between domains.




1.1. Terminology


1.1.1. Key Words

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP14 [RFC2119]
   [RFC8174], when, and only when, they appear in all capitals.




1.1.2. Definition of Terms

   This document uses the terms defined in [RFC8612].




1.2. Scope

   In this architecture, DOTS clients and servers communicate using DOTS
   signaling.  As a result of signals from a DOTS client, the DOTS
   server may modify the forwarding path of traffic destined for the
   attack target(s), for example by diverting traffic to a mitigator or
   pool of mitigators, where policy may be applied to distinguish and
   discard attack traffic.  Any such policy is deployment-specific.



   The DOTS architecture presented here is applicable across network
   administrative domains - for example, between an enterprise domain
   and the domain of a third-party attack mitigation service - as well
   as to a single administrative domain.  DOTS is generally assumed to
   be most effective when aiding coordination of attack response between
   two or more participating networks, but single domain scenarios are
   valuable in their own right, as when aggregating intra-domain DOTS
   client signals for inter-domain coordinated attack response.



   This document does not address any administrative or business
   agreements that may be established between involved DOTS parties.
   Those considerations are out of scope.  Regardless, this document
   assumes necessary authentication and authorization mechanisms are put
   in place so that only authorized clients can invoke the DOTS service.



   A detailed set of DOTS requirements are discussed in [RFC8612], and
   the DOTS architecture is designed to follow those requirements.  Only
   new behavioral requirements are described in this document.




1.3. Assumptions

   This document makes the following assumptions:



   o  All domains in which DOTS is deployed are assumed to offer the
      required connectivity between DOTS agents and any intermediary
      network elements, but the architecture imposes no additional
      limitations on the form of connectivity.



   o  Congestion and resource exhaustion are intended outcomes of a DDoS
      attack [RFC4732].  Some operators may utilize non-impacted paths
      or networks for DOTS, but in general conditions should be assumed
      to be hostile and DOTS must be able to function in all
      circumstances, including when the signaling path is significantly
      impaired.



   o  There is no universal DDoS attack scale threshold triggering a
      coordinated response across administrative domains.  A network
      domain administrator, or service or application owner may
      arbitrarily set attack scale threshold triggers, or manually send
      requests for mitigation.



   o  Mitigation requests may be sent to one or more upstream DOTS
      servers based on criteria determined by DOTS client administrators
      and the underlying network configuration.  The number of DOTS
      servers with which a given DOTS client has established
      communications is determined by local policy and is deployment-
      specific.  For example, a DOTS client of a multi-homed network may
      support built-in policies to establish DOTS relationships with
      DOTS servers located upstream of each interconnection link.



   o  The mitigation capacity and/or capability of domains receiving
      requests for coordinated attack response is opaque to the domains
      sending the request.  The domain receiving the DOTS client signal
      may or may not have sufficient capacity or capability to filter



      any or all DDoS attack traffic directed at a target.  In either
      case, the upstream DOTS server may redirect a request to another
      DOTS server.  Redirection may be local to the redirecting DOTS
      server's domain, or may involve a third-party domain.



   o  DOTS client and server signals, as well as messages sent through
      the data channel, are sent across any transit networks with the
      same probability of delivery as any other traffic between the DOTS
      client domain and the DOTS server domain.  Any encapsulation
      required for successful delivery is left untouched by transit
      network elements.  DOTS server and DOTS client cannot assume any
      preferential treatment of DOTS signals.  Such preferential
      treatment may be available in some deployments (e.g., intra-domain
      scenarios), and the DOTS architecture does not preclude its use
      when available.  However, DOTS itself does not address how that
      may be done.



   o  The architecture allows for, but does not assume, the presence of
      Quality of Service (QoS) policy agreements between DOTS-enabled
      peer networks or local QoS prioritization aimed at ensuring
      delivery of DOTS messages between DOTS agents.  QoS is an
      operational consideration only, not a functional part of the DOTS
      architecture.



   o  The signal and data channels are loosely coupled, and may not
      terminate on the same DOTS server.




2. DOTS Architecture

   The basic high-level DOTS architecture is illustrated in Figure 1:



+‑‑‑‑‑‑‑‑‑‑‑+            +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Mitigator | ~~~~~~~~~~ | DOTS Server |
+‑‑‑‑‑‑‑‑‑‑‑+            +‑‑‑‑‑‑‑‑‑‑‑‑‑+
                                |
                                |
                                |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Attack Target | ~~~~~~ | DOTS Client |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 1: Basic DOTS Architecture



   A simple example instantiation of the DOTS architecture could be an
   enterprise as the attack target for a volumetric DDoS attack, and an
   upstream DDoS mitigation service as the mitigator.  The enterprise
   (attack target) is connected to the Internet via a link that is
   getting saturated, and the enterprise suspects it is under DDoS
   attack.  The enterprise has a DOTS client, which obtains information
   about the DDoS attack, and signals the DOTS server for help in
   mitigating the attack.  The DOTS server in turn invokes one or more
   mitigators, which are tasked with mitigating the actual DDoS attack,
   and hence aim to suppress the attack traffic while allowing valid
   traffic to reach the attack target.



   The scope of the DOTS specifications is the interfaces between the
   DOTS client and DOTS server.  The interfaces to the attack target and
   the mitigator are out of scope of DOTS.  Similarly, the operation of
   both the attack target and the mitigator is out of scope of DOTS.
   Thus, DOTS neither specifies how an attack target decides it is under
   DDoS attack, nor does DOTS specify how a mitigator may actually
   mitigate such an attack.  A DOTS client's request for mitigation is
   advisory in nature, and may not lead to any mitigation at all,
   depending on the DOTS server domain's capacity and willingness to
   mitigate on behalf of the DOTS client's domain.



   The DOTS client may be provided with a list of DOTS servers, each
   associated with one or more IP addresses.  These addresses may or may
   not be of the same address family.  The DOTS client establishes one
   or more sessions by connecting to the provided DOTS server addresses.



   As illustrated in Figure 2, there are two interfaces between a DOTS
   server and a DOTS client; a signal channel and (optionally) a data
   channel.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+                                 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|               | <‑‑‑‑‑‑‑ Signal Channel ‑‑‑‑‑‑> |               |
|  DOTS Client  |                                 |  DOTS Server  |
|               | <=======  Data Channel  ======> |               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+                                 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                         Figure 2: DOTS Interfaces



   The primary purpose of the signal channel is for a DOTS client to ask
   a DOTS server for help in mitigating an attack, and for the DOTS
   server to inform the DOTS client about the status of such mitigation.
   The DOTS client does this by sending a client signal, which contains
   information about the attack target(s).  The client signal may also
   include telemetry information about the attack, if the DOTS client
   has such information available.  The DOTS server in turn sends a
   server signal to inform the DOTS client of whether it will honor the
   mitigation request.  Assuming it will, the DOTS server initiates
   attack mitigation, and periodically informs the DOTS client about the
   status of the mitigation.  Similarly, the DOTS client periodically
   informs the DOTS server about the client's status, which at a minimum
   provides client (attack target) health information, but it should
   also include efficacy information about the attack mitigation as it
   is now seen by the client.  At some point, the DOTS client may decide
   to terminate the server-side attack mitigation, which it indicates to
   the DOTS server over the signal channel.  A mitigation may also be
   terminated if a DOTS client-specified mitigation lifetime is
   exceeded.  Note that the signal channel may need to operate over a
   link that is experiencing a DDoS attack and hence is subject to
   severe packet loss and high latency.



   While DOTS is able to request mitigation with just the signal
   channel, the addition of the DOTS data channel provides for
   additional and more efficient capabilities.  The primary purpose of
   the data channel is to support DOTS related configuration and policy
   information exchange between the DOTS client and the DOTS server.
   Examples of such information include, but are not limited to:



   o  Creating identifiers, such as names or aliases, for resources for
      which mitigation may be requested.  Such identifiers may then be
      used in subsequent signal channel exchanges to refer more
      efficiently to the resources under attack, as seen in Figure 3,
      using JSON to serialize the data:



{
    "https1": [
        "192.0.2.1:443",
        "198.51.100.2:443",
    ],
    "proxies": [
        "203.0.113.3:3128",
        "[2001:db8:ac10::1]:3128"
    ],
    "api_urls": "https://apiserver.example.com/api/v1",
}



                 Figure 3: Protected resource identifiers



   o  Drop-list management, which enables a DOTS client to inform the
      DOTS server about sources to suppress.



   o  Accept-list management, which enables a DOTS client to inform the
      DOTS server about sources from which traffic is always accepted.



   o  Filter management, which enables a DOTS client to install or
      remove traffic filters dropping or rate-limiting unwanted traffic.



   o  DOTS client provisioning.



   Note that while it is possible to exchange the above information
   before, during or after a DDoS attack, DOTS requires reliable
   delivery of this information and does not provide any special means
   for ensuring timely delivery of it during an attack.  In practice,
   this means that DOTS deployments should not rely on such information
   being exchanged during a DDoS attack.




2.1. DOTS Operations

   DOTS does not prescribe any specific deployment models, however DOTS
   is designed with some specific requirements around the different DOTS
   agents and their relationships.



   First of all, a DOTS agent belongs to a domain that has an identity
   which can be authenticated and authorized.  DOTS agents communicate
   with each other over a mutually authenticated signal channel and
   (optionally) data channel.  However, before they can do so, a service
   relationship needs to be established between them.  The details and
   means by which this is done is outside the scope of DOTS, however an
   example would be for an enterprise A (DOTS client) to sign up for
   DDoS service from provider B (DOTS server).  This would establish a
   (service) relationship between the two that enables enterprise A's
   DOTS client to establish a signal channel with provider B's DOTS
   server.  A and B will authenticate each other, and B can verify that
   A is authorized for its service.



   From an operational and design point of view, DOTS assumes that the
   above relationship is established prior to a request for DDoS attack
   mitigation.  In particular, it is assumed that bi-directional
   communication is possible at this time between the DOTS client and
   DOTS server.  Furthermore, it is assumed that additional service
   provisioning, configuration and information exchange can be performed
   by use of the data channel, if operationally required.  It is not
   until this point that the mitigation service is available for use.



   Once the mutually authenticated signal channel has been established,
   it will remain active.  This is done to increase the likelihood that
   the DOTS client can signal the DOTS server for help when the attack
   target is being flooded, and similarly raise the probability that
   DOTS server signals reach the client regardless of inbound link
   congestion.  This does not necessarily imply that the attack target
   and the DOTS client have to be co-located in the same administrative
   domain, but it is expected to be a common scenario.



   DDoS mitigation with the help of an upstream mitigator may involve
   some form of traffic redirection whereby traffic destined for the
   attack target is steered towards the mitigator.  Common mechanisms to
   achieve this redirection depend on BGP [RFC4271] and DNS [RFC1035].
   The mitigator in turn inspects and scrubs the traffic, and forwards
   the resulting (hopefully non-attack) traffic to the attack target.
   Thus, when a DOTS server receives an attack mitigation request from a
   DOTS client, it can be viewed as a way of causing traffic redirection
   for the attack target indicated.



   DOTS relies on mutual authentication and the pre-established service
   relationship between the DOTS client's domain and the DOTS server's
   domain to provide basic authorization.  The DOTS server should
   enforce additional authorization mechanisms to restrict the
   mitigation scope a DOTS client can request, but such authorization
   mechanisms are deployment-specific.



   Although co-location of DOTS server and mitigator within the same
   domain is expected to be a common deployment model, it is assumed
   that operators may require alternative models.  Nothing in this
   document precludes such alternatives.




2.2. Components


2.2.1. DOTS Client

   A DOTS client is a DOTS agent from which requests for help
   coordinating attack response originate.  The requests may be in
   response to an active, ongoing attack against a target in the DOTS
   client's domain, but no active attack is required for a DOTS client
   to request help.  Operators may wish to have upstream mitigators in
   the network path for an indefinite period, and are restricted only by
   business relationships when it comes to duration and scope of
   requested mitigation.



   The DOTS client requests attack response coordination from a DOTS
   server over the signal channel, including in the request the DOTS
   client's desired mitigation scoping, as described in [RFC8612] (SIG-
   008).  The actual mitigation scope and countermeasures used in
   response to the attack are up to the DOTS server and mitigator
   operators, as the DOTS client may have a narrow perspective on the
   ongoing attack.  As such, the DOTS client's request for mitigation
   should be considered advisory: guarantees of DOTS server availability
   or mitigation capacity constitute service level agreements and are
   out of scope for this document.



   The DOTS client adjusts mitigation scope and provides available
   mitigation feedback (e.g., mitigation efficacy) at the direction of
   its local administrator.  Such direction may involve manual or
   automated adjustments in response to updates from the DOTS server.
   To provide a metric of signal health and distinguish an idle signal
   channel from a disconnected or defunct session, the DOTS client sends
   a heartbeat over the signal channel to maintain its half of the
   channel.  The DOTS client similarly expects a heartbeat from the DOTS
   server, and may consider a session terminated in the extended absence
   of a DOTS server heartbeat.




2.2.2. DOTS Server

   A DOTS server is a DOTS agent capable of receiving, processing and
   possibly acting on requests for help coordinating attack response
   from DOTS clients.  The DOTS server authenticates and authorizes DOTS
   clients as described in Section 3.1, and maintains session state,
   tracking requests for mitigation, reporting on the status of active
   mitigations, and terminating sessions in the extended absence of a
   client heartbeat or when a session times out.



   Assuming the preconditions discussed below exist, a DOTS client
   maintaining an active session with a DOTS server may reasonably
   expect some level of mitigation in response to a request for
   coordinated attack response.



   For a given DOTS client (administrative) domain, the DOTS server
   needs to be able to determine whether a given target resource is in
   that domain.  For example, this could take the form of associating a
   set of IP addresses and/or prefixes per domain.  The DOTS server
   enforces authorization of DOTS clients' signals for mitigation.  The
   mechanism of enforcement is not in scope for this document, but is
   expected to restrict requested mitigation scope to addresses,
   prefixes, and/or services owned by the DOTS client domain, such that
   a DOTS client from one domain is not able to influence the network
   path to another domain.  A DOTS server MUST reject requests for
   mitigation of resources not owned by the requesting DOTS client's
   administrative domain.  A DOTS server MAY also refuse a DOTS client's
   mitigation request for arbitrary reasons, within any limits imposed
   by business or service level agreements between client and server
   domains.  If a DOTS server refuses a DOTS client's request for
   mitigation, the DOTS server MUST include the refusal reason in the
   server signal sent to the client.



   A DOTS server is in regular contact with one or more mitigators.  If
   a DOTS server accepts a DOTS client's request for help, the DOTS
   server forwards a translated form of that request to the mitigator(s)
   responsible for scrubbing attack traffic.  Note that the form of the
   translated request passed from the DOTS server to the mitigator is
   not in scope: it may be as simple as an alert to mitigator operators,
   or highly automated using vendor or open application programming
   interfaces supported by the mitigator.  The DOTS server MUST report
   the actual scope of any mitigation enabled on behalf of a client.



   The DOTS server SHOULD retrieve available metrics for any mitigations
   activated on behalf of a DOTS client, and SHOULD include them in
   server signals sent to the DOTS client originating the request for
   mitigation.



   To provide a metric of signal health and distinguish an idle signal
   channel from a disconnected or defunct channel, the DOTS server MUST
   send a heartbeat over the signal channel to maintain its half of the
   channel.  The DOTS server similarly expects a heartbeat from the DOTS
   client, and MAY consider a session terminated in the extended absence
   of a DOTS client heartbeat.




2.2.3. DOTS Gateway

   Traditional client/server relationships may be expanded by chaining
   DOTS sessions.  This chaining is enabled through "logical
   concatenation" of a DOTS server and a DOTS client, resulting in an
   application analogous to the Session Initiation Protocol (SIP)
   [RFC3261] logical entity of a Back-to-Back User Agent (B2BUA)
   [RFC7092].  The term DOTS gateway is used here in the descriptions of
   selected scenarios involving this application.



   A DOTS gateway may be deployed client-side, server-side or both.  The
   gateway may terminate multiple discrete client connections and may
   aggregate these into a single or multiple DOTS sessions.



   The DOTS gateway will appear as a server to its downstream agents and
   as a client to its upstream agents, a functional concatenation of the
   DOTS client and server roles, as depicted in Figure 4:



                +‑‑‑‑‑‑‑‑‑‑‑‑‑+
                |    | D |    |
+‑‑‑‑+          |    | O |    |         +‑‑‑‑+
| c1 |‑‑‑‑‑‑‑‑‑‑| s1 | T | c2 |‑‑‑‑‑‑‑‑‑| s2 |
+‑‑‑‑+          |    | S |    |         +‑‑‑‑+
                |    | G |    |
                +‑‑‑‑‑‑‑‑‑‑‑‑‑+



                          Figure 4: DOTS gateway



   The DOTS gateway MUST perform full stack DOTS session termination and
   reorigination between its client and server side.  The details of how
   this is achieved are implementation specific.  The DOTS protocol does
   not include any special features related to DOTS gateways, and hence
   from a DOTS perspective, whenever a DOTS gateway is present, the DOTS
   session simply terminates/originates there.




2.3. DOTS Agent Relationships

   So far, we have only considered a relatively simple scenario of a
   single DOTS client associated with a single DOTS server, however DOTS
   supports more advanced relationships.



   A DOTS server may be associated with one or more DOTS clients, and
   those DOTS clients may belong to different domains.  An example
   scenario is a mitigation provider serving multiple attack targets
   (Figure 5).



DOTS clients       DOTS server
+‑‑‑+
| c |‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑+           \
c1.example.org   \
                  \
+‑‑‑+              \ +‑‑‑+
| c |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| S |
+‑‑‑+              / +‑‑‑+
c1.example.com    /  dots1.example.net
                 /
+‑‑‑+           /
| c |‑‑‑‑‑‑‑‑‑‑‑
+‑‑‑+
c2.example.com



                Figure 5: DOTS server with multiple clients



   A DOTS client may be associated with one or more DOTS servers, and
   those DOTS servers may belong to different domains.  This may be to
   ensure high availability or co-ordinate mitigation with more than one
   directly connected ISP.  An example scenario is for an enterprise to
   have DDoS mitigation service from multiple providers, as shown in
   Figure 6.



DOTS client        DOTS servers
                    +‑‑‑+
         ‑‑‑‑‑‑‑‑‑‑‑| S |
        /           +‑‑‑+
       /            dots1.example.net
      /
+‑‑‑+/              +‑‑‑+
| c |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| S |
+‑‑‑+\              +‑‑‑+
      \             dots.example.org
       \
        \           +‑‑‑+
         ‑‑‑‑‑‑‑‑‑‑‑| S |
                    +‑‑‑+
c.example.com       dots2.example.net



                     Figure 6: Multi-Homed DOTS Client



   Deploying a multi-homed client requires extra care and planning, as
   the DOTS servers with which the multi-homed client communicates may
   not be affiliated.  Should the multi-homed client simultaneously
   request for mitigation from all servers with which it has established
   signal channels, the client may unintentionally inflict additional
   network disruption on the resources it intends to protect.  In one of
   the worst cases, a multi-homed DOTS client could cause a permanent
   routing loop of traffic destined for the client's protected services,
   as the uncoordinated DOTS servers' mitigators all try to divert that
   traffic to their own scrubbing centers.



   The DOTS protocol itself provides no fool-proof method to prevent
   such self-inflicted harms as a result deploying multi-homed DOTS
   clients.  If DOTS client implementations nevertheless include support
   for multi-homing, they are expected to be aware of the risks, and
   consequently to include measures aimed at reducing the likelihood of
   negative outcomes.  Simple measures might include:



   o  Requesting mitigation serially, ensuring only one mitigation
      request for a given address space is active at any given time;



   o  Dividing the protected resources among the DOTS servers, such that
      no two mitigators will be attempting to divert and scrub the same
      traffic;



   o  Restricting multi-homing to deployments in which all DOTS servers
      are coordinating management of a shared pool of mitigation
      resources.




2.3.1. Gatewayed Signaling

   As discussed in Section 2.2.3, a DOTS gateway is a logical function
   chaining DOTS sessions through concatenation of a DOTS server and
   DOTS client.



   An example scenario, as shown in Figure 7 and Figure 8, is for an
   enterprise to have deployed multiple DOTS capable devices which are
   able to signal intra-domain using TCP [RFC0793] on un-congested links
   to a DOTS gateway which may then transform these to a UDP [RFC0768]
   transport inter-domain where connection oriented transports may
   degrade; this applies to the signal channel only, as the data channel
   requires a connection-oriented transport.  The relationship between
   the gateway and its upstream agents is opaque to the initial clients.



+‑‑‑+
| c |\
+‑‑‑+ \              +‑‑‑+
       \‑‑‑‑‑TCP‑‑‑‑‑| D |               +‑‑‑+
+‑‑‑+                | O |               |   |
| c |‑‑‑‑‑‑‑‑TCP‑‑‑‑‑| T |‑‑‑‑‑‑UDP‑‑‑‑‑‑| S |
+‑‑‑+                | S |               |   |
       /‑‑‑‑‑TCP‑‑‑‑‑| G |               +‑‑‑+
+‑‑‑+ /              +‑‑‑+
| c |/
+‑‑‑+
example.com       example.com           example.net
DOTS clients      DOTS gateway (DOTSG)  DOTS server



              Figure 7: Client-Side Gateway with Aggregation



+‑‑‑+
| c |\
+‑‑‑+ \              +‑‑‑+
       \‑‑‑‑‑TCP‑‑‑‑‑| D |‑‑‑‑‑‑UDP‑‑‑‑‑‑+‑‑‑+
+‑‑‑+                | O |               |   |
| c |‑‑‑‑‑‑‑‑TCP‑‑‑‑‑| T |‑‑‑‑‑‑UDP‑‑‑‑‑‑| S |
+‑‑‑+                | S |               |   |
       /‑‑‑‑‑TCP‑‑‑‑‑| G |‑‑‑‑‑‑UDP‑‑‑‑‑‑+‑‑‑+
+‑‑‑+ /              +‑‑‑+
| c |/
+‑‑‑+
example.com       example.com           example.net
DOTS clients      DOTS gateway (DOTSG)  DOTS server



             Figure 8: Client-Side Gateway without Aggregation



   This may similarly be deployed in the inverse scenario where the
   gateway resides in the server-side domain and may be used to
   terminate and/or aggregate multiple clients to single transport as
   shown in figures Figure 9 and Figure 10.



+‑‑‑+
| c |\
+‑‑‑+ \              +‑‑‑+
       \‑‑‑‑‑UDP‑‑‑‑‑| D |               +‑‑‑+
+‑‑‑+                | O |               |   |
| c |‑‑‑‑‑‑‑‑TCP‑‑‑‑‑| T |‑‑‑‑‑‑TCP‑‑‑‑‑‑| S |
+‑‑‑+                | S |               |   |
       /‑‑‑‑‑TCP‑‑‑‑‑| G |               +‑‑‑+
+‑‑‑+ /              +‑‑‑+
| c |/
+‑‑‑+
example.com       example.net           example.net
DOTS clients      DOTS gateway (DOTSG)  DOTS server



              Figure 9: Server-Side Gateway with Aggregation



+‑‑‑+
| c |\
+‑‑‑+ \              +‑‑‑+
       \‑‑‑‑‑UDP‑‑‑‑‑| D |‑‑‑‑‑‑TCP‑‑‑‑‑‑+‑‑‑+
+‑‑‑+                | O |               |   |
| c |‑‑‑‑‑‑‑‑TCP‑‑‑‑‑| T |‑‑‑‑‑‑TCP‑‑‑‑‑‑| S |
+‑‑‑+                | S |               |   |
       /‑‑‑‑‑UDP‑‑‑‑‑| G |‑‑‑‑‑‑TCP‑‑‑‑‑‑+‑‑‑+
+‑‑‑+ /              +‑‑‑+
| c |/
+‑‑‑+
example.com       example.net           example.net
DOTS clients      DOTS gateway (DOTSG)  DOTS server



            Figure 10: Server-Side Gateway without Aggregation



   This document anticipates scenarios involving multiple DOTS gateways.
   An example is a DOTS gateway at the network client's side, and
   another one at the server side.  The first gateway can be located at
   a CPE to aggregate requests from multiple DOTS clients enabled in an
   enterprise network.  The second DOTS gateway is deployed on the
   provider side.  This scenario can be seen as a combination of the
   client-side and server-side scenarios.




3. Concepts


3.1. DOTS Sessions

   In order for DOTS to be effective as a vehicle for DDoS mitigation
   requests, one or more DOTS clients must establish ongoing
   communication with one or more DOTS servers.  While the preconditions
   for enabling DOTS in or among network domains may also involve
   business relationships, service level agreements, or other formal or
   informal understandings between network operators, such
   considerations are out of scope for this document.



   A DOTS session is established to support bilateral exchange of data
   between an associated DOTS client and a DOTS server.  In the DOTS
   architecture, data is exchanged between DOTS agents over signal and
   data channels.  As such, a DOTS session can be a DOTS signal channel
   session, a DOTS data channel session, or both.



   A DOTS agent can maintain one or more DOTS sessions.



   A DOTS signal channel session is associated with a single transport
   connection (TCP or UDP session) and an ephemeral security association
   (a TLS or DTLS session).  Similarly, a DOTS data channel session is
   associated with a single TCP connection and an ephemeral TLS security
   association.



   Mitigation requests created using DOTS signal channel are not bound
   to the DOTS signal channel session.  Instead, mitigation requests are
   associated with a DOTS client and can be managed using different DOTS
   signal channel sessions.




3.1.1. Preconditions

   Prior to establishing a DOTS session between agents, the owners of
   the networks, domains, services or applications involved are assumed
   to have agreed upon the terms of the relationship involved.  Such
   agreements are out of scope for this document, but must be in place
   for a functional DOTS architecture.



   It is assumed that as part of any DOTS service agreement, the DOTS
   client is provided with all data and metadata required to establish
   communication with the DOTS server.  Such data and metadata would
   include any cryptographic information necessary to meet the message
   confidentiality, integrity and authenticity requirement (SEC-002) in
   [RFC8612], and might also include the pool of DOTS server addresses
   and ports the DOTS client should use for signal and data channel
   messaging.




3.1.2. Establishing the DOTS Session

   With the required business agreements in place, the DOTS client
   initiates a DOTS session by contacting its DOTS server(s) over the
   signal channel and (possibly) the data channel.  To allow for DOTS
   service flexibility, neither the order of contact nor the time
   interval between channel creations is specified.  A DOTS client MAY
   establish signal channel first, and then data channel, or vice versa.



   The methods by which a DOTS client receives the address and
   associated service details of the DOTS server are not prescribed by
   this document.  For example, a DOTS client may be directly configured
   to use a specific DOTS server IP address and port, and directly
   provided with any data necessary to satisfy the Peer Mutual
   Authentication requirement (SEC-001) in [RFC8612], such as symmetric
   or asymmetric keys, usernames and passwords, etc.  All configuration
   and authentication information in this scenario is provided out-of-
   band by the domain operating the DOTS server.



   At the other extreme, the architecture in this document allows for a
   form of DOTS client auto-provisioning.  For example, the domain
   operating the DOTS server or servers might provide the client domain
   only with symmetric or asymmetric keys to authenticate the
   provisioned DOTS clients.  Only the keys would then be directly
   configured on DOTS clients, but the remaining configuration required
   to provision the DOTS clients could be learned through mechanisms
   similar to DNS SRV [RFC2782] or DNS Service Discovery [RFC6763].



   The DOTS client SHOULD successfully authenticate and exchange
   messages with the DOTS server over both signal and (if used) data
   channel as soon as possible to confirm that both channels are
   operational.



   As described in [RFC8612] (DM-008), the DOTS client can configure
   preferred values for acceptable signal loss, mitigation lifetime, and
   heartbeat intervals when establishing the DOTS signal channel
   session.  A DOTS signal channel session is not active until DOTS
   agents have agreed on the values for these DOTS session parameters, a
   process defined by the protocol.



   Once the DOTS client begins receiving DOTS server signals, the DOTS
   session is active.  At any time during the DOTS session, the DOTS
   client may use the data channel to manage aliases, manage drop- and
   accept-listed prefixes or addresses, leverage vendor-specific
   extensions, and so on.  Note that unlike the signal channel, there is
   no requirement that the data channel remains operational in attack
   conditions (See Data Channel Requirements, Section 2.3 of [RFC8612]).




3.1.3. Maintaining the DOTS Session

   DOTS clients and servers periodically send heartbeats to each other
   over the signal channel, discussed in [RFC8612] (SIG-004).  DOTS
   agent operators SHOULD configure the heartbeat interval such that the
   frequency does not lead to accidental denials of service due to the
   overwhelming number of heartbeats a DOTS agent must field.



   Either DOTS agent may consider a DOTS signal channel session
   terminated in the extended absence of a heartbeat from its peer
   agent.  The period of that absence will be established in the
   protocol definition.




3.2. Modes of Signaling

   This section examines the modes of signaling between agents in a DOTS
   architecture.




3.2.1. Direct Signaling

   A DOTS session may take the form of direct signaling between the DOTS
   clients and servers, as shown in Figure 11.



+‑‑‑‑‑‑‑‑‑‑‑‑‑+                            +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DOTS client |<‑‑‑‑‑‑signal session‑‑‑‑‑‑>| DOTS server |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+                            +‑‑‑‑‑‑‑‑‑‑‑‑‑+



                        Figure 11: Direct Signaling



   In a direct DOTS session, the DOTS client and server are
   communicating directly.  Direct signaling may exist inter- or intra-
   domain.  The DOTS session is abstracted from the underlying networks
   or network elements the signals traverse: in direct signaling, the
   DOTS client and server are logically adjacent.




3.2.2. Redirected Signaling

   In certain circumstances, a DOTS server may want to redirect a DOTS
   client to an alternative DOTS server for a DOTS signal channel
   session.  Such circumstances include but are not limited to:



   o  Maximum number of DOTS signal channel sessions with clients has
      been reached;



   o  Mitigation capacity exhaustion in the mitigator with which the
      specific DOTS server is communicating;



   o  Mitigator outage or other downtime, such as scheduled maintenance;



   o  Scheduled DOTS server maintenance;



   o  Scheduled modifications to the network path between DOTS server
      and DOTS client.



   A basic redirected DOTS signal channel session resembles the
   following, as shown in Figure 12.



+‑‑‑‑‑‑‑‑‑‑‑‑‑+                            +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|             |<‑(1)‑‑‑ DOTS signal ‑‑‑‑‑‑>|               |
|             |      channel session 1     |               |
|             |<=(2)== redirect to B ======|               |
| DOTS client |                            | DOTS server A |
|             |X‑(4)‑‑‑ DOTS signal ‑‑‑‑‑‑X|               |
|             |      channel session 1     |               |
|             |                            |               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+                            +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
       ^
       |
      (3) DOTS signal channel
       |      session 2
       v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DOTS server B |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                      Figure 12: Redirected Signaling



   1.  Previously established DOTS signal channel session 1 exists
       between a DOTS client and DOTS server A.



   2.  DOTS server A sends a server signal redirecting the client to
       DOTS server B.



   3.  If the DOTS client does not already have a separate DOTS signal
       channel session with the redirection target, the DOTS client
       initiates and establishes DOTS signal channel session 2 with DOTS
       server B.



   4.  Having redirected the DOTS client, DOTS server A ceases sending
       server signals.  The DOTS client likewise stops sending client
       signals to DOTS server A.  DOTS signal channel session 1 is
       terminated.




3.2.3. Recursive Signaling

   DOTS is centered around improving the speed and efficiency of
   coordinated response to DDoS attacks.  One scenario not yet discussed
   involves coordination among federated domains operating DOTS servers
   and mitigators.



   In the course of normal DOTS operations, a DOTS client communicates
   the need for mitigation to a DOTS server, and that server initiates
   mitigation on a mitigator with which the server has an established
   service relationship.  The operator of the mitigator may in turn
   monitor mitigation performance and capacity, as the attack being
   mitigated may grow in severity beyond the mitigating domain's
   capabilities.



   The operator of the mitigator has limited options in the event a DOTS
   client-requested mitigation is being overwhelmed by the severity of
   the attack.  Out-of-scope business or service level agreements may
   permit the mitigating domain to drop the mitigation and let attack
   traffic flow unchecked to the target, but this only encourages attack
   escalation.  In the case where the mitigating domain is the upstream
   service provider for the attack target, this may mean the mitigating
   domain and its other services and users continue to suffer the
   incidental effects of the attack.



   A recursive signaling model as shown in Figure 13 offers an
   alternative.  In a variation of the use case "Upstream DDoS
   Mitigation by an Upstream Internet Transit Provider" described in
   [I-D.ietf-dots-use-cases], a domain operating a DOTS server and
   mitigator also operates a DOTS client.  This DOTS client has an
   established DOTS session with a DOTS server belonging to a separate
   administrative domain.



   With these preconditions in place, the operator of the mitigator
   being overwhelmed or otherwise performing inadequately may request
   mitigation for the attack target from this separate DOTS-aware
   domain.  Such a request recurses the originating mitigation request
   to the secondary DOTS server, in the hope of building a cumulative
   mitigation against the attack.



                example.net domain
                . . . . . . . . . . . . . . . . .
                .    Gn                         .
  +‑‑‑‑+    1   .  +‑‑‑‑+       +‑‑‑‑‑‑‑‑‑‑‑+   .
  | Cc |<‑‑‑‑‑‑‑‑‑>| Sn |~~~~~~~| Mitigator |   .
  +‑‑‑‑+        .  +====+       |     Mn    |   .
                .  | Cn |       +‑‑‑‑‑‑‑‑‑‑‑+   .
example.com     .  +‑‑‑‑+                       .
   client       .    ^                          .
                . . .|. . . . . . . . . . . . . .
                     |
                   2 |
                     |
                . . .|. . . . . . . . . . . . . .
                .    v                          .
                .  +‑‑‑‑+       +‑‑‑‑‑‑‑‑‑‑‑+   .
                .  | So |~~~~~~~| Mitigator |   .
                .  +‑‑‑‑+       |     Mo    |   .
                .               +‑‑‑‑‑‑‑‑‑‑‑+   .
                .                               .
                . . . . . . . . . . . . . . . . .
                example.org domain



                      Figure 13: Recursive Signaling



   In Figure 13, client Cc signals a request for mitigation across
   inter-domain DOTS session 1 to the DOTS server Sn belonging to the
   example.net domain.  DOTS server Sn enables mitigation on mitigator
   Mn.  DOTS server Sn is half of DOTS gateway Gn, being deployed
   logically back-to-back with DOTS client Cn, which has pre-existing
   inter-domain DOTS session 2 with the DOTS server So belonging to the
   example.org domain.  At any point, DOTS server Sn MAY recurse an on-
   going mitigation request through DOTS client Cn to DOTS server So, in
   the expectation that mitigator Mo will be activated to aid in the
   defense of the attack target.



   Recursive signaling is opaque to the DOTS client.  To maximize
   mitigation visibility to the DOTS client, however, the recursing
   domain SHOULD provide recursed mitigation feedback in signals
   reporting on mitigation status to the DOTS client.  For example, the
   recursing domain's mitigator should incorporate into mitigation
   status messages available metrics such as dropped packet or byte
   counts from the recursed mitigation.



   DOTS clients involved in recursive signaling must be able to withdraw
   requests for mitigation without warning or justification, per SIG-006
   in [RFC8612].



   Operators recursing mitigation requests MAY maintain the recursed
   mitigation for a brief, protocol-defined period in the event the DOTS
   client originating the mitigation withdraws its request for help, as
   per the discussion of managing mitigation toggling in SIG-006 of
   [RFC8612].



   Deployment of recursive signaling may result in traffic redirection,
   examination and mitigation extending beyond the initial bilateral
   relationship between DOTS client and DOTS server.  As such, client
   control over the network path of mitigated traffic may be reduced.
   DOTS client operators should be aware of any privacy concerns, and
   work with DOTS server operators employing recursive signaling to
   ensure shared sensitive material is suitably protected.




