

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

calext RFC and Internet-Draft Index

Index

Active

	draft-ietf-calext-caldav-scheduling-controls-00 CalDAV Extension for scheduling controls

	draft-ietf-calext-eventpub-extensions-13 Event Publishing Extensions to iCalendar

	draft-ietf-calext-jscalendar-14 JSCalendar: A JSON representation of calendar data

	draft-ietf-calext-jscalendar-icalendar-00 JSCalendar: Converting from and to iCalendar

	draft-ietf-calext-subscription-upgrade-00 Calendar subscription upgrades

	draft-ietf-calext-valarm-extensions-00 VALARM Extensions for iCalendar

RFC

	RFC7529 Non-Gregorian Recurrence Rules in the Internet Calendaring and Scheduling Core Object Specification (iCalendar)

	RFC7953 Calendar Availability

	RFC7986 New Properties for iCalendar

	RFC8607 Calendaring Extensions to WebDAV (CalDAV): Managed Attachments

Related Active

	draft-calext-vpoll-00 VPOLL: Consensus Scheduling Component for iCalendar

Related Expired

	draft-douglass-icalendar-series-00 Support for Series in iCalendar

draft-ietf-calext-caldav-scheduling-controls-00 - CalDAV Extension for schedulin

Index
Next
Forward 5

calext

Internet-Draft

Updates: 6638 (if approved)

Intended status: Standards Track

Expires: September 27, 2019

B. Gondwana, Ed.

FastMail

March 26, 2019

CalDAV Extension for scheduling controls

draft-ietf-calext-caldav-scheduling-controls-00

Abstract

 This document adds headers to control and restrict the scheduling
 behaviour of CalDAV servers when updating calendaring resources.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 27, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used In This Document

	3. Extending the CalDAV OPTIONS response
	 3.1. Example: Using OPTIONS for the Discovery of Scheduling Controls Support

	4. New headers
	 4.1. Scheduling header

	 4.2. Schedule-User-Address header

	5. Implementation considerations

	6. IANA Considerations

	7. Security Considerations

	8. Acknowledgments

	9. Version History
	 9.1. ietf-calext-v00, 2019-03-26

	 9.2. gondwana-v01, 2019-03-08

	 9.3. gondwana-v00, 2019-02-08

	10. Normative References

	Author's Address

1. Introduction

 [RFC6638] defines automatic scheduling operations for resources
 stored on [!@RFC4791] CalDAV servers.

 [RFC6638]
 defines the "Schedule-Reply" header in Section 8.1, however
 this header is not sufficient for controlling scheduling in all
 cases.

 Cases where it might be necessary to update the data store on a
 server without causing scheduling messages to be sent include backup
 after a data loss event on the server, or importing calendar events
 from another system.

 Calendar server operators deal with these other needs by either using
 a different method than CalDAV to update their server, or by adding a
 custom method to suppress scheduling. This document defines a
 standard method to suppress scheduling, allowing CalDAV to be
 directly used for restores and imports.

 Complex sites can have users who have multiple aliases, and in the
 most complex cases, a user may have multiple identities who are
 present on a scheduling event as organizer and/or attendee. When an
 event is updated over CalDAV, the server must calculate or guess
 which of those addresses the current user is acting as. This
 document defines a header which allows the client to inform the
 server precisely which address they are acting as when adding,
 modifying or removing a resource.

2. Conventions Used In This Document

 In examples, "C:" indicates data sent by a client that is connected
 to a server. "S:" indicates data sent by the server to the client.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] when they
 appear in ALL CAPS. These words may also appear in this document in
 lower case as plain English words, absent their normative meanings.

3. Extending the CalDAV OPTIONS response

 A server supporting the features described in this document MUST
 include "scheduling-controls" as a field in the DAV response header
 from an OPTIONS request. A value of "scheduling-controls" in the DAV
 response header indicates to clients that the server supports all the
 requirements specified in this document.

3.1. Example: Using OPTIONS for the Discovery of Scheduling Controls
 Support

 Request:

OPTIONS /home/brong/calendars/ HTTP/1.1
Host: cal.example.com

 Response:

HTTP/1.1 200 OK
Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE
Allow: PROPFIND, PROPPATCH, LOCK, UNLOCK, REPORT, ACL
DAV: 1, 2, 3, access‑control, calendar‑access,
 scheduling‑controls
Date: Thu, 8 Feb 2019 10:16:37 GMT
Content‑Length: 0

4. New headers

 This document adds two new headers for use on PUT, PROPPATCH and
 DELETE:

4.1. Scheduling header

 Scheduling: {all|none|internal-only|external-only|X-...}

 Default: all

 Not providing this header, or providing the value of "all", instructs
 the server to follow the behaviour in [RFC6638] Section 3.2.

 Providing the value "none" instructs the server to perform no
 scheduling at all, and to just store the event (useful for restoring
 from backup)

 The value "internal-only" instructs the server to update the events
 in other calendars within its system where that can be done silently,
 but not to send visible notifications to users (where permitted by
 policy). This is useful when importing multiple related calendars
 into a new system without flooding external parties with
 notifications.

 The value "external-only" instructs the server to import the data
 without updating local calendars, but to send notifications to
 external attendees so they are aware of the event. This is useful
 when migrating calendar events to a new system where external parties
 need to have a way to update their participation status in the new
 system.

 e.g.

 Scheduling: none

 TODO: specify error codes

4.2. Schedule-User-Address header

 Schedule-User-Address: URI

 Default: not present

 If this header is not present, the server will calculate the address
 from the authenticated user, or from the CALDAV:schedule-user-address
 property on the calendar or principal.

 If this header is provided, it overrides the server's internal
 calculation, and informs the server to perform any scheduling as the
 specified user.

 TODO: specify error codes

 e.g.

 Schedule-User-Address: mailto:foo@example.com

5. Implementation considerations

 Any server implementing this extension MUST ensure it has a way to
 validate Schedule-User-Address settings.

6. IANA Considerations

 TODO: IANA request for OPTIONS item

 TODO: IANA request for named headers

7. Security Considerations

 The "Scheduling" header only allows reduction of the cases in which
 the server will creating scheduling requests. This is generally good
 for user privacy, allowing copies of events to be updated without
 notifying the owner or attendees. This is particularly valuable for
 cleaning up spam.

 The "Schedule-User-Address" header allows the client to override the
 server choice of address for the user to act as. Servers MUST ensure
 that the authenticated user has permission to act as the specified
 address, as well as applying any local policy limitations.

8. Acknowledgments

 o Lucia Kristiansen, Google

 o CalConnect

 o The calext working group

9. Version History

 Remove before publishing

9.1. ietf-calext-v00, 2019-03-26

 o Adopt into calext working group based on no objections on the list

9.2. gondwana-v01, 2019-03-08

 o correct name in acknowledgements

9.3. gondwana-v00, 2019-02-08

 o Initial draft based on discussion at CalConnect about Google and
 FastMail private implementations.

10. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6638]
 Daboo, C. and B. Desruisseaux, "Scheduling Extensions to
 CalDAV", RFC 6638, DOI 10.17487/RFC6638, June 2012,
 <https://www.rfc-editor.org/info/rfc6638>.

Author's Address

Bron Gondwana (editor)
FastMail
Level 2, 114 William St
Melbourne VIC 3000
Australia

Email: brong@fastmailteam.com
URI: https://www.fastmail.com

draft-ietf-calext-eventpub-extensions-13 - Event Publishing Extensions to iCalen

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 5545,7986 (if approved)

Intended status: Standards Track

Expires: November 27, 2019

M. Douglass

Spherical Cow Group

May 26, 2019

Event Publishing Extensions to iCalendar

draft-ietf-calext-eventpub-extensions-13

Abstract

 This specification updates RFC5545 by introducing a number of new
 iCalendar properties and components which are of particular use for
 event publishers and in social networking.

 This specification also defines a new STRUCTURED-DATA property for
 iCalendar RFC5545 to allow for data that is directly pertinent to an
 event or task to be included with the calendar data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 27, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Conventions Used in This Document

	2. Components and properties

	3. Typed References
	 3.1. Use Cases
	 3.1.1. Piano Concert Performance

	 3.1.2. Itineraries
	 3.1.2.1. Reserving facilities

	4. Modifications to Calendar Components

	5. New Property Parameters
	 5.1. Loctype

	 5.2. Restype

	 5.3. Order

	 5.4. Schema

	 5.5. Derived

	6. Redefined Property SOURCE

	7. New Properties
	 7.1. Participant Type

	 7.2. Calendar Address

	 7.3. Styled-Description

	 7.4. Structured-Location

	 7.5. Structured-Resource

	 7.6. Structured-Data

	8. New Components
	 8.1. Participant

	 8.2. Schedulable Participant

	9. Extended examples
	 9.1. Example 1

	 9.2. Example 2

	10. Security Considerations

	11. Privacy Considerations

	12. IANA Considerations
	 12.1. Additional iCalendar Registrations
	 12.1.1. Properties

	 12.1.2. Parameters

	 12.1.3. Components

	 12.2. New Registration Tables
	 12.2.1. Participant Types

	 12.2.2. Resource Types

	13. Acknowledgements

	14. References
	 14.1. Normative References

	 14.2. Informative References

	Appendix A. Open issues

	Appendix B. Change log

	Author's Address

1. Introduction

 The currently existing iCalendar standard [RFC5545] lacks useful
 methods for referencing additional, external information relating to
 calendar components. Additionally there is no standard way to
 provide rich text descriptions or meta-data associated with the
 event.

 Current practice is to embed this information as links in the
 description or to add non-standard properties as defined in [RFC5545]
 section 3.8.8.2.

 This document updates [RFC5545] to define a number of properties and
 a component referencing such external information that can provide
 additional information about an iCalendar component. The intent is
 to allow interchange of such information between applications or
 systems (e.g., between clients, between client and server, and
 between servers). Formats such as VCARD [RFC2426] are likely to be
 most useful to the receivers of such events as they may be used in
 other applications - such as address books.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Components and properties

 Previous extensions to the calendaring standards have been largely
 restricted to the addition of properties or parameters. This is
 partly because iCalendar libraries had trouble handling components
 nested deeper than those defined in [RFC5545].

 In a break with this 'tradition' this specification defines
 PARTICIPANT as a component rather than a property. This is a better
 match for the way [W3C.REC-xml-20081126] and JSON [RFC8259] handle
 such structures and allows richer definitions.

 It also allows for the addition of extra properties inside the
 component and resolves some of the problems of trying to add detailed
 information as a parameter.

 Many people or groups may participate in an event. The PARTICIPANT
 component provides such detailed information. Participants may act
 as attendees to the event (or derived events) or may just provide a
 reference - perhaps for mailing lists.

3. Typed References

 The properties defined here can all reference external meta-data
 which may be used by applications to provide enhanced value to users.
 By providing type information as parameters, clients and servers are
 able to discover interesting references and make use of them, perhaps
 for indexing or the presenting of additional related information for
 the user.

 The [RFC5545] LOCATION property provides only an unstructured single
 text value for specifying the location where an event (or task) will
 occur. This is inadequate for use cases where structured location
 information (e.g. address, region, country, postal code) is required
 or preferred, and limits widespread adoption of iCalendar in those
 settings.

 Using STRUCTURED-LOCATION, information about a number of interesting
 locations can be communicated, for example, address, region, country,
 postal code as well as other informations such as the parking,
 restaurants and the venue. Servers and clients can retrieve the
 objects when storing the event and use them to index by geographic
 location.

 When a calendar client receives a calendar component it can search
 the set of supplied properties looking for those of particular
 interest. The TYPE and FMTTYPE parameters, if supplied, can be used
 to help the selection.

 The PARTICIPANT component is designed to handle common use cases in
 event publication. It is generally important to provide information
 about the organizers of such events. Sponsors wish to be referenced
 in a prominent manner. In social calendaring it is often important
 to identify the active participants in the event, for example a
 school sports team, and the inactive participants, for example the
 parents.

 The PARTICIPANT component can also be used to provide useful extra
 data about an attendee. For example a LOCATION property inside the
 PARTICIPANT gives the actual location of a remote attendee. (But see
 the note about privacy.)

3.1. Use Cases

 The main motivation for these properties has been event publication
 but there are opportunities for use elsewhere. The following use
 cases will describe some possible scenarios.

3.1.1. Piano Concert Performance

 In putting together a concert there are many participants: piano
 tuner, performer, stage hands etc. In addition there are sponsors
 and various contacts to be provided. There will also be a number of
 related locations. A number of events can be created, all of which
 relate to the performance in different ways.

 There may be an iTip [RFC5546] meeting request for the piano tuner
 who will arrive before the performance. Other members of staff may
 also receive meeting requests.

 An event can also be created for publication which will have a
 PARTICIPANT component for the pianist providing a reference to VCARD
 [RFC2426] information about the performer. This event would also
 hold information about parking, local subway stations and the venue
 itself. In addition, there will be sponsorship information for
 sponsors of the event and perhaps paid sponsorship properties
 essentially advertising local establishments.

3.1.2. Itineraries

 These additions also provide opportunities for the travel industry.
 When booking a flight the PARTICIPANT component can be used to
 provide references to businesses at the airports and to car hire
 businesses at the destination.

 The embedded location information can guide the traveller at the
 airport or to their final destination. The contact information can
 provide detailed information about the booking agent, the airlines,
 car hire companies and the hotel.

3.1.2.1. Reserving facilities

 For a meeting, the size of a room and the equipment needed depends to
 some extent on the number of attendees actually in the room.

 A meeting may have 10 attendees non of which are co-located. The
 current ATTENDEE property does not allow for the addition of such
 meta-data. The PARTICIPANT property allows attendees to specify
 their location.

4. Modifications to Calendar Components

 The following changes to the syntax defined in iCalendar [RFC5545]
 are made here. New elements are defined in subsequent sections.

eventc = "BEGIN" ":" "VEVENT" CRLF
 eventprop *alarmc *participantc
 "END" ":" "VEVENT" CRLF

eventprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 styleddescription / strucloc / strucres / sdataprop
 ;
)

todoc = "BEGIN" ":" "VTODO" CRLF
 todoprop *alarmc *participantc
 "END" ":" "VTODO" CRLF

todoprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 styleddescription / strucloc / strucres / sdataprop
 ;
)

journalc = "BEGIN" ":" "VJOURNAL" CRLF
 jourprop *participantc
 "END" ":" "VJOURNAL" CRLF

jourprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 styleddescription / sdataprop
 ;
)

freebusyc = "BEGIN" ":" "VFREEBUSY" CRLF
 fbprop *participantc
 "END" ":" "VFREEBUSY" CRLF

fbprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 styleddescription
 ;
)

5. New Property Parameters

 This specification makes use of the LABEL parameter which is defined
 in [RFC7986]

5.1. Loctype

Parameter name: LOCTYPE

Purpose: To specify the type of location.

 Format Definition:

 This parameter is defined by the following notation:

 loctypeparam = "LOCTYPE" "=" param‑value

Description: This parameter MAY be specified on STRUCTURED‑LOCATION
 and provides a way to differentiate multiple properties. For
 example, it allows event producers to provide location information
 for the venue and the parking.

 Values for this parameter are taken from the values defined in
 [RFC4589]. New location types SHOULD be registered in the manner
 laid down in that specification.

5.2. Restype

Parameter name: RESTYPE

Purpose: To specify the type of resource.

 Format Definition:

 This parameter is defined by the following notation:

 restypeparam = "RESTYPE" "=" restypevalue CRLF

 restypevalue = ("ROOM"
 / "PROJECTOR"
 / "REMOTE‑CONFERENCE‑AUDIO"
 / "REMOTE‑CONFERENCE‑VIDEO"
 / iana‑token) ; Other IANA‑registered
 ; values

Description: This parameter MAY be specified on STRUCTURED‑RESOURCE
 and provides a way to differentiate multiple properties.

 The registered values are described below. New resource types
 SHOULD be registered in the manner laid down in this
 specification.

ROOM: A room for the event/meeting.

PROJECTOR: Projection equipment.

REMOTE‑CONFERENCE‑AUDIO: Audio remote conferencing facilities.

REMOTE‑CONFERENCE‑VIDEO: Video remote conferencing facilities.

5.3. Order

Parameter name: ORDER

Purpose: To define ordering for the associated property.

 Format Definition:

 This parameter is defined by the following notation:

orderparam = "ORDER" "=" integer ;Must be greater than or equal to 1

 Description: The ORDER parameter is OPTIONAL and is used to indicate
 the relative ordering of the corresponding instance of a property.
 Its value MUST be an integer greater than or equal to 1 that
 specifies the order with 1 being the first in the ordering.

 When the parameter is absent, the default MUST be to interpret the
 property instance as being at the lowest level of ordering, that
 is, the property will appear after any other instances of the same
 property with any value of ORDER.

 When any ORDER parameters have the same value all the associated
 properties appear as a group within which there is no defined
 order.

 Note that the value of this parameter is to be interpreted only in
 relation to values assigned to other corresponding instances of
 the same property in the same entity.

 This parameter MUST NOT be applied to a property that does not
 allow multiple instances.

Example uses: The ORDER may be applied to the PARTICIPANT‑TYPE
 property to indicate the relative importance of the participant,
 for example as a sponsor or a performer. For example, ORDER=1
 could define the principal performer or soloist.

5.4. Schema

Parameter Name: SCHEMA

Purpose: To specify the schema used for the content of a
 "STRUCTURED‑DATA" property value.

 Format Definition:

 This parameter is defined by the following notation:

 schemaparam = "SCHEMA" "=" DQUOTE uri DQUOTE

Description: This property parameter SHOULD be specified on
 "STRUCTURED‑DATA" properties. When present it provides
 identifying information about the nature of the content of the
 corresponding "STRUCTURED‑DATA" property value. This can be used
 to supplement the media type information provided by the "FMTTYPE"
 parameter on the corresponding property.

 Example:

 STRUCTURED-DATA;FMTTYPE=application/ld+json;

 SCHEMA="https://schema.org/FlightReservation";
 ENCODING=BASE64;VALUE=BINARY:Zm9vYmFy

5.5. Derived

Parameter Name: DERIVED

Purpose: To specify that the value of the associated property is
 derived from some other property value or values.

 Format Definition:

 This parameter is defined by the following notation:

 derivedparam = "DERIVED" "=" ("TRUE" / "FALSE")
 ; Default is FALSE

Description: This property parameter can be specified on any
 property when the value is derived from some other property or
 properties. When present with a value of TRUE clients MUST NOT
 update the property.

 As an example, if a STYLED-DESCRIPTION property is present with
 FMTTYPE="application/rtf" then there may be an additional STYLED-
 DESCRIPTION property with FMTTYPE="text/html" and DERIVED=TRUE and
 a value created from the rtf value.

 Example:

 STYLED-DESCRIPTION;FMTTYPE=text/html;

 DERIVED=TRUE:<html>...

6. Redefined Property SOURCE

 The SOURCE property defined in [RFC7986] is redefined to allow
 VALUE=TEXT and broaden its usage to any component.

Property name: SOURCE

Purpose: This property provides a reference to information about a
 component such as a participant. For example, that information
 may be a vcard or a plain text typed value.

 For value type URI and embedded in a VEVENT or VTODO it may
 provide a location from which the compoent may be refreshed.

Value type: There is no default value type for this property. It
 may be set to URI as in [RFC7986]. The value type can also be set
 to TEXT to indicate plain text content.

Property Parameters: Non‑standard or format type parameters can be
 specified on this property.

Conformance: This property can be specified once in an iCalendar
 object.

Description: This property provides information about the component
 in which it appears.

 In a PARTICIPANT component it may provide a reference to a vcard
 giving directory information.

 In a VCALENDAR component this property identifies a location where
 a client can retrieve updated data for the calendar. Clients
 SHOULD honor any specified "REFRESH-INTERVAL" value when
 periodically retrieving data. Note that this property differs
 from the "URL" property in that "URL" is meant to provide an
 alternative representation of the calendar data rather than the
 original location of the data.

 In a calendar entity component such as an event the SOURCE
 property may provide a reference to the original source of the
 event. This may be used by aggregators to provide a link back.

 Format Definition:

 This property is defined by the following notation:

source = "SOURCE" sourceparam
 (
 (
 ";" "VALUE" "=" "URI"
 ":" uri
) /
 (
 ";" "VALUE" "=" "TEXT"
 ":" text
)
)
 CRLF

sourceparam = *(
 ;
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once
 ;
 (";" fmttypeparam) /
 ;
 ; the following is OPTIONAL
 ; and MAY occur more than once
 ;
 (";" other‑param)
 ;
)

 Example:

 The following is an example referring to a VCARD.

 SOURCE;FMTTYPE=text/vcard;VALUE=URL:

 http://dir.example.com/vcard/contacts/contact1.vcf

7. New Properties

7.1. Participant Type

Property name: PARTICIPANT‑TYPE

Purpose: To specify the type of participant.

Value type: The value type for this property is TEXT. The allowable
 values are defined below.

Property Parameters: Non‑standard parameters can be specified on
 this property.

Conformance: This property MUST be specified once within a
 PARTICIPANT component.

Description: This property defines the type of participation in
 events or tasks. Participants can be individuals or
 organizations, for example a soccer team, the spectators, or the
 musicians.

 Format Definition:

 This property is defined by the following notation:

participanttype = "PARTICIPANT‑TYPE" partvalueparam ":"
 partvalue CRLF

partvalue = ("ACTIVE"
 / "INACTIVE"
 / "SPONSOR"
 / "CONTACT"
 / "BOOKING‑CONTACT"
 / "EMERGENCY‑CONTACT"
 / "PUBLICITY‑CONTACT"
 / "PLANNER‑CONTACT"
 / "PERFORMER"
 / "SPEAKER"
 / iana‑token) ; Other IANA‑registered
 ; values

partvalueparam = *(
 ; the following is OPTIONAL
 ; and MAY occur more than once
 ;
 (";" other‑param)
)

 Example:

 The following is an example of this property:

 PARTICIPANT-TYPE:SPEAKER

 The registered values for the PARTICIPANT-TYPE property have the
 meanings described here:

ACTIVE: A participant taking an active role ‑ for example a team
 member.

INACTIVE: A participant taking an inactive part ‑ for example an
 audience member.

SPONSOR: A sponsor of the event. The ORDER parameter may be used
 with this participant type to define the relative order of
 multiple sponsors.

CONTACT: Contact information for the event. The ORDER parameter may
 be used with this participant type to define the relative order of
 multiple contacts.

BOOKING‑CONTACT: Contact information for reservations or payment

EMERGENCY‑CONTACT: Contact in case of emergency

PUBLICITY‑CONTACT: Contact for publicity

PLANNER‑CONTACT: Contact for the event planner or organizer

PERFORMER: A performer ‑ for example the soloist or the accompanist.
 The ORDER parameter may be used with this participant type to
 define the relative order of multiple performers. For example,
 ORDER=1 could define the principal performer or soloist.

SPEAKER: Speaker at an event

7.2. Calendar Address

Property name: CALENDAR‑ADDRESS

Purpose: To specify the calendar address for a participant.

Value type: CAL‑ADDRESS

Property Parameters: IANA or non‑standard property parameters can be
 specified on this property.

Conformance: This property MAY be specified once within a
 PARTICIPANT component.

Description: This property provides a calendar user address for the
 participant. If there is an ATTENDEE property with the same value
 then the participant is schedulable.

 Format Definition:

 This property is defined by the following notation:

calendaraddress = "CALENDAR‑ADDRESS" caladdressparam ":"
 cal‑address CRLF

 caladdressparam = *(
 ; the following is OPTIONAL
 ; and MAY occur more than once
 ;
 (";" other‑param)
)

7.3. Styled-Description

Property name: STYLED‑DESCRIPTION

Purpose: This property provides for one or more rich‑text
 descriptions to replace that provided by the DESCRIPTION property.

Value type: There is no default value type for this property. The
 value type can be set to URI or TEXT. Other text‑based value
 types can be used when defined in the future. Clients MUST ignore
 any properties with value types they do not understand.

Property Parameters: IANA, non‑standard, id, alternate text
 representation, format type, derived and language property
 parameters can be specified on this property.

Conformance: The property can be specified multiple times in the
 "VEVENT", "VTODO", "VJOURNAL", "VFREEBUSY", "PARTICIPANT", or
 "VALARM" calendar components.

 If it does appear more than once there MUST be exactly one
 instance of the property with no DERIVED parameter or
 DERIVED=FALSE. All others MUST have DERIVED=TRUE.

 Additionally, if there is one or more STYLED-DESCRIPTION property
 then the DESCRIPTION property should be either absent or have the
 parameter DERIVED=TRUE.

Description: This property supports rich‑text descriptions, for
 example HTML. Event publishers typically wish to provide more and
 better formatted information about the event.

 This property is used in the "VEVENT" and "VTODO" to capture
 lengthy textual descriptions associated with the activity. This
 property is used in the "VJOURNAL" calendar component to capture
 one or more textual journal entries. This property is used in the
 "VALARM" calendar component to capture the display text for a
 DISPLAY category of alarm, and to capture the body text for an
 EMAIL category of alarm. In the PARTICIPANT component it provides
 a detailed description of the participant.

 VALUE=TEXT is used to provide rich-text inline as the property
 value.

 VALUE=URI is used to provide a link to rich-text content which is
 expected to be displayed inline as part of the event.

 In either case the DESCRIPTION property should be absent or
 contain a plain text rendering of the styled text.

 Applications MAY attempt to guess the media type of the resource
 via inspection of its content if and only if the media type of the
 resource is not given by the "FMTTYPE" parameter. If the media
 type remains unknown, calendar applications SHOULD treat it as
 type "text/html" and process the content as defined in
 [W3C.REC-html51-20171003]

 Multiple STYLED-DESCRIPTION properties may be used to provide
 different formats or different language variants. However all but
 one MUST have DERIVED=TRUE.

 Format Definition:

 This property is defined by the following notation:

 styleddescription = "STYLED-DESCRIPTION" styleddescparam ":"

 styleddescval CRLF

styleddescparam = *(
 ; The following is REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("URI" / "TEXT")) /
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" altrepparam) / (";" languageparam) /
 (";" fmttypeparam) / (";" derivedparam) /
 ;
 ; the following is OPTIONAL
 ; and MAY occur more than once
 ;
 (";" other‑param)
)

styleddescval = (uri / text)
;Value MUST match value type

 Example:

 The following is an example of this property. It points to an html
 description.

 STYLED-DESCRIPTION;VALUE=URI:http://example.org/desc001.html

7.4. Structured-Location

Property name: STRUCTURED‑LOCATION

Purpose: This property provides a typed reference to external
 information about the location of an event or optionally a plain
 text typed value.

Value type: There is no default value type for this property. The
 value type can be set to URI or TEXT.

Property Parameters: IANA, non‑standard, label, loctype, related or
 format type parameters can be specified on this property.

Conformance: This property MAY be specified zero or more times in
 any iCalendar component.

Description: There may be a number of locations associated with an
 event. This provides detailed information about these locations.

 When used in a component the value of this property provides
 information about the event venue or of related services such as
 parking, dining, stations etc..

 When a LABEL parameter is supplied the language of the label
 SHOULD match that of the content and of the LANGUAGE parameter if
 present.

Use of the related parameter: This allows a location to define the
 start and/or end timezone of the associated component. If a
 location is specified with a RELATED parameter then the affected
 DTSTART or DTEND properties MUST be specified as floating DATE‑
 TIME value.

 If the RELATED parameter is present with a value of START, then
 the "DTSTART" property MUST be present in the associated "VEVENT"
 or "VTODO" calendar component.

 For an event, if the RELATED parameter is present with a value of
 END, then the "DTEND" property or the "DTSTART" and "DURATION "
 properties MUST be present in the associated "VEVENT" calendar
 component.

 For a to-do with a RELATED value of END, then either the "DUE"
 property or the "DTSTART" and "DURATION " properties MUST be
 present in the associated "VTODO" calendar component.

 If there is a location specified with RELATED=START and no
 location is specified with RELATED=END then the event is assumed
 to start and end in the same timezone.

 Format Definition:

 This property is defined by the following notation:

strucloc = "STRUCTURED‑LOCATION" struclocparam ":"
 struclocval CRLF

struclocparam = *(
 ; The following is REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("URI" / "TEXT")) /
 ;
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once
 ;
 (";" fmttypeparam) /
 (";" labelparam) /
 (";" languageparam) /
 (";" trigrelparam) /
 (";" loctypeparam) /
 ;
 ; the following is OPTIONAL
 ; and MAY occur more than once
 ;
 (";" other‑param)
)

struclocval = (uri / text)
;Value MUST match value type

 Example:

 The following is an example of this property. It points to a venue.

 STRUCTURED-LOCATION;LABEL="The venue";

 VALUE=URI:
 http://dir.example.com/venues/big-hall.vcf

7.5. Structured-Resource

Property name: STRUCTURED‑RESOURCE

Purpose: This property provides a typed reference to external
 information about a resource or optionally a plain text typed
 value. Typically a resource is anything that might be required or
 used by a calendar entity and possibly has a directory entry.

Value type: There is no default value type for this property. The
 value type can be set to URI or TEXT.

Property Parameters: IANA, non‑standard, label, restype or format
 type parameters can be specified on this property.

Conformance: The property can be specified multiple times in the
 "VEVENT" or "VTODO" calendar components.

Description: When used in a component the value of this property
 provides information about resources used for the event such as
 rooms, projectors, conferencing capabilities.

 Such resources may be a room or a projector. This RESTYPE value
 registry provides a place in which resource types may be
 registered for use by scheduling sevices.

 When a LABEL parameter is supplied the language of the label must
 match that of the content and of the LANGUAGE parameter if
 present.

 Format Definition:

 This property is defined by the following notation:

strucres = "STRUCTURED‑RESOURCE" strucresparam ":"
 strucresval CRLF

strucresparam = *(
 ; The following is REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("URI" / "TEXT")) /
 ;
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once
 ;
 (";" fmttypeparam) /
 (";" labelparam) /
 (";" languageparam) /
 (";" restypeparam) /
 ;
 ; the following is OPTIONAL
 ; and MAY occur more than once
 ;
 (";" other‑param)
)

strucewaval = (uri / text)
;Value MUST match value type

 Example:

 The following is an example of this property. It refers to a
 projector.

 STRUCTURED-RESOURCE;value=uri;restype="projector":

 http://dir.example.com/projectors/3d.vcf

7.6. Structured-Data

Property Name: STRUCTURED‑DATA

Purpose: This property specifies ancillary data associated with the
 calendar component.

Value Type: TEXT, BINARY or URI

Property Parameters: IANA, non‑standard, inline encoding, and value
 data type property parameters can be specified on this property.

 The format type and schema parameters can be specified on this
 property and are RECOMMENDED for text or inline binary encoded
 content information.

Conformance: This property can be specified multiple times in an
 iCalendar object. Typically it would be used in "VEVENT",
 "VTODO", or "VJOURNAL" calendar components.

Description: The existing properties in iCalendar cover key elements
 of events and tasks such as start time, end time, location,
 summary, etc. However, different types of events often have other
 specific "fields" that it is useful to include in the calendar
 data. For example, an event representing an airline flight could
 include the airline, flight number, departure and arrival airport
 codes, check‑in and gate‑closing times etc. As another example, a
 sporting event might contain information about the type of sport,
 the home and away teams, the league the teams are in, information
 about nearby parking, etc.

 This property is used to specify ancillary data in some structured
 format either directly (inline) as a "TEXT" or "BINARY" value, or
 as a link via a "URI" value.

 Rather than define new iCalendar properties for the variety of
 event types that might occur, it would be better to leverage
 existing schemas for such data. For example, schemas available at
 https://schema.org include different event types. By using
 standard schemas, interoperability can be improved between
 calendar clients and non-calendaring systems that wish to generate
 or process the data.

 This property allows the direct inclusion of ancillary data whose
 schema is defined elsewhere. This property also includes
 parameters to clearly identify the type of the schema being used
 so that clients can quickly and easily spot what is relevant
 within the calendar data and present that to users or process it
 within the calendaring system.

 iCalendar does support an "ATTACH" property which can be used to
 include documents or links to documents within the calendar data.
 However, that property does not allow data to be included as a
 "TEXT" value (a feature that "STRUCTURED-DATA" does allow), plus
 attachments are often treated as "opaque" data to be processed by
 some other system rather than the calendar client. Thus the
 existing "ATTACH" property is not sufficient to cover the specific
 needs of inclusion of schema data. Extending the "ATTACH"
 property to support a new value type would likely cause
 interoperability problems. Thus a new property to support
 inclusion of schema data is warranted.

 Format Definition:

 This property is defined by the following notation:

 sdataprop = "STRUCTURED‑DATA" sdataparam
 (":" text) /
 (
 ";" "ENCODING" "=" "BASE64"
 ";" "VALUE" "=" "BINARY"
 ":" binary
) /
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

 sdataparam = *(
 ;
 ; The following is OPTIONAL for a URI value,
 ; RECOMMENDED for a TEXT or BINARY value,
 ; and MUST NOT occur more than once.
 ;
 (";" fmttypeparam) /
 (";" schemaparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

Example: The following is an example of this property:

 STRUCTURED‑DATA;FMTTYPE=application/ld+json;
 SCHEMA="https://schema.org/SportsEvent";
 VALUE=TEXT:{\n
 "@context": "http://schema.org"\,\n
 "@type": "SportsEvent"\,\n
 "homeTeam": "Pittsburgh Pirates"\,\n
 "awayTeam": "San Francisco Giants"\n
 }\n

8. New Components

8.1. Participant

Component name: PARTICIPANT

Purpose: This component provides information about a participant in
 an event or task.

Conformance: This component can be specified multiple times in a
 "VEVENT", "VTODO", "VJOURNAL", or "VFREEBUSY" calendar component.

Description: This component provides information about a participant
 in an event, task or poll. A participant may be an attendee in a
 scheduling sense and the ATTENDEE property may be specified in
 addition. Participants in events can be individuals or
 organizations, for example a soccer team, the spectators, or the
 musicians.

 The SOURCE property if present may refer to an external definition
 of the participant - such as a vcard.

 The CALENDAR-ADDRESS property if present will provide a cal-
 address. If an ATTENDEE property has the same value the
 participant is considered schedulable. The PARTICIPANT component
 can be used to contain additional meta-data related to the
 attendee.

 Format Definition:

 This component is defined by the following notation:

 participantc = "BEGIN" ":" "PARTICIPANT" CRLF
 partprop
 "END" ":" "PARTICIPANT" CRLF

 partprop = *(
 ;
 ; The following are REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 dtstamp / participanttype / uid /
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 created / description / geo / last‑mod / priority / seq /
 source / status / calendaraddress / summary / url /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 attach / categories / comment /
 contact / location / rstatus / related /
 resources / strucloc / strucres / styleddescription /
 iana‑prop
 ;
)

Note: When the PRIORITY is supplied it defines the ordering of
 PARTICIPANT components with the same value for the TYPE parameter.

Privacy Issues: When a LOCATION is supplied it provides information
 about the location of a participant at a given time or times.
 This may represent an unacceptable privacy risk for some
 participants. User agents MUST NOT include this information
 without informing the participant.

 Example:

 The following is an example of this component. It contains a SOURCE
 property which points to a VCARD providing information about the
 event participant.

BEGIN:PARTICIPANT
PARTICIPANT‑TYPE:PERFORMER
SOURCE:http://dir.example.com/vcard/aviolinist.vcf
END:PARTICIPANT

 Example:

 The following is an example for the primary contact.

BEGIN: PARTICIPANT
SOURCE;FMTTYPE=text/vcard;
 http://dir.example.com/vcard/contacts/contact1.vcf
PARTICIPANT‑TYPE:CONTACT
DESCRIPTION:A contact:
END:PARTICIPANT

8.2. Schedulable Participant

 A PARTICIPANT component may represent someone or something that needs
 to be scheduled as defined for ATTENDEE in [RFC5545] and [RFC5546].
 The PARTICIPANT component may also represent someone or something
 that is NOT to receive scheduling messages.

 A PARTICIPANT component is defined to be schedulable if

 o It contains a CALENDAR-ADDRESS property

 o That property value is the same as the value for an ATTENDEE
 property.

 If both of these conditions apply then the participant defined by the
 value of the URL property will take part in scheduling operations as
 defined in [RFC5546].

 An appropriate use for the PARTICIPANT component in scheduling would
 be to store SEQUENCE and DTSTAMP properties associated with replies
 from each ATTENDEE. A LOCATION property within the PARTICIPANT
 component might allow better selection of meeting times when
 participants are in different timezones.

9. Extended examples

 The following are some examples of the use of the properties defined
 in this specification. They include additional properties defined in
 [RFC7986] which includes IMAGE.

9.1. Example 1

 The following is an example of a VEVENT describing a concert. It
 includes location information for the venue itself as well as
 references to parking and restaurants.

BEGIN:VEVENT
CREATED:20170216T145739Z
DESCRIPTION: Piano Sonata No 3\n
 Piano Sonata No 30
DTSTAMP:20171116T145739Z
DTSTART;TZID=America/New_York:20170315T150000Z
DTEND;TZID=America/New_York:20170315T163000Z
LAST‑MODIFIED:20170216T145739Z
SUMMARY:Beethoven Piano Sonatas
UID:123456
STRUCTURED‑LOCATION;LABEL="The venue";VALUE=URI:
 http://dir.example.com/venues/big‑hall.vcf
STRUCTURED‑LOCATION;LABEL="Parking for the venue";VALUE=URI:
 http://dir.example.com/venues/parking.vcf
IMAGE;VALUE=URI;DISPLAY=BADGE;FMTTYPE=image/png:h
 ttp://example.com/images/concert.png
BEGIN:PARTICIPANT
PARTICIPANT‑TYPE:SPONSOR
SOURCE:http://example.com/sponsor.vcf
END:PARTICIPANT
BEGIN:PARTICIPANT
PARTICIPANT‑TYPE:PERFORMER:
SOURCE:http://www.example.com/people/johndoe.vcf
END:PARTICIPANT
END:VEVENT

9.2. Example 2

 The following is an example of a VEVENT describing a meeting. One of
 the attendees is a remote participant.

BEGIN:VEVENT
CREATED:20170216T145739Z
DTSTAMP:20101116T145739Z
DTSTART;TZID=America/New_York:20170315T150000Z
DTEND;TZID=America/New_York:20170315T163000Z
LAST‑MODIFIED:20170216T145739Z
SUMMARY:Conference plaaning
UID:123456
ORGANIZER:mailto:a@example.com
ATTENDEE;PARTSTAT=ACCEPTED;CN=A:mailto:a@example.com
ATTENDEE;RSVP=TRUE;CN=B:mailto:b@example.com
BEGIN:PARTICIPANT
PARTICIPANT‑TYPE:ACTIVE:
SOURCE:http://www.example.com/people/b.vcf
LOCATION:At home
END:PARTICIPANT
END:VEVENT

10. Security Considerations

 Applications using these properties need to be aware of the risks
 entailed in using the URIs provided as values. See [RFC3986] for a
 discussion of the security considerations relating to URIs.

 Security considerations relating to the "ATTACH" property, as
 described in [RFC5545], are applicable to the "STRUCTURED-DATA"
 property.

 When processing HTML content applications need to be aware of the
 many security and privacy issues as described in the IANA
 considerations section of [W3C.REC-html51-20171003]

11. Privacy Considerations

 Properties with a "URI" value type can expose their users to privacy
 leaks as any network access of the URI data can be tracked. Clients
 SHOULD NOT automatically download data referenced by the URI without
 explicit instruction from users. This specification does not
 introduce any additional privacy concerns beyond those described in
 [RFC5545].

 The addition of location information to the new participant component
 provides information about the location of participants at a given
 time.

12. IANA Considerations

12.1. Additional iCalendar Registrations

12.1.1. Properties

 This document defines the following new iCalendar properties to be
 added to the registry defined in Section 8.2.3 of [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
CALENDAR‑ADDRESS	Current	RFCXXXX, Section 7.2
PARTICIPANT‑TYPE	Current	RFCXXXX, Section 7.1
SOURCE	Current	RFCXXXX, Section 6
STRUCTURED‑DATA	Current	RFCXXXX, Section 7.6
STYLED‑DESCRIPTION	Current	RFCXXXX, Section 7.3
STRUCTURED‑LOCATION	Current	RFCXXXX, Section 7.4
STRUCTURED‑RESOURCE	Current	RFCXXXX, Section 7.5
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

12.1.2. Parameters

 This document defines the following new iCalendar property parameters
 to be added to the registry defined in Section 8.2.4 of [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property Parameter | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
LOCTYPE	Current	RFCXXXX, Section 5.1
ORDER	Current	RFCXXXX, Section 5.3
RESTYPE	Current	RFCXXXX, Section 5.2
SCHEMA	Current	RFCXXXX, Section 5.4
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

12.1.3. Components

 This document defines the following new iCalendar components to be
 added to the registry defined in Section 8.3.1 of [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| PARTICIPANT | Current | RFCXXXX, Section 8.1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

12.2. New Registration Tables

 This section defines new registration tables for PARTICIPANT-TYPE and
 RESTYPE values. These tables are updated using the same approaches
 laid down in Section 8.2.1 of [RFC5545]

12.2.1. Participant Types

 The following table has been used to initialize the participant types
 registry.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Participant Type | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
ACTIVE	Current	RFCXXXX, Section 7.1
INACTIVE	Current	RFCXXXX, Section 7.1
SPONSOR	Current	RFCXXXX, Section 7.1
CONTACT	Current	RFCXXXX, Section 7.1
BOOKING‑CONTACT	Current	RFCXXXX, Section 7.1
EMERGENCY‑CONTACT	Current	RFCXXXX, Section 7.1
PUBLICITY‑CONTACT	Current	RFCXXXX, Section 7.1
PLANNER‑CONTACT	Current	RFCXXXX, Section 7.1
PERFORMER	Current	RFCXXXX, Section 7.1
SPEAKER	Current	RFCXXXX, Section 7.1
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

12.2.2. Resource Types

 The following table has been used to initialize the resource types
 registry.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Resource Type | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
PROJECTOR	Current	RFCXXXX, Section 5.2
ROOM	Current	RFCXXXX, Section 5.2
REMOTE‑CONFERENCE‑AUDIO	Current	RFCXXXX, Section 5.2
REMOTE‑CONFERENCE‑VIDEO	Current	RFCXXXX, Section 5.2
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

13. Acknowledgements

 The author would like to thank Chuck Norris of eventful.com for his
 work which led to the development of this RFC.

 The author would also like to thank the members of CalConnect, The
 Calendaring and Scheduling Consortium, the Event Publication
 technical committee and the following individuals for contributing
 their ideas and support:

 Cyrus Daboo, John Haug, Dan Mendell, Ken Murchison, Scott Otis.

14. References

14.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2426]
 Dawson, F. and T. Howes, "vCard MIME Directory Profile",
 RFC 2426, DOI 10.17487/RFC2426, September 1998,
 <https://www.rfc-editor.org/info/rfc2426>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4589]
 Schulzrinne, H. and H. Tschofenig, "Location Types
 Registry", RFC 4589, DOI 10.17487/RFC4589, July 2006,
 <https://www.rfc-editor.org/info/rfc4589>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

 [RFC7986]
 Daboo, C., "New Properties for iCalendar", RFC 7986,
 DOI 10.17487/RFC7986, October 2016,
 <https://www.rfc-editor.org/info/rfc7986>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [W3C.REC-html51-20171003]

 Faulkner, S., Eicholz, A., Leithead, T., and A. Danilo,
 "HTML 5.1 2nd Edition", World Wide Web Consortium
 Recommendation REC-html51-20171003, October 2017,
 <https://www.w3.org/TR/2017/REC-html51-20171003>.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

14.2. Informative References

 [iana-property-registry]

 "IANA iCalendar Element Registries",
 <https://www.iana.org/assignments/icalendar/
 icalendar.xhtml>.

Appendix A. Open issues

 None at the moment

Appendix B. Change log

 calext-v13 2019-05-26 MD

 o Respond to various issues.

 calext-v12 2019-02-28 MD

 o Fix styled-description example. Respond to various AD issues.
 Some typos.

 calext-v11 2019-02-27 MD

 o Add DERIVED parameter for styled-description, RELATED parameter
 for structured-location

 calext-v09 2018-08-30 MD

 o Sorted out inconsistencies in refs to 5546

 calext-v08 2018-07-06 MD

 o Add some text for equal ORDER values

 o Switched scheduleaddress to calendaraddress in participant abnf.
 Also added more properties

 o Fixed PARTICIPANT abnf

 calext-v04 2017-10-11 MD

 o Change SCHEDULE-ADDRESS to CALENDAR-ADDRESS

 o Explicitly broaden scope of SOURCE

 o Add initial registry for RESTYPE and move new tables into separate
 section.

 o Fix PARTTYPE/PARTICPANT-TYPE inconsistency

 calext-v03 2017-10-09 MD

 o Mostly typographical and other minor changes

 calext-v02 2017-04-20 MD

 o Add SCHEDULE-ADDRESS property

 o PARTICIPANT becomes a component rather than a property. Turn many
 of the former parameters into properties.

 o Use existing ATTENDEE property for scheduling.

 calext-v01 2017-02-18 MD

 o Change ASSOCIATE back to PARTICIPANT

 o PARTICIPANT becomes a component rather than a property. Turn many
 of the former parameters into properties.

 calext-v00 2016-08-?? MD

 o Name changed - taken up by calext working group

 v06 2016-06-26 MD

 o Fix up abnf

 o change ref to ietf from daboo

 o take out label spec - use Cyrus spec

 v05 2016-06-14 MD

 o Remove GROUP and HASH. they can be dealt with elsewhere if desired

 o Change ORDER to integer >= 1.

 o Incorporate Structured-Data into this specification.

 v04 2014-02-01 MD

 o Added updates attribute.

 o Minor typos.

 o Resubmitted mostly to refresh the draft.

 v03 2013-03-06 MD

 o Replace PARTICIPANT with ASSOCIATE plus related changes.

 o Added section showing modifications to components.

 o Replace ID with GROUP and modify HASH.

 o Replace TITLE param with LABEL.

 o Fixed STYLED-DESCRIPTION in various ways, correct example.

 v02 2012-11-02 MD

 o Collapse sections with description of properties and the use cases
 into a section with sub-sections.

 o New section to describe relating properties.

 o Remove idref and upgrade hash to have the reference

 o No default value types on properties..

 v01 2012-10-18 MD Many changes.

 o SPONSOR and STRUCTURED-CONTACT are now in PARTICIPANT

 o Add a STRUCTURED-RESOURCE property

 o STYLED-DESCRIPTION to handle rich text

 o Much more...

 2011-01-07

 o Remove MEDIA - it's going in the Cyrus RFC

 o Rename EXTENDED-... to STRUCTURED-...

 o Add TYPE parameter to SPONSOR

 v00 2007-10-19 MD Initial version

Author's Address

Michael Douglass
Spherical Cow Group
226 3rd Street
Troy, NY 12180
USA

Email: mdouglass@sphericalcowgroup.com
URI: http://sphericalcowgroup.com

draft-ietf-calext-jscalendar-14 - JSCalendar: A JSON representation of calendar

Index
Prev
Next
Forward 5

Calendaring extensions

Internet-Draft

Intended status: Standards Track

Expires: December 8, 2019

N. Jenkins

R. Stepanek

FastMail

June 6, 2019

JSCalendar: A JSON representation of calendar data

draft-ietf-calext-jscalendar-14

Abstract

 This specification defines a data model and JSON representation of
 calendar data that can be used for storage and data exchange in a
 calendaring and scheduling environment. It aims to be an alternative
 to the widely deployed iCalendar data format and to be unambiguous,
 extendable and simple to process. In contrast to the JSON-based jCal
 format, it is not a direct mapping from iCalendar and expands
 semantics where appropriate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 8, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Relation to the iCalendar format

	 1.2. Relation to the jCal format

	 1.3. Notational Conventions

	2. JSCalendar objects
	 2.1. JSEvent

	 2.2. JSTask

	 2.3. JSGroup

	3. Structure of JSCalendar objects
	 3.1. Type signatures

	 3.2. Data Types
	 3.2.1. UTCDate

	 3.2.2. LocalDate

	 3.2.3. Duration

	 3.2.4. PatchObject

	 3.2.5. Identifiers

	 3.2.6. Time Zones

	 3.2.7. Normalization and equivalence

	 3.3. Custom property extensions and values

	4. Common JSCalendar properties
	 4.1. Metadata properties
	 4.1.1. @type

	 4.1.2. uid

	 4.1.3. relatedTo

	 4.1.4. prodId

	 4.1.5. created

	 4.1.6. updated

	 4.1.7. sequence

	 4.1.8. method

	 4.2. What and where properties
	 4.2.1. title

	 4.2.2. description

	 4.2.3. descriptionContentType

	 4.2.4. locations

	 4.2.5. virtualLocations

	 4.2.6. links

	 4.2.7. locale

	 4.2.8. keywords

	 4.2.9. categories

	 4.2.10. color

	 4.3. Recurrence properties
	 4.3.1. recurrenceRule

	 4.3.2. recurrenceOverrides

	 4.3.3. excluded

	 4.4. Sharing and scheduling properties
	 4.4.1. priority

	 4.4.2. freeBusyStatus

	 4.4.3. privacy

	 4.4.4. replyTo

	 4.4.5. participants

	 4.5. Alerts properties
	 4.5.1. useDefaultAlerts

	 4.5.2. alerts

	 4.6. Multilingual properties
	 4.6.1. localizations

	 4.7. Time zone properties
	 4.7.1. timeZones

	5. Type-specific JSCalendar properties
	 5.1. JSEvent properties
	 5.1.1. start

	 5.1.2. timeZone

	 5.1.3. duration

	 5.1.4. isAllDay

	 5.1.5. status

	 5.2. JSTask properties
	 5.2.1. due

	 5.2.2. start

	 5.2.3. timeZone

	 5.2.4. estimatedDuration

	 5.2.5. statusUpdatedAt

	 5.2.6. isAllDay

	 5.2.7. progress

	 5.2.8. status

	 5.3. JSGroup properties
	 5.3.1. entries

	 5.3.2. source

	6. JSCalendar object examples
	 6.1. Simple event

	 6.2. Simple task

	 6.3. Simple group

	 6.4. All-day event

	 6.5. Task with a due date

	 6.6. Event with end time-zone

	 6.7. Floating-time event (with recurrence)

	 6.8. Event with multiple locations and localization

	 6.9. Recurring event with overrides

	 6.10. Recurring event with participants

	7. Security Considerations

	8. IANA Considerations

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

	 10.3. URIs

	Authors' Addresses

1. Introduction

 This document defines a data model for calendar event and task
 objects, or groups of such objects, in electronic calendar
 applications and systems. It aims to be unambiguous, extendable and
 simple to process.

 The key design considerations for this data model are as follows:

 o The attributes of the calendar entry represented must be described
 as a simple key-value pair, reducing complexity of its
 representation.

 o The data model should avoid all ambiguities and make it difficult
 to make mistakes during implementation.

 o Most of the initial set of attributes should be taken from the
 iCalendar data format ([RFC5545] and [RFC7986], also see
 Section 1.1), but the specification should add new attributes or
 value types, or not support existing ones, where appropriate.
 Conversion between the data formats need not fully preserve
 semantic meaning.

 o Extensions, such as new properties and components, MUST NOT lead
 to requiring an update to this document.

