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DNS-Based Service Discovery [RFC6763] is a component of Zero Configuration Networking [RFC6760] [ZC].
Over the course of several years, a rich collection of technologies has developed around DNS-Based Service Discovery. These various related but separate technologies are described across multiple documents. This "Road Map" document gives an overview of how these technologies (and their documents) fit together to facilitate service discovery across a broad range of operating environments, from small scale zero-configuration networks to large scale administered networks, from local area to wide area, and from low-speed wireless links in the kb/s range to high-speed wired links operating at multiple Gb/s.
Not all of the available components are necessary or appropriate in all scenarios. One goal of this "Road Map" document is to provide guidance about which components to use depending on the problem being solved.
The single most important concept in service discovery is the namespace specifying how different service types are identified. This is how a client communicates what it needs, and how a server communicates what it offers. For a client to discover a server, the client and server need to have a common language to describe what they need and what they offer. They need to use the same namespace of service types, otherwise they may actually speak the same application protocol over the air or on the wire, and may in fact be completely compatible, and yet may be unable to detect this because they are using different names to refer to the same actual service. Hence, having a consistent namespace of service types is the essential prerequisite for any useful service discovery.
IANA manages the registry of Service Types [RFC6335][STR]. This registry of Service Types can (and should) be used in any service discovery protocol as the vocabulary for describing *all* IP-based services, not only DNS-Based Service Discovery [RFC6763].
In this document we focus on the use of the IANA Service Type Registry [STR] in conjunction with DNS-Based Service Discovery, though that should not be taken in any way to imply any criticism of other service discovery protocols sharing the same namespace of service types. In different circumstances different Service Discovery protocols are appropriate.
For example, for service discovery of services potentially available via a Wi-Fi access point, prior to association with that Wi-Fi access point, when no IP communication has yet been established, a service discovery protocol may use raw 802.11 frames, not necessarily IP, UDP, or DNS-formatted messages. For Service Discovery using peer-to- peer Wi-Fi technologies, without any Wi-Fi access point at all, it may also be preferable to use raw 802.11 frames instead of IP, UDP, or DNS-formatted messages. Service Discovery using IEEE 802.15.4 radios may use yet another over-the-air protocol. What is important is that they all share the same vocabulary to describe all IP-based services. Using the same service type vocabulary means that client and server software, using agnostic APIs to consume and offer services on the network, has a common language to identify those services, independent of the medium or the particular service discovery protocol in use on that medium. Just as TCP/IP runs on many different link layers, and the concept of using an IP address to identify a particular peer is consistent across many different link layers, the concept of using a name from the IANA Service Type Registry to identify a particular service type also needs to be consistent across all IP-supporting link layers.
Originally, the IANA Service Type Registry [RFC6335][STR] used the term "Service Name" rather than "Service Type". Later it became clear that this term could be ambiguous. For a given service instance on the network, there is the machine-visible name of the type of service it provides, and the human-visible name of the particular instance of that type of service. For clarity, this document and related specifications use the term "Service Type" to denote the machine-visible name of the type of service, and the term "Instance Name" to denote the human-visible name of a particular instance.
The original DNS-Based Service Discovery specification [RFC6763] used the terms "register" (advertise a service), "browse" (discover service instances), and "resolve" (get IP address and port for a specific service instance). This terminology is reflective of the thinking at the time, which viewed service discovery as a new and separate step, added to existing networking code. For example, a server would first open a listening socket as it always had, and then "register" that listening socket with the service discovery engine. Similarly, a client would first "resolve" a service instance to an IP address and port, and then, having done that, "connect" to that IP address and port.
More recent thinking in this area [RFC8305] has come to the conclusion that it is preferable wherever possible to insulate application software from networking details like having to decide between IPv4 and IPv6, having to decide among multiple IP addresses of either or both address families, and having to decide among multiple available network interfaces. Consequently this document and related specifications adopt newer terminology as follows:
The first step, "Offer", is when a server is offering a service using some application-layer protocol, on a listening TCP or UDP (or other transport protocol) port, and wishes to make that known to other devices. This encompasses both making a listening socket (or the equivalent concept in whatever underlying networking API is being used) and advertising the existence of that listening socket via a service discovery mechanism.
The second step, "Enumerate", is when a client device wishes to perform some action, but does not yet know which particular service instance will be used to perform that action. For example, when a user taps the "AirPrint" button on an iPhone or iPad, the iPhone or iPad knows that the user wishes to print, but not which particular printer to use. The desired *function* is known (IPP printing), but not the particular instance. In this case, the client device needs to enumerate the list of available service instances that are able to perform the desired task. In some cases this list of service instances is presented to a human user to choose from; in some cases it is software that examines the list of available service instances and determines the best one to use. This second step is the operation that was called "browsing" in the original specifications. The third step, "Use", is when particular service instance has been selected, and the client wants to make use of that service instance. This encompasses both the "resolve" step (finding IP address(es) and port(s) for the service instance) and the subsequent steps to establish communication with it, which may include details like address family selection, interface selection, transport protocol selection, etc. Ideally, application-layer code should never be exposed to IP addresses at all, just as application-layer code today is generally not exposed to details like MAC addresses [RFC8305].
The second and third steps are intentionally separate. In the second step, a limited amount of information (typically just the name) is requested about a large number of service instances. In the third step more detailed information (e.g, target host IP address, port number, etc.) is requested about one specific service instance. Requesting all the detailed information about all available service instances would be inefficient and wasteful on the network. If the information about services on the network is imagined as a table, then the second step is requesting just one column from that table (the name column) and the third step is requesting just one row from that table (the information pertaining to just one named service instance).
To give a concrete example, clicking the "+" button in the printer settings on macOS is an operation performing the second step. It is requesting the names of all available printers. Depending on the specific use case, this step may be performed only rarely. For example, a user may do this just one once, the first time they configure their computer to use their preferred printer, and never again.
Once a desired printer has been chosen and configured, subsequent printing of documents is an operation performing the third step. This step may be done frequently, perhaps multiple times per day. This third step is important because, in a world of DHCP, IPv6 Stateless Autoconfiguration, and similar dynamic address allocation schemes, a printer's IP address could change from day to day, and to use the printer, its current address must be known. However, this third step need not be performed for every printer on the network, just the specific printer that is about to be used. Also, it is not necessary to repeat the second step again, learning the names of every printer on the network, if the client device already knows the name of the printer it intends to use.
DNS-Based Service Discovery [RFC6763] implements these three principal service discovery operations using DNS records and queries, either using Multicast DNS [RFC6762] (for queries limited to the local link) or conventional unicast DNS [RFC1034] [RFC1035] (for queries beyond the local link).
Other service discovery protocol achieve the same semantics using different packet formats and mechanisms.
One incidental benefit of using DNS as the foundation layer for service discovery, in cases where that makes sense, is that both Multicast DNS and conventional unicast DNS are also used provide name resolution (mapping host names to IP addresses). There is some efficiency and code reuse gained by using the same underlying protocol for both service discovery and naming.
A final requirement is that the service discovery protocol should not only perform discovery at a single moment in time, but should also provide ongoing change notification (sometimes called "Publish & Subscribe"). Clients need to be notified in a timely fashion when new data of interest appears, when data of interest changes, and, equally importantly, when data of interest goes away ("goodbye packets"). Without support for ongoing change notification, clients would be forced to resort to polling to keep data up to date, which is inefficient and wasteful on the network.
Multicast DNS [RFC6762] implicitly includes change notification by virtue of announcing record creation, update, and deletion, via IP Multicast, which allows these changes to be seen by all peers on the same link (i.e., same broadcast domain).
Conventional unicast DNS [RFC1034] [RFC1035] has historically not had broad support for change notification. This capability is added via the new mechanism for DNS Push Notifications [Push].
When using DNS-Based Service Discovery [RFC6763] there are two aspects to consider: firstly how the clients determine the appropriate DNS names to query (and what query mechanisms to use) and secondly how the relevant information got into the DNS namespace in the first place, so as to be available when clients query for it.
The available namespaces are discussed broadly in Section 4 below. Client operation is then discussed in detail in Section 5, and server operation is discussed in detail in Section 6.
When used with Multicast DNS [RFC6762] Service Discovery queries necessarily use the ".local" parent domain reserved for this purpose [SUDN].
When used with conventional unicast DNS [RFC1034] [RFC1035] some other domain must be used.
For individuals and organizations with a globally-unique domain name registered to them, their globally-unique domain name, or a subdomain of it, can be used for service discovery.
However, it would be convenient for advanced service discovery to be available even to people who haven't taken the step of registering and paying annually for a globally-unique domain name. For these people it would be useful if devices arrived preconfigured with some suitable factory-default service discovery domain, such as "services.home.arpa" [RFC8375]. Services published in this factory- default service discovery domain are not globally unique or globally resolvable, but they can have scope larger than the single link provided by Multicast DNS.
When using DNS-Based Service Discovery [RFC6763], clients have to choose what DNS names to query.
When used with Multicast DNS [RFC6762] on the local link, queries are necessarily performed in the ".local" parent domain reserved for this purpose [SUDN].
Given the service type that the user or client device is seeking (see Section 2) and one or more service discovery domains to look in, the client then sends its DNS queries, and processes the responses.
For some uses, one-shot conventional DNS queries and responses are perfectly adequate, but for service discovery, where a list may be displayed on a screen for a user to see, it is desirable to keep that list up to date without the user having to repeatedly tap a "refresh" button, and without the software repeatedly polling the network on the user's behalf.
And early solution to provide asynchronous change notifications for unicast DNS was the UDP-based protocol DNS Long-Lived Queries [DNS-LLQ]. This was used, among other things, by Apple's Back to My Mac Service [RFC6281] introduced in Mac OS X 10.5 Leopard in 2007.
A decade of operational experience has shown that an asynchronous change notification protocol built on TCP is preferable for a variety of reasons, so the IETF is has developed DNS Push Notifications [Push].
Because DNS Push Notifications is built on top of a DNS TCP connection, DNS Push Notifications adopts the conventions specified by DNS Stateful Operations [DSO] rather than inventing its own session management mechanisms.
Section 5 above describes how clients perform their queries. The related question is how the relevant information got into the DNS namespace in the first place, so as to be available when clients query for it.
One trivial way that relevant service discovery information can get into the DNS namespace is simply via manual configuration, creating the necessary PTR, SRV and TXT records [RFC6763] by hand, and indeed this is how the IETF Terminal Room printer has been advertised to IETF meeting attendees for many years. While this is easy for the experienced network operators at the IETF, it can be onerous to others less familiar with how to set up DNS-SD records.
Hence it would be convenient to automate this process of populating the DNS namespace with relevant service discovery information. Two efforts are underway to address this need, the Service Discovery Proxy [DisProx] (see Section 6.1) and the Service Registration Protocol [RegProt] (see Section 6.4).
The first technique in the direction of automatically populating the DNS namespace is the Service Discovery Proxy [DisProx]. This technology works with today's existing devices that advertise services using Multicast DNS only (such as almost all network printers sold in the last decade). A Service Discovery Proxy is a device with a presence on the same link as the devices we wish to be able to discover from afar. A remote client sends unicast queries to the Discovery Proxy, which performs local Multicast DNS queries on behalf of the remote client, and then sends back the answers it discovers.
Because the time it takes to receive Multicast DNS responses is uncertain, this mechanism benefits from being able to deliver asynchronous change notifications as new answers come in, using DNS Long-Lived Queries [DNS-LLQ] or the newer DNS Push Notifications [Push] on top of DNS Stateful Operations [DSO].
As an alternative to having to be physically connected to the desired network link, a Service Discovery Proxy [DisProx] can use a Multicast DNS Discovery Relay [Relay] to give it a 'virtual' presence on a remote link. Indeed, when using Discovery Relays, a single Discovery Proxy can have a 'virtual' presence on hundreds of remote links. A single Discovery Proxy in the data center can serve the needs of an entire enterprise. This is modeled after the DHCP protocol. In simple residential scenarios the DHCP server resides in the home gateway, which is physically attached to the (single) local link. In complex enterprise networks, it is common to have a single centralized DHCP server, which resides in the data center and communicates with a multitude of simple lightweight BOOTP relay agents, implemented in the routers on each physical link.
Finally, when clients are communicating with multiple Service Discovery Proxies at the same time, this can be burdensome for the clients (which may be mobile and battery powered) and for the Service Discovery Proxies (which may have to serve hundreds of clients). This situation is remedied by use of a Service Discovery Broker [Broker]. A Service Discovery Broker is an intermediary between client and server. A client can issue a single query to the Service Discovery Broker and have the Service Discovery Broker do the hard work of issuing multiple queries on behalf of the client. And a Service Discovery Broker can shield a Service Discovery Proxy from excessive load by collapsing multiple duplicate queries from different client down to a single query to the Service Discovery Proxy.
The second technique in the direction of automatically populating the DNS namespace is the Service Registration Protocol [RegProt]. This technology is designed to enable future devices that will explicitly cooperate with the network infrastructure to advertise their services.
The Service Registration Protocol is effectively DNS Update, with some minor additions.
One addition to the basic DNS Update protocol is the introduction of a lifetime on DNS Updates, using the Dynamic DNS Update Lease EDNS(0) option [DNS-UL]. This option has similar semantics to a DHCP address lease, where a device is granted an address with with a certain DHCP lease lifetime, and if the device fails to renew the DHCP lease before it expires then the address will be reclaimed and become available to be allocated to a different device. In cases where DHCP is being used for address assignment, a device will generally request a DNS Update Lease with the same expiration time as its DHCP address lease. This way, if the device is abruptly disconnected from the network, around the same time as its address gets reclaimed its DNS records will also be garbage collected.
The second addition to the basic DNS Update protocol is the introduction of information, carried using the EDNS(0) OWNER Option [Owner], that tells the Service Registration server that the device will be going to sleep to save power, and how the Service Registration server can wake it up again on demand when needed. The use of power management information in the Service Registration messages allows devices to sleep to save power, which is especially beneficial for battery-powered devices in the home.
The use of an explicit Service Registration Protocol is beneficial in networks where multicast is expensive, inefficient, or outright blocked, such as many Wi-Fi networks. An explicit Service Registration Protocol is also beneficial in networks where multicast and broadcast are supported poorly, if at all, such as some mesh networks.
As an informational document, this document introduces no new Security Considerations of its own. The various referenced documents each describe their own relevant Security Considerations as appropriate.
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For about a decade now, the talented IETF network staff have provided off-link DNS Service Discovery for the Terminal Room printer at IETF meetings three times a year. In the case of the IETF meetings the necessary DNS records are entered manually, whereas this document advocates for increased automation of that task, but either way the process by which clients query to discover services is the same.
This appendix gives a detailed step-by step account of how this client query process works. It starts with a client joining the Wi- Fi network and doing a DHCP request, and ends with paper coming out of the printer. The reason the explanation is gives the specific details of every step is to avoid inadvertently having a hand-waving "and then a miracle occurs" part, which misses out some important detail. And one of the reasons for asking the IETF network team to set this up for IETF meetings is that operational use is an important reality check. When standing in front of a room, giving a presentation, if you miss out some vital step, people may not notice. When running an actual service used by actual people, if you miss out some vital step, no paper comes out of the printer, and everyone notices.
Using a macOS computer, at an IETF meeting, you can repeat the steps illustrated here to see exactly how it works. Or you can simply press Cmd-P in any application and see that "term-printer" appears as an available printer, to confirm that it does in fact work.
First, let's see what the macOS computer learned from the local DHCP server:
Option_15 is Domain Name. To see what domain name, we need to decode the hexadecimal data to ASCII.
% echo 6d656574696e672e696574662e6f7267 0A | xxd -r -p meeting.ietf.org
Our DHCP domain name is meeting.ietf.org. Does meeting.ietf.org recommend that we look in any Wide Area Service Discovery domains? This step is called Domain Enumeration [RFC6763], and is performed using a DNS PTR query for a name with the special prefix "lb._dns- sd._udp":
% dig lb._dns-sd._udp.meeting.ietf.org. ptr
...
In the middle there in the Answer Section you'll see that the answer to the PTR query is "meeting.ietf.org". In this case the answer is self-referential -- "meeting.ietf.org" is inviting us to look for services in "meeting.ietf.org", but the PTR record(s) could equally well point at any other domain, such as "services.ietf.org", or anything else.
Note that this answer does not depend on the client device being "on" the IETF meeting network, which is in any case a loosely defined concept at best. Nor does it depend on sending the DNS query to a DNS server that is "on" the IETF meeting network. Any capable DNS recursive resolver anywhere on the planet will give the same answer. We can test this by sending the same DNS PTR query to Google's 8.8.8.8 public resolver:
% dig @8.8.8.8 lb._dns-sd._udp.meeting.ietf.org. ptr
In the Answer Section you'll see that the answer is still "meeting.ietf.org".
In this example, this particular test was done at the 86th IETF in Orlando, Florida, in March 2013. The Google 8.8.8.8 public resolver still gave the correct answer, even though it was 13 hops away:
For the rest of this example we use the Google 8.8.8.8 public resolver for all the queries.
In the case of IETF meetings the PTR is self-referential -- meeting.ietf.org is advising us to look in meeting.ietf.org, but it could easily be set up to direct us elsewhere. However, since it's suggesting we look for services in meeting.ietf.org, we'll do that.
Once one or more service discovery domains have been determined, the client then looks for instances of the desired service type. This step is called Instance Enumeration and is also performed using a DNS PTR queries, using a name with a prefix indicating the type of service that is being sought.
A macOS computer with appropriate printer drivers installed will look for instances of the service type "_pdl-datastream._tcp" in the domain "meeting.ietf.org", as shown below. This is typically performed just once, the first time the macOS computer is set up to use that printer.
% dig +short @8.8.8.8 _pdl-datastream._tcp.meeting.ietf.org. ptr term-printer._pdl-datastream._tcp.meeting.ietf.org.
There's one printing service available here, called "term-printer". That's what you see when you press the "+" button in the Print & Fax Preference Pane on macOS.
When the user actually prints something, macOS sends a DNS SRV query for the printer name learned in the previous Instance Enumeration step, to learn the target host and port for the service. This DNS SRV query is then followed by address queries for the target host's IPv4 and/or IPv6 addresses. The necessary address records are usually included in the Additional Section of the reply to the SRV query, so that these address queries can be answered from the local cache, without resulting in additional packets over the air.
% dig +short @8.8.8.8 \
term-printer._pdl-datastream._tcp.meeting.ietf.org. srv 0 0 9100 term-printer.meeting.ietf.org.
% dig +short @8.8.8.8 term-printer.meeting.ietf.org. AAAA 2001:df8::48:200:74ff:fee0:6cf8
This tells the computer that to use this printer, it must connect to [2001:df8::48:200:74ff:fee0:6cf8]:9100, using the installed printer driver, which speaks the appropriate vendor-specific printing protocol for that printer.
Printing from an iPhone or iPad is similar, except there are no vendor-specific printer drivers installed. Instead, printing from an iPhone or iPad uses the IETF Standard IPP printing protocol, using an IPP printer that supports at least URF (Universal Raster Format). Consequently, the iOS device sends its Instance Enumeration DNS PTR queries using the prefix "_universal._sub._ipp._tcp" to indicate that it is looking for the subset of IPP printers that support Universal Raster Format.
% dig +short @8.8.8.8 \
_universal._sub._ipp._tcp.meeting.ietf.org. ptr term-printer._ipp._tcp.meeting.ietf.org.
An iPhone or iPad will discover that there's one URF-capable IPP- based printing service available here, called "term-printer". It has the same name as the pdl-datastream printing service, and exists on the same physical hardware, but uses a different printing protocol.
When the user prints from their iPhone or iPad using AirPrint, iOS does these DNS SRV and address queries:
% dig +short @8.8.8.8 term-printer._ipp._tcp.meeting.ietf.org. srv 0 0 631 term-printer.meeting.ietf.org.
% dig +short @8.8.8.8 term-printer.meeting.ietf.org. aaaa 2001:df8::48:200:74ff:fee0:6cf8
Note that the "_ipp._tcp" service has the same target hostname and IPv6 address as the "_pdl-datastream" service from the macOS example, but is accessed at a different TCP port on that hardware device.
To use this printer, the iPhone or iPad connects to [2001:df8::48:200:74ff:fee0:6cf8]:631, and uses IPP to print.
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Multicast DNS [RFC6762] and its companion technology DNS-based Service Discovery [RFC6763] were created to provide IP networking with the ease-of-use and autoconfiguration for which AppleTalk was well known [RFC6760] [ZC] [Roadmap].
For a small home network consisting of just a single link (or a few physical links bridged together to appear as a single logical link from the point of view of IP) Multicast DNS [RFC6762] is sufficient for client devices to look up the ".local" host names of peers on the same home network, and to use Multicast DNS-Based Service Discovery (DNS-SD) [RFC6763] to discover services offered on that home network.
For a larger network consisting of multiple links that are interconnected using IP-layer routing instead of link-layer bridging, link-local Multicast DNS alone is insufficient because link-local Multicast DNS packets, by design, are not propagated onto other links.
Using link-local multicast packets for Multicast DNS was a conscious design choice [RFC6762]. Even when limited to a single link, multicast traffic is still generally considered to be more expensive than unicast, because multicast traffic impacts many devices, instead of just a single recipient. In addition, with some technologies like Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and less reliable than unicast, because Wi-Fi multicast traffic is sent at lower data rates, and is not acknowledged [Mcast]. Increasing the amount of expensive multicast traffic by flooding it across multiple links would make the traffic load even worse.
Partitioning the network into many small links curtails the spread of expensive multicast traffic, but limits the discoverability of services. At the opposite end of the spectrum, using a very large local link with thousands of hosts enables better service discovery, but at the cost of larger amounts of multicast traffic.
Performing DNS-Based Service Discovery using purely Unicast DNS is more efficient and doesn't require large multicast domains, but does require that the relevant data be available in the Unicast DNS namespace. The Unicast DNS namespace in question could fall within a traditionally assigned globally unique domain name, or could use a private local unicast domain name such as ".home.arpa" [RFC8375].
In the DNS-SD specification [RFC6763], Section 10 ("Populating the DNS with Information") discusses various possible ways that a service's PTR, SRV, TXT and address records can make their way into the Unicast DNS namespace, including manual zone file configuration [RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007] and proxies of various kinds.
Making the relevant data available in the Unicast DNS namespace by manual DNS configuration is one option. This option has been used for many years at IETF meetings to advertise the IETF Terminal Room printer. Details of this example are given in Appendix A of the Roadmap document [Roadmap]. However, this manual DNS configuration is labor intensive, error prone, and requires a reasonable degree of DNS expertise.
Populating the Unicast DNS namespace via DNS Update by the devices offering the services themselves is another option [RegProt] [DNS-UL]. However, this requires configuration of DNS Update keys on those devices, which has proven onerous and impractical for simple devices like printers and network cameras.
Hence, to facilitate efficient and reliable DNS-Based Service Discovery, a compromise is needed that combines the ease-of-use of Multicast DNS with the efficiency and scalability of Unicast DNS.
This document specifies a type of proxy called a "Discovery Proxy" that uses Multicast DNS [RFC6762] to discover Multicast DNS records on its local link, and makes corresponding DNS records visible in the Unicast DNS namespace.
In principle, similar mechanisms could be defined using other local service discovery protocols, to discover local information and then make corresponding DNS records visible in the Unicast DNS namespace. Such mechanisms for other local service discovery protocols could be addressed in future documents.
The design of the Discovery Proxy is guided by the previously published requirements document [RFC7558].
In simple terms, a descriptive DNS name is chosen for each link in an organization. Using a DNS NS record, responsibility for that DNS name is delegated to a Discovery Proxy physically attached to that link. Now, when a remote client issues a unicast query for a name falling within the delegated subdomain, the normal DNS delegation mechanism results in the unicast query arriving at the Discovery Proxy, since it has been declared authoritative for those names. Now, instead of consulting a textual zone file on disk to discover the answer to the query, as a traditional DNS server would, a Discovery Proxy consults its local link, using Multicast DNS, to find the answer to the question.
For fault tolerance reasons there may be more than one Discovery Proxy serving a given link.
Note that the Discovery Proxy uses a "pull" model. The local link is not queried using Multicast DNS until some remote client has requested that data. In the idle state, in the absence of client requests, the Discovery Proxy sends no packets and imposes no burden on the network. It operates purely "on demand".
An alternative proposal that has been discussed is a proxy that performs DNS updates to a remote DNS server on behalf of the Multicast DNS devices on the local network. The difficulty with this is is that Multicast DNS devices do not routinely announce their records on the network. Generally they remain silent until queried. This means that the complete set of Multicast DNS records in use on a link can only be discovered by active querying, not by passive listening. Because of this, a proxy can only know what names exist on a link by issuing queries for them, and since it would be impractical to issue queries for every possible name just to find out which names exist and which do not, there is no reasonable way for a proxy to programmatically learn all the answers it would need to push up to the remote DNS server using DNS Update. Even if such a mechanism were possible, it would risk generating high load on the network continuously, even when there are no clients with any interest in that data.
Hence, having a model where the query comes to the Discovery Proxy is much more efficient than a model where the Discovery Proxy pushes the answers out to some other remote DNS server.
A client seeking to discover services and other information achieves this by sending traditional DNS queries to the Discovery Proxy, or by sending DNS Push Notification subscription requests [Push].
How a client discovers what domain name(s) to use for its service discovery queries, (and consequently what Discovery Proxy or Proxies to use) is described in Section 5.2.
The diagram below illustrates a network topology using a Discovery Proxy to provide discovery service to a remote client.
A Discovery Proxy does not operate as a multicast relay, or multicast forwarder. There is no danger of multicast forwarding loops that result in traffic storms, because no multicast packets are forwarded. A Discovery Proxy operates as a *proxy* for a remote client, performing queries on its behalf and reporting the results back.
A reasonable analogy is making a telephone call to a colleague at your workplace and saying, "I'm out of the office right now. Would you mind bringing up a printer browser window and telling me the names of the printers you see?" That entails no risk of a forwarding loop causing a traffic storm, because no multicast packets are sent over the telephone call.
A similar analogy, instead of enlisting another human being to initiate the service discovery operation on your behalf, is to log into your own desktop work computer using screen sharing, and then run the printer browser yourself to see the list of printers. Or log in using ssh and type "dns-sd -B _ipp._tcp" and observe the list of discovered printer names. In neither case is there any risk of a forwarding loop causing a traffic storm, because no multicast packets are being sent over the screen sharing or ssh connection.
The Discovery Proxy provides another way of performing remote queries, except using a different protocol instead of screen sharing or ssh.
When the Discovery Proxy software performs Multicast DNS operations, the exact same Multicast DNS caching mechanisms are applied as when any other client software on that Discovery Proxy device performs Multicast DNS operations, whether that be running a printer browser client locally, or a remote user running the printer browser client via a screen sharing connection, or a remote user logged in via ssh running a command-line tool like "dns-sd", or a remote user sending DNS requests that cause a Discovery Proxy to perform discovery operations on its behalf.
The Discovery Proxy builds on Multicast DNS, which works between hosts on the same link. For the purposes of this document a set of hosts is considered to be "on the same link" if:
o when any host from that set sends a packet to any other host in that set, using unicast, multicast, or broadcast, the entire link- layer packet payload arrives unmodified, and
o a broadcast sent over that link, by any host from that set of hosts, can be received by every other host in that set.
The link-layer *header* may be modified, such as in Token Ring Source Routing [IEEE-5], but not the link-layer *payload*. In particular, if any device forwarding a packet modifies any part of the IP header or IP payload then the packet is no longer considered to be on the same link. This means that the packet may pass through devices such as repeaters, bridges, hubs or switches and still be considered to be on the same link for the purpose of this document, but not through a device such as an IP router that decrements the IP TTL or otherwise modifies the IP header.
No changes to existing devices are required to work with a Discovery Proxy.
Existing devices that advertise services using Multicast DNS work with Discovery Proxy.
Existing clients that support DNS-Based Service Discovery over Unicast DNS work with Discovery Proxy. Service Discovery over Unicast DNS was introduced in Mac OS X 10.4 in April 2005, as is included in Apple products introduced since then, including iPhone and iPad, as well as products from other vendors, such as Microsoft Windows 10.
An overview of the larger collection of related Service Discovery technologies, and how Discovery Proxy relates to those, is given in the Service Discovery Road Map document [Roadmap].
In a typical configuration, a Discovery Proxy is configured to be authoritative [RFC1034] [RFC1035] for four or more DNS subdomains, and authority for these subdomains is delegated to it via NS records:
A DNS subdomain for service discovery records.
This subdomain name may contain rich text, including spaces and other punctuation. This is because this subdomain name is used only in graphical user interfaces, where rich text is appropriate.
A DNS subdomain for host name records.
This subdomain name SHOULD be limited to letters, digits and hyphens, to facilitate convenient use of host names in command- line interfaces.
One or more DNS subdomains for IPv4 Reverse Mapping records.
These subdomains will have names that ends in "in-addr.arpa."
One or more DNS subdomains for IPv6 Reverse Mapping records.
These subdomains will have names that ends in "ip6.arpa."
In an enterprise network the naming and delegation of these subdomains is typically performed by conscious action of the network administrator. In a home network naming and delegation would typically be performed using some automatic configuration mechanism such as HNCP [RFC7788].
These three varieties of delegated subdomains (service discovery, host names, and reverse mapping) are described below in Section 5.1, Section 5.3 and Section 5.4.
How a client discovers where to issue its service discovery queries is described below in Section 5.2.
In its simplest form, each link in an organization is assigned a unique Unicast DNS domain name, such as "Building 1.example.com" or "2nd Floor.Building 3.example.com". Grouping multiple links under a single Unicast DNS domain name is to be specified in a future companion document, but for the purposes of this document, assume that each link has its own unique Unicast DNS domain name. In a graphical user interface these names are not displayed as strings with dots as shown above, but something more akin to a typical file browser graphical user interface (which is harder to illustrate in a text-only document) showing folders, subfolders and files in a file system.
Figure 1: Illustrative GUI
With appropriate VLAN configuration [IEEE-1Q] a single Discovery Proxy device could have a logical presence on many links, and serve as the Discovery Proxy for all those links. In such a configuration the Discovery Proxy device would have a single physical Ethernet [IEEE-3] port, configured as a VLAN trunk port, which would appear to software on that device as multiple virtual Ethernet interfaces, one connected to each of the VLAN links.
As an alternative to using VLAN technology, using a Multicast DNS Discovery Relay [Relay] is another way that a Discovery Proxy can have a 'virtual' presence on a remote link.
The existing Multicast DNS caching mechanism is used to minimize unnecessary Multicast DNS queries on the wire. The Discovery Proxy is acting as a client of the underlying Multicast DNS subsystem, and benefits from the same caching and efficiency measures as any other client using that subsystem.
Note that the contents of the delegated zone, generated as it is by performing ".local" Multicast DNS queries, mirrors the records available on the local link via Multicast DNS very closely, but not precisely. There is not a full bidirectional equivalence between the two. Certain records that are available via Multicast DNS may not have equivalents in the delegated zone, possibly because they are invalid or not relevant in the delegated zone, or because they are being supressed because they are unusable outside the local link (see Section 5.5.2). Conversely, certain records that appear in the delegated zone may not have corresponding records available on the local link via Multicast DNS. In particular there are certain administrative SRV records (see Section 6) that logically fall within the delegated zone, but semantically represent metadata *about* the zone rather than records *within* the zone, and consequently these administrative records in the delegated zone do not have any corresponding counterparts in the Multicast DNS namespace of the local link.
A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR queries, using both unicast and multicast. If it receives a Domain Name configuration via DHCP option 15 [RFC2132], then it issues unicast queries using this domain. It issues unicast queries using names derived from its IPv4 subnet address(es) and IPv6 prefix(es). These are described below in Section 5.2.1. It also issues multicast Domain Enumeration queries in the "local" domain [RFC6762]. These are described below in Section 5.2.2. The results of all the Domain Enumeration queries are combined for Service Discovery purposes.
The administrator creates Domain Enumeration PTR records [RFC6763] to inform clients of available service discovery domains. Two varieties of such Domain Enumeration PTR records exist; those with names derived from the domain name communicated to the clients via DHCP, and those with names derived from IPv4 subnet address(es) and IPv6 prefix(es) in use by the clients. Below is an example showing the name-based variety:
The meaning of these records is defined in the DNS Service Discovery specification [RFC6763] but for convenience is repeated here. The "b" ("browse") records tell the client device the list of browsing domains to display for the user to select from. The "db" ("default browse") record tells the client device which domain in that list should be selected by default. The "db" domain MUST be one of the domains in the "b" list; if not then no domain is selected by default. The "lb" ("legacy browse") record tells the client device which domain to automatically browse on behalf of applications that don't implement UI for multi-domain browsing (which is most of them, at the time of writing). The "lb" domain is often the same as the "db" domain, or sometimes the "db" domain plus one or more others that should be included in the list of automatic browsing domains for legacy clients.
Note that in the example above, for clarity, space characters in names are shown as actual spaces. If this data is manually entered into a textual zone file for authoritative server software such as BIND, care must be taken because the space character is used as a field separator, and other characters like dot ('.'), semicolon (';'), dollar ('$'), backslash ('\'), etc., also have special meaning. These characters have to be escaped when entered into a textual zone file, following the rules in Section 5.1 of the DNS specification [RFC1035]. For example, a literal space in a name is represented in the textual zone file using '\032', so "Building 1.example.com." is entered as "Building\0321.example.com."
DNS responses are limited to a maximum size of 65535 bytes. This limits the maximum number of domains that can be returned for a Domain Enumeration query, as follows:
An Answer Section Resource Record consists of:
This means that each Resource Record in the Answer Section can take up to 268 bytes total, which means that the Answer Section can contain, in the worst case, no more than 243 domains.
In a more typical scenario, where the domain names are not all maximum-sized names, and there is some similarity between names so that reasonable name compression is possible, each Answer Section Resource Record may average 140 bytes, which means that the Answer Section can contain up to 466 domains.
It is anticipated that this should be sufficient for even a large corporate network or university campus.
In the case where Discovery Proxy functionality is widely deployed within an enterprise (either by having a Discovery Proxy on each link, or by having a Discovery Proxy with a remote 'virtual' presence on each link using VLANs or Multicast DNS Discovery Relays [Relay]) this offers an additional way to provide Domain Enumeration data for clients.
A Discovery Proxy can be configured to generate Multicast DNS responses for the following Multicast DNS Domain Enumeration queries issued by clients:
This provides the ability for Discovery Proxies to indicate recommended browsing domains to DNS-SD clients on a per-link granularity. In some enterprises it may be preferable to provide this per-link configuration data in the form of Discovery Proxy configuration, rather than populating the Unicast DNS servers with the same data (in the "ip6.arpa" or "in-addr.arpa" domains).
Regardless of how the network operator chooses to provide this configuration data, clients will perform Domain Enumeration via both unicast and multicast queries, and then combine the results of these queries.
DNS-SD service instance names and domains are allowed to contain arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8 [RFC3629].
Users typically interact with service discovery software by viewing a list of discovered service instance names on a display, and selecting one of them by pointing, touching, or clicking. Similarly, in software that provides a multi-domain DNS-SD user interface, users view a list of offered domains on the display and select one of them by pointing, touching, or clicking. To use a service, users don't have to remember domain or instance names, or type them; users just have to be able to recognize what they see on the display and touch or click on the thing they want.
In contrast, host names are often remembered and typed. Also, host names have historically been used in command-line interfaces where spaces can be inconvenient. For this reason, host names have traditionally been restricted to letters, digits and hyphens (LDH), with no spaces or other punctuation.
To accomodate this difference in allowable characters, a Discovery Proxy SHOULD support having two separate subdomains delegated to it for each link it serves, one whose name is allowed to contain arbitrary Net-Unicode text [RFC5198], and a second more constrained subdomain whose name is restricted to contain only letters, digits, and hyphens, to be used for host name records (names of 'A' and 'AAAA' address records). The restricted names may be any valid name consisting of only letters, digits, and hyphens, including Punycode- encoded names [RFC3492].
For example, a Discovery Proxy could have the two subdomains "Building 1.example.com" and "bldg1.example.com" delegated to it. The Discovery Proxy would then translate these two Multicast DNS records:
into Unicast DNS records as follows:
Note that the SRV record name is translated using the rich-text domain name ("Building 1.example.com") and the address record name is translated using the LDH domain ("bldg1.example.com").
A Discovery Proxy MAY support only a single rich text Net-Unicode domain, and use that domain for all records, including 'A' and 'AAAA' address records, but implementers choosing this option should be aware that this choice may produce host names that are awkward to use in command-line environments. Whether this is an issue depends on whether users in the target environment are expected to be using command-line interfaces.
A Discovery Proxy MUST NOT be restricted to support only a letter- digit-hyphen subdomain, because that results in an unnecessarily poor user experience.
A Discovery Proxy can facilitate easier management of reverse mapping domains, particularly for IPv6 addresses where manual management may be more onerous than it is for IPv4 addresses.
To achieve this, in the parent domain, NS records are used to delegate ownership of the appropriate reverse mapping domain to the Discovery Proxy. In other words, the Discovery Proxy becomes the authoritative name server for the reverse mapping domain. For fault tolerance reasons there may be more than one Discovery Proxy serving a given link.
For example, a Discovery Proxy with the two subdomains "113.0.203.in-addr.arpa" and "bldg1.example.com" delegated to it would translate this Multicast DNS record:
2.113.0.203.in-addr.arpa. PTR prnt.local.
into this Unicast DNS response:
2.113.0.203.in-addr.arpa. PTR prnt.bldg1.example.com.
Subsequent queries for the prnt.bldg1.example.com address record, falling as it does within the bldg1.example.com domain, which is delegated to the Discovery Proxy, will arrive at the Discovery Proxy, where they are answered by issuing Multicast DNS queries and using the received Multicast DNS answers to synthesize Unicast DNS responses, as described above.
Note that this design assumes that all addresses on a given IPv4 subnet or IPv6 prefix are mapped to hostnames using the Discovery Proxy mechanism. It would be possible to implement a Discovery Proxy that can be configured so that some address-to-name mappings are performed using Multicast DNS on the local link, while other address- to-name mappings within the same IPv4 subnet or IPv6 prefix are configured manually.
Generating the appropriate Unicast DNS responses involves translating back from "local" to the appropriate configured DNS Unicast domain.
Other beneficial translation and filtering operations are described below.
For efficiency, Multicast DNS typically uses moderately high DNS TTL values. For example, the typical TTL on DNS-SD PTR records is 75 minutes. What makes these moderately high TTLs acceptable is the cache coherency mechanisms built in to the Multicast DNS protocol which protect against stale data persisting for too long. When a service shuts down gracefully, it sends goodbye packets to remove its PTR records immediately from neighboring caches. If a service shuts down abruptly without sending goodbye packets, the Passive Observation Of Failures (POOF) mechanism described in Section 10.5 of the Multicast DNS specification [RFC6762] comes into play to purge the cache of stale data.
A traditional Unicast DNS client on a distant remote link does not get to participate in these Multicast DNS cache coherency mechanisms on the local link. For traditional Unicast DNS queries (those received without using Long-Lived Query [LLQ] or DNS Push Notification subscriptions [Push]) the DNS TTLs reported in the resulting Unicast DNS response MUST be capped to be no more than ten seconds.
Similarly, for negative responses, the negative caching TTL indicated in the SOA record [RFC2308] should also be ten seconds (Section 6.1).
This value of ten seconds is chosen based on user-experience considerations.
For negative caching, suppose a user is attempting to access a remote device (e.g., a printer), and they are unsuccessful because that device is powered off. Suppose they then place a telephone call and ask for the device to be powered on. We want the device to become available to the user within a reasonable time period. It is reasonable to expect it to take on the order of ten seconds for a simple device with a simple embedded operating system to power on. Once the device is powered on and has announced its presence on the network via Multicast DNS, we would like it to take no more than a further ten seconds for stale negative cache entries to expire from Unicast DNS caches, making the device available to the user desiring to access it.
Similar reasoning applies to capping positive TTLs at ten seconds. In the event of a device moving location, getting a new DHCP address, or other renumbering events, we would like the updated information to be available to remote clients in a relatively timely fashion.
However, network administrators should be aware that many recursive (caching) DNS servers by default are configured to impose a minimum TTL of 30 seconds. If stale data appears to be persisting in the network to the extent that it adversely impacts user experience, network administrators are advised to check the configuration of their recursive DNS servers.
For received Unicast DNS queries that use LLQ [LLQ] or DNS Push Notifications [Push], the Multicast DNS record's TTL SHOULD be returned unmodified, because the Push Notification channel exists to inform the remote client as records come and go. For further details about Long-Lived Queries, and its newer replacement, DNS Push Notifications, see Section 5.6.
A Discovery Proxy SHOULD offer a configurable option, enabled by default, to suppress Unicast DNS answers for records that are not useful outside the local link. When the option to suppress unusable records is enabled:
o DNS A and AAAA records for IPv4 link-local addresses [RFC3927] and IPv6 link-local addresses [RFC4862] SHOULD be suppressed.
o Similarly, for sites that have multiple private address realms [RFC1918], in cases where the Discovery Proxy can determine that the querying client is in a different address realm, private addresses SHOULD NOT be communicated to that client.
o IPv6 Unique Local Addresses [RFC4193] SHOULD be suppressed in cases where the Discovery Proxy can determine that the querying client is in a different IPv6 address realm.
o By the same logic, DNS SRV records that reference target host names that have no addresses usable by the requester should be suppressed, and likewise, DNS PTR records that point to unusable SRV records should be similarly be suppressed.
Multicast DNS devices do not routinely announce their records on the network. Generally they remain silent until queried. This means that the complete set of Multicast DNS records in use on a link can only be discovered by active querying, not by passive listening. Because of this, a Discovery Proxy can only know what names exist on a link by issuing queries for them, and since it would be impractical to issue queries for every possible name just to find out which names exist and which do not, a Discovery Proxy cannot programmatically generate the traditional NSEC [RFC4034] and NSEC3 [RFC5155] records which assert the nonexistence of a large range of names.
When queried for an NSEC or NSEC3 record type, the Discovery Proxy issues a qtype "ANY" query using Multicast DNS on the local link, and then generates an NSEC or NSEC3 response with a Type Bit Map signifying which record types do and do not exist for just the specific name queried, and no other names.
Multicast DNS NSEC records received on the local link MUST NOT be forwarded unmodified to a unicast querier, because there are slight differences in the NSEC record data. In particular, Multicast DNS NSEC records do not have the NSEC bit set in the Type Bit Map, whereas conventional Unicast DNS NSEC records do have the NSEC bit set.
A Discovery Proxy does no translation between text encodings. Specifically, a Discovery Proxy does no translation between Punycode encoding [RFC3492] and UTF-8 encoding [RFC3629], either in the owner name of DNS records, or anywhere in the RDATA of DNS records (such as the RDATA of PTR records, SRV records, NS records, or other record types like TXT, where it is ambiguous whether the RDATA may contain DNS names). All bytes are treated as-is, with no attempt at text encoding translation. A client implementing DNS-based Service Discovery [RFC6763] will use UTF-8 encoding for its service discovery queries, which the Discovery Proxy passes through without any text encoding translation to the Multicast DNS subsystem. Responses from the Multicast DNS subsystem are similarly returned, without any text encoding translation, back to the requesting client.
There may be cases where Application-Specific Data Translation is appropriate.
For example, AirPrint printers tend to advertise fairly verbose information about their capabilities in their DNS-SD TXT record. TXT record sizes in the range 500-1000 bytes are not uncommon. This information is a legacy from LPR printing, because LPR does not have in-band capability negotiation, so all of this information is conveyed using the DNS-SD TXT record instead. IPP printing does have in-band capability negotiation, but for convenience printers tend to include the same capability information in their IPP DNS-SD TXT records as well. For local mDNS use this extra TXT record information is inefficient, but not fatal. However, when a Discovery Proxy aggregates data from multiple printers on a link, and sends it via unicast (via UDP or TCP) this amount of unnecessary TXT record information can result in large responses. A DNS reply over TCP carrying information about 70 printers with an average of 700 bytes per printer adds up to about 50 kilobytes of data. Therefore, a Discovery Proxy that is aware of the specifics of an application- layer protocol such as AirPrint (which uses IPP) can elide unnecessary key/value pairs from the DNS-SD TXT record for better network efficiency.