3.2.4. Anycast Signaling

   The DOTS architecture does not assume the availability of anycast
   within a DOTS deployment, but neither does the architecture exclude
   it.  Domains operating DOTS servers MAY deploy DOTS servers with an
   anycast Service Address as described in BCP 126 [RFC4786].  In such a
   deployment, DOTS clients connecting to the DOTS Service Address may
   be communicating with distinct DOTS servers, depending on the network
   configuration at the time the DOTS clients connect.  Among other
   benefits, anycast signaling potentially offers the following:



   o  Simplified DOTS client configuration, including service discovery
      through the methods described in [RFC7094].  In this scenario, the
      "instance discovery" message would be a DOTS client initiating a
      DOTS session to the DOTS server anycast Service Address, to which
      the DOTS server would reply with a redirection to the DOTS server
      unicast address the client should use for DOTS.



   o  Region- or customer-specific deployments, in which the DOTS
      Service Addresses route to distinct DOTS servers depending on the
      client region or the customer network in which a DOTS client
      resides.



   o  Operational resiliency, spreading DOTS signaling traffic across
      the DOTS server domain's networks, and thereby also reducing the
      potential attack surface, as described in BCP 126 [RFC4786].




3.2.4.1. Anycast Signaling Considerations

   As long as network configuration remains stable, anycast DOTS
   signaling is to the individual DOTS client indistinct from direct
   signaling.  However, the operational challenges inherent in anycast
   signaling are anything but negligible, and DOTS server operators must
   carefully weigh the risks against the benefits before deploying.
   While the DOTS signal channel primarily operates over UDP per SIG-001
   in [RFC8612], the signal channel also requires mutual authentication
   between DOTS agents, with associated security state on both ends.



   Network instability is of particular concern with anycast signaling,
   as DOTS signal channels are expected to be long-lived, and
   potentially operating under congested network conditions caused by a
   volumetric DDoS attack.



   For example, a network configuration altering the route to the DOTS
   server during active anycast signaling may cause the DOTS client to
   send messages to a DOTS server other than the one with which it
   initially established a signaling session.  That second DOTS server
   may not have the security state of the existing session, forcing the
   DOTS client to initialize a new DOTS session.  This challenge might
   in part be mitigated by use of resumption via a PSK in TLS 1.3
   [RFC8446] and DTLS 1.3 [I-D.ietf-tls-dtls13] (session resumption in
   TLS 1.2 [RFC5246] and DTLS 1.2 [RFC6347]), but keying material must
   be available to all DOTS servers sharing the anycast Service Address
   in that case.



   While the DOTS client will try to establish a new DOTS session with
   the DOTS server now acting as the anycast DOTS Service Address, the
   link between DOTS client and server may be congested with attack
   traffic, making signal session establishment difficult.  In such a
   scenario, anycast Service Address instability becomes a sort of
   signal session flapping, with obvious negative consequences for the
   DOTS deployment.



   Anycast signaling deployments similarly must also take into account
   active mitigations.  Active mitigations initiated through a DOTS
   session may involve diverting traffic to a scrubbing center.  If the
   DOTS session flaps due to anycast changes as described above,
   mitigation may also flap as the DOTS servers sharing the anycast DOTS
   service address toggles mitigation on detecting DOTS session loss,
   depending on whether the client has configured mitigation on loss of
   signal.




3.2.5. Signaling Considerations for Network Address Translation

   Network address translators (NATs) are expected to be a common
   feature of DOTS deployments.  The Middlebox Traversal Guidelines in
   [RFC8085] include general NAT considerations for DOTS deployements
   when the signal channel is established over UDP.



   Additional DOTS-specific considerations arise when NATs are part of
   the DOTS architecture.  For example, DDoS attack detection behind a
   NAT will detect attacks against internal addresses.  A DOTS client
   subsequently asked to request mitigation for the attacked scope of
   addresses cannot reasonably perform the task, due to the lack of
   externally routable addresses in the mitigation scope.



   The following considerations do not cover all possible scenarios, but
   are meant rather to highlight anticipated common issues when
   signaling through NATs.




3.2.5.1. Direct Provisioning of Internal-to-External Address Mappings

   Operators may circumvent the problem of translating internal
   addresses or prefixes to externally routable mitigation scopes by
   directly provisioning the mappings of external addresses to internal
   protected resources on the DOTS client.  When the operator requests
   mitigation scoped for internal addresses, directly or through
   automated means, the DOTS client looks up the matching external
   addresses or prefixes, and issues a mitigation request scoped to that
   externally routable information.



   When directly provisioning the address mappings, operators must
   ensure the mappings remain up to date, or risk losing the ability to
   request accurate mitigation scopes.  To that aim, the DOTS client can
   rely on mechanisms, such as [RFC8512] to retrieve static explicit
   mappings.  This document does not prescribe the method by which
   mappings are maintained once they are provisioned on the DOTS client.



3.2.5.2.  Resolving Public Mitigation Scope with Port Control Protocol
          (PCP)



   Port Control Protocol (PCP) [RFC6887] may be used to retrieve the
   external addresses/prefixes and/or port numbers if the NAT function
   embeds a PCP server.



   A DOTS client can use the information retrieved by means of PCP to
   feed the DOTS protocol(s) messages that will be sent to a DOTS
   server.  These messages will convey the external addresses/prefixes
   as set by the NAT.



   PCP also enables discovery and configuration of the lifetime of port
   mappings instantiated in intermediate NAT devices.  Discovery of port
   mapping lifetimes can reduce the dependency on heartbeat messages to
   maintain mappings, and therefore reduce the load on DOTS servers and
   the network.



3.2.5.3.  Resolving Public Mitigation Scope with Session Traversal
          Utilities (STUN)



   An internal resource, e.g., a Web server, can discover its reflexive
   transport address through a STUN Binding request/response
   transaction, as described in [RFC5389].  After learning its reflexive
   transport address from the STUN server, the internal resource can
   export its reflexive transport address and internal transport address
   to the DOTS client, thereby enabling the DOTS client to request
   mitigation with the correct external scope, as depicted in Figure 14.
   The mechanism for providing the DOTS client with the reflexive
   transport address and internal transport address is unspecified in
   this document.



   In order to prevent an attacker from modifying the STUN messages in
   transit, the STUN client and server MUST use the message-integrity
   mechanism discussed in Section 10 of [RFC5389] or use STUN over DTLS
   [RFC7350] or use STUN over TLS.  If the STUN client is behind a NAT
   that performs Endpoint-Dependent Mapping [RFC5128], the internal
   service cannot provide the DOTS client with the reflexive transport
   address discovered using STUN.  The behavior of a NAT between the
   STUN client and the STUN server could be discovered using the
   experimental techniques discussed in [RFC5780], but note that there
   is currently no standardized way for a STUN client to reliably
   determine if it is behind a NAT that performs Endpoint-Dependent
   Mapping.



            Binding         Binding
+‑‑‑‑‑‑‑‑+  request  +‑‑‑+  request  +‑‑‑‑‑‑‑‑+
|  STUN  |<‑‑‑‑‑‑‑‑‑‑| N |<‑‑‑‑‑‑‑‑‑‑|  STUN  |
| server |           | A |           | client |
|        |‑‑‑‑‑‑‑‑‑‑>| T |‑‑‑‑‑‑‑‑‑‑>|        |
+‑‑‑‑‑‑‑‑+  Binding  +‑‑‑+  Binding  +‑‑‑‑‑‑‑‑+
            response        response    |
                                        | reflexive transport address
                                        | & internal transport address
                                        v
                                     +‑‑‑‑‑‑‑‑+
                                     |  DOTS  |
                                     | client |
                                     +‑‑‑‑‑‑‑‑+



              Figure 14: Resolving mitigation scope with STUN




3.2.5.4. Resolving Requested Mitigation Scope with DNS

   DOTS supports mitigation scoped to DNS names.  As discussed in
   [RFC3235], using DNS names instead of IP addresses potentially avoids
   the address translation problem, as long as the name is internally
   and externally resolvable by the same name.  For example, a detected
   attack's internal target address can be mapped to a DNS name through
   a reverse lookup.  The DNS name returned by the reverse lookup can
   then be provided to the DOTS client as the external scope for
   mitigation.  For the reverse DNS lookup, DNS Security Extensions
   (DNSSEC) [RFC4033] must be used where the authenticity of response is
   critical.




3.3. Triggering Requests for Mitigation

   [RFC8612] places no limitation on the circumstances in which a DOTS
   client operator may request mitigation, nor does it demand
   justification for any mitigation request, thereby reserving
   operational control over DDoS defense for the domain requesting
   mitigation.  This architecture likewise does not prescribe the
   network conditions and mechanisms triggering a mitigation request
   from a DOTS client.



   However, considering selected possible mitigation triggers from an
   architectural perspective offers a model for alternative or
   unanticipated triggers for DOTS deployments.  In all cases, what
   network conditions merit a mitigation request are at the discretion
   of the DOTS client operator.



   The mitigation request itself is defined by DOTS, however the
   interfaces required to trigger the mitigation request in the
   following scenarios are implementation-specific.




3.3.1. Manual Mitigation Request

   A DOTS client operator may manually prepare a request for mitigation,
   including scope and duration, and manually instruct the DOTS client
   to send the mitigation request to the DOTS server.  In context, a
   manual request is a request directly issued by the operator without
   automated decision-making performed by a device interacting with the
   DOTS client.  Modes of manual mitigation requests include an operator
   entering a command into a text interface, or directly interacting
   with a graphical interface to send the request.



   An operator might do this, for example, in response to notice of an
   attack delivered by attack detection equipment or software, and the
   alerting detector lacks interfaces or is not configured to use
   available interfaces to translate the alert to a mitigation request
   automatically.



   In a variation of the above scenario, the operator may have
   preconfigured on the DOTS client mitigation requests for various
   resources in the operator's domain.  When notified of an attack, the
   DOTS client operator manually instructs the DOTS client to send the
   relevant preconfigured mitigation request for the resources under
   attack.



   A further variant involves recursive signaling, as described in
   Section 3.2.3.  The DOTS client in this case is the second half of a
   DOTS gateway (back-to-back DOTS server and client).  As in the
   previous scenario, the scope and duration of the mitigation request
   are pre-existing, but in this case are derived from the mitigation
   request received from a downstream DOTS client by the DOTS server.
   Assuming the preconditions required by Section 3.2.3 are in place,
   the DOTS gateway operator may at any time manually request mitigation
   from an upstream DOTS server, sending a mitigation request derived
   from the downstream DOTS client's request.



   The motivations for a DOTS client operator to request mitigation
   manually are not prescribed by this architecture, but are expected to
   include some of the following:



   o  Notice of an attack delivered via e-mail or alternative messaging



   o  Notice of an attack delivered via phone call



   o  Notice of an attack delivered through the interface(s) of
      networking monitoring software deployed in the operator's domain



   o  Manual monitoring of network behavior through network monitoring
      software




3.3.2. Automated Conditional Mitigation Request

   Unlike manual mitigation requests, which depend entirely on the DOTS
   client operator's capacity to react with speed and accuracy to every
   detected or detectable attack, mitigation requests triggered by
   detected attack conditions reduce the operational burden on the DOTS
   client operator, and minimize the latency between attack detection
   and the start of mitigation.



   Mitigation requests are triggered in this scenario by operator-
   specified network conditions.  Attack detection is deployment-
   specific, and not constrained by this architecture.  Similarly the
   specifics of a condition are left to the discretion of the operator,
   though common conditions meriting mitigation include the following:



   o  Detected attack exceeding a rate in packets per second (pps).



   o  Detected attack exceeding a rate in bytes per second (bps).



   o  Detected resource exhaustion in an attack target.



   o  Detected resource exhaustion in the local domain's mitigator.



   o  Number of open connections to an attack target.



   o  Number of attack sources in a given attack.



   o  Number of active attacks against targets in the operator's domain.



   o  Conditional detection developed through arbitrary statistical
      analysis or deep learning techniques.



   o  Any combination of the above.



   When automated conditional mitigation requests are enabled,
   violations of any of the above conditions, or any additional
   operator-defined conditions, will trigger a mitigation request from
   the DOTS client to the DOTS server.  The interfaces between the
   application detecting the condition violation and the DOTS client are
   implementation-specific.




3.3.3. Automated Mitigation on Loss of Signal

   To maintain a DOTS signal channel session, the DOTS client and the
   DOTS server exchange regular but infrequent messages across the
   signal channel.  In the absence of an attack, the probability of
   message loss in the signaling channel should be extremely low.  Under
   attack conditions, however, some signal loss may be anticipated as
   attack traffic congests the link, depending on the attack type.



   While [RFC8612] specifies the DOTS protocol be robust when signaling
   under attack conditions, there are nevertheless scenarios in which
   the DOTS signal is lost in spite of protocol best efforts.  To handle
   such scenarios, a DOTS operator may request one or more mitigations
   which are triggered only when the DOTS server ceases receiving DOTS
   client heartbeats beyond the miss count or interval permitted by the
   protocol.



   The impact of mitigating due to loss of signal in either direction
   must be considered carefully before enabling it.  Signal loss is not
   caused by links congested with attack traffic alone, and as such
   mitigation requests triggered by signal channel degradation in either
   direction may incur unnecessary costs, in network performance and
   operational expense alike.




4. IANA Considerations

   This document has no actions for IANA.




5. Security Considerations

   This section describes identified security considerations for the
   DOTS architecture.



   DOTS is at risk from three primary attack vectors: agent
   impersonation, traffic injection and signal blocking.  These vectors
   may be exploited individually or in concert by an attacker to
   confuse, disable, take information from, or otherwise inhibit DOTS
   agents.



   Any attacker with the ability to impersonate a legitimate DOTS client
   or server or, indeed, inject false messages into the stream may
   potentially trigger/withdraw traffic redirection, trigger/cancel
   mitigation activities or subvert drop-/accept-lists.  From an
   architectural standpoint, operators SHOULD ensure best current
   practices for secure communication are observed for data and signal
   channel confidentiality, integrity and authenticity.  Care must be
   taken to ensure transmission is protected by appropriately secure
   means, reducing attack surface by exposing only the minimal required
   services or interfaces.  Similarly, received data at rest SHOULD be
   stored with a satisfactory degree of security.



   As many mitigation systems employ diversion to scrub attack traffic,
   operators of DOTS agents SHOULD ensure DOTS sessions are resistant to
   Man-in-the-Middle (MitM) attacks.  An attacker with control of a DOTS
   client may negatively influence network traffic by requesting and
   withdrawing requests for mitigation for particular prefixes, leading
   to route or DNS flapping.



   Any attack targeting the availability of DOTS servers may disrupt the
   ability of the system to receive and process DOTS signals resulting
   in failure to fulfill a mitigation request.  DOTS agents SHOULD be
   given adequate protections, again in accordance with best current
   practices for network and host security.




6. Contributors

   Mohamed Boucadair

      Orange



      mohamed.boucadair@orange.com



Christopher Gray  Christopher_Gray3@cable.comcast.com




7. Acknowledgments

   Thanks to Matt Richardson, Roman Danyliw, Frank Xialiang, Roland
   Dobbins, Wei Pan, Kaname Nishizuka, Jon Shallow, and Mohamed
   Boucadair for their comments and suggestions.




8. References


8.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




8.2. Informative References


   [I-D.ietf-dots-use-cases]

              Dobbins, R., Migault, D., Fouant, S., Moskowitz, R.,
              Teague, N., Xia, L., and K. Nishizuka, "Use cases for DDoS
              Open Threat Signaling", draft-ietf-dots-use-cases-17 (work
              in progress), January 2019.




   [I-D.ietf-tls-dtls13]

              Rescorla, E., Tschofenig, H., and N. Modadugu, "The
              Datagram Transport Layer Security (DTLS) Protocol Version
              1.3", draft-ietf-tls-dtls13-31 (work in progress), March
              2019.




   [RFC0768]
  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              DOI 10.17487/RFC0768, August 1980,
              <https://www.rfc-editor.org/info/rfc768>.




   [RFC0793]
  Postel, J., "Transmission Control Protocol", STD 7,
              RFC 793, DOI 10.17487/RFC0793, September 1981,
              <https://www.rfc-editor.org/info/rfc793>.




   [RFC1035]
  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <https://www.rfc-editor.org/info/rfc1035>.




   [RFC2782]
  Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
              specifying the location of services (DNS SRV)", RFC 2782,
              DOI 10.17487/RFC2782, February 2000,
              <https://www.rfc-editor.org/info/rfc2782>.




   [RFC3235]
  Senie, D., "Network Address Translator (NAT)-Friendly
              Application Design Guidelines", RFC 3235,
              DOI 10.17487/RFC3235, January 2002,
              <https://www.rfc-editor.org/info/rfc3235>.




   [RFC3261]
  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC3261, June 2002,
              <https://www.rfc-editor.org/info/rfc3261>.




   [RFC4033]
  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "DNS Security Introduction and Requirements",
              RFC 4033, DOI 10.17487/RFC4033, March 2005,
              <https://www.rfc-editor.org/info/rfc4033>.




   [RFC4271]
  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <https://www.rfc-editor.org/info/rfc4271>.




   [RFC4732]
  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
              DOI 10.17487/RFC4732, December 2006,
              <https://www.rfc-editor.org/info/rfc4732>.




   [RFC4786]
  Abley, J. and K. Lindqvist, "Operation of Anycast
              Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,
              December 2006, <https://www.rfc-editor.org/info/rfc4786>.




   [RFC5128]
  Srisuresh, P., Ford, B., and D. Kegel, "State of Peer-to-
              Peer (P2P) Communication across Network Address
              Translators (NATs)", RFC 5128, DOI 10.17487/RFC5128, March
              2008, <https://www.rfc-editor.org/info/rfc5128>.




   [RFC5246]
  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <https://www.rfc-editor.org/info/rfc5246>.




   [RFC5389]
  Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
              "Session Traversal Utilities for NAT (STUN)", RFC 5389,
              DOI 10.17487/RFC5389, October 2008,
              <https://www.rfc-editor.org/info/rfc5389>.




   [RFC5780]
  MacDonald, D. and B. Lowekamp, "NAT Behavior Discovery
              Using Session Traversal Utilities for NAT (STUN)",
              RFC 5780, DOI 10.17487/RFC5780, May 2010,
              <https://www.rfc-editor.org/info/rfc5780>.




   [RFC6347]
  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.




   [RFC6763]
  Cheshire, S. and M. Krochmal, "DNS-Based Service
              Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
              <https://www.rfc-editor.org/info/rfc6763>.




   [RFC6887]
  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
              P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
              DOI 10.17487/RFC6887, April 2013,
              <https://www.rfc-editor.org/info/rfc6887>.




   [RFC7092]
  Kaplan, H. and V. Pascual, "A Taxonomy of Session
              Initiation Protocol (SIP) Back-to-Back User Agents",
              RFC 7092, DOI 10.17487/RFC7092, December 2013,
              <https://www.rfc-editor.org/info/rfc7092>.




   [RFC7094]
  McPherson, D., Oran, D., Thaler, D., and E. Osterweil,
              "Architectural Considerations of IP Anycast", RFC 7094,
              DOI 10.17487/RFC7094, January 2014,
              <https://www.rfc-editor.org/info/rfc7094>.




   [RFC7350]
  Petit-Huguenin, M. and G. Salgueiro, "Datagram Transport
              Layer Security (DTLS) as Transport for Session Traversal
              Utilities for NAT (STUN)", RFC 7350, DOI 10.17487/RFC7350,
              August 2014, <https://www.rfc-editor.org/info/rfc7350>.




   [RFC8085]
  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
              Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
              March 2017, <https://www.rfc-editor.org/info/rfc8085>.




   [RFC8446]
  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.




   [RFC8512]
  Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,
              Vinapamula, S., and Q. Wu, "A YANG Module for Network
              Address Translation (NAT) and Network Prefix Translation
              (NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,
              <https://www.rfc-editor.org/info/rfc8512>.




   [RFC8612]
  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
              Threat Signaling (DOTS) Requirements", RFC 8612,
              DOI 10.17487/RFC8612, May 2019,
              <https://www.rfc-editor.org/info/rfc8612>.



Authors' Addresses



Andrew Mortensen (editor)
Forcepoint
United States



   EMail: andrewmortensen@gmail.com




Tirumaleswar Reddy (editor)
McAfee, Inc.
Embassy Golf Link Business Park
Bangalore, Karnataka  560071
India



   EMail: kondtir@gmail.com




Flemming Andreasen
Cisco
United States



   EMail: fandreas@cisco.com




Nik Teague
Iron Mountain
United States



   EMail: nteague@ironmountain.co.uk



Rich Compton
Charter



   EMail: Rich.Compton@charter.com


















































draft-ietf-dots-data-channel-31 - Distributed Denial-of-Service Open Threat Signaling (DOTS) Data Channel Specification 






draft-ietf-dots-data-channel-31 - Distributed Denial-of-Service Open Threat Sign

Index
Prev
Next
Forward 5


DOTS

Internet-Draft

Intended status: Standards Track

Expires: January 23, 2020




M. Boucadair, Ed.

Orange

T. Reddy, Ed.

McAfee

July 22, 2019

Distributed Denial-of-Service Open Threat Signaling (DOTS) Data Channel Specification  

draft-ietf-dots-data-channel-31


Abstract

   The document specifies a Distributed Denial-of-Service Open Threat
   Signaling (DOTS) data channel used for bulk exchange of data that
   cannot easily or appropriately communicated through the DOTS signal
   channel under attack conditions.



   This is a companion document to the DOTS signal channel
   specification.



Editorial Note (To be removed by RFC Editor)



   Please update these statements within the document with the RFC
   number to be assigned to this document:



   o  "This version of this YANG module is part of RFC XXXX;"



   o  "RFC XXXX: Distributed Denial-of-Service Open Threat Signaling
      (DOTS) Data Channel Specification";



   o  reference: RFC XXXX



   Please update the "revision" date of the YANG module.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on January 23, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  DOTS Data Channel
	 3.1.  Design Overview


	 3.2.  DOTS Server(s) Discovery


	 3.3.  DOTS Gateways


	 3.4.  Detect and Prevent Infinite Loops


	 3.5.  Stale Entries



	4.  DOTS Data Channel YANG Module
	 4.1.  Generic Tree Structure


	 4.2.  Filtering Fields


	 4.3.  YANG Module



	5.  Managing DOTS Clients
	 5.1.  Registering DOTS Clients


	 5.2.  Unregistering DOTS Clients



	6.  Managing DOTS Aliases
	 6.1.  Create Aliases


	 6.2.  Retrieve Installed Aliases


	 6.3.  Delete Aliases



	7.  Managing DOTS Filtering Rules
	 7.1.  Retrieve DOTS Filtering Capabilities


	 7.2.  Install Filtering Rules


	 7.3.  Retrieve Installed Filtering Rules


	 7.4.  Remove Filtering Rules



	8.  Operational Considerations


	9.  IANA Considerations


	10. Security Considerations


	11. Contributing Authors


	12. Contributors


	13. Acknowledgements


	14. References
	 14.1.  Normative References


	 14.2.  Informative References



	Appendix A.  Sample Examples: Filtering Fragments


	Appendix B.  Sample Examples: Filtering TCP Messages
	 B.1.  Discard TCP Null Attack


	 B.2.  Rate-Limit SYN Flooding


	 B.3.  Rate-Limit ACK Flooding



	Authors' Addresses




1. Introduction

   A distributed denial-of-service (DDoS) attack is an attempt to make
   machines or network resources unavailable to their intended users.
   In most cases, sufficient scale can be achieved by compromising
   enough end-hosts and using those infected hosts to perpetrate and
   amplify the attack.  The victim of such attack can be an application
   server, a router, a firewall, an entire network, etc.



   As discussed in [RFC8612], the lack of a common method to coordinate
   a real-time response among involved actors and network domains
   inhibits the speed and effectiveness of DDoS attack mitigation.  From
   that standpoint, DDoS Open Threat Signaling (DOTS) defines an
   architecture that allows a DOTS client to send requests to a DOTS
   server for DDoS attack mitigation [I-D.ietf-dots-architecture].  The
   DOTS approach is thus meant to minimize the impact of DDoS attacks,
   thereby contributing to the enforcement of more efficient defensive
   if not proactive security strategies.  To that aim, DOTS defines two
   channels: the signal and the data channels (Figure 1).



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+                                 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|               | <‑‑‑‑‑‑‑ Signal Channel ‑‑‑‑‑‑> |               |
|  DOTS Client  |                                 |  DOTS Server  |
|               | <=======  Data Channel  ======> |               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+                                 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



                          Figure 1: DOTS Channels



   The DOTS signal channel is used to carry information about a device
   or a network (or a part thereof) that is under a DDoS attack.  Such
   information is sent by a DOTS client to an upstream DOTS server so
   that appropriate mitigation actions are undertaken on traffic deemed
   suspicious.  The DOTS signal channel is further elaborated in
   [I-D.ietf-dots-signal-channel].



   As for the DOTS data channel, it is used for infrequent bulk data
   exchange between DOTS agents to significantly improve the
   coordination of all the parties involved in the response to the
   attack.  Section 2 of [I-D.ietf-dots-architecture] mentions that the
   DOTS data channel is used to perform the following tasks:



   o  Creating aliases for resources for which mitigation may be
      requested.



      A DOTS client may submit to its DOTS server a collection of
      prefixes which it would like to refer to by an alias when
      requesting mitigation.  The DOTS server can respond to this
      request with either a success or failure response (see Section 2
      in [I-D.ietf-dots-architecture]).



      Refer to Section 6 for more details.



   o  Policy management, which enables a DOTS client to request the
      installation or withdrawal of traffic filters, dropping or rate-
      limiting unwanted traffic, and permitting accept-listed traffic.
      A DOTS client is entitled to instruct filtering rules only on IP
      resources that belong to its domain.



      Sample use cases for populating drop- or accept-list filtering
      rules are detailed hereafter:



      *  If a network resource (DOTS client) is informed about a
         potential DDoS attack from a set of IP addresses, the DOTS
         client informs its servicing DOTS gateway of all suspect IP
         addresses that need to be drop-listed for further
         investigation.  The DOTS client could also specify a list of
         protocols and port numbers in the drop-list rule.



         The DOTS gateway then propagates the drop-listed IP addresses
         to a DOTS server which will undertake appropriate actions so
         that traffic originated by these IP addresses to the target
         network (specified by the DOTS client) is blocked.



      *  A network, that has partner sites from which only legitimate
         traffic arrives, may want to ensure that the traffic from these
         sites is not subjected to DDoS attack mitigation.  The DOTS
         client uses the DOTS data channel to convey the accept-listed
         IP prefixes of the partner sites to its DOTS server.



         The DOTS server uses this information to accept-list flows
         originated by such IP prefixes and which reach the network.



      Refer to Section 7 for more details.




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119] [RFC8174] when, and only when, they appear in all capitals,
   as shown here.



   The reader should be familiar with the terms defined in [RFC8612].



   The terminology for describing YANG modules is defined in [RFC7950].
   The meaning of the symbols in the tree diagrams is defined in
   [RFC8340].



   This document generalizes the notion of Access Control List (ACL) so
   that it is not device-specific [RFC8519].  As such, this document
   defines an ACL as an ordered set of rules that is used to filter
   traffic.  Each rule is represented by an Access Control Entry (ACE).
   ACLs communicated via the DOTS data channel are not bound to a device
   interface.



   For the sake of simplicity, all of the examples in this document use
   "/restconf" as the discovered RESTCONF API root path.  Many protocol
   header lines and message-body text within examples throughout the
   document are split into multiple lines for display purposes only.
   When a line ends with backslash ('\') as the last character, the line
   is wrapped for display purposes.  It is to be considered to be joined
   to the next line by deleting the backslash, the following line break,
   and the leading whitespace of the next line.




3. DOTS Data Channel


3.1. Design Overview

   Unlike the DOTS signal channel, which must remain operational even
   when confronted with signal degradation due to packets loss, the DOTS
   data channel is not expected to be fully operational at all times,
   especially when a DDoS attack is underway.  The requirements for a
   DOTS data channel protocol are documented in [RFC8612].



   This specification does not require an order of DOTS signal and data
   channel creations nor mandates a time interval between them.  These
   considerations are implementation- and deployment-specific.



   As the primary function of the data channel is data exchange, a
   reliable transport mode is required in order for DOTS agents to
   detect data delivery success or failure.  This document uses RESTCONF
   [RFC8040] over TLS over TCP as the DOTS data channel protocol.  The
   abstract layering of DOTS data channel is shown in Figure 2.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DOTS Data Channel |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|      RESTCONF     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|        TLS        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|        TCP        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|        IP         |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



             Figure 2: Abstract Layering of DOTS Data Channel



   The HTTP POST, PUT, PATCH, and DELETE methods are used to edit data
   resources represented by DOTS data channel YANG modules.  These basic
   edit operations allow the DOTS data channel running configuration to
   be altered by a DOTS client.  Rules for generating and processing
   RESTCONF methods are defined in Section 4 of [RFC8040].



   DOTS data channel configuration information as well as state
   information can be retrieved with the GET method.  An HTTP status-
   line is returned for each request to report success or failure for
   RESTCONF operations (Section 5.4 of [RFC8040]).  The "error-tag"
   provides more information about encountered errors (Section 7 of
   [RFC8040]).



   DOTS clients perform the root resource discovery procedure discussed
   in Section 3.1 of [RFC8040] to determine the root of the RESTCONF
   API.  After discovering the RESTCONF API root, a DOTS client uses
   this value as the initial part of the path in the request URI in any
   subsequent request to the DOTS server.  The DOTS server may support
   the retrieval of the YANG modules it supports (Section 3.7 in
   [RFC8040]).  For example, a DOTS client may use RESTCONF to retrieve
   the vendor-specific YANG modules supported by its DOTS server.



   JavaScript Object Notation (JSON) [RFC8259] payloads are used to
   propagate the DOTS data-channel-specific payload messages that carry
   request parameters and response information, such as errors.  This
   specification uses the encoding rules defined in [RFC7951] for
   representing DOTS data channel configuration data using YANG
   (Section 4) as JSON text.



   A DOTS client registers itself to its DOTS server(s) in order to set
   up DOTS data channel-related configuration data and receive state



data (i.e., non‑configuration data) from the DOTS server(s)
(Section 5).  Mutual authentication considerations are specified in
Section 8 of [I‑D.ietf‑dots‑signal‑channel].  The coupling of signal
and data channels is discussed in Section 4.4.1 of
[I‑D.ietf‑dots‑signal‑channel].



   A DOTS client can either maintain a persistent connection or periodic
   connections with its DOTS server(s).  If the DOTS client needs to
   frequently update the drop-list or accept-list filtering rules or
   aliases, it maintains a persistent connection with the DOTS server.
   For example, CAPTCHA and cryptographic puzzles can be used by the
   mitigation service in the DOTS client domain to determine whether the
   IP address is used for legitimate purpose or not, and the DOTS client
   can frequently update the drop-list filtering rules.  A persistent
   connection is also useful if the DOTS client subscribes to event
   notifications (Section 6.3 of [RFC8040]).  Additional considerations
   related to RESTCONF connection management (including, configuring the
   connection type or the reconnect strategy) can be found in
   [I-D.ietf-netconf-restconf-client-server].



   A single DOTS data channel between DOTS agents can be used to
   exchange multiple requests and multiple responses.  To reduce DOTS
   client and DOTS server workload, DOTS clients SHOULD re-use the same
   TLS session.  While the communication to the DOTS server is
   quiescent, the DOTS client MAY probe the server to ensure it has
   maintained cryptographic state.  Such probes can also keep alive
   firewall and/or NAT bindings.  A TLS heartbeat [RFC6520] verifies
   that the DOTS server still has TLS state by returning a TLS message.



   A DOTS server may detect conflicting filtering requests from distinct
   DOTS clients which belong to the same domain.  For example, a DOTS
   client could request to drop-list a prefix by specifying the source
   prefix, while another DOTS client could request to accept-list that
   same source prefix, but both having the same destination prefix.
   DOTS servers SHOULD support a configuration parameter to indicate the
   behavior to follow when a conflict is detected (e.g., reject all,
   reject the new request, notify an administrator for validation).
   Section 7.2 specifies a default behavior when no instruction is
   supplied to a DOTS server.



   How a DOTS client synchronizes its configuration with the one
   maintained by its DOTS server(s) is implementation-specific.  For
   example:



   o  a DOTS client can systematically send a GET message before and/or
      after a configuration change request.



   o  a DOTS client can re-establish the disconnected DOTS session after
      an attack is mitigated and sends a GET message before a
      configuration change request.



   NAT considerations for the DOTS data channel are similar to those
   discussed in Section 3 of [I-D.ietf-dots-signal-channel].



   How filtering rules that are instantiated on a DOTS server are
   translated into network configurations actions is out of scope of
   this specification.



   Some of the fields introduced in Section 4 are also discussed in
   Sections 5, 6, and 7.  These sections are authoritative for these
   fields.




3.2. DOTS Server(s) Discovery

   This document assumes that DOTS clients are provisioned with a way to
   know how to reach their DOTS server(s), which could occur by a
   variety of means (e.g., local configuration, or dynamic means such as
   DHCP [I-D.ietf-dots-server-discovery]).  The specification of such
   means are out of scope of this document.



   Likewise, it is out of scope of this document to specify the behavior
   to be followed by a DOTS client to send DOTS requests when multiple
   DOTS servers are provisioned (e.g., contact all DOTS servers, select
   one DOTS server among the list).




3.3. DOTS Gateways

   When a server-domain DOTS gateway is involved in DOTS data channel
   exchanges, the same considerations for manipulating the 'cdid'
   (client domain identifier) parameter specified in
   [I-D.ietf-dots-signal-channel] MUST be followed by DOTS agents.  As a
   reminder, 'cdid' is meant to assist the DOTS server to enforce some
   policies (e.g., limit the number of filtering rules per DOTS client
   or per DOTS client domain).  A loop detect mechanism for DOTS
   gateways is specified in Section 3.4.



   If a DOTS gateway is involved, the DOTS gateway verifies that the
   DOTS client is authorized to undertake a data channel action (e.g.,
   instantiate filtering rules).  If the DOTS client is authorized, it
   propagates the rules to the upstream DOTS server.  Likewise, the DOTS
   server verifies that the DOTS gateway is authorized to relay data
   channel actions.  For example, to create or purge filters, a DOTS
   client sends its request to its DOTS gateway.  The DOTS gateway
   validates the rules in the request and proxies the requests
   containing the filtering rules to its DOTS server.  When the DOTS
   gateway receives the associated response from the DOTS server, it
   propagates the response back to the DOTS client.




3.4. Detect and Prevent Infinite Loops

   In order to detect and prevent infinite loops, DOTS gateways MUST
   support the procedure defined in Section 5.7.1 of [RFC7230].  In
   particular, each intermediate DOTS gateway MUST check that none of
   its own information (e.g., server names, literal IP addresses) is
   present in the "Via" header field of a DOTS message it receives:



   o  If it detects that its own information is present in the "Via"
      header field, the DOTS gateway MUST NOT forward the DOTS message.
      Messages that cannot be forwarded because of a loop SHOULD be
      logged with a "508 Loop Detected" status-line returned sent back
      to the DOTS peer.  The structure of the reported error is depicted
      in Figure 3.





error‑app‑tag:  loop‑detected
error‑tag:      operation‑failed
error‑type:     transport, application
error‑info:     <via‑header> : A copy of the Via header field when
                the loop was detected.
Description:    An infinite loop has been detected when forwarding
                a requests via a proxy.



                       Figure 3: Loop Detected Error



      It is RECOMMENDED that DOTS clients and gateways support methods
      to alert administrators about loop errors so that appropriate
      actions are undertaken.



   o  Otherwise, the DOTS agent MUST update or insert the "Via" header
      by appending its own information.



   Unless configured otherwise, DOTS gateways at the boundaries of a
   DOTS client domain SHOULD remove the previous "Via" header field
   information after checking for a loop before forwarding.  This
   behavior is required for topology hiding purposes but can also serve
   to minimize potential conflicts that may arise if overlapping
   information is used in distinct DOTS domains (e.g., private IPv4
   addresses, non globally unique aliases).




3.5. Stale Entries

   In order to avoid stale entries, a lifetime is associated with alias
   and filtering entries created by DOTS clients.  Also, DOTS servers
   may track the inactivity timeout of DOTS clients to detect stale
   entries.




4. DOTS Data Channel YANG Module


4.1. Generic Tree Structure

   The DOTS data channel YANG module (ietf-dots-data-channel) provides a
   method for DOTS clients to manage aliases for resources for which
   mitigation may be requested.  Such aliases may be used in subsequent
   DOTS signal channel exchanges to refer more efficiently to the
   resources under attack.



   Note that the full module's tree has been split across several
   figures to aid the exposition of the various sub-trees.



