This book is a collection of RFCs and Internet-Drafts related to specific working group. The RFC and Internet-Drafts files are normally stored in plain ascii text format and they are converted to html suitable for eBook use by automatic scripts. Those scripts try to detect headers, pictures, lists, references etc and create special html for each of those. For text paragraphs those scripts remove indentation and hard linebreaks and makes text paragraphs as normal text so font size of the eBook can be adjusted at will and features like text-to-speech work.
As this conversion is completely automatic there might be errors in the converted files. I have tried to fix the issues when I find them, but sometimes fixing issue in one RFC cause problems in others, so not all errors can be easily fixed, this is especially true for very old RFCs which do not follow the formatting specifications. If you notice errors in the formatting please send email to the <kivinen+rfc-ebook@iki.fi> and describle the problem. Please, remember to include the RFC number and the version number of the eBook file (found from the cover page).
As the collection of RFCs is quite large there has been some issues with the conversion to kindle, and some features do not seem to work properly when full set of RFCs is used. Because of this some work-arounds have been made to make the eBook still usable. If the kindle software gets updated some of those work-arounds might be removed. For more information about those see the Conversion section.
The primary output format of the scripts is the .mobi format used in the kindle, and I have been using Kindle 3 as my primary testing device, so if other reader devices are used, there might be more issues. The automatic tools also create the .ePub file, which can be used on platforms which do not support .mobi format. There is program called mobipocket for reading .mobi files, and that program is available for wide range of devices including PalmOS, Symbian, PC, Windows Mobile, Blackberry etc, so also those devices can be used in addition to normal eBook readers.
In this section I will concentrate mostly on how to use this on Kindle 3. This eBook contains 5 main parts:
The cover page includes the date when this eBook was created (i.e. eBook version).
The conversion section includes technical information how this eBook was created and some known issues etc.
There are four main ways to navigate through the book in addition to normal page up and down.
Fastest way to go to specific RFC or Internet-Draft is to press menu button on the Kindle 3, and then select Index from the menu. This will give you the automatic index of the contents of the this file. This allows quick access to the RFC by just typing the numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y will jump you to the RFC 5996 and then you can use arrow down to select RFC and hit enter to go there. For internet draft start typing the draft name.
Another option is to use the RFC Index in the beginning of the file (You can get to there by either pressing menu, selecting Index and then clicking on the Index in the beginning of the index, or by pressing menu, selecting Go to... and then selecting Table of Contents).
Third option is to use left and right arrows to navigate the next and previous RFC/Internet-Drafts.
The fourth way to navigate inside the book is to use the links inside the files. The RFC Index has direct links to every 100th RFC. Each file contains links to back 5, forward 5, next and previous rfc. Also any reference inside the documents pointing to other RFCs gets you directly there. Some of the links inside RFC moves you inside the RFC, i.e. clicking link on the table of contents inside the RFC moves you to that section etc. Also references inside the RFC will move you to the refences section etc.
draft-ietf-dtn-bibect-01 - Bundle-in-Bundle Encapsulation
Delay-Tolerant Networking Working Group
Internet Draft
Intended status: Standards Track
Expires: August 2019
S. Burleigh
JPL, Calif. Inst. Of Technology
January 31, 2019
draft-ietf-dtn-bibect-01.txt
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html
This Internet-Draft will expire on August 4, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document describes Bundle-in-Bundle Encapsulation (BIBE), a Delay-Tolerant Networking (DTN) Bundle Protocol (BP) "convergence layer" protocol that tunnels BP "bundles" through encapsulating bundles. The services provided by the BIBE convergence-layer protocol adapter encapsulate an outbound BP "bundle" in a BIBE convergence-layer protocol data unit for transmission as the payload of a bundle. Security measures applied to the encapsulating bundle may augment those applied to the encapsulated bundle. The protocol includes a mechanism for recovery from loss of an encapsulating bundle, called "custody transfer". This mechanism is adapted from the custody transfer procedures described in the experimental Bundle Protocol specification developed by the Delay-Tolerant Networking Research group of the Internet Research Task Force and documented in RFC 5050.
This document describes Bundle-in-Bundle Encapsulation (BIBE), a Delay-Tolerant Networking (DTN) Bundle Protocol (BP) [RFC5050] "convergence layer" protocol that tunnels BP "bundles" through encapsulating bundles.
Conformance to the bundle-in-bundle encapsulation (BIBE) specification is OPTIONAL for BP nodes. Each BP node that conforms to the BIBE specification provides a BIBE convergence-layer adapter (CLA) that is implemented within the administrative element of the BP node's application agent. Like any convergence-layer adapter, the BIBE CLA provides:
The BIBE CLA performs these services by:
Bundle-in-bundle encapsulation may have broad utility, but the principal motivating use case is the deployment of "cross domain solutions" in secure communications. Under some circumstances a bundle may arrive at a node that is on the frontier of a sector of network topology in which augmented security is required, from which the bundle must egress at some other designated node. In that case, the bundle may be encapsulated within a bundle to which the requisite additional BP Security (BPSEC) [bpsec] extension block(s) can be attached, whose source is the point of entry into the insecure region (the "security source") and whose destination is the point of egress from the insecure region (the "security destination").
Note that:
. If the payload of the encapsulating bundle is protected by a
Bundle Confidentiality Block (BCB), then the source and destination of the encapsulated bundle are encrypted, providing defense against traffic analysis that BPSEC alone cannot offer. . Bundles whose payloads are BIBE protocol data units may themselves be forwarded via a BIBE convergence-layer adapter,
The protocol includes a mechanism for recovery from loss of an encapsulating bundle, called "custody transfer". This mechanism is adapted from the custody transfer procedures described in the experimental Bundle Protocol specification developed by the Delay- Tolerant Networking Research group of the Internet Research Task Force and documented in RFC 5050. Custody transfer is a convention by which the loss or corruption of BIBE encapsulating bundles can be mitigated by the exchange of other bundles, which are termed "custody signals".
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].
In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.
BIBE convergence-layer protocol endpoints, also known as BIBE convergence-layer adapters (BCLAs), are the Administrative Elements of Bundle Protocol nodes that conform to the BIBE protocol specification. The node of which a given BCLA is one component is termed the BCLA's "local node".
Notionally, a BCLA is assumed to implement in some way, for each neighboring node to which the local node issues BIBE Protocol Data Units (BPDUs), the following two data resources:
1. A "custodial transmission count" (CTC). A CTC is a monotonically increasing integer indicating the number of "custodial" BPDUs - that is, BPDUs for which custody transfer
A BIBE protocol data unit is a Bundle Protocol administrative record whose record type code is 3 (i.e., bit pattern 0011), constructed as follows.
Each BPDU SHALL be represented as a CBOR array. The number of elements in the array SHALL be 3.
The first item of the BPDU array SHALL be the "transmission ID" for the BPDU, represented as a CBOR unsigned integer. The transmission ID for a BPDU for which custody transfer is NOT requested SHALL be zero. The transmission ID for a BPDU for which custody transfer IS requested SHALL be the current value of the local node's custodial transmission count, plus 1.
The second item of the BPDU array SHALL be the BPDU's retransmission time (i.e., the time by which custody disposition for this BPDU is expected), represented as a CBOR unsigned integer. Retransmission time for a BPDU for which custody transfer is NOT requested SHALL be zero. Retransmission time for a BPDU for which custody transfer IS requested SHALL take the form of a "DTN Time" as defined in the Bundle Protocol specification; determination of the value of retransmission time is an implementation matter that is beyond the scope of this specification and may be dynamically responsive to changes in connectivity.
The third item of the BPDU array SHALL be a single BP bundle, termed the "encapsulated bundle", represented as a CBOR byte string of definite length.
A "custody signal" is a Bundle Protocol administrative record whose record type code is 4 (i.e., bit pattern 0100) and whose content is constructed as follows.
The content of each custody signal SHALL be represented as a CBOR array. The number of elements in the array SHALL be 2.
The first item of the custody signal content array SHALL be a disposition code represented as a CBOR unsigned integer. Valid disposition codes are defined as follows:
Figure 1: Disposition Codes
The second item of the custody signal content array SHALL be a "disposition scope report", represented as a CBOR indefinite-length array. Each item of the disposition scope report array SHALL be a "disposition scope sequence", represented as a CBOR array of two elements. The first element of each disposition scope sequence array SHALL be the first transmission ID in a sequence of 1 or more consecutive transmission IDs corresponding to BPDUs to which the custody signal's disposition is declared to apply; the second element of each disposition scope sequence array SHALL be the number of transmission IDs in that sequence. Both are represented as CBOR unsigned integers.
A custody signal constitutes an assertion by the source of that administrative bundle that the indicated disposition code applies to all BPDUs identified by the transmission IDs enumerated in the custody signal's disposition scope report. If the disposition code is zero, then the source of the custody signal has accepted custody of all bundles that were encapsulated in the indicated BPDUs. Otherwise the source of the custody signal has refused custody of all bundles that were encapsulated in the indicated BPDUs, for the indicated reason.
A "custody transfer status report" is a bundle status report with the "reporting node attempted custody transfer" flag set to 1.
When a BCLA is requested by the bundle protocol agent to send a bundle to the peer BCLA(s) included in the BP endpoint identified by a specified BP endpoint ID:
Note that the custody transfer retransmission timer mechanism provides a means of recovering from loss of an encapsulating bundle as indicated by non-arrival of a responding custody signal.
When a BCLA receives a BPDU from the bundle protocol agent (that is, upon delivery of the payload of an encapsulating bundle):
delivered from the convergence layer adapter to the bundle protocol agent, whereupon bundle reception SHALL be performed as defined in section 5.6 of the Bundle Protocol specification (a work in progress) as usual: the encapsulated bundle may be forwarded, delivered, etc.
Note that the manner in which pending outbound custody signals are managed, disposition scope reports are aggregated, and custody signal transmission is initiated is an implementation matter that is beyond the scope of this specification. Note, however, that failure to deliver a custody signal prior to the earliest value of retransmission time among all BPDUs enumerated in the custody signal's disposition scope report may result in unnecessary retransmission of one or more BPDUs.
Upon expiration of a retransmission timer, the BCLA SHOULD remove the corresponding CTI from the CTDB (destroying the associated retransmission timer, if any) and notify the bundle protocol agent that custodial transmission of the indicated bundle failed. This notification may cause the indicated bundle to be re-forwarded (possibly on a different route).
When a BCLA receives a custody signal from the bundle protocol agent (that is, upon delivery of the payload of a custody-signal-bearing bundle):
the indicated bundle failed. If the reason code was "Redundant reception", on the other hand, this might cause the BCLA simply to instruct the bundle protocol agent to remove the retention constraint "Custody accepted" on the bundle referenced by the corresponding CTI and to revise its algorithm for computing retransmission time.
An adversary on a DTN-based network that can delete bundles could delete a BIBE custody signal in transit. This could result in unnecessary custodial retransmission, degrading network performance.
Alternatively, an adversary on a DTN-based network that can reorder bundles could cause bundles to be delivered to a BCLA in an order that complicates the efficient construction of disposition scope reports in pending outbound custody signals. This could result in inefficient custody transfer communications, again degrading network performance.
Custody transfer in BIBE may be contraindicated in environments characterized by such attacks.
The BIBE specification requires IANA registration of the new BIBE administrative records (type codes 3 and 4) defined above.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC5050]
Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, November 2007.
This work is freely adapted from [RFC5050], which was an effort of the Delay Tolerant Networking Research Group. The following DTNRG participants contributed significant technical material and/or inputs to that document: Dr. Vinton Cerf of Google, Scott Burleigh, Adrian Hooke, and Leigh Torgerson of the Jet Propulsion Laboratory, Michael Demmer of the University of California at Berkeley, Robert Durst, Keith Scott, and Susan Symington of The MITRE Corporation, Kevin Fall of Carnegie Mellon University, Stephen Farrell of Trinity College Dublin, Peter Lovell and Howard Weiss of SPARTA, Inc., and Manikantan Ramadas of Ohio University.
The custody transfer procedures defined in this specification are adapted from the Aggregate Custody Signals draft specification authored in 2010-2012 by Sebastian Kuzminsky and Andrew Jenkins, then of the University of Colorado at Boulder.
Although the BIBE specification diverges in some ways from the original Bundle-in-Bundle Encapsulation Internet Draft authored by Susan Symington, Bob Durst, and Keith Scott of The MITRE Corporation (draft-irtf-dtnrg-bundle-encapsulation-06, 2009), the influence of that earlier document is gratefully acknowledged.
This document was prepared using 2-Word-v2.0.template.dot.
Please refer comments to dtn@ietf.org. The Delay Tolerant Networking Research Group (DTNRG) Web site is located at http://www.dtnrg.org.
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
For informational purposes, Carsten Bormann has kindly provided an expression of the Bundle Protocol specification in the CBOR Data Definition Language (CDDL). Portions of CDDL expression that bear on the custody transfer extension are presented below, somewhat edited by the authors. Note that wherever the CDDL expression is in disagreement with the textual representation of the BP specification presented in the earlier sections of this document, the textual representation rules.
admin-record-choice /= BIBE-PDU
BIBE-PDU = [3, [transmission-ID: uint,
retransmission-time: uint,
encapsulated-bundle: bytes,
admin-common]]
admin-record-choice /= custody-signal
custody-signal = [4, [disposition-code: uint,
disposition-scope-report,
admin-common]]
disposition-scope-report = *disposition-scope-sequence
disposition-scope-sequence = [first-transmission-ID: uint,
number-of-transmission-IDs: uint]
Authors' Address
draft-ietf-dtn-bpbis-13 - Bundle Protocol Version 7
Delay-Tolerant Networking Working Group
Internet Draft
Intended status: Standards Track
Expires: October 2019
S. Burleigh
JPL, Calif. Inst. Of Technology
K. Fall
Nefeli Networks, Inc.
E. Birrane
APL, Johns Hopkins University
April 23, 2019
draft-ietf-dtn-bpbis-13.txt
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html
This Internet-Draft will expire on October 25, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This Internet Draft presents a specification for Bundle Protocol, adapted from the experimental Bundle Protocol specification developed by the Delay-Tolerant Networking Research group of the Internet Research Task Force and documented in RFC 5050.
Since the publication of the Bundle Protocol Specification (Experimental RFC 5050) in 2007, the Delay-Tolerant Networking (DTN) Bundle Protocol has been implemented in multiple programming languages and deployed to a wide variety of computing platforms. This implementation and deployment experience has identified opportunities for making the protocol simpler, more capable, and easier to use. The present document, standardizing the Bundle Protocol (BP), is adapted from RFC 5050 in that context.
This document describes version 7 of BP.
Delay Tolerant Networking is a network architecture providing communications in and/or through highly stressed environments. Stressed networking environments include those with intermittent connectivity, large and/or variable delays, and high bit error rates. To provide its services, BP may be viewed as sitting at the application layer of some number of constituent networks, forming a store-carry-forward overlay network. Key capabilities of BP include:
For descriptions of these capabilities and the rationale for the DTN architecture, see [ARCH] and [SIGC].
BP's location within the standard protocol stack is as shown in Figure 1. BP uses underlying "native" transport and/or network protocols for communications within a given constituent network.
The interface between the bundle protocol and a specific underlying protocol is termed a "convergence layer adapter".
Figure 1 shows three distinct transport and network protocols (denoted T1/N1, T2/N2, and T3/N3).
Figure 1: The Bundle Protocol in the Protocol Stack Model
This document describes the format of the protocol data units (called "bundles") passed between entities participating in BP communications.
The entities are referred to as "bundle nodes". This document does not address:
Note that implementations of the specification presented in this document will not be interoperable with implementations of RFC 5050.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].
In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.
Bundle - A bundle is a protocol data unit of BP, so named because negotiation of the parameters of a data exchange may be impractical in a delay-tolerant network: it is often better practice to "bundle" with a unit of data all metadata that might be needed in order to make the data immediately usable when delivered to applications. Each bundle comprises a sequence of two or more "blocks" of protocol data, which serve various purposes.
Block - A bundle protocol block is one of the protocol data structures that together constitute a well-formed bundle.
Bundle payload - A bundle payload (or simply "payload") is the application data whose conveyance to the bundle's destination is the purpose for the transmission of a given bundle; it is the content of the bundle's payload block. The terms "bundle content", "bundle payload", and "payload" are used interchangeably in this document. Partial payload - A partial payload is a payload that comprises either the first N bytes or the last N bytes of some other payload of length M, such that 0 < N < M. Note that every partial payload is a payload and therefore can be further subdivided into partial payloads.
Fragment - A fragment is a bundle whose payload block contains a partial payload.
Bundle node - A bundle node (or, in the context of this document, simply a "node") is any entity that can send and/or receive bundles. Each bundle node has three conceptual components, defined below, as shown in Figure 2: a "bundle protocol agent", a set of zero or more "convergence layer adapters", and an "application agent".
Figure 2: Components of a BP Node
Bundle protocol agent - The bundle protocol agent (BPA) of a node is the node component that offers the BP services and executes the procedures of the bundle protocol.
Convergence layer adapter - A convergence layer adapter (CLA) is a node component that sends and receives bundles on behalf of the BPA, utilizing the services of some 'native' protocol stack that is supported in one of the networks within which the node is functionally located.
Application agent - The application agent (AA) of a node is the node component that utilizes the BP services to effect communication for some user purpose. The application agent in turn has two elements, an administrative element and an application-specific element.
Application-specific element - The application-specific element of an AA is the node component that constructs, requests transmission of, accepts delivery of, and processes units of user application data.
Administrative element - The administrative element of an AA is the node component that constructs and requests transmission of administrative records (defined below), including status reports, and accepts delivery of and processes any administrative records that the node receives.
Administrative record - A BP administrative record is an application data unit that is exchanged between the administrative elements of nodes' application agents for some BP administrative purpose. The only administrative record defined in this specification is the status report, discussed later.
Bundle endpoint - A bundle endpoint (or simply "endpoint") is a set of zero or more bundle nodes that all identify themselves for BP purposes by some common identifier, called a "bundle endpoint ID" (or, in this document, simply "endpoint ID"; endpoint IDs are described in detail in Section 4.4.1 below).
Singleton endpoint - A singleton endpoint is an endpoint that always contains exactly one member.
Registration - A registration is the state machine characterizing a given node's membership in a given endpoint. Any single registration has an associated delivery failure action as defined below and must at any time be in one of two states: Active or Passive.
Delivery - A bundle is considered to have been delivered at a node subject to a registration as soon as the application data unit that is the payload of the bundle, together with any relevant metadata (an implementation matter), has been presented to the node's application agent in a manner consistent with the state of that registration.
Deliverability - A bundle is considered "deliverable" subject to a registration if and only if (a) the bundle's destination endpoint is the endpoint with which the registration is associated, (b) the bundle has not yet been delivered subject to this registration, and (c) the bundle has not yet been "abandoned" (as defined below) subject to this registration.
Abandonment - To abandon a bundle subject to some registration is to assert that the bundle is not deliverable subject to that registration.
Delivery failure action - The delivery failure action of a registration is the action that is to be taken when a bundle that is "deliverable" subject to that registration is received at a time when the registration is in the Passive state.
Destination - The destination of a bundle is the endpoint comprising the node(s) at which the bundle is to be delivered (as defined below).
Transmission - A transmission is an attempt by a node's BPA to cause copies of a bundle to be delivered to one or more of the nodes that are members of some endpoint (the bundle's destination) in response to a transmission request issued by the node's application agent.
Forwarding - To forward a bundle to a node is to invoke the services of one or more CLAs in a sustained effort to cause a copy of the bundle to be received by that node.
Discarding - To discard a bundle is to cease all operations on the bundle and functionally erase all references to it. The specific procedures by which this is accomplished are an implementation matter.
Retention constraint - A retention constraint is an element of the state of a bundle that prevents the bundle from being discarded. That is, a bundle cannot be discarded while it has any retention constraints.
Deletion - To delete a bundle is to remove unconditionally all of the bundle's retention constraints, enabling the bundle to be discarded.
Multiple instances of the same bundle (the same unit of DTN protocol data) might exist concurrently in different parts of a network -- possibly differing in some blocks -- in the memory local to one or more bundle nodes and/or in transit between nodes. In the context of the operation of a bundle node, a bundle is an instance (copy), in that node's local memory, of some bundle that is in the network.
The payload for a bundle forwarded in response to a bundle transmission request is the application data unit whose location is provided as a parameter to that request. The payload for a bundle forwarded in response to reception of a bundle is the payload of the received bundle.
In the most familiar case, a bundle node is instantiated as a single process running on a general-purpose computer, but in general the definition is meant to be broader: a bundle node might alternatively be a thread, an object in an object-oriented operating system, a special-purpose hardware device, etc.
The manner in which the functions of the BPA are performed is wholly an implementation matter. For example, BPA functionality might be coded into each node individually; it might be implemented as a shared library that is used in common by any number of bundle nodes on a single computer; it might be implemented as a daemon whose services are invoked via inter-process or network communication by any number of bundle nodes on one or more computers; it might be implemented in hardware.
Every CLA implements its own thin layer of protocol, interposed between BP and the (usually "top") protocol(s) of the underlying native protocol stack; this "CL protocol" may only serve to multiplex and de-multiplex bundles to and from the underlying native protocol, or it may offer additional CL-specific functionality. The manner in which a CLA sends and receives bundles, as well as the definitions of CLAs and CL protocols, are beyond the scope of this specification.
Note that the administrative element of a node's application agent may itself, in some cases, function as a convergence-layer adapter. That is, outgoing bundles may be "tunneled" through encapsulating bundles:
The purposes for which this technique may be useful (such as cross- domain security) are beyond the scope of this specification.
The only interface between the BPA and the application-specific element of the AA is the BP service interface. But between the BPA and the administrative element of the AA there is a (conceptual) private control interface in addition to the BP service interface. This private control interface enables the BPA and the administrative element of the AA to direct each other to take action under specific circumstances.
In the case of a node that serves simply as a BP "router", the AA may have no application-specific element at all. The application- specific elements of other nodes' AAs may perform arbitrarily complex application functions, perhaps even offering multiplexed DTN communication services to a number of other applications. As with the BPA, the manner in which the AA performs its functions is wholly an implementation matter.
Singletons are the most familiar sort of endpoint, but in general the endpoint notion is meant to be broader. For example, the nodes in a sensor network might constitute a set of bundle nodes that identify themselves by a single common endpoint ID and thus form a single bundle endpoint. *Note* too that a given bundle node might identify itself by multiple endpoint IDs and thus be a member of multiple bundle endpoints.
The destination of every bundle is an endpoint, which may or may not be singleton. The source of every bundle is a node, identified by the endpoint ID for some singleton endpoint that contains that node. Note, though, that the source node ID asserted in a given bundle may be the null endpoint ID (as described later) rather than the endpoint ID of the actual source node; bundles for which the asserted source node ID is the null endpoint ID are termed "anonymous" bundles.
Any number of transmissions may be concurrently undertaken by the bundle protocol agent of a given node.
When the bundle protocol agent of a node determines that a bundle must be forwarded to a node (either to a node that is a member of the bundle's destination endpoint or to some intermediate forwarding node) in the course of completing the successful transmission of that bundle, it invokes the services of one or more CLAs in a sustained effort to cause a copy of the bundle to be received by that node.
Upon reception, the processing of a bundle that has been received by a given node depends on whether or not the receiving node is registered in the bundle's destination endpoint. If it is, and if the payload of the bundle is non-fragmentary (possibly as a result of successful payload reassembly from fragmentary payloads, including the original payload of the newly received bundle), then the bundle is normally delivered to the node's application agent subject to the registration characterizing the node's membership in the destination endpoint.
The bundle protocol does not natively ensure delivery of a bundle to its destination. Data loss along the path to the destination node can be minimized by utilizing reliable convergence-layer protocols between neighbors on all segments of the end-to-end path, but for end-to-end bundle delivery assurance it will be necessary to develop extensions to the bundle protocol and/or application-layer mechanisms.
The bundle protocol is designed for extensibility. Bundle protocol extensions, documented elsewhere, may extend this specification by:
specified points in the inbound and outbound bundle processing cycles.
The BPA of each node is expected to provide the following services to the node's application agent:
The format of bundles SHALL conform to the Concise Binary Object Representation (CBOR [RFC7049]).
Each bundle SHALL be a concatenated sequence of at least two blocks, represented as a CBOR indefinite-length array. The first block in the sequence (the first item of the array) MUST be a primary bundle block in CBOR representation as described below; the bundle MUST have exactly one primary bundle block. The primary block MUST be followed by one or more canonical bundle blocks (additional array items) in CBOR representation as described below. The last such block MUST be a payload block; the bundle MUST have exactly one payload block. The last item of the array, immediately following the payload block, SHALL be a CBOR "break" stop code.
(Note that, while CBOR permits considerable flexibility in the encoding of bundles, this flexibility must not be interpreted as inviting increased complexity in protocol data unit structure.)
An implementation of the Bundle Protocol MAY discard any sequence of bytes that does not conform to the Bundle Protocol specification.
An implementation of the Bundle Protocol MAY accept a sequence of bytes that does not conform to the Bundle Protocol specification (e.g., one that represents data elements in fixed-length arrays rather than indefinite-length arrays) and transform it into conformant BP structure before processing it. Procedures for accomplishing such a transformation are beyond the scope of this specification.
CRC type is an unsigned integer type code for which the following values (and no others) are valid:
CRC type SHALL be represented as a CBOR unsigned integer.
For examples of CRC32C CRCs, see Appendix A.4 of [RFC7143].
CRC SHALL be omitted from a block if and only if the block's CRC type code is zero.
When not omitted, the CRC SHALL be represented as sequence of two bytes (if CRC type is 1) or as a sequence of four bytes (if CRC type is 2); in each case the sequence of bytes SHALL constitute an unsigned integer value (of 16 or 32 bits, respectively) in network byte order.
Bundle processing control flags assert properties of the bundle as a whole rather than of any particular block of the bundle. They are conveyed in the primary block of the bundle.
The following properties are asserted by the bundle processing control flags:
. The bundle is a fragment. (Boolean)
. The bundle's payload is an administrative record. (Boolean)
. The bundle must not be fragmented. (Boolean)
. Acknowledgment by the user application is requested. (Boolean)
. Status time is requested in all status reports. (Boolean)
. The bundle contains a "manifest" extension block. (Boolean)
. Flags requesting types of status reports (all Boolean):
o Request reporting of bundle reception.
o Request reporting of bundle forwarding.
o Request reporting of bundle delivery.
o Request reporting of bundle deletion.