Also, the DNS-SD TXT record for many printers contains an "adminurl" key something like "adminurl=http://printername.local/status.html". For this URL to be useful outside the local link, the embedded ".local" hostname needs to be translated to an appropriate name with larger scope. It is easy to translate ".local" names when they appear in well-defined places, either as a record's name, or in the rdata of record types like PTR and SRV. In the printing case, some application-specific knowledge about the semantics of the "adminurl" key is needed for the Discovery Proxy to know that it contains a name that needs to be translated. This is somewhat analogous to the need for NAT gateways to contain ALGs (Application-Specific Gateways) to facilitate the correct translation of protocols that embed addresses in unexpected places.
To avoid the need for application-specific knowledge about the semantics of particular TXT record keys, protocol designers are advised to avoid placing link-local names or link-local IP addresses in TXT record keys, if translation of those names or addresses would be required for off-link operation. In the printing case, the operational failure of failing to translate the "adminurl" key correctly is that, when accessed from a different link, printing will still work, but clicking the "Admin" UI button will fail to open the printer's administration page. Rather than duplicating the host name from the service's SRV record in its "adminurl" key, thereby having the same host name appear in two places, a better design might have been to omit the host name from the "adminurl" key, and instead have the client implicitly substitute the target host name from the service's SRV record in place of a missing host name in the "adminurl" key. That way the desired host name only appears once, and it is in a well-defined place where software like the Discovery Proxy is expecting to find it.
Note that this kind of Application-Specific Data Translation is expected to be very rare. It is the exception, rather than the rule. This is an example of a common theme in computing. It is frequently the case that it is wise to start with a clean, layered design, with clear boundaries. Then, in certain special cases, those layer boundaries may be violated, where the performance and efficiency benefits outweigh the inelegance of the layer violation.
These layer violations are optional. They are done primarily for efficiency reasons, and generally should not be required for correct operation. A Discovery Proxy MAY operate solely at the mDNS layer, without any knowledge of semantics at the DNS-SD layer or above.
In a simple analysis, simply gathering multicast answers and forwarding them in a unicast response seems adequate, but it raises the question of how long the Discovery Proxy should wait to be sure that it has received all the Multicast DNS answers it needs to form a complete Unicast DNS response. If it waits too little time, then it risks its Unicast DNS response being incomplete. If it waits too long, then it creates a poor user experience at the client end. In fact, there may be no time which is both short enough to produce a good user experience and at the same time long enough to reliably produce complete results.
Similarly, the Discovery Proxy -- the authoritative name server for the subdomain in question -- needs to decide what DNS TTL to report for these records. If the TTL is too long then the recursive (caching) name servers issuing queries on behalf of their clients risk caching stale data for too long. If the TTL is too short then the amount of network traffic will be more than necessary. In fact, there may be no TTL which is both short enough to avoid undesirable stale data and at the same time long enough to be efficient on the network.
Clients supporting unicast DNS Service Discovery SHOULD implement DNS Push Notifications [Push] for improved user experience.
Clients and Discovery Proxies MAY support both DNS LLQ and DNS Push, and when talking to a Discovery Proxy that supports both, the client may use either protocol, as it chooses, though it is expected that only DNS Push will continue to be supported in the long run.
When a Discovery Proxy receives a query using DNS LLQ or DNS Push Notifications, it responds immediately using the Multicast DNS records it already has in its cache (if any). This provides a good client user experience by providing a near-instantaneous response. Simultaneously, the Discovery Proxy issues a Multicast DNS query on the local link to discover if there are any additional Multicast DNS records it did not already know about. Should additional Multicast DNS responses be received, these are then delivered to the client using additional DNS LLQ or DNS Push Notification update messages. The timeliness of such update messages is limited only by the timeliness of the device responding to the Multicast DNS query. If the Multicast DNS device responds quickly, then the update message is delivered quickly. If the Multicast DNS device responds slowly, then the update message is delivered slowly. The benefit of using update messages is that the Discovery Proxy can respond promptly because it doesn't have to delay its unicast response to allow for the expected worst-case delay for receiving all the Multicast DNS responses. Even if a proxy were to try to provide reliability by assuming an excessively pessimistic worst-case time (thereby giving a very poor user experience) there would still be the risk of a slow Multicast DNS device taking even longer than that (e.g., a device that is not even powered on until ten seconds after the initial query is received) resulting in incomplete responses. Using update message solves this dilemma: even very late responses are not lost; they are delivered in subsequent update messages.
There are two factors that determine specifically how responses are generated:
The first factor is whether the query from the client used LLQ or DNS Push Notifications (used for long-lived service browsing PTR queries) or not (used for one-shot operations like SRV or address record queries). Note that queries using LLQ or DNS Push Notifications are received directly from the client. Queries not using LLQ or DNS Push Notifications are generally received via the client's configured recursive (caching) name server.
The second factor is whether the Discovery Proxy already has at least one record in its cache that positively answers the question.
The "negative responses" referred to above are "no error no answer" negative responses, not NXDOMAIN. This is because the Discovery Proxy cannot know all the Multicast DNS domain names that may exist on a link at any given time, so any name with no answers may have child names that do exist, making it an "empty nonterminal" name. Note that certain aspects of the behavior described here do not have to be implemented overtly by the Discovery Proxy; they occur naturally as a result of using existing Multicast DNS APIs.
For example, in the first case above (no LLQ or Push Notifications, and no answers in the cache) if a new Multicast DNS query is requested (either by a local client, or by the Discovery Proxy on behalf of a remote client), and there is not already an identical Multicast DNS query active, and there are no matching answers already in the Multicast DNS cache on the Discovery Proxy device, then this will cause a series of Multicast DNS query packets to be issued with exponential backoff. The exponential backoff sequence in some implementations starts at one second and then doubles for each retransmission (0, 1, 3, 7 seconds, etc.) and in others starts at one second and then triples for each retransmission (0, 1, 4, 13 seconds, etc.). In either case, if no response has been received after six seconds, that is long enough that the underlying Multicast DNS implementation will have sent three query packets without receiving any response. At that point the Discovery Proxy cancels its Multicast DNS query (so no further Multicast DNS query packets will be sent for this query) and returns a negative response to the remote client via unicast.
The six-second delay is chosen to be long enough to give enough time for devices to respond, yet short enough not to be too onerous for a human user waiting for a response. For example, using the "dig" DNS debugging tool, the current default settings result in it waiting a total of 15 seconds for a reply (three transmissions of the query packet, with a wait of 5 seconds after each packet) which is ample time for it to have received a negative reply from a Discovery Proxy after six seconds.
The statement that for a one-shot query (i.e., no LLQ or Push Notifications requested), if at least one answer is already available in the cache then a Discovery Proxy should not issue additional mDNS query packets, also occurs naturally as a result of using existing Multicast DNS APIs. If a new Multicast DNS query is requested (either locally, or by the Discovery Proxy on behalf of a remote client), for which there are relevant answers already in the Multicast DNS cache on the Discovery Proxy device, and after the answers are delivered the Multicast DNS query is then cancelled immediately, then no Multicast DNS query packets will be generated for this query.
The MNAME field SHOULD contain the host name of the Discovery Proxy device (i.e., the same domain name as the rdata of the NS record delegating the relevant zone(s) to this Discovery Proxy device).
The RNAME field SHOULD contain the mailbox of the person responsible for administering this Discovery Proxy device.
The SERIAL field MUST be zero.
Zone transfers are undefined for Discovery Proxy zones, and consequently the REFRESH, RETRY and EXPIRE fields have no useful meaning for Discovery Proxy zones. These fields SHOULD contain reasonable default values. The RECOMMENDED values are: REFRESH 7200, RETRY 3600, EXPIRE 86400.
The MINIMUM field (used to control the lifetime of negative cache entries) SHOULD contain the value 10. The value of ten seconds is chosen based on user-experience considerations (see Section 5.5.1).
In the event that there are multiple Discovery Proxy devices on a link for fault tolerance reasons, this will result in clients receiving inconsistent SOA records (different MNAME, and possibly RNAME) depending on which Discovery Proxy answers their SOA query. However, since clients generally have no reason to use the MNAME or RNAME data, this is unlikely to cause any problems.
In the event that there are multiple Discovery Proxy devices on a link for fault tolerance reasons, the parent zone MUST be configured with NS records giving the names of all the Discovery Proxy devices on the link.
Each Discovery Proxy device MUST be configured to answer NS queries for the zone apex name by giving its own NS record, and the NS records of its fellow Discovery Proxy devices on the same link, so that it can return the correct answers for NS queries.
The target host name in the RDATA of an NS record MUST NOT reference a name that falls within any zone delegated to a Discovery Proxy. Apart from the zone apex name, all other host names that fall within a zone delegated to a Discovery Proxy correspond to local Multicast DNS host names, which logically belong to the respective Multicast DNS hosts defending those names, not the Discovery Proxy. Generally speaking, the Discovery Proxy does not own or control the delegated zone; it is merely a conduit to the corresponding ".local" namespace, which is controlled by the Multicast DNS hosts on that link. If an NS record were to reference a manually-determined host name that falls within a delegated zone, that manually-determined host name may inadvertently conflict with a corresponding ".local" host name that is owned and controlled by some device on that link.
Since the Multicast DNS specification [RFC6762] states that there can be no delegation (subdomains) within a ".local" namespace, this implies that any name within a zone delegated to a Discovery Proxy (except for the zone apex name itself) cannot have any answers for any DNS queries for RRTYPEs SOA, NS, or DS. Consequently:
o for any query for the zone apex name of a zone delegated to a Discovery Proxy, the Discovery Proxy MUST generate the appropriate immediate answers as described above, and
o for any query for RRTYPEs SOA, NS, or DS, for any name within a zone delegated to a Discovery Proxy, other than the zone apex name, instead of translating the query to its corresponding Multicast DNS ".local" equivalent, a Discovery Proxy MUST generate an immediate negative answer.
There are certain special DNS records that logically fall within the delegated unicast DNS subdomain, but rather than mapping to their corresponding ".local" namesakes, they actually contain metadata pertaining to the operation of the delegated unicast DNS subdomain itself. They do not exist in the corresponding ".local" namespace of the local link. For these queries a Discovery Proxy MUST generate immediate answers, whether positive or negative, to avoid delays while clients wait for their query to be answered. For example, if a Discovery Proxy does not implement Long-Lived Queries [LLQ] then it MUST return an immediate negative answer to tell the client this without delay, instead of passing the query through to the local network as a query for "_dns-llq._udp.local.", and then waiting unsuccessfully for answers that will not be forthcoming.
If a Discovery Proxy implements DNS Push Notifications [Push] then it MUST positively respond to "_dns-push-tls._tcp.<zone>" queries, else it MUST return an immediate negative answer for those queries.
A Discovery Proxy MUST return an immediate negative answer for "_dns-update._udp.<zone> SRV" queries, "_dns-update._tcp.<zone> SRV" queries, and "_dns-update-tls._tcp.<zone> SRV" queries, since using DNS Update [RFC2136] to change zones generated dynamically from local Multicast DNS data is not possible.
The Discovery Proxy acts as the authoritative name server for designated subdomains, and if DNSSEC is to be used, the Discovery Proxy needs to possess a copy of the signing keys, in order to generate authoritative signed data from the local Multicast DNS responses it receives. Off-line signing is not applicable to Discovery Proxy.
In DNSSEC NSEC [RFC4034] and NSEC3 [RFC5155] records are used to assert the nonexistence of certain names, also described as "authenticated denial of existence".
Since a Discovery Proxy only knows what names exist on the local link by issuing queries for them, and since it would be impractical to issue queries for every possible name just to find out which names exist and which do not, a Discovery Proxy cannot programmatically synthesize the traditional NSEC and NSEC3 records which assert the nonexistence of a large range of names. Instead, when generating a negative response, a Discovery Proxy programmatically synthesizes a single NSEC record assert the nonexistence of just the specific name queried, and no others. Since the Discovery Proxy has the zone signing key, it can do this on demand. Since the NSEC record asserts the nonexistence of only a single name, zone walking is not a concern, so NSEC3 is not necessary.
Note that this applies only to traditional immediate DNS queries, which may return immediate negative answers when no immediate positive answer is available. When used with a DNS Push Notification subscription [Push] there are no negative answers, merely the absence of answers so far, which may change in the future if answers become available.
An IPv4-only host and an IPv6-only host behave as "ships that pass in the night". Even if they are on the same Ethernet [IEEE-3], neither is aware of the other's traffic. For this reason, each link may have *two* unrelated ".local." zones, one for IPv4 and one for IPv6. Since for practical purposes, a group of IPv4-only hosts and a group of IPv6-only hosts on the same Ethernet act as if they were on two entirely separate Ethernet segments, it is unsurprising that their use of the ".local." zone should occur exactly as it would if they really were on two entirely separate Ethernet segments.
It will be desirable to have a mechanism to 'stitch' together these two unrelated ".local." zones so that they appear as one. Such mechanism will need to be able to differentiate between a dual-stack (v4/v6) host participating in both ".local." zones, and two different hosts, one IPv4-only and the other IPv6-only, which are both trying to use the same name(s). Such a mechanism will be specified in a future companion document.
At present, it is RECOMMENDED that a Discovery Proxy be configured with a single domain name for both the IPv4 and IPv6 ".local." zones on the local link, and when a unicast query is received, it should issue Multicast DNS queries using both IPv4 and IPv6 on the local link, and then combine the results.
A service proves its presence on a link by its ability to answer link-local multicast queries on that link. If greater security is desired, then the Discovery Proxy mechanism should not be used, and something with stronger security should be used instead, such as authenticated secure DNS Update [RFC2136] [RFC3007].
The Domain Name System is, generally speaking, a global public database. Records that exist in the Domain Name System name hierarchy can be queried by name from, in principle, anywhere in the world. If services on a mobile device (like a laptop computer) are made visible via the Discovery Proxy mechanism, then when those services become visible in a domain such as "My House.example.com" that might indicate to (potentially hostile) observers that the mobile device is in my house. When those services disappear from "My House.example.com" that change could be used by observers to infer when the mobile device (and possibly its owner) may have left the house. The privacy of this information may be protected using techniques like firewalls, split-view DNS, and Virtual Private Networks (VPNs), as are customarily used today to protect the privacy of corporate DNS information.
The privacy issue is particularly serious for the IPv4 and IPv6 reverse zones. If the public delegation of the reverse zones points to the Discovery Proxy, and the Discovery Proxy is reachable globally, then it could leak a significant amount of information. Attackers could discover hosts that otherwise might not be easy to identify, and learn their hostnames. Attackers could also discover the existence of links where hosts frequently come and go.
The Discovery Proxy could also provide sensitive records only to authenticated users. This is a general DNS problem, not specific to the Discovery Proxy. Work is underway in the IETF to tackle this problem [RFC7626].
A remote attacker could use a rapid series of unique Unicast DNS queries to induce a Discovery Proxy to generate a rapid series of corresponding Multicast DNS queries on one or more of its local links. Multicast traffic is generally more expensive than unicast traffic -- especially on Wi-Fi links -- which makes this attack particularly serious. To limit the damage that can be caused by such attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem which it utilizes) MUST implement Multicast DNS query rate limiting appropriate to the link technology in question. For today's 802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast packets per second is sufficient to consume approximately 100% of the wireless spectrum) a limit of 20 Multicast DNS query packets per second is RECOMMENDED. On other link technologies like Gigabit Ethernet higher limits may be appropriate. A consequence of this rate limiting is that a rogue remote client could issue an excessive number of queries, resulting in denial of service to other legitimate remote clients attempting to use that Discovery Proxy. However, this is preferable to a rogue remote client being able to inflict even greater harm on the local network, which could impact the correct operation of all local clients on that network.
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Some aspects of the mechanism specified in this document already exist in deployed software. Some aspects are new. This section outlines which aspects already exist and which are new.
Domain enumeration by the client (the "b._dns-sd._udp" queries) is already implemented and deployed.
Unicast queries to the indicated discovery domain is already implemented and deployed.
These are implemented and deployed in Mac OS X 10.4 and later (including all versions of Apple iOS, on all iPhone and iPads), in Bonjour for Windows, and in Android 4.1 "Jelly Bean" (API Level 16) and later.
Domain enumeration and unicast querying have been used for several years at IETF meetings to make Terminal Room printers discoverable from outside the Terminal room. When an IETF attendee presses Cmd-P on a Mac, or selects AirPrint on an iPad or iPhone, and the Terminal room printers appear, that is because the client is sending unicast DNS queries to the IETF DNS servers. A walk-through giving the details of this particular specific example is given in Appendix A of the Roadmap document [Roadmap].
A minimal portable Discovery Proxy implementation has been produced by Markus Stenberg and Steven Barth, which runs on OS X and several Linux variants including OpenWrt [ohp]. It was demonstrated at the Berlin IETF in July 2013.
Tom Pusateri has an implementation that runs on any Unix/Linux. It has a RESTful interface for management and an experimental demo CLI and web interface.
Ted Lemon also has produced a portable implementation of Discovery Proxy, which is available in the mDNSResponder open source code.
The Long-Lived Query mechanism [LLQ] referred to in this specification exists and is deployed, but was not standardized by the IETF. The IETF has developed a superior Long-Lived Query mechanism called DNS Push Notifications [Push], which is built on DNS Stateful Operations [RFC8490]. The pragmatic short-term deployment approach is for vendors to produce Discovery Proxies that implement both the deployed Long-Lived Query mechanism [LLQ] (for today's clients) and the new DNS Push Notifications mechanism [Push] as the preferred long-term direction.
The current APIs make multiple domains visible to client software, but most client UI today lumps all discovered services into a single flat list. This is largely a chicken-and-egg problem. Application writers were naturally reluctant to spend time writing domain-aware UI code when few customers today would benefit from it. If Discovery Proxy deployment becomes common, then application writers will have a reason to provide better UI. Existing applications will work with the Discovery Proxy, but will show all services in a single flat list. Applications with improved UI will group services by domain.
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The Discovery Proxy for Multicast DNS-Based Service Discovery [I-D.ietf-dnssd-hybrid] is a mechanism for discovering services on a subnetted network through the use of Discovery Proxies, which issue Multicast DNS (mDNS) requests [RFC6762] on various multicast links in the network on behalf of a remote host performing DNS-Based Service Discovery [RFC6763].
In the original Discovery Proxy specification, it is imagined that for every multicast link on which services will be discovered, a host will be present running a full Discovery Proxy. This document introduces a lightweight Discovery Relay that can be used to provide discovery services on a multicast link without requiring a full Discovery Proxy on every multicast link.
Since the primary purpose of a Discovery Relay is providing remote virtual interface functionality to Discovery Proxies, this document is written with that usage in mind. However, in principle, a Discovery Relay could be used by any properly authorized client. In the context of this specification, a Discovery Proxy is a client to the Discovery Relay. This document uses the terms "Discovery Proxy" and "Client" somewhat interchangably; the term "Client" is used when we are talking about the communication between the Client and the Relay, and the term "Discovery Proxy" when we are referring specifically to a Discovery Relay Client that also happens to be acting as a Discovery Proxy.
The Discovery Relay operates by listening for TCP connections from Clients. When a Client connects, the connection is authenticated and secured using TLS. The Client can then specify one or more multicast links from which it wishes to receive mDNS traffic. The Client can also send messages to be transmitted on its behalf on one or more of those multicast links. DNS Stateful Operations (DSO) [I-D.ietf-dnsop-session-signal] is used as a framework for conveying interface and IP header information associated with each message. DSO formats its messages using type-length-value (TLV) data structures. This document defines additional DSO TLV types, used to implement the Discovery Relay functionality.
The Discovery Relay functions essentially as a set of one or more remote virtual interfaces for the Client, one on each multicast link to which the Discovery Relay is connected. In a complex network, it is possible that more than one Discovery Relay will be connected to the same multicast link; in this case, the Client ideally should only be using one such Relay Proxy per multicast link, since using more than one will generate duplicate traffic.
How such duplication is detected and avoided is out of scope for this document; in principle it could be detected using HNCP [RFC7788] or configured using some sort of orchestration software in conjunction with NETCONF [RFC6241] or CPE WAN Management Protocol [TR-069].
The following definitions may be of use:
especially wasteful. Hence the common configuration decision to not forward multicast packets between Wi-Fi access points is very reasonable. This further motivates the need for technologies like Discovery Proxy and Discovery Relay to facilitate discovery on these networks.
This document describes a way for Clients to communicate with mDNS agents on remote multicast links to which they are not directly connected, using a Discovery Relay. As such, there are two parts to the protocol: connections between Clients and Discovery Relays, and communications between Discovery Relays and mDNS agents.
Discovery Relays listen for incoming connection requests. Connections between Clients and Discovery Relays are established by Clients. Connections are authenticated and encrypted using TLS, with both client and server certificates. Connections are long-lived: a Client is expected to send many queries over a single connection, and Discovery Relays will forward all mDNS traffic from subscribed interfaces over the connection.
The stream encapsulated in TLS will carry DNS frames as in the DNS TCP protocol [RFC1035] Section 4.2.2. However, all messages will be DSO messages [I-D.ietf-dnsop-session-signal]. There will be four types of such messages between Discovery Relays and Clients:
o Control messages from Client to Relay
o Link status messages from Relay to Client
o Encapsulated mDNS query messages from Client to Relay
o Encapsulated mDNS response messages from Relay to Client
Clients can send four different control messages to Relays: Link State Request, Link State Discontinue, Link Data Request and Link Data Discontinue. The first two are used by the Client to request that the Relay report on the set of links that can be requested, and to request that it discontinue such reporting. The second two are used by the Client to indicate to the Discovery Relay that mDNS messages from one or more specified multicast links are to be relayed to the Client, and to subsequently stop such relaying.
Link Status messages from a Discovery Relay to the Client inform the Client that a link has become available, or that a formerly-available link is no longer available.
Encapsulated mDNS response messages from a Discovery Relay to a Client are sent whenever an mDNS response message is received on a multicast link to which the Discovery Relay has subscribed. Encapsulated query mDNS messages from a Client to a Discovery Relay cause the Discovery Relay to transmit the mDNS query message on the specified multicast link to which the Discovery Relay host is directly attached.
During periods with no traffic flowing, Clients are responsible for generating any necessary keepalive traffic, as stated in the DSO specification [I-D.ietf-dnsop-session-signal].
Discovery Relays listen for mDNS traffic on all configured multicast links that have at least one active subscription from a Client. When an mDNS response message is received on a multicast link, it is forwarded on every open Client connection that is subscribed to mDNS traffic on that multicast link. In the event of congestion, where a particular Client connection has no buffer space for an mDNS message that would otherwise be forwarded to it, the mDNS message is not forwarded to it. Normal mDNS retry behavior is used to recover from this sort of packet loss. Discovery Relays are not expected to buffer more than a few mDNS packets. Excess mDNS packets are silently discarded. In practice this is not expected to be a issue. Particularly on networks like Wi-Fi, multicast packets are transmitted at rates ten or even a hundred times slower than unicast packets. This means that even at peak multicast packets rates, it is likely that a unicast TCP connection will able to carry those packets with ease.
Clients send encapsulated mDNS query messages they wish to have sent on their behalf on remote multicast link(s) on which the Client has an active subscription. A Discovery Relay will not transmit mDNS query packets on any multicast link on which the Client does not have an active subscription, since it makes no sense for a Client to ask to have a query sent on its behalf if it's not able to receive the responses to that query.
When a Discovery Relay starts, it opens a passive TCP listener to receive incoming connection requests from Clients. This listener may be bound to one or more source IP addresses, or to the wildcard address, depending on the implementation. When a connection is received, the relay must first validate that it is a connection to an IP address to which connections are allowed. For example, it may be that only connections to ULAs are allowed, or to the IP addresses configured on certain interfaces. If the listener is bound to a specific IP address, this check is unnecessary.
If the relay is using an IP address whitelist, the next step is for the relay to verify that that the source IP address of the connection is on its whitelist. If the connection is not permitted either because of the source address or the destination address, the Discovery Relay closes the connection. If possible, before closing the connection, the Discovery Relay first sends a TLS user_canceled alert ([I-D.ietf-tls-tls13] Section 6.1). Discovery Relays SHOULD refuse to accept TCP connections to invalid destination addresses, rather than accepting and then closing the connection, if this is possible.
Otherwise, the Discovery Relay will attempt to complete a TLS handshake with the Client. Clients are required to send the post_handshake_auth extension ([I-D.ietf-tls-tls13] Section 4.2.5). If a Discovery Relay receives a ClientHello message with no post_handshake_auth extension, the Discovery Relay rejects the connection with a certificate_required alert ([I-D.ietf-tls-tls13] Section 6.2).
Once the TLS handshake is complete, the Discovery Relay MUST request post-handshake authentication as described in ([I-D.ietf-tls-tls13] Section 4.6.2). If the Client refuses to send a certificate, or the key presented does not match the key associated with the IP address from which the connection originated, or the CertificateVerify does not validate, the connection is dropped with the TLS access_denied alert ([I-D.ietf-tls-tls13] Section 6.2).
Clients MUST validate server certificates. If the client is configured with a server IP address and certificate, it can validate the server by comparing the certificate offered by the server to the certificate that was provided: they should be the same. If the certificate includes a Distinguished Name that is a fully-qualified domain name, the client SHOULD present that domain name to the server in an SNI request.
Rather than being configured with an IP address and a certificate, the client may be configured with the server's FQDN. In this case, the client uses the server's FQDN as a Authentication Domain Name [RFC8310] Section 7.1, and uses the authentication method described in [RFC8310] section 8.1, if the certificate is signed by a root authority the client trusts, or the method described in section 8.2 of the same document if not. If neither method is available, then a locally-configured copy of the server certificate can be used, as in the previous paragraph.
Once the connection is established and authenticated, it is treated as a DNS TCP connection [RFC7766].
Aliveness of connections between Clients and Relays is maintained as described in Section 4 of [I-D.ietf-dnsop-session-signal]. Clients must also honor the 'Retry Delay' TLV (section 5 of [I-D.ietf-dnsop-session-signal]) if sent by the Discovery Relay.
Clients SHOULD avoid establishing more than one connection to a specific Discovery Relay. However, there may be situations where multiple connections to the same Discovery Relay are unavoidable, so Discovery Relays MUST be willing to accept multiple connections from the same Client.
In order to know what links to request, the Client can be configured with a list of links supported by the Relay. However, in some networking contexts, dynamic changes in the availability of links are likely; therefore Clients may also use the Report Link Changes TLV to request that the Relay report on the availability of its links. In some contexts, for example when debugging, a Client may operate with no information about the set of links supported by a relay, simply relying on the relay to provide one.
The mere act of connecting to a Discovery Relay does not result in any mDNS traffic being forwarded. In order to request that mDNS traffic from a particular multicast link be forwarded on a particular connection, the Client must send one or more DSO messages, each containing a single mDNS Link Data Request TLV (Section 8.1) indicating the multicast link from which traffic is requested.
When an mDNS Link Data Request message is received, the Discovery Relay validates that it recognizes the link identifier, and that forwarding is enabled for that link. If both checks are successful, it MUST send a response with RCODE=0 (NOERROR). If the link identifier is not recognized, it sends a response with RCODE=3 (NXDOMAIN/Name Error). If forwarding from that link to the Client is not enabled, it sends a response with RCODE=5 (REFUSED). If the relay cannot satisfy the request for some other reason, for example resource exhaustion, it sends a response with RCODE=2 (SERVFAIL). It is not an error to request a recognized link identifier which is not yet available; the Discovery Relay accepts the request, and begins forwarding packets when the link becomes available.
If the requested link is valid, the Relay begins forwarding all mDNS response messages from that link to the Client. Delivery is not guaranteed: if there is no buffer space, packets will be dropped. It is expected that regular mDNS retry processing will take care of retransmission of lost packets. The amount of buffer space is implementation dependent, but generally should not be more than the bandwidth delay product of the TCP connection [RFC1323]. The Discovery Relay should use the TCP_NOTSENT_LOWAT mechanism [NOTSENT][PRIO] or equivalent, to avoid building up a backlog of data in excess of the amount necessary to have in flight to fill the bandwidth delay product of the TCP connection.
Encapsulated mDNS response messages from Relays to Clients are framed within DSO messages. Each DSO message can contain multiple TLVs, but only a single encapsulated mDNS message is conveyed per DSO message. Each forwarded mDNS response message is sent in an Encapsulated mDNS Message TLV (Section 8.4). The source IP address and port of the message MUST be encoded in an IP Source TLV (Section 8.5). The multicast link on which the message was received MUST be encoded in a Link Identifier TLV (Section 8.3). As described in the DSO specification [I-D.ietf-dnsop-session-signal], a Client MUST silently ignore unrecognized Additional TLVs in mDNS messages, and MUST NOT discard mDNS messages that include unrecognized Additional TLVs.
A Client may discontinue listening for mDNS messages on a particular multicast link by sending a DSO message containing an mDNS Link Data Discontinue TLV (Section 8.2). Subsequent messages from that link that had previously been queued may arrive after listening has been discontinued. The Client should silently discard such messages. The Discovery Relay MUST discontinue generating such messages as soon as the request is received. The Discovery Relay does not respond to this message other than to discontinue forwarding mDNS messages from the specified links.
Like mDNS traffic from relays, each mDNS query message sent by a Client to a Discovery Relay is communicated in an Encapsulated mDNS Message TLV (Section 8.4) within a DSO message. Each message MUST contain exactly one Link Identifier TLV (Section 8.3). The Discovery Relay will transmit the mDNS query message to the mDNS port and multicast address on the link specified in the message using the specified IP address family.
Although the communication between Clients and Relays uses the DNS stream protocol and DNS Stateless Operations, there is no case in which a Client would legitimately send a DNS query (something other than a DSO message) to a Relay. Therefore, if a Relay receives a message other than a DSO message, it MUST respond with a REFUSED result code. The reason not to simply drop the connection is that it might result in a continual reconnection loop.
When defining this behavior, the working group considered making it possible to specify more than one link identifier in an mDNSMessage TLV. A superficial evaluation of this suggests that this would be a useful optimization, since when a query is issued, it will often be issued to all links. However, because of the way mDNS handles retries, it will almost never be the case that the exact same message will be sent on more than one link. Therefore, the complexity that this optimization adds is in no way justified by the potential benefit, and this idea has been abandoned.
Discovery Proxies treat multicast links for which Discovery Relay service is being used as if they were virtual interfaces; in other words, a Discovery Proxy serving multiple remote multicast links using multiple Discovery Relays behaves the same as a Discovery Proxy serving multiple local multicast links using multiple physical network interfaces. In this section we refer to multicast links served directly by the Discovery Proxy as locally-connected links, and multicast links served through the Discovery Relay as relay- connected links.
When a Discovery Proxy receives a DNSSD query from a Client via unicast, it will generate mDNS query messages on the relevant multicast link(s) for which it is acting as a proxy. For locally- connected link(s), those query messages will be sent directly. For relay-connected link(s), the query messages will be sent through the Discovery Relay that is being used to serve that multicast link.
Responses from devices on locally-connected links are processed normally. Responses from devices on relay-connected links are received by the Discovery Relay, encapsulated, and forwarded to the Client; the Client then processes these messages using the link- identifying information included in the encapsulation.
Discovery Proxies do not generally respond to mDNS queries on relay- connected links. The one exception is responding to the Domain Enumeration queries used to bootstrap unicast service discovery ("lb._dns-sd._udp.local", etc.) [RFC6763]. Apart from these Domain Enumeration queries, if any other mDNS query is received from a Discovery Relay, the Discovery Proxy silently discards it.
In principle it could be the case that some device is capable of performing service discovery using Multicast DNS, but not using traditional unicast DNS. Responding to mDNS queries received from the Discovery Relay could address this use case. However, continued reliance on multicast is counter to the goals of the current work in service discovery, and to benefit from wide-area service discovery such client devices should be updated to support service discovery using unicast queries.
This document defines a modest number of new DSO TLVs.
The mDNS Link Data Request TLV conveys a link identifier from which a Client is requesting that a Discovery Relay forward mDNS traffic. The link identifier comes from the provisioning configuration (see Section 9). The DSO-TYPE for this TLV is TBD-R. DSO-LENGTH is always 5. DSO-DATA is the 8-bit address family followed by the link identifier, a 32-bit unsigned integer in network (big endian) byte order, as described in Section 9. An address family value of 1 indicates IPv4 and 2 indicates IPv6, as recorded in the IANA Registry of Address Family Numbers [AdFam].
The mDNS Link Data Request TLV can only be used as a primary TLV, and requires an acknowledgement.
At most one mDNS Link Data Request TLV may appear in a DSO message. To request multiple link subscriptions, multiple separate DSO messages are sent, each containing a single mDNS Link Data Request TLV.
A Client MUST NOT request a link if it already has an active subscription to that link on the same DSO connection. If a Discovery Relay receives a duplicate link subscription request, it SHOULD immediately abort that DSO session.
The mDNS Link Data Discontinue TLV is used by Clients to unsubscribe to mDNS messages on the specified multicast link. DSO-TYPE is TBD-D. DSO-LENGTH is always 5. DSO-DATA is the 8-bit address family followed by the 32-bit link identifier, a 32-bit unsigned integer in network (big endian) byte order, as described in Section 9.
The mDNS Link Data Discontinue TLV can only be used as a primary TLV, and is not acknowledged.
At most one mDNS Link Data Discontinue TLV may appear in a DSO message. To unsubscribe from multiple links, multiple separate DSO messages are sent, each containing a single mDNS Link Data Discontinue TLV.
This option is used both in DSO messages from Discovery Relays to Clients that contain received mDNS messages, and from Clients to Discovery Relays that contain mDNS messages to be transmitted on the multicast link. In the former case, it indicates the multicast link on which the message was received; in the latter case, it indicates the multicast link on which the message should be transmitted. DSO- TYPE is TBD-L. DSO-LENGTH is always 5. DSO-DATA is the 8-bit address family followed by the link identifier, a 32-bit unsigned integer in network (big endian) byte order, as described in Section 9.
The Link Identifier TLV can only be used as an additional TLV.
The Encapsulated mDNS Message TLV is used to communicate an mDNS message that a Relay is forwarding from a multicast link to a Client, or that a Client is sending to a Relay for transmission on a multicast link. Only the application-layer payload of the mDNS message is carried in the DSO "Encapsulated mDNS Message" TLV, i.e., just the DNS message itself, beginning with the DNS Message ID, not the IP or UDP headers. The DSO-TYPE for this TLV is TBD-M. DSO- LENGTH is the length of the encapsulated mDNS message. DSO-DATA is the content of the encapsulated mDNS message.
The Encapsulated mDNS Message TLV can only be used as a primary TLV, and is not acknowledged.
The IP Source TLV is used to report the IP source address and port from which an mDNS message was received. This TLV is present in DSO messages from Discovery Relays to Clients that contain encapsulated mDNS messages. DSO-TYPE is TBD-S. DSO-LENGTH is either 6, for an IPv4 address, or 18, for an IPv6 address. DSO-DATA is the two-byte source port, followed by the 4- or 16-byte IP Address, both in the canonical byte order (i.e., the same representation as used in the UDP and IP packet headers, with no byte swapping).
The IP Source TLV can only be used as an additional TLV.
The Link State Request TLV requests that the Discovery Relay report link changes. When the relay is reporting link changes and a new link becomes available, it sends a Link Available message to the Client. When a link becomes unavailable, it sends a Link Unavailable message to the Client. If there are links available when the request is received, then for each such link the relay immediately sends a Link Available Message to the Client. DSO-TYPE is TBD-P. DSO-LENGTH is 0.
The mDNS Link State Request TLV can only be used as a primary TLV, and requires an acknowledgement. The acknowledgment does not contain a Link Available TLV: it is just a response to the Link State Request message.
The Link State Discontinue TLV requests that the Discovery Relay stop reporting on the availability of links supported by the relay. This cancels the effect of a Link State Request TLV. DSO-TYPE is TBD-Q. DSO-LENGTH is 0.
The mDNS Link State Discontinue TLV can only be used as a primary TLV, and is not acknowledged.
The Link Available TLV is used by Discovery Relays to indicate to Clients that a new link has become available. The format is the same as the Link Identifier TLV. DSO-TYPE is TBD-V. The Link Available TLV may be accompanied by one or more Link Prefix TLVs which indicate IP prefixes the Relay knows to be present on the link.
The mDNS Link Available TLV can only be used as a primary TLV, and is not acknowledged.
The Link Unavailable TLV is used by Discovery Relays to indicate to Clients that an existing link has become unavailable. The format is the same as the Link Identifier TLV. DSO-TYPE is TBD-U.
The mDNS Link Unavailable TLV can only be used as a primary TLV, and is not acknowledged.
The Link Prefix TLV represents an IP address or prefix configured on a link. The length is 17 for an IPv6 address or prefix, and 5 for an IPv4 address or prefix. The TLV consists of a prefix length, between 0 and 32 for IPv4 or between 0 and 128 for IPv6, represented as a single byte. This is followed by the IP address, either four or sixteen bytes. DSO-TYPE is TBD-K.
The Link Prefix TLV can only be used as a secondary TLV.
In order for a Discovery Proxy to use Discovery Relays, it must be configured with sufficient information to identify multicast links on which service discovery is to be supported and, if it is not running on a host that is directly connected to those multicast links, connect to Discovery Relays supporting those multicast links.
A Discovery Relay must be configured both with a set of multicast links to which the host on which it is running is connected, on which mDNS relay service is to be provided, and also with a list of one or more Clients authorized to use it.
On a network supporting DNS Service Discovery using Discovery Relays, more than one different Discovery Relay implementation may be present. While it may be that only a single Discovery Proxy is present, that implementation will need to be able to be configured to interoperate with all of the Discovery Relays that are present. Consequently, it is necessary that a standard set of configuration parameters be defined for both Discovery Proxies and Discovery Relays.
DNS Service Discovery generally operates within a constrained set of links, not across the entire internet. This section assumes that what will be configured will be a limited set of links operated by a single entity or small set of cooperating entities, among which services present on each link should be available to users on that link and every other link. This could be, for example, a home network, a small office network, or even a network covering an entire building or small set of buildings. The set of Discovery Proxies and Discovery Relays within such a network will be referred to in this section as a 'Discovery Domain'.
Depending on the context, several different candidates for configuration of Discovery Proxies and Discovery Relays may be applicable. The simplest such mechanism is a manual configuration file, but regardless of provisioning mechanism, certain configuration information needs to be communicated to the devices, as outlined below.
In the example we provide here, we only refer to configuring of IP addresses, private keys and certificates. It is also possible to use FQDNs to identify servers; this then allows for the use of DANE ([RFC8310] Section 8.2) or PKIX authentication [RFC6125]. Which method is used is to some extent up to the implementation, but at a minimum, it should be possible to associate an IP address with a self-signed certificate, and it should be possible to validate both self-signed and PKIX-authenticated certificates, with PKIX, DANE or a pre-configured trust anchor.
Three types of objects must be described in order for Discovery Proxies and Discovery Relays to be provisioned: Discovery Proxies, Multicast Links, and Discovery Relays. "Human-readable" below means actual words or proper names that will make sense to an untrained human being. "Machine-readable" means a name that will be used by machines to identify the entity to which the name refers. Each entity must have a machine-readable name and may have a human- readable name. No two entities can have the same human-readable name. Similarly, no two entities can have the same machine-readable name.
The description of a multicast link consists of:
The ldh-name and hr-name can be used to form the LDH and human- readable domain names as described in [I-D.ietf-dnssd-hybrid], section 5.3.
Note that the ldh-name and hr-name can be used in two different ways.
On a small home network with little or no human administrative configuration, link names may be directly visible to the user. For example, a search in 'home.arpa' on a small home network may discover services on both ethernet.home.arpa and wi-fi.home.arpa. In the case of a home user who has one Ethernet-connected printer and one Wi-Fi- connected printer, discovering that they have one printer on ethernet.home.arpa and another on wi-fi.home.arpa is understandable and meaningful.
On a large corporate network with hundreds of Wi-Fi access points, the individual link names of the hundreds of multicast links are less likely to be useful to end users. In these cases, Discovery Broker functionality [I-D.sctl-discovery-broker] is used to translate the many link names to something more meaningful to users. For example, in a building with 50 Wi-Fi access points, each with their own link names, services on all the different physical links may be presented to the user as appearing in 'headquarters.example.com'. In this case, the individual link names can be thought of similar to MAC addresses or IPv6 addresses. They are used internally by the software as unique identifiers, but generally are not exposed to end users.
The description of a Discovery Proxy consists of:
client requests may differ from the 'source-ip-addresses' list of addresses used for issuing outbound connection requests to Discovery Relays. If any of these addresses are reachable from outside of the Discovery Domain, services in that domain will be discoverable outside of the domain.
The private key should never be distributed to other hosts; all of the other information describing a Discovery Proxy can be safely shared with Discovery Relays.
In some configurations it may make sense for the Discovery Relay not to have a list of links, but simply to support the set of all links available on relays to which the Discovery Proxy is configured to communicate.
The description of a Discovery Relay consists of:
The private key should never be distributed to other hosts; all of the other information describing a Discovery Relay can be safely shared with Discovery Proxies.
In some cases a Relay may not be configured with a static list of links, but may simply discover links by monitoring the set of available interfaces on the host on which the Relay is running. In that case, the relay could be configured to identify links based on the names of network interfaces, or based on the set of available prefixes seen on those interfaces. The details of this sort of configuration are not specified in this document.
For this discussion, we assume the simplest possible means of configuring Discovery Proxies and Discovery Relays: the configuration file. Any environment where changes will happen on a regular basis will either require some automatic means of generating these configuration files as the network topology changes, or will need to use a more automatic method for configuration, such as HNCP [RFC7788].
There are many different ways to organize configuration files. This discussion assumes that multicast links, relays and proxies will be specified as objects, as described above, perhaps in a master file, and then the specific configuration of each proxy or relay will reference the set of objects in the master file, referencing objects by name. This approach is not required, but is simply shown as an example. In addition, the private keys for each proxy or relay must appear only in that proxy or relay's configuration file.
The master file contains a list of Discovery Relays, Discovery Proxies and Multicast Links. Each object has a name and all the other data associated with it. We do not formally specify the format of the file, but it might look something like this:
The Discovery Proxy configuration contains enough information to identify which Discovery Proxy is being configured, enumerate the list of multicast links it is intended to serve, and provide keying information it can use to authenticate to Discovery Relays. It may also contain custom information about the port and/or IP address(es) on which it will respond to DNS queries.
An example configuration, following the convention used in this section, might look something like this:
When combined with the master file, this configuration is sufficient for the Discovery Proxy to identify and connect to the Discovery Relays that serve the links it is configured to support.
The Discovery Relay configuration just needs to tell the Discovery Relay what name to use to find its configuration in the master file, and what the private key is corresponding to its certificate (public key) in the master file. For example:
Relay Downstairs
private-key yyy
Part of the purpose of the Multicast DNS Discovery Relay protocol is to place a simple relay, analogous to a BOOTP relay, into routers and similar devices that may not be updated frequently. The BOOTP [RFC0951] protocol has been around since 1985, and continues to be useful today. The BOOTP protocol uses no encryption, and in many enterprise networks this is considered acceptable. In contrast, the Discovery Relay protocol requires TLS 1.3. A concern is that after 20 or 30 years, TLS 1.3, or some of the encryption algorithms it uses, may become obsolete, rendering devices that require it unusable. Our assessment is that TLS 1.3 probably will be around for many years to come. TLS 1.0 [RFC2246] was used for about a decade, and similarly TLS 1.2 [RFC5246] was also used for about a decade. We expect TLS 1.3 [I-D.ietf-tls-tls13] to have at least that lifespan. In addition, recent IETF efforts are pushing for better software update practices for devices like routers, for other security reasons, making it likely that in ten years time it will be less common to be using routers that haven't had a software update for ten years. However, authors of encryption specifications and libraries should be aware of the potential backwards compatibility issues if an encryption algorithm becomes deprecated. This specification RECOMMENDS that if an encryption algorithm becomes deprecated, then rather than remove that encryption algorithm entirely, encryption libraries should disable that encryption algorithm by default, but leave the code present with an option for client software to enable it in special cases, such as a recent Client talking to an ancient Discovery Relay. Using no encryption, like BOOTP, would eliminate this backwards compatibility concern, but we feel that in such a future hypothetical scenario, using even a weak encryption algorithm still makes passive eavesdropping and tampering harder, and is preferable to using no encryption at all.