   The tree structure for the DOTS alias is depicted in Figure 4.



module: ietf‑dots‑data‑channel
    +‑‑rw dots‑data
       +‑‑rw dots‑client* [cuid]
       |  +‑‑rw cuid            string
       |  +‑‑rw cdid?           string
       |  +‑‑rw aliases
       |  |  +‑‑rw alias* [name]
       |  |     +‑‑rw name                 string
       |  |     +‑‑rw target‑prefix*       inet:ip‑prefix
       |  |     +‑‑rw target‑port‑range* [lower‑port]
       |  |     |  +‑‑rw lower‑port    inet:port‑number
       |  |     |  +‑‑rw upper‑port?   inet:port‑number
       |  |     +‑‑rw target‑protocol*     uint8
       |  |     +‑‑rw target‑fqdn*         inet:domain‑name
       |  |     +‑‑rw target‑uri*          inet:uri
       |  |     +‑‑ro pending‑lifetime?    int32
       |  +‑‑rw acls
       |     ...
       +‑‑ro capabilities
          ...



                       Figure 4: DOTS Alias Subtree



   Also, the 'ietf-dots-data-channel' module provides a method for DOTS
   clients to manage filtering rules.  Examples of filtering management
   in a DOTS context include, but not limited to:



   o  Drop-list management, which enables a DOTS client to inform a DOTS
      server about sources from which traffic should be discarded.



   o  Accept-list management, which enables a DOTS client to inform a
      DOTS server about sources from which traffic should always be
      accepted.



   o  Policy management, which enables a DOTS client to request the
      installation or withdrawal of traffic filters, dropping or rate-
      limiting unwanted traffic and permitting accept-listed traffic.



   The tree structure for the DOTS filtering entries is depicted in
   Figure 5.



   Investigations into the prospect of augmenting 'ietf-access-control-
   list' to meet DOTS requirements concluded that such a design approach
   did not support many of the DOTS requirements, e.g.,



   o  Retrieve a filtering entry (or all entries) created by a DOTS
      client.



   o  Delete a filtering entry that was instantiated by a DOTS client.



   Accordingly, new DOTS filtering entries (i.e., Access Control List
   (ACL)) are defined that mimic the structure specified in [RFC8519].
   Concretely, DOTS agents are assumed to manipulate an ordered list of
   ACLs; each ACL contains a separately ordered list of Access Control
   Entries (ACEs).  Each ACE has a group of match and a group of action
   criteria.



   Once all the ACE entries have been iterated though with no match,
   then all the following ACL's ACE entries are iterated through until
   the first match at which point the specified action is applied.  If
   there is no match during 'idle' time (i.e., no mitigation is active),
   then there is no further action to be taken against the packet.  If
   there is no match during active mitigation, then the packet will
   still be scrubbed by the DDoS mitigator.



module: ietf‑dots‑data‑channel
    +‑‑rw dots‑data
       +‑‑rw dots‑client* [cuid]
       |  +‑‑rw cuid            string
       |  +‑‑rw cdid?           string
       |  +‑‑rw aliases
       |  |  ...
       |  +‑‑rw acls
       |     +‑‑rw acl* [name]
       |        +‑‑rw name                string
       |        +‑‑rw type?               ietf‑acl:acl‑type
       |        +‑‑rw activation‑type?    activation‑type
       |        +‑‑ro pending‑lifetime?   int32
       |        +‑‑rw aces
       |           +‑‑rw ace* [name]
       |              +‑‑rw name          string
       |              +‑‑rw matches
       |              |  +‑‑rw (l3)?
       |              |  |  +‑‑:(ipv4)
       |              |  |  |  ...
       |              |  |  +‑‑:(ipv6)
       |              |  |     ...
       |              |  +‑‑rw (l4)?
       |              |     +‑‑:(tcp)
       |              |     |  ...
       |              |     +‑‑:(udp)
       |              |     |  ...
       |              |     +‑‑:(icmp)
       |              |        ...
       |              +‑‑rw actions
       |              |  +‑‑rw forwarding    identityref
       |              |  +‑‑rw rate‑limit?   decimal64
       |              +‑‑ro statistics
       |                 +‑‑ro matched‑packets?   yang:counter64
       |                 +‑‑ro matched‑octets?    yang:counter64
       +‑‑ro capabilities
          ...



                        Figure 5: DOTS ACLs Subtree



   Filtering rules instructed by a DOTS client assumes a default
   direction: the destination is the DOTS client domain.



   DOTS forwarding actions can be 'accept' (i.e., accept matching
   traffic) or 'drop' (i.e., drop matching traffic without sending any
   ICMP error message).  Accepted traffic can be subject to rate-
   limiting 'rate-limit'.  Note that 'reject' action (i.e., drop
   matching traffic and send an ICMP error message to the source) is not
   supported in 'ietf-dots-data-channel' because it is not appropriate
   in the context of DDoS mitigation.  Generating ICMP messages to
   notify drops when mitigating a DDoS attack will exacerbate the DDoS
   attack.  Furthermore, these ICMP messages will be used by an attacker
   as an explicit signal that the traffic is being blocked.




4.2. Filtering Fields

   The 'ietf-dots-data-channel' module reuses the packet fields module
   'ietf-packet-fields' [RFC8519] which defines matching on fields in
   the packet including IPv4, IPv6, and transport layer fields.  The
   'ietf-dots-data-channel' module can be augmented, for example, to
   support additional protocol-specific matching fields.



   This specification defines a new IPv4/IPv6 matching field called
   'fragment' to efficiently handle fragment-related filtering rules.
   Indeed, [RFC8519] does not support such capability for IPv6 but
   offers a partial support for IPv4 by means of 'flags'.  Nevertheless,
   the use of 'flags' is problematic since it does not allow to define a
   bitmask.  For example, setting other bits not covered by the 'flags'
   filtering clause in a packet will allow that packet to get through
   (because it won't match the ACE).  Sample examples to illustrate how
   'fragment' can be used are provided in Appendix A.



   Figure 6 shows the IPv4 match subtree.



module: ietf‑dots‑data‑channel
  +‑‑rw dots‑data
     +‑‑rw dots‑client* [cuid]
     |  ...
     |  +‑‑rw acls
     |     +‑‑rw acl* [name]
     |        ...
     |        +‑‑rw aces
     |           +‑‑rw ace* [name]
     |              +‑‑rw name          string
     |              +‑‑rw matches
     |              |  +‑‑rw (l3)?
     |              |  |  +‑‑:(ipv4)
     |              |  |  |  +‑‑rw ipv4
     |              |  |  |     +‑‑rw dscp?                  inet:dscp
     |              |  |  |     +‑‑rw ecn?                   uint8
     |              |  |  |     +‑‑rw length?                uint16
     |              |  |  |     +‑‑rw ttl?                   uint8
     |              |  |  |     +‑‑rw protocol?              uint8
     |              |  |  |     +‑‑rw ihl?                   uint8
     |              |  |  |     +‑‑rw flags?                 bits
     |              |  |  |     +‑‑rw offset?                uint16
     |              |  |  |     +‑‑rw identification?        uint16
     |              |  |  |     +‑‑rw (destination‑network)?
     |              |  |  |     |  +‑‑:(destination‑ipv4‑network)
     |              |  |  |     |     +‑‑rw destination‑ipv4‑network?
     |              |  |  |     |             inet:ipv4‑prefix
     |              |  |  |     +‑‑rw (source‑network)?
     |              |  |  |     |  +‑‑:(source‑ipv4‑network)
     |              |  |  |     |     +‑‑rw source‑ipv4‑network?
     |              |  |  |     |             inet:ipv4‑prefix
     |              |  |  |     +‑‑rw fragment
     |              |  |  |        +‑‑rw operator?        operator
     |              |  |  |        +‑‑rw type        fragment‑type
     |              |  |  +‑‑:(ipv6)
     |              |  |     ...
     |              |  +‑‑rw (l4)?
     |              |     ...
     |              +‑‑rw actions
     |              |  ...
     |              +‑‑ro statistics
     |                 ...
     +‑‑ro capabilities
        ...



                 Figure 6: DOTS ACLs Subtree (IPv4 Match)



   Figure 7 shows the IPv6 match subtree.



module: ietf‑dots‑data‑channel
 +‑‑rw dots‑data
    +‑‑rw dots‑client* [cuid]
    |  ...
    |  +‑‑rw acls
    |     +‑‑rw acl* [name]
    |        ...
    |        +‑‑rw aces
    |           +‑‑rw ace* [name]
    |              +‑‑rw name          string
    |              +‑‑rw matches
    |              |  +‑‑rw (l3)?
    |              |  |  +‑‑:(ipv4)
    |              |  |  |  ...
    |              |  |  +‑‑:(ipv6)
    |              |  |     +‑‑rw ipv6
    |              |  |        +‑‑rw dscp?                  inet:dscp
    |              |  |        +‑‑rw ecn?                   uint8
    |              |  |        +‑‑rw length?                uint16
    |              |  |        +‑‑rw ttl?                   uint8
    |              |  |        +‑‑rw protocol?              uint8
    |              |  |        +‑‑rw (destination‑network)?
    |              |  |        |  +‑‑:(destination‑ipv6‑network)
    |              |  |        |     +‑‑rw destination‑ipv6‑network?
    |              |  |        |             inet:ipv6‑prefix
    |              |  |        +‑‑rw (source‑network)?
    |              |  |        |  +‑‑:(source‑ipv6‑network)
    |              |  |        |     +‑‑rw source‑ipv6‑network?
    |              |  |        |             inet:ipv6‑prefix
    |              |  |        +‑‑rw flow‑label?
    |              |  |        |       inet:ipv6‑flow‑label
    |              |  |        +‑‑rw fragment
    |              |  |           +‑‑rw operator?       operator
    |              |  |           +‑‑rw type       fragment‑type
    |              |  +‑‑rw (l4)?
    |              |     ...
    |              +‑‑rw actions
    |              |  ...
    |              +‑‑ro statistics
    |                 ...
    +‑‑ro capabilities
       ...



                 Figure 7: DOTS ACLs Subtree (IPv6 Match)



   Figure 8 shows the TCP match subtree.  In addition to the fields
   defined in [RFC8519], this specification defines a new TCP matching
   field, called 'flags-bitmask', to efficiently handle TCP flags
   filtering rules.  Some examples are provided in Appendix B.



module: ietf‑dots‑data‑channel
+‑‑rw dots‑data
   +‑rw dots‑client* [cuid]
   | ...
   | +‑rw acls
   |   +‑rw acl* [name]
   |    ...
   |     +‑rw aces
   |       +‑rw ace* [name]
   |         +‑rw name          string
   |           +‑rw matches
   |           | +‑rw (l3)?
   |           | | ...
   |           | +‑rw (l4)?
   |           |   +‑:(tcp)
   |           |   | +‑rw tcp
   |           |   |   +‑‑rw sequence‑number?          uint32
   |           |   |   +‑‑rw acknowledgement‑number?   uint32
   |           |   |   +‑‑rw data‑offset?              uint8
   |           |   |   +‑‑rw reserved?                 uint8
   |           |   |   +‑‑rw flags?                    bits
   |           |   |   +‑‑rw window‑size?              uint16
   |           |   |   +‑‑rw urgent‑pointer?           uint16
   |           |   |   +‑‑rw options?                  binary
   |           |   |   +‑‑rw flags‑bitmask
   |           |   |   |  +‑‑rw operator?            operator
   |           |   |   |  +‑‑rw bitmask                uint16
   |           |   |   +‑‑rw (source‑port)?
   |           |   |   |  +‑‑:(source‑port‑range‑or‑operator)
   |           |   |   |     +‑‑rw source‑port‑range‑or‑operator
   |           |   |   |        +‑‑rw (port‑range‑or‑operator)?
   |           |   |   |           +‑‑:(range)
   |           |   |   |           |  +‑‑rw lower‑port
   |           |   |   |           |  |       inet:port‑number
   |           |   |   |           |  +‑‑rw upper‑port
   |           |   |   |           |          inet:port‑number
   |           |   |   |           +‑‑:(operator)
   |           |   |   |              +‑‑rw operator?
   |           |   |   |              |       operator
   |           |   |   |              +‑‑rw port
   |           |   |   |                      inet:port‑number
   |           |   |   +‑‑rw (destination‑port)?
   |           |   |      +‑‑:(destination‑port‑range‑or‑operator)
   |           |   |         +‑‑rw destination‑port‑range‑or‑operator
   |           |   |            +‑‑rw (port‑range‑or‑operator)?

   |           |   |               +‑‑:(range)
   |           |   |               |  +‑‑rw lower‑port
   |           |   |               |  |       inet:port‑number
   |           |   |               |  +‑‑rw upper‑port
   |           |   |               |          inet:port‑number
   |           |   |               +‑‑:(operator)
   |           |   |                  +‑‑rw operator?
   |           |   |                  |       operator
   |           |   |                  +‑‑rw port
   |           |   |                          inet:port‑number
   |           |   +‑:(udp)
   |           |   | ...
   |           |   +‑:(icmp)
   |           |     ...
   |           +‑rw actions
   |           | ...
   |           +‑ro statistics
   |             ...
   +‑ro capabilities
     ...



                  Figure 8: DOTS ACLs Subtree (TCP Match)



   Figure 9 shows the UDP and ICMP match subtrees.  The same structure
   is used for both ICMP and ICMPv6.  The indication whether an ACL is
   about ICMP or ICMPv6 is governed by the 'l3' match or the ACL type.



module: ietf‑dots‑data‑channel
 +‑rw dots‑data
   +‑rw dots‑client* [cuid]
   | ...
   | +‑rw acls
   |   +‑rw acl* [name]
   |     ...
   |     +‑rw aces
   |       +‑rw ace* [name]
   |         +‑‑rw name          string
   |         +‑‑rw matches
   |         |  +‑‑rw (l3)?
   |         |  |  ...
   |         |  +‑‑rw (l4)?
   |         |     +‑‑:(tcp)
   |         |     |  ...
   |         |     +‑‑:(udp)
   |         |     |  +‑‑rw udp
   |         |     |     +‑‑rw length?          uint16
   |         |     |     +‑‑rw (source‑port)?
   |         |     |     |  +‑‑:(source‑port‑range‑or‑operator)

   |         |     |     |     +‑‑rw source‑port‑range‑or‑operator
   |         |     |     |        +‑‑rw (port‑range‑or‑operator)?
   |         |     |     |           +‑‑:(range)
   |         |     |     |           |  +‑‑rw lower‑port
   |         |     |     |           |  |       inet:port‑number
   |         |     |     |           |  +‑‑rw upper‑port
   |         |     |     |           |          inet:port‑number
   |         |     |     |           +‑‑:(operator)
   |         |     |     |              +‑‑rw operator?
   |         |     |     |              |       operator
   |         |     |     |              +‑‑rw port
   |         |     |     |                      inet:port‑number
   |         |     |     +‑‑rw (destination‑port)?
   |         |     |        +‑‑:(destination‑port‑range‑or‑operator)
   |         |     |           +‑‑rw destination‑port‑range‑or‑operator
   |         |     |              +‑‑rw (port‑range‑or‑operator)?
   |         |     |                 +‑‑:(range)
   |         |     |                 |  +‑‑rw lower‑port
   |         |     |                 |  |       inet:port‑number
   |         |     |                 |  +‑‑rw upper‑port
   |         |     |                 |          inet:port‑number
   |         |     |                 +‑‑:(operator)
   |         |     |                    +‑‑rw operator?
   |         |     |                    |       operator
   |         |     |                    +‑‑rw port
   |         |     |                            inet:port‑number
   |         |     +‑‑:(icmp)
   |         |        +‑‑rw icmp
   |         |           +‑‑rw type?             uint8
   |         |           +‑‑rw code?             uint8
   |         |           +‑‑rw rest‑of‑header?   binary
   |         +‑‑rw actions
   |         |  ...
   |         +‑‑ro statistics
   |            ...
   +‑ro capabilities
     ...



             Figure 9: DOTS ACLs Subtree (UDP and ICMP Match)



   DOTS implementations MUST support the following matching criteria:



      match based on the IP header (IPv4 and IPv6), match based on the
      transport header (TCP, UDP, and ICMP), and any combination
      thereof.  The same matching fields are used for both ICMP and
      ICMPv6.



   The following match fields MUST be supported by DOTS implementations
   (Table 1):



ACL     Mandatory Fields
Match
‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
ipv4    length, protocol, destination‑ipv4‑network, source‑
        ipv4‑network, and fragment
ipv6    length, protocol, destination‑ipv6‑network, source‑
        ipv6‑network, and fragment
tcp     flags‑bitmask, source‑port‑range‑or‑operator, and
        destination‑port‑range‑or‑operator
udp     length, source‑port‑range‑or‑operator, and destination‑port‑
        range‑or‑operator
icmp    type and code



               Table 1: Mandatory DOTS Channel Match Fields



   Implementations MAY support other filtering match fields and actions.
   The 'ietf-dots-data-channel' provides a method for an implementation
   to expose its filtering capabilities.  The tree structure of the
   'capabilities' is shown in Figure 10.  DOTS clients that support both
   'fragment' and 'flags' (or 'flags-bitmask' and 'flags') matching
   fields MUST NOT set these fields in the same request.



module: ietf‑dots‑data‑channel
    +‑‑rw dots‑data
       ...
       +‑‑ro capabilities
          +‑‑ro address‑family*        enumeration
          +‑‑ro forwarding‑actions*    identityref
          +‑‑ro rate‑limit?            boolean
          +‑‑ro transport‑protocols*   uint8
          +‑‑ro ipv4
          |  +‑‑ro dscp?                 boolean
          |  +‑‑ro ecn?                  boolean
          |  +‑‑ro length?               boolean
          |  +‑‑ro ttl?                  boolean
          |  +‑‑ro protocol?             boolean
          |  +‑‑ro ihl?                  boolean
          |  +‑‑ro flags?                boolean
          |  +‑‑ro offset?               boolean
          |  +‑‑ro identification?       boolean
          |  +‑‑ro source‑prefix?        boolean
          |  +‑‑ro destination‑prefix?   boolean
          |  +‑‑ro fragment?             boolean
          +‑‑ro ipv6
          |  +‑‑ro dscp?                 boolean

          |  +‑‑ro ecn?                  boolean
          |  +‑‑ro length?               boolean
          |  +‑‑ro hoplimit?             boolean
          |  +‑‑ro protocol?             boolean
          |  +‑‑ro destination‑prefix?   boolean
          |  +‑‑ro source‑prefix?        boolean
          |  +‑‑ro flow‑label?           boolean
          |  +‑‑ro fragment?             boolean
          +‑‑ro tcp
          |  +‑‑ro sequence‑number?          boolean
          |  +‑‑ro acknowledgement‑number?   boolean
          |  +‑‑ro data‑offset?              boolean
          |  +‑‑ro reserved?                 boolean
          |  +‑‑ro flags?                    boolean
          |  +‑‑ro window‑size?              boolean
          |  +‑‑ro urgent‑pointer?           boolean
          |  +‑‑ro options?                  boolean
          |  +‑‑ro flags‑bitmask?            boolean
          |  +‑‑ro source‑port?              boolean
          |  +‑‑ro destination‑port?         boolean
          |  +‑‑ro port‑range?               boolean
          +‑‑ro udp
          |  +‑‑ro length?             boolean
          |  +‑‑ro source‑port?        boolean
          |  +‑‑ro destination‑port?   boolean
          |  +‑‑ro port‑range?         boolean
          +‑‑ro icmp
             +‑‑ro type?             boolean
             +‑‑ro code?             boolean
             +‑‑ro rest‑of‑header?   boolean



                 Figure 10: Filtering Capabilities Subtree




4.3. YANG Module

   This module uses the common YANG types defined in [RFC6991] and types
   defined in [RFC8519].



<CODE BEGINS> file "ietf‑dots‑data‑channel@2019‑05‑09.yang"
module ietf‑dots‑data‑channel {
  yang‑version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf‑dots‑data‑channel";
  prefix data‑channel;

  import ietf‑inet‑types {
    prefix inet;
    reference "Section 4 of RFC 6991";
  }

  import ietf‑access‑control‑list {
    prefix ietf‑acl;
    reference
      "RFC 8519: YANG Data Model for Network Access
                 Control Lists (ACLs)";
  }
  import ietf‑packet‑fields {
    prefix packet‑fields;
    reference
      "RFC 8519: YANG Data Model for Network Access
                 Control Lists (ACLs)";
  }

  organization
    "IETF DDoS Open Threat Signaling (DOTS) Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/dots/>
     WG List:  <mailto:dots@ietf.org>

     Editor:  Mohamed Boucadair
              <mailto:mohamed.boucadair@orange.com>

     Editor:  Konda, Tirumaleswar Reddy
              <mailto:TirumaleswarReddy_Konda@McAfee.com>

     Author:  Jon Shallow
              <mailto:jon.shallow@nccgroup.com>

     Author:  Kaname Nishizuka
              <mailto:kaname@nttv6.jp>

     Author:  Liang Xia
              <mailto:frank.xialiang@huawei.com>

     Author:  Prashanth Patil
              <mailto:praspati@cisco.com>

     Author:  Andrew Mortensen
              <mailto:amortensen@arbor.net>

     Author:  Nik Teague
              <mailto:nteague@verisign.com>";
  description
    "This module contains YANG definition for configuring
     aliases for resources and filtering rules using DOTS
     data channel.



      Copyright (c) 2019 IETF Trust and the persons identified as



      authors of the code.  All rights reserved.



   Redistribution and use in source and binary forms, with or
   without modification, is permitted pursuant to, and subject
   to the license terms contained in, the Simplified BSD License
   set forth in Section 4.c of the IETF Trust's Legal Provisions
   Relating to IETF Documents
   (http://trustee.ietf.org/license‑info).

   This version of this YANG module is part of RFC XXXX; see
   the RFC itself for full legal notices.";

revision 2019‑05‑09 {
  description
    "Initial revision.";
  reference
    "RFC XXXX: Distributed Denial‑of‑Service Open Threat
               Signaling (DOTS) Data Channel Specification";
}

typedef activation‑type {
  type enumeration {
    enum "activate‑when‑mitigating" {
      value 1;
      description
        "The Access Control List (ACL) is installed only when
         a mitigation is active for the DOTS client.";
    }
    enum "immediate" {
      value 2;
      description
        "The ACL is immediately activated.";
    }
    enum "deactivate" {
      value 3;
      description
        "The ACL is maintained by the DOTS server, but it is
         deactivated.";
    }
  }
  description
    "Indicates the activation type of an ACL.";
}

typedef operator {
  type bits {
    bit not {
      position 0;

      description
        "If set, logical negation of operation.";
    }
    bit match {
      position 1;
      description
        "Match bit. This is a bitwise match operation
         defined as '(data & value) == value'.";
    }
    bit any {
      position 3;
      description
        "Any bit. This is a match on any of the bits in
         bitmask. It evaluates to 'true' if any of the bits
         in the value mask are set in the data,
         i.e., '(data & value) != 0'.";
    }
  }
  description
    "Specifies how to apply the defined bitmask.";
}

grouping tcp‑flags {
  leaf operator {
    type operator;
    default "match";
    description
      "Specifies how to interpret the TCP flags.";
  }
  leaf bitmask {
    type uint16;
    mandatory true;
    description
      "The bitmask matches the last 4 bits of byte 12
       and byte 13 of the TCP header. For clarity, the 4 bits
       of byte 12 corresponding to the TCP data offset field
       are not included in any matching.";
  }
  description
    "Operations on TCP flags.";
}

typedef fragment‑type {
  type bits {
    bit df {
      position 0;
      description
        "Don't fragment bit for IPv4.

         Must be set to 0 when it appears in an IPv6 filter.";
    }
    bit isf {
      position 1;
      description
        "Is a fragment.";
    }
    bit ff {
      position 2;
      description
        "First fragment.";
    }
    bit lf {
      position 3;
      description
        "Last fragment.";
    }
  }
  description
    "Different fragment types to match against.";
}

grouping target {
  description
    "Specifies the targets of the mitigation request.";
  leaf‑list target‑prefix {
    type inet:ip‑prefix;
    description
      "IPv4 or IPv6 prefix identifying the target.";
  }
  list target‑port‑range {
    key "lower‑port";
    description
      "Port range. When only lower‑port is
       present, it represents a single port number.";
    leaf lower‑port {
      type inet:port‑number;
      mandatory true;
      description
        "Lower port number of the port range.";
    }
    leaf upper‑port {
      type inet:port‑number;
      must '. >= ../lower‑port' {
        error‑message
          "The upper port number must be greater than
           or equal to the lower‑port number.";
      }

      description
        "Upper port number of the port range.";
    }
  }
  leaf‑list target‑protocol {
    type uint8;
    description
      "Identifies the target protocol number.



          Values are taken from the IANA protocol registry:
          https://www.iana.org/assignments/protocol-numbers/
          protocol-numbers.xhtml



       For example, 6 for TCP or 17 for UDP.";
  }
  leaf‑list target‑fqdn {
    type inet:domain‑name;
    description
      "FQDN identifying the target.";
  }
  leaf‑list target‑uri {
    type inet:uri;
    description
      "URI identifying the target.";
  }
}

grouping fragment‑fields {
  leaf operator {
    type operator;
    default "match";
    description
      "Specifies how to interpret the fragment type.";
  }
  leaf type {
    type fragment‑type;
    mandatory true;
    description
      "Indicates what fragment type to look for.";
  }
  description
    "Operations on fragment types.";
}

grouping aliases {
  description
    "Top level container for aliases.";
  list alias {

    key "name";
    description
      "List of aliases.";
    leaf name {
      type string;
      description
        "The name of the alias.";
    }
    uses target;
    leaf pending‑lifetime {
      type int32;
      units "minutes";
      config false;
      description
        "Indicates the pending validity lifetime of the alias
         entry.";
    }
  }
}

grouping ports {
  choice source‑port {
    container source‑port‑range‑or‑operator {
      uses packet‑fields:port‑range‑or‑operator;
      description
        "Source port definition.";
    }
    description
      "Choice of specifying the source port or referring to
       a group of source port numbers.";
  }
  choice destination‑port {
    container destination‑port‑range‑or‑operator {
      uses packet‑fields:port‑range‑or‑operator;
      description
        "Destination port definition.";
    }
    description
      "Choice of specifying a destination port or referring
       to a group of destination port numbers.";
  }
  description
    "Choice of specifying a source or destination port numbers.";
}

grouping access‑lists {
  description
    "Specifies the ordered set of Access Control Lists.";

  list acl {
    key "name";
    ordered‑by user;
    description
      "An ACL is an ordered list of Access Control Entries (ACE).
       Each ACE has a list of match criteria and a list of actions.";
    leaf name {
      type string {
        length "1..64";
      }
      description
        "The name of the access list.";
      reference
        "RFC 8519: YANG Data Model for Network Access
                   Control Lists (ACLs)";
    }
    leaf type {
      type ietf‑acl:acl‑type;
      description
        "Type of access control list. Indicates the primary intended
         type of match criteria (e.g., IPv4, IPv6) used in the list
         instance.";
      reference
        "RFC 8519: YANG Data Model for Network Access
                   Control Lists (ACLs)";
    }
    leaf activation‑type {
      type activation‑type;
      default "activate‑when‑mitigating";
      description
        "Indicates the activation type of an ACL. An ACL can be
         deactivated, installed immediately, or installed when
         a mitigation is active.";
    }
    leaf pending‑lifetime {
      type int32;
      units "minutes";
      config false;
      description
        "Indicates the pending validity lifetime of the ACL
         entry.";
    }
    container aces {
      description
        "The Access Control Entries container contains
         a list of ACEs.";
      list ace {
        key "name";

        ordered‑by user;
        description
          "List of access list entries.";
        leaf name {
          type string {
            length "1..64";
          }
          description
            "A unique name identifying this ACE.";
          reference
            "RFC 8519: YANG Data Model for Network Access
                       Control Lists (ACLs)";
        }
        container matches {
          description
            "The rules in this set determine what fields will be
             matched upon before any action is taken on them.



                If no matches are defined in a particular container,
                then any packet will match that container.



             If no matches are specified at all in an ACE, then any
             packet will match the ACE.";
          reference
            "RFC 8519: YANG Data Model for Network Access
                       Control Lists (ACLs)";
          choice l3 {
            container ipv4 {
              when "derived‑from(../../../../type, "
                 + "'ietf‑acl:ipv4‑acl‑type')";
              uses packet‑fields:acl‑ip‑header‑fields;
              uses packet‑fields:acl‑ipv4‑header‑fields;
              container fragment {
                description
                  "Indicates how to handle IPv4 fragments.";
                uses fragment‑fields;
              }
              description
                "Rule set that matches IPv4 header.";
            }
            container ipv6 {
              when "derived‑from(../../../../type, "
                 + "'ietf‑acl:ipv6‑acl‑type')";
              uses packet‑fields:acl‑ip‑header‑fields;
              uses packet‑fields:acl‑ipv6‑header‑fields;
              container fragment {
                description
                  "Indicates how to handle IPv6 fragments.";

                uses fragment‑fields;
              }
              description
                "Rule set that matches IPv6 header.";
            }
            description
              "Either IPv4 or IPv6.";
          }
          choice l4 {
            container tcp {
              uses packet‑fields:acl‑tcp‑header‑fields;
              container flags‑bitmask {
                description
                  "Indicates how to handle TCP flags.";
                uses tcp‑flags;
              }
              uses ports;
              description
                "Rule set that matches TCP header.";
            }
            container udp {
              uses packet‑fields:acl‑udp‑header‑fields;
              uses ports;
              description
                "Rule set that matches UDP header.";
            }
            container icmp {
              uses packet‑fields:acl‑icmp‑header‑fields;
              description
                "Rule set that matches ICMP/ICMPv6 header.";
            }
            description
              "Can be TCP, UDP, or ICMP/ICMPv6";
          }
        }
        container actions {
          description
            "Definitions of action for this ACE.";
          leaf forwarding {
            type identityref {
              base ietf‑acl:forwarding‑action;
            }
            mandatory true;
            description
              "Specifies the forwarding action per ACE.";
            reference
              "RFC 8519: YANG Data Model for Network Access
                         Control Lists (ACLs)";

          }
          leaf rate‑limit {
            when "../forwarding = 'ietf‑acl:accept'" {
              description
                "Rate‑limit is valid only when accept action is
                 used.";
            }
            type decimal64 {
              fraction‑digits 2;
            }
            units "bytes per second";
            description
              "Specifies how to rate‑limit the traffic.";
          }
        }
        container statistics {
          config false;
          description
            "Aggregate statistics.";
          uses ietf‑acl:acl‑counters;
        }
      }
    }
  }
}

container dots‑data {
  description
    "Main container for DOTS data channel.";
  list dots‑client {
    key "cuid";
    description
      "List of DOTS clients.";
    leaf cuid {
      type string;
      description
        "A unique identifier that is generated by a DOTS client
         to prevent request collisions.";
      reference
        "RFC YYYY: Distributed Denial‑of‑Service Open Threat
                Signaling (DOTS) Signal Channel Specification";
    }
    leaf cdid {
      type string;
      description
        "A client domain identifier conveyed by a
         server‑domain DOTS gateway to a remote DOTS server.";
      reference

        "RFC YYYY: Distributed Denial‑of‑Service Open Threat
                Signaling (DOTS) Signal Channel Specification";
    }
    container aliases {
      description
        "Set of aliases that are bound to a DOTS client.";
      uses aliases;
    }
    container acls {
      description
        "Access lists that are bound to a DOTS client.";
      uses access‑lists;
    }
  }
  container capabilities {
    config false;
    description
      "Match capabilities";
    leaf‑list address‑family {
      type enumeration {
        enum "ipv4" {
          description
            "IPv4 is supported.";
        }
        enum "ipv6" {
          description
            "IPv6 is supported.";
        }
      }
      description
        "Indicates the IP address families supported by
         the DOTS server.";
    }
    leaf‑list forwarding‑actions {
      type identityref {
        base ietf‑acl:forwarding‑action;
      }
      description
        "Supported forwarding action(s).";
    }
    leaf rate‑limit {
      type boolean;
      description
        "Support of rate‑limit action.";
    }
    leaf‑list transport‑protocols {
      type uint8;
      description



           "Upper-layer protocol associated with a filtering rule.



            Values are taken from the IANA protocol registry:
            https://www.iana.org/assignments/protocol-numbers/
            protocol-numbers.xhtml



           For example, this field contains 1 for ICMP, 6 for TCP
           17 for UDP, or 58 for ICMPv6.";
      }
      container ipv4 {
        description
          "Indicates IPv4 header fields that are supported to enforce
           ACLs.";
        leaf dscp {
          type boolean;
          description
            "Support of filtering based on Differentiated Services Code
             Point (DSCP).";
        }
        leaf ecn {
          type boolean;
          description
            "Support of filtering based on Explicit Congestion
             Notification (ECN).";
        }
        leaf length {
          type boolean;
          description
            "Support of filtering based on the Total Length.";
        }
        leaf ttl {
          type boolean;
          description
            "Support of filtering based on the Time to Live (TTL).";
        }
        leaf protocol {
          type boolean;
          description
            "Support of filtering based on protocol field.";
        }
        leaf ihl {
          type boolean;
          description
            "Support of filtering based on the Internet Header
             Length (IHL).";
        }
        leaf flags {
          type boolean;

          description
            "Support of filtering based on the 'flags'.";
        }
        leaf offset {
          type boolean;
          description
            "Support of filtering based on the 'offset'.";
        }
        leaf identification {
          type boolean;
          description
            "Support of filtering based on the 'identification'.";
        }
        leaf source‑prefix {
          type boolean;
          description
            "Support of filtering based on the source prefix.";
        }
        leaf destination‑prefix {
          type boolean;
          description
            "Support of filtering based on the destination prefix.";
        }
        leaf fragment {
          type boolean;
          description
            "Indicates the capability of a DOTS server to
             enforce filters on IPv4 fragments. That is, the match
             functionality based on the Layer 3 'fragment' clause
             is supported.";
        }
      }
      container ipv6 {
        description
          "Indicates IPv6 header fields that are supported to enforce
           ACLs.";
        leaf dscp {
          type boolean;
          description
            "Support of filtering based on DSCP.";
        }
        leaf ecn {
          type boolean;
          description
            "Support of filtering based on ECN.";
        }
        leaf length {
          type boolean;

          description
            "Support of filtering based on the Payload Length.";
        }
        leaf hoplimit {
          type boolean;
          description
            "Support of filtering based on the Hop Limit.";
        }
        leaf protocol {
          type boolean;
          description
            "Support of filtering based on the Next Header field.";
        }
        leaf destination‑prefix {
          type boolean;
          description
            "Support of filtering based on the destination prefix.";
        }
        leaf source‑prefix {
          type boolean;
          description
            "Support of filtering based on the source prefix.";
        }
        leaf flow‑label {
          type boolean;
          description
            "Support of filtering based on the Flow label.";
        }
        leaf fragment {
          type boolean;
          description
            "Indicates the capability of a DOTS server to
             enforce filters on IPv6 fragments.";
        }
      }
      container tcp {
        description
          "Set of TCP fields that are supported by the DOTS server
           to enforce filters.";
        leaf sequence‑number {
          type boolean;
          description
            "Support of filtering based on the TCP sequence number.";
        }
        leaf acknowledgement‑number {
          type boolean;
          description
            "Support of filtering based on the TCP acknowledgement

             number.";
        }
        leaf data‑offset {
          type boolean;
          description
            "Support of filtering based on the TCP data‑offset.";
        }
        leaf reserved {
          type boolean;
          description
            "Support of filtering based on the TCP reserved field.";
        }
        leaf flags {
          type boolean;
          description
            "Support of filtering, as defined in RFC 8519, based
             on the TCP flags.";
        }
        leaf window‑size {
          type boolean;
          description
            "Support of filtering based on the TCP window size.";
        }
        leaf urgent‑pointer {
          type boolean;
          description
            "Support of filtering based on the TCP urgent pointer.";
        }
        leaf options {
          type boolean;
          description
            "Support of filtering based on the TCP options.";
        }
        leaf flags‑bitmask {
          type boolean;
          description
            "Support of filtering based on the TCP flags bitmask.";
        }
        leaf source‑port {
          type boolean;
          description
            "Support of filtering based on the source port number.";
        }
        leaf destination‑port {
          type boolean;
          description
            "Support of filtering based on the destination port
             number.";

        }
        leaf port‑range {
          type boolean;
          description
            "Support of filtering based on a port range.