If the bundle processing control flags indicate that the bundle's application data unit is an administrative record, then all status report request flag values must be zero.
If the bundle's source node is omitted (i.e., the source node ID is the ID of the null endpoint, which has no members as discussed below; this option enables anonymous bundle transmission), then the bundle is not uniquely identifiable and all bundle protocol features that rely on bundle identity must therefore be disabled: the "Bundle must not be fragmented" flag value must be 1 and all status report request flag values must be zero.
The bundle processing control flags SHALL be represented as a CBOR unsigned integer item containing a bit field of 16 bits indicating the control flag values as follows:
The block processing control flags assert properties of canonical bundle blocks. They are conveyed in the header of the block to which they pertain.
The following properties are asserted by the block processing control flags:
. This block must be replicated in every fragment. (Boolean)
. Transmission of a status report is requested if this block
can't be processed. (Boolean)
. Block must be removed from the bundle if it can't be processed.
(Boolean)
. Bundle must be deleted if this block can't be processed.
(Boolean)
For each bundle whose bundle processing control flags indicate that the bundle's application data unit is an administrative record, or whose source node ID is the null endpoint ID as defined below, the value of the "Transmit status report if block can't be processed" flag in every canonical block of the bundle must be zero.
The block processing control flags SHALL be represented as a CBOR unsigned integer item containing a bit field of 8 bits indicating the control flag values as follows:
The destinations of bundles are bundle endpoints, identified by text strings termed "endpoint IDs" (see Section 3.1). Each endpoint ID (EID) is a Uniform Resource Identifier (URI; [URI]). As such, each endpoint ID can be characterized as having this general structure:
< scheme name > : < scheme-specific part, or "SSP" >
The scheme identified by the < scheme name > in an endpoint ID is a set of syntactic and semantic rules that fully explain how to parse and interpret the SSP. The set of allowable schemes is effectively unlimited. Any scheme conforming to [URIREG] may be used in a bundle protocol endpoint ID.
Note that, although endpoint IDs are URIs, implementations of the BP service interface may support expression of endpoint IDs in some internationalized manner (e.g., Internationalized Resource Identifiers (IRIs); see [RFC3987]).
The endpoint ID "dtn:none" identifies the "null endpoint", the endpoint that by definition never has any members.
Each BP endpoint ID (EID) SHALL be represented as a CBOR array comprising a 2-tuple.
The first item of the array SHALL be the code number identifying the endpoint's URI scheme [URI], as defined in the registry of URI scheme code numbers for Bundle Protocol maintained by IANA as described in Section 10. [URIREG]. Each URI scheme code number SHALL be represented as a CBOR unsigned integer.
The second item of the array SHALL be the applicable CBOR representation of the scheme-specific part (SSP) of the EID, defined as follows:
For many purposes of the Bundle Protocol it is important to identify the node that is operative in some context.
As discussed in 3.1 above, nodes are distinct from endpoints; specifically, an endpoint is a set of zero or more nodes. But rather than define a separate namespace for node identifiers, we instead use endpoint identifiers to identify nodes, subject to the following restrictions:
A DTN time is an unsigned integer indicating an interval of Unix epoch time that has elapsed since the start of the year 2000 on the Coordinated Universal Time (UTC) scale [UTC], which is Unix epoch timestamp 946684800. (Note that the DTN time that equates to the current time as reported by the POSIX time() function can be derived by subtracting 946684800 from that reported time value.) Each DTN time SHALL be represented as a CBOR unsigned integer item.
Each creation timestamp SHALL be represented as a CBOR array item comprising a 2-tuple.
The first item of the array SHALL be a DTN time.
The second item of the array SHALL be the creation timestamp's sequence number, represented as a CBOR unsigned integer.
Block-type-specific data in each block (other than the primary block) SHALL be the applicable CBOR representation of the content of the block. Details of this representation are included in the specification defining the block type.
This section describes the primary block in detail and non-primary blocks in general. Rules for processing these blocks appear in Section 5 of this document.
Note that supplementary DTN protocol specifications (including, but not restricted to, the Bundle Security Protocol [BPSEC]) may require that BP implementations conforming to those protocols construct and process additional blocks.
Each bundle SHALL be represented as a CBOR indefinite-length array. The first item of this array SHALL be the CBOR representation of a Primary Block. Every other item of the array except the last SHALL be the CBOR representation of a Canonical Block. The last item of the array SHALL be a CBOR "break" stop code.
Associated with each block of a bundle is a block number. The block number uniquely identifies the block within the bundle, enabling blocks (notably bundle security protocol blocks) to reference other blocks in the same bundle without ambiguity. The block number of the primary block is implicitly zero; the block numbers of all other blocks are explicitly stated in block headers as noted below. Block numbering is unrelated to the order in which blocks are sequenced in the bundle. The block number of the payload block is always 1.
The primary bundle block contains the basic information needed to forward bundles to their destinations.
Each primary block SHALL be represented as a CBOR array; the number of elements in the array SHALL be 8 (if the bundle is not a fragment and CRC type is zero) or 9 (if the bundle is not a fragment and CRC type is non-zero) or 10 (if the bundle is a fragment and CRC type is zero) or 11 (if the bundle is a fragment and CRC-type is non-zero). The fields of the primary bundle block SHALL be as follows, listed in the order in which they MUST appear:
Version: An unsigned integer value indicating the version of the bundle protocol that constructed this block. The present document describes version 7 of the bundle protocol. Version number SHALL be represented as a CBOR unsigned integer item.
Bundle Processing Control Flags: The Bundle Processing Control Flags are discussed in Section 4.1.3. above.
CRC Type: CRC Type codes are discussed in Section 4.1.1. above.
Destination EID: The Destination EID field identifies the bundle endpoint that is the bundle's destination, i.e., the endpoint that contains the node(s) at which the bundle is to be delivered.
Source node ID: The Source node ID field identifies the bundle node at which the bundle was initially transmitted, except that Source node ID may be the null endpoint ID in the event that the bundle's source chooses to remain anonymous.
Report-to EID: The Report-to EID field identifies the bundle endpoint to which status reports pertaining to the forwarding and delivery of this bundle are to be transmitted.
Creation Timestamp: The creation timestamp is a pair of unsigned integers that, together with the source node ID and (if the bundle is a fragment) the fragment offset and payload length, serve to identify the bundle. The first of these integers is the bundle's creation time, while the second is the bundle's creation timestamp sequence number. Bundle creation time shall be the DTN time at which the transmission request was received that resulted in the creation of the bundle. Sequence count shall be the latest value (as of the time at which that transmission request was received) of a monotonically increasing positive integer counter managed by the source node's bundle protocol agent that may be reset to zero whenever the current time advances by one second. For nodes that lack accurate clocks, it is recommended that bundle creation time be set to zero and that the counter used as the source of the bundle sequence count never be reset to zero. Note that, in general, the creation of two distinct bundles with the same source node ID and bundle creation timestamp may result in unexpected network behavior and/or suboptimal performance. The combination of source node ID and bundle creation timestamp serves to identify a single transmission request, enabling it to be acknowledged by the receiving application (provided the source node ID is not the null endpoint ID). Lifetime: The lifetime field is an unsigned integer that indicates the time at which the bundle's payload will no longer be useful, encoded as a number of microseconds past the creation time. (For high-rate deployments with very brief disruptions, fine-grained expression of bundle lifetime may be useful.) When a bundle's age exceeds its lifetime, bundle nodes need no longer retain or forward the bundle; the bundle SHOULD be deleted from the network. Bundle lifetime SHALL be represented as a CBOR unsigned integer item.
Fragment offset: If and only if the Bundle Processing Control Flags of this Primary block indicate that the bundle is a fragment, fragment offset SHALL be present in the primary block. Fragment offset SHALL be represented as a CBOR unsigned integer indicating the offset from the start of the original application data unit at which the bytes comprising the payload of this bundle were located.
Total Application Data Unit Length: If and only if the Bundle Processing Control Flags of this Primary block indicate that the bundle is a fragment, total application data unit length SHALL be present in the primary block. Total application data unit length SHALL be represented as a CBOR unsigned integer indicating the total length of the original application data unit of which this bundle's payload is a part.
CRC: If and only if the value of the CRC type field of this Primary block is non-zero, a CRC SHALL be present in the primary block. The length and nature of the CRC SHALL be as indicated by the CRC type. The CRC SHALL be computed over the concatenation of all bytes (including CBOR "break" characters) of the primary block including the CRC field itself, which for this purpose SHALL be temporarily populated with the value zero.
Every block other than the primary block (all such blocks are termed "canonical" blocks) SHALL be represented as a CBOR array; the number of elements in the array SHALL be 5 (if CRC type is zero) or 6 (otherwise).
The fields of every canonical block SHALL be as follows, listed in the order in which they MUST appear:
. Block type code, an unsigned integer. Bundle block type code 1
indicates that the block is a bundle payload block. Block type codes 2 through 9 are explicitly reserved as noted later in this specification. Block type codes 192 through 255 are not
"Extension blocks" are all blocks other than the primary and payload blocks. Because not all extension blocks are defined in the Bundle Protocol specification (the present document), not all nodes conforming to this specification will necessarily instantiate Bundle Protocol implementations that include procedures for processing (that is, recognizing, parsing, acting on, and/or producing) all extension blocks. It is therefore possible for a node to receive a bundle that includes extension blocks that the node cannot process. The values of the block processing control flags indicate the action to be taken by the bundle protocol agent when this is the case.
The following extension blocks are defined in other DTN protocol specification documents as noted:
The following extension blocks are defined in the current document.
The Previous Node block, block type 7, identifies the node that forwarded this bundle to the local node (i.e., to the node at which the bundle currently resides); its block-type-specific data is the node ID of that forwarder node which SHALL take the form of a node ID represented as described in Section 4.1.5.2. above. If the local node is the source of the bundle, then the bundle MUST NOT contain any previous node block. Otherwise the bundle SHOULD contain one (1) occurrence of this type of block.
The Bundle Age block, block type 8, contains the number of microseconds that have elapsed between the time the bundle was created and time at which it was most recently forwarded. It is intended for use by nodes lacking access to an accurate clock, to aid in determining the time at which a bundle's lifetime expires. The block-type-specific data of this block is an unsigned integer containing the age of the bundle in microseconds, which SHALL be represented as a CBOR unsigned integer item. (The age of the bundle is the sum of all known intervals of the bundle's residence at forwarding nodes, up to the time at which the bundle was most recently forwarded, plus the summation of signal propagation time over all episodes of transmission between forwarding nodes. Determination of these values is an implementation matter.) If the bundle's creation time is zero, then the bundle MUST contain exactly one (1) occurrence of this type of block; otherwise, the bundle MAY contain at most one (1) occurrence of this type of block. A bundle MUST NOT contain multiple occurrences of the bundle age block, as this could result in processing anomalies.
The Hop Count block, block type 9, contains two unsigned integers, hop limit and hop count. A "hop" is here defined as an occasion on which a bundle was forwarded from one node to another node. The hop limit value SHOULD NOT be changed at any time after creation of the Hop Count block; the hop count value SHOULD initially be zero and SHOULD be increased by 1 on each hop.
The hop count block is mainly intended as a safety mechanism, a means of identifying bundles for removal from the network that can never be delivered due to a persistent forwarding error. When a bundle's hop count exceeds its hop limit, the bundle SHOULD be deleted for the reason "hop limit exceeded", following the bundle deletion procedure defined in Section 5.10. . Procedures for determining the appropriate hop limit for a block are beyond the scope of this specification. The block-type-specific data in a hop count block SHALL be represented as a CBOR array comprising a 2- tuple. The first item of this array SHALL be the bundle's hop limit, represented as a CBOR unsigned integer. The second item of this array SHALL be the bundle's hop count, represented as a CBOR unsigned integer. A bundle MAY contain at most one (1) occurrence of this type of block.
The bundle processing procedures mandated in this section and in Section 6 govern the operation of the Bundle Protocol Agent and the Application Agent administrative element of each bundle node. They are neither exhaustive nor exclusive. Supplementary DTN protocol specifications (including, but not restricted to, the Bundle Security Protocol [BPSEC]) may augment, override, or supersede the mandates of this document.
All transmission of bundles is in response to bundle transmission requests presented by nodes' application agents. When required to "generate" an administrative record (such as a bundle status report), the bundle protocol agent itself is responsible for causing a new bundle to be transmitted, conveying that record. In concept, the bundle protocol agent discharges this responsibility by directing the administrative element of the node's application agent to construct the record and request its transmission as detailed in Section 6 below. In practice, the manner in which administrative record generation is accomplished is an implementation matter, provided the constraints noted in Section 6 are observed.
Under some circumstances, the requesting of status reports could result in an unacceptable increase in the bundle traffic in the network. For this reason, the generation of status reports MUST be disabled by default and enabled only when the risk of excessive network traffic is deemed acceptable.
When the generation of status reports is enabled, the decision on whether or not to generate a requested status report is left to the discretion of the bundle protocol agent. Mechanisms that could assist in making such decisions, such as pre-placed agreements authorizing the generation of status reports under specified circumstances, are beyond the scope of this specification.
Notes on administrative record terminology:
The steps in processing a bundle transmission request are:
Step 1: Transmission of the bundle is initiated. An outbound bundle MUST be created per the parameters of the bundle transmission request, with the retention constraint "Dispatch pending". The source node ID of the bundle MUST be either the null endpoint ID, indicating that the source of the bundle is anonymous, or else the EID of a singleton endpoint whose only member is the node of which the BPA is a component.
Step 2: Processing proceeds from Step 1 of Section 5.4.
The steps in dispatching a bundle are:
Step 1: If the bundle's destination endpoint is an endpoint of which the node is a member, the bundle delivery procedure defined in Section 5.7 MUST be followed and for the purposes of all subsequent processing of this bundle at this node the node's membership in the bundle's destination endpoint SHALL be disavowed.
Step 2: Processing proceeds from Step 1 of Section 5.4.
The steps in forwarding a bundle are:
Step 1: The retention constraint "Forward pending" MUST be added to the bundle, and the bundle's "Dispatch pending" retention constraint MUST be removed.
Step 2: The bundle protocol agent MUST determine whether or not forwarding is contraindicated for any of the reasons listed in Figure 4. In particular:
Step 3: If forwarding of the bundle is determined to be contraindicated for any of the reasons listed in Figure 4, then the Forwarding Contraindicated procedure defined in Section 5.4.1 MUST be followed; the remaining steps of Section 5 are skipped at this time.
Step 4: For each node selected for forwarding, the bundle protocol agent MUST invoke the services of the selected convergence layer adapter(s) in order to effect the sending of the bundle to that node. Determining the time at which the bundle protocol agent invokes convergence layer adapter services is a BPA implementation matter. Determining the time at which each convergence layer adapter subsequently responds to this service invocation by sending the bundle is a convergence-layer adapter implementation matter. Note that:
Step 5: When all selected convergence layer adapters have informed the bundle protocol agent that they have concluded their data sending procedures with regard to this bundle:
The steps in responding to contraindication of forwarding are:
Step 1: The bundle protocol agent MUST determine whether or not to declare failure in forwarding the bundle. Note: this decision is likely to be influenced by the reason for which forwarding is contraindicated.
Step 2: If forwarding failure is declared, then the Forwarding Failed procedure defined in Section 5.4.2 MUST be followed. Otherwise, when -- at some future time - the forwarding of this bundle ceases to be contraindicated, processing proceeds from Step 4 of Section 5.4.
The steps in responding to a declaration of forwarding failure are:
Step 1: The bundle protocol agent MAY forward the bundle back to the node that sent it, as identified by the Previous Node block, if present. This forwarding, if performed, SHALL be accomplished by performing Step 4 and Step 5 of section 5.4 where the sole node selected for forwarding SHALL be the node that sent the bundle.
Step 2: If the bundle's destination endpoint is an endpoint of which the node is a member, then the bundle's "Forward pending" retention constraint MUST be removed. Otherwise, the bundle MUST be deleted: the bundle deletion procedure defined in Section 5.10 MUST be followed, citing the reason for which forwarding was determined to be contraindicated.
A bundle expires when the bundle's age exceeds its lifetime as specified in the primary bundle block. Bundle age MAY be determined by subtracting the bundle's creation timestamp time from the current time if (a) that timestamp time is not zero and (b) the local node's clock is known to be accurate; otherwise bundle age MUST be obtained from the Bundle Age extension block. Bundle expiration MAY occur at any point in the processing of a bundle. When a bundle expires, the bundle protocol agent MUST delete the bundle for the reason "lifetime expired": the bundle deletion procedure defined in Section 5.10 MUST be followed.
The steps in processing a bundle that has been received from another node are:
Step 1: The retention constraint "Dispatch pending" MUST be added to the bundle.
Step 2: If the "request reporting of bundle reception" flag in the bundle's status report request field is set to 1, and status reporting is enabled, then a bundle reception status report with reason code "No additional information" SHOULD be generated, destined for the bundle's report-to endpoint ID.
Step 3: For each block in the bundle that is an extension block that the bundle protocol agent cannot process:
Step 4: Processing proceeds from Step 1 of Section 5.3.
The steps in processing a bundle that is destined for an endpoint of which this node is a member are:
Step 1: If the received bundle is a fragment, the application data unit reassembly procedure described in Section 5.9 MUST be followed. If this procedure results in reassembly of the entire original application data unit, processing of this bundle (whose fragmentary payload has been replaced by the reassembled application data unit) proceeds from Step 2; otherwise, the retention constraint "Reassembly pending" MUST be added to the bundle and all remaining steps of this procedure MUST be skipped.
Step 2: Delivery depends on the state of the registration whose endpoint ID matches that of the destination of the bundle:
o defer delivery of the bundle subject to this registration until (a) this bundle is the least recently received of all bundles currently deliverable subject to this registration and (b) either the registration is polled or else the registration is in the Active state, and also perform any additional delivery deferral procedure associated with the registration; or
o abandon delivery of the bundle subject to this registration (as defined in 3.1.).
Step 3: As soon as the bundle has been delivered, if the "request reporting of bundle delivery" flag in the bundle's status report request field is set to 1 and bundle status reporting is enabled, then a bundle delivery status report SHOULD be generated, destined for the bundle's report-to endpoint ID. Note that this status report only states that the payload has been delivered to the application agent, not that the application agent has processed that payload.
It may at times be advantageous for bundle protocol agents to reduce the sizes of bundles in order to forward them. This might be the case, for example, if a node to which a bundle is to be forwarded is accessible only via intermittent contacts and no upcoming contact is long enough to enable the forwarding of the entire bundle.
The size of a bundle can be reduced by "fragmenting" the bundle. To fragment a bundle whose payload is of size M is to replace it with two "fragments" -- new bundles with the same source node ID and creation timestamp as the original bundle -- whose payloads are the first N and the last (M - N) bytes of the original bundle's payload, where 0 < N < M. Note that fragments may themselves be fragmented, so fragmentation may in effect replace the original bundle with more than two fragments. (However, there is only one 'level' of fragmentation, as in IP fragmentation.)
Any bundle whose primary block's bundle processing flags do NOT indicate that it must not be fragmented MAY be fragmented at any time, for any purpose, at the discretion of the bundle protocol agent. NOTE, however, that some combinations of bundle fragmentation, replication, and routing might result in unexpected traffic patterns.
Fragmentation SHALL be constrained as follows:
If the concatenation -- as informed by fragment offsets and payload lengths -- of the payloads of all previously received fragments with the same source node ID and creation timestamp as this fragment, together with the payload of this fragment, forms a byte array whose length is equal to the total application data unit length in the fragment's primary block, then:
Note: reassembly of application data units from fragments occurs at the nodes that are members of destination endpoints as necessary; an application data unit MAY also be reassembled at some other node on the path to the destination.
The steps in deleting a bundle are:
Step 1: If the "request reporting of bundle deletion" flag in the bundle's status report request field is set to 1, and if status reporting is enabled, then a bundle deletion status report citing the reason for deletion SHOULD be generated, destined for the bundle's report-to endpoint ID.
Step 2: All of the bundle's retention constraints MUST be removed.
As soon as a bundle has no remaining retention constraints it MAY be discarded, thereby releasing any persistent storage that may have been allocated to it.
When requested to cancel a specified transmission, where the bundle created upon initiation of the indicated transmission has not yet been discarded, the bundle protocol agent MUST delete that bundle for the reason "transmission cancelled". For this purpose, the procedure defined in Section 5.10 MUST be followed.
Administrative records are standard application data units that are used in providing some of the features of the Bundle Protocol. One type of administrative record has been defined to date: bundle status reports. Note that additional types of administrative records may be defined by supplementary DTN protocol specification documents.
Every administrative record consists of:
Valid administrative record type codes are defined as follows:
Figure 3: Administrative Record Type Codes
Each BP administrative record SHALL be represented as a CBOR array comprising a 2-tuple.
The first item of the array SHALL be a record type code, which SHALL be represented as a CBOR unsigned integer.
The second element of this array SHALL be the applicable CBOR representation of the content of the record. Details of the CBOR representation of administrative record type 1 are provided below. Details of the CBOR representation of other types of administrative record type are included in the specifications defining those records.
The transmission of "bundle status reports" under specified conditions is an option that can be invoked when transmission of a bundle is requested. These reports are intended to provide information about how bundles are progressing through the system, including notices of receipt, forwarding, final delivery, and deletion. They are transmitted to the Report-to endpoints of bundles.
Each bundle status report SHALL be represented as a CBOR array. The number of elements in the array SHALL be either 6 (if the subject bundle is a fragment) or 4 (otherwise).
The first item of the bundle status report array SHALL be bundle status information represented as a CBOR array of at least 4 elements. The first four items of the bundle status information array shall provide information on the following four status assertions, in this order:
Each item of the bundle status information array SHALL be a bundle status item represented as a CBOR array; the number of elements in each such array SHALL be either 2 (if the value of the first item of this bundle status item is 1 AND the "Report status time" flag was set to 1 in the bundle processing flags of the bundle whose status is being reported) or 1 (otherwise). The first item of the bundle status item array SHALL be a status indicator, a Boolean value indicating whether or not the corresponding bundle status is asserted, represented as a CBOR Boolean value. The second item of the bundle status item array, if present, SHALL indicate the time (as reported by the local system clock, an implementation matter) at which the indicated status was asserted for this bundle, represented as a DTN time as described in Section 4.1.6. above.
The second item of the bundle status report array SHALL be the bundle status report reason code explaining the value of the status indicator, represented as a CBOR unsigned integer. Valid status report reason codes are defined in Figure 4 below but the list of status report reason codes provided here is neither exhaustive nor exclusive; supplementary DTN protocol specifications (including, but not restricted to, the Bundle Security Protocol [BPSEC]) may define additional reason codes.
Figure 4: Status Report Reason Codes
The third item of the bundle status report array SHALL be the source node ID identifying the source of the bundle whose status is being reported, represented as described in Section 4.1.5.2. above.
The fourth item of the bundle status report array SHALL be the creation timestamp of the bundle whose status is being reported, represented as described in Section 4.1.7. above.
The fifth item of the bundle status report array SHALL be present if and only if the bundle whose status is being reported contained a fragment offset. If present, it SHALL be the subject bundle's fragment offset represented as a CBOR unsigned integer item.
The sixth item of the bundle status report array SHALL be present if and only if the bundle whose status is being reported contained a fragment offset. If present, it SHALL be the length of the subject bundle's payload represented as a CBOR unsigned integer item.
Whenever the application agent's administrative element is directed by the bundle protocol agent to generate an administrative record with reference to some bundle, the following procedure must be followed:
Step 1: The administrative record must be constructed. If the administrative record references a bundle and the referenced bundle is a fragment, the administrative record MUST contain the fragment offset and fragment length.
Step 2: A request for transmission of a bundle whose payload is this administrative record MUST be presented to the bundle protocol agent.
The successful operation of the end-to-end bundle protocol depends on the operation of underlying protocols at what is termed the "convergence layer"; these protocols accomplish communication between nodes. A wide variety of protocols may serve this purpose, so long as each convergence layer protocol adapter provides a defined minimal set of services to the bundle protocol agent. This convergence layer service specification enumerates those services.
Each convergence layer protocol adapter is expected to provide the following services to the bundle protocol agent:
The convergence layer service interface specified here is neither exhaustive nor exclusive. That is, supplementary DTN protocol specifications (including, but not restricted to, the Bundle Security Protocol [BPSEC]) may expect convergence layer adapters that serve BP implementations conforming to those protocols to provide additional services such as reporting on the transmission and/or reception progress of individual bundles (at completion and/or incrementally), retransmitting data that were lost in transit, discarding bundle-conveying data units that the convergence layer protocol determines are corrupt or inauthentic, or reporting on the integrity and/or authenticity of delivered bundles.
[NOTE to the RFC Editor: please remove this section before publication, as well as the reference to RFC 7942.]
This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in RFC 7942. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.
According to RFC 7942, "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".
At the time of this writing, there are three known implementations of the current document.
The first known implementation is microPCN (https://upcn.eu/). According to the developers:
The Micro Planetary Communication Network (uPCN) is a free software project intended to offer an implementation of Delay- tolerant Networking protocols for POSIX operating systems (well, and for Linux) plus for the ARM Cortex STM32F4 microcontroller series. More precisely it currently provides an implementation of
uPCN is written in C and is built upon the real-time operating system FreeRTOS. The source code of uPCN is released under the "BSD 3-Clause License".
The project depends on an execution environment offering link layer protocols such as AX.25. The source code uses the USB subsystem to interact with the environment.
The second known implementation is PyDTN, developed by X-works, s.r.o (https://x-works.sk/). The final third of the implementation was developed during the IETF 101 Hackathon. According to the developers, PyDTN implements bundle coding/decoding and neighbor discovery. PyDTN is written in Python and has been shown to be interoperable with uPCN.
The third known implementation is "Terra" (https://github.com/RightMesh/Terra/), a Java implementation developed in the context of terrestrial DTN. It includes an implementation of a "minimal TCP" convergence layer adapter.
The bundle protocol security architecture and the available security services are specified in an accompanying document, the Bundle Security Protocol specification [BPSEC].
The bpsec extensions to Bundle Protocol enable each block of a bundle (other than a bpsec extension block) to be individually authenticated by a signature block (Block Integrity Block, or BIB) and also enable each block of a bundle other than the primary block (and the bpsec extension blocks themselves) to be individually encrypted by a BCB.
Because the security mechanisms are extension blocks that are themselves inserted into the bundle, the integrity and confidentiality of bundle blocks are protected while the bundle is at rest, awaiting transmission at the next forwarding opportunity, as well as in transit.