The IANA is kindly requested to update the DSO Type Codes Registry [I-D.ietf-dnsop-session-signal] by allocating codes for each of the TBD type codes listed in the following table, and by updating this document, here and in Section 8. Each type code should list this document as its reference document.
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To engage in secure and privacy preserving communication, hosts need to differentiate between authorized peers, which must both know about the host's presence and be able to decrypt messages sent by the host, and other peers, which must not be able to decrypt the host's messages and ideally should not be aware of the host's presence. The necessary relationship between host and peer can be established by a centralized service, e.g. a certificate authority, by a web of trust, e.g. PGP, or -- without using global identities -- by device pairing.
The general pairing requirement is easy to state: establish a trust relation between two entities in a secure manner. But details matter, and in this section we explore the detailed requirements that will guide the design of a pairing protocol.
This document does not specify an actual pairing protocol, but it served as the basis for the design of the pairing protocol developed for DNS-SD privacy [I-D.ietf-dnssd-pairing]. The requirement of a pairing system for private discovery are analyzed in part in [I-D.ietf-dnssd-prireq].
NOTE TO RFC EDITOR: remove or rewrite this section before publication.
This document results from a split of an earlier pairing draft that contained two parts. The first part, presented the pairing need, and the list of requirements that shall be met. The second part presented the design is the actual specification of the protocol.
In his early review, Steve Kent observed that the style of the first part seems inappropriate for a standards track document, and suggested that the two parts should be split into two documents, the first part becoming an informational document, and the second focusing on standard track specification of the protocol, making reference to the informational document as appropriate.
The working group approved this split.
Many pairing protocols have already been developed, in particular for the pairing of devices over specific wireless networks. For example, the current Bluetooth specifications include a pairing protocol that has evolved over several revisions towards better security and usability [BTLEPairing]. The Wi-Fi Alliance defined the Wi-Fi Protected Setup process to ease the setup of security-enabled Wi-Fi networks in home and small office environments [WPS]. Other wireless standards have defined or are defining similar protocols, tailored to specific technologies.
In this document we provide background and discuss the design of a manually authenticated pairing protocol that is independent of the underlying network protocol stack. We discuss (1) means allowing the two parties engaged in the pairing to discover each other in an existing unsecured network -- e.g. means for learning about the network parameters of the respective other device -- which allows them to establish a connection; (2) agreeing on a shared secret via this connection; and (3) manually authenticating this secret. For our discussion and our secure pairing protocol specification [I-D.ietf-dnssd-pairing], we assume an IP based unsecured network. With little adaption, this pairing mechanism can be used on other protocol stacks as well.
We limit the goal of the protocol to the establishment of a shared secret between two parties. Once that secret has been established, it can trivially be used to secure the exchange of other informations, such as for example public keys and certificates.
The parties in the pairing must be able to identify each other. To put it simply, if Alice believes that she is establishing a pairing with Bob, she must somehow ensure that the pairing is actually established with Bob, and not with some interloper like Eve or Nessie. Providing this assurance requires designing both the protocol and the user interface (UI) with care.
Consider for example an attack in which Eve tricks Alice into engaging in a pairing process while pretending to be Bob. Alice must be able to discover that something is wrong, and refuse to establish the pairing. The parties engaged in the pairing must at least be able to verify their identities, respectively.
Because the pairing protocol is executed without prior knowledge, it is typically vulnerable to "Man-in-the-Middle" attacks. While Alice is trying to establish a pairing with Bob, Eve positions herself in the middle. Instead of getting a pairing between Alice and Bob, both Alice and Bob get paired with Eve. Because of this, the protocol requires specific features to detect Man-in-the-Middle attacks, and if possible resist them.
This section discusses existing techniques that are used in practice for manually authenticating a Diffie-Hellman key exchange, and Section 5 provides a layman description of the MiTM problem and countermeasures. A more in depth exploration of manually authenticated pairing protocols may be found in [NR11] and [K17].
The initial Bluetooth pairing protocol relied on a four digit PIN, displayed by one of the devices to be paired. The user read that PIN and provided it to the other device. The PIN was then used in a Password Authenticated Key Exchange. Wi-Fi Protected Setup [WPS] offered a similar option. There were various attacks against the actual protocol; some of the problems were caused by issues in the protocol, but most were tied to the usage of short PINs.
In the reference implementation, the PIN is picked at random by the paired device before the beginning of the exchange. But this requires that the paired device is capable of generating and displaying a four digit number. It turns out that many devices cannot do that. For example, an audio headset does not have any display capability. These limited devices ended up using static PINs, with fixed values like "0000" or "0001".
Even when the paired device could display a random PIN, that PIN had to be copied by the user on the pairing device. It turns out that users do not like copying long series of numbers, and the usability thus dictated that the PINs be short -- four digits in practice. But there is only so much assurance as can be derived from a four digit key.
The latest revisions of the Bluetooth Pairing protocol [BTLEPairing] do not include the short PIN option anymore. The PIN entry methods have been superseded by the simple "just works" method for devices without displays, and by a procedure based on an SAS (short authentication string) when displays are available.
A further problem with these PIN based approaches is that -- in contrast to SASes -- the PIN is a secret instrumental in the security algorithm. To guarantee security, this PIN would have to be transmitted via a secure out-of-band channel.
Some devices are unable to input or display any code. The industry more or less converged on a "push button" solution. When the button is pushed, devices enter a "pairing" mode, during which they will accept a pairing request from whatever other device connects to them.
The Bluetooth Pairing protocol [BTLEPairing] denotes that as the "just works" method. It does indeed work, and if the pairing succeeds the devices will later be able to use the pairing keys to authenticate connections. However, the procedure does not provide any protection against MitM attacks during the pairing process. The only protection is that pushing the button will only allow pairing for a limited time, thus limiting the opportunities of attacks.
As we set up to define a pairing protocol with a broad set of applications, we cannot limit ourselves to an insecure "push button" method. But we probably need to allow for a mode of operation that works for input-limited and display limited devices.
Many pairing protocols that use out-of-band channels have been defined. Most of them are based on short range communication systems, where the short range limits the feasibility for attackers to access the channels. Example of such limited systems include for example:
o QR codes, displayed on the screen of one device, and read by the camera of the other device.
o Near Field Communication (NFC) systems, which provides wireless communication with a very short range.
o Sound systems, in which one systems emits a sequence of sounds or ultrasounds that is picked by the microphone of the other system.
A common problem with these solutions is that they require special capabilities that may not be present in every device. Another problem is that they are often one-way channels.
The pairing protocols should not rely on the secrecy of the out-of- band channels; most of these out-of-band channels do not provide confidentiality. QR codes could be read by third parties. Powerful radio antennas might be able to interfere with NFC. Sensitive microphones might pick the sounds. However, a property that all of these channels share is authenticity, i.e. an assurance that the data obtained over the out-of-band channel actually comes from the other party. This is because these out-of-band channels involve the user transmitting information from one device to the other. We will discuss the specific case of QR codes in Section 8.
The evolving pairing protocols seem to converge towards using Short Authentication Strings and verifying them via the "compare and confirm" method. This is in line with academic studies, such as [KFR09] or [USK11], and, from the users' perspective, results in a very simple interaction:
1. Alice and Bob compare displayed strings that represent a fingerprint of the afore exchanged pairing key.
2. If the strings match, Alice and Bob accept the pairing.
Most existing pairing protocols display the fingerprint of the key as a 6 or 7 digit number. Usability studies show that this method gives good results, with little risk that users mistakenly accept two different numbers as matching. However, the authors of [USK11] found that people had more success comparing computer generated sentences than comparing numbers. This is in line with the argument in [XKCD936] to use sequences of randomly chosen common words as passwords. On the other hand, standardizing strings is more complicated than standardizing numbers. We would need to specify a list of common words, and the process to go from a binary fingerprint to a set of words. We would need to be concerned with internationalization issues, such as using different lists of words in German and in English. This could require the negotiation of word lists or languages inside the pairing protocols.
In contrast, numbers are easy to specify, as in "take a 20 bit number and display it as an integer using decimal notation".
In section Section 4.1 we presented the drawbacks of using short pins. One could object that many of the technical issues could be overcome by use of better PAKE algorithms, or by supporting longer PIN. And one could also argue that if PIN based pairing algorithms suffer from failure modes such as static PIN configuration, SAS based protocols are vulnerable to SAS bypass.
The SAS bypass argument is rooted in the psychology of users. In practice, pairing processes can be stressful. The user has to discover on each device the proper combination of key entries that brings up the required pairing UI, will be anxious and eager to complete the procedure, and may well be predisposed to click "OK" in the final stage of the algorithm without actually verifying the SAS. Some users may bypass the required comparison step, because they just want to be done with the pairing.
An advantage of PIN based processes is that they cannot be bypassed. The user must enter the PIN before continuing. Also, once the PIN is entered, everything is automatic. The user does not need to input more data, or press any additional button. PIN based protocols would be a great fit for the QR-code based interaction. One device would display a QR code that contains the PIN. Once the QR code is scanned by the other device, the process is automated.
QR based PIN entry may be user friendly, but one of the arguments developed in Section 4.1 still holds. Let's assume that an adversary somehow obtains the PIN, maybe by scanning the QR code at a distance. That adversary could mount MITM or impersonation attacks, and compromise the pairing process. It is thus very important to ensure that the PIN is only readable by the user doing the pairing.
We could also argue that the SAS bypass failure mode may be mitigated by specific user designs. For example, instead of just clicking OK, the user could be required to enter the SAS displayed by the other device. This requires about the same interactions as a PIN based process, and it would be slightly safer because the SAS does not have to be kept secret once the keys have been exchanged.
If we summarize the debate, we see that both SAS and PIN based solutions have failure modes depending on implementations. In the SAS mode, the failure happens when the UI does not force the user to copy the PIN and relies on a simple "OK to continue" dialog. In the PIN mode, the failure happens when the device fails to generate a random PIN for each session, and comes pre-programmed with a simple static PIN of "0000" or "0001".
It is tempting to believe that once two peers are connected, they could create a secret with a few simple steps, such as for example (1) exchange two nonces, (2) hash the concatenation of these nonces with the shared secret that is about to be established, (3) display a short authentication string composed of a short version of that hash on each device, and (4) verify that the two values match. This naive approach might yield the following sequence of messages:
If the two short hashes match, Alice and Bob are supposedly assured that they have computed the same secret, but there is a problem. Let's redraw the same message flow, this time involving the attacker Eve:
In order to pick a nonce nB' that circumvents this naive security measure, Eve runs the following algorithm:
Running this algorithm will take O(2^b) iterations on average (assuming a uniform distribution), where b is the bit length of the SAS. Since hash algorithms are fast, it is possible to try millions of values in less than a second. If the short string is made up of fewer than 6 digits, Eve will find a matching nonce quickly, and Alice and Bob will hardly notice the delay. Even if the matching string is as long as 8 letters, Eve will probably find a value where the short versions of h' and h" are close enough, e.g. start and end with the same two or three letters. Alice and Bob may well be fooled.
Eve could also utilize the fact that she may freely choose the whole input for the hash function and thus choose g^xA' and g^xB' so that an arbitrary collision (birthday attack) instead of a second preimage is sufficient for fooling Alice and Bob.
The classic solution to such problems is to "commit" a possible attacker to a nonce before sending it. This commitment can be realized by a hash. In the modified exchange, Alice sends a secure hash of her nonce before sending the actual value:
Alice will only disclose nA after having confirmation from Bob that hash(nA) has been received. At that point, Eve has a problem. She can still forge the values of the nonces, but she needs to pick the nonce nA' before the actual value of nA has been disclosed. Eve would still have a random chance of fooling Alice and Bob, but it will be a very small chance: one in a million if the short authentication string is made of 6 digits, even fewer if that string is longer.
Nguyen et al. [NR11] survey these protocols and compare them with respect to the amount of necessary user interaction and the computation time needed on the devices. The authors state that such a protocol is optimal with respect to user interaction if it suffices for users to verify a single b-bit SAS while having a one-shot attack success probability of 2^-b. Further, n consecutive attacks on the protocol must not have a better success probability then n one-shot attacks.
There is still a theoretical problem, if Eve has somehow managed to "crack" the hash function. We can build "defense in depth" by some simple measures. In the design presented above, the hash "h_a" depends on the shared secret "s", which acts as a "salt" and reduces the effectiveness of potential attacks based on pre-computed catalogs. The simplest design uses a concatenation mechanism, but we could instead use a keyed-hash message authentication code (HMAC [RFC2104], [RFC6151]), using the shared secret as a key, since the HMAC construct has proven very robust over time. Then, we can constrain the size of the random numbers to be exactly the same as the output of the hash function. Hash attacks often require padding the input string with arbitrary data; restraining the size limits the likelyhood of such padding.
Pairing exposes a relation between several devices and their owners. Adversaries may attempt to collect this information, for example in an attempt to track devices, their owners, or their social graph. It is often argued that pairing could be performed in a safe place, from which adversaries are assumed absent, but experience shows that such assumptions are often misguided. It is much safer to acknowledge the privacy issues and design the pairing process accordingly.
In order to start the pairing process, devices must first discover each other. We do not have the option of using the private discovery protocol [I-D.ietf-dnssd-privacy] since the privacy of that protocol depends on a pre-existing pairing. In the simplest design, one of the devices will announce a user-friendly name using DNS-SD. Adversaries could monitor the discovery protocol, and record that name. An alternative would be for one device to announce a random name, and communicate it to the other device via some private channel. There is an obvious tradeoff here: friendly names are easier to use but less private than random names. We anticipate that different users will choose different tradeoffs, for example using friendly names if they assume that the environment is safe, and using random names in public places.
During the pairing process, the two devices establish a connection and validate a pairing secret. As discussed in Section 4, we have to assume that adversaries can mount MitM attacks. The pairing protocol can detect such attacks and resist them, but the attackers will have access to all messages exchanged before the validation is performed. It is important to not exchange any privacy sensitive information before that validation. This includes, for example, the identities of the parties or their public keys.
The pairing algorithms typically combine the establishment of a shared secret through an [EC]DH exchange with the verification of that secret through displaying and comparing a "short authentication string" (SAS). As explained in Section 5, the secure comparison requires a "commit before disclose" mechanism.
We have three possible designs: (1) create a pairing algorithm from scratch, specifying our own cryptographic protocol; (2) use an [EC]DH version of TLS to negotiate a shared secret, export the key to the application as specified in [RFC5705], and implement the "commit before disclose" and SAS verification as part of the pairing application; or, (3) use TLS, integrate the "commit before disclose" and SAS verification as TLS extensions, and export the verified key to the application as specified in [RFC5705].
When faced with the same choice, the designers of ZRTP [RFC6189] chose to design a new protocol integrated in the general framework of real time communications. We don't want to follow that path, and would rather not create yet another protocol. We would need to reinvent a lot of the negotiation capabilities that are part of TLS, not to mention algorithm agility, post quantum, and all that sort of things. It is thus pretty clear that we should use TLS.
It turns out that there was already an attempt to define SAS extensions for TLS ([I-D.miers-tls-sas]). It is a very close match to our third design option, full integration of SAS in TLS, but the draft has expired, and there does not seem to be any support for the SAS options in the common TLS packages.
In our design, we will choose the middle ground option -- use TLS for [EC]DH, and implement the SAS verification as part of the pairing application. This minimizes dependencies on TLS packages to the availability of a key export API following [RFC5705]. We will need to specify the hash algorithm used for the SAS computation and validation, which carries some of the issues associated with "designing our own crypto". One solution would be to use the same hash algorithm negotiated by the TLS connection, but common TLS packages do not always make this algorithm identifier available through standard APIs. A fallback solution is to specify a state of the art keyed MAC algorithm.
In Section 4.3, we reviewed a number of short range communication systems that can be used to facilitate pairing. Out of these, QR codes stand aside because most devices that can display a short string can also display the image of a QR code, and because many pairing scenarios involve cell phones equipped with cameras capable of reading a QR code.
QR codes are displayed as images. An adversary equipped with powerful cameras could read the QR code just as well as the pairing parties. If the pairing protocol design embedded passwords or pins in the QR code, adversaries could access these data and compromise the protocol. On the other hand, there are ways to use QR codes even without assuming secrecy.
QR codes could be used at two of the three stages of pairing: Discovering the peer device, and authenticating the shared secret. Using QR codes provides advantages in both phases:
o Typical network based discovery involves interaction with two devices. The device to be discovered is placed in "server" mode, and waits for requests from the network. The device performing the discovery retrieves a list of candidates from the network. When there is more than one such candidate, the device user is expected to select the desired target from a list. In QR code mode, the discovered device will display a QR code, which the user will scan using the second device. The QR code will embed the device's name, its IP address, and the port number of the pairing service. The connection will be automatic, without relying on the network discovery. This is arguably less error-prone and safer than selecting from a network provided list.
o SAS based agreement involves displaying a short string on each device's display, and asking the user to verify that both devices display the same string. In QR code mode, one device could display a QR code containing this short string. The other device could scan it and compare it to the locally computed version. Because the procedure is automated, there is no dependency on the user diligence at comparing the short strings.
Offering QR codes as an alternative to discovery and agreement is straightforward. If QR codes are used, the pairing program on the server side might display something like:
If Alice's device is capable of reading the QR code, it will just scan it, establishes a connection, and run the pairing protocol. After the protocol messages have been exchanged, Bob's device will display a new QR code, encoding the hash code that should be matched. The UI might look like this:
Did the number match (Yes/No)?
With the use of QR code, the pairing is established with little reliance on user judgment, which is arguably safer.
There are two usage modes for pairing: inter-user, and intra-user. Users have multiple devices. The simplest design is to not distinguish between pairing devices belonging to two users, e.g., Alice's phone and Bob's phone, and devices belonging to the same user, e.g., Alice's phone and her laptop. This will most certainly work, but it raises the problem of transitivity. If Bob needs to interact with Alice, should he install just one pairing for "Alice and Bob", or should he install four pairings between Alice phone and laptop and Bob phone and laptop? Also, what happens if Alice gets a new phone?
One tempting response is to devise a synchronization mechanism that will let devices belonging to the same user share their pairings with other users. But it is fairly obvious that such service will have to be designed cautiously. The pairing system relies on shared secrets. It is much easier to understand how to manage secrets shared between exactly two parties than secrets shared with an unspecified set of devices.
Transitive pairing raises similar issues. Suppose that a group of users wants to collaborate. Will they need to set up a fully connected graph of pairings using the simple peer-to-peer mechanism, or could they use some transitive set, so that if Alice is connected with Bob and Bob with Carol, Alice automatically gets connected with Carol? Such transitive mechanisms could be designed, e.g. using a variation of Needham-Scroeder symmetric key protocol [NS1978], but it will require some extensive work. Groups can of course use simpler solution, e.g., build some star topology.
Given the time required, intra-user pairing synchronization mechanisms and transitive pairing mechanisms are left for further study.
This document lists a set of security issues that have to be met by pairing protocols, but does not specify any protocol.
This draft does not require any IANA action.
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Domain Name System (DNS) records may be updated using DNS Update [RFC2136]. Other mechanisms such as a Discovery Proxy [DisProx] can also generate changes to a DNS zone. This document specifies a protocol for DNS clients to subscribe to receive asynchronous notifications of changes to RRSets of interest. It is immediately relevant in the case of DNS Service Discovery [RFC6763] but is not limited to that use case, and provides a general DNS mechanism for DNS record change notifications. Familiarity with the DNS protocol and DNS packet formats is assumed [RFC1034] [RFC1035] [RFC6895].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. These words may also appear in this document in lower case as plain English words, absent their normative meanings.
As the domain name system continues to adapt to new uses and changes in deployment, polling has the potential to burden DNS servers at many levels throughout the network. Other network protocols have successfully deployed a publish/subscribe model following the Observer design pattern [obs]. XMPP Publish-Subscribe [XEP0060] and Atom [RFC4287] are examples. While DNS servers are generally highly tuned and capable of a high rate of query/response traffic, adding a publish/subscribe model for tracking changes to DNS records can deliver more timely notification of changes with reduced CPU usage and lower network traffic.
Multicast DNS [RFC6762] implementations always listen on a well known link-local IP multicast group, and record changes are sent to that multicast group address for all group members to receive. Therefore, Multicast DNS already has asynchronous change notification capability. However, when DNS Service Discovery [RFC6763] is used across a wide area network using Unicast DNS (possibly facilitated via a Discovery Proxy [DisProx]) it would be beneficial to have an equivalent capability for Unicast DNS, to allow clients to learn about DNS record changes in a timely manner without polling.
The DNS Long-Lived Queries (LLQ) mechanism [LLQ] is an existing deployed solution to provide asynchronous change notifications, used by Apple's Back to My Mac [RFC6281] service introduced in Mac OS X 10.5 Leopard in 2007. Back to My Mac was designed in an era when the data center operations staff asserted that it was impossible for a server to handle large numbers of mostly-idle TCP connections, so LLQ was defined as a UDP-based protocol, effectively replicating much of TCP's connection state management logic in user space, and creating its own poor imitations of existing TCP features like the three-way handshake, flow control, and reliability.
This document builds on experience gained with the LLQ protocol, with an improved design. Instead of using UDP, this specification uses DNS Stateful Operations (DSO) [RFC8490] running over TLS over TCP, and therefore doesn't need to reinvent existing TCP functionality. Using TCP also gives long-lived low-traffic connections better longevity through NAT gateways without depending on the gateway to support NAT Port Mapping Protocol (NAT-PMP) [RFC6886] or Port Control Protocol (PCP) [RFC6887], or resorting to excessive keepalive traffic.
A DNS Push Notification client subscribes for Push Notifications for a particular RRSet by connecting to the appropriate Push Notification server for that RRSet, and sending DSO message(s) indicating the RRSet(s) of interest. When the client loses interest in receiving further updates to these records, it unsubscribes.
The DNS Push Notification server for a DNS zone is any server capable of generating the correct change notifications for a name. It may be a primary, secondary, or stealth name server [RFC7719]. Consequently, the "_dns-push-tls._tcp.<zone>" SRV record for a zone MAY reference the same target host and port as that zone's "_dns-update-tls._tcp.<zone>" SRV record. When the same target host and port is offered for both DNS Updates and DNS Push Notifications, a client MAY use a single TCP connection to that server for both DNS Updates and DNS Push Notification Subscriptions.
Supporting DNS Updates and DNS Push Notifications on the same server is OPTIONAL. A DNS Push Notification server is NOT REQUIRED also to support DNS Update.
DNS Updates and DNS Push Notifications may be handled on different ports on the same target host, in which case they are not considered to be the "same server" for the purposes of this specification, and communications with these two ports are handled independently.
Standard DNS Queries MAY be sent over a DNS Push Notification (i.e., DSO) session. For any zone for which the server is authoritative, it MUST respond authoritatively for queries on names falling within that zone (e.g., the <zone> in the "_dns-push-tls._tcp.<zone>" SRV record) both for normal DNS queries and for DNS Push Notification subscriptions. For names for which the server is acting as a recursive resolver, e.g. when the server is the local recursive resolver, for any query for which it supports DNS Push Notification subscriptions, it MUST also support standard queries.
This DNS Push Notification specification includes support for DNS classes, for completeness. However, in practice, it is anticipated that for the foreseeable future the only DNS class in use will be DNS class "IN", as is the reality today with existing DNS servers and clients. A DNS Push Notification server MAY choose to implement only DNS class "IN". If messages are received for a class other than "IN", and that class is not supported, an error with RCODE NOTIMPL (Not Implemented) should be returned.
DNS Push Notifications impose less load on the responding server than rapid polling would, but Push Notifications do still have a cost, so DNS Push Notification clients MUST NOT recklessly create an excessive number of Push Notification subscriptions. Specifically:
(a) A subscription should only be active when there is a valid reason to need live data (for example, an on-screen display is currently showing the results to the user) and the subscription SHOULD be cancelled as soon as the need for that data ends (for example, when the user dismisses that display). In the case of a device like a smartphone which, after some period of inactivity, goes to sleep or otherwise darkens its screen, it should cancel its subscriptions when darkening the screen (since the user cannot see any changes in the display anyway) and reinstate its subscriptions when re-awakening from display sleep.
(b) A DNS Push Notification client SHOULD NOT routinely keep a DNS Push Notification subscription active 24 hours a day, 7 days a week, just to keep a list in memory up to date so that if the user does choose to bring up an on-screen display of that data, it can be displayed really fast. DNS Push Notifications are designed to be fast enough that there is no need to pre-load a "warm" list in memory just in case it might be needed later.
Generally, as described in the DNS Stateful Operations specification [RFC8490], a client must not keep a session to a server open indefinitely if it has no subscriptions (or other operations) active on that session. A client MAY close a session as soon as it becomes idle, and then if needed in the future, open a new session when required. Alternatively, a client MAY speculatively keep an idle session open for some time, subject to the constraint that it MUST NOT keep a session open that has been idle for more than the session's idle timeout (15 seconds by default) [RFC8490].
Other DNS operations like DNS Update [RFC2136] MAY use either User Datagram Protocol (UDP) [RFC0768] or Transmission Control Protocol (TCP) [RFC0793] as the transport protocol, in keeping with the historical precedent that DNS queries must first be sent over UDP [RFC1123]. This requirement to use UDP has subsequently been relaxed [RFC7766].
In keeping with the more recent precedent, DNS Push Notification is defined only for TCP. DNS Push Notification clients MUST use DNS Stateful Operations [RFC8490] running over TLS over TCP [RFC7858].
Connection setup over TCP ensures return reachability and alleviates concerns of state overload at the server through anonymous subscriptions. All subscribers are guaranteed to be reachable by the server by virtue of the TCP three-way handshake. Flooding attacks are possible with any protocol, and a benefit of TCP is that there are already established industry best practices to guard against SYN flooding and similar attacks [SYN] [RFC4953].
Use of TCP also allows DNS Push Notifications to take advantage of current and future developments in TCP, such as Multipath TCP (MPTCP) [RFC6824], TCP Fast Open (TFO) [RFC7413], Tail Loss Probe (TLP) [I-D.dukkipati-tcpm-tcp-loss-probe], and so on.
Transport Layer Security (TLS) [RFC8446] is well understood and deployed across many protocols running over TCP. It is designed to prevent eavesdropping, tampering, and message forgery. TLS is REQUIRED for every connection between a client subscriber and server in this protocol specification. Additional security measures such as client authentication during TLS negotiation MAY also be employed to increase the trust relationship between client and server.
Each DNS Push Notification server is capable of handling some finite number of Push Notification subscriptions. This number will vary from server to server and is based on physical machine characteristics, network bandwidth, and operating system resource allocation. After a client establishes a session to a DNS server, each subscription is individually accepted or rejected. Servers may employ various techniques to limit subscriptions to a manageable level. Correspondingly, the client is free to establish simultaneous sessions to alternate DNS servers that support DNS Push Notifications for the zone and distribute subscriptions at the client's discretion. In this way, both clients and servers can react to resource constraints.
The DNS Push Notification protocol is a session-oriented protocol, and makes use of DNS Stateful Operations (DSO) [RFC8490].
For details of the DSO message format refer to the DNS Stateful Oper- ations specification [RFC8490]. Those details are not repeated here.
DNS Push Notification clients and servers MUST support DSO. A single server can support DNS Queries, DNS Updates, and DNS Push Notifications (using DSO) on the same TCP port.
A DNS Push Notification exchange begins with the client discovering the appropriate server, using the procedure described in Section 6.1, and then making a TLS/TCP connection to it.
A typical DNS Push Notification client will immediately issue a DSO Keepalive operation to request a session timeout and/or keepalive interval longer than the the 15-second default values, but this is not required. A DNS Push Notification client MAY issue other requests on the session first, and only issue a DSO Keepalive operation later if it determines that to be necessary. Sending either a DSO Keepalive operation or a Push Notification subscription over the TLS/TCP connection to the server signals the client's support of DSO and serves to establish a DSO session.
In accordance with the current set of active subscriptions, the server sends relevant asynchronous Push Notifications to the client. Note that a client MUST be prepared to receive (and silently ignore) Push Notifications for subscriptions it has previously removed, since there is no way to prevent the situation where a Push Notification is in flight from server to client while the client's UNSUBSCRIBE message cancelling that subscription is simultaneously in flight from client to server.
The first step in DNS Push Notification subscription is to discover an appropriate DNS server that supports DNS Push Notifications for the desired zone.
The client begins by opening a DSO Session to its normal configured DNS recursive resolver and requesting a Push Notification subscription. This connection is made to TCP port 853, the default port for DNS-over-TLS DNS over TLS [RFC7858]. If the request for a Push Notification subscription is successful, then the recursive resolver will make a corresponding Push Notification subscription on the client's behalf (if the recursive resolver doesn't already have an active subscription for that name, type, and class), and pass on any results it receives back to the client. This is closely analogous to how a client sends normal DNS queries to its configured DNS recursive resolver, which issues queries on the client's behalf (if the recursive resolver doesn't already have appropriate answer(s) in its cache), and passes on any results it receives back to the client.
In many contexts, the recursive resolver will be able to handle Push Notifications for all names that the client may need to follow. Use of VPN tunnels and split-view DNS can create some additional complexity in the client software here; the techniques to handle VPN tunnels and split-view DNS for DNS Push Notifications are the same as those already used to handle this for normal DNS queries.
If the recursive resolver does not support DNS over TLS, or does support DNS over TLS but is not listening on TCP port 853, or does support DNS over TLS on TCP port 853 but does not support DSO on that port, then the DSO Session session establishment will fail [RFC8490].
If the recursive resolver does support DSO but not Push Notification subscriptions, then it will return the DSO error code, DSOTYPENI (11).
In some cases, the recursive resolver may support DSO and Push Notification subscriptions, but may not be able to subscribe for Push Notifications for a particular name. In this case, the recursive resolver should return an informative error code to the client so that the client can make an informed decision how to handle the error. If the recursive resolver is unable to establish a connection to the zone's DNS Push Notification server (perhaps because the required SRV record does not exist) the recursive resolver should return SERVFAIL. If the recursive resolver is able to establish a connection to the zone's DNS Push Notification server and some other error code is then received, the recursive resolver should pass on this received error code back to the client. In some cases, where the client has a pre-established trust relationship with the owner of the zone (that is not handled via the usual mechanisms for VPN software) the client may handle these failures by contacting the zone's DNS Push server directly.
In any of the cases described above where the client fails to establish a DNS Push Notification subscription via its configured recursive resolver, the client should proceed to discover the appropriate server for direct communication. The client MUST also determine which TCP port on the server is listening for connections, which need not be (and often is not) the typical TCP port 53 used for conventional DNS, or TCP port 853 used for DNS over TLS.
The discovery algorithm described here is an iterative algorithm, which starts with the full name of the record to which the client wishes to subscribe. Successive SOA queries are then issued, trimming one label each time, until the closest enclosing authoritative server is discovered. There is also an optimization to enable the client to take a "short cut" directly to the SOA record of the closest enclosing authoritative server in many cases.
1. The client begins the discovery by sending a DNS query to its local resolver, with record type SOA [RFC1035] for the record name to which it wishes to subscribe. As an example, suppose the client wishes to subscribe to PTR records with the name _ipp._tcp.foo.example.com (to discover Internet Printing Protocol (IPP) printers [RFC8010] [RFC8011] being advertised at "foo.example.com"). The client begins by sending an SOA query for _ipp._tcp.foo.example.com to the local recursive resolver. The goal is to determine the server authoritative for the name _ipp._tcp.foo.example.com. The closest enclosing DNS zone containing the name _ipp._tcp.foo.example.com could be example.com, or foo.example.com, or _tcp.foo.example.com, or even _ipp._tcp.foo.example.com. The client does not know in advance where the closest enclosing zone cut occurs, which is why it uses the iterative procedure described here to discover this information.
3. If the requested SOA record does not exist, the client will get back a NOERROR/NODATA response or an NXDOMAIN/Name Error
4. If the client receives a response containing no SOA record, then it proceeds with the iterative approach. The client strips the leading label from the current query name and if the resulting name has at least one label in it, the client sends an SOA query for that new name, and processing continues at step 2 above, repeating the iterative search until either an SOA is received, or the query name consists of a single label, i.e., a Top Level Domain (TLD). In the case of a single-label TLD, this is a network configuration error which should not happen and the client gives up. The client may retry the operation at a later time, of the client's choosing, such after a change in network attachment.
5. Once the SOA is known (either by virtue of being seen in the Answer Section, or in the Authority Section), the client sends a DNS query with type SRV [RFC2782] for the record name "_dns-push-tls._tcp.<zone>", where <zone> is the owner name of the discovered SOA record.
6. If the zone in question is set up to offer DNS Push Notifications then this SRV record MUST exist. (If this SRV record does not exist then the zone is not correctly configured for DNS Push Notifications as specified in this document.) The SRV "target" contains the name of the server providing DNS Push Notifications for the zone. The port number on which to contact the server is in the SRV record "port" field. The address(es) of the target host MAY be included in the Additional Section, however, the address records SHOULD be authenticated before use as described below in Section 7.2 and in the specification for using DANE TLSA Records with SRV Records [RFC7673], if applicable.
7. More than one SRV record may be returned. In this case, the "priority" and "weight" values in the returned SRV records are used to determine the order in which to contact the servers for subscription requests. As described in the SRV specification [RFC2782], the server with the lowest "priority" is first contacted. If more than one server has the same "priority", the "weight" indicates the weighted probability that the client should contact that server. Higher weights have higher probabilities of being selected. If a server is not willing to accept a subscription request, or is not reachable within a reasonable time, as determined by the client, then a subsequent server is to be contacted.
Each time a client makes a new DNS Push Notification subscription session, it SHOULD repeat the discovery process in order to determine the preferred DNS server for subscriptions at that time. However, the client device MUST respect the DNS TTL values on records it receives, and store them in its local cache with this lifetime. This means that, as long as the DNS TTL values on the authoritative records were set to reasonable values, repeated application of this discovery process can be completed nearly instantaneously by the client, using only locally-stored cached data.
The entity that initiates a SUBSCRIBE request is by definition the client. A server MUST NOT send a SUBSCRIBE request over an existing session from a client. If a server does send a SUBSCRIBE request over a DSO session initiated by a client, this is a fatal error and the client should immediately abort the connection with a TCP RST (or equivalent for other protocols).
A SUBSCRIBE request begins with the standard DSO 12-byte header [RFC8490], followed by the SUBSCRIBE primary TLV. A SUBSCRIBE request message is illustrated in Figure 1.
The MESSAGE ID field MUST be set to a unique value, that the client is not using for any other active operation on this DSO session. For the purposes here, a MESSAGE ID is in use on this session if the client has used it in a request for which it has not yet received a response, or if the client has used it for a subscription which it has not yet cancelled using UNSUBSCRIBE. In the SUBSCRIBE response the server MUST echo back the MESSAGE ID value unchanged.
The other header fields MUST be set as described in the DSO spec- ification [RFC8490]. The DNS OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields MUST be zero, and the corresponding four sections MUST be empty (i.e., absent).
The DSO-TYPE is SUBSCRIBE (tentatively 0x40).
The DSO-LENGTH is the length of the DSO-DATA that follows, which specifies the name, type, and class of the record(s) being sought.
Figure 1: SUBSCRIBE Request
The DSO-DATA for a SUBSCRIBE request MUST contain exactly one NAME, TYPE, and CLASS. Since SUBSCRIBE requests are sent over TCP, multiple SUBSCRIBE DSO request messages can be concatenated in a single TCP stream and packed efficiently into TCP segments.
If accepted, the subscription will stay in effect until the client cancels the subscription using UNSUBSCRIBE or until the DSO session between the client and the server is closed.
SUBSCRIBE requests on a given session MUST be unique. A client MUST NOT send a SUBSCRIBE message that duplicates the NAME, TYPE and CLASS of an existing active subscription on that DSO session. For the purpose of this matching, the established DNS case-insensitivity for US-ASCII letters applies (e.g., "example.com" and "Example.com" are the same). If a server receives such a duplicate SUBSCRIBE message this is an error and the server MUST immediately terminate the connection with a TCP RST (or equivalent for other protocols).
DNS wildcarding is not supported. That is, a wildcard ("*") in a SUBSCRIBE message matches only a literal wildcard character ("*") in the zone, and nothing else.
Aliasing is not supported. That is, a CNAME in a SUBSCRIBE message matches only a literal CNAME record in the zone, and nothing else.
A client may SUBSCRIBE to records that are unknown to the server at the time of the request (providing that the name falls within one of the zone(s) the server is responsible for) and this is not an error. The server MUST NOT return NXDOMAIN in this case. The server MUST accept these requests and send Push Notifications if and when matching records are found in the future.
If neither TYPE nor CLASS are ANY (255) then this is a specific subscription to changes for the given NAME, TYPE and CLASS. If one or both of TYPE or CLASS are ANY (255) then this subscription matches any type and/or any class, as appropriate.
NOTE: A little-known quirk of DNS is that in DNS QUERY requests, QTYPE and QCLASS 255 mean "ANY" not "ALL". They indicate that the server should respond with ANY matching records of its choosing, not necessarily ALL matching records. This can lead to some surprising and unexpected results, where a query returns some valid answers but not all of them, and makes QTYPE=ANY queries less useful than people sometimes imagine.
When used in conjunction with SUBSCRIBE, TYPE and CLASS 255 should be interpreted to mean "ALL", not "ANY". After accepting a subscription where one or both of TYPE or CLASS are 255, the server MUST send Push Notification Updates for ALL record changes that match the subscription, not just some of them.
Each SUBSCRIBE request generates exactly one SUBSCRIBE response from the server.
A SUBSCRIBE response begins with the standard DSO 12-byte header [RFC8490], possibly followed by one or more optional TLVs, such as a Retry Delay TLV.
The MESSAGE ID field MUST echo the value given in the ID field of the SUBSCRIBE request. This is how the client knows which request is being responded to.
A SUBSCRIBE response message MUST NOT include a SUBSCRIBE TLV. If a client receives a SUBSCRIBE response message containing a SUBSCRIBE TLV then the response message is processed but the SUBSCRIBE TLV MUST be silently ignored.
In the SUBSCRIBE response the RCODE indicates whether or not the subscription was accepted. Supported RCODEs are as follows:
Table 1: SUBSCRIBE Response codes
This document specifies only these RCODE values for SUBSCRIBE Responses. Servers sending SUBSCRIBE Responses SHOULD use one of these values. Note that NXDOMAIN is not a valid RCODE in response to a SUBSCRIBE Request. However, future circumstances may create situations where other RCODE values are appropriate in SUBSCRIBE Responses, so clients MUST be prepared to accept SUBSCRIBE Responses with any other RCODE value.
If the server sends a nonzero RCODE in the SUBSCRIBE response, that means:
In any case, the client shouldn't retry the subscription to this server right away. If multiple SRV records were returned as described in Section 6.1, Paragraph 7, a subsequent server can be tried immediately.
If the client has other successful subscriptions to this server, these subscriptions remain even though additional subscriptions may be refused. Neither the client nor the server are required to close the connection, although, either end may choose to do so.
If the server sends a nonzero RCODE then it SHOULD append a Retry Delay TLV [RFC8490] to the response specifying a delay before the client attempts this operation again. Recommended values for the delay for different RCODE values are given below. These recommended values apply both to the default values a server should place in the Retry Delay TLV, and the default values a client should assume if the server provides no Retry Delay TLV.
For RCODE = 1 (FORMERR) the delay may be any value selected by the implementer. A value of five minutes is RECOMMENDED, to reduce the risk of high load from defective clients.
For RCODE = 2 (SERVFAIL) the delay should be chosen according to the level of server overload and the anticipated duration of that overload. By default, a value of one minute is RECOMMENDED. If a more serious server failure occurs, the delay may be longer in accordance with the specific problem encountered.
For RCODE = 4 (NOTIMP), which occurs on a server that doesn't implement DNS Stateful Operations [RFC8490], it is unlikely that the server will begin supporting DSO in the next few minutes, so the retry delay SHOULD be one hour. Note that in such a case, a server that doesn't implement DSO is unlikely to place a Retry Delay TLV in its response, so this recommended value in particular applies to what a client should assume by default.
For RCODE = 5 (REFUSED), which occurs on a server that implements DNS Push Notifications, but is currently configured to disallow DNS Push Notifications, the retry delay may be any value selected by the implementer and/or configured by the operator.
If the server being queried is listed in a "_dns-push-tls._tcp.<zone>" SRV record for the zone, then this is a misconfiguration, since this server is being advertised as supporting DNS Push Notifications for this zone, but the server itself is not currently configured to perform that task. Since it is possible that the misconfiguration may be repaired at any time, the retry delay should not be set too high. By default, a value of 5 minutes is RECOMMENDED.
For RCODE = 9 (NOTAUTH), which occurs on a server that implements DNS Push Notifications, but is not configured to be authoritative for the requested name, the retry delay may be any value selected by the implementer and/or configured by the operator.
If the server being queried is listed in a "_dns-push-tls._tcp.<zone>" SRV record for the zone, then this is a misconfiguration, since this server is being advertised as supporting DNS Push Notifications for this zone, but the server itself is not currently configured to perform that task. Since it is possible that the misconfiguration may be repaired at any time, the retry delay should not be set too high. By default, a value of 5 minutes is RECOMMENDED.
For RCODE = 11 (DSOTYPENI), which occurs on a server that implements DSO but doesn't implement DNS Push Notifications, it is unlikely that the server will begin supporting DNS Push Notifications in the next few minutes, so the retry delay SHOULD be one hour.
For other RCODE values, the retry delay should be set by the server as appropriate for that error condition. By default, a value of 5 minutes is RECOMMENDED.
For RCODE = 9 (NOTAUTH), the time delay applies to requests for other names falling within the same zone. Requests for names falling within other zones are not subject to the delay. For all other RCODEs the time delay applies to all subsequent requests to this server.
After sending an error response the server MAY allow the session to remain open, or MAY send a DNS Push Notification Retry Delay Operation TLV instructing the client to close the session, as described in the DSO specification [RFC8490]. Clients MUST correctly handle both cases.
Once a subscription has been successfully established, the server generates PUSH messages to send to the client as appropriate. In the case that the answer set was already non-empty at the moment the subscription was established, an initial PUSH message will be sent immediately following the SUBSCRIBE Response. Subsequent changes to the answer set are then communicated to the client in subsequent PUSH messages.
A PUSH unidirectional message begins with the standard DSO 12-byte header [RFC8490], followed by the PUSH primary TLV. A PUSH message is illustrated in Figure 2.
In accordance with the definition of DSO unidirectional messages, the MESSAGE ID field MUST be zero. There is no client response to a PUSH message.
The other header fields MUST be set as described in the DSO spec- ification [RFC8490]. The DNS OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields MUST be zero, and the corresponding four sections MUST be empty (i.e., absent).
The DSO-TYPE is PUSH (tentatively 0x41).
The DSO-LENGTH is the length of the DSO-DATA that follows, which specifies the changes being communicated.
The DSO-DATA contains one or more change notifications. A PUSH Message MUST contain at least one change notification. If a PUSH Message is received that contains no change notifications, this is a fatal error, and the receiver MUST immediately terminate the connection with a TCP RST (or equivalent for other protocols).