             This includes filtering based on a source port range,
             destination port range, or both. All operators
             (i.e, less than or equal to, greater than or equal to,
             equal to, and not equal to) are supported.";
        }
      }
      container udp {
        description
          "Set of UDP fields that are supported by the DOTS server
           to enforce filters.";
        leaf length {
          type boolean;
          description
            "Support of filtering based on the UDP length.";
        }
        leaf source‑port {
          type boolean;
          description
            "Support of filtering based on the source port number.";
        }
        leaf destination‑port {
          type boolean;
          description
            "Support of filtering based on the destination port
             number.";
        }
        leaf port‑range {
          type boolean;
          description
            "Support of filtering based on a port range.

             This includes filtering based on a source port range,
             destination port range, or both. All operators
             (i.e, less than or equal, greater than or equal, equal to,
             and not equal to) are supported.";
        }
      }
      container icmp {
        description
          "Set of ICMP/ICMPv6 fields that are supported by the DOTS
           server to enforce filters.";
        leaf type {

          type boolean;
          description
            "Support of filtering based on the ICMP/ICMPv6 type.";
        }
        leaf code {
          type boolean;
          description
            "Support of filtering based on the ICMP/ICMPv6 code.";
        }
        leaf rest‑of‑header {
          type boolean;
          description
            "Support of filtering based on the ICMP four‑bytes
             field / the ICMPv6 message body.";
        }
      }
    }
  }
}
<CODE ENDS>




5. Managing DOTS Clients


5.1. Registering DOTS Clients

   In order to make use of DOTS data channel, a DOTS client MUST
   register to its DOTS server(s) by creating a DOTS client ('dots-
   client') resource.  To that aim, DOTS clients SHOULD send a POST
   request (shown in Figure 11).



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data HTTP/1.1
Host: {host}:{port}
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:dots‑client": [
    {
      "cuid": "string"
    }
  ]
}



                    Figure 11: POST to Register Schema



   The 'cuid' (client unique identifier) parameter is described below:



cuid:  A globally unique identifier that is meant to prevent
   collisions among DOTS clients.  This attribute has the same



      meaning, syntax, and processing rules as the 'cuid' attribute
      defined in [I-D.ietf-dots-signal-channel].



      DOTS clients MUST use the same 'cuid' for both signal and data
      channels.



      This is a mandatory attribute.



   In deployments where server-domain DOTS gateways are enabled,
   identity information about the origin source client domain SHOULD be
   supplied to the DOTS server.  That information is meant to assist the
   DOTS server to enforce some policies.  These policies can be enforced
   per-client, per-client domain, or both.  Figure 12 shows a schema
   example of a request relayed by a server-domain DOTS gateway.



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data HTTP/1.1
Host: {host}:{port}
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:dots‑client": [
    {
      "cuid": "string",
      "cdid": "string"
    }
  ]
}



   Figure 12: POST to Register Schema (via a Server-Domain DOTS Gateway)



   A server-domain DOTS gateway SHOULD add the following attribute:



cdid:  This attribute has the same meaning, syntax, and processing
   rules as the 'cdid' attribute defined in
   [I‑D.ietf‑dots‑signal‑channel].



      In deployments where server-domain DOTS gateways are enabled,
      'cdid' does not need to be inserted when relaying DOTS methods to
      manage aliases (Section 6) or filtering rules (Section 7).  DOTS
      servers are responsible for maintaining the association between
      'cdid' and 'cuid' for policy enforcement purposes.



      This is an optional attribute.



   A request example to create a 'dots-client' resource is depicted in
   Figure 13.  This request is relayed by a server-domain DOTS gateway
   as hinted by the presence of the 'cdid' attribute.



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:dots‑client": [
    {
      "cuid": "dz6pHjaADkaFTbjr0JGBpw",
      "cdid": "7eeaf349529eb55ed50113"
    }
  ]
}



                Figure 13: POST to Register (DOTS gateway)



   As a reminder, DOTS gateways may rewrite the 'cuid' used by peer DOTS
   clients (Section 4.4.1 of [I-D.ietf-dots-signal-channel]).



   DOTS servers can identify the DOTS client domain using the 'cdid'
   parameter or using the client's DNS name specified in the Subject
   Alternative Name extension's dNSName type in the client certificate
   [RFC6125].



   DOTS servers MUST limit the number of 'dots-client' resources to be
   created by the same DOTS client to 1 per request.  Requests with
   multiple 'dots-client' resources MUST be rejected by DOTS servers.
   To that aim, the DOTS server MUST rely on the same procedure to
   unambiguously identify a DOTS client as discussed in Section 4.4.1 of
   [I-D.ietf-dots-signal-channel].



   The DOTS server indicates the result of processing the POST request
   using status-line codes.  Status codes in the range "2xx" codes are
   success, "4xx" codes are some sort of invalid requests and "5xx"
   codes are returned if the DOTS server has erred or is incapable of
   accepting the creation of the 'dots-client' resource.  In particular,



   o  "201 Created" status-line is returned in the response, if the DOTS
      server has accepted the request.



   o  "400 Bad Request" status-line is returned by the DOTS server, if
      the request does not include a 'cuid' parameter.  The error-tag
      "missing-attribute" is used in this case.



   o  "409 Conflict" status-line is returned to the requesting DOTS
      client, if the data resource already exists.  The error-tag
      "resource-denied" is used in this case.



   Once a DOTS client registers itself to a DOTS server, it can
   create/delete/retrieve aliases (Section 6) and filtering rules
   (Section 7).



   A DOTS client MAY use the PUT request (Section 4.5 in [RFC8040]) to
   register a DOTS client within the DOTS server.  An example is shown
   in Figure 14.



PUT /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:dots‑client": [
    {
      "cuid": "dz6pHjaADkaFTbjr0JGBpw"
    }
  ]
}



                        Figure 14: PUT to Register



   The DOTS gateway that inserted a 'cdid' in a PUT request MUST strip
   the 'cdid' parameter in the corresponding response before forwarding
   the response to the DOTS client.




5.2. Unregistering DOTS Clients

   A DOTS client de-registers from its DOTS server(s) by deleting the
   'cuid' resource(s).  Resources bound to this DOTS client will be
   deleted by the DOTS server.  An example of a de-register request is
   shown in Figure 15.



DELETE /restconf/data/ietf‑dots‑data‑channel:dots‑data\
       /dots‑client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: example.com



                   Figure 15: De-register a DOTS Client




6. Managing DOTS Aliases

The following sub‑sections define means for a DOTS client to create
aliases (Section 6.1), retrieve one or a list of aliases
(Section 6.2), and delete an alias (Section 6.3).




6.1. Create Aliases

   A POST or PUT request is used by a DOTS client to create aliases, for
   resources for which a mitigation may be requested.  Such aliases may
   be used in subsequent DOTS signal channel exchanges to refer more
   efficiently to the resources under attack.



   DOTS clients within the same domain can create different aliases for
   the same resource.



   The structure of POST requests used to create aliases is shown in
   Figure 16.



 POST /restconf/data/ietf‑dots‑data‑channel:dots‑data\
      /dots‑client=cuid HTTP/1.1
 Host: {host}:{port}
 Content‑Type: application/yang‑data+json

 {
  "ietf‑dots‑data‑channel:aliases": {
    "alias": [
      {
        "name": "string",
        "target‑prefix": [
          "string"
        ],
        "target‑port‑range": [
          {
            "lower‑port": integer,
            "upper‑port": integer
          }
        ],
        "target‑protocol": [
          integer
        ],
        "target‑fqdn": [
          "string"
        ],
        "target‑uri": [
          "string"
        ]
      }
    ]
  }
}



            Figure 16: POST to Create Aliases (Request Schema)



   The parameters are described below:



name:  Name of the alias.



      This is a mandatory attribute.



target‑prefix:   Prefixes are separated by commas.  Prefixes are
   represented using Classless Inter‑domain Routing (CIDR) notation
   [RFC4632].  As a reminder, the prefix length must be less than or
   equal to 32 (resp. 128) for IPv4 (resp.  IPv6).



      The prefix list MUST NOT include broadcast, loopback, or multicast
      addresses.  These addresses are considered as invalid values.  In
      addition, the DOTS server MUST validate that these prefixes are
      within the scope of the DOTS client domain.  Other validation
      checks may be supported by DOTS servers.



      This is an optional attribute.



target‑port‑range:   A range of port numbers.



      The port range is defined by two bounds, a lower port number
      (lower-port) and an upper port number (upper-port).  The range is
      considered to include both the lower and upper bounds.



      When only 'lower-port' is present, it represents a single port
      number.



      For TCP, UDP, Stream Control Transmission Protocol (SCTP)
      [RFC4960], or Datagram Congestion Control Protocol (DCCP)
      [RFC4340], the range of port numbers can be, for example,
      1024-65535.



      This is an optional attribute.



target‑protocol:   A list of protocols.  Values are taken from the
   IANA protocol registry [proto_numbers].



      If 'target-protocol' is not specified, then the request applies to
      any protocol.



      This is an optional attribute.



target‑fqdn:   A list of Fully Qualified Domain Names (FQDNs)
   identifying resources under attack [RFC8499].



      How a name is passed to an underlying name resolution library is
      implementation- and deployment-specific.  Nevertheless, once the
      name is resolved into one or multiple IP addresses, DOTS servers
      MUST apply the same validation checks as those for 'target-
      prefix'.



      The use of FQDNs may be suboptimal because it does not guarantee
      that the DOTS server will resolve a name to the same IP addresses
      that the DOTS client does.



      This is an optional attribute.



target‑uri:   A list of Uniform Resource Identifiers (URIs)
   [RFC3986].



      The same validation checks used for 'target-fqdn' MUST be followed
      by DOTS servers to validate a target URI.



      This is an optional attribute.



   In POST or PUT requests, at least one of the 'target-prefix',
   'target-fqdn', or 'target-uri' attributes MUST be present.  DOTS
   agents can safely ignore Vendor-Specific parameters they don't
   understand.



   If more than one 'target-*' scope types (e.g., 'target-prefix' and
   'target-fqdn' or 'target-fqdn' and 'target-uri') are included in a
   POST or PUT request, the DOTS server binds all resulting IP
   addresses/prefixes to the same resource.



   Figure 17 shows a POST request to create an alias called "https1" for
   HTTPS servers with IP addresses 2001:db8:6401::1 and 2001:db8:6401::2
   listening on TCP port number 443.



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data\
     /dots‑client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: www.example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:aliases": {
    "alias": [
      {
        "name": "https1",
        "target‑protocol": [
          6
        ],
        "target‑prefix": [
          "2001:db8:6401::1/128",
          "2001:db8:6401::2/128"
        ],
        "target‑port‑range": [
          {
            "lower‑port": 443
          }
        ]
      }
    ]
  }
}



              Figure 17: Example of a POST to Create an Alias



   "201 Created" status-line MUST be returned in the response if the
   DOTS server has accepted the alias.



   "409 Conflict" status-line MUST be returned to the requesting DOTS
   client, if the request is conflicting with an existing alias name.
   The error-tag "resource-denied" is used in this case.



   If the request is missing a mandatory attribute or it contains an
   invalid or unknown parameter, "400 Bad Request" status-line MUST be
   returned by the DOTS server.  The error-tag is set to "missing-
   attribute", "invalid-value", or "unknown-element" as a function of
   the encountered error.



   If the request is received via a server-domain DOTS gateway, but the
   DOTS server does not maintain a 'cdid' for this 'cuid' while a 'cdid'
   is expected to be supplied, the DOTS server MUST reply with "403
   Forbidden" status-line and the error-tag "access-denied".  Upon
   receipt of this message, the DOTS client MUST register (Section 5).
   A DOTS client uses the PUT request to modify the aliases in the DOTS
   server.  In particular, a DOTS client MUST update its alias entries
   upon change of the prefix indicated in the 'target-prefix'.



   A DOTS server MUST maintain an alias for at least 10080 minutes (1
   week).  If no refresh request is seen from the DOTS client, the DOTS
   server removes expired entries.




6.2. Retrieve Installed Aliases

   A GET request is used to retrieve one or all installed aliases by a
   DOTS client from a DOTS server (Section 3.3.1 in [RFC8040]).  If no
   'name' is included in the request, this is an indication that the
   request is about retrieving all aliases instantiated by the DOTS
   client.



   Figure 18 shows an example to retrieve all the aliases that were
   instantiated by the requesting DOTS client.  The "content" query
   parameter and its permitted values are defined in Section 4.8.1 of
   [RFC8040].



GET /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=dz6pHjaADkaFTbjr0JGBpw\
    /aliases?content=all HTTP/1.1
Host: example.com
Accept: application/yang‑data+json



             Figure 18: GET to Retrieve All Installed Aliases



   Figure 19 shows an example of the response message body that includes
   all the aliases that are maintained by the DOTS server for the DOTS
   client identified by the 'cuid' parameter.



{
  "ietf‑dots‑data‑channel:aliases": {
    "alias": [
      {
        "name": "Server1",
        "target‑protocol": [
          6
        ],
        "target‑prefix": [
          "2001:db8:6401::1/128",
          "2001:db8:6401::2/128"
        ],
        "target‑port‑range": [
          {
            "lower‑port": 443
          }
        ],
        "pending‑lifetime": 3596
      },
      {
        "name": "Server2",
        "target‑protocol": [
          6
        ],
        "target‑prefix": [
          "2001:db8:6401::10/128",
          "2001:db8:6401::20/128"
        ],
        "target‑port‑range": [
          {
            "lower‑port": 80
          }
        ],
        "pending‑lifetime": 9869
      }
    ]
  }
}



   Figure 19: An Example of Response Body Listing All Installed Aliases



   Figure 20 shows an example of a GET request to retrieve the alias
   "Server2" that was instantiated by the DOTS client.



GET /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=dz6pHjaADkaFTbjr0JGBpw\
    /aliases/alias=Server2?content=all HTTP/1.1
Host: example.com
Accept: application/yang‑data+json



                    Figure 20: GET to Retrieve an Alias



   If an alias name ('name') is included in the request, but the DOTS
   server does not find that alias name for this DOTS client in its
   configuration data, it MUST respond with a "404 Not Found" status-
   line.




6.3. Delete Aliases

   A DELETE request is used to delete an alias maintained by a DOTS
   server.



   If the DOTS server does not find the alias name, conveyed in the
   DELETE request, in its configuration data for this DOTS client, it
   MUST respond with a "404 Not Found" status-line.



   The DOTS server successfully acknowledges a DOTS client's request to
   remove the alias using "204 No Content" status-line in the response.



   Figure 21 shows an example of a request to delete an alias.



DELETE /restconf/data/ietf‑dots‑data‑channel:dots‑data\
       /dots‑client=dz6pHjaADkaFTbjr0JGBpw\
       /aliases/alias=Server1 HTTP/1.1
Host: example.com



                        Figure 21: Delete an Alias




7. Managing DOTS Filtering Rules

   The following sub-sections define means for a DOTS client to retrieve
   DOTS filtering capabilities (Section 7.1), create filtering rules
   (Section 7.2), retrieve active filtering rules (Section 7.3), and
   delete a filtering rule (Section 7.4).




7.1. Retrieve DOTS Filtering Capabilities

   A DOTS client MAY send a GET request to retrieve the filtering
   capabilities supported by a DOTS server.  Figure 22 shows an example
   of such request.



GET /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /capabilities HTTP/1.1
Host: example.com
Accept: application/yang‑data+json



       Figure 22: GET to Retrieve the Capabilities of a DOTS Server



   A DOTS client which issued a GET request to retrieve the filtering
   capabilities supported by its DOTS server, SHOULD NOT request for
   filtering actions that are not supported by that DOTS server.



   Figure 23 shows an example of a response body received from a DOTS
   server which supports:



   o  IPv4, IPv6, TCP, UDP, ICMP, and ICMPv6 mandatory match criteria
      listed in Section 4.2.



   o  'accept', 'drop', and 'rate-limit' actions.



 {
  "ietf‑dots‑data‑channel:capabilities": {
    "address‑family": ["ipv4", "ipv6"],
    "forwarding‑actions": ["drop", "accept"],
    "rate‑limit": true,
    "transport‑protocols": [1, 6, 17, 58],
    "ipv4": {
      "length": true,
      "protocol": true,
      "destination‑prefix": true,
      "source‑prefix": true,
      "fragment": true
    },
    "ipv6": {
      "length": true,
      "protocol": true,
      "destination‑prefix": true,
      "source‑prefix": true,
      "fragment": true
    },
    "tcp": {
      "flags‑bitmask": true,
      "source‑port": true,
      "destination‑port": true,
      "port‑range": true
    },
    "udp": {
      "length": true,
      "source‑port": true,
      "destination‑port": true,
      "port‑range": true
    },
    "icmp": {
      "type": true,
      "code": true
    }
  }
}



       Figure 23: Reply to a GET Request with Filtering Capabilities

                              (Message Body)




7.2. Install Filtering Rules

   A POST or PUT request is used by a DOTS client to communicate
   filtering rules to a DOTS server.



   Figure 24 shows a POST request example to block traffic from
   192.0.2.0/24 and destined to 198.51.100.0/24.  Other examples are
   discussed in Appendix A.



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data\
     /dots‑client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "ietf‑dots‑data‑channel:acls": {
   "acl": [
     {
       "name": "sample‑ipv4‑acl",
       "type": "ipv4‑acl‑type",
       "activation‑type": "activate‑when‑mitigating",
       "aces": {
         "ace": [
           {
             "name": "rule1",
             "matches": {
               "ipv4": {
                 "destination‑ipv4‑network": "198.51.100.0/24",
                 "source‑ipv4‑network": "192.0.2.0/24"
               }
             },
             "actions": {
               "forwarding": "drop"
             }
           }
         ]
       }
     }
   ]
 }
}



                Figure 24: POST to Install Filtering Rules



   The meaning of these parameters is as follows:



name:  The name of the access list.



      This is a mandatory attribute.



type:  Indicates the primary intended type of match criteria (e.g.,
   IPv4, IPv6).  It is set to 'ipv4‑acl‑type' in the example of
   Figure 24.



      This is an optional attribute.



activation‑type:  Indicates whether an ACL has to be activated
   (immediately or during mitigation time) or instantiated without
   being activated (deactivated).  Deactivated ACLs can be activated
   using a variety of means such as manual configuration on a DOTS
   server or using the DOTS data channel.



      If this attribute is not provided, the DOTS server MUST use
      'activate-when-mitigating' as default value.



      When a mitigation is in progress, the DOTS server MUST only
      activate 'activate-when-mitigating' filters that are bound to the
      DOTS client that triggered the mitigation.



      This is an optional attribute.



matches:  Define criteria used to identify a flow on which to apply
   the rule.  It can be "l3" (IPv4, IPv6) or "l4" (TCP, UDP, ..).
   The detailed match parameters are specified in Section 4.



      In the example depicted in Figure 24, an IPv4 matching criteria is
      used.



      This is an optional attribute.



destination‑ipv4‑network:  The destination IPv4 prefix.  DOTS servers
   MUST validate that these prefixes are within the scope of the DOTS
   client domain.  Other validation checks may be supported by DOTS
   servers.  If this attribute is not provided, the DOTS server
   enforces the ACL on any destination IP address that belong to the
   DOTS client domain.



      This is a mandatory attribute in requests with an 'activation-
      type' set to 'immediate'.



source‑ipv4‑network:  The source IPv4 prefix.



      This is an optional attribute.



actions:   Actions in the forwarding ACL category can be "drop" or
   "accept".  The "accept" action is used to accept‑list traffic.
   The "drop" action is used to drop‑list traffic.



      Accepted traffic may be subject to "rate-limit"; the allowed
      traffic rate is represented in bytes per second.  This unit is the
      same as the one used for "traffic-rate" in [RFC5575].



      This is a mandatory attribute.



   The DOTS server indicates the result of processing the POST request
   using the status-line.  Concretely, "201 Created" status-line MUST be
   returned in the response if the DOTS server has accepted the
   filtering rules.  If the request is missing a mandatory attribute or
   contains an invalid or unknown parameter (e.g., a match field not
   supported by the DOTS server), "400 Bad Request" status-line MUST be
   returned by the DOTS server in the response.  The error-tag is set to
   "missing-attribute", "invalid-value", or "unknown-element" as a
   function of the encountered error.



   If the request is received via a server-domain DOTS gateway, but the
   DOTS server does not maintain a 'cdid' for this 'cuid' while a 'cdid'
   is expected to be supplied, the DOTS server MUST reply with "403
   Forbidden" status-line and the error-tag "access-denied".  Upon
   receipt of this message, the DOTS client MUST register (Figure 11).



   If the request is conflicting with an existing filtering installed by
   another DOTS client of the domain, absent any local policy, the DOTS
   server returns "409 Conflict" status-line to the requesting DOTS
   client.  The error-tag "resource-denied" is used in this case.



   The "insert" query parameter (Section 4.8.5 of [RFC8040]) MAY be used
   to specify how an access control entry is inserted within an ACL and
   how an ACL is inserted within an ACL set.



   The DOTS client uses the PUT request to modify its filtering rules
   maintained by the DOTS server.  In particular, a DOTS client MUST
   update its filtering entries upon change of the destination-prefix.
   How such change is detected is out of scope.



   A DOTS server MUST maintain a filtering rule for at least 10080
   minutes (1 week).  If no refresh request is seen from the DOTS
   client, the DOTS server removes expired entries.  Typically, a
   refresh request is a PUT request which echoes the content of a
   response to a GET request with all of the read-only parameters
   stripped out (e.g., pending-lifetime).




7.3. Retrieve Installed Filtering Rules

   A DOTS client periodically queries its DOTS server to check the
   counters for installed filtering rules.  A GET request is used to
   retrieve filtering rules from a DOTS server.  In order to indicate
   which type of data is requested in a GET request, the DOTS client
   sets adequately the "content" query parameter.



   If the DOTS server does not find the access list name conveyed in the
   GET request in its configuration data for this DOTS client, it
   responds with a "404 Not Found" status-line.



   In order to illustrate the intended behavior, consider the example
   depicted in Figure 25.  In reference to this example, the DOTS client
   requests the creation of an immediate ACL called "test-acl-ipv6-udp".



PUT /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=paL8p4Zqo4SLv64TLPXrxA/acls\
    /acl=test‑acl‑ipv6‑udp HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [
      {
        "name": "test‑acl‑ipv6‑udp",
        "type": "ipv6‑acl‑type",
        "activation‑type": "immediate",
        "aces": {
          "ace": [
            {
              "name": "my‑test‑ace",
              "matches": {
                "ipv6": {
                  "destination‑ipv6‑network": "2001:db8:6401::2/127",
                  "source‑ipv6‑network": "2001:db8:1234::/96",
                  "protocol": 17,
                  "flow‑label": 10000
                },
                "udp": {
                  "source‑port": {
                    "operator": "lte",
                    "port": 80
                  },
                  "destination‑port": {
                    "operator": "neq",
                    "port": 1010
                  }
                }
              },
              "actions": {
                "forwarding": "accept"
              }
            }
          ]
        }
      }
    ]
  }
}



         Figure 25: Example of a PUT Request to Create a Filtering



   The peer DOTS server follows the procedure specified in Section 7.2
   to process the request.  We consider in the following that a positive
   response is sent back to the requesting DOTS client to confirm that
   the "test-acl-ipv6-udp" ACL is successfully installed by the DOTS
   server.



   The DOTS client can issue a GET request to retrieve all its filtering
   rules and the number of matches for the installed filtering rules as
   illustrated in Figure 26.  The "content" query parameter is set to
   'all'.  The message body of the response to this GET request is shown
   in Figure 27.



GET /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=dz6pHjaADkaFTbjr0JGBpw\
    /acls?content=all HTTP/1.1
Host: example.com
Accept: application/yang‑data+json



     Figure 26: Retrieve the Configuration Data and State Data for the

                       Filtering Rules (GET Request)



{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [
      {
        "name": "test‑acl‑ipv6‑udp",
        "type": "ipv6‑acl‑type",
        "activation‑type": "immediate",
        "pending‑lifetime":9080,
        "aces": {
          "ace": [
            {
              "name": "my‑test‑ace",
              "matches": {
                "ipv6": {
                  "destination‑ipv6‑network": "2001:db8:6401::2/127",
                  "source‑ipv6‑network": "2001:db8:1234::/96",
                  "protocol": 17,
                  "flow‑label": 10000
                },
                "udp": {
                  "source‑port": {
                    "operator": "lte",
                    "port": 80
                  },
                  "destination‑port": {
                    "operator": "neq",
                    "port": 1010
                  }
                }
              },
              "actions": {
                "forwarding": "accept"
              }
            }
          ]
        }
      }
    ]
  }
}



     Figure 27: Retrieve the Configuration Data and State Data for the

                  Filtering Rules (Response Message Body)



   Also, a DOTS client can issue a GET request to retrieve only
   configuration data related to an ACL as shown in Figure 28.  It does
   so by setting the "content" query parameter to 'config'.



GET /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=paL8p4Zqo4SLv64TLPXrxA/acls\
    /acl=test‑acl‑ipv6‑udp?content=config HTTP/1.1
Host: example.com
Accept: application/yang‑data+json



   Figure 28: Retrieve the Configuration Data for a Filtering Rule (GET

                                 Request)



   A response to this GET request is shown in Figure 29.



{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [
      {
        "name": "test‑acl‑ipv6‑udp",
        "type": "ipv6‑acl‑type",
        "activation‑type": "immediate",
        "aces": {
          "ace": [
            {
              "name": "my‑test‑ace",
              "matches": {
                "ipv6": {
                  "destination‑ipv6‑network": "2001:db8:6401::2/127",
                  "source‑ipv6‑network": "2001:db8:1234::/96",
                  "protocol": 17,
                  "flow‑label": 10000
                },
                "udp": {
                  "source‑port": {
                    "operator": "lte",
                    "port": 80
                  },
                  "destination‑port": {
                    "operator": "neq",
                    "port": 1010
                  }
                }
              },
              "actions": {
                "forwarding": "accept"
              }
            }
          ]
        }
      }
    ]
  }
}



      Figure 29: Retrieve the Configuration Data for a Filtering Rule

                          (Response Message Body)



   A DOTS client can also issue a GET request with a "content" query
   parameter set to 'non-config' to exclusively retrieve non-
   configuration data bound to a given ACL as shown in Figure 30.  A
   response to this GET request is shown in Figure 31.



GET /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=paL8p4Zqo4SLv64TLPXrxA/acls\
    /acl=test‑acl‑ipv6‑udp?content=non‑config HTTP/1.1
Host: example.com
Accept: application/yang‑data+json



    Figure 30: Retrieve the Non-Configuration Data for a Filtering Rule

                               (GET Request)



{
  "ietf‑dots‑data‑channel:acls":  {
    "acl": [
      {
        "name": "test‑acl‑ipv6‑udp",
        "pending‑lifetime": 8000,
        "aces": {
          "ace": [
            {
              "name": "my‑test‑ace"
            }
          ]
        }
      }
    ]
  }
}



    Figure 31: Retrieve the Non-Configuration Data for a Filtering Rule

                          (Response Message Body)




7.4. Remove Filtering Rules

   A DELETE request is used by a DOTS client to delete filtering rules
   from a DOTS server.



   If the DOTS server does not find the access list name carried in the
   DELETE request in its configuration data for this DOTS client, it
   MUST respond with a "404 Not Found" status-line.  The DOTS server
   successfully acknowledges a DOTS client's request to withdraw the
   filtering rules using "204 No Content" status-line, and removes the
   filtering rules accordingly.



   Figure 32 shows an example of a request to remove the IPv4 ACL
   "sample-ipv4-acl" created in Section 7.2.



DELETE  /restconf/data/ietf‑dots‑data‑channel:dots‑data\
        /dots‑client=dz6pHjaADkaFTbjr0JGBpw/acls\
        /acl=sample‑ipv4‑acl HTTP/1.1
Host: example.com



            Figure 32: Remove a Filtering Rule (DELETE Request)



   Figure 33 shows an example of a response received from the DOTS
   server to confirm the deletion of "sample-ipv4-acl".



HTTP/1.1 204 No Content
Server: Apache
Date: Fri, 27 Jul 2018 10:05:15 GMT
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json
Content‑Length: 0
Connection: Keep‑Alive



               Figure 33: Remove a Filtering Rule (Response)




8. Operational Considerations

   The following operational considerations should be taken into
   account:



   o  DOTS servers MUST NOT enable both DOTS data channel and direct
      configuration, to avoid race conditions and inconsistent
      configurations arising from simultaneous updates from multiple
      sources.



   o  DOTS agents SHOULD enable the DOTS data channel to configure
      aliases and ACLs, and only use direct configuration as a stop-gap
      mechanism to test DOTS signal channel with aliases and ACLs.
      Further, direct configuration SHOULD only be used when the on-path
      DOTS agents are within the same domain.



   o  If a DOTS server has enabled direct configuration, it can reject
      the DOTS data channel connection using hard ICMP error [RFC1122]
      or RST (Reset) bit in the TCP header or reject the RESTCONF
      request using an error response containing a "503 Service
      Unavailable" status-line.




9. IANA Considerations

   This document requests IANA to register the following URI in the "ns"
   subregistry within the "IETF XML Registry" [RFC3688]:



URI: urn:ietf:params:xml:ns:yang:ietf‑dots‑data‑channel
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.



   This document requests IANA to register the following YANG module in
   the "YANG Module Names" subregistry [RFC7950] within the "YANG
   Parameters" registry.



Name: ietf‑dots‑data‑channel
Namespace: urn:ietf:params:xml:ns:yang:ietf‑dots‑data‑channel
Prefix: data‑channel
Reference: RFC XXXX



   This module is not maintained by IANA.




10. Security Considerations

   RESTCONF security considerations are discussed in [RFC8040].  In
   particular, DOTS agents MUST follow the security recommendations in
   Sections 2 and 12 of [RFC8040].  Also, DOTS agents MUST support the
   mutual authentication TLS profile discussed in Sections 7.1 and 8 of
   [I-D.ietf-dots-signal-channel].



   Authenticated encryption MUST be used for data confidentiality and
   message integrity.  The interaction between the DOTS agents requires
   Transport Layer Security (TLS) with a cipher suite offering
   confidentiality protection and the guidance given in [RFC7525] MUST
   be followed to avoid attacks on TLS.



   The installation of drop- or accept-list rules using RESTCONF over
   TLS reveals the attacker IP addresses and legitimate IP addresses
   only to the DOTS server trusted by the DOTS client.  The secure
   communication channel between DOTS agents provides privacy and
   prevents a network eavesdropper from directly gaining access to the
   drop- and accept-listed IP addresses.



   An attacker may be able to inject RST packets, bogus application
   segments, etc., regardless of whether TLS authentication is used.
   Because the application data is TLS protected, this will not result
   in the application receiving bogus data, but it will constitute a DoS
   on the connection.  This attack can be countered by using TCP-AO
   [RFC5925].  If TCP-AO is used, then any bogus packets injected by an
   attacker will be rejected by the TCP-AO integrity check and therefore
   will never reach the TLS layer.



   In order to prevent leaking internal information outside a client-
   domain, client-side DOTS gateways SHOULD NOT reveal the identity of
   internal DOTS clients (e.g., source IP address, client's hostname)
   unless explicitly configured to do so.



   DOTS servers MUST verify that requesting DOTS clients are entitled to
   enforce filtering rules on a given IP prefix.  That is, only
   filtering rules on IP resources that belong to the DOTS client domain
   can be authorized by a DOTS server.  The exact mechanism for the DOTS
   servers to validate that the target prefixes are within the scope of
   the DOTS client domain is deployment-specific.



   Rate-limiting DOTS requests, including those with new 'cuid' values,
   from the same DOTS client defends against DoS attacks that would
   result from varying the 'cuid' to exhaust DOTS server resources.
   Rate-limit policies SHOULD be enforced on DOTS gateways (if deployed)
   and DOTS servers.



   Applying resources quota per DOTS client and/or per DOTS client
   domain (e.g., limit the number of aliases and filters to be installed
   by DOTS clients) prevents DOTS server resources to be aggressively
   used by some DOTS clients and ensures, therefore, DDoS mitigation
   usage fairness.  Additionally, DOTS servers may limit the number of
   DOTS clients that can be enabled per domain.



   When FQDNs are used as targets, the DOTS server MUST rely upon DNS
   privacy enabling protocols (e.g., DNS over TLS [RFC7858] or DoH
   [RFC8484]) to prevent eavesdroppers from possibly identifying the
   target resources protected by the DDoS mitigation service, and means
   to ensure the target FQDN resolution is authentic (e.g., DNSSEC
   [RFC4034]).



   The presence of DOTS gateways may lead to infinite forwarding loops,
   which is undesirable.  To prevent and detect such loops, a mechanism
   is defined in Section 3.4.



   All data nodes defined in the YANG module which can be created,
   modified, and deleted (i.e., config true, which is the default) are
   considered sensitive.  Write operations applied to these data nodes
   without proper protection can negatively affect network operations.
   This module reuses YANG structures from [RFC8519], and the security
   considerations for those nodes continue to apply for this usage.
   Appropriate security measures are recommended to prevent illegitimate
   users from invoking DOTS data channel primitives.  Nevertheless, an
   attacker who can access a DOTS client is technically capable of
   launching various attacks, such as:



   o  Setting an arbitrarily low rate-limit, which may prevent
      legitimate traffic from being forwarded (rate-limit).



   o  Setting an arbitrarily high rate-limit, which may lead to the
      forwarding of illegitimate DDoS traffic (rate-limit).



   o  Communicating invalid aliases to the server (alias), which will
      cause the failure of associating both data and signal channels.



   o  Setting invalid ACL entries, which may prevent legitimate traffic
      from being forwarded.  Likewise, invalid ACL entries may lead to
      forward DDoS traffic.




11. Contributing Authors

   The following individuals co-authored this document:



Kaname Nishizuka
NTT Communications
GranPark 16F 3‑4‑1 Shibaura, Minato‑ku
Tokyo  108‑8118
Japan



      Email: kaname@nttv6.jp




Liang Xia
Huawei
101 Software Avenue, Yuhuatai District
Nanjing, Jiangsu  210012
China



      Email: frank.xialiang@huawei.com




Prashanth Patil
Cisco Systems, Inc.



      Email: praspati@cisco.com




Andrew Mortensen
Arbor Networks, Inc.
2727 S. State St
Ann Arbor, MI  48104
United States



      Email: andrew.mortensen@netscout.com




Nik Teague
Iron Mountain Data Centers
United Kingdom



      Email: nteague@ironmountain.co.uk




12. Contributors

   The following individuals have contributed to this document:



   o  Dan Wing, Email: dwing-ietf@fuggles.com



   o  Jon Shallow, NCC Group, Email: jon.shallow@nccgroup.com




13. Acknowledgements

   Thanks to Christian Jacquenet, Roland Dobbins, Roman Danyliw, Ehud
   Doron, Russ White, Gilbert Clark, Kathleen Moriarty, Nesredien
   Suleiman, Roni Even, and Brian Trammel for the discussion and
   comments.



   The authors would like to give special thanks to Kaname Nishizuka and
   Jon Shallow for their efforts in implementing the protocol and
   performing interop testing at IETF Hackathons.



   Many thanks to Ben Kaduk for the detailed AD review.



   Thanks to Martin Bjorklund for the guidance on RESTCONF.



   Thanks to Alexey Melnikov, Adam Roach, Suresh Krishnan, Mirja
   Kuehlewind, and Warren Kumari for the review.




14. References


14.1. Normative References


   [I-D.ietf-dots-signal-channel]

              K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
              Teague, "Distributed Denial-of-Service Open Threat
              Signaling (DOTS) Signal Channel Specification", draft-
              ietf-dots-signal-channel-35 (work in progress), July 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3688]
  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.




   [RFC4632]
  Fuller, V. and T. Li, "Classless Inter-domain Routing
              (CIDR): The Internet Address Assignment and Aggregation
              Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
              2006, <https://www.rfc-editor.org/info/rfc4632>.




   [RFC6125]
  Saint-Andre, P. and J. Hodges, "Representation and
              Verification of Domain-Based Application Service Identity
              within Internet Public Key Infrastructure Using X.509
              (PKIX) Certificates in the Context of Transport Layer
              Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
              2011, <https://www.rfc-editor.org/info/rfc6125>.




   [RFC6991]
  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.




   [RFC7230]
  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.




   [RFC7525]
  Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
              2015, <https://www.rfc-editor.org/info/rfc7525>.




   [RFC7950]
  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.




   [RFC7951]
  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/info/rfc7951>.




   [RFC8040]
  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8259]
  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.




   [RFC8519]
  Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
              "YANG Data Model for Network Access Control Lists (ACLs)",
              RFC 8519, DOI 10.17487/RFC8519, March 2019,
              <https://www.rfc-editor.org/info/rfc8519>.