Additionally, convergence-layer protocols that ensure authenticity of communication between adjacent nodes in BP network topology SHOULD be used where available, to minimize the ability of unauthenticated nodes to introduce inauthentic traffic into the network.
Note that, while the primary block must remain in the clear for routing purposes, the Bundle Protocol can be protected against traffic analysis to some extent by using bundle-in-bundle encapsulation to tunnel bundles to a safe forward distribution point: the encapsulated bundle forms the payload of an encapsulating bundle, and that payload block may be encrypted by a BCB.
Note that the generation of bundle status reports is disabled by default because malicious initiation of bundle status reporting could result in the transmission of extremely large numbers of bundle, effecting a denial of service attack.
The bpsec extensions accommodate an open-ended range of ciphersuites; different ciphersuites may be utilized to protect different blocks. One possible variation is to sign and/or encrypt blocks in symmetric keys securely formed by Diffie-Hellman procedures (such as EKDH) using the public and private keys of the sending and receiving nodes. For this purpose, the key distribution problem reduces to the problem of trustworthy delay-tolerant distribution of public keys, a current research topic.
Bundle security MUST NOT be invalidated by forwarding nodes even though they themselves might not use the Bundle Security Protocol.
In particular, while blocks MAY be added to bundles transiting intermediate nodes, removal of blocks with the "Discard block if it can't be processed" flag set in the block processing control flags may cause security to fail.
Inclusion of the Bundle Security Protocol in any Bundle Protocol implementation is RECOMMENDED. Use of the Bundle Security Protocol in Bundle Protocol operations is OPTIONAL, subject to the following guidelines:
. Every block (that is not a bpsec extension block) of every
bundle SHOULD be authenticated by a BIB citing the ID of the node that inserted that block. (Note that a single BIB may authenticate multiple "target" blocks.) BIB authentication MAY be omitted on (and only on) any initial end-to-end path segments on which it would impose unacceptable overhead, provided that satisfactory authentication is ensured at the
This document defines the following additional Bundle Protocol block types, for which values are to be assigned from the Bundle Administrative Record Types namespace [RFC6255]:
This document also defines a new URI scheme type field - an unsigned integer of undefined length - for which IANA is to create and maintain a new registry named "URI scheme type values". Initial values for the Bundle Protocol URI scheme type registry are given below; future assignments are to be made through Expert Review. Each assignment consists of a URI scheme type name and its associated value.
[CRC]
Castagnoli, G., Brauer, S., and M. Herrmann, "Optimization of Cyclic Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transact. on Communications, Vol. 41, No. 6, June 1993..
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC7049]
Borman, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, October 2013.
[URI]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", RFC 3986, STD 66, January 2005.
[URIREG]
Thaler, D., Hansen, T., and T. Hardie, "Guidelines and Registration Procedures for URI Schemes", RFC 7595, BCP 35, June 2015.
[ARCH]
V. Cerf et al., "Delay-Tolerant Network Architecture", RFC 4838, April 2007.
[BIBE]
Burleigh, S., "Bundle-in-Bundle Encapsulation", Work In Progress, June 2017.
[BPSEC]
Birrane, E., "Bundle Security Protocol Specification", Work In Progress, October 2015.
[RFC3987]
Duerst, M. and M. Suignard, "Internationalized Resource Identifiers (IRIs)", RFC 3987, January 2005.
[RFC6255]
Blanchet, M., "Delay-Tolerant Networking Bundle Protocol IANA Registries", RFC 6255, May 2011.
[RFC7143]
Chadalapaka, M., Satran, J., Meth, K., and D. Black, "Internet Small Computer System Interface (iSCSI) Protocol (Consolidated)", RFC 7143, April 2014.
[SIGC]
Fall, K., "A Delay-Tolerant Network Architecture for Challenged Internets", SIGCOMM 2003.
[UTC]
Arias, E. and B. Guinot, "Coordinated universal time UTC: historical background and perspectives" in "Journees systemes de reference spatio-temporels", 2004.
This work is freely adapted from RFC 5050, which was an effort of the Delay Tolerant Networking Research Group. The following DTNRG participants contributed significant technical material and/or inputs to that document: Dr. Vinton Cerf of Google, Scott Burleigh, Adrian Hooke, and Leigh Torgerson of the Jet Propulsion Laboratory, Michael Demmer of the University of California at Berkeley, Robert Durst, Keith Scott, and Susan Symington of The MITRE Corporation, Kevin Fall of Carnegie Mellon University, Stephen Farrell of Trinity College Dublin, Peter Lovell of SPARTA, Inc., Manikantan Ramadas of Ohio University, and Howard Weiss of SPARTA, Inc.
This document was prepared using 2-Word-v2.0.template.dot.
Points on which this draft significantly differs from RFC 5050 include the following:
Please refer comments to dtn@ietf.org. DTN Working Group documents are located at https://datatracker.ietf.org/wg/dtn/documents. The original Delay Tolerant Networking Research Group (DTNRG) Web site is located at https://irtf.org/concluded/dtnrg.
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
For informational purposes, Carsten Bormann and Brian Sipos have kindly provided an expression of the Bundle Protocol specification in the Concise Data Definition Language (CDDL). That CDDL expression is presented below. Note that wherever the CDDL expression is in disagreement with the textual representation of the BP specification presented in the earlier sections of this document, the textual representation rules.
start = bundle / #6.55799(bundle)
; Times before 2000 are invalid
dtn-time = uint
; CRC enumerated type
crc-type = &(
crc-none: 0,
crc-16bit: 1,
crc-32bit: 2
)
; Either 16-bit or 32-bit
crc-value = (bstr .size 2) / (bstr .size 4)
creation-timestamp = [
dtn-time, ; absolute time of creation
sequence: uint ; sequence within the time
]
eid = $eid .within eid-structure
eid-structure = [
uri-code: uint,
SSP: any
]
$eid /= [
uri-code: 1,
SSP: (tstr / 0)
]
$eid /= [
uri-code: 2,
SSP: [
nodenum: uint,
servicenum: uint
]
]
; The root bundle array
bundle = [primary-block, *extension-block, payload-block]
primary-block = [
version: 7,
bundle-control-flags,
crc-type,
destination: eid,
source-node: eid,
report-to: eid,
creation-timestamp,
lifetime: uint,
? (
fragment-offset: uint,
total-application-data-length: uint
),
? crc-value,
]
bundle-control-flags = uint .bits bundleflagbits
bundleflagbits = &(
reserved: 15,
reserved: 14,
reserved: 13,
bundle-deletion-status-reports-are-requested: 12,
bundle-delivery-status-reports-are-requested: 11,
bundle-forwarding-status-reports-are-requested: 10,
reserved: 9,
bundle-reception-status-reports-are-requested: 8,
bundle-contains-a-Manifest-block: 7,
status-time-is-requested-in-all-status-reports: 6,
user-application-acknowledgement-is-requested: 5,
reserved: 4,
reserved: 3,
bundle-must-not-be-fragmented: 2,
payload-is-an-administrative-record: 1,
bundle-is-a-fragment: 0
)
; Abstract shared structure of all non-primary blocks
canonical-block-structure = [
block-type-code: uint,
block-number: uint,
block-control-flags,
crc-type,
; Each block type defines the content within the bytestring
block-type-specific-data,
? crc-value
]
block-control-flags = uint .bits blockflagbits
blockflagbits = &(
reserved: 7,
reserved: 6,
reserved: 5,
reserved: 4,
bundle-must-be-deleted-if-block-cannot-be-processed: 3,
status-report-must-be-transmitted-if-block-cannot-be-processed: 2,
block-must-be-removed-from-bundle-if-it-cannot-be-processed: 1,
block-must-be-replicated-in-every-fragment: 0
)
block-type-specific-data = bstr / #6.24(bstr)
; Actual CBOR data embedded in a bytestring, with optional tag to indicate so
embedded-cbor<Item> = (bstr .cbor Item) / #6.24(bstr .cbor Item)
; Extension block type, which does not specialize other than the code/number
extension-block = $extension-block-structure .within canonical- block-structure
; Generic shared structure of all non-primary blocks
extension-block-use<CodeValue, BlockData> = [
block-type-code: CodeValue,
block-number: (uint .ne 0),
block-control-flags,
crc-type,
BlockData,
? crc-value
]
; Payload block type
payload-block = payload-block-structure .within canonical-block- structure
payload-block-structure = [
block-type-code: 1,
block-number: 0,
block-control-flags,
crc-type,
$payload-block-data,
? crc-value
]
; Arbitrary payload data, including non-CBOR bytestring
$payload-block-data /= block-type-specific-data
; Administrative record as a payload data specialization
$payload-block-data /= embedded-cbor<admin-record>
admin-record = $admin-record .within admin-record-structure
admin-record-structure = [
record-type-code: uint,
record-content: any
]
; Only one defined record type
$admin-record /= [1, status-record-content]
status-record-content = [
bundle-status-information,
status-report-reason-code: uint,
source-node-eid: eid,
subject-creation-timestamp: creation-timestamp,
? (
subject-payload-offset: uint,
subject-payload-length: uint
)
]
bundle-status-information = [
reporting-node-received-bundle: status-info-content,
reporting-node-forwarded-bundle: status-info-content,
reporting-node-delivered-bundle: status-info-content,
reporting-node-deleted-bundle: status-info-content
]
status-info-content = [
status-indicator: bool,
? timestamp: dtn-time
]
; Previous Node extension block
$extension-block-structure /=
extension-block-use<7, embedded-cbor<ext-data-previous-node>>
ext-data-previous-node = eid
; Bundle Age extension block
$extension-block-structure /=
extension-block-use<8, embedded-cbor<ext-data-bundle-age>>
ext-data-bundle-age = uint
; Hop Count extension block
$extension-block-structure /=
extension-block-use<9, embedded-cbor<ext-data-hop-count>>
ext-data-hop-count = [
hop-limit: uint,
hop-count: uint
]
Authors' Addresses
draft-ietf-dtn-bpsec-10 - Bundle Protocol Security Specification
Delay-Tolerant Networking
Internet-Draft
Intended status: Standards Track
Expires: October 11, 2019
E. Birrane
K. McKeever
JHU/APL
April 9, 2019
draft-ietf-dtn-bpsec-10
This document defines a security protocol providing end to end data integrity and confidentiality services for the Bundle Protocol.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 11, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document defines security features for the Bundle Protocol (BP) [I-D.ietf-dtn-bpbis] and is intended for use in Delay Tolerant Networks (DTNs) to provide end-to-end security services.
The Bundle Protocol specification [I-D.ietf-dtn-bpbis] defines DTN as referring to "a networking architecture providing communications in and/or through highly stressed environments" where "BP may be viewed as sitting at the application layer of some number of constituent networks, forming a store-carry-forward overlay network". The term "stressed" environment refers to multiple challenging conditions including intermittent connectivity, large and/or variable delays, asymmetric data rates, and high bit error rates.
The BP might be deployed such that portions of the network cannot be trusted, posing the usual security challenges related to confidentiality and integrity. However, the stressed nature of the BP operating environment imposes unique conditions where usual transport security mechanisms may not be sufficient. For example, the store-carry-forward nature of the network may require protecting data at rest, preventing unauthorized consumption of critical resources such as storage space, and operating without regular contact with a centralized security oracle (such as a certificate authority).
An end-to-end security service is needed that operates in all of the environments where the BP operates.
BPSec provides end-to-end integrity and confidentiality services for BP bundles, as defined in this section.
Integrity services ensure that changes to target data within a bundle, if any, can be discovered. Data changes may be caused by processing errors, environmental conditions, or intentional manipulation. In the context of BPSec, integrity services apply to plain-text in the bundle.
Confidentiality services ensure that target data is unintelligible to nodes in the DTN, except for authorized nodes possessing special information. This generally means producing cipher-text from plain- text and generating authentication information for that cipher-text. Confidentiality, in this context, applies to the contents of target data and does not extend to hiding the fact that confidentiality exists in the bundle.
NOTE: Hop-by-hop authentication is NOT a supported security service in this specification, for three reasons.
1. The term "hop-by-hop" is ambiguous in a BP overlay, as nodes that are adjacent in the overlay may not be adjacent in physical connectivity. This condition is difficult or impossible to detect and therefore hop-by-hop authentication is difficult or impossible to enforce.
2. Networks in which BPSec may be deployed may have a mixture of security-aware and not-security-aware nodes. Hop-by-hop authentication cannot be deployed in a network if adjacent nodes in the network have different security capabilities.
3. Hop-by-hop authentication is a special case of data integrity and can be achieved with the integrity mechanisms defined in this specification. Therefore, a separate authentication service is not necessary.
This document defines the security services provided by the BPSec. This includes the data specification for representing these services as BP extension blocks, and the rules for adding, removing, and processing these blocks at various points during the bundle's traversal of the DTN.
BPSec applies only to those nodes that implement it, known as "security-aware" nodes. There might be other nodes in the DTN that do not implement BPSec. While all nodes in a BP overlay can exchange bundles, BPSec security operations can only happen at BPSec security- aware nodes.
BPSec addresses only the security of data traveling over the DTN, not the underlying DTN itself. Furthermore, while the BPSec protocol can provide security-at-rest in a store-carry-forward network, it does not address threats which share computing resources with the DTN and/ or BPSec software implementations. These threats may be malicious software or compromised libraries which intend to intercept data or recover cryptographic material. Here, it is the responsibility of the BPSec implementer to ensure that any cryptographic material, including shared secret or private keys, is protected against access within both memory and storage devices.
This specification addresses neither the fitness of externally- defined cryptographic methods nor the security of their implementation. Different networking conditions and operational considerations require varying strengths of security mechanism such that mandating a cipher suite in this specification may result in too much security for some networks and too little security in others. It is expected that separate documents will be standardized to define security contexts and cipher suites compatible with BPSec, to include those that should be used to assess interoperability and those fit for operational use in various network scenarios.
This specification does not address the implementation of security policy and does not provide a security policy for the BPSec. Similar to cipher suites, security policies are based on the nature and capabilities of individual networks and network operational concepts. This specification does provide policy considerations when building a security policy.
With the exception of the Bundle Protocol, this specification does not address how to combine the BPSec security blocks with other protocols, other BP extension blocks, or other best practices to achieve security in any particular network implementation.
This document is best read and understood within the context of the following other DTN documents:
"Delay-Tolerant Networking Architecture" [RFC4838] defines the architecture for DTNs and identifies certain security assumptions made by existing Internet protocols that are not valid in a DTN.
The Bundle Protocol [I-D.ietf-dtn-bpbis] defines the format and processing of bundles, defines the extension block format used to represent BPSec security blocks, and defines the canonicalization algorithms used by this specification.
The Concise Binary Object Representation (CBOR) format [RFC7049] defines a data format that allows for small code size, fairly small message size, and extensibility without version negotiation. The block-specific data associated with BPSec security blocks are encoded in this data format.
The Bundle Security Protocol [RFC6257] and Streamlined Bundle Security Protocol [I-D.birrane-dtn-sbsp] documents introduced the concepts of using BP extension blocks for security services in a DTN. The BPSec is a continuation and refinement of these documents.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This section defines terminology either unique to the BPSec or otherwise necessary for understanding the concepts defined in this specification.
o Bundle Source - the node which originates a bundle. Also, the Node ID of the BPA originating the bundle.
o Cipher Suite - a set of one or more algorithms providing integrity and confidentiality services. Cipher suites may define necessary parameters but do not provide values for those parameters.
o Forwarder - any node that transmits a bundle in the DTN. Also, the Node ID of the Bundle Protocol Agent (BPA) that sent the bundle on its most recent hop.
o Intermediate Receiver, Waypoint, or Next Hop - any node that receives a bundle from a Forwarder that is not the Destination. Also, the Node ID of the BPA at any such node.
o Path - the ordered sequence of nodes through which a bundle passes on its way from Source to Destination. The path is not necessarily known in advance by the bundle or any BPAs in the DTN.
o Security Block - a BPSec extension block in a bundle.
o Security Context - the set of assumptions, algorithms, configurations and policies used to implement security services.
o Security Operation - the application of a security service to a security target, notated as OP(security service, security target). For example, OP(confidentiality, payload). Every security operation in a bundle MUST be unique, meaning that a security service can only be applied to a security target once in a bundle. A security operation is implemented by a security block.
o Security Service - the security features supported by this specification: either integrity or confidentiality.
o Security Source - a bundle node that adds a security block to a bundle. Also, the Node ID of that node.
o Security Target - the block within a bundle that receives a security-service as part of a security-operation.
The application of security services in a DTN is a complex endeavor that must consider physical properties of the network, policies at each node, and various application security requirements. This section identifies those desirable properties that guide design decisions for this specification and are necessary for understanding the format and behavior of the BPSec protocol.
Security services within this specification must allow different blocks within a bundle to have different security services applied to them.
Blocks within a bundle represent different types of information. The primary block contains identification and routing information. The payload block carries application data. Extension blocks carry a variety of data that may augment or annotate the payload, or otherwise provide information necessary for the proper processing of a bundle along a path. Therefore, applying a single level and type of security across an entire bundle fails to recognize that blocks in a bundle represent different types of information with different security needs.
For example, a payload block might be encrypted to protect its contents and an extension block containing summary information related to the payload might be integrity signed but unencrypted to provide waypoints access to payload-related data without providing access to the payload.
A bundle can have multiple security blocks and these blocks can have different security sources. BPSec implementations MUST NOT assume that all blocks in a bundle have the same security operations and/or security sources.
The Bundle Protocol allows extension blocks to be added to a bundle at any time during its existence in the DTN. When a waypoint adds a new extension block to a bundle, that extension block MAY have security services applied to it by that waypoint. Similarly, a waypoint MAY add a security service to an existing extension block, consistent with its security policy.
When a waypoint adds a security service to the bundle, the waypoint is the security source for that service. The security block(s) which represent that service in the bundle may need to record this security source as the bundle destination might need this information for processing.
For example, a bundle source may choose to apply an integrity service to its plain-text payload. Later a waypoint node, representing a gateway to an insecure portion of the DTN, may receive the bundle and choose to apply a confidentiality service. In this case, the integrity security source is the bundle source and the confidentiality security source is the waypoint node.
The security policy enforced by nodes in the DTN may differ.
Some waypoints might not be security aware and will not be able to process security blocks. Therefore, security blocks must have their processing flags set such that the block will be treated appropriately by non-security-aware waypoints.
Some waypoints will have security policies that require evaluating security services even if they are not the bundle destination or the final intended destination of the service. For example, a waypoint could choose to verify an integrity service even though the waypoint is not the bundle destination and the integrity service will be needed by other nodes along the bundle's path.
Some waypoints will determine, through policy, that they are the intended recipient of the security service and terminate the security service in the bundle. For example, a gateway node could determine that, even though it is not the destination of the bundle, it should verify and remove a particular integrity service or attempt to decrypt a confidentiality service, before forwarding the bundle along its path.
Some waypoints could understand security blocks but refuse to process them unless they are the bundle destination.
A security context is the union of security algorithms (cipher suites), policies associated with the use of those algorithms, and configuration values. Different contexts may specify different algorithms, different polices, or different configuration values used in the implementation of their security services. BPSec must provide a mechanism for users to define their own security contexts.
For example, some users might prefer a SHA2 hash function for integrity whereas other users might prefer a SHA3 hash function. The security services defined in this specification must provide a mechanism for determining what cipher suite, policy, and configuration has been used to populate a security block.
Whenever a node determines that it must process more than one security block in a received bundle (either because the policy at a waypoint states that it should process security blocks or because the node is the bundle destination) the order in which security blocks are processed must be deterministic. All nodes must impose this same deterministic processing order for all security blocks. This specification provides determinism in the application and evaluation of security services, even when doing so results in a loss of flexibility.
This specification defines two types of security block: the Block Integrity Block (BIB) and the Block Confidentiality Block (BCB).
The BIB is used to ensure the integrity of its plain-text security target(s). The integrity information in the BIB MAY be verified by any node along the bundle path from the BIB security source to the bundle destination. Security-aware waypoints add or remove BIBs from bundles in accordance with their security policy. BIBs are never used to sign the cipher- text provided by a BCB.
The BCB indicates that the security target(s) have been encrypted at the BCB security source in order to protect their content while in transit. The BCB is decrypted by security- aware nodes in the network, up to and including the bundle destination, as a matter of security policy. BCBs additionally provide authentication mechanisms for the cipher-text they generate.
Security operations in a bundle MUST be unique; the same security service MUST NOT be applied to a security target more than once in a bundle. Since a security operation is represented as a security block, this limits what security blocks may be added to a bundle: if adding a security block to a bundle would cause some other security block to no longer represent a unique security operation then the new block MUST NOT be added. It is important to note that any cipher- text integrity mechanism supplied by the BCB is considered part of the confidentiality service and, therefore, unique from the plain- text integrity service provided by the BIB.
If multiple security blocks representing the same security operation were allowed in a bundle at the same time, there would exist ambiguity regarding block processing order and the property of deterministic processing blocks would be lost.
Using the notation OP(service, target), several examples illustrate this uniqueness requirement.
o Signing the payload twice: The two operations OP(integrity, payload) and OP(integrity, payload) are redundant and MUST NOT both be present in the same bundle at the same time.
o Signing different blocks: The two operations OP(integrity, payload) and OP(integrity, extension_block_1) are not redundant and both may be present in the same bundle at the same time. Similarly, the two operations OP(integrity, extension_block_1) and OP(integrity,extension_block_2) are also not redundant and may both be present in the bundle at the same time.
o Different Services on same block: The two operations OP(integrity, payload) and OP(confidentiality, payload) are not inherently redundant and may both be present in the bundle at the same time, pursuant to other processing rules in this specification.
Under special circumstances, a single security block MAY represent multiple security operations as a way of reducing the overall number of security blocks present in a bundle. In these circumstances, reducing the number of security blocks in the bundle reduces the amount of redundant information in the bundle.
A set of security operations can be represented by a single security block when all of the following conditions are true.
o The security operations apply the same security service. For example, they are all integrity operations or all confidentiality operations.
o The security context parameters and key information for the security operations are identical.
o The security source for the security operations is the same. Meaning the set of operations are being added/removed by the same node.
o No security operations have the same security target, as that would violate the need for security operations to be unique.
o None of the security operations conflict with security operations already present in the bundle.
When representing multiple security operations in a single security block, the information that is common across all operations is represented once in the security block, and the information which is different (e.g., the security targets) are represented individually. When the security block is processed all security operations represented by the security block MUST be applied/evaluated at that time.
A security target is a block in the bundle to which a security service applies. This target must be uniquely and unambiguously identifiable when processing a security block. The definition of the extension block header from [I-D.ietf-dtn-bpbis] provides a "Block Number" field suitable for this purpose. Therefore, a security target in a security block MUST be represented as the Block Number of the target block.
Each security block uses the Canonical Bundle Block Format as defined in [I-D.ietf-dtn-bpbis]. That is, each security block is comprised of the following elements:
o Block Type Code
o Block Number
o Block Processing Control Flags
o CRC Type and CRC Field (if present)
o Block Data Length
o Block Type Specific Data Fields
Security-specific information for a security block is captured in the "Block Type Specific Data Fields".
The structure of the security-specific portions of a security block is identical for both the BIB and BCB Block Types. Therefore, this section defines an Abstract Security Block (ASB) data structure and discusses the definition, processing, and other constraints for using this structure. An ASB is never directly instantiated within a bundle, it is only a mechanism for discussing the common aspects of BIB and BCB security blocks.
The fields of the ASB SHALL be as follows, listed in the order in which they must appear.
Security Targets:
This field identifies the block(s) targeted by the security operation(s) represented by this security block. Each target block is represented by its unique Block Number. This field SHALL be represented by a CBOR array of data items. Each target within this CBOR array SHALL be represented by a CBOR unsigned integer. This array MUST have at least 1 entry and each entry MUST represent the Block Number of a block that exists in the bundle. There MUST NOT be duplicate entries in this array.
Security Context Id:
This field identifies the security context used to implement the security service represented by this block and applied to each security target. This field SHALL be represented by a CBOR unsigned integer.
Security Context Flags:
This field identifies which optional fields are present in the security block. This field SHALL be represented as a CBOR unsigned integer containing a bit field of 5 bits indicating the presence or absence of other security block fields, as follows.
In this field, a value of 1 indicates that the associated security block field MUST be included in the security block. A value of 0 indicates that the associated security block field MUST NOT be in the security block.
Security Source (Optional):
This field identifies the Endpoint that inserted the security block in the bundle. If the security source field is not present then the source MUST be inferred from other information, such as the bundle source, previous hop, or other values defined by security policy. This field SHALL be represented by a CBOR array in accordance with [I-D.ietf-dtn-bpbis] rules for representing Endpoint Identifiers (EIDs).
Security Context Parameters (Optional):
This field captures one or more security context parameters that should be provided to security-aware nodes when processing the security service described by this security block. This field SHALL be represented by a CBOR array. Each entry in this array is a single security context parameter. A single parameter SHALL also be represented as a CBOR array comprising a 2-tuple of the id and value of the parameter, as follows.
* Parameter Id. This field identifies which parameter is being specified. This field SHALL be represented as a CBOR unsigned integer. Parameter Ids are selected as described in Section 3.10.
* Parameter Value. This field captures the value associated with this parameter. This field SHALL be represented by the applicable CBOR representation of the parameter, in accordance with Section 3.10.
The logical layout of the parameters array is illustrated in Figure 1.
Figure 1: Security Context Parameters
Security Results:
This field captures the results of applying a security service to the security targets of the security block. This field SHALL be represented as a CBOR array of target results. Each entry in this array represents the set of security results for a specific security target. The target results MUST be ordered identically to the Security Targets field of the security block. This means that the first set of target results in this array corresponds to the first entry in the Security Targets field of the security block, and so on. There MUST be one entry in this array for each entry in the Security Targets field of the security block.
The set of security results for a target is also represented as a CBOR array of individual results. An individual result is represented as a 2-tuple of a result id and a result value, defined as follows.
* Result Id. This field identifies which security result is being specified. Some security results capture the primary output of a cipher suite. Other security results contain additional annotative information from cipher suite processing. This field SHALL be represented as a CBOR unsigned integer. Security result Ids will be as specified in Section 3.10.
* Result Value. This field captures the value associated with the result. This field SHALL be represented by the applicable CBOR representation of the result value, in accordance with Section 3.10.
The logical layout of the security results array is illustrated in Figure 2. In this figure there are N security targets for this security block. The first security target contains M results and the Nth security target contains K results.