 The representation of this data model is defined in the I-JSON format
 [RFC7493], which is a strict subset of the JavaScript Object Notation
 (JSON) Data Interchange Format [RFC8259]. Using JSON is mostly a
 pragmatic choice: its widespread use makes JSCalendar easier to
 adopt, and the ready availability of production-ready JSON
 implementations eliminates a whole category of parser-related
 interoperability issues.

1.1. Relation to the iCalendar format

 The iCalendar data format [RFC5545], a widely deployed interchange
 format for calendaring and scheduling data, has served calendaring
 vendors for a long while, but contains some ambiguities and pitfalls
 that can not be overcome without backward-incompatible changes.

 For example, iCalendar defines various formats for local times, UTC
 time and dates, which confuses new users. Other sources for errors
 are the requirement for custom time zone definitions within a single
 calendar component, as well as the iCalendar format itself; the
 latter causing interoperability issues due to misuse of CR LF
 terminated strings, line continuations and subtle differences between
 iCalendar parsers. Lastly, up until recently the iCalendar format
 did not have a way to express a concise difference between two
 calendar components, which results in verbose exchanges during
 scheduling.

1.2. Relation to the jCal format

 The JSON format for iCalendar data, jCal [RFC7265], is a direct
 mapping between iCalendar and JSON. It does not attempt to extend or
 update iCalendar semantics, and consequently does not address the
 issues outlined in Section 1.1.

 Since the standardization of jCal, the majority of implementations
 and service providers either kept using iCalendar, or came up with
 their own proprietary JSON representation, which often are
 incompatible with each other. JSCalendar is intended to meet this
 demand for JSON formatted calendar data, and to provide a standard
 representation as an alternative to new proprietary formats.

1.3. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The underlying format used for this specification is JSON.
 Consequently, the terms "object" and "array" as well as the four
 primitive types (strings, numbers, booleans, and null) are to be
 interpreted as described in Section 1 of [RFC8259].

 Some examples in this document contain "partial" JSON documents used
 for illustrative purposes. In these examples, three periods "..."
 are used to indicate a portion of the document that has been removed
 for compactness.

2. JSCalendar objects

 This section describes the calendar object types specified by
 JSCalendar.

2.1. JSEvent

 MIME type: "application/jscalendar+json;type=jsevent"

 A JSEvent represents a scheduled amount of time on a calendar,
 typically a meeting, appointment, reminder or anniversary. Multiple
 participants may partake in the event at multiple locations.

 The @type (Section 4.1.1) property value MUST be "jsevent".

2.2. JSTask

 MIME type: "application/jscalendar+json;type=jstask"

 A JSTask represents an action-item, assignment, to-do or work item .

 The @type (Section 4.1.1) property value MUST be "jstask".

 A JSTask may start and be due at certain points in time, may take
 some estimated time to complete and may recur; none of which is
 required. This notably differs from JSEvent (Section 2.1) which is
 required to start at a certain point in time and typically takes some
 non-zero duration to complete.

2.3. JSGroup

 MIME type: "application/jscalendar+json;type=jsgroup"

 A JSGroup is a collection of JSEvent (Section 2.1) and JSTask
 (Section 2.2) objects. Typically, objects are grouped by topic (e.g.
 by keywords) or calendar membership.

 The @type (Section 4.1.1) property value MUST be "jsgroup".

3. Structure of JSCalendar objects

 A JSCalendar object is a JSON object, which MUST be valid I-JSON (a
 stricter subset of JSON), as specified in [RFC8259]. Property names
 and values are case-sensitive.

 The object has a collection of properties, as specified in the
 following sections. Properties are specified as being either
 mandatory or optional. Optional properties may have a default value,
 if explicitly specified in the property definition.

3.1. Type signatures

 Types signatures are given for all JSON objects in this document.
 The following conventions are used:

 o "Boolean|String": The value is either a JSON "Boolean" value, or a
 JSON "String" value.

 o "Foo": Any name that is not a native JSON type means an object for
 which the properties (and their types) are defined elsewhere
 within this document.

 o "Foo[]": An array of objects of type "Foo".

 o "String[Foo]": A JSON "Object" being used as a map (associative
 array), where all the values are of type "Foo".

3.2. Data Types

 In addition to the standard JSON data types, the following data types
 are used in this specification:

3.2.1. UTCDate

 This is a string in [RFC3339] "date-time" format, with the further
 restrictions that any letters MUST be in upper-case, the time
 component MUST be included and the time MUST be in UTC. Fractional
 second values MUST NOT be included unless non-zero and MUST NOT have
 trailing zeros, to ensure there is only a single representation for
 each date-time.

 For example "2010-10-10T10:10:10.003Z" is OK, but
 "2010-10-10T10:10:10.000Z" is invalid and MUST be encoded as
 "2010-10-10T10:10:10Z".

 In common notation, it should be of the form "YYYY-MM-DDTHH:MM:SSZ".

3.2.2. LocalDate

 This is a date-time string _with no time zone/offset information_.
 It is otherwise in the same format as UTCDate: "YYYY-MM-DDTHH:MM:SS".
 The time zone to associate the LocalDate with comes from an
 associated property, or if no time zone is associated it defines
 floating time. Floating date-times are not tied to any specific
 time zone. Instead, they occur in every time zone at the same wall-
 clock time (as opposed to the same instant point in time).

3.2.3. Duration

 A Duration object is represented by a subset of ISO8601 duration
 format, as specified by the following ABNF:

dur‑secfrac = "." 1*DIGIT
dur‑second = 1*DIGIT [dur‑secfrac] "S"
dur‑minute = 1*DIGIT "M" [dur‑second]
dur‑hour = 1*DIGIT "H" [dur‑minute]
dur‑time = "T" (dur‑hour / dur‑minute / dur‑second)
dur‑day = 1*DIGIT "D"
dur‑week = 1*DIGIT "W"

duration = "P" (dur‑day [dur‑time] / dur‑time / dur‑week)

 In addition, the duration MUST NOT include fractional second values
 unless the fraction is non-zero.

 A SignedDuration object is represented as a duration, optionally
 preceeded by a sign character. It typically is used to express the
 offset of a point in time relative to an associated time. It is
 specified by the following ABNF:

 signed-duration = (["+"] / "-") duration

 A negative sign indicates a point in time at or before the associated
 time, a positive or no sign a time at or after the associated time.

3.2.4. PatchObject

 A PatchObject is of type "String[*|null]", and represents an
 unordered set of patches on a JSON object. The keys are a path in a
 subset of [RFC6901] JSON pointer format, with an implicit leading "/"
 (i.e. prefix each key with "/" before applying the JSON pointer
 evaluation algorithm).

 A patch within a PatchObject is only valid, if all of the following
 conditions apply:

 1. The pointer MUST NOT reference inside an array (i.e. it MUST NOT
 insert/delete from an array; the array MUST be replaced in its
 entirety instead).

 2. When evaluating a path, all parts prior to the last (i.e. the
 value after the final slash) MUST exist.

 3. There MUST NOT be two patches in the PatchObject where the
 pointer of one is the prefix of the pointer of the other, e.g.
 "alerts/foo/offset" and "alerts".

 The value associated with each pointer is either:

 o "null": Remove the property from the patched object. If not
 present in the parent, this a no-op.

 o Anything else: The value to replace the inherited property on the
 patch object with (if present) or add to the property (if not
 present).

 Implementations MUST reject a PatchObject if any of its patches are
 invalid.

3.2.5. Identifiers

 If not stated otherwise in the respective property definition,
 properties and object keys that define identifiers MUST be string
 values, MUST be at least 1 character and maximum 256 characters in
 size, and MUST only contain characters from the "URL and Filename
 safe" Base 64 Alphabet, as defined in section 5 of [RFC4648]. This
 is the ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), and
 underscore (_). Note that [RFC7493] requires string values be
 encoded in UTF-8, so the maximum size of an identifier according to
 this definition is 256 octets.

 . Identifiers in object maps need not be universally unique, e.g. two
 calendar objects MAY use the same identifiers in their respective
 "links" properties.

 Nevertheless, a UUID typically is a good choice.

3.2.6. Time Zones

 By default, time zones in JSCalendar are identified by their name in
 the IANA Time Zone Database [1], and the zone rules of the respective
 zone record apply.

 Implementations MAY embed the definition of custom time zones in the
 "timeZones" property (see Section 4.7.1).

3.2.7. Normalization and equivalence

 JSCalendar aims to provide unambiguous definitions for value types
 and properties, but does not define a general normalization or
 equivalence method for JSCalendar objects and types. This is because
 the notion of equivalence might range from byte-level equivalence to
 semantic equivalence, depending on the respective use case (for
 example, the CalDAV protocol [RFC4791] requires octet equivalence of
 the encoded calendar object to determine ETag equivalence).

 Normalization of JSCalendar objects is hindered because of the
 following reasons:

 o Custom JSCalendar properties may contain arbitrary JSON values,
 including arrays. However, equivalence of arrays might or might
 not depend on the order of elements, depending on the respective
 property definition.

 o Several JSCalendar property values are defined as URIs and MIME
 types, but normalization of these types is inherently protocol and
 scheme-specific, depending on the use-case of the equivalence
 definition (see section 6 of [RFC3986]).

 Considering this, the definition of equivalence and normalization is
 left to client and server implementations and to be negotiated by a
 calendar exchange protocol or defined by another RFC.

3.3. Custom property extensions and values

 Vendors MAY add additional properties to the calendar object to
 support their custom features. The names of these properties MUST be
 prefixed with a domain name controlled by the vendor to avoid
 conflict, e.g. "example.com/customprop".

 Some JSCalendar properties allow vendor-specific value extensions.
 If so, vendor specific values MUST be prefixed with a domain name
 controlled by the vendor, e.g. "example.com/customrel", unless
 otherwise noted.

4. Common JSCalendar properties

 This section describes the properties that are common to the various
 JSCalendar object types. Specific JSCalendar object types may only
 support a subset of these properties. The object type definitions in
 Section 5 describe the set of supported properties per type.

4.1. Metadata properties

4.1.1. @type

 Type: String (mandatory).

 Specifies the type which this object represents. This MUST be one of
 the following values, registered in a future RFC, or a vendor-
 specific value:

 o "jsevent": a JSCalendar event (Section 2.1).

 o "jstask": a JSCalendar task (Section 2.2).

 o "jsgroup": a JSCalendar group (Section 2.3).

4.1.2. uid

 Type: String (mandatory).

 A globally unique identifier, used to associate the object as the
 same across different systems, calendars and views. The value of
 this property MUST be unique across all JSCalendar objects, even if
 they are of different type. [RFC4122] describes a range of
 established algorithms to generate universally unique identifiers
 (UUID), and the random or pseudo-random version is recommended.

 For compatibility with [RFC5545] UIDs, implementations MUST be able
 to receive and persist values of at least 255 octets for this
 property, but they MUST NOT truncate values in the middle of a UTF-8
 multi-octet sequence.

4.1.3. relatedTo

 Type: String[Relation] (optional).

 Relates the object to other JSCalendar objects. This is represented
 as a map of the UIDs of the related objects to information about the
 relation.

 A Relation object has the following properties:

 o relation: String[Boolean] (optional). Describes how the linked
 object is related to this object as a set of relation types. If
 not null, the set MUST NOT be empty.

 Keys in the set MUST be one of the following values, defined in a
 future specification or a vendor-specific value:

 * "first": The linked object is the first in the series this
 object is part of.

 * "next": The linked object is the next in the series this object
 is part of.

 * "child": The linked object is a subpart of this object.

 * "parent": This object is part of the overall linked object.

 The value for each key in the set MUST be "true".

 If an object is split to make a "this and future" change to a
 recurrence, the original object MUST be truncated to end at the
 previous occurrence before this split, and a new object created to
 represent all the objects after the split. A "next" relation MUST be
 set on the original object's relatedTo property for the UID of the
 new object. A "first" relation for the UID of the first object in
 the series MUST be set on the new object. Clients can then follow
 these UIDs to get the complete set of objects if the user wishes to
 modify them all at once.

4.1.4. prodId

 Type: String (optional).

 The identifier for the product that created the JSCalendar object.

 The vendor of the implementation SHOULD ensure that this is a
 globally unique identifier, using some technique such as an FPI
 value, as defined in [ISO.9070.1991]. It MUST only use characters of
 an iCalendar TEXT data value (see section 3.3.11 in [RFC5545]).

 This property SHOULD NOT be used to alter the interpretation of an
 JSCalendar object beyond the semantics specified in this document.
 For example, it is not to be used to further the understanding of
 non-standard properties.

4.1.5. created

 Type: UTCDate (optional).

 The date and time this object was initially created.

4.1.6. updated

 Type: UTCDate (mandatory).

 The date and time the data in this object was last modified.

4.1.7. sequence

 Type: Number (optional, default: "0").

 Initially zero, this MUST be a non-negative integer that is
 monotonically incremented each time a change is made to the object.

4.1.8. method

 Type: String (optional).

 The iTIP ([RFC5546]) method, in lower-case. Used for scheduling.

4.2. What and where properties

4.2.1. title

 Type: String (optional, default: empty String).

 A short summary of the object.

4.2.2. description

 Type: String (optional, default: empty String).

 A longer-form text description of the object. The content is
 formatted according to the "descriptionContentType" property.

4.2.3. descriptionContentType

 Type: String (optional, default: "text/plain").

 Describes the media type ([RFC6838]) of the contents of the
 "description" property. Media types MUST be sub-types of type
 "text", and SHOULD be "text/plain" or "text/html" ([MIME]). They MAY
 define parameters and the "charset" parameter value MUST be "utf-8",
 if specified. Descriptions of type "text/html" MAY contain "cid"
 URLs ([RFC2392]) to reference links in the calendar object by use of
 the "cid" property of the Link object.

4.2.4. locations

 Type: String[Location] (optional).

 A map of location identifiers to Location objects, representing
 locations associated with the object.

 A Location object has the following properties. It must define at
 least one other property than the "relativeTo" property.

 o name: String (optional, default: empty String). The human-
 readable name of the location.

 o description: String (optional). Human-readable, plain-text
 instructions for accessing this location. This may be an address,
 set of directions, door access code, etc.

 o relativeTo: String (optional). The relation type of this location
 to the JSCalendar object.

 This MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value. Any value the client or
 server doesn't understand should be treated the same as if this
 property is omitted.

 * "start": The JSCalendar object starts at this location.

 * "end": The JSCalendar object ends at this location.

 o timeZone: String (optional). A time zone for this location. Also
 see Section 3.2.6.

 o coordinates: String (optional). An [RFC5870] "geo:" URI for the
 location.

 o linkIds: String[Boolean] (optional). A set of link ids for links
 to alternate representations of this location. Each key in the
 set MUST be the identifier of a Link object defined in the "links"
 property of this calendar object. The value for each key in the
 set MUST be "true". This MUST be omitted if none (rather than an
 empty set).

 For example, an alternative representation could be in vCard
 format.

4.2.5. virtualLocations

 Type: String[VirtualLocation] (optional).

 A map of identifiers to VirtualLocation objects, representing virtual
 locations, such as video conferences or chat rooms, associated with
 the object.

 A VirtualLocation object has the following properties.

 o name: String (optional, default: empty String). The human-
 readable name of the virtual location.

 o description: String (optional). Human-readable plain-text
 instructions for accessing this location. This may be an address,
 set of directions, door access code, etc.

 o uri: String (mandatory). A URI that represents how to connect to
 this virtual location.

 This may be a telephone number (represented as
 "tel:+1-555-555-555") for a teleconference, a web address for
 online chat, or any custom URI.

4.2.6. links

 Type: String[Link] (optional).

 A map of link identifiers to Link objects, representing external
 resources associated with the object.

 A Link object has the following properties:

 o href: String (mandatory). A URI from which the resource may be
 fetched.

 This MAY be a "data:" URL, but it is recommended that the file be
 hosted on a server to avoid embedding arbitrarily large data in
 JSCalendar object instances.

 o cid: String (optional). This MUST be a valid "content-id" value
 according to the definition of section 2 in [RFC2392]. The
 identifier MUST be unique within this JSCalendar object Link
 objects but has no meaning beyond that. Specifically, it MAY be
 different from the link identifier in the enclosing "links"
 property.

 o type: String (optional). The content-type [RFC6838] of the
 resource, if known.

 o size: Number (optional). The size, in bytes, of the resource when
 fully decoded (i.e. the number of bytes in the file the user would
 download), if known.

 o rel: String (optional). Identifies the relation of the linked
 resource to the object. If set, the value MUST be a registered
 relation type (see [RFC8288] and IANA Link Relations [2]).

 Links with a rel of "enclosure" SHOULD be considered by the client
 as attachments for download.

 Links with a rel of "describedby" SHOULD be considered by the
 client to be an alternate representation of the description.

 Links with a rel of "icon" SHOULD be considered by the client to
 be an image that it MAY use when presenting the calendar data to a
 user. The "display" property MAY be set to indicate the purpose
 of this image.

 o display: String (optional). Describes the intended purpose of a
 link to an image. If set, the "rel" property MUST be set to
 "icon". The value MUST be either one of the following values,
 registered in a future RFC, or a vendor-specific value:

 * "badge": an image inline with the title of the object

 * "graphic": a full image replacement for the object itself

 * "fullsize": an image that is used to enhance the object

 * "thumbnail": a smaller variant of "fullsize " to be used when
 space for the image is constrained

 o title: String (optional). A human-readable plain-text description
 of the resource.

4.2.7. locale

 Type: String (optional).

 The [RFC5646] language tag that best describes the locale used for
 the calendar object, if known.

4.2.8. keywords

 Type: String[Boolean] (optional).

 A set of keywords or tags that relate to the object. The set is
 represented as a map, with the keys being the keywords. The value
 for each key in the map MUST be "true".

4.2.9. categories

 Type: String[Boolean] (optional).

 A set of categories that relate to the calendar object. The set is
 represented as a map, with the keys being the categories specified as
 URIs. The value for each key in the map MUST be "true".

 In contrast to keywords, categories typically are structured. For
 example, a vendor owning the domain "example.com" might define the
 categories "http://example.com/categories/sports/american-football""
 and "http://example.com/categories/music/r-b".

4.2.10. color

 Type: String (optional).

 Specifies a color clients MAY use when displaying this calendar
 object. The value is a case-insensitive color name taken from the
 CSS3 set of names, defined in Section 4.3 of W3C.REC-
 css3-color-20110607 [3] or a CSS3 RGB color hex value.

4.3. Recurrence properties

4.3.1. recurrenceRule

 Type: Recurrence (optional).

 Defines a recurrence rule (repeating pattern) for recurring calendar
 objects.

 A Recurrence object is a JSON object mapping of a RECUR value type in
 iCalendar, see [RFC5545] and[RFC7529]. A JSEvent recurs by applying
 the recurrence rule to the start date-time. A JSTask recurs by
 applying the recurrence rule to the start date-time, if defined,
 otherwise it recurs by the due date-time, if defined. If the task
 neither defines a start or due date-time, its "recurrenceRule"
 property value MUST be "null".

 A Recurrence object has the following properties:

 o frequency: String (mandatory). This MUST be one of the following
 values:

 * "yearly"

 * "monthly"

 * "weekly"

 * "daily"

 * "hourly"

 * "minutely"

 * "secondly"

 To convert from iCalendar, simply lower-case the FREQ part.

 o interval: Number (optional, default: "1"). The INTERVAL part from
 iCalendar. If included, it MUST be an integer "x >= 1".

 o rscale: String (optional, default: ""gregorian""). The RSCALE
 part from iCalendar RSCALE [RFC7529], converted to lower-case.

 o skip: String (optional, default: ""omit""). The SKIP part from
 iCalendar RSCALE [RFC7529], converted to lower-case.

 o firstDayOfWeek: String (optional, default: ""mo""). The WKST part
 from iCalendar, represented as a lower-case abbreviated two-letter
 English day of the week. If included, it MUST be one of the
 following values: ""mo"|"tu"|"we"|"th"|"fr"|"sa"|"su"".

 o byDay: NDay[] (optional). An *NDay* object has the following
 properties:

 * day: String. The day-of-the-week part of the BYDAY value in
 iCalendar, lower-cased. MUST be one of the following values:
 ""mo"|"tu"|"we"|"th"|"fr"|"sa"|"su"".

 * nthOfPeriod: Number (optional). The ordinal part of the BYDAY
 value in iCalendar (e.g. ""+1"" or ""-3""). If present, rather
 than representing every occurrence of the weekday defined in
 the "day" property, it represents only a specific instance
 within the recurrence period. The value can be positive or
 negative, but MUST NOT be zero. A negative integer means nth-
 last of period.

 o byMonthDay: Number[] (optional). The BYMONTHDAY part from
 iCalendar. The array MUST have at least one entry if included.

 o byMonth: String[] (optional). The BYMONTH part from iCalendar.
 Each entry is a string representation of a number, starting from
 "1" for the first month in the calendar (e.g. ""1" " means
 ""January"" with Gregorian calendar), with an optional ""L""
 suffix (see [RFC7529]) for leap months (this MUST be upper-case,
 e.g. ""3L""). The array MUST have at least one entry if included.

 o byYearDay: Number[] (optional). The BYYEARDAY part from
 iCalendar. The array MUST have at least one entry if included.

 o byWeekNo: Number[] (optional). The BYWEEKNO part from iCalendar.
 The array MUST have at least one entry if included.

 o byHour: Number[] (optional). The BYHOUR part from iCalendar. The
 array MUST have at least one entry if included.

 o byMinute: Number[] (optional). The BYMINUTE part from iCalendar.
 The array MUST have at least one entry if included.

 o bySecond: Number[] (optional). The BYSECOND part from iCalendar.
 The array MUST have at least one entry if included.

 o bySetPosition: Number[] (optional). The BYSETPOS part from
 iCalendar. The array MUST have at least one entry if included.

 o count: Number (optional). The COUNT part from iCalendar. This
 MUST NOT be included if an "until" property is specified.

 o until: LocalDate (optional). The UNTIL part from iCalendar. This
 MUST NOT be included if a "count" property is specified. Note: if
 not specified otherwise for a specific JSCalendar object, this
 date is presumed to be in the time zone specified in "timeZone".
 As in iCalendar, the until value bounds the recurrence rule
 inclusively. To allow for using the same bound regardless of the
 value of the "isAllDay" property, the "until" property date-time
 MAY include non-zero time components even for all-day calendar
 objects.

 A recurrence rule specifies a set of set of date-times for recurring
 calendar objects. A recurrence rule has the following semantics.
 Note, wherever "year", "month" or "day of month" is used, this is
 within the calendar system given by the "rscale" property, which
 defaults to gregorian if omitted.

 1. A set of candidates is generated. This is every second within a
 period defined by the frequency property value:

 * "yearly": every second from midnight on the 1st day of a year
 (inclusive) to midnight the 1st day of the following year
 (exclusive).

 If skip is not "omit", the calendar system has leap months and
 there is a byMonth property, generate candidates for the leap
 months even if they don't occur in this year.

 If skip is not "omit" and there is a byMonthDay property,
 presume each month has the maximum number of days any month
 may have in this calendar system when generating candidates,
 even if it's more than this month actually has.

 * "monthly": every second from midnight on the 1st day of a
 month (inclusive) to midnight on the 1st of the following
 month (exclusive).

 If skip is not "omit" and there is a byMonthDay property,
 presume the month has the maximum number of days any month may
 have in this calendar system when generating candidates, even
 if it's more than this month actually has.

 * "weekly": every second from midnight (inclusive) on the first
 day of the week (as defined by the firstDayOfWeek property, or
 Monday if omitted), to midnight 7 days later (exclusive).

 * "daily": every second from midnight at the start of the day
 (inclusive) to midnight at the end of the day (exclusive).

 * "hourly": every second from the beginning of the hour
 (inclusive) to the beginning of the next hour (exclusive).

 * "minutely": every second from the beginning of the minute
 (inclusive) to the beginning of the next minute (exclusive).

 * "secondly": the second itself, only.

 2. Each date-time candidate is compared against all of the byX
 properties of the rule except bySetPosition. If any property in
 the rule does not match the date-time, it is eliminated. Each
 byX property is an array; the date-time matches the property if
 it matches any of the values in the array. The properties have
 the following semantics:

 * byMonth: the date-time is in the given month.

 * byWeekNo: the date-time is in the nth week of the year.
 Negative numbers mean the nth last week of the year. This
 corresponds to weeks according to week numbering as defined in
 ISO.8601.2004, with a week defined as a seven day period,
 starting on the firstDayOfWeek property value or Monday if
 omitted. Week number one of the calendar year is the first
 week that contains at least four days in that calendar year.

 If the date-time is not valid (this may happen when generating
 candidates with a skip property in effect), it is always
 eliminated by this property.

 * byYearDay: the date-time is on the nth day of year. Negative
 numbers mean the nth last day of the year.

 If the date-time is not valid (this may happen when generating
 candidates with a skip property in effect), it is always
 eliminated by this property.

 * byMonthDay: the date-time is on the given day of the month.
 Negative numbers mean the nth last day of the month.

 * byDay: the date-time is on the given day of the week. If the
 day is prefixed by a number, it is the nth occurrence of that
 day of the week within the month (if frequency is monthly) or
 year (if frequency is yearly). Negative numbers means nth
 last occurrence within that period.

 * byHour: the date-time has the given hour value.

 * byMinute: the date-time has the given minute value.

 * bySecond: the date-time has the given second value.

 If a skip property is defined and is not "omit", there may be
 candidates that do not correspond to valid dates (e.g. 31st
 Februrary in the gregorian calendar). In this case, the
 properties MUST be considered in the order above and:

 1. After applying the byMonth filter, if the candidate's month
 is invalid for the given year increment it (if skip is
 "forward") or decrement it (if skip is "backward") until a
 valid month is found, incrementing/decrementing the year as
 well if you pass through the beginning/end of the year. This
 only applies to calendar systems with leap months.

 2. After applying the byMonthDay filter, if the day of the month
 is invalid for the given month and year, change the date to
 the first day of the next month (if skip == "forward") or the
 last day of the current month (if skip == "backward").

 3. If any valid date produced after applying the skip is already
 a candidate, eliminate the duplicate. (For example after
 adjusting, 30th Februrary and 31st February would both become
 the same "real" date, so one is eliminated as a duplicate.)

 3. If a bySetPosition property is included, this is now applied to
 the ordered list of remaining dates (this property specifies the
 indexes of date-times to keep; all others should be eliminated.
 Negative numbers are indexes from the end of the list, with -1
 being the last item).

 4. Any date-times before the start date of the event are eliminated
 (see below for why this might be needed).

 5. If a skip property is included and is not "omit", eliminate any
 date-times that have already been produced by previous iterations
 of the algorithm. (This is not possible if skip == "omit".)

 6. If further dates are required (we have not reached the until
 date, or count limit) skip the next (interval - 1) sets of
 candidates, then continue from step 1.

 When determining the set of occurrence dates for an event or task,
 the following extra rules must be applied:

 1. The start date-time is always the first occurrence in the
 expansion (and is counted if the recurrence is limited by a
 "count" property), even if it would normally not match the rule.

 2. The first set of candidates to consider is that which would
 contain the start date-time. This means the first set may
 include candidates before the start; such candidates are
 eliminated from the results in step (4) as outlined before.

 3. The following properties MUST be implicitly added to the rule
 under the given conditions:

 * If frequency > "secondly" and no bySecond property: Add a
 bySecond property with the sole value being the seconds value
 of the start date-time.

 * If frequency > "minutely" and no byMinute property: Add a
 byMinute property with the sole value being the minutes value
 of the start date-time.

 * If frequency > "hourly" and no byHour property: Add a byHour
 property with the sole value being the hours value of the
 start date-time.

 * If frequency is "weekly" and no byDay property: Add a byDay
 property with the sole value being the day-of-the-week of the
 start date-time.

 * If frequency is "monthly" and no byDay property and no
 byMonthDay property: Add a byMonthDay property with the sole
 value being the day-of-the-month of the start date-time.

 * If frequency is "yearly" and no byYearDay property:

 + if there are no byMonth or byWeekNo properties, and either
 there is a byMonthDay property or there is no byDay
 property: Add a byMonth property with the sole value being
 the month of the start date-time.

 + if there is no byMonthDay, byWeekNo or byDay properties:
 Add a byMonthDay property with the sole value being the
 day-of-the-month of the start date-time.

 + if there is a byWeekNo property and no byMonthDay or byDay
 properties: Add a byDay property with the sole value being
 the day-of-the-week of the start date-time.

4.3.2. recurrenceOverrides

 Type: LocalDate[PatchObject] (optional).

 A map of the recurrence-ids (the date-time of the start of the
 occurrence) to an object of patches to apply to the generated
 occurrence object.

 If the recurrence-id does not match an expanded start date from a
 recurrence rule, it is to be treated as an additional occurrence
 (like an RDATE from iCalendar). The patch object may often be empty
 in this case.

 If the patch object defines the "excluded" property value to be
 "true", then the recurring calendar object does not occur at the
 recurrence-id date-time (like an EXDATE from iCalendar). Such a
 patch object MUST NOT patch any other property.

 By default, an occurrence inherits all properties from the main
 object except the start (or due) date-time, which is shifted to the
 new start time of the LocalDate key. However, individual properties
 of the occurrence can be modified by a patch, or multiple patches.
 It is valid to patch the start property value, and this patch takes
 precedence over the LocalDate key. Both the LocalDate key as well as
 the patched start date-time may occur before the original JSCalendar
 object's start or due date.

 A pointer in the PatchObject MUST NOT start with one of the following
 prefixes; any patch with such a key MUST be ignored:

 o @type

 o uid

 o relatedTo

 o prodId

 o method

 o isAllDay

 o recurrenceRule

 o recurrenceOverrides

 o replyTo

4.3.3. excluded

 Type: Boolean (optional, default: "false").

 Defines if this object is an overridden, excluded instance of a
 recurring JSCalendar object (also see Section 4.3.2). If this
 property value is "true", this calendar object instance MUST be
 removed from the occurrence expansion. The absence of this property
 or its default value "false" indicates that this instance MUST be
 added to the occurrence expansion.

4.4. Sharing and scheduling properties

4.4.1. priority

 Type: Number (optional, default: "0").

 Specifies a priority for the calendar object. This may be used as
 part of scheduling systems to help resolve conflicts for a time
 period.

 The priority is specified as an integer in the range 0 to 9. A value
 of 0 specifies an undefined priority. A value of 1 is the highest
 priority. A value of 2 is the second highest priority. Subsequent
 numbers specify a decreasing ordinal priority. A value of 9 is the
 lowest priority. Other integer values are reserved for future use.

4.4.2. freeBusyStatus

 Type: String (optional, default: "busy").

 Specifies how this property should be treated when calculating free-
 busy state. The value MUST be one of:

 o ""free"": The object should be ignored when calculating whether
 the user is busy.

 o ""busy"": The object should be included when calculating whether
 the user is busy.

4.4.3. privacy

 Type: String (optional, default: "public").

 Calendar objects are normally collected together and may be shared
 with other users. The privacy property allows the object owner to
 indicate that it should not be shared, or should only have the time
 information shared but the details withheld. Enforcement of the
 restrictions indicated by this property are up to the
 implementations.

 This property MUST NOT affect the information sent to scheduled
 participants; it is only interpreted when the object is shared as
 part of a shared calendar.

 The value MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value. Vendor specific values MUST
 be prefixed with a domain name controlled by the vendor, e.g.
 "example.com/topsecret". Any value the client or server doesn't
 understand should be preserved but treated as equivalent to
 "private".

 o "public": The full details of the object are visible to those whom
 the object's calendar is shared with.

 o "private": The details of the object are hidden; only the basic
 time and metadata is shared. The following properties MAY be
 shared, any other properties MUST NOT be shared:

 * @type

 * uid

 * created

 * updated

 * sequence

 * freeBusyStatus

 * privacy

 * start

 * isAllDay

 * timeZone

 * timeZones

 * duration

 * estimatedDuration

 * due

 * recurrenceOverrides. Only patches whose keys are prefixed with
 one of the above properties are allowed to be shared.

 o "secret": The object is hidden completely (as though it did not
 exist) when the object is shared.

4.4.4. replyTo

 Type: String[String] (optional).

 Represents methods by which participants may submit their RSVP
 response to the organizer of the calendar object. The keys in the
 property value are the available methods and MUST only contain ASCII
 alphanumeric characters (A-Za-z0-9). The value is a URI to use that
 method. Future methods may be defined in future specifications; a
 calendar client MUST ignore any method it does not understand, but
 MUST preserve the method key and URI. This property MUST be omitted
 if no method is defined (rather than an empty object). If this
 property is set, the "participants" property of this calendar object
 MUST contain at least one participant.

 The following methods are defined:

 o "imip": The organizer accepts an iMIP [RFC6047] response at this
 email address. The value MUST be a "mailto:" URI.

 o "web": Opening this URI in a web browser will provide the user
 with a page where they can submit a reply to the organizer.

 o "other": The organizer is identified by this URI but the method
 how to submit the RSVP is undefined.

4.4.5. participants

 Type: String[Participant] (optional).

 A map of participant identifiers to participants, describing their
 participation in the calendar object.

 If this property is set, then the "replyTo" property of this calendar
 object MUST define at least one reply method.

 A Participant object has the following properties:

 o name: String (optional). The display name of the participant
 (e.g. "Joe Bloggs").

 o email: String (optional). The email address for the participant.

 o sendTo: String[String]. Represents methods by which the
 participant may receive the invitation and updates to the calendar
 object.

 The keys in the property value are the available methods and MUST
 only contain ASCII alphanumeric characters (A-Za-z0-9). The value
 is a URI to use that method. Future methods may be defined in
 future specifications; a calendar client MUST ignore any method it
 does not understand, but MUST preserve the method key and URI.
 This property MUST be omitted if no method is defined (rather than
 an empty object).

 The following methods are defined:

 * "imip": The participant accepts an iMIP [RFC6047] request at
 this email address. The value MUST be a "mailto:" URI. It MAY
 be different from the value of the participant's "email"
 property.

 * "other": The participant is identified by this URI but the
 method how to submit the invitation or update is undefined.

 o kind: String (optional). What kind of entity this participant is,
 if known.

 This MUST be either one of the following values, registered in a
 future RFC, or a vendor-specific value. Any value the client or
 server doesn't understand should be treated the same as if this
 property is omitted.

 * "individual": a single person

 * "group": a collection of people invited as a whole

 * "resource": a non-human resource, e.g. a projector

 * "location": a physical location involved in the calendar object
 that needs to be scheduled, e.g. a conference room.

 o roles: String[Boolean]. A set of roles that this participant
 fulfills.

 At least one role MUST be specified for the participant. The keys
 in the set MUST be either one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "owner": The participant is an owner of the object.

 * "attendee": The participant is an attendee of the calendar
 object.

 * "chair": The participant is in charge of the calendar object
 when it occurs.

 The value for each key in the set MUST be "true". Roles that are
 unknown to the implementation MUST be preserved and MAY be
 ignored.

 o locationId: String (optional). The location at which this
 participant is expected to be attending.

 If the value does not correspond to any location id in the
 "locations" property of the instance, this MUST be treated the
 same as if the participant's locationId were omitted.

 o participationStatus: String (optional, default: "needs-action").
 The participation status, if any, of this participant.

 The value MUST be either one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "needs-action": No status yet set by the participant.

 * "accepted": The invited participant will participate.

 * "declined": The invited participant will not participate.

 * "tentative": The invited participant may participate.

 o attendance: String (optional, default: "required"). The required
 attendance of this participant.

 The value MUST be either one of the following values, registered
 in a future RFC, or a vendor-specific value. Any value the client
 or server doesn't understand should be treated the same as
 "required".

 * "none": Indicates a participant who is copied for information
 purposes only.

 * "optional": Indicates a participant whose attendance is
 optional.

 * "required": Indicates a participant whose attendance is
 required.

 o expectReply: Boolean (optional, default: "false"). If true, the
 organizer is expecting the participant to notify them of their
 status.

 o scheduleSequence: Number (optional, default: "0"). The sequence
 number of the last response from the participant. If defined,
 this MUST be a non-negative integer.

 This can be used to determine whether the participant has sent a
 new RSVP following significant changes to the calendar object, and
 to determine if future responses are responding to a current or
 older view of the data.

 o scheduleUpdated: UTCDate (optional). The "updated" property of
 the last iMIP response from the participant.

 This can be compared to the "updated" property timestamp in future
 iMIP responses to determine if the response is older or newer than
 the current data.

 o invitedBy: String (optional). The participant id of the
 participant who invited this one, if known.

 o delegatedTo: String[Boolean] (optional). A set of participant ids
 that this participant has delegated their participation to. Each

 key in the set MUST be the identifier of a participant. The value
 for each key in the set MUST be "true". This MUST be omitted if
 none (rather than an empty set).

 o delegatedFrom: String[Boolean] (optional). A set of participant
 ids that this participant is acting as a delegate for. Each key
 in the set MUST be the identifier of a participant. The value for
 each key in the set MUST be "true". This MUST be omitted if none
 (rather than an empty set).

 o memberOf: String[Boolean] (optional). A set of group participants
 that were invited to this calendar object, which caused this
 participant to be invited due to their membership of the group(s).
 Each key in the set MUST be the identifier of a participant. The
 value for each key in the set MUST be "true". This MUST be
 omitted if none (rather than an empty set).

 o linkIds: String[Boolean] (optional). A set of links to more
 information about this participant, for example in vCard format.
 The keys in the set MUST be the identifier of a Link object in the
 calendar object's "links" property. The value for each key in the
 set MUST be "true". This MUST be omitted if none (rather than an
 empty set).

4.5. Alerts properties

4.5.1. useDefaultAlerts

 Type: Boolean (optional, default: "false").

 If "true", use the user's default alerts and ignore the value of the
 "alerts" property. Fetching user defaults is dependent on the API
 from which this JSCalendar object is being fetched, and is not
 defined in this specification. If an implementation cannot determine
 the user's default alerts, or none are set, it MUST process the
 alerts property as if useDefaultAlerts is set to "false".

4.5.2. alerts

 Type: String[Alert] (optional).

 A map of alert identifiers to Alert objects, representing alerts/
 reminders to display or send the user for this calendar object.

 An Alert Object has the following properties:

 o trigger: OffsetTrigger|UnknownTrigger. Defines when to trigger
 the alert.

 An *OffsetTrigger* object has the following properties:

 * type: String (mandatory). The value of this property MUST be
 "offset".

 * offset: SignedDuration (mandatory). Defines to trigger the
 alert relative to the time property defined in the "relativeTo"
 property. If the calendar object does not define a time zone,
 the user's default time zone SHOULD be used when determining
 the offset, if known. Otherwise, the time zone to use is
 implementation specific.

 * relativeTo: String (optional, default: "start"). Specifies the
 time property which the alert offset is relative to. The value
 MUST be one of:

 + "start": triggers the alert relative to the start of the
 calendar object

 + "end": triggers the alert relative to the end/due time of
 the calendar object

 An *UnknownTrigger* object is an object that contains a *type*
 property whose value is not "offset", plus zero or more other
 properties. This is for compatibility with client extensions and
 future RFCs. Implementations SHOULD NOT trigger for trigger types
 they do not understand, but MUST preserve them.

 o acknowledged: UTCDate (optional).

 When the user has permanently dismissed the alert the client MUST
 set this to the current time in UTC. Other clients which sync
 this property can then automatically dismiss or suppress duplicate
 alerts (alerts with the same alert id that triggered on or before
 this date-time).

 For a recurring calendar object, the "acknowledged" property of
 the parent object MUST be updated, unless the alert is already
 overridden in the "recurrenceOverrides" property.

 o snoozed: UTCDate (optional).

 If the user temporarily dismisses the alert, this is the UTC date-
 time after which it should trigger again. Setting this property
 on an instance of a recurring calendar object MUST update the
 alarm on the top-level object, unless the respective instance
 already is defined in "recurrenceOverrides". It MUST NOT generate
 an override for the sole use of snoozing an alarm.

 o action: String (optional, default: "display"). Describes how to
 alert the user.

 The value MUST be at most one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "display": The alert should be displayed as appropriate for the
 current device and user context.

 * "email": The alert should trigger an email sent out to the
 user, notifying about the alert. This action is typically only
 appropriate for server implementations.

4.6. Multilingual properties

4.6.1. localizations

 Type: String[PatchObject] (optional).

 A map of [RFC5646] language tags to patch objects, which localize the
 calendar object into the locale of the respective language tag.

 See the description of PatchObject (Section 3.2.4) for the structure
 of the PatchObject. The patches are applied to the top-level object.
 In addition to all the restrictions on patches specified there, the
 pointer also MUST NOT start with one of the following prefixes; any
 patch with a such a key MUST be ignored:

 o @type

 o due

 o duration

 o freeBusyStatus

 o localization

 o method

 o participants

 o prodId

 o progress

 o relatedTo

 o sequence

 o start

 o status

 o timeZone

 o uid

 o useDefaultAlerts

 Note that this specification does not define how to maintain validity
 of localized content. For example, a client application changing a
 JSCalendar object's title property might also need to update any
 localizations of this property. Client implementations SHOULD
 provide the means to manage localizations, but how to achieve this is
 specific to the application's workflow and requirements.

4.7. Time zone properties

4.7.1. timeZones

 Type: String[TimeZone] (optional).

 Maps identifiers of custom time zones to their time zone definition.
 The following restrictions apply for each key in the map:

 o It MUST start with the "/" character (ASCII decimal 47; also see
 sections 3.2.19 of [RFC5545] and 3.6. of [RFC7808] for discussion
 of the forward slash character in time zone identifiers).

 o It MUST be a valid "paramtext" value as specified in section 3.1.
 of [RFC5545].

 o At least one other property in the same JSCalendar object MUST
 reference a time zone using this identifier (i.e. orphaned time
 zones are not allowed).

 An identifier need only be unique to this JSCalendar object.

 A TimeZone object maps a VTIMEZONE component from iCalendar
 ([RFC5545]). A valid time zone MUST define at least one transition
 rule in the "standard" or "daylight" property. Its properties are:

 o tzId: String (mandatory). The TZID property from iCalendar.

 o lastModified: UTCDate (optional). The LAST-MODIFIED property from
 iCalendar.

 o url: String (optional). The TZURL property from iCalendar.

 o validUntil: UTCDate (optional). The TZUNTIL property from
 iCalendar specified in [RFC7808].

 o aliases: String[Boolean] (optional). Maps the TZID-ALIAS-OF
 properties from iCalendar specified in [RFC7808] to a JSON set of
 aliases. The set is represented as an object, with the keys being
 the aliases. The value for each key in the set MUST be "true".

 o standard: TimeZoneRule[] (optional). The STANDARD sub-components
 from iCalendar. The order MUST be preserved during conversion.

 o daylight: TimeZoneRule[] (optional). The DAYLIGHT sub-components
 from iCalendar. The order MUST be preserved during conversion.

 A TimeZoneRule object maps a STANDARD or DAYLIGHT sub-component from
 iCalendar, with the restriction that at most one recurrence rule is
 allowed per rule. It has the following properties:

 o start: LocalDate (mandatory). The DTSTART property from
 iCalendar.

 o offsetTo: String (mandatory). The TZOFFSETTO property from
 iCalendar.

 o offsetFrom: String (mandatory). The TZOFFSETFROM property from
 iCalendar.

 o recurrenceRule: RecurrenceRule (optional). The RRULE property
 mapped as specified in Section 4.3.1. During recurrence rule
 evaluation, the "until" property value MUST be interpreted as a
 local time in the UTC time zone.

 o recurrenceDates: LocalDate[Boolean] (optional). Maps the RDATE
 properties from iCalendar to a JSON set. The set is represented
 as an object, with the keys being the recurrence dates. The value
 for each key in the set MUST be "true".

 o names: String[Boolean] (optional). Maps the TZNAME properties
 from iCalendar to a JSON set. The set is represented as an
 object, with the keys being the names. The value for each key in
 the set MUST be "true".

 o comments: String[] (optional). Maps the COMMENT properties from
 iCalendar. The order MUST be preserved during conversion.

5. Type-specific JSCalendar properties

5.1. JSEvent properties

 In addition to the common JSCalendar object properties (Section 4) a
 JSEvent has the following properties:

5.1.1. start

 Type: LocalDate (mandatory).

 The date/time the event would start in the event's time zone.

5.1.2. timeZone

 Type: String|null (optional, default: "null").

 Identifies the time zone the event is scheduled in, or "null" for
 floating time. If omitted, this MUST be presumed to be "null" (i.e.
 floating time). Also see Section 3.2.6.

5.1.3. duration

 Type: Duration (optional, default: "PT0S").

 The zero or positive duration of the event in the event's start time
 zone. The same rules as for the iCalendar DURATION value type
 ([RFC5545]) apply: The duration of a week or a day in hours/minutes/
 seconds may vary if it overlaps a period of discontinuity in the
 event's time zone, for example a change from standard time to
 daylight-savings time. Leap seconds MUST NOT be considered when
 computing an exact duration. When computing an exact duration, the
 greatest order time components MUST be added first, that is, the
 number of days MUST be added first, followed by the number of hours,
 number of minutes, and number of seconds. Fractional seconds MUST be
 added last.

 A JSEvent MAY involve start and end locations that are in different
 time zones (e.g. a trans-continental flight). This can be expressed
 using the "relativeTo" and "timeZone" properties of the JSEvent's
 "location" objects.

5.1.4. isAllDay

 Type: Boolean (optional, default: "false").

 Specifies if the event is an all day event, such as a birthday or
 public holiday.

 If the "isAllDay" property value is true, then the following
 restrictions apply:

 o the "start" property MUST have a time component of "T00:00:00".

 o the "timeZone" property MUST be "null"

 o the "duration" property MUST NOT include non-zero time components
 (hours, minutes, or seconds)

 o the "freeBusyStatus" property MUST NOT be "busy"

5.1.5. status

 Type: String (optional, default: "confirmed").

 The scheduling status (Section 4.4) of a JSEvent. If set, it MUST be
 one of:

 o "confirmed": Indicates the event is definite.

 o "cancelled": Indicates the event is cancelled.

 o "tentative": Indicates the event is tentative.

5.2. JSTask properties

 In addition to the common JSCalendar object properties (Section 4) a
 JSTask has the following properties:

5.2.1. due

 Type: LocalDate (optional).

 The date/time the task is due in the task's time zone.

5.2.2. start

 Type: LocalDate (optional).

 The date/time the task should start in the task's time zone.

5.2.3. timeZone

 Type: String|null (optional, default: "null").

 Identifies the time zone the task is scheduled in, or "null" for
 floating time. If omitted, this MUST be presumed to be "null" (i.e.
 floating time). Also see Section 3.2.6.

5.2.4. estimatedDuration

 Type: Duration (optional).

 Specifies the estimated positive duration of time the task takes to
 complete.

5.2.5. statusUpdatedAt

 Type: UTCDate (optional).

 Specifies the date/time the task status properties was last updated.

 If the task is recurring and has future instances, a client may want
 to keep track of the last status update timestamp of a specific task
 recurrence, but leave other instances unchanged. One way to achieve
 this is by overriding the statusUpdatedAt property in the task
 "recurrenceOverrides" property. However, this could produce a long
 list of timestamps for regularly recurring tasks. An alternative
 approach is to split the JSTask into a current, single instance of
 JSTask with this instance status update time and a future recurring
 instance. Also see Section 4.1.3 on splitting.

5.2.6. isAllDay

 Type: Boolean (optional, default: "false").

 Specifies if the task is an all day task.

 If the "isAllDay" property value is true, then the following
 restrictions apply:

 o the "start" and "due" properties MUST have a time component of
 "T00:00:00", or not be set

 o the "timeZone" property MUST be "null"

 o the "freeBusyStatus" property MUST NOT be "busy"

5.2.7. progress

 In addition to the common properties of a Participant object
 (Section 4.4.5), a Participant within a JSTask supports the following
 property:

 o progress: ParticipantProgress (optional). The progress of the
 participant for this task, if known. This property MUST NOT be
 set if the "participationStatus" of this participant is any other
 value but "accepted".

 A ParticipantProgress object has the following properties:

 o status: String (mandatory). Describes the completion status of
 the participant's progress.

 The value MUST be at most one of the following values, registered
 in a future RFC, or a vendor-specific value:

 * "completed": The participant completed their task.

 * "in-process": The participant has started this task.

 * "failed": The participant failed to complete their task.

 o timestamp: UTCDate (mandatory). Describes the last time when the
 participant progress got updated.

5.2.8. status

 Type: String (optional).

 Defines the overall status of this task. If omitted, the default
 status (Section 4.4) of a JSTask is defined as follows (in order of
 evaluation):

 o "completed": if the "status" property value of all participant
 progresses is "completed".

 o "failed": if at least one "status" property value of the
 participant progresses is "failed".

 o "in-process": if at least one "status" property value of the
 participant progresses is "in-process".

 o "needs-action": If none of the other criteria match.

 If set, it MUST be one of:

 o "needs-action": Indicates the task needs action.

 o "completed": Indicates the task is completed.

 o "in-process": Indicates the task is in process.

 o "cancelled": Indicates the task is cancelled.

 o "pending": Indicates the task has been created and accepted for
 processing, but not yet started.

 o "failed": Indicates the task failed.

5.3. JSGroup properties

 JSGroup supports the following JSCalendar properties (Section 4):

 o @type

 o uid

 o created

 o updated

 o categories

 o keywords

 o name

 o description

 o color

 o links

 as well as the following JSGroup-specific properties:

5.3.1. entries

 Type: String[JSTask|JSEvent] (mandatory).

 A collection of group members. This is represented as a map of the
 "uid" property value to the JSCalendar object member having that uid.
 Implementations MUST ignore entries of unknown type.

5.3.2. source

 Type: String (optional).

 The source from which updated versions of this group may be retrieved
 from. The value MUST be a URI.

6. JSCalendar object examples

 The following examples illustrate several aspects of the JSCalendar
 data model and format. The examples may omit mandatory or additional
 properties, which is indicated by a placeholder property with key
 "...". While most of the examples use calendar event objects, they
 are also illustrative for tasks.

6.1. Simple event

 This example illustrates a simple one-time event. It specifies a
 one-time event that begins on January 15, 2018 at 1pm New York local
 time and ends after 1 hour.

{
 "@type": "jsevent",
 "uid": "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f1",
 "updated": "2018‑01‑15T18:00:00Z",
 "title": "Some event",
 "start": "2018‑01‑15T13:00:00",
 "timeZone": "America/New_York",
 "duration": "PT1H"
}

6.2. Simple task

 This example illustrates a simple task for a plain to-do item.

{
 "@type": "jstask",
 "uid": "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f2",
 "updated": "2018‑01‑15T18:00:00Z",
 "title": "Do something"
}

6.3. Simple group

 This example illustrates a simple calendar object group that contains
 an event and a task.

{
 "@type": "jsgroup",
 "uid": "2a358cee‑6489‑4f14‑a57f‑c104db4dc343",
 "updated": "2018‑01‑15T18:00:00Z",
 "name": "A simple group",
 "entries": [
 {
 "@type": "jsevent",
 "uid": "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f1",
 "updated": "2018‑01‑15T18:00:00Z",
 "title": "Some event",
 "start": "2018‑01‑15T13:00:00",
 "timeZone": "America/New_York",
 "duration": "PT1H"
 },
 {
 "@type": "jstask",
 "uid": "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f2",
 "updated": "2018‑01‑15T18:00:00Z",
 "title": "Do something"
 }
]
}

6.4. All-day event

 This example illustrates an event for an international holiday. It
 specifies an all-day event on April 1 that occurs every year since
 the year 1900.