The change notification records are formatted similarly to how DNS Resource Records are conventionally expressed in DNS messages, as illustrated in Figure 2, and are interpreted as described below.
The TTL field holds an unsigned 32-bit integer [RFC2181]. If the TTL is in the range 0 to 2,147,483,647 seconds (2^31 - 1, or 0x7FFFFFFF), then a new DNS Resource Record with the given name, type, class and RDATA is added. A TTL of 0 means that this record should be retained for as long as the subscription is active, and should be discarded immediately the moment the subscription is cancelled.
If the TTL has the value 0xFFFFFFFF, then the DNS Resource Record with the given name, type, class and RDATA is removed.
If the TTL has the value 0xFFFFFFFE, then this is a 'collective' remove notification. For collective remove notifications RDLEN MUST be zero and consequently the RDATA MUST be empty. If a change notification is received where TTL = 0xFFFFFFFE and RDLEN is not zero, this is a fatal error, and the receiver MUST immediately terminate the connection with a TCP RST (or equivalent for other protocols). There are three types of collective remove notification:
For collective remove notifications, if CLASS is 255 (ANY), then for the given name this deletes all records of all types in all classes. In this case TYPE MUST be set to zero on transmission, and MUST be silently ignored on reception.
For collective remove notifications, if CLASS is not 255 (ANY) and TYPE is 255 (ANY) then for the given name this deletes all records of all types in the specified class.
For collective remove notifications, if CLASS is not 255 (ANY) and TYPE is not 255 (ANY) then for the given name this deletes all records of the specified type in the specified class.
Summary of change notification types:
Note that it is valid for the RDATA of an added or removed DNS Resource Record to be empty (zero length). For example, an Address Prefix List Resource Record [RFC3123] may have empty RDATA. Therefore, a change notification with RDLEN=0 does not automatically indicate a remove notification. If RDLEN=0 and TTL is the in the range 0 - 0x7FFFFFFF, this change notification signals the addition of a record with the given name, type, class, and empty RDATA. If RDLEN=0 and TTL = 0xFFFFFFFF, this change notification signals the removal specifically of that single record with the given name, type, class, and empty RDATA.
If the TTL is any value other than 0xFFFFFFFF, 0xFFFFFFFE, or a value in the range 0 - 0x7FFFFFFF, then the receiver SHOULD silently ignore this particular change notification record. The connection is not terminated and other valid change notification records within this PUSH message are processed as usual.
For efficiency, when generating a PUSH message, a server SHOULD include as many change notifications as it has immediately available to send, rather than sending each change notification as a separate DSO message. Once it has exhausted the list of change notifications immediately available to send, a server SHOULD then send the PUSH message immediately, rather than waiting to see if additional change notifications become available.
For efficiency, when generating a PUSH message, a server SHOULD use standard DNS name compression, with offsets relative to the beginning of the DNS message [RFC1035]. When multiple change notifications in a single PUSH message have the same owner name, this name compression can yield significant savings. Name compression should be performed as specified in Section 18.14 of the Multicast DNS specification [RFC6762], namely, owner names should always be compressed, and names appearing within RDATA should be compressed for only the RR types listed below:
NS, CNAME, PTR, DNAME, SOA, MX, AFSDB, RT, KX, RP, PX, SRV, NSEC
Servers may generate PUSH messages up to a maximum DNS message length of 16,382 bytes, counting from the start of the DSO 12-byte header. Including the two-byte length prefix that is used to frame DNS over a byte stream like TLS, this makes a total of 16,384 bytes. Servers MUST NOT generate PUSH messages larger than this. Where the immediately available change notifications are sufficient to exceed a DNS message length of 16,382 bytes, the change notifications MUST be communicated in separate PUSH messages of up to 16,382 bytes each. DNS name compression becomes less effective for messages larger than 16,384 bytes, so little efficiency benefit is gained by sending messages larger than this.
If a client receives a PUSH message with a DNS message length larger than 16,382 bytes, the this is a fatal error, and the receiver MUST immediately terminate the connection with a TCP RST (or equivalent for other protocols).
Figure 2: PUSH Message
When processing the records received in a PUSH Message, the receiving client MUST validate that the records being added or deleted correspond with at least one currently active subscription on that session. Specifically, the record name MUST match the name given in a SUBSCRIBE request, subject to the usual established DNS case- insensitivity for US-ASCII letters. If the TYPE in the SUBSCRIBE request was not ANY (255) then the TYPE of the record must match the TYPE given in the SUBSCRIBE request. If the CLASS in the SUBSCRIBE request was not ANY (255) then the CLASS of the record must match the CLASS given in the SUBSCRIBE request. If a matching active subscription on that session is not found, then that individual record addition/deletion is silently ignored. Processing of other additions and deletions in this message is not affected. The DSO session is not closed. This is to allow for the unavoidable race condition where a client sends an outbound UNSUBSCRIBE while inbound PUSH messages for that subscription from the server are still in flight.
In the case where a single change affects more than one active subscription, only one PUSH message is sent. For example, a PUSH message adding a given record may match both a SUBSCRIBE request with the same TYPE and a different SUBSCRIBE request with TYPE=ANY (255). It is not the case that two PUSH messages are sent because the new record matches two active subscriptions.
The server SHOULD encode change notifications in the most efficient manner possible. For example, when three AAAA records are deleted from a given name, and no other AAAA records exist for that name, the server SHOULD send a "delete an RRset from a name" PUSH message, not three separate "delete an individual RR from a name" PUSH messages. Similarly, when both an SRV and a TXT record are deleted from a given name, and no other records of any kind exist for that name, the server SHOULD send a "delete all RRsets from a name" PUSH message, not two separate "delete an RRset from a name" PUSH messages.
A server SHOULD combine multiple change notifications in a single PUSH message when possible, even if those change notifications apply to different subscriptions. Conceptually, a PUSH message is a session-level mechanism, not a subscription-level mechanism.
The TTL of an added record is stored by the client. While the subscription is active, the TTL is not decremented, because a change to the TTL would produce a new update. For as long as a relevant subscription remains active, the client SHOULD assume that when a record goes away the server will notify it of that fact. Consequently, a client does not have to poll to verify that the record is still there. Once a subscription is cancelled (individually, or as a result of the DSO session being closed) record aging for records covered by the subscription resumes and records are removed from the local cache when their TTL reaches zero.
To cancel an individual subscription without closing the entire DSO session, the client sends an UNSUBSCRIBE message over the established DSO session to the server. The UNSUBSCRIBE message is encoded as a DSO unidirectional message [RFC8490]. This specification defines a primary unidirectional DSO TLV for DNS Push Notification UNSUBSCRIBE Messages (tentatively DSO Type Code 0x42).
A server MUST NOT initiate an UNSUBSCRIBE message. If a server does send an UNSUBSCRIBE message over a DSO session initiated by a client, this is a fatal error and the client should immediately abort the connection with a TCP RST (or equivalent for other protocols).
An UNSUBSCRIBE unidirectional message begins with the standard DSO 12-byte header [RFC8490], followed by the UNSUBSCRIBE primary TLV. An UNSUBSCRIBE message is illustrated in Figure 3.
In accordance with the definition of DSO unidirectional messages, the MESSAGE ID field MUST be zero. There is no server response to an UNSUBSCRIBE message.
The other header fields MUST be set as described in the DSO spec- ification [RFC8490]. The DNS OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields MUST be zero, and the corresponding four sections MUST be empty (i.e., absent).
The DSO-TYPE is UNSUBSCRIBE (tentatively 0x42).
The DSO-LENGTH field contains the value 2, the length of the 2-octet MESSAGE ID contained in the DSO-DATA.
The DSO-DATA contains the value given in the MESSAGE ID field of an active SUBSCRIBE request. This is how the server knows which SUBSCRIBE request is being cancelled. After receipt of the UNSUBSCRIBE message, the SUBSCRIBE request is no longer active.
It is allowable for the client to issue an UNSUBSCRIBE message for a previous SUBSCRIBE request for which the client has not yet received a SUBSCRIBE response. This is to allow for the case where a client starts and stops a subscription in less than the round-trip time to the server. The client is NOT required to wait for the SUBSCRIBE response before issuing the UNSUBSCRIBE message.
Consequently, it is possible for a server to receive an UNSUBSCRIBE message that does not match any currently active subscription. This can occur when a client sends a SUBSCRIBE request, which subsequently fails and returns an error code, but the client sent an UNSUBSCRIBE message before it became aware that the SUBSCRIBE request had failed. Because of this, servers MUST silently ignore UNSUBSCRIBE messages that do not match any currently active subscription.
Figure 3: UNSUBSCRIBE Message
Sometimes, particularly when used with a Discovery Proxy [DisProx], a DNS Zone may contain stale data. When a client encounters data that it believes may be stale (e.g., an SRV record referencing a target host+port that is not responding to connection requests) the client can send a RECONFIRM message to ask the server to re-verify that the data is still valid. For a Discovery Proxy, this causes it to issue new Multicast DNS queries to ascertain whether the target device is still present. How the Discovery Proxy causes these new Multicast DNS queries to be issued depends on the details of the underlying Multicast DNS implementation being used. For example, a Discovery Proxy built on Apple's dns_sd.h API responds to a DNS Push Notification RECONFIRM message by calling the underlying API's DNSServiceReconfirmRecord() routine.
For other types of DNS server, the RECONFIRM operation is currently undefined, and SHOULD result in a NOERROR response, but otherwise need not cause any action to occur.
Frequent use of RECONFIRM operations may be a sign of network unreliability, or some kind of misconfiguration, so RECONFIRM operations MAY be logged or otherwise communicated to a human administrator to assist in detecting, and remedying, such network problems.
If, after receiving a valid RECONFIRM message, the server determines that the disputed records are in fact no longer valid, then subsequent DNS PUSH Messages will be generated to inform interested clients. Thus, one client discovering that a previously-advertised device (like a network printer) is no longer present has the side effect of informing all other interested clients that the device in question is now gone.
In accordance with the definition of DSO unidirectional messages, the MESSAGE ID field MUST be zero. There is no server response to a RECONFIRM message.
The other header fields MUST be set as described in the DSO spec- ification [RFC8490]. The DNS OPCODE field contains the OPCODE value for DNS Stateful Operations (6). The four count fields MUST be zero, and the corresponding four sections MUST be empty (i.e., absent).
The DSO-TYPE is RECONFIRM (tentatively 0x43).
The DSO-LENGTH is the length of the data that follows, which specifies the name, type, class, and content of the record being disputed.
Figure 4: RECONFIRM Message
The DSO-DATA for a RECONFIRM message MUST contain exactly one record. The DSO-DATA for a RECONFIRM message has no count field to specify more than one record. Since RECONFIRM messages are sent over TCP, multiple RECONFIRM messages can be concatenated in a single TCP stream and packed efficiently into TCP segments.
TYPE MUST NOT be the value ANY (255) and CLASS MUST NOT be the value ANY (255).
DNS wildcarding is not supported. That is, a wildcard ("*") in a RECONFIRM message matches only a literal wildcard character ("*") in the zone, and nothing else.
Aliasing is not supported. That is, a CNAME in a RECONFIRM message matches only a literal CNAME record in the zone, and nothing else.
This document defines four new DSO TLVs. As suggested in Section 8.2 of the DNS Stateful Operations specification [RFC8490], the valid contexts of these new TLV types are summarized below.
The client TLV contexts are:
Table 2: DSO TLV Client Context Summary
The server TLV contexts are:
Table 3: DSO TLV Server Context Summary
An individual subscription is terminated by sending an UNSUBSCRIBE TLV for that specific subscription, or all subscriptions can be cancelled at once by the client closing the DSO session. When a client terminates an individual subscription (via UNSUBSCRIBE) or all subscriptions on that DSO session (by ending the session) it is signaling to the server that it is longer interested in receiving those particular updates. It is informing the server that the server may release any state information it has been keeping with regards to these particular subscriptions.
After terminating its last subscription on a session via UNSUBSCRIBE, a client MAY close the session immediately, or it may keep it open if it anticipates performing further operations on that session in the future. If a client wishes to keep an idle session open, it MUST respect the maximum idle time required by the server [RFC8490].
If a client plans to terminate one or more subscriptions on a session and doesn't intend to keep that session open, then as an efficiency optimization it MAY instead choose to simply close the session, which implicitly terminates all subscriptions on that session. This may occur because the client computer is being shut down, is going to sleep, the application requiring the subscriptions has terminated, or simply because the last active subscription on that session has been cancelled.
When closing a session, a client will generally do an abortive disconnect, sending a TCP RST. This immediately discards all remaining inbound and outbound data, which is appropriate if the client no longer has any interest in this data. In the BSD Sockets API, sending a TCP RST is achieved by setting the SO_LINGER option with a time of 0 seconds and then closing the socket.
If a client has performed operations on this session that it would not want lost (like DNS updates) then the client SHOULD do an orderly disconnect, sending a TLS close_notify followed by a TCP FIN. (In the BSD Sockets API, sending a TCP FIN is achieved by calling "shutdown(s,SHUT_WR)" and keeping the socket open until all remaining data has been read from it.)
The Strict Privacy Usage Profile for DNS over TLS is REQUIRED for DNS Push Notifications [RFC8310]. Cleartext connections for DNS Push Notifications are not permissible. Since this is a new protocol, transition mechanisms from the Opportunistic Privacy profile are unnecessary.
Also, see Section 9 of the DNS over (D)TLS Usage Profiles document [RFC8310] for additional recommendations for various versions of TLS usage.
DNSSEC is RECOMMENDED for the authentication of DNS Push Notification servers. TLS alone does not provide complete security. TLS certificate verification can provide reasonable assurance that the client is really talking to the server associated with the desired host name, but since the desired host name is learned via a DNS SRV query, if the SRV query is subverted then the client may have a secure connection to a rogue server. DNSSEC can provided added confidence that the SRV query has not been subverted.
It is the goal of using TLS to provide the following security services:
Deployment recommendations on the appropriate key lengths and cypher suites are beyond the scope of this document. Please refer to TLS Recommendations [RFC7525] for the best current practices. Keep in mind that best practices only exist for a snapshot in time and recommendations will continue to change. Updated versions or errata may exist for these recommendations.
As described in Section 6.1, the client discovers the DNS Push Notification server using an SRV lookup for the record name "_dns-push-tls._tcp.<zone>". The server connection endpoint SHOULD then be authenticated using DANE TLSA records for the associated SRV record. This associates the target's name and port number with a trusted TLS certificate [RFC7673]. This procedure uses the TLS Server Name Indication (SNI) extension [RFC6066] to inform the server of the name the client has authenticated through the use of TLSA records. Therefore, if the SRV record passes DNSSEC validation and a TLSA record matching the target name is useable, an SNI extension must be used for the target name to ensure the client is connecting to the server it has authenticated. If the target name does not have a usable TLSA record, then the use of the SNI extension is optional. See Usage Profiles for DNS over TLS and DNS over DTLS [RFC8310] for more information on authenticating domain names.
TLS Session Resumption is permissible on DNS Push Notification servers. The server may keep TLS state with Session IDs [RFC8446] or operate in stateless mode by sending a Session Ticket [RFC5077] to the client for it to store. However, closing the TLS connection terminates the DSO session. When the TLS session is resumed, the DNS Push Notification server will not have any subscription state and will proceed as with any other new DSO session. Use of TLS Session Resumption may allow a TLS connection to be set up more quickly, but the client will still have to recreate any desired subscriptions.
This document defines a new service name to be published in the IANA Registry Service Types [RFC6335][ST] that is only applicable for the TCP protocol.
Table 4: IANA Service Type Assignments
This document also defines four new DNS Stateful Operation TLV types to be recorded in the IANA DSO Type Code Registry.
Table 5: IANA DSO TLV Type Code Assignments
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DNS-Based Service Discovery [RFC6763] is a component of Zero Configuration Networking [RFC6760] [ZC] [I-D.cheshire-dnssd-roadmap].
This document describes an enhancement to DNS-Based Service Discovery [RFC6763] that allows services to automatically register their services using the DNS protocol rather than using Multicast DNS [RFC6762] (mDNS). There is already a large installed base of DNS-SD clients that can discover services using the DNS protocol. This extension makes it much easier to take advantage of this existing functionality.
This document is intended for three audiences: implementors of software that provides services that should be advertised using DNS-SD, implementors of DNS servers that will be used in contexts where DNS-SD registration is needed, and administrators of networks where DNS-SD service is required. The document is intended to provide sufficient information to allow interoperable implementation of the registration protocol.
DNS-Based Service Discovery (DNS-SD) allows services to advertise the fact that they provide service, and to provide the information required to access that service. Clients can then discover the set of services of a particular type that are available. They can then select a service from among those that are available and obtain the information required to use it.
The Service Registration Protocol for DNS-SD (SRP), described in this document, provides a reasonably secure mechanism for publishing this information. Once published, these services can be readily discovered by clients using standard DNS lookups.
The DNS-SD specification [RFC6763], Section 10 ("Populating the DNS with Information"), briefly discusses ways that services can publish their information in the DNS namespace. In the case of mDNS, it allows services to publish their information on the local link, using names in the ".local" namespace, which makes their services directly discoverable by peers attached to that same local link.
RFC6763 also allows clients to discover services using the DNS protocol [RFC1035]. This can be done by having a system administrator manually configure service information in the DNS, but manually populating DNS authoritative server databases is costly and potentially error-prone, and requires a knowledgable network administrator. Consequently, although all DNS-SD client implementations of which we are aware support DNS-SD using DNS queries, in practice it is used much less frequently than mDNS.
The Discovery Proxy [I-D.ietf-dnssd-hybrid] provides one way to automatically populate the DNS namespace, but is only appropriate on networks where services are easily advertised using mDNS. This document describes a solution more suitable for networks where multicast is inefficient, or where sleepy devices are common, by supporting both offering of services, and discovery of services, using unicast.
Services that implement SRP use DNS Update [RFC2136] [RFC3007] to publish service information in the DNS. Two variants exist, one for full-featured hosts, and one for devices designed for "Constrained- Node Networks" [RFC7228].
Full-featured hosts are either configured manually with a registration domain, or use the "dr._dns-sd._udp.<domain>" query ([RFC6763] Section 11) to learn the default registration domain from the network. RFC6763 says to discover the registration domain using either ".local" or a network-supplied domain name for <domain>. Services using SRP MUST use the domain name received through the DHCPv4 Domain Name option ([RFC2132] section 3.17), if available, or the Neighbor Discovery DNS Search List option [RFC8106]. If the DNS Search List option contains more than one domain name, it MUST NOT be used. If neither option is available, the Service Registration protocol is not available on the local network.
Manual configuration of the registraton domain can be done either by querying the list of available registration zones ("r._dns-sd._udp") and allowing the user to select one from the UI, or by any other means appropriate to the particular use case being addressed. Full- featured devices construct the names of the SRV, TXT, and PTR records describing their service(s) as subdomains of the chosen service registration domain. For these names they then discover the zone apex of the closest enclosing DNS zone using SOA queries [I-D.ietf-dnssd-push]. Having discovered the enclosing DNS zone, they query for the "_dnssd-srp._tcp<zone>" SRV record to discover the server to which they should send DNS updates.
For devices designed for Constrained-Node Networks [RFC7228] some simplifications are available. Instead of being configured with (or discovering) the service registration domain, the (proposed) special- use domain name [RFC6761] "default.services.arpa" is used. Instead of learning the server to which they should send DNS updates, a fixed IPv6 anycast address is used (value TBD). Anycasts are sent using UDP unless TCP is required due to the size of the update. It is the responsibility of a Constrained-Node Network supporting SRP to provide appropriate anycast routing to deliver the DNS updates to the appropriate server. It is the responsibility of the SRP server supporting a Constrained-Node Network to handle the updates appropriately. In some network environments, updates may be accepted directly into a local "default.services.arpa" zone, which has only local visibility. In other network environments, updates for names ending in "default.services.arpa" may be rewritten internally to names with broader visibility.
The reason for these different assumptions is that Constrained-Node Networks generally require special egress support, and Anycast packets captured at the Constrained-Node Network egress can be assumed to have originated locally. Low-power devices that typically use Constrained-Node Networks may have very limited battery power. The additional DNS lookups required to discover an SRP server and then communicate with it will increase the power required to advertise a service; for low-power devices, the additional flexibility this provides does not justify the additional use of power.
General networks have the potential to have more complicated topologies at the Internet layer, which makes anycast routing more difficult. Such networks may or may not have the infrastructure required to route anycast to a server that can process it. However, they can be assumed to be able to provide registration domain discovery and routing. By requiring the use of TCP, the possibility of off-network spoofing is eliminated.
We will discuss several parts to this process: how to know what to publish, how to know where to publish it (under what name), how to publish it, how to secure its publication, and how to maintain the information once published.
We refer to the DNS Update message sent by services using SRP as an SRP update. Three types of updates appear in an SRP update: Service Discovery records, Service Description records, and Host Description records.
o Service Discovery records are one or more PTR RRs, mapping from the generic service type (or subtype) to the specific Service Instance Name.
o Service Description records are exactly one SRV RR, exactly one KEY RR, and one or more TXT RRs, both with the same name, the Service Instance Name ([RFC6763] section 4.1). In principle Service Description records can include other record types, with the same Service Instance Name, though in practice they rarely do.
The Service Instance Name MUST be referenced by one or more Service Discovery PTR records, unless it is a placeholder service registration for an intentionally non-discoverable service name.
o The Host Description records for a service are a KEY RR, used to claim exclusive ownership of the service registration, and one or more RRs of type A or AAAA, giving the IPv4 or IPv6 address(es) of the host where the service resides.
RFC 6763 describes the details of what each of these types of updates contains and is the definitive source for information about what to publish; the reason for summarizing this here is to provide the reader with enough information about what will be published that the service registration process can be understood at a high level without first learning the full details of DNS-SD. Also, the "Service Instance Name" is an important aspect of first-come, first- serve naming, which we describe later on in this document.
Multicast DNS uses a single namespace, ".local", which is valid on the local link. This convenience is not available for DNS-SD using the DNS protocol: services must exist in some specific unicast namespace.
As described above, full-featured devices are responsible for knowing in what domain they should register their services. Devices made for Constrained-Node Networks register in the (proposed) special use domain name [RFC6761] "default.services.arpa", and let the SRP server handle rewriting that to a different domain if necessary.
It is possible to issue a DNS Update that does several things at once; this means that it's possible to do all the work of adding a PTR resource record to the PTR RRset on the Service Name if it already exists, or creating one if it doesn't, and creating or updating the Service Instance Name and Host Description in a single transaction.
An SRP update is therefore implemented as a single DNS Update message that contains a service's Service Discovery records, Service Description records, and Host Description records.
Updates done according to this specification are somewhat different than regular DNS Updates as defined in RFC2136. RFC2136 uses a fairly heavyweight process for updating: you might first attempt to add a name if it doesn't exist; if that fails, then in a second message you might update the name if it does exist but matches certain preconditions. Because the registration protocol uses a single transaction, some of this adaptability is lost.
In order to allow updates to happen in a single transaction, SRP updates do not include update constraints. The constraints specified in Section 2.4.2 are implicit in the processing of SRP updates, and so there is no need for the service sending the SRP update to put in any explicit constraints.
2.3.1. How DNS-SD Service Registration differs from standard RFC2136 DNS Update
DNS-SD Service Registration is based on standard RFC2136 DNS Update, with some differences:
o It implements first-come first-served name allocation, protected using SIG(0) [RFC2931].
o It enforces policy about what updates are allowed.
o It optionally performs rewriting of "default.services.arpa" to some other domain.
o It optionally performs automatic population of the address-to-name reverse mapping domains.
o An SRP server is not required to implement general DNS Update prerequsite processing.
o Simplified clients are allowed to send updates to an anycast address, for names ending in "default.services.arpa"
It may be useful to set up a DNS server for testing that does not implement SRP. This can be done by configuring the server to listen on the anycast address, or advertising it in the _dnssd-srp._tcp.<zone> SRV record. It must be configured to be authoritative for "default.services.arpa", and to accept updates from hosts on local networks for names under "default.services.arpa" without authentication, since such servers will not have support for FCFS authentication Section 2.4.1.
A server configured in this way will be able to successfully accept and process SRP updates from services that send SRP updates. However, no constraints will be applied, and this means that the test server will accept internally inconsistent SRP updates, and will not stop two SRP updates, sent by different services, that claim the same name(s), from overwriting each other.
Since SRP updates are signed with keys, validation of the SIG(0) algorithm used by the client can be done by manually installing the client public key on the DNS server that will be receiving the updates. The key can then be used to authenticate the client, and can be used as a requirement for the update. An example configuration for testing SRP using BIND 9 is given in Appendix A.
2.3.3. How to allow services to update standard RFC2136-compliant servers
Ordinarily SRP updates will fail when sent to an RFC 2136-compliant server that does not implement SRP because the zone being updated is "default.services.arpa", and no DNS server that is not an SRP server should normally be configured to be authoritative for "default.services.arpa". Therefore, a service that sends an SRP update can tell that the receiving server does not support SRP, but does support RFC2136, because the RCODE will either be NOTZONE, NOTAUTH or REFUSED, or because there is no response to the update request (when using the anycast address)
In this case a service MAY attempt to register itself using regular RFC2136 DNS updates. To do so, it must discover the default registration zone and the DNS server designated to receive updates for that zone, as described earlier using the _dns-update._udp SRV record. It can then make the update using the port and host pointed to by the SRV record, and should use appropriate constraints to avoid overwriting competing records. Such updates are out of scope for SRP, and a service that implements SRP MUST first attempt to use SRP to register itself, and should only attempt to use RFC2136 backwards compatibility if that fails. Although the owner name for the SRV record specifies the UDP protocol for updates, it is also possible to use TCP, when the update is too large.
Traditional DNS update is secured using the TSIG protocol, which uses a secret key shared between the client (which issues the update) and the server (which authenticates it). This model does not work for automatic service registration.
The goal of securing the DNS-SD Registration Protocol is to provide the best possible security given the constraint that service registration has to be automatic. It is possible to layer more operational security on top of what we describe here, but what we describe here improves upon the security of mDNS. The goal is not to provide the level of security of a network managed by a skilled operator.
First-Come First-Serve naming provides a limited degree of security: a service that registers its service using DNS-SD Registration protocol is given ownership of a name for an extended period of time based on the key used to authenticate the DNS Update. As long as the registration service remembers the name and the key used to register that name, no other service can add or update the information associated with that. FCFS naming is used to protect both the Service Description and the Host Description.
The service generates a public/private key pair. This key pair MUST be stored in stable storage; if there is no writable stable storage on the client, the client MUST be pre-configured with a public/ private key pair in read-only storage that can be used. This key pair MUST be unique to the device.
When sending DNS updates, the service includes a KEY record containing the public portion of the key in each Host Description update and each Service Description update. Each KEY record MUST contain the same public key. The update is signed using SIG(0), using the private key that corresponds to the public key in the KEY record. The lifetimes of the records in the update is set using the EDNS(0) Update Lease option [I-D.sekar-dns-ul].
The KEY record in service description updates MAY be omitted for brevity; if it is omitted, the SRP server MUST behave as if the same KEY record that is given for the Host Description is also given for each Service Description for which no KEY record is provided. Omitted KEY records are not used when computing the SIG(0) signature.
The lifetime of the DNS-SD PTR, SRV, A, AAAA and TXT records [RFC6763] uses the LEASE field of the Update Lease option, and is typically set to two hours. This means that if a device is disconnected from the network, it does not appear in the user interfaces of devices looking for services of that type for too long.
The lifetime of the KEY records is set using the KEY-LEASE field of the Update Lease Option, and should be set to a much longer time, typically 14 days. The result of this is that even though a device may be temporarily unplugged, disappearing from the network for a few days, it makes a claim on its name that lasts much longer.
This means that even if a device is unplugged from the network for a few days, and its services are not available for that time, no other rogue device can come along and immediately claim its name the moment it disappears from the network. In the event that a device is unplugged from the network and permanently discarded, then its name is eventually cleaned up and made available for re-use.
The SRP server first validates that the SRP update is a syntactically and semantically valid DNS Update according to the rules specified in RFC2136.
The SRP server checks each update in the SRP update to see that it contains a Service Discovery update, a Service Description update, and a Host Description update. Order matters in DNS updates. Specifically, deletes must precede adds for records that the deletes would affect; otherwise the add will have no effect. This is the only ordering constraint; aside from this constraint, updates may appear in whatever order is convenient when constructing the update.
An update is a Service Discovery update if it contains
An update is a Service Description update if, for the appropriate Service Instance Name, it contains
An update is a Host Description update if, for the appropriate hostname, it contains
o exactly one "Delete all RRsets from a name" update,
An SRP update MUST include at least one Service Discovery update, at least one Service Description update, and exactly one Host Description update. An update message that does not is not an SRP update. An update message that contains any other updates, or any update constraints, is not an SRP update. Such messages should either be processed as regular RFC2136 updates, including access control checks and constraint checks, if supported, or else rejected with RCODE=REFUSED.
Note that if the definitions of each of these update types are followed carefully, this means that many things that look very much like SRP updates nevertheless are not. For example, a DNS update that contains an update to a Service Name and an update to a Service Instance Name, where the Service Name does not reference the Service Instance Name, is not a valid SRP update message, but may be a valid RFC2136 update.
Assuming that an update message has been validated with these conditions and is a valid SRP update, the server checks that the name in the Host Description update exists. If so, then the server checks to see if the KEY record on the name is the same as the KEY record in the update. The server performs the same check for the KEY records in any Service Description update. For KEY records that were omitted, the KEY from the Host Description update is used. If any existing KEY record corresponding to a KEY record in the SRP update does not match the KEY record in the SRP update, then the server MUST reject the SRP update with the YXDOMAIN RCODE.
Otherwise, the server validates the SRP update using SIG(0) on the public key in the KEY record of the Host Description update. If the validation fails, the server MUST reject the SRP Update with the REFUSED RCODE. Otherwise, the SRP update is considered valid and authentic, and is processed according to the method described in RFC2136.
KEY record updates omitted from Service Description update are processed as if they had been explicitly present: every Service Description that is updated MUST, after the update, have a KEY RR, and it must be the same KEY RR that is present in the Host Description to which the Service Description refers.
The status that is returned depends on the result of processing the update, and can be either SUCCESS or SERVFAIL: all other possible outcomes should already have been accounted for when applying the constraints.
The server MAY add a Reverse Mapping that corresponds to the Host Description. This is not required because the Reverse Mapping serves no protocol function, but it may be useful for debugging, e.g. in annotating network packet traces or logs.
The server MAY apply additional criteria when accepting updates. In some networks, it may be possible to do out-of-band registration of keys, and only accept updates from pre-registered keys. In this case, an update for a key that has not been registered should be rejected with the REFUSED RCODE.
There are at least two benefits to doing this rather than simply using normal SIG(0) DNS updates. First, the same registration protocol can be used in both cases, so both use cases can be addressed by the same service implementation. Second, the registration protocol includes maintenance functionality not present with normal DNS updates.
Note that the semantics of using SRP in this way are different than for typical RFC2136 implementations: the KEY used to sign the SRP update only allows the client to update records that refer to its Host Description. RFC2136 implementations do not normally provide a way to enforce a constraint of this type.
The server may also have a dictionary of names or name patterns that are not permitted. If such a list is used, updates for Service Instance Names that match entries in the dictionary are rejected with YXDOMAIN.
All RRs within an RRset are required to have the same TTL (Clarifications to the DNS Specification [RFC2181], Section 5.2). In order to avoid inconsistencies, SRP places restrictions on TTLs sent by services and requires that SRP Servers enforce consistency.
Services sending SRP updates MUST use consistent TTLs in all RRs within the SRP update.
SRP update servers MUST check that the TTLs for all RRs within the SRP update are the same. If they are not, the SRP update MUST be rejected with a REFUSED RCODE.
Additionally, when adding RRs to an RRset, for example when processing Service Discovery records, the server MUST use the same TTL on all RRs in the RRset. How this consistency is enforced is up to the implementation.
TTLs sent in SRP updates are advisory: they indicate the client's guess as to what a good TTL would be. SRP servers may override these TTLs. SRP servers SHOULD ensure that TTLs are reasonable: neither too long nor too short. The TTL should never be longer than the lease time Section 2.6.1. Shorter TTLs will result in more frequent data refreshes; this increases latency on the client side, and increases load on any caching resolvers and on the authoritative server. Longer TTLs will increase the likelihood that data in caches will be stale. TTL minimums and maximums SHOULD be configurable by the operator of the SRP server.
Because the DNS-SD registration protocol is automatic, and not managed by humans, some additional bookkeeping is required. When an update is constructed by the client, it MUST include include an EDNS(0) Update Lease Option [I-D.sekar-dns-ul]. The Update Lease Option contains two lease times: the Lease Time and the Key Lease Time.
These leases are promises, similar to DHCP leases [RFC2131], from the client that it will send a new update for the service registration before the lease time expires. The Lease time is chosen to represent the time after the update during which the registered records other than the KEY record should be assumed to be valid. The Key Lease time represents the time after the update during which the KEY record should be assumed to be valid.
The reasoning behind the different lease times is discussed in the section on first-come, first-served naming Section 2.4.1. SRP servers may be configured with limits for these values. A default limit of two hours for the Lease and 14 days for the SIG(0) KEY are currently thought to be good choices. Clients that are going to continue to use names on which they hold leases should update well before the lease ends, in case the registration service is unavailable or under heavy load.
The SRP server MUST include an EDNS(0) Update Lease option in the response if the lease time proposed by the service has been shortened or lengthened. The service MUST check for the EDNS(0) Update Lease option in the response and MUST use the lease times from that option in place of the options that it sent to the server when deciding when to update its registration. The times may be shorter or longer than those specified in the SRP update; the client must honor them in either case.
Clients should assume that each lease ends N seconds after the update was first transmitted, where N is the lease duration. Servers should assume that each lease ends N seconds after the update that was successfully processed was received. Because the server will always receive the update after the client sent it, this avoids the possibility of misunderstandings.
SRP servers MUST reject updates that do not include an EDNS(0) Update Lease option. Dual-use servers MAY accept updates that don't include leases, but SHOULD differentiate between SRP updates and other updates, and MUST reject updates that would otherwise be SRP updates updates if they do not include leases.
Lease times have a completely different function than TTLs. On an authoritative DNS server, the TTL on a resource record is a constant: whenever that RR is served in a DNS response, the TTL value sent in the answer is the same. The lease time is never sent as a TTL; its sole purpose is to determine when the authoritative DNS server will delete stale records. It is not an error to send a DNS response with a TTL of 'n' when the remaining time on the lease is less than 'n'.
Another use of SRP is for devices that sleep to reduce power consumption.
In this case, in addition to the DNS Update Lease option [I-D.sekar-dns-ul] described above, the device includes an EDNS(0) OWNER Option [I-D.cheshire-edns0-owner-option].
The EDNS(0) Update Lease option constitutes a promise by the device that it will wake up before this time elapses, to renew its registration and thereby demonstrate that it is still attached to the network. If it fails to renew the registration by this time, that indicates that it is no longer attached to the network, and its registration (except for the KEY in the Host Description) should be deleted.
The EDNS(0) OWNER Option indicates that the device will be asleep, and will not be receptive to normal network traffic. When a DNS server receives a DNS Update with an EDNS(0) OWNER Option, that signifies that the SRP server should set up a proxy for any IPv4 or IPv6 address records in the DNS Update message. This proxy should send ARP or ND messages claiming ownership of the IPv4 and/or IPv6 addresses in the records in question. In addition, proxy should answer future ARP or ND requests for those IPv4 and/or IPv6 addresses, claiming ownership of them. When the DNS server receives a TCP SYN or UDP packet addressed to one of the IPv4 or IPv6 addresses for which it proxying, it should then wake up the sleeping device using the information in the EDNS(0) OWNER Option. At present version 0 of the OWNER Option specifies the "Wake-on-LAN Magic Packet" that needs to be sent; future versions could be extended to specify other wakeup mechanisms.
Note that although the authoritative DNS server that implements the SRP function need not be on the same link as the sleeping host, the Sleep Proxy must be on the same link.
It is not required that sleepy nodes on a Constrained-Node Network support sleep proxy. Such devices may have different mechanisms for dealing with sleep and wakeup. An SRP registration for such a device will be useful regardless of the mechanism whereby messages are delivered to the sleepy end device. For example, the message might be held in a buffer for an extended period of time by an intermediate device on a mesh network, and then delivered to the device when it wakes up. The exact details of such behaviors are out of scope for this document.
SRP updates have no authorization semantics other than first-come, first-served. This means that if an attacker from outside of the administrative domain of the server knows the server's IP address, it can in principle send updates to the server that will be processed successfully. Servers should therefore be configured to reject updates from source addresses outside of the administrative domain of the server.
For Anycast updates, this validation must be enforced by every router that connects the Constrained-Device Network to the unconstrained portion of the network. For TCP updates, the initial SYN-SYN+ACK handshake prevents updates being forged by an off-network attacker. In order to ensure that this handshake happens, Service Discovery Protocol servers MUST NOT accept TCP Fast Open payloads.
Note that these rules only apply to the validation of SRP updates. A server that accepts updates from DNS-SD registration protocol clients may also accept other DNS updates, and those DNS updates may be validated using different rules. However, in the case of a DNS service that accepts SRP updates, the intersection of the SRP update rules and whatever other update rules are present must be considered very carefully.
For example, a normal, authenticated RFC2136 update to any RR that was added using SRP, but that is authenticated using a different key, could be used to override a promise made by the registration protocol, by replacing all or part of the service registration information with information provided by a different client. An implementation that allows both kinds of updates should not allow updates to records added by SRP updates using different authentication and authorization credentials.
This specification does not provide a mechanism for validating responses from DNS servers to SRP clients. In the case of Constrained Network/Constrained Node clients, such validation isn't practical because there's no way to establish trust. In principle, a KEY RR could be used by a non-constrained SRP client to validate responses from the server, but this is not required, nor do we specify a mechanism for determining which key to use.
For validation, SRP Servers MUST implement the ECDSAP256SHA256 signature algorithm. SRP servers SHOULD implement the algorithms specified in [I-D.ietf-dnsop-algorithm-update] section 3.1, in the validation column of the table, starting with algorithm number 13. SRP clients MUST NOT assume that any algorithm numbered lower than 13 is available for use in validating SIG(0) signatures.
In order to be fully functional, there must be a delegation of 'services.arpa.' in the '.arpa.' zone [RFC3172]. This delegation should be set up as was done for 'home.arpa', as a result of the specification in [RFC8375]Section 7.
6.1. Registration and Delegation of 'services.arpa' as a Special-Use Domain Name
IANA is requested to record the domain name 'services.arpa.' in the Special-Use Domain Names registry [SUDN]. IANA is requested, with the approval of IAB, to implement the delegation requested in Section 5.
IANA is further requested to add a new entry to the "Transport- Independent Locally-Served Zones" subregistry of the the "Locally- Served DNS Zones" registry[LSDZ]. The entry will be for the domain 'services.arpa.' with the description "DNS-SD Registration Protocol Special-Use Domain", listing this document as the reference.
IANA is also requested to add a new entry to the Service Names and Port Numbers registry for dnssd-srp with a transport type of tcp. No port number is to be assigned. The reference should be to this document, and the Assignee and Contact information should reference the authors of this document. The Description should be as follows:
Availability of DNS Service Discovery Service Registration Protocol Service for a given domain is advertised using the "_dnssd-srp._tcp.<domain>." SRV record gives the target host and port where DNSSD Service Registration Service is provided for the named domain.
IANA is requested to allocate an IPv6 Anycast address from the IPv6 Special-Purpose Address Registry, similar to the Port Control Protocol anycast address, 2001:1::1. This address is referred to within the document as TBD1, and the document should be updated to reflect the address that was allocated.
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DNS-based Service Discovery [DNS-SD] in combination with its companion technology Multicast DNS [mDNS] is widely used today for discovery and resolution of services and names on a local link. As users move to multi-link home or campus networks, however, they find that mDNS (by design) does not work across routers. DNS-SD can also be used in conjunction with conventional unicast DNS to enable wide-area service discovery, but this capability is not yet widely deployed. This disconnect between customer needs and current practice has led to calls for improvement, such as the Educause petition [EP].
In response to this and similar evidence of market demand, several products now enable service discovery beyond the local link using different ad hoc techniques. As of yet, no consensus has emerged regarding which approach represents the best long-term direction for DNS-based Service Discovery protocol development.
Multicast DNS in its present form is also not optimized for network technologies where multicast transmissions are relatively expensive. Wireless networks such as Wi-Fi [IEEE.802.11] may be adversely affected by excessive mDNS traffic due to the higher network overhead of multicast transmissions. Wireless mesh networks such as IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) [RFC4944] are effectively multi-link subnets [RFC4903] where multicasts must be forwarded by intermediate nodes.
It is in the best interests of end users, network administrators, and vendors for all interested parties to cooperate within the context of the IETF to develop an efficient, scalable, and interoperable standards-based solution.
This document defines the problem statement and gathers requirements for scalable DNS-SD/mDNS extensions.
Service: A listening endpoint (host and port) for a given application protocol. Services are identified by Service Instance Names.
DNS-SD: DNS-based Service Discovery [DNS-SD] is a conventional application of DNS resource records and messages to facilitate the naming, discovery, and location of services. When used alone, the term generally refers to the wide-area unicast protocol.
mDNS: Multicast DNS [mDNS] is a mechanism that facilitates distributed DNS-like capabilities (including DNS-SD) on a local link without need of traditional DNS infrastructure.
SSD: Scalable Service Discovery (or Scalable DNS-SD) is a future extension of DNS-SD (and perhaps mDNS) that meets the requirements set forth in this document.
Scope of Discovery: A subset of a local or global namespace, e.g., a DNS subdomain, that is the target of a given SSD query.
Zero Configuration: A deployment of SSD that requires no administration (although some administration may be optional).
Incremental Deployment: An orderly transition, as a network installation evolves, from DNS-SD/mDNS to SSD.
Service discovery beyond the local link is perhaps the most important feature currently missing from the DNS-SD-over-mDNS framework (also written as "DNS-SD over mDNS" or "DNS-SD/mDNS"). Other issues and requirements are summarized below.
A list of desired DNS-SD/mDNS improvements from network administrators in the research and education community was issued in the form of the Educause petition [EP]. The following is a summary of their technical issues:
o It is common practice for enterprises and institutions to use wireless links for client access and wired links for server infrastructure; typically, they are on different subnets. Products that advertise services such as printing and multimedia streaming via DNS-SD over mDNS are not currently discoverable by client devices on other links. DNS-SD used with conventional unicast DNS does work when servers and clients are on different links, but the resource records that describe the services must somehow be entered into the unicast DNS namespace.
o DNS-SD resource records may be entered manually into a unicast DNS zone file [STATIC], but this task must be performed by a DNS administrator. It is labor intensive and brittle when IP addresses of devices change dynamically, as is common when DHCP is used.
o Automatically adding DNS-SD records using DNS Update works, but it requires that the DNS server be configured to allow DNS Updates and that devices be configured with the DNS Update credentials to permit such updates, which has proven to be onerous.
Therefore, a mechanism is desired that populates the DNS namespace with the appropriate DNS-SD records with less manual administration than is typically needed for a conventional unicast DNS server.
The following is a summary of technical requirements:
o It must scale to a range of hundreds to thousands of DNS-SD/mDNS- enabled devices in a given environment.
o It must simultaneously operate over a variety of network link technologies, such as wired and wireless networks.
o It must not significantly increase network traffic (wired or wireless).
o It must be cost-effective to manage at up to enterprise scale.
Multicast DNS was originally designed to run on Ethernet - the dominant link layer at the time. In shared-medium Ethernet networks, multicast frames place little additional demand on the shared network medium compared to unicast frames. In IEEE 802.11 networks, however, multicast frames are transmitted at a low data rate supported by all receivers. In practice, this data rate leads to a larger fraction of airtime being devoted to multicast transmission. Some network administrators block multicast traffic or use access points that transmit multicast frames using a series of link-layer unicast frames.