Figure 2: Security Results
A BIB is a bundle extension block with the following characteristics.
o The Block Type Code value is as specified in Section 11.1.
o The Block Type Specific Data Fields follow the structure of the ASB.
o A security target listed in the Security Targets field MUST NOT reference a security block defined in this specification (e.g., a BIB or a BCB).
o The Security Context Id MUST utilize an end-to-end authentication cipher or an end-to-end error detection cipher.
o An EID-reference to the security source MAY be present. If this field is not present, then the security source of the block SHOULD be inferred according to security policy and MAY default to the bundle source. The security source MAY be specified as part of key information described in Section 3.10.
Notes:
o It is RECOMMENDED that cipher suite designers carefully consider the effect of setting flags that either discard the block or delete the bundle in the event that this block cannot be processed.
o Since OP(integrity, target) is allowed only once in a bundle per target, it is RECOMMENDED that users wishing to support multiple integrity signatures for the same target define a multi-signature cipher suite.
o For some cipher suites, (e.g., those using asymmetric keying to produce signatures or those using symmetric keying with a group key), the security information MAY be checked at any hop on the way to the destination that has access to the required keying information, in accordance with Section 3.9.
o The use of a generally available key is RECOMMENDED if custodial transfer is employed and all nodes SHOULD verify the bundle before accepting custody.
A BCB is a bundle extension block with the following characteristics.
The Block Type Code value is as specified in Section 11.1.
The Block Processing Control flags value can be set to whatever values are required by local policy, except that this block MUST have the "replicate in every fragment" flag set if the target of the BCB is the Payload Block. Having that BCB in each fragment indicates to a receiving node that the payload portion of each fragment represents cipher-text.
The Block Type Specific Data Fields follow the structure of the ASB.
A security target listed in the Security Targets field can reference the payload block, a non-security extension block, or a BIB. A BCB MUST NOT include another BCB as a security target. A BCB MUST NOT target the primary block.
The Security Context Id MUST utilize a confidentiality cipher that provides authenticated encryption with associated data (AEAD).
Additional information created by a cipher suite (such as additional authenticated data) can be placed either in a security result field or in the generated cipher-text. The determination of where to place these data is a function of the cipher suite used.
An EID-reference to the security source MAY be present. If this field is not present, then the security source of the block SHOULD be inferred according to security policy and MAY default to the bundle source. The security source MAY be specified as part of the key information described in Section 3.10.
The BCB modifies the contents of its security target(s). When a BCB is applied, the security target body data are encrypted "in-place". Following encryption, the security target Block Type Specific Data field contains cipher-text, not plain-text. Other block fields remain unmodified, with the exception of the Block Data Length field, which MUST be updated to reflect the new length of the Block Type Specific Data field.
Notes:
o It is RECOMMENDED that cipher suite designers carefully consider the effect of setting flags that either discard the block or
delete the bundle in the event that this block cannot be processed.
o The BCB block processing control flags can be set independently from the processing control flags of the security target(s). The setting of such flags SHOULD be an implementation/policy decision for the encrypting node.
The security block types defined in this specification are designed to be as independent as possible. However, there are some cases where security blocks may share a security target creating processing dependencies.
If a security target of a BCB is also a security target of a BIB, an undesirable condition occurs where a security aware waypoint would be unable to validate the BIB because one of its security target's contents have been encrypted by a BCB. To address this situation the following processing rules MUST be followed.
o When adding a BCB to a bundle, if some (or all) of the security targets of the BCB also match all of the security targets of an existing BIB, then the existing BIB MUST also be encrypted. This can be accomplished by either adding a new BCB that targets the existing BIB, or by adding the BIB to the list of security targets for the BCB. Deciding which way to represent this situation is a matter of security policy.
o When adding a BCB to a bundle, if some (or all) of the security targets of the BCB match some (but not all) of the security targets of a BIB, then a new BIB MUST be created and all entries relating to those BCB security targets MUST be moved from the original BIB to the newly created BIB. The newly created BIB MUST then be encrypted. This can be accomplished by either adding a new BCB that targets the new BIB, or by adding the new BIB to the list of security targets for the BCB. Deciding which way to represent this situation is a matter of security policy.
o A BIB MUST NOT be added for a security target that is already the security target of a BCB. In this instance, the BCB is already providing authentication and integrity of the security target and the BIB would be redundant, insecure, and cause ambiguity in block processing order.
o A BIB integrity value MUST NOT be evaluated if the BIB is the security target of an existing BCB. In this case, the BIB data is encrypted.
o A BIB integrity value MUST NOT be evaluated if the security target of the BIB is also the security target of a BCB. In such a case, the security target data contains cipher-text as it has been encrypted.
o As mentioned in Section 3.7, a BIB MUST NOT have a BCB as its security target.
These restrictions on block interactions impose a necessary ordering when applying security operations within a bundle. Specifically, for a given security target, BIBs MUST be added before BCBs. This ordering MUST be preserved in cases where the current BPA is adding all of the security blocks for the bundle or whether the BPA is a waypoint adding new security blocks to a bundle that already contains security blocks.
NOTE: Since any cipher suite used with a BCB MUST be an AEAD cipher suite, it is inefficient and possibly insecure for a single security source to add both a BIB and a BCB for the same security target. In cases where a security source wishes to calculate both a plain-text integrity mechanism and encrypt a security target, a BCB with a cipher suite that generates such signatures as additional security results SHOULD be used instead.
Security context parameters and results each represent multiple distinct pieces of information in a security block. Each piece of information is assigned an identifier and a CBOR encoding. Identifiers MUST be unique for a given cipher suite but do not need to be unique across all cipher suites. Therefore, parameter Ids and result Ids are specified in the context of a cipher suite definition.
Individual BPSec security context identifiers SHOULD use existing registries of identifiers and CBOR encodings, such as those defined in [RFC8152], whenever possible. Contexts SHOULD define their own identifiers and CBOR encodings when necessary.
Parameters and results are represented using CBOR, and any identification of a new parameter or result must include how the value will be represented using the CBOR specification. Ids themselves are always represented as a CBOR unsigned integer.
This section provides two examples of BPSec blocks applied to a bundle. In the first example, a single node adds several security operations to a bundle. In the second example, a waypoint node received the bundle created in the first example and adds additional security operations. In both examples, the first column represents blocks within a bundle and the second column represents the Block Number for the block, using the terminology B1...Bn for the purpose of illustration.
In this example a bundle has four non-security-related blocks: the primary block (B1), two extension blocks (B4,B5), and a payload block (B6). The bundle source wishes to provide an integrity signature of the plain-text associated with the primary block, one of the extension blocks, and the payload. The resultant bundle is illustrated in Figure 3 and the security actions are described below.
Figure 3: Security at Bundle Creation
The following security actions were applied to this bundle at its time of creation.
o An integrity signature applied to the canonicalized primary block (B1), the second extension block (B5) and the payload block (B6). This is accomplished by a single BIB (B2) with multiple targets. A single BIB is used in this case because all three targets share a security source, security context, and security context parameters. Had this not been the case, multiple BIBs could have been added instead.
o Confidentiality for the first extension block (B4). This is accomplished by a BCB (B3). Once applied, the contents of extension block B4 are encrypted. The BCB MUST hold an
authentication signature for the cipher-text either in the cipher- text that now populated the first extension block or as a security result in the BCB itself, depending on which cipher suite is used to form the BCB. A plain-text integrity signature may also exist as a security result in the BCB if one is provided by the selected confidentiality cipher suite.
Consider that the bundle as it is illustrated in Figure 3 is now received by a waypoint node that wishes to encrypt the first extension block and the bundle payload. The waypoint security policy is to allow existing BIBs for these blocks to persist, as they may be required as part of the security policy at the bundle destination.
The resultant bundle is illustrated in Figure 4 and the security actions are described below. Note that block IDs provided here are ordered solely for the purpose of this example and not meant to impose an ordering for block creation. The ordering of blocks added to a bundle MUST always be in compliance with [I-D.ietf-dtn-bpbis].
Figure 4: Security At Bundle Forwarding
The following security actions were applied to this bundle prior to its forwarding from the waypoint node.
o Since the waypoint node wishes to encrypt blocks B5 and B6, it MUST also encrypt the BIBs providing plain-text integrity over those blocks. However, BIB B2 could not be encrypted in its entirety because it also held a signature for the primary block (B1). Therefore, a new BIB (B7) is created and security results associated with B5 and B6 are moved out of BIB B2 and into BIB B7.
o Now that there is no longer confusion of which plain-text integrity signatures must be encrypted, a BCB is added to the bundle with the security targets being the second extension block (B5) and the payload (B6) as well as the newly created BIB holding their plain-text integrity signatures (B7). A single new BCB is used in this case because all three targets share a security source, security context, and security context parameters. Had this not been the case, multiple BCBs could have been added instead.
Security services require consistency and determinism in how information is presented to cipher suites at the security source and at a receiving node. For example, integrity services require that the same target information (e.g., the same bits in the same order) is provided to the cipher suite when generating an original signature and when generating a comparison signature. Canonicalization algorithms are used to construct a stable, end-to-end bit representation of a target block.
Canonical forms are not transmitted, they are used to generate input to a cipher suite for security processing at a security-aware node.
The canonicalization of the primary block is as specified in [I-D.ietf-dtn-bpbis].
All non-primary blocks share the same block structure and are canonicalized as specified in [I-D.ietf-dtn-bpbis] with the following exceptions.
o If the service being applied is a confidentiality service, then the Block Type Code, Block Number, Block Processing Control Flags, CRC Type and CRC Field (if present), and Block Data Length fields MUST NOT be included in the canonicalization. Confidentiality services are used solely to convert the Block Type Specific Data Fields from plain-text to cipher-text.
o Reserved flags MUST NOT be included in any canonicalization as it is not known if those flags will change in transit.
These canonicalization algorithms assume that Endpoint IDs do not change from the time at which a security source adds a security block to a bundle and the time at which a node processes that security block.
Cipher suites MAY define their own canonicalization algorithms and require the use of those algorithms over the ones provided in this specification. In the event of conflicting canonicalization algorithms, cipher suite algorithms take precedence over this specification.
This section describes the security aspects of bundle processing.
Security blocks must be processed in a specific order when received by a security-aware node. The processing order is as follows.
o When BIBs and BCBs share a security target, BCBs MUST be evaluated first and BIBs second.
If a received bundle contains a BCB, the receiving node MUST determine whether it has the responsibility of decrypting the BCB security target and removing the BCB prior to delivering data to an application at the node or forwarding the bundle.
If the receiving node is the destination of the bundle, the node MUST decrypt any BCBs remaining in the bundle. If the receiving node is not the destination of the bundle, the node MUST decrypt the BCB if directed to do so as a matter of security policy.
If the security policy of a security-aware node specifies that a bundle should have applied confidentiality to a specific security target and no such BCB is present in the bundle, then the node MUST process this security target in accordance with the security policy. This may involve removing the security target from the bundle. If the removed security target is the payload block, the bundle MUST be discarded.
If an encrypted payload block cannot be decrypted (i.e., the cipher- text cannot be authenticated), then the bundle MUST be discarded and processed no further. If an encrypted security target other than the payload block cannot be decrypted then the associated security target and all security blocks associated with that target MUST be discarded and processed no further. In both cases, requested status reports (see [I-D.ietf-dtn-bpbis]) MAY be generated to reflect bundle or block deletion.
When a BCB is decrypted, the recovered plain-text MUST replace the cipher-text in the security target Block Type Specific Data Fields. If the Block Data Length field was modified at the time of encryption it MUST be updated to reflect the decrypted block length.
If a BCB contains multiple security targets, all security targets MUST be processed when the BCB is processed. Errors and other processing steps SHALL be made as if each security target had been represented by an individual BCB with a single security target.
If a received bundle contains a BIB, the receiving node MUST determine whether it has the final responsibility of verifying the BIB security target and removing it prior to delivering data to an application at the node or forwarding the bundle. If a BIB check fails, the security target has failed to authenticate and the security target SHALL be processed according to the security policy. A bundle status report indicating the failure MAY be generated. Otherwise, if the BIB verifies, the security target is ready to be processed for delivery.
A BIB MUST NOT be processed if the security target of the BIB is also the security target of a BCB in the bundle. Given the order of operations mandated by this specification, when both a BIB and a BCB share a security target, it means that the security target must have been encrypted after it was integrity signed and, therefore, the BIB cannot be verified until the security target has been decrypted by processing the BCB.
If the security policy of a security-aware node specifies that a bundle should have applied integrity to a specific security target and no such BIB is present in the bundle, then the node MUST process this security target in accordance with the security policy. This may involve removing the security target from the bundle. If the removed security target is the payload or primary block, the bundle MAY be discarded. This action can occur at any node that has the ability to verify an integrity signature, not just the bundle destination.
If a receiving node does not have the final responsibility of verifying the BIB it MAY attempt to verify the BIB to prevent the needless forwarding of corrupt data. If the check fails, the node SHALL process the security target in accordance to local security policy. It is RECOMMENDED that if a payload integrity check fails at a waypoint that it is processed in the same way as if the check fails at the destination. If the check passes, the node MUST NOT remove the BIB prior to forwarding.
If a BIB contains multiple security targets, all security targets MUST be processed if the BIB is processed by the Node. Errors and other processing steps SHALL be made as if each security target had been represented by an individual BIB with a single security target.
If it is necessary for a node to fragment a bundle payload, and security services have been applied to that bundle, the fragmentation rules described in [I-D.ietf-dtn-bpbis] MUST be followed. As defined there and summarized here for completeness, only the payload block can be fragmented; security blocks, like all extension blocks, can never be fragmented.
Due to the complexity of payload block fragmentation, including the possibility of fragmenting payload block fragments, integrity and confidentiality operations are not to be applied to a bundle representing a fragment. Specifically, a BCB or BIB MUST NOT be added to a bundle if the "Bundle is a Fragment" flag is set in the Bundle Processing Control Flags field.
Security processing in the presence of payload block fragmentation may be handled by other mechanisms outside of the BPSec protocol or by applying BPSec blocks in coordination with an encapsulation mechanism.
There exist a myriad of ways to establish, communicate, and otherwise manage key information in a DTN. Certain DTN deployments might follow established protocols for key management whereas other DTN deployments might require new and novel approaches. BPSec assumes that key management is handled as a separate part of network management and this specification neither defines nor requires a specific key management strategy.
When implementing BPSec, several policy decisions must be considered. This section describes key policies that affect the generation, forwarding, and receipt of bundles that are secured using this specification. No single set of policy decisions is envisioned to work for all secure DTN deployments.
o If a bundle is received that contains more than one security operation, in violation of BPSec, then the BPA must determine how to handle this bundle. The bundle may be discarded, the block affected by the security operation may be discarded, or one security operation may be favored over another.
o BPAs in the network must understand what security operations they should apply to bundles. This decision may be based on the source of the bundle, the destination of the bundle, or some other information related to the bundle.
o If a waypoint has been configured to add a security operation to a bundle, and the received bundle already has the security operation applied, then the receiver must understand what to do. The receiver may discard the bundle, discard the security target and associated BPSec blocks, replace the security operation, or some other action.
o It is recommended that security operations only be applied to the blocks that absolutely need them. If a BPA were to apply security operations such as integrity or confidentiality to every block in the bundle, regardless of need, there could be downstream errors processing blocks whose contents must be inspected or changed at every hop along the path.
o It is recommended that BCBs be allowed to alter the size of extension blocks and the payload block. However, care must be taken to ensure that changing the size of the payload block while the bundle is in transit do not negatively affect bundle processing (e.g., calculating storage needs, scheduling transmission times, caching block byte offsets).
o Adding a BIB to a security target that has already been encrypted by a BCB is not allowed. If this condition is likely to be encountered, there are (at least) three possible policies that could handle this situation.
1. At the time of encryption, a plain-text integrity signature may be generated and added to the BCB for the security target as additional information in the security result field.
2. The encrypted block may be replicated as a new block and integrity signed.
3. An encapsulation scheme may be applied to encapsulate the security target (or the entire bundle) such that the encapsulating structure is, itself, no longer the security target of a BCB and may therefore be the security target of a BIB.
o It is recommended that security policy address whether cipher suites whose cipher-text is larger (or smaller) than the initial plain-text are permitted and, if so, for what types of blocks. Changing the size of a block may cause processing difficulties for networks that calculate block offsets into bundles or predict transmission times or storage availability as a function of bundle size. In other cases, changing the size of a payload as part of encryption has no significant impact.
Given the nature of DTN applications, it is expected that bundles may traverse a variety of environments and devices which each pose unique security risks and requirements on the implementation of security within BPSec. For these reasons, it is important to introduce key threat models and describe the roles and responsibilities of the BPSec protocol in protecting the confidentiality and integrity of the data against those threats. This section provides additional discussion on security threats that BPSec will face and describes how BPSec security mechanisms operate to mitigate these threats.
The threat model described here is assumed to have a set of capabilities identical to those described by the Internet Threat Model in [RFC3552], but the BPSec threat model is scoped to illustrate threats specific to BPSec operating within DTN environments and therefore focuses on man-in-the-middle (MITM) attackers. In doing so, it is assumed that the DTN (or significant portions of the DTN) are completely under the control of an attacker.
BPSec was designed to protect against MITM threats which may have access to a bundle during transit from its source, Alice, to its destination, Bob. A MITM node, Mallory, is a non-cooperative node operating on the DTN between Alice and Bob that has the ability to receive bundles, examine bundles, modify bundles, forward bundles, and generate bundles at will in order to compromise the confidentiality or integrity of data within the DTN. For the purposes of this section, any MITM node is assumed to effectively be security-aware even if it does not implement the BPSec protocol. There are three classes of MITM nodes which are differentiated based on their access to cryptographic material:
o Unprivileged Node: Mallory has not been provisioned within the secure environment and only has access to cryptographic material which has been publicly-shared.
o Legitimate Node: Mallory is within the secure environment and therefore has access to cryptographic material which has been provisioned to Mallory (i.e., K_M) as well as material which has been publicly-shared.
o Privileged Node: Mallory is a privileged node within the secure environment and therefore has access to cryptographic material which has been provisioned to Mallory, Alice and/or Bob (i.e. K_M, K_A, and/or K_B) as well as material which has been publicly- shared.
If Mallory is operating as a privileged node, this is tantamount to compromise; BPSec does not provide mechanisms to detect or remove Mallory from the DTN or BPSec secure environment. It is up to the BPSec implementer or the underlying cryptographic mechanisms to provide appropriate capabilities if they are needed. It should also be noted that if the implementation of BPSec uses a single set of shared cryptographic material for all nodes, a legitimate node is equivalent to a privileged node because K_M == K_A == K_B.
A special case of the legitimate node is when Mallory is either Alice or Bob (i.e., K_M == K_A or K_M == K_B). In this case, Mallory is able to impersonate traffic as either Alice or Bob, which means that traffic to and from that node can be decrypted and encrypted, respectively. Additionally, messages may be signed as originating from one of the endpoints.
Once Mallory has received a bundle, she is able to examine the contents of that bundle and attempt to recover any protected data or cryptographic keying material from the blocks contained within. The protection mechanism that BPSec provides against this action is the BCB, which encrypts the contents of its security target, providing confidentiality of the data. Of course, it should be assumed that Mallory is able to attempt offline recovery of encrypted data, so the cryptographic mechanisms selected to protect the data should provide a suitable level of protection.
When evaluating the risk of eavesdropping attacks, it is important to consider the lifetime of bundles on a DTN. Depending on the network, bundles may persist for days or even years. Long-lived bundles imply that the data exists in the network for a longer period of time and, thus, there may be more opportunities to capture those bundles. Additionally, bundles that are long-lived imply that the information stored within them may remain relevant and sensitive for long enough that, once captured, there is sufficient time to crack encryption associated with the bundle. If a bundle does persist on the network for years and the cipher suite used for a BCB provides inadequate protection, Mallory may be able to recover the protected data either before that bundle reaches its intended destination or before the information in the bundle is no longer considered sensitive.
As a node participating in the DTN between Alice and Bob, Mallory will also be able to modify the received bundle, including non-BPSec data such as the primary block, payload blocks, or block processing control flags as defined in [I-D.ietf-dtn-bpbis]. Mallory will be able to undertake activities which include modification of data within the blocks, replacement of blocks, addition of blocks, or removal of blocks. Within BPSec, both the BIB and BCB provide integrity protection mechanisms to detect or prevent data manipulation attempts by Mallory.
The BIB provides that protection to another block which is its security target. The cryptographic mechanisms used to generate the BIB should be strong against collision attacks and Mallory should not have access to the cryptographic material used by the originating node to generate the BIB (e.g., K_A). If both of these conditions are true, Mallory will be unable to modify the security target or the BIB and lead Bob to validate the security target as originating from Alice.
Since BPSec security operations are implemented by placing blocks in a bundle, there is no in-band mechanism for detecting or correcting certain cases where Mallory removes blocks from a bundle. If Mallory removes a BCB, but keeps the security target, the security target remains encrypted and there is a possibility that there may no longer be sufficient information to decrypt the block at its destination. If Mallory removes both a BCB (or BIB) and its security target there is no evidence left in the bundle of the security operation. Similarly, if Mallory removes the BIB but not the security target there is no evidence left in the bundle of the security operation. In each of these cases, the implementation of BPSec must be combined with policy configuration at endpoints in the network which describe the expected and required security operations that must be applied on transmission and are expected to be present on receipt. This or other similar out-of-band information is required to correct for removal of security information in the bundle.
A limitation of the BIB may exist within the implementation of BIB validation at the destination node. If Mallory is a legitimate node within the DTN, the BIB generated by Alice with K_A can be replaced with a new BIB generated with K_M and forwarded to Bob. If Bob is only validating that the BIB was generated by a legitimate user, Bob will acknowledge the message as originating from Mallory instead of Alice. In order to provide verifiable integrity checks, both a BIB and BCB should be used and the BCB should require an IND-CCA2 encryption scheme. Such an encryption scheme will guard against signature substitution attempts by Mallory. In this case, Alice creates a BIB with the protected data block as the security target and then creates a BCB with both the BIB and protected data block as its security targets.
If Mallory is in a MITM position within the DTN, she is able to influence how any bundles that come to her may pass through the network. Upon receiving and processing a bundle that must be routed elsewhere in the network, Mallory has three options as to how to proceed: not forward the bundle, forward the bundle as intended, or forward the bundle to one or more specific nodes within the network.
Attacks that involve re-routing the packets throughout the network are essentially a special case of the modification attacks described in this section where the attacker is modifying fields within the primary block of the bundle. Given that BPSec cannot encrypt the contents of the primary block, alternate methods must be used to prevent this situation. These methods may include requiring BIBs for primary blocks, using encapsulation, or otherwise strategically manipulating primary block data. The specifics of any such mitigation technique are specific to the implementation of the deploying network and outside of the scope of this document.
Furthermore, routing rules and policies may be useful in enforcing particular traffic flows to prevent topology attacks. While these rules and policies may utilize some features provided by BPSec, their definition is beyond the scope of this specification.
Mallory is also able to generate new bundles and transmit them into the DTN at will. These bundles may either be copies or slight modifications of previously-observed bundles (i.e., a replay attack) or entirely new bundles generated based on the Bundle Protocol, BPSec, or other bundle-related protocols. With these attacks Mallory's objectives may vary, but may be targeting either the bundle protocol or application-layer protocols conveyed by the bundle protocol.
BPSec relies on cipher suite capabilities to prevent replay or forged message attacks. A BCB used with appropriate cryptographic mechanisms (e.g., a counter-based cipher mode) may provide replay protection under certain circumstances. Alternatively, application data itself may be augmented to include mechanisms to assert data uniqueness and then protected with a BIB, a BCB, or both along with other block data. In such a case, the receiving node would be able to validate the uniqueness of the data.
Security blocks must uniquely define the security context for their services. This context MUST be uniquely identifiable and MAY use parameters for customization. Where policy and configuration decisions can be captured as parameters, the security context identifier may identify a cipher suite. In cases where the same cipher suites are used with differing predetermined configurations and policies, users can define multiple security contexts.
Network operators must determine the number, type, and configuration of security contexts in a system. Networks with rapidly changing configurations may define relatively few security contexts with each context customized with multiple parameters. For networks with more stability, or an increased need for confidentiality, a larger number of contexts can be defined with each context supporting few, if any, parameters.
Security Context Examples
Table 1
Cipher suite developers or implementers should consider the diverse performance and conditions of networks on which the Bundle Protocol (and therefore BPSec) will operate. Specifically, the delay and capacity of delay-tolerant networks can vary substantially. Cipher suite developers should consider these conditions to better describe the conditions when those suites will operate or exhibit vulnerability, and selection of these suites for implementation should be made with consideration to the reality. There are key differences that may limit the opportunity to leverage existing cipher suites and technologies that have been developed for use in traditional, more reliable networks:
o Data Lifetime: Depending on the application environment, bundles may persist on the network for extended periods of time, perhaps even years. Cryptographic algorithms should be selected to ensure protection of data against attacks for a length of time reasonable for the application.
o One-Way Traffic: Depending on the application environment, it is possible that only a one-way connection may exist between two endpoints, or if a two-way connection does exist, the round- trip time may be extremely large. This may limit the utility of session key generation mechanisms, such as Diffie-Hellman, as a two-way handshake may not be feasible or reliable.
o Opportunistic Access: Depending on the application environment, a given endpoint may not be guaranteed to be accessible within a certain amount of time. This may make asymmetric cryptographic architectures which rely on a key distribution center or other trust center impractical under certain conditions.
When developing new security contexts for use with BPSec, the following information SHOULD be considered for inclusion in these specifications.
o Security Context Parameters. Security contexts MUST define their parameter Ids, the data types of those parameters, and their CBOR encoding.
o Security Results. Security contexts MUST define their security result Ids, the data types of those results, and their CBOR encoding.
o New Canonicalizations. Security contexts may define new canonicalization algorithms as necessary.
o Cipher-Text Size. Security contexts MUST state whether their associated cipher suites generate cipher-text (to include any authentication information) that is of a different size than the input plain-text.
If a security context does not wish to alter the size of the plain-text, it should consider defining the following policy.
* Place overflow bytes, authentication signatures, and any additional authenticated data in security result fields rather than in the cipher-text itself.
* Pad the cipher-text in cases where the cipher-text is smaller than the plain-text.