{
 "...": "",
 "title": "April Fool's Day",
 "isAllDay": true,
 "start": "1900‑04‑01T00:00:00",
 "duration": "P1D",
 "recurrenceRule": {
 "frequency": "yearly"
 }
}

6.5. Task with a due date

 This example illustrates a task with a due date. It is a reminder to
 buy groceries before 6pm Vienna local time on January 19, 2018. The
 calendar user expects to need 1 hour for shopping.

{
 "...": "",
 "title": "Buy groceries",
 "due": "2018‑01‑19T18:00:00",
 "timeZone": "Europe/Vienna",
 "estimatedDuration": "PT1H"
}

6.6. Event with end time-zone

 This example illustrates the use of end time-zones by use of an
 international flight. The flight starts on April 1, 2018 at 9am in
 Berlin local time. The duration of the flight is scheduled at 10
 hours 30 minutes. The time at the flights destination is in the same
 time-zone as Tokyo. Calendar clients could use the end time-zone to
 display the arrival time in Tokyo local time and highlight the time-
 zone difference of the flight. The location names can serve as input
 for navigation systems.

{
 "...": "",
 "title": "Flight XY51 to Tokyo",
 "start": "2018‑04‑01T09:00:00",
 "timeZone": "Europe/Berlin",
 "duration": "PT10H30M",
 "locations": {
 "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f1": {
 "rel": "start",
 "name": "Frankfurt Airport (FRA)"
 },
 "c2c7ac67‑dc13‑411e‑a7d4‑0780fb61fb08": {
 "rel": "end",
 "name": "Narita International Airport (NRT)",
 "timeZone": "Asia/Tokyo"
 }
 }
}

6.7. Floating-time event (with recurrence)

 This example illustrates the use of floating-time. Since January 1,
 2018, a calendar user blocks 30 minutes every day to practice Yoga at
 7am local time, in whatever time-zone the user is located on that
 date.

{
 "...": "",
 "title": "Yoga",
 "start": "2018‑01‑01T07:00:00",
 "duration": "PT30M",
 "recurrenceRule": {
 "frequency": "daily"
 }
}

6.8. Event with multiple locations and localization

 This example illustrates an event that happens at both a physical and
 a virtual location. Fans can see a live convert on premises or
 online. The event title and descriptions are localized.

{
 "...": "",
 "title": "Live from Music Bowl: The Band",
 "description": "Go see the biggest music event ever!",
 "locale": "en",
 "start": "2018‑07‑04T17:00:00",
 "timeZone": "America/New_York",
 "duration": "PT3H",
 "locations": {
 "c0503d30‑8c50‑4372‑87b5‑7657e8e0fedd": {
 "name": "The Music Bowl",
 "description": "Music Bowl, Central Park, New York",
 "coordinates": "geo:40.7829,73.9654"
 }
 },
 "virtualLocations": {
 "6f3696c6‑1e07‑47d0‑9ce1‑f50014b0041a": {
 "name": "Free live Stream from Music Bowl",
 "uri": "https://stream.example.com/the_band_2018"
 }
 },
 "localizations": {
 "de": {
 "title": "Live von der Music Bowl: The Band!",
 "description": "Schau dir das groesste Musikereignis an!",
 "virtualLocations/6f3696c6‑1e07‑47d0‑9ce1‑f50014b0041a/name":
 "Gratis Live‑Stream aus der Music Bowl"
 }
 }
}

6.9. Recurring event with overrides

 This example illustrates the use of recurrence overrides. A math
 course at a University is held for the first time on January 8, 2018
 at 9am London time and occurs every week until June 25, 2018. Each
 lecture lasts for one hour and 30 minutes and is located at the
 Mathematics department. This event has exceptional occurrences: at
 the last occurrence of the course is an exam, which lasts for 2 hours
 and starts at 10am. Also, the location of the exam differs from the
 usual location. On April 2 no course is held. On January 5 at 2pm
 is an optional introduction course, that occurs before the first
 regular lecture.

{
 "...": "",
 "title": "Calculus I",
 "start": "2018‑01‑08T09:00:00",
 "timeZone": "Europe/London",
 "duration": "PT1H30M",
 "locations": {
 "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f1": {
 "title": "Math lab room 1",
 "description": "Math Lab I, Department of Mathematics"
 }
 },
 "recurrenceRule": {
 "frequency": "weekly",
 "until": "2018‑06‑25T09:00:00"
 },
 "recurrenceOverrides": {
 "2018‑01‑05T14:00:00": {
 "title": "Introduction to Calculus I (optional)"
 },
 "2018‑04‑02T09:00:00": {
 "excluded": "true"
 },
 "2018‑06‑25T09:00:00": {
 "title": "Calculus I Exam",
 "start": "2018‑06‑25T10:00:00",
 "duration": "PT2H",
 "locations": {
 "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f1": {
 "title": "Big Auditorium",
 "description": "Big Auditorium, Other Road"
 }
 }
 }
 }
}

6.10. Recurring event with participants

 This example illustrates scheduled events. A team meeting occurs
 every week since January 8, 2018 at 9am Johannesburg time. The event
 owner also chairs the event. Participants meet in a virtual meeting
 room. An attendee has accepted the invitation, but on March 8, 2018
 he is unavailable and declined participation for this occurrence.

{
 "...": "",
 "title": "FooBar team meeting",

 "start": "2018‑01‑08T09:00:00",
 "timeZone": "Africa/Johannesburg",
 "duration": "PT1H",
 "virtualLocations": {
 "2a358cee‑6489‑4f14‑a57f‑c104db4dc2f1": {
 "name": "ChatMe meeting room",
 "uri": "https://chatme.example.com?id=1234567"
 }
 },
 "recurrenceRule": {
 "frequency": "weekly"
 },
 "replyTo": {
 "imip": "mailto:6489‑4f14‑a57f‑c1@schedule.example.com"
 },
 "participants": {
 "dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ": {
 "name": "Tom Tool",
 "email": "tom@foobar.example.com",
 "sendTo": {
 "imip": "mailto:6489‑4f14‑a57f‑c1@calendar.example.com"
 },
 "participationStatus": "accepted",
 "roles": {
 "attendee": true
 }
 },
 "em9lQGZvb2Jhci5leGFtcGxlLmNvbQ": {
 "name": "Zoe Zelda",
 "email": "zoe@foobar.example.com",
 "sendTo": {
 "imip": "mailto:zoe@foobar.example.com"
 },
 "participationStatus": "accepted",
 "roles": {
 "owner": true,
 "attendee": true,
 "chair": true
 }
 },
 "...": ""
 },
 "recurrenceOverrides": {
 "2018‑03‑08T09:00:00": {
 "participants/dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ/participationStatus":
 "declined"
 }
 }

 }

7. Security Considerations

 The use of JSON as a format does have its own inherent security risks
 as discussed in Section 12 of [RFC8259]. Even though JSON is
 considered a safe subset of JavaScript, it should be kept in mind
 that a flaw in the parser processing JSON could still impose a
 threat, which doesn't arise with conventional iCalendar data.

 With this in mind, a parser for JSON data aware of the security
 implications should be used for the format described in this
 document. For example, the use of JavaScript's "eval()" function is
 considered an unacceptable security risk, as described in Section 12
 of[RFC8259]. A native parser with full awareness of the JSON format
 should be preferred.

8. IANA Considerations

 This document defines a MIME media type for use with JSCalendar data
 formatted in JSON.

Type name: application

Subtype name: jscalendar+json

Required parameters: type

 The "type" parameter conveys the type of the JSCalendar data in
 the body part, with the value being one of "jsevent", "jstask", or
 "jsgroup". The parameter MUST NOT occur more than once. It MUST
 match the value of the "@type" property of the JSON-formatted
 JSCalendar object in the body.

Optional parameters: none

Encoding considerations: Same as encoding considerations of
 application/json as specified in RFC8529, Section 11 [RFC8259].

Security considerations: See Section 7 of this document.

Interoperability considerations: This media type provides an
 alternative to iCalendar, jCal and proprietary JSON‑based
 calendaring data formats.

Published specification: This specification.

Applications that use this media type: Applications that currently
 make use of the text/calendar and application/calendar+json media
 types can use this as an alternative. Similarily, applications
 that use the application/json media type to transfer calendaring
 data can use this to further specify the content.

Fragment identifier considerations: N/A

 Additional information:

 Magic number(s): N/A

 File extensions(s): N/A

 Macintosh file type code(s): N/A

Person & email address to contact for further
 information:
 calext@ietf.org

Intended usage: COMMON

Restrictions on usage: N/A

Author: See the "Author's Address" section of this document.

Change controller: IETF

9. Acknowledgments

 The authors would like to thank the members of CalConnect for their
 valuable contributions. This specification originated from the work
 of the API technical committee of CalConnect, the Calendaring and
 Scheduling Consortium.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2392]
 Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, DOI 10.17487/RFC2392, August 1998,
 <https://www.rfc-editor.org/info/rfc2392>.

 [RFC3339]
 Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4122]
 Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4648]
 Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4791]
 Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

 [RFC5646]
 Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC5870]
 Mayrhofer, A. and C. Spanring, "A Uniform Resource
 Identifier for Geographic Locations ('geo' URI)",
 RFC 5870, DOI 10.17487/RFC5870, June 2010,
 <https://www.rfc-editor.org/info/rfc5870>.

 [RFC6047]
 Melnikov, A., Ed., "iCalendar Message-Based
 Interoperability Protocol (iMIP)", RFC 6047,
 DOI 10.17487/RFC6047, December 2010,
 <https://www.rfc-editor.org/info/rfc6047>.

 [RFC6838]
 Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6901]
 Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7265]
 Kewisch, P., Daboo, C., and M. Douglass, "jCal: The JSON
 Format for iCalendar", RFC 7265, DOI 10.17487/RFC7265, May
 2014, <https://www.rfc-editor.org/info/rfc7265>.

 [RFC7493]
 Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7529]
 Daboo, C. and G. Yakushev, "Non-Gregorian Recurrence Rules
 in the Internet Calendaring and Scheduling Core Object
 Specification (iCalendar)", RFC 7529,
 DOI 10.17487/RFC7529, May 2015,
 <https://www.rfc-editor.org/info/rfc7529>.

 [RFC7808]
 Douglass, M. and C. Daboo, "Time Zone Data Distribution
 Service", RFC 7808, DOI 10.17487/RFC7808, March 2016,
 <https://www.rfc-editor.org/info/rfc7808>.

 [RFC7986]
 Daboo, C., "New Properties for iCalendar", RFC 7986,
 DOI 10.17487/RFC7986, October 2016,
 <https://www.rfc-editor.org/info/rfc7986>.

 [RFC8259]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8288]
 Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

10.2. Informative References

 [MIME]
 "IANA Media Types", <https://www.iana.org/assignments/
 media-types/media-types.xhtml>.

10.3. URIs

 [1] https://www.iana.org/time-zones

 [2] https://www.iana.org/assignments/link-relations/link-

 relations.xhtml

 [3] https://www.w3.org/TR/2011/REC-css3-color-20110607/#svg-color

Authors' Addresses

Neil Jenkins
FastMail
PO Box 234
Collins St West
Melbourne VIC 8007
Australia

Email: neilj@fastmailteam.com
URI: https://www.fastmail.com

Robert Stepanek
FastMail
PO Box 234
Collins St West
Melbourne VIC 8007
Australia

Email: rsto@fastmailteam.com
URI: https://www.fastmail.com

draft-ietf-calext-jscalendar-icalendar-00 - JSCalendar: Converting from and to i

Index
Prev
Next
Forward 5

Calendaring extensions

Internet-Draft

Intended status: Informational

Expires: November 3, 2019

N. Jenkins

R. Stepanek

FastMail

May 2, 2019

JSCalendar: Converting from and to iCalendar

draft-ietf-calext-jscalendar-icalendar-00

Abstract

 This document provides an informational guideline for converting
 JSCalendar from and to iCalendar.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 3, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Motivation

	 1.2. Scope and caveats

	 1.3. Notational Conventions

	2. JSEvent

	3. JSTask

	4. JSGroup

	5. Common properties
	 5.1. Time

	 5.2. Locations

	 5.3. Participants

	6. Custom properties

	7. Security Considerations

	8. IANA Considerations

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Authors' Addresses

1. Introduction

1.1. Motivation

 The JSCalendar [draft-ietf-calext-jscalendar] data format is used to
 represent calendar data, and is meant as an alternative to the widely
 deployed iCalendar [RFC5545] data format.

 While new calendaring services and applications might use JSCalendar
 as their main data format to exchange calendaring data, they are
 likely to interoperate with services and clients that just support
 iCalendar. Similarly, existing calendaring data is stored in
 iCalendar format in databases and other calendar stores, and
 providers and users might want to represent this data also in
 JSCalendar. Lastly, some implementations might want to preserve
 custom iCalendar properties, that have no equivalent in JSCalendar
 when converting between these formats.

 To facilitate these use cases, this document provides an
 informational guide how to convert JSCalendar data from and to
 iCalendar.

1.2. Scope and caveats

 JSCalendar and iCalendar have a lot of semantics in common, but they
 are not interchangeable formats:

 o JSCalendar contains a richer data model to express calendar
 information such as event locations and participants; while future
 iCalendar extensions may allow a direct mapping, for now there may
 be no representation directly in iCalendar of some properties and
 these have been marked as implementation specific for mapping.

 o iCalendar may contain arbitrary, non-standardised data with custom
 properties/attributes. Translating these into JSCalendar is
 implementation specific.

 o iCalendar has some obsolete features that have been removed from
 JSCalendar due to not being useful and/or supported in the real
 world (e.g. custom email alerts to send to random people).
 Translating these may lose some of the original fidelity.

 o Implementations may use a custom property to store data that could
 not be mapped directly in either direction in the original or a
 custom format, however this is not interoperable.

 Accordingly, this document does not standardize a canonical
 translation between iCalendar and JSCalendar, and implementations
 MUST NOT make any assumptions how iCalendar data is represented in
 JSCalendar by other systems.

1.3. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. JSEvent

 A _JSEvent_ maps to the the iCalendar VEVENT component type
 [RFC5545]. The following tables maps the JSEvent-specific properties
 to iCalendar:

+‑‑‑‑‑‑‑‑‑‑+‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑+‑‑+
duration	DURATION property. If the VEVENT contains a DTEND
	property, the this maps to the _duration_ property as
	the time span between DTSTART and DTEND when
	converting the respective time points to the UTC time
	zone.
+‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 1: Mapping JSEvent properties

3. JSTask

 A _JSTask_ object maps to the iCalendar VTODO component type
 [RFC5545]. The following tables maps the JSTask-specific properties
 to iCalendar:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
due	DUE property
estimatedDuration	ESTIMATED‑DURATION property in the RFC draft
	[draft‑apthorp‑ical‑tasks], or the DURATION
	property otherwise.
statusUpdatedAt	COMPLETED property. The JSTask status
	property MUST have value "completed".
progress	PARTSTAT and COMPLETED properties, including
	the definitions in the RFC draft
	[draft‑apthorp‑ical‑tasks].
status	STATUS property, including the definitions in
	the RFC draft [draft‑apthorp‑ical‑tasks].
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Table 2: Mapping JSTask properties

4. JSGroup

 A JSGroup maps to a iCalendar VCALENDAR containing VEVENT or VTODO
 components.

+‑‑‑‑‑‑‑‑‑‑+‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑+‑‑+
entries	VEVENT and VTODO components embedded in a VCALENDAR
	component.
source	SOURCE property.
+‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 3: Mapping JSGroup properties

5. Common properties

 This section contains recommendations how to map JSCalendar from and
 to iCalendar. It lists all common JSCalendar object properties in
 alphabetical order.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
@type	Determined by the iCalendar component
	type: "jsevent" for VEVENT, "jstask" for
	VTODO, "jsgroup" for VCALENDAR.
alerts	Each entry maps to a VALARM component.
	The ACTION property maps to _action_,
	where both "DISPLAY" and "AUDIO" values
	map to the "display" action. An EMAIL
	value maps to a JSCalendar "email"
	action. _relativeTo_ and _offset_ map
	to the TRIGGER property.
categories	CONCEPT property, defined in
	[draft‑ietf‑calext‑ical‑relations].
color	COLOR property, as specified in
	[RFC7986].
created	CREATED property.
description	DESCRIPTION property.
descriptionContentType	Implementation‑specific.
excluded	EXDATE property.
freeBusyStatus	TRANSP property.

isAllDay	See Section 5.1.
keywords	CATEGORIES property, as specified in
	[RFC7986].
links	ATTACH ([RFC5545]), URL or IMAGE
	([RFC7986]) properties with URI value
	types map to the the Link _href_. The
	FMTTYPE parameter maps to _type_, the
	SIZE parameter to _size_. Mapping other
	properties is implementation‑specific.
locale	LANGUAGE parameter of the SUMMARY or
	DESCRIPTION property.
localizations	Implementation‑specific.
locations	See Section 5.2.
method	METHOD property of the embedding
	VCALENDAR.
participants	See Section 5.3.
priority	PRIORITY property.
privacy	CLASS property.
prodId	PRODID property.
recurrenceOverrides	RDATE and EXDATE properties, and any
	VEVENT or VTODO instances with a
	recurrence‑id and same UID as the mapped
	main object.
recurrenceRule	RRULE property. For all‑day calendar
	objects, map the _until_ property value
	to an iCalendar DATE (effectively
	removing the time component). To convert
	a DATE‑typed UNTIL from iCalendar, set
	the time components of the LocalDate
	value to "23:59:59". If the iCalendar
	UNTIL value is a UTC date time, convert
	it to the local time in the JSCalendar
	calendar object time zone.
relatedTo	RELATED‑TO property.

replyTo	An iCalendar ORGANIZER with a mailto:
	URI mapped to the "imip" method, or any
	other URI mapped to the "other" method.
	Mapping multiple methods is
	implementation‑specific.
sequence	SEQUENCE property.
start	See Section 5.1.
status	STATUS property.
timeZone	See Section 5.1.
timeZones	Each entry in the property maps to a
	VTIMEZONE in the embedding VCALENDAR
	component.
title	SUMMARY property.
uid	UID property.
updated	DTSTAMP and LAST‑MODIFIED properties.
useDefaultAlerts	Implementation‑specific.
virtualLocations	See Section 5.2.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 4: Translation between JSCalendar and iCalendar

5.1. Time

 JSEvent and JSTask objects share the _start_, _timeZone_ and
 isAllDay properties to express their occurrence in time. The
 following table defines how to map these properties:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
start and	The _start_ property value maps to an iCalendar
non‑null	DTSTART of type local DATE‑TIME and the _timeZone_
timeZone	value to its TZID parameter. If the time zone is
	"Etc/UTC", then the start time may alternatively map
	to an iCalendar UTC DATE‑TIME without a TZID
	parameter.
start and	The _start_ property value maps to an iCalendar
isAllDay	DTSTART property value of type DATE. When mapping
is true	from iCalendar, the time component of the _start_
	property value is zero.
start and	The _start_ property value maps to an iCalendar
null	DTSTART of type local DATE‑TIME and no TZID
timeZone	parameter.
and	
isAllDay	
is false	
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Table 5: Mapping common time properties

5.2. Locations

 The iCalendar counterpart for JSCalendar Location objects is the
 iCalendar [RFC5545] LOCATION property, or implementation-specific.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
coordinates	GEO property.
description	Implementation‑specific.
linkIds	Implementation‑specific.
name	LOCATION property value.
rel	Implementation‑specific.
timeZone	Implementation‑specific.
uri	The LOCATION ALTREP parameter.
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 6: Mapping Location properties

 The iCalendar counterpart for JSCalendar VirtualLocation objects is
 the iCalendar [RFC7986] CONFERENCE property.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
description	Implementation‑specific.
name	LABEL parameter.
uri	CONFERENCE property value.
+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 7: Mapping virtualLocation properties

5.3. Participants

 The following table outlines translation of JSCalendar participants.
 An iCalendar ORGANIZER maps to _replyTo_ and a participant with role
 "owner". If an ATTENDEE with the same CAL-ADDRESS value exists, then
 it maps to the same participant as the ORGANIZER participant. Other
 participants map to ATTENDEEs.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Property | iCalendar counterpart |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
attendance	ROLE parameter values REQ‑PARTICIPANT, OPT‑
	PARTICIPANT and NON‑PARTICIPANT.
delegatedFrom	DELEGATED‑FROM parameter
delegatedTo	DELEGATED‑TO parameter
email	EMAIL parameter, if defined. Otherwise the
	CAL‑ADDRESS property value, if it is a
	mailto: URI.
expectReply	RSVP parameter
kind	CUTYPE parameter
linkIds	Implementation‑specific.
locationId	Implementation‑specific.
memberOf	MEMBER parameter
name	CN parameter
participationStatus	PARTSTAT parameter
roles	ROLE parameter.
scheduleSequence	SEQUENCE property of the participant's
	latest iMIP message
scheduleUpdated	DTSTAMP property of the participant's
	latest iMIP message
sendTo	A CAL‑ADDRESS with a mailto: URI maps to
	the JSCalendar "imip" method, any other URI
	to the "other" method. Mapping multiple
	methods is implementation‑specific.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Table 8: Mapping Participant properties

6. Custom properties

 Mapping custom or unknown properties between JSCalendar and iCalendar
 is implementation-specific. Implementations might use vendor-
 extension properties, which could also serve as basis for discussion
 for a JSCalendar standard extension. Alternatively, an
 implementation could preserve iCalendar properties and components in
 JSCalendar by use of a vendor-extension property formatted as jCal
 [RFC7265] data.

7. Security Considerations

 The same security considerations as for
 [draft-ietf-calext-jscalendar] apply.

8. IANA Considerations

 None.

9. Acknowledgments

 The authors would like to thank the members of CalConnect for their
 valuable contributions. This specification originated from the work
 of the API technical committee of CalConnect, the Calendaring and
 Scheduling Consortium.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC7265]
 Kewisch, P., Daboo, C., and M. Douglass, "jCal: The JSON
 Format for iCalendar", RFC 7265, DOI 10.17487/RFC7265, May
 2014, <https://www.rfc-editor.org/info/rfc7265>.

 [RFC7986]
 Daboo, C., "New Properties for iCalendar", RFC 7986,
 DOI 10.17487/RFC7986, October 2016,
 <https://www.rfc-editor.org/info/rfc7986>.

10.2. Informative References

 [draft-apthorp-ical-tasks]

 "Task Extensions to iCalendar",
 <https://tools.ietf.org/html/draft-apthorp-ical-tasks>.

 [draft-ietf-calext-ical-relations]

 "Support for iCalendar Relationships",
 <https://tools.ietf.org/html/
 draft-ietf-calext-ical-relations>.

 [draft-ietf-calext-jscalendar]

 "Task Extensions to iCalendar",
 <https://tools.ietf.org/html/
 draft-ietf-calext-jscalendar>.

Authors' Addresses

Neil Jenkins
FastMail
PO Box 234
Collins St West
Melbourne VIC 8007
Australia

Email: neilj@fastmailteam.com
URI: https://www.fastmail.com

Robert Stepanek
FastMail
PO Box 234
Collins St West
Melbourne VIC 8007
Australia

Email: rsto@fastmailteam.com
URI: https://www.fastmail.com

draft-ietf-calext-subscription-upgrade-00 - Calendar subscription upgrades

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 5988,7240 (if approved)

Intended status: Standards Track

Expires: December 9, 2019

M. Douglass

Spherical Cow Group

June 7, 2019

Calendar subscription upgrades

draft-ietf-calext-subscription-upgrade-00

Abstract

 This specification introduces an approach to allow subscribers to
 calendar feeds to upgrade to a more performant protocol.

 This specification updates [RFC5545] to add the value DELETED to the
 STATUS property.

 This specification also updates [RFC7240] to add the subscribe-
 enhanced-get and limit preferences.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terms and Definitions

	2. Discovering alternative access methods

	3. Enhanced GET
	 3.1. General

	 3.2. Deletions

	 3.3. Handling of invalid sync tokens

	 3.4. Paging the response

	 3.5. Caching of responses

	 3.6. Examples

	4. Changes to the iCalendar specifications
	 4.1. Redefined Status property

	5. Header Field: Sync-Token

	6. New Prefer header field preferences
	 6.1. Preference subscribe-enhanced-get

	 6.2. Preference limit

	7. Link relations
	 7.1. General

	 7.2. subscribe-caldav

	 7.3. subscribe-caldav-auth

	 7.4. subscribe-webdav-sync

	 7.5. subscribe-enhanced-get

	8. Security Considerations

	9. IANA Considerations
	 9.1. Sync-Token HTTP Header Field Registration

	 9.2. Preference Registrations

	 9.3. Link Relation Registrations

	10. Acknowledgements

	11. Normative References

	Appendix A. Open issues

	Appendix B. Change log

	Author's Address

1. Introduction

 Currently clients subscribe to calendar feeds as an iCalendar file
 which is often published as a resource accessible using the
 unofficial 'webcal' scheme.

 The only available option for updating that resource is the usual
 HTTP polling of cached resources using Etags.

 There is the usual tension between clients wishing to see a timely
 response to changes and servers not wishing to be overloaded by
 frequent requests for possibly large amounts of data.

 This specification introduces an approach whereby clients can
 discover a more performant access method. Given the location of the
 resource as an iCalendar file, the client can perfom a HEAD request
 on the resource and inspect the returned headers which will offer a
 number of alternative access methods.

 Given that many clients and servers already support CalDAV this
 provides an easy upgrade path for those clients. CalDAV and DAV
 subsets are specified here to allow lighter weight implementations.

1.1. Terms and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, the rule for URI is included from [RFC3986].

2. Discovering alternative access methods

 The advertising of other access points is achieved through the use of
 the LINK header as defined in [RFC5988]. New link relation types are
 defined in this specification - each being associated with a protocol
 or protocol subset.

 These LINK headers will be delivered when a client carries out a HEAD
 request targeting the URL of the resource.

 This is an example of a HEAD request and the response from a server
 that supports the enhanced GET method.

 >> Request <<

HEAD /caldata/events.ics HTTP/1.1
Host: example.com
Accept: text/calendar

 >> Response <<

HTTP/1.1 200 OK
Content‑Length: xxxx
Link: <http://example.com/subscribe/events.ics>;
 rel="subscribe‑enhanced‑get"

 Note that the target for an upgraded service may be the same as for
 the initial resource.

3. Enhanced GET

3.1. General

 This is a lightweight protocol which allows simple clients to
 efficiently discover and download changes in the targeted resource.

 It has many similarities to WebDAV sync and for a server could be
 implemented as an extension of the specification.

 In this protocol the client MUST include the Prefer header field
 preference "subscribe-enhanced-get". If a sync token is available it
 is passed as a Sync-Token header field.

 The resource is treated as a set of individual events each of which
 may be updated or deleted separately. The client will first fetch
 the entire iCalendar file. On subsequent requests it uses the Prefer
 header field and a Sync-Token header field to indicate that it wants
 a set of changes since the last fetch.

 If no Sync-Token header field is supplied the server SHOULD respond
 with a full set of data. Otherwise, if the token is valid, it SHOULD
 return with a set of changed entities.

 In both cases the server should set the Preference-Applied header
 field and a new Sync-Token header field value.

3.2. Deletions

 When an entity (VEVENT, VTODO or other valid top-level component) is
 deleted from the source data the server needs to be able to inform a
 client of the deletion. This specification introduces a new value
 for the STATUS property of DELETED.

 On the first enhanced GET after the entity has been deleted a
 skeleton, but valid, entity will be returned with STATUS: DELETED.
 The receiving client is free to remove the entity or update it's
 STATUS property.

 On subsequent fetches the entity will not be returned.

3.3. Handling of invalid sync tokens

 When a server receives an invalid token it MUST return a 409 status
 (Conflict). The server MAY choose to return an error message in the
 body.

 The client SHOULD respond to this error by restarting the interaction
 from scratch, i.e. retrieve the full set of data then poll for
 updates.

3.4. Paging the response

 A client may explicitly request a limit on the size of the response
 by specifying the Prefer header field preference "limit=n" where n is
 the number of components.

 When a server receives a request specifying such a limit it SHOULD
 limit the response to that number of components. If the limit causes
 a truncation in the response the server should respond with a
 Preference-Applied header specifying the limit that was applied and
 return a sync token which may be used to retrieve the next batch of
 data.

 This allows the client to immediately resubmit a request for the next
 batch using the updated token.

 A server MAY choose to limit the response size. The behavior SHOULD
 be as if the client had provided a preference for that size -
 allowing the client to retrieve the full set of data in batches.

3.5. Caching of responses

 To enable proper caching of responses the server SHOULD provide a
 VARY header field in responses that names the Prefer and Sync-Token
 header fields along with any other that are appropriate.

 Clients should order the preferences as following so that identical
 responses can be identified:

 o subscribe-enhanced-get

 o limit

3.6. Examples

 This is an example of the initial request and response from a server
 that supports the enhanced GET method. Note the use of the Vary
 header so a caching proxy can key off the client's Sync-Token and
 preference.

 >> Request <<

GET /events.ics HTTP/1.1
Host: example.com
Accept: text/calendar
Prefer: subscribe‑enhanced‑get

 >> Response <<

HTTP/1.1 200 OK
Content‑Length: xxxx
Sync‑Token: "data:,1234567"
Preference‑Applied: subscribe‑enhanced‑get
Vary: Prefer, Sync‑Token

BEGIN:VCALENDAR:
? /* full feed */
END:VCALENDAR

 This is an example of the subsequent request and response when no
 changes have occurred.

 >> Request <<

GET /events.ics HTTP/1.1
Host: example.com
Accept: text/calendar
Prefer: subscribe‑enhanced‑get
Sync‑Token: "data:,1234567"

 >> Response <<

HTTP/1.1 304 Not Modified
Content‑Length: 0
Sync‑Token: "data:,1234567"
Preference‑Applied: subscribe‑enhanced‑get
Vary: Prefer, Sync‑Token

 This is an example of the subsequent request and response for an old
 or invalid token.

 >> Request <<

GET /events.ics HTTP/1.1
Host: example.com
Accept: text/calendar
Sync‑Token: "data:,1234567"
Prefer: subscribe‑enhanced‑get

 >> Response <<

HTTP/1.1 409 Conflict
Content‑Length: xxxx
Preference‑Applied: subscribe‑enhanced‑get

 This is an example of the subsequent request and response when
 changes have occurred.

 >> Request <<

GET /events.ics HTTP/1.1
Host: example.com
Accept: text/calendar
Sync‑Token: "data:,1234567"
Prefer: subscribe‑enhanced‑get

 >> Response <<

HTTP/1.1 200 OK
Content‑Type: text/calendar
Vary: Prefer, Sync‑Token
Sync‑Token: "data:,4567890"
Preference‑Applied: subscribe‑enhanced‑get

BEGIN:VCALENDAR:
... only new/changed events
... deleted events have STATUS:DELETED
END:VCALENDAR

4. Changes to the iCalendar specifications

 This specification updates [RFC5545] to add the value DELETED to the
 STATUS property.

4.1. Redefined Status property

 Property name

 STATUS

 Purpose

 This property defines the overall status or confirmation for the
 calendar component.

 Value Type

 TEXT

 Property Parameters

 IANA and non-standard property parameters can be specified on this
 property.

 Conformance

 This property can be specified once in "VEVENT", "VTODO", or
 "VJOURNAL" calendar components.

 Description

 In a group-scheduled calendar component, the property is used by
 the "Organizer" to provide a confirmation of the event to the
 "Attendees". For example in a "VEVENT" calendar component, the
 "Organizer" can indicate that a meeting is tentative, confirmed,
 or cancelled. In a "VTODO" calendar component, the "Organizer"
 can indicate that an action item needs action, is completed, is in
 process or being worked on, or has been cancelled. In a
 "VJOURNAL" calendar component, the "Organizer" can indicate that a
 journal entry is draft, final, or has been cancelled or removed.

 Format Definition

 This property is defined by the following notation:

status = "STATUS" statparam ":" statvalue CRLF

statparam = *(";" other‑param)

statvalue = (statvalue‑event
 / statvalue‑todo
 / statvalue‑jour)

statvalue‑event = "TENTATIVE" ;Indicates event is tentative.
 / "CONFIRMED" ;Indicates event is definite.
 / "CANCELLED" ;Indicates event was cancelled.
 / "DELETED" ;Indicates event was deleted.
;Status values for a "VEVENT"

statvalue‑todo = "NEEDS‑ACTION" ;Indicates to‑do needs action.
 / "COMPLETED" ;Indicates to‑do completed.
 / "IN‑PROCESS" ;Indicates to‑do in process of.
 / "CANCELLED" ;Indicates to‑do was cancelled.
 / "DELETED" ;Indicates to‑do was deleted.
;Status values for "VTODO".

statvalue‑jour = "DRAFT" ;Indicates journal is draft.
 / "FINAL" ;Indicates journal is final.
 / "CANCELLED" ;Indicates journal is removed.
 / "DELETED" ;Indicates journal was deleted.
;Status values for "VJOURNAL".

 Example

 The following is an example of this property for a "VEVENT" calendar
 component:

 STATUS:TENTATIVE

 The following is an example of this property for a "VTODO" calendar
 component:

 STATUS:NEEDS-ACTION

 The following is an example of this property for a "VJOURNAL"
 calendar component:

 STATUS:DRAFT

5. Header Field: Sync-Token

 This specification defines a new header field Sync-Token for use by
 the enhanced GET method.

 Accept = DQUOTE URI DQUOTE

 The value MUST be a URI. This will generally be a data URI
 representing an opaque token. Client MUST not attempt to interpret
 the data URI value.

 This is an example of the Sync-Token header field:

 Sync-Token: "data:,1234567"

6. New Prefer header field preferences

6.1. Preference subscribe-enhanced-get

 This indicates that the client expects the server to handle the GET
 method according to the specifications for enhanced get.

 pref-subscribe-enhanced-get = "subscribe-enhanced-get"

6.2. Preference limit

 This preference parameter provides a limit on the number of
 components returned for enhanced get.

 pref-limit = "limit" BWS "=" BWS 1*DIGIT

7. Link relations

7.1. General

 This clause defines a number of new link relations required to
 facilitate subscription upgrades.

7.2. subscribe-caldav

 This specifies an access point which is a full implementation of
 caldav but requires no authentication. The end point allows the full
 range of reports as defined by the CalDAV specification.

 The client MUST follow the specification to determine exactly what
 operations are allowed on the access point - for example to determine
 if sync-report is supported.

 The URL MAY include some form of token to allow write access to the
 targeted collection. The client must check it's permissions to
 determine whether or not it has been granted write access.

7.3. subscribe-caldav-auth

 This specifies an access point which is a full implementation of
 caldav and requires authentication. This may allow read-write access
 to the resource.

 The client MUST follow the specification to determine exactly what
 operations are allowed on the access point -- for example to
 determine if sync-report is supported.

7.4. subscribe-webdav-sync

 This specifies an access point which supports only webdav sync.

 This allows the client to issue a sync-report on the resource to
 obtain updates.

 The client MUST follow that specification.

7.5. subscribe-enhanced-get

 This specifies an access point which supports something new.

 The client MUST follow that specification.

8. Security Considerations

 Applications using these properties need to be aware of the risks
 entailed in using the URIs provided as values. See [RFC3986] for a
 discussion of the security considerations relating to URIs. ==
 Privacy Considerations

 Properties with a "URI" value type can expose their users to privacy
 leaks as any network access of the URI data can be tracked. Clients
 SHOULD NOT automatically download data referenced by the URI without
 explicit instruction from users. This specification does not
 introduce any additional privacy concerns beyond those described in
 [RFC5545].

9. IANA Considerations

9.1. Sync-Token HTTP Header Field Registration

 This specification updates the "Message Headers" registry entry for
 "Sync-Token" in [RFC3864] to refer to this document.

Header Field Name: Sync‑Token
Protocol: http
Status: standard
Reference: <this‑document>

9.2. Preference Registrations

 The following preferences have been added to the HTTP Preferences
 Registry defined in [RFC7240]

 Preference

 subscribe-enhanced-get

 Value

 None.

 Description

 Marks the interaction as enhanced get and provides the optional
 sync-token and page size.

 Reference

 this document

 Preference

 limit

 Value

 An integer page size.

 Description

 Provide a limit on the number of components in the response.

 Reference

 this document

9.3. Link Relation Registrations

 This document defines the following new iCalendar properties to be
 added to the registry defined in section=8.2.3 [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Relation Name | Description | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
subscribe‑caldav	Current	Section 7.2
subscribe‑caldav_auth	Current	Section 7.3
subscribe‑webdav‑sync	Current	Section 7.4
subscribe‑enhanced_get	Current	Section 7.5
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

10. Acknowledgements

 The author would also like to thank the members of the CalConnect
 Calendar Sharing technical committee and the following individuals
 for contributing their ideas and support:

 Marten Gajda, Ken Murchison, Garry Shutler

 The authors would also like to thank CalConnect, the Calendaring and
 Scheduling Consortium, for advice with this specification.

11. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2434]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434,
 DOI 10.17487/RFC2434, October 1998,
 <https://www.rfc-editor.org/info/rfc2434>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC3864]
 Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4589]
 Schulzrinne, H. and H. Tschofenig, "Location Types
 Registry", RFC 4589, DOI 10.17487/RFC4589, July 2006,
 <https://www.rfc-editor.org/info/rfc4589>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

 [RFC5988]
 Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <https://www.rfc-editor.org/info/rfc5988>.

 [RFC6578]
 Daboo, C. and A. Quillaud, "Collection Synchronization for
 Web Distributed Authoring and Versioning (WebDAV)",
 RFC 6578, DOI 10.17487/RFC6578, March 2012,
 <https://www.rfc-editor.org/info/rfc6578>.

 [RFC7240]
 Snell, J., "Prefer Header for HTTP", RFC 7240,
 DOI 10.17487/RFC7240, June 2014,
 <https://www.rfc-editor.org/info/rfc7240>.

 [RFC7991]
 Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
 RFC 7991, DOI 10.17487/RFC7991, December 2016,
 <https://www.rfc-editor.org/info/rfc7991>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Open issues

 Vary

 Ensure we get that right.

Appendix B. Change log

 calext00 2019-06-05 MD

 o First calext version

 o Use Sync-Token header rather than parameter

 v04 2019-03-07 MD

 o Reference to RFC 6538 - WebDAV sync and RFC 7240 Prefer

 o Go back to HEAD

 o New Preference and parameters.

 o Examples

 o More text for extended get. Talk about deletions.

 v01 2017-02-17 MD

 o Add text about OPTIONS

 o Add text abut read/write CalDAV

 v00 2017-02-15 MD

 o First pass

Author's Address

Michael Douglass
Spherical Cow Group
226 3rd Street
Troy 12180
United States of America

Email: mdouglass@sphericalcowgroup.com
URI: http://sphericalcowgroup.com

draft-ietf-calext-valarm-extensions-00 - VALARM Extensions for iCalendar

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 5545 (if approved)

Intended status: Standards Track

Expires: December 12, 2019

C. Daboo

Apple

K. Murchison, Ed.

FastMail

June 10, 2019

VALARM Extensions for iCalendar

draft-ietf-calext-valarm-extensions-00

Abstract

 This document defines a set of extensions to the iCalendar VALARM
 component to enhance use of alarms and improve interoperability
 between clients and servers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. Extensible syntax for VALARM

	4. Alarm Unique Identifier

	5. Alarm Acknowledgement
	 5.1. Acknowledged Property

	6. Snoozing Alarms

	7. Alarm Proximity Trigger
	 7.1. Proximity Property

	 7.2. Example

	8. Security Considerations

	9. IANA Considerations
	 9.1. Property Registrations

	 9.2. Proximity Value Registry

	10. Acknowledgments

	11. References
	 11.1. Normative References

	 11.2. Informative References

	 11.3. URIs

	Appendix A. Change History (To be removed by RFC Editor before publication)

	Authors' Addresses

1. Introduction

 The iCalendar [RFC5545] specification defines a set of components
 used to describe calendar data. One of those is the "VALARM"
 component which appears as a sub-component of "VEVENT" and "VTODO"
 components. The "VALARM" component is used to specify a reminder for
 an event or task. Different alarm actions are possible, as are
 different ways to specify how the alarm is triggered.

 As iCalendar has become more widely used and as client-server
 protocols such as CalDAV [RFC4791] have become more popular, several
 issues with "VALARM" components have arisen. Most of these relate to
 the need to extend the existing "VALARM" component with new
 properties and behaviors to allow clients and servers to accomplish
 specific tasks in an interoperable manner. For example, clients
 typically need a way to specify that an alarm has been dismissed by a
 calendar user, or has been "snoozed" by a set amount of time. To
 date, this has been done through the use of custom "X-" properties
 specific to each client implementation, leading to poor
 interoperability.

 This specification defines a set of extensions to "VALARM" components
 to cover common requirements for alarms not currently addressed in
 iCalendar. Each extension is defined in a separate section below.
 For the most part, each extension can be supported independently of
 the others, though in some cases one extension will require another.
 In addition, this specification describes mechanisms by which clients
 can interoperably implement common features such as "snoozing".

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [1] [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 When XML element types in the namespaces "DAV:" and
 "urn:ietf:params:xml:ns:caldav" are referenced in this document
 outside of the context of an XML fragment, the string "DAV:" and
 "CALDAV:" will be prefixed to the element type names respectively.

3. Extensible syntax for VALARM

 Section 3.6.6 of [RFC5545] defines the syntax for "VALARM" components
 and properties within them. However, as written, it is hard to
 extend this by adding, e.g., a new property common to all types of
 alarm. Since many of the extensions defined in this document need to
 extend the base syntax, an alternative form for the base syntax is
 defined here, with the goal of simplifying specification of the
 extensions.

 A "VALARM" calendar component is re-defined by the following
 notation:

alarmcext = "BEGIN" ":" "VALARM" CRLF
 alarmprop
 "END" ":" "VALARM" CRLF

alarmprop = *(

 ; the following are REQUIRED,
 ; but MUST NOT occur more than once

 action / trigger /

; one set of action properties MUST be
; present and MUST match the action specified
; in the ACTION property

 actionprops /

; the following is OPTIONAL,
; and MAY occur more than once

 x-prop / iana-prop

)

 actionprops = audiopropext / disppropext / emailpropext

audiopropext = *(

 ; 'duration' and 'repeat' are both OPTIONAL,
 ; and MUST NOT occur more than once each,
 ; but if one occurs, so MUST the other

 duration / repeat /

; the following is OPTIONAL,
; but MUST NOT occur more than once

 attach

)

 disppropext = *(

; the following are REQUIRED,
; but MUST NOT occur more than once

 description /

; 'duration' and 'repeat' are both OPTIONAL,
; and MUST NOT occur more than once each,
; but if one occurs, so MUST the other

 duration / repeat

)

 emailpropext = *(

; the following are all REQUIRED,
; but MUST NOT occur more than once

 description / summary /

; the following is REQUIRED,
; and MAY occur more than once

 attendee /

; 'duration' and 'repeat' are both OPTIONAL,
; and MUST NOT occur more than once each,
; but if one occurs, so MUST the other

 duration / repeat

)

4. Alarm Unique Identifier

 This extension adds a "UID" property to "VALARM" components to allow
 a unique identifier to specified. The value of this property can
 then be used to refer uniquely to the "VALARM" component.

 The "UID" property defined here follows the definition in
 Section 3.8.4.7 of [RFC5545] with the security and privacy updates in
 Section 5.3 of [RFC7986]. In particular it MUST be a globally unique
 identifier that does not contain any security- or privacy-sensitive
 information.

 The "VALARM" component defined in Section 3 is extended here as:

alarmprop /= *(

 ; the following is OPTIONAL,
 ; but MUST NOT occur more than once

 uid

)

5. Alarm Acknowledgement

 There is currently no way for a "VALARM" component to indicate
 whether it has been triggered and acknowledged. With the advent of a
 standard client/server protocol for calendaring and scheduling data
 ([RFC4791]) it is quite possible for an event with an alarm to exist
 on multiple clients in addition to the server. If each of those is
 responsible for performing the action when an alarm triggers, then
 multiple "alerts" are generated by different devices. In such a
 situation, a calendar user would like to be able to "dismiss" the
 alarm on one device and have it automatically dismissed on the others
 too.

 Also, with recurring events that have alarms, it is important to know
 when the last alarm in the recurring set was acknowledged, so that
 the client can determine whether past alarms have been missed.

 To address these needs, this specification adds an "ACKNOWLEDGED"
 property to "VALARM" components to indicate when the alarm was last
 sent or acknowledged. This is defined by the syntax below.

alarmprop /= *(

 ; the following is OPTIONAL,
 ; but MUST NOT occur more than once

 acknowledged

)

5.1. Acknowledged Property

Property Name: ACKNOWLEDGED

Purpose: This property specifies the UTC date and time at which the
 corresponding alarm was last sent or acknowledged.

Value Type: DATE‑TIME

Property Parameters: IANA and non‑standard property parameters can
 be specified on this property.

Conformance: This property can be specified within "VALARM" calendar
 components.

Description: This property is used to specify when an alarm was last
 sent or acknowledged. This allows clients to determine when a
 pending alarm has been acknowledged by a calendar user so that any
 alerts can be dismissed across multiple devices. It also allows
 clients to track repeating alarms or alarms on recurring events or
 to‑dos to ensure that the right number of missed alarms can be
 tracked.

 Clients SHOULD set this property to the current date-time value in
 UTC when a calendar user acknowledges a pending alarm. Certain
 kinds of alarm may not provide feedback as to when the calendar
 user sees them, for example email based alerts. For those kinds
 of alarms, the client SHOULD set this property when the alarm is
 triggered and the action successfully carried out.

 When an alarm is triggered on a client, clients can check to see
 if an "ACKNOWLEDGED" property is present. If it is, and the value
 of that property is greater than or equal to the computed trigger
 time for the alarm, then the client SHOULD NOT trigger the alarm.
 Similarly, if an alarm has been triggered and an "alert" presented
 to a calendar user, clients can monitor the iCalendar data to
 determine whether an "ACKNOWLEDGED" property is added or changed
 in the alarm component. If the value of any "ACKNOWLEDGED"
 property in the alarm changes and is greater than or equal to the
 trigger time of the alarm, then clients SHOULD dismiss or cancel
 any "alert" presented to the calendar user.

Format Definition: This property is defined by the following
 notation:

 acknowledged = "ACKNOWLEDGED" acknowledgedparam ":" datetime CRLF

acknowledgedparam = *(

 ; the following is OPTIONAL,
 ; and MAY occur more than once

 (";" other-param)

)

Example: The following is an example of this property:

 ACKNOWLEDGED:20090604T084500Z

6. Snoozing Alarms

 Users often want to "snooze" an alarm, and this specification defines
 a standard approach to accomplish that.

 To "snooze" an alarm, clients create a new "VALARM" component within
 the parent component of the "VALARM" that was triggered and is being
 "snoozed" (i.e., as a "sibling" component of the "VALARM" being
 snoozed). The new "VALARM" MUST be set to trigger at the user's
 chosen "snooze" interval after the original alarm triggered. Clients
 SHOULD use an absolute "TRIGGER" property with a "DATE-TIME" value
 specified in UTC.

 When the "snooze" alarm is triggered and dismissed the client SHOULD
 remove the corresponding "VALARM" component, or set the
 "ACKNOWLEDGED" property (see Section 5.1). Alternatively, if the
 "snooze" alarm is itself "snoozed", the client SHOULD remove the
 original "snooze" alarm and create a new one, with the appropriate
 trigger time and relationship set.

7. Alarm Proximity Trigger

 VALARMs are currently triggered when a specific date-time is reached.
 It is also desirable to be able to trigger alarms based on location,
 e.g. when arriving at or departing from a particular location.

 This specification adds the following properties to "VALARM"
 components to indicate when an alarm can be triggered based on
 location.

 "PROXIMITY" - indicates that a location based trigger is to be
 used and which direction of motion is used for the trigger

 "STRUCTURED-LOCATION" [I-D.ietf-calext-eventpub-extensions] - used
 to indicate the actual location to trigger off, specified using a
 geo: URI [RFC5870] which allows for two or three coordinate values
 with an optional uncertainty

alarmprop /= *(

 ; the following is OPTIONAL,
 ; but MUST NOT occur more than once

 proximity /

; the following is OPTIONAL,
; and MAY occur more than once, but only
; when a PROXIMITY property is also present

 structured-location

)

 Typically, when a "PROXIMITY" property is used there is no need to
 specify a time-based trigger using the "TRIGGER" property. However,
 since "TRIGGER" is defined as a required property for a "VALARM"
 component, for backwards compatibility it has to be present, but
 ignored. To indicate a "TRIGGER" that is to be ignored, clients
 SHOULD use a value a long time in the past. A value of
 "19760401T005545Z" has been commonly used for this purpose.

7.1. Proximity Property

Property Name: PROXIMITY

Purpose: This property indicates that a location based trigger is
 applied to an alarm.

Value Type: TEXT

Property Parameters: IANA and non‑standard property parameters can
 be specified on this property.

Conformance: This property can be specified within "VALARM" calendar
 components.

Description: This property is used to indicate that an alarm has a
 location‑based trigger. Its value identifies the direction of
 motion used to trigger the alarm. One or more location values are
 set using "STRUCTURED‑LOCATION" properties.

 When the property value is set to "ARRIVE", the alarm is triggered
 when the calendar user agent arrives in the vicinity of any of the
 specified locations. When set to "DEPART", the alarm is triggered
 when the calendar user agent departs from the vicinity of any
 specified locations.

 When the property value is set to "CONNECT", the alarm is
 triggered when the calendar user agent connects to a Bluetooth(R)
 [BTcore]-enabled automobile. When set to "DISCONNECT", the alarm
 is triggered when the calendar user agent disconnects from a
 Bluetooth(R)-enabled automobile.

Format Definition: This property is defined by the following
 notation:

 proximity = "PROXIMITY" proximityparam ":" proximityvalue CRLF

proximityparam = *(

 ; the following is OPTIONAL,
 ; and MAY occur more than once

 (";" other-param)

)

proximityvalue = "ARRIVE" / "DEPART" /
 "CONNECT" / "DISCONNECT" / iana‑token / x‑name

Example: The following is an example of this property:

 PROXIMITY:ARRIVE

7.2. Example

 The following example shows a "VALARM" component with a proximity
 trigger set to trigger when the device running the calendar user
 agent leaves the vicinity defined by the structured location
 property. Note use of the "u=" parameter with the "geo" URI to
 define the precision of the location determination.

BEGIN:VALARM
UID:77D80D14‑906B‑4257‑963F‑85B1E734DBB6
TRIGGER;VALUE=DATE‑TIME:19760401T005545Z
ACTION:DISPLAY
DESCRIPTION:Remember to buy milk
TRIGGER;VALUE=DATE‑TIME:19760401T005545Z
PROXIMITY:DEPART
STRUCTURED‑LOCATION;VALUE=URI:geo:40.443,‑79.945;u=10
END:VALARM

8. Security Considerations

 VALARMs, if not monitored properly, can be used to "spam" users and/
 or leak personal information. For instance, an unwanted audio or
 display alert could be considered spam. Or an email alert could be
 used to leak a user's location to a third party or to send
 unsolicited email to multiple users. Therefore, CalDAV clients and
 servers that accept iCalendar data from a third party (e.g. via iTIP
 [RFC5546], a subscription feed, or a shared calendar) SHOULD remove
 all VALARMs from the data prior to storing in their calendar system.