Wireless links may be orders of magnitude less reliable than their wired counterparts. To improve transmission reliability, the IEEE 802.11 Medium Access Control (MAC) requires positive acknowledgement of unicast frames. It does not, however, support positive acknowledgement of multicast frames. As a result, it is common to observe higher loss rates of multicast frames on wireless network technologies than on wired network technologies.
Enabling service discovery on IEEE 802.11 networks requires that the number of multicast frames be restricted to a suitably low value or replaced with unicast frames to use the MAC's reliability features.
Emerging wireless mesh networking technologies such as the Routing Protocol for LLNs (RPL) [RFC6550] and 6LoWPAN present several challenges for the current DNS-SD/mDNS design. First, link-local multicast scope [RFC4291] is defined as a single-hop neighborhood. A wireless mesh network representing a single logical subnet may often extend to multiple hops [RFC4903]; therefore, a larger multicast scope is required to span it [RFC7346]. Multicast DNS was intentionally not specified for greater than link-local scope because of the additional off-link multicast traffic that it would generate.
Additionally, low-power nodes may be offline for significant periods either because they are "sleeping" or due to connectivity problems. In such cases, LLN nodes might fail to respond to queries or defend their names using the current design.
The following use cases are defined with different characteristics to help motivate, distinguish, and classify the target requirements. They cover a spectrum of increasing deployment and administrative complexity.
(A) Personal Area Networks (PANs): The simplest example of a network may consist of a single client and server, e.g., one laptop and one printer, on a common link. PANs that do not contain a router may use Zero Configuration Networking [ZC] to self-assign link-local addresses [RFC3927] [RFC4862] and Multicast DNS [mDNS] to provide naming and service discovery, as is currently implemented and deployed in Mac OS X, iOS, Windows [B4W], and Android [NSD].
(B) Classic home or 'hotspot' networks, with the following properties:
* Single exit router: The network may have one or more upstream providers or networks, but all outgoing and incoming traffic goes through a single router.
* One-level depth: A single physical link, or multiple physical links bridged to form a single logical link, that is connected to the default router. The single logical link provides a single broadcast domain, facilitating use of link-local Multicast DNS, and also ARP, which enables the home or 'hotspot' network to consist of just a single IPv4 subnet.
* Single administrative domain: All nodes under the same administrative authority. Note that this does not necessarily imply a network administrator.
(C) Advanced home and small business networks [RFC7368]:
Like B, but consists of multiple wired and/or wireless links, connected by routers, generally behind a single exit router. However, the forwarding nodes are largely self-configuring and do not require routing protocol administration. Such networks should also not require DNS administration.
(D) Enterprise networks:
Consists of arbitrary network diameter under a single administrative authority. A large majority of the forwarding and security devices are configured, and multiple exit routers are more common. Large-scale conference-style networks, which are predominantly wireless access, e.g., as available at IETF meetings, also fall within this category.
(E) Higher-Education networks:
Like D, but the core network may be under a central administrative authority while leaf networks are under local administrative authorities.
(F) Mesh networks such as RPL/6LoWPAN:
Multi-link subnets with prefixes defined by one or more border routers. May comprise any part of networks C, D, or E.
Any successful SSD solution(s) will have to strike the proper balance between competing goals such as scalability, deployability, and usability. With that in mind, none of the requirements listed below should be considered in isolation.
The traditional unicast DNS namespace contains, for the most part, globally unique names. Multicast DNS provides every link with its own separate link-local namespace, where names are unique only within the context of that link. Clients discovering services may need to differentiate between local and global names and may need to determine when names in different namespaces identify the same service.
Devices on different links may have the same mDNS name (perhaps due to vendor defaults) because link-local mDNS names are only guaranteed to be unique on a per-link basis. This may lead to a local label disambiguation problem when results are aggregated (e.g., for presentation).
SSD should support rich internationalized labels within Service Instance Names, as DNS-SD/mDNS does today. SSD must not negatively impact the global DNS namespace or infrastructure.
The problem of publishing local services in the global DNS namespace may be generally viewed as exporting local resource records and their associated labels into some DNS zone. The issues related to defining labels that are interoperable between local and global namespaces are discussed in a separate document [INTEROP-LABELS].
Insofar as SSD may automatically gather DNS-SD resource records and publish them over a wide area, the security issues are likely to include the union of those discussed in the Multicast DNS [mDNS] and DNS-based Service Discovery [DNS-SD] specifications. The following sections highlight potential threats that are posed by deploying DNS- SD over multiple links or by automating DNS-SD administration.
In some scenarios, the owner of the advertised service may not have a clear indication of the scope of its advertisement.
For example, since mDNS is currently restricted to a single link, the scope of the advertisement is limited, by design, to the shared link between client and server. If the advertisement propagates to a larger set of links than expected, this may result in unauthorized clients (from the perspective of the owner) discovering and then potentially attempting to connect to the advertised service. It also discloses information (about the host and service) to a larger set of potential attackers.
Note that discovery of a service does not necessarily imply that the service is reachable by, or can be connected to, or can be used by, a given client. Specific access-control mechanisms are out of scope of this document.
If the scope of the discovery is not properly set up or constrained, then information leaks will happen outside the appropriate network.
There is a possibility of conflicts between the local and global DNS namespaces. Without adequate feedback, a discovering client may not know if the advertised service is the correct one, therefore enabling potential attacks.
DNSSEC can assert the validity but not the accuracy of records in a zone file. The trust model of the global DNS relies on the fact that human administrators either (a) manually enter resource records into a zone file or (b) configure the DNS server to authenticate a trusted device (e.g., a DHCP server) that can automatically maintain such records.
An impostor may register on the local link and appear as a legitimate service. Such "rogue" services may then be automatically registered in unicast DNS-SD.
Up to now, the "plug-and-play" nature of mDNS devices has relied only on physical connectivity. If a device is visible via mDNS, then it is assumed to be trusted. This is not likely to be the case in foreign networks.
If there is a risk that clients may be fooled by the deployment of rogue services, then application-layer authentication should be considered as part of any security solution. Authentication of any particular service is outside the scope of this document.
Access Control refers to the ability to restrict which users are able to use a particular service that might be advertised via DNS-SD. In this case, "use" of a service is different from the ability to "discover" or "reach" a service.
While controlling access to an advertised service is outside the scope of DNS-SD, we note that access control today often is provided by existing site infrastructure (e.g., router access-control lists, firewalls) and/or by service-specific mechanisms (e.g., user authentication to the service). For example, networked printers can control access via a user ID and password. Apple's software supports such access control for USB printers shared via Mac OS X Printer Sharing, as do many networked printers themselves. So the reliance on existing service-specific security mechanisms (i.e., outside the scope of DNS-SD) does not create new security considerations.
Mobile devices such as smart phones or laptops that can expose the location of their owners by registering services in arbitrary zones pose a risk to privacy. Such devices must not register their services in arbitrary zones without the approval ("opt-in") of their users. However, it should be possible to configure one or more "safe" zones in which mobile devices may automatically register their services.
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DNS-Based Service Discovery (DNS-SD, [RFC6763]) specifies a mechanism for discovering services using queries to DNS ([RFC1034] and [RFC1035]) and to any other system that uses domain names, such as Multicast DNS (mDNS, [RFC6762]). Many applications that use DNS follow "Internet hostname" syntax [RFC952] for labels -- the so-called LDH (letters, digits, and hyphen) rule. That convention is the reason behind the development of Internationalized Domain Names for Applications (IDNA2008, [RFC5890], [RFC5891], [RFC5892], [RFC5893], [RFC5894], and [RFC5895]). It is worth noting that the LDH rule is a convention, and not a rule of the DNS; this is made entirely plain by Section 11 of [RFC2181], and discussed further in Section 3 of [RFC6055]. Nevertheless, there is a widespread belief that in many circumstances domain names cannot be used in the DNS unless they follow the LDH rule.
At the same time, mDNS requires that labels be encoded in UTF-8 and permits a range of characters in labels that are not permitted by IDNA2008 or the LDH rule. For example, mDNS encourages the use of spaces and punctuation in mDNS names (see Section 4.2.3 of [RFC6763]). It does not restrict which Unicode code points may be used in those labels, so long as the code points are UTF-8 in Net-Unicode [RFC5198] format.
Users and developers of applications are, of course, frequently unconcerned with (or oblivious to) the name-resolution system(s) in service at any given moment; they are inclined simply to use the same domain names in different contexts. As a result, names entered into the same domain name slot might be resolved using different name resolution technologies. If a given name will not work across the various environments, then user expectations are likely to be best satisfied when at least some parts of the domain names to be queried are compatible with the rules and conventions for all the relevant technologies. Given the uses of DNS-SD, a choice for such compatibility likely lies with the application designer or service operator.
One approach to interoperability under these circumstances is to use a single operational convention (a "profile") for domain names under the different naming systems. This memo assumes such a use profile, and attempts to outline what is necessary to make it work without specifying any particular technology. It does assume, however, that the global DNS is likely to be implicated. Given the general tendency of all resolution eventually to fall through to the DNS, that assumption does not seem controversial.
It is worth noting that users of DNS-SD do not use the service discovery names in the same way that users of other domain names might. In many cases, domain names can be entered as direct user input. But the service discovery context generally assumes that users are picking a service from a list. As a result, the sorts of application considerations that are appropriate to the general- purpose DNS name, and that resulted in the A-label/U-label split (see below) in IDNA2008, are not entirely the right approach for DNS-SD.
Wherever appropriate, this memo uses the terminology defined in Section 2 of [RFC5890]. In particular, the reader is assumed to be familiar with the terms "U-label", "LDH label", and "A-label" from that document. Similarly, the reader is assumed to be familiar with the U+NNNN notation for Unicode code points used in [RFC5890] and other documents dealing with Unicode code points. In the interests of brevity and consistency, the definitions are not repeated here. Sometimes this memo refers to names in the DNS as though the LDH rule and IDNA2008 are strict requirements. They are not. DNS labels are, in principle, just collections of octets; therefore, in principle, the LDH rule is not a constraint. In practice, applications sometimes intercept labels that do not conform to the LDH rule and apply IDNA and other transformations.
DNS, perhaps unfortunately, has produced its own jargon. Unfamiliar DNS-related terms in this memo should be found in [RFC7719].
The term "owner name" (common to the DNS vernacular; see above) is used here to apply not just to the domain names to be looked up in the DNS, but to any name that might be looked up either in the DNS or using another technology. Therefore, it includes names that might not actually exist anywhere. In addition, what follows depends on the idea that not every domain name will be looked up in the DNS. For instance, names ending in "local." (in the presentation format) are not ordinarily looked up using DNS, but instead looked up using mDNS.
DNS-SD specifies three portions of the owner name for a DNS-SD resource record. These are the <Instance> portion, the <Service> portion, and the <Domain> portion. The owner name made of these three parts is called the "Service Instance Name". It is worth observing that a portion may be more than one label long. See Section 4.1 of [RFC6763]. Further discussion of the parts is found in Section 4.
Throughout this memo, mDNS is used liberally as the alternative resolution mechanism to DNS. This is for convenience rather than rigor: any alternative name resolution to DNS could present the same friction with the prevailing operational conventions of the global DNS. It so happens that mDNS is the overwhelmingly successful alternative as of this writing, so it is used in order to make the issues plainer to the reader. Other alternative resolution mechanisms may generally be read wherever mDNS appears in the text, except where details of the mDNS specification appear.
One might reasonably wonder why there is a problem to be solved at all. After all, DNS labels permit any octet whatsoever, and anything that can be useful with DNS-SD cannot use any names that are outside the protocol strictures of the DNS.
The reason for the trouble is twofold. First, and least troublesome, is the possibility of resolvers that are attempting to offer IDNA service system-wide. Given the design of IDNA2008, it is reasonable to suppose that, on some systems, high-level name resolution libraries will perform the U-label/A-label transformation automatically, saving applications from these details. But system- level services do not always have available to them the resolution context, and they may apply the transformation in a way that foils rather than helps the application. Of course, if this were the main problem, it would presumably be self-correcting because the right answer would be, "Don't use those libraries for DNS-SD", and DNS-SD would not work reliably in cases where such libraries were in use. This would be unfortunate, but given that DNS-SD in Internet contexts is (as of this writing) not in ubiquitous use, it should not represent a fatal issue.
The greater problem is that the "infrastructure" types of DNS service -- the root zone, the top-level domains, and so on -- have embraced IDNA and refuse registration of raw UTF-8 into their zones. As of this writing, there is (perhaps unfortunately) no reliable way to discover where these sorts of DNS services end. Nevertheless, some client programs (notably web browsers) have adopted a number of different policies about how domain names will be looked up and presented to users given the policies of the relevant DNS zone operators. None of these policies permit raw UTF-8. Since it is anticipated that DNS-SD when used with the DNS will be inside domain names beneath those kinds of "infrastructure" domains, the implications of IDNA2008 must be a consideration.
For further exploration of issues relating to encoding of domain names generally, the reader should consult [RFC6055].
Any interoperability between DNS (including prevailing operational conventions) and other resolution technologies will require interoperability across the portions of a DNS-SD Service Instance Name that are implicated in regular DNS lookups. Only some portions are implicated. In any case, if a given portion is implicated, the profile will need to apply to all labels in that portion.
In addition, because DNS-SD Service Instance Names can be used in a domain name slot, care must be taken by DNS-SD-aware resolvers to handle the different portions as outlined here, so that DNS-SD portions that do not use IDNA2008 will not be treated as U-labels and will not accidentally undergo IDNA processing.
Because the profile will apply to names that might appear in the public DNS, and because other resolution mechanisms (such as mDNS) could permit labels that IDNA does not, the profile might reduce the labels that could be used with those other resolution mechanisms. One consequence of this is that some recommendations from [RFC6763] will not really be possible to implement using names subject to the profile. In particular, Section 4.2.3 of [RFC6763] recommends that labels always be stored and communicated as UTF-8, even in the DNS. Because of the way that the public DNS is currently operated (see Section 2), the advice to store and transmit labels as UTF-8 in the DNS is likely either to encounter problems, to result in unnecessary traffic to the public DNS, or to do both. In particular, many labels in the <Domain> part of a Service Instance Name are unlikely to be found in the UTF-8 form in the public DNS tree for zones that are using IDNA2008. By contrast, for example, mDNS exclusively uses UTF-8.
U-labels cannot contain uppercase letters (see Sections 3.1.3 and 4.2 of [RFC5894]). That restriction extends to ASCII-range uppercase letters that work fine in LDH labels. It may be confusing that the character "A" works in the DNS when none of the characters in the label has a diacritic, but it does not work when there is such a diacritic in the label. Labels in mDNS names (or other resolution technologies) may contain uppercase characters, so the profile will need either to restrict the use of uppercase or to come up with a convention for case folding (even in the presence of diacritics) that is reliable and predictable to users.
Service Instance Names are made up of three portions.
[RFC6763] is clear that the <Instance> portion of the Service Instance Name is intended for presentation to users; therefore, virtually any character is permitted in it. There are two ways that a profile might address this portion.
The first way would be to treat this portion as likely to be intercepted by system-wide IDNA-aware (but otherwise context-unaware) resolvers or likely subject to strict IDNA-conformance requirements for publication in the relevant zone. In this case, the portion would need to be made subject to the profile, thereby curtailing what characters may appear in this portion. This approach permits DNS-SD to use any standard system resolver but presents inconsistencies with the DNS-SD specification and with DNS-SD use that is exclusively mDNS-based. Therefore, this strategy is rejected.
Instead, DNS-SD implementations can intercept the <Instance> portion of a Service Instance Name and ensure that those labels are never handed to IDNA-aware resolvers that might attempt to convert these labels into A-labels. Under this approach, the DNS-SD <Instance> portion works as it always does, but at the cost of using special resolution code built into the DNS-SD system. A practical consequence of this is that zone operators need to be prepared not to apply the LDH rule to all labels, and they may need to make special concessions to ensure that the <Instance> portion can contain spaces, uppercase and lowercase, and any UTF-8 code point. Otherwise, they need to prepare a user interface to handle the exceptions that would be generated. Automatic conversion to A-labels is not acceptable.
It is worth noting that this advice is not actually compatible with the advice in Section 4 of [RFC6055]. That section appears to assume that names are not really composed of subsections, but because [RFC6763] specifies portions of names, the advice in this memo is to follow the advice of [RFC6055] according to the portion of the domain name, rather than for the whole domain name. As a practical matter, this means special-purpose name resolution software for DNS-SD.
DNS-SD includes a <Service> component in the Service Instance Name. This component is not really user-facing data; instead it is control data embedded in the Service Instance Name. This component includes so-called "underscore labels", which are labels prepended with U+005F (_). The underscore label convention was established by DNS SRV ([RFC2782]) for identifying metadata inside DNS names. A system-wide resolver (or DNS middlebox) that cannot handle underscore labels will not work with DNS-SD at all, so it is safe to suppose that such resolvers will not attempt to do special processing on these labels. Therefore, the <Service> portion of the Service Instance Name will not be subject to the profile. By the same token, underscore labels are never subject to IDNA processing (they are formally incompatible); therefore, concerns about IDNA are irrelevant for these labels.
The <Domain> portion of the Service Instance Name forms an integral part of the owner name submitted for DNS resolution. A system-wide resolver that is IDNA2008-aware is likely to interpret labels with UTF-8 in the owner name as candidates for IDNA2008 processing. More important, operators of internationalized domain names will frequently publish such names in the public DNS as A-labels; certainly, the topmost labels will always be A-labels. Therefore, these labels will need to be subject to the profile. DNS-SD implementations ought to identify the <Domain> portion of the Service Instance Name and treat it subject to IDNA2008 in case the domain is to be queried from the global DNS. (This document does not specify how to do that and does not alter the specification in [RFC6763].) In the event that the <Domain> portion of the Service Instance Name fails to resolve, it is acceptable to substitute labels with plain UTF-8, starting at the lowest label in the DNS tree and working toward the root. This approach would differ from the rule for resolution published in [RFC6763], because this approach privileges IDNA2008-compatible labels over UTF-8 labels. There is more than one way to achieve such a result, but in terms of predictability, it is probably best if the lowest-level resolution component is able to learn the correct resolution context so that it can perform the correct transformations on the various domain portions.
One might argue against the above restriction on either of two grounds:
1. It is possible that the names may be in the DNS in UTF-8, and RFC 6763 already specifies a fallback strategy of progressively attempting first the UTF-8 label lookup (it might not be a U-label) and then, if possible, the A-label lookup.
2. Zone administrators that wish to support DNS-SD can publish a UTF-8 version of the zone along side the A-label version of the zone.
The first of these is rejected because it represents a potentially significant increase in DNS lookup traffic. It is possible for a DNS-SD application to identify the <Domain> portion of the Service Instance Name. The standard way to publish IDNs on the Internet uses IDNA. Therefore, additional lookups should not be encouraged. When [RFC6763] was published, the bulk of IDNs were lower in the tree. Now that there are internationalized labels in the root zone, it is desirable to minimize queries to the Internet infrastructure if they are sure to be answered in the negative.
The second reason depends on the idea that it is possible to maintain two names in sync with one another. This is not strictly speaking true, although in this case the domain operator could simply create a DNAME record [RFC6672] from the UTF-8 name to the IDNA2008 zone. This still, however, relies on being able to reach the (UTF-8) name in question, and it is unlikely that the UTF-8 version of the zone will be delegated from anywhere. Moreover, in many organizations, the support for DNS-SD and the support for domain name delegations are not performed by the same department; depending on a coordination between the two will make the system more fragile, slower, or both.
Some resolvers -- particularly those that are used in mixed DNS and non-DNS environments -- may be aware of different operational conventions in different parts of the DNS tree. For example, it may be possible for implementations to use hints about the boundary of an organization's domain name infrastructure in order to tell, for instance, that example.com. is part of the Example Organization, while com. is a large delegation-centric zone on the public Internet. In such cases, the resolution system might reverse its preferences to prefer plain UTF-8 labels when resolving names below the boundary point in the DNS tree. The result would be that any lookup past the boundary point and closer to the root would use LDH labels first, falling back to UTF-8 only after a failure; but a lookup below the boundary point would use UTF-8 labels first, and try other strategies only in case of negative answers. The mechanism to learn such a boundary is beyond the scope of this document.
This document does not require any IANA actions.
This memo presents some requirements for future development, but does not specify anything. It makes no additional security-specific requirements. Issues arising due to visual confusability of names apply to this case as well as to any other case of internationalized names, but interoperation between different resolution systems and conventions does not alter the severity of those issues.
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Advertising and discovering with Bonjour can leak a lot of information about a device or person, such as their name, the types of services they provide or use, and persistent identifiers. This information can be used to identify and track a person's location and daily routine (e.g. buys coffee every morning at 8 AM at Starbucks on Main Street). It can also reveal intimate details about a person's behavior and medical conditions, such as discovery requests for a glucose monitor, possibly indicating diabetes.
This document specifies additions to Bonjour to retain the same level of advertising and discovery functionality while preserving privacy and confidentiality.
This document does not specify how keys are provisioned. Provisioning keys is complex enough to justify its own document(s). This document assumes each peer has a long-term asymmetric key pair (LTPK and LTSK) and communicating peers have each other's long-term asymmetric public key (LTPK).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
"Friend"
A peer you have a cryptographic relationship with. Specifically, that you have the peer's LTPK.
"Probe"
A probe is an unsolicited multicast message sent to find friends on the network.
"Announcement"
An announcement is an unsolicited multicast message sent to inform friends on the network that you have become available or have updated data.
"Response"
A response is a solicited unicast message sent in response to a probe or announcement.
"Query"
A query is an unsolicited unicast message sent to get specific info from a peer.
"Answer"
An answer is solicited unicast message sent in response to a query to provide info or indicate the lack of info.
"Multicast"
This term is used in the generic sense of sending a message that targets 0 or more peers. It's not strictly required to be a UDP packet with a multicast destination address. It could be sent via TCP or some other transport to a router that repeats the message via unicast to each peer.
"Unicast"
This term is used in the generic sense of sending a message that targets a single peer. It's not strictly required to be a UDP packet with a unicast destination address.
Multi-byte values are encoded from the most significant byte to the least significant byte (big endian).
When multiple items are concatenated together, the symbol "||" (without quotes) between each item is used to indicate this. For example, a combined item of A followed by B followed by C would be written as "A || B || C".
There are two techniques used to preserve privacy and provide confidentiality in this document. The first is announcing, probing, and responding with only enough info to allow a peer with your public key to detect that it's you while hiding your identity from peers without your public key. This technique uses a fresh random signed with your private key using a signature algorithm that doesn't reveal your public key. The second technique is to query and answer in a way that only a specific friend can read the data. This uses ephemeral key exchange and symmetric encryption and authentication.
A probe is sent via multicast to discover friends on the network. A probe contains a fresh, ephemeral public key (EPK1), a timestamp (TS1), and a signature (SIG1). This provides enough for a friend to identify the source, but doesn't allow non-friends to identify it.
Probe Fields:
o EPK1 (Ephemeral Public Key 1).
o TS1 (Timestamp 1). See Timestamps Section 4.
o SIG1 (Signature of "Probe" || EPK1 || TS1 || "End").
When a peer receives a probe, it verifies TS1. If TS1 is outside the time window then it SHOULD be ignored. It then attempts to verify SIG1 with the public key of each of its friends. If verification fails for all public keys then it ignores the probe. If a verification succeeds for a public key then it knows which friend sent the probe. It SHOULD send a response to the friend.
A response contains a fresh, ephemeral public key (EPK2) and a symmetrically encrypted signature (ESIG2). The encryption key is derived by first generating a fresh ephemeral public key (EPK2) and its corresponding secret key (ESK2) and performing Diffie-Hellman (DH) using EPK1 and ESK2 to compute a shared secret. The shared secret is used to derive a symmetric session key (SSK2). A signature of the payload is generated (SIG2) using the responder's long-term secret key (LTSK2). The signature is encrypted with SSK2 (ESIG2). The nonce for ESIG2 is 1 and is not included in the response. The response is sent via unicast to the sender of the probe.
When the friend that sent the probe receives the response, it performs DH, symmetrically verifies ESIG2 and, if successful, decrypts it to reveal SIG2. It then tries to verify SIG2 with the public keys of all of its friends. If a verification succeeds for a public key then it knows which friend sent the response. If any steps fail, the response is ignored. If all steps succeed, it derives a session key (SSK1). Both session keys (SSK1 and SSK2) are remembered for subsequent communication with the friend.
Response Fields:
o EPK2 (Ephemeral Public Key 2).
o ESIG2 (Encrypted Signature of "Response" || EPK2 || EPK1 || TS1 || "End").
Key Derivation values:
o SSK1: HKDF-SHA-512 with Salt = "SSK1-Salt", Info = "SSK1-Info", Output size = 32 bytes.
o SSK2: HKDF-SHA-512 with Salt = "SSK2-Salt", Info = "SSK2-Info", Output size = 32 bytes.
An announcement indicates availability to friends on the network or if it has update(s). It is sent whenever a device joins a network (e.g. joins WiFi, plugged into Ethernet, etc.), its IP address changes, or when it has an update for one or more of its private Bonjour records (but not for public Bonjour records since those are handled using non-private Bonjour methods). Announcements are sent via multicast.
Announcement Fields:
o EPK1 (Ephemeral Public Key 1).
o TS1 (Timestamp 1). See Timestamps Section 4.
o SIG1 (Signature of "Announcement" || EPK1 || TS1 || "End").
When a peer receives an announcement, it verifies TS1. If TS1 is outside the time window then it SHOULD be ignored. It then attempts to verify SIG1 with the public key of each of its friends. If verification fails for all public keys then it ignores the probe. If a verification succeeds for a public key then it knows which friend sent the announcement.
A query is sent via unicast to request specific info from a friend. The raw DNS query records are generated the same way as a non-private Bonjour query (e.g. PTR, SRV, TXT, etc.). Once this data is generated (MSG1), it's encrypted with the symmetric session key (SSK1 for the original prober or SSK2 for the original responder) for the target friend previously generated via the probe/response exchange. This encrypted field is EMSG1. The nonce for EMSG1 is 1 larger than the last nonce used with this symmetric key and is not included in the query. For example, if this is the first message sent to this friend after the probe/response then the nonce would be 2. The query is sent via unicast to the friend.
When the friend receives a query, it symmetrically verifies EMSG1 against every active session's key and, if one is successful (which also identifies the friend), it decrypts the field. If verification fails, the query is ignored, If verification succeeds, the query is processed.
Query Fields:
o EMSG1 (Encrypted DNS query(s)).
An answer is sent via unicast in response to a query from a friend. The raw DNS answer records are generated the same way as a non- private Bonjour answer (e.g. PTR, SRV, TXT, etc.). Once this data is generated (MSG2), it's encrypted with the symmetric session key of the destination friend (SSK1 it was the original prober or SSK2 if it was the original responder from the previous probe/response exchange). This encrypted field is EMSG2. The nonce for EMSG2 is 1 larger than the last nonce used with this symmetric key and is not included in the answer. For example, if this is the first message sent to this friend after the probe/response then the nonce would be 2. The answer is sent via unicast to the friend.
When the friend receives an answer, it symmetrically verifies EMSG2 against every active session's key and, if one is successful (which also identifies the friend), it decrypts the field. If verification fails, the answer is ignored, If verification succeeds, the answer is processed.
Answer Fields:
o EMSG2 (Encrypted DNS answer(s)).
A timestamp in this document is the number of seconds since 2001-01-01 00:00:00 UTC. Timestamps sent in messages SHOULD be randomized by +/- 30 seconds to reduce the fingerprinting ability of observers. A timestamp of 0 means the sender doesn't know the current time (e.g. lacks a battery-backed RTC and access to an NTP server). Receivers MAY use a timestamp of 0 to decide whether to enforce time window restrictions. This can allow discovery in situations where one or more devices don't know the current time (e.g. location without Internet access).
A timestamp is considered valid if it's within N seconds of the current time of the receiver. The RECOMMENDED value of N is 900 seconds (15 minutes) to allow peers to remain discoverable even after a large amount of clock drift.
The nonces in this document are integers that increment by 1 for each encryption. Nonces are never included in any message. Including nonces in messages would enable transactions to be easily tracked by following nonce 1, 2, 3, etc. This may seem futile if other layers of the system also leak trackable identifiers, such as IP addresses, but those problems can be solved by other documents. Random nonces could avoid tracking, but make replay protection difficult by requiring the receiver to remember previously received messages to detect a replay.
One issue with implicit nonces and replay protection in general is handling lost messages. Message loss and reordering is expected and shouldn't cause complete failure. Accepting nonces within N of the expected nonce enables recovery from some loss and reordering. When a message is received, the expected nonce is checked first and then nonce + 1, nonce - 1, up to nonce +/- N. The RECOMMENDED value of N is 8 as a balance between privacy, robustness, and performance.
Re-keying is a hedge against key compromise. The underlying algorithms have limits that far exceed reasonable usage (e.g. 96-bit nonces), but if a key was revealed then we want to reduce the damage by periodically re-keying.
Probes are periodically re-sent with a new ephemeral public key in case the previous key pair was compromised. The RECOMMENDED maximum probe ephemeral public key lifetime is 20 hours. This is close to 1 day since people often repeat actions on a daily basis, but with some leeway for natural variations. If a probe ephemeral public key is re-generated for other reasons, such as joining a WiFi network, the refresh timer is reset.
Session keys are periodically re-key'd in case a symmetric key was compromised. The RECOMMENDED maximum session key lifetime is 20 hours or 1000 messages, whichever comes first. This uses the same close-to-a-day reasoning as probes, but adds a maximum number of messages to reduce the potential for exposure when many messages are being exchanged. Responses SHOULD be throttled if it appears that a peer is making an excessive number of requests since this may indicate the peer is probing for weaknesses (e.g. timing attacks, ChopChop-style attacks).
The data defined by this document are contained within DNS records as specified in RFC 6195 [RFC6195].. The following DNS Resource Record (RR) types are specified. Note that these are from the "Private Use" range for now, but will presumably move to the normal range after IETF review:
The RData within each DNS record is a Type-Length-Value with an 8-bit type and a 16-bit length (TLV8x16). It has the following format.
The following lists the TLV items defined by this document.
o Privacy considerations are specified in draft-cheshire-dnssd- privacy-considerations.
o Ephemeral key exchange uses elliptic curve Diffie-Hellman (ECDH) with Curve25519 as specified in RFC 7748 [RFC7748].
o Signing and verification uses Ed25519 as specified in RFC 8032 [RFC8032].
o Symmetric encryption uses ChaCha20-Poly1305 as specified in RFC 7539 [RFC7539].
o Key derivation uses HKDF as specified in RFC 5869 [RFC5869] with SHA-512 as the hash function.
o Randoms and randomization MUST use cryptographic random numbers.
Information leaks may still be possible in some situations. For example, an attacker could capture probes from a peer they've identified and replay them elsewhere within the allowed timestamp window. This could be used to determine if a friend of that friend is present on that network.
The network infrastructure may leak identifiers in the form of persistent IP addresses and MAC addresses. Mitigating this requires changes outside of Bonjour, such as periodically changing IP addresses and MAC addresses.
The DNS record and TLV types defined by this document are intended to be managed by IANA.
The following are some of the things that still need to be specified and decided:
o Figure out how sleep proxies might work with this protocol.
o Define probe and announcement random delays to reduce collisions.
o Describe when to use the same EPK2 in a response to reduce churn on probe/response collisions.
o Consider randomly answering probes for non-friends to mask real friends.
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We propose to solve this problem by developing a private discovery profile for UDP based transports using TLS, such as DTLS and QUIC. The profile is based on using the Encrypted SNI extension. We also define a standalone private discovery service, that can be combined with arbitrary applications in the same way as DNS-SD.
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DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless service discovery in local networks. It is very convenient for users, but it requires the public exposure of the offering and requesting identities along with information about the offered and requested services. Parts of the published information can seriously breach the user's privacy. These privacy issues and potential solutions are discussed in [KW14a] and [KW14b].
When analyzing these scenarios in [I-D.ietf-dnssd-prireq], we find that the DNS-SD messages leak identifying information such as the instance name, the host name or service properties.
In this document, we propose a discovery solution that can replace DNS-SD in simple deployment scenarios, with the following characteristics:
1. We only target discovery of peers on the same local network, using multicast. We make no attempt at compatibility with the server based solutions such as DNSSD over Unicast DNS [RFC6763].
2. We do not attempt to keep the same formats as mDNS [RFC6762].
3. We assume a solution that can be integrated in an application, without dependency on system support.
The proposed solution aligns with TLS 1.3 [RFC8446], and specifically with transports of TLS over UDP, such as DTLS [I-D.ietf-tls-dtls13] or QUIC [I-D.ietf-quic-transport]. The solution uses SNI encryption [I-D.ietf-tls-esni].
The solution assumes that entities who want to be privately discovered maintain an asymmetric discovery key pair. The public component of that discovery key pair and the service name of the entity are provisioned to authorized discovery clients. In this document, we will refer to this public component as the "Discovery Key" of the server. When needed, we will refer to the private component of the key pair as the "Discovery Private Key".
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
In the proposed solution, the first packet of a TLS-based UDP transport is broadcast or multicast over the local network. This packet carries the TLS 1.3 ClientHello message, including an Encrypted SNI (ESNI) extension. The ESNI is encrypted with the Discovery Key of the requested service.
Services that are ready to be discovered listen on the broadcast or multicast address and check whether the received packets contain a TLS 1.3 ClientHello Message and an ESNI extension. If the extension can be decrypted with the Private Discovery Key of the local service, they set up a connection.
This mechanism only works with TLS based protocols operating over UDP, such as DTLS or QUIC.
Private discovery relies on the privacy of the server Discovery Key, which is used to encrypt the target server name carried in the ESNI extension. Clients can only discover a server if they know the server's Discovery Key. Servers receiving a properly encrypted discovery request do not know the identity of the client issuing the request, but they know that the client belongs to a group authorized to perform the discovery.
In the ESNI based specification, the server's Discovery Key plays the same role as the ESNI Encryption Key of the client facing server, but a major difference is that the Discovery Key is kept private. According to standard ESNI, the client facing server publishes an ESNI encryption key in the DNS. In contrast, the Discovery Key MUST NOT be publicly available in the DNS.
The discovery key is passed to the peer in exactly the same format as ESNI:
This document does not discuss how the Discovery Key is provisioned to authorized discovery clients.
The ESNI extension design assumes that several services are available through a single client facing server. These different services have different SNI values and length. ESNI pads these SNI to a padded length specified for the client facing server, ensuring that third parties cannot infer the identity of the service from the length of the extension. In our design, requests for multiple services are sent over multicast. If different services used different padding length, third parties could infer the service identity from the ESNI length. To prevent this information leakage, services participating in private discovery MUST set the padded length to exactly 128 bytes.
The ESNI extension is defined in [I-D.ietf-tls-esni] as:
In standard ESNI usage, the "record_digest" identifies the ESNI Encryption Key. Clients using private discovery MUST leave the "record_digest" empty, and encode it as a zero-length binary string. The ESNI Encryption Key will be the Discovery Key of the target server.
The KeyShareEntry is set in accordance with the ESNI specification. It is combined with the server Discovery Key to encrypt the SNI. According to the ESNI specification, the encrypted structure contains:
Servers that receive the extension as part of private discovery attempt to decrypt the value using their Private Discovery Key. If the decryption succeeds, and if the decrypted SNI corresponds to the expected value, the server will accept the discovery request.
The message flows of DTLS 1.3 [I-D.ietf-tls-dtls13] all start with the client sending a TLS ClientHello message. The following figure presents a simple DTLS flow using the ESNI extension for private discovery:
The first flight consists of a single UDP packet. In classic DTLS, this would be sent to the IP address and UDP port chosen for the application. Instead, the client using private discovery MUST sent this to the "private discovery" multicast address defined in Section 6 and to the UDP port chosen for the application.
The multicast message sent by the client will be received by many servers. The servers using private discovery MUST verify that the ESNI extension is present. If it is present, each server attempts to decrypt the ESNI extension using the local private discovery key, as specified in Section 2.2. If the verification succeeds, the server proceeds with the connection, and sends the second flight of DTLS packets to the IP address and UDP port from which it received the client's first flight.
The client receiving the second flight of messages processes them as specified in DTLS 1.3 [I-D.ietf-tls-dtls13]. The client MUST verify that the ESNI extension is present, and matches the expected value as specified in Section 2.2. If the ESNI extension is absent or does not pass verification, the entire flight MUST be ignored. If the verification succeeds, the client remembers the IP address and UDP port of the server, and uses it for the reminder of the session.
A successful ESNI exchange demonstrates to the server that the client has knowledge of the server discovery key, and to the client that the server is in possession of the corresponding private discovery key. This is meant to restrict access to a subset of the client and server population, but does not replace the need for server authentication and optional client authentication as specified in TLS 1.3.
The QUIC Transport uses TLS to negotiate encryption keys. The use of TLS in QUIC is specified in [I-D.ietf-quic-tls], and can be summarized as follow:
1. The QUIC connection starts with the client sending an Initial message, carrying a TLS ClientHello and its extensions.
2. The server replies with its own Initial message, carrying the server hello and establishing the "handshake" keys used to protect the reminder of the TLS 1.3 exchange.
3. Server and client exchange encrypted Handshake messages to verify that the session is properly established and to negotiate the encryption keys of the application data.
4. Server and Client exchange encrypted application messages until they decide to close the connection.
All messages are sent over UDP.
When using Private Discovery, the client adds an ESNI extension to the ClientHello sent in the Initial message. The ESNI extension is formatted a specified in Section 2.2. In classic QUIC, the Initial message would be sent in a UDP packet to the IP address and UDP port of the server. Instead, the client using private discovery MUST sent this to the "private discovery" multicast address defined in Section 6 and to the UDP port chosen for the application.
The multicast message sent by the client will be received by many servers. The servers using private discovery MUST verify that the ESNI extension is present. If it is present, each server attempts to decrypt the ESNI extension using the local private discovery key, as specified in Section 2.2. If the verification succeeds, the server proceeds with the connection, and sends the next QUIC packets to the IP address and UDP port from which it received the client's first flight.
The client receiving the second flight of messages processes them as specified in DTLS 1.3 [I-D.ietf-tls-dtls13]. The client MUST verify that the ESNI extension is present, and matches the expected value as specified in Section 2.2. If the ESNI extension is absent or does not pass verification, the entire QUIC connection MUST be ignored. If the verification succeeds, the client remembers the IP address and UDP port of the server, and uses it for the reminder of the QUIC connection.
The mechanisms discussed in Section 2 assume that an application based on DTLS or QUIC is modified to enable private local discovery. This does not cover all services. Further services can be supported by a two-phase process in which each application is paired with an implementation of the private discovery service.
The private discovery service is an implementation of DNS over QUIC, as specified in [I-D.huitema-quic-dnsoquic], modified to also implement the Private Discovery over Quic defined in Section 2.4. The DNS implementation is solely for the purpose of providing a service equivalent to DNS-SD.
The Private Discovery DNS Service is run by the service that wants to be discovered. The name of the discovery service is the name of the service that needs to be discovered. Clients are provisioned with the associated Discovery Key. Clients discover the Private Discovery DNS Service, and can then use it to obtain the DNS records associated with the application service: SRV, TXT, A or AAAA records.
The proposed design relies on active discovery of servers by the clients. When a client arrives on a new network and wishes to establish a connection to a server, it sends a multicast message that tries to reach that server. This designs has two potential issues:
If the server is not present when a client tries to contact it, the client may have to repeat the connection attempts over time.
If multiple clients connect to the same server, each client sends a multicast message, which can translate in heavy multicast load in some configurations.
The importance of these two issues is debatable. Many applications have a peer-to-peer nature, in which peers can be either clients or servers. When two peers are not present at the same time, the first peer to arrive will fail to establish a connection, but the second peer will succeed, without having to rely on time based repetitions. Similarly, if we move from device oriented discovery to application oriented discovery, the number of client per server is likely to be very small, so that there will be little difference between "multicast per client" and "multicast per server".
However, there may be configurations where a "server arrival announce" message would result in fast discovery and fewer multicast messages.
The server arrival announce message is a UDP packet sent to the Discovery Multicast Address reserved in Section 6 and port %lt;TBD>.
The format of the message will be defined in a next draft version, meeting the following requirements:
Multiplexing: should be easily demuxed from DTLS or QUIC traffic.
ESNI: should contain an ESNI extension, secured with the server's discovery key.
Replay: should contain a timestamp and the global scope IPv6 address of the server.
The use of TLS 1.3 and the ESNI extension provides robust defenses against attacks. In particular, Private Discovery benefits from the defenses against dictionary attacks and replay attacks built in the ESNI design. Protections against a residual DOS attack is discussed in Section 5.1.
The privacy of the discovery relies on keeping the discovery key of the service secret. The consequences and partial mitigation of leaking the discovery key are discussed in Section 5.2.
Compromising of the server's private discovery key will allow an attacker to break the privacy of the discovery, as discussed in Section 5.3.
Attackers may try to disrupt a private discovery handshake by sending a spoofed Server Hello (DTLS) or a spoofed Server Initial packet (QUIC). The client will reject these attempts after noticing that the encrypted extensions do not include a proper ESNI extension, containing the expected copy of the ESNI nonce.
Attackers will not succeed spoofing the server, but they could succeed in denying the connection if the fake response arrives before the response from the actual server, and if the implementation just gave up the attempt after failing to validate the first response that it received.
To defend against this attack, implementations SHOULD keep listening for responses and attempting validation until they receive at least one valid response from the expected server.
The Discovery Key is known by all the authorized clients. If one of these clients is compromised, the privacy of the server will be compromised: attackers will be able to spoof the authorized client and discover whether the server is present on a local network. However, the leak can only be exploited in an active attack: the attacker must actively set up a connection with the target server.
The attack is mitigated when the server migrates to a different discovery key and restricts the availability of that key to non- compromised clients.
Exploiting a compromised discovery key normally requires that the attacker is present on the same link as the target. Attackers might try to work around that limitation by sending unicast packet targeted at plausible server locations. Servers participating in private discovery MUST NOT accept discovery requests arriving from off-link sources.
The private component of the asymmetric key pair used for discovery MUST be kept secret by the server. If it is compromised, attackers can process discovery requests and verify that they can be decrypted with the server's private discovery key. They could also process logs of old discovery attempts.
The design provides two mitigations against the consequences of this failure:
o The discovery requests do not uniquely identify the client, and the attacker will only know that an attempt came from one of the authorized clients.
o The actual communications are protected by TLS, and inherit the forward secrecy properties of TLS 1.3.
[[TODO: consider specifying a way to rotate the discovery key, so as to mitigate the lack of forward secrecy. Maybe add that to ESNI. ]]
Suppose that an attacker has identified a client, and is capable of recording the multicast messages from that client. The attacker can then replay the message, triggering a response from the target server if present on the network.
The attacker will not be able to actually establish a connection with the server -- the TSL and ESNI designs protect against that. But it will be able to find out that the same server that responded to the client before responds now, which is a way to track the server.
The attacker can mount two variations of the attack: replay over time, and replay at different locations. In the current design, the main protection against that attack is the implementation of a "discovery window", so that servers only listen to multicast requests when they are "ready to be discovered".
[[TODO: consider adding a time stamp in an extension to ESNI.]]
[[TODO: consider adding the IPv6 address of the sender in an extension to ESNI.]]
[[TODO: special consideration for server arrival announce.]]
IANA is required to allocate the IPv6 multicast address FF02::<TBD> for use as "Private Discovery Multicast Address" described in this document.
**RFC Editor's Note:** Please remove this section prior to publication of a final version of this document.
Early experiments MAY use the address FF02::60DB:F6C5. This address is marked in the IANA registry as unassigned.