14.2. Informative References


   [I-D.ietf-dots-architecture]

              Mortensen, A., K, R., Andreasen, F., Teague, N., and R.
              Compton, "Distributed-Denial-of-Service Open Threat
              Signaling (DOTS) Architecture", draft-ietf-dots-
              architecture-14 (work in progress), May 2019.




   [I-D.ietf-dots-server-discovery]

              Boucadair, M. and R. K, "Distributed-Denial-of-Service
              Open Threat Signaling (DOTS) Server Discovery", draft-
              ietf-dots-server-discovery-04 (work in progress), June
              2019.




   [I-D.ietf-netconf-restconf-client-server]

              Watsen, K., "RESTCONF Client and Server Models", draft-
              ietf-netconf-restconf-client-server-14 (work in progress),
              July 2019.




   [proto_numbers]

              "IANA, "Protocol Numbers"", 2011,
              <http://www.iana.org/assignments/protocol-numbers>.




   [RFC1122]
  Braden, R., Ed., "Requirements for Internet Hosts -
              Communication Layers", STD 3, RFC 1122,
              DOI 10.17487/RFC1122, October 1989,
              <https://www.rfc-editor.org/info/rfc1122>.




   [RFC3986]
  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.




   [RFC4034]
  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "Resource Records for the DNS Security Extensions",
              RFC 4034, DOI 10.17487/RFC4034, March 2005,
              <https://www.rfc-editor.org/info/rfc4034>.




   [RFC4340]
  Kohler, E., Handley, M., and S. Floyd, "Datagram
              Congestion Control Protocol (DCCP)", RFC 4340,
              DOI 10.17487/RFC4340, March 2006,
              <https://www.rfc-editor.org/info/rfc4340>.




   [RFC4960]
  Stewart, R., Ed., "Stream Control Transmission Protocol",
              RFC 4960, DOI 10.17487/RFC4960, September 2007,
              <https://www.rfc-editor.org/info/rfc4960>.




   [RFC5575]
  Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
              and D. McPherson, "Dissemination of Flow Specification
              Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
              <https://www.rfc-editor.org/info/rfc5575>.




   [RFC5925]
  Touch, J., Mankin, A., and R. Bonica, "The TCP
              Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
              June 2010, <https://www.rfc-editor.org/info/rfc5925>.




   [RFC6520]
  Seggelmann, R., Tuexen, M., and M. Williams, "Transport
              Layer Security (TLS) and Datagram Transport Layer Security
              (DTLS) Heartbeat Extension", RFC 6520,
              DOI 10.17487/RFC6520, February 2012,
              <https://www.rfc-editor.org/info/rfc6520>.




   [RFC7858]
  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
              and P. Hoffman, "Specification for DNS over Transport
              Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
              2016, <https://www.rfc-editor.org/info/rfc7858>.




   [RFC8340]
  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.




   [RFC8484]
  Hoffman, P. and P. McManus, "DNS Queries over HTTPS
              (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
              <https://www.rfc-editor.org/info/rfc8484>.




   [RFC8499]
  Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
              Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
              January 2019, <https://www.rfc-editor.org/info/rfc8499>.




   [RFC8612]
  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
              Threat Signaling (DOTS) Requirements", RFC 8612,
              DOI 10.17487/RFC8612, May 2019,
              <https://www.rfc-editor.org/info/rfc8612>.




Appendix A. Sample Examples: Filtering Fragments

   This specification strongly recommends the use of "fragment" for
   handling fragments.



   Figure 34 shows the content of the POST request to be issued by a
   DOTS client to its DOTS server to allow the traffic destined to
   198.51.100.0/24 and UDP port number 53, but to drop all fragmented
   packets.  The following ACEs are defined (in this order):



   o  "drop-all-fragments" ACE: discards all fragments.



   o  "allow-dns-packets" ACE: accepts DNS packets destined to
      198.51.100.0/24.



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data\
     /dots‑client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "ietf‑dots‑data‑channel:acls": {
   "acl": [
     {
       "name": "dns‑fragments",
       "type": "ipv4‑acl‑type",
       "aces": {
         "ace": [
           {
             "name": "drop‑all‑fragments",
             "matches": {
               "ipv4": {
                 "fragment": {
                   "operator": "match",
                   "type": "isf"
                 }
               }
             },
             "actions": {
               "forwarding": "drop"
             }
           }
         ]
         "ace": [
           {
             "name": "allow‑dns‑packets",
             "matches": {
               "ipv4": {
                 "destination‑ipv4‑network": "198.51.100.0/24"
               }
               "udp": {
                 "destination‑port": {
                   "operator": "eq",
                   "port": 53
               }
             },
             "actions": {
               "forwarding": "accept"
             }
           }
         ]
       }
     }
   ]
 }
}



               Figure 34: Filtering IPv4 Fragmented Packets



   Figure 35 shows a POST request example issued by a DOTS client to its
   DOTS server to allow the traffic destined to 2001:db8::/32 and UDP
   port number 53, but to drop all fragmented packets.  The following
   ACEs are defined (in this order):



   o  "drop-all-fragments" ACE: discards all fragments (including atomic
      fragments).  That is, IPv6 packets which include a Fragment header
      (44) are dropped.



   o  "allow-dns-packets" ACE: accepts DNS packets destined to
      2001:db8::/32.



POST /restconf/data/ietf‑dots‑data‑channel:dots‑data\
     /dots‑client=dz6pHjaADkaFTbjr0JGBpw HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "ietf‑dots‑data‑channel:acls": {
   "acl": [
     {
       "name": "dns‑fragments",
       "type": "ipv6‑acl‑type",
       "aces": {
         "ace": [
           {
             "name": "drop‑all‑fragments",
             "matches": {
               "ipv6": {
                 "fragment": {
                   "operator": "match",
                   "type": "isf"
                 }
               }
             },
             "actions": {
               "forwarding": "drop"
             }
           }
         ]
         "ace": [
           {
             "name": "allow‑dns‑packets",
             "matches": {
               "ipv6": {
                 "destination‑ipv6‑network": "2001:db8::/32"
               }
               "udp": {

                 "destination‑port": {
                   "operator": "eq",
                   "port": 53
                 }
               }
             },
             "actions": {
               "forwarding": "accept"
             }
           }
         ]
       }
     }
   ]
 }
}



               Figure 35: Filtering IPv6 Fragmented Packets




Appendix B. Sample Examples: Filtering TCP Messages

   This section provides sample examples to illustrate TCP-specific
   filtering based on the flag bits.  These examples should not be
   interpreted as recommended filtering behaviors under specific DDoS
   attacks.




B.1. Discard TCP Null Attack

   Figure 36 shows an example of a DOTS request sent by a DOTS client to
   install immediately a filter to discard incoming TCP messages having
   all flags unset.  The bitmask can be set to 255 to check against the
   (CWR, ECE, URG, ACK, PSH, RST, SYN, FIN) flags.



PUT /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=paL8p4Zqo4SLv64TLPXrxA/acls\
    /acl=tcp‑flags‑example HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [{
      "name": "tcp‑flags‑example",
      "activation‑type": "immediate",
      "aces": {
        "ace": [{
          "name": "null‑attack",
          "matches": {
            "tcp": {
              "flags‑bitmask": {
                "operator": "not any",
                "bitmask": 4095
              }
            }
          },
          "actions": {
            "forwarding": "drop"
          }
        }]
      }
    }]
  }
}



   Figure 36: Example of a DOTS Request to Deny TCP Null Attack Messages




B.2. Rate-Limit SYN Flooding

   Figure 37 shows an ACL example to rate-limit incoming SYNs during a
   SYN-flood attack.



PUT /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=paL8p4Zqo4SLv64TLPXrxA/acls\
    /acl=tcp‑flags‑example HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [{
      "name": "tcp‑flags‑example",
      "activation‑type": "activate‑when‑mitigating",
      "aces": {
        "ace": [{
          "name": "rate‑limit‑syn",
          "matches": {
            "tcp": {
              "flags‑bitmask": {
                "operator": "match",
                "bitmask": 2
              }
            }
          },
          "actions": {
            "forwarding": "accept",
            "rate‑limit": "20.00"
          }
        }]
      }
    }]
  }
}



    Figure 37: Example of DOTS Request to Rate-Limit Incoming TCP SYNs




B.3. Rate-Limit ACK Flooding

   Figure 38 shows an ACL example to rate-limit incoming ACKs during an
   ACK-flood attack.



PUT /restconf/data/ietf‑dots‑data‑channel:dots‑data\
    /dots‑client=paL8p4Zqo4SLv64TLPXrxA/acls\
    /acl=tcp‑flags‑example HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
  "ietf‑dots‑data‑channel:acls": {
    "acl": [{
      "name": "tcp‑flags‑example",
      "type": "ipv4‑acl‑type",
      "activation‑type": "activate‑when‑mitigating",
      "aces": {
        "ace": [{
          "name": "rate‑limit‑ack",
          "matches": {
            "tcp": {
              "flags‑bitmask": {
                "operator": "match",
                "bitmask": 16
              }
            }
          },
          "actions": {
            "forwarding": "accept",
            "rate‑limit": "20.00"
          }
        }]
      }
    }]
  }
}



    Figure 38: Example of DOTS Request to Rate-Limit Incoming TCP ACKs



Authors' Addresses



Mohamed Boucadair (editor)
Orange
Rennes  35000
France



   Email: mohamed.boucadair@orange.com



Tirumaleswar Reddy (editor)
McAfee, Inc.
Embassy Golf Link Business Park
Bangalore, Karnataka  560071
India



   Email: kondtir@gmail.com















































draft-ietf-dots-multihoming-02 - Multi-homing Deployment Considerations for Distributed-Denial-of-Service Open Threat Signaling (DOTS) 






draft-ietf-dots-multihoming-02 - Multi-homing Deployment Considerations for Dist

Index
Prev
Next
Forward 5


Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: January 23, 2020








M. Boucadair

Orange

T. Reddy

McAfee

W. Pan

Huawei Technologies

July 22, 2019

Multi-homing Deployment Considerations for Distributed-Denial-of-Service Open Threat Signaling (DOTS)  

draft-ietf-dots-multihoming-02


Abstract

   This document discusses multi-homing considerations for Distributed-
   Denial-of-Service Open Threat Signaling (DOTS).  The goal is to
   provide some guidance for DOTS clients/gateways when multihomed.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on January 23, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Requirements Language


	3.  Terminology


	4.  Multi-Homing Scenarios
	 4.1.  Residential Single CPE


	 4.2.  Multi-Homed Enterprise: Single CPE, Multiple Upstream ISPs


	 4.3.  Multi-homed Enterprise: Multiple CPEs, Multiple Upstream ISPs


	 4.4.  Multi-homed Enterprise with the Same ISP



	5.  DOTS Deployment Considerations
	 5.1.  Residential CPE


	 5.2.  Multi-Homed Enterprise: Single CPE, Multiple Upstream ISPs


	 5.3.  Multi-Homed Enterprise: Multiple CPEs, Multiple Upstream ISPs


	 5.4.  Multi-Homed Enterprise: Single ISP



	6.  Security Considerations


	7.  IANA Considerations


	8.  Acknowledgements


	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Authors' Addresses




1. Introduction

   In many deployments, it may not be possible for a network to
   determine the cause of a distributed Denial-of-Service (DoS) attack
   [RFC4732].  Rather, the network may just realize that some resources
   seem to be under attack.  To improve such situation, the IETF is
   specifying the DDoS Open Threat Signaling (DOTS)
   [I-D.ietf-dots-architecture]architecture, where a DOTS client can
   inform a DOTS server that the network is under a potential attack and
   that appropriate mitigation actions are required.  Indeed, because
   the lack of a common method to coordinate a real-time response among
   involved actors and network domains jeopardizes the efficiency of
   DDoS attack mitigation actions, the DOTS protocol is meant to carry
   requests for DDoS attack mitigation, thereby reducing the impact of
   an attack and leading to more efficient responsive actions.
   [I-D.ietf-dots-use-cases] identifies a set of scenarios for DOTS;
   most of these scenarios involve a Customer Premises Equipment (CPE).
   The high-level DOTS architecture is illustrated in Figure 1
   ([I-D.ietf-dots-architecture]):



+‑‑‑‑‑‑‑‑‑‑‑+            +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Mitigator | ~~~~~~~~~~ | DOTS Server |
+‑‑‑‑‑‑‑‑‑‑‑+            +‑‑‑‑‑‑‑‑‑‑‑‑‑+
                                |
                                |
                                |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Attack Target | ~~~~~~ | DOTS Client |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 1: Basic DOTS Architecture



   [I-D.ietf-dots-architecture] specifies that the DOTS client may be
   provided with a list of DOTS servers; each of these servers is
   associated with one or more IP addresses.  These addresses may or may
   not be of the same address family.  The DOTS client establishes one
   or more DOTS sessions by connecting to the provided DOTS server(s)
   addresses.



   DOTS may be deployed within networks that are connected to one single
   upstream provider.  It can also be enabled within networks that are
   multi-homed.  The reader may refer to [RFC3582] for an overview of
   multi-homing goals and motivations.  This document discusses DOTS
   multi-homing considerations.  Specifically, the document aims to:



   1.  Complete the base DOTS architecture with multi-homing specifics.
       Those specifics need to be taken into account because:



       *  Send a DOTS mitigation request to an arbitrary DOTS server
          won't help mitigating a DDoS attack.



       *  Blindly forking all DOTS mitigation requests among all
          available DOTS servers is suboptimal.



       *  Sequentially contacting DOTS servers may increase the delay
          before a mitigation plan is enforced.



   2.  Identify DOTS deployment schemes in a multi-homing context, where
       DOTS services can be offered by all or a subset of upstream
       providers.



   3.  Sketch guidelines and recommendations for placing DOTS requests
       in multi-homed networks, e.g.,:



       *  Select the appropriate DOTS server(s).



       *  Identify cases where anycast is not recommended.



   This document adopts the following methodology:



   o  Identify and extract viable deployment candidates from
      [I-D.ietf-dots-use-cases].



   o  Augment the description with multi-homing technicalities, e.g.,



      *  One vs. multiple upstream network providers



      *  One vs. multiple interconnect routers



      *  Provider-Independent (PI) vs. Provider-Aggregatable (PA) IP
         addresses



   o  Describe the recommended behavior of DOTS clients and gateways for
      each case.



   Multi-homed DOTS agents are assumed to make use of the protocols
   defined in [I-D.ietf-dots-signal-channel] and
   [I-D.ietf-dots-data-channel]; no specific extension is required to
   the base DOTS protocols for deploying DOTS in a multi-homed context.




2. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119][RFC8174] when, and only when, they appear in all
   capitals, as shown here.




3. Terminology

   This document makes use of the terms defined in
   [I-D.ietf-dots-architecture] and [RFC4116].



   IP indifferently refers to IPv4 or IPv6.




4. Multi-Homing Scenarios

   This section describes some multi-homing scenarios that are relevant
   to DOTS.  In the following sub-sections, only the connections of
   border routers are shown; internal network topologies are not
   elaborated.



   This section distinguishes between residential CPEs vs. enterprise
   CPEs because PI addresses may be used for enterprises while this is
   not the current practice for residential CPEs.




4.1. Residential Single CPE

   The scenario shown in Figure 2 is characterized as follows:



   o  The home network is connected to the Internet using one single CPE
      (Customer Premises Equipment).



   o  The CPE is connected to multiple provisioning domains (i.e., both
      fixed and mobile networks).  Provisioning domain (PvD) is
      explained in [RFC7556].



   o  Each of these provisioning domains assigns IP addresses/prefixes
      to the CPE and provides additional configuration information such
      as a list of DNS servers, DNS suffixes associated with the
      network, default gateway address, and DOTS server's name
      [I-D.boucadair-dots-server-discovery].  These addresses/prefixes
      are assumed to be Provider-Aggregatable (PA).



   o  Because of ingress filtering, packets forwarded by the CPE towards
      a given provisioning domain must be sent with a source IP address
      that was assigned by that domain [RFC8043].



        +‑‑‑‑‑‑‑+            +‑‑‑‑‑‑‑+
        |Fixed  |            |Mobile |
        |Network|            |Network|
        +‑‑‑+‑‑‑+            +‑‑‑+‑‑‑+
            |                    |     Service Providers
............|....................|.......................
            +‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑+     Home Network
                      ||
                   +‑‑++‑+
                   | CPE |
                   +‑‑‑‑‑+
                         ... (Internal Network)




               Figure 2: Typical Multi-homed Residential CPE




4.2. Multi-Homed Enterprise: Single CPE, Multiple Upstream ISPs

   The scenario shown in Figure 3 is characterized as follows:



   o  The enterprise network is connected to the Internet using one
      single router.



   o  That router is connected to multiple provisioning domains (i.e.,
      managed by distinct administrative entities).



   Unlike the previous scenario, two sub-cases can be considered for an
   enterprise network with regards to assigned addresses:



   1.  PI addresses/prefixes: The enterprise is the owner of the IP
       addresses/prefixes; the same address/prefix is then used when
       establishing communications over any of the provisioning domains.



   2.  PA addresses/prefixes: each of the provisioning domains assigns
       IP addresses/prefixes to the enterprise network.



        +‑‑‑‑‑‑+              +‑‑‑‑‑‑+
        | ISP1 |              | ISP2 |
        +‑‑‑+‑‑+              +‑‑+‑‑‑+
            |                    |     Service Providers
............|....................|.......................
            +‑‑‑‑‑‑‑‑‑++‑‑‑‑‑‑‑‑‑+     Enterprise Network
                      ||
                   +‑‑++‑+
                   | rtr |
                   +‑‑‑‑‑+
                         ... (Internal Network)




     Figure 3: Multi-homed Enterprise Network (Single CPE connected to

                            Multiple Networks)




4.3. Multi-homed Enterprise: Multiple CPEs, Multiple Upstream ISPs

   This scenario is similar to the one described in Section 4.2; the
   main difference is that dedicated routers are used to connect to each
   provisioning domain.



                  +‑‑‑‑‑‑+    +‑‑‑‑‑‑+
                  | ISP1 |    | ISP2 |
                  +‑‑‑+‑‑+    +‑‑+‑‑‑+
                      |          |     Service Providers
......................|..........|.......................
                      |          |     Enterprise Network
                  +‑‑‑+‑‑+    +‑‑+‑‑‑+
                  | rtr1 |    | rtr2 |
                  +‑‑‑‑‑‑+    +‑‑‑‑‑‑+



                                  ... (Internal Network)




     Figure 4: Multi-homed Enterprise Network (Multiple CPEs, Multiple

                                   ISPs)




4.4. Multi-homed Enterprise with the Same ISP

   This scenario is a variant of Section 4.2 and Section 4.3 in which
   multi-homing is supported by the same ISP (i.e., same provisioning
   domain).



      Editor's Note: The use of anycast addresses is to be consistently
      discussed.




5. DOTS Deployment Considerations

   Table 1 provides some sample, non-exhaustive, deployment schemes to
   illustrate how DOTS agents may be deployed for each of the scenarios
   introduced in Section 4.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|          Scenario         |       DOTS client       |     DOTS    |
|                           |                         |   gateway   |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|      Residential CPE      |           CPE           |     N/A     |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|    Single CPE, Multiple   |  internal hosts or CPE  |     CPE     |
|    provisioning domains   |                         |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|  Multiple CPEs, Multiple  |  internal hosts or all  |  CPEs (rtr1 |
|    provisioning domains   |   CPEs (rtr1 and rtr2)  |  and rtr2)  |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
|  Multi‑homed enterprise,  |  internal hosts or all  |  CPEs (rtr1 |
|    Single provisioning    |   CPEs (rtr1 and rtr2)  |  and rtr2)  |
|           domain          |                         |             |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Table 1: Sample Deployment Cases



   These deployment schemes are further discussed in the following sub-
   sections.




5.1. Residential CPE

   Figure 5 depicts DOTS sessions that need to be established between a
   DOTS client (C) and two DOTS servers (S1, S2) within the context of
   the scenario described in Section 4.1.



   For each provisioning domain, the DOTS client MUST resolve the DOTS
   server's name provided by a provisioning domain
   ([I-D.boucadair-dots-server-discovery]) using the DNS servers learned
   from the respective provisioning domain.  The DOTS client MUST use
   the source address selection algorithm defined in [RFC6724] to select
   the candidate source addresses to contact each of these DOTS servers.
   DOTS sessions must be established and maintained with each of the
   DOTS servers because the mitigation scope of these servers is
   restricted.  The DOTS client SHOULD use the certificate provisioned
   by a provisioning domain to authenticate itself to the DOTS server
   provided by the same provisioning domain.



   When conveying a mitigation request to protect the attack target(s),
   the DOTS client among the DOTS servers available MUST select a DOTS
   server whose network has assigned the prefixes from which target
   prefixes and target IP addresses are derived.  This implies that if
   no appropriate DOTS server is found, the DOTS client must not send
   the mitigation request to any DOTS server.



   For example, a mitigation request to protect target resources bound
   to a PA IP address/prefix cannot be satisfied by a provisioning
   domain another domain than the one that owns those addresses/
   prefixes.  Consequently, if a CPE detects a DDoS attack that spreads
   over all its network attachments, it must contact both DOTS servers
   for mitigation purposes.  Nevertheless, if the DDoS attack is
   received from one single network, then only the DOTS server of that
   network must be contacted.



   The DOTS client MUST be able to associate a DOTS server with each
   provisioning domain.  For example, if the DOTS client is provisioned
   with S1 using DHCP when attaching to a first network and with S2
   using Protocol Configuration Option (PCO) when attaching to a second
   network, the DOTS client must record the interface from which a DOTS
   server was provisioned.  DOTS signaling session to a given DOTS
   server must be established using the interface from which the DOTS
   server was provisioned.



                    +‑‑+
         ‑‑‑‑‑‑‑‑‑‑‑|S1|
        /           +‑‑+
       /
      /
+‑‑‑+/
| C |
+‑‑‑+\
      \
       \
        \           +‑‑+
         ‑‑‑‑‑‑‑‑‑‑‑|S2|
                    +‑‑+



       Figure 5: DOTS associations for a multihomed residential CPE




5.2. Multi-Homed Enterprise: Single CPE, Multiple Upstream ISPs

   Figure 6 illustrates a first set of DOTS associations that can be
   established with a DOTS gateway, which is enabled within the context
   of the scenario described in Section 4.2.  This deployment is
   characterized as follows:



   o  One of more DOTS clients are enabled in hosts located in the
      internal network.



   o  A DOTS gateway is enabled to aggregate and then relay the requests
      towards upstream DOTS servers.



   When PA addresses/prefixes are in use, the same considerations
   discussed in Section 5.1 need to be followed by the DOTS gateway to
   contact its DOTS server(s).  The DOTS gateways can be reachable from
   DOTS clients by using an unicast address or an anycast address.



   Nevertheless, when PI addresses/prefixes are assigned, the DOTS
   gateway MUST send the same request to all its DOTS servers.



                               +‑‑+
                    ‑‑‑‑‑‑‑‑‑‑‑|S1|
    +‑‑‑+          /           +‑‑+
    | C1|‑‑‑‑+    /
    +‑‑‑+    |   /
+‑‑‑+      +‑+‑+/
| C3|‑‑‑‑‑‑| G |
+‑‑‑+      +‑+‑+\
    +‑‑‑+    |   \
    | C2|‑‑‑‑+    \
    +‑‑‑+          \           +‑‑+
                    ‑‑‑‑‑‑‑‑‑‑‑|S2|
                               +‑‑+



    Figure 6: Multiple DOTS Clients, Single DOTS Gateway, Multiple DOTS

                                  Servers



   An alternate deployment model is depicted in Figure 7.  This
   deployment assumes that:



   o  One or more DOTS clients are enabled in hosts located in the
      internal network.  These DOTS clients may use
      [I-D.boucadair-dots-server-discovery] to discover their DOTS
      server(s).



   o  These DOTS clients communicate directly with upstream DOTS
      servers.



   If PI addresses/prefixes are in use, the DOTS client MUST send the
   mitigation request for all its PI addresses/prefixes to all the DOTS
   servers.  The use of anycast addresses is NOT RECOMMENDED.



   If PA addresses/prefixes are used, the same considerations discussed
   in Section 5.1 need to be followed by the DOTS clients.  Because DOTS
   clients are not embedded in the CPE and multiple addreses/prefixes
   may not be assigned to the DOTS client (typically in an IPv4
   context), some issues arise to steer traffic towards the appropriate
   DOTS server by using the appropriate source IP address.  These
   complications discussed in [RFC4116] are not specific to DOTS.



          +‑‑+
 +‑‑‑‑‑‑‑‑|C1|‑‑‑‑‑‑‑‑+
 |        +‑‑+        |
+‑‑+      +‑‑+      +‑‑+
|S2|‑‑‑‑‑‑|C3|‑‑‑‑‑‑|S1|
+‑‑+      +‑‑+      +‑‑+
 |        +‑‑+        |
 +‑‑‑‑‑‑‑‑|C2|‑‑‑‑‑‑‑‑+
          +‑‑+



          Figure 7: Multiple DOTS Clients, Multiple DOTS Servers



   Another deployment approach is to enable many DOTS clients; each of
   them is responsible for handling communications with a specific DOTS
   server (see Figure 8).



          +‑‑+
 +‑‑‑‑‑‑‑‑|C1|
 |        +‑‑+
+‑‑+      +‑‑+      +‑‑+
|S2|      |C2|‑‑‑‑‑‑|S1|
+‑‑+      +‑‑+      +‑‑+




                    Figure 8: Single Homed DOTS Clients



   Each DOTS client is provided with policies (e.g., prefix filter) that
   will trigger DOTS communications with the DOTS servers.  Such
   policies will help the DOTS client to select the appropriate
   destination IP address.



   The CPE MUST select the appropriate source IP address when forwarding
   DOTS messages received from an internal DOTS client.  If anycast
   addresses are used to reach DOTS servers, the CPE may not be able to
   select the appropriate provisioning domain to which the mitigation
   request should be forwarded.  As a consequence, the request may not
   be forwarded to the appropriate DOTS server.




5.3. Multi-Homed Enterprise: Multiple CPEs, Multiple Upstream ISPs

   The deployments depicted in Figures 7 and 8 also apply to the
   scenario described in Section 4.3.  One specific problem for this
   scenario is to select the appropriate exit router when contacting a
   given DOTS server.



   An alternative deployment scheme is shown in Figure 9:



   o  DOTS clients are enabled in hosts located in the internal network.



   o  A DOTS gateway is enabled in each CPE (rtr1, rtr2).



   o  Each of these DOTS gateways communicates with the DOTS server of
      the provisioning domain.



   When PI addresses/prefixes are used, DOTS clients MUST contact all
   the DOTS gateways to send a DOTS message.  DOTS gateways will then
   relay the request to the DOTS server.  Note that the use of anycast
   addresses is NOT RECOMMENDED to establish DOTS sessions between DOTS
   clients and DOTS gateways.



   When PA addresses/prefixes are used, but no filter rules are provided
   to DOTS clients, the latter MUST contact all DOTS gateways
   simultaneously to send a DOTS message.  Upon receipt of a request by
   a DOTS gateway, it MUST check whether the request is to be forwarded
   upstream (if the target IP prefix is managed by the upstream server)
   or rejected.



   When PA addresses/prefixes are used, but specific filter rules are
   provided to DOTS clients using some means that are out of scope of
   this document, the clients MUST select the appropriate DOTS gateway
   to reach.  The use of anycast addresses is NOT RECOMMENDED to reach
   DOTS gateways.



                         +‑‑‑+
            +‑‑‑‑‑‑‑‑‑‑‑‑| C1|‑‑‑‑+
            |            +‑‑‑+    |
+‑‑+      +‑+‑+      +‑‑‑+      +‑+‑+      +‑‑+
|S2|‑‑‑‑‑‑|G2 |‑‑‑‑‑‑| C3|‑‑‑‑‑‑|G1 |‑‑‑‑‑‑|S1|
+‑‑+      +‑+‑+      +‑‑‑+      +‑+‑+      +‑‑+
            |            +‑‑‑+    |
            +‑‑‑‑‑‑‑‑‑‑‑‑| C2|‑‑‑‑+
                         +‑‑‑+



     Figure 9: Multiple DOTS Clients, Multiple DOTS Gateways, Multiple

                               DOTS Servers




5.4. Multi-Homed Enterprise: Single ISP

   The key difference of the scenario described in Section 4.4 compared
   to the other scenarios is that multi-homing is provided by the same
   ISP.  Concretely, that ISP can decide to provision the enterprise
   network with:



   1.  The same DOTS server for all network attachments.



   2.  Distinct DOTS servers for each network attachment.  These DOTS
       servers need to coordinate when a mitigation action is received
       from the enterprise network.



   In both cases, DOTS agents enabled within the enterprise network MAY
   decide to select one or all network attachments to send DOTS
   mitigation requests.




6. Security Considerations

   DOTS-related security considerations are discussed in Section 4 of
   [I-D.ietf-dots-architecture].



   TBD: In Home networks, if EST is used then how will the DOTS gateway
   (EST client) be provisioned with credentials for initial enrolment
   (see Section 2.2 in RFC 7030).




7. IANA Considerations

   This document does not require any action from IANA.




8. Acknowledgements

   Thanks to Roland Dobbins, Nik Teague, Jon Shallow, Dan Wing, Wei Pan,
   and Christian Jacquenet for sharing their comments on the mailing
   list.



   Thanks to Kirill Kasavchenko for the comments.




9. References


9.1. Normative References


   [I-D.ietf-dots-architecture]

              Mortensen, A., K, R., Andreasen, F., Teague, N., and R.
              Compton, "Distributed-Denial-of-Service Open Threat
              Signaling (DOTS) Architecture", draft-ietf-dots-
              architecture-14 (work in progress), May 2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC6724]
  Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
              "Default Address Selection for Internet Protocol Version 6
              (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
              <https://www.rfc-editor.org/info/rfc6724>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




9.2. Informative References


   [I-D.boucadair-dots-server-discovery]

              Boucadair, M., K, R., and P. Patil, "Distributed-Denial-
              of-Service Open Threat Signaling (DOTS) Server Discovery",
              draft-boucadair-dots-server-discovery-05 (work in
              progress), October 2018.




   [I-D.ietf-dots-data-channel]

              Boucadair, M. and R. K, "Distributed Denial-of-Service
              Open Threat Signaling (DOTS) Data Channel Specification",
              draft-ietf-dots-data-channel-30 (work in progress), July
              2019.




   [I-D.ietf-dots-signal-channel]

              K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
              Teague, "Distributed Denial-of-Service Open Threat
              Signaling (DOTS) Signal Channel Specification", draft-
              ietf-dots-signal-channel-35 (work in progress), July 2019.




   [I-D.ietf-dots-use-cases]

              Dobbins, R., Migault, D., Fouant, S., Moskowitz, R.,
              Teague, N., Xia, L., and K. Nishizuka, "Use cases for DDoS
              Open Threat Signaling", draft-ietf-dots-use-cases-18 (work
              in progress), July 2019.




   [RFC3582]
  Abley, J., Black, B., and V. Gill, "Goals for IPv6 Site-
              Multihoming Architectures", RFC 3582,
              DOI 10.17487/RFC3582, August 2003,
              <https://www.rfc-editor.org/info/rfc3582>.




   [RFC4116]
  Abley, J., Lindqvist, K., Davies, E., Black, B., and V.
              Gill, "IPv4 Multihoming Practices and Limitations",
              RFC 4116, DOI 10.17487/RFC4116, July 2005,
              <https://www.rfc-editor.org/info/rfc4116>.




   [RFC4732]
  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
              DOI 10.17487/RFC4732, December 2006,
              <https://www.rfc-editor.org/info/rfc4732>.




   [RFC7556]
  Anipko, D., Ed., "Multiple Provisioning Domain
              Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
              <https://www.rfc-editor.org/info/rfc7556>.




   [RFC8043]
  Sarikaya, B. and M. Boucadair, "Source-Address-Dependent
              Routing and Source Address Selection for IPv6 Hosts:
              Overview of the Problem Space", RFC 8043,
              DOI 10.17487/RFC8043, January 2017,
              <https://www.rfc-editor.org/info/rfc8043>.



Authors' Addresses



Mohamed Boucadair
Orange
Rennes  35000
France



   Email: mohamed.boucadair@orange.com




Tirumaleswar Reddy
McAfee, Inc.
Embassy Golf Link Business Park
Bangalore, Karnataka  560071
India



   Email: TirumaleswarReddy_Konda@McAfee.com




Wei Pan
Huawei Technologies



   Email: william.panwei@huawei.com

























draft-ietf-dots-server-discovery-06 - Distributed-Denial-of-Service Open Threat Signaling (DOTS) Agent Discovery 






draft-ietf-dots-server-discovery-06 - Distributed-Denial-of-Service Open Threat 

Index
Prev
Next
Forward 5


DOTS

Internet-Draft

Intended status: Standards Track

Expires: May 21, 2020




M. Boucadair

Orange

T. Reddy

McAfee

November 18, 2019

Distributed-Denial-of-Service Open Threat Signaling (DOTS) Agent Discovery  

draft-ietf-dots-server-discovery-06


Abstract

   It may not be possible for a network to determine the cause for an
   attack, but instead just realize that some resources seem to be under
   attack.  To fill that gap, Distributed-Denial-of-Service Open Threat
   Signaling (DOTS) allows a network to inform a DOTS server that it is
   under a potential attack so that appropriate mitigation actions are
   undertaken.



   This document specifies mechanisms to configure DOTS clients with
   their DOTS servers.  The discovery procedure also covers the DOTS
   Signal Channel Call Home.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 21, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Why Multiple Discovery Mechanisms?


	4.  Unified DOTS Discovery Procedure


	5.  DHCP Options for DOTS Agent Discovery
	 5.1.  DHCPv6 DOTS Options
	  5.1.1.  Format of DOTS Reference Identifier Option


	  5.1.2.  Format of DOTS Address Option


	  5.1.3.  DHCPv6 Client Behavior



	 5.2.  DHCPv4 DOTS Options
	  5.2.1.  Format of DOTS Reference Identifier Option


	  5.2.2.  Format of DOTS Address Option


	  5.2.3.  DHCPv4 Client Behavior





	6.  Discovery using Service Resolution


	7.  DNS Service Discovery


	8.  Security Considerations
	 8.1.  DHCP


	 8.2.  Service Resolution


	 8.3.  DNS Service Discovery



	9.  IANA Considerations
	 9.1.  DHCPv6 Options


	 9.2.  DHCPv4 Options


	 9.3.  Application Service & Application Protocol Tags
	  9.3.1.  DOTS Application Service Tag Registration


	  9.3.2.  DOTS Call Home Application Service Tag Registration


	  9.3.3.  signal.udp Application Protocol Tag Registration


	  9.3.4.  signal.tcp Application Protocol Tag Registration


	  9.3.5.  data.tcp Application Protocol Tag Registration





	10. Contributors


	11. Acknowledgements


	12. References
	 12.1.  Normative References


	 12.2.  Informative References



	Authors' Addresses




1. Introduction

   DDoS Open Threat Signaling (DOTS) [I-D.ietf-dots-architecture]
   specifies an architecture, in which a DOTS client can inform a DOTS
   server that the network is under a potential attack and that
   appropriate mitigation actions are required.  Indeed, because the
   lack of a common method to coordinate a real-time response among
   involved actors and network domains inhibits the effectiveness of
   DDoS attack mitigation, DOTS signal channel protocol
   [I-D.ietf-dots-signal-channel] is meant to carry requests for DDoS
   attack mitigation, thereby reducing the impact of an attack and
   leading to more efficient defensive actions in various deployment
   scenarios such as those discussed in [I-D.ietf-dots-use-cases].
   Moreover, DOTS clients can instruct a DOTS server to install
   filtering rules by means of the DOTS data channel protocol
   [I-D.ietf-dots-data-channel].



   The basic high-level DOTS architecture is illustrated in Figure 1:



+‑‑‑‑‑‑‑‑‑‑‑+            +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Mitigator | ~~~~~~~~~~ | DOTS Server |
+‑‑‑‑‑‑‑‑‑‑‑+            +‑‑‑‑‑‑+‑‑‑‑‑‑+
                                |
                                |
                                |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑+‑‑‑‑‑‑+
| Attack Target | ~~~~~~ | DOTS Client |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+



                     Figure 1: Basic DOTS Architecture



   [I-D.ietf-dots-architecture] specifies that the DOTS client may be
   provided with a list of DOTS servers; each associated with one or
   more IP addresses.  These addresses may or may not be of the same
   address family.  The DOTS client establishes one or more DOTS
   sessions by connecting to the provided DOTS server addresses.