9. IANA Considerations

9.1. Property Registrations

 This document defines the following new iCalendar properties to be
 added to the registry defined in Section 8.2.3 of [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ACKNOWLEDGED | Current | RFCXXXX, Section 5.1 |
| PROXIMITY | Current | RFCXXXX, Section 7.1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9.2. Proximity Value Registry

 This document creates a new iCalendar registry for values of the
 "PROXIMITY" property:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Value | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
ARRIVE	Current	RFCXXXX, Section 7.1
DEPART	Current	RFCXXXX, Section 7.1
CONNECT	Current	RFCXXXX, Section 7.1
DISCONNECT	Current	RFCXXXX, Section 7.1
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

10. Acknowledgments

 This specification came about via discussions at the Calendaring and
 Scheduling Consortium. Also, thanks to the following for providing
 feedback: Bernard Desruisseaux, Mike Douglass, Jacob Farkas, Jeffrey
 Harris, and Ciny Joy.

11. References

11.1. Normative References

 [I-D.ietf-calext-eventpub-extensions]

 Douglass, M., "Event Publishing Extensions to iCalendar",
 draft-ietf-calext-eventpub-extensions-13 (work in
 progress), May 2019.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4791]
 Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC5870]
 Mayrhofer, A. and C. Spanring, "A Uniform Resource
 Identifier for Geographic Locations ('geo' URI)",
 RFC 5870, DOI 10.17487/RFC5870, June 2010,
 <https://www.rfc-editor.org/info/rfc5870>.

 [RFC7986]
 Daboo, C., "New Properties for iCalendar", RFC 7986,
 DOI 10.17487/RFC7986, October 2016,
 <https://www.rfc-editor.org/info/rfc7986>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [BTcore]
 Bluetooth Special Interest Group, "Bluetooth Core
 Specification Version 5.0", December 2016,
 <https://www.bluetooth.com/specifications/
 bluetooth-core-specification>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

11.3. URIs

 [1] https://tools.ietf.org/html/bcp14

Appendix A. Change History (To be removed by RFC Editor before
 publication)

 Changes in ietf-00:

 1. Submitted as CALEXT draft.

 Changes in daboo-05:

 1. Added Murchison as editor.

 2. Updated keywords boilerplate.

 3. Added reference to UID security/privacy recommendations.

 4. Removed default alarms.

 5. Removed ALARM-AGENT property.

 6. Added text about using TRIGGER value in the past in addition to
 ACTION:NONE to have a default alarm be ignored.

 7. Removed text about related alarms.

 8. Removed URL alarm action.

 9. Added reference to draft-ietf-calext-eventpub-extensions for
 STRUCTURED-LOCATION.

 10. Added CONNECT and DISCONNECT PROXIMITY property values.

 11. Added Security Considerations.

 12. Editorial fixes.

 Changes in daboo-04:

 1. Changed "ID" to "AGENT-ID".

 2. Add more text on using "ACKNOWLEDGED" property.

 3. Add "RELATED-TO" as a valid property for VALARMs.

 4. Add "SNOOZE" relationship type for use with VALARMs.

 5. State that "TRIGGER" is typically ignored in proximity alarms.

 6. Added "PROXIMITY" value registry.

 7. Added a lot more detail on default alarms including new action
 and property.

 Changes in daboo-03: none - resubmission of -02

 Changes in daboo-02:

 1. Updated to 5545 reference.

 2. Clarified use of absolute trigger in UTC in snooze alarms

 3. Snooze alarms should be removed when completed

 4. Removed status and replaced last-triggered by acknowledged
 property

 5. Added location-based trigger

 6. IANA registry tables added

 Changes in daboo-01:

 1. Removed DESCRIPTION as an allowed property in the URI alarm.

 2. Added statement about what to do when ALARM-AGENT is not present.

 3. Allow multiple ALARM-AGENT properties to be present.

 4. Removed SNOOZE-UNTIL - snoozing now accomplished by creating a
 new VALARM.

 5. Remove VALARM by reference section.

 6. Added more detail to CalDAV default alarms.

Authors' Addresses

Cyrus Daboo
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
USA

Email: cyrus@daboo.name
URI: http://www.apple.com/

Kenneth Murchison (editor)
FastMail US LLC
1429 Walnut St, Suite 1201
Philadephia, PA 19102
USA

Email: murch@fastmailteam.com
URI: http://www.fastmail.com/

7529 - Non-Gregorian Recurrence Rules in the Internet Calendaring and Scheduling

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7529

Updates: 5545, 6321, 7265

Category: Standards Track

ISSN: 2070-1721

C. Daboo

Apple Inc.

G. Yakushev

Google Inc.

May 2015

Non-Gregorian Recurrence Rules in the Internet Calendaring and Scheduling Core Object Specification (iCalendar)

Abstract

 This document defines extensions to the Internet Calendaring and
 Scheduling Core Object Specification (iCalendar) (RFC 5545) to
 support use of non-Gregorian recurrence rules. It also defines how
 Calendaring Extensions to WebDAV (CalDAV) (RFC 4791) servers and
 clients can be extended to support these new recurrence rules.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7529.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. Overview

	4. Extended RRULE Property
	 4.1. Skipping Invalid Dates

	 4.2. Handling Leap Months

	 4.3. Examples

	5. Registering Calendar Systems

	6. Compatibility

	7. Use with iTIP

	8. Use with xCal

	9. Use with jCal

	10. Use with CalDAV
	 10.1. CALDAV:supported-rscale-set Property

	11. Security Considerations

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. xCal RELAX NG Schema Update

	Acknowledgments

	Authors' Addresses

1. Introduction

 The iCalendar [RFC5545] data format is in widespread use to represent
 calendar data. iCalendar represents dates and times using the
 Gregorian calendar system only. It does provide a way to use non-
 Gregorian calendar systems via a "CALSCALE" property, but this has
 never been used. However, there is a need to support at least non-
 Gregorian recurrence patterns to cover anniversaries, and many local,
 religious, or civil holidays based on non-Gregorian dates.

 There are several disadvantages to using the existing "CALSCALE"
 property in iCalendar for implementing non-Gregorian calendars:

 1. The "CALSCALE" property exists in the top-level "VCALENDAR"
 objects and thus applies to all components within that object.
 In today's multi-cultural society, that restricts the ability to
 mix events from different calendar systems within the same
 iCalendar object, e.g., it would prevent having both the
 Gregorian New Year and Chinese New Year in the same iCalendar
 object.

 2. Time zone and daylight saving time rules are typically published
 using Gregorian calendar dates and rules (e.g., "the 3rd Sunday
 in March") and are thus converted to iCalendar "VTIMEZONE"
 components using Gregorian dates and recurrence rules. This
 results in the problem whereby one component (the "VTIMEZONE") is
 fixed to the Gregorian calendar system, and another (a "VEVENT")
 wants to use a different non-Gregorian calendar scale; thus, the
 single top-level "CALSCALE" property is again inadequate.

 This specification solves these issues by allowing the "CALSCALE" to
 remain set to Gregorian but redefining the "RRULE" recurrence rule
 property to accept new items, including one that allows non-Gregorian
 calendar systems to be used. With this, all the "DATE", "DATE-TIME",
 and "PERIOD" values in the iCalendar object would remain specified
 using the Gregorian calendar system, but repeating patterns in other
 calendar systems could be defined. It is then up to calendar user
 agents and servers to map between Gregorian and non-Gregorian
 calendar systems in order to expand out recurrence instances. The
 non-Gregorian recurrence rules can be used in any iCalendar component
 that allows the "RRULE" property to be specified, including
 "VTIMEZONE" components (to allow for possible future use of non-
 Gregorian rules in published daylight saving time data).

 This specification does not itself define calendar systems; rather,
 it utilizes the calendar system registry defined by the Unicode
 Consortium in their Common Locale Data Repository (CLDR) project
 [UNICODE.CLDR], as implemented in the Unicode (International
 Components for Unicode (ICU)) Library [UNICODE.ICU].

 This specification makes the following updates:

 It updates iCalendar [RFC5545], the XML format for iCalendar
 (xCal) [RFC6321], and the JSON format for iCalendar (jCal)
 [RFC7265], to extend the "RRULE" property definition.

 It clarifies use of the iCalendar Transport-Independent
 Interoperability Protocol (iTIP) [RFC5546] to specify how the
 extended "RRULE" property should be handled in iTIP messages.

 It extends CalDAV [RFC4791] to specify how the extended "RRULE"
 property can be supported by CalDAV servers and clients.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 The notation used in this memo is the ABNF notation of [RFC5234] as
 used by iCalendar [RFC5545]. Any syntax elements shown below that
 are not explicitly defined in this specification come from iCalendar
 [RFC5545], iTIP [RFC5546], and CalDAV [RFC4791].

 When XML element types in the namespaces "DAV:" and
 "urn:ietf:params:xml:ns:caldav" are referenced in this document
 outside of the context of an XML fragment, the string "DAV:" and
 "CALDAV:" will be prefixed to the element type names, respectively.

 When a Gregorian calendar date is shown in text, it will use the
 format "YYYYMMDD", where "YYYY" is the 4-digit year, "MM" the 2-digit
 month, and "DD" the 2-digit day (this is the same format used in
 iCalendar [RFC5545]). The Chinese calendar will be used as an
 example of a non-Gregorian calendar for illustrative purposes. When
 a Chinese calendar date is shown in text, it will use the format
 "{C}YYYYMM[L]DD" -- i.e., the same format as Gregorian but with a
 "{C}" prefix, and an optional "L" character after the month element
 to indicate a leap month. Similarly, {E} and {H} are used in other
 examples as prefixes for Ethiopic (Amete Mihret) and Hebrew dates,
 respectively. The "{}" prefix is used for purely illustrative
 purposes and never appears in actual dates used in iCalendar or
 related specifications. Note that the Chinese calendar years shown
 in the examples are based on the Unicode (ICU) [UNICODE.ICU]
 library's Chinese calendar epoch. While there are several different
 Chinese calendar epochs in common use, the choice of one over another
 does not impact the actual calculation of the Gregorian equivalent
 dates, provided conversion is always done using the same epoch.

3. Overview

 In the Gregorian calendar system, each year is composed of a fixed
 number of months (12), with each month having a fixed number of days
 (between 30 and 31), except for the second month (February), which
 contains either 28 or 29 days (the latter in a leap year). Weeks are
 composed of 7 days, with day names Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday, and Sunday. Years can have either 365 or
 366 days (the latter in a leap year). The number of whole weeks in a
 year is 52 (though the [ISO.8601.2004] week numbering scheme used by
 iCalendar [RFC5545] can have a numeric count up to 53).

 In iCalendar, the "RECUR" value type defines various fields used to
 express a recurrence pattern, and those fields are given limits based
 on those of the Gregorian calendar system. Since other calendar
 systems can have different limits and other behaviors that need to be
 accounted for, the maximum values for the elements in the "RECUR"
 value are not covered by this specification.

 To generate a set of recurring instances in a non-Gregorian calendar
 system, the following principles are used:

 1. iCalendar data continues to use the "GREGORIAN" calendar system,
 so all "DATE", "DATE-TIME", and "PERIOD" values continue to use
 the Gregorian format and limits.

 2. The "RRULE" property is extended to include an "RSCALE" element
 in its value that specifies the calendar system to use for the
 recurrence pattern. The existing elements of the "RRULE" value
 type are used, but modified to support different upper limits,
 based on the "RSCALE" value, as well as a modification to month
 numbers to allow a leap month to be specified. Existing
 requirements for the use of "RRULE" all still apply (e.g., the
 "RRULE" has to match the "DTSTART" value of the master instance).
 Other recurrence properties such as "RECURRENCE-ID", "RDATE", and
 "EXDATE" continue to use the Gregorian date format as "CALSCALE"
 is unchanged.

 When generating instances, the following procedure might be used:

 1. Convert the "DTSTART" property value of the master recurring
 component into the date and time components for the calendar
 system specified by the "RSCALE" element in the "RRULE" value.
 This provides the "seed" value for generating subsequent
 recurrence instances.

 2. Iteratively generate instances using the "RRULE" value applied to
 the year, month, and day components of the date in the new
 calendar system.

 3. For each generated instance, convert the dates and times back
 from the non-Gregorian form into Gregorian and use those values
 for other properties such as "RECURRENCE-ID".

 Consider the following example for an event representing the Chinese
 New Year:

DTSTART;VALUE=DATE:20130210
RRULE:RSCALE=CHINESE;FREQ=YEARLY
SUMMARY:Chinese New Year

 To generate instances, first the "DTSTART" value "20130210" is
 converted into the Chinese calendar system giving "{C}46500101".
 Next, the year component is incremented by one to give "{C}46510101",
 and that is then converted back into Gregorian as "20140131".
 Additional instances are generated by iteratively increasing the year
 component in the Chinese date and converting back to Gregorian.

4. Extended RRULE Property

 This specification extends the existing "RRULE" iCalendar property
 value to include a new "RSCALE" element that can be used to indicate
 the calendar system used for generating the recurrence pattern.

 When "RSCALE" is present, the other changes to "RRULE" are:

 1. Elements that include numeric values (e.g., "BYYEARDAY") have
 numeric ranges defined by the "RSCALE" value (i.e., in some
 calendar systems there might be more than 366 days in a year).

 2. Month numbers can include an "L" suffix to indicate that the
 specified month is a leap month in the corresponding calendar
 system (see Section 4.2).

 3. A "SKIP" element is added to define how "missing" instances are
 handled (see Section 4.1).

 The syntax for the "RECUR" value is modified in the following
 fashion:

; recur‑rule‑part is extended from RFC 5545
recur‑rule‑part =/ ("RSCALE" "=" rscale)
 / ("SKIP" "=" skip)

rscale = (iana‑token ; A CLDR‑registered calendar system
 ; name.
 / x‑name) ; A non‑standard, experimental
 ; calendar system name.
 ; Names are case insensitive,
 ; but uppercase values are preferred.

skip = ("OMIT" / "BACKWARD" / "FORWARD")
 ; Optional, with default value "OMIT", and
 ; MUST NOT be present unless "RSCALE" is present.

monthnum = 1*2DIGIT ["L"]
 ; Existing element modified to include a leap
 ; month indicator suffix.

4.1. Skipping Invalid Dates

 In every calendar system, only certain combinations of day-of-month
 and month values are valid for a given year, e.g., in the Gregorian
 calendar system, January 31st is valid but February 31st is not.
 Similarly, February 29th is valid in a leap year but invalid in a
 non-leap year. Other calendar systems can also include leap months
 (see Section 4.2), which vary from year to year. This poses a
 problem for recurring events where the frequency of recurrence might
 give rise to an invalid date. For example, a recurring event that
 starts on January 31st and is set to repeat monthly will generate
 invalid dates for months with fewer than 31 days. The iCalendar
 [RFC5545] specification requires recurrence rule generators to ignore
 any invalid dates generated when iterating the rule. However, that
 behavior might be surprising to a calendar user born on a leap day
 and whose birthday event only appears on their calendar every four
 years. There are common conventions used by humans to determine what
 to do in such cases, but those conventions can differ from calendar
 system to calendar system, as well as within the same calendar
 system, depending on the nature of the event. Typically, humans will
 expect the "missing" events to be moved to an earlier or later
 (valid) date.

 This specification introduces a new "RRULE" element, "SKIP", for use
 only when the "RSCALE" element is present. The "SKIP" element allows
 the calendar user agent to specify new options for handling invalid
 dates.

 "SKIP=OMIT": this is the default option and corresponds to the
 existing iCalendar behavior of simply ignoring the invalid date.

 "SKIP=BACKWARD": when this option is set, a date with an invalid
 month is changed to the previous (valid) month. A date with an
 invalid day-of-month is changed to the previous (valid)
 day-of-month.

 "SKIP=FORWARD": when this option is set, a date with an invalid
 month is changed to the next (valid) month. A date with an
 invalid day-of-month is changed to the next (valid) day-of-month.

 Note that for both "BACKWARD" and "FORWARD", if the month is changed
 and results in an invalid day-of-month, then the skip behavior will
 be reapplied as per the day-of-month rules, according to the
 processing order defined below.

 The month and day-of-month skip behavior is only applied at specific
 points during the processing of an "RRULE" as determined by the order
 in which any "BYxxx" elements are processed. The order is as follows
 (based on the "RRULE" element processing order defined in
 Section 3.3.10 of [RFC5545]):

 o BYMONTH

 o SKIP (for invalid month only)

 o BYWEEKNO

 o BYYEARDAY

 o BYMONTHDAY

 o SKIP (for invalid day)

 o BYDAY

 o BYHOUR

 o BYMINUTE

 o BYSECOND

 o BYSETPOS

 o COUNT

 o UNTIL

 It is often possible to avoid having to deal with invalid dates by
 determining the real intent of a human user, e.g., a human creating a
 monthly recurring event that starts on January 31st likely intends
 the event to occur on the last day of every month, in which case that
 could be encoded into an "RRULE" by using the "BYMONTHDAY=-1"
 element.

 Only a few types of recurrence patterns are likely to need the use of
 "SKIP". The following is a list of some situations where it might be
 needed:

 1. The start date of the recurrence is a leap day in the specified
 calendar system.

 2. The start date of the recurrence is in a leap month in the
 specified calendar system.

 3. The start date of the recurrence has a day-of-month value greater
 than the smallest day-of-month value for any month in any year in
 the specified calendar system.

 4. A "BYMONTHDAY" element in an "RRULE" has a day-of-month value
 greater than the smallest day-of-month value for any month in any
 year in the specified calendar system.

 5. A "BYMONTH" element in an "RRULE" has a value corresponding to a
 leap month in the specified calendar system.

 6. A combination of a "BYMONTHDAY" element and a "BYMONTH" element
 in an "RRULE" has a value corresponding to a leap day in the
 specified calendar system.

 7. A "BYYEARDAY" element in an "RRULE" has an absolute value greater
 than the smallest number of days in any year in the specified
 calendar system.

 8. A "BYWEEKNO" element in an "RRULE" has an absolute value greater
 than the smallest number of weeks in any year in the specified
 calendar system.

 Examples of using "SKIP" for some common use cases appear in
 Section 4.3.

4.2. Handling Leap Months

 Leap months can occur in different calendar systems. For such
 calendar systems, the following rules are applied for "identifying"
 months:

 1. Numeric values 1 through N are used to identify regular, non-
 leap, months (where N is the number of months in a regular, non-
 leap, year).

 2. The suffix "L" is added to the regular month number to indicate a
 leap month that follows the regular month, e.g., "5L" is a leap
 month that follows the 5th regular month in the year.

 Care has to be taken when mapping the month identifiers used here
 with those of any underlying calendar system library being used. In
 particular, the Hebrew calendar system used by Unicode (ICU)
 [UNICODE.ICU] uses a month number scheme of 1 through 13, with month
 6 being the leap month, and in non-leap years, month 6 is skipped.
 Thus, ICU months 1 through 5 map to iCalendar months 1 through 5, ICU
 month 6 maps to iCalendar month "5L", and ICU months 7 through 13 map
 to iCalendar months 6 through 12.

4.3. Examples

4.3.1. Chinese New Year

 Consider the following set of iCalendar properties (from the example
 above):

DTSTART;VALUE=DATE:20130210
RRULE:RSCALE=CHINESE;FREQ=YEARLY
SUMMARY:Chinese New Year

 These define a recurring event for the Chinese New Year, with the
 first instance being the one in Gregorian year 2013.

 The Chinese date corresponding to the first instance is
 "{C}46500101". The table below shows the initial instance and the
 next four, each of which is determined by adding the appropriate
 amount to the year component of the Chinese date. Also shown is the
 conversion back to the Gregorian date:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Chinese Date | Gregorian Date |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
{C}46500101	20130210 ‑ DTSTART value
{C}46510101	20140131
{C}46520101	20150219
{C}46530101	20160208
{C}46540101	20170128
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

4.3.2. Ethiopic 13th Month

 Consider the following set of iCalendar properties:

DTSTART;VALUE=DATE:20130906
RRULE:RSCALE=ETHIOPIC;FREQ=MONTHLY;BYMONTH=13
SUMMARY:First day of 13th month

 These define a recurring event for the first day of the 13th month,
 with the first instance being the one in Gregorian year 2013. While
 there are a number of alternative ways of writing the "RRULE" above
 to achieve the same pattern of recurring dates, the one above was
 chosen to illustrate a "BYMONTH" value exceeding the limit of 12,
 previously described in iCalendar (Section 3.3.10 of [RFC5545]).
 The Ethiopic date corresponding to the first instance is
 "{E}20051301". The table below shows the initial instance and the
 next four, each of which is determined by adding the appropriate
 amount to the year component of the Ethiopic date. Also shown is the
 conversion back to the Gregorian date:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Ethiopic Date | Gregorian Date |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
{E}20051301	20130906 ‑ DTSTART value
{E}20061301	20140906
{E}20071301	20150906
{E}20081301	20160906
{E}20091301	20170906
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Note that in this example, the value of the "BYMONTH" component in
 the "RRULE" matches the Ethiopic month value and not the Gregorian
 month.

4.3.3. Hebrew Anniversary Starting in a Leap Month

 Consider the following set of iCalendar properties:

 DTSTART;VALUE=DATE:20140208
 RRULE:RSCALE=HEBREW;FREQ=YEARLY;BYMONTH=5L;BYMONTHDAY=8;SKIP=FORWARD
 SUMMARY:Anniversary

 These define a recurring event for the 8th day of the Hebrew month of
 Adar I (the leap month identified by "5L"), with the first instance
 being the one in Gregorian year 2014.

 The Hebrew date corresponding to the first instance is
 "{H}577405L08", which is a leap month in year 5774. The table below
 shows the initial instance and the next four, each of which is
 determined by adding the appropriate amount to the year component of
 the Hebrew date, taking into account that only year 5776 is a leap
 year. Thus, in other years the Hebrew month component is adjusted
 forward to month 6. Also shown is the conversion back to the
 Gregorian date:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Hebrew Date | Gregorian Date |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
{H}577405L08	20140208 ‑ DTSTART value
{H}57750608	20150227
{H}577605L08	20160217
{H}57770608	20170306
{H}57780608	20180223
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

4.3.4. Gregorian Leap Day with SKIP

 Consider the following set of iCalendar properties:

DTSTART;VALUE=DATE:20120229
RRULE:FREQ=YEARLY
SUMMARY:Anniversary

 These define a recurring event for the 29th of February, 2012, in the
 standard iCalendar calendar scale -- Gregorian. The standard
 iCalendar behavior is that non-existent dates in a recurrence set are
 ignored. Thus, the properties above would only generate instances in
 leap years (2016, 2020, etc.), which is likely not what users expect.
 The new "RSCALE" option defined by this specification provides the
 "SKIP" element, which can be used to "fill in" the missing instances
 in an appropriate fashion. The set of iCalendar properties below
 does that:

DTSTART;VALUE=DATE:20120229
RRULE:RSCALE=GREGORIAN;FREQ=YEARLY;SKIP=FORWARD
SUMMARY:Anniversary

 With these properties, the "missing" instances in non-leap years now
 appear on the 1st of March in those years:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Instances (with SKIP=FORWARD) | Instances (without RSCALE) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
20120229	20120229 ‑ DTSTART value
20130301	
20140301	
20150301	
20160229	20160229
20170301	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

5. Registering Calendar Systems

 This specification uses the Unicode Consortium's registry of calendar
 systems [UNICODE.CLDR] to define valid values for the "RSCALE"
 element of an "RRULE". Note that the underscore character "_" is
 never used in CLDR-based calendar system names. New values can be
 added to this registry following Unicode Consortium rules. It is
 expected that many implementations of non-Gregorian calendars will
 use software libraries provided by Unicode (ICU) [UNICODE.ICU], and
 hence it makes sense to reuse their registry rather than creating a
 new one. "RSCALE" values are case insensitive, but uppercase is
 preferred.

 CLDR supports the use of "alias" values as alternative names for
 specific calendar systems. These alias values can be used as
 "RSCALE" values and are treated the same as the equivalent CLDR
 calendar system they are an alias for.

 When using the CLDR data, calendar agents SHOULD take into account
 the "deprecated" value and use the alternative "preferred" calendar
 system. In particular, the "islamicc" calendar system is considered
 deprecated in favor of the "islamic-civil" calendar system.

6. Compatibility

 For calendar user agents that do not support the "RSCALE" element, or
 do not support the calendar system specified by the "RSCALE" element
 value, the following behaviors are possible when processing iCalendar
 data:

 1. The calendar user agent can reject the entire iCalendar object
 within which at least one iCalendar component uses the
 unrecognized "RSCALE" element or element value.

 2. The calendar user agent can reject just the iCalendar components
 containing an unrecognized "RSCALE" element or element value.
 Note that any overridden components associated with those
 rejected components MUST also be rejected (i.e., any other
 components with the same "UID" property value as the one with the
 unrecognized "RSCALE" element or element value).

 3. The calendar user agent can fall back to a non-recurring behavior
 for the iCalendar component containing the unrecognized "RSCALE"
 element or element value (effectively ignoring the "RRULE"
 property). However, any overridden components SHOULD be rejected
 as they would represent "orphaned" instances that would seem to
 be out of place.

 In general, the best choice for a calendar user agent would be option
 (2) above, as it would be the least disruptive choice. Note that
 when processing iTIP [RFC5546] messages, the manner of the rejection
 is covered as discussed in the next section.

7. Use with iTIP

 iTIP [RFC5546] defines how iCalendar data can be sent between
 calendar user agents to schedule calendar components between calendar
 users. It is often not possible to know the capabilities of a
 calendar user agent to which an iTIP message is being sent, but iTIP
 defines fallback behavior in such cases.

 For calendar user agents that do not support the "RSCALE" element,
 the following can occur when iTIP messages containing an "RSCALE"
 element are received:

 The receiving calendar user agent can reject the entire iTIP
 message and return an iTIP reply with a "REQUEST-STATUS" property
 set to the "3.1" status code (as per Section 3.6.14 of [RFC5546]).

 The receiving calendar user agent can fall back to a non-recurring
 behavior for the calendar component (effectively ignoring the
 "RRULE" property) and return an iTIP reply with a "REQUEST-STATUS"
 property set to the "2.3", "2.5", "2.8", or "2.10" status codes
 (as per Sections 3.6.4, 3.6.6, 3.6.9, or 3.6.11, respectively, of
 [RFC5546]).

 For calendar user agents that support the "RSCALE" element but do not
 support the calendar system specified by the "RSCALE" element value,
 the following can occur:

 The iTIP message SHOULD be rejected, returning a "REQUEST-STATUS"
 property set to the "3.1" status code (as per Section 3.6.14 of
 [RFC5546]).

 If the iTIP message is accepted and the calendar component treated
 as non-recurring, an iTIP reply with a "REQUEST-STATUS" property
 set to the "2.8" or "2.10" status codes (as per Sections 3.6.9 or
 3.6.11, respectively, of [RFC5546]) SHOULD be returned.

 As noted in Section 6, the best choice is to reject the entire iTIP
 message.

8. Use with xCal

 xCal [RFC6321] defines how iCalendar data is represented in XML.
 This specification extends the <recur> XML element in Section 3.6.10
 of [RFC6321] in the following manner:

 1. A new <rscale> XML element is defined as a child element of
 <recur>. The content of this element MUST be a string whose
 value is the "RSCALE" element value of the "RRULE", with case
 preserved.

 2. A new <skip> XML element is defined as a child element of
 <recur>. The content of this element MUST be a string whose
 value is the "SKIP" element value of the "RRULE", with case
 preserved.

 3. The <bymonth> XML element is redefined to support either numeric
 or string values as its content (as per Section 4.2).

 Extensions to the RELAX NG schema in Appendix A of [RFC6321] are
 defined in Appendix A of this document.

 Example: the iCalendar "RRULE" property:

 RRULE:RSCALE=GREGORIAN;FREQ=YEARLY;SKIP=FORWARD

 would be represented in XML as:

<rrule>
 <recur>
 <rscale>GREGORIAN</rscale>
 <freq>YEARLY</freq>
 <skip>FORWARD</skip>
 </recur>
</rrule>

9. Use with jCal

 jCal [RFC7265] defines how iCalendar data is represented in JSON.
 This specification extends the "recur" JSON object defined in
 Section 3.6.10 of [RFC7265] in the following manner:

 1. A new "rscale" child member is defined. This MUST be a string
 whose value is the "RSCALE" element value of the "RRULE", with
 case preserved.

 2. A new "skip" child member is defined. This MUST be a string
 whose value is the "SKIP" element value of the "RRULE", with case
 preserved.

 3. The "bymonth" child member is redefined to support either numeric
 or string values. If the "BYMONTH" element value is an integer,
 then a numeric JSON value MUST be used. If the "BYMONTH" element
 value is an integer with the "L" suffix (as per Section 4.2),
 then a JSON string value MUST be used.

 Example: the iCalendar "RRULE" property:

 RRULE:RSCALE=GREGORIAN;FREQ=YEARLY;SKIP=FORWARD

 would be represented in JSON as:

[
 "rrule",
 {},
 "recur",
 {
 "rscale": "GREGORIAN",
 "freq": "YEARLY",
 "skip": "FORWARD"
 }
]

10. Use with CalDAV

 The CalDAV [RFC4791] calendar access protocol allows clients and
 servers to exchange iCalendar data. In addition, CalDAV clients are
 able to query calendar data stored on the server, including time-
 based queries. Since an "RSCALE" element value determines the time
 ranges for recurring instances in a calendar component, CalDAV
 servers need to support it to interoperate with clients also using
 the "RSCALE" element.

 A CalDAV server advertises a CALDAV:supported-rscale-set Web
 Distributed Authoring and Versioning (WebDAV) property on calendar
 home or calendar collections if it supports use of the "RSCALE"
 element as described in this specification. The server can advertise
 a specific set of supported calendar systems by including one or more
 CALDAV:supported-rscale XML elements within the
 CALDAV:supported-rscale-set XML element. If no
 CALDAV:supported-rscale XML elements are included in the WebDAV
 property, then clients can try any calendar system value but need to
 be prepared for a failure when attempting to store the calendar data.
 Clients MUST NOT attempt to store iCalendar data containing "RSCALE"
 elements if the CALDAV:supported-rscale-set WebDAV property is not
 advertised by the server.

 The server SHOULD return an HTTP 403 response with a DAV:error
 element containing a CALDAV:supported-rscale XML element, if a client
 attempts to store iCalendar data with an "RSCALE" element value not
 supported by the server.

 It is possible for an "RSCALE" value to be present in calendar data
 on the server being accessed by a client that does not support an
 "RSCALE" element or its specified value. It is expected that
 existing clients, unaware of "RSCALE", will fail gracefully by
 ignoring the calendar component, while still processing other
 calendar data on the server (as per option (2) in Section 6).

10.1. CALDAV:supported-rscale-set Property

Name: supported‑rscale‑set

Namespace: urn:ietf:params:xml:ns:caldav

Purpose: Enumerates the set of supported iCalendar "RSCALE" element
 values supported by the server.

Protected: This property MUST be protected and SHOULD NOT be
 returned by a PROPFIND allprop request (as defined in Section 14.2
 of [RFC4918]).

Description: See above.

 Definition:

<!ELEMENT supported‑rscale‑set (supported‑rscale*)>
<!ELEMENT supported‑rscale (#PCDATA)>
<!‑‑ PCDATA value: string ‑ case insensitive but
 uppercase preferred ‑‑>

 Example:

 <C:supported-rscale-set

 xmlns:C="urn:ietf:params:xml:ns:caldav">
 <C:supported-rscale>GREGORIAN</C:supported-rscale>
 <C:supported-rscale>CHINESE</C:supported-rscale>
 <C:supported-rscale>ISLAMIC-CIVIL</C:supported-rscale>
 <C:supported-rscale>HEBREW</C:supported-rscale>
 <C:supported-rscale>ETHIOPIC</C:supported-rscale>
 </C:supported-rscale-set>

11. Security Considerations

 This specification does not introduce any additional security
 concerns beyond those described in [RFC5545], [RFC5546], and
 [RFC4791].

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4791]
 Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 March 2007, <http://www.rfc-editor.org/info/rfc4791>.

 [RFC4918]
 Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918, June 2007,
 <http://www.rfc-editor.org/info/rfc4918>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)", RFC
 5545, September 2009,
 <http://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546, December
 2009, <http://www.rfc-editor.org/info/rfc5546>.

 [RFC6321]
 Daboo, C., Douglass, M., and S. Lees, "xCal: The XML
 Format for iCalendar", RFC 6321, August 2011,
 <http://www.rfc-editor.org/info/rfc6321>.

 [RFC7265]
 Kewisch, P., Daboo, C., and M. Douglass, "jCal: The JSON
 Format for iCalendar", RFC 7265, May 2014,
 <http://www.rfc-editor.org/info/rfc7265>.

 [UNICODE.CLDR]

 The Unicode Consortium, "CLDR calendar.xml Data", Unicode
 Consortium CLDR,
 <http://www.unicode.org/repos/cldr/tags/latest/common/
 bcp47/calendar.xml>.

12.2. Informative References

 [ISO.8601.2004]

 International Organization for Standardization, "Data
 elements and interchange formats - Information interchange
 - Representation of dates and times", ISO Standard 8601,
 December 2004.

 [UNICODE.ICU]

 "International Components for Unicode", April 2014,
 <http://site.icu-project.org>.

Appendix A. xCal RELAX NG Schema Update

 The following changes are made to the RELAX NG schema defined in
 Appendix A of [RFC6321].

3.3.10 RECUR
This extension adds type‑rscale and type‑skip,
and modifies type‑bymonth

value‑recur = element recur {
 type‑rscale?,
 type‑freq,
 (type‑until | type‑count)?,
 element interval {
 xsd:positiveInteger
 }?,
 type‑bysecond*,
 type‑byminute*,
 type‑byhour*,
 type‑byday*,
 type‑bymonthday*,
 type‑byyearday*,
 type‑byweekno*,
 type‑bymonth*,
 type‑bysetpos*,
 element wkst { type‑weekday }?,
 type‑skip?
}

type‑rscale = element rscale {
 xsd:string
}

type‑bymonth = element bymonth {
 xsd:positiveInteger |
 xsd:string
}

type‑skip = element skip {
 "OMIT" |
 "BACKWARD" |
 "FORWARD"
}

Acknowledgments

 Thanks to the following for feedback: Mark Davis, Mike Douglass,
 Donald Eastlake, Peter Edberg, Marten Gajda, Philipp Kewisch, Barry
 Leiba, Jonathan Lennox, Ken Murchison, Arnaud Quillaud, Dave Thewlis,
 and Umaoka Yoshito.

 This specification originated from work at the Calendaring and
 Scheduling Consortium, which has helped with the development and
 testing of implementations.

Authors' Addresses

Cyrus Daboo
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
United States

EMail: cyrus@daboo.name
URI: http://www.apple.com/

Gregory Yakushev
Google Inc.
Brandschenkestrasse 100
8002 Zurich
Switzerland

EMail: gyakushev@yahoo.com
URI: http://www.google.com/

7953 - Calendar Availability

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7953

Updates: 4791, 5545, 6638

Category: Standards Track

ISSN: 2070-1721

C. Daboo

Apple

M. Douglass

Spherical Cow Group

August 2016

Calendar Availability

Abstract

 This document specifies a new iCalendar (RFC 5545) component that
 allows the publication of available and unavailable time periods
 associated with a calendar user. This component can be used in
 standard iCalendar free-busy lookups, including the iCalendar
 Transport-independent Interoperability Protocol (iTIP; RFC 5546)
 free-busy requests, to generate repeating blocks of available or busy
 time with exceptions as needed.

 This document also defines extensions to the Calendaring Extensions
 to WebDAV (CalDAV) calendar access protocol (RFC 4791) and the
 associated scheduling protocol (RFC 6638) to specify how this new
 calendar component can be used when evaluating free-busy time.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7953.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. iCalendar Extensions
	 3.1. VAVAILABILITY Component

	 3.2. Busy Time Type

	4. Combining VAVAILABILITY Components

	5. Calculating Free-Busy Time
	 5.1. Examples

	6. Use with iTIP

	7. CalDAV Extensions
	 7.1. CalDAV Requirements Overview

	 7.2. New Features in CalDAV

	8. Security Considerations

	9. Privacy Considerations

	10. IANA Considerations
	 10.1. Component Registrations

	 10.2. Property Registrations

	11. Normative References

	Appendix A. Example Calendar #1

	Appendix B. Example Calendar #2

	Acknowledgements

	Authors' Addresses

1. Introduction

 Calendar users often have regular periods of time when they are
 either available to be scheduled or always unavailable. For example,
 an office worker will often wish only to appear free to their work
 colleagues during normal 'office hours' (e.g., Monday through Friday,
 9 am through 5 pm). Or, a university professor might only be
 available to students during a set period of time (e.g., Thursday
 afternoons, 2 pm through 5 pm during term time only). Ideally, users
 ought be able to specify such periods directly via their calendar
 user agent and have them automatically considered as part of the
 normal free-busy lookup for that user. In addition, it ought be
 possible to present different periods of available time depending on
 which user is making the request.

 iCalendar [RFC5545] defines a "VFREEBUSY" component that can be used
 to represent fixed busy time periods, but it does not provide a way
 to specify a repeating period of available or unavailable time.
 Since repeating patterns are often the case, "VFREEBUSY" components
 are not sufficient to solve this problem.

 This specification defines a new type of iCalendar component that can
 be used to publish user availability.

 CalDAV [RFC4791] provides a way for calendar users to access and
 manage calendar data and exchange this data via scheduling
 operations. As part of this, the CalDAV calendar-access [RFC4791]
 feature provides a CALDAV:free-busy-query REPORT that returns free-
 busy information for a calendar collection or hierarchy of calendar
 collections. Also, the CalDAV calendar-auto-schedule [RFC6638]
 feature allows free-busy information for a calendar user to be
 determined. Both of these operations involve examining user
 calendars for events that 'block time', with the blocked out periods
 being returned in a "VFREEBUSY" component.

 This specification extends the CalDAV calendar-access and CalDAV
 calendar-auto-schedule features to allow the new iCalendar
 availability components to be stored and manipulated and to allow
 free-busy lookups to use the information from any such components, if
 present.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 When XML element types in the namespaces "DAV:" and
 "urn:ietf:params:xml:ns:caldav" are referenced in this document
 outside of the context of an XML fragment, the string "DAV:" and
 "CALDAV:" will be prefixed to the element type names respectively.

3. iCalendar Extensions

 This specification adds a new "VAVAILABILITY" calendar component to
 iCalendar. The "VAVAILABILITY" component is itself a container for
 new "AVAILABLE" subcomponents.

 The purpose of the "VAVAILABILITY" calendar component is to provide a
 grouping of available time information over a specific range of time.
 Within that, there are specific time ranges that are marked as
 available via a set of "AVAILABLE" calendar subcomponents. Together
 these can be used to specify available time that can repeat over set
 periods of time, and which can vary over time.

 An illustration of how "VAVAILABILITY" and "AVAILABLE" components
 work is shown below.

 Time Range
<===>

 +‑‑‑+
 | VAVAILABILITY |
 +‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | AVAILABLE | | AVAILABLE |
 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 <‑> <‑‑‑‑‑> <‑‑‑‑‑‑‑‑‑‑‑> Busy Time

 The overall time range is shown at the top. A "VAVAILABILITY"
 component spans part of the range. The time range covered by the
 "VAVAILABILITY" component is considered to be busy, except for the
 ranges covered by the "AVAILABLE" components within the
 "VAVAILABILITY" component.

3.1. VAVAILABILITY Component

Component Name: VAVAILABILITY

Purpose: Provide a grouping of component properties and
 subcomponents that describe the availability associated with a
 calendar user.

Format Definition: A "VAVAILABILITY" calendar component is defined
 by the following notation:

availabilityc = "BEGIN" ":" "VAVAILABILITY" CRLF
 availabilityprop *availablec
 "END" ":" "VAVAILABILITY" CRLF

availabilityprop = *(
 ;
 ; the following are REQUIRED
 ; but MUST NOT occur more than once
 ;
 dtstamp / uid
 ;
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once
 ;
 busytype / class / created / description /
 dtstart / last‑mod / location / organizer /
 priority /seq / summary / url /
 ;
 ; Either 'dtend' or 'duration' MAY appear
 ; in an 'availableprop', but 'dtend' and
 ; 'duration' MUST NOT occur in the same
 ; 'availabilityprop'.
 ; 'duration' MUST NOT be present if
 ; 'dtstart' is not present
 ;
 dtend / duration /
 ;
 ; the following are OPTIONAL
 ; and MAY occur more than once
 ;
 categories / comment / contact /
 x‑prop / iana‑prop
 ;
)

availablec = "BEGIN" ":" "AVAILABLE" CRLF
 availableprop
 "END" ":" "AVAILABLE" CRLF

availableprop = *(
 ;
 ; the following are REQUIRED
 ; but MUST NOT occur more than once
 ;
 dtstamp / dtstart / uid /
 ;
 ; Either 'dtend' or 'duration' MAY appear in
 ; an 'availableprop', but 'dtend' and
 ; 'duration' MUST NOT occur in the same
 ; 'availableprop'.
 ;
 dtend / duration /
 ;
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once
 ;
 created / description / last‑mod /
 location / recurid / rrule / summary /
 ;
 ; the following are OPTIONAL
 ; and MAY occur more than once
 ;
 categories / comment / contact / exdate /
 rdate / x‑prop / iana‑prop
 ;
)

Description: A "VAVAILABILITY" component indicates a period of time
 within which availability information is provided. A
 "VAVAILABILITY" component can specify a start time and an end time
 or duration. If "DTSTART" is not present, then the start time is
 unbounded. If "DTEND" or "DURATION" are not present, then the end
 time is unbounded. Within the specified time period, availability
 defaults to a free‑busy type of "BUSY‑UNAVAILABLE" (see
 Section 3.2), except for any time periods corresponding to
 "AVAILABLE" subcomponents.

 "AVAILABLE" subcomponents are used to indicate periods of free
 time within the time range of the enclosing "VAVAILABILITY"
 component. "AVAILABLE" subcomponents MAY include recurrence
 properties to specify recurring periods of time, which can be
 overridden using normal iCalendar recurrence behavior (i.e., use
 of the "RECURRENCE-ID" property).

 If specified, the "DTSTART" and "DTEND" properties in
 "VAVAILABILITY" components and "AVAILABLE" subcomponents MUST be
 "DATE-TIME" values specified as either the date with UTC time or
 the date with local time and a time zone reference.

 The iCalendar object containing the "VAVAILABILITY" component MUST
 contain appropriate "VTIMEZONE" components corresponding to each
 unique "TZID" parameter value used in any DATE-TIME properties in
 all components, unless [RFC7809] is in effect.

 When used to publish available time, the "ORGANIZER" property
 specifies the calendar user associated with the published
 available time.

 If the "PRIORITY" property is specified in "VAVAILABILITY"
 components, it is used to determine how that component is combined
 with other "VAVAILABILITY" components. See Section 4.

 Other calendar properties MAY be specified in "VAVAILABILITY" or
 "AVAILABLE" components and are considered attributes of the marked
 block of time. Their usage is application specific. For example,
 the "LOCATION" property might be used to indicate that a person is
 available in one location for part of the week and a different
 location for another part of the week (but see Section 9 for when
 it is appropriate to add additional data like this).

Example: The following is an example of a "VAVAILABILITY" calendar
 component used to represent the availability of a user, always
 available Monday through Friday, 9:00 am to 5:00 pm in the
 America/Montreal time zone:

BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:0428C7D2‑688E‑4D2E‑AC52‑CD112E2469DF
DTSTAMP:20111005T133225Z
BEGIN:AVAILABLE
UID:34EDA59B‑6BB1‑4E94‑A66C‑64999089C0AF
SUMMARY:Monday to Friday from 9:00 to 17:00
DTSTART;TZID=America/Montreal:20111002T090000
DTEND;TZID=America/Montreal:20111002T170000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
END:AVAILABLE
END:VAVAILABILITY

 The following is an example of a "VAVAILABILITY" calendar
 component used to represent the availability of a user available
 Monday through Thursday, 9:00 am to 5:00 pm, at the main office,
 and Friday, 9:00 am to 12:00 pm, in the branch office in the
 America/Montreal time zone between October 2nd and December 2nd
 2011:

BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:84D0F948‑7FC6‑4C1D‑BBF3‑BA9827B424B5
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Montreal:20111002T000000
DTEND;TZID=America/Montreal:20111202T000000
BEGIN:AVAILABLE
UID:7B33093A‑7F98‑4EED‑B381‑A5652530F04D
SUMMARY:Monday to Thursday from 9:00 to 17:00
DTSTART;TZID=America/Montreal:20111002T090000
DTEND;TZID=America/Montreal:20111002T170000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH
LOCATION:Main Office
END:AVAILABLE
BEGIN:AVAILABLE
UID:DF39DC9E‑D8C3‑492F‑9101‑0434E8FC1896
SUMMARY:Friday from 9:00 to 12:00
DTSTART;TZID=America/Montreal:20111006T090000
DTEND;TZID=America/Montreal:20111006T120000
RRULE:FREQ=WEEKLY
LOCATION:Branch Office
END:AVAILABLE
END:VAVAILABILITY

 The following is an example of three "VAVAILABILITY" calendar
 components used to represent the availability of a traveling
 worker: Monday through Friday, 9:00 am to 5:00 pm each day.
 However, for three weeks the calendar user is working in Montreal,
 then one week in Denver, then back to Montreal. Note that each
 overall period is covered by separate "VAVAILABILITY" components.
 The last of these has no DTEND so it continues on "forever". This
 example shows one way "blocks" of available time can be
 represented. See Section 4 for another approach using priorities.

BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:BE082249‑7BDD‑4FE0‑BDBA‑DE6598C32FC9
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Montreal:20111002T000000
DTEND;TZID=America/Montreal:20111023T030000
BEGIN:AVAILABLE
UID:54602321‑CEDB‑4620‑9099‑757583263981
SUMMARY:Monday to Friday from 9:00 to 17:00
DTSTART;TZID=America/Montreal:20111002T090000
DTEND;TZID=America/Montreal:20111002T170000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
LOCATION:Montreal
END:AVAILABLE
END:VAVAILABILITY
BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:A1FF55E3‑555C‑433A‑8548‑BF4864B5621E
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Denver:20111023T000000
DTEND;TZID=America/Denver:20111030T000000
BEGIN:AVAILABLE
UID:57DD4AAF‑3835‑46B5‑8A39‑B3B253157F01
SUMMARY:Monday to Friday from 9:00 to 17:00
DTSTART;TZID=America/Denver:20111023T090000
DTEND;TZID=America/Denver:20111023T170000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
LOCATION:Denver
END:AVAILABLE
END:VAVAILABILITY
BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:1852F9E1‑E0AA‑4572‑B4C4‑ED1680A4DA40
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Montreal:20111030T030000
BEGIN:AVAILABLE
UID:D27C421F‑16C2‑4ECB‑8352‑C45CA352C72A
SUMMARY:Monday to Friday from 9:00 to 17:00
DTSTART;TZID=America/Montreal:20111030T090000
DTEND;TZID=America/Montreal:20111030T170000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
LOCATION:Montreal
END:AVAILABLE
END:VAVAILABILITY

3.2. Busy Time Type

Property Name: BUSYTYPE

Purpose: This property specifies the default busy time type.

Value Type: TEXT

Property Parameters: IANA and nonstandard property parameters can be
 specified on this property.

Conformance: This property can be specified within "VAVAILABILITY"
 calendar components.

Format Definition: This property is defined by the following
 notation:

busytype = "BUSYTYPE" busytypeparam ":" busytypevalue CRLF

 busytypeparam = *(";" other-param)

busytypevalue = "BUSY" / "BUSY‑UNAVAILABLE" /
 "BUSY‑TENTATIVE" / iana‑token / x‑name
 ; Default is "BUSY‑UNAVAILABLE".

Description: This property is used to specify the default busy time
 type. The values correspond to those used by the "FBTYPE"
 parameter used on a "FREEBUSY" property, with the exception that
 the "FREE" value is not used in this property. If not specified
 on a component that allows this property, the default is "BUSY‑
 UNAVAILABLE".

Example: The following is an example of this property:

 BUSYTYPE:BUSY

4. Combining VAVAILABILITY Components

 The "VAVAILABILITY" component allows a calendar user to describe
 their availability over extended periods of time through the use of
 recurrence patterns. This availability might be relatively constant
 from year to year.

 However, there is usually some degree of irregularity, as people take
 vacations or perhaps spend a few weeks at a different office. For
 that period of time there is a need to redefine their availability.
 Rather than modify their existing availability, the "PRIORITY"
 property allows new "VAVAILABILITY" components to override others of
 lower ordinal priority. Note that iCalendar [RFC5545] defines the
 "PRIORITY" property such that a value of 0 is undefined, 1 is the
 highest priority, and 9 is the lowest.

 When combining "VAVAILABILITY" components, an absence of a "PRIORITY"
 property or a value of 0 implies the lowest level of priority. When
 two or more VAVAILABILITY components overlap, and they have the same
 PRIORITY value, the overlapping busy time type is determined by the
 following order: BUSY > BUSY-UNAVAILABLE > BUSY-TENTATIVE. That is,
 if one component has a BUSYTYPE set to BUSY and the other has
 BUSYTYPE set to BUSY-UNAVAILABLE, then the effective busy time type
 over the time range that they overlap would be BUSY. It is up to the
 creator of such components to ensure that combining them produces a
 consistent and expected result.

 To calculate the available time, order the intersecting
 "VAVAILABILITY" components by priority (the lowest to highest
 "PRIORITY" values are 0, 9, 8, 7, 6, 5, 4, 3, 2, 1).

 Step through the resulting list of "VAVAILABILITY" components. For
 each, the time range covered by the "VAVAILABILITY" component is set
 to busy and then portions of it defined by the "AVAILABLE" components
 in the "VAVAILABILITY" component are set to free.

 Note that, if any "VAVAILABILITY" component completely covers the
 date range of interest, then any lower priority "VAVAILABILITY"
 components can be ignored.

 Typically, a calendar user's "default" availability (e.g., business
 hours of Monday through Friday, 9:00 am to 5:00 pm) would use the
 lowest level of priority: zero. Any overrides to the "default" would
 use higher levels as needed. To avoid having to keep readjusting the
 "PRIORITY" property value when an override has to be "inserted"
 between two existing components, priority values SHOULD be "spaced
 out" over the full range of values. The table below illustrates this
 via an example. The first row shows the priority range from low to
 high, the second row shows the corresponding "PRIORITY" property
 value, and the third row shows which "VAVAILABILITY" component has
 that priority. The "default" availability is created with priority
 zero (shown as {a} in the table), then the first override created
 with priority 5 (shown as {b} in the table), a subsequent
 availability can be inserted between the two by using priority 7
 (shown as {c} in the table), and another, taking precedence over all
 existing ones, with priority 3 (shown as {d} in the table). As seen
 in the table, additional "slots" are open for more "VAVAILABILITY"
 components to be added with other priorities if needed.