Other security blocks (OSBs) may be defined and used in addition to the security blocks identified in this specification. Both the usage of BIB, BCB, and any future OSBs can co-exist within a bundle and can be considered in conformance with BPSec if each of the following requirements are met by any future identified security blocks.
o Other security blocks (OSBs) MUST NOT reuse any enumerations identified in this specification, to include the block type codes for BIB and BCB.
o An OSB definition MUST state whether it can be the target of a BIB or a BCB. The definition MUST also state whether the OSB can target a BIB or a BCB.
o An OSB definition MUST provide a deterministic processing order in the event that a bundle is received containing BIBs, BCBs, and OSBs. This processing order MUST NOT alter the BIB and BCB processing orders identified in this specification.
o An OSB definition MUST provide a canonicalization algorithm if the default non-primary-block canonicalization algorithm cannot be used to generate a deterministic input for a cipher suite. This requirement can be waived if the OSB is defined so as to never be the security target of a BIB or a BCB.
o An OSB definition MUST NOT require any behavior of a BPSEC-BPA that is in conflict with the behavior identified in this specification. In particular, the security processing requirements imposed by this specification must be consistent across all BPSEC-BPAs in a network.
o The behavior of an OSB when dealing with fragmentation must be specified and MUST NOT lead to ambiguous processing states. In particular, an OSB definition should address how to receive and process an OSB in a bundle fragment that may or may not also contain its security target. An OSB definition should also address whether an OSB may be added to a bundle marked as a fragment.
Additionally, policy considerations for the management, monitoring, and configuration associated with blocks SHOULD be included in any OSB definition.
NOTE: The burden of showing compliance with processing rules is placed upon the standards defining new security blocks and the identification of such blocks shall not, alone, require maintenance of this specification.
A registry of security context identifiers will be required.
This specification allocates two block types from the existing "Bundle Block Types" registry defined in [RFC6255].
Additional Entries for the Bundle Block-Type Codes Registry:
Table 2
[I-D.ietf-dtn-bpbis]
Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol Version 7", draft-ietf-dtn-bpbis-11 (work in progress), May 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC3552]
Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/info/rfc3552>.
[RFC6255]
Blanchet, M., "Delay-Tolerant Networking Bundle Protocol IANA Registries", RFC 6255, DOI 10.17487/RFC6255, May 2011, <https://www.rfc-editor.org/info/rfc6255>.
[RFC7049]
Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, <https://www.rfc-editor.org/info/rfc7049>.
[I-D.birrane-dtn-sbsp]
Birrane, E., Pierce-Mayer, J., and D. Iannicca, "Streamlined Bundle Security Protocol Specification", draft-birrane-dtn-sbsp-01 (work in progress), October 2015.
[RFC4838]
Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant Networking Architecture", RFC 4838, DOI 10.17487/RFC4838, April 2007, <https://www.rfc-editor.org/info/rfc4838>.
[RFC6257]
Symington, S., Farrell, S., Weiss, H., and P. Lovell, "Bundle Security Protocol Specification", RFC 6257, DOI 10.17487/RFC6257, May 2011, <https://www.rfc-editor.org/info/rfc6257>.
[RFC8152]
Schaad, J., "CBOR Object Signing and Encryption (COSE)", RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://www.rfc-editor.org/info/rfc8152>.
The following participants contributed technical material, use cases, and useful thoughts on the overall approach to this security specification: Scott Burleigh of the Jet Propulsion Laboratory, Amy Alford and Angela Hennessy of the Laboratory for Telecommunications Sciences, and Angela Dalton and Cherita Corbett of the Johns Hopkins University Applied Physics Laboratory.
Authors' Addresses
draft-ietf-dtn-bpsec-interop-sc-00 - BPSec Interoperability Security Contexts
Delay-Tolerant Networking
Internet-Draft
Intended status: Standards Track
Expires: September 12, 2019
E. Birrane
JHU/APL
March 11, 2019
draft-ietf-dtn-bpsec-interop-sc-00
This document defines an integrity security context and a confidentiality security context suitable for testing the interoperability of Bundle Protocol Security (BPSec) implementations.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Bundle Protocol Security (BPSec) [I-D.ietf-dtn-bpsec] specification provides inter-bundle integrity and confidentiality features for networks deploying the Bundle Protocol (BP) [I-D.ietf-dtn-bpbis]. BPSec defines a set of BP extension blocks to carry security information produced under the auspices of some security context, but does not define a common set of these security contexts.
This document defines two security contexts (one for integrity services and one for confidentiality services) suitable for populating BPSec Block Integrity Blocks (BIBs) and Block Confidentiality Blocks (BCBs).
This purpose of the security contexts described in this document is twofold. First, these contexts should be used to test the interoperability of BPSec implementations. Second, this specification can serve as a template to be followed by other BPSec security context authors.
The intent of these security context definitions is to provide a mechanism for interoperability testing. There is no claim that these contexts are suitable for operational deployment in any particular networking scenario. Further, there is no requirement that these contexts be used in any operational network deployments.
These contexts generate information that MUST be encoded using the CBOR specification documented in [RFC7049].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This integrity context provides a signed hash over the security target based on the use of the SHA-256 message digest algorithm [RFC4634] combined with HMAC [RFC2104] with a 256 bit truncation length. This formulation is based on the HMAC 256/256 algorithm defined in [RFC8152] Table 7: HMAC Algorithm Values.
The BIB-HMAC256-SHA256 context has a Security Context ID of 0x1.
Keys used with this specification MUST be symmetric and 256 bits in length.
This context provides no requirements on the configuration or management of keys.
BIB-HMAC256-SHA256 uses the standard canonicalization algorithms defined in [I-D.ietf-dtn-bpsec] and operates over all of the block- type-specific data fields for the security target. This context does not include hashing over other parts of the target block header, such as the block type code, block number, block processing control flags, or any CRC information.
BIB-HMAC256-SHA256 defines the following security context parameters.
BIB-HMAC256-SHA256 Parameters
Table 1
BIB-HMAC256-SHA256 defines the following security results.
BIB-HMAC256-SHA256 Security Results
Table 2
This confidentiality context provides cipher-text to replace the plain-text block-type-specific data fields of its target block. BCB- AES-GCM-256 uses the Advanced Encryption Standard (AES) cipher operating in Galois/Counter Mode (GCM) [AES-GCM]. This formulation is based on the A256GCM algorithm defined in [RFC8152] Table 9: Algorithm Value for AES-GCM.
The BCB-AES-GCM-256 context has a Security Context ID of 0x02.
This context modifies the size of the target block.
Keys used with this specification MUST be symmetric and 256 bits in length.
This context provides no requirements on the configuration or management of keys.
BCB-AES-GCM-256 uses the standard canonicalization algorithms defined in [I-D.ietf-dtn-bpsec] and operates over all of the block-type- specific data fields for the security target. This context does not include hashing over other parts of the target block header, such as the block type code, block number, block processing control flags, or any CRC information.
When encrypting, the BCB-AES-GCM-256 context treats the catenation of the target block's block-type-specific data fields as a single set of plain-text.
Cipher-text, once calculated, is stored as a CBOR byte string replacing the value of the target block's block-type-specific data. Because the plain-text and cipher-text will have the same length, the CBOR byte string encoding will have the same encoding of the byte string type and length. This allows the replacement of plain-text with cipher-text without any additional consideration of block-type- specific data field processing.
When decrypting, the target block's block-type-specific field is verified to be only a CBOR byte string. If this is not the case the decryption is treated as failed and processed in accordance with local security policy. Otherwise, the byte string and key information is passed to the cipher for decryption.
If the cipher-text fails to authenticate, or if there are other problems in the decryption (such as the creation of invalid CBOR plain-text) then the decryption MUST be treated as failed and processed in accordance with local security policy.
If the decryption succeeds, the resultant plain-text MUST replace the cipher-text in the target-block.
BCB-AES-GCM-256 defines the following security context parameters. It should be noted in this specification there is no additional authenticated data passed in to the AES-GCM cipher. The plain-text is the only data input and MUST be the entire data contents of the target block. Because replaying an IV in counter mode voids the confidentiality of all messages encryption with said IV, this context also requires a unique IV for every encryption performed with the same key. This means the same key and IV combination must never be used more than once.
BCB-AES-GCM-256 Parameters
Table 3
BCB-AES-GCM-256 defines the following security results. It should be noted that cipher-text is not a security result as the resultant cipher-text is stored in the target block. When operating in GCM mode, AES produces cipher-text of the same size as its plain-text and, therefore, no security results are necessary to capture padding information.
BCB-AES-GCM-256 Security Results
Table 4
This specification allocates two block types from the "BPSec Security Context IDs" registry defined in [I-D.ietf-dtn-bpsec].
Additional BPSec Security Context IDs:
Table 5
[AES-GCM]
Dworkin, M., "NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.", November 2007.
[I-D.ietf-dtn-bpbis]
Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol Version 7", draft-ietf-dtn-bpbis-12 (work in progress), November 2018.
[I-D.ietf-dtn-bpsec]
Birrane, E. and K. McKeever, "Bundle Protocol Security Specification", draft-ietf-dtn-bpsec-09 (work in progress), February 2019.
[RFC2104]
Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed- Hashing for Message Authentication", RFC 2104, DOI 10.17487/RFC2104, February 1997, <https://www.rfc-editor.org/info/rfc2104>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC4634]
Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and HMAC-SHA)", RFC 4634, DOI 10.17487/RFC4634, July 2006, <https://www.rfc-editor.org/info/rfc4634>.
[RFC7049]
Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, <https://www.rfc-editor.org/info/rfc7049>.
[RFC8152]
Schaad, J., "CBOR Object Signing and Encryption (COSE)", RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://www.rfc-editor.org/info/rfc8152>.
The following participants contributed useful analysis of this specification: Prathibha Rama of the Johns Hopkins University Applied Physics Laboratory.
Author's Address
draft-ietf-dtn-mtcpcl-01 - Minimal TCP Convergence-Layer Protocol
Delay-Tolerant Networking Working Group
Internet Draft
Intended status: Standards Track
Expires: September 2019
S. Burleigh
JPL, Calif. Inst. Of Technology
April 23, 2019
draft-ietf-dtn-mtcpcl-01.txt
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html
This Internet-Draft will expire on October 25, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document describes a Minimal TCP (MTCP) "convergence-layer" protocol for the Delay-Tolerant Networking (DTN) Bundle Protocol (BP). MTCP uses Transmission Control Protocol (TCP) to transmit BP "bundles" from one BP node to another node to which it is topologically adjacent in the BP network. The services provided by the MTCP convergence-layer protocol adapter utilize a standard TCP connection for the purposes of bundle transmission.
This document describes the Minimal TCP (MTCP) protocol, a Delay- Tolerant Networking (DTN) Bundle Protocol (BP) [RFC5050] "convergence layer" protocol that uses a standard TCP connection to transmit bundles from one BP node to another node to which it is topologically adjacent in the BP network.
Conformance to the MTCP convergence-layer protocol specification is OPTIONAL for BP nodes.
Each BP node that conforms to the MTCP specification includes an MTCP convergence-layer adapter (MCLA). Every MCLA engages in communication via the Transmission Control Protocol [RFC0793].
Like any convergence-layer adapter, the MTCP CLA provides:
Transmission of bundles via MTCP is "reliable" to the extent that TCP itself is reliable. MTCP provides no supplementary error detection and recovery procedures. In particular, MTCP does not provide to the sender any interim reporting of reception progress.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].
In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.
An MTCP "session" is formed when a TCP connection is established by the matching of an active TCP OPEN request issued by some MCLA, termed the session's "sender", with a passive TCP OPEN request issued by some MCLA, termed the session's "receiver". That portion of the state of a session that is exposed to the session's sender is termed the "transmission element" of the session. That portion of the state of a session that is exposed to the session's receiver is termed the "reception element" of the session.
The values of the parameters constraining MTCP's TCP connection establishment, including the establishment of Transport Layer Security (TLS; [RFC8446]) sessions within the connections, SHALL be provided by management, by means that are beyond the scope of this specification. No TCP port number will be reserved for MTCP connection purposes.
The use of TLS to secure MTCP sessions is optional but is strongly recommended. When it is determined, by management, that an MTCP session between a given sender and receiver is to be secured by TLS:
MTCP sessions are unidirectional; that is, bundles transmitted via an MTCP session are transmitted only from the session's sender to its receiver. When bidirectional exchange of bundles between MCLAs via MTCP is required, two MTCP sessions are formed, one in each direction.
Closure of either element of a session MAY occur either upon request of the bundle protocol agent or upon detection of any error. Closure of either element of an MTCP session SHALL cause the corresponding TCP connection to be terminated (unless termination of that connection was in fact the cause of the closure of that session element). Since termination of the associated TCP connection will result in errors at the other element of the session, termination of either element of the session will effectively terminate the session.
An MTCP protocol data unit (MPDU) is simply a serialized bundle in a CBOR representation that indicates the length of that serialized bundle. An MPDU is constructed as follows.
Each MPDU SHALL be a single serialized BP bundle, termed the "encapsulated bundle", represented as a CBOR byte string of definite length (NOT an indefinite-length byte string).
When an MCLA is requested by the bundle protocol agent to send a bundle to a peer MCLA identified by some IP address and port number:
. If no MTCP session enabling transmission to that MCLA has been
formed, the MCLA SHALL attempt to form that session. If this
An MCLA that is required to receive (rather than only transmit) bundles SHALL issue a passive TCP OPEN. Whenever TCP matches that passive OPEN with an active TCP OPEN issued by some MCLA, an MTCP session is formed as noted earlier; MPDUs may be received via the reception element of such session.
From the moment at which an MTCP session reception element is first exposed to the moment at which it is closed, in a continuous cycle, the corresponding session's receiver SHALL:
Because MTCP constitutes a nearly negligible extension of TCP, it introduces virtually no security considerations beyond the well- known TCP security considerations. To address these considerations, the use of TLS to secure MTCP sessions is strongly recommended.
Even when TLS is used to secure an MTCP session, the ciphersuite specified for the TLS session may be insecure. For example, TLS can be configured to support authentication without confidentiality. MCLA management MUST ensure that the ciphersuites employed to secure MTCP sessions meet transport security requirements. This constraint echoes constraints on STARTTLS in [RFC2595].
An adversary could mount a denial-of-service attack by repeatedly establishing and terminating MTCP sessions; well-understood DOS attack mitigations would apply.
Maliciously formed bundle lengths could disrupt the operation of MTCP session receivers, but MTCP implementations need to be robust against incorrect bundle lengths in any case.
Maliciously crafted serialized bundles could be received and delivered to the bundle protocol agent, but that is not an MTCP- specific security consideration: all bundles delivered to the BPA by all convergence-layer adapters need to be processed in awareness of this possibility.
No new IANA considerations apply.
[RFC7525]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, May 2015.
[RFC0793]
Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, August 2018.
[RFC2595]
Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595, August 2018.
[RFC5050]
Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, November 2007.
This document was prepared using 2-Word-v2.0.template.dot.
Please refer comments to dtn@ietf.org. The Delay Tolerant Networking Research Group (DTNRG) Web site is located at http://www.dtnrg.org.
Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).
Authors' Address
draft-ietf-dtn-tcpclv4-12 - Delay-Tolerant Networking TCP Convergence Layer Prot
Index Back 5 Prev Next Forward 5
Delay Tolerant Networking
Internet-Draft
Obsoletes: 7242 (if approved)
Intended status: Standards Track
Expires: October 2, 2019
B. Sipos
RKF Engineering
M. Demmer
UC Berkeley
J. Ott
Aalto University
S. Perreault
March 31, 2019
draft-ietf-dtn-tcpclv4-12
This document describes a revised protocol for the TCP-based convergence layer (TCPCL) for Delay-Tolerant Networking (DTN). The protocol revision is based on implementation issues in the original TCPCL Version 3 of RFC7242 and updates to the Bundle Protocol contents, encodings, and convergence layer requirements in Bundle Protocol Version 7. Specifically, the TCPCLv4 uses CBOR-encoded BPv7 bundles as its service data unit being transported and provides a reliable transport of such bundles. Several new IANA registries are defined for TCPCLv4 which define some behaviors inherited from TCPCLv3 but with updated encodings and/or semantics.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 2, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document describes the TCP-based convergence-layer protocol for Delay-Tolerant Networking. Delay-Tolerant Networking is an end-to- end architecture providing communications in and/or through highly stressed environments, including those with intermittent connectivity, long and/or variable delays, and high bit error rates. More detailed descriptions of the rationale and capabilities of these networks can be found in "Delay-Tolerant Network Architecture" [RFC4838].
An important goal of the DTN architecture is to accommodate a wide range of networking technologies and environments. The protocol used for DTN communications is the Bundle Protocol Version 7 (BPv7) [I-D.ietf-dtn-bpbis], an application-layer protocol that is used to construct a store-and-forward overlay network. BPv7 requires the services of a "convergence-layer adapter" (CLA) to send and receive bundles using the service of some "native" link, network, or Internet protocol. This document describes one such convergence-layer adapter that uses the well-known Transmission Control Protocol (TCP). This convergence layer is referred to as TCP Convergence Layer Version 4 (TCPCLv4). For the remainder of this document, the abbreviation "BP" without the version suffix refers to BPv7. For the remainder of this document, the abbreviation "TCPCL" without the version suffix refers to TCPCLv4.
The locations of the TCPCL and the BP in the Internet model protocol stack (described in [RFC1122]) are shown in Figure 1. In particular, when BP is using TCP as its bearer with TCPCL as its convergence layer, both BP and TCPCL reside at the application layer of the Internet model.
Figure 1: The Locations of the Bundle Protocol and the TCP Convergence-Layer Protocol above the Internet Protocol Stack
This document describes the format of the protocol data units passed between entities participating in TCPCL communications. This document does not address:
o The format of protocol data units of the Bundle Protocol, as those are defined elsewhere in [RFC5050] and [I-D.ietf-dtn-bpbis]. This includes the concept of bundle fragmentation or bundle encapsulation. The TCPCL transfers bundles as opaque data blocks.
o Mechanisms for locating or identifying other bundle entities within an internet.
This version of the TCPCL provides the following services to support the overlaying Bundle Protocol agent. In all cases, this is not an API defintion but a logical description of how the CL may interact with the BP agent. Each of these interactions may be associated with any number of additional metadata items as necessary to support the operation of the CL or BP agent.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This section contains definitions specific to the TCPCL protocol.
A TCPCL Entity MAY actively initiate any number of TCPCL Sessions and should do so whenever the entity is the initial transmitter of information to another entity in the network. A TCPCL Entity MAY support zero or more passive listening elements that listen for connection requests from other TCPCL Entities operating on other entitys in the network.
A TCPCL Entity MAY passivley initiate any number of TCPCL Sessions from requests received by its passive listening element(s) if the entity uses such elements.
These relationships are illustrated in Figure 2. For most TCPCL behavior within a session, the two entities are symmetric and there is no protocol distinction between them. Some specific behavior, particularly during session establishment, distinguishes between the active entity and the passive entity. For the remainder of this document, the term "entity" without the prefix "TCPCL" refers to a TCPCL entity.
The relationship between connections, sessions, and streams is shown in Figure 3.
Figure 2: The relationships between TCPCL entities
Figure 3: The relationship within a TCPCL Session of its two streams
The service of this protocol is the transmission of DTN bundles via the Transmission Control Protocol (TCP). This document specifies the encapsulation of bundles, procedures for TCP setup and teardown, and a set of messages and node requirements. The general operation of the protocol is as follows.
First, one node establishes a TCPCL session to the other by initiating a TCP connection in accordance with [RFC0793]. After setup of the TCP connection is complete, an initial contact header is exchanged in both directions to establish a shared TCPCL version and possibly initiate TLS security. Once contact negotiation is complete, TCPCL messaging is available and the session negotiation is used to set parameters of the TCPCL session. One of these parameters is a singleton endpoint identifier for each node (not the singleton Endpoint Identifier (EID) of any application running on the node) to denote the bundle-layer identity of each DTN node. This is used to assist in routing and forwarding messages (e.g. to prevent loops).
Once negotiated, the parameters of a TCPCL session cannot change and if there is a desire by either peer to transfer data under different parameters then a new session must be established. This makes CL logic simpler but relies on the assumption that establishing a TCP connection is lightweight enough that TCP connection overhead is negligable compared to TCPCL data sizes.
Once the TCPCL session is established and configured in this way, bundles can be transferred in either direction. Each transfer is performed by an sequence of logical segments of data within XFER_SEGMENT messages. Multiple bundles can be transmitted consecutively in a single direction on a single TCPCL connection. Segments from different bundles are never interleaved. Bundle interleaving can be accomplished by fragmentation at the BP layer or by establishing multiple TCPCL sessions between the same peers.
A feature of this protocol is for the receiving node to send acknowledgment (XFER_ACK) messages as bundle data segments arrive. The rationale behind these acknowledgments is to enable the sender node to determine how much of the bundle has been received, so that in case the session is interrupted, it can perform reactive fragmentation to avoid re-sending the already transmitted part of the bundle. In addition, there is no explicit flow control on the TCPCL layer.
A TCPCL receiver can interrupt the transmission of a bundle at any point in time by replying with a XFER_REFUSE message, which causes the sender to stop transmission of the associated bundle (if it hasn't already finished transmission) Note: This enables a cross- layer optimization in that it allows a receiver that detects that it already has received a certain bundle to interrupt transmission as early as possible and thus save transmission capacity for other bundles.
For sessions that are idle, a KEEPALIVE message is sent at a negotiated interval. This is used to convey node live-ness information during otherwise message-less time intervals.
A SESS_TERM message is used to start the closing of a TCPCL session (see Section 6.1). During shutdown sequencing, in-progress transfers can be completed but no new transfers can be initiated. A SESS_TERM message can also be used to refuse a session setup by a peer (see Section 4.3). It is an implementation matter to determine whether or not to close a TCPCL session while there are no transfers queued or in-progress.
Once a session is established established, TCPCL is a symmetric protocol between the peers. Both sides can start sending data segments in a session, and one side's bundle transfer does not have to complete before the other side can start sending data segments on its own. Hence, the protocol allows for a bi-directional mode of communication. Note that in the case of concurrent bidirectional transmission, acknowledgment segments MAY be interleaved with data segments.
The states of a nominal TCPCL session (i.e. without session failures) are indicated in Figure 4.
Figure 4: Top-level states of a TCPCL session
Notes on Established Session states:
Session "Live" means transmitting or reeiving over a transfer stream.
Session "Idle" means no transmission/reception over a transfer stream.
Session "Closing" means no new transfers will be allowed.
The contact negotiation sequencing is performed either as the active or passive peer, and is illustrated in Figure 5 and Figure 6 respectively which both share the data validation and analyze final states of Figure 7.
Figure 5: Contact Initiation as Active peer
Figure 6: Contact Initiation as Passive peer
Figure 7: Processing of Contact Header (PCH)
The session negotiation sequencing is performed either as the active or passive peer, and is illustrated in Figure 8 and Figure 9 respectively which both share the data validation and analyze final states of Figure 10.
Figure 8: Session Initiation as Active peer
Figure 9: Session Initiation as Passive peer
Figure 10: Processing of Session Initiation (PSI)
Transfers can occur after a session is established and it's not in the ending state. Each transfer occurs within a single logical transfer stream between a sender and a receiver, as illustrated in Figure 11 and Figure 12 respectively.
Figure 11: Transfer sender states
Notes on transfer sending:
Pipelining of transfers can occur when the sending entity begins a new transfer while in the "Waiting for Ack" state.
Figure 12: Transfer receiver states
Each TCPCL session allows a negotiated transfer segmentation polcy to be applied in each transfer direction. A receiving node can set the Segment MRU in its contact header to determine the largest acceptable segment size, and a transmitting node can segment a transfer into any sizes smaller than the receiver's Segment MRU. It is a network administration matter to determine an appropriate segmentation policy for entities operating TCPCL, but guidance given here can be used to steer policy toward performance goals. It is also advised to consider the Segment MRU in relation to chunking/packetization performed by TLS, TCP, and any intermediate network-layer nodes.
to the largest acceptable size (the message size less XFER_SEGMENT header size) and transmitters can always segment a transfer into maximum-size chunks no larger than the Segment MRU. This guarantees that any single XFER_SEGMENT will not monopolize the TCP stream for too long, which would prevent outgoing XFER_ACK and XFER_REFUSE associated with received transfers.
Many other policies can be established in a TCPCL network between these two extremes. Different policies can be applied to each direction to/from any particular node. Additionally, future header and transfer extension types can apply further nuance to transfer policies and policy negotiation.
The following figure depicts the protocol exchange for a simple session, showing the session establishment and the transmission of a single bundle split into three data segments (of lengths "L1", "L2", and "L3") from Entity A to Entity B.
Note that the sending node can transmit multiple XFER_SEGMENT messages without waiting for the corresponding XFER_ACK responses. This enables pipelining of messages on a transfer stream. Although this example only demonstrates a single bundle transmission, it is also possible to pipeline multiple XFER_SEGMENT messages for different bundles without necessarily waiting for XFER_ACK messages to be returned for each one. However, interleaving data segments from different bundles is not allowed.
No errors or rejections are shown in this example.
Figure 13: An example of the flow of protocol messages on a single
TCP Session between two entities
For bundle transmissions to occur using the TCPCL, a TCPCL session MUST first be established between communicating entities. It is up to the implementation to decide how and when session setup is triggered. For example, some sessions MAY be opened proactively and maintained for as long as is possible given the network conditions, while other sessions MAY be opened only when there is a bundle that is queued for transmission and the routing algorithm selects a certain next-hop node.
To establish a TCPCL session, an entity MUST first establish a TCP connection with the intended peer entity, typically by using the services provided by the operating system. Destination port number 4556 has been assigned by IANA as the Registered Port number for the TCP convergence layer. Other destination port numbers MAY be used per local configuration. Determining a peer's destination port number (if different from the registered TCPCL port number) is up to the implementation. Any source port number MAY be used for TCPCL sessions. Typically an operating system assigned number in the TCP Ephemeral range (49152-65535) is used.
If the entity is unable to establish a TCP connection for any reason, then it is an implementation matter to determine how to handle the connection failure. An entity MAY decide to re-attempt to establish the connection. If it does so, it MUST NOT overwhelm its target with repeated connection attempts. Therefore, the entity MUST retry the connection setup no earlier than some delay time from the last attempt, and it SHOULD use a (binary) exponential backoff mechanism to increase this delay in case of repeated failures.
Once a TCP connection is established, each entity MUST immediately transmit a contact header over the TCP connection. The format of the contact header is described in Section 4.2.
Once a TCP connection is established, both parties exchange a contact header. This section describes the format of the contact header and the meaning of its fields.