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The Constrained RESTful Environments (CoRE) working group aims at realizing the [REST] architecture in a suitable form for the most constrained devices (e.g. 8-bit microcontrollers with limited RAM and ROM) and networks (e.g. 6LoWPAN [RFC4944]). CoRE is aimed at machine-to-machine (M2M) applications such as smart energy and building automation. The main deliverable of CoRE is the Constrained Application Protocol (CoAP) specification [RFC7252].
CoRE Link Format [RFC6690] is intended to support fine-grained discovery of hosted resources, their attributes, and possibly other related resources. Automated dynamic discovery of resources hosted by a constrained server is critical in M2M applications, where human intervention is minimal and static configurations result in brittleness.
DNS-Based Service Discovery (DNS-SD) [RFC6763] supports wide-area search for instances of a given service type (i.e. servers that support a particular application protocol stack). A service instance consists of a server's name, IP address, and port number plus additional meta-data about the server. This data may extend to support multi-function devices, where multiple services are available at the same endpoint. The result of the discovery process may include a path to a resource representing the entry point to each function's RESTful service interface and possibly a link to a formal description of that interface (e.g. a JSON Hyper-Schema document [I-D.handrews-json-schema-hyperschema]).
Resource and service discovery are complementary in the case of large networks, where the latter can facilitate scaling. This document defines a mapping between CoRE Link Format attributes and DNS-Based Service Discovery records that permits discovery of CoAP services by either method. It also addresses the CoRE charter goal to interoperate with DNS-SD.
The primary use case for mapping between resource and service discovery is to support heterogeneous HTTP/CoAP environments where, for example, HTTP clients may discover and communicate with CoAP servers that are behind a "cross proxy" [RFC8075].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. The term "byte" is used in its now conventional sense as a synonym for "octet".
This specification requires readers to be familiar with all the terms and concepts that are discussed in [RFC6690] and [RFC8288]. Readers should also be familiar with the terms and concepts discussed in [RFC7252].
This specification also incorporates the terminology of [I-D.ietf-core-resource-directory].
In particular, the following terms are used frequently:
Endpoint: a web server associated with a specific IP address and port; thus a physical device may host one or more endpoints. Endpoints may also act as clients.
Link: Web Linking [RFC8288] defines a Web Link (link) as a typed connection between two resources, comprised of:
o a link context,
o a link relation type (see Section 2.1 of [RFC8288],
o a link target, and
o optionally, target attributes (see Section 2.2 of [RFC8288]).
A link can be viewed as a statement of the form "link context has a link relation type resource at link target, which (optionally) has target attributes", where link target and context are typically Universal Resource Identifiers (URIs) [RFC3986]. For example, "https://www.example.com/" has a "canonical" resource at "https://example.com", which has a "type" of "text/html".
The main function of Resource Discovery is to return links to the resources hosted by a server, complemented by attributes about those resources and additional link relations. In CoRE this collection of links and attributes is itself a resource (in contrast to HTTP, where headers delivered with a specific resource describe its attributes).
Resource Discovery can be performed either unicast or multicast. When a server's IP address is already known, either a priori or resolved via the Domain Name System (DNS) [RFC1034][RFC1035], unicast discovery is performed in order to locate the entry point to the resource of interest. This is performed using a GET to "/.well- known/core" on the server, which returns a payload in the CoRE Link Format [RFC6690]. A client would then match the appropriate Resource Type, Interface Description, and possible media type [RFC2045] for its application. These attributes may also be included in the query string in order to filter the number of links returned in a response.
Multicast Resource Discovery is useful when a client needs to locate a resource within a limited scope, and that scope supports IP multicast. A GET request to the appropriate multicast address is made for "/.well-known/core". In order to limit the number and size of responses, a query string is recommended with the known attributes. Typically, a resource would be discovered based on its Resource Type and/or Interface Description, along with possible application-specific attributes.
In many M2M scenarios, direct discovery of resources is not practical due to sleeping nodes, limited bandwidth, or networks where multicast traffic is inefficient. These problems can be solved by deploying a network element called a Resource Directory (RD), which hosts descriptions of resources that originate on other endpoints and allows indirect lookups to be performed for those resources.
The Resource Directory implements a set of REST interfaces for endpoints to register and maintain collections of links, called Resource Directory registrations. [I-D.ietf-core-resource-directory] specifies the web interfaces that an RD supports for endpoints to discover the RD and to register, maintain, lookup and remove resource descriptions; for the RD to validate entries; and for clients to lookup resources from the RD.
DNS-Based Service Discovery (DNS-SD) defines a conventional method of naming and configuring DNS PTR, SRV, and TXT resource records to facilitate discovery of services (such as CoAP servers in a subdomain) using the existing DNS infrastructure. This section gives a brief overview of DNS-SD; for a detailed specification see [RFC6763].
DNS-SD Service Names are limited to 255 bytes and are of the form:
Service Name = <Instance>.<ServiceType>.<Domain>
The Service Name identifies a SRV/TXT resource record (RR) pair. The SRV RR specifies the hostname and port of an endpoint. The TXT RR provides additional information in the form of key/value pairs. DNS- Based Service Discovery is accomplished by sending a DNS request for PTR records with the name <ServiceType>.<Domain>, which will return a list of zero or more Service Names.
The <Domain> part of the Service Name is identical to the global (DNS subdomain) part of the authority in URIs [RFC3986] that identify the resources on an individual server or group of servers.
The <ServiceType> part is generally composed of two labels. The first label of the pair is the application protocol name [RFC6335] preceded by an underscore character. For example, an organization such as the Open Connectivity Foundation [OCF] that specifies Resource Types [RFC6335] might register application protocol names beginning with "oic", which all servers that advertise OCF resources would use as part of their ServiceType. The second label indicates the transport protocol binding and is typically "_udp" for CoAP services.
The default <Instance> part of the Service Name SHOULD be set to a default value at the factory and MAY be modified during the commissioning process. It MUST uniquely identify an instance of <ServiceType> within a <Domain>. Taken together, these three elements comprise a unique name for an SRV/TXT record pair within the DNS subdomain.
The granularity of a Service Name MAY be that of a host or group, or it might represent a particular resource within a CoAP server. The SRV record contains the host name (AAAA record name) and port of the endpoint, while protocol is part of the Service Name. In the case where a Service Name identifies a particular resource, the path part of the URI must be carried in a corresponding TXT record.
A DNS TXT record is in practice limited to a few hundred bytes in length, which is indicated in the resource record header in the DNS response message (See section 6 of [RFC6763]). The data consist of one or more strings comprising a key/value pair. By convention, the first pair is txtver=<number> (to support different versions of a service description). Each string is formatted as a single length byte followed by 0-255 bytes of text. An example string is:
When using the CoRE Link Format to describe resources being discovered by or posted to a resource directory service, additional information about those resources is often useful. This specification defines the following new attributes for use in the CoRE Link Format [RFC6690] to enable the data-driven mappings described in Section 3:
The Export "exp" attribute is used as a flag to indicate that a link description MAY be exported from a resource directory to external directories.
The CoRE Link Format is used for many purposes between CoAP endpoints. Some are useful mainly locally; for example checking the observability of a resource before accessing it, determining the size of a resource, or traversing dynamic resource structures. However, other links are very useful to be exported to other directories, for example the entry point resource to a functional service. This attribute MAY be used as a query parameter in the RD Lookup Function Set defined in Section 7 of [I-D.ietf-core-resource-directory].
The Resource Instance "ins=" attribute is an identifier for this resource, which makes it possible to distinguish it from other similar resources in a Resource Directory. This attribute specifies the value to be used for the <Instance> portion of an exported DNS-SD Service Name (see Section 1.4), and SHOULD be unique across resources with the same Resource Type "rt=" attribute in the domain in which it is used.
A Resource Instance SHOULD be a descriptive human readable string like "Ceiling Light, Room 3". This attribute MUST NOT be more than 63 bytes in length. The resource identifier attribute MUST NOT appear more than once in a link description. This attribute MAY be used as a query parameter in the RD Lookup Function Set defined in Section 7 of [I-D.ietf-core-resource-directory].
The Service Type instance "st=" attribute specifies the value to be used for the <ServiceType> portion of an exported DNS-SD Service Name (see Section 1.4). This attribute MUST NOT be more than 15 bytes in length (see [RFC6335], Section 5.1) and MUST be present in the IANA Service Name registry [st].
The Resource Instance "ins=" attribute maps directly to the <Instance> part of a DNS-SD Service Name. It is stored directly in the DNS as a single DNS label of canonical precomposed UTF-8 [RFC3629] "Net-Unicode" (Unicode Normalization Form C) [RFC5198] text. However, if the "ins=" attribute is chosen to match the DNS host name of a service, it SHOULD use the syntax defined in Section 3.5 of [RFC1034] and Section 2.1 of [RFC1123].
The <Instance> part of the name of a service being offered on the network SHOULD be configurable by the user setting up the service, so that he or she may give it an informative name. However, the device or service SHOULD NOT require the user to configure a name before it can be used. A sensible choice of default name can allow the device or service to be accessed in many cases without any manual configuration at all (see Appendix D of [RFC6763]).
DNS labels are limited to 63 bytes in length and the entire Service Name may not exceed 255 bytes.
The Service Type "st=" attribute maps directly to the <ServiceType> part of a DNS-SD Service Name.
In practice, the ServiceType should unambiguously identify interoperable devices. It is up to individual SDOs to specify how to represent their registered Resource Type "rt=" values as registered application protocol names according to [RFC6335]. The application name is then used as the value of the resource "st=" attribute.
The resulting application protocol name MUST be composed of at least a single Net-Unicode text string, without underscore '_' or period '.' and limited to 15 bytes in length (see Section 5.1 of [RFC6335]). This string is mapped to the DNS-SD <ServiceType> by prepending an underscore and appending a period followed by the "_udp" label. For example, rt="oic.d.light" might correspond to the registered application protocol name st="oic-d-light" and would be mapped into Service Type "_oic-d-light._udp".
The resulting string is used to form labels for DNS-SD records which are stored directly in the DNS.
TBD: A method must be specified to determine which DNS zone the CoAP service description should be exported to. See, for example, Section 11 in [RFC6763] and Section 2 in [I-D.sctl-service-registration].
DNS-SD key/value pairs may be derived from CoRE Link Format information and exported as key=value strings in a DNS-SD TXT record (See Section 6.3 of [RFC6763]).
The resource <URI> is exported as key/value pair "path=<URI>".
The Interface Description "if=" attribute is exported as key/value pair "if=<Interface Description>".
The DNS TXT record can be further populated by importing any other resource description attributes as they share the same key=value format specified in Section 6 of [RFC6763].
Assuming the ability to query a Resource Directory or multicast a GET (?exp) over the local link, CoAP resource discovery may be used to populate the DNS-SD database in an automated fashion. CoAP resource descriptions (links) can be exported to DNS-SD for exposure to service discovery by using the Resource Instance attribute as the basis for a unique Service Name, composed with the Service Type attribute as the <ServiceType>, and registered in the appropriate <Domain>. The agent responsible for exporting records to the DNS zone file SHOULD be authenticated to the DNS server. The following example, using the example lookup location /rd-lookup, shows an agent discovering a resource to be exported:
Req: GET /rd-lookup/res?exp
The agent subsequently registers the following DNS-SD RRs, assuming a derived DNS zone name "office.example.com":
This specification defines new parameters for the registry "RD Parameters" provided under "CoRE Parameters" (TBD).
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While DNS-SD over mDNS significantly improves the convenience of network configuration, parts of the published information may seriously breach the users' privacy. Currently discussed privacy extensions either are not efficient in terms of multicast messages sent, reduce privacy and complicate key revocation by introducing an 1:m pairing system, or use trial encryptions which are inefficient in terms of necessary computational power.
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DNS-SD [RFC6763] over mDNS [RFC6762] enables zero-configuration service discovery in local networks. While it significantly improves the convenience of network configuration, parts of the published information may seriously breach the users' privacy. These privacy issues and potential solutions are discussed in [KW14a], [KW14b], and [K17].
[[TODO]]
This document proposes leveraging Bloomfilters to significantly reduce the number of multicast (public) messages for a DNS-SD privacy extension like [I-D.ietf-dnssd-privacy], which is based on an 1:1 pairing mechanism (e.g. [I-D.ietf-dnssd-pairing]).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
Instead of transmitting a lot of discovery messages containing HASH(<nonce>|<pairing key>), sending a single discovery message containing a Bloomfilter over the respective hashes will significantly reduce the number of necessary discovery messages.
False positives are not a problem. They will only cause an additional pair of unicast messages.
This section provides an overview over Bloomfilter-based hinting, illustrated by various scenarios where Alice searches for service instances of type _type and Bob offers such an instance. This type could be a _psds service instance for a two-stage discovery system, or any other type for a one-stage discovery system.
In the following, [bf_1],...,[bf_n] are Bloomfilters whose construction is described in Section 3.2. As we can store at least 25 hints in one Bloomfilter with a very low false positive rate (see Section 3.1), n is expected to be very low.
If a pairing exists:
Only the first two messages are multicast (public).
The encrypted message SHOULD be padded in such a way that each answer message has the same length, so that answers from the server are indistinguishable from randomly selected bits for an unpaired device.
For checking a hint, Alice pre-calculates a list of HASH(derive(secret)||nonce) for all her pairings per time interval, and checks if any of these are in the Bloomfilter. This is even more efficient than checking whether n received hashes are in a pre- calculated hash table as described in [I-D.ietf-dnssd-privacy].
If no pairing exists, and the hint is not false positive:
In this case, a lot of messages are saved, as a severely compressed version (1:25) of the hints was sufficient for Alice to realize that this service instance was not meant for her.
If no pairing exists, and the hint is a false positive:
decryption failed
In the case of a false positive, only a pair of additional multicast messages and the corresponding cryptographic operations are needed. With a false positive rate of 1:16000 (see Section 3.1), this effect is negligible.
This case also applies to an attacker trying to deceive Bob.
[[TODO: Show a diagram of the message flow for direct resolving.]]
As specified in [RFC6763], the maximum length of a service instance name is 63 bytes. As DNS labels are allowed to contain binary data, this allows a 504 bit wide Bloomfilter.
Using classical Bloomfilters [[we could discuss more efficient alternatives]] setting the maximum hints per Bloomfilter to 25 results in a desirable false positive rate of 1 in 16000. This means, using the proposed Bloomfilter-based hinting method, the necessary multicast (public) discovery messages can be reduced by factor 25 at the cost of one additional set of messages for every 16000 discovery messages. Further, the server needs additional computational power for constructing the bloomfilter. However, given the efficiently of Bloomfilter construction, this is negligible. The difference in needed computational power on the client is negligible as well.
[[TODO: elaborate]]
The Bloomfilters, [bf_1],...,[bf_n], in the protocol description above, are constructed as follows:
o Initialize bf_1 as a 504 bit wide Bloomfilter.
o For each paired client p, put an identifier of the form HASH(derive(secret_p)||nonce) into a Bloomfilter bf_1. The nonce is constructed as described in Section 3.4 of [I-D.ietf-dnssd-privacy].
o If there are 25 elements in the Bloomfilter, start a new Bloomfilter bf_{i+1} and repeat from step 2.
o Use the Bloomfilters bf_1,...,bf_n as service instance names of service instances of type _type.
[[TODO]]
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Multicast DNS is used today for link-local service discovery. While this has worked reasonably well on the local link, current deployment reveals two problems. First, mDNS wasn't designed to traverse across multi-subnet campus networks. Second, IP multicast doesn't work across all link types and can be problematic on 802.11 Wifi networks. Therefore, a solution is desired to contain legacy multicast DNS service discovery and transition to a unicast DNS service discovery model. By mapping the current mDNS discovered services into regular authoritative unicast DNS servers, clients from any IP subnet can make unicast queries through normal unicast DNS resolvers.
There are many ways to map services discovered using multicast DNS into the unicast namespace. This document describes a way to do the mapping using a proxy that sends DNS UPDATE messages [RFC2136] directly to an authoritative unicast DNS server. While it is possible for each host providing a service to send it's own DNS UPDATE, key management has prevented widespread deployment of DNS UPDATEs across a domain. By having a limited number of proxies sitting on one or more IP subnets, it is possible to provide secure DNS updates at a manageable scale. Future work to automate secure DNS UPDATEs on a larger scale is needed.
This document will explain how services on each .local domain will be mapped into the unicast DNS namespace and how unicast clients will discover these services. It is important to note that no changes are required in either the clients, DNS authoritative servers, or DNS resolver infrastructure. In addition, while the Update proxy is a new logical concept, it requires no new protocols to be defined and can be built using existing DNS libraries.
An Update proxy is an ideal service to run on routers and/or switches to map local services into a larger network infrastructure.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. These words may also appear in this document in lower case as plain English words, absent their normative meanings.
Each .local domain which logically maps to an IP subnet is modeled as a separate subdomain in the unicast DNS hierarchy. Each of these subdomains must be browsable (respond to PTR queries for "b._dns- sd._udp.<subdomain>."). See Section 11 of [RFC6763] for more details about browsing. In the context of the Update proxy, these subdomains are typically special use subdomains for mDNS mappings.
The browseable subdomain label is prepended to the domain name and separated by a period. See [RFC7719] for more information on subdomains and labels. It is not important that the label be human readable or have organizational significance. End users will not be interacting with these labels. The main requirement is that they be unique within the domain for each IP subnet. Subdomain labels can be obtained by the proxy in several ways. The following methods should be attempted in order to assure consistency among redundant proxies:
1. address-derived domain enumeration through local resolver
The proxy issues a PTR query for the registration or browse domains based on the IP subnet. Separate queries are performed for IPv4 and IPv6 on the same link since they are different IP subnets. Since the Update proxy will be registering services with DNS UPDATE, it should begin querying for registration domains and fallback to browse domains if no registration domains are configured.
As an example, suppose a proxy was connected to IPv4 subnet "203.0.113.0/24". In order to determine if there was a subdomain name for this subnet, the base domain name to query would be derived as "0.113.0.203.in-addr.arpa." The proxy would issue a PTR query for the following names in order to find the subdomain for the IP subnet:
"dr._dns-sd._udp.0.113.0.203.in-addr.arpa." "r._dns-sd._udp.0.113.0.203.in-addr.arpa." "db._dns-sd._udp.0.113.0.203.in-addr.arpa." "b._dns-sd._udp.0.113.0.203.in-addr.arpa." "lb._dns-sd._udp.0.113.0.203.in-addr.arpa."
The first response with an answer should be the subdomain name including the domain name for the network and further queries through this list are not needed. If multiple answers are returned in the same response, any one of the answers can be used but the proxy should only use a single subdomain name for the IP subnet.
The Update proxy should periodically rediscover the subdomain name at approximately 5 minute intervals for each IP subnet adding appropriate random jitter across IP subnets so as to prevent synchronization.
2. proxy local configuration override
If no answer is returned, the proxy may have local configuration containing a subdomain name for the network. If so, this subdomain should be used.
3. algorithmic subdomain label generation
If no local configuration is present for the IP subnet, the proxy may generate a unique label and use that for the subdomain by appending a common domain name. One such algorithm is to take the network form of an IPv4 subnet without a prefix length (host portion all zeros) and convert it to a hexadecimal string. This will give a 8 character unique string to use as a subdomain label. For the example above, this label would be "cb007100".
In the cases where through either local configuration or algorithmic generation of subdomain names, a subdomain name is known by the proxy but cannot be address derived through a PTR query, the Update proxy SHOULD register the appropriate address-derived enumeration records through an UPDATE to the zone master. If the IP subnet is removed or becomes inactive on the Update proxy, the proxy MUST attempt to remove these records.
The base domain name to use for each subdomain also has to be discovered on a per IP subnet basis. In most cases, the domain name will be the same for all IP subnets because they are all contained in a single administrative domain. However, this is not required and a proxy administrator may need to span multiple administrative boundaries requiring different domain names on different IP subnets (and therefore, subdomains).
There is not a direct query to discover a separate domain name but the domain name is included with the subdomain in the response to the PTR query above in Section 3.1. If the PTR query returns an empty response, then the domain name can be obtained from local proxy configuration and if no domain name is specified there, the default domain for the host should be used.
Fortunately, clients performing service discovery require no changes in order to work with the Update proxy. Existing clients already support wide-area bonjour which specifies how to query search domains and subdomains for services. See section 11 of [RFC6763].
However, in order for clients to discover the subdomain for each IP subnet, the subdomain MUST be browseable and a browse record for the domain must enumerate all of the subdomains. If the domain records do not exist, the Update proxy MUST create them in the domain and MUST ensure each subdomain is browseable.
In the future, authoritative unicast DNS servers may add support for DNS Push Notifications [I-D.ietf-dnssd-push] which would allow clients to maintain long lived subscriptions to services. Clients may also wish to add support for this feature to provide an efficient alternative to polling.
Since no new protocols are defined, this document mostly describes the expected behavior of the Update proxy and how it uses existing protocols to achieve multi IP subnet service discovery. The behavior is mostly intuitive but is described to ensure compatibility and completeness.
The Update proxy should listen to mDNS service announcements (responses) on all interfaces it is proxying for. Multiple Update proxies can be active on the same IP subnet at the same time. See [RFC6762] for more information on multicast DNS.
As specified in Section 8.3 of [RFC6762], service announcements are sent multiple times for redundancy. However, there is no need to send duplicate UPDATE messages to the authoritative unicast DNS server. Therefore, the Update proxy should cache service announcements and only send DNS UPDATE messages when needed.
As described in Section 8.4 of [RFC6762], a host may send "goodbye" announcements by setting the TTL to 0. In this case, the record MUST be removed from the cache or otherwise marked as expired and a DNS UPDATE should be sent to the authoritative unicast DNS server removing the record.
The Update proxy MUST also remove/expire old cache entries and remove the records from the authoritative unicast DNS server when the cache- flush bit is set on new announcements as described in Section 10.2 of [RFC6762].
A host providing a service may automatically refresh the TTL in the announcement from time to time keeping the service valid based on subsequent multicast queries it receives. However, if no mDNS clients are requesting the particular service for the length of the TTL value, the service announcement could timeout naturally. In order to keep accurate information regarding all of the services on the IP subnet, the Update proxy SHOULD send a unicast PTR query for the service name directly to the host announcing the service. This query should be sent at a random time between 5 and 10 seconds before the TTL value indicates the announcement will expire.
As described in Section 11 of [RFC6762], the Update proxy should use an IP source address of the IP subnet of the interface it is transmitting over and that is on the same IP subnet as the service provider. It is also permissible to use a link-local IP address in the IPv6 case as long as the service itself is available on an IPv6 address that is reachable from outside the local link.
In order for the Update proxy to discover as many services available on each IP subnet as possible, it should periodically send a PTR multicast query for "_services._dns-sd._udp.local." on each subnet. The unicast response bit SHOULD be set in the query in order to force unicast responses to the Update proxy. As PTR responses are received, The Update proxy can then send Service Instance Enumeration PTR queries (also with the unicast response bit set) for each service.
This was not the intended behavior of mDNS since local clients would just ask dynamically when they needed to know all of the providers of a service name but keeping this information up to date in the authoritative server provides benefits to remote clients such as faster response times and ability to use DNSSEC validation that were not previously possible with multicast DNS. These benefits are provided at the additional cost of a slight increase in network activity and processing time by the hosts announcing services. However, if the Update proxy uses unicast to query the service providers directly, other clients are not affected by these refresh queries and do not have to turn their radios on for queries/responses that they have no interest in.
While Section 8.2 of [RFC6762] recommends all potential answers be included in mDNS probe queries, because these records haven't gone through conflict resolution, they should not be regarded as announcements of services. Therefore, an Update proxy MUST NOT rely on information in any section of DNS query messages.
In the IPv6 case, the source address of the announcements is a link- local IPv6 address that will probably be different than the IP subnet that the service is being provided on. However, it is certainly possible that link-local addressing is used with IPv4 as well. This is not as common but exists in a zero-conf environment where no IPv4 addresses are assigned via DHCP or statically and the hosts revert to link-local IPv4 addresses ("169.254/16"), see [RFC3927].
If the service SRV target resolves to only a link-local address, then the service is not eligible to be advertised outside of the link and shouldn't be sent to the authoritative unicast DNS server by the Update proxy.
In general, the Update proxy needs to ensure that the service is reachable outside of the link it is announced on before sending an UPDATE to the authoritative server for the subdomain.
Announced services may be available on IPv4, IPv6, or both on the same link. If both IPv4 A records [RFC1035] and IPv6 AAAA records [RFC3596] are published for an SRV target [RFC2782] name, the administrator should provide the service over both protocols.
In some cases, this won't be possible. This will not incur any extra delays if clients attempt connections over both IPv4 and IPv6 protocols simultaneously but if one protocol is preferred over another, delays may occur.
Multiple IP subnets on the same link is just a more general case of IPv4 and IPv6 on the same link. When multiple IP subnets exist for the same protocol on the same link, they appear as separate interfaces to the Update proxy and require a separate subdomain name just as IPv4 and IPv6 do.
This is required for a client on one logical IP subnet of an interface to communicate with a service provided by a host on a different IP subnet of the same link.
If a SRV target resolves to addresses on multiple logical IP subnets of the same interface, the service can be included in multiple subdomains on the appropriate server(s) for those subdomains.
Providing redundant Update proxies for the same IP subnet can be easily achieved by virtue of the DNS UPDATE protocol. None of the redundant proxies needs to be aware of any of the other redundant proxies on an IP subnet.
Alternatives for ways to format DNS UPDATE messages are defined below in Section 5.2.2 as to possible uses of the Prerequisite section for use with redundant Update proxies.
Alternatively, a proxy MAY choose to hibernate when it discovers another active Update proxy as described below in Section 7.
In the process of registering services with an authoritative unicast DNS server, the proxy can perform filtering and translation on the dynamically discovered services.
As an example, suppose legacy printers are discovered that do not support the current AirPrint feature set. The proxy can alter the TXT record associated with the printer to add the necessary keys as well as any additional service records to allow AirPrint clients to discover and use the legacy printer.
As another example, suppose there is a printer that is behind a locked door where students do not have access. In this case, the printer's resource records MAY be filtered by the proxy so it does not show up during a browse operation on the subnet.
An Update proxy could have rulesets that define the translations it performs on the fly as is learns about matching services.
While DNS UPDATE is well supported in authoritative DNS servers, it typically requires some form of authentication for the server to accept the update. The most common form is TSIG [RFC2845],[RFC4635] which is based on a shared secret and a one way hash over the contents of the record.
The Update proxy doesn't dictate a method of privacy or authentication for communication to an authoritative DNS UPDATE server. However, implementations SHOULD ensure some form of authentication exists and even refuse to operate in an environment without authentication.
The Update proxy should attempt to locate the authoritative DNS UPDATE server for each subdomain in the following manner:
1. An Update proxy should first send an SRV query for "_dns-update- tls._tcp.<subdomain>." If an answer is received, the target and port number will provide the parameters needed for where to send updates. The proxy can also try the TCP and UDP variants of this service name "_dns-update._tcp" and "_dns-update._udp" if the TLS variant does not exist. If no TLS variant is found, the proxy can still attempt a TLS connection on the SRV port of the TCP or UDP variant. The proxy can also attempt to connect to the target on the reserved port (853) for DNS over TLS as defined in Section 3.1 of [RFC7858].
2. The Update proxy can make a similar query for the same service in the domain if a subdomain specific answer isn't returned: "_dns- update-tls._tcp.<domain>." as well as the TCP and UDP variants.
3. If no matching SRV records are returned, the Update proxy SHOULD consult local configuration policy to see if an DNS UPDATE server has been configured.
4. If no local configuration exists for a DNS UPDATE server, the Update proxy can query the SOA records for the subdomain and try sending updates to the MNAME master server configured for the subdomain. Again, using TLS/TCP is encouraged if available.
5. If DNS UPDATEs are not accepted by the server(s) represented by the SOA MNAME master server, then the Update proxy can assume that DNS UPDATEs are not available for the subdomain and listening to mDNS announcements on the IP subnet would be unproductive.
A DNS UPDATE message contains four sections as specified in [RFC2136].
When an Update proxy is adding or removing services to/from a subdomain, the zone section MUST contain a single zone (ZOCOUNT = 1) and the ZNAME MUST be the subdomain being updated. ZTYPE MUST be SOA and ZCLASS MUST be the same class as the records being added/removed. DNS UPDATEs to multiple subdomains MUST be performed in separate DNS UPDATE messages with one subdomain per message.
If a new subdomain is being created for a domain by the Update proxy, the subdomain's parent zone should be used for the ZNAME. ZTYPE MUST be SOA and ZCLASS MUST be the same class as the subdomain's NS record CLASS that is going to be added. Similarly for removing a subdomain.
It is not necessary for the Update proxy to include any prerequisites when adding/removing records. However, if the Update proxy wants to have better error handling, it can add prerequisites to ensure the state of the authoritative server is consistent.
Given that multiple Update proxies may exist for the same IP subnet (and subdomain), it is possible that similar records may be added or deleted to/from the authoritative server before the Update proxy's own messages are processed. This is not to be considered a fatal error and may happen during normal operation of redundant proxies. The use of prerequisite can be used to identify these cases if desired.
The Update section contains all of the records that the proxy wants to be added/removed in a single subdomain. If TIMEOUT resource records are being manually added to the authoritative server, they MUST be included as regular resource records in the Update section. See Section 6.3 below for more information.
The Update proxy may include additional data as needed. Instances where additional data might be included are:
1. When creating a subdomain by adding new NS records to a domain, A or AAAA glue records MAY be needed. Though, in most cases, the same authoritative server name / IP addresses should be used as in the parent domain.
2. If including a lease lifetime as discussed below in Section 6.3, the OPT recording containing the Update lease will be sent in the additional data section.
3. The TSIG cryptographic signature of the DNS UPDATE message should be the last resource record in the additional data section.
The Update proxy will rely on the authoritative server to update the SERIAL number for the zone after each update is completed.
An authoritative unicast DNS server MAY support DNS Push notifications [I-D.ietf-dnssd-push] for client queries in order to provide more timely and more efficient responses. While this is outside of the scope of the Update proxy, it is mentioned here for completeness.
With mDNS, the next domain name field in an NSEC record could not reference the next record in the zone because it was not possible to know all of the records in the zone a priori. By mapping all known records into a unicast subdomain, the NSEC next domain name field can contain the next known record as defined. As new services are discovered and UPDATEd in the authoritative unicast DNS server, the NSEC records can be kept up to date by the authoritative server.
The Update proxy will assume that DNS updates sent to zones with DNSSEC enabled will be updated as needed as specified in [RFC3007].
When the Update proxy sends an DNS UPDATE message to an authoritative unicast DNS server, it MAY include a lease lifetime to indicate how long the UPDATE server should keep the resource records active in the zone. This is different from the TTL which tells resolvers how long to keep the records in their cache. Lease lifetimes may be based on different origin data. For example, when an IP address is assigned to a host via DHCP, the DHCP server will provide a time period for which the address is assigned to the host.
There are several possibilities for how a DNS UPDATE server may limit the lifetime of records added via an update message.
1. The DNS update server MAY be configured to automatically delete the records after a certain fixed time period (such as 24 hours). This is a failsafe mechanism in case the origin of the record data goes offline and does not ever try to remove the records.
2. A lease lifetime can be communicated via an OPT record as defined in Dynamic DNS Update Leases [I-D.sekar-dns-ul]. This provides a timeout period for all of the records added in the update message and is controlled by the sender of the update. This is a work in progress and does not yet have widespread adoption among authoritative unicast DNS server software.
3. Individual DNS TIMEOUT resource records [I-D.pusateri-dnsop-update-timeout] can be added to the update message to indicate the timeout value for one or any number of the resource records contained in the update message. This is the most flexible but also does not have any adoption among authoritative unicast DNS server software. One advantage of the TIMEOUT resource records is that they are stored in the authoritative server like any other record and synchronized to secondary servers as well. Therefore, if the primary server were to restart or experience an extended failure, the lease lifetime would not be lost.
Note that it is possible to use both the Dynamic DNS Update leases to communicate the lease lifetime and for the authoritative unicast DNS server to create TIMEOUT resource records on demand to achieve the same result if the Update proxy does not include TIMEOUT resource records natively.
The design of the Update proxy is intended to work within the existing mDNS model and allow it to scale to multiple subnets using existing unicast DNS infrastructure. It is careful not to increase the amount of multicast traffic used for service discovery but it is also capable of providing a transition path to actually reduce multicast usage incrementally. Hosts have generally not been able to directly register their own services through DNS UPDATE because of the security scaling problem of shared passwords needed by TSIG.
By creating trusted infrastructure in the form of an Update proxy, services can now be registered through the Update proxy directly via unicast. This alleviates the need to advertise over mDNS at all.
Therefore, if we allow service providers to discover the Update proxy using either unicast or multicast queries, we can then perform all subsequent communication over unicast. This greatly reduces the multicast usage and the need for every host on the network to wake up and listen to multicast responses and periodic announcements.
In order to accomodate this transition, the Update proxy MAY announce and respond to PTR queries for the update proxy service using service name "_dns-updateproxy-tls._tcp.local." pointing to a local instance name. As host implementations are updated to locate an Update proxy, they can switch entirely to unicast for all of the services they provide. The SRV record for the instance name can provide a target name and port for which the service provider can connect directly using TLS and send unicast registrations for all of its services. The TXT record for the instance name can contain vendor specific information associated with the Update proxy if desired. There are no required keys in the TXT record and while the record MUST exist (see Section 6 of [RFC6763]), it can consist of a single zero length byte. Multiple announcements can be sent across a single TLS connection. There are no responses expected from the Update proxy after sending the announcements. However, Update proxies MUST only announce this service if they intend to provide a unicast interface for service providers on the local subnet.
Discovery of the Update proxy can also be entirely using unicast for service providers that prefer or are not multicast capable. The service provider would use address-derived domain enumeration as described in Section 3.1 to determine the subdomain name of the local link and then perform a normal unicast PTR query through the local resolver for "_dns-updateproxy-tls._tcp.<subdomain>." to find the Update proxy instance. In the case of redundant proxies, multiple PTR records with different instance names may exist. The SRV records priority and weight fields can be used to determine the preferred Update proxy.
Once these services are initially registered with the Update proxy, the proxy may occasionally sent unicast queries to confirm these services are still active. A 60 second interval with appropriate jitter is recommended for confirmation. If, in the meantime, the service is discontinued, the service provider SHOULD reconnect to the Update proxy and send "goodbye" announcements with TTL 0 as normally would be done with mDNS to expire the services as described in Section 8.4 of [RFC6762]. The Update proxy will not send any response to these "goodbye" announcements, therefore, the connection MUST be closed gracefully to ensure proper delivery.
When a secure DNS UPDATE is sent to an authoritative server, it should not be construed that this information is any more reliable than the original mDNS announcement was for which it was based. Care should always be taken when receiving mDNS announcements to ensure they are source IP address is one that belongs to an IP subnet on the received interface of the Update proxy. In addition, the TTL of the received link local announcement MUST be 1 to ensure it was not forwarded from a remote network.
Each Update proxy requires configuration of a shared secret for creation of the TSIG signature resource record contained as the last record in the UPDATE message.
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The Update Proxy defined in this document is an alternative to the Discovery Proxy [I-D.ietf-dnssd-hybrid] and the Discovery Relay [I-D.ietf-dnssd-mdns-relay]. This solution makes different trade- offs than the ones made by the Discovery Proxy which offer some advantages at a cost of increased state.
The main difference is that the Discovery Proxy builds the list of matching services on demand by querying over mDNS and collecting the announcements in response to client queries. Whereas the Update proxy tries to build a complete list of services by listening for all announcements, discovering and refreshing them, and then inserting them into subdomains using DNS UPDATE.
The main advantages of the Update proxy include limiting further propagation of IP multicast across the campus, providing a pathway to eliminate multicast entirely, faster response time to client queries, and the ability to provide DNSSEC signed security responses for client queries.
While the Discovery Proxy increases multicast queries and responses based on received unicast queries "O(n^2)", the Update proxy can reduce or eliminate mDNS traffic on the local links "O(1)".
Another key difference is that the Update proxy never becomes an authoritative unicast DNS server for the attached subdomain. It simply updates the existing authoritative server for the domain. Therefore, the administrator is free to use existing authoritative DNS server infrastructure.
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Because multicast can be inefficient and unreliable [Mcast], work is taking place to enable DNS-Based Service Discovery [RFC6763] to operate with less reliance on multicast [Roadmap]. One current target use case for this work is Thread [Thread] wireless mesh networking.
Thread wireless mesh networking uses IEEE 802.15.4 radios, which use little power, and are suitable for battery-powered devices. The Thread protocol organizes the network nodes into a mesh, typically with a Thread border router that connects the mesh to the home network. For the purposes of this document we will refer to the home network, be it Ethernet, or Wi-Fi, or both, or other similar technologies, simply as the home network. The home network forms a backbone to which one or more Thread mesh networks connect via Thread border routers.
Existing work describes how DNS-Based Service Discovery can be performed using unicast on such a network. Devices on the Thread mesh offering services use Service Registration Protocol [RegProt] to register their services at a Service Registration Server. Devices seeking to discover these services send unicast queries to the Service Registration Server using unicast DNS [RFC1034] [RFC1035] for single individual queries, and using DNS Push Notifications [Push] where ongoing change notification is required.
Certain configuration information is required for this to work. Devices on the Thread mesh offering services need to know what names to use when registering those services, and to what address they should send their service registrations. Devices seeking to discover these services need to know what names to use when constructing their queries, and to what address they should send those queries. In addition, IPv6 address prefixes need to be chosen and configured for both the home network and the Thread mesh network(s), and communicated, in order to facilitate unicast communication between clients and the services they have discovered.
For proof-of-concept experiments, the necessary information can be configured manually, and this has been done successfully. For deployment, we need to determine how the necessary information will be learned and configured automatically in real-world scenarios. The Thread wireless mesh protocol includes mechanisms to perform configuration tasks on the mesh, like electing a lead router, and communicating this information to devices on the Thread mesh. This existing mechanism can be extended fairly simply to facilitate the necessary Service Registration Protocol configuration tasks. The Service Registration Protocol [RegProt] specification document advocates that if a device offering a service has no information regarding the domain in which to register that service, it should use the special use domain name [RFC6761] "services.arpa" to indicate that the Service Registration Server should substitute a domain of its choice, and that same mechanism is recommended in this case.
On the home network side of the Thread border router, there are several possibilities. The necessary configuration tasks could be handled by the home network's main gateway, by a collection of Homenet routers using HNCP, or independently by the Thread border router.
The home network's main gateway could handle the necessary configuration tasks.
The main gateway could be responsible for selecting IPv6 address prefixes for each of the links in the network, and communicating that information to the relevant routers, perhaps using DHCPv6 prefix delegation.
The information about what domain name to use for service discovery can be communicated to client devices on the home network using DHCP or IPv6 router advertisement options. Currently this is done using the respective "DNS search list" options, though new options for this specific purpose could be defined in the future. If the user has a registered globally unique domain name for this purpose and the main gateway is configured with this information, then that domain name can be communicated to client devices. In the absence of a registered globally unique domain name the special-use domain name [RFC6761] "home.arpa" [RFC8375] should be used as a reasonable out- of-the-box default.
Similarly, the information about what DNS recursive resolver to use can be communicated to client devices on the home network using DHCP or IPv6 router advertisement options. If the main gateway configures its own address as the DNS recursive resolver for clients to use, it can ensure that operations using "home.arpa" are handled appropriately. Sending queries for names within "home.arpa" to public recursive resolvers on the Internet will not yield useful results, because names within "home.arpa" are not globally unique. They are unique only within the local network, and hence queries for those names need to be handled within the local network.
A complex home network with multiple links and multiple routers could be managed using HNCP. However, at this time, this remains a future possibility, since it is likely to be some time before HNCP is widely used.
The previous two scenarios assume that the home network's main gateway, or its HNCP mesh, has specific capabilities to configure and support the use of unicast DNS service discovery.
An alternative scenario is to consider the case where a Thread border router is added to an existing home network, which has no special mechanisms in place to support this operation.
The remainder of this document explores this scenario.
One possibility to keep in mind is that in this scenario, adding one or more Thread border routers to an existing home network that doesn't itself use HNCP, the Thread border router(s) themselves could use HNCP as the protocol to communicate between each other to coordinate their operation on the network.
This section explores the requirements for connecting a Thread mesh, via a Thread border router, to a typical home network. For the purposes of this document, it is assumed that the existing network infrastructure is fixed and cannot be changed. Changes or new functionality may be implemented as required in the Thread devices on the Thread mesh, in the Thread border router, or in the devices on the home network that will be communicating with the Thread devices. Since this document assumes no changes to the existing network infrastructure, it is necessary to state the assumptions about that existing network infrastructure.
We consider a typical home network to be a single multicast/broadcast domain. If there are multiple Ethernet switches or Wi-Fi access points, they are configured so that together they provide a single logical link. If there is a NAT gateway, it is at the network egress point. (A NAT gateway on the path between two devices on a home network makes communication between those two devices considerably more complicated, and this document does not address that case.)
In order to add a Thread mesh usefully to an existing home network, several things need to be accomplished. The goal is to accomplish these objectives without requiring changes to the existing infrastructure on that home network.
1. Delivery of unicast traffic in both directions, from home network to Thread mesh, and from Thread mesh to home network.
2. Enabling services offered by devices on the Thread mesh to be discovered by clients seeking those services.
3. Enabling services offered by devices on the home network to be discovered by clients on the Thread mesh seeking those services.
If HNCP were in use on the network, then Thread border routers could participate and use HNCP to manage their configuration.
In the absence of HNCP, Thread border routers need a way to self- configure, without assistance from the home network's existing infrastructure.
What is proposed is that Thread border routers select a 32-bit random number, and use that to construct an IPv6 ULA prefix for their connected mesh, which is very likely to be unique in that home. The Thread border router then advertises reachability to that IPv6 ULA prefix onto the home network using IPv6 Router Advertisements. In principle, this can be done independently of whatever other IPv6 prefixes, if any, are being advertised on the home network by the home network's existing main gateway. [It has been reported, however, that there are at least some client devices that do not properly handle receiving multiple independent IPv6 Router Advertisements like this, so some investigation and bug fixing may be required to make this work.]
In the case where there are multiple independent Thread border routers connected to the home network, serving separate Thread meshes, we want to avoid the situation where two different Thread border routers choose the same randomly-selected IPv6 ULA prefix. This can be achieved by having the Thread border routers listen for IPv6 Router Advertisements before selecting their IPv6 ULA prefix. If a Thread border router receives IPv6 Router Advertisements offering reachability to its IPv6 ULA prefix via a different path, then this indicates that an inadvertent duplication may have occurred, and the Thread border router should select a different IPv6 ULA prefix for its mesh.
To facilitate unicast discovery of services on the Thread mesh, four things need to be determined:
1. How a device on the Thread mesh, offering services, knows what parent domain name to use when registering services.
2. How that device knows to what address its service registrations should be sent (if the name does not fall under a registered globally unique domain name).
3. How a client device, on the Thread mesh or the home network, seeking services, knows what parent domain name to use querying to discover services.
4. How that device knows to what address its unicast service discovery queries should be sent (if the name does not fall under a registered globally unique domain name).
Devices on the Thread mesh should register services using the parent domain "services.arpa". This indicates that the Service Registration Server should automatically substitute an appropriate domain.
The Thread mesh management protocol can be used to configure devices on the Thread mesh with the address to which they should send their service registrations.
The Thread border router needs to communicate, to devices on the home network, how they can discover services on the Thread mesh.