+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑+
| Low | | | | | | | | | High |
+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑+
| 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑+
| {a} | | | {c} | | {b} | | {d} | | |
+‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑+

5. Calculating Free-Busy Time

 This section describes how free-busy time information for a calendar
 user is calculated in the presence of "VAVAILABILITY" calendar
 components.

 An iCalendar "VFREEBUSY" component is used to convey "rolled-up"
 free-busy time information for a calendar user. This can be
 generated as the result of an iTIP [RFC5546] free-busy request or
 through some other mechanism (e.g., a CalDAV calendar-access
 CALDAV:free-busy-query REPORT).

 When one or more "VAVAILABILITY" components are present and intersect
 the time range for the free-busy request, first the available time is
 calculated, as outlined in Section 4. Once that is done, regular
 "VEVENT" and "VFREEBUSY" components can be "overlaid" in the usual
 way to block out time.

 An example procedure for this is as follows:

 1. Initially mark the entire period of the free-busy request as
 free.

 2. For each "VAVAILABILITY" component ordered by PRIORITY (lowest to
 highest):

 A. Determine if the "VAVAILABILITY" intersects the time range of

 the free-busy request. If not, ignore it.

 B. Determine if the "VAVAILABILITY" is completely overridden by

 a higher priority component. If so, ignore it.

 C. For the time period covered by the "VAVAILABILITY" component,

 mark time in the free-busy request result set as busy, using
 the busy time type derived from the "BUSYTYPE" property in
 the "VAVAILABILITY" component.

 D. Append the "VAVAILABILITY" component to a list of components

 for further processing in step 3, if it has not been ignored.

 3. For each "VAVAILABILITY" component in the list resulting from
 step 2, in order from the first item to the last item:

 A. For each "AVAILABLE" component in the "VAVAILABILITY"

 component:

 i. Expand all recurring instances, taking into account
 overridden instances, ignoring instances or parts of
 instances that fall outside of the free-busy request
 time range or the time period specified by the
 "VAVAILABILITY" component.

 ii. For each instance, mark the corresponding time in the

 free-busy request result set as free.

 4. For each "VEVENT" or "VFREEBUSY" component, apply normal free-
 busy processing within the free-busy request time range.

5.1. Examples

 In the examples below, a table is used to represent time slots for
 the period of a free-busy request. Each time slot is two hours long.
 The column header represents the hours from midnight local time.
 Each row below the column headers represents a step in the free-busy
 result set determination, following the procedure outlined above.

 Each cell in the rows below the column header contains a single
 character that represents the free-busy type for the corresponding
 time period at the end of the process step represented by the row.
 The characters in the row are:

F Represents "FREE" time in that slot.

B Represents "BUSY" time in that slot.

U Represents "BUSY‑UNAVAILABLE" time in that slot.

T Represents "BUSY‑TENTATIVE" time in that slot.

I Represents data to be ignored in that slot (as per step 2.B
 above).

5.1.1. Simple Example

 Appendix A shows the user's calendar. This includes one
 "VAVAILABILITY" component giving available time within the requested
 time range of 8:00 am to 6:00 pm, together with one "VEVENT"
 component representing a two hour meeting starting at 12:00 pm.

 A free-busy request for Monday, 6th November 2011, midnight to
 midnight in the America/Montreal time zone would be calculated as
 follows using the steps described above.

+‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
| Step | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
+‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
1.	F	F	F	F	F	F	F	F	F	F	F	F
2.	U	U	U	U	U	U	U	U	U	U	U	U
3.	U	U	U	U	F	F	F	F	F	U	U	U
4.	U	U	U	U	F	F	B	F	F	U	U	U
+‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+

5.1.2. Further Example

 Appendix B shows another way to represent the availability of the
 traveling worker shown above. Here we represent their base
 availability of Monday through Friday, 8:00 am to 6:00 pm each day
 with a "VAVAILABILITY" with default "PRIORITY" (there is no "DTEND"
 property so that this availability is unbounded). For the week the
 calendar user is working in Denver (October 23rd through October
 30th), we represent their availability with a "VAVAILABILITY"
 component with priority 1, which overrides the base availability.
 There is also a two hour meeting starting at 12:00 pm (in the
 America/Denver time zone).

 A free-busy request for Monday, 24th October 2011, midnight to
 midnight in the America/Montreal time zone, would be calculated as
 follows using the steps described above. Note that there is a two
 hour offset in the in the available time, compared to the previous
 example, due to the two hour difference between the time zone of the
 free-busy request and the time zone of the user's availability and
 meeting. "2.P0" shows the base availability, and "2.P1" shows the
 higher priority availability. "3.P1" only shows the higher priority
 availability contributing to the overall free-busy since the default
 availability is ignored (as per step 2.B described above).

+‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
| Step | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 |
+‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+
1.	F	F	F	F	F	F	F	F	F	F	F	F
2.P0	I	I	I	I	I	I	I	I	I	I	I	I
2.P1	U	U	U	U	U	U	U	U	U	U	U	U
3.P1	U	U	U	U	U	F	F	F	F	F	U	U
4.	U	U	U	U	U	F	F	B	F	F	U	U
+‑‑‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+‑‑‑‑+

6. Use with iTIP

 This specification does not define how "VAVAILABILITY" components are
 used in scheduling messages sent using the iTIP [RFC5546] protocol.
 It is expected that future specifications will define how iTIP
 scheduling can make use of "VAVAILABILITY" components.

7. CalDAV Extensions

7.1. CalDAV Requirements Overview

 This section lists what functionality is required of a CalDAV server,
 which supports "VAVAILABILITY" components in stored calendar data. A
 server:

 o MUST advertise support for "VAVAILABILITY" components in
 CALDAV:supported-calendar-component-set properties on calendars
 that allow storing of such components;

 o MUST support CALDAV:free-busy-query REPORTs that aggregate the
 information in any "VAVAILABILITY" components in the calendar
 collections targeted by the request;

 o MUST support "VAVAILABILITY" components stored in a
 CALDAV:calendar-availability Web Distributed Authoring and
 Versioning (WebDAV) property on a CalDAV scheduling Inbox
 collection, if the CalDAV calendar-auto-schedule feature is
 supported;

 o MUST support iTIP [RFC5546] free-busy requests that aggregate the
 information in any "VAVAILABILITY" components in calendar
 collections that contribute to free-busy, or in any
 "VAVAILABILITY" components stored in the CALDAV:calendar-
 availability property on the CalDAV scheduling Inbox collection of
 the calendar user targeted by the iTIP free-busy request, if the
 CalDAV calendar-auto-schedule feature is available.

 Processing of "VAVAILABILITY" components MUST conform to all the
 requirements CalDAV imposes on calendar object resources (see
 Section 4.1 of [RFC4791]).

7.2. New Features in CalDAV

7.2.1. Calendar Availability Support

 A server supporting the features described in this document MUST
 include "calendar-availability" as a field in the DAV response header
 from an OPTIONS request. A value of "calendar-availability" in the
 DAV response header indicates to clients that the server supports all
 the requirements specified in this document.

7.2.1.1. Example: Using OPTIONS for the Discovery of Calendar
 Availability Support

 >> Request <<

OPTIONS /home/bernard/calendars/ HTTP/1.1
Host: cal.example.com

 >> Response <<

HTTP/1.1 200 OK
Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE
Allow: PROPFIND, PROPPATCH, LOCK, UNLOCK, REPORT, ACL
DAV: 1, 2, 3, access‑control, calendar‑access,
 calendar‑availability
Date: Fri, 11 Nov 2005 09:32:12 GMT
Content‑Length: 0

 In this example, the OPTIONS method returns the value "calendar-
 availability" in the DAV response header to indicate that the
 collection "/home/bernard/calendars/" supports the new features
 defined in this specification.

7.2.2. CalDAV Time Range Queries

 Section 9.9 of [RFC4791] describes how to specify time ranges to
 limit the set of calendar components returned by the server. This
 specification extends [RFC4791] to describe how to apply time range
 filtering to "VAVAILABILITY" components.

 A "VAVAILABILITY" component is said to overlap a given time range if
 the condition for the corresponding component state specified in the
 table below is satisfied. The conditions depend on the presence of
 the "DTSTART", "DTEND", and "DURATION" properties in the
 "VAVAILABILITY" component. Note that, as specified above, the
 "DTEND" value MUST be a "DATE-TIME" value equal to or after the
 "DTSTART" value, if specified.

+‑‑+
| VAVAILABILITY has the DTSTART property? |
| +‑‑+
| | VAVAILABILITY has the DTEND property? |
| | +‑‑+
| | | VAVAILABILITY has the DURATION property? |
| | | +‑‑+
| | | | Condition to evaluate |
+‑‑‑+‑‑‑+‑‑‑+‑‑+
| Y | Y | N | (start < DTEND AND end > DTSTART) |
+‑‑‑+‑‑‑+‑‑‑+‑‑+
| Y | N | Y | (start < DTSTART+DURATION AND end > DTSTART) |
+‑‑‑+‑‑‑+‑‑‑+‑‑+
| Y | N | N | (end > DTSTART) |
+‑‑‑+‑‑‑+‑‑‑+‑‑+
| N | Y | N | (start < DTEND) |
+‑‑‑+‑‑‑+‑‑‑+‑‑+
| N | N | * | TRUE |
+‑‑‑+‑‑‑+‑‑‑+‑‑+

7.2.3. CALDAV:free-busy-query REPORT

 A CALDAV:free-busy-query REPORT can be executed on a calendar
 collection that contains iCalendar "VAVAILABILITY" components. When
 that occurs, the server MUST aggregate the information in any
 "VAVAILABILITY" components when generating the free-busy response, as
 described in Section 5.

7.2.4. CALDAV:calendar-availability Property

Name: calendar‑availability

Namespace: urn:ietf:params:xml:ns:caldav

Purpose: Defines a "VAVAILABILITY" component that will be used in
 calculating free‑busy time when an iTIP free‑busy request is
 targeted at the calendar user who owns the Inbox.

Conformance: This property MAY be protected and SHOULD NOT be
 returned by a PROPFIND DAV:allprop request. Support for this
 property is REQUIRED. The value of this property MUST be a valid
 iCalendar object containing only one "VAVAILABILITY" component,
 and optionally, "VTIMEZONE" components ‑ other iCalendar
 components MUST NOT be present. "VTIMEZONE" components SHOULD NOT
 be present if [RFC7809] is in effect. For more complex
 availability scenarios, clients can store multiple "VAVAILABILITY"
 components in the calendar user's calendar collections.

Description: This property allows a user to specify their
 availability by including an "VAVAILABILITY" component in the
 value of this property. If present, the server MUST use this
 "VAVAILABILITY" component when determining free‑busy information
 as part of an iTIP free‑busy request being handled by the server.

 Definition:

<!ELEMENT calendar‑availability (#PCDATA) >
; Data value MUST be an iCalendar object containing
; "VAVAILABILITY" or "VTIMEZONE" components.

 Example:

<C:calendar‑availability xmlns:D="DAV:"
xmlns:C="urn:ietf:params:xml:ns:caldav"
>BEGIN:VCALENDAR
CALSCALE:GREGORIAN
PRODID:‑//example.com//iCalendar 2.0//EN
VERSION:2.0
BEGIN:VAVAILABILITY
UID:9BADC1F6‑0FC4‑44BF‑AC3D‑993BEC8C962A
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Montreal:20111002T000000
BEGIN:AVAILABLE
UID:6C9F69C3‑BDA8‑424E‑B2CB‑7012E796DDF7
SUMMARY:Monday to Friday from 9:00 to 18:00
DTSTART;TZID=America/Montreal:20111002T090000
DTEND;TZID=America/Montreal:20111002T180000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
END:AVAILABLE
END:VAVAILABILITY
END:VCALENDAR
</C:calendar‑availability>

7.2.5. iTIP Free-Busy Requests

 The CalDAV calendar-auto-schedule feature (see Section 5 of
 [RFC6638]) includes a mechanism for free-busy information to be
 requested via the CalDAV protocol. Any "VAVAILABILITY" components in
 any calendar collections targeted during such a request MUST be
 included as part of the calculation of the overall free-busy
 information. In addition, the "VAVAILABILITY" component specified in
 the CALDAV:calendar-availability property on the owner's Inbox MUST
 also be included in the free-busy calculation. Processing of all
 such "VAVAILABILITY" components is done as per Section 5.

8. Security Considerations

 Calculation of availability information, particularly with multiple
 overlapping time ranges, can be complex, and CalDAV servers MUST
 limit the complexity of such data stored by a client.

 An attacker able to "inject" availability information into a calendar
 user's calendar data could ensure that the user never appears free
 for meetings or appears free at inappropriate times. Calendar
 systems MUST ensure that availability information for a calendar user
 can only be modified by authorized users.

 Security considerations in [RFC5545], [RFC5546], [RFC4791],
 [RFC6638], and [RFC7809] MUST also be adhered to.

9. Privacy Considerations

 Free-busy and availability information can be used by attackers to
 infer the whereabouts or overall level of "activity" of the
 corresponding calendar user. Any calendar system that allows a user
 to expose their free-busy and availability information MUST limit
 access to that information to only authorized users.

 When "VAVAILABILITY" components are sent to or shared with other
 calendar users, care has to be taken not to expose more information
 than is needed by each recipient. For example, a business owner will
 likely not want their customers to know where they might be or what
 they might be doing, but family members might be willing to expose
 such information to each other. Thus, calendaring systems allowing
 "VAVAILABILITY" components to be sent or shared to other calendar
 users MUST provide a way for nonessential properties to be removed
 (e.g., "SUMMARY", "LOCATION", and "DESCRIPTION").

 iCalendar "VFREEBUSY" information generated from "VAVAILABILITY"
 components MUST NOT include information other than busy or free time
 periods. In particular, user specified property values such as
 "SUMMARY", "LOCATION", and "DESCRIPTION" MUST NOT be copied into the
 free-busy result data.

 Privacy considerations in [RFC5545], [RFC5546], [RFC4791], [RFC6638],
 and [RFC7809] MUST also be adhered to.

10. IANA Considerations

10.1. Component Registrations

 This document defines the following new iCalendar components, which
 have been added to the registry defined in Section 8.3.1 of
 [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| VAVAILABILITY | Current | RFC 7953, Section 3.1 |
| AVAILABLE | Current | RFC 7953, Section 3.1 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

10.2. Property Registrations

 This documents defines the following new iCalendar properties, which
 have been added to the registry defined in Section 8.3.2 of
 [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| BUSYTYPE | Current | RFC 7953, Section 3.2 |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

11. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4791]
 Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <http://www.rfc-editor.org/info/rfc4791>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <http://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <http://www.rfc-editor.org/info/rfc5546>.

 [RFC6638]
 Daboo, C. and B. Desruisseaux, "Scheduling Extensions to
 CalDAV", RFC 6638, DOI 10.17487/RFC6638, June 2012,
 <http://www.rfc-editor.org/info/rfc6638>.

 [RFC7809]
 Daboo, C., "Calendaring Extensions to WebDAV (CalDAV):
 Time Zones by Reference", RFC 7809, DOI 10.17487/RFC7809,
 March 2016, <http://www.rfc-editor.org/info/rfc7809>.

Appendix A. Example Calendar #1

BEGIN:VCALENDAR
CALSCALE:GREGORIAN
PRODID:‑//example.com//iCalendar 2.0//EN
VERSION:2.0
BEGIN:VEVENT
DTSTAMP:20111113T044111Z
DTSTART;TZID=America/Montreal:20111106T120000
DURATION:PT2H
SUMMARY:Meeting
UID:768CB0C2‑8642‑43F7‑A6C4‑F8BB04B829B4
END:VEVENT
BEGIN:VAVAILABILITY
UID:452DFCA7‑3203‑4A3D‑9A9A‑99753A383B41
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Montreal:20111002T000000
BEGIN:AVAILABLE
UID:466D5C68‑5C4A‑4078‑AF5D‑9C55EA9145D7
SUMMARY:Monday to Friday from 8:00 to 18:00
DTSTART;TZID=America/Montreal:20111002T080000
DTEND;TZID=America/Montreal:20111002T180000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
END:AVAILABLE
END:VAVAILABILITY
END:VCALENDAR

Appendix B. Example Calendar #2

BEGIN:VCALENDAR
CALSCALE:GREGORIAN
PRODID:‑//example.com//iCalendar 2.0//EN
VERSION:2.0
BEGIN:VEVENT
DTSTAMP:20111113T044111Z
DTSTART;TZID=America/Denver:20111106T120000
DURATION:PT2H
SUMMARY:Lunch meeting in Denver
UID:2346C09A‑42BF‑439E‑916C‑FC83AF869171
END:VEVENT
BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:627A87FA‑E5F1‑43C0‑B3B1‑567DA10F2A83
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Montreal:20111002T000000
BEGIN:AVAILABLE
UID:A833E850‑892B‑43F6‑98B6‑C15A6BFC5D27
SUMMARY:Monday to Friday from 9:00 to 17:00
DTSTART;TZID=America/Montreal:20111002T080000
DTEND;TZID=America/Montreal:20111002T180000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
LOCATION:Montreal
END:AVAILABLE
END:VAVAILABILITY
BEGIN:VAVAILABILITY
ORGANIZER:mailto:bernard@example.com
UID:F01411E3‑38B8‑4490‑8A1F‑0CCEC57A0943
DTSTAMP:20111005T133225Z
DTSTART;TZID=America/Denver:20111023T000000
DTEND;TZID=America/Denver:20111030T000000
PRIORITY:1
BEGIN:AVAILABLE
UID:A35AA091‑3846‑48ED‑96F6‑881E8A0D0A93
SUMMARY:Monday to Friday from 9:00 to 17:00
DTSTART;TZID=America/Denver:20111023T080000
DTEND;TZID=America/Denver:20111023T180000
RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR
LOCATION:Denver
END:AVAILABLE
END:VAVAILABILITY
END:VCALENDAR

Acknowledgements

 Thanks to the following for providing feedback: Toby Considine,
 Bernard Desruisseaux, Alexey Melnikov, Daniel Migault, Ken Murchison,
 Evert Pot, and Dave Thewlis. This specification came about via
 discussions at the Calendaring and Scheduling Consortium.

Authors' Addresses

Cyrus Daboo
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
United States of America

Email: cyrus@daboo.name
URI: http://www.apple.com/

Michael Douglass
Spherical Cow Group
226 3rd Street
Troy, NY 12180
United States of America

Email: mdouglass@sphericalcowgroup.com
URI: http://sphericalcowgroup.com

7986 - New Properties for iCalendar

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 7986

Updates: 5545

Category: Standards Track

ISSN: 2070-1721

C. Daboo

Apple Inc.

October 2016

New Properties for iCalendar

Abstract

 This document defines a set of new properties for iCalendar data and
 extends the use of some existing properties to the entire iCalendar
 object.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7986.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions Used in This Document

	3. Backwards-Compatible Extension Properties

	4. Modifications to Calendar Components

	5. Properties
	 5.1. NAME Property

	 5.2. DESCRIPTION Property

	 5.3. UID Property

	 5.4. LAST-MODIFIED Property

	 5.5. URL Property

	 5.6. CATEGORIES Property

	 5.7. REFRESH-INTERVAL Property

	 5.8. SOURCE Property

	 5.9. COLOR Property

	 5.10. IMAGE Property

	 5.11. CONFERENCE Property

	6. Property Parameters
	 6.1. DISPLAY Property Parameter

	 6.2. EMAIL Property Parameter

	 6.3. FEATURE Property Parameter

	 6.4. LABEL Property Parameter

	7. Security Considerations

	8. Privacy Considerations

	9. IANA Considerations
	 9.1. Property Registrations

	 9.2. Parameter Registrations

	 9.3. Property Parameter Value Registries

	10. References
	 10.1. Normative References

	 10.2. Informative References

	Acknowledgments

	Author's Address

1. Introduction

 The iCalendar [RFC5545] data format is used to represent calendar
 data and is used with the iCalendar Transport-Independent
 Interoperability Protocol (iTIP) [RFC5546] to handle scheduling
 operations between calendar users. iCalendar is in widespread use,
 and in accordance with provisions in that specification, extension
 elements have been added by various vendors to the data format in
 order to support and enhance capabilities. This specification
 collects a number of these ad hoc extensions and uses the new IANA
 registry capability defined in [RFC5545] to register standard
 variants with clearly defined definitions and semantics. In
 addition, some new elements are introduced for features that vendors
 have recently been requesting.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 The notation used in this memo is the ABNF notation of [RFC5234] as
 used by iCalendar [RFC5545]. Any syntax elements shown below that
 are not explicitly defined in this specification come from iCalendar
 [RFC5545].

3. Backwards-Compatible Extension Properties

 iCalendar defines properties that can have different value types
 indicated by a "VALUE" parameter. The definition of a property
 specifies a "default" value type that is assumed to be used when no
 "VALUE" parameter is present. However, this poses a problem to the
 iCalendar parser/generator software that does not know about the
 default values for new properties. For example, if a new property
 "FOO" were defined with a default value type of URI and a URI value
 with a comma was used, an iCalendar generator not aware of this fact
 would likely treat the property value as "TEXT" and apply backslash
 escaping to the comma in the value, effectively making it an invalid
 URI value.

 To avoid this problem, this specification recommends that all
 properties not defined in [RFC5545] always include a "VALUE"
 parameter if the type is other than "TEXT". That is, in the example
 above, the "FOO" property would have a "VALUE=URI" parameter. This
 allows iCalendar parser/generator software to track the correct types
 of unknown properties.

 New properties defined in this specification use the term "no
 default" in the "Value Type" definition to indicate that the "VALUE"
 parameter has to be included.

4. Modifications to Calendar Components

 This section details changes to the syntax defined in iCalendar
 [RFC5545]. New elements are defined in subsequent sections.

calprops =/ *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 uid / last‑mod / url /
 refresh / source / color
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 name / description / categories /
 image
 ;
)

eventprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 color /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 conference / image
 ;
)

todoprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 color /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.

 ;
 conference / image
 ;
)

jourprop =/ *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 color /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 image
 ;
)

5. Properties

5.1. NAME Property

Property Name: NAME

Purpose: This property specifies the name of the calendar.

Value Type: TEXT

Property Parameters: IANA, non‑standard, alternate text
 representation, and language property parameters can be specified
 on this property.

Conformance: This property can be specified multiple times in an
 iCalendar object. However, each property MUST represent the name
 of the calendar in a different language.

Description: This property is used to specify a name of the
 iCalendar object that can be used by calendar user agents when
 presenting the calendar data to a user. Whilst a calendar only
 has a single name, multiple language variants can be specified by
 including this property multiple times with different "LANGUAGE"
 parameter values on each.

Format Definition: This property is defined by the following
 notation:

name = "NAME" nameparam ":" text CRLF

nameparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" altrepparam) / (";" languageparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

Example: The following is an example of this property:

 NAME:Company Vacation Days

5.2. DESCRIPTION Property

 This specification modifies the definition of the "DESCRIPTION"
 property to allow it to be defined in an iCalendar object. The
 following additions are made to the definition of this property,
 originally specified in Section 3.8.1.5 of [RFC5545].

Purpose: This property specifies the description of the calendar.

Conformance: This property can be specified multiple times in an
 iCalendar object. However, each property MUST represent the
 description of the calendar in a different language.

Description: This property is used to specify a lengthy textual
 description of the iCalendar object that can be used by calendar
 user agents when describing the nature of the calendar data to a
 user. Whilst a calendar only has a single description, multiple
 language variants can be specified by including this property
 multiple times with different "LANGUAGE" parameter values on each.

5.3. UID Property

 This specification modifies the definition of the "UID" property to
 allow it to be defined in an iCalendar object. The following
 additions are made to the definition of this property, originally
 specified in Section 3.8.4.7 of [RFC5545].

Purpose: This property specifies the persistent, globally unique
 identifier for the iCalendar object. This can be used, for
 example, to identify duplicate calendar streams that a client may
 have been given access to. It can be used in conjunction with the
 "LAST‑MODIFIED" property also specified on the "VCALENDAR" object
 to identify the most recent version of a calendar.

Conformance: This property can be specified once in an iCalendar
 object.

The description of the "UID" property in [RFC5545] contains some
recommendations on how the value can be constructed. In particular,
it suggests use of host names, IP addresses, and domain names to
construct the value. However, this is no longer considered good
practice, particularly from a security and privacy standpoint, since
use of such values can leak key information about a calendar user or
their client and network environment. This specification updates
[RFC5545] by stating that "UID" values MUST NOT include any data that
might identify a user, host, domain, or any other security‑ or
privacy‑sensitive information. It is RECOMMENDED that calendar user
agents now generate "UID" values that are hex‑encoded random
Universally Unique Identifier (UUID) values as defined in
Sections 4.4 and 4.5 of [RFC4122].

 The following is an example of such a property value:

 UID:5FC53010-1267-4F8E-BC28-1D7AE55A7C99

 Additionally, if calendar user agents choose to use other forms of
 opaque identifiers for the "UID" value, they MUST have a length less
 than 255 octets and MUST conform to the "iana-token" ABNF syntax
 defined in Section 3.1 of [RFC5545].

5.4. LAST-MODIFIED Property

 This specification modifies the definition of the "LAST-MODIFIED"
 property to allow it to be defined in an iCalendar object. The
 following additions are made to the definition of this property,
 originally specified in Section 3.8.7.3 of [RFC5545].

Purpose: This property specifies the date and time that the
 information associated with the calendar was last revised.

Conformance: This property can be specified once in an iCalendar
 object.

5.5. URL Property

 This specification modifies the definition of the "URL" property to
 allow it to be defined in an iCalendar object. The following
 additions are made to the definition of this property, originally
 specified in Section 3.8.4.6 of [RFC5545].

Purpose: This property may be used to convey a location where a more
 dynamic rendition of the calendar information can be found.

Conformance: This property can be specified once in an iCalendar
 object.

5.6. CATEGORIES Property

 This specification modifies the definition of the "CATEGORIES"
 property to allow it to be defined in an iCalendar object. The
 following additions are made to the definition of this property,
 originally specified in Section 3.8.1.2 of [RFC5545].

Purpose: This property defines the categories for an entire
 calendar.

Conformance: This property can be specified multiple times in an
 iCalendar object.

Description: When multiple properties are present, the set of
 categories that apply to the iCalendar object are the union of all
 the categories listed in each property value.

5.7. REFRESH-INTERVAL Property

Property Name: REFRESH‑INTERVAL

Purpose: This property specifies a suggested minimum interval for
 polling for changes of the calendar data from the original source
 of that data.

Value Type: DURATION ‑‑ no default

Property Parameters: IANA and non‑standard property parameters can
 be specified on this property.

Conformance: This property can be specified once in an iCalendar
 object.

Description: This property specifies a positive duration that gives
 a suggested minimum polling interval for checking for updates to
 the calendar data. The value of this property SHOULD be used by
 calendar user agents to limit the polling interval for calendar
 data updates to the minimum interval specified.

Format Definition: This property is defined by the following
 notation:

refresh = "REFRESH‑INTERVAL" refreshparam
 ":" dur‑value CRLF
 ;consisting of a positive duration of time.

refreshparam = *(
 ;
 ; The following is REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" "DURATION") /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

Example: The following is an example of this property:

 REFRESH-INTERVAL;VALUE=DURATION:P1W

5.8. SOURCE Property

Property Name: SOURCE

Purpose: This property identifies a URI where calendar data can be
 refreshed from.

Value Type: URI ‑‑ no default

Property Parameters: IANA and non‑standard property parameters can
 be specified on this property.

Conformance: This property can be specified once in an iCalendar
 object.

Description: This property identifies a location where a client can
 retrieve updated data for the calendar. Clients SHOULD honor any
 specified "REFRESH‑INTERVAL" value when periodically retrieving
 data. Note that this property differs from the "URL" property in
 that "URL" is meant to provide an alternative representation of
 the calendar data rather than the original location of the data.

Format Definition: This property is defined by the following
 notation:

source = "SOURCE" sourceparam ":" uri CRLF

 sourceparam = *(";" other-param)

Example: The following is an example of this property:

 SOURCE;VALUE=URI:https://example.com/holidays.ics

5.9. COLOR Property

Property Name: COLOR

Purpose: This property specifies a color used for displaying the
 calendar, event, todo, or journal data.

Value Type: TEXT

Property Parameters: IANA and non‑standard property parameters can
 be specified on this property.

Conformance: This property can be specified once in an iCalendar
 object or in "VEVENT", "VTODO", or "VJOURNAL" calendar components.

Description: This property specifies a color that clients MAY use
 when presenting the relevant data to a user. Typically, this
 would appear as the "background" color of events or tasks. The
 value is a case‑insensitive color name taken from the CSS3 set of
 names, defined in Section 4.3 of [W3C.REC‑css3‑color‑20110607].

Format Definition: This property is defined by the following
 notation:

color = "COLOR" colorparam ":" text CRLF
 ; Value is CSS3 color name

colorparam = *(";" other‑param)

Example: The following is an example of this property:

 COLOR:turquoise

5.10. IMAGE Property

Property Name: IMAGE

Purpose: This property specifies an image associated with the
 calendar or a calendar component.

Value Type: URI or BINARY ‑‑ no default. The value MUST be data
 with a media type of "image" or refer to such data.

Property Parameters: IANA, non‑standard, display, inline encoding,
 and value data type property parameters can be specified on this
 property. The format type parameter can be specified on this
 property and is RECOMMENDED for inline binary‑encoded content
 information.

Conformance: This property can be specified multiple times in an
 iCalendar object or in "VEVENT", "VTODO", or "VJOURNAL" calendar
 components.

Description: This property specifies an image for an iCalendar
 object or a calendar component via a URI or directly with inline
 data that can be used by calendar user agents when presenting the
 calendar data to a user. Multiple properties MAY be used to
 specify alternative sets of images with, for example, varying
 media subtypes, resolutions, or sizes. When multiple properties
 are present, calendar user agents SHOULD display only one of them,
 picking one that provides the most appropriate image quality, or
 display none. The "DISPLAY" parameter is used to indicate the
 intended display mode for the image. The "ALTREP" parameter,

 defined in [RFC5545], can be used to provide a "clickable" image
 where the URI in the parameter value can be "launched" by a click
 on the image in the calendar user agent.

Format Definition: This property is defined by the following
 notation:

image = "IMAGE" imageparam
 (
 (
 ";" "VALUE" "=" "URI"
 ":" uri
) /
 (
 ";" "ENCODING" "=" "BASE64"
 ";" "VALUE" "=" "BINARY"
 ":" binary
)
)
 CRLF

imageparam = *(
 ;
 ; The following is OPTIONAL for a URI value,
 ; RECOMMENDED for a BINARY value,
 ; and MUST NOT occur more than once.
 ;
 (";" fmttypeparam) /
 ;
 ; The following are OPTIONAL,
 ; and MUST NOT occur more than once.
 ;
 (";" altrepparam) / (";" displayparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

Example: The following is an example of this property:

 IMAGE;VALUE=URI;DISPLAY=BADGE;FMTTYPE=image/png:h

 ttp://example.com/images/party.png

5.11. CONFERENCE Property

Property Name: CONFERENCE

Purpose: This property specifies information for accessing a
 conferencing system.

Value Type: URI ‑‑ no default.

Property Parameters: IANA, non‑standard, feature, and label property
 parameters can be specified on this property.

Conformance: This property can be specified multiple times in a
 "VEVENT" or "VTODO" calendar component.

Description: This property specifies information for accessing a
 conferencing system for attendees of a meeting or task. This
 might be for a telephone‑based conference number dial‑in with
 access codes included (such as a tel: URI [RFC3966] or a sip: or
 sips: URI [RFC3261]), for a web‑based video chat (such as an http:
 or https: URI [RFC7230]), or for an instant messaging group chat
 room (such as an xmpp: URI [RFC5122]). If a specific URI for a
 conferencing system is not available, a data: URI [RFC2397]
 containing a text description can be used.

 A conference system can be a bidirectional communication channel
 or a uni-directional "broadcast feed".

 The "FEATURE" property parameter is used to describe the key
 capabilities of the conference system to allow a client to choose
 the ones that give the required level of interaction from a set of
 multiple properties.

 The "LABEL" property parameter is used to convey additional
 details on the use of the URI. For example, the URIs or access
 codes for the moderator and attendee of a teleconference system
 could be different, and the "LABEL" property parameter could be
 used to "tag" each "CONFERENCE" property to indicate which is
 which.

 The "LANGUAGE" property parameter can be used to specify the
 language used for text values used with this property (as per
 Section 3.2.10 of [RFC5545]).

Format Definition: This property is defined by the following
 notation:

conference = "CONFERENCE" confparam ":" uri CRLF

confparam = *(
 ;
 ; The following is REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" "URI") /
 ;
 ; The following are OPTIONAL,
 ; and MUST NOT occur more than once.
 ;
 (";" featureparam) / (";" labelparam) /
 (";" languageparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

Example: The following are examples of this property:

CONFERENCE;VALUE=URI;FEATURE=PHONE,MODERATOR;
 LABEL=Moderator dial‑in:tel:+1‑412‑555‑0123,,,654321
CONFERENCE;VALUE=URI;FEATURE=PHONE;
 LABEL=Attendee dial‑in:tel:+1‑412‑555‑0123,,,555123
CONFERENCE;VALUE=URI;FEATURE=PHONE;
 LABEL=Attendee dial‑in:tel:+1‑888‑555‑0456,,,555123
CONFERENCE;VALUE=URI;FEATURE=CHAT;
 LABEL=Chat room:xmpp:chat‑123@conference.example.com
CONFERENCE;VALUE=URI;FEATURE=AUDIO,VIDEO;
 LABEL=Attendee dial‑in:https://chat.example.com/audio?id=123456

6. Property Parameters

6.1. DISPLAY Property Parameter

Parameter Name: DISPLAY

Purpose: To specify different ways in which an image for a calendar
 or component can be displayed.

Format Definition: This property parameter is defined by the
 following notation:

 displayparam = "DISPLAY" "=" displayval *("," displayval)

displayval = ("BADGE" / ; image inline with the title of the
 ; event
 "GRAPHIC" / ; a full image replacement for the event
 ; itself
 "FULLSIZE" / ; an image that is used to enhance the
 ; event
 "THUMBNAIL" / ; a smaller variant of "FULLSIZE" to be
 ; used when space for the image is
 ; constrained
 x‑name / ; Experimental type
 iana‑token) ; Other IANA‑registered type
 ;
 ; Default is BADGE

Description: This property parameter MAY be specified on "IMAGE"
 properties. In the absence of this parameter, the default value
 "BADGE" MUST be used. The value determines how a client ought to
 present an image supplied in iCalendar data to the user.

 Values for this parameter are registered with IANA as per
 Section 9.3.1. New values can be added to this registry following
 the procedure outlined in Section 8.2.1 of [RFC5545].

 Servers and clients MUST handle x-name and iana-token values they
 don't recognize by not displaying any image at all.

 Example:

 IMAGE;VALUE=URI;DISPLAY=BADGE,THUMBNAIL;FMTTYPE=image/png:https://exa

 mple.com/images/weather-cloudy.png

6.2. EMAIL Property Parameter

Parameter Name: EMAIL

Purpose: To specify an email address that is used to identify or
 contact an organizer or attendee.

Format Definition: This property parameter is defined by the
 following notation:

 emailparam = "EMAIL" "=" param-value

Description: This property parameter MAY be specified on "ORGANIZER"
 or "ATTENDEE" properties. This property can be used in situations
 where the calendar user address value of the "ORGANIZER" and
 "ATTENDEE" properties is not likely to be an identifier that
 recipients of scheduling messages could use to match the calendar
 user with, for example, an address book entry. The value of this
 property is an email address that can easily be matched by
 recipients. Recipients can also use this value as an alternative
 means of contacting the calendar user via email. If a recipient's
 calendar user agent allows the recipient to save contact
 information based on the "ORGANIZER" or "ATTENDEE" properties,
 those calendar user agents SHOULD use any "EMAIL" property
 parameter value for the email address of the contact over any
 mailto: calendar user address specified as the value of the
 property. Calendar user agents SHOULD NOT include an "EMAIL"
 property parameter when its value matches the calendar user
 address specified as the value of the property.

 Example:

 ATTENDEE;CN=Cyrus Daboo;EMAIL=cyrus@example.com:mailto:opaque-toke

 n-1234@example.com

6.3. FEATURE Property Parameter

Parameter Name: FEATURE

Purpose: To specify a feature or features of a conference or
 broadcast system.

Format Definition: This property parameter is defined by the
 following notation:

featureparam = "FEATURE" "=" featuretext *("," featuretext)
featuretext = ("AUDIO" / ; Audio capability
 "CHAT" / ; Chat or instant messaging
 "FEED" / ; Blog or Atom feed
 "MODERATOR" / ; Moderator dial‑in code
 "PHONE" / ; Phone conference
 "SCREEN" / ; Screen sharing
 "VIDEO" / ; Video capability
 x‑name / ; Experimental type
 iana‑token) ; Other IANA‑registered type

Description: This property parameter MAY be specified on the
 "CONFERENCE" property. Multiple values can be specified. The
 "MODERATOR" value is used to indicate that the property value is
 specific to the owner/initiator of the conference and contains a
 URI that "activates" the system (e.g., a "moderator" access code
 for a phone conference system that is different from the "regular"
 access code).

 Example:

 CONFERENCE;VALUE=URI;FEATURE=AUDIO:rtsp://audio.example.com/

 event
 CONFERENCE;VALUE=URI;FEATURE=AUDIO,VIDEO:https://video-chat.exam
 ple.com/;group-id=1234

6.4. LABEL Property Parameter

Parameter Name: LABEL

Purpose: To provide a human‑readable label.

Format Definition: This property parameter is defined by the
 following notation:

 labelparam = "LABEL" "=" param-value

Description: This property parameter MAY be specified on the
 "CONFERENCE" property. It is anticipated that other extensions to
 iCalendar will reuse this property parameter on new properties
 that they define. As a result, clients MUST expect to find this
 property parameter present on many different properties. It
 provides a human‑readable label that can be presented to calendar
 users to allow them to discriminate between properties that might
 be similar or provide additional information for properties that
 are not self‑describing. The "LANGUAGE" property parameter can be
 used to specify the language of the text in the parameter value
 (as per Section 3.2.10 of [RFC5545]).

 Example:

 CONFERENCE;VALUE=URI;FEATURE=VIDEO;

 LABEL="Web video chat, access code=76543";
 :https://video-chat.example.com/;group-id=1234

7. Security Considerations

 Several of the new properties or parameters defined by this
 specification allow reference to "external" URIs. Care MUST be taken
 when accessing data at external URIs as malicious content could be
 present. Clients SHOULD ensure that suitable permission is granted
 by calendar users before such URIs are dereferenced.

 The "REFRESH-INTERVAL" property could be used by an attacker to make
 a client carry out rapid requests to the server hosting the calendar
 by specifying a very short duration (e.g., one second). This could
 lead to resource consumption on the client or server and to denial-
 of-service attacks against the server. Clients MUST ensure that they
 throttle requests to the server to a reasonable rate. In most cases,
 updating a public calendar once per day would suffice. If the
 "REFRESH-INTERVAL" is any less than that, clients SHOULD warn the
 calendar user and allow them to override it with a longer value.

 The "CONFERENCE" property can include a "FEATURE" property parameter
 with a "MODERATOR" value. In some cases, the access code used by the
 owner/initiator of a conference might be private to an individual,
 and clients and servers MUST ensure that such properties are not sent
 to attendees of a scheduled component.

 Both the "COLOR" and "IMAGE" properties are likely to be used by
 calendar users to express their own personal view of the calendar
 data. In addition, these properties could be used by attackers to
 produce a confusing display in a calendar user agent. When such
 properties are encountered in calendar data that has come from other
 calendar users (e.g., via a scheduling message, "public" calendar
 subscription, etc.), it is advisable for the client to give the
 receiving calendar user the option to remove (or adjust) these
 properties as the data is imported into their calendar system.

 This specification changes the recommendations on how "UID" property
 values are constructed to minimize leaking any information that might
 be security sensitive.

 Security considerations in [RFC5545] and [RFC5546] MUST also be
 adhered to.

8. Privacy Considerations

 Several of the new properties or parameters defined by this
 specification allow reference to "external" URIs. Access to those
 URIs could be tracked, leading to loss of privacy. Clients SHOULD
 ensure that suitable permission is granted by calendar users before
 such URIs are dereferenced. In particular, calendar publishers
 wishing to help protect the privacy of their subscribers MUST use
 HTTP with Transport Layer Security [RFC7230] ("https:" URIs instead
 of "http:" URIs) for access to calendar data or ancillary data such
 as images.

 In general, for their own privacy protection, users have to rely on
 the privacy policies of any conferencing system being accessed via
 the "CONFERENCE" property. It is entirely possible for such systems
 to uniquely identify and log the activity and participation (or lack
 thereof) of calendar users in the conference. Calendar user agents
 SHOULD track which conferencing systems are used and warn users the
 first time a new one is about to be used. This is particularly
 important if the client automatically "dials in" to the conference
 when the event start time occurs.

 By giving different calendar users different values for the "REFRESH-
 INTERVAL" property, it is possible for a publisher of calendar data
 to uniquely identify each refresh from each calendar users' clients
 and thereby track user activity and IP address over time. To address
 this, clients SHOULD add or subtract some random amount of time from
 the published "REFRESH-INTERVAL" value when doing actual refreshes.

 This specification changes the recommendations on how "UID" property
 values are constructed to minimize leaking any information that might
 be privacy sensitive.

 Privacy considerations in [RFC5545] and [RFC5546] MUST also be
 adhered to.

9. IANA Considerations

9.1. Property Registrations

 This document defines the following new iCalendar properties. IANA
 has registered the new properties in the "Properties" registry
 defined in Section 8.3.2 of [RFC5545]. IANA has also added a
 reference to this document where the properties originally defined in
 RFC 5545 have been updated by this document.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
NAME	Current	RFC 7986, Section 5.1
DESCRIPTION	Current	RFC 5545, Section 3.8.1.5; RFC 7986,
		Section 5.2
UID	Current	RFC 5545, Section 3.8.4.7; RFC 7986,
		Section 5.3
LAST‑MODIFIED	Current	RFC 5545, Section 3.8.7.3 RFC 7986,
		Section 5.4
URL	Current	RFC 5545, Section 3.8.4.6; RFC 7986,
		Section 5.5
CATEGORIES	Current	RFC 5545, Section 3.8.1.2; RFC 7986,
		Section 5.6
REFRESH‑INTERVAL	Current	RFC 7986, Section 5.7
SOURCE	Current	RFC 7986, Section 5.8
COLOR	Current	RFC 7986, Section 5.9
IMAGE	Current	RFC 7986, Section 5.10
CONFERENCE	Current	RFC 7986, Section 5.11
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9.2. Parameter Registrations

 This document defines the following new iCalendar property
 parameters. IANA has registered these in the "Parameters" registry
 defined in Section 8.3.3 of [RFC5545].

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property Parameter | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
DISPLAY	Current	RFC 7986, Section 6.1
EMAIL	Current	RFC 7986, Section 6.2
FEATURE	Current	RFC 7986, Section 6.3
LABEL	Current	RFC 7986, Section 6.4
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9.3. Property Parameter Value Registries

 IANA has created two new registries for iCalendar elements: the
 "Display Types" registry and the "Feature Types" registry.
 Additional codes MAY be used, provided the process and template
 described in Sections 8.2.1 and 8.2.6 of [RFC5545] are used to
 register them.

9.3.1. Display Types Registry

 The following table has been used to initialize the "Display Types"
 registry.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Display Type | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
BADGE	Current	RFC 7986, Section 6.1
GRAPHIC	Current	RFC 7986, Section 6.1
FULLSIZE	Current	RFC 7986, Section 6.1
THUMBNAIL	Current	RFC 7986, Section 6.1
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9.3.2. Feature Types Registry

 The following table has been used to initialize the "Feature Types"
 registry.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Feature Type | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
AUDIO	Current	RFC 7986, Section 6.3
CHAT	Current	RFC 7986, Section 6.3
FEED	Current	RFC 7986, Section 6.3
MODERATOR	Current	RFC 7986, Section 6.3
PHONE	Current	RFC 7986, Section 6.3
SCREEN	Current	RFC 7986, Section 6.3
VIDEO	Current	RFC 7986, Section 6.3
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4122]
 Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <http://www.rfc-editor.org/info/rfc4122>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <http://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <http://www.rfc-editor.org/info/rfc5546>.

 [W3C.REC-css3-color-20110607]

 Celik, T., Lilley, C., and D. Baron, "CSS Color Module
 Level 3", World Wide Web Consortium Recommendation
 REC-css3-color-20110607, June 2011,
 <https://www.w3.org/TR/2011/REC-css3-color-20110607>.

10.2. Informative References

 [RFC2397]
 Masinter, L., "The "data" URL scheme", RFC 2397,
 DOI 10.17487/RFC2397, August 1998,
 <http://www.rfc-editor.org/info/rfc2397>.

 [RFC3261]
 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <http://www.rfc-editor.org/info/rfc3261>.

 [RFC3966]
 Schulzrinne, H., "The tel URI for Telephone Numbers",
 RFC 3966, DOI 10.17487/RFC3966, December 2004,
 <http://www.rfc-editor.org/info/rfc3966>.

 [RFC5122]
 Saint-Andre, P., "Internationalized Resource Identifiers
 (IRIs) and Uniform Resource Identifiers (URIs) for the
 Extensible Messaging and Presence Protocol (XMPP)",
 RFC 5122, DOI 10.17487/RFC5122, February 2008,
 <http://www.rfc-editor.org/info/rfc5122>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Acknowledgments

 Thanks to the following individuals for feedback: Bernard
 Desruisseaux, Mike Douglass, Lucia Fedorova, Ken Murchison, Arnaud
 Quillaud, and Dave Thewlis.

 This specification came about via discussions at the Calendaring and
 Scheduling Consortium.

Author's Address

Cyrus Daboo
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
United States of America

Email: cyrus@daboo.name
URI: http://www.apple.com/

8607 - Calendaring Extensions to WebDAV (CalDAV): Managed Attachments

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8607

Category: Informational

ISSN: 2070-1721

C. Daboo

Apple

A. Quillaud

Oracle

K. Murchison, Ed.

FastMail

June 2019

Calendaring Extensions to WebDAV (CalDAV): Managed Attachments

Abstract

 This specification adds an extension to the Calendaring Extensions to
 WebDAV (CalDAV) to allow attachments associated with iCalendar data
 to be stored and managed on the server.

 This specification documents existing code deployed by multiple
 vendors. It is published as an Informational specification rather
 than Standards Track due to its noncompliance with multiple best
 current practices of HTTP.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8607.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Rationale for Informational Status

	2. Conventions Used in This Document

	3. Overview
	 3.1. Requirements

	 3.2. Discovering Support for Managed Attachments

	 3.3. POST Request for Managing Attachments
	 3.3.1. action Query Parameter

	 3.3.2. rid Query Parameter

	 3.3.3. managed-id Query Parameter

	 3.4. Adding Attachments

	 3.5. Updating Attachments

	 3.6. Removing Attachments via POST

	 3.7. Adding Existing Managed Attachments via PUT

	 3.8. Updating Attachments via PUT

	 3.9. Removing Attachments via PUT

	 3.10. Retrieving Attachments

	 3.11. Error Handling

	 3.12. Additional Considerations
	 3.12.1. Quotas

	 3.12.2. Access Control

	 3.12.3. Redirects

	 3.12.4. Processing Time

	 3.12.5. Automatic Cleanup by Servers

	 3.12.6. Sending Scheduling Messages with Attachments

	 3.12.7. Migrating Calendar Data

	4. Modifications to iCalendar Syntax
	 4.1. SIZE Property Parameter

	 4.2. FILENAME Property Parameter

	 4.3. MANAGED-ID Property Parameter

	5. Additional Message Header Fields
	 5.1. Cal-Managed-ID Response Header Field

	6. Additional WebDAV Properties
	 6.1. CALDAV:managed-attachments-server-URL Property

	 6.2. CALDAV:max-attachment-size Property

	 6.3. CALDAV:max-attachments-per-resource Property

	7. Security Considerations

	8. IANA Considerations
	 8.1. Parameter Registrations

	 8.2. Message Header Field Registrations
	 8.2.1. Cal-Managed-ID

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Example Involving Recurring Events

	Acknowledgments

	Authors' Addresses

1. Introduction

 The iCalendar [RFC5545] data format is used to represent calendar
 data and is used with iCalendar Transport-independent
 Interoperability Protocol (iTIP) [RFC5546] to handle scheduling
 operations between calendar users.

 [RFC4791] defines the Calendaring Extensions to WebDAV (CalDAV),
 based on HTTP [RFC7230], for accessing calendar data stored on a
 server.

 Calendar users often want to include attachments with their calendar
 data events or tasks (for example, a copy of a presentation or the
 meeting agenda). iCalendar provides an "ATTACH" property whose value
 is either the inline Base64 encoded attachment data or a URL
 specifying the location of the attachment data.

 Use of inline attachment data is not ideal with CalDAV because the
 data would need to be uploaded to the server each time a change to
 the calendar data is made, even minor changes such as a change to the
 summary. Whilst a client could choose to use a URL value instead,
 the problem then becomes where and how the client discovers an
 appropriate URL to use and how it ensures that only those attendees
 listed in the event or task are able to access it.

 This specification solves this problem by having the client send the
 attachment to the server, separately from the iCalendar data, and
 having the server add appropriate "ATTACH" properties in the
 iCalendar data as well as manage access privileges. The server can
 also provide additional information to the client about each
 attachment in the iCalendar data, such as the size and an identifier.

1.1. Rationale for Informational Status

 Although this extension to CalDAV has wide deployment, its design
 does not comply with some of the best current practices of HTTP,
 namely:

 o All operations on attachments are modeled as HTTP POST operations,
 where the actual type of operation is specified using a query
 parameter instead of using separate HTTP POST, PUT, and DELETE
 methods where appropriate.

 o Specific query strings are hardwired into the protocol in
 violation of Section 2.4 of [RFC7320].

 Additionally, this extension misuses the Content-Disposition header
 field [RFC6266] as a request header field to convey a filename for an
 attachment rather than using an existing request header field
 suitable for that purpose, such as "Slug" (see Section 9.7 of
 [RFC5023]).

 Rather than creating interoperability problems with deployed code by
 updating the design of this extension to be compliant with best
 current practices and to allow this specification to be placed on the
 Standards Track, it was decided to simply document how existing
 implementations interoperate and to publish the document as
 Informational.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The notation used in this memo is the ABNF notation of [RFC5234] as
 used by iCalendar [RFC5545]. Any syntax elements shown below that
 are not explicitly defined in this specification come from iCalendar
 [RFC5545].

3. Overview

 There are four main operations a client needs to perform with
 attachments for calendar data: add, update, remove, and retrieve.
 The first three operations are carried out by the client issuing an
 HTTP POST request on the calendar object resource to which the
 attachment is associated and specifying the appropriate "action"
 query parameter (see Section 3.3). In the case of the remove
 operation, the client can alternatively directly update the calendar
 object resource and remove the relevant "ATTACH" properties (see
 Section 3.9). The retrieve operation is accomplished by simply
 issuing an HTTP GET request targeting the attachment URI specified by
 the calendar resource's "ATTACH" property (see Section 3.10).

 iCalendar data stored in a CalDAV calendar object resource can
 contain multiple components when recurrences are involved. In such a
 situation, the client needs to be able to target a specific
 recurrence instance or multiple instances when adding or deleting
 attachments. As a result, the POST request needs to provide a way
 for the client to specify which recurrence instances should be
 targeted for the attachment operation. This is accomplished through
 use of additional query parameters on the POST Request-URI.