Upon receipt of the contact header, both entities perform the validation and negotiation procedures defined in Section 4.3. After receiving the contact header from the other entity, either entity MAY refuse the session by sending a SESS_TERM message with an appropriate reason code.
The format for the Contact Header is as follows:
Figure 14: Contact Header Format
See Section 4.3 for details on the use of each of these contact header fields.
The fields of the contact header are:
Table 1: Contact Header Flags
Upon reception of the contact header, each node follows the following procedures to ensure the validity of the TCPCL session and to negotiate values for the session parameters.
If the magic string is not present or is not valid, the connection MUST be terminated. The intent of the magic string is to provide some protection against an inadvertent TCP connection by a different protocol than the one described in this document. To prevent a flood of repeated connections from a misconfigured application, an entity MAY elect to hold an invalid connection open and idle for some time before closing it.
The first negotiation is on the TCPCL protocol version to use. The active node always sends its Contact Header first and waits for a response from the passive node. The active node can repeatedly attempt different protocol versions in descending order until the passive node accepts one with a corresponding Contact Header reply. Only upon response of a Contact Header from the passive node is the TCPCL protocol version established and parameter negotiation begun.
During contact initiation, the active TCPCL node SHALL send the highest TCPCL protocol version on a first session attempt for a TCPCL peer. If the active node receives a Contact Header with a different protocol version than the one sent earlier on the TCP connection, the TCP connection SHALL be terminated. If the active node receives a SESS_TERM message with reason of "Version Mismatch", that node MAY attempt further TCPCL sessions with the peer using earlier protocol version numbers in decreasing order. Managing multi-TCPCL-session state such as this is an implementation matter.
If the passive node receives a contact header containing a version that is greater than the current version of the protocol that the node implements, then the node SHALL shutdown the session with a reason code of "Version mismatch". If the passive node receives a contact header with a version that is lower than the version of the protocol that the node implements, the node MAY either terminate the session (with a reason code of "Version mismatch") or the node MAY adapt its operation to conform to the older version of the protocol. The decision of version fall-back is an implementation matter.
This version of the TCPCL supports establishing a Transport Layer Security (TLS) session within an existing TCP connection. When TLS is used within the TCPCL it affects the entire session. Once established, there is no mechanism available to downgrade a TCPCL session to non-TLS operation. If this is desired, the entire TCPCL session MUST be terminated and a new non-TLS-negotiated session established.
The use of TLS is negotated using the Contact Header as described in Section 4.3. After negotiating an Enable TLS parameter of true, and before any other TCPCL messages are sent within the session, the session entities SHALL begin a TLS handshake in accordance with [RFC5246]. The parameters within each TLS negotiation are implementation dependent but any TCPCL node SHALL follow all recommended practices of [BCP195], or any updates or successors that become part of [BCP195]. By convention, this protocol uses the node which initiated the underlying TCP connection as the "client" role of the TLS handshake request.
The TLS handshake, if it occurs, is considered to be part of the contact negotiation before the TCPCL session itself is established. Specifics about sensitive data exposure are discussed in Section 8.
If a TLS handshake cannot negotiate a TLS session, both entities of the TCPCL session SHALL terminate the TCP connection. At this point the TCPCL session has not yet been established so there is no TCPCL session to terminate. This also avoids any potential security issues assoicated with further TCP communication with an untrusted peer.
After a TLS session is successfully established, the active peer SHALL send a SESS_INIT message to begin session negotiation. This session negotation and all subsequent messaging are secured.
A summary of a typical CAN_TLS usage is shown in the sequence in Figure 15 below.
... secured TCPCL messaging, starting with SESS_INIT ...
Figure 15: A simple visual example of TCPCL TLS Establishment between
two entities
After the initial exchange of a contact header, all messages transmitted over the session are identified by a one-octet header with the following structure:
Figure 16: Format of the Message Header
The message header fields are as follows:
Table 2: TCPCL Message Types
Before a session is established and ready to transfer bundles, the session parameters are negotiated between the connected entities. The SESS_INIT message is used to convey the per-entity parameters which are used together to negotiate the per-session parameters as described in Section 4.7.
The format of a SESS_INIT message is as follows in Figure 17.
Figure 17: SESS_INIT Format
The fields of the SESS_INIT message are:
indicating the number of octets of EID Data to follow. A zero EID Length SHALL be used to indicate the lack of EID rather than a truly empty EID. This case allows an entity to avoid exposing EID information on an untrusted network. A non-zero-length EID Data SHALL contain the UTF-8 encoded EID of some singleton endpoint in which the sending entity is a member, in the canonical format of <scheme name>:<scheme-specific part>. This EID encoding is consistent with [I-D.ietf-dtn-bpbis].
An entity calculates the parameters for a TCPCL session by negotiating the values from its own preferences (conveyed by the contact header it sent to the peer) with the preferences of the peer node (expressed in the contact header that it received from the peer). The negotiated parameters defined by this specification are described in the following paragraphs.
state is unacceptable, the node SHALL terminate the session with a reason code of "Contact Failure". Note that this contact failure is different than a failure of TLS handshake after an agreed-upon and acceptable Enable TLS state. If the negotiated Enable TLS value is true and acceptable then TLS negotiation feature (described in Section 4.4) begins immediately following the contact header exchange.
Once this process of parameter negotiation is completed (which includes a possible completed TLS handshake of the connection to use TLS), this protocol defines no additional mechanism to change the parameters of an established session; to effect such a change, the TCPCL session MUST be terminated and a new session established.
Each of the Session Extension Items SHALL be encoded in an identical Type-Length-Value (TLV) container form as indicated in Figure 18.
The fields of the Session Extension Item are:
Figure 18: Session Extension Item Format
Table 3: Session Extension Item Flags
This section describes the protocol operation for the duration of an established session, including the mechanism for transmitting bundles over the session.
The protocol includes a provision for transmission of KEEPALIVE messages over the TCPCL session to help determine if the underlying TCP connection has been disrupted.
As described in Section 4.3, a negotiated parameter of each session is the Session Keepalive interval. If the negotiated Session Keepalive is zero (i.e. one or both contact headers contains a zero Keepalive Interval), then the keepalive feature is disabled. There is no logical minimum value for the keepalive interval, but when used for many sessions on an open, shared network a short interval could lead to excessive traffic. For shared network use, entities SHOULD choose a keepalive interval no shorter than 30 seconds. There is no logical maximum value for the keepalive interval, but an idle TCP connection is liable for closure by the host operating system if the keepalive time is longer than tens-of-minutes. Entities SHOULD choose a keepalive interval no longer than 10 minutes (600 seconds). Note: The Keepalive Interval SHOULD NOT be chosen too short as TCP retransmissions MAY occur in case of packet loss. Those will have to be triggered by a timeout (TCP retransmission timeout (RTO)), which is dependent on the measured RTT for the TCP connection so that KEEPALIVE messages MAY experience noticeable latency.
The format of a KEEPALIVE message is a one-octet message type code of KEEPALIVE (as described in Table 2) with no additional data. Both sides SHALL send a KEEPALIVE message whenever the negotiated interval has elapsed with no transmission of any message (KEEPALIVE or other).
If no message (KEEPALIVE or other) has been received in a session after some implementation-defined time duration, then the node SHALL terminate the session by transmitting a SESS_TERM message (as described in Section 6.1) with reason code "Idle Timeout". If configurable, the idle timeout duration SHOULD be no shorter than twice the keepalive interval. If not configurable, the idle timeout duration SHOULD be exactly twice the keepalive interval.
If a TCPCL node receives a message which is unknown to it (possibly due to an unhandled protocol mismatch) or is inappropriate for the current session state (e.g. a KEEPALIVE message received after contact header negotiation has disabled that feature), there is a protocol-level message to signal this condition in the form of a MSG_REJECT reply.
The format of a MSG_REJECT message is as follows in Figure 19.
Figure 19: Format of MSG_REJECT Messages
The fields of the MSG_REJECT message are:
Table 4: MSG_REJECT Reason Codes
All of the messages in this section are directly associated with transferring a bundle between TCPCL entities.
A single TCPCL transfer results in a bundle (handled by the convergence layer as opaque data) being exchanged from one node to the other. In TCPCL a transfer is accomplished by dividing a single bundle up into "segments" based on the receiving-side Segment MRU (see Section 4.2). The choice of the length to use for segments is an implementation matter, but each segment MUST be no larger than the receiving node's maximum receive unit (MRU) (see the field "Segment MRU" of Section 4.2). The first segment for a bundle MUST set the 'START' flag, and the last one MUST set the 'end' flag in the XFER_SEGMENT message flags.
A single transfer (and by extension a single segment) SHALL NOT contain data of more than a single bundle. This requirement is imposed on the agent using the TCPCL rather than TCPCL itself.
If multiple bundles are transmitted on a single TCPCL connection, they MUST be transmitted consecutively without interleaving of segments from multiple bundles.
Each of the bundle transfer messages contains a Transfer ID which is used to correlate messages (from both sides of a transfer) for each bundle. A Transfer ID does not attempt to address uniqueness of the bundle data itself and has no relation to concepts such as bundle fragmentation. Each invocation of TCPCL by the bundle protocol agent, requesting transmission of a bundle (fragmentary or otherwise), results in the initiation of a single TCPCL transfer. Each transfer entails the sending of a sequence of some number of XFER_SEGMENT and XFER_ACK messages; all are correlated by the same Transfer ID.
Transfer IDs from each node SHALL be unique within a single TCPCL session. The initial Transfer ID from each node SHALL have value zero. Subsequent Transfer ID values SHALL be incremented from the prior Transfer ID value by one. Upon exhaustion of the entire 64-bit Transfer ID space, the sending node SHALL terminate the session with SESS_TERM reason code "Resource Exhaustion".
For bidirectional bundle transfers, a TCPCL node SHOULD NOT rely on any relation between Transfer IDs originating from each side of the TCPCL session.
Each bundle is transmitted in one or more data segments. The format of a XFER_SEGMENT message follows in Figure 20.
Figure 20: Format of XFER_SEGMENT Messages
The fields of the XFER_SEGMENT message are:
Table 5: XFER_SEGMENT Flags
The flags portion of the message contains two optional values in the two low-order bits, denoted 'START' and 'END' in Table 5. The 'START' bit MUST be set to one if it precedes the transmission of the first segment of a transfer. The 'END' bit MUST be set to one when transmitting the last segment of a transfer. In the case where an entire transfer is accomplished in a single segment, both the 'START' and 'END' bits MUST be set to one.
Once a transfer of a bundle has commenced, the node MUST only send segments containing sequential portions of that bundle until it sends a segment with the 'END' bit set. No interleaving of multiple transfers from the same node is possible within a single TCPCL session. Simultaneous transfers between two entities MAY be achieved using multiple TCPCL sessions.
Although the TCP transport provides reliable transfer of data between transport peers, the typical BSD sockets interface provides no means to inform a sending application of when the receiving application has processed some amount of transmitted data. Thus, after transmitting some data, the TCPCL needs an additional mechanism to determine whether the receiving agent has successfully received the segment. To this end, the TCPCL protocol provides feedback messaging whereby a receiving node transmits acknowledgments of reception of data segments.
The format of an XFER_ACK message follows in Figure 21.
Figure 21: Format of XFER_ACK Messages
The fields of the XFER_ACK message are:
A receiving TCPCL node SHALL send an XFER_ACK message in response to each received XFER_SEGMENT message. The flags portion of the XFER_ACK header SHALL be set to match the corresponding DATA_SEGMENT message being acknowledged. The acknowledged length of each XFER_ACK contains the sum of the data length fields of all XFER_SEGMENT messages received so far in the course of the indicated transfer. The sending node SHOULD transmit multiple XFER_SEGMENT messages without waiting for the corresponding XFER_ACK responses. This enables pipelining of messages on a transfer stream.
For example, suppose the sending node transmits four segments of bundle data with lengths 100, 200, 500, and 1000, respectively. After receiving the first segment, the node sends an acknowledgment of length 100. After the second segment is received, the node sends an acknowledgment of length 300. The third and fourth acknowledgments are of length 800 and 1800, respectively.
The TCPCL supports a mechanism by which a receiving node can indicate to the sender that it does not want to receive the corresponding bundle. To do so, upon receiving an XFER_SEGMENT message, the node MAY transmit a XFER_REFUSE message. As data segments and acknowledgments MAY cross on the wire, the bundle that is being refused SHALL be identified by the Transfer ID of the refusal.
There is no required relation between the Transfer MRU of a TCPCL node (which is supposed to represent a firm limitation of what the node will accept) and sending of a XFER_REFUSE message. A XFER_REFUSE can be used in cases where the agent's bundle storage is temporarily depleted or somehow constrained. A XFER_REFUSE can also be used after the bundle header or any bundle data is inspected by an agent and determined to be unacceptable.
A receiver MAY send an XFER_REFUSE message as soon as it receives any XFER_SEGMENT message. The sender MUST be prepared for this and MUST associate the refusal with the correct bundle via the Transfer ID fields.
The format of the XFER_REFUSE message is as follows in Figure 22.
Figure 22: Format of XFER_REFUSE Messages
The fields of the XFER_REFUSE message are:
Table 6: XFER_REFUSE Reason Codes
The receiver MUST, for each transfer preceding the one to be refused, have either acknowledged all XFER_SEGMENTs or refused the bundle transfer.
The bundle transfer refusal MAY be sent before an entire data segment is received. If a sender receives a XFER_REFUSE message, the sender MUST complete the transmission of any partially sent XFER_SEGMENT message. There is no way to interrupt an individual TCPCL message partway through sending it. The sender MUST NOT commence transmission of any further segments of the refused bundle subsequently. Note, however, that this requirement does not ensure that an entity will not receive another XFER_SEGMENT for the same bundle after transmitting a XFER_REFUSE message since messages MAY cross on the wire; if this happens, subsequent segments of the bundle SHALL also be refused with a XFER_REFUSE message.
Note: If a bundle transmission is aborted in this way, the receiver MAY not receive a segment with the 'END' flag set to '1' for the aborted bundle. The beginning of the next bundle is identified by the 'START' bit set to '1', indicating the start of a new transfer, and with a distinct Transfer ID value.
Each of the Transfer Extension Items SHALL be encoded in an identical Type-Length-Value (TLV) container form as indicated in Figure 23.
The fields of the Transfer Extension Item are:
Figure 23: Transfer Extension Item Format
Table 7: Transfer Extension Item Flags
The purpose of the Transfer Length extension is to allow entities to preemptively refuse bundles that would exceed their resources or to prepare storage on the receiving node for the upcoming bundle data.
Multiple Transfer Length extension items SHALL NOT occur within the same transfer. The lack of a Transfer Length extension item in any transfer SHALL NOT imply anything about the potential length of the transfer. The Transfer Length extension SHALL be assigned transfer extension type ID 0x0001.
If a transfer occupies exactly one segment (i.e. both START and END bits are set) the Transfer Length extension SHOULD NOT be present. The extension does not provide any additional information for single- segment transfers.
The format of the Transfer Length data is as follows in Figure 24.
Figure 24: Format of Transfer Length data
The fields of the Transfer Length extension are:
This section describes the procedures for ending a TCPCL session.
To cleanly shut down a session, a SESS_TERM message SHALL be transmitted by either node at any point following complete transmission of any other message. When sent to initiate a termination, the REPLY bit of a SESS_TERM message SHALL NOT be set. Upon receiving a SESS_TERM message after not sending a SESS_TERM message in the same session, an entity SHALL send an acknowledging SESS_TERM message. When sent to acknowledge a termination, a SESS_TERM message SHALL have identical data content from the message being acknowledged except for the REPLY bit, which is set to indicate acknowledgement.
After sending a SESS_TERM message, an entity MAY continue a possible in-progress transfer in either direction. After sending a SESS_TERM message, an entity SHALL NOT begin any new outgoing transfer (i.e. send an XFER_SEGMENT message) for the remainder of the session. After receving a SESS_TERM message, an entity SHALL NOT accept any new incoming transfer for the remainder of the session.
Instead of following a clean shutdown sequence, after transmitting a SESS_TERM message an entity MAY immediately close the associated TCP connection. When performing an unclean shutdown, a receiving node SHOULD acknowledge all received data segments before closing the TCP connection. Not acknowledging received segments can result in unnecessary retransmission. When performing an unclean shutodwn, a transmitting node SHALL treat either sending or receiving a SESS_TERM message (i.e. before the final acknowledgment) as a failure of the transfer. Any delay between request to terminate the TCP connection and actual closing of the connection (a "half-closed" state) MAY be ignored by the TCPCL node.
The format of the SESS_TERM message is as follows in Figure 25.
Figure 25: Format of SESS_TERM Messages
The fields of the SESS_TERM message are:
Table 8: SESS_TERM Flags
Table 9: SESS_TERM Reason Codes
A session shutdown MAY occur immediately after transmission of a contact header (and prior to any further message transmit). This MAY, for example, be used to notify that the node is currently not able or willing to communicate. However, an entity MUST always send the contact header to its peer before sending a SESS_TERM message. If reception of the contact header itself somehow fails (e.g. an invalid "magic string" is recevied), an entity SHALL close the TCP connection without sending a SESS_TERM message. If the content of the Session Extension Items data disagrees with the Session Extension Length (i.e. the last Item claims to use more octets than are present in the Session Extension Length), the reception of the contact header is considered to have failed.
If a session is to be terminated before a protocol message has completed being sent, then the node MUST NOT transmit the SESS_TERM message but still SHALL close the TCP connection. Each TCPCL message is contiguous in the octet stream and has no ability to be cut short and/or preempted by an other message. This is particularly important when large segment sizes are being transmitted; either entire XFER_SEGMENT is sent before a SESS_TERM message or the connection is simply terminated mid-XFER_SEGMENT.
The protocol includes a provision for clean shutdown of idle sessions. Determining the length of time to wait before closing idle sessions, if they are to be closed at all, is an implementation and configuration matter.
If there is a configured time to close idle links and if no TCPCL messages (other than KEEPALIVE messages) has been received for at least that amount of time, then either node MAY terminate the session by transmitting a SESS_TERM message indicating the reason code of "Idle timeout" (as described in Table 9).
[NOTE to the RFC Editor: please remove this section before publication, as well as the reference to [RFC7942] and [github-dtn-bpbis-tcpcl].]
This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.
An example implementation of the this draft of TCPCLv4 has been created as a GitHub project [github-dtn-bpbis-tcpcl] and is intented to use as a proof-of-concept and as a possible source of interoperability testing. This example implementation uses D-Bus as the CL-BP Agent interface, so it only runs on hosts which provide the Python "dbus" library.
One security consideration for this protocol relates to the fact that entities present their endpoint identifier as part of the contact header exchange. It would be possible for an entity to fake this value and present the identity of a singleton endpoint in which the node is not a member, essentially masquerading as another DTN node. If this identifier is used outside of a TLS-secured session or without further verification as a means to determine which bundles are transmitted over the session, then the node that has falsified its identity would be able to obtain bundles that it otherwise would not have. Therefore, an entity SHALL NOT use the EID value of an unsecured contact header to derive a peer node's identity unless it can corroborate it via other means. When TCPCL session security is mandated by a TCPCL peer, that peer SHALL transmit initial unsecured contact header values indicated in Table 10 in order. These values avoid unnecessarily leaking session parameters and will be ignored when secure contact header re-exchange occurs.
Table 10: Recommended Unsecured Contact Header
TCPCL can be used to provide point-to-point transport security, but does not provide security of data-at-rest and does not guarantee end- to-end bundle security. The mechanisms defined in [RFC6257] and [I-D.ietf-dtn-bpsec] are to be used instead.
Even when using TLS to secure the TCPCL session, the actual ciphersuite negotiated between the TLS peers MAY be insecure. TLS can be used to perform authentication without data confidentiality, for example. It is up to security policies within each TCPCL node to ensure that the negotiated TLS ciphersuite meets transport security requirements. This is identical behavior to STARTTLS use in [RFC2595].
Another consideration for this protocol relates to denial-of-service attacks. An entity MAY send a large amount of data over a TCPCL session, requiring the receiving entity to handle the data, attempt to stop the flood of data by sending a XFER_REFUSE message, or forcibly terminate the session. This burden could cause denial of service on other, well-behaving sessions. There is also nothing to prevent a malicious entity from continually establishing sessions and repeatedly trying to send copious amounts of bundle data. A listening entity MAY take countermeasures such as ignoring TCP SYN messages, closing TCP connections as soon as they are established, waiting before sending the contact header, sending a SESS_TERM message quickly or with a delay, etc.
In this section, registration procedures are as defined in [RFC8126].
Some of the registries below are created new for TCPCLv4 but share code values with TCPCLv3. This was done to disambiguate the use of these values between TCPCLv3 and TCPCLv4 while preserving the semantics of some values.
Port number 4556 has been previously assigned as the default port for the TCP convergence layer in [RFC7242]. This assignment is unchanged by protocol version 4. Each TCPCL entity identifies its TCPCL protocol version in its initial contact (see Section 9.2), so there is no ambiguity about what protocol is being used.
IANA has created, under the "Bundle Protocol" registry, a sub- registry titled "Bundle Protocol TCP Convergence-Layer Version Numbers" and initialize it with the following table. The registration procedure is RFC Required.
EDITOR NOTE: sub-registry to-be-created upon publication of this specification.
IANA will create, under the "Bundle Protocol" registry, a sub- registry titled "Bundle Protocol TCP Convergence-Layer Version 4 Session Extension Types" and initialize it with the contents of Table 11. The registration procedure is RFC Required within the lower range 0x0001--0x7FFF. Values in the range 0x8000--0xFFFF are reserved for use on private networks for functions not published to the IANA.
Table 11: Session Extension Type Codes
EDITOR NOTE: sub-registry to-be-created upon publication of this specification.
IANA will create, under the "Bundle Protocol" registry, a sub- registry titled "Bundle Protocol TCP Convergence-Layer Version 4 Transfer Extension Types" and initialize it with the contents of Table 12. The registration procedure is RFC Required within the lower range 0x0001--0x7FFF. Values in the range 0x8000--0xFFFF are reserved for use on private networks for functions not published to the IANA.
Table 12: Transfer Extension Type Codes
EDITOR NOTE: sub-registry to-be-created upon publication of this specification.
IANA will create, under the "Bundle Protocol" registry, a sub- registry titled "Bundle Protocol TCP Convergence-Layer Version 4 Message Types" and initialize it with the contents of Table 13. The registration procedure is RFC Required.
Table 13: Message Type Codes
EDITOR NOTE: sub-registry to-be-created upon publication of this specification.
IANA will create, under the "Bundle Protocol" registry, a sub- registry titled "Bundle Protocol TCP Convergence-Layer Version 4 XFER_REFUSE Reason Codes" and initialize it with the contents of Table 14. The registration procedure is RFC Required.
Table 14: XFER_REFUSE Reason Codes
EDITOR NOTE: sub-registry to-be-created upon publication of this specification.
Table 15: SESS_TERM Reason Codes
EDITOR NOTE: sub-registry to-be-created upon publication of this specification.
IANA will create, under the "Bundle Protocol" registry, a sub- registry titled "Bundle Protocol TCP Convergence-Layer Version 4 MSG_REJECT Reason Codes" and initialize it with the contents of Table 16. The registration procedure is RFC Required.
Table 16: MSG_REJECT Reason Codes
This specification is based on comments on implementation of [RFC7242] provided from Scott Burleigh.
[BCP195]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015.
[I-D.ietf-dtn-bpbis]
Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol Version 7", draft-ietf-dtn-bpbis-12 (work in progress), November 2018.
[RFC0793]
Postel, J., "Transmission Control Protocol", STD 7, RFC 793, DOI 10.17487/RFC0793, September 1981, <https://www.rfc-editor.org/info/rfc793>.
[RFC1122]
Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, DOI 10.17487/RFC1122, October 1989, <https://www.rfc-editor.org/info/rfc1122>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.
[github-dtn-bpbis-tcpcl]
Sipos, B., "TCPCL Example Implementation", <https://github.com/BSipos-RKF/dtn-bpbis-tcpcl/tree/ develop>.
[I-D.ietf-dtn-bpsec]
Birrane, E. and K. McKeever, "Bundle Protocol Security Specification", draft-ietf-dtn-bpsec-09 (work in progress), February 2019.
[RFC2595]
Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595, DOI 10.17487/RFC2595, June 1999, <https://www.rfc-editor.org/info/rfc2595>.
[RFC4838]
Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant Networking Architecture", RFC 4838, DOI 10.17487/RFC4838, April 2007, <https://www.rfc-editor.org/info/rfc4838>.
[RFC5050]
Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, DOI 10.17487/RFC5050, November 2007, <https://www.rfc-editor.org/info/rfc5050>.
[RFC6257]
Symington, S., Farrell, S., Weiss, H., and P. Lovell, "Bundle Security Protocol Specification", RFC 6257, DOI 10.17487/RFC6257, May 2011, <https://www.rfc-editor.org/info/rfc6257>.
[RFC7242]
Demmer, M., Ott, J., and S. Perreault, "Delay-Tolerant Networking TCP Convergence-Layer Protocol", RFC 7242, DOI 10.17487/RFC7242, June 2014, <https://www.rfc-editor.org/info/rfc7242>.
[RFC7942]
Sheffer, Y. and A. Farrel, "Improving Awareness of Running Code: The Implementation Status Section", BCP 205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://www.rfc-editor.org/info/rfc7942>.
The areas in which changes from [RFC7242] have been made to existing headers and messages are:
o Split contact header into pre-TLS protocol negotiation and SESS_INIT parameter negotiation. The contact header is now fixed- length.
o Changed contact header content to limit number of negotiated options.
o Added contact option to negotiate maximum segment size (per each direction).
o Added session extension capability.
o Added transfer extension capability. Moved transfer total length into an extension item.
o Defined new IANA registries for message / type / reason codes to allow renaming some codes for clarity.
o Expanded Message Header to octet-aligned fields instead of bit- packing.
o Added a bundle transfer identification number to all bundle- related messages (XFER_SEGMENT, XFER_ACK, XFER_REFUSE).
o Use flags in XFER_ACK to mirror flags from XFER_SEGMENT.
o Removed all uses of SDNV fields and replaced with fixed-bit-length fields.
o Renamed SHUTDOWN to SESS_TERM to deconflict term "shutdown".
o Removed the notion of a re-connection delay parameter.
The areas in which extensions from [RFC7242] have been made as new messages and codes are:
o Added contact negotiation failure SESS_TERM reason code.
o Added MSG_REJECT message to indicate an unknown or unhandled message was received.
o Added TLS session security mechanism.
o Added Resource Exhaustion SESS_TERM reason code.