This involves communicating the service discovery domain. In principle, this could be a registered globally unique domain name, it which case the normal DNS delegation mechanism using NS records allows the client to discover what server is authoritative for those names. In many cases though, the Thread border router will not have a registered globally unique domain name allocated. To provide out- of-the-box automatic operation, the Thread border router needs to be able to generate its own locally unique name to use. The special use domain name "local" is not suitable, because of its implied sematics that these names are resolved using link-local multicast DNS [RFC6762]. The special use domain name "home.arpa" is not suitable, because of its implied coordination via HNCP, and the home network's main gateway may not support HNCP [RFC8375]. To provide out-of-the- box automatic operation, this document proposes a new special use domain name "adhoc.arpa" for this purpose. By default a Thread border router will use the name "thread.adhoc.arpa". If this name is already in use on the home network, then a new unique name will be selected, such as "thread-2.adhoc.arpa".
The Thread border router needs to communicate the service discovery domain to peers on the home network. In the case that the service discovery domain falls under the "adhoc.arpa" name, the Thread border router also needs to communicate that queries for these names need to be sent to the Thread border router directly, not to the client's default DNS recursive resolver.
Three alternatives are being considered
1. Use link-local Multicast DNS queries and records to convey the service discovery domain, and optionally the address to which queries should be sent.
2. Define a new IPv6 router advertisement option to communicate the service discovery domain, and optionally the address to which queries should be sent.
3. Add this information to the Multiple Provisioning Domain Router Advertisement option [RFC7556] [MPvD].
One question to answer is whether the Multicast DNS records or IPv6 router advertisement options would directly convey the domain name to use for service discovery, or a base name used to derive domain enumeration queries of the form lb._dns-sd._udp.<domain> [RFC6763].
Another question is whether to use a single Multicast DNS record or IPv6 router advertisement option that communicates both the domain name and the address to use for queries, or a pair of records/ options, one carrying the name to use for service discovery, and a second, if necessary, associating an "adhoc.arpa" name with the address to use for those queries.
With the appropriate configuration methods defined, and implemented on client devices, client devices on the home network would discover additional domains to use for service discovery, and send appropriate service discovery queries to Thread border routers on the home network.
The same discovery domain, and optionally the address to which queries should be sent, is communicated to client devices on the Thread mesh using the Thread mesh management protocol.
To facilitate devices on the Thread mesh discovering services offered on the home network, advertised using Multicast DNS, a Discovery Proxy [DisProx] is implemented in the Thread border router.
As above in Section 2.2 the Thread mesh management protocol is used to communicate a discovery domain, and the address to which queries should be sent for that discovery domain, to client devices on the Thread mesh.
The address in this case is the address of the Thread border router. The discovery domain could be some generated unique name under "adhoc.arpa", or it could be some fixed special use domain name. The fixed name could be a simple fixed string like "lan.arpa", or it could be a special reserved name under "adhoc.arpa" such as "services.adhoc.arpa". The latter is probably preferred because it avoids having to request multiple special use domain names [RFC6761]. Alternatively, we could organize all the required special names such that they fall under a single reserved special use domain name "services.arpa."
When the Thread border router receives a query for a name under this discovery domain, it uses the Discovery Proxy mechanism [DisProx] to perform Multicast DNS queries on behalf of the client, returning the results to the client.
As an informational document, this document introduces no new Security Considerations of its own. The various referenced documents each describe their own relevant Security Considerations as appropriate.
As currently envisaged, this document may end up requesting a special use domain name [RFC6761]. If so, once the special properties are fully determined, this section will be populated with the appropriate text.
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DNS-Based Service Discovery (DNS-SD) [RFC6763] is a component of Zero Configuration Networking [RFC6760] [ZC] [Roadmap].
DNS-SD operates on a single network link (broadcast domain) using Multicast DNS [RFC6762]. DNS-SD can span multiple links using unicast DNS.
In the DNS-SD specification [RFC6763] section 11, "Discovery of Browsing and Registration Domains (Domain Enumeration)", describes how client devices are automatically configured with the appropriate unicast DNS domains in which to perform their service discovery queries. When used in conjunction with a Discovery Proxy [DisProx] this allows clients to discover services on remote links, even when the devices providing those services support only the basic Multicast DNS form of DNS-Based Service Discovery. A Discovery Broker is a companion technology that operates in conjunction with existing authoritative DNS servers (such as a Discovery Proxy [DisProx]) and existing clients performing service discovery using unicast DNS queries.
The following description of how a Discovery Broker works is illustrated using the example of a long rectangular office building. The building is large enough to have hundreds or even thousands of employees working there, the network is large enough that it would be impractical to operate it as a single link (a single broadcast domain, with a single IPv4 subnet or IPv6 network prefix).
Suppose, for this example, that the network is divided into twelve separate links, connected by routers. Each link has its own IPv6 network prefix. The division of the network into twelve sections of roughly equal size is somewhat arbitrary, and does not necessarily follow any physical boundaries in the building that are readily apparent to its inhabitants. Two people in adjacent offices on the same corridor may have Ethernet ports connected to different links. Indeed, two devices in the same office, connected to the company network using secure Wi-Fi, may inadvertently associate with different access points, which happen to be connected to different wired links with different IPv6 network prefixes.
If this network were operated the way most networks have historically been operated, it would use only Multicast DNS Service Discovery, and adjacent devices that happen to connect to different underlying links would be unable to discover each other. And this would not be a rare occurrence. Since this example building contains eleven invisible boundaries between the twelve different links, anyone close to one of those invisible boundaries will have a population of nearby devices that are not discoverable on the network, because they're on a different link. For example, a shared printer in a corridor outside one person's office may not be discoverable by the person in the very next office.
One path to solving this problem is as follows:
1. Install a Discovery Proxy [DisProx] on each of the twelve links.
2. Create twelve named subdomains, such as, "services1.example.com", "services2.example.com", "services3.example.com", and so on.
3. Delegate each named subdomain to the corresponding Discovery Proxy on that link.
4. Create entries in the 'ip6.arpa' reverse mapping zone directing clients on each link to perform service discovery queries in the appropriate named subdomains, as documented in section 11 of the DNS-SD specification [RFC6763].
In step 4 above, it might be tempting to add only a single record in each reverse mapping domain referencing the corresponding services subdomain. This would work, but it would only facilitate each client discovering the same services it could already discover using Multicast DNS [RFC6762]. In some cases even this is useful, such as when using Wi-Fi Access Points with multicast disabled for efficiency. In such cases this configuration would allow wireless clients to discover services on the wired network segment without having to use costly Wi-Fi multicast.
But for this example we want to achieve more than just equivalency with Multicast DNS.
In this example, each reverse mapping domain is populated with the name of its own services subdomain, plus its neighbors. The reverse mapping domain for the first link has two "lb._dns-sd._udp" PTR records, referencing "services1.example.com" and "services2.example.com". The second link references services1, services2, and services3. The third link references services2, services3, and services4. This continues along the building, until the last link, which references services11 and services12.
In this way a "sliding window" is created, where devices on each link are directed to look for services both on that link and on its two immediate neighbors. Depending on the physical and logical topologies of the building and its network, it may be appropriate to direct clients to query in more than three services subdomains. If the building were a ring instead of a linear rectangle, then the network topology would "wrap around", so that links 1 and 12 would be neighbors.
This solves the problem of being unable to discover a nearby device because it happens to be just the other side of one of the twelve arbitrary invisible network link boundaries.
For many cases this solution is adequate, but there is an issue to consider. In the example above, a client device on link 5 has TCP connections to three Discovery Proxies, on links 4, 5 and 6. In a more complex setup each client could have many more TCP connections to different Discovery Proxies.
Similarly, if there are a many clients, each Discovery Proxy could be required to handle thousands of simultaneous TCP connections from clients.
The solution to these two problems is the Discovery Broker.
The Discovery Broker is an intermediary between the client devices and the Discovery Proxies. It is a kind of multiplexing crossbar switch. It shields the clients from having to connect to multiple Discovery Proxies, and it shields the Discovery Proxies from having to accept connections from thousands of clients.
Each client needs only a single TCP connection to a single Discovery Broker, rather than multiple TCP connections directly to multiple Discovery Proxies. This eases the load on client devices, which may be mobile and battery-powered.
Each Discovery Proxy needs to support connections to at most a small number of Discovery Brokers. The burden of supporting thousands of clients is taken by the Discovery Broker, which can be a powerful server in a data center. This eases the load on the Discovery Proxy, which may be implemented in a device with limited RAM and CPU resources, like a Wi-Fi access point or IP router.
Recall that a Discovery Proxy [DisProx] is a special kind of authoritative DNS server [RFC1034] [RFC1035]. Externally it behaves like a traditional authoritative DNS server, except that instead of getting its zone data from a manually-administered zone file, it learns its zone data dynamically as a result of performing Multicast DNS queries on its local link.
A Discovery Broker is a similar concept, except that it learns its zone data dynamically as a result of performing *unicast* DNS queries. For example, a Discovery Broker could be configured so that the answer for "<something>.discovery5.example.com" is obtained by performing corresponding unicast DNS queries:
<something>.services4.example.com <something>.services5.example.com <something>.services6.example.com
and then returning the union of the results as the answer. The rdata of the returned answers is not rewritten or modified in any way by the Discovery Broker.
From the point of view of an authoritative DNS server such as a Discovery Proxy, the protocol a Discovery Broker uses to make requests of it is the exact same DNS protocol that any other client would use to make requests of it (which may be traditional one-shot DNS queries [RFC1034] [RFC1035] or long-lived DNS Push Notifications [Push]).
A Discovery Broker making requests is no different from any other client making requests. The fact that the Discovery Broker may be making a single request on behalf of thousands of clients making the same request, thereby shielding the Discovery Proxy from excessive traffic burden, is invisible to the Discovery Proxy.
This means that an authoritative DNS server such as a Discovery Proxy does not have to be aware that it is being queried by a Discovery Broker. In some scenarios a Discovery Proxy may be deployed with clients talking to it directly; in other scenarios the same Discovery Proxy product may be deployed with clients talking via a Discovery Broker. The Discovery Proxy simply answers queries as usual in both cases.
Similarly, from the point of view of a client, the protocol it uses to talk to a Discovery Broker is the exact same DNS protocol it uses to talk to a Discovery Proxy or any other authoritative DNS server.
This means that the client does not have to be aware that it is using a Discovery Broker. The client simply sends service discovery queries as usual, according to configuration it received from the network or otherwise, and receives answers as usual. A Discovery Broker may be employed to shield a Discovery Proxy from excessive traffic burden, but this is transparent to a client.
Another benefit for the client is that by having the Discovery Broker query multiple subdomains and aggregate the results, it saves the client from having to do multiple separate queries of its own.
In the example so far, we have focussed on facilitating discovery of devices and services that are physically nearby.
Another application of the Discovery Broker is to facilitate discovery of devices and services according to other logical relationships.
For example, it might be considered desirable for the company's two file servers to be discoverable company-wide, but for its many printers to only be discovered (by default) by devices on nearby network links.
As another example, company policy may block access to certain resources from Wi-Fi; in such cases it would make sense to implement consistent policies at the service discovery layer, to avoid the user frustration of services being discoverable on Wi-Fi that are not usable from Wi-Fi.
Such policies, and countless variations thereon, may be implemented in a Discovery Broker, limited only by the imagination of the vendor creating the Discovery Broker implementation.
Due to the Protocol Transparency property described above, multiple Discovery Brokers may be "stacked" in whatever combinations are useful. A Discovery Broker makes queries in exactly the same way a client would, and a Discovery Broker accepts queries in exactly the same way a Discovery Proxy (or other authoritative DNS server) would. This means that a Discovery Broker talking to another Discovery Broker is no different from client-to-broker or broker-to-proxy communication, or indeed, direct client-to-proxy communication. The arrows in the chart below are all instances of the same communication protocol.
client -> proxy
client -> broker -> proxy
client -> broker -> broker -> proxy
This makes it possible to combine Discovery Brokers with different functionality. A Discovery Broker performing physical aggregation could be used in conjunction with a Discovery Broker performing policy-based filtering, as illustrated below:
Discovery (or non-discovery) of services is not a substitute for suitable access control. Servers listening on open ports are generally discoverable via a brute-force port scan anyway; DNS-Based Service Discovery makes access to these services easier for legitimate users.
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This document specifies a mechanism for managing stateful DNS connections. DNS most commonly operates over a UDP transport, but it can also operate over streaming transports; the original DNS RFC specifies DNS-over-TCP [RFC1035], and a profile for DNS-over-TLS [RFC7858] has been specified. These transports can offer persistent long-lived sessions and therefore, when using them for transporting DNS messages, it is of benefit to have a mechanism that can establish parameters associated with those sessions, such as timeouts. In such situations, it is also advantageous to support server-initiated messages (such as DNS Push Notifications [Push]).
The existing Extension Mechanism for DNS (EDNS(0)) [RFC6891] is explicitly defined to only have "per-message" semantics. While EDNS(0) has been used to signal at least one session-related parameter (edns-tcp-keepalive EDNS(0) Option [RFC7828]), the result is less than optimal due to the restrictions imposed by the EDNS(0) semantics and the lack of server-initiated signaling. For example, a server cannot arbitrarily instruct a client to close a connection because the server can only send EDNS(0) options in responses to queries that contained EDNS(0) options.
This document defines a new DNS OPCODE for DNS Stateful Operations (DSO) with a value of 6. DSO messages are used to communicate operations within persistent stateful sessions, expressed using Type Length Value (TLV) syntax. This document defines an initial set of three TLVs used to manage session timeouts, termination, and encryption padding.
All three TLVs defined here are mandatory for all implementations of DSO. Further TLVs may be defined in additional specifications.
DSO messages may or may not be acknowledged. Whether a DSO message is to be acknowledged (a DSO request message) or is not to be acknowledged (a DSO unidirectional message) is specified in the definition of that particular DSO message type. The MESSAGE ID is nonzero for DSO request messages, and zero for DSO unidirectional messages. Messages are pipelined and responses may appear out of order when multiple requests are being processed concurrently.
The format for DSO messages (Section 5.4) differs somewhat from the traditional DNS message format used for standard queries and responses. The standard twelve-byte header is used, but the four count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) are set to zero, and accordingly their corresponding sections are not present.
The actual data pertaining to DNS Stateful Operations (expressed in TLV syntax) is appended to the end of the DNS message header. Just as in traditional DNS-over-TCP [RFC1035] [RFC7766], the stream protocol carrying DSO messages (which are just another kind of DNS message) frames them by putting a 16-bit message length at the start. The length of the DSO message is therefore determined from that length rather than from any of the DNS header counts.
When displayed using packet analyzer tools that have not been updated to recognize the DSO format, this will result in the DSO data being displayed as unknown extra data after the end of the DNS message.
This new format has distinct advantages over an RR-based format because it is more explicit and more compact. Each TLV definition is specific to its use case and, as a result, contains no redundant or overloaded fields. Importantly, it completely avoids conflating DNS Stateful Operations in any way with normal DNS operations or with existing EDNS(0)-based functionality. A goal of this approach is to avoid the operational issues that have befallen EDNS(0), particularly relating to middlebox behavior (see sections discussing EDNS(0), and problems caused by firewalls and load balancers, in the recent work describing causes of DNS failures [Fail]).
With EDNS(0), multiple options may be packed into a single OPT pseudo-RR, and there is no generalized mechanism for a client to be able to tell whether a server has processed or otherwise acted upon each individual option within the combined OPT pseudo-RR. The specifications for each individual option need to define how each different option is to be acknowledged, if necessary.
In contrast to EDNS(0), with DSO there is no compelling motivation to pack multiple operations into a single message for efficiency reasons, because DSO always operates using a connection-oriented transport protocol. Each DSO operation is communicated in its own separate DNS message, and the transport protocol can take care of packing several DNS messages into a single IP packet if appropriate. For example, TCP can pack multiple small DNS messages into a single TCP segment. This simplification allows for clearer semantics. Each DSO request message communicates just one primary operation, and the RCODE in the corresponding response message indicates the success or failure of that operation.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
DNS Stateful Operations are applicable to several known use cases and are only applicable on transports that are capable of supporting a DSO Session.
Several use cases for DNS Stateful Operations are described below.
In one use case, establishing session parameters such as server- defined timeouts is of great use in the general management of persistent connections. For example, using DSO Sessions for stub-to- recursive DNS-over-TLS [RFC7858] is more flexible for both the client and the server than attempting to manage sessions using just the edns-tcp-keepalive EDNS(0) Option [RFC7828]. The simple set of TLVs defined in this document is sufficient to greatly enhance connection management for this use case.
In another use case, DNS-based Service Discovery (DNS-SD) [RFC6763] has evolved into a naturally session-based mechanism where, for example, long-lived subscriptions lend themselves to 'push' mechanisms as opposed to polling. Long-lived stateful connections and server-initiated messages align with this use case [Push].
A general use case is that DNS traffic is often bursty, but session establishment can be expensive. One challenge with long-lived connections is sustaining sufficient traffic to maintain NAT and firewall state. To mitigate this issue, this document introduces a new concept for the DNS -- DSO "keepalive traffic". This traffic carries no DNS data and is not considered 'activity' in the classic DNS sense, but it serves to maintain state in middleboxes and to assure the client and server that they still have connectivity to each other.
DNS Stateful Operations are applicable in cases where it is useful to maintain an open session between a DNS client and server, where the transport allows such a session to be maintained, and where the transport guarantees in-order delivery of messages on which DSO depends. Two specific transports that meet the requirements to support DNS Stateful Operations are DNS-over-TCP [RFC1035] [RFC7766] and DNS-over-TLS [RFC7858].
Note that in the case of DNS-over-TLS, there is no mechanism for upgrading from DNS-over-TCP to DNS-over-TLS mid-connection (see Section 7 of the DNS-over-TLS specification [RFC7858]). A connection is either DNS-over-TCP from the start, or DNS-over-TLS from the start.
DNS Stateful Operations are not applicable for transports that cannot support clean session semantics or that do not guarantee in-order delivery. While in principle such a transport could be constructed over UDP, the current specification of DNS-over-UDP [RFC1035] does not provide in-order delivery or session semantics and hence cannot be used. Similarly, DNS-over-HTTP [RFC8484] cannot be used because HTTP has its own mechanism for managing sessions, which is incompatible with the mechanism specified here.
Only DNS-over-TCP and DNS-over-TLS are currently defined for use with DNS Stateful Operations. Other transports may be added in the future if they meet the requirements set out in the first paragraph of this section.
The overall flow of DNS Stateful Operations goes through a series of phases:
In order for a session to be established between a client and a server, the client must first establish a connection to the server using an applicable transport (see Section 4.2).
In some environments, it may be known in advance by external means that both client and server support DSO, and in these cases either client or server may initiate DSO messages at any time. In this case, the session is established as soon as the connection is established; this is referred to as implicit DSO Session establishment.
However, in the typical case a server will not know in advance whether a client supports DSO, so in general, unless it is known in advance by other means that a client does support DSO, a server MUST NOT initiate DSO request messages or DSO unidirectional messages until a DSO Session has been mutually established by at least one successful DSO request/response exchange initiated by the client, as described below. This is referred to as explicit DSO Session establishment.
Until a DSO Session has been implicitly or explicitly established, a client MUST NOT initiate DSO unidirectional messages.
A DSO Session is established over a connection by the client sending a DSO request message, such as a DSO Keepalive request message (Section 7.1), and receiving a response with a matching MESSAGE ID, and RCODE set to NOERROR (0), indicating that the DSO request was successful.
Some DSO messages are permitted as early data (Section 11.1). Others are not. Unidirectional messages are never permitted as early data, unless an implicit DSO Session exists.
If a server receives a DSO message in early data whose Primary TLV is not permitted to appear in early data, the server MUST forcibly abort the connection. If a client receives a DSO message in early data, and there is no implicit DSO Session, the client MUST forcibly abort the connection. This can only be enforced on TLS connections; therefore, servers MUST NOT enable TCP Fast Open (TFO) when listening for a connection that does not require TLS.
If the response RCODE is set to NOTIMP (4), or in practice any value other than NOERROR (0) or DSOTYPENI (defined below), then the client MUST assume that the server does not implement DSO at all. In this case, the client is permitted to continue sending DNS messages on that connection but MUST NOT issue further DSO messages on that connection.
If the RCODE in the response is set to DSOTYPENI ("DSO-TYPE Not Implemented"; RCODE 11), this indicates that the server does support DSO but does not implement the DSO-TYPE of the Primary TLV in this DSO request message. A server implementing DSO MUST NOT return DSOTYPENI for a DSO Keepalive request message because the Keepalive TLV is mandatory to implement. But in the future, if a client attempts to establish a DSO Session using a response-requiring DSO request message using some newly-defined DSO-TYPE that the server does not understand, that would result in a DSOTYPENI response. If the server returns DSOTYPENI, then a DSO Session is not considered established. The client is, however, permitted to continue sending DNS messages on the connection, including other DSO messages such as the DSO Keepalive, which may result in a successful NOERROR response, yielding the establishment of a DSO Session.
When a DSO message is received by an existing DNS server that doesn't recognize the DSO OPCODE, two other possible outcomes exist: the server might send no response to the DSO message, or the server might drop the connection.
If the server sends no response to the DSO message, the client SHOULD wait 30 seconds, after which time the server will be assumed not to support DSO. If the server doesn't respond within 30 seconds, it can be assumed that it is not going to respond; this leaves it in an unspecified state: there is no specification requiring that a response be sent to an unknown message, but there is also no specification stating what state the server is in if no response is sent. Therefore the client MUST forcibly abort the connection to the server. The client MAY reconnect, but not use DSO, if appropriate (Section 6.6.3.1). By disconnecting and reconnecting, the client ensures that the server is in a known state before sending any subsequent requests.
If the server drops the connection the client SHOULD mark that service instance as not supporting DSO, and not attempt a DSO connection for some period of time (at least an hour) after the failed attempt. The client MAY reconnect but not use DSO, if appropriate (Section 6.6.3.2).
When the server receives a DSO request message from a client, and transmits a successful NOERROR response to that request, the server considers the DSO Session established.
When the client receives the server's NOERROR response to its DSO request message, the client considers the DSO Session established.
Once a DSO Session has been established, either end may unilaterally send appropriate DSO messages at any time, and therefore either client or server may be the initiator of a message.
Once a DSO Session has been established, clients and servers should behave as described in this specification with regard to inactivity timeouts and session termination, not as previously prescribed in the earlier specification for DNS-over-TCP [RFC7766].
Because a server that supports DNS Stateful Operations MUST return an RCODE of "NOERROR" when it receives a Keepalive TLV DSO request message, the Keepalive TLV is an ideal candidate for use in establishing a DSO Session. Any other option that can only succeed when sent to a server of the desired kind is also a good candidate for use in establishing a DSO Session. For clients that implement only the DSO-TYPEs defined in this base specification, sending a Keepalive TLV is the only DSO request message they have available to initiate a DSO Session. Even for clients that do implement other future DSO-TYPEs, for simplicity they MAY elect to always send an initial DSO Keepalive request message as their way of initiating a DSO Session. A future definition of a new response-requiring DSO- TYPE gives implementers the option of using that new DSO-TYPE if they wish, but does not change the fact that sending a Keepalive TLV remains a valid way of initiating a DSO Session.
A DSO Session is terminated when the underlying connection is closed. DSO Sessions are "closed gracefully" as a result of the server closing a DSO Session because it is overloaded, because of the client closing the DSO Session because it is done, or because of the client closing the DSO Session because it is inactive. DSO Sessions are "forcibly aborted" when either the client or server closes the connection because of a protocol error.
o Where this specification says "close gracefully", it means sending a TLS close_notify (if TLS is in use) followed by a TCP FIN, or the equivalent for other protocols. Where this specification requires a connection to be closed gracefully, the requirement to initiate that graceful close is placed on the client in order to place the burden of TCP's TIME-WAIT state on the client rather than the server.
o Where this specification says "forcibly abort", it means sending a TCP RST or the equivalent for other protocols. In the BSD Sockets API, this is achieved by setting the SO_LINGER option to zero before closing the socket.
In protocol implementation, there are generally two kinds of errors that software writers have to deal with. The first is situations that arise due to factors in the environment, such as temporary loss of connectivity. While undesirable, these situations do not indicate a flaw in the software and are situations that software should generally be able to recover from.
The second is situations that should never happen when communicating with a compliant DSO implementation. If they do happen, they indicate a serious flaw in the protocol implementation beyond what is reasonable to expect software to recover from. This document describes this latter form of error condition as a "fatal error" and specifies that an implementation encountering a fatal error condition "MUST forcibly abort the connection immediately".
A DSO message begins with the standard twelve-byte DNS message header [RFC1035] with the OPCODE field set to the DSO OPCODE (6). However, unlike standard DNS messages, the question section, answer section, authority records section, and additional records sections are not present. The corresponding count fields (QDCOUNT, ANCOUNT, NSCOUNT, ARCOUNT) MUST be set to zero on transmission.
If a DSO message is received where any of the count fields are not zero, then a FORMERR MUST be returned.
In a DSO unidirectional message, the MESSAGE ID field MUST be set to zero. In a DSO request message, the MESSAGE ID field MUST be set to a unique nonzero value that the initiator is not currently using for any other active operation on this connection. For the purposes here, a MESSAGE ID is in use in this DSO Session if the initiator has used it in a DSO request message for which it is still awaiting a response, or if the client has used it to set up a long-lived operation that has not yet been canceled. For example, a long-lived operation could be a Push Notification subscription [Push] or a Discovery Relay interface subscription [Relay].
Whether a message is a DSO request message or a DSO unidirectional message is determined only by the specification for the Primary TLV. An acknowledgment cannot be requested by including a nonzero MESSAGE ID in a message that is required according to its Primary TLV to be unidirectional. Nor can an acknowledgment be prevented by sending a MESSAGE ID of zero in a message that is required to be a DSO request message according to its Primary TLV. A responder that receives either such malformed message MUST treat it as a fatal error and forcibly abort the connection immediately.
In a DSO request message or DSO unidirectional message, the DNS Header Query/Response (QR) bit MUST be zero (QR=0). If the QR bit is not zero, the message is not a DSO request or DSO unidirectional message.
In a DSO response message, the DNS Header QR bit MUST be one (QR=1). If the QR bit is not one, the message is not a DSO response message.
In a DSO response message (QR=1), the MESSAGE ID field MUST NOT be zero, and MUST contain a copy of the value of the (nonzero) MESSAGE ID field in the DSO request message being responded to. If a DSO response message (QR=1) is received where the MESSAGE ID is zero, this is a fatal error and the recipient MUST forcibly abort the connection immediately.
The DNS Header OPCODE field holds the DSO OPCODE value (6).
The Z bits are currently unused in DSO messages; in both DSO request messages and DSO responses, the Z bits MUST be set to zero (0) on transmission and MUST be ignored on reception.
In a DSO request message (QR=0), the RCODE is set according to the definition of the request. For example, in a Retry Delay message (Section 6.6.1), the RCODE indicates the reason for termination. However, in most DSO request messages (QR=0), except where clearly specified otherwise, the RCODE is set to zero on transmission, and silently ignored on reception.
The RCODE value in a response message (QR=1) may be one of the following values:
Use of the above RCODEs is likely to be common in DSO but does not preclude the definition and use of other codes in future documents that make use of DSO.
If a document defining a new DSO-TYPE makes use of response codes not defined here, then that document MUST specify the specific interpretation of those RCODE values in the context of that new DSO TLV.
The RCODE field is followed by the four zero-valued count fields, followed by the DSO Data.
The standard twelve-byte DNS message header with its zero-valued count fields is followed by the DSO Data, expressed using TLV syntax, as described in Section 5.4.4.
A DSO request message or DSO unidirectional message MUST contain at least one TLV. The first TLV in a DSO request message or DSO unidirectional message is referred to as the "Primary TLV" and determines the nature of the operation being performed, including whether it is a DSO request or a DSO unidirectional operation. In some cases, it may be appropriate to include other TLVs in a DSO request message or DSO unidirectional message, such as the DSO Encryption Padding TLV (Section 7.3). Additional TLVs follow the Primary TLV. Additional TLVs are not limited to what is defined in this document. New Additional TLVs may be defined in the future. Their definitions will describe when their use is appropriate.
An unrecognized Primary TLV results in a DSOTYPENI error response. Unrecognized Additional TLVs are silently ignored, as described in Sections 5.4.5 and 8.2.
A DSO response message may contain no TLVs, or may contain one or more TLVs, appropriate to the information being communicated.
Any TLVs with the same DSO-TYPE as the Primary TLV from the corresponding DSO request message are Response Primary TLV(s) and MUST appear first in a DSO response message. A DSO response message may contain multiple Response Primary TLVs, or a single Response Primary TLV, or in some cases, no Response Primary TLV. A Response Primary TLV is not required; for most DSO operations the MESSAGE ID field in the DNS message header is sufficient to identify the DSO request message to which a particular response message relates.
Any other TLVs in a DSO response message are Response Additional TLVs, such as the DSO Encryption Padding TLV (Section 7.3). Response Additional TLVs follow the Response Primary TLV(s), if present. Response Additional TLVs are not limited to what is defined in this document. New Response Additional TLVs may be defined in the future. Their definitions will describe when their use is appropriate. Unrecognized Response Additional TLVs are silently ignored, as described in Sections 5.4.5 and 8.2.
The specification for each DSO TLV determines what TLVs are required in a response to a DSO request message using that TLV. If a DSO response is received for an operation where the specification requires that the response carry a particular TLV or TLVs, and the required TLV(s) are not present, then this is a fatal error and the recipient of the defective response message MUST forcibly abort the connection immediately. Similarly, if more than the specified number of instances of a given TLV are present, this is a fatal error and the recipient of the defective response message MUST forcibly abort the connection immediately.
It is anticipated that most DSO operations will be specified to use DSO request messages, which generate corresponding DSO responses. In some specialized high-traffic use cases, it may be appropriate to specify DSO unidirectional messages. DSO unidirectional messages can be more efficient on the network because they don't generate a stream of corresponding reply messages. Using DSO unidirectional messages can also simplify software in some cases by removing the need for an initiator to maintain state while it waits to receive replies it doesn't care about. When the specification for a particular TLV used as a Primary TLV (i.e., first) in an outgoing DSO request message (i.e., QR=0) states that a message is to be unidirectional, the MESSAGE ID field MUST be set to zero and the receiver MUST NOT generate any response message corresponding to that DSO unidirectional message.
The previous point, that the receiver MUST NOT generate responses to DSO unidirectional messages, applies even in the case of errors.
When a DSO message is received where both the QR bit and the MESSAGE ID field are zero, the receiver MUST NOT generate any response. For example, if the DSO-TYPE in the Primary TLV is unrecognized, then a DSOTYPENI error MUST NOT be returned; instead, the receiver MUST forcibly abort the connection immediately.
DSO unidirectional messages MUST NOT be used "speculatively" in cases where the sender doesn't know if the receiver supports the Primary TLV in the message because there is no way to receive any response to indicate success or failure. DSO unidirectional messages are only appropriate in cases where the sender already knows that the receiver supports and wishes to receive these messages.
For example, after a client has subscribed for Push Notifications [Push], the subsequent event notifications are then sent as DSO unidirectional messages. This is appropriate because the client initiated the message stream by virtue of its Push Notification subscription, thereby indicating its support of Push Notifications and its desire to receive those notifications.
Similarly, after a Discovery Relay client has subscribed to receive inbound multicast DNS (mDNS) [RFC6762] traffic from a Discovery Relay, the subsequent stream of received packets is then sent using DSO unidirectional messages. This is appropriate because the client initiated the message stream by virtue of its Discovery Relay link subscription, thereby indicating its support of Discovery Relay and its desire to receive inbound mDNS packets over that DSO Session [Relay].
All TLVs, whether used as "Primary", "Additional", "Response Primary", or "Response Additional", use the same encoding syntax.
A specification that defines a new TLV must specify whether the DSO- TYPE can be used as a Primary TLV, and whether the DSO-TYPE can be used as an Additional TLV. Some DSO-TYPEs are dual-purpose and can be used as Primary TLVs in some messages, and in other messages as Additional TLVs. The specification for a DSO-TYPE must also state whether, when used as the Primary (i.e., first) TLV in a DSO message (i.e., QR=0), that DSO message is unidirectional, or is a DSO request message that requires a response.
If a DSO request message requires a response, the specification must also state which TLVs, if any, are to be included in the response and how many instances of each of the TLVs are allowed. The Primary TLV may or may not be contained in the response depending on what is specified for that TLV. If multiple instances of the Primary TLV are allowed the specification should clearly describe how they should be processed.
If a DSO request message is received containing an unrecognized Primary TLV, with a nonzero MESSAGE ID (indicating that a response is expected), then the receiver MUST send an error response with a matching MESSAGE ID, and RCODE DSOTYPENI. The error response MUST NOT contain a copy of the unrecognized Primary TLV.
If a DSO unidirectional message is received containing both an unrecognized Primary TLV and a zero MESSAGE ID (indicating that no response is expected), then this is a fatal error and the recipient MUST forcibly abort the connection immediately.
If a DSO request message or DSO unidirectional message is received where the Primary TLV is recognized, containing one or more unrecognized Additional TLVs, the unrecognized Additional TLVs MUST be silently ignored, and the remainder of the message is interpreted and handled as if the unrecognized parts were not present.
Similarly, if a DSO response message is received containing one or more unrecognized TLVs, the unrecognized TLVs MUST be silently ignored and the remainder of the message is interpreted and handled as if the unrecognized parts are not present.
Since the ARCOUNT field MUST be zero, a DSO message cannot contain a valid EDNS(0) option in the additional records section. If functionality provided by current or future EDNS(0) options is desired for DSO messages, one or more new DSO TLVs need to be defined to carry the necessary information.
For example, the EDNS(0) Padding Option [RFC7830] used for security purposes is not permitted in a DSO message, so if message padding is desired for DSO messages, then the DSO Encryption Padding TLV described in Section 7.3 MUST be used.
A DSO message can't contain a TSIG record because a TSIG record is included in the additional section of the message, which would mean that ARCOUNT would be greater than zero. DSO messages are required to have an ARCOUNT of zero. Therefore, if use of signatures with DSO messages becomes necessary in the future, a new DSO TLV would have to be defined to perform this function.
Note, however, that while DSO *messages* cannot include EDNS(0) or TSIG records, a DSO *session* is typically used to carry a whole series of DNS messages of different kinds, including DSO messages and other DNS message types like Query [RFC1034] [RFC1035] and Update [RFC2136]. These messages can carry EDNS(0) and TSIG records.
Although messages may contain other EDNS(0) options as appropriate, this specification explicitly prohibits use of the edns-tcp-keepalive EDNS(0) Option [RFC7828] in *any* messages sent on a DSO Session (because it is obsoleted by the functionality provided by the DSO Keepalive operation). If any message sent on a DSO Session contains an edns-tcp-keepalive EDNS(0) Option, this is a fatal error and the recipient of the defective message MUST forcibly abort the connection immediately.
As described in Section 5.4.1, whether an outgoing DSO message with the QR bit in the DNS header set to zero is a DSO request or a DSO unidirectional message is determined by the specification for the Primary TLV, which in turn determines whether the MESSAGE ID field in that outgoing message will be zero or nonzero.
Every DSO message with the QR bit in the DNS header set to zero and a nonzero MESSAGE ID field is a DSO request message, and MUST elicit a corresponding response, with the QR bit in the DNS header set to one and the MESSAGE ID field set to the value given in the corresponding DSO request message.
Valid DSO request messages sent by the client with a nonzero MESSAGE ID field elicit a response from the server, and valid DSO request messages sent by the server with a nonzero MESSAGE ID field elicit a response from the client.
Every DSO message with both the QR bit in the DNS header and the MESSAGE ID field set to zero is a DSO unidirectional message and MUST NOT elicit a response.
Generally, most good TCP implementations employ a delayed acknowledgement timer to provide more efficient use of the network and better performance.
With a bidirectional exchange over TCP, such as with a DSO request message, the operating system TCP implementation waits for the application-layer client software to generate the corresponding DSO response message. The TCP implementation can then send a single combined packet containing the TCP acknowledgement, the TCP window update, and the application-generated DSO response message. This is more efficient than sending three separate packets, as would occur if the TCP packet containing the DSO request were acknowledged immediately.
With a DSO unidirectional message or DSO response message, there is no corresponding application-generated DSO response message, and consequently, no hint to the transport protocol about when it should send its acknowledgement and window update.
Some networking APIs provide a mechanism that allows the application- layer client software to signal to the transport protocol that no response will be forthcoming (in effect it can be thought of as a zero-length "empty" write). Where available in the networking API being used, the recipient of a DSO unidirectional message or DSO response message, having parsed and interpreted the message, SHOULD then use this mechanism provided by the networking API to signal that no response for this message will be forthcoming. The TCP implementation can then go ahead and send its acknowledgement and window update without further delay. See Section 9.5 for further discussion of why this is important.
The namespaces of 16-bit MESSAGE IDs are independent in each direction. This means it is *not* an error for both client and server to send DSO request messages at the same time as each other, using the same MESSAGE ID, in different directions. This simplification is necessary in order for the protocol to be implementable. It would be infeasible to require the client and server to coordinate with each other regarding allocation of new unique MESSAGE IDs. It is also not necessary to require the client and server to coordinate with each other regarding allocation of new unique MESSAGE IDs. The value of the 16-bit MESSAGE ID combined with the identity of the initiator (client or server) is sufficient to unambiguously identify the operation in question. This can be thought of as a 17-bit message identifier space using message identifiers 0x00001-0x0FFFF for client-to-server DSO request messages, and 0x10001-0x1FFFF for server-to-client DSO request messages. The least-significant 16 bits are stored explicitly in the MESSAGE ID field of the DSO message, and the most-significant bit is implicit from the direction of the message.
As described in Section 5.4.1, an initiator MUST NOT reuse a MESSAGE ID that it already has in use for an outstanding DSO request message (unless specified otherwise by the relevant specification for the DSO-TYPE in question). At the very least, this means that a MESSAGE ID can't be reused in a particular direction on a particular DSO Session while the initiator is waiting for a response to a previous DSO request message using that MESSAGE ID on that DSO Session (unless specified otherwise by the relevant specification for the DSO-TYPE in question), and for a long-lived operation, the MESSAGE ID for the operation can't be reused while that operation remains active.
If a client or server receives a response (QR=1) where the MESSAGE ID is zero, or is any other value that does not match the MESSAGE ID of any of its outstanding operations, this is a fatal error and the recipient MUST forcibly abort the connection immediately.
If a responder receives a DSO request message (QR=0) where the MESSAGE ID is not zero, the responder tracks request MESSAGE IDs, and the MESSAGE ID matches the MESSAGE ID of a DSO request message it received for which a response has not yet been sent, it MUST forcibly abort the connection immediately. This behavior is required to prevent a hypothetical attack that takes advantage of undefined behavior in this case. However, if the responder does not track MESSAGE IDs in this way, no such risk exists. Therefore, tracking MESSAGE IDs just to implement this sanity check is not required.
When a DSO request message is unsuccessful for some reason, the responder returns an error code to the initiator.
In the case of a server returning an error code to a client in response to an unsuccessful DSO request message, the server MAY choose to end the DSO Session or MAY choose to allow the DSO Session to remain open. For error conditions that only affect the single operation in question, the server SHOULD return an error response to the client and leave the DSO Session open for further operations.
For error conditions that are likely to make all operations unsuccessful in the immediate future, the server SHOULD return an error response to the client and then end the DSO Session by sending a Retry Delay message as described in Section 6.6.1.
Upon receiving an error response from the server, a client SHOULD NOT automatically close the DSO Session. An error relating to one particular operation on a DSO Session does not necessarily imply that all other operations on that DSO Session have also failed or that future operations will fail. The client should assume that the server will make its own decision about whether or not to end the DSO Session based on the server's determination of whether the error condition pertains to this particular operation or to any subsequent operations. If the server does not end the DSO Session by sending the client a Retry Delay message (Section 6.6.1), then the client SHOULD continue to use that DSO Session for subsequent operations.
When a DSO unidirectional message type is received (MESSAGE ID field is zero), the receiver should already be expecting this DSO message type. Section 5.4.5 describes the handling of unknown DSO message types. When a DSO unidirectional message of an unexpected type is received, the receiver SHOULD forcibly abort the connection. Whether the connection should be forcibly aborted for other internal errors processing the DSO unidirectional message is implementation dependent according to the severity of the error.
This document, the base specification for DNS Stateful Operations, does not itself define any long-lived operations, but it defines a framework for supporting long-lived operations such as Push Notification subscriptions [Push] and Discovery Relay interface subscriptions [Relay].
Long-lived operations, if successful, will remain active until the initiator terminates the operation.
However, it is possible that a long-lived operation may be valid at the time it was initiated, but then a later change of circumstances may render that operation invalid. For example, a long-lived client operation may pertain to a name that the server is authoritative for, but then the server configuration is changed such that it is no longer authoritative for that name.
In such cases, instead of terminating the entire session, it may be desirable for the responder to be able to cancel selectively only those operations that have become invalid.
The responder performs this selective cancellation by sending a new DSO response message with the MESSAGE ID field containing the MESSAGE ID of the long-lived operation that is to be terminated (that it had previously acknowledged with a NOERROR RCODE) and the RCODE field of the new DSO response message giving the reason for cancellation.
After a DSO response message with nonzero RCODE has been sent, that operation has been terminated from the responder's point of view, and the responder sends no more messages relating to that operation.
After a DSO response message with nonzero RCODE has been received by the initiator, that operation has been terminated from the initiator's point of view, and the canceled operation's MESSAGE ID is now free for reuse.
A DSO Session begins as described in Section 5.1.
Once a DSO Session has been created, client or server may initiate as many DNS operations as they wish using the DSO Session.
When an initiator has multiple messages to send, it SHOULD NOT wait for each response before sending the next message.
A responder MUST act on messages in the order they are received, and SHOULD return responses to request messages as they become available. A responder SHOULD NOT delay sending responses for the purpose of delivering responses in the same order that the corresponding requests were received.
Section 6.2.1.1 of the DNS-over-TCP specification [RFC7766] specifies this in more detail.
Two timeout values are associated with a DSO Session: the inactivity timeout and the keepalive interval. Both values are communicated in the same TLV, the Keepalive TLV (Section 7.1).
The first timeout value, the inactivity timeout, is the maximum time for which a client may speculatively keep an inactive DSO Session open in the expectation that it may have future requests to send to that server.
The second timeout value, the keepalive interval, is the maximum permitted interval between messages if the client wishes to keep the DSO Session alive.
The two timeout values are independent. The inactivity timeout may be shorter, the same, or longer than the keepalive interval, though in most cases the inactivity timeout is expected to be shorter than the keepalive interval.
A shorter inactivity timeout with a longer keepalive interval signals to the client that it should not speculatively keep an inactive DSO Session open for very long without reason, but when it does have an active reason to keep a DSO Session open, it doesn't need to be sending an aggressive level of DSO keepalive traffic to maintain that session. An example of this would be a client that has subscribed to DNS Push notifications. In this case, the client is not sending any traffic to the server, but the session is not inactive because there is an active request to the server to receive push notifications.
A longer inactivity timeout with a shorter keepalive interval signals to the client that it may speculatively keep an inactive DSO Session open for a long time, but to maintain that inactive DSO Session it should be sending a lot of DSO keepalive traffic. This configuration is expected to be less common.
In the usual case where the inactivity timeout is shorter than the keepalive interval, it is only when a client has a long-lived, low- traffic operation that the keepalive interval comes into play in order to ensure that a sufficient residual amount of traffic is generated to maintain NAT and firewall state, and to assure the client and server that they still have connectivity to each other.
On a new DSO Session, if no explicit DSO Keepalive message exchange has taken place, the default value for both timeouts is 15 seconds.
For both timeouts, lower values of the timeout result in higher network traffic and a higher CPU load on the server.
At both servers and clients, the generation or reception of any complete DNS message (including DNS requests, responses, updates, DSO messages, etc.) resets both timers for that DSO Session, with the one exception being that a DSO Keepalive message resets only the keepalive timer, not the inactivity timeout timer.
In addition, for as long as the client has an outstanding operation in progress, the inactivity timer remains cleared and an inactivity timeout cannot occur.