3.1. Requirements

 A server that supports the features described in this specification
 is REQUIRED to support the CalDAV "calendar-access" [RFC4791]
 features.

 In addition, such a server SHOULD support the "return=representation"
 Prefer header field [RFC7240] preference on successful HTTP PUT and
 POST requests targeting existing calendar object resources by
 returning the new representation of that calendar resource (including
 its new ETag header field value) in the response.

3.2. Discovering Support for Managed Attachments

 A server supporting the features described in this specification MUST
 include "calendar-managed-attachments" as a token in the DAV response
 header field (as defined in Section 10.1 of [RFC4918]) from an
 OPTIONS request on a calendar home collection.

 A server might choose not to support the storing of managed
 attachments on a per-recurrence-instance basis (i.e., they can only
 be added to all instances as a whole). If that is the case, the
 server MUST also include "calendar-managed-attachments-no-recurrence"
 as a token in the DAV response header field from an OPTIONS request
 on a calendar home collection. When that field is present, clients
 MUST NOT attempt any managed attachment operations that target
 specific recurrence instances.

3.3. POST Request for Managing Attachments

 An HTTP POST request is used to add, update, or remove attachments.
 These requests are subject to the preconditions listed in
 Section 3.11. The Request-URI will contain various query parameters
 to specify the behavior.

3.3.1. action Query Parameter

 The "action" query parameter is used to identify which attachment
 operation the client is requesting. This parameter MUST be present
 once on each POST request used to manage attachments. One of these
 three values MUST be used:

attachment‑add: Indicates an operation that is adding an attachment
 to a calendar object resource. See Section 3.4 for more details.

attachment‑update: Indicates an operation that is updating an
 existing attachment on a calendar object resource. See
 Section 3.5 for more details.

attachment‑remove: Indicates an operation that is removing an
 attachment from a calendar object resource. See Section 3.6 for
 more details.

 Example:

 https://calendar.example.com/events/1.ics?action=attachment-add

3.3.2. rid Query Parameter

 The "rid" query parameter is used to identify which recurrence
 instances are being targeted by the client for the attachment
 operation. This query parameter MUST contain one or more items,
 separated by commas (denoted in ASCII as "0x2C"). The item values
 can be in one of two forms:

Master instance: The value "M" (case insensitive) refers to the
 "master" recurrence instance, i.e., the component that does not
 include a "RECURRENCE‑ID" property. This item MUST be present
 only once.

Specific instance: A specific iCalendar instance is targeted by
 using its "RECURRENCE‑ID" value as the item value. That value
 MUST correspond to the "RECURRENCE‑ID" value as stored in the
 calendar object resource (i.e., without any conversion to UTC).
 If multiple items of this form are used, they MUST be unique
 values. For example, to target a recurrence defined by property

 RECURRENCE-ID;TZID=America/Montreal:20111022T160000, the query
 parameter rid=20111022T160000 would be used.

 If the "rid" query parameter is not present, all recurrence instances
 in the calendar object resource are targeted.

 The "rid" query parameter MUST NOT be present in the case of an
 update operation, or if the server chooses not to support per-
 recurrence instance managed attachments (see Section 3.2).

 Example (targeting the master instance and a specific overridden
 instance):

 https://calendar.example.com/events/1.ics?

 action=attachment-add&rid=M,20111022T160000

3.3.3. managed-id Query Parameter

 The "managed-id" query parameter is used to identify which "ATTACH"
 property is being updated or removed. The value of this query
 parameter MUST match the "MANAGED-ID" (Section 4.3) property
 parameter value on the "ATTACH" property in the calendar object
 resource instance(s) targeted by the request.

 The "managed-id" query parameter MUST NOT be present in the case of
 an add operation.

 Example:

 https://calendar.example.com/events/1.ics?

 action=attachment-update&managed-id=aUNhbGVuZGFy

3.4. Adding Attachments

 To add an attachment to an existing calendar object resource, the
 following needs to occur:

 1. The client issues a POST request targeted at the calendar object
 resource structured as follows:

 A. The Request-URI will include an "action" query parameter with

 the value "attachment-add" (see Section 3.3.1).

 B. If all recurrence instances are having an attachment added,

 the "rid" query parameter is not present in the Request-URI.
 If one or more specific recurrence instances are targeted,
 then the Request-URI will include a "rid" query parameter
 containing the list of instances (see Section 3.3.2).

 C. The body of the request contains the data for the attachment.

 D. The client MUST include a valid Content-Type header field

 describing the media type of the attachment (as required by
 HTTP).

 E. The client SHOULD include a Content-Disposition header field

 [RFC6266] with a "type" parameter set to "attachment", and a
 "filename" parameter that indicates the name of the
 attachment. Note that the use of Content-Disposition as a
 request header field is nonstandard and specific to this
 protocol.

 F. The client MAY include a Prefer header field [RFC7240] with

 the "return=representation" preference to request that the
 modified calendar object resource be returned as the body of
 a successful response to the POST request.

 2. When the server receives the POST request, it does the following:

 A. Validates that any recurrence instances referred to via the

 "rid" query parameter are valid for the calendar object
 resource being targeted.

 B. Stores the supplied attachment data into a resource and

 generates an appropriate URI for clients to access the
 resource.

 C. For each affected recurrence instance in the calendar object

 resource targeted by the request, adds an "ATTACH" property
 whose value is the URI of the stored attachment. The
 "ATTACH" property MUST contain a "MANAGED-ID" property
 parameter whose value is a unique identifier (within the
 context of the server as a whole). The "ATTACH" property
 SHOULD contain an "FMTTYPE" property parameter whose value
 matches the Content-Type header field value from the request.
 The "ATTACH" property SHOULD contain a "FILENAME" property
 parameter whose value matches the value of the Content-
 Disposition header field "filename" parameter value from the
 request, taking into account the restrictions expressed in
 Section 4.2. The "ATTACH" property SHOULD include a "SIZE"
 property parameter whose value represents the size in octets
 of the attachment. If a specified recurrence instance does
 not have a matching component in the calendar object
 resource, then the server MUST modify the calendar object
 resource to include an overridden component with the
 appropriate "RECURRENCE-ID" property.

 D. Upon successful creation of the attachment resource, and

 modification of the targeted calendar object resource, it
 MUST return an appropriate HTTP success status response and
 include a "Cal-Managed-ID" header field containing the
 "MANAGED-ID" property parameter value of the newly created
 "ATTACH" property. The client can use the "Cal-Managed-ID"
 header field value to correlate the attachment with "ATTACH"
 properties added to the calendar object resource. If the
 client included a Prefer header field with the
 "return=representation" preference in the request, the server
 SHOULD return the modified calendar object resource as the
 body of the response. Otherwise, the server can expect that
 the client will reload the calendar object resource with a
 subsequent GET request to refresh any local cache.

 In the following example, the client adds a new attachment to a
 nonrecurring event and asks the server (via the Prefer header field
 [RFC7240]) to return the modified version of that event in the
 response.

 >> Request <<

POST /events/64.ics?action=attachment‑add HTTP/1.1
Host: cal.example.com
Content‑Type: text/html; charset="utf‑8"
Content‑Disposition:attachment;filename=agenda.html
Content‑Length: 59
Prefer: return=representation

<html>
 <body>
 <h1>Agenda</h1>
 </body>
</html>

 >> Response <<

HTTP/1.1 201 Created
Content‑Type: text/calendar; charset="utf‑8"
Content‑Length: 371
Content‑Location: https://cal.example.com/events/64.ics
ETag: "123456789‑000‑111"
Cal‑Managed‑ID: 97S

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example Corp.//CalDAV Server//EN
BEGIN:VEVENT
UID:20010712T182145Z‑123401@example.com
DTSTAMP:20120201T203412Z
DTSTART:20120714T170000Z
DTEND:20120715T040000Z
SUMMARY:One‑off meeting
ATTACH;MANAGED‑ID=97S;FMTTYPE=text/html;SIZE=59;
 FILENAME=agenda.html:https://cal.example.com/attach/64/34X22R
END:VEVENT
END:VCALENDAR

3.5. Updating Attachments

 When an attachment is updated, the server MUST change the associated
 "MANAGED-ID" property parameter and MAY change the "ATTACH" property
 value. With this approach, clients are able to determine when an
 attachment has been updated by some other client by looking for a
 change to either the "ATTACH" property value or the "MANAGED-ID"
 property parameter value.

 To change the data of an existing managed attachment in a calendar
 object resource, the following needs to occur:

 1. The client issues a POST request targeted at the calendar object
 resource structured as follows:

 A. The Request-URI will include an "action" query parameter with

 the value "attachment-update" (see Section 3.3.1).

 B. The Request-URI will include a "managed-id" query parameter

 with the value matching that of the "MANAGED-ID" property
 parameter for the "ATTACH" property being updated (see
 Section 3.3.3).

 C. The body of the request contains the updated data for the

 attachment.

 D. The client MUST include a valid Content-Type header field

 describing the media type of the attachment (as required by
 HTTP).

 E. The client SHOULD include a Content-Disposition header field

 [RFC6266] with a "type" parameter set to "attachment", and a
 "filename" parameter that indicates the name of the
 attachment.

 F. The client MAY include a Prefer header field [RFC7240] with

 the "return=representation" preference to request that the
 modified calendar object resource be returned as the body of
 a successful response to the POST request.

 2. When the server receives the POST request, it does the following:

 A. Validates that the "managed-id" query parameter is valid for

 the calendar object resource.

 B. Updates the content of the attachment resource corresponding

 to that "managed-id" value with the supplied attachment data.

 C. For each affected recurrence instance in the calendar object

 resource targeted by the request, updates the "ATTACH"
 property whose "MANAGED-ID" property parameter value matches
 the "managed-id" query parameter. The "MANAGED-ID" property
 parameter value is changed to allow other clients to detect
 the update, and the property value (attachment URI) might
 also be changed. The "ATTACH" property SHOULD contain a
 "FMTTYPE" property parameter whose value matches the Content-
 Type header field value from the request; this could differ
 from the original value if the media type of the updated
 attachment is different. The "ATTACH" property SHOULD
 contain a "FILENAME" property parameter whose value matches
 the Content-Disposition header field "filename" parameter
 value from the request, taking into account the restrictions
 expressed in Section 4.2. The "ATTACH" property SHOULD
 include a "SIZE" property parameter whose value represents
 the size in octets of the updated attachment.

 D. Upon successful update of the attachment resource, and

 modification of the targeted calendar object resource, it
 MUST return an appropriate HTTP success status response and
 include a "Cal-Managed-ID" header field containing the new
 value of the "MANAGED-ID" property parameter. The client can
 use the "Cal-Managed-ID" header field value to correlate the
 attachment with "ATTACH" properties added to the calendar
 object resource. If the client included a Prefer header
 field with the "return=representation" preference in the
 request, the server SHOULD return the modified calendar
 object resource as the body of the response. Otherwise, the
 server can expect that the client will reload the calendar
 object resource with a subsequent GET request to refresh any
 local cache.

 The update operation does not take a "rid" query parameter and does
 not add, or remove, any "ATTACH" property in the targeted calendar
 object resource. To link an existing attachment to a new instance,
 the client simply does a PUT on the calendar object resource, adding
 an "ATTACH" property that duplicates the existing one (see
 Section 3.7).

 In the following example, the client updates an existing attachment
 and asks the server (via the Prefer header field [RFC7240]) to return
 the updated version of that event in the response.

 >> Request <<

POST /events/64.ics?action=attachment‑update&managed‑id=97S HTTP/1.1
Host: cal.example.com
Content‑Type: text/html; charset="utf‑8"
Content‑Disposition:attachment;filename=agenda.html
Content‑Length: 96
Prefer: return=representation

<html>
 <body>
 <h1>Agenda</h1>
 <p>Discuss attachment draft</p>
 </body>
</html>

 >> Response <<

HTTP/1.1 200 OK
Content‑Type: text/calendar; charset="utf‑8"
Content‑Length: 371
Content‑Location: https://cal.example.com/events/64.ics
Cal‑Managed‑ID: 98S
ETag: "123456789‑000‑222"

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example Corp.//CalDAV Server//EN
BEGIN:VEVENT
UID:20010712T182145Z‑123401@example.com
DTSTAMP:20120201T203412Z
DTSTART:20120714T170000Z
DTEND:20120715T040000Z
SUMMARY:One‑off meeting
ATTACH;MANAGED‑ID=98S;FMTTYPE=text/html;SIZE=96;
 FILENAME=agenda.html:https://cal.example.com/attach/64/34X22R
END:VEVENT
END:VCALENDAR

3.6. Removing Attachments via POST

 To remove an existing attachment from a calendar object, the
 following needs to occur:

 1. The client issues a POST request targeted at the calendar object
 resource structured as follows:

 A. The Request-URI will include an "action" query parameter with

 the value "attachment-remove" (see Section 3.3.1).

 B. If all recurrence instances are having an attachment removed,

 the "rid" query parameter is not present in the Request-URI.
 If one or more specific recurrence instances are targeted,
 then the Request-URI will include a "rid" query parameter
 containing the list of instances (see Section 3.3.2).

 C. The Request-URI will include a "managed-id" query parameter

 with the value matching that of the "MANAGED-ID" property
 parameter for the "ATTACH" property being removed (see
 Section 3.3.3).

 D. The body of the request will be empty.

 E. The client MAY include a Prefer header field [RFC7240] with

 the "return=representation" preference to request that the
 modified calendar object resource be returned as the body of
 a successful response to the POST request.

 2. When the server receives the POST request, it does the following:

 A. Validates that any recurrence instances referred to via the

 "rid" query parameter are valid for the calendar object
 resource being targeted.

 B. Validates that the "managed-id" query parameter is valid for

 the calendar object resource and specific instances being
 targeted.

 C. For each affected recurrence instance in the calendar object

 resource targeted by the request, removes the matching
 "ATTACH" property. Note that if a specified recurrence
 instance does not have a matching component in the calendar
 object resource, then the server MUST modify the calendar
 object resource to include an overridden component with the
 appropriate "RECURRENCE-ID" property and the matching
 "ATTACH" property removed. This latter case is actually
 valid only if the master component does include the
 referenced "ATTACH" property.

 D. If the attachment resource is no longer referenced by any

 instance of the calendar object resource, it can delete the
 attachment resource to free up storage space.

 E. Upon successful removal of the attachment resource and

 modification of the targeted calendar object resource, it
 MUST return an appropriate HTTP success status response. If
 the client included a Prefer header field with the
 "return=representation" preference in the request, the server
 SHOULD return the modified calendar object resource as the
 body of the response. Otherwise, the server can expect that
 the client will reload the calendar object resource with a
 subsequent GET request to refresh any local cache.

 In the following example, the client deletes an existing attachment
 by passing its "managed-id" value in the request. The Prefer header
 field [RFC7240] is not set in the request so the calendar object
 resource data is not returned in the response.

 >> Request <<

POST /events/64.ics?action=attachment‑remove&managed‑id=98S HTTP/1.1
Host: cal.example.com
Content‑Length: 0

 >> Response <<

HTTP/1.1 204 No Content
Content‑Length: 0

3.7. Adding Existing Managed Attachments via PUT

 Clients can make use of existing managed attachments by adding the
 corresponding "ATTACH" property to calendar object resources (subject
 to the restrictions described in Section 3.12.2).

 If a managed attachment is used in more than calendar resource,
 servers SHOULD NOT change either the "MANAGED-ID" property parameter
 value or the "ATTACH" property value for these attachments; this
 ensures that clients do not have to download the attachment data
 again if they already have it cached. Additionally, servers SHOULD
 validate "SIZE" property parameter values and replace incorrect
 values with the actual sizes of existing attachments.

 These PUT requests are subject to the preconditions listed in
 Section 3.11.

3.8. Updating Attachments via PUT

 Servers MUST NOT allow clients to update attachment data directly via
 a PUT on the attachment URI (or via any other HTTP method that
 modifies content). Instead, attachments can only be updated via use
 of POST requests on the calendar data.

3.9. Removing Attachments via PUT

 Clients can remove attachments by simply rewriting the calendar
 object resource data to remove the appropriate "ATTACH" properties.
 Servers MUST NOT allow clients to delete attachments directly via a
 DELETE request on the attachment URI.

3.10. Retrieving Attachments

 Clients retrieve attachments by issuing an HTTP GET request using the
 value of the corresponding "ATTACH" property as the Request-URI,
 taking into account the substitution mechanism associated with the
 "CALDAV:managed-attachments-server-URL" property (see Section 6.1).

3.11. Error Handling

 This specification creates additional preconditions for the POST
 method.

 The new preconditions are:

(CALDAV:max‑attachment‑size): The attachment submitted in the POST
 request MUST have an octet size less than or equal to the value of
 the "CALDAV:max‑attachment‑size" property value (Section 6.2) on
 the calendar collection of the target calendar resource.

(CALDAV:max‑attachments‑per‑resource): The addition of the
 attachment submitted in the POST request MUST result in the target
 calendar resource having a number of managed attachments less than
 or equal to the value of the "CALDAV:max‑attachments‑per‑resource"
 property value (Section 6.3) on the calendar collection of the
 target calendar resource.

(CALDAV:valid‑action): The "action" query parameter in the POST
 request MUST contain only one of the following three values:
 "attachment‑add", "attachment‑update", or "attachment‑remove".

(CALDAV:valid‑rid): The "rid" query parameter in the POST request
 MUST NOT be present with an "action=attachment‑update" query
 parameter and MUST contain the value "M" and/or values
 corresponding to "RECURRENCE‑ID" property values in the iCalendar
 data targeted by the request.

(CALDAV:valid‑managed‑id): The "managed‑id" query parameter in the
 POST request MUST NOT be present with an "action=attachment‑add"
 query parameter and MUST contain a value corresponding to a
 "MANAGED‑ID" property parameter value in the iCalendar data
 targeted by the request.

 A POST request to add, modify, or delete a managed attachment results
 in an implicit modification of the targeted calendar resource
 (equivalent of a PUT). As a consequence, clients should also be
 prepared to handle preconditions associated with this implicit PUT.
 This includes (but is not limited to):

 (CALDAV:max-resource-size) (from Section 5.3.2.1 of [RFC4791])

 (DAV:quota-not-exceeded) (from Section 6 of [RFC4331])

 (DAV:sufficient-disk-space) (from Section 6 of [RFC4331])

 A PUT request to add or modify an existing calendar object resource
 can make reference to an existing managed attachment. The following
 new precondition is defined:

(CALDAV:valid‑managed‑id‑parameter): a "MANAGED‑ID" property
 parameter value in the iCalendar data in the PUT request is not
 valid (e.g., does not match any existing managed attachment).

 If a precondition for a request is not satisfied:

 1. The response status of the request MUST either be 403 (Forbidden)
 if the request should not be repeated because it will always
 fail, or 409 (Conflict) if it is expected that the user might be
 able to resolve the conflict and resubmit the request.

 2. The appropriate XML element MUST be returned as the child of a
 top-level DAV:error element in the response body.

3.12. Additional Considerations

3.12.1. Quotas

 The WebDAV Quotas specification [RFC4331] defines two live WebDAV
 properties (DAV:quota-available-bytes and DAV:quota-used-bytes) to
 communicate storage quota information to clients. Server
 implementations MAY choose to include managed attachment sizes when
 calculating the amount of storage used by a particular resource.

3.12.2. Access Control

 Access to the managed attachments referenced in a calendar object
 resource SHOULD be restricted to only those calendar users who have
 access to that calendar object either directly or indirectly (via
 being an attendee who would receive a scheduling message).

 When accessing a managed attachment, clients SHOULD be prepared to
 authenticate with the server storing the attachment resource. The
 credentials required to access the managed attachment store could be
 different from the ones used to access the CalDAV server.

 This specification only allows organizers of scheduled events to add
 managed attachments. Servers MUST prevent attendees of scheduled
 events from adding, updating, or removing managed attachments. In
 addition, the server MUST prevent a calendar user from reusing a
 managed attachment (based on its "managed-id" value), unless that
 user is the one who originally created the managed attachment.

3.12.3. Redirects

 For POST requests that add or update attachment data, the server MAY
 issue a 307 (Temporary Redirect) [RFC7231] or 308 (Permanent
 Redirect) [RFC7538] response to require the client to reissue the
 POST request using a different Request-URI. As a result, clients
 SHOULD use the "100-continue" expectation defined in Section 5.1.1 of
 [RFC7231]. Using this mechanism ensures that, if a redirect does
 occur, the client does not needlessly send the attachment data.

3.12.4. Processing Time

 Clients can expect servers to take a while to respond to POST
 requests that include large attachment bodies. Servers SHOULD use
 the 102 (Processing) interim response defined in Section 10.1 of
 [RFC2518] to keep the client connection alive if the POST request
 will take significant time to complete.

3.12.5. Automatic Cleanup by Servers

 Servers MAY automatically remove attachment data, for example, to
 regain the storage taken by unused attachments or as the result of a
 virus scanning. When doing so, they SHOULD NOT modify calendar data
 referencing those attachments. Instead, they SHOULD respond with 410
 (Gone) to any request on the removed attachment URI.

3.12.6. Sending Scheduling Messages with Attachments

 When a managed attachment is added, updated, or removed from a
 calendar object resource, the server MUST ensure that a scheduling
 message is sent to update any attendees with the changes, as per
 [RFC6638].

3.12.7. Migrating Calendar Data

 When exporting calendar data from a CalDAV server supporting managed
 attachments, clients SHOULD remove all "MANAGED-ID" property
 parameters from "ATTACH" properties in the calendar data. Similarly,
 when importing calendar data from another source, clients SHOULD
 remove any "MANAGED-ID" property parameters on "ATTACH" properties
 (failure to do so will likely result in the server removing those
 properties automatically).

4. Modifications to iCalendar Syntax

4.1. SIZE Property Parameter

Parameter Name: SIZE

Purpose: To specify the size of an attachment.

Format Definition: This property parameter is defined by the
 following notation:

 sizeparam = "SIZE" "=" paramtext
 ; positive integers

Description: This property parameter MAY be specified on "ATTACH"
 properties. It indicates the size in octets of the corresponding
 attachment data. Since iCalendar integer values are restricted to
 a maximum value of 2147483647, the current property parameter is
 defined as text to allow an extended range to be used.

 Example:

 ATTACH;SIZE=1234:https://attachments.example.com/abcd.txt

4.2. FILENAME Property Parameter

Parameter Name: FILENAME

Purpose: To specify the filename of a managed attachment.

Format Definition: This property parameter is defined by the
 following notation:

 filenameparam = "FILENAME" "=" paramtext

Description: This property parameter MAY be specified on "ATTACH"
 properties corresponding to managed attachments. Its value
 provides information on how to construct a filename for storing
 the attachment data. This parameter is very similar in nature to
 the Content‑Disposition header field "filename" parameter and
 exposes the same security risks. As a consequence, clients MUST
 follow the guidelines expressed in Section 4.3 of [RFC6266] when
 consuming this property parameter value. Similarly, servers MUST
 follow those same guidelines before storing a value.

 Example:

 ATTACH;FILENAME=agenda.html:

 https://attachments.example.com/rt452S

4.3. MANAGED-ID Property Parameter

Parameter Name: MANAGED‑ID

Purpose: To uniquely identify a managed attachment.

Format Definition: This property parameter is defined by the
 following notation:

 managedidparam = "MANAGED-ID" "=" paramtext

Description: This property parameter MUST be specified on "ATTACH"
 properties corresponding to managed attachments. Its value is
 generated by the server and uniquely identifies a managed
 attachment within the scope of the CalDAV server. This property
 parameter MUST NOT be present in the case of unmanaged
 attachments.

 Example:

 ATTACH;MANAGED-ID=aUNhbGVuZGFy:

 https://attachments.example.com/abcd.txt

5. Additional Message Header Fields

5.1. Cal-Managed-ID Response Header Field

 The Cal-Managed-ID response header field provides the value of the
 "MANAGED-ID" property parameter corresponding to a newly added
 "ATTACH" property.

 ABNF:

Cal‑Managed‑ID = "Cal‑Managed‑ID" ":" paramtext
; "paramtext" is defined in Section 3.1 of [RFC5545]

 Example:

 Cal-Managed-ID:aUNhbGVuZGFy

 The Cal-Managed-ID header field MUST only be sent by an origin server
 in response to a successful POST request with an "action" query
 parameter set to "attachment-add" or "attachment-update". It MUST
 only appear once in a response and MUST NOT appear in trailers.

 The Cal-Managed-ID header field is end to end and MUST be forwarded
 by intermediaries. Intermediaries MUST NOT insert, delete, or modify
 a Cal-Managed-ID header field.

6. Additional WebDAV Properties

6.1. CALDAV:managed-attachments-server-URL Property

Name: managed‑attachments‑server‑URL

Namespace: urn:ietf:params:xml:ns:caldav

Purpose: This property specifies the server base URI to use when
 retrieving managed attachments.

Protected: This property MUST be protected as only the server can
 update the value.

COPY/MOVE behavior: This property is only defined on a calendar home
 collection, which cannot be moved or copied.

allprop behavior: This property SHOULD NOT be returned by a PROPFIND
 DAV:allprop request.

Description: This property MAY be defined on a calendar home
 collection. If present, it contains either a single DAV:href XML
 element or none at all.

 When one DAV:href element is present, its value MUST be an
 absolute HTTP URI containing only the scheme (i.e., "https") and
 authority (i.e., host and port) parts. Whenever a managed
 attachment is to be retrieved via an HTTP GET, the client MUST
 construct the actual URL of the attachment by substituting the
 scheme and authority parts of the attachment URI (as stored in the
 iCalendar "ATTACH" property) with the present WebDAV property
 value.

 When no DAV:href element is present, the client MUST substitute
 the scheme and authority parts of the attachment URI with the
 scheme and authority part of the calendar home collection absolute
 URI.

 In the absence of this property, the client can consider the
 attachment URI as its actual URL.

 Definition:

 <!ELEMENT managed-attachments-server-URL (DAV:href?)>

 Example:

 <C:managed-attachments-server-URL xmlns:D="DAV:"

 xmlns:C="urn:ietf:params:xml:ns:caldav">
 <D:href>https://attachstore.example.com</D:href>
 </C:managed-attachments-server-URL>

6.2. CALDAV:max-attachment-size Property

Name: max‑attachment‑size

Namespace: urn:ietf:params:xml:ns:caldav

Purpose: This property provides a numeric value indicating the
 maximum attachment size, in octets, that the server is willing to
 accept when a managed attachment is stored on the server.

Protected: This property MUST be protected as it indicates limits
 provided by the server.

COPY/MOVE behavior: This property value MUST be preserved in COPY
 and MOVE operations.

allprop behavior: This property SHOULD NOT be returned by a PROPFIND
 DAV:allprop request.

Description: The "CALDAV:max‑attachment‑size" property is used to
 specify a numeric value that represents the maximum attachment
 size, in octets, that the server is willing to accept when a
 managed attachment is stored on the server. The property is
 defined on the parent collection of the calendar object resource
 to which the attachment is associated. Any attempt to store a
 managed attachment exceeding this size MUST result in an error,
 with the CALDAV:max‑attachment‑size precondition (Section 3.11)
 being violated. In the absence of this property, the client can
 assume that the server will allow storing an attachment of any
 reasonable size.

 Definition:

<!ELEMENT max‑attachment‑size (#PCDATA)>
<!‑‑ PCDATA value: a numeric value (positive decimal integer) ‑‑>

 Example:

 <C:max-attachment-size xmlns:C="urn:ietf:params:xml:ns:caldav"

 >102400000</C:max-attachment-size>

6.3. CALDAV:max-attachments-per-resource Property

Name: max‑attachments‑per‑resource

Namespace: urn:ietf:params:xml:ns:caldav

Purpose: This property provides a numeric value indicating the
 maximum number of managed attachments across all instances of a
 calendar object resource stored in a calendar collection.

Protected: This property MUST be protected as it indicates limits
 provided by the server.

COPY/MOVE behavior: This property value MUST be preserved in COPY
 and MOVE operations.

allprop behavior: This property SHOULD NOT be returned by a PROPFIND
 DAV:allprop request.

Description: The "CALDAV:max‑attachments‑per‑resource" property is
 used to specify a numeric value that represents the maximum number
 of managed attachments across all instances of a calendar object
 resource stored in a calendar collection. Unmanaged attachments
 are not counted toward that limit. The property is defined on the
 parent collection of the calendar object resource to which the
 attachment is associated. Any attempt to add a managed attachment
 that would cause the calendar resource to exceed this limit MUST
 result in an error, with the CALDAV:max‑attachments‑per‑resource
 precondition (Section 3.11) being violated. In the absence of
 this property, the client can assume that the server can handle
 any number of managed attachments per calendar resource.

 Definition:

<!ELEMENT max‑attachments‑per‑resource (#PCDATA)>
<!‑‑ PCDATA value: a numeric value (positive decimal integer) ‑‑>

 Example:

 <C:max-attachments-per-resource

 xmlns:C="urn:ietf:params:xml:ns:caldav"
 >12</C:max-attachments-per-resource>

7. Security Considerations

 The security considerations in [RFC4791] and [RFC4918] apply to this
 extension. Additionally, servers need to be aware that a client
 could attack underlying storage by POSTing extremely large
 attachments and could attack processing time by uploading a recurring
 event with a large number of overrides and then repeatedly adding,
 updating, and deleting attachments.

 Malicious content could be introduced into the calendar server by way
 of a managed attachment, and propagated to many end users via
 scheduling. Servers SHOULD check managed attachments for malicious
 or inappropriate content. Upon detecting such content, servers
 SHOULD remove the attachment following the rules described in
 Section 3.12.5.

8. IANA Considerations

8.1. Parameter Registrations

 This specification defines the following new iCalendar property
 parameters to be added to the "Parameters" registry defined in
 Section 8.2.4 of [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Parameter | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
SIZE	Current	RFC 8607, Section 4.1
FILENAME	Current	RFC 8607, Section 4.2
MANAGED‑ID	Current	RFC 8607, Section 4.3
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

8.2. Message Header Field Registrations

 The message header fields below should be added to the "Permanent
 Message Header Field Names" registry (see [RFC3864]).

8.2.1. Cal-Managed-ID

 Header field name: Cal-Managed-ID

 Protocol: http

 Status: standard

 Author/Change controller: IETF

 Reference: this specification (Section 5.1)

 Related information: none

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2518]
 Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D.
 Jensen, "HTTP Extensions for Distributed Authoring --
 WEBDAV", RFC 2518, DOI 10.17487/RFC2518, February 1999,
 <https://www.rfc-editor.org/info/rfc2518>.

 [RFC3864]
 Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

 [RFC4331]
 Korver, B. and L. Dusseault, "Quota and Size Properties
 for Distributed Authoring and Versioning (DAV)
 Collections", RFC 4331, DOI 10.17487/RFC4331, February
 2006, <https://www.rfc-editor.org/info/rfc4331>.

 [RFC4791]
 Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC4918]
 Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918,
 DOI 10.17487/RFC4918, June 2007,
 <https://www.rfc-editor.org/info/rfc4918>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC6266]
 Reschke, J., "Use of the Content-Disposition Header Field
 in the Hypertext Transfer Protocol (HTTP)", RFC 6266,
 DOI 10.17487/RFC6266, June 2011,
 <https://www.rfc-editor.org/info/rfc6266>.

 [RFC6638]
 Daboo, C. and B. Desruisseaux, "Scheduling Extensions to
 CalDAV", RFC 6638, DOI 10.17487/RFC6638, June 2012,
 <https://www.rfc-editor.org/info/rfc6638>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7240]
 Snell, J., "Prefer Header for HTTP", RFC 7240,
 DOI 10.17487/RFC7240, June 2014,
 <https://www.rfc-editor.org/info/rfc7240>.

 [RFC7538]
 Reschke, J., "The Hypertext Transfer Protocol Status Code
 308 (Permanent Redirect)", RFC 7538, DOI 10.17487/RFC7538,
 April 2015, <https://www.rfc-editor.org/info/rfc7538>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC5023]
 Gregorio, J., Ed. and B. de hOra, Ed., "The Atom
 Publishing Protocol", RFC 5023, DOI 10.17487/RFC5023,
 October 2007, <https://www.rfc-editor.org/info/rfc5023>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

 [RFC7320]
 Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 7320, DOI 10.17487/RFC7320, July 2014,
 <https://www.rfc-editor.org/info/rfc7320>.

 [RFC8144]
 Murchison, K., "Use of the Prefer Header Field in Web
 Distributed Authoring and Versioning (WebDAV)", RFC 8144,
 DOI 10.17487/RFC8144, April 2017,
 <https://www.rfc-editor.org/info/rfc8144>.

Appendix A. Example Involving Recurring Events

 In the following example, the organizer of a recurring meeting makes
 an unsuccessful attempt to add an agenda (HTML attachment) to the
 corresponding calendar resource with a conditional request. Note
 that the client includes both the Expect and Prefer header fields in
 the request, thereby preventing itself from needlessly sending the
 attachment data and requesting that the current resource be returned
 in the failure response (see Section 3.2 of [RFC8144]).

 >> Request <<

POST /events/65.ics?action=attachment‑add HTTP/1.1
Host: cal.example.com
Content‑Type: text/html; charset="utf‑8"
Content‑Disposition: attachment;filename=agenda.html
Content‑Length: 80
If‑Match: "abcdefg‑000"
Expect: 100‑continue
Prefer: return=representation

 >> Final Response <<

HTTP/1.1 412 Precondition Failed
Content‑Type: text/calendar; charset="utf‑8"
Content‑Length: 929
Content‑Location: https://cal.example.com/events/65.ics
ETag: "123456789‑000‑000"

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example Corp.//CalDAV Server//EN
BEGIN:VTIMEZONE
LAST‑MODIFIED:20040110T032845Z
TZID:America/Montreal
BEGIN:DAYLIGHT
DTSTART:20000404T020000
RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4
TZNAME:EDT
TZOFFSETFROM:‑0500
TZOFFSETTO:‑0400
END:DAYLIGHT
BEGIN:STANDARD
DTSTART:20001026T020000
RRULE:FREQ=YEARLY;BYDAY=‑1SU;BYMONTH=10
TZNAME:EST
TZOFFSETFROM:‑0400
TZOFFSETTO:‑0500
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
UID:20010712T182145Z‑123401@example.com
DTSTAMP:20120201T203412Z
DTSTART;TZID=America/Montreal:20120206T100000
DURATION:PT1H
RRULE:FREQ=WEEKLY
SUMMARY:Planning Meeting
ORGANIZER:mailto:cyrus@example.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:cyrus@exampl
 e.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:arnaudq@exam
 ple.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=NEEDS‑ACTION:mailto:mike@exa
 mple.com
END:VEVENT
END:VCALENDAR

 The organizer of a recurring meeting successfully adds an agenda
 (HTML attachment) to the corresponding calendar resource. Attendees
 of the meeting are granted read access to the newly created
 attachment resource. Their own copy of the meeting is updated to
 include the new "ATTACH" property pointing to the attachment
 resource, and they are notified of the change via their scheduling
 inbox.

 >> Request <<

POST /events/65.ics?action=attachment‑add HTTP/1.1
Host: cal.example.com
Content‑Type: text/html; charset="utf‑8"
Content‑Disposition: attachment;filename=agenda.html
Content‑Length: 80
If‑Match: "123456789‑000‑000"
Expect: 100‑continue
Prefer: return=representation

 >> Interim Response <<

 HTTP/1.1 100 Continue

 >> Request Body <<

<html>
 <body>
 <h1>Agenda</h1>
 <p>As usual</p>
 </body>
</html>

 >> Final Response <<

HTTP/1.1 201 Created
Content‑Type: text/calendar; charset="utf‑8"
Content‑Length: 1043
Content‑Location: https://cal.example.com/events/65.ics
ETag: "123456789‑000‑111"
Cal‑Managed‑ID: 97S

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example Corp.//CalDAV Server//EN
BEGIN:VTIMEZONE
LAST‑MODIFIED:20040110T032845Z
TZID:America/Montreal
BEGIN:DAYLIGHT
DTSTART:20000404T020000
RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4
TZNAME:EDT
TZOFFSETFROM:‑0500
TZOFFSETTO:‑0400
END:DAYLIGHT
BEGIN:STANDARD
DTSTART:20001026T020000
RRULE:FREQ=YEARLY;BYDAY=‑1SU;BYMONTH=10
TZNAME:EST
TZOFFSETFROM:‑0400
TZOFFSETTO:‑0500
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
UID:20010712T182145Z‑123401@example.com
DTSTAMP:20120201T203412Z
DTSTART;TZID=America/Montreal:20120206T100000
DURATION:PT1H
RRULE:FREQ=WEEKLY
SUMMARY:Planning Meeting
ORGANIZER:mailto:cyrus@example.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:cyrus@exampl
 e.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:arnaudq@exam
 ple.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=NEEDS‑ACTION:mailto:mike@exa
 mple.com
ATTACH;MANAGED‑ID=97S;FMTTYPE=text/html;SIZE=80;
 FILENAME=agenda.html:https://cal.example.com/attach/65/34X22R
END:VEVENT
END:VCALENDAR

 The organizer has a more specific agenda for the 20th of February
 meeting. It is added to that particular instance of the meeting by
 specifying the "rid" query parameter. Note that an overridden
 instance is created with the "RECURRENCE-ID" property value matching
 the value of the "rid" query parameter in the request. Also, note
 that the server takes significant time to complete the request and
 notifies the client accordingly.

 >> Request <<

POST /events/65.ics?action=attachment‑add&rid=20120220T100000 HTTP/1.1
Host: cal.example.com
Content‑Type: text/html; charset="utf‑8"
Content‑Disposition: attachment;filename=agenda0220.html
Content‑Length: 105
If‑Match: "123456789‑000‑111"
Expect: 100‑continue
Prefer: return=representation

 >> Interim Response <<

 HTTP/1.1 100 Continue

 >> Request Body <<

<html>
 <body>
 <h1>Agenda</h1>
 <p>Something different, for a change</p>
 </body>
</html>

 >> Interim Response <<

 HTTP/1.1 102 Processing

 >> Final Response <<

HTTP/1.1 201 Created
Content‑Type: text/calendar; charset="utf‑8"
Content‑Length: 1661
Content‑Location: https://cal.example.com/events/65.ics
ETag: "123456789‑000‑222"
Cal‑Managed‑ID: 33225

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example Corp.//CalDAV Server//EN
BEGIN:VTIMEZONE
LAST‑MODIFIED:20040110T032845Z
TZID:America/Montreal
BEGIN:DAYLIGHT
DTSTART:20000404T020000
RRULE:FREQ=YEARLY;BYDAY=1SU;BYMONTH=4
TZNAME:EDT
TZOFFSETFROM:‑0500
TZOFFSETTO:‑0400
END:DAYLIGHT
BEGIN:STANDARD
DTSTART:20001026T020000
RRULE:FREQ=YEARLY;BYDAY=‑1SU;BYMONTH=10
TZNAME:EST
TZOFFSETFROM:‑0400
TZOFFSETTO:‑0500
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
UID:20010712T182145Z‑123401@example.com
DTSTAMP:20120201T203412Z
DTSTART;TZID=America/Montreal:20120206T100000
DURATION:PT1H
RRULE:FREQ=WEEKLY
SUMMARY:Planning Meeting
ORGANIZER:mailto:cyrus@example.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:cyrus@exampl
 e.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:arnaudq@exam
 ple.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=NEEDS‑ACTION:mailto:mike@exa
 mple.com
ATTACH;MANAGED‑ID=97S;FMTTYPE=text/html;SIZE=80;
 FILENAME=agenda.html:https://cal.example.com/attach/65/34X22R
END:VEVENT
BEGIN:VEVENT
UID:20010712T182145Z‑123401@example.com
RECURRENCE‑ID;TZID=America/Montreal:20120220T100000
DTSTAMP:20120201T203412Z
DTSTART;TZID=America/Montreal:20120220T100000
DURATION:PT1H
SUMMARY:Planning Meeting
ORGANIZER:mailto:cyrus@example.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:cyrus@example.
 com

ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=ACCEPTED:mailto:arnaudq@exampl
 e.com
ATTENDEE;CUTYPE=INDIVIDUAL;PARTSTAT=NEEDS‑ACTION:mailto:mike@examp
 le.com
ATTACH;MANAGED‑ID=33225;FMTTYPE=text/html;SIZE=105;
 FILENAME=agenda0220.html:https://cal.example.com/attach/65/FGZ225
END:VEVENT
END:VCALENDAR

Acknowledgments

 This specification came about via discussions at the Calendaring and
 Scheduling Consortium. Thanks in particular to Mike Douglass and
 Eric York.

Authors' Addresses

Cyrus Daboo
Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
United States of America

Email: cyrus@daboo.name
URI: http://www.apple.com/

Arnaud Quillaud
Oracle Corporation
180, Avenue de l'Europe
Saint Ismier cedex 38334
France

Email: arnaud.quillaud@oracle.com
URI: http://www.oracle.com/

Kenneth Murchison (editor)
FastMail US LLC
1429 Walnut St, Suite 1201
Philadephia, PA 19102
United States of America

Email: murch@fastmailteam.com
URI: http://www.fastmail.com/

draft-calext-vpoll-00 - VPOLL: Consensus Scheduling Component for iCalendar

Index
Back 5
Prev
Next

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: November 24, 2019

E. York

California Things, Inc

C. Daboo

Apple Inc.

M. Douglass

Spherical Cow Group

May 23, 2019

VPOLL: Consensus Scheduling Component for iCalendar

draft-calext-vpoll-00

Abstract

 This specification introduces a new iCalendar component which allows
 for consensus scheduling, that is, voting on a number of alternative
 meeting or task alternatives.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terms and definitions
	 2.1. consensus scheduling

	 2.2. active Vpoll

	 2.3. voter

	3. Simple Consensus Scheduling
	 3.1. The VPOLL Component: An Overview

	 3.2. The VPOLL Subcomponents: An Overview

	 3.3. VPOLL responses

	 3.4. VPOLL updates

	 3.5. VPOLL Completion

	 3.6. Other Responses

	4. iCalendar Extensions
	 4.1. Updated Relation Type Value

	 4.2. Updated Status Value

	 4.3. New Property Parameters
	 4.3.1. Required

	 4.3.2. Stay-Informed

	 4.4. New Properties
	 4.4.1. Accept-Response

	 4.4.2. Poll-Completion

	 4.4.3. Poll-Item-Id

	 4.4.4. Poll-Mode

	 4.4.5. Poll-properties

	 4.4.6. Poll-Winner

	 4.4.7. Reply-URL

	 4.4.8. Response

	 4.4.9. Voter

	 4.5. New Components
	 4.5.1. VPOLL Component

	 4.5.2. VVOTER Component

	 4.5.3. VOTE Component

	5. Poll Modes
	 5.1. POLL-MODE:BASIC
	 5.1.1. Property restrictions

	 5.1.2. Outcome reporting

	6. iTIP Extensions
	 6.1. Methods

	 6.2. Interoperability Models
	 6.2.1. Delegation

	 6.2.2. Acting on Behalf of Other Calendar Users

	 6.2.3. Component Revisions

	 6.2.4. Message Sequencing

	 6.3. Application Protocol Elements
	 6.3.1. Methods for VPOLL Calendar Components

	 6.3.2. Method: PUBLISH

	 6.3.3. Method: REQUEST
	 6.3.3.1. Rescheduling a poll

	 6.3.3.2. Updating or Reconfirmation of a Poll

	 6.3.3.3. Confirmation of a Poll

	 6.3.3.4. Closing a Poll

	 6.3.3.5. Delegating a Poll to Another CU

	 6.3.3.6. Changing the Organizer

	 6.3.3.7. Sending on Behalf of the Organizer

	 6.3.3.8. Forwarding to an Uninvited CU

	 6.3.3.9. Updating Voter Status

	 6.3.4. Method: REPLY

	 6.3.5. Method: CANCEL

	 6.3.6. Method: REFRESH

	 6.3.7. Method: POLLSTATUS

	7. CalDAV Extensions
	 7.1. Calendar Collection Properties
	 7.1.1. CALDAV:supported-vpoll-component-sets

	 7.1.2. CALDAV:vpoll-max-items

	 7.1.3. CALDAV:vpoll-max-active

	 7.1.4. CALDAV:vpoll-max-voters

	 7.1.5. CalDAV:even-more-properties

	 7.1.6. Extensions to CalDAV scheduling

	 7.2. Additional Preconditions for PUT, COPY, and MOVE

	 7.3. CalDAV:calendar-query Report
	 7.3.1. Example: Partial Retrieval of VPOLL

	 7.4. CalDAV time ranges

	8. Security Considerations

	9. IANA Considerations
	 9.1. Parameter Registrations

	 9.2. Property Registrations

	 9.3. POLL-MODE Registration Template

	 9.4. POLL-MODE Registrations

	10. Acknowledgements

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Open issues

	Appendix B. Change log

	Authors' Addresses

1. Introduction

 The currently existing approach to agreeing on meeting times using
 iTip [RFC5546] and/or iMip [RFC6047] has some significant failings.
 There is no useful bargaining or suggestion mechanism in iTip, only
 the ability for a potential attendee to accept or refuse or to
 counter with a time of their own choosing.

 Part of the problem is that for many potential attendees, their
 freebusy is not an accurate representation of their availability. In
 fact, when trying to schedule conference calls across different
 organizations, attendees may not be allowed to provide freebusy
 information or availability as this may reveal something of the
 organizations internal activities.

 A number of studies have shown that large amounts of time are spent
 trying to come to an agreement - up to and beyond 20 working hours
 per meeting. Many organizers fall back on other approaches such as
 phone calls and email to determine a suitable time.

 Online services have appeared as a result and these allow
 participants to vote on a number of alternatives without revealing or
 using freebusy or availability. When agreement is reached a
 conventional scheduling message may be sent to the attendees. This
 approach appears to reach consensus fairly rapidly. Peer pressure
 may have some bearing on this as all voters are usually able to see
 the current state of the voting and may adjust their own meeting
 schedules to make themselves available for a popular choice.

 The component and properties defined in this specification provide a
 standardized structure for this process and allow calendar clients
 and servers and web based services to interact.

 These structures also have uses beyond the relatively simple needs of
 most meeting organizers. The process of coming to consensus can also
 be viewed as a bidding process.

2. Terms and definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 Additionally the following terms are used:

2.1. consensus scheduling

 The process whereby users come to some agreement on meeting or task
 alternatives and then book that meeting or task.

2.2. active Vpoll

 A VPoll may have a DTSTART, DTEND and DURATION which may define the
 start and end of the active voting period

2.3. voter

 A participant who votes on the alternatives. A voter need not be an
 attendee of any of the alternatives presented.

3. Simple Consensus Scheduling

 This specification defines components and properties which can be
 used for simple consensus scheduling but also have the generality to
 handle more complex cases. To provide an easy (and for many -
 sufficient) introduction to consensus scheduling and VPOLL we will
 outline the flow of information for the simple case of voting on a
 number of meeting alternatives which differ only in time. In
 addition the voters will all be potential attendees.

 This specification not only defines data structures but adds a new
 iTip method used when consensus has been reached. This document will
 show how a VPOLL object is used to inform voters of the state of a
 simple vote on some alternatives.

3.1. The VPOLL Component: An Overview

 The VPOLL component acts as a wrapper for a number of alternatives to
 be voted on, together with some properties and a new component used
 to maintain the state of the voting. For our simple example the
 following VPOLL properties and sub-components are either required or
 appropriate:

 DTSTAMP

 The usual [RFC5545] property.

 SEQUENCE

 The usual [RFC5545] property. See below for SEQUENCE behavior.

 UID

 The usual [RFC5545] property.

 ORGANIZER

 The usual [RFC5545] property. In general this need not be an
 organizer of any of the alternatives. In this simple outline we
 assume it is the same.

 SUMMARY

 The usual [RFC5545] property. This optional but recommended
 property provides the a short title to the poll.

 DESCRIPTION

 The usual [RFC5545] property. This optional property provides
 more details.

 DTEND

 The usual [RFC5545] property. This optional property provides a
 poll closing time and date after which the VPOLL is no longer
 active.

 POLL-MODE

 A new property which defines how the votes are used to obtain a
 result. For our use case it will take the value "BASIC" meaning
 one event will be chosen from the alternatives.

 POLL-COMPLETION

 A new property which defines who (server or client) chooses and/or
 submits the winning choice. In our example the value is "SERVER-
 SUBMIT" which means the client chooses the winner but the server
 will submit the winning choice.

 POLL-PROPERTIES

 A new property which defines which icalendar properties are being
 voted on. For our use case it will take the value "DTSTART,
 LOCATION" meaning only those properties are significant for
 voting. Other properties in the events may differ but are not
 considered significant for the voting process.

 VVOTER

 A new component. There is one of these for each voter and it
 contains a VOTER property to identify the voter and one VOTE
 component for each item being voted on.

 VOTE

 A new component. There is one of these for each voter and choice.
 It usually contains at least a POLL-ITEM-ID property to identify
 the choice and a RESPONSE property to provide a vote. For more
 complex poll modes it may contain other information such as cost
 or estimated duration.

 VOTER

 A new property. There is one of these for each voter and it is
 similar to the [RFC5545] ATTENDEE property. It identifies the
 VVOTER component to show who is taking part in the voting and
 their results.

 VEVENT

 In our simple use case there will be multiple VEVENT sub-
 components defining the alternatives. Each will have a different
 date and or time for the meeting.

 VPOLL with 3 voters and 3 alternative meetings:

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example//Example
METHOD:REQUEST
BEGIN:VPOLL
POLL‑MODE:BASIC
POLL‑COMPLETION:SERVER‑SUBMIT
POLL‑PROPERTIES:DTSTART,LOCATION
ORGANIZER:mailto:mike@example.com
UID:sched01‑1234567890
DTSTAMP:20120101T000000Z
SUMMARY:What to do this week
DTEND:20120101T000000Z
BEGIN: VVOTER
VOTER:mailto:cyrus@example.com
END VVOTER
BEGIN: VVOTER
VOTER:mailto:eric@example.com
END VVOTER
BEGIN: VVOTER
VOTER:mailto:mike@example.com
END VVOTER
BEGIN:VEVENT.......(with a poll‑item‑id=1)
END:VEVENT
BEGIN:VEVENT.......(with a poll‑item‑id=2)
END:VEVENT
BEGIN:VEVENT.......(with a poll‑item‑id=3)
END:VEVENT
END:VPOLL
END:VCALENDAR

 As can be seen in the example above, there is an iTip METHOD property
 with the value REQUEST. The VPOLL object will be distributed to all
 the voters, either through iMip or through some VPOLL enabled
 service.

3.2. The VPOLL Subcomponents: An Overview

 Within the VPOLL component we have the alternatives to vote on. In
 many respects these are standard [RFC5545] components. For our
 simple use case they are all VEVENT components. In addition to the
 usual [RFC5545] properties some extra properties are used for a
 VPOLL.