Authors' Addresses
Email: BSipos@rkf-eng.com
Email: demmer@cs.berkeley.edu
Email: ott@in.tum.de
Email: simon@per.reau.lt
draft-birrane-dtn-adm-agent-05 - Asynchronous Management Protocol Agent Applicat
Index Back 5 Prev Next Forward 5
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-agent-05
This document describes an Application Data Model (ADM) for an Asynchronous Management Protocol (AMP) Agent. The AMP Agent represents a managed device in the Asynchronous Management Architecture. This document is in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
The AMP Agent ADM provides the set of information necessary to remotely manage agents in accordance with the Asynchronous Management Protocol (AMP) defined in [I-D.birrane-dtn-amp]. AMP provides a compact binary encoding of ADM objects and specifies a protocol for the exchange of those objects.
o This document describes Version 3.0 of the Agent ADM.
o The namespace associated with this ADM has not been finalized and, therefore, any namespace references and associated encodings are subject to change until the moderated namespace for this ADM has been published.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the management of any instance of any AMP Agent.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The AMP Agent ADM's structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, table templates, and controls, variables, report templates, macros, edd, and operators. The contents of this ADM are derived from the main functions and data that an agent needs to run AMP [I-D.birrane-dtn-amp].
The Metadata that is present in this document is common to all ADMs. All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control.
Because there are calculations done in various ADM objects that are needed for AMP, the operators that were chosen were ones that were the most common. For each of the most common operators, the only ones that were expressed in the document were ones that had the same input types and result types. This is to prevent a long list of operators that may never be used. The additional information provided in this ADM dealt with the number of known variables, macros, rules, controls and constants as well as the number of those instances that were running.
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: Agent ADM Nicknames
],
}],
}
}],
This document defines a moderated Namespace: "Amp/Agent" with the ADM enumeration of 0.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-adm-bp-03 - Bundle Protocol Agent Application Data Model
Index Back 5 Prev Next Forward 5
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-bp-03
This document describes the Application Data Model (ADM) for a Bundle Protocol Agent (BPA) in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
Bundle Protocol Agents (BPAs) are software instances that implement functionality required by the Bundle Protocol ([I-D.ietf-dtn-bpbis]). The BPA ADM provides the set of information necessary to remotely manage such agents.
o This document describes Version 0.1 of the BP ADM.
o The AMM Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the management of any instance of a BPA.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The BP Agent ADM's structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, edd, report templates, and controls. Externally Defined Data (EDD) are values that are calculated external to the ADM system. Report Templates are ordered sets of data descriptions that show how values will be represented in a corresponding report. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Controls are preconfigured in Agents and Managers as part of ADM support. There are no variables, table templates, macros, constants, or operators in this ADM at this time. The contents of this ADM are derived from the main functions and data that are needed to configure and manage bundle protocol operations on an ION node.
All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control. The main elements of BP that are discussed in this ADM are endpoints, the priority of bundles/bytes, and whether or not the bundles/bytes were transferred successfully.
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: BP Agent ADM Nicknames
The following is the JSON encoding for the Bundle Protocol Agent ADM:
At this time, this protocol has no fields registered by IANA.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[I-D.ietf-dtn-bpbis]
Burleigh, S., Fall, K., and E. Birrane, "Bundle Protocol Version 7", draft-ietf-dtn-bpbis-12 (work in progress), November 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-adm-ion-bpadmin-01 - Bundle Protocol Agent Application Data Mo
Index Back 5 Prev Next Forward 5
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-ion-bpadmin-01
This document describes the Application Data Model (ADM) for the administration of Bundle Protocol (BP) ION in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
The ION Bundle Protocol Administration ADM contains all of the functionality that is required for the configuration and management of BP on the local ION node.
o This document describes Version 0.0 of the ION BP Admin ADM.
o The Asynchronous Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the configuration and management of Bundle Protocol in ION.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The BP Admin ADM's structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, table templates, and controls. Table Templates are column templates that will be followed by any instance of this table available in the network. They may not be created dynamically within the network by Managers. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Controls are preconfigured in Agents and Managers as part of ADM support. There are no variables, report templates, constants, macros, edd, or operators in this ADM at this time. The contents of this ADM are derived from the main functions and data that are needed to configure and manage BP in accordance with (WHICH VERSION OF BP).
All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control. The table templates and controls in this ADM deal with inducts, outducts, schemes, and protocols, the most important things needed for the proper administration of Bundle Protocol.
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: ION BP ADM Nicknames
The following is the JSON encoding of the Bundle Protocol Admin Application Data Model:
At this time, this protocol has no fields registered by IANA.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-adm-ion-ltpadmin-01 - ION Licklider Transmission Protocol Admi
Index Back 5 Prev Next Forward 5
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-ion-ltpadmin-01
This document describes the Application Data Model (ADM) for the configuration of licklider transmission protocol (LTP) in ION in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
The ION Licklider Transmission Protocol (LTP) Administration ADM contains all of the functionality that is required to properly configure LTP in ION in accordance with [RFC5326]. LTP is a convergence layer protocol. There is no flow control or congestion control in LTP. LTP must run either over UDP or directly over a link layer protocol. Because of this, LTP cannot be used in every situation. This LTP Admin ADM provides the set of information necessary to provide retransmission based reliability on challenged networks, focusing on the information that are needed to manage LTP properly on the network.
o This document describes Version 0.0 of the ION LTP Admin ADM.
o The AMM Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component
definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the configuration of LTP in ION.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The LTP Admin ADM's structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, table templates, and controls. Table Templates are column templates that will be followed by any instance of this table available in the network. They may not be created dynamically within the network by Managers. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Controls are preconfigured in Agents and Managers as part of ADM support.There are no variables, report templates, macros, edd, constants, or operators in this ADM at this time. The contents of this ADM are derived from the main functions and data that are needed to manage LTP RFC 5326 [RFC5326].
All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control.
The main idea identified in LTP that is present in this ADM is a span of potential LTP data interchange between engines(nodes on a network that use LTP).
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: ION BP ADM Nicknames
At this time, this protocol has no fields registered by IANA.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC5326]
Ramadas, M., Burleigh, S., and S. Farrell, "Licklider Transmission Protocol - Specification", RFC 5326, DOI 10.17487/RFC5326, September 2008, <https://www.rfc-editor.org/info/rfc5326>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-adm-ionadmin-01 - ION Administration Application Data Model
Index Back 5 Prev Next Forward 5
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-ionadmin-01
This document describes the Application Data Model (ADM) for the administration of ION in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
The ION Administration ADM contains all of the functionality that is required for the proper configuration and management of ION nodes.
o This document describes Version 0.0 of the ION Admin ADM.
o The AMM Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the administration of ION.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The ION Admin ADM's structure is in accordance with [I-D.birrane-dtn-adm]. This ADM contains metadata, edd, table templates, and controls. Externally Defined Data (EDD) are values that are calculated external to the ADM system. Table Templates are column templates that will be followed by any instance of this table available in the network. They may not be created dynamically within the network by Managers. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Controls are preconfigured in Agents and Managers as part of ADM support. There are no variables, report templates, macros, constants, or operators in this ADM at this time.
The contents of this ADM are derived from the main functions and data that are needed to configure and manage the node on the local computer that is running ION. The core functions of the administration of ION nodes that are included in this ADM deal with contacts (information about periods of data transmission), ranges (periods of time when the distance between two nodes is constant), occupancy limits (the maximum amount of megabytes of storage space in ION's SDR non volatile heap and/or local file system), rates of data production, congestion, consumption (rate of continuous data delivery to local BP applications), and time.
All ADMs have metadata that includes the name, namespace, and version of the ADM, as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control of the encoding.
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: ION Admin ADM Nicknames
The following is the JSON encoding of the ION Administration Application Data Model:
At this time, this protocol has no fields registered by IANA.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-adm-ionsec-01 - ION Security Application Data Model
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-ionsec-01
This document describes the Application Data Model (ADM) for ION Security in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
The IONSEC Admin ADM provides the set of information necessary to configure and manage the ION security policy database on the local computer that is running ION. This information includes both authentication from Licklider Transmission Protocol (LTP) and Bundle Protocol Security (BPSEC).
o This document describes Version 0.0 of the IONSEC Admin ADM.
o The AMM Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the manqgement of any instance of an ION node.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The IONSEC Admin ADM's structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, table templates, and controls. Table Templates are column templates that will be followed by any instance of this table available in the network. They may not be created dynamically within the network by Managers. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Controls are preconfigured in Agents and Managers as part of ADM support. There are no variables, report templates, macros, edd, constants, or operators in this ADM at this time. The contents of this ADM are derived from the main functions and data that are needed to configure the security policy database on the local computer that is running ION and includes both Bundle Protocol Security and Licklider Transmission Protocol Authentication.
All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control.
The controls that were chosen to be expressed in this document are related to adding, deleting, and modifying security keys. The controls also deal with LTP segment authentication and LTP segment signing rules. The table templates expressed in this document show all of the keys and rules that are in the security policy database.
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: IONSEC ADM Nicknames
The following is the JSON encoding of the IONsec Admin ADM:
At this time, this protocol has no fields registered by IANA.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-adm-ltp-01 - Licklider Transmission Protocol Agent Application
Delay-Tolerant Networking
Internet-Draft
Intended status: Experimental
Expires: September 12, 2019
E. Birrane
E. DiPietro
D. Linko
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-adm-ltp-01
This document describes the Application Data Model (ADM) for a Licklider Transmission Protocol Agent (LTPA) in compliance with the template provided by [I-D.birrane-dtn-adm].
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An Application Data Model (ADM) provides a guaranteed interface for the management of an application or protocol in accordance with the Asynchronous Management Architecture (AMA) defined in [I-D.birrane-dtn-ama]. The ADM described in this document complies with the ADM Template provided in [I-D.birrane-dtn-adm] as encoded using the JSON syntax.
Licklider Transmission Protocol Agents (LTPAs) are software instances that implement functionality required by the Licklider Transmission Protocol [RFC5326]. LTP is a convergence layer protocol. There is no flow control or congestion control in LTP. LTP must run either over UDP or directly over a link layer protocol. Because of this, LTP cannot be used in every situation. This LTP Agent ADM provides the set of information necessary to provide retransmission based reliability on challenged networks, focusing on the information that an agent on a network implementing LTP would need in order to run correctly.
o This document describes Version 0.0 of the LTP Agent ADM.
o The AMM Resource Identifier (ARI) for this ADM is NOT correctly set. A sample ARI is used in this version of the specification and MAY change in future versions of this ADM until an ARI registry is established. This notice will be removed at that time.
o Agent applications MAY choose to ignore the name, description, or other annotative information associated with the component
definitions within this ADM where such items are only used to provide human-readable information or are otherwise not necessary to manage a device.
This ADM specifies those components of the Asynchronous Management Model (AMM) common to the management of any instance of a LTP Agent.
Any Manager software implementing this ADM MUST perform the responsibilities of an AMA Manager as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
Any Agent software implementing this ADM MUST perform the responsibilities of an AMA Agent as outlined in [I-D.birrane-dtn-adm] as they relate to the objects included in this document.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
The LTP Agent ADM's structure is in accordance to [I-D.birrane-dtn-adm]. This ADM contains metadata, edd, report templates, and controls. Externally Defined Data (EDD) are values that are calculated external to the ADM system. Controls are predefined and sometimes parameterized opcodes that can be run on an Agent. Report Templates are ordered sets of data descriptions that show how values will be represented in a corresponding report. There are no variables, table templates, macros, or operators in this ADM at this time. The contents of this ADM are derived from the main functions and data that an agent needs to run LTP RFC 5326 [RFC5326].
The Metadata that is present in this document is common to all ADMs. All ADMs have metadata that includes the name, namespace, and version of the ADM as well as the name of the organization that is issuing that particular ADM. This is important for identification purposes of the ADMs and to ensure version control. The main idea identified in LTP that is present in this ADM is a span of potential LTP data interchange between engines(nodes on a network that use LTP).
This section outlines the namespaces used to uniquely identify ADM objects in this specification.
In accordance with [I-D.birrane-dtn-adm], every ADM is assigned a moderated Namespace. In accordance with [I-D.birrane-dtn-amp], these namespaces may be enumerated for compactness. The namespace and ADM identification for these objects is defined as follows.
Table 1: Namespace Information
Given the above ADM enumeration, in accordance with [I-D.birrane-dtn-amp], the following AMP nicknames are defined.
Table 2: LTP ADM Nicknames
At this time, this protocol has no fields registered by IANA.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[I-D.birrane-dtn-amp]
Birrane, E., "Asynchronous Management Protocol", draft- birrane-dtn-amp-04 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC5326]
Ramadas, M., Burleigh, S., and S. Farrell, "Licklider Transmission Protocol - Specification", RFC 5326, DOI 10.17487/RFC5326, September 2008, <https://www.rfc-editor.org/info/rfc5326>.
Authors' Addresses
Email: Edward.Birrane@jhuapl.edu
Email: Evana.DiPietro@jhuapl.edu
Email: David.Linko@jhuapl.edu
draft-birrane-dtn-amp-06 - Asynchronous Management Protocol
Delay-Tolerant Networking
Internet-Draft
Intended status: Standards Track
Expires: September 12, 2019
E. Birrane
Johns Hopkins Applied Physics Laboratory
March 11, 2019
draft-birrane-dtn-amp-06
This document describes a binary encoding of the Asynchronous Management Model (AMM) and a protocol for the exchange of these encoded items over a network. This Asynchronous Management Protocol (AMP) does not require transport-layer sessions, operates over unidirectional links, and seeks to reduce the energy and compute power necessary for performing network management on resource constrained devices.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Network management in challenged and resource constrained networks must be accomplished differently than the network management methods in high-rate, high-availability networks. The Asynchronous Management Architecture (AMA) [I-D.birrane-dtn-ama] provides an overview and justification of an alternative to "synchronous" management services such as those provided by NETCONF. In particular, the AMA defines the need for a flexible, robust, and efficient autonomy engine to handle decisions when operators cannot be active in the network. The logical description of that autonomous model and its major components is given in the AMA Data Model (ADM) [I-D.birrane-dtn-adm].
The ADM presents an efficient and expressive autonomy model for the asynchronous management of a network node, but does not specify any particular encoding. This document, the Asynchronous Management Protocol (AMP), provides a binary encoding of AMM objects and specifies a protocol for the exchange of these encoded objects.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The AMP provides data monitoring, administration, and configuration for applications operating above the data link layer of the OSI networking model. While the AMP may be configured to support the management of network layer protocols, it also uses these protocol stacks to encapsulate and communicate its own messages.
It is assumed that the protocols used to carry AMP messages provide addressing, confidentiality, integrity, security, fragmentation/ reassembly, and other network functions. Therefore, these items are outside of the scope of this document.
This document describes the format of messages used to exchange data models between managing and managed devices in a network. The rationale for this type of exchange is outside of the scope of this document and is covered in [I-D.birrane-dtn-ama]. The description and explanation of the data models exchanged is also outside of the scope of this document and is covered in [I-D.birrane-dtn-adm].
This document does not address specific configurations of AMP-enabled devices, nor does it discuss the interface between AMP and other management protocols.
Note: The terms "Actor", "Agent", "Application Data Model", "Externally Defined Data", "Variable", "Control", "Literal", "Macro", "Manager", "Report Template", "Report", "Table", "Constant", "Operator", "Time-Based Rule" and "State-Based Rule" are used without modification from the definitions provided in [I-D.birrane-dtn-ama].
The desirable properties of an asynchronous management protocol, as specified in the AMA, are summarized here to represent design constraints on the AMP specification.
o Intelligent Push of Information - Nodes in a challenged network cannot guarantee concurrent, bi-directional communications. Some links between nodes may be strictly unidirectional. AMP Agents "push" data to Managers rather than Managers "pulling" data from Agents.
o Small Message Sizes - Smaller messages require smaller periods of viable transmission for communication, incur less retransmission cost, and consume fewer resources when persistently stored en route in the network. AMP minimizes message size wherever practical, to include binary data representations and predefined data definitions and templates.
o Absolute and Custom Data Identification - All data in the system must be uniquely addressable, to include operator-specified information. AMP provides a compact encoding for identifiers.
o Autonomous, Stateless Operation - There is no reliable concept of session establishment or round-trip data exchange in asynchronous networks. AMP is designed to be stateless. Where helpful, AMP provides mechanisms for transactional ordering of commands within a single AMP protocol data unit, but otherwise degrades gracefully when nodes in the network diver in their configuration.
o Unless otherwise specified, multi-byte values in this specification are expected to be transmitted in network byte order (Big Endian).
o Character encodings for all text-based data types will use UTF-8 encodings.
o All AMP encodings are self-terminating. This means that, given an indefinite-length octet stream, each encoding can be unambiguously decoded from the stream without requiring additional information such as a length field separate from the data type definition.
o Bit-fields in this document are specified with bit position 0 holding the least-significant bit (LSB). When illustrated in this document, the LSB appears on the right.
o In order to describe the encoding of data models specified in [I-D.birrane-dtn-adm], this specification must refer to both the data object being encoded and to the encoding of that data object. When discussing the encoded version of a data object, this specification uses the notation "E(data_object)" where E() refers to a conceptual encoding function. This notation is only provided as a means of clarifying the text and imposes no changes to the actual wire coding. For example, this specification will refer to the "macro" data object as "Macro" and to the encoding of a Macro as "E(Macro)".
Therefore, when transmitted on the wire, Field 1 will be received first, followed by Field 2 (if present).
Figure 1: Byte Field Formatting Example
When types are documented in this way, the type always refers to the encoding of that type. The E() notation is not used as it is to be inferred from the context of the illustration.
The AMP specification provides an encoding of objects comprising the AMM. As such, AMP defines very few structures of its own. This section identifies those data structures that are unique to the AMP and required for it to perform appropriate and efficient encodings of AMM objects.
In the AMP, a "Nickname" (NN) is used to reduce the overall size of the encoding of ARIs that are defined in the context of an ADM. A NN is calculated as a function of an ADM Moderated Namespace and the type of object being identified.
As identifiers, ARIs are used heavily in AMM object definitions, particularly in those that define collections of objects. This makes encoding ARIs an important consideration when trying to optimize the size of AMP message.
Additionally, the majority of ARIs are defined in the context of an ADM. Certain AMM objects types (EDDs, OPs, CTRLs, TBLTs) can only be defined in the context of an ADM. Other object types (VARs, CONSTs, RPTTs) may have common, useful objects defined in an ADM as well. The structure of an ADM, to include its use of a Moderated Namespace and collections by object type, provide a regular structure that can be exploited for creating a compact representation.
In particular, as specified in [I-D.birrane-dtn-adm], ARIs can be grouped by (1) their namespace and (2) the type of AMM object being identified. For example, consider the following ARIs of type EDD defined in ADM1 with a Moderated Namespace of "/DTN/ADM1/".
In this case, the namespace (/DTN/ADM1/) and the object type (Edd) are good candidates for enumeration because their string encoding is very verbose and their information follows a regular structure shared across multiple ARIs. Separately, the string representation of object names (item_1, item_2, etc...) may be very verbose and they are also candidates for enumeration as they occupy a particular ADM object type in a particular order as published in the ADM.
Any ARI defined in an ADM exists in the context of a Moderated Namespace. These namespaces provide a unique string name for the ADM. However, ADMs can also be assigned a unique enumeration by the same moderating entities that ensure namespace uniqueness.
An ADM enumeration is an unsigned integer in the range of 0 to (2^64)/20. This range provides effective support for thousands of trillions of ADMs.
The formal set of ADMs, similar to SNMP MIBs and NETCONF YANG models, will be moderated and published. Additionally, a set of informal ADMs may be developed on a network-by-network or on an organization- by-organization bases.
Since informal ADMs exist within a predefined context (a network, an organization, or some other entity) they do not have individual ADM enumerations and are assigned the special enumeration "0". ARIs that are not defined in formal ADMs rely on other context information to help with their encoding (see Section 8.3).
An ADM Object Type Enumeration is an unsigned integer in the range of 0 - 19. This covers all of the standard areas for the ADM Template as defined in [I-D.birrane-dtn-adm]. Each of these types are enumerated in Table 1.
Table 1: ADM Type Enumerations
As an enumeration, a Nickname is captured as a 64-bit unsigned integer (UVAST) calculated as a function of the ADM enumeration and the ADM type enumeration, as follows.
NN = ((ADM Enumeration) * 20) + (ADM Object Type Enumeration)
Considering the example set of ARIs from Section 7.1.1, assuming that ADM1 has ADM enumeration 9 and given that objects in the example were of type EDD, the NN for each of the 1974 items would be: (9 * 20) + 2 = 182. In this particular example, the ARI "/DTN/ADM1/Edd.item_1974" can be encoded in 5 bytes: two bytes to CBOR encode the nickname (182) and 3 bytes to CBOR encode the item's offset in the Edd collection (1974).
The assignment of formal ADM enumerations SHOULD take into consideration the nature of the applications and protocols to which the ADM applies. Those ADMs that are likely to be used in challenged networks SHOULD be allocated low enumeration numbers (e.g. those that will fit into 1-2 bytes) while ADMs that are likely to only be used in well resourced networks SHOULD be allocated higher enumeration numbers. It SHOULD NOT be the case that ADM enumerations are allocated on a first-come, first-served basis. It is recommended that ADM enumerations should be labeled based on the number of bytes of the Nickname as a function of the size of the ADM enumeration. These labels are shown in Table 2.
Table 2: ADM Enumerations Labels
This section describes the binary encoding of logical data constructs using the Concise Binary Object Representation (CBOR) defined in [RFC7049].
The following considerations act as guidance for CBOR encoders and decoders implementing the AMP.
o All AMP encodings are of definite length and, therefore, indefinite encodings MUST NOT be used.
o AMP encodings MUST NOT use CBOR tags. Identification mechanisms in the AMP capture structure and other information such that tags are not necessary.
o Canonical CBOR MUST be used for all encoding. All AMP CBOR decoders MUST run in strict mode.
o Encodings MUST result in smallest data representations. There are several cases where the AMM defines types with less granularity than CBOR. For example, AMM defines the UINT type to represent unsigned integers up to 32 bits in length. CBOR supports separate definitions of unsigned integers of 8, 16, or 32 bits in length. In cases where an AMM type MAY be encoded in multiple ways in CBOR, the smallest data representation MUST be used. For example, UINT values of 0-255 MUST be encoded as a uint8_t, and so on.
The AMP encodes AMM primitive types as outlined in Table 3.
Table 3: Standard Numeric Types
This section provides the CBOR encodings for AMM derived types.
The AMM derived type Byte String (BYTESTR) is encoded as a CBOR byte string.
An TV is encoded as a UVAST. Similarly, a TS is also encoded as a UVAST since a TS is simply an absolute TV.
Rather than define two separate encodings for TVs (one for absolute TVs and one for relative TVs) a single, unambiguous encoding can be generated by defining a Relative Time Epoch (RTE) and interpreting the type of TV in relation to that epoch. Time values less than the RTE MUST be interpreted as relative times. Time values greater than or equal to the RTE MUST be interpreted as absolute time values.
A relative TV is encoded as the number of seconds after an initiating event. An absolute TV (and TS) is encoded as the number of seconds that have elapsed since 1 Jan 2000 00:00:00 (Unix Time 946684800).
The RTE is defined as the timestamp value for September 9th, 2017 (Unix time 1504915200). Since TS values are the number of seconds since 1 Jan 2000 00:00:00, the RTE as a TS value is 1504915200 - 946684800 = 558230400.
The potential values of TV, and how they should be interpreted as relative or absolute is illustrated below.
For example, a time value of "10" is a relative time representing 10 seconds after an initiating event. A time value of "600,000,000" refers to Saturday, 5 Jan, 2019 10:40:00.
NOTE: Absolute and relative times are interchangeable. An absolute time can be converted into a relative time by subtracting the current time from the absolute time. A relative time can be converted into an absolute time by adding to the relative time the timestamp of its relative event. A pseudo-code example of converting a relative time to an absolute time is as follows, assuming that current-time is expressed in Unix Epoch time.
TNV values are encoded as a CBOR array that comprises four distinct pieces of information: a set of flags, a type, an optional name, and an optional value. In the E(TNV) the flag and type information are compressed into a single value. The CBOR array MUST have length 1, 2, or 3 depending on the number of optional fields appearing in the encoding. The E(TNV) format is illustrated in Figure 2.
Figure 2: E(TNV) Format
The E(TNV) fields are defined as follows.
Flags/Type
The first byte of the E(TNV) describes the type associated with the TNV and which optional components are present. The layout of this byte is illustrated in Figure 3.
E(TNV) Flag/Type Byte Format
Figure 3
Name Flag
This flag indicates that the TNV contains a name field. When set to 1 the Name field MUST be present in the E(TNV). When set to 0 the Name field MUST NOT be present in the E(TNV).
Struct Type
This field lists the type associated with this TNV and MUST contain one of the types defined in [I-D.birrane-dtn-adm] with the exception that the type of a TNV MUST NOT be a TNV.
Name
This optional field captures the human-readable name for the TNV encoded as a CBOR text string. If there are 3 elements in the TNV array OR there are 2 elements in the array and the Name Flag is set, then this field MUST be present. Otherwise, this field MUST NOT be present.
Value
This optional field captures the encoded value associated with this TNV. The value is encoded in accordance with AMP rules for encoding of items of the type of this TNV. If there are 3 elements in the TNV array OR there are 2 elements in the array and the Name Flag is not set, then this field MUST be present. Otherwise, this field MUST NOT be present.
A TNV Collection (TNVC) is an ordered set of TNVs with special semantics for more efficiently encoding sets of TNVs with identical attributes.
A TNV, defined in Section 8.2.2.3, consists of three distinct components: a type, a name, and a value. When all of the TNVs in the TNVC have the same format (such as they all include type information) then the encoding of the TNVC can use this information to save encoding space and make processing more efficient. In cases when all TNVs have the same format, the types (if present), names (if present), and values (if present) are separated into their own arrays for individual processing with type information (if present) always appearing first.
Extracting type information to the "front" of the collection optimizes the performance of type validators. A validator can inspect the first array to ensure that element values match type expectations. If type information were distributed throughout the collection, as in the case with the TNVC, a type validator would need to scan through the entire set of data to validate each type in the collection.
A TNVC is encoded as a CBOR array with at least one element, the flags which represent the optional portions of the collection that are present. If the TNVC represents an empty set, there will be no additional entries. The format of a TNVC is illustrated in Figure 4.