   This document specifies methods for DOTS clients to discover their
   DOTS server(s).  The rationale for specifying multiple discovery
   mechanisms is discussed in Section 3.



   The discovery methods can also be used by a DOTS server to locate a
   DOTS client in the context of DOTS Signal Channel Call Home
   [I-D.ietf-dots-signal-call-home].  The basic high-level DOTS Call
   Home architecture is illustrated in Figure 2:



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Alert/DMS/    | ~~~~~~ |  Call Home  |
| Peer DMS/...  |        | DOTS client |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑+‑‑‑‑‑‑+
                                |
                                |
                                |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑+‑‑‑‑‑‑+
|    Attack     | ~~~~~~ |  Call Home  |
|   Source(s)   |        | DOTS server |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        +‑‑‑‑‑‑‑‑‑‑‑‑‑+



   Figure 2: Basic DOTS Signal Channel Call Home Functional Architecture



   A DOTS agent may be used to establish base DOTS channels, DOTS Call
   Home, or both.  This specification accommodates all these deployment
   cases.



   Considerations for the selection of DOTS server(s) by multi-homed
   DOTS clients is out of scope; the reader should refer to
   [I-D.ietf-dots-multihoming] for more details.



   This document assumes that security credentials to authenticate DOTS
   server(s) are provisioned to a DOTS client using a variety of means
   such as (but not limited to) those discussed in [RFC8572] or
   [I-D.ietf-anima-bootstrapping-keyinfra].  DOTS clients use those
   credentials for authentication purposes following the rules
   documented in [I-D.ietf-dots-signal-channel].




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119][RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   The reader should be familiar with the terms defined in
   [I-D.ietf-dots-architecture], [RFC3958], and
   [I-D.ietf-dots-signal-call-home].



   DHCP refers to both DHCPv4 [RFC2131] and DHCPv6 [RFC8415].



   "Peer DOTS agent" refers to the peer DOTS server (base DOTS
   operation) or to a peer Call Home DOTS client (for DOTS Signal
   Channel Call Home).




3. Why Multiple Discovery Mechanisms?

   It is tempting to specify one single discovery mechanism for DOTS.
   Nevertheless, the analysis of the various use cases sketched in
   [I-D.ietf-dots-use-cases] reveals that it is unlikely that one single
   discovery method can be suitable for all the sample deployments.
   Concretely:



   o  Many use cases discussed in [I-D.ietf-dots-use-cases] do involve a
      CPE device.  Multiple CPEs, connected to distinct network
      providers may even be considered.  It is intuitive to leverage on
      existing mechanisms such as discovery using service resolution or
      DHCP to provision the CPE acting as a DOTS client with the DOTS
      server(s).



   o  Resolving a DOTS server domain name offered by an upstream transit
      provider provisioned to a DOTS client into IP address(es) require
      the use of the appropriate DNS resolvers; otherwise, resolving
      those names will fail.  The use of protocols such as DHCP does
      allow to associate provisioned DOTS server domain names with a
      list of DNS servers to be used for name resolution.  Furthermore,
      DHCP allows to directly provision IP addresses avoiding therefore
      the need for extra lookup delays.



   o  Some of the use cases may allow DOTS clients to have direct
      communications with upstream DOTS servers; that is no DOTS gateway
      is involved.  Leveraging on existing features that do not require
      specific feature on the node embedding the DOTS client may ease
      DOTS deployment.  Typically, the use of Straightforward-Naming
      Authority Pointer (S-NAPTR) lookups [RFC3958] allows the DOTS
      server administrators to provision the preferred DOTS transport
      protocol between the DOTS client and the DOTS server and allows
      the DOTS client to discover this preference.



   o  The upstream network provider is not the DDoS mitigation provider
      for some of these use cases.  It is safe to assume that for such
      deployments, the DOTS server(s) domain name is provided during the
      service subscription (i.e., manual/local configuration).



   o  Multiple DOTS clients may be enabled within a network (e.g.,
      enterprise network).  Dynamic means to discover DOTS servers in a
      deterministic manner are interesting from an operational
      standpoint.



   o  Some of the use cases may involve a DOTS gateway that is
      responsible for selecting the appropriate DOTS server(s) to relay
      requests received from DOTS clients.



   Consequently, this document describes a unified discovery logic
   (Section 4) which involves the following mechanisms:



   o  Dynamic discovery using DHCP (Section 5).



   o  A resolution mechanism based on straightforward Naming Authority
      Pointer (S-NAPTR) resource records in the Domain Name System (DNS)
      (Section 6).



   o  DNS Service Discovery (Section 7).




4. Unified DOTS Discovery Procedure

   A key point in the deployment of DOTS is the ability of network
   operators to be able to configure DOTS clients with the correct DOTS
   server(s) information consistently.  To accomplish this, operators
   will need a consistent set of ways in which DOTS clients can discover
   this information, and a consistent priority among these options.  If
   some devices prefer manual configuration over dynamic discovery,
   while others prefer dynamic discovery over manual configuration, the
   result will be a process of "whack-a-mole", where the operator must
   find devices that are using the wrong DOTS server(s), determine how
   to ensure the devices are configured properly, and then reconfigure
   the device through the preferred method.



   All DOTS clients MUST support at least one of the three mechanisms
   below to determine a DOTS server list.  All DOTS clients SHOULD
   implement all three, or as many as are practical for any specific
   device (e.g., a CPE will support the first two mechanisms, a host
   within a LAN will support the last two mechanisms, or an application
   server will support a local configuration.  More samples are
   discussed in Section 3), of these ways to discover DOTS servers, in
   order to facilitate the deployment of DOTS in large scale
   environments:



   1.  Explicit configuration:



       *  Local/Manual configuration: A DOTS client, will learn the DOTS
          server(s) by means of local or manual DOTS configuration
          (i.e., DOTS servers configured at the system level).
          Configuration discovered from a DOTS client application is
          considered as local configuration.



          An implementation may give the user an opportunity (e.g., by
          means of configuration file options or menu items) to specify
          DOTS server(s) for each address family.  These may be
          specified either as IP addresses or the DNS name of a DOTS
          server.  When only DOTS server's IP addresses are configured,
          a reference identifier must also be configured for
          authentication purposes.



       *  Automatic configuration (e.g., DHCP, an automation system):
          The DOTS client attempts to discover DOTS server(s) names and/
          or addresses from DHCP, as described in Section 5.



   2.  Service Resolution : The DOTS client attempts to discover DOTS
       server name(s) using service resolution, as specified in
       Section 6.



   3.  DNS SD: DNS Service Discovery.  The DOTS client attempts to
       discover DOTS server name(s) using DNS service discovery, as
       specified in Section 7.



   Some of these mechanisms imply the use of DNS to resolve the IP
   address(es) of the DOTS server, while others imply an IP address of
   the relevant DOTS server is obtained directly.  Implementation
   options may vary on a per device basis, as some devices may not have
   DNS capabilities and/or proper configuration.



   DOTS clients will prefer information received from the discovery
   methods in the order listed.



   On hosts with more than one interface or address family (IPv4/v6),
   the DOTS server discovery procedure has to be performed for each
   combination of interface and address family.  A DOTS client may
   choose to perform the discovery procedure only for a desired
   interface/address combination if the client does not wish to discover
   a DOTS server for all combinations of interface and address family.



   This procedure is also followed by a Call Home DOTS server to
   discover its Call Home DOTS client in the context of
   [I-D.ietf-dots-signal-call-home].



   The discovery method is reiterated by a DOTS agent upon the following
   events:



   o  Expiry of a lease associated with a discovered DOTS agent.



   o  Expiry of a peer DOTS agent's certificate currently in use.



   o  Attachment to a new network.




5. DHCP Options for DOTS Agent Discovery

   As reported in Section 1.7.2 of [RFC6125]:



      "few certification authorities issue server certificates based on
      IP addresses, but preliminary evidence indicates that such
      certificates are a very small percentage (less than 1%) of issued
      certificates".



   In order to allow for PKIX-based authentication between a DOTS client
   and server while accommodating for the current best practices for
   issuing certificates, this document allows for configuring names to
   DOTS clients.  These names can be used for two purposes: to retrieve
   the list of IP addresses of a DOTS server or to be presented as a
   reference identifier for authentication purposes.



   Defining the option to include a list of IP addresses would avoid a
   dependency on an underlying name resolution, but that design requires
   to also supply a name for PKIX-based authentication purposes.



   The list of the IP addresses returned by DHCP servers is typically
   used to fed the DOTS server selection procedure or to provide DOTS
   agents with primary and backup IP addresses of their peer DOTS
   agents.



   The design assumes that the same peer DOTS agent is used for
   establishing both signal and data channels.  For more customized
   configurations (e.g., transport-specific configuration, distinct DOTS
   servers for the signal and the data channels), an operator can supply
   only a DOTS reference identifier that will be then passed to the
   procedure described in Section 6.



   The design allows to terminate the base DOTS channels and DOTS Call
   Home on the same or distinct peer DOTS agents.  If distinct peer DOTS
   agents are deployed, the DHCP option can return, for example, a list
   of IP addresses to a requesting DOTS agent.  This list includes the
   IP address to be used for the base DOTS channels and the IP address
   for the DOTS Call Home.  The DOTS client (or Call Home DOTS server)
   will then use the address selection specified in Section 4.3 of
   [I-D.ietf-dots-signal-channel] to identify the IP address of the peer
   DOTS server (or Call Home DOTS client).  For example:



      Let's consider that the DOTS server is reachable at
      2001:db8:122:300::1 while the Call Home DOTS client is reachable
      at 2001:db8:122:300::2.  The DHCP server will then return one DOTS
      reference identifier and a list that includes both
      2001:db8:122:300::1 and 2001:db8:122:300::2 to a requesting DHCP
      client.  That list is passed to the DOTS client (or Call Home DOTS
      server) which will try to establish connections to the addresses
      of that list and destination port number 4646 (or 4647).  As a
      result, the DOTS client (or Call Home DOTS server) will select
      2001:db8:122:300::1 (or 2001:db8:122:300::2) as a DOTS server (or
      Call Home DOTS client).




5.1. DHCPv6 DOTS Options


5.1.1. Format of DOTS Reference Identifier Option

   The DHCPv6 DOTS Reference Identifier option is used to configure a
   name of the DOTS server (or the name of the Call Home DOTS client).
   The format of this option is shown in Figure 3.



 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|     OPTION_V6_DOTS_RI         |         Option‑length         |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                                                               |
|                      dots‑agent‑name (FQDN)                   |
|                                                               |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+




             Figure 3: DHCPv6 DOTS Reference Identifier Option



   The fields of the option shown in Figure 3 are as follows:



o  Option‑code: OPTION_V6_DOTS_RI (TBA1, see Section 9.1)
o  Option‑length: Length of the dots‑agent‑name field in octets.
o  dots‑agent‑name: A fully qualified domain name of the peer DOTS
   agent.  This field is formatted as specified in Section 10 of
   [RFC8415].



   An example of the dots-agent-name encoding is shown in Figure 4.
   This example conveys the FQDN "dots.example.com.".



+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+
| 0x04 |   d  |   o  |   t  |  s   | 0x07 |   e  |   x  |   a  |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+
|   m  |   p  |   l  |   e  | 0x03 |   c  |   o  |   m  | 0x00 |
+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑+



           Figure 4: An example of the dots-agent-name Encoding




5.1.2. Format of DOTS Address Option

   The DHCPv6 DOTS Address option can be used to configure a list of
   IPv6 addresses of a DOTS server (or a Call Home DOTS client).  The
   format of this option is shown in Figure 5.  As a reminder, this
   format follows the guidelines for creating new DHCPv6 options
   (Section 5.1 of [RFC7227]).



 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|  OPTION_V6_DOTS_ADDRESS       |         Option‑length         |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                                                               |
|                    DOTS ipv6‑address                          |
|                                                               |
|                                                               |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                                                               |
|                    DOTS ipv6‑address                          |
|                                                               |
|                                                               |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                              ...                              |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+




                   Figure 5: DHCPv6 DOTS Address Option



   The fields of the option shown in Figure 5 are as follows:



o  Option‑code: OPTION_V6_DOTS_ADDRESS (TBA2, see Section 9.1)
o  Option‑length: Length of the 'DOTS ipv6‑address(es)' field in
   octets.  MUST be a multiple of 16.
o  DOTS ipv6‑address: Includes one or more IPv6 addresses [RFC4291]
   of the peer DOTS agent to be used by a DOTS agent for establishing
   a DOTS session.



      Note, IPv4-mapped IPv6 addresses (Section 2.5.5.2 of [RFC4291])
      are allowed to be included in this option.




5.1.3. DHCPv6 Client Behavior

   DHCP clients MAY request options OPTION_V6_DOTS_RI and
   OPTION_V6_DOTS_ADDRESS, as defined in [RFC8415], Sections 18.2.1,
   18.2.2, 18.2.4, 18.2.5, 18.2.6, and 21.7.  As a convenience to the
   reader, it is mentioned here that the DHCP client includes the
   requested option codes in the Option Request Option.



   If the DHCP client receives more than one instance of
   OPTION_V6_DOTS_RI (or OPTION_V6_DOTS_ADDRESS) option, it MUST use
   only the first instance of that option.



   If the DHCP client receives both OPTION_V6_DOTS_RI and
   OPTION_V6_DOTS_ADDRESS, the content of OPTION_V6_DOTS_RI is used as
   reference identifier for authentication purposes (e.g., PKIX
   [RFC6125]), while the addresses included in OPTION_V6_DOTS_ADDRESS
   are used to reach the peer DOTS agent.  In other words, the name
   conveyed in OPTION_V6_DOTS_RI MUST NOT be passed to underlying
   resolution library in the presence of OPTION_V6_DOTS_ADDRESS in a
   response.



   If the DHCP client receives OPTION_V6_DOTS_RI only, but
   OPTION_V6_DOTS_RI option contains more than one name, as
   distinguished by the presence of multiple root labels, the DHCP
   client MUST use only the first name.  Once the name is validated
   (Section 8 of [RFC8415]), the name is passed to a name resolution
   library.  Moreover, that name is also used as a reference identifier
   for authentication purposes.



   If the DHCP client receives OPTION_V6_DOTS_ADDRESS only, the
   address(es) included in OPTION_V6_DOTS_ADDRESS are used to reach the
   peer DOTS agent.  In addition, these addresses can be used as
   identifiers for authentication.



   The DHCP client MUST silently discard multicast and host loopback
   addresses [RFC6890] conveyed in OPTION_V6_DOTS_ADDRESS.




5.2. DHCPv4 DOTS Options


5.2.1. Format of DOTS Reference Identifier Option

   The DHCPv4 DOTS Reference Identifier option is used to configure a
   name of the peer DOTS agent.  The format of this option is
   illustrated in Figure 6.



 Code  Length   Peer DOTS agent name
+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑
|TBA3 |  n  |  s1 |  s2 |  s3 |  s4 | s5  |  ...
+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑



     The values s1, s2, s3, etc. represent the domain name labels in the
     domain name encoding.




             Figure 6: DHCPv4 DOTS Reference Identifier Option



   The fields of the option shown in Figure 6 are as follows:



o  Code: OPTION_V4_DOTS_RI (TBA3, see Section 9.2).
o  Length: Includes the length of the "Peer DOTS agent name" field in
   octets; the maximum length is 255 octets.
o  Peer DOTS agent name: The domain name of the peer DOTS agent.
   This field is formatted as specified in Section 10 of [RFC8415].




5.2.2. Format of DOTS Address Option

   The DHCPv4 DOTS Address option can be used to configure a list of
   IPv4 addresses of a peer DOTS agent.  The format of this option is
   illustrated in Figure 7.



 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|  Code=TBA4    |     Length    |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+
|                               |
+       DOTS IPv4 Address       |
|                               |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+  ‑‑‑
|                               |   |
+       DOTS IPv4 Address       |   |
|                               | optional
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+   |
.             ...               .   |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+  ‑‑‑




                   Figure 7: DHCPv4 DOTS Address Option



   The fields of the option shown in Figure 7 are as follows:



o  Code: OPTION_V4_DOTS_ADDRESS (TBA4, see Section 9.2).
o  Length: is set to 4*N, where N is the number of IPv4 addresses
   included in the option.
o  DOTS IPv4 Address(es): Contains one or more IPv4 addresses of the
   peer DOTS agent to be used by a DOTS agent.



   OPTION_V4_DOTS_ADDRESS is a concatenation-requiring option.  As such,
   the mechanism specified in [RFC3396] MUST be used if
   OPTION_V4_DOTS_ADDRESS exceeds the maximum DHCPv4 option size of 255
   octets.




5.2.3. DHCPv4 Client Behavior

   To discover a peer DOTS agent, the DHCPv4 client MUST include both
   OPTION_V4_DOTS_RI and OPTION_V4_DOTS_ADDRESS in a Parameter Request
   List Option [RFC2132].



   If the DHCP client receives more than one instance of
   OPTION_V4_DOTS_RI (or OPTION_V4_DOTS_ADDRESS) option, it MUST use
   only the first instance of that option.



   If the DHCP client receives both OPTION_V4_DOTS_RI and
   OPTION_V4_DOTS_ADDRESS, the content of OPTION_V6_DOTS_RI is used as
   reference identifier for authentication purposes, while the addresses
   included in OPTION_V4_DOTS_ADDRESS are used to reach the peer DOTS
   agent.  In other words, the name conveyed in OPTION_V4_DOTS_RI MUST
   NOT be passed to underlying resolution library in the presence of
   OPTION_V4_DOTS_ADDRESS in a response.



   If the DHCP client receives OPTION_V4_DOTS_RI only, but
   OPTION_V4_DOTS_RI option contains more than one name, as
   distinguished by the presence of multiple root labels, the DHCP
   client MUST use only the first name.  Once the name is validated
   (Section 10 of [RFC8415]), the name is passed to a name resolution
   library.  Moreover, that name is also used as a reference identifier
   for authentication purposes.



   If the DHCP client receives OPTION_V4_DOTS_ADDRESS only, the
   address(es) included in OPTION_V4_DOTS_ADDRESS are used to reach the
   peer DOTS server.  In addition, these addresses can be used as
   identifiers for authentication.



   The DHCP client MUST silently discard multicast and host loopback
   addresses conveyed in OPTION_V4_DOTS_ADDRESS.




6. Discovery using Service Resolution

   This mechanism is performed in two steps:



   1.  A DNS domain name is retrieved for each combination of interface
       and address family.  A DOTS agent has to determine the domain in
       which it is located relying on dynamic means such as DHCP
       (Section 5) . Implementations may allow the user to specify a
       default name that is used, if no specific name has been
       configured.



   2.  Retrieved DNS domain names are then used for S-NAPTR lookups
       [RFC3958].  Further DNS lookups may be necessary to determine the
       peer DOTS agent IP address(es).



   Once the DOTS agent has retrieved its DNS domain or discovered the
   peer DOTS agent name that needs to be resolved (e.g., Section 5), an
   S-NAPTR lookup with 'DOTS' application service and the desired
   protocol tag is made to obtain information necessary to connect to
   the authoritative peer DOTS agent within the given domain.



   This specification defines "DOTS" and "DOTS-CALL-HOME" as application
   service tags (Sections 9.3.1 and 9.3.2).  It also defines
   "signal.udp" (Section 9.3.3), "signal.tcp" (Section 9.3.4), and
   "data.tcp" (Section 9.3.5) as application protocol tags.  An example
   is provided in Figure 8.



  In the example below, for domain 'example.net', the resolution
  algorithm will result in IP address(es), port, tag and protocol
  tuples as follows:



example.net.
IN NAPTR 100 10 "" DOTS:signal.udp "" signal.example.net.
IN NAPTR 200 10 "" DOTS:signal.tcp "" signal.example.net.
IN NAPTR 300 10 "" DOTS:data.tcp "" data.example.net.

signal.example.net.
IN NAPTR 100 10 "s" DOTS:signal.udp "" _dots._signal._udp.example.net.
IN NAPTR 200 10 "s" DOTS:signal.tcp "" _dots._signal._tcp.example.net.

data.example.net.
IN NAPTR 100 10 "s" DOTS:data.tcp "" _dots._data._tcp.example.net.

_dots._signal._udp.example.net.
IN SRV   0 0 5000 a.example.net.

_dots._signal._tcp.example.net.
IN SRV   0 0 5001 a.example.net.

_dots._data._tcp.example.net.
IN SRV   0 0 5002 a.example.net.

a.example.net.
IN AAAA  2001:db8::1

       +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
       | Order | Protocol | IP address  | Port |   Tag  |
       +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
       | 1     | UDP      | 2001:db8::1 | 5000 | Signal |
       | 2     | TCP      | 2001:db8::1 | 5001 | Signal |
       | 3     | TCP      | 2001:db8::1 | 5002 | Data   |
       +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+



    Figure 8: Sample Example of Discovery of DOTS Servers using Service

                                Resolution



   An example is provided in Figure 9 for the Call Home case.



    In the example below, for domain 'example.net', the resolution
    algorithm will result in IP address(es), port, tag and protocol
    tuples as follows:



example.net.
IN NAPTR 100 10 "" DOTS‑CALL‑HOME:signal.udp "" signal.example.net.
IN NAPTR 200 10 "" DOTS‑CALL‑HOME:signal.tcp "" signal.example.net.

signal.example.net.
IN NAPTR 100 10 "s" DOTS‑CALL‑HOME:signal.udp ""
           _dots‑call‑home._signal._udp.example.net.
IN NAPTR 200 10 "s" DOTS‑CALL‑HOME:signal.tcp ""
           _dots‑call‑home._signal._tcp.example.net.

_dots‑call‑home._signal._udp.example.net.
IN SRV   0 0 6000 b.example.net.

_dots‑call‑home._signal._tcp.example.net.
IN SRV   0 0 6001 b.example.net.

b.example.net.
IN AAAA  2001:db8::2

         +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
         | Order | Protocol | IP address  | Port |   Tag  |
         +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
         | 1     | UDP      | 2001:db8::2 | 6000 | Signal |
         | 2     | TCP      | 2001:db8::2 | 6001 | Signal |
         +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+



   Figure 9: Sample Example of Discovery of DOTS Call Home Client using

                            Service Resolution



   If no DOTS-specific S-NAPTR records can be retrieved, the discovery
   procedure fails for this domain name (and the corresponding interface
   and IP protocol version).  If more domain names are known, the
   discovery procedure MAY perform the corresponding S-NAPTR lookups
   immediately.  However, before retrying a lookup that has failed, a
   DOTS client MUST wait a time period that is appropriate for the
   encountered error (e.g., NXDOMAIN, timeout, etc.).




7. DNS Service Discovery

   DNS-based Service Discovery (DNS-SD) [RFC6763] provides generic
   solutions for discovering services.  DNS-SD defines a set of naming
   rules for certain DNS record types that they use for advertising and
   discovering services.



   Section 4.1 of [RFC6763] specifies that a service instance name in
   DNS-SD has the following structure:



   <Instance> . <Service> . <Domain>



   The <Domain> portion specifies the DNS sub-domain where the service
   instance is registered.  It may be "local.", indicating the mDNS
   local domain, or it may be a conventional domain name such as
   "example.com.".



   The <Service> portion of the DOTS service instance name MUST be
   "_dots._signal._udp" or "_dots._signal._tcp" or "_dots._data._tcp" or
   "_dots-call-home._signal._udp" or "_dots-call-home._signal._tcp".




8. Security Considerations

   DOTS-related security considerations are discussed in Section 4 of
   [I-D.ietf-dots-architecture].  As a reminder, DOTS agents must
   authenticate each other using (D)TLS before a DOTS session is
   considered valid according to the [I-D.ietf-dots-signal-channel].




8.1. DHCP

   The security considerations in [RFC2131] and [RFC8415] are to be
   considered.




8.2. Service Resolution

   The primary attack against the methods described in Section 6 is one
   that would lead to impersonation of a peer DOTS agent.  An attacker
   could attempt to compromise the S-NAPTR resolution.  The use of
   mutual authentication makes it difficult to redirect a DOTS client
   (or a Call Home DOTS server) to an illegitimate DOTS server (or a
   Call Home DOTS client).




8.3. DNS Service Discovery

   Since DNS-SD is a specification for how to name and use records in
   the existing DNS system, it has no specific additional security
   requirements over and above those that already apply to DNS queries
   and DNS updates.  For DNS queries, DNS Security Extensions (DNSSEC)
   [RFC4033] SHOULD be used where the authenticity of information is
   important.  For DNS updates, secure updates [RFC2136][RFC3007] SHOULD
   generally be used to control which clients have permission to update
   DNS records.




9. IANA Considerations

   IANA is requested to allocate the SRV service name of "_dots._signal"
   for DOTS signal channel over UDP or TCP, and the service name of
   "_dots._data" for DOTS data channel over TCP.




9.1. DHCPv6 Options

   IANA is requested to assign the following new DHCPv6 Option Codes in
   the registry maintained in: http://www.iana.org/assignments/
   dhcpv6-parameters.



Value   Description              Client ORO    Singleton Option
TBD1    OPTION_V6_DOTS_RI        Yes           Yes
TBD2    OPTION_V6_DOTS_ADDRESS   Yes           Yes




9.2. DHCPv4 Options

   IANA is requested to assign the following new DHCPv4 Option Codes in
   the registry maintained in: http://www.iana.org/assignments/bootp-
   dhcp-parameters/.



           Option Name Value Data length       Meaning
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
     OPTION_V4_DOTS_RI TBA3  Variable; the     Includes the name of
                             maximum length is the peer DOTS agent.
                             255 octets.
OPTION_V4_DOTS_ADDRESS TBA4  Variable          Includes one or more
                                               IP addresses of peer
                                               DOTS agent(s).




9.3. Application Service & Application Protocol Tags

   This document requests IANA to make the following allocations from
   the registry available at: https://www.iana.org/assignments/s-naptr-
   parameters/s-naptr-parameters.xhtml.




9.3.1. DOTS Application Service Tag Registration

   o  Application Protocol Tag: DOTS



   o  Intended Usage: See Section 6



   o  Security Considerations: See Section 8



   o  Contact Information: <one of the authors>




9.3.2. DOTS Call Home Application Service Tag Registration

   o  Application Protocol Tag: DOTS-CALL-HOME



   o  Intended Usage: See Section 6



   o  Security Considerations: See Section 8



   o  Contact Information: <one of the authors>




9.3.3. signal.udp Application Protocol Tag Registration

   o  Application Protocol Tag: signal.udp



   o  Intended Usage: See Section 6



   o  Security Considerations: See Section 8



   o  Contact Information: <one of the authors>




9.3.4. signal.tcp Application Protocol Tag Registration

   o  Application Protocol Tag: signal.tcp



   o  Intended Usage: See Section 6



   o  Security Considerations: See Section 8



   o  Contact Information: <one of the authors>




9.3.5. data.tcp Application Protocol Tag Registration

   o  Application Protocol Tag: data.tcp



   o  Intended Usage: See Section 6



   o  Security Considerations: See Section 8



   o  Contact Information: <one of the authors>




10. Contributors

Prashanth Patil
Cisco Systems, Inc.



      Email: praspati@cisco.com




11. Acknowledgements

   Thanks to Brian Carpenter for the review of the BRSKI text.



   Many thanks to Russ White for the review, comments, and text
   contribution.



   Thanks for Dan Wing, Pei Wei, Valery Smyslov, and Jon Shallow for the
   review and comments.



   Thanks to Bernie Volz for the review of the DHCP section.




12. References


12.1. Normative References


   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC2131]
  Droms, R., "Dynamic Host Configuration Protocol",
              RFC 2131, DOI 10.17487/RFC2131, March 1997,
              <https://www.rfc-editor.org/info/rfc2131>.




   [RFC2132]
  Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
              Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
              <https://www.rfc-editor.org/info/rfc2132>.




   [RFC3396]
  Lemon, T. and S. Cheshire, "Encoding Long Options in the
              Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
              DOI 10.17487/RFC3396, November 2002,
              <https://www.rfc-editor.org/info/rfc3396>.




   [RFC3958]
  Daigle, L. and A. Newton, "Domain-Based Application
              Service Location Using SRV RRs and the Dynamic Delegation
              Discovery Service (DDDS)", RFC 3958, DOI 10.17487/RFC3958,
              January 2005, <https://www.rfc-editor.org/info/rfc3958>.




   [RFC4291]
  Hinden, R. and S. Deering, "IP Version 6 Addressing
              Architecture", RFC 4291, DOI 10.17487/RFC4291, February
              2006, <https://www.rfc-editor.org/info/rfc4291>.




   [RFC6763]
  Cheshire, S. and M. Krochmal, "DNS-Based Service
              Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
              <https://www.rfc-editor.org/info/rfc6763>.




   [RFC6890]
  Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
              "Special-Purpose IP Address Registries", BCP 153,
              RFC 6890, DOI 10.17487/RFC6890, April 2013,
              <https://www.rfc-editor.org/info/rfc6890>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8415]
  Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
              Richardson, M., Jiang, S., Lemon, T., and T. Winters,
              "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
              RFC 8415, DOI 10.17487/RFC8415, November 2018,
              <https://www.rfc-editor.org/info/rfc8415>.




12.2. Informative References


   [I-D.ietf-anima-bootstrapping-keyinfra]

              Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
              and K. Watsen, "Bootstrapping Remote Secure Key
              Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
              keyinfra-29 (work in progress), October 2019.




   [I-D.ietf-dots-architecture]

              Mortensen, A., K, R., Andreasen, F., Teague, N., and R.
              Compton, "Distributed-Denial-of-Service Open Threat
              Signaling (DOTS) Architecture", draft-ietf-dots-
              architecture-14 (work in progress), May 2019.




   [I-D.ietf-dots-data-channel]

              Boucadair, M. and R. K, "Distributed Denial-of-Service
              Open Threat Signaling (DOTS) Data Channel Specification",
              draft-ietf-dots-data-channel-31 (work in progress), July
              2019.




   [I-D.ietf-dots-multihoming]

              Boucadair, M., K, R., and W. Pan, "Multi-homing Deployment
              Considerations for Distributed-Denial-of-Service Open
              Threat Signaling (DOTS)", draft-ietf-dots-multihoming-02
              (work in progress), July 2019.




   [I-D.ietf-dots-signal-call-home]

              K, R., Boucadair, M., and J. Shallow, "Distributed Denial-
              of-Service Open Threat Signaling (DOTS) Signal Channel
              Call Home", draft-ietf-dots-signal-call-home-06 (work in
              progress), September 2019.




   [I-D.ietf-dots-signal-channel]

              K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
              Teague, "Distributed Denial-of-Service Open Threat
              Signaling (DOTS) Signal Channel Specification", draft-
              ietf-dots-signal-channel-38 (work in progress), October
              2019.




   [I-D.ietf-dots-use-cases]

              Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
              L., and K. Nishizuka, "Use cases for DDoS Open Threat
              Signaling", draft-ietf-dots-use-cases-20 (work in
              progress), September 2019.




   [RFC2136]
  Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
              "Dynamic Updates in the Domain Name System (DNS UPDATE)",
              RFC 2136, DOI 10.17487/RFC2136, April 1997,
              <https://www.rfc-editor.org/info/rfc2136>.




   [RFC3007]
  Wellington, B., "Secure Domain Name System (DNS) Dynamic
              Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
              <https://www.rfc-editor.org/info/rfc3007>.




   [RFC4033]
  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "DNS Security Introduction and Requirements",
              RFC 4033, DOI 10.17487/RFC4033, March 2005,
              <https://www.rfc-editor.org/info/rfc4033>.




   [RFC6125]
  Saint-Andre, P. and J. Hodges, "Representation and
              Verification of Domain-Based Application Service Identity
              within Internet Public Key Infrastructure Using X.509
              (PKIX) Certificates in the Context of Transport Layer
              Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
              2011, <https://www.rfc-editor.org/info/rfc6125>.




   [RFC7227]
  Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
              S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
              BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
              <https://www.rfc-editor.org/info/rfc7227>.




   [RFC8572]
  Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
              Touch Provisioning (SZTP)", RFC 8572,
              DOI 10.17487/RFC8572, April 2019,
              <https://www.rfc-editor.org/info/rfc8572>.



Authors' Addresses



Mohamed Boucadair
Orange
Rennes  35000
France



   Email: mohamed.boucadair@orange.com




Tirumaleswar Reddy
McAfee, Inc.
Embassy Golf Link Business Park
Bangalore, Karnataka  560071
India



   Email: TirumaleswarReddy_Konda@McAfee.com





































draft-ietf-dots-signal-call-home-07 - Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Call Home 






draft-ietf-dots-signal-call-home-07 - Distributed Denial-of-Service Open Threat 

Index
Prev
Next
Forward 5


DOTS

Internet-Draft

Intended status: Standards Track

Expires: May 21, 2020






T. Reddy

McAfee

M. Boucadair

Orange

J. Shallow

November 18, 2019

Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Call Home  

draft-ietf-dots-signal-call-home-07


Abstract

   This document specifies the DOTS signal channel Call Home, which
   enables a DOTS server to initiate a secure connection to a DOTS
   client, and to receive the attack traffic information from the DOTS
   client.  The DOTS server in turn uses the attack traffic information
   to identify the compromised devices launching the outgoing DDoS
   attack and takes appropriate mitigation action(s).



   The DOTS signal channel Call Home is not specific to the home
   networks; the solution targets any deployment which requires to block
   DDoS attack traffic closer to the source(s) of a DDoS attack.



Editorial Note (To be removed by RFC Editor)



   Please update these statements within the document with the RFC
   number to be assigned to this document:



   o  "This version of this YANG module is part of RFC XXXX;"



   o  "RFC XXXX: Distributed Denial-of-Service Open Threat Signaling
      (DOTS) Signal Channel Call Home";



   o  "| [RFCXXXX] |"



   o  reference: RFC XXXX



   Please update this statement with the RFC number to be assigned to
   the following documents:



   o  "RFC YYYY: Distributed Denial-of-Service Open Threat Signaling
      (DOTS) Signal Channel Specification (used to be I-D.ietf-dots-
      signal-channel)



   Please update TBD statements with the assignment made by IANA to DOTS
   Signal Channel Call Home.



   Also, please update the "revision" date of the YANG module.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 21, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction
	 1.1.  The Problem


	 1.2.  The Solution


	 1.3.  Applicability Scope


	 1.4.  Co-existence of Base DOTS Signal Channel & DOTS Call Home



	2.  Terminology


	3.  DOTS Signal Channel Call Home
	 3.1.  Procedure


	 3.2.  DOTS Signal Channel Variations
	  3.2.1.  Heartbeat Mechanism


	  3.2.2.  Redirected Signaling



	 3.3.  DOTS Signal Channel Extension
	  3.3.1.  Mitigation Request


	  3.3.2.  Address Sharing Considerations


	  3.3.3.  DOTS Signal Call Home YANG Module





	4.  IANA Considerations
	 4.1.  DOTS Signal Channel Call Home UDP and TCP Port Number


	 4.2.  DOTS Signal Channel CBOR Mappings Registry


	 4.3.  New DOTS Conflict Cause


	 4.4.  DOTS Signal Call Home YANG Module



	5.  Security Considerations


	6.  Privacy Considerations


	7.  Contributors


	8.  Acknowledgements


	9.  References
	 9.1.  Normative References


	 9.2.  Informative References



	Appendix A.  Disambiguate Base DOTS Signal vs. DOTS Call Home


	Authors' Addresses




1. Introduction


1.1. The Problem

   The DOTS signal channel protocol [I-D.ietf-dots-signal-channel] is
   used to carry information about a network resource or a network (or a
   part thereof) that is under a Distributed Denial of Service (DDoS)
   attack [RFC4732].  Such information is sent by a DOTS client to one
   or multiple DOTS servers so that appropriate mitigation actions are
   undertaken on traffic deemed suspicious.  Various use cases are
   discussed in [I-D.ietf-dots-use-cases].