 POLL-ITEM-ID

 This provides a unique reference to the sub-component within the
 VPOLL. It's value SHOULD be a small integer.

3.3. VPOLL responses

 Upon receipt of a VPOLL REQUEST the voter will reply with a VPOLL
 component containing their vote. In our simple case it will have the
 following properties and components:

 DTSTAMP

 The usual [RFC5545] property.

 SEQUENCE

 The usual [RFC5545] property. See below for SEQUENCE behavior.

 UID

 Same as the request.

 ORGANIZER

 Same as the request.

 SUMMARY

 Same as the request.

 VVOTER

 One only.

 VOTER

 One only inside the VVOTER component - the voter replying.

 VOTE

 One per item being voted on. There does not need to be one for
 each choice.

 POLL-ITEM-ID

 One inside each VOTE component to identify the choice.

 RESPONSE

 One inside each VOTE component to specify the vote.

 Note that a voter can send a number of REPLYs for each REQUEST sent
 by the organizer. Each REPLY completely replaces the voting record
 for that voter for all components being voted on. In our example, if
 Eric responds and votes for items 1 and 2 and then responds again
 with a vote for only item 3, the final outcome is one vote on item 3.

 REPLY VPOLL from Cyrus:

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example//Example
METHOD: REPLY
BEGIN:VPOLL
ORGANIZER:mailto:mike@example.com
UID:sched01‑1234567890
DTSTAMP:20120101T010000Z
SUMMARY:What to do this week
BEGIN:VVOTER
VOTER:mailto:cyrus@example.com
BEGIN:VOTE
POLL‑ITEM‑ID:1
RESPONSE:50
COMMENT:Work on iTIP
END:VOTE
BEGIN:VOTE
POLL‑ITEM‑ID:2
RESPONSE:100
COMMENT:Work on WebDAV
END:VOTE
BEGIN:VOTE
POLL‑ITEM‑ID:3
RESPONSE:0
END:VOTE
END:VVOTER
END:VPOLL
END:VCALENDAR

3.4. VPOLL updates

 When the organizer receives a response from one or more voters the
 current state of the poll is sent to all voters. The new iTip method
 POLLSTATUS is used. The VPOLL can contain a reduced set of
 properties but MUST contain DTSTAMP, SEQUENCE (if not 0), UID,
 ORGANIZER and one or more VVOTER components each populated with a
 VOTER property and zero or more VOTE components.

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example//Example
METHOD: POLLSTATUS
BEGIN:VPOLL
ORGANIZER:mailto:mike@example.com
UID:sched01‑1234567890
DTSTAMP:20120101T020000Z
SEQUENCE:0
SUMMARY:What to do this week
BEGIN:VVOTER
VOTER:mailto:cyrus@example.com
BEGIN: VOTE
POLL‑ITEM‑ID:1
RESPONSE:50
COMMENT:Work on iTIP
END:VOTE
BEGIN:VOTE
POLL‑ITEM‑ID:2
RESPONSE:100
COMMENT:Work on WebDAV
END:VOTE
BEGIN:VOTE
POLL‑ITEM‑ID:3
RESPONSE:0
END:VOTE
END:VVOTER
BEGIN:VVOTER
VOTER:mailto:eric@example.com
BEGIN:VOTE
POLL‑ITEM‑ID:1
RESPONSE:100
END:VOTE
BEGIN:VOTE
POLL‑ITEM‑ID:2
RESPONSE:100
END:VOTE
BEGIN:VOTE
POLL‑ITEM‑ID:3
RESPONSE:0
END:VOTE
END:VVOTER
END:VPOLL
END:VCALENDAR

3.5. VPOLL Completion

 After a number of REPLY messages have been received the poll will be
 considered complete. If there is a DTEND on the poll the system may
 automatically close the poll, or the organizer may, at any time,
 consider the poll complete. A VPOLL can be completed (and
 effectively closed for voting) by sending an iTip REQUEST message
 with the VPOLL STATUS property set to COMPLETED.

 The poll winner is confirmed by sending a final iTip REQUEST message
 with the VPOLL STATUS property set to CONFIRMED. In this case the
 VPOLL component contains all the events being voted on along with a
 POLL-WINNER property to identify the winning event. As the POLL-
 COMPLETION property is set to SERVER-SUBMIT the server will submit
 the winning choice and when it has done so set the STATUS to
 "SUBMITTED".

 VPOLL confirmation:

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//Example//Example
METHOD: REQUEST
BEGIN:VPOLL
ORGANIZER:mailto:douglm@example.com
UID:sched01‑1234567890
DTSTAMP:20120101T030000Z
COMPLETED:20120101T030000Z
POLL‑COMPLETION:SERVER‑SUBMIT
SEQUENCE:0
SUMMARY:What to do this week
STATUS:CONFIRMED
POLL‑WINNER:3
BEGIN:VEVENT.......(with a poll‑item‑id=1)
END:VEVENT
BEGIN:VEVENT.......(with a poll‑item‑id=2)
END:VEVENT
BEGIN:VEVENT.......(with a poll‑item‑id=3)
END:VEVENT
END:VPOLL
END:VCALENDAR

3.6. Other Responses

 A voter being asked to choose between a number of ORGANIZER supplied
 alternatives may find none of them acceptable or may simply not care.
 An alternative response, which may be disallowed by the ORGANIZER, is
 to send back the respondees availability or freebusy or even one or
 more new, alternative choices.

 This is accomplished by responding with a VOTE component which has no
 POLL-ITEM-ID property. In this case it MUST contain some alternative
 information. What form this takes depends on the poll mode in
 effect.

4. iCalendar Extensions

4.1. Updated Relation Type Value

 Relationship parameter type values are defined in section 3.2.15. of
 [RFC5545]. This specification updates that type to include the new
 relationship value POLL to provide a link to the VPOLL component in
 which the current component appears.

 Format Definition

 This property parameter is redefined by the following notation:

reltypeparam /= "RELTYPE" "=" "POLL"
; Property value is a VPOLL uid

 Description

 This parameter can be specified on a property that references
 another related calendar component. The new parameter value
 indicates that the associated property references a VPOLL
 component which contains the current component.

4.2. Updated Status Value

 Status property values are defined in section 3.8.1.11. of [RFC5545].
 This specification updates that type to define valid VPOLL status
 values.

 Format Definition

 This property parameter is redefined by the following notation:

statvalue /= statvalue‑poll
 ; Status values for "VPOLL".
statvalue‑poll = "IN‑PROCESS"
 / "COMPLETED" ; Poll has closed,
 ; nothing has been chosen yet
 / "CONFIRMED" ; Poll has closed and
 ; winning items confirmed
 / "SUBMITTED" ; The winning item has been
 ; submitted
 / "CANCELLED"

 Description

 These values allow clients and servers to handle the choosing and
 submission of winning choices.

If the client is choosing and the server submitting then the
client should set the POLL‑WINNER property, set the status to
CONFIRMED and save the poll. When the server submits the winning
choice it will set the status to SUBMITTED.

4.3. New Property Parameters

4.3.1. Required

 Parameter name

 REQUIRED

 Purpose

 To specify whether the associated property is required in the
 current context.

 Format Definition

 This parameter is defined by the following notation:

 requirededparam = "REQUIRED" "=" ("TRUE" / "FALSE")

 ; Default is FALSE

 Description

 This parameter MAY be specified on REPLY-URL and, if the value is
 TRUE, indicates the organizer requires all replies to be made via
 the specified service rather than iTip replies.

4.3.2. Stay-Informed

 Parameter name

 STAY-INFORMED

 Purpose

 To specify the voter also wants to be added as an ATTENDEE when
 the poll is confirmed.

 Format Definition

 This parameter is defined by the following notation:

 stayinformedparam = "STAY-INFORMED" "=" ("TRUE" / "FALSE")

 ; Default is FALSE

 Description

 This parameter MAY be specified on VOTER and, if the value is
 TRUE, indicates the voter wishes to be added to the final choice
 as a non participant.

4.4. New Properties

4.4.1. Accept-Response

 Property name

 ACCEPT-RESPONSE

 Purpose

 This property is used in VPOLL to indicate the types of component
 that may be supplied in a response.

 Property Parameters

 Non-standard or iana parameters can be specified on this property.

 Conformance

 This property MAY be specified in a VPOLL component.

 Description

 When used in a VPOLL this property indicates what allowable
 component types may be returned in a reply. Typically this would
 allow a voter to respond with their freebusy or availability
 rather than choosing one of the presented alternatives.

 If this property is not present voters are only allowed to respond
 to the choices in the request.

 Format Definition

 This property is defined by the following notation:

 acceptresponse = "ACCEPT-RESPONSE" acceptresponseparams ":"

 iana-token ("," iana-token) CRLF

 acceptresponseparams = *(";" other-param)

4.4.2. Poll-Completion

 Property name

 POLL-COMPLETION

 Purpose

 This property is used in VPOLL to indicate whether the client or
 server is responsible for choosing and/or submitting the
 winner(s).

 Description

 When a VPOLL is stored on a server which is capable of handling
 choosing and submission of winning choices a value of SERVER
 indicates that the server should close the poll, choose the winner
 and submit whenever it is appropriate to do so.

For example, in BASIC poll‑mode, reaching the DTEND of the poll
could trigger this server side action.
Server initiated submission requires that the submitted choice
MUST be a valid calendaring component.
POLL‑COMPLETION=SERVER‑SUBMIT allows the client to set the poll‑
winner, set the status to CONFIRMED and then store the poll on the
server. The server will then submit the winning choice and set
the status to SUBMITTED.

 Format Definition

 This property is defined by the following notation:

 poll-completion = "POLL-COMPLETION" pcparam ":" pcvalue CRLF

 pcparam = *(";" other-param)

pcvalue = "SERVER" ; The server is responsible for both choosing and
 ; submitting the winner(s)
 / "SERVER‑SUBMIT" ; The server is responsible for
 ; submitting the winner(s). The client chooses.
 / "SERVER‑CHOICE" ; The server is responsible for
 ; choosing the winner(s). The client will submit.
 / "CLIENT" ; The client is responsible for both choosing and
 ; submitting the winner(s)
 / iana‑token
 / x‑name
 ;Default is CLIENT

 Example

 The following is an example of this property:

 POLL-COMPLETION: SERVER-SUBMIT

4.4.3. Poll-Item-Id

 Property name

 POLL-ITEM-ID

 Purpose

 This property is used in VPOLL child components as an identifier.

 Value type

 INTEGER

 Property Parameters

 Non-standard parameters can be specified on this property.

 Conformance

 This property MUST be specified in a VOTE component and in VPOLL
 choice items.

 Description

 In a METHOD:REQUEST each choice component MUST have a POLL-ITEM-ID
 property. Each set of components with the same POLL- ITEM-ID
 value represents one overall set of items to be voted on.

 POLL-ITEM-ID SHOULD be a unique small integer for each component
 or set of components. If it remains the same between REQUESTs
 then the previous response for that component MAY be re-used. To
 force a re-vote on a component due to a significant change, the
 POLL-ITEM-ID MUST change.

 Format Definition

 This property is defined by the following notation:

 pollitemid = "POLL-ITEM-ID" pollitemdparams ":"

 integer CRLF

pollitemidparams = *(
 (";" other‑param)
)

4.4.4. Poll-Mode

 Property name

 POLL-MODE

 Purpose

 This property is used in VPOLL to indicate what voting mode is to
 be applied.

 Property Parameters

 Non-standard or iana parameters can be specified on this property.

 Conformance

 This property MAY be specified in a VPOLL component or its sub-
 components.

 Description

 The poll mode defines how the votes are applied to obtain a
 result. BASIC mode, the default, means that the voters are
 selecting one component (or group of components) with a given
 POLL=ITEM-ID.

 Other polling modes may be defined in updates to this
 specification. These may allow for such modes as ranking or task
 assignment.

 Format Definition

 This property is defined by the following notation:

 pollmode = "POLL-MODE" pollmodeparams ":"

 ("BASIC" / iana-token / other-token) CRLF

 pollmodeparams = *(";" other-param)

4.4.5. Poll-properties

 Property name

 POLL-PROPERTIES

 Purpose

 This property is used in VPOLL to define which icalendar
 properties are being voted on.

 Property Parameters

 Non-standard or iana parameters can be specified on this property.

 Conformance

 This property MAY be specified in a VPOLL component.

 Description

 This property defines which icalendar properties are significant
 in the voting process. It may not be clear to voters which
 properties are varying in a significant manner. Clients may use
 this property to highlight those listed properties.

 Format Definition

 This property is defined by the following notation:

 pollproperties = "POLL-PROPERTIES" pollpropparams ":"

 text *("," text) CRLF

 pollpropparams = *(";" other-param)

4.4.6. Poll-Winner

 Property name

 POLL-WINNER

 Purpose

 This property is used in a basic mode VPOLL to indicate which of
 the VPOLL sub-components won.

 Value type

 INTEGER

 Property Parameters

 Non-standard parameters can be specified on this property.

 Conformance

 This property MAY be specified in a VPOLL component.

 Description

 For poll confirmation each child component MUST have a POLL-ITEM-
 ID property. For basic mode the VPOLL component SHOULD have a
 POLL-WINNER property which MUST correspond to one of the POLL-
 ITEM-ID properties and indicates which sub-component was the
 winner.

 Format Definition

 This property is defined by the following notation:

 pollwinner = "POLL-WINNER" pollwinnerparams ":"

 integer CRLF

 pollwinnerparams = *(";" other-param)

; Used with a STATUS:CONFIRMED VPOLL to indicate which
; components have been confirmed

4.4.7. Reply-URL

 Property name

 REPLY-URL

 Purpose

 This property may be used in scheduling messages to indicate
 additional reply methods, for example a web-service.

 Property Parameters

 Non-standard, required or iana parameters can be specified on this
 property.

 Conformance

 This property MAY be specified in a VPOLL component.

 Description

 When used in a scheduling message this property indicates
 additional or required services that can be used to reply.
 Typically this would be a web service of some form.

 Format Definition

 This property is defined by the following notation:

 reply-url = "REPLY-URL" reply-urlparams ":" uri CRLF

reply‑urlparams = *(
 (";" requiredparam) /
 (";" other‑param)
)

4.4.8. Response

 Property name

 RESPONSE

 Purpose

 To specify a response vote.

 Value type

 INTEGER

 Format Definition

 This property is defined by the following notation:

 response = "RESPONSE" response-params ":" integer CRLF

 ; integer value 0..100

 responseparams = *(";" other-param)

 Description

 This parameter can be specified on the POLL-ITEM-ID property to
 provide the value of the voters response. This parameter allows
 for fine grained responses which are appropriate to some

 applications. For the case of individuals voting for a choice of
 events, client applications SHOULD conform to the following
 convention:

 * 0 - 39 A "NO vote"

 * 40 - 79 A "MAYBE" vote

 * 80 - 89 A "YES - but not preferred vote"

* 90‑100 A "YES" vote.
 Clients MUST preserve the response value when there is no
 change from the user even if they have a UI with fixed states
 (e.g. yes/no/maybe).

4.4.9. Voter

 Property name

 VOTER

 Purpose

 This property is used in VVOTER components to indicate recipients
 of the poll and to identify that component as containing the
 voters responses.

 Value type

 The value type for this property is cal-address.

 Property Parameters

 Non-standard, cutype, member, role, rsvp, delto, delfrom, sentby,
 cn, dir, lang or stayinformed parameters can be specified on this
 property.

 Conformance

 This property MAY be specified in a VPOLL component or its sub-
 components.

 Description

 This property appears in the VVOTER component only and indicates a
 recipient of the poll and their responses.

 Format Definition

 This property is defined by the following notation:

 voter = "VOTER" voterparams ":" cal-address CRLF

voterparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" cutypeparam) / (";" memberparam) /
 (";" roleparam) /
 (";" rsvpparam) / (";" deltoparam) /
 (";" delfromparam) / (";" sentbyparam) /
 (";" cnparam) / (";" dirparam) /
 (";" languageparam) /
 (";" stayinformedparam) /

 ;
 ; The following are OPTIONAL, but MUST NOT occur
 ; more than once. They are defined in RFC6638
 ;
 (";" scheduleagentparam) /
 (";" scheduleforcesendparam) /
 (";" schedulestatusparam) /

 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

 Note 1

 "RSVP=TRUE" MAY be used by the organizer to force the voter to
 reset their state and re-vote.

 Note 2

 "scheduleagentparam", "scheduleforcesendparam" and
 "schedulestatusparam" are all related to CalDAV scheduling and are
 defined in [RFC6638]. Their semantics are exactly as defined in
 that specification.

4.5. New Components

4.5.1. VPOLL Component

 Component name

 VPOLL

 Purpose

 This component provides a mechanism by which voters can vote on
 provided choices.

 Format Definition

 This property is defined by the following notation:

pollc = "BEGIN" ":" "VPOLL" CRLF
 pollprop
 *voterc *eventc *todoc *journalc *freebusyc
 *availabilityc *alarmc *iana‑comp *x‑comp
 "END" ":" "VPOLL" CRLF

pollprop = *(
 ;
 ; The following are REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 dtstamp / uid / organizer /
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 acceptresponse / class / created / completed /
 description / dtstart / last‑mod / pollmode /
 pollproperties / priority / seq / status /
 summary / url /
 ;
 ; Either 'dtend' or 'duration' MAY appear in
 ; a 'pollprop', but 'dtend' and 'duration'
 ; MUST NOT occur in the same 'pollprop'.
 ; 'duration' MUST only occur when 'dtstart'
 ; is present
 ;
 dtend / duration /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 attach / categories / comment /
 contact / rstatus / related /
 resources / x‑prop / iana‑prop
 ;
 ; The following is OPTIONAL, it SHOULD appear
 ; once for the confirmation of a BASIC mode
 ; VPOLL. Other modes may define differing
 ; requirements.
 ;
 pollwinner /
 ;
)

 Description

 This component provides a mechanism by which voters can vote on
 provided choices. The outcome depends upon the POLL-MODE in
 effect.

 The VVOTER components in VPOLL requests provide information on
 each recipient who will be voting - both their identity through
 the VOTER property and their votes through the VOTE components.

 If specified, the "DTSTART" property defines the start or opening
 of the poll active period. If absent the poll is presumed to have
 started when created.

 If "DTSTART" is present "DURATION" MAY be specified and indicates
 the duration, and hence the ending, of the poll. The value of the
 property MUST be a positive duration.

 "DTEND" MAY be specified with or without "DTSTART" and indicates
 the ending of the poll. If DTEND is specified it MUST be later
 than the DTSTART or CREATED property.

 If one or more VALARM components are included in the VPOLL they
 are not components to be voted on and MUST NOT contain a POLL-
 ITEM-ID property. VALARM sub-components may be used to provide
 warnings to the user when polls are due to start or end.

 TODO: Need some text to describe what relative alarms are relative
 to.

4.5.2. VVOTER Component

 Component name

 VPOLL

 Purpose

 This component contains identification of the recipient and voter
 and their responses.

 Format Definition

 This property is defined by the following notation:

voterc = "BEGIN" ":" "VVOTER" CRLF
 voterprop
 *votec *iana‑comp *x‑comp
 "END" ":" "VVOTER" CRLF

voterprop = *(
 ;
 ; The following are REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 dtstamp / voter /
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 created / description / last‑mod / seq /
 status / summary / url /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 attach / categories / comment /
 contact / rstatus / related /
 resources / x‑prop / iana‑prop
 ;
)

 Description

 This component contains a VOTER property identifying a recipient
 and voter and zero or more VOTE components containing their
 responses.

 The VOTER property in VVOTER objects refers to a recipient who
 will be voting - RSVP=TRUE is used by the organizer to force the
 voter to reset their state and re-vote

4.5.3. VOTE Component

 Component name

 VPOLL

 Purpose

 This component provides a mechanism by which voters can vote on
 provided choices.

 Format Definition

 This property is defined by the following notation:

votec = "BEGIN" ":" "VOTE" CRLF
 voteprop
 *eventc *todoc *journalc *freebusyc
 *availabilityc *alarmc *iana‑comp *x‑comp
 "END" ":" "VOTE" CRLF

voteprop = *(
 ;
 ; The following are REQUIRED,
 ; but MUST NOT occur more than once.
 ;
 pollitemid / response /
 ;
 ; The following are OPTIONAL,
 ; and MAY occur more than once.
 ;
 comment / x‑prop / iana‑prop
 ;
)

 Description

 This component identifies voters and contains their responses.

 The required and optional properties and their meanings depend
 upon the POLL-MODE in effect.

 For any POLL-MODE, POLL-ITEM-ID is used to associate the
 information to a choice supplied by the organizer.

 If allowed by the POLL-MODE a VOTE component without a POLL-ITEM-
 ID may be provided in a REPLY to indicate a possible new choice or
 to provide information to the ORGANIZER - such as the respondees
 availability.

5. Poll Modes

 The VPOLL component is intended to allow for various forms of
 polling. The particular form in efffect is indicated by the POLL-
 MODE property.

 New poll modes can be registered by including a completed POLL-MODE
 Registration Template (see Section 9.3) in a published RFC.

5.1. POLL-MODE:BASIC

 BASIC poll mode is the form of voting in which one possible outcome
 is chosen from a set of possibilities. Usually this will be
 represented as a number of possible event objects one of which will
 be selected.

5.1.1. Property restrictions

 This poll mode has the following property requirements:

 POLL-ITEM-ID

 Each contained sub-component that is being voted upon MUST contain
 a POLL-ITEM_ID property which is unique within the context of the
 POLL. The value MUST NOT be reused when events are removed and/or
 added to the poll.

 POLL-WINNER

 On confirmation of the poll this property MUST be present and
 identifies the winning component.

5.1.2. Outcome reporting

 To confirm the winner the POLL-WINNER property MUST be present and
 the STATUS MUST be set to CONFIRMED.

 When the winning VEVENT or VTODO is not a scheduled entity, that is,
 it has no ORGANIZER or ATTENDEES it MUST be assigned an ORGANIZER
 property and a list of non-participating ATTENDEEs. This allows the
 winning entity to be distributed to the participants through iTip or
 some other protocol.

6. iTIP Extensions

 This specification introduces a number of extensions to [RFC5546].
 In group scheduling the parties involved are organizer and attendees.
 In VPOLL the parties are organizer and voters.

 For many of the iTip processing rules the voters take the place of
 attendees.

6.1. Methods

 There are some extensions to the behavior of iTip methods for a VPOLL
 object and two new methods are defined.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Method | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
PUBLISH	No changes (yet)
REQUEST	Each child component MUST have a POLL‑ITEM‑ID
	property. Each set of components with the same
	POLL‑ITEM‑ID value represents one overall set of
	items to be voted on.
REPLY	There MUST be a single VPOLL component which
	MUST have: either one or more POLL‑ITEM‑ID
	properties with a RESPONSE param matching that
	from a REQUEST or a VFREEBUSY or VAVAILABILITY
	child component showing overall busy/available
	time. The VPOLL MUST have one VOTER only.
ADD	Not supported for VPOLL.
CANCEL	There MUST be a single VPOLL component with UID
	matching that of the poll being cancelled.
REFRESH	The organizer returns a METHOD:REQUEST with the
	current full state, or a METHOD:CANCEL or an
	error if no matching poll is found.
COUNTER	Not supported for VPOLL.
DECLINECOUNTER	Not supported for VPOLL.
POLLSTATUS	Used to send the current state of the poll to
	all voters. The VPOLL can contain a reduced set
	of properties but MUST contain DTSTAMP, SEQUENCE
	(if not 0), UID, ORGANIZER and VOTER.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 The following table shows the above methods broken down by who can
 send them with VPOLL components.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Originator | Methods |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Organizer | CANCEL, PUBLISH, REQUEST, POLLSTATUS |
| Voter | REPLY, REFRESH, REQUEST (only when delegating) |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

6.2. Interoperability Models

 Most of the standard iTip specification applies with respect to
 organizer and voters.

6.2.1. Delegation

 TBD

6.2.2. Acting on Behalf of Other Calendar Users

 TBD

6.2.3. Component Revisions

 o Need to talk about what a change in SEQUENCE means

 o Sequence change forces a revote.

 o New voter - no sequence change

 o Add another poll set or change poll item ids or any change to a
 child

 o component - bump sequence

6.2.4. Message Sequencing

 TBD

6.3. Application Protocol Elements

6.3.1. Methods for VPOLL Calendar Components

 This section defines the property set restrictions for the method
 types that are applicable to the "VPOLL" calendar component. Each
 method is defined using a table that clarifies the property
 constraints that define the particular method.

 The presence column uses the following values to assert whether a
 property is required or optional, and the number of times it may
 appear in the iCalendar object.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Presence Value | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
1	One instance MUST be present.
1+	At least one instance MUST be present.
0	Instances of this property MUST NOT be present.
0+	Multiple instances MAY be present.
0 or 1	Up to 1 instance of this property MAY be
	present.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 The following summarizes the methods that are defined for the "VPOLL"
 calendar component.

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Method | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
PUBLISH	Post notification of an poll. Used primarily as a
	method of advertising the existence of a poll.
REQUEST	To make a request for a poll. This is an explicit
	invitation to one or more voters. Poll requests are
	also used to update, change or confirm an existing
	poll. Clients that cannot handle REQUEST MAY degrade
	the poll to view it as a PUBLISH. REQUEST SHOULD NOT
	be used just to set the status of the poll ‑
	POLLSTATUS provides a more compact approach.
REPLY	Reply to a poll request. Voters may set their
	RESPONSE parameter to supply the current vote in the
	range 0 to 100.
CANCEL	Cancel a poll.
REFRESH	A request is sent to an Organizer by a Voter asking
	for the latest version of a poll to be resent to the
	requester.
POLLSTATUS	Used to send the current state of the poll to all
	voters. The VPOLL can contain a reduced set of
	properties but MUST contain DTSTAMP, SEQUENCE (if
	not 0), UID, ORGANIZER and VOTER.
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

6.3.2. Method: PUBLISH

 The "PUBLISH" method in a "VPOLL" calendar component is an
 unsolicited posting of an iCalendar object. Any CU may add published
 components to their calendar. The "Organizer" MUST be present in a
 published iCalendar component. "Voters" MUST NOT be present. Its
 expected usage is for encapsulating an arbitrary poll as an iCalendar
 object. The "Organizer" may subsequently update (with another
 "PUBLISH" method) or cancel (with a "CANCEL" method) a previously
 published "VPOLL" calendar component.

 This method type is an iCalendar object that conforms to the
 following property constraints:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component/Property | Presence | Comment |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
METHOD	1	MUST equal PUBLISH.
VPOLL	1+	
DTSTAMP	1	
DTSTART	0 or 1	If present defines the start of
		the poll. Otherwise the poll
		starts when it is created and

		distributed.
ORGANIZER	1	
SUMMARY	1	Can be null.
UID	1	
SEQUENCE	0 or 1	MUST be present if value is
		greater than 0; MAY be present if
		0.
ACCEPT‑RESPONSE	0 or 1	
ATTACH	0+	
CATEGORIES	0+	
CLASS	0 or 1	
COMMENT	0+	
COMPLETED	0 or 1	
CONTACT	0 or 1	
CREATED	0 or 1	
DESCRIPTION	0 or 1	Can be null.
DTEND	0 or 1	If present, DURATION MUST NOT be
		present.
DURATION	0 or 1	If present, DTEND MUST NOT be
		present.
LAST‑MODIFIED	0 or 1	
POLL‑ITEM‑ID	0	
POLL‑MODE	0 or 1	
POLL‑PROPERTIES	0 or 1	
PRIORITY	0 or 1	
RELATED‑TO	0+	
RESOURCES	0+	
STATUS	0 or 1	MAY be one of
		COMPLETED/CONFIRMED/CANCELLED.
URL	0 or 1	
IANA‑PROPERTY	0+	
X‑PROPERTY	0+	
VOTER	0	
REQUEST‑STATUS	0	
VALARM	0+	
VEVENT	0+	Depending upon the poll mode in
		effect there MAY be candidate
		components included in the poll
		component. If voting has already
		taken place, these components
		MUST include the VOTER property
		to indicate each voters current
		response.
VFREEBUSY	0	
VJOURNAL	0+	Depending upon the poll mode in
		effect there MAY be candidate
		components included in the poll
		component. If voting has already

		taken place, these components
		MUST include the VOTER property
		to indicate each voters current
		response.
VTODO	0+	Depending upon the poll mode in
		effect there MAY be candidate
		components included in the poll
		component. If voting has already
		taken place, these components
		MUST include the VOTER property
		to indicate each voters current
		response.
VTIMEZONE	0+	MUST be present if any date/time
		refers to a timezone.
IANA‑COMPONENT	0+	
X‑COMPONENT	0+	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Constraints for a METHOD:PUBLISH of a VPOLL

6.3.3. Method: REQUEST

 The "REQUEST" method in a "VPOLL" component provides the following
 scheduling functions:

 o Invite "Voters" to respond to the poll.

 o Change the items being voted upon.

 o Complete or confirm the poll.

 o Response to a "REFRESH" request.

 o Update the details of an existing vpoll.

 o Update the status of "Voters".

 o Forward a "VPOLL" to another uninvited CU.

 o For an existing "VPOLL" calendar component, delegate the role of
 "Voter" to another CU.

 o For an existing "VPOLL" calendar component, change the role of
 "Organizer" to another CU.

 The "Organizer" originates the "REQUEST". The recipients of the
 "REQUEST" method are the CUs voting in the poll, the "Voters".
 "Voters" use the "REPLY" method to convey votes to the "Organizer".
 The "UID" and "SEQUENCE" properties are used to distinguish the
 various uses of the "REQUEST" method. If the "UID" property value in
 the "REQUEST" is not found on the recipient's calendar, then the
 "REQUEST" is for a new "VPOLL" calendar component. If the "UID"
 property value is found on the recipient's calendar, then the
 "REQUEST" is for an update, or a reconfirmation of the "VPOLL"
 calendar component.

 For the "REQUEST" method only a single iCalendar object is permitted.

 This method type is an iCalendar object that conforms to the
 following property constraints:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component/Property | Presence | Comment |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
METHOD	1	MUST be REQUEST.
VPOLL	1	
VOTER	1+	
DTSTAMP	1	
DTSTART	0 or 1	If present defines the start of
		the poll. Otherwise the poll
		starts when it is created and
		distributed.
ORGANIZER	1	
SEQUENCE	0 or 1	MUST be present if value is
		greater than 0; MAY be present if
		0.
SUMMARY	1	Can be null.
UID	1	
ACCEPT‑RESPONSE	0 or 1	
ATTACH	0+	
CATEGORIES	0+	
CLASS	0 or 1	
COMMENT	0+	
COMPLETED	0 or 1	
CONTACT	0+	
CREATED	0 or 1	
DESCRIPTION	0 or 1	Can be null.
DTEND	0 or 1	If present, DURATION MUST NOT be
		present.
DURATION	0 or 1	If present, DTEND MUST NOT be
		present.
GEO	0 or 1	
LAST‑MODIFIED	0 or 1	
LOCATION	0 or 1	
POLL‑ITEM‑ID	0	
POLL‑MODE	0 or 1	

POLL‑PROPERTIES	0 or 1	
PRIORITY	0 or 1	
RELATED‑TO	0+	
REQUEST‑STATUS	0	
RESOURCES	0+	
STATUS	0 or 1	MAY be one of
		COMPLETED/CONFIRMED/CANCELLED.
TRANSP	0 or 1	
URL	0 or 1	
IANA‑PROPERTY	0+	
X‑PROPERTY	0+	
VALARM	0+	
VTIMEZONE	0+	MUST be present if any date/time
		refers to a timezone.
IANA‑COMPONENT	0+	
X‑COMPONENT	0+	
VEVENT	0+	Depending upon the poll mode in
		effect there MAY be candidate
		components included in the poll
		component. If voting has already
		taken place, these components
		MUST include the VOTER property
		to indicate each voters current
		response.
VFREEBUSY	0	
VJOURNAL	0+	Depending upon the poll mode in
		effect there MAY be candidate
		components included in the poll
		component. If voting has already
		taken place, these components
		MUST include the VOTER property
		to indicate each voters current
		response.
VTODO	0+	Depending upon the poll mode in
		effect there MAY be candidate
		components included in the poll
		component. If voting has already
		taken place, these components
		MUST include the VOTER property
		to indicate each voters current
		response.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Constraints for a METHOD:REQUEST of a VPOLL

6.3.3.1. Rescheduling a poll

 The "REQUEST" method may be used to reschedule a poll, that is force
 a revote. A rescheduled poll involves a change to the existing poll
 in terms of its time the components being voted on may have changed.
 If the recipient CUA of a "REQUEST" method finds that the "UID"
 property value already exists on the calendar but that the "SEQUENCE"
 (or "DTSTAMP") property value in the "REQUEST" method is greater than
 the value for the existing poll, then the "REQUEST" method describes
 a rescheduling of the poll.

6.3.3.2. Updating or Reconfirmation of a Poll

 The "REQUEST" method may be used to update or reconfirm a poll. An
 update to an existing poll does not involve changes to the time or
 candidates, and might not involve a change to the location or
 description for the poll. If the recipient CUA of a "REQUEST" method
 finds that the "UID" property value already exists on the calendar
 and that the "SEQUENCE" property value in the "REQUEST" is the same
 as the value for the existing poll, then the "REQUEST" method

 describes an update of the poll details, but not a rescheduling of
 the POLL.

 The update "REQUEST" method is the appropriate response to a
 "REFRESH" method sent from a "Voter" to the "Organizer" of a poll.

 The "Organizer" of a poll may also send unsolicited "REQUEST"
 methods. The unsolicited "REQUEST" methods may be used to update the
 details of the poll without rescheduling it, to update the "RESPONSE"
 parameter of "Voters", or to reconfirm the poll.

6.3.3.3. Confirmation of a Poll

 The "REQUEST" method may be used to confirm a poll, that is announce
 the winner in BASIC mode. The STATUS MUST be set to CONFIRMED and
 for BASIC mode a VPOLL POLL-WINNER property must be provided with the
 poll-id of the winning component.

6.3.3.4. Closing a Poll

 The "REQUEST" method may be used to close a poll, that is indicate
 voting is completed. The STATUS MUST be set to COMPLETED.

6.3.3.5. Delegating a Poll to Another CU

 Some calendar and scheduling systems allow "Voters" to delegate the
 vote to another "Calendar User". iTIP supports this concept using the
 following workflow. Any "Voter" may delegate their right to vote in
 a poll to another CU. The implication is that the delegate
 participates in lieu of the original "Voter", NOT in addition to the
 "Voter". The delegator MUST notify the "Organizer" of this action
 using the steps outlined below. Implementations may support or
 restrict delegation as they see fit. For instance, some
 implementations may restrict a delegate from delegating a "REQUEST"
 to another CU.

 The "Delegator" of a poll forwards the existing "REQUEST" to the
 "Delegate". The "REQUEST" method MUST include a "Voter" property
 with the calendar address of the "Delegate". The "Delegator" MUST
 also send a "REPLY" method to the "Organizer" with the "Delegator's"
 "Voter" property "DELEGATED-TO" parameter set to the calendar address
 of the "Delegate". Also, a new "Voter" property for the "Delegate"
 MUST be included and must specify the calendar user address set in
 the "DELEGATED-TO" parameter, as above.

 In response to the request, the "Delegate" MUST send a "REPLY" method
 to the "Organizer", and optionally to the "Delegator". The "REPLY"

 method SHOULD include the "Voter" property with the "DELEGATED-FROM"
 parameter value of the "Delegator's" calendar address.

 The "Delegator" may continue to receive updates to the poll even
 though they will not be attending. This is accomplished by the
 "Delegator" setting their "role" attribute to "NON-PARTICIPANT" in
 the "REPLY" to the "Organizer".

6.3.3.6. Changing the Organizer

 The situation may arise where the "Organizer" of a "VPOLL" is no
 longer able to perform the "Organizer" role and abdicates without
 passing on the "Organizer" role to someone else. When this occurs,
 the "Voters" of the "VPOLL" may use out-of-band mechanisms to
 communicate the situation and agree upon a new "Organizer". The new
 "Organizer" should then send out a new "REQUEST" with a modified
 version of the "VPOLL" in which the "SEQUENCE" number has been
 incremented and the "ORGANIZER" property has been changed to the new
 "Organizer".

6.3.3.7. Sending on Behalf of the Organizer

 There are a number of scenarios that support the need for a "Calendar
 User" to act on behalf of the "Organizer" without explicit role
 changing. This might be the case if the CU designated as "Organizer"
 is sick or unable to perform duties associated with that function.
 In these cases, iTIP supports the notion of one CU acting on behalf
 of another. Using the "SENT-BY" parameter, a "Calendar User" could
 send an updated "VPOLL" "REQUEST". In the case where one CU sends on
 behalf of another CU, the "Voter" responses are still directed back
 towards the CU designated as "Organizer".

6.3.3.8. Forwarding to an Uninvited CU

 A "Voter" invited to a "VPOLL" calendar component may send the
 "VPOLL" calendar component to another new CU not previously
 associated with the "VPOLL" calendar component. The current "Voter"
 participating in the "VPOLL" calendar component does this by
 forwarding the original "REQUEST" method to the new CU. The new CU
 can send a "REPLY" to the "Organizer" of the "VPOLL" calendar
 component. The reply contains a "Voter" property for the new CU.

 The "Organizer" ultimately decides whether or not the new CU becomes
 part of the poll and is not obligated to do anything with a "REPLY"
 from a new (uninvited) CU. If the "Organizer" does not want the new
 CU to be part of the poll, the new "Voter" property is not added to
 the "VPOLL" calendar component. The "Organizer" MAY send the CU a
 "CANCEL" message to indicate that they will not be added to the poll.

 If the "Organizer" decides to add the new CU, the new "Voter"
 property is added to the "VPOLL" calendar component. Furthermore,
 the "Organizer" is free to change any "Voter" property parameter from
 the values supplied by the new CU to something the "Organizer"
 considers appropriate. The "Organizer" SHOULD send the new CU a
 "REQUEST" message to inform them that they have been added.

 When forwarding a "REQUEST" to another CU, the forwarding "Voter"
 MUST NOT make changes to the original message.

6.3.3.9. Updating Voter Status

 The "Organizer" of an poll may also request updated status from one
 or more "Voters". The "Organizer" sends a "REQUEST" method to the
 "Voter" and sets the "VOTER;RSVP=TRUE" property parameter. The
 "SEQUENCE" property for the poll is not changed from its previous
 value. A recipient will determine that the only change in the
 "REQUEST" is that their "RSVP" property parameter indicates a request
 for updated status. The recipient SHOULD respond with a "REPLY"
 method indicating their current vote with respect to the "REQUEST".

6.3.4. Method: REPLY

 The "REPLY" method in a "VPOLL" calendar component is used to respond
 (e.g., accept or decline) to a "REQUEST" or to reply to a delegation
 "REQUEST". When used to provide a delegation response, the
 "Delegator" SHOULD include the calendar address of the "Delegate" on
 the "DELEGATED-TO" property parameter of the "Delegator's" "Voter"
 property. The "Delegate" SHOULD include the calendar address of the
 "Delegator" on the "DELEGATED-FROM" property parameter of the
 "Delegate's" "Voter" property.

 The "REPLY" method is also used when processing of a "REQUEST" fails.
 Depending on the value of the "REQUEST-STATUS" property, no action
 may have been performed.

 The "Organizer" of a poll may receive the "REPLY" method from a CU
 not in the original "REQUEST". For example, a "REPLY" may be
 received from a "Delegate" to a poll. In addition, the "REPLY"
 method may be received from an unknown CU (a "Party Crasher"). This
 uninvited "Voter" may be accepted, or the "Organizer" may cancel the
 poll for the uninvited "Voter" by sending a "CANCEL" method to the
 uninvited "Voter".

 A "Voter" MAY include a message to the "Organizer" using the
 "COMMENT" property. For example, if the user indicates a low
 interest and wants to let the "Organizer" know why, the reason can be
 expressed in the "COMMENT" property value.

 The "Organizer" may also receive a "REPLY" from one CU on behalf of
 another. Like the scenario enumerated above for the "Organizer",
 "Voters" may have another CU respond on their behalf. This is done
 using the "SENT-BY" parameter.

 The optional properties listed in the table below (those listed as
 "0+" or "0 or 1") MUST NOT be changed from those of the original
 request. (But see comments on VFREEBUSY and VAVAILABILITY)

 This method type is an iCalendar object that conforms to the
 following property constraints:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component/Property | Presence | Comment |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| METHOD | 1 | MUST be REPLY. |
| VPOLL | 1+ | All components MUST have the same |

		UID.
VOTER	1	MUST be the address of the Voter
		replying.
DTSTAMP	1	
ORGANIZER	1	
UID	1	MUST be the UID of the original
		REQUEST.
SEQUENCE	0 or 1	If non‑zero, MUST be the sequence
		number of the original REQUEST.
		MAY be present if 0.
ACCEPT‑RESPONSE	0 or 1	
ATTACH	0+	
CATEGORIES	0+	
CLASS	0 or 1	
COMMENT	0+	
COMPLETED	0 or 1	
CONTACT	0+	
CREATED	0 or 1	
DESCRIPTION	0 or 1	
DTEND	0 or 1	If present, DURATION MUST NOT be
		present.
DTSTART	0 or 1	
DURATION	0 or 1	If present, DTEND MUST NOT be
		present.
GEO	0 or 1	
LAST‑MODIFIED	0 or 1	
LOCATION	0 or 1	
POLL‑ITEM‑ID	1+	One per item being voted on.
POLL‑MODE	0	
POLL‑PROPERTIES	0	
PRIORITY	0 or 1	
RELATED‑TO	0+	
RESOURCES	0+	
REQUEST‑STATUS	0+	
STATUS	0 or 1	
SUMMARY	0 or 1	
TRANSP	0 or 1	
URL	0 or 1	
IANA‑PROPERTY	0+	
X‑PROPERTY	0+	
VALARM	0	
VTIMEZONE	0 or 1	MUST be present if any date/time
		refers to a timezone.
IANA‑COMPONENT	0+	
X‑COMPONENT	0+	
VEVENT	0	
VFREEBUSY	0 or 1	A voter may respond with a
		VFREEBUSY component indicating

		that the ORGANIZER may select
		some other time which is not
		marked as busy.
VAVAILABILITY	0	A voter may respond with a
		VAVAILABILITY component
		indicating that the ORGANIZER may
		select some other time which is
		shown as available.
VJOURNAL	0	
VTODO	0	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Constraints for a METHOD:REPLY of a VPOLL

6.3.5. Method: CANCEL

 The "CANCEL" method in a "VPOLL" calendar component is used to send a
 cancellation notice of an existing poll request to the affected
 "Voters". The message is sent by the "Organizer" of the poll.

 The "Organizer" MUST send a "CANCEL" message to each "Voter" affected
 by the cancellation. This can be done using a single "CANCEL"
 message for all "Voters" or by using multiple messages with different
 subsets of the affected "Voters" in each.

 When a "VPOLL" is cancelled, the "SEQUENCE" property value MUST be
 incremented as described in Section 6.2.3.

 Once a CANCEL message has been sent to all voters no further voting
 may take place. The poll is considered closed.

 This method type is an iCalendar object that conforms to the
 following property constraints:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component/Property | Presence | Comment |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
METHOD	1	MUST be CANCEL.
VPOLL	1+	All must have the same UID.
VOTER	0+	MUST include some or all Voters
		being removed from the poll. MUST
		include some or all Voters if the
		entire poll is cancelled.
UID	1	MUST be the UID of the original
		REQUEST.
DTSTAMP	1	
ORGANIZER	1	
SEQUENCE	1	

ATTACH	0+	
ACCEPT‑RESPONSE	0	
COMMENT	0+	
COMPLETED	0 or 1	
CATEGORIES	0+	
CLASS	0 or 1	
CONTACT	0+	
CREATED	0 or 1	
DESCRIPTION	0 or 1	
DTEND	0 or 1	If present, DURATION MUST NOT be
		present.
DTSTART	0 or 1	
DURATION	0 or 1	If present, DTEND MUST NOT be
		present.
GEO	0 or 1	
LAST‑MODIFIED	0 or 1	
LOCATION	0 or 1	
POLL‑ITEM‑ID	0	
POLL‑MODE	0	
POLL‑PROPERTIES	0	
PRIORITY	0 or 1	
RELATED‑TO	0+	
RESOURCES	0+	
STATUS	0 or 1	MUST be set to CANCELLED to
		cancel the entire event. If
		uninviting specific Attendees,
		then MUST NOT be included.
SUMMARY	0 or 1	
TRANSP	0 or 1	
URL	0 or 1	
IANA‑PROPERTY	0+	
X‑PROPERTY	0+	
REQUEST‑STATUS	0	
VALARM	0	
VTIMEZONE	0+	MUST be present if any date/time
		refers to a timezone.
IANA‑COMPONENT	0+	
X‑COMPONENT	0+	
VTODO	0	
VJOURNAL	0	
VEVENT	0	
VFREEBUSY	0	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Constraints for a METHOD:CANCEL of a VPOLL

6.3.6. Method: REFRESH

 The "REFRESH" method in a "VPOLL" calendar component is used by
 "Voters" of an existing event to request an updated description from
 the poll "Organizer". The "REFRESH" method must specify the "UID"
 property of the poll to update. The "Organizer" responds with the
 latest description and version of the poll.

 This method type is an iCalendar object that conforms to the
 following property constraints:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component/Property | Presence | Comment |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
METHOD	1	MUST be REFRESH.
VPOLL	1	
VOTER	1	MUST be the address of requester.
DTSTAMP	1	
ORGANIZER	1	
UID	1	MUST be the UID associated with
		original REQUEST.
COMMENT	0+	
COMPLETED	0	
IANA‑PROPERTY	0+	
X‑PROPERTY	0+	
ACCEPT‑RESPONSE	0	
ATTACH	0	
CATEGORIES	0	
CLASS	0	
CONTACT	0	
CREATED	0	
DESCRIPTION	0	
DTEND	0	
DTSTART	0	
DURATION	0	
GEO	0	
LAST‑MODIFIED	0	
LOCATION	0	
POLL‑ITEM‑ID	0	
POLL‑MODE	0	
POLL‑PROPERTIES	0	
PRIORITY	0	
RELATED‑TO	0	
REQUEST‑STATUS	0	
RESOURCES	0	
SEQUENCE	0	
STATUS	0	
SUMMARY	0	

URL	0	
VALARM	0	
VTIMEZONE	0+	
IANA‑COMPONENT	0+	
X‑COMPONENT	0+	
VTODO	0	
VJOURNAL	0	
VEVENT	0	
VFREEBUSY	0	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Constraints for a METHOD:REFRESH of a VPOLL

6.3.7. Method: POLLSTATUS

 The "POLLSTATUS" method in a "VPOLL" calendar component is used to
 inform recipients of the current status of the poll in a compact
 manner. The "Organizer" MUST be present in the confirmed poll
 component. "Voters" MUST NOT be present. The selected component(s)
 according to the poll mode MUST also be present in the poll
 component. Clients receiving this message may store the confirmed
 items in their calendars.

 This method type is an iCalendar object that conforms to the
 following property constraints:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Component/Property | Presence | Comment |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
METHOD	1	MUST equal POLLSTATUS.
VPOLL	1+	
COMPLETED	0 or 1	Only present for a completed poll
DTSTAMP	1	
DTSTART	0 or 1	
ORGANIZER	1	
SUMMARY	1	Can be null.
VOTER	1+	
UID	1	
SEQUENCE	0 or 1	MUST be present if value is
		greater than 0; MAY be present if
		0.
ACCEPT‑RESPONSE	0	
ATTACH	0	
CATEGORIES	0	
CLASS	0	
COMMENT	0+	
CONTACT	0	
CREATED	0 or 1	

DESCRIPTION	0 or 1	Can be null.
DTEND	0 or 1	If present, DURATION MUST NOT be
		present.
DURATION	0 or 1	If present, DTEND MUST NOT be
		present.
LAST‑MODIFIED	0 or 1	
POLL‑ITEM‑ID	0	
POLL‑MODE	0 or 1	
POLL‑PROPERTIES	0	
PRIORITY	0 or 1	
RELATED‑TO	0+	
RESOURCES	0+	
STATUS	0 or 1	MAY be one of
		TENTATIVE/CONFIRMED/CANCELLED.
URL	0 or 1	
IANA‑PROPERTY	0+	
X‑PROPERTY	0+	
REQUEST‑STATUS	0	
VALARM	0+	
VEVENT	0+	All candidate components MUST be
		present but in a reduced form
		sufficient to provide the voting
		status.
VFREEBUSY	0	
VJOURNAL	0+	All candidate components MUST be
		present but in a reduced form
		sufficient to provide the voting
		status.
VTODO	0+	All candidate components MUST be
		present but in a reduced form
		sufficient to provide the voting
		status.
VTIMEZONE	0+	MUST be present if any date/time
		refers to a timezone.
IANA‑COMPONENT	0+	
X‑COMPONENT	0+	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Constraints for a METHOD:POLLSTATUS of a VPOLL

7. CalDAV Extensions

 This specification extends [RFC4791] in that it defines a new
 component and new iCalendar properties to be supported and requires
 extra definitions related to time-ranges and reports.

 Additionally, it extends [RFC6638] as it a VPOLL component is a
 schedulable entity.

7.1. Calendar Collection Properties

 This section defines new CalDAV properties for calendar collections.

7.1.1. CALDAV:supported-vpoll-component-sets

 Name

 supported-vpoll-component-sets

 Namespace

 urn:ietf:params:xml:ns:caldav

 Purpose

 Specifies the calendar component types (e.g., VEVENT, VTODO, etc.)
 and combination of types that may be included in a VPOLL
 component.

 Conformance

 This property MAY be defined on any calendar collection. If
 defined, it MUST be protected and SHOULD NOT be returned by a
 PROPFIND DAV:allprop request (as defined in section=12.14.1
 [RFC2518]).

 Description

 The CALDAV:supported-vpoll-component-sets property is used to
 specify restrictions on the calendar component types that VPOLL
 components may contain in a calendar collection.

 It also specifies the combination of allowed component types.

 Any attempt by the client to store VPOLL components with component
 types or combinations of types not listed in this property, if it
 exists, MUST result in an error, with the "CALDAV:supported-vpoll-
 component-sets" precondition Section 7.2 being violated. Since
 this property is protected, it cannot be changed by clients using
 a PROPPATCH request. However, clients can initialize the value of
 this property when creating a new calendar collection with
 MKCALENDAR. In the absence of this property, the server MUST
 accept all component types, and the client can assume that all
 component types are accepted.