For short-lived DNS operations like traditional queries and updates, an operation is considered "in progress" for the time between request and response, typically a period of a few hundred milliseconds at most. At the client, the inactivity timer is cleared upon transmission of a request and remains cleared until reception of the corresponding response. At the server, the inactivity timer is cleared upon reception of a request and remains cleared until transmission of the corresponding response.
For long-lived DNS Stateful Operations (such as a Push Notification subscription [Push] or a Discovery Relay interface subscription [Relay]), an operation is considered "in progress" for as long as the operation is active, i.e., until it is canceled. This means that a DSO Session can exist with active operations, with no messages flowing in either direction, for far longer than the inactivity timeout. This is not an error. This is why there are two separate timers: the inactivity timeout and the keepalive interval. Just because a DSO Session has no traffic for an extended period of time, it does not automatically make that DSO Session "inactive", if it has an active operation that is awaiting events.
The purpose of the inactivity timeout is for the server to balance the trade-off between the costs of setting up new DSO Sessions and the costs of maintaining inactive DSO Sessions. A server with abundant DSO Session capacity can offer a high inactivity timeout to permit clients to keep a speculative DSO Session open for a long time and to save the cost of establishing a new DSO Session for future communications with that server. A server with scarce memory resources can offer a low inactivity timeout to cause clients to promptly close DSO Sessions whenever they have no outstanding operations with that server and then create a new DSO Session later when needed.
When a connection's inactivity timeout is reached, the client MUST begin closing the idle connection, but a client is not required to keep an idle connection open until the inactivity timeout is reached. A client MAY close a DSO Session at any time, at the client's discretion. If a client determines that it has no current or reasonably anticipated future need for a currently inactive DSO Session, then the client SHOULD gracefully close that connection.
If, at any time during the life of the DSO Session, the inactivity timeout value (i.e., 15 seconds by default) elapses without there being any operation active on the DSO Session, the client MUST close the connection gracefully.
If, at any time during the life of the DSO Session, too much time elapses without there being any operation active on the DSO Session, then the server MUST consider the client delinquent and MUST forcibly abort the DSO Session. What is considered "too much time" in this context is five seconds or twice the current inactivity timeout value, whichever is greater. If the inactivity timeout has its default value of 15 seconds, this means that a client will be considered delinquent and disconnected if it has not closed its connection after 30 seconds of inactivity.
In this context, an operation being active on a DSO Session includes a query waiting for a response, an update waiting for a response, or an active long-lived operation, but not a DSO Keepalive message exchange itself. A DSO Keepalive message exchange resets only the keepalive interval timer, not the inactivity timeout timer.
If the client wishes to keep an inactive DSO Session open for longer than the default duration, then it uses the DSO Keepalive message to request longer timeout values as described in Section 7.1.
For the inactivity timeout value, lower values result in more frequent DSO Session teardowns and re-establishments. Higher values result in lower traffic and a lower CPU load on the server, but a higher memory burden to maintain state for inactive DSO Sessions.
A server may dictate any value it chooses for the inactivity timeout (either in a response to a client-initiated request or in a server- initiated message) including values under one second, or even zero.
An inactivity timeout of zero informs the client that it should not speculatively maintain idle connections at all, and as soon as the client has completed the operation or operations relating to this server, the client should immediately begin closing this session.
A server will forcibly abort an idle client session after five seconds or twice the inactivity timeout value, whichever is greater. In the case of a zero inactivity timeout value, this means that if a client fails to close an idle client session, then the server will forcibly abort the idle session after five seconds.
An inactivity timeout of 0xFFFFFFFF represents "infinity" and informs the client that it may keep an idle connection open as long as it wishes. Note that after granting an unlimited inactivity timeout in this way, at any point the server may revise that inactivity timeout by sending a new DSO Keepalive message dictating new Session Timeout values to the client.
The largest *finite* inactivity timeout supported by the current Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7 days).
The purpose of the keepalive interval is to manage the generation of sufficient messages to maintain state in middleboxes (such at NAT gateways or firewalls) and for the client and server to periodically verify that they still have connectivity to each other. This allows them to clean up state when connectivity is lost and to establish a new session if appropriate.
If, at any time during the life of the DSO Session, the keepalive interval value (i.e., 15 seconds by default) elapses without any DNS messages being sent or received on a DSO Session, the client MUST take action to keep the DSO Session alive by sending a DSO Keepalive message (Section 7.1). A DSO Keepalive message exchange resets only the keepalive timer, not the inactivity timer.
If a client disconnects from the network abruptly, without cleanly closing its DSO Session, perhaps leaving a long-lived operation uncanceled, the server learns of this after failing to receive the required DSO keepalive traffic from that client. If, at any time during the life of the DSO Session, twice the keepalive interval value (i.e., 30 seconds by default) elapses without any DNS messages being sent or received on a DSO Session, the server SHOULD consider the client delinquent and SHOULD forcibly abort the DSO Session.
For the keepalive interval value, lower values result in a higher volume of DSO keepalive traffic. Higher values of the keepalive interval reduce traffic and the CPU load, but have minimal effect on the memory burden at the server because clients keep a DSO Session open for the same length of time (determined by the inactivity timeout) regardless of the level of DSO keepalive traffic required.
It may be appropriate for clients and servers to select different keepalive intervals depending on the type of network they are on.
A corporate DNS server that knows it is serving only clients on the internal network, with no intervening NAT gateways or firewalls, can impose a longer keepalive interval because frequent DSO keepalive traffic is not required.
A public DNS server that is serving primarily residential consumer clients, where it is likely there will be a NAT gateway on the path, may impose a shorter keepalive interval to generate more frequent DSO keepalive traffic.
A smart client may be adaptive to its environment. A client using a private IPv4 address [RFC1918] to communicate with a DNS server at an address outside that IPv4 private address block may conclude that there is likely to be a NAT gateway on the path, and accordingly request a shorter keepalive interval.
By default, it is RECOMMENDED that clients request, and servers grant, a keepalive interval of 60 minutes. This keepalive interval provides for reasonably timely detection if a client abruptly disconnects without cleanly closing the session. Also, it is sufficient to maintain state in firewalls and NAT gateways that follow the IETF recommended Best Current Practice that the "established connection idle-timeout" used by middleboxes be at least 2 hours and 4 minutes [RFC5382] [RFC7857].
Note that the shorter the keepalive interval value, the higher the load on client and server. Moreover, for a keepalive value that is shorter than the time needed for the transport to retransmit, the loss of a single packet would cause a server to overzealously abort the connection. For example, a (hypothetical and unrealistic) keepalive interval value of 100 ms would result in a continuous stream of ten messages per second or more (if allowed by the current congestion control window) in both directions to keep the DSO Session alive. And, in this extreme example, a single retransmission over a path with, as an example, 100 ms RTT would introduce a momentary pause in the stream of messages long enough to cause the server to abort the connection.
Because of this concern, the server MUST NOT send a DSO Keepalive message (either a DSO response to a client-initiated DSO request or a server-initiated DSO message) with a keepalive interval value less than ten seconds. If a client receives a DSO Keepalive message specifying a keepalive interval value less than ten seconds, this is a fatal error and the client MUST forcibly abort the connection immediately.
A keepalive interval value of 0xFFFFFFFF represents "infinity" and informs the client that it should generate no DSO keepalive traffic. Note that after signaling that the client should generate no DSO keepalive traffic in this way, the server may at any point revise that DSO keepalive traffic requirement by sending a new DSO Keepalive message dictating new Session Timeout values to the client.
The largest *finite* keepalive interval supported by the current Keepalive TLV is 0xFFFFFFFE (2^32-2 milliseconds, approximately 49.7 days).
In addition to canceling individual long-lived operations selectively (Section 5.6), there are also occasions where a server may need to terminate one or more entire DSO sessions. An entire DSO session may need to be terminated if the client is defective in some way or departs from the network without closing its DSO session. DSO Sessions may also need to be terminated if the server becomes overloaded or is reconfigured and lacks the ability to be selective about which operations need to be canceled.
This section discusses various reasons a DSO session may be terminated and the mechanisms for doing so.
In normal operation, closing a DSO Session is the client's responsibility. The client makes the determination of when to close a DSO Session based on an evaluation of both its own needs and the inactivity timeout value dictated by the server. A server only causes a DSO Session to be ended in the exceptional circumstances outlined below. Some of the exceptional situations in which a server may terminate a DSO Session include:
o The server application software or underlying operating system is shutting down or restarting.
o The server application software terminates unexpectedly (perhaps due to a bug that makes it crash, causing the underlying operating system to send a TCP RST).
o The server is undergoing a reconfiguration or maintenance procedure that, due to the way the server software is implemented, requires clients to be disconnected. For example, some software is implemented such that it reads a configuration file at startup, and changing the server's configuration entails modifying the configuration file and then killing and restarting the server software, which generally entails a loss of network connections.
o The client fails to meet its obligation to generate the required DSO keepalive traffic or to close an inactive session by the prescribed time (five seconds or twice the time interval dictated by the server, whichever is greater, as described in Section 6.2).
o The client sends a grossly invalid or malformed request that is indicative of a seriously defective client implementation.
o The server is over capacity and needs to shed some load.
In the cases described above where a server elects to terminate a DSO Session, it could do so simply by forcibly aborting the connection. However, if it did this, the likely behavior of the client might be simply to treat this as a network failure and reconnect immediately, putting more burden on the server.
Therefore, to avoid this reconnection implosion, a server SHOULD instead choose to shed client load by sending a Retry Delay message with an appropriate RCODE value informing the client of the reason the DSO Session needs to be terminated. The format of the DSO Retry Delay TLV and the interpretations of the various RCODE values are described in Section 7.2. After sending a DSO Retry Delay message, the server MUST NOT send any further messages on that DSO Session.
The server MAY randomize retry delays in situations where many retry delays are sent in quick succession so as to avoid all the clients attempting to reconnect at once. In general, implementations should avoid using the DSO Retry Delay message in a way that would result in many clients reconnecting at the same time if every client attempts to reconnect at the exact time specified.
Upon receipt of a DSO Retry Delay message from the server, the client MUST make note of the reconnect delay for this server and then immediately close the connection gracefully.
After sending a DSO Retry Delay message, the server SHOULD allow the client five seconds to close the connection, and if the client has not closed the connection after five seconds, then the server SHOULD forcibly abort the connection.
A DSO Retry Delay message MUST NOT be initiated by a client. If a server receives a DSO Retry Delay message, this is a fatal error and the server MUST forcibly abort the connection immediately.
At the instant a server chooses to initiate a DSO Retry Delay message, there may be DNS requests already in flight from client to server on this DSO Session, which will arrive at the server after its DSO Retry Delay message has been sent. The server MUST silently ignore such incoming requests and MUST NOT generate any response messages for them. When the DSO Retry Delay message from the server arrives at the client, the client will determine that any DNS requests it previously sent on this DSO Session that have not yet received a response will now certainly not be receiving any response. Such requests should be considered failed and should be retried at a later time, as appropriate.
In the case where some, but not all, of the existing operations on a DSO Session have become invalid (perhaps because the server has been reconfigured and is no longer authoritative for some of the names), but the server is terminating all affected DSO Sessions en masse by sending them all a DSO Retry Delay message, the reconnect delay MAY be zero, indicating that the clients SHOULD immediately attempt to re-establish operations.
It is likely that some of the attempts will be successful and some will not, depending on the nature of the reconfiguration.
In the case where a server is terminating a large number of DSO Sessions at once (e.g., if the system is restarting) and the server doesn't want to be inundated with a flood of simultaneous retries, it SHOULD send different reconnect delay values to each client. These adjustments MAY be selected randomly, pseudorandomly, or deterministically (e.g., incrementing the time value by one tenth of a second for each successive client, yielding a post-restart reconnection rate of ten clients per second).
A server may determine that a client is not following the protocol correctly. There may be no way for the server to recover the DSO session, in which case the server forcibly terminates the connection. Since the client doesn't know why the connection dropped, it may reconnect immediately. If the server has determined that a client is not following the protocol correctly, it MAY terminate the DSO Session as soon as it is established, specifying a long retry-delay to prevent the client from immediately reconnecting.
After a DSO Session is ended by the server (either by sending the client a DSO Retry Delay message or by forcibly aborting the underlying transport connection), the client SHOULD try to reconnect to that service instance or to another suitable service instance if more than one is available. If reconnecting to the same service instance, the client MUST respect the indicated delay, if available, before attempting to reconnect. Clients SHOULD NOT attempt to randomize the delay; the server will randomly jitter the retry delay values it sends to each client if this behavior is desired.
If a particular service instance will only be out of service for a short maintenance period, it should indicate a retry delay value that is a little longer than the expected maintenance window. It should not default to a very large delay value, or clients may not attempt to reconnect promptly after it resumes service.
If a service instance does not want a client to reconnect ever (perhaps the service instance is being decommissioned), it SHOULD set the retry delay to the maximum value 0xFFFFFFFF (2^32-1 milliseconds, approximately 49.7 days). It is not possible to instruct a client to stay away for longer than 49.7 days. If, after 49.7 days, the DNS or other configuration information still indicates that this is the valid service instance for a particular service, then clients MAY attempt to reconnect. In reality, if a client is rebooted or otherwise loses state, it may well attempt to reconnect before 49.7 days elapse, for as long as the DNS or other configuration information continues to indicate that this is the service instance the client should use.
If a connection was forcibly aborted by the client due to noncompliant behavior by the server, the client SHOULD mark that service instance as not supporting DSO. The client MAY reconnect but not attempt to use DSO, or it may connect to a different service instance if applicable.
It is also possible for a server to forcibly terminate the connection; in this case, the client doesn't know whether the termination was the result of a protocol error or a network outage. When the client notices that the connection has been dropped, it can attempt to reconnect immediately. However, if the connection is dropped again without the client being able to successfully do whatever it is trying to do, it should mark the server as not supporting DSO.
Once a server has been marked by the client as not supporting DSO, the client SHOULD NOT attempt DSO operations on that server until some time has elapsed. A reasonable minimum would be an hour. Since forcibly aborted connections are the result of a software failure, it's not likely that the problem will be solved in the first hour after it's first encountered. However, by restricting the retry interval to an hour, the client will be able to notice when the problem has been fixed without placing an undue burden on the server.
This section describes the three base TLVs for DNS Stateful Operations: Keepalive, Retry Delay, and Encryption Padding.
The Keepalive TLV (DSO-TYPE=1) performs two functions. Primarily, it establishes the values for the Session Timeouts. Incidentally, it also resets the keepalive timer for the DSO Session, meaning that it can be used as a kind of "no-op" message for the purpose of keeping a session alive. The client will request the desired Session Timeout values and the server will acknowledge with the response values that it requires the client to use.
DSO messages with the Keepalive TLV as the Primary TLV may appear in early data.
The DSO-DATA for the Keepalive TLV is as follows:
The transmission or reception of DSO Keepalive messages (i.e., messages where the Keepalive TLV is the first TLV) reset only the keepalive timer, not the inactivity timer. The reason for this is that periodic DSO Keepalive messages are sent for the sole purpose of keeping a DSO Session alive when that DSO Session has current or recent non-maintenance activity that warrants keeping that DSO Session alive. Sending DSO keepalive traffic itself is not considered a client activity; it is considered a maintenance activity that is performed in service of other client activities. If DSO keepalive traffic itself were to reset the inactivity timer, then that would create a circular livelock where keepalive traffic would be sent indefinitely to keep a DSO Session alive. In this scenario, the only activity on that DSO Session would be the keepalive traffic keeping the DSO Session alive so that further keepalive traffic can be sent. For a DSO Session to be considered active, it must be carrying something more than just keepalive traffic. This is why merely sending or receiving a DSO Keepalive message does not reset the inactivity timer.
When sent by a client, the DSO Keepalive request message MUST be sent as a DSO request message with a nonzero MESSAGE ID. If a server receives a DSO Keepalive message with a zero MESSAGE ID, then this is a fatal error and the server MUST forcibly abort the connection immediately. The DSO Keepalive request message resets a DSO Session's keepalive timer and, at the same time, communicates to the server the client's requested Session Timeout values. In a server response to a client-initiated DSO Keepalive request message, the Session Timeouts contain the server's chosen values from this point forward in the DSO Session, which the client MUST respect. This is modeled after the DHCP protocol, where the client requests a certain lease lifetime using DHCP option 51 [RFC2132], but the server is the ultimate authority for deciding what lease lifetime is actually granted.
When a client is sending its second and subsequent DSO Keepalive request messages to the server, the client SHOULD continue to request its preferred values each time. This allows flexibility so that if conditions change during the lifetime of a DSO Session, the server can adapt its responses to better fit the client's needs.
Once a DSO Session is in progress (Section 5.1), a DSO Keepalive message MAY be initiated by a server. When sent by a server, the DSO Keepalive message MUST be sent as a DSO unidirectional message with the MESSAGE ID set to zero. The client MUST NOT generate a response to a server-initiated DSO Keepalive message. If a client receives a DSO Keepalive request message with a nonzero MESSAGE ID, then this is a fatal error and the client MUST forcibly abort the connection immediately. The DSO Keepalive unidirectional message from the server resets a DSO Session's keepalive timer and, at the same time, unilaterally informs the client of the new Session Timeout values to use from this point forward in this DSO Session. No client DSO response to this unilateral declaration is required or allowed.
In DSO Keepalive response messages, exactly one instance of the Keepalive TLV MUST be present and is used only as a Response Primary TLV sent as a reply to a DSO Keepalive request message from the client. A Keepalive TLV MUST NOT be added to other responses as a Response Additional TLV. If the server wishes to update a client's Session Timeout values other than in response to a DSO Keepalive request message from the client, then it does so by sending a DSO Keepalive unidirectional message of its own, as described above.
It is not required that the Keepalive TLV be used in every DSO Session. While many DSO operations will be used in conjunction with a long-lived session state, not all DSO operations require a long- lived session state, and in some cases the default 15-second value for both the inactivity timeout and keepalive interval may be perfectly appropriate. However, note that for clients that implement only the DSO-TYPEs defined in this document, a DSO Keepalive request message is the only way for a client to initiate a DSO Session.
When a client receives a response to its client-initiated DSO Keepalive request message, or receives a server-initiated DSO Keepalive unidirectional message, the client has then received Session Timeout values dictated by the server. The two timeout values contained in the Keepalive TLV from the server may each be higher, lower, or the same as the respective Session Timeout values the client previously had for this DSO Session.
In the case of the keepalive timer, the handling of the received value is straightforward. The act of receiving the message containing the DSO Keepalive TLV itself resets the keepalive timer and updates the keepalive interval for the DSO Session. The new keepalive interval indicates the maximum time that may elapse before another message must be sent or received on this DSO Session, if the DSO Session is to remain alive.
In the case of the inactivity timeout, the handling of the received value is a little more subtle, though the meaning of the inactivity timeout remains as specified; it still indicates the maximum permissible time allowed without useful activity on a DSO Session. The act of receiving the message containing the Keepalive TLV does not itself reset the inactivity timer. The time elapsed since the last useful activity on this DSO Session is unaffected by exchange of DSO Keepalive messages. The new inactivity timeout value in the Keepalive TLV in the received message does update the timeout associated with the running inactivity timer; that becomes the new maximum permissible time without activity on a DSO Session.
o If the current inactivity timer value is less than the new inactivity timeout, then the DSO Session may remain open for now. When the inactivity timer value reaches the new inactivity timeout, the client MUST then begin closing the DSO Session as described above.
o If the current inactivity timer value is equal to the new inactivity timeout, then this DSO Session has been inactive for exactly as long as the server will permit, and now the client MUST immediately begin closing this DSO Session.
o If the current inactivity timer value is already greater than the new inactivity timeout, then this DSO Session has already been inactive for longer than the server permits, and the client MUST immediately begin closing this DSO Session.
o If the current inactivity timer value is already more than twice the new inactivity timeout, then the client is immediately considered delinquent (this DSO Session is immediately eligible to be forcibly terminated by the server) and the client MUST immediately begin closing this DSO Session. However, if a server abruptly reduces the inactivity timeout in this way, then, to give the client time to close the connection gracefully before the server resorts to forcibly aborting it, the server SHOULD give the client an additional grace period of either five seconds or one quarter of the new inactivity timeout, whichever is greater.
The inactivity timeout value in the Keepalive TLV (DSO-TYPE=1) has similar intent to the edns-tcp-keepalive EDNS(0) Option [RFC7828]. A client/server pair that supports DSO MUST NOT use the edns-tcp- keepalive EDNS(0) Option within any message after a DSO Session has been established. A client that has sent a DSO message to establish a session MUST NOT send an edns-tcp-keepalive EDNS(0) Option from this point on. Once a DSO Session has been established, if either client or server receives a DNS message over the DSO Session that contains an edns-tcp-keepalive EDNS(0) Option, this is a fatal error and the receiver of the edns-tcp-keepalive EDNS(0) Option MUST forcibly abort the connection immediately.
The Retry Delay TLV (DSO-TYPE=2) can be used as a Primary TLV (unidirectional) in a server-to-client message, or as a Response Additional TLV in either direction. DSO messages with a Relay Delay TLV as their Primary TLV are not permitted in early data.
The DSO-DATA for the Retry Delay TLV is as follows:
When used as the Primary TLV in a DSO unidirectional message, the Retry Delay TLV is sent from server to client. It is used by a server to instruct a client to close the DSO Session and underlying connection, and not to reconnect for the indicated time interval.
In this case, it applies to the DSO Session as a whole, and the client MUST begin closing the DSO Session as described in Section 6.6.1. The RCODE in the message header SHOULD indicate the principal reason for the termination:
o NOERROR indicates a routine shutdown or restart.
o FORMERR indicates that a client DSO request was too badly malformed for the session to continue.
o SERVFAIL indicates that the server is overloaded due to resource exhaustion and needs to shed load.
o REFUSED indicates that the server has been reconfigured, and at this time it is now unable to perform one or more of the long- lived client operations that were previously being performed on this DSO Session.
o NOTAUTH indicates that the server has been reconfigured and at this time it is now unable to perform one or more of the long- lived client operations that were previously being performed on this DSO Session because it does not have authority over the names in question (for example, a DNS Push Notification server could be reconfigured such that it is no longer accepting DNS Push Notification requests for one or more of the currently subscribed names).
This document specifies only these RCODE values for the DSO Retry Delay message. Servers sending DSO Retry Delay messages SHOULD use one of these values. However, future circumstances may create situations where other RCODE values are appropriate in DSO Retry Delay messages, so clients MUST be prepared to accept DSO Retry Delay messages with any RCODE value.
In some cases, when a server sends a DSO Retry Delay unidirectional message to a client, there may be more than one reason for the server wanting to end the session. Possibly, the configuration could have been changed such that some long-lived client operations can no longer be continued due to policy (REFUSED), and other long-lived client operations can no longer be performed due to the server no longer being authoritative for those names (NOTAUTH). In such cases, the server MAY use any of the applicable RCODE values, or RCODE=NOERROR (routine shutdown or restart).
Note that the selection of RCODE value in a DSO Retry Delay message is not critical since the RCODE value is generally used only for information purposes such as writing to a log file for future human analysis regarding the nature of the disconnection. Generally, clients do not modify their behavior depending on the RCODE value. The RETRY DELAY in the message tells the client how long it should wait before attempting a new connection to this service instance.
For clients that do in some way modify their behavior depending on the RCODE value, they should treat unknown RCODE values the same as RCODE=NOERROR (routine shutdown or restart).
A DSO Retry Delay message (DSO message where the Primary TLV is Retry Delay) from server to client is a DSO unidirectional message; the MESSAGE ID MUST be set to zero in the outgoing message and the client MUST NOT send a response.
A client MUST NOT send a DSO Retry Delay message to a server. If a server receives a DSO message where the Primary TLV is the Retry Delay TLV, this is a fatal error and the server MUST forcibly abort the connection immediately.
In the case of a DSO request message that results in a nonzero RCODE value, the responder MAY append a Retry Delay TLV to the response, indicating the time interval during which the initiator SHOULD NOT attempt this operation again.
The indicated time interval during which the initiator SHOULD NOT retry applies only to the failed operation, not to the DSO Session as a whole.
Either a client or a server, whichever is acting in the role of the responder for a particular DSO request message, MAY append a Retry Delay TLV to an error response that it sends.
The Encryption Padding TLV (DSO-TYPE=3) can only be used as an Additional or Response Additional TLV. It is only applicable when the DSO Transport layer uses encryption such as TLS.
The DSO-DATA for the Padding TLV is optional and is a variable length field containing non-specified values. A DSO-LENGTH of 0 essentially provides for 4 bytes of padding (the minimum amount).
As specified for the EDNS(0) Padding Option [RFC7830], the PADDING bytes SHOULD be set to 0x00. Other values MAY be used, for example, in cases where there is a concern that the padded message could be subject to compression before encryption. PADDING bytes of any value MUST be accepted in the messages received.
The Encryption Padding TLV may be included in either a DSO request message, response, or both. As specified for the EDNS(0) Padding Option [RFC7830], if a DSO request message is received with an Encryption Padding TLV, then the DSO response MUST also include an Encryption Padding TLV.
The length of padding is intentionally not specified in this document and is a function of current best practices with respect to the type and length of data in the preceding TLVs [RFC8467].
This section summarizes some noteworthy highlights about various aspects of the DSO protocol.
In DSO request messages, the QR bit is 0 and the MESSAGE ID is nonzero.
In DSO response messages, the QR bit is 1 and the MESSAGE ID is nonzero.
In DSO unidirectional messages, the QR bit is 0 and the MESSAGE ID is zero.
The table below illustrates which combinations are legal and how they are interpreted:
The table below indicates, for each of the three TLVs defined in this document, whether they are valid in each of ten different contexts.
The first five contexts are DSO requests or DSO unidirectional messages from client to server, and the corresponding responses from server back to client:
o C-P - Primary TLV, sent in DSO request message, from client to server, with nonzero MESSAGE ID indicating that this request MUST generate response message.
o C-U - Primary TLV, sent in DSO unidirectional message, from client to server, with zero MESSAGE ID indicating that this request MUST NOT generate response message.
o C-A - Additional TLV, optionally added to a DSO request message or DSO unidirectional message from client to server.
o CRP - Response Primary TLV, included in response message sent back to the client (in response to a client "C-P" request with nonzero MESSAGE ID indicating that a response is required) where the DSO- TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV in the request.
o CRA - Response Additional TLV, included in response message sent back to the client (in response to a client "C-P" request with nonzero MESSAGE ID indicating that a response is required) where the DSO-TYPE of the Response TLV does not match the DSO-TYPE of the Primary TLV in the request.
The second five contexts are their counterparts in the opposite direction: DSO requests or DSO unidirectional messages from server to client, and the corresponding responses from client back to server.
o S-P - Primary TLV, sent in DSO request message, from server to client, with nonzero MESSAGE ID indicating that this request MUST generate response message.
o S-U - Primary TLV, sent in DSO unidirectional message, from server to client, with zero MESSAGE ID indicating that this request MUST NOT generate response message.
o S-A - Additional TLV, optionally added to a DSO request message or DSO unidirectional message from server to client.
o SRP - Response Primary TLV, included in response message sent back to the server (in response to a server "S-P" request with nonzero MESSAGE ID indicating that a response is required) where the DSO- TYPE of the Response TLV matches the DSO-TYPE of the Primary TLV in the request.
o SRA - Response Additional TLV, included in response message sent back to the server (in response to a server "S-P" request with nonzero MESSAGE ID indicating that a response is required) where the DSO-TYPE of the Response TLV does not match the DSO-TYPE of the Primary TLV in the request.
Note that some of the columns in this table are currently empty. The table provides a template for future TLV definitions to follow. It is recommended that definitions of future TLVs include a similar table summarizing the contexts where the new TLV is valid.
We use the term "service instance" to refer to software running on a host that can receive connections on some set of { IP address, port } tuples. What makes the software an instance is that regardless of which of these tuples the client uses to connect to it, the client is connected to the same software, running on the same logical node (see Section 9.2), and will receive the same answers and the same keying information.
Service instances are identified from the perspective of the client. If the client is configured with { IP address, port } tuples, it has no way to tell if the service offered at one tuple is the same server that is listening on a different tuple. So in this case, the client treats each different tuple as if it references a different service instance.
In some cases, a client is configured with a hostname and a port number. The port number may be given explicitly, along with the hostname. The port number may be omitted, and assumed to have some default value. The hostname and a port number may be learned from the network, as in the case of DNS SRV records. In these cases, the { hostname, port } tuple uniquely identifies the service instance, subject to the usual case-insensitive DNS comparison of names [RFC1034].
It is possible that two hostnames might point to some common IP addresses; this is a configuration anomaly that the client is not obliged to detect. The effect of this could be that after being told to disconnect, the client might reconnect to the same server because it is represented as a different service instance.
Implementations SHOULD NOT resolve hostnames and then perform the process of matching IP address(es) in order to evaluate whether two entities should be determined to be the "same service instance".
When an anycast service is configured on a particular IP address and port, it must be the case that although there is more than one physical server responding on that IP address, each such server can be treated as equivalent. What we mean by "equivalent" here is that both servers can provide the same service and, where appropriate, the same authentication information, such as PKI certificates, when establishing connections.
If a change in network topology causes packets in a particular TCP connection to be sent to an anycast server instance that does not know about the connection, the new server will automatically terminate the connection with a TCP reset, since it will have no record of the connection, and then the client can reconnect or stop using the connection as appropriate.
If, after the connection is re-established, the client's assumption that it is connected to the same instance is violated in some way, that would be considered an incorrect behavior in this context. It is, however, out of the possible scope for this specification to make specific recommendations in this regard; that would be up to follow- on documents that describe specific uses of DNS Stateful Operations.
As previously specified for DNS-over-TCP [RFC7766]:
A single server may support multiple services, including DNS Updates [RFC2136], DNS Push Notifications [Push], and other services, for one or more DNS zones. When a client discovers that the target server for several different operations is the same service instance (see Section 9.1), the client SHOULD use a single shared DSO Session for all those operations.
This requirement has two benefits. First, it reduces unnecessary connection load on the DNS server. Second, it avoids the connection startup time that would be spent establishing each new additional connection to the same DNS server.
However, server implementers and operators should be aware that connection sharing may not be possible in all cases. A single host device may be home to multiple independent client software instances that don't coordinate with each other. Similarly, multiple independent client devices behind the same NAT gateway will also typically appear to the DNS server as different source ports on the same client IP address. Because of these constraints, a DNS server MUST be prepared to accept multiple connections from different source ports on the same client IP address.
Where an application-layer middlebox (e.g., a DNS proxy, forwarder, or session multiplexer) is in the path, care must be taken to avoid a configuration in which DSO traffic is mishandled. The simplest way to avoid such problems is to avoid using middleboxes. When this is not possible, middleboxes should be evaluated to make sure that they behave correctly.
Correct behavior for middleboxes consists of one of the following:
o The middlebox does not forward DSO messages and responds to DSO messages with a response code other than NOERROR or DSOTYPENI.
o The middlebox acts as a DSO server and follows this specification in establishing connections.
o There is a 1:1 correspondence between incoming and outgoing connections such that when a connection is established to the middlebox, it is guaranteed that exactly one corresponding connection will be established from the middlebox to some DNS resolver, and all incoming messages will be forwarded without modification or reordering. An example of this would be a NAT forwarder or TCP connection optimizer (e.g., for a high-latency connection such as a geosynchronous satellite link).
Middleboxes that do not meet one of the above criteria are very likely to fail in unexpected and difficult-to-diagnose ways. For example, a DNS load balancer might unbundle DNS messages from the incoming TCP stream and forward each message from the stream to a different DNS server. If such a load balancer is in use, and the DNS servers it points to implement DSO and are configured to enable DSO, DSO Session establishment will succeed, but no coherent session will exist between the client and the server. If such a load balancer is pointed at a DNS server that does not implement DSO or is configured not to allow DSO, no such problem will exist, but such a configuration risks unexpected failure if new server software is installed that does implement DSO.
It is of course possible to implement a middlebox that properly supports DSO. It is even possible to implement one that implements DSO with long-lived operations. This can be done either by maintaining a 1:1 correspondence between incoming and outgoing connections, as mentioned above, or by terminating incoming sessions at the middlebox but maintaining state in the middlebox about any long-lived operations that are requested. Specifying this in detail is beyond the scope of this document.
Most modern implementations of the Transmission Control Protocol (TCP) include a feature called "Delayed Acknowledgement" [RFC1122].
Without this feature, TCP can be very wasteful on the network. For illustration, consider a simple example like remote login using a very simple TCP implementation that lacks delayed acks. When the user types a keystroke, a data packet is sent. When the data packet arrives at the server, the simple TCP implementation sends an immediate acknowledgement. Mere milliseconds later, the server process reads the one byte of keystroke data, and consequently the simple TCP implementation sends an immediate window update. Mere milliseconds later, the server process generates the character echo and sends this data back in reply. The simple TCP implementation then sends this data packet immediately too. In this case, this simple TCP implementation sends a burst of three packets almost instantaneously (ack, window update, data).
Clearly it would be more efficient if the TCP implementation were to combine the three separate packets into one, and this is what the delayed ack feature enables.
With delayed ack, the TCP implementation waits after receiving a data packet, typically for 200 ms, and then sends its ack if (a) more data packet(s) arrive, (b) the receiving process generates some reply data, or (c) 200 ms elapse without either of the above occurring.
With delayed ack, remote login becomes much more efficient, generating just one packet instead of three for each character echo.
The logic of delayed ack is that the 200 ms delay cannot do any significant harm. If something at the other end were waiting for something, then the receiving process should generate the reply that the thing at the other end is waiting for, and TCP will then immediately send that reply (combined with the ack and window update). And if the receiving process does not in fact generate any reply for this particular message, then by definition the thing at the other end cannot be waiting for anything. Therefore, the 200 ms delay is harmless.
This assumption may be true unless the sender is using Nagle's algorithm, a similar efficiency feature, created to protect the network from poorly written client software that performs many rapid small writes in succession. Nagle's algorithm allows these small writes to be coalesced into larger, less wasteful packets. Unfortunately, Nagle's algorithm and delayed ack, two valuable efficiency features, can interact badly with each other when used together [NagleDA].
DSO request messages elicit responses; DSO unidirectional messages and DSO response messages do not.
For DSO request messages, which do elicit responses, Nagle's algorithm and delayed ack work as intended.
For DSO messages that do not elicit responses, the delayed ack mechanism causes the ack to be delayed by 200 ms. The 200 ms delay on the ack can in turn cause Nagle's algorithm to prevent the sender from sending any more data for 200 ms until the awaited ack arrives. On an enterprise Gigabit Ethernet (GigE) backbone with sub- millisecond round-trip times, a 200 ms delay is enormous in comparison.
When this issues is raised, there are two solutions that are often offered, neither of them ideal:
1. Disable delayed ack. For DSO messages that elicit no response, removing delayed ack avoids the needless 200 ms delay and sends back an immediate ack that tells Nagle's algorithm that it should immediately grant the sender permission to send its next packet. Unfortunately, for DSO messages that *do* elicit a response, removing delayed ack removes the efficiency gains of combining acks with data, and the responder will now send two or three packets instead of one.
2. Disable Nagle's algorithm. When acks are delayed by the delayed ack algorithm, removing Nagle's algorithm prevents the sender from being blocked from sending its next small packet immediately. Unfortunately, on a network with a higher round- trip time, removing Nagle's algorithm removes the efficiency gains of combining multiple small packets into fewer larger ones, with the goal of limiting the number of small packets in flight at any one time.
The problem here is that with DSO messages that elicit no response, the TCP implementation is stuck waiting, unsure if a response is about to be generated or whether the TCP implementation should go ahead and send an ack and window update.
The solution is networking APIs that allow the receiver to inform the TCP implementation that a received message has been read, processed, and no response for this message will be generated. TCP can then stop waiting for a response that will never come, and immediately go ahead and send an ack and window update.
For implementations of DSO, disabling delayed ack is NOT RECOMMENDED because of the harm this can do to the network.
For implementations of DSO, disabling Nagle's algorithm is NOT RECOMMENDED because of the harm this can do to the network.
At the time that this document is being prepared for publication, it is known that at least one TCP implementation provides the ability for the recipient of a TCP message to signal that it is not going to send a response, and hence the delayed ack mechanism can stop waiting. Implementations on operating systems where this feature is available SHOULD make use of it.
The IANA has assigned the value 6 for DNS Stateful Operations (DSO) in the "DNS OpCodes" registry.
IANA has assigned the value 11 for the DSOTYPENI error code in the "DNS RCODEs" registry. The DSOTYPENI error code ("DSO-TYPE Not Implemented") indicates that the receiver does implement DNS Stateful Operations, but does not implement the specific DSO-TYPE of the Primary TLV in the DSO request message.
The IANA has created the 16-bit "DSO Type Codes" registry, with initial (hexadecimal) values as shown below:
The meanings of the fields are as follows:
Note: DSO Type Code zero is reserved and is not currently intended for allocation.
Registrations of new DSO Type Codes in the "Reserved for DSO session- management" range 0004-003F and the "Reserved for future expansion" range FC00-FFFF require publication of an IETF Standards Action document [RFC8126].
Requests to register additional new DSO Type Codes in the "Unassigned" range 0040-F7FF are to be recorded by IANA after Expert Review [RFC8126]. The expert review should validate that the requested type code is specified in a way that conforms to this specification, and that the intended use for the code would not be addressed with an experimental/local assignment.
DSO Type Codes in the "experimental/local" range F800-FBFF may be used as Experimental Use or Private Use values [RFC8126] and may be used freely for development purposes or for other purposes within a single site. No attempt is made to prevent multiple sites from using the same value in different (and incompatible) ways. There is no need for IANA to review such assignments (since IANA does not record them) and assignments are not generally useful for broad interoperability. It is the responsibility of the sites making use of "experimental/local" values to ensure that no conflicts occur within the intended scope of use.
Any document defining a new TLV that lists a value of "OK" in the Early Data column must include a threat analysis for the use of the TLV in the case of TLS zero round-trip. See Section 11.1 for details.
If this mechanism is to be used with DNS-over-TLS, then these messages are subject to the same constraints as any other DNS-over- TLS messages and MUST NOT be sent in the clear before the TLS session is established.
The data field of the "Encryption Padding" TLV could be used as a covert channel.
When designing new DSO TLVs, the potential for data in the TLV to be used as a tracking identifier should be taken into consideration and should be avoided when not required.
When used without TLS or similar cryptographic protection, a malicious entity may be able to inject a malicious unidirectional DSO Retry Delay message into the data stream, specifying an unreasonably large RETRY DELAY, causing a denial-of-service attack against the client.
The establishment of DSO Sessions has an impact on the number of open TCP connections on a DNS server. Additional resources may be used on the server as a result. However, because the server can limit the number of DSO Sessions established and can also close existing DSO Sessions as needed, denial of service or resource exhaustion should not be a concern.
A DSO message may or may not be permitted to be sent as early data. The definition for each TLV that can be used as a Primary TLV is required to state whether or not that TLV is permitted as early data. Only response-requiring messages are ever permitted as early data, and only clients are permitted to send a DSO message as early data unless there is an implicit DSO session (see Section 5.1).
For DSO messages that are permitted as early data, a client MAY include one or more such messages as early data without having to wait for a DSO response to the first DSO request message to confirm successful establishment of a DSO Session.
However, unless there is an implicit DSO session, a client MUST NOT send DSO unidirectional messages until after a DSO Session has been mutually established.
Similarly, unless there is an implicit DSO session, a server MUST NOT send DSO request messages until it has received a response-requiring DSO request message from a client and transmitted a successful NOERROR response for that request.
Caution must be taken to ensure that DSO messages sent as early data are idempotent or are otherwise immune to any problems that could result from the inadvertent replay that can occur with zero round- trip operation.
It would be possible to add a TLV that requires the server to do some significant work and send that to the server as initial data in a TCP SYN packet. A flood of such packets could be used as a DoS attack on the server. None of the TLVs defined here have this property.
If a new TLV is specified that does have this property, that TLV must be specified as not permitted in zero round-trip messages. This prevents work from being done until a round-trip has occurred from the server to the client to verify that the source address of the packet is reachable.
[RFC1034]
Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, <https://www.rfc-editor.org/info/rfc1034>.
[RFC1035]
Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, November 1987, <https://www.rfc-editor.org/info/rfc1035>.
[RFC1918]
Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, <https://www.rfc-editor.org/info/rfc1918>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2136]
Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound, "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136, DOI 10.17487/RFC2136, April 1997, <https://www.rfc-editor.org/info/rfc2136>.
[RFC6891]
Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms for DNS (EDNS(0))", STD 75, RFC 6891, DOI 10.17487/RFC6891, April 2013, <https://www.rfc-editor.org/info/rfc6891>.
[RFC7766]
Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and D. Wessels, "DNS Transport over TCP - Implementation Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016, <https://www.rfc-editor.org/info/rfc7766>.
[RFC7830]
Mayrhofer, A., "The EDNS(0) Padding Option", RFC 7830, DOI 10.17487/RFC7830, May 2016, <https://www.rfc-editor.org/info/rfc7830>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[Fail]
Andrews, M. and R. Bellis, "A Common Operational Problem in DNS Servers - Failure To Communicate", Work in Progress, draft-ietf-dnsop-no-response-issue-13, February 2019.
[NagleDA]
Cheshire, S., "TCP Performance problems caused by interaction between Nagle's Algorithm and Delayed ACK", May 2005, <http://www.stuartcheshire.org/papers/nagledelayedack/>.
[Push]
Pusateri, T. and S. Cheshire, "DNS Push Notifications", Work in Progress, draft-ietf-dnssd-push-18, March 2019.
[Relay]
Lemon, T. and S. Cheshire, "Multicast DNS Discovery Relay", Work in Progress, draft-ietf-dnssd-mdns-relay-02, March 2019.
[RFC1122]
Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, DOI 10.17487/RFC1122, October 1989, <https://www.rfc-editor.org/info/rfc1122>.
[RFC2132]
Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997, <https://www.rfc-editor.org/info/rfc2132>.
[RFC5382]
Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P. Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142, RFC 5382, DOI 10.17487/RFC5382, October 2008, <https://www.rfc-editor.org/info/rfc5382>.
[RFC6762]
Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, DOI 10.17487/RFC6762, February 2013, <https://www.rfc-editor.org/info/rfc6762>.
[RFC6763]
Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013, <https://www.rfc-editor.org/info/rfc6763>.
[RFC7413]
Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014, <https://www.rfc-editor.org/info/rfc7413>.
[RFC7828]
Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The edns-tcp-keepalive EDNS0 Option", RFC 7828, DOI 10.17487/RFC7828, April 2016, <https://www.rfc-editor.org/info/rfc7828>.
[RFC7857]
Penno, R., Perreault, S., Boucadair, M., Ed., Sivakumar, S., and K. Naito, "Updates to Network Address Translation (NAT) Behavioral Requirements", BCP 127, RFC 7857, DOI 10.17487/RFC7857, April 2016, <https://www.rfc-editor.org/info/rfc7857>.
[RFC7858]
Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., and P. Hoffman, "Specification for DNS over Transport Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May 2016, <https://www.rfc-editor.org/info/rfc7858>.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, <https://www.rfc-editor.org/info/rfc8446>.
[RFC8467]
Mayrhofer, A., "Padding Policies for Extension Mechanisms for DNS (EDNS(0))", RFC 8467, DOI 10.17487/RFC8467, October 2018, <https://www.rfc-editor.org/info/rfc8467>.
[RFC8484]
Hoffman, P. and P. McManus, "DNS Queries over HTTPS (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018, <https://www.rfc-editor.org/info/rfc8484>.
Thanks to Stephane Bortzmeyer, Tim Chown, Ralph Droms, Paul Hoffman, Jan Komissar, Edward Lewis, Allison Mankin, Rui Paulo, David Schinazi, Manju Shankar Rao, Bernie Volz, and Bob Harold for their helpful contributions to this document.
Authors' Addresses
Email: jad@sinodun.com
Email: sara@sinodun.com
Email: mellon@fugue.com
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.