   Internet of Things (IoT) devices are becoming more and more prevalent
   in home networks, in particular.  With compute and memory becoming
   cheaper and cheaper, various types of IoT devices become available in
   the consumer market at affordable prices.  But on the downside, the
   main threat being most of these IoT devices are bought off-the-shelf
   and most manufacturers haven't considered security in the product
   design (e.g., [Sec]).  IoT devices deployed in home networks can be
   easily compromised, they do not have an easy mechanism to upgrade,
   and IoT manufactures may cease manufacture and/or discontinue
   patching vulnerabilities on IoT devices (Sections 5.4 and 5.5 of
   [RFC8576]).  These vulnerable and compromised devices will continue
   to be used for a long period of time in the home, and the end-user
   does not know that IoT devices in his/her home are compromised.  The
   compromised IoT devices are typically used for launching DDoS attacks
   (Section 3 of [RFC8576]) on victims while the owner/administrator of
   the home network is not aware about such misbehaviors.  Similar to
   other DDoS attacks, the victim in this attack can be an application
   server, a host, a router, a firewall, or an entire network.  Such
   misbehaviors will have a collateral damage that affects end users and
   the reputation of an Internet Service Provider (ISP).



   Nowadays, network devices in a home network offer network security
   (e.g., firewall [RFC4949] or Intrusion Protection System (IPS)
   service [I-D.ietf-i2nsf-terminology] on a home router) to protect the
   devices connected to the home network from both external and internal
   attacks.  Over the years several techniques have been identified to
   detect DDoS attacks, some of these techniques can be enabled on home
   network devices but most of them are used within the ISP's network.
   The ISP offering a DDoS mitigation service can detect outgoing DDoS
   attack traffic originating from its subscribers or the ISP may
   receive filtering rules (e.g., using BGP Flowspec
   [RFC5575][I-D.ietf-idr-flow-spec-v6]) from a downstream service
   provider to filter, block, or rate-limit DDoS attack traffic
   originating from the ISP's subscribers to a downstream target.



   Some of the DDoS attacks like spoofed RST or FIN packets, Slowloris,
   and Transport Layer Security (TLS) re-negotiation are difficult to
   detect on a home network device without adversely affecting its
   performance.  The reason is typically home devices such as home
   routers have fast path to boost the throughput.  For every new TCP/
   UDP flow, only the first few packets are punted through the slow
   path.  Hence, it is not possible to detect various DDoS attacks in
   the slow path, since the attack payload is sent to the target server
   after the flow is switched to fast path.  The reader may refer to
   Section 2 of [RFC6398] for a brief definition of slow and fast paths.



   Deep Packet Inspection (DPI) of all the packets of a flow would be
   able to detect some of the attacks.  However, a full-fledged DPI to
   detect these type of DDoS attacks is functionally or operationally
   not possible for all the devices attached to the home network owing
   to the memory and CPU limitations of the home routers.  Furthermore,
   for certain DDoS attacks the ability to distinguish legitimate
   traffic from attack traffic on a per packet basis is complex.  This
   complexity is due to that the packet itself may look "legitimate" and
   no attack signature can be identified.  The anomaly can be identified
   only after detailed statistical analysis.



   ISPs can detect some DDoS attacks originating from a home network
   (e.g., Section 2.6 of [RFC8517]), but the ISP does not have a
   mechanism to detect which device in the home network is generating
   the DDoS attack traffic.  The primary reason being that devices in an
   IPv4 home network are typically behind a Network Address Translation
   (NAT) border [RFC2663].  Even in case of an IPv6 home network,
   although the ISP can identify the infected device in the home network
   launching the DDoS traffic by tracking its unique IPv6 address, the
   infected device can easily change its IPv6 address to evade
   remediation.



   Existing approaches are still suffering from misused access network
   resources by abusing devices; the support of means for blocking such
   attacks close to the sources are missing.  In particular, the DOTS
   signal protocol does not discuss cooperative DDoS mitigation between
   the network hosting an attack source and the ISP to the suppress the
   outbound DDoS attack traffic originating from that network.




1.2. The Solution

   This specification addresses the problems discussed in Section 1.1
   and presents an extension to the DOTS signal channel: DOTS signal
   channel Call Home.



   'DOTS signal channel Call Home' (or DOTS Call Home, for short) refers
   to a DOTS signal channel established at the initiative of a DOTS
   server.  That is, the DOTS server initiates a secure connection to a
   DOTS client, and uses that connection to receive the attack traffic
   information (e.g., attack sources) from the DOTS client.  More
   details are provided in Section 3.



   DOTS agents involved in the DOTS Call Home adhere to the DOTS roles
   as defined in [RFC8612].  For clarity, this document uses "Call Home
   DOTS client" (or "Call Home DOTS server") to refer to a DOTS client
   (or DOTS server) deployed in a Call Home scenario (Figure 1).



   A high-level DOTS Call Home functional architecture is shown in
   Figure 1.  Attack source(s) are within the DOTS server domain.



                               Scope
                     +.‑.‑.‑.‑.‑.‑.‑.‑.‑.‑.‑.+
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+    :    +‑‑‑‑‑‑‑‑‑‑‑‑‑+    :
| Alert/DMS/    | ~~~:~~~ |  Call Home  |    :
| Peer DMS/...  |    :    | DOTS client |    :
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+    :    +‑‑‑‑‑‑+‑‑‑‑‑‑+    :
                     :           |           :
                     :           |           :
                     :           |           :
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+    :    +‑‑‑‑‑‑+‑‑‑‑‑‑+    :
|    Attack     | ~~~:~~~ |  Call Home  |    :
|   Source(s)   |    :    | DOTS server |    :
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+    :    +‑‑‑‑‑‑‑‑‑‑‑‑‑+    :
                     +.‑.‑.‑.‑.‑.‑.‑.‑.‑.‑.‑.+



   Figure 1: Basic DOTS Signal Channel Call Home Functional Architecture



   A DOTS client relies upon a variety of triggers to make use of the
   Call Home function (e.g., scrubbing the traffic from the attack
   source, receiving an alert from an attack target, a peer DDoS
   Mitigation System (DMS), or a transit provider).  The definition of
   these triggers is deployment-specific.  It is therefore out of the
   scope of this document to elaborate on how these triggers are made
   available to a Call Home DOTS client.



   In a typical deployment scenario, the Call Home DOTS server is
   enabled on a Customer Premises Equipment (CPE), which is aligned with
   recent trends to enrich the CPE with advanced security features.
   Unlike classic DOTS deployments [I-D.ietf-dots-use-cases], such DOTS
   server maintains a single DOTS signal channel session for each DOTS-
   capable upstream provisioning domain [I-D.ietf-dots-multihoming].



   For instance, the Call Home DOTS server in the home network initiates
   the signal channel Call Home in 'idle' time and then subsequently the
   Call Home DOTS client in the ISP environment can initiate a
   mitigation request whenever the ISP detects there is an attack from a
   compromised device in the DOTS server domain (i.e., from within the
   home network).



   The Call Home DOTS server uses the DDoS attack traffic information to
   identify the compromised device in its domain that is responsible for
   launching the DDoS attack, optionally notifies a network
   administrator, and takes appropriate mitigation action(s).  For
   example, a mitigation action can be to quarantine the compromised
   device or block its traffic to the attack target(s) until the
   mitigation request is withdrawn.



   Other motivations for introducing the Call Home function are
   discussed in Section 1.1 of [RFC8071].



   This document assumes that Call Home DOTS servers are provisioned
   with a way to know how to reach the upstream Call Home DOTS
   client(s), which could occur by a variety of means (e.g.,
   [I-D.ietf-dots-server-discovery]).  The specification of such means
   are out of scope of this document.



   More information about the applicability scope of the DOTS signal
   channel Call Home is provided in Section 1.3.




1.3. Applicability Scope

   The aforementioned problems may be encountered in other deployments
   than those discussed in Section 1.1 (e.g., data centers, enterprise
   networks).  The solution specified in this document can be used for
   those deployments to block DDoS attack traffic closer to the
   source(s) of the attack.



   An instantiation of the Call Home functional architecture is depicted
   in Figure 2.



                +‑‑‑‑‑‑‑‑‑‑‑‑‑+
                |Attack Target|
                +‑‑‑‑‑+‑‑‑‑‑‑‑+
                      | /\      Target Network
......................|.||....................
             .‑‑‑‑‑‑‑‑+‑||‑‑‑‑‑‑‑.
            (           ||        )‑.
          .'            ||           '
          (  Internet   ||            )
           (            ||          ‑'
            '‑(         ||          )
               '‑‑‑‑‑‑+‑||‑‑‑‑‑‑‑‑‑'
......................|.||.....................
             .‑‑‑‑‑‑‑‑+‑||‑‑‑‑‑‑‑.      Network
            (           ||        )‑.  Provider
          .' Call Home  ||           '   (DMS)
          ( DOTS client ||            )
           (            ||          ‑'
            '‑(         ||          )
               '‑‑‑‑‑‑+‑||‑‑‑‑‑‑‑‑‑'
......................|.||.......................
             .‑‑‑‑‑‑‑‑+‑||‑‑‑‑‑‑‑. Source Network
            (           ||        )‑.
          .' Call Home  ||           '
          ( DOTS server || Outbound   )
           (            ||   DDoS   ‑'
            '‑(         ||  Attack  )
               '‑‑‑‑‑‑+‑||‑‑‑‑‑‑‑‑‑'
                      | ||
                +‑‑‑‑‑+‑++‑‑‑‑+
                |Attack Source|
                +‑‑‑‑‑‑‑‑‑‑‑‑‑+



      Figure 2: DOTS Signal Channel Call Home Reference Architecture



   It is out of the scope of this document to identify an exhaustive
   list of such deployments.




1.4. Co-existence of Base DOTS Signal Channel & DOTS Call Home

   The DOTS signal channel Call Home does not require nor preclude the
   activation of the base DOTS signal channel
   [I-D.ietf-dots-signal-channel].  Some sample deployment schemes are
   discussed in this section for illustration purposes.



   The network that hosts an attack source may also be subject to
   inbound DDoS attacks.  In that case, both the base DOTS signal
   channel and DOTS signal channel Call Home may be enabled as shown in
   Figure 3 (Same DMS provider) or Figure 4 (Distinct DMS providers).



    DOTS Signal Channel      Base DOTS
        Call Home          Signal Channel
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
   :          +‑‑‑‑‑‑+ :: +‑‑‑‑‑‑+          :
   :          | DOTS | :: | DOTS |          :
   :          |client| :: |server|          :
   :          +‑‑+‑‑‑+ :: +‑‑‑+‑‑+          :
   :     /\      |     ::     |             : Network
   :     ||      |     ::     |             :Provider
   :     ||      |     ::     |             :  (DMS)
...:.....||......|.....::.....|.............:........
Outbound ||      |     ::     |       || Inbound
  DDoS   ||      |     ::     |       ||   DDoS
 Attack  ||      |     ::     |       \/  Attack
   :          +‑‑+‑‑‑+ :: +‑‑‑+‑‑+          :
   :          | DOTS | :: | DOTS |          :
   :          |server| :: |client|          :
   :          +‑‑‑‑‑‑+ :: +‑‑‑‑‑‑+          :
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
                   Network #A



   Figure 3: Activation of Base DOTS Signal Channel and Call Home (Same

                               DMS Provider)



   Note that a DMS provider may not be on the default forwarding path of
   an inbound DDoS attack traffic targeting a network (e.g., Network #B
   in Figure 4).  Nevertheless, the DOTS signal channel Call Home
   requires the DMS provider to be on the default forwarding path of the
   outbound traffic from a given network.



    DOTS Signal Channel      Base DOTS
        Call Home          Signal Channel
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
   : Network  +‑‑‑‑‑‑+ :: +‑‑‑‑‑‑+   Third  :
   : Provider | DOTS | :: | DOTS |   Party  :
   :  (DMS)   |client| :: |server|    DMS   :
   :          +‑‑+‑‑‑+ :: +‑‑‑+‑‑+ Provider :
   :     /\      |     ::     |             :
   :     ||      |     ::     |             :
   :     ||      |     ::     |             :
...:.....||......|.....::.....|.............:........
Outbound ||      |     ::     |       || Inbound
  DDoS   ||      |     ::     |       ||   DDoS
 Attack  ||      |     ::     |       \/  Attack
   :          +‑‑+‑‑‑+ :: +‑‑‑+‑‑+          :
   :          | DOTS | :: | DOTS |          :
   :          |server| :: |client|          :
   :          +‑‑‑‑‑‑+ :: +‑‑‑‑‑‑+          :
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
                   Network #B



      Figure 4: Activation of Base DOTS Signal Channel and Call Home

                         (Distinct DMS Providers)



   Figures 5 and 6 depict examples where the same node embeds both base
   DOTS and DOTS Call Home agents.  For example, a DOTS server and a
   Call Home DOTS client may be enabled on the same device within the
   infrastructure of a DMS provider (e.g., Node #i in Figure 5) or a
   DOTS client and a Call Home DOTS server may be enabled on the same
   device within a source network (e.g., Node #j with Network #D shown
   in Figure 6) .



   Whether the same or distinct nodes are used to host base DOTS and
   DOTS Call Home agents is specific to each domain.



    DOTS Signal Channel      Base DOTS
        Call Home          Signal Channel
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
   :        +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        :
   :        |       Node #i        |        :
   :        | +‑‑‑‑‑‑+    +‑‑‑‑‑‑+ |        :
   :        | | DOTS |    | DOTS | |        :
   :        | |client|    |server| |        :
   :        | +‑‑+‑‑‑+    +‑‑‑+‑‑+ |        :
   :        +‑‑‑‑|‑‑‑‑‑::‑‑‑‑‑|‑‑‑‑+        : Network
   :     /\      |     ::     |             :Provider
   :     ||      |     ::     |             :  (DMS)
...:.....||......|.....::.....|.............:........
Outbound ||      |     ::     |       || Inbound
  DDoS   ||      |     ::     |       ||   DDoS
 Attack  ||      |     ::     |       \/  Attack
   :          +‑‑+‑‑‑+ :: +‑‑‑+‑‑+          :
   :          | DOTS | :: | DOTS |          :
   :          |server| :: |client|          :
   :          +‑‑‑‑‑‑+ :: +‑‑‑‑‑‑+          :
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
                   Network #C



   Figure 5: An Example of the Same Node Embedding both a Call Home DOTS

          Client and a DOTS Server at the Network Provider's Side



    DOTS Signal Channel      Base DOTS
        Call Home          Signal Channel
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
   :        +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        :
   :        |       Node #k        |        :
   :        | +‑‑‑‑‑‑+    +‑‑‑‑‑‑+ |        :
   :        | | DOTS |    | DOTS | |        :
   :        | |client|    |server| |        :
   :        | +‑‑+‑‑‑+    +‑‑‑+‑‑+ |        :
   :        +‑‑‑‑|‑‑‑‑‑::‑‑‑‑‑|‑‑‑‑+        : Network
   :     /\      |     ::     |             :Provider
   :     ||      |     ::     |             :  (DMS)
...:.....||......|.....::.....|.............:........
Outbound ||      |     ::     |       || Inbound
  DDoS   ||      |     ::     |       ||   DDoS
 Attack  ||      |     ::     |       \/  Attack
   :        +‑‑‑‑|‑‑‑‑‑::‑‑‑‑‑|‑‑‑‑+        :
   :        | +‑‑+‑‑‑+    +‑‑‑+‑‑+ |        :
   :        | | DOTS |    | DOTS | |        :
   :        | |server|    |client| |        :
   :        | +‑‑‑‑‑‑+    +‑‑‑‑‑‑+ |        :
   :        |       Node #j        |        :
   :        +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+        :
   +‑.‑.‑.‑.‑.‑.‑.‑.‑.‑++‑.‑.‑.‑.‑.‑.‑.‑.‑.‑+
                   Network #D



     Figure 6: Another Example where the Same Node Embeds both a DOTS

                    Client and a Call Home DOTS Server



   Appendix A elaborates on the considerations to unambiguously
   distinguish DOTS messages which belong to each of these channels.




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119][RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   The reader should be familiar with the terms defined in [RFC8612].



   'Base DOTS signal channel' refers to [I-D.ietf-dots-signal-channel].



   The meaning of the symbols in YANG tree diagrams is defined in
   [RFC8340].



   (D)TLS is used for statements that apply to both Transport Layer
   Security (TLS) [RFC8446] and Datagram Transport Layer Security (DTLS)
   [RFC6347].  Specific terms are used for any statement that applies to
   either protocol alone.




3. DOTS Signal Channel Call Home


3.1. Procedure

   The DOTS signal channel Call Home preserves all but one of the DOTS
   client/server roles in the DOTS protocol stack, as compared to DOTS
   client-initiated DOTS signal channel protocol
   [I-D.ietf-dots-signal-channel].  The role reversal that occurs is at
   the (D)TLS layer; that is, (1) the Call Home DOTS server acts as a
   DTLS client and the Call Home DOTS client acts as a DTLS server or
   (2) the Call Home DOTS server acts as a TLS client initiating the
   underlying TCP connection and the Call Home DOTS client acts as a TLS
   server.  The Call Home DOTS server initiates (D)TLS handshake to the
   Call Home DOTS client.



   For example, a home network element (e.g., home router) co-located
   with a Call Home DOTS server is the (D)TLS server.  However, when
   calling home, the DOTS server initially assumes the role of the
   (D)TLS client, but the network element's role as a DOTS server
   remains the same.  Furthermore, existing certificate chains and
   mutual authentication mechanisms between the DOTS agents are
   unaffected by the Call Home function.  This Call Home function
   enables the DOTS server co-located with a network element (possibly
   behind NATs and firewalls) reachable by only the intended Call Home
   DOTS client and hence the Call Home DOTS server cannot be subjected
   to these DDoS attacks.



   Figure 7 illustrates a sample DOTS Call Home flow exchange:



+‑‑‑‑‑‑‑‑‑‑‑+                        +‑‑‑‑‑‑‑‑‑‑‑+
| Call Home |                        | Call Home |
|    DOTS   |                        |    DOTS   |
|   server  |                        |   client  |
+‑‑‑‑‑+‑‑‑‑‑+                        +‑‑‑‑‑+‑‑‑‑‑+
(D)TLS client                        (D)TLS server
      |                                    |
      |         1. (D)TLS connection       |
      |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
      |         2. Mitigation request      |
      |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
      |              ...                   |



         Figure 7: DOTS Signal Channel Call Home Sequence Diagram



   The DOTS signal channel Call Home procedure is as follows:



   1.  If UDP transport is used, the Call Home DOTS server begins by
       initiating a DTLS connection to the Call Home DOTS client.



       If TCP is used, the Call Home DOTS server begins by initiating a
       TCP connection to the Call Home DOTS client.  Once connected, the
       Call Home DOTS server continues to initiate a TLS connection to
       the Call Home DOTS client.



       In some cases, peer DOTS agents may have mutual agreement to use
       a specific port number, such as by explicit configuration or
       dynamic discovery [I-D.ietf-dots-server-discovery].  Absent such
       mutual agreement, the DOTS signal channel Call Home MUST run over
       port number TBD (that is, Call Home DOTS clients must support
       accepting DTLS (or TCP) connections on TBD) as defined in
       Section 4.1, for both UDP and TCP.  The interaction between the
       base DOTS signal channel and the Call Home is discussed in
       Appendix A.



       The Happy Eyeballs mechanism explained in Section 4.3 of
       [I-D.ietf-dots-signal-channel] is used for initiating (D)TLS
       connections.



   2.  Using this (D)TLS connection, the Call Home DOTS client may
       request, withdraw, or retrieve the status of mitigation requests.
       The Call Home DOTS client supplies the source information by
       means of new attributes defined in Section 3.3.1.



       The Heartbeat mechanism used for the DOTS Call Home deviates from
       the one defined in Section 4.7 of [I-D.ietf-dots-signal-channel].
       Section 3.2.1 specifies the behavior to be followed by Call Home
       DOTS agents.




3.2. DOTS Signal Channel Variations


3.2.1. Heartbeat Mechanism

   Once the (D)TLS section is established between the DOTS agents, the
   Call Home DOTS client contacts the Call Home DOTS server to retrieve
   the session configuration parameters (Section 4.5 of
   [I-D.ietf-dots-signal-channel]).  The Call Home DOTS server adjusts
   the 'heartbeat-interval' to accommodate binding timers used by on-
   path NATs and firewalls.  Heartbeats will be then exchanged by the
   DOTS agents following the instructions retrieved using the signal
   channel session configuration exchange.



   It is the responsibility of Call Home DOTS servers to ensure that on-
   path translators/firewalls are maintaining a binding so that the same
   external IP address and/or port number is retained for the DOTS
   signal channel session.  A Call Home DOTS client MAY trigger their
   heartbeat requests immediately after receiving heartbeat probes from
   its peer Call Home DOTS server.



   When an outgoing attack that saturates the outgoing link from the
   Call Home DOTS server is detected and reported by a Call Home DOTS
   client, the latter MUST continue to use the DOTS signal channel even
   if no traffic is received from the Call Home DOTS server.



   If the Call Home DOTS server receives traffic from the Call Home DOTS
   client, the Call Home DOTS server MUST continue to use the DOTS
   signal channel even if the missing heartbeats allowed threshold
   ('missing-hb-allowed') is reached.



   If the Call Home DOTS server does not receive any traffic from the
   peer Call Home DOTS client during the time span required to exhaust
   the maximum 'missing-hb-allowed' threshold, the Call Home DOTS server
   concludes the session is disconnected.  Then, the Call Home DOTS
   server MUST try to resume the (D)TLS session.




3.2.2. Redirected Signaling

   A Call Home DOTS server MUST NOT support the Redirected Signaling
   mechanism as specified in Section 4.6 of
   [I-D.ietf-dots-signal-channel] (i.e., a 5.03 response that conveys an
   alternate DOTS server's FQDN or alternate DOTS server's IP
   address(es)).  A Call Home DOTS client MUST silently discard such
   message as only a Call Home DOTS server can initiate a new (D)TLS
   connection.



   If a Call Home DOTS client wants to redirect a Call Home DOTS server
   to another Call Home DOTS client, it MUST send a Non-confirmable PUT
   request to the predefined resource ".well-known/dots/redirect" with
   the new Call Home DOTS client FQDN or IP address in the body of the
   PUT similar to what is described in Section 4.6 of
   [I-D.ietf-dots-signal-channel].  Furthermore, a new clause called
   'ttl" is defined to return the Time to live (TTL) of the alternate
   Call Home DOTS client.



   On receipt of this PUT request, the Call Home DOTS server responds
   with a 2.01 (Created), closes this connection and establishes a
   connection with the new Call Home DOTS client.  The processing of the
   TTL is defined in Section 4.6 of [I-D.ietf-dots-signal-channel].  If
   the Call Home DOTS server cannot service the PUT request, the
   response is rejected with a 4.00 (bad Request).



   Figure 8 shows a PUT request example to convey the alternate Call
   Home DOTS client 'alt-call-home-client.example' together with its IP
   addresses 2001:db8:6401::1 and 2001:db8:6401::2.  The validity of
   this alternate Call Home DOTS client is 10 minutes.



Header: PUT (Code=0.03)
Uri‑Path: ".well‑known"
Uri‑Path: "dots"
Uri‑Path: "redirect"
Uri‑Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri‑Path: "mid=123"
Content‑Format: "application/dots+cbor"

{
  "ietf‑dots‑signal‑channel:redirected‑signal": {
    "ietf‑dots‑call‑home:alt‑ch‑client":
                  "alt‑call‑home‑client.example",
    "ietf‑dots‑call‑home:alt‑ch‑client‑record": [
       "2001:db8:6401::1",
       "2001:db8:6401::2"
     ],
    "ietf‑dots‑call‑home:ttl": 600
}



        Figure 8: Example of a PUT Request for Redirected Signaling




3.3. DOTS Signal Channel Extension


3.3.1. Mitigation Request

   This specification extends the mitigation request defined in
   Section 4.4.1 of [I-D.ietf-dots-signal-channel] to convey the attack
   source information (e.g., source prefixes, source port numbers).  The
   DOTS client conveys the following new parameters in the CBOR body of
   the mitigation request:



source‑prefix:  A list of attacker prefixes used to attack the
   target.  Prefixes are represented using Classless Inter‑Domain
   Routing (CIDR) notation [RFC4632].



      As a reminder, the prefix length MUST be less than or equal to 32
      (or 128) for IPv4 (or IPv6).



      The prefix list MUST NOT include broadcast, loopback, or multicast
      addresses.  These addresses are considered as invalid values.  In
      addition, the DOTS client MUST validate that attacker prefixes are
      within the scope of the DOTS server domain.



      This is an optional attribute for the base DOTS signal channel
      operations.



source‑port‑range:  A list of port numbers used by the attack traffic
   flows.



      A port range is defined by two bounds, a lower port number (lower-
      port) and an upper port number (upper-port).  When only 'lower-
      port' is present, it represents a single port number.



      For TCP, UDP, Stream Control Transmission Protocol (SCTP)
      [RFC4960], or Datagram Congestion Control Protocol (DCCP)
      [RFC4340], a range of ports can be any subrange of 0-65535, for
      example, 0-1023, 1024-65535, or 1024-49151.



      This is an optional attribute for the base DOTS signal channel
      operations.



source‑icmp‑type‑range:  A list of ICMP types used by the attack
   traffic flows.  An ICMP type range is defined by two bounds, a
   lower ICMP type (lower‑type) and an upper ICMP type (upper‑type).
   When only 'lower‑type' is present, it represents a single ICMP
   type.



      This is an optional attribute for the base DOTS signal channel
      operations.



   The 'source-prefix' parameter is a mandatory attribute when the
   attack traffic information is signaled by a Call Home DOTS client
   (i.e., the Call Home scenario depicted in Figure 7).  The 'target-
   uri' or 'target-fqdn' parameters can be included in a mitigation
   request for diagnostic purposes to notify the Call Home DOTS server
   domain administrator, but SHOULD NOT be used to determine the target
   IP addresses.  Note that 'target-prefix' becomes a mandatory
   attribute in the mitigation request signaling the attack information
   because 'target-uri' and 'target-fqdn' are optional attributes and
   'alias-name' will not be conveyed in a mitigation request.



   In order to help attack source identification by a Call Home DOTS
   server, the Call Home DOTS client SHOULD include in its mitigation
   request additional information such as 'source-port-range' or
   'source-icmp-type-range'.  The Call Home DOTS client may not include
   such information if 'source-prefix' conveys an IPv6 address/prefix.
   Address sharing implications on the setting of source information
   ('source-prefix', 'source-port-range') are discussed in
   Section 3.3.2.



   Only immediate mitigation requests (i.e., 'trigger-mitigation' set to
   'true') are allowed; Call Home DOTS clients MUST NOT send requests
   with 'trigger-mitigation' set to 'false'.  Such requests MUST be
   discarded by the Call Home DOTS server with a 4.00 (Bad Request).



   An example of a mitigation request sent by a Call Home DOTS client is
   shown in Figure 9.



Header: PUT (Code=0.03)
Uri‑Path: ".well‑known"
Uri‑Path: "dots"
Uri‑Path: "mitigate"
Uri‑Path: "cuid=dz6pHjaADkaFTbjr0JGBpw"
Uri‑Path: "mid=56"
Content‑Format: "application/dots+cbor"

{
  "ietf‑dots‑signal‑channel:mitigation‑scope": {
    "scope": [
      {
        "target‑prefix": [
           "2001:db8:c000::/128"
         ],
        "ietf‑dots‑call‑home:source‑prefix": [
           "2001:db8:123::/128"
         ],
        "lifetime": 3600
      }
    ]
  }
}



   Figure 9: An Example of Mitigation Request Issued by a Call Home DOTS

                                  Client



   The Call Home DOTS server MUST check that the 'source-prefix' is
   within the scope of the Call Home DOTS server domain.  Note that in a
   DOTS Call Home scenario, the Call Home DOTS server considers, by
   default, that any routeable IP prefix enclosed in 'target-prefix' is
   within the scope of the Call Home DOTS client.  Invalid mitigation
   requests are handled as per Section 4.4.1 of
   [I-D.ietf-dots-signal-channel].



      Note: These validation checks do not apply when the source
      information is included as a hint in the context of the base DOTS
      signal channel.



   The Call Home DOTS server domain administrator consent MAY be
   required to block the traffic from the compromised device to the
   attack target.  An implementation MAY have a configuration knob to
   block the traffic from the compromised device to the attack target
   with or without DOTS server domain administrator consent.  If the
   attack traffic is blocked, the Call Home DOTS server informs the Call
   Home DOTS client that the attack is being mitigated.



   If the attack traffic information is identified by the Call Home DOTS
   server or the Call Home DOTS server domain administrator as
   legitimate traffic, the mitigation request is rejected, and 4.09
   (Conflict) is returned to the Call Home DOTS client.  The conflict-
   clause (defined in Section 4.4.1 of [I-D.ietf-dots-signal-channel])
   indicates the cause of the conflict.  The following new value is
   defined:



   4: Mitigation request rejected.  This code is returned by the DOTS

      server to indicate the attack traffic has been classified as
      legitimate traffic.



   Once the request is validated by the Call Home DOTS server,
   appropriate actions are enforced to block the attack traffic within
   the source network.  The Call Home DOTS client is informed about the
   progress of the attack mitigation following the rules in
   [I-D.ietf-dots-signal-channel].  For example, if the Call Home DOTS
   server is embedded in a CPE, it can program the packet processor to
   punt all the traffic from the compromised device to the target to
   slow path.  The CPE inspects the punted slow path traffic to detect
   and block the outgoing DDoS attack traffic or quarantine the device
   (e.g., using MAC level filtering) until it is remediated, and
   notifies the CPE administrator about the compromised device.



   The DOTS agents follow the same procedures specified in
   [I-D.ietf-dots-signal-channel] for managing a mitigation request.




3.3.2. Address Sharing Considerations

   If a Carrier Grade NAT (CGN, including NAT64) is located between the
   DOTS client domain and DOTS server domain, communicating an external
   IP address in a mitigation request is likely to be discarded by the
   Call Home DOTS server because the external IP address is not visible
   locally to the Call Home DOTS server (see Figure 10).  The Call Home
   DOTS server is only aware of the internal IP addresses/prefixes bound
   to its domain.  Thus, the Call Home DOTS client MUST NOT include the
   external IP address and/or port number identifying the suspect attack
   source, but MUST include the internal IP address and/or port number.
   To that aim, the Call Home DOTS client SHOULD rely on mechanisms,
   such as [RFC8512] or [RFC8513], to retrieve the internal IP address
   and port number which are mapped to an external IP address and port
   number.



N |        .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
E |       (                     )‑.
T |     .'                         '
W |     (        Call Home          )
O |      (      DOTS client       ‑'
R |       '‑(                     )
K |          '‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑'
  |                  |
P |                  |
R |              +‑‑‑+‑‑‑+
O |              |  CGN  |        External Realm
V |..............|       |......................
I |              |       |        Internal Realm
D |              +‑‑‑+‑‑‑+
E |                  |
R |                  |
 ‑‑‑                 |
           .‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑.
          (                     )‑.
        .'     Source Network      '
        (                           )
         (        Call Home        ‑'
          '‑(    DOTS server      )
             '‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑'
                    |
              +‑‑‑‑‑+‑‑‑‑‑‑‑+
              |Attack Source|
              +‑‑‑‑‑‑‑‑‑‑‑‑‑+



             Figure 10: Example of a CGN between DOTS Domains



   If a MAP Border Relay [RFC7597] or lwAFTR [RFC7596] is enabled in the
   provider's domain to service its customers, the identification of an
   attack source bound to an IPv4 address/prefix MUST also rely on
   source port numbers because the same IPv4 address is assigned to
   multiple customers.  The port information is required to
   unambiguously identify the source of an attack.



   If a translator is enabled on the boundaries of the domain hosting
   the Call Home DOTS server (e.g., a CPE with NAT enabled as shown in
   Figures 11 and 12), the Call Home DOTS server uses the attack traffic
   information conveyed in a mitigation request to find the internal
   source IP address of the compromised device and blocks the traffic
   from the compromised device traffic to the attack target until the
   mitigation request is withdrawn.  Doing so allows to isolate the
   suspicious device while avoiding to disturb other services.



           .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
          (                     )‑.
        .'   Network Provider (DMS)'
        (                           )
         (        Call Home       ‑'
          '‑(    DOTS client      )
             '‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑'
                     |
 ‑‑‑             +‑‑‑+‑‑‑+
S |              |  CPE  |  External Realm
O |..............|       |................
U |              |  NAT  |  Internal Realm
R |              +‑‑‑+‑‑‑+
C |                  |
E |        .‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑.
  |       (                     )‑.
N |     .'                         '
E |     (          Call Home        )
T |      (        DOTS server     ‑'
W |       '‑(                     )
O |          '‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑'
R |                  |
K |           +‑‑‑‑‑‑+‑‑‑‑‑‑+
  |           |Attack Source|
              +‑‑‑‑‑‑‑‑‑‑‑‑‑+



    Figure 11: Example of a DOTS Server Domain with a NAT Embedded in a

                                    CPE



           .‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
          (                     )‑.
        .'  Network Provider (DMS) '
        (                           )
         (        Call Home       ‑'
          '‑(    DOTS client      )
             '‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑'
                       |
 ‑‑‑             +‑‑‑‑‑+‑‑‑‑‑+
S |              |  CPE/NAT  |  External Realm
O |..............|           |................
U |              | Call Home |  Internal Realm
R |              |DOTS server|
C |              +‑‑‑‑‑+‑‑‑‑‑+
E |                    |
  |        .‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑.
  |       (                     )‑.
N |     .'                         '
E |     (     Local Area Network    )
T |      (                        ‑'
W |       '‑(                     )
O |          '‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑'
R |                   |
K |            +‑‑‑‑‑‑+‑‑‑‑‑‑+
  |            |Attack Source|
               +‑‑‑‑‑‑‑‑‑‑‑‑‑+



   Figure 12: Example of a Call Home DOTS Server and a NAT Embedded in a

                                    CPE




3.3.3. DOTS Signal Call Home YANG Module


3.3.3.1. Tree Structure

   This document augments the "ietf-dots-signal-channel" DOTS signal
   YANG module defined in [I-D.ietf-dots-signal-channel] for signaling
   the attack traffic information.  This document defines the YANG
   module "ietf-dots-call-home", which has the following tree structure:



module: ietf‑dots‑call‑home
  augment /ietf‑signal:dots‑signal/ietf‑signal:message‑type
          /ietf‑signal:mitigation‑scope/ietf‑signal:scope:
    +‑‑rw source‑prefix*     inet:ip‑prefix {source‑signaling}?
    +‑‑rw source‑port‑range* [lower‑port] {source‑signaling}?
    |  +‑‑rw lower‑port    inet:port‑number
    |  +‑‑rw upper‑port?   inet:port‑number
    +‑‑rw source‑icmp‑type‑range*
       |                    [lower‑type] {source‑signaling}?
       +‑‑rw lower‑type    uint8
       +‑‑rw upper‑type?   uint8
  augment /ietf‑signal:dots‑signal/ietf‑signal:message‑type
          /ietf‑signal:redirected‑signal:
    +‑‑rw alt‑ch‑client           string {call‑home}?
    +‑‑rw alt‑ch‑client‑record*   inet:ip‑address {call‑home}?
    +‑‑rw ttl     uint32 {call‑home}?





3.3.3.2. YANG/JSON Mapping Parameters to CBOR

   The YANG/JSON mapping parameters to CBOR are listed in Table 1.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| Parameter Name    | YANG       | CBOR   | CBOR Major    | JSON   |
|                   | Type       | Key    |    Type &     | Type   |
|                   |            |        | Information   |        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
| source‑prefix     | leaf‑list  | 0x8000 | 4 array       | Array  |
|                   | inet:      | (TBD1) |               |        |
|                   |  ip‑prefix |        | 3 text string | String |
| source‑port‑range | list       | 0x8001 | 4 array       | Array  |
|                   |            | (TBD2) |               |        |
| source‑icmp‑type‑ | list       | 0x8002 | 4 array       | Array  |
|  range            |            | (TBD3) |               |        |
| lower‑type        | uint8      | 0x8003 | 0 unsigned    | Number |
|                   |            | (TBD4) |               |        |
| upper‑type        | uint8      | 0x8004 | 0 unsigned    | Number |
|                   |            | (TBD5) |               |        |
| alt‑ch‑client     | string     | 0x8005 | 3 text string | String |
|                   |            | (TBD6) |               |        |
| alt‑ch‑client‑    | leaf‑list  | 0x8006 | 4 array       | Array  |
|  record           | inet:      | (TBD7) |               |        |
|                   |  ip‑address|        | 3 text string | String |
| ttl               | uint32     | 0x8007 | 0 unsigned    | Number |
|                   |            | (TBD8) |               |        |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+



              Table 1: YANG/JSON Mapping Parameters to CBOR




3.3.3.3. YANG Module

   This module uses the common YANG types defined in [RFC6991].