 Definition

 <!ELEMENT supported-vpoll-component-sets

 (supported-vpoll-component-set*) >

 <!ELEMENT supported-vpoll-component-set (comp+)>

 <C:supported-vpoll-component-sets

 xmlns:C="urn:ietf:params:xml:ns:caldav">

 <!‑‑ VPOLLs with VEVENT, VFREEBUSY or VTODO ‑‑>
 <C:supported‑vpoll‑component‑set>
 <C:comp name="VEVENT" />
 <C:comp name="VFREEBUSY" />
 <C:comp name="VTODO" />
 </C:supported‑vpoll‑component‑set>

 <!‑‑ VPOLLs with just VEVENT or VFREEBUSY ‑‑>
 <C:supported‑vpoll‑component‑set>
 <C:comp name="VEVENT" />
 <C:comp name="VFREEBUSY" />
 </C:supported‑vpoll‑component‑set>

 <!‑‑ VPOLLs with just VEVENT ‑‑>
 <C:supported‑vpoll‑component‑set>
 <C:comp name="VEVENT" />
 </C:supported‑vpoll‑component‑set>

 <!‑‑ VPOLLs with just VTODO ‑‑>
 <C:supported‑vpoll‑component‑set>
 <C:comp name="VTODO" />
 </C:supported‑vpoll‑component‑set>
</C:supported‑vpoll‑component‑sets>

7.1.2. CALDAV:vpoll-max-items

 Name

 vpoll-max-items

 Namespace

 urn:ietf:params:xml:ns:caldav

 Purpose

 Provides a numeric value indicating the maximum number of items
 that may be contained in any instance of a VPOLL calendar object
 resource stored in the calendar collection.

 Conformance

 This property MAY be defined on any calendar collection. If
 defined, it MUST be protected and SHOULD NOT be returned by a
 PROPFIND DAV:allprop request (as defined in section=12.14.1
 [RFC2518]).

 Description

 The CALDAV:vpoll-max-items is used to specify a numeric value that
 indicates the maximum number of iCalendar components in any one
 instance of a VPOLL calendar object resource stored in a calendar
 collection. Any attempt to store a calendar object resource with
 more components per instance than this value MUST result in an
 error, with the CALDAV: vpoll-max-items precondition Section 7.2
 being violated. In the absence of this property, the client can
 assume that the server can handle any number of items in a VPOLL
 calendar component.

 Definition

<!ELEMENT vpoll‑max‑items (#PCDATA)>
PCDATA value: a numeric value (integer greater than zero)

 <C:vpoll-max-items xmlns:C="urn:ietf:params:xml:ns:caldav"
 >25</C:vpoll-max-items>

7.1.3. CALDAV:vpoll-max-active

 Name

 vpoll-max-active

 Namespace

 urn:ietf:params:xml:ns:caldav

 Purpose

 Provides a numeric value indicating the maximum number of active
 vpolls at any one time.

 Conformance

 This property MAY be defined on any calendar collection. If
 defined, it MUST be protected and SHOULD NOT be returned by a
 PROPFIND DAV:allprop request (as defined in section=12.14.1
 [RFC2518]).

 Description

 The CALDAV:vpoll-max-active is used to specify a numeric value
 that indicates the maximum number of active VPOLLs at any one
 time. Any attempt to store a new active VPOLL calendar object
 resource which results in exceeding this limit MUST result in an
 error, with the "CALDAV:vpoll-max-active" precondition Section 7.2
 being violated. In the absence of this property, the client can
 assume that the server can handle any number of active VPOLLs.

 Definition

<!ELEMENT vpoll‑max‑active (#PCDATA)>
PCDATA value: a numeric value (integer greater than zero)

 <C:vpoll-max-active xmlns:C="urn:ietf:params:xml:ns:caldav"
 >25</C:vpoll-max-active>

7.1.4. CALDAV:vpoll-max-voters

 Name

 "vpoll-max-voters"

 Namespace

 "urn:ietf:params:xml:ns:caldav"

 Purpose

 Provides a numeric value indicating the maximum number of voters
 for any instance of a VPOLL calendar object resource stored in the
 calendar collection.

 Conformance

 This property MAY be defined on any calendar collection. If
 defined, it MUST be protected and SHOULD NOT be returned by a
 PROPFIND "DAV:allprop" request (as defined in section=12.14.1
 [RFC2518]).

 Description

 The "CALDAV:vpoll-max-voters" is used to specify a numeric value
 that indicates the maximum number of VOTER properties for any one
 instance of a VPOLL calendar object resource stored in a calendar
 collection. Any attempt to store a calendar object resource with
 more VOTER properties per instance than this value MUST result in
 an error, with the CALDAV: "vpoll-max-voters" precondition
 Section 7.2 being violated. In the absence of this property, the
 client can assume that the server can handle any number of voters
 in a VPOLL calendar component.

 Definition

<!ELEMENT vpoll‑max‑voters (#PCDATA)>
PCDATA value: a numeric value (integer greater than zero)

 <C:vpoll-max-voters xmlns:C="urn:ietf:params:xml:ns:caldav"
 >25</C:vpoll-max-voters>

7.1.5. CalDAV:even-more-properties

 TODO: vpoll-supported-mode poll options - e.g "vpoll-basic"

7.1.6. Extensions to CalDAV scheduling

 This specification extends [RFC6638].

 Each section of Appendix A "Scheduling Privileges Summary" is
 extended to include VPOLL.

 Any reference to the ATTENDEE property should be read to include the
 VOTER property. That is, for scheduling purposes the VOTER property
 is handled in exactly the same manner as the ATTENDEE property.

7.2. Additional Preconditions for PUT, COPY, and MOVE

 This specification creates additional Preconditions for PUT, COPY,
 and MOVE methods. These preconditions apply when a PUT operation of
 a VPOLL calendar object resource into a calendar collection occurs,
 or when a COPY or MOVE operation of a calendar object resource into a
 calendar collection occurs, or when a COPY or MOVE operation occurs
 on a calendar collection.

 The new preconditions are:

 (CALDAV:supported-vpoll-component-sets)

 The VPOLL resource submitted in the PUT request, or targeted by a
 COPY or MOVE request, MUST contain a type or combination of
 calendar component that is supported in the targeted calendar
 collection;

 (CALDAV:vpoll-max-items)

 The VPOLL resource submitted in the PUT request, or targeted by a
 COPY or MOVE request, MUST have a number of sub-components
 (excluding VTIMEZONE) less than or equal to the value of the
 "CALDAV:vpoll-max-items" property value Section 7.1.2 on the
 calendar collection where the resource will be stored;

 (CALDAV:vpoll-max-active)

 The PUT request, or COPY or MOVE request, MUST not result in the
 number of active VPOLLs being greater than the value of the
 "CALDAV:vpoll-max-active" property value Section 7.1.3 on the
 calendar collection where the resource will be stored;

 (CALDAV:vpoll-max-voters)

 The VPOLL resource submitted in the PUT request, or targeted by a
 COPY or MOVE request, MUST have a number of VOTER properties less

 than or equal to the value of the "CALDAV:vpoll-max-voters"
 property value Section 7.1.4 on the calendar collection where the
 resource will be stored;

7.3. CalDAV:calendar-query Report

 This allows the retrieval of VPOLLs and their included components.
 The query specification allows queries to be directed at the
 contained sub-components. For VPOLL queries this feature is
 disallowed. Time-range queries can only target the vpoll component
 itself.

7.3.1. Example: Partial Retrieval of VPOLL

 In this example, the client requests the server to return specific
 components and properties of the VPOLL components that overlap the
 time range from December 4, 2012, at 00:00:00 A.M. UTC to December
 5, 2012, at 00:00:00 A.M. UTC. In addition, the "DAV:getetag"
 property is also requested and returned as part of the response.
 Note that due to the CALDAV: calendar-data element restrictions, the
 DTSTAMP property in VPOLL components has not been returned, and the
 only property returned in the VCALENDAR object is VERSION.

 >> Request <<

REPORT /cyrus/work/ HTTP/1.1
Host: cal.example.com
Depth: 1
Content‑Type: application/xml; charset="utf‑8"
Content‑Length: xxxx

<?xml version="1.0" encoding="utf‑8" ?>
<C:calendar‑query xmlns:D="DAV:"
 xmlns:C="urn:ietf:params:xml:ns:caldav">
 <D:prop>
 <D:getetag/>
 <C:calendar‑data>
 <C:comp name="VCALENDAR">
 <C:prop name="VERSION"/>
 <C:comp name="VPOLL">
 <C:prop name="SUMMARY"/>
 <C:prop name="UID"/>
 <C:prop name="DTSTART"/>
 <C:prop name="DTEND"/>
 <C:prop name="DURATION"/>
 </C:comp>

 </C:comp>

 </C:calendar‑data>
 </D:prop>
 <C:filter>
 <C:comp‑filter name="VCALENDAR">
 <C:comp‑filter name="VPOLL">
 <C:time‑range start="20121204T000000Z"
 end="20121205T000000Z"/>
 </C:comp‑filter>
 </C:comp‑filter>
 </C:filter>
</C:calendar‑query>

 >> Response <<

HTTP/1.1 207 Multi‑Status
Date: Sat, 11 Nov 2012 09:32:12 GMT
Content‑Type: application/xml; charset="utf‑8"
Content‑Length: xxxx

<?xml version="1.0" encoding="utf‑8" ?>
<D:multistatus xmlns:D="DAV:"
 xmlns:C="urn:ietf:params:xml:ns:caldav">
 <D:response>
 <D:href>http://cal.example.com/cyrus/work/poll2.ics</D:href>
 <D:propstat>
 <D:prop>
 <D:getetag>"fffff‑abcd2"</D:getetag>
 <C:calendar‑data>BEGIN:VCALENDAR
VERSION:2.0
BEGIN:VPOLL
DTSTART;TZID=US/Eastern:20121202T120000
DURATION:PT4D
SUMMARY:Poll #2
UID:00959BC664CA650E933C892C@example.com
END:VPOLL
END:VCALENDAR
</C:calendar‑data>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://cal.example.com/cyrus/work/poll3.ics</D:href>
 <D:propstat>
 <D:prop>
 <D:getetag>"fffff‑abcd3"</D:getetag>
 <C:calendar‑data>BEGIN:VCALENDAR

VERSION:2.0
PRODID:‑//Example Corp.//CalDAV Client//EN
BEGIN:VPOLL
DTSTART;TZID=US/Eastern:20121204T100000
DURATION:PT4D
SUMMARY:Poll #3
UID:DC6C50A017428C5216A2F1CD@example.com
END:VPOLL
END:VCALENDAR
</C:calendar‑data>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
</D:multistatus>

7.4. CalDAV time ranges

 "CALDAV:time-range XML Element" in section=9.9 [RFC4791] describes
 how to specify time ranges to limit the set of calendar components
 returned by the server. This specification extends [RFC4791] to
 describe the meaning of time ranges for VPOLL

 A VPOLL component is said to overlap a given time range if the
 condition for the corresponding component state specified in the
 table below is satisfied. The conditions depend on the presence of
 the DTSTART, DURATION, DTEND, COMPLETED and CREATED properties in the
 VPOLL component. Note that, as specified above, the DTEND value MUST
 be a DATE-TIME value equal to or after the DTSTART value if
 specified.

+‑‑‑+
| VPOLL has the DTSTART property? |
| +‑‑‑+
| | VPOLL has the DURATION property? |
| | +‑‑‑+
| | | VPOLL has the DTEND property? |
| | | +‑‑‑+
| | | | VPOLL has the COMPLETED property? |
| | | | +‑‑‑+
| | | | | VPOLL has the CREATED property? |
| | | | | +‑‑‑+
| | | | | | Condition to evaluate |
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+
Y	Y	N	*	*	(start <= DTSTART+DURATION) AND
					((end > DTSTART) OR
					(end >= DTSTART+DURATION))
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
Y	N	Y	*	*	((start < DTEND) OR (start <= DTSTART))
					AND
					((end > DTSTART) OR (end >= DTEND))
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
Y	N	N	*	*	(start <= DTSTART) AND (end > DTSTART)
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
N	N	Y	*	*	(start < DTEND) AND (end >= DTEND)
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
N	N	N	Y	Y	((start <= CREATED) OR (start <= COMPLETED))
					AND
					((end >= CREATED) OR (end >= COMPLETED))
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
N	N	N	Y	N	(start <= COMPLETED) AND (end >= COMPLETED)
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
N	N	N	N	Y	(end > CREATED)
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+					
N	N	N	N	N	TRUE
+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+‑‑‑+

8. Security Considerations

 Applications using these property need to be aware of the risks
 entailed in using the URIs provided as values. See [RFC3986] for a
 discussion of the security considerations relating to URIs.

9. IANA Considerations

9.1. Parameter Registrations

 This document defines the following new iCalendar property parameters
 to be added to the registry defined in section=8.2.4 [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property Parameter | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| REQUIRED | Current | Section 4.3.1 |
| STAY‑INFORMED | Current | Section 4.3.2 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9.2. Property Registrations

 This document defines the following new iCalendar properties to be
 added to the registry defined in section=8.2.3 [RFC5545]:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
ACCEPT‑RESPONSE	Current	Section 4.4.7
POLL‑ITEM‑ID	Current	Section 4.4.3
POLL‑MODE	Current	Section 4.4.4
POLL‑PROPERTIES	Current	Section 4.4.5
POLL‑WINNER	Current	Section 4.4.6
RESPONSE	Current	Section 4.4.8
VOTER	Current	Section 4.4.9
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

9.3. POLL-MODE Registration Template

 A poll mode is defined by completing the following template.

 Poll mode name

 The name of the poll mode.

 Purpose

 The purpose of the poll mode. Give a short but clear description.

 Reference

 A reference to the RFC in which the poll mode is defined

9.4. POLL-MODE Registrations

 This document defines the following registered poll modes.

+‑‑‑‑‑‑‑‑‑‑+‑‑+‑‑‑‑‑‑‑‑‑‑‑+
Poll	Purpose	Reference
mode		
name		
+‑‑‑‑‑‑‑‑‑‑+‑‑+‑‑‑‑‑‑‑‑‑‑‑+		
BASIC	To provide simple voting for a single	Current
	outcome from a number of candidates.	
+‑‑‑‑‑‑‑‑‑‑+‑‑+‑‑‑‑‑‑‑‑‑‑‑+

10. Acknowledgements

 The authors would like to thank the members of the Calendaring and
 Scheduling Consortium (CalConnect) for contributing their ideas and
 support.

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2518]
 Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D.
 Jensen, "HTTP Extensions for Distributed Authoring --
 WEBDAV", RFC 2518, DOI 10.17487/RFC2518, February 1999,
 <https://www.rfc-editor.org/info/rfc2518>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4791]
 Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <https://www.rfc-editor.org/info/rfc5545>.

 [RFC5546]
 Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

 [RFC6047]
 Melnikov, A., Ed., "iCalendar Message-Based
 Interoperability Protocol (iMIP)", RFC 6047,
 DOI 10.17487/RFC6047, December 2010,
 <https://www.rfc-editor.org/info/rfc6047>.

 [RFC6638]
 Daboo, C. and B. Desruisseaux, "Scheduling Extensions to
 CalDAV", RFC 6638, DOI 10.17487/RFC6638, June 2012,
 <https://www.rfc-editor.org/info/rfc6638>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [IETF.TLP]

 IETF, "IETF Trust Legal Provisions (TLP)", April 2018,
 <https://trustee.ietf.org/trust-legal-provisions.html>.

 [RFC3552]
 Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC4918]
 Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918,
 DOI 10.17487/RFC4918, June 2007,
 <https://www.rfc-editor.org/info/rfc4918>.

 [RFC5378]
 Bradner, S., Ed. and J. Contreras, Ed., "Rights
 Contributors Provide to the IETF Trust", BCP 78, RFC 5378,
 DOI 10.17487/RFC5378, November 2008,
 <https://www.rfc-editor.org/info/rfc5378>.

Appendix A. Open issues

 Notifications: Need to do a section on what Notifications to support.
 A. VPOLL is about to end and you haven't voted on it yet. Instead
 reuse VALARMS to notify the user?

 Future: Restarting a confirmed/completed VPOLL What to do with
 changes to STATUS:CONFIRMED? Allow them or not? What do to that
 poll had a winning event or todo. Stress VPOLL UID MUST be unique
 Changing status back from CONFIRMED MUST adjust status of any events
 booked as a result of confirmation. MUST winning event be cancelled
 for POLL-MODE basic? No - VOTER has indicated now unable to attend -
 want to revote

 Future: Voting on a confirmed/completed VPOLL Can a VOTER vote after
 completion? May be unable to attend and wants to indicate. Requires
 retention of VPOLL retention period Removed status

 ORGANIZER/ATTENDEE validity Can a user create a poll with scheduled
 events where that user's isn't the organizer of the poll? So is
 there a requirement that the account that poll is on is able to
 create each one of the resources in the poll? i.e. I can't create a
 poll with a set of events where I am just the attendee of the events.
 Are there any other restrictions for components in a VPOLL? Add to
 security consideration

 Update to existing event after poll confirm When voting on existing
 event - winning properties ONLY are merged in to the real event.

 Need to write down what isn't valid in a VPOLL a. Can't change POLL-
 MODE

 Guide for ATTENDEE roles chair, NON-PARTICIPANT etc

 ? - some iTip notes On confirm - send itip if appropriate (PUBLISH) -
 all non-participating - shared - feeds Organizer can specify where
 result is? Confirm can specify that itip is sent - ITIP / NONE -
 parameter ? on POLL-WINNER

 Need to add example of freebusy in response

BEGIN:VCALENDAR
VERSION:2.0
PRODID:‑//BedeworkCaldavTest//BedeworkCaldavTest
METHOD: REPLY
BEGIN:VPOLL
ORGANIZER:mailto:douglm@mysite.edu
VOTER:mailto:eric@example.com
UID:sched01‑1234567890
DTSTAMP:20120101T010000Z
SEQUENCE:0
SUMMARY:What to do this week
BEGIN:VFREEBUSY
.......
END:VFREEBUSY
END:VPOLL
END:VCALENDAR

Appendix B. Change log

 Calext V00: 2019-05-17 MD

 First calext version. Moved source to metanorma. No changes to
 specification.

 V03: 2014-10-28 MD

 * Add VVOTER and VOTE components.

 * Add RESPONSE property.

 * Remove RESPONSE parameter from VOTER.

 V03: 2014-05-12 MD

 * Add reply-url property and required parameter.

 * Fix ACCEPT-RESPONSE definition.

 V02: 2014-05-12 MD

 * Typos fixed, clarifications made.

 * Removed spurious COMMENT param. Switched some to PUBLIC-
 COMMENT

 * Changed STAY-INFORMED to remove boolean value type and state
 explicit TRUE/FALSE values.

 * iTip: Allow VPOLL DTSTART to be optional and allow
 VAVAILABILITY as subcomponent

 * iTip: fix broken table cells

 * Add POLL-PROPERTIES, POLL-WINNER to 5545 extensions table

 * Added Caldav scheduling section

 V01: 2013-08-07 MD

 * Removed method CONFIRM

 * Removed pollitemid from VPOLL abnf. Added text for pollwinner

 * Added POLL-WINNER and verbiage

 * Added STATUS values

 * Added RELTYPE=POLL

 * Added supported-vpoll-component-sets

 * Added CalDAV related parameters to VOTER

 * Removed bad CalDAV query example. State that queries cannot
 target the sub-components.

 Initial version: 2012-11-02 MD

Authors' Addresses

Eric York
California Things, Inc
650 Main Street
Redwood City 94063
United States of America

Email: eric.york@gmail.com
URI: www.linkedin.com/in/eryork

Cyrus Daboo
Apple Inc.
1 Infinite Loop
Cupertino 95014
United States of America

Email: cyrus@daboo.name
URI: https://www.apple.com

Michael Douglass
Spherical Cow Group
226 3rd Street
Troy 12180
United States of America

Email: mikeadouglass@gmail.com
URI: https://sphericalcowgroup.com/

draft-douglass-icalendar-series-00 - Support for Series in iCalendar

Index
Back 5
Prev
Next

Network Working Group

Internet-Draft

Updates: 5545 (if approved)

Intended status: Standards Track

Expires: August 19, 2017

M. Douglass

Spherical Cow Group

February 15, 2017

Support for Series in iCalendar

draft-douglass-icalendar-series-00

Abstract

 This specification updates [RFC5545] by defining a new repeating set
 of events known as a series. This differs from recurrences in that
 each instance is a separate entity with a parent relationship to a
 specified template entity.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 19, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Overrides and iCalendar recurrences
	 2.1. Changing the master start or the recurrence rules

	 2.2. Splitting recurrences

	3. Series
	 3.1. Modifying series patterns and splitting

	 3.2. The series master

	 3.3. The series instances

	4. Redefined Relation Type Value

	5. New Property Parameters
	 5.1. Split

	 5.2. Lookahead count

	 5.3. Lookahead period

	6. New Properties
	 6.1. Generating Series members

	 6.2. Series UID

	 6.3. Series-exception-date

	 6.4. Series-date

	 6.5. Series-id

	 6.6. Last series id

	 6.7. Series Rule

	7. Redefined RELATED-TO Property
	 7.1. RELATED-TO

	8. Backwards compatibility

	9. CalDAV extensions

	10. Security Considerations

	11. IANA Considerations
	 11.1. iCalendar Property Registrations

	 11.2. iCalendar Property Parameter Registrations

	 11.3. iCalendar RELTYPE Value Registrations

	12. Acknowledgements

	13. Normative References

	Appendix A. Points for discussion

	Appendix B. Change log

	Author's Address

1. Introduction

 Since iCalendar was first defined there has been only one way to
 express a repeating set of events - the recurrence. This defined a
 master event, a set of rules for computing the instances and a way of
 overriding certain instances.

 This approach works well enough in certain situations but has many
 problems which need to be addressed.

 This specification introduces a new approach to repeating patterns of
 entities which avoids some of the problems.

2. Overrides and iCalendar recurrences

 The recurrence rules specify how instances are to be computed. These
 rules provide a set of keys - the RECURRENCE-ID - and an instance can
 be created with the calculated start date/time and a copy of the
 duration (or calculated end date/time).

 The specification allows for overrides. These are handled by
 supplying a complete replacement for the instance with a RECURRENCE-
 ID property matching that of the instance being overridden. This may
 change any of the properties (except the UID) - including start, end
 or duration.

 If a long lived recurrence is heavily overridden it becomes very
 cumbersome. The master plus overrides is considered a single
 resource in most circumstances (iTip allows the delivery of a single
 instance in certain situations).

 Simple meetings can become heavily modifed recurrences through adding
 the weeks agenda to the description, changing of attendees etc.

 There are approaches being considered to mitigate some of these
 issues which mostly involve only storing changes but recurrences are
 still awkward to deal with.

2.1. Changing the master start or the recurrence rules

 This can lead to some very difficult problems to resolve. In the
 case of a heavily modified meeting it may be difficult to impossible
 to determine which override applies to the newly modified event.

 For example, a weekly book-reading is moved from Monday to Friday.
 There are weeks of scheduled events in the future. Do we move them
 all forward to the next instance or skip one and move them back? If
 it becomes bi-weekly rather than weekly do we drop every other or
 just space them out more?

 To be sure - some of these problems are not totally resolved by a
 series approach but they become more tractable.

2.2. Splitting recurrences

 The [RFC5545] THISANDFUTURE range is poorly supported. Splitting is
 what a number of implementations use to avoid changing overrrides in
 the past.

 The recurring event is split into 2, one being the truncated original
 the other being a new recurring event starting at the time of the
 THISANDFUTURE override.

 There is left the problem of relating the two, this can be
 accomplished by use of the RELATED-TO property but that is not
 standardized.

3. Series

 A series is a, generally regularly, repeating sets of events or tasks
 each instance of which is usually, but not always, different in some
 respect. Examples may be a library running an after-school reading
 program which usually, takes place at the same time each week but
 always differs in the book or author being studied.

 In recurrences an instances is a calculated 'virtual' object, unless
 overridden. It has the same UID as the master and a RECURRENCE-ID
 which is always one of the calculated set.

 In a series, a specified number of instances are created ahead of
 time each with their own unique UID. They are all related to the
 master using a SERIES-MASTER relation type defined in this
 specification. Each instance acts as an individual component as far
 as retrieval and searching is concerned.

 Each instance and master is identified as a member of the full series
 by the SERIES-UID property. The value of this property is the same
 in all members of the series even when splits have occurred.

 As instances are created a LAST-SERIES-ID property is added or
 updated in the master to indicate which instance was last created.
 When there are SXDATE properties this property value may represent an
 instance which cannot be created. It merely represents the latest
 calculated date.

 This property allows generated instances to be deleted without the
 addition of SXDATE properties to the master. The SXDATE only
 indicates future instances which MUST NOT be created.

 As time goes on more instances are created either by the server or by
 a client when it inspects the current state of the series. The
 number of instances may be based on time or a count.

 For example, an organization may allow rooms to be booked only 4
 weeks ahead. Thus a series may be set up which has that 4 week set
 of events in the future. Each will have the room as an attendee
 ensuring that at least the room is booked at the regular time.

3.1. Modifying series patterns and splitting

 If it becomes necessary to modify the series rules or the master
 start then the series is always split at the point of the
 modification.

 When a series is split the previous master is modifed to truncate the
 current series at the last generated instance and a parameter
 SPLIT=YES is added to the series rule to indicate that this master is
 now split.

 The split may result in a number of instances related to the old
 series but overlapping the new. It is up to the implementation to
 decide what should be done with these but this usually requires a
 degree of interaction with a human (or very intelligent robot). The
 application may offer to copy them into the corresponding new
 instances - if these can be easily determined, offer to delete all of
 them or let the user manually copy information and delete.

 The new series master is related to the old master by the new series
 master having a RELATED-TO property with RELTYPE=SERIES-MASTER
 pointing at the previous master. In that way a backwards chain of
 series masters may be created

3.2. The series master

 A series master is identified in much the same way as a recurrence
 master. It will contain an SRULE and 0 or more SDATE properties or 1
 or more SDATE properties. Additionally it may contain 0 or more
 SXDATE properties to exclude instances.

 As noted above, if the series was split it may contain a RELATED-TO
 property with RELTYPE=SERIES-MASTER and a value of the previous
 series master.

 The master will also contain a LAST-SERIES-ID if any instances have
 been calculated and perhaps generated.

 It is important to note that the series master is the first member of
 the series. Thus the first instance always occurs AFTER the series
 master.

3.3. The series instances

 A series instance is identified by having a SERIES-ID property which
 is calculated in the same manner as a RECURRENCE-ID. It MUST also
 contain a RELATED-TO property with RELTYPE=SERIES-MASTER and a value
 being the UID of the series master.

 As noted above, if the series was split it may contain a RELATED-TO
 property with RELTYPE=SERIES-MASTER and a value being the UID of the
 previous series master.

4. Redefined Relation Type Value

 Relationship parameter type values are defined in section 3.2.15. of
 [RFC5545]. This specification augments that parameter to include the
 new relationship values SERIES-MASTER

 Format Definition:

 This property parameter is respecified as follows:

 reltypeparam = "RELTYPE" "="
 ("PARENT" ; Parent relationship ‑ Default
 / "CHILD" ; Child relationship
 / "SIBLING" ; Sibling relationship
 / "DEPENDS‑ON" ; refers to previous task
 / "REFID" ; Relationship based on REFID
 / "STRUCTURED‑CATEGORY"
 ; Relationship based on STRUCTURED‑CATEGORY
 / "FINISHTOSTART" ; Temporal relationship
 / "FINISHTOFINISH" ; Temporal relationship
 / "STARTTOFINISH" ; Temporal relationship
 / "STARTTOSTART" ; Temporal relationship
 / "SERIES‑MASTER" ; link to the master component
 / iana‑token ; Some other IANA‑registered
 ; iCalendar relationship type
 / x‑name) ; A non‑standard, experimental
 ; relationship type

Description: This parameter can be specified on a property that
 references another related calendar component. The parameter may
 specify the hierarchical relationship type of the calendar
 component referenced by the property when the value is PARENT,
 CHILD or SIBLING. If this parameter is not specified on an
 allowable property, the default relationship type is PARENT.
 Applications MUST treat x‑name and iana‑token values they don't
 recognize the same way as they would the PARENT value.

 This parameter defines the temporal relationship when the value is
 one of the project management standard relationships
 FINISHTOSTART, FINISHTOFINISH, STARTTOFINISH or STARTTOSTART.
 This property will be present in the predecessor entity and will
 refer to the successor entity. The GAP parameter specifies the
 lead or lag time between the predecessor and the successor. In
 the description of each temporal relationship below we refer to
 Task-A which contains and controls the relationship and Task-B the
 target of the relationship.

RELTYPE=PARENT: See [RFC5545] section 3.2.15.

RELTYPE=CHILD: See [RFC5545] section 3.2.15.

RELTYPE=SIBLING: See [RFC5545] section 3.2.15.

RELTYPE=DEPENDS‑ON: Indicates that the current calendar component
 depends on the referenced calendar component in some manner. For
 example a task may be blocked waiting on the other, referenced,
 task.

RELTYPE=REFID: Establishes a reference from the current component to
 components with a REFID property which matches the value given in
 the associated RELATED‑TO property.

RELTYPE=SERIES‑MASTER: Indicates that the current calendar component
 is bsed on the referenced calendar component. The value is a UID.

RELTYPE=STRUCTURED‑CATEGORY: Establishes a reference from the
 current component to components with a STRUCTURED‑CATEGORY
 property which matches the value given in the associated RELATED‑
 TO property.

RELTYPE=FINISHTOSTART: Task‑B cannot start until Task‑A finishes.
 For example, when sanding is complete, painting can begin.

 ============
 | Task‑A |‑‑+
 ============ |
 |
 V
 ============
 | Task‑B |
 ============

 Figure 1: Finish to start relationship

RELTYPE=FINISHTOFINISH: Task‑B cannot finish before Task‑A is
 finished, that is the end of Task‑A defines the end of Task‑B.
 For example, we start the potatoes, then the meat then the peas
 but they should all be cooked at the same time.

 ============
 | Task‑A |‑‑+
 ============ |
 |
 ============ |
 | Task‑B |<‑+
 ============

 Figure 2: Finish to finish relationship

RELTYPE=STARTTOFINISH: The start of Task‑A (which occurs after Task‑
 B) controls the finish of Task‑B. For example, ticket sales
 (Task‑B) end when the game starts (Task‑A).

 ============
 +‑‑| Task‑A |
 | ============
 |
 ============ |
 | Task‑B |<‑+
 ============

 Figure 3: Start to finish relationship

RELTYPE=STARTTOSTART: The start of Task‑A triggers the start of
 Task‑B, that is Task‑B can start anytime after Task‑A starts.

 ============
 +‑‑| Task‑A |
 | ============
 |
 | ============
 +‑>| Task‑B |
 ============

 Figure 4: Start to start relationship

5. New Property Parameters

5.1. Split

Parameter name: SPLIT

Purpose: To indicate a series has been split.

 Format Definition:

 This parameter is defined by the following notation:

 splitparam = "SPLIT" "="
 ("YES" ; The series is split
 / "NO" ; The series is not split (default)
 / x‑name ; Experimental reference type
 / iana‑token) ; Other IANA registered type

Description: This parameter MAY be specified on the SRULE property
 to indicate that the series has been split with SPLIT=YES. Once
 split is is probably innapropriate to modify the series further.

5.2. Lookahead count

Parameter name: LOOKAHEAD‑COUNT

Purpose: To specify the number of series instances that should be
 generated in advance.

 Format Definition:

 This parameter is defined by the following notation:

 lookahead‑countparam = "LOOKAHEAD‑COUNT" "=" 1*DIGIT

Description: This parameter MAY be specified on the SRULE property
 to indicate how many series instances should be generated in
 advance.

 An implementation is free to apply its own limts but MUST NOT
 generate more than those defined by this parameter and/or the
 LOOKAHEAD-PERIOD parameter.

 If both the LOOKAHEAD-PERIOD and LOOKAHEAD-COUNT arameters are
 supplied the result should be limited by both.

 For example, if the LOOKAHEAD-PERIOD parameter would cause 8
 instances to be generated but LOOKAHEAD-COUNT specifies 4 then
 only 4 instances will be generated.

5.3. Lookahead period

Parameter name: LOOKAHEAD‑PERIOD

Purpose: To specify a maximum period for which series instances
 should be generated in advance.

 Format Definition:

 This parameter is defined by the following notation:

 lookahead‑periodparam = "LOOKAHEAD‑PERIOD" "="
 DQUOTE dur‑value DQUOTE

Description: This parameter MAY be specified on the SRULE property
 to indicate how far in advance series instances should be
 generated.

 An implementation is free to apply its own limts but MUST NOT
 generate more than those defined by this parameter and/or the
 LOOKAHEAD-COUNT parameter.

 If both the LOOKAHEAD-PERIOD and LOOKAHEAD-COUNT arameters are
 supplied the result should be limited by both.

 For example, if the LOOKAHEAD-PERIOD parameter would cause 8
 instances to be generated but LOOKAHEAD-COUNT specifies 4 then
 only 4 instances will be generated.

 The value is a quoted duration.

6. New Properties

 The SERIES-ID, LAST-SERIES-ID, SDATE and SXDATE properties are
 identical in form and in the parameters they take.

 All must conform in form to the DTSTART property of the master
 component. Only the SDATE may specify a time which is not part of
 the calculated series.

 The SRULE property vakue is identical in form to the RRULE property
 defined in [RFC5545]. The LOOKAHEAD-COUNT and LOOKAHEAD-PERIOD
 parameters indicate how many instances should be generated in
 advance.

6.1. Generating Series members

 An agent, either the server or a client, will periodically extend the
 set of instances. The number of such generated instances is limited
 by:

Elements of the rule: The UNTIL or COUNT parts of the rule define
 when the series terminates. Thus a COUNT=100 specifies a maximum
 of 100 series members.

Lookahead count: This specifies how many series memerbs can exist
 from the current date/time. Thus a LOOKAHEAD‑COUNT=4 means a
 maximum of 4 generated instances.

Lookahead period: This specifies how far into the future series
 members can be generated. Thus a LOOKAHEAD‑PERIOD="PT2M" means a
 maximum period of 2 months.

System limits: This client or server SHOULD also apply limits to
 prevent a series from generating an overlarge set of members.

 The starting point for the calculation is the DTSTART of the master
 component or the LAST-SERIES-ID if it exists in the master. In both
 cases the instance represented by that date is NOT generated as part
 of the intance set and the actual instance may have been excluded by
 an SXDATE property but the starting date is still valid.

 The starting date/time property defines the first instance in the
 next batch of series members. Note that the starting property value
 MUST match the pattern of the series rule, if specified. For
 example, if the rule specifies every Wednesday the starting date MUST
 be a Wednesday.

 The end date/time of the set will be provided by the UNTIL part of
 the rule, the LOOKAHEAD-PERIOD or by a system maxima.

 A set of date/time values can be generated within those contraints.
 As each date/time value is generated it can be ignored if it is one
 of the SXDATE values.

 Generation of values can terminate when the size of the result
 exceeds that given by the COUNT rule element, the LOOKAHEAD-COUNT
 value or any systm limit.

 Any SDATE values that fall within the current range and are not in
 the set of SXDATE values can be added and the result truncated again
 to match the size limits.

 Finally, any date/time values that have already been generated and
 are present as SERIES-ID values should be removed from the set. What
 remains is the new set of members to extend the current series.

 The last of those values becomes the new value for the LAST-SERIES-ID
 property in the series master.

 As noted above the "SXDATE" property can be used to exclude the value
 specified in the master. This leads to a complication as the master
 needs to be preserved as a container for the values which define the
 series. This is flagged by adding a DELETED-MASTER elemeng to the
 SERIES-STATUS property..

6.2. Series UID

Property name: SERIES‑UID

Purpose: This property defines the persistent, globally unique
 identifier for the full series.

Value Type: TEXT

Property Parameters: IANA and non‑standard property parameters can
 be specified on this property.

Conformance: This property MUST be specified in any "VEVENT",
 "VTODO", and "VJOURNAL" calendar components acting as a series
 master or series instance.

Description: The SERIES‑UID MUST be globally unique. This value
 SHOULD be generated by following the recommendations in section
 5.3 of [RFC7986].

 Format Definition:

 This property is defined by the following notation:

seruid = "SERIES‑UID" seruidparam ":" text CRLF

seruidparam = *(";" other‑param)

 Example:

 The following is an example of this property:

 SERIES-UID:123e4567-e89b-12d3-a456-426655440000

6.3. Series-exception-date

Property name: SXDATE

Purpose: This property defines the list of DATE‑TIME exceptions for
 series of events, to‑dos or journal entries.

Value Type: The default value type for this property is DATE‑TIME.
 The value type can be set to DATE.

Property Parameters: IANA, non‑standard, value data type, and time
 zone identifier property parameters can be specified on this
 property.

Conformance: This property can be specified in "VEVENT", "VTODO",
 and "VJOURNAL" calendar components acting as the series master.

Description: The exception dates, if specified, are used when
 computing the instances of the series. They specify date/time
 values which are to be removed from the set of possible series
 instances.

 Format Definition:

 This property is defined by the following notation:

sxdate = "SXDATE" sxdtparam ":" sxdtval *("," sxdtval) CRLF

sxdtparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE‑TIME" / "DATE")) /
 ;
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

sxdtval = date‑time / date
 ;Value MUST match value type

 Example:

 The following is an example of this property:

 SXDATE:19960402T010000Z,19960403T010000Z,19960404T010000Z

6.4. Series-date

Property name: SDATE

Purpose: This property defines the list of DATE‑TIME values for
 series of events, to‑dos or journal entries.

Value Type: The default value type for this property is DATE‑TIME.
 The value type can be set to DATE.

Property Parameters: IANA, non‑standard, value data type, and time
 zone identifier property parameters can be specified on this
 property.

Conformance: This property can be specified in "VEVENT", "VTODO",
 and "VJOURNAL" calendar components acting as the series master.

Description: This property can appear along with the "SRULE"
 property to define a extra series occurrences. When they both
 appear in a series master component, the instances are defined by
 the union of occurrences defined by both the "SDATE" and "SRULE".

 Purpose:

 This property is defined by the following notation:

sdate = "SDATE" sdtparam ":" sdtval *("," sdtval) CRLF

sdtparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE‑TIME" / "DATE" / "PERIOD")) /
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

sdtval = date‑time / date
 ;Value MUST match value type

 Example:

 The following are examples of this property:

SDATE:19970714T123000Z
SDATE;TZID=America/New_York:19970714T083000

 SDATE;VALUE=PERIOD:19960403T020000Z/19960403T040000Z,

 19960404T010000Z/PT3H

 SDATE;VALUE=DATE:19970101,19970120,19970217,19970421

 19970526,19970704,19970901,19971014,19971128,19971129,19971225

6.5. Series-id

Property name: SERIES‑ID

Purpose: This property is used in conjunction with the "UID" and
 "SEQUENCE" properties to identify a specific instance of a
 "VEVENT", "VTODO", or "VJOURNAL" calendar component in a series.
 The property value is the original value of the "DTSTART" property
 of the series instance before any changes occur.

Value type: The default value type is DATE‑TIME. The value type can
 be set to a DATE value type. This property MUST have the same
 value type as the "DTSTART" property contained within the series
 component. Furthermore, this property MUST be specified as a date
 with local time if and only if the "DTSTART" property contained
 within the series component is specified as a date with local
 time.

Property Parameters: IANA, non‑standard, value data type and time
 zone identifier parameters can be specified on this property.

Conformance: This property can be specified zero or more times in
 any iCalendar component.

Description: The SERIES‑ID is the originally calculated value of the
 DTSTART property based on the master identified by the RELATED‑TO
 property with a RELTYPE=SERIES‑MASTER parameter.

 The full series of components can only be retrieved by searching
 for all components with a matching RELATED-TO property.

 If the value of the "DTSTART" property is a DATE type value, then
 the value MUST be the calendar date for the series instance.

 The DATE-TIME value is set to the time when the original series
 instance would occur; meaning that if the intent is to change a
 Friday meeting to Thursday, the DATE-TIME is still set to the
 original Friday meeting.

 The "SERIES-ID" property is used in conjunction with the "UID" and
 "SEQUENCE" properties to identify a particular instance of an
 event, to-do, or journal in the series. For a given pair of "UID"
 and "SEQUENCE" property values, the "SERIES-ID" value for a series
 instance is fixed.

 Format Definition:

 This property is defined by the following notation:

serid = "SERIES‑ID" sidparam ":" sidval CRLF

sidparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE‑TIME" / "DATE")) /
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

sidval = date‑time / date
 ;Value MUST match value type

 Example:

 The following are examples of this property:

 SERIES-ID;VALUE=DATE:19960401

 SERIES-ID;TZID=America/New_York:20170120T120000

6.6. Last series id

Property name: LAST‑SERIES‑ID

Purpose: To specify the last calculated instance of the series.
 When new instances are created they MUST have a SERIES‑ID after
 the value of this property.

 In all respects this property is identical to SERIES-ID and is in
 fact a copy of the SERIES-ID which would be present in the last
 created instance (assuming it is not suppressed by an SXDATE).

Value type: DATE or DATE_TIME (the default). This has the same
 requirements as SERIES‑ID.

Property Parameters: IANA, non‑standard, value data type and time
 zone identifier parameters can be specified on this property.

Conformance: This property MAY be specified in any iCalendar
 component.

Description: When used in a component the value of this property
 points to additional information related to the component. For
 example, it may reference the originating web server.

 Format Definition:

 This property is defined by the following notation:

last‑series‑i = "LAST‑SERIES‑ID" lastseriesidparam /
 (
 ";" "VALUE" "=" "TEXT"
 ":" text
)
 (
 ";" "VALUE" "=" "REFERENCE"
 ":" text
)
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

 lastseriesidparam = *(

; the following is MANDATORY
; and MAY occur more than once

 (";" relparam) /

; the following are MANDATORY
; but MUST NOT occur more than once

(";" fmttypeparam) /
(";" labelparam) /
; labelparam is defined in ...

; the following is OPTIONAL
; and MAY occur more than once

 (";" xparam)

)

 Example:

 The following is an example of this property. It points to a server
 acting as the source for the calendar object.

 LINK;REL=SOURCE;LABEL=The Egg:http://example.com/events

6.7. Series Rule

Property name: RRULE

Purpose: This property defines a rule or repeating pattern for a
 series of events, to‑dos or journal entries.

Value Type: RECUR

Property Parameters: IANA, non‑standard, look‑ahead count or date
 property parameters can be specified on this property.

Conformance: This property can be specified in any "VEVENT",
 "VTODO", and "VJOURNAL" calendar component, but it SHOULD NOT be
 specified more than once.

Description: The series rule, if specified, is used in computing the
 instances to be generated for the series. These are generated by
 considering the master "DTSTART" property along with the "SRULE",
 "SDATE", and "SXDATE" properties contained within the series
 master. The "DTSTART" property defines the first instance in the
 recurrence set which is represented by that master event.

 Unlike the RRULE the "DTSTART" property MUST be synchronized with
 the series rule, if specified. For example, if the DTSTARTS
 species a date on Wednesday but the SRULE speciee every Tuesday
 then a server or client MUSt reject the component.

 The final series is represented by gathering all of the start
 DATE-TIME values generated by any of the specified "SRULE" and
 "SDATE" properties, and then excluding any start DATE-TIME values
 specified by "SXDATE" properties. This implies that start DATE-
 TIME values specified by "SXDATE" properties take precedence over
 those specified by inclusion properties (i.e., "SDATE" and
 "SRULE"). Where duplicate instances are generated by the "SRULE"
 and "SDATE" properties, only one imstance is considered.
 Duplicate instances are ignored.

 The "DTSTART" property specified within the master iCalendar
 object defines the first instance of the recurrence. In most
 cases, a "DTSTART" property of DATE-TIME value type used with a
 series rule, should be specified as a date with local time and
 time zone reference to make sure all the recurrence instances
 start at the same local time regardless of time zone changes.

 If the duration of the series component is specified with the
 "DTEND" or "DUE" property, then the same exact duration will apply
 to all the members of the generated series. Else, if the duration
 of the series master component is specified with the "DURATION"
 property, then the same nominal duration will apply to all the
 members of the generated series and the exact duration of each
 instance will depend on its specific start time. For example,
 series instances of a nominal duration of one day will have an
 exact duration of more or less than 24 hours on a day where a time
 zone shift occurs. The duration of a specific instance may be
 modified in an exception component or simply by using an "SDATE"
 property of PERIOD value type.

 Format Definition:

 This property is defined by the following notation:

srule = "SRULE" srulparam ":" recur CRLF

sruleparam = *(
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once

 (";" lookahead‑countparam) /
 (";" lookahead‑periodparam) /

 ; the following is OPTIONAL
 ; and MAY occur more than once

 (";" xparam)

)

Examples: Say they are pretty much the same as RRULE but extra
 params

7. Redefined RELATED-TO Property

7.1. RELATED-TO

Property name: RELATED‑TO

Purpose: This property is used to represent a relationship or
 reference between one calendar component and others. The
 definition here extends the definition in Section 3.8.4.5. of
 [RFC5545] by including a section on RELTYPE=SERIES‑MASTER.

Value type: URI, UID or TEXT

Property Parameters: Relationship type, IANA and non‑standard
 property parameters can be specified on this property.

Conformance: This property MAY be specified in any iCalendar
 component.

Description: By default or when VALUE=UID is specified, the property
 value consists of the persistent, globally unique identifier of
 another calendar component. This value would be represented in a
 calendar component by the "UID" property.

 By default, the property value points to another calendar
 component that has a PARENT relationship to the referencing
 object. The "RELTYPE" property parameter is used to either
 explicitly state the default PARENT relationship type to the
 referenced calendar component or to override the default PARENT
 relationship type and specify either a CHILD or SIBLING
 relationship or a temporal relationship.

 The PARENT relationship indicates that the calendar component is a
 subordinate of the referenced calendar component. The CHILD
 relationship indicates that the calendar component is a superior
 of the referenced calendar component. The SIBLING relationship
 indicates that the calendar component is a peer of the referenced
 calendar component.

 The FINISHTOSTART, FINISHTOFINISH, STARTTOFINISH or STARTTOSTART
 relationships define temporal relationships as specified in the
 reltype parameter definition.

 The SERIES-MASTER relationship when included in a series instance
 refers to the master of that series. When included in a series
 master it refers to a previous master in a chain of spilt series.

 Changes to a calendar component referenced by this property can
 have an implicit impact on the related calendar component. For
 example, if a group event changes its start or end date or time,
 then the related, dependent events will need to have their start
 and end dates changed in a corresponding way. Similarly, if a
 PARENT calendar component is cancelled or deleted, then there is
 an implied impact to the related CHILD calendar components. This
 property is intended only to provide information on the
 relationship of calendar components. It is up to the target
 calendar system to maintain any property implications of this
 relationship.

 Format Definition:

 This property is defined by the following notation:

related = "RELATED‑TO" relparam (":" text) /
 (
 ";" "VALUE" "=" "UID"
 ":" uid
)
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

relparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" reltypeparam) /
 (";" gapparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other‑param)
 ;
)

 Example:

 The following are examples of this property.

 RELATED-TO;RELTYPE=SERIES-MASTER:19960401-080045-4000F192713

8. Backwards compatibility

 Any clients following the approach specified in [RFC5545] are
 expected to ignore any properties or parameters they don't recognize.

 For such clients the series appears to be an unconnected set of
 components. They all have their own unique UIDS. If the client
 updates an instance this should be identical in effect to an update
 carried out by a client aware of the new properties.

 Updates MUST preserve the SERIES-ID, LAST-SERIES-ID, SRULE, SDATE and
 SXDATE properties. A client which does not do so is in violation of
 [RFC5545].

 More text needed here...

9. CalDAV extensions

 This specification may extend Caldav by adding reports to return all
 members of a series given the series master UID. This could be
 handled by the current query mechganism but it is likely to be
 sufficiently frequently used that a special query is appropriate.

 It is also likely we will want a CalDAV operation to split a series
 and generate the additional members of the series as a single atomic
 operation.

10. Security Considerations

 Clients and servers should take care to limit the number of generated
 instances to a reasonable value. This can be a relatively small
 value.

11. IANA Considerations

11.1. iCalendar Property Registrations

 The following iCalendar property names have been added to the
 iCalendar Properties Registry defined in Section 8.3.2 of [RFC5545]

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Property | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
LAST‑SERIES‑ID	Current	Section 6.6
SERIES‑ID	Current	Section 6.5
SERIES‑UID	Current	Section 6.2
SDATE	Current	Section 6.4
SRULE	Current	Section 6.7
SXDATE	Current	Section 6.3
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

11.2. iCalendar Property Parameter Registrations

 The following iCalendar property parameter names have been added to
 the iCalendar Parameters Registry defined in Section 8.3.3 of
 [RFC5545]

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Parameter | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
LOOKAHEAD‑COUNT	Current	Section 5.2
LOOKAHEAD‑PERIOD	Current	Section 5.3
SPLIT	Current	Section 5.1
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+

11.3. iCalendar RELTYPE Value Registrations

 The following iCalendar "RELTYPE" values have been added to the
 iCalendar Relationship Types Registry defined in Section 8.3.8 of
 [RFC5545]

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| Relationship Type | Status | Reference |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+
| SERIES‑ID | Current | Section 4 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+

12. Acknowledgements

 The author would like to thank the members of the Calendaring and
 Scheduling Consortium technical committees and the following
 individuals for contributing their ideas, support and comments:

 The author would also like to thank the Calendaring and Scheduling
 Consortium for advice with this specification.

13. Normative References

 [I-D.daboo-caldav-attachments]

 Daboo, C. and A. Quillaud, "CalDAV Managed Attachments",
 draft-daboo-caldav-attachments-03 (work in progress),
 February 2014.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5545]
 Desruisseaux, B., Ed., "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)",
 RFC 5545, DOI 10.17487/RFC5545, September 2009,
 <http://www.rfc-editor.org/info/rfc5545>.

 [RFC5988]
 Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC7986]
 Daboo, C., "New Properties for iCalendar", RFC 7986,
 DOI 10.17487/RFC7986, October 2016,
 <http://www.rfc-editor.org/info/rfc7986>.

 [W3C.REC-xml-20060816]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fourth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20060816, August 2006,
 <http://www.w3.org/TR/2006/REC-xml-20060816>.

 [W3C.WD-xptr-xpointer-20021219]

 DeRose, S., Daniel, R., and E. Maler, "XPointer xpointer()
 Scheme", World Wide Web Consortium WD WD-xptr-xpointer-
 20021219, December 2002,
 <http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219>.

Appendix A. Points for discussion

Detecting changes from old clients: If such a client updates
 properties in the master ... what do we say here? Is there a way
 we can determine that the client doesn't realize that it's a
 series? If it doesn't then updating the dtstart is a big deal ‑
 maybe we add a parameter to a dtstart update to indicate the
 client knows it's a series but wants to do so anyway.

 Or perhaps we add a new operation - or extend patch. Simple
 update returns FORBIDDEN if you try to change any of the important
 properties (should do that for recurrences) and requires an
 explicit flag to say you (think you) know what you're doing.

Splitting and linking: The spec currently only allows for backward
 linking to previous masters. There is a parameter added to the
 rule SPLIT=YES to indicate that the series was split

 It makes sense to have a forward link to the new(er) series.
 However, a client/server may not know what the UID is until after
 data is stored. The new chain can be determined vis a query so
 perhaps we can leave it up to the protocols to figure out that
 mechanism.

CalDAV queries: if there were a better more generalised query
 language such an extensions might be unnecessary. Should we
 define a query language specifically for calendaring?

Appendix B. Change log

 2017-02-12 MD Initial version

Author's Address

Michael Douglass
Spherical Cow Group
226 3rd Street
Troy, NY 12180
USA

Email: mdouglass@sphericalcowgroup.com
URI: http://sphericalcowgroup.com

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
calext
Documents
2019-06-16

SO ¢

1 E T F

Kindle transformation by Tero Kivinen
000822