Figure 4: E(TNVC) Format
The E(TNVC) fields are defined as follows.
Flags
The first byte of the E(TNVC) describes which optional portions of a TNV will be present for each TNV in the collection. The layout of this byte is illustrated in Figure 5.
E(TNV) Flag Byte Format
Figure 5
Type Flag
This flag indicates that the set of TNVs in the collection do not all share the same properties and, therefore, the collection is a mix of different types of TNV. When set to 1 the E(TNVC) MUST contain the Mixed Values field and all other flags in this byte MUST be set to 0. When set to 0 the E(TNVC) MUST NOT contain the Mixed Values field.
Type Flag
This flag indicates whether each TNV in the collection has type information associated with it. When set to 1 the E(TNVC) MUST contain type information for each TNV. When set to 0, type information MUST NOT be present.
Name Flag
This flag indicates whether each TNV in the collection has name information associated with it. When set to 1 the E(TNVC) MUST contain name information for each TNV. When set to 0, name information MUST NOT be present.
Value Flag
This flag indicates whether each TNV in the collection has value information associated with it. When set to 1 the E(TNVC) MUST contain value information for each TNV. When set to 0, value information MUST NOT be present.
Types
The types field is encoded as a CBOR byte string with length equal to the number of items in the collection. The Nth byte in the byte string represents the type for the Nth TNV in the collection. This field MUST be present in the E(TNVC) when the Type Flag is set to 1 and MUST NOT be present otherwise.
Names
The names field is encoded as a CBOR array with one entry for each item in the collection. Each entry in the array is encoded as a CBOR string and represents the name of a TNV in the collection. The Nth string in the array represents the name for the Nth TNV in the collection. This field MUST be present in the E(TNVC) when the Name Flag is set to 1 and MUST NOT be present otherwise.
Values
The values field is encoded as a CBOR array with one entry for each item in the collection. Each entry in the array is encoded as follows. If the Type Flag is set to 1 then each entry will be encoded in accordance with the corresponding index in the type field. For example, the 1st entry in the value array will be encoded as the first entry in the type bytestring. If the Type Flag is set to 0 then the entries in the value array will be encoded as a native CBOR type. CBOR types do not have a one-to-one mapping with AMP types and it is the responsibility of the transmitting AMP actor and the receiving AMP actor to determine how to map these to AMP types. This field MUST be present in the E(TNVC) when the Value Flag is set to 1 and MUST NOT be present otherwise.
Mixed
The mixed field is encoded as a CBOR array with one entry for each item in the collection. Each entry in the array contains a E(TNV). This field MUST be present in the E(TNVC) when the Mix Flag is set to 1 and MUST NOT be present otherwise.
An ARI collection is an ordered collection of ARI values. It is encoded as a CBOR array with each element being an encoded ARI, as illustrated in Figure 6.
E(AC) Format
Figure 6
The Expression object encapsulates a typed postfix expression in which each operator MUST be of type OPER and each operand MUST be the typed result of an operator or one of EDD, VAR, LIT, or CONST.
The Expression object is encoded as a CBOR byte string whose format is illustrated in Figure 7.
E(EXPR) Format
Figure 7
Type
The enumeration representing the type of the result of the evaluated expression. This type MUST be defined in [I-D.birrane-dtn-adm] as a "Primitive Type".
Expression
An expression is represented in the AMP as an ARI collection, where each ARI in the ordered collection represents either an operand or operator in postfix form.
The ARI, as defined in [I-D.birrane-dtn-adm], identifies an AMM object. There are two kinds of objects that can be identified in this scheme: literal objects (of type LIT) and all other objects.
A literal identifier is one that is literally defined by its value, such as numbers (0, 3.14) and strings ("example"). ARIs of type LITERAL do not have issuers or nicknames or parameters. They are simply typed basic values.
The E(ARI) of a LIT object is encoded as a CBOR byte string and consists of a mandatory flag BYTE and the value of the LIT.
The E(ARI) structure for LIT types is illustrated in Figure 8.
E(ARI) Literal Format
Figure 8
These fields are defined as follows.
Flags
The Flags byte identifies the object as being of type LIT and also captures the primitive type of the following value. The layout of this byte is illustrated in Figure 9.
E(ARI) Literal Flag Byte Format
Figure 9
Value Type
The high nibble of the flag byte describes the type of the value of the ARI being encoded. This type
MUST be one of the AMM data types defined in [I-D.birrane-dtn-adm] as a "Primitive Type".
Structure Type
The lower nibble of the flag byte identifies the type of AMM Object being identified by the ARI. In this instance, this value MUST be LIT, as defined in [I-D.birrane-dtn-adm].
Value
This field captures the CBOR encoding of the value. Values are encoded according to their Value Type as specified in the flag byte in accordance with the encoding rules provided in Section 8.2.1.
All other ARIs are defined in the context of AMM objects and may contain parameters and other meta-data. The AMP, as a machine-to- machine binary encoding of this information removes human-readable information such as Name and Description from the E(ARI). Additionally, this encoding adds other information to improve the efficiency of the encoding, such as the concept of Nicknames, defined in Section 7.1.
The E(ARI) is encoded as a CBOR byte string and consists of a mandatory flag byte, an encoded object name, and optional annotations to assist with filtering, access control, and parameterization. The E(ARI) structure is illustrated in Figure 10.
E(ARI) General Format
Figure 10
These fields are defined as follows.
Flags
Flags describe the type of structure and which optional fields are present in the encoding. The layout of the flag byte is illustrated in Figure 11.
E(ARI) General Flag Byte Format
Figure 11
Nickname (NN)
This flag indicates that ADM compression is used for this E(ARI). When set to 1 the Nickname field MUST be present in the E(ARI). When set to 0 the Nickname field MUST NOT be present in the E(ARI). When an ARI is user-defined, there are no semantics for Nicknames and, therefore, this field MUST be 0 when the Issuer flag is set to 1. Implementations SHOULD use Nicknames whenever possible to reduce the size of the E(ARI).
Parameters Present (PARM)
This flag indicates that this ARI can be parameterized and that parameter information is included in the E(ARI). When set to 1 the Parms field MUST be present in the E(ARI). When set to 0 the Parms field MUST NOT be present in the E(ARI).
Issuer Present (ISS)
This flag indicates that this ARI is defined in the context of a specific issuing entity. When set to 1 the Issuer field MUST be present in the E(ARI). When set to 0 the Issuer field MUST NOT be present in the E(ARI).
Tag Present (TAG)
This flag indicates that the ARI is defined in the context of a specific issuing entity and that issuing entity adds additional information in the form of a tag. When set to 1 the Tag field MUST be present in the E(ARI). When set to 0 the Tag field MUST NOT be present in the E(ARI). This flag MUST be set to 0 if the Issuer Present flag is set to 0.
Structure Type (STRUCT TYPE)
The lower nibble of the E(ARI) flag byte identifies the kind of structure being identified. This field
MUST contain one of the AMM object types defined in [I-D.birrane-dtn-adm].
Nickname (NN)
This optional field contains the Nickname as calculated according to Section 7.1.
Object Name
This mandatory field contains an encoding of the ADM object. For elements defined in an ADM Template (e.g., where the Issuer Flag is set to 0) this is the 0-based index into the ADM collection holding this element. For all user-defined ADM objects, (e.g., where the Issuer Flag is set to 1) this value is as defined by the Issuing organization.
Parameters
The parameters field is represented as a Type Name Value Collection (TNVC) as defined in Section 8.2.3.1. The overall number of items in the collection represents the number of parameters. The types of the TNVC represent the types of each parameter, with the first listed type associated with the first parameter, and so on. The values, if present, represent the values of the parameters, with the first listed value being the value of the first parameter, and so on.
Issuer
This is a binary identifier representing a predetermined issuer name. The AMP protocol does not parse or validate this identifier, using it only as a distinguishing bit pattern to ensure uniqueness. This value, for example, may come from a global registry of organizations, an issuing node address, or some other network-unique marking. The issuer field MUST NOT be present for any ARI defined in an ADM.
Tag
A value used to disambiguate multiple ARIs with the same Issuer. The definition of the tag is left to the discretion of the Issuer. The Tag field MUST be present if the Tag Flag is set in the flag byte and MUST NOT be present otherwise.
The autonomy model codified in [I-D.birrane-dtn-adm] comprises multiple individual objects. This section describes the CBOR encoding of these objects.
Note: The encoding of an object refers to the way in which the complete object can be encoded such that the object as it exists on a Manager may be re-created on an Agent, and vice-versa. In cases where both a Manager and an Agent already have the definition of an object, then only the encoded ARI of the object needs to be communicated. This is the case for all objects defined in a published ADM and any user-defined object that has been synchronized between an Agent and Manager.
Externally defined data (EDD) are solely defined in the ADMs for various applications and protocols. EDDs represent values that are calculated external to an AMA Agent, such as values measured by firmware.
The representation of these data is simply their identifying ARIs. The representation of an EDD is illustrated in Figure 12.
E(EDD) Format
Figure 12
ID
This is the ARI identifying the EDD. Since EDDs are always defined solely in the context of an ADM, this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. This ARI may be defined with parameters.
Unlike Literals, a Constant is an immutable, typed, named value. Examples of constants include PI to some number of digits or the UNIX Epoch.
Since ADM definitions are preconfigured on Agents and Managers in an AMA, the type information for a given Constant is known by all actors in the system and the encoding of the Constant needs to only be the name of the constant as the Manager and Agent can derive the type and value from the unique Constant name.
The format of a Constant is illustrated in Figure 13.
E(CONST) Format
Figure 13
ID
This is the ARI identifying the Constant. Since Constant definitions are always provided in an ADM, this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. The ARI MUST NOT have parameters.
A Control represents a pre-defined and optionally parameterized opcode that can be run on an Agent. Controls in the AMP are always defined in the context of an AMA; there is no concept of an operator- defined Control. Since Controls are pre-configured in Agents and Managers as part of ADM support, their representation is the ARI that identifies them, similar to EDDs.
The format of a Control is illustrated in Figure 14.
E(CTRL) Format
Figure 14
ID
This is the ARI identifying the Control. This ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. This ARI may have parameters.
Macros in the AMP are ordered collections of ARIs (an AC) that contain Controls or other Macros. When run by an Agent, each ARI in the AC MUST be run in order.
Any AMP implementation MUST allow at least 4 levels of Macro nesting. Implementations MUST prevent recursive nesting of Macros.
The ARI associated with a Macro MAY contain parameters. Each parameter present in a Macro ARI MUST contain type, name, and value information. Any Control or Macro encapsulated within a parameterized Macro MAY also contain parameters. If an encapsulated object parameter contains only name information, then the parameter value MUST be taken from the named parameter provided by the encapsulating Macro. Otherwise, the value provided to the object MUST be used instead.
The format of a Macro is illustrated in Figure 15.
E(MAC) Format
Figure 15
ID
This is the ARI identifying the Macro. When a Macro is defined in an ADM this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field. When the Macro is defined outside of an ADM, the ARI MUST have an ISSUER field and MAY have a TAG field.
Definition
This is the ordered collection of ARIs that identify the Controls and other Macros that should be run as part of running this Macro.
Operators are always defined in the context of an ADM. There is no concept of a user-defined operator, as operators represent mathematical functions implemented by the firmware on an Agent. Since Operators are preconfigured in Agents and Managers as part of ADM support, their representation is simply the ARI that identifies them.
The ADM definition of an Operator MUST specify how many parameters are expected and the expected type of each parameter. For example, the unary NOT Operator ("!") would accept one parameter. The binary PLUS Operator ("+") would accept two parameters. A custom function to calculate the average of the last 10 samples of a data item should accept 10 parameters.
Operators are always evaluated in the context of an Expression. The encoding of an Operator is illustrated in Figure 16.
E(OP) Format
Figure 16
ID
This is the ARI identifying the Operator. Since Operators are always defined solely in the context of an ADM, this ARI MUST NOT have an ISSUER field and MUST NOT have a TAG field.
A Report Template is an ordered collection of identifiers that describe the order and format of data in any Report built in compliance with the template. A template is a schema for a class of reports. It contains no actual values and may be defined in a formal ADM or configured by users in the context of a network deployment.
The encoding of a RPTT is illustrated in Figure 17.
E(RPTT) Format
Figure 17
ID
This is the ARI identifying the report template.
Contents
This is the ordered collection of ARIs that define the template.
A Report is a set of data values populated using a given Report Template. While Reports do not contain name information, they MAY contain type information in cases where recipients wish to perform type validation prior to interpreting the Report contents in the context of a Report Template. Reports are "anonymous" in the sense that any individual Report does not contain a unique identifier. Reports can be differentiated by examining the combination of (1) the Report Template being populated, (2) the time at which the Report was populated, and (3) the Agent producing the report.
A Report object is comprised of the identifier of the template used to populate the report, an optional timestamp, and the contents of the report. A Report is encoded as a CBOR array with either 2 or 3 elements. If the array has 2 elements then the optional Timestamp MUST NOT be in the Report encoding. If the array has 3 elements then the optional timestamp MUST be included in the Report encoding. The Report encoding is illustrated in Figure 18.
E(RPT) Format
Figure 18
Template
This is the ARI identifying the template used to interpret the data in this report.
This ARI may be parameterized and, if so, the parameters MUST include a name field and have been passed-by-name to the template contents when constructing the report.
Timestamp
The timestamp marks the time at which the report was created. This timestamp may be omitted in cases where the time of the report generation can be inferred from other information. For example, if a report is included in a message group such that the timestamp of the message group is equivalent to the
timestamp of the report, the report timestamp may be omitted and the timestamp of the included message group used instead.
Entries
This is the collection of data values that comprise the report contents in accordance with the associated Report Template.
A State-Based Rule (SBR) specifies that a particular action should be taken by an Agent based on some evaluation of the internal state of the Agent. A SBR specifies that starting at a particular START time an ACTION should be run by the Agent if some CONDITION evaluates to true, until the ACTION has been run COUNT times. When the SBR is no longer valid it may be discarded by the agent.
Examples of SBRs include:
Starting 2 hours from receipt, whenever V1 > 10, produce a Report for Report Template R1 no more than 20 times.
Starting at some future absolute time, whenever V2 != V4, run Macro M1 no more than 36 times.
An SBR object is encoded as a CBOR array with 5 elements as illustrated in Figure 19.
E(SBR) Format
Figure 19
ID
This is the ARI identifying the SBR. If this ARI contains parameters they MUST include a name in support of pass-by- name to each element of the Action AC.
START
The time at which the SBR condition should start to be evaluated. This will mark the first evaluation of the condition associated with the SBR.
CONDITION
The Expression which, if true, results in the SBR running the associated action. An EXPR is considered true if it evaluates to a non-zero value.
EVALS
The number of times the SBR condition can be evaluated. The special value of 0 indicates there is no limit on how many times the condition can be evaluated.
FIRES
The number of times the SBR action can be run. The special value of 0 indicates there is no limit on how many times the action can be run.
ACTION
The collection of Controls and/or Macros to run as part of the action. This is encoded as an AC in accordance with Section 8.2.3.2 with the stipulation that every ARI in this collection MUST be of type CTRL or MAC.
A Table Template (TBLT) describes the types, and optionally names, of the columns that define a Table.
Because TBLTs are only defined in the context of an ADM, their definition cannot change operationally. Therefore, a TBLT is encoded simply as the ARI for the template. The format of the TBLT Object Array is illustrated in Figure 20.
E(TBLT) Format
Figure 20
The elements of the TBLT array are defined as follows.
ID
This is the ARI of the table template encoded in accordance with Section 8.3.
A Table object describes the series of values associated with a Table Template.
A Table object is encoded as a CBOR array, with the first element of the array identifying the Table Template and each subsequent element identifying a row in the table. The format of the TBL Object Array is illustrated in Figure 21.
E(TBL) Format
Figure 21
The TBL fields are defined as follows.
Template ID (TBLT ID)
This is the ARI of the table template describing the format of the table and is encoded in accordance with Section 8.3.
A Time-Based Rule (TBR) specifies that a particular action should be taken by an Agent based on some time interval. A TBR specifies that starting at a particular START time, and for every PERIOD seconds thereafter, an ACTION should be run by the Agent until the ACTION has been run for COUNT times. When the TBR is no longer valid it MAY BE discarded by the Agent.
Examples of TBRs include:
Starting 2 hours from receipt, produce a Report for Report Template R1 every 10 hours ending after 20 times.
Starting at the given absolute time, run Macro M1 every 24 hours ending after 365 times.
The TBR object is encoded as a CBOR array with 5 elements as illustrated in Figure 22.
E(TBR) Format
Figure 22
ID
This is the ARI identifying the TBR and is encoded in accordance with Section 8.3. If this ARI contains parameters they MUST include a name in support of pass-by-name to each element of the Action AC.
START
The time at which the TBR condition should start to be evaluated.
PERIOD
The number of seconds to wait between running the action associated with the TBR.
COUNT
The number of times the TBR action can be run. The special value of 0 indicates there is no limit on how many times the action can be run.
ACTION
The collection of Controls and/or Macros to run as part of the action. This is encoded as an ARI Collection in accordance with Section 8.2.3.2 with the stipulation that every ARI in this collection MUST represent either a Control or a Macro.
Variable objects are transmitted in the AMP without the human- readable description.
Variable objects are encoded as a CBOR byte string whose format is illustrated in Figure 23.
E(VAR) Format
Figure 23
ID
This is the ARI identifying the VAR and is encoded in accordance with Section 8.3. This ARI MUST NOT include parameters.
Value
This field captures the value (and optionally the type and name) of the variable, encoded as a TNV.
This section describes the format of the messages that comprise the AMP protocol.
The AMP message specification is limited to three basic communications:
Table 4: ADM Message Type Enumerations
The entire management of a network can be performed using these three messages and the configurations from associated ADMs.
Individual messages within the AMP are combined into a single group for communication with another AMP Actor. Messages within a group MUST be received and applied as an atomic unit. The format of a message group is illustrated in Figure 24. These message groups are assumed communicated amongst Agents and Managers as the payloads of encapsulating protocols which should provide additional security and data integrity features as needed.
A message group is encoded as a CBOR array with at least 2 elements, the first being the time the group was created followed by 1 or more messages that comprise the group. The format of the message group is illustrated in Figure 24.
AMP Message Group Format
Figure 24
Timestamp
The creation time for this messaging group. Individual messages may have their own creation timestamps based on their type, but the group timestamp also serves as the default creation timestamp for every message in the group. This is encoded in accordance with Table 3.
Message N
The Nth message in the group.
Each message identified in the AMP specification adheres to a common message format, illustrated in Figure 25, consisting of a message header, a message body, and an optional trailer.
Each message in the AMP is encode as a CBOR byte string formatted in accordance with Figure 25.
AMP Message Format
Figure 25
Header
The message header BYTE is shown in Figure 26. The header identifies a message context and opcode as well as flags that control whether a Report should be generated on message success (Ack) and whether a Report should be generated on message failure (Nack).
AMP Common Message Header
Figure 26
Opcode
The opcode field identifies which AMP message is being represented.
ACK Flag
The ACK flag describes whether successful application of the message must generate an acknowledgment back to the message sender. If this flag is set (1) then the receiving actor MUST generate a Report communicating this status. Otherwise, the actor MAY generate such a Report based on other criteria.
NACK Flag
The NACK flag describes whether a failure applying the message must generate an error notice back to the message sender. If this flag is set (1) then the receiving Actor MUST generate a Report communicating this status. Otherwise, the Actor MAY generate such a Report based on other criteria.
ACL Used Flag
The ACL used flag indicates whether the message has a trailer associated with it that specifies the list of AMP actors that may participate in the Actions or definitions associated with the message. This area is still under development.
Body
The message body contains the information associated with the given message.
Trailer
An OPTIONAL access control list (ACL) may be appended as a trailer to a message. When present, the ACL for a message identifiers the agents and managers that can be affected by the definitions and actions contained within the message. The explicit impact of an ACL is described in the context of each message below. When an ACL trailer is not present, the message results may be visible to any AMP Actor in the network, pursuant to other security protocol implementations.
The Register Agent message is used to inform an AMP Manager of the presence of another Agent in the network.
The body of this message is the name of the new agent, encoded as illustrated in Figure 27.
Register Agent Message Body
Figure 27
Agent ID
The Agent ID MUST represent the unique address of the Agent in whatever protocol is used to communicate with the Agent.
The Report Set message contains a set of 1 or more Reports produced by an AMP Agent and sent to an AMP Manager.
The body of this message contains information on the recipient of the reports followed by one or more Reports. The body is encoded as illustrated in Figure 28.
Report Set Message Body
Figure 28
RX Names
This field captures the set of Managers that have been sent this report set. This is encoded as a CBOR array that MUST have at least one entry. Each entry in this array is encdoded as a CBOR text string.
RPT N
The Nth Report encoded in accordance with Section 8.4.7.
The perform control message causes the receiving AMP Actor to run one or more preconfigured Controls provided in the message.
The body of this message is the start time for the controls followed by the controls themselves, as illustrated in Figure 29.
Perform Control Message Body
Figure 29
Start
The time at which the Controls/Macros should be run.
Controls
The collection of ARIs that represent the Controls and/or Macros to be run by the AMP Actor. Every ARI in this collection MUST be either a Control or a Macro.
A Nickname registry needs to be established.
Security within the AMP exists in two layers: transport layer security and access control.
Transport-layer security addresses the questions of authentication, integrity, and confidentiality associated with the transport of messages between and amongst Managers and Agents. This security is applied before any particular Actor in the system receives data and, therefore, is outside of the scope of this document.
Finer grain application security is done via ACLs provided in the AMP message headers.
A reference implementation of this version of the AMP specification is available in the 3.6.2 release of the ION open source code base available from sourceforge at https://sourceforge.net/projects/ion- dtn/.
[I-D.birrane-dtn-ama]
Birrane, E., "Asynchronous Management Architecture", draft-birrane-dtn-ama-07 (work in progress), June 2018.
[I-D.birrane-dtn-adm]
Birrane, E., DiPietro, E., and D. Linko, "AMA Application Data Model", draft-birrane-dtn-adm-02 (work in progress), June 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC7049]
Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, <https://www.rfc-editor.org/info/rfc7049>.
The following participants contributed technical material, use cases, and useful thoughts on the overall approach to this protocol specification: Jeremy Pierce-Mayer of INSYEN AG contributed the concept of the typed data collection and early type checking in the protocol. David Linko and Evana DiPietro of the Johns Hopkins University Applied Physics Laboratory contributed appreciated review and type checking of various elements of this specification.
Author's Address
Email: Edward.Birrane@jhuapl.edu
draft-loiseau-dtn-cla-eid-00 - Using CLA-Specific Endpoint IDs to identify Chann
Delay Tolerant Network
Internet-Draft
Intended status: Standards Track
Expires: May 25, 2019
L. Loiseau
RightMesh
November 21, 2018
draft-loiseau-dtn-cla-eid-00
This document describes a specific EID scheme namely "cla" that meets the requirement for endpoint identification as defined in the Bundle Protocol and that also uniquely identifies a Convergence Layer Adapter "channel" and is, in essence, an interface identifier (IID). Such IID is comprised of two parts: a "cla-identifier" part that identifies a specific convergence layer adapter, and a "cla- parameters" part that is a cla-specific list of parameter describing a single channel managed by this convergence layer adapter.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on May 25, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document describes a specific EID scheme namely "cla" that meets the requirement for endpoint identification as defined in the Bundle Protocol[I-D.ietf-dtn-bpbis] and that is managed by convergence layer adapters (CLA). Such EID of the scheme "cla" is called an Interface Identifier (IID) and within the context of the bundle protocol operation is used to identify channel endpoints. A Bundle Protocol Interface represents the abstraction of an underlying transport channel, managed by a CLA, and that provides the set of services described in section 7.2 of [I-D.ietf-dtn-bpbis]. A convergence layer adapter that conforms to this specification SHALL provide the two additional services:
1. egress: MUST provide an IID for every channel that is open and for which an interface is available for sending bundles.
2. ingress: If applicable, MAY provide an IID identifying the local Bundle Node for every channel that is open.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The general syntax of an IID is:
cla:<CLA-NAME>:<CLA-SPECIFIC-PART>
CLA-NAME is the name of the convergence layer adapter that can parse or generate this IID.
CLA-SPECIFIC-PART is the convergence layer specific part that identifies a specific cla channel. This part must be unambiguous and can be automatically guessed by any peer implementing this CLA and that knows the parameter for this channel.
Convergence layer adapters provide a service interface used to send and receive Bundle with other Bundle Nodes. In this context, an IID identifies an interface in a way that is unambiguous meaning that two different interfaces should never have the same IID. IIDs being transport-layer interface identifier MUST exactly map to an underlying transport channel. Such IID is, in effect, used to identify the egress part of an interface.
Every Bundle that is schedule for forwarding and whose destination EID matches an egress-IID must be directly forwarded to the underlying matching transport channel.
When applicable, a bundle node may be addressable in a way that is specific to a convergence layer adapter. For instance with stcp[I-D.burleigh-dtn-stcp] each bundle node can be uniquely identified with its pair {ip address, tcp port} and other bundle nodes may use an IID to address bundles to it. In some other case, it may not be possible to create such an identifier, for instance with a USB cla (where the transport channel is a folder in a USB drive), it wouldn't really make much sense to have a cla-specific address that would be automatically derivable by other bundle node. Such IID is, in effect, used to identify the ingress part of an interface.
If it is applicable to derive such ingress-IID to address the local bundle node instance, each bundle that is received and whose destination field is this IID should be processed for local delivery.
This appendix provides some examples for IIDs.
cla:stcp:10.1.123.1:4556
Figure 1: STCP-specific EID identifying an Interface to another
Bundle Node with its IP address and TCP port
cla:usb:1d6b:0002:folder1
Figure 2: USB-specific EID identifying an Interface over a mounted
usb device described as its bus address and folder
cla:mailcl:xxxx@ietf.org:[dtn]
Figure 3: MAILCL-specific EID that identifies a channel over SMTP
protocol described as a mail address and subject filter
[I-D.ietf-dtn-bpbis]
Fall, K. and E. Birrane, "Bundle Protocol Version 7", draft-ietf-dtn-bpbis-11 (work in progress), May 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc- editor.org/info/rfc2119>.
[I-D.burleigh-dtn-stcp]
Burleigh, S., "Simple TCP Convergence-Layer Protocol", draft-burleigh-dtn-stcp-00 (work in progress), September 2018.
Author's Address
Email: loiseau.lucien@gmail.com
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.