   <CODE BEGINS> file "ietf-dots-call-home@2019-09-06.yang"



module ietf‑dots‑call‑home {
  yang‑version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf‑dots‑call‑home";
  prefix call‑home;

  import ietf‑inet‑types {
    prefix inet;
    reference
      "Section 4 of RFC 6991";
  }
  import ietf‑dots‑signal‑channel {
    prefix ietf‑signal;
    reference
      "RFC YYYY: Distributed Denial‑of‑Service Open Threat
                 Signaling (DOTS) Signal Channel Specification";
  }

  organization
    "IETF DDoS Open Threat Signaling (DOTS) Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/dots/>
     WG List:  <mailto:dots@ietf.org>

     Author:  Konda, Tirumaleswar Reddy
              <mailto:TirumaleswarReddy_Konda@McAfee.com>;

     Author:  Mohamed Boucadair
              <mailto:mohamed.boucadair@orange.com>;

     Author:  Jon Shallow
              <mailto:ietf‑supjps@jpshallow.com>";

  description
    "This module contains YANG definitions for the signaling
     messages exchanged between a DOTS client and a DOTS server
     for the Call Home deployment scenario.



        Copyright (c) 2019 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.



        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject



        to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).



     This version of this YANG module is part of RFC XXXX; see
     the RFC itself for full legal notices.";

  revision 2019‑09‑06 {
    description
      "Initial revision.";
    reference
      "RFC XXXX: Distributed Denial‑of‑Service Open Threat
                 Signaling (DOTS) Signal Channel Call Home";
  }

  feature source‑signaling {
    description
      "This feature means that source‑related information
       can be supplied in mitigation requests. This is
       typically applicable for DOTS Call Home.";
  }
  feature call‑home {
    description
      "This feature means that Call Home functionality
       is supported.";
  }

  augment "/ietf‑signal:dots‑signal/ietf‑signal:message‑type/"
        + "ietf‑signal:mitigation‑scope/ietf‑signal:scope" {
    if‑feature source‑signaling;
    description "Attacker source details.";

    leaf‑list source‑prefix {
      type inet:ip‑prefix;
      description
        "IPv4 or IPv6 prefix identifying the attacker(s).";
    }
    list source‑port‑range {
      key "lower‑port";
      description
        "Port range. When only lower‑port is
         present, it represents a single port number.";
      leaf lower‑port {
        type inet:port‑number;
        mandatory true;
        description
          "Lower port number of the port range.";

      }
      leaf upper‑port {
        type inet:port‑number;
        must ". >= ../lower‑port" {
           error‑message
             "The upper port number must be greater than
              or equal to lower port number.";
        }
        description
          "Upper port number of the port range.";
      }
    }
    list source‑icmp‑type‑range {
      key "lower‑type";
      description
        "ICMP type range. When only lower‑type is
         present, it represents a single ICMP type.";
      leaf lower‑type {
        type uint8;
        mandatory true;
        description
          "Lower ICMP type of the ICMP type range.";
      }
      leaf upper‑type {
        type uint8;
        must ". >= ../lower‑type" {
           error‑message
             "The upper ICMP type must be greater than
             or equal to lower ICMP type.";
        }
        description
          "Upper type of the ICMP type range.";
      }
    }
  }

  augment "/ietf‑signal:dots‑signal/ietf‑signal:message‑type/"
        + "ietf‑signal:redirected‑signal" {
    if‑feature call‑home;
    description
      "The alternate Call Home DOTS client.";

    leaf alt‑ch‑client {
      type string;
      description
        "FQDN of an alternate Call Home DOTS client.";
    }
    leaf‑list alt‑ch‑client‑record {

      type inet:ip‑address;
      description
        "List of records for the alternate Call Home
         DOTS client.";
    }
    leaf ttl {
      type uint32;
      units "seconds";
      description
        "The Time to live (TTL) of the alternate Call Home
         DOTS client.";
    }
  }
}
<CODE ENDS>




4. IANA Considerations


4.1. DOTS Signal Channel Call Home UDP and TCP Port Number

   IANA is requested to assign the port number TBD to the DOTS signal
   channel Call Home protocol for both UDP and TCP from the "Service
   Name and Transport Protocol Port Number Registry" available at:
   https://www.iana.org/assignments/service-names-port-numbers/service-
   names-port-numbers.xhtml.



Service Name:           dots‑call‑home
Port Number:            TBD
Transport Protocol(s):  TCP/UDP
Description:            DOTS Signal Channel Call Home
Assignee:               IESG <iesg@ietf.org>
Contact:                IETF Chair <chair@ietf.org>
Reference:              RFC XXXX



   The assignment of port number 4647 is strongly suggested (DOTS signal
   channel uses port number 4646).




4.2. DOTS Signal Channel CBOR Mappings Registry

   This specification registers the following comprehension-optional
   parameters in the IANA "DOTS Signal Channel CBOR Key Values" registry
   established by [I-D.ietf-dots-signal-channel] (Table 2).



   o  Note to the RFC Editor: Please delete (TBD1)-(TBD8) once CBOR keys
      are assigned from the 0x8000 - 0xBFFF range.



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Parameter Name    | CBOR   | CBOR  | Change     | Specification |
|                   | Key    | Major | Controller | Document(s)   |
|                   | Value  | Type  |            |               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| source‑prefix     | 0x8000 |   4   |    IESG    |   [RFCXXXX]   |
|                   | (TBD1) |       |            |               |
| source‑port‑range | 0x8001 |   4   |    IESG    |   [RFCXXXX]   |
|                   | (TBD2) |       |            |               |
| source‑icmp‑type‑ | 0x8002 |   4   |    IESG    |   [RFCXXXX]   |
|  range            | (TBD3) |       |            |               |
| lower‑type        | 0x8003 |   0   |    IESG    |   [RFCXXXX]   |
|                   | (TBD4) |       |            |               |
| upper‑type        | 0x8004 |   0   |    IESG    |   [RFCXXXX]   |
|                   | (TBD5) |       |            |               |
| alt‑ch‑client     | 0x8005 |   3   |    IESG    |   [RFCXXXX]   |
|                   | (TBD6) |       |            |               |
| alt‑ch‑client‑    | 0x8006 |   4   |    IESG    |   [RFCXXXX]   |
|  record           | (TBD7) |       |            |               |
| ttl               | 0x8007 |   0   |    IESG    |   [RFCXXXX]   |
|                   | (TBD8) |       |            |               |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



             Table 2: Assigned DOTS Signal Channel CBOR Key Values




4.3. New DOTS Conflict Cause

   This document requests IANA to assign a new code from the "DOTS
   Signal Channel Conflict Cause Codes" registry:



+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Cod | Label                             | Description | Reference |
| e   |                                   |             |           |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| 4   | request‑rejected‑legitimate‑      | Mitigation  | [RFCXXXX] |
|     | traffic                           | request     |           |
|     |                                   | rejected.   |           |
|     |                                   | This code   |           |
|     |                                   | is returned |           |
|     |                                   | by the DOTS |           |
|     |                                   | server to   |           |
|     |                                   | indicate    |           |
|     |                                   | the attack  |           |
|     |                                   | traffic has |           |
|     |                                   | been        |           |
|     |                                   | classified  |           |
|     |                                   | as          |           |
|     |                                   | legitimate  |           |
|     |                                   | traffic.    |           |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+




4.4. DOTS Signal Call Home YANG Module

   This document requests IANA to register the following URI in the "ns"
   subregistry within the "IETF XML Registry" [RFC3688]:



URI: urn:ietf:params:xml:ns:yang:ietf‑dots‑call‑home
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.



   This document requests IANA to register the following YANG module in
   the "YANG Module Names" subregistry [RFC7950] within the "YANG
   Parameters" registry:



name: ietf‑dots‑call‑home
namespace: urn:ietf:params:xml:ns:yang:ietf‑dots‑call‑home
maintained by IANA: N
prefix: call‑home
reference: RFC XXXX




5. Security Considerations

   This document deviates from classic DOTS signal channel usage by
   having the DOTS server initiate the (D)TLS connection.  DOTS signal
   channel related security considerations discussed in Section 10 of
   [I-D.ietf-dots-signal-channel] MUST be considered.  DOTS agents MUST
   authenticate each other using (D)TLS before a DOTS signal channel
   session is considered valid.



   An attacker may launch a DoS attack on the DOTS client by having it
   perform computationally expensive operations, before deducing that
   the attacker doesn't possess a valid key.  For instance, in TLS 1.3
   [RFC8446], the ServerHello message contains a Key Share value based
   on an expensive asymmetric key operation for key establishment.
   Common precautions mitigating DoS attacks are recommended, such as
   temporarily blacklisting the source address after a set number of
   unsuccessful authentication attempts.



   Call Home DOTS servers may not blindly trust mitigation requests from
   Call Home DOTS clients.  For example, DOTS servers can use the attack
   flow information in a mitigation request to enable full-fledged
   packet inspection function to inspect all the traffic from the
   compromised device to the target or to re-direct the traffic from the
   compromised device to the target to a DDoS mitigation system to scrub
   the suspicious traffic.  Call Home DOTS servers can also seek the
   consent of DOTS server domain administrator to block the traffic from
   the compromised device to the target (see Section 3.3.1).




6. Privacy Considerations

   The considerations discussed in [RFC6973] were taken into account to
   assess whether the DOTS Call Home introduces privacy threats.



   Concretely, the protocol does not leak any new information that can
   be used to ease surveillance.  In particular, the Call Home DOTS
   server is not required to share information that is local to its
   network (e.g., internal identifiers of an attack source) with the
   Call Home DOTS client.



   The DOTS Call Home does not preclude the validation of mitigation
   requests received from a Call Home DOTS client.  For example, a
   security service running on the CPE may require administrator's
   consent before the CPE acts upon the mitigation request indicated by
   the Call Home DOTS client.  How the consent is obtained is out of
   scope of this document.



   Note that a Call Home DOTS server can seek for an administrator's
   consent, validate the request by inspecting the traffic, or proceed
   with both.



   The DOTS Call Home is only advisory in nature.  Concretely, the DOTS
   Call Home does not impose any action to be enforced within the
   network hosting an attack source; it is up to the Call Home DOTS
   server (and/or network administrator) to decide whether and which
   actions are required.



   Moreover, the DOTS Call Home avoids misattribution by appropriately
   identifying the network to which a suspect attack source belongs to
   (e.g., address sharing issues discussed in Section 3.3.1).



   Triggers to send a DOTS mitigation request to a Call Home DOTS server
   are deployment-specific.  For example, a Call Home DOTS client may
   rely on the output of some DDoS detection systems deployed within the
   DOTS client domain to detect potential outbound DDoS attacks or on
   abuse claims received from remote victim networks.  Such DDoS
   detection and mitigation techniques are not meant to track the
   activity of users, but to protect the Internet and avoid altering the
   IP reputation of the DOTS client domain.




7. Contributors

   The following individuals have contributed to this document:



Joshi Harsha
McAfee, Inc.
Embassy Golf Link Business Park
Bangalore, Karnataka  560071
India



      Email: harsha_joshi@mcafee.com



Wei Pan
Huawei Technologies
China



      Email: william.panwei@huawei.com




8. Acknowledgements

   Thanks to Wei Pei, Xia Liang, Roman Danyliw, Dan Wing, Toema
   Gavrichenkov, Daniel Migault, and Valery Smyslov for the comments.




9. References


9.1. Normative References


   [I-D.ietf-dots-signal-channel]

              K, R., Boucadair, M., Patil, P., Mortensen, A., and N.
              Teague, "Distributed Denial-of-Service Open Threat
              Signaling (DOTS) Signal Channel Specification", draft-
              ietf-dots-signal-channel-38 (work in progress), October
              2019.




   [RFC2119]
  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.




   [RFC3688]
  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.




   [RFC6347]
  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.




   [RFC6991]
  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.




   [RFC7950]
  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.




   [RFC8174]
  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.




   [RFC8446]
  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.




9.2. Informative References


   [I-D.ietf-dots-multihoming]

              Boucadair, M., K, R., and W. Pan, "Multi-homing Deployment
              Considerations for Distributed-Denial-of-Service Open
              Threat Signaling (DOTS)", draft-ietf-dots-multihoming-02
              (work in progress), July 2019.




   [I-D.ietf-dots-server-discovery]

              Boucadair, M. and R. K, "Distributed-Denial-of-Service
              Open Threat Signaling (DOTS) Agent Discovery", draft-ietf-
              dots-server-discovery-05 (work in progress), August 2019.




   [I-D.ietf-dots-use-cases]

              Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
              L., and K. Nishizuka, "Use cases for DDoS Open Threat
              Signaling", draft-ietf-dots-use-cases-20 (work in
              progress), September 2019.




   [I-D.ietf-i2nsf-terminology]

              Hares, S., Strassner, J., Lopez, D., Xia, L., and H.
              Birkholz, "Interface to Network Security Functions (I2NSF)
              Terminology", draft-ietf-i2nsf-terminology-08 (work in
              progress), July 2019.




   [I-D.ietf-idr-flow-spec-v6]

              McPherson, D., Raszuk, R., Pithawala, B.,
              akarch@cisco.com, a., and S. Hares, "Dissemination of Flow
              Specification Rules for IPv6", draft-ietf-idr-flow-spec-
              v6-09 (work in progress), November 2017.




   [RFC2663]
  Srisuresh, P. and M. Holdrege, "IP Network Address
              Translator (NAT) Terminology and Considerations",
              RFC 2663, DOI 10.17487/RFC2663, August 1999,
              <https://www.rfc-editor.org/info/rfc2663>.




   [RFC4340]
  Kohler, E., Handley, M., and S. Floyd, "Datagram
              Congestion Control Protocol (DCCP)", RFC 4340,
              DOI 10.17487/RFC4340, March 2006,
              <https://www.rfc-editor.org/info/rfc4340>.




   [RFC4632]
  Fuller, V. and T. Li, "Classless Inter-domain Routing
              (CIDR): The Internet Address Assignment and Aggregation
              Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
              2006, <https://www.rfc-editor.org/info/rfc4632>.




   [RFC4732]
  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
              DOI 10.17487/RFC4732, December 2006,
              <https://www.rfc-editor.org/info/rfc4732>.




   [RFC4949]
  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.




   [RFC4960]
  Stewart, R., Ed., "Stream Control Transmission Protocol",
              RFC 4960, DOI 10.17487/RFC4960, September 2007,
              <https://www.rfc-editor.org/info/rfc4960>.




   [RFC5575]
  Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
              and D. McPherson, "Dissemination of Flow Specification
              Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
              <https://www.rfc-editor.org/info/rfc5575>.




   [RFC6398]
  Le Faucheur, F., Ed., "IP Router Alert Considerations and
              Usage", BCP 168, RFC 6398, DOI 10.17487/RFC6398, October
              2011, <https://www.rfc-editor.org/info/rfc6398>.




   [RFC6973]
  Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
              Morris, J., Hansen, M., and R. Smith, "Privacy
              Considerations for Internet Protocols", RFC 6973,
              DOI 10.17487/RFC6973, July 2013,
              <https://www.rfc-editor.org/info/rfc6973>.




   [RFC7596]
  Cui, Y., Sun, Q., Boucadair, M., Tsou, T., Lee, Y., and I.
              Farrer, "Lightweight 4over6: An Extension to the Dual-
              Stack Lite Architecture", RFC 7596, DOI 10.17487/RFC7596,
              July 2015, <https://www.rfc-editor.org/info/rfc7596>.




   [RFC7597]
  Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S.,
              Murakami, T., and T. Taylor, Ed., "Mapping of Address and
              Port with Encapsulation (MAP-E)", RFC 7597,
              DOI 10.17487/RFC7597, July 2015,
              <https://www.rfc-editor.org/info/rfc7597>.




   [RFC8071]
  Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
              RFC 8071, DOI 10.17487/RFC8071, February 2017,
              <https://www.rfc-editor.org/info/rfc8071>.




   [RFC8340]
  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.




   [RFC8512]
  Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,
              Vinapamula, S., and Q. Wu, "A YANG Module for Network
              Address Translation (NAT) and Network Prefix Translation
              (NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,
              <https://www.rfc-editor.org/info/rfc8512>.




   [RFC8513]
  Boucadair, M., Jacquenet, C., and S. Sivakumar, "A YANG
              Data Model for Dual-Stack Lite (DS-Lite)", RFC 8513,
              DOI 10.17487/RFC8513, January 2019,
              <https://www.rfc-editor.org/info/rfc8513>.




   [RFC8517]
  Dolson, D., Ed., Snellman, J., Boucadair, M., Ed., and C.
              Jacquenet, "An Inventory of Transport-Centric Functions
              Provided by Middleboxes: An Operator Perspective",
              RFC 8517, DOI 10.17487/RFC8517, February 2019,
              <https://www.rfc-editor.org/info/rfc8517>.




   [RFC8576]
  Garcia-Morchon, O., Kumar, S., and M. Sethi, "Internet of
              Things (IoT) Security: State of the Art and Challenges",
              RFC 8576, DOI 10.17487/RFC8576, April 2019,
              <https://www.rfc-editor.org/info/rfc8576>.




   [RFC8612]
  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
              Threat Signaling (DOTS) Requirements", RFC 8612,
              DOI 10.17487/RFC8612, May 2019,
              <https://www.rfc-editor.org/info/rfc8612>.




   [Sec]
      UK Department for Digital Culture, Media & Sport, "Secure
              by Design: Improving the cyber security of consumer
              Internet of Things Report", March 2018,
              <https://www.gov.uk/government/publications/secure-by-
              design-report>.




Appendix A. Disambiguate Base DOTS Signal vs. DOTS Call Home

   With the DOTS signal channel Call Home, there is a chance that two
   DOTS agents can simultaneously establish two DOTS signal channels
   with different directions (base DOTS signal channel and DOTS signal
   channel Call Home).  Here is one example drawn from the home network.
   Nevertheless, the outcome of the discussion is not specific to these
   networks, but applies to any DOTS Call Home scenario.



   In the Call Home scenario, the DOTS server in, for example, the home
   network can mitigate the DDoS attacks launched by the compromised
   device in its domain by receiving the mitigation request sent by the
   Call Home DOTS client in the ISP environment.  In addition, the DOTS
   client in the home network can initiate a mitigation request to the
   DOTS server in the ISP environment to ask for help when the home
   network is under a DDoS attack.  Such DOTS server and DOTS client in
   the home network can co-locate in the same home network element
   (e.g., the Customer Premises Equipment).  In this case, with the same
   peer at the same time the home network element will have the base
   DOTS signal channel and the DOTS signal channel Call Home defined in
   this specification.  Thus, these two signal channels need to be
   distinguished when they are both supported.  Two approaches have been
   considered for distinguishing the two DOTS signal channels, but only
   the one that using the dedicated port number has been chosen as the
   best choice.



   By using a dedicated port number for each, these two signal channels
   can be separated unambiguously and easily.  For example, the CPE uses
   the port number 4646 allocated in [I-D.ietf-dots-signal-channel] to
   initiate the basic signal channel to the ISP when it acts as the DOTS
   client, and uses the port number TBD to initiate the signal channel
   Call Home.  Based on the different port numbers, the ISP can directly
   decide which kind of procedures should follow immediately after it
   receives the DOTS messages.  This approach just requires two (D)TLS
   sessions to be established respectively for the basic signal channel
   and signal channel Call Home.



   The other approach is signaling the role of each DOTS agent (e.g., by
   using the DOTS data channel).  For example, the DOTS agent in the
   home network first initiates a DOTS data channel to the peer DOTS
   agent in the ISP environment, at this time the DOTS agent in the home
   network is the DOTS client and the peer DOTS agent in the ISP
   environment is the DOTS server.  After that, the DOTS agent in the
   home network retrieves the DOTS Call Home capability of the peer DOTS
   agent.  If the peer supports the DOTS Call Home, the DOTS agent needs
   to subscribe to the peer to use this extension.  Then, the reversal
   of DOTS role can be recognized as done by both DOTS agents.  When the
   DOTS agent in the ISP environment, which now is the DOTS client,
   wants to filter the attackers' traffic, it requests the DOTS agent in
   the home network, which now is the DOTS server, for help.



   Signaling the role will complicate the DOTS protocol, and this
   complexity is not required in context where the DOTS Call Home is not
   required or only when the DOTS Call Home is needed.  Besides, the
   DOTS data channel may not work during attack time.  Even if changing
   the above example from using the DOTS data channel to the DOTS signal
   channel, the more procedures will still reduce the efficiency.  Using
   the dedicated port number is much easier and more concise compared to
   the second approach, and its cost that establishing two (D)TLS
   sessions is much less.  So, using a dedicated port number for the
   DOTS Call Home is chosen in this specification.



Authors' Addresses



Tirumaleswar Reddy
McAfee, Inc.
Embassy Golf Link Business Park
Bangalore, Karnataka  560071
India



   Email: kondtir@gmail.com




Mohamed Boucadair
Orange
Rennes  35000
France



   Email: mohamed.boucadair@orange.com




Jon Shallow
UK



   Email: supjps-ietf@jpshallow.com






draft-ietf-dots-signal-channel-39 - Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Specification 






draft-ietf-dots-signal-channel-39 - Distributed Denial-of-Service Open Threat Si

Index
Back 5
Prev
Next
Forward 5


DOTS

Internet-Draft

Intended status: Standards Track

Expires: May 23, 2020
















T. Reddy, Ed.

McAfee

M. Boucadair, Ed.

Orange

P. Patil

Cisco

A. Mortensen

Arbor Networks, Inc.

N. Teague

Iron Mountain Data Centers

November 20, 2019

Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Specification  

draft-ietf-dots-signal-channel-39


Abstract

   This document specifies the DOTS signal channel, a protocol for
   signaling the need for protection against Distributed Denial-of-
   Service (DDoS) attacks to a server capable of enabling network
   traffic mitigation on behalf of the requesting client.



   A companion document defines the DOTS data channel, a separate
   reliable communication layer for DOTS management and configuration
   purposes.



Editorial Note (To be removed by RFC Editor)



   Please update these statements within the document with the RFC
   number to be assigned to this document:



   o  "This version of this YANG module is part of RFC XXXX;"



   o  "RFC XXXX: Distributed Denial-of-Service Open Threat Signaling
      (DOTS) Signal Channel Specification";



   o  "| [RFCXXXX] |"



   o  reference: RFC XXXX



   Please update this statement with the RFC number to be assigned to
   the following documents:



   o  "RFC YYYY: Distributed Denial-of-Service Open Threat Signaling
      (DOTS) Data Channel Specification (used to be I-D.ietf-dots-data-
      channel)



   Please update TBD/TBD1/TBD2 statements with the assignments made by
   IANA to DOTS Signal Channel Protocol.



   Also, please update the "revision" date of the YANG modules.




Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.



   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."



   This Internet-Draft will expire on May 23, 2020.




Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.



   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Table of Contents



	1.  Introduction


	2.  Terminology


	3.  Design Overview


	4.  DOTS Signal Channel: Messages & Behaviors
	 4.1.  DOTS Server(s) Discovery


	 4.2.  CoAP URIs


	 4.3.  Happy Eyeballs for DOTS Signal Channel


	 4.4.  DOTS Mitigation Methods
	  4.4.1.  Request Mitigation


	  4.4.2.  Retrieve Information Related to a Mitigation
	   4.4.2.1.  DOTS Servers Sending Mitigation Status


	   4.4.2.2.  DOTS Clients Polling for Mitigation Status



	  4.4.3.  Efficacy Update from DOTS Clients


	  4.4.4.  Withdraw a Mitigation



	 4.5.  DOTS Signal Channel Session Configuration
	  4.5.1.  Discover Configuration Parameters


	  4.5.2.  Convey DOTS Signal Channel Session Configuration


	  4.5.3.  Configuration Freshness and Notifications


	  4.5.4.  Delete DOTS Signal Channel Session Configuration



	 4.6.  Redirected Signaling


	 4.7.  Heartbeat Mechanism



	5.  DOTS Signal Channel YANG Modules
	 5.1.  Tree Structure


	 5.2.  IANA DOTS Signal Channel YANG Module


	 5.3.  IETF DOTS Signal Channel YANG Module



	6.  YANG/JSON Mapping Parameters to CBOR


	7.  (D)TLS Protocol Profile and Performance Considerations
	 7.1.  (D)TLS Protocol Profile


	 7.2.  (D)TLS 1.3 Considerations


	 7.3.  DTLS MTU and Fragmentation



	8.  Mutual Authentication of DOTS Agents & Authorization of DOTS Clients


	9.  IANA Considerations
	 9.1.  DOTS Signal Channel UDP and TCP Port Number


	 9.2.  Well-Known 'dots' URI


	 9.3.  Media Type Registration


	 9.4.  CoAP Content-Formats Registration


	 9.5.  CBOR Tag Registration


	 9.6.  DOTS Signal Channel Protocol Registry
	  9.6.1.  DOTS Signal Channel CBOR Key Values Sub-Registry
	   9.6.1.1.  Registration Template


	   9.6.1.2.  Initial Sub-Registry Content



	  9.6.2.  Status Codes Sub-Registry


	  9.6.3.  Conflict Status Codes Sub-Registry


	  9.6.4.  Conflict Cause Codes Sub-Registry


	  9.6.5.  Attack Status Codes Sub-Registry



	 9.7.  DOTS Signal Channel YANG Modules



	10. Security Considerations


	11. Contributors


	12. Acknowledgements


	13. References
	 13.1.  Normative References


	 13.2.  Informative References



	Appendix A.  CUID Generation


	Authors' Addresses




1. Introduction

   A distributed denial-of-service (DDoS) attack is a distributed
   attempt to make machines or network resources unavailable to their
   intended users.  In most cases, sufficient scale for an effective
   attack can be achieved by compromising enough end-hosts and using
   those infected hosts to perpetrate and amplify the attack.  The
   victim in this attack can be an application server, a host, a router,
   a firewall, or an entire network.



   Network applications have finite resources like CPU cycles, the
   number of processes or threads they can create and use, the maximum
   number of simultaneous connections they can handle, the limited
   resources of the control plane, etc.  When processing network
   traffic, such applications are supposed to use these resources to
   provide the intended functionality in the most efficient manner.
   However, a DDoS attacker may be able to prevent an application from
   performing its intended task by making the application exhaust its
   finite resources.



   A TCP DDoS SYN-flood [RFC4987], for example, is a memory-exhausting
   attack while an ACK-flood is a CPU-exhausting attack.  Attacks on the
   link are carried out by sending enough traffic so that the link
   becomes congested, thereby likely causing packet loss for legitimate
   traffic.  Stateful firewalls can also be attacked by sending traffic
   that causes the firewall to maintain an excessive number of states
   that may jeopardize the firewall's operation overall, besides likely
   performance impacts.  The firewall then runs out of memory, and can
   no longer instantiate the states required to process legitimate
   flows.  Other possible DDoS attacks are discussed in [RFC4732].



   In many cases, it may not be possible for network administrators to
   determine the cause(s) of an attack.  They may instead just realize
   that certain resources seem to be under attack.  This document
   defines a lightweight protocol that allows a DOTS client to request
   mitigation from one or more DOTS servers for protection against
   detected, suspected, or anticipated attacks.  This protocol enables
   cooperation between DOTS agents to permit a highly-automated network
   defense that is robust, reliable, and secure.  Note that "secure"
   means the support of the features defined in Section 2.4 of
   [RFC8612].



   An example of a network diagram that illustrates a deployment of DOTS
   agents is shown in Figure 1.  In this example, a DOTS server is
   operating on the access network.  A DOTS client is located on the LAN
   (Local Area Network), while a DOTS gateway is embedded in the CPE
   (Customer Premises Equipment).



  Network
  Resource        CPE router         Access network     __________
+‑‑‑‑‑‑‑‑‑‑‑+   +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+    +‑‑‑‑‑‑‑‑‑‑‑‑‑+    /          \
|           |___|              |____|             |___ | Internet |
|DOTS client|   | DOTS gateway |    | DOTS server |    |          |
|           |   |              |    |             |    |          |
+‑‑‑‑‑‑‑‑‑‑‑+   +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+    +‑‑‑‑‑‑‑‑‑‑‑‑‑+    \__________/



                   Figure 1: Sample DOTS Deployment (1)



   DOTS servers can also be reachable over the Internet, as depicted in
   Figure 2.



  Network                                           DDoS mitigation
  Resource          CPE router      __________        service
+‑‑‑‑‑‑‑‑‑‑‑+   +‑‑‑‑‑‑‑‑‑‑‑‑‑+    /          \    +‑‑‑‑‑‑‑‑‑‑‑‑‑+
|           |___|             |____|          |___ |             |
|DOTS client|   |DOTS gateway |    | Internet |    | DOTS server |
|           |   |             |    |          |    |             |
+‑‑‑‑‑‑‑‑‑‑‑+   +‑‑‑‑‑‑‑‑‑‑‑‑‑+    \__________/    +‑‑‑‑‑‑‑‑‑‑‑‑‑+



                   Figure 2: Sample DOTS Deployment (2)



   In typical deployments, the DOTS client belongs to a different
   administrative domain than the DOTS server.  For example, the DOTS
   client is embedded in a firewall protecting services owned and
   operated by a customer, while the DOTS server is owned and operated
   by a different administrative entity (service provider, typically)
   providing DDoS mitigation services.  The latter might or might not
   provide connectivity services to the network hosting the DOTS client.



   The DOTS server may (not) be co-located with the DOTS mitigator.  In
   typical deployments, the DOTS server belongs to the same
   administrative domain as the mitigator.  The DOTS client can
   communicate directly with a DOTS server or indirectly via a DOTS
   gateway.



   The document adheres to the DOTS architecture
   [I-D.ietf-dots-architecture].  The requirements for DOTS signal
   channel protocol are documented in [RFC8612].  This document
   satisfies all the use cases discussed in [I-D.ietf-dots-use-cases].



   This document focuses on the DOTS signal channel.  This is a
   companion document of the DOTS data channel specification
   [I-D.ietf-dots-data-channel] that defines a configuration and a bulk
   data exchange mechanism supporting the DOTS signal channel.




2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119][RFC8174] when, and only when, they appear in all
   capitals, as shown here.



   (D)TLS is used for statements that apply to both Transport Layer
   Security [RFC5246][RFC8446] and Datagram Transport Layer Security
   [RFC6347].  Specific terms are used for any statement that applies to
   either protocol alone.



   The reader should be familiar with the terms defined in [RFC8612].



   The meaning of the symbols in YANG tree diagrams is defined in
   [RFC8340].




3. Design Overview

   The DOTS signal channel is built on top of the Constrained
   Application Protocol (CoAP) [RFC7252], a lightweight protocol
   originally designed for constrained devices and networks.  The many
   features of CoAP (expectation of packet loss, support for
   asynchronous Non-confirmable messaging, congestion control, small
   message overhead limiting the need for fragmentation, use of minimal
   resources, and support for (D)TLS) makes it a good candidate to build
   the DOTS signaling mechanism from.



   DOTS clients and servers behave as CoAP endpoints.  By default, a
   DOTS client (or server) behaves as a CoAP client (or server).
   Nevertheless, a DOTS client (or server) behaves as a CoAP server (or
   client) for specific operations such as DOTS heartbeat operations
   (Section 4.7).



   The DOTS signal channel is layered on existing standards (Figure 3).



+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DOTS Signal Channel |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|         CoAP        |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
|   TLS    |   DTLS   |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
|   TCP    |   UDP    |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
|          IP         |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+



     Figure 3: Abstract Layering of DOTS Signal Channel over CoAP over

                                  (D)TLS



   In some cases, a DOTS client and server may have mutual agreement to
   use a specific port number, such as by explicit configuration or
   dynamic discovery [I-D.ietf-dots-server-discovery].  Absent such
   mutual agreement, the DOTS signal channel MUST run over port number
   TBD as defined in Section 9.1, for both UDP and TCP.  In order to use
   a distinct port number (as opposed to TBD), DOTS clients and servers
   SHOULD support a configurable parameter to supply the port number to
   use.



      Note: The rationale for not using the default port number 5684
      ((D)TLS CoAP) is to avoid the discovery of services and resources
      discussed in [RFC7252] and allow for differentiated behaviors in
      environments where both a DOTS gateway and an IoT
RFC eBook Conversion








RFC eBook Conversion


This text describes the conversion process used to create this
ebook. 


Conversion process for rfc.mobi/rfc.epub


The conversion process goes like follows:




	Update rfc index from the www.ietf.org


	Create the cover jpg from the postscript file and scale it
down


	Create list of files to be included to the book


	Create ncx file based on the list created before


	Go through RFCs and convert them from text to html


	Create opf file for the book


	Convert the rfc-index.txt to index.html file


	Create .mobi file using kindlegen


	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.





Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.


Conversion process for working group internet-drafts


The conversion process goes like follows:




	Update rfc and internet-draft reposotiries from the
www.ietf.org


	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.


	Create ebooks, by looping through all working groups in all areas
and do following:



	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.


	Create the cover jpg from the postscript file and scale it
down


	Create ncx file based on the list created before


	Go through documents and convert them from text to html


	Create opf file for the book


	Create index.html file based on the files and titles fetched in
the beginning from datatracker.


	Create .mobi file using kindlegen


	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.







	 Copy .epub and .mobi files to the correct place in the directory
structure.





Creating Cover page



make-cover.sh "\nRFC Index\n$date" "$time" \
    "ietf-logo.eps" > rfc.jpg



This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.


The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.


Creating NCX file


For RFC ebook:



make-ncx.pl --title "RFC Index" \
    --author "IETF" \
    --output $ncx \
    "toc:toc:index.html:Table of Contents" \
    --in \
    --class entry \
    --input-file $ncxtocentries \
    --out \
    --class book \
    --include-regexp '^rfc[0-9][0-9][0-9]1' \
    --split-regexp '^rfc[0-9][0-9]01' \
    --input-file $ncxrfcentries



For the Internet-Draft ebooks:



make-ncx.pl --title "$wg Index" \
    --author "IETF" \
    --output $ncx \
    "toc:toc:index.html:Table of Contents" \
    --class book \
    --input-file $ncxentries



NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.


Creating OPF file


For RFC ebook:



files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
    --language en \
    --cover rfc.jpg \
    --subject Reference \
    --beginning intro.html \
    --id "$id" \
    --role clb \
    --creator "Tero Kivinen" \
    --publisher "IETF" \
    --description "All RFCs as mobibook" \
    --date "$date" \
    --index index.html \
    --stylesheet rfc.css \
    --toc rfc.ncx \
    --output rfc.opf \
    intro.html \
    $files \
    conversion.html \
    $manpages



For the Internet-Draft ebooks:



make-opf.pl --title "$wg ID and RFC Docs $date" \
    --language en \
    --cover wg.jpg \
    --subject Reference \
    --beginning intro.html \
    --id "$id" \
    --role clb \
    --creator "Tero Kivinen" \
    --publisher "IETF" \
    --description "$wg RFCs and Internet-Drafts" \
    --date "$date" \
    --index index.html \
    --stylesheet rfc.css \
    --toc wg-"$wg".ncx \
    --output "$opf" \
    $files \
    conversion.html \
    $manpages



Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.


Converting text RFC to html


For RFCs the conversion command line is:



rfc2html.pl \
    --navigation \
    "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
    -f $filelist \
    -r $rfcnum \
    -o rfc$rfcnum.html \
    $rfctxtfile



For Internet-Drafts the conversion command line is:



rfc2html.pl \
    --navigation \
    "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
    -f $filelist \
    -t $draft-name \
    -o $draft-name.html \
    $draft-name.txt



This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.


Converting rfc-index.txt to index.html


TBF


Creating .mobi file



kindlegen rfc.opf -c1 -verbose



TBF


Converting files to .epub format



makeepub.sh current



TBF


Kindle 3 issues


Issues I have found when converting this to kindle 3


Ncx file size


It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.


Kindle -c2 compression


When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.


No support for multiple indexes


The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.


Last item in might be missing in index


The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.


Kindle 3 and pictures


Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.


No-breaking hyphen not shown properly on Kindle for PC


Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.


Searching does not work


For some reason the searching from the RFC eBook does not work on
the Kindle 3.








make-ncx - Create NCX file










[bookmark: __index__]




		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY













[bookmark: name]NAME

make-ncx - Create NCX file






[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
    [--output|-o output-file-name]
    [--config config-file]
    [--depth|-d depth-of-toc]
    [--total-page-count|-T total-page-count]
    [--max-page-number|-m max-page-number]
    [--separator|-s separator-regexp]
    --author|-a author
    --title|-t title
    entry ...
    [--class|-c class] entry ...
    [--in] entry ... [--