

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can ge to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

fecframe RFC and Internet-Draft Index

Index

RFCs

	RFC6015 RTP Payload Format for 1-D Interleaved Parity Forward Error Correction (FEC)

	RFC6363 Forward Error Correction (FEC) Framework

	RFC6364 Session Description Protocol Elements for the Forward Error Correction (FEC) Framework

	RFC6681 Raptor Forward Error Correction (FEC) Schemes for FECFRAME

	RFC6682 RTP Payload Format for Raptor Forward Error Correction (FEC)

	RFC6683 Guidelines for Implementing Digital Video Broadcasting - IPTV (DVB-IPTV) Application-Layer Hybrid Forward Error Correction (FEC) Protection

	RFC6695 Methods to Convey Forward Error Correction (FEC) Framework Configuration Information

	RFC6801 Pseudo Content Delivery Protocol (CDP) for Protecting Multiple Source Flows in the Forward Error Correction (FEC) Framework

	RFC6816 Simple Low-Density Parity Check (LDPC) Staircase Forward Error Correction (FEC) Scheme for FECFRAME

	RFC6865 Simple Reed-Solomon Forward Error Correction (FEC) Scheme for FECFRAME

6015 - RTP Payload Format for 1-D Interleaved Parity Forward Error Correction (F

Index
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6015

Category: Standards Track

ISSN: 2070-1721

A. Begen

Cisco

October 2010

RTP Payload Format for 1-D Interleaved Parity Forward Error Correction (FEC)

Abstract

 This document defines a new RTP payload format for the Forward Error
 Correction (FEC) that is generated by the 1-D interleaved parity code
 from a source media encapsulated in RTP. The 1-D interleaved parity
 code is a systematic code, where a number of repair symbols are
 generated from a set of source symbols and sent in a repair flow
 separate from the source flow that carries the source symbols. The
 1-D interleaved parity code offers a good protection against bursty
 packet losses at a cost of reasonable complexity. The new payload
 format defined in this document should only be used (with some
 exceptions) as a part of the Digital Video Broadcasting-IPTV (DVB-
 IPTV) Application-layer FEC specification.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6015.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Use Cases

	 1.2. Overhead Computation

	 1.3. Relation to Existing Specifications
	 1.3.1. RFCs 2733 and 3009

	 1.3.2. SMPTE 2022-1

	 1.3.3. ETSI TS 102 034

	 1.4. Scope of the Payload Format

	2. Requirements Notation

	3. Definitions, Notations, and Abbreviations
	 3.1. Definitions

	 3.2. Notations

	4. Packet Formats
	 4.1. Source Packets

	 4.2. Repair Packets

	5. Payload Format Parameters
	 5.1. Media Type Registration
	 5.1.1. Registration of audio/1d-interleaved-parityfec

	 5.1.2. Registration of video/1d-interleaved-parityfec

	 5.1.3. Registration of text/1d-interleaved-parityfec

	 5.1.4. Registration of application/1d-interleaved-parityfec

	 5.2. Mapping to SDP Parameters
	 5.2.1. Offer-Answer Model Considerations

	 5.2.2. Declarative Considerations

	6. Protection and Recovery Procedures
	 6.1. Overview

	 6.2. Repair Packet Construction

	 6.3. Source Packet Reconstruction
	 6.3.1. Associating the Source and Repair Packets

	 6.3.2. Recovering the RTP Header and Payload

	7. Session Description Protocol (SDP) Signaling

	8. Congestion Control Considerations

	9. Security Considerations

	10. IANA Considerations

	11. Acknowledgments

	12. References
	 12.1. Normative References

	 12.2. Informative References

1. Introduction

 This document extends the Forward Error Correction (FEC) header
 defined in [RFC2733] and uses this new FEC header for the FEC that is
 generated by the 1-D interleaved parity code from a source media
 encapsulated in RTP [RFC3550]. The resulting new RTP payload format
 is registered by this document.

 The type of the source media protected by the 1-D interleaved parity
 code can be audio, video, text, or application. The FEC data are
 generated according to the media type parameters that are
 communicated through out-of-band means. The associations/
 relationships between the source and repair flows are also
 communicated through out-of-band means.

 The 1-D interleaved parity FEC uses the exclusive OR (XOR) operation
 to generate the repair symbols. In a nutshell, the following steps
 take place:

 1. The sender determines a set of source packets to be protected
 together based on the media type parameters.

 2. The sender applies the XOR operation on the source symbols to
 generate the required number of repair symbols.

 3. The sender packetizes the repair symbols and sends the repair
 packet(s) along with the source packets to the receiver(s) (in
 different flows). The repair packets may be sent proactively or
 on demand.

 Note that the source and repair packets belong to different source
 and repair flows, and the sender needs to provide a way for the
 receivers to demultiplex them, even in the case in which they are
 sent in the same transport flow (i.e., same source/destination
 address/port with UDP). This is required to offer backward
 compatibility (see Section 4). At the receiver side, if all of the
 source packets are successfully received, there is no need for FEC
 recovery and the repair packets are discarded. However, if there are
 missing source packets, the repair packets can be used to recover the
 missing information. Block diagrams for the systematic parity FEC
 encoder and decoder are sketched in Figures 1 and 2, respectively.

 +‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑+ +‑‑+ +‑‑+ +‑‑+ ‑‑> | Systematic | ‑‑> +‑‑+ +‑‑+ +‑‑+ +‑‑+
+‑‑+ +‑‑+ +‑‑+ +‑‑+ | Parity FEC | +‑‑+ +‑‑+ +‑‑+ +‑‑+
 | Encoder |
 | (Sender) | ‑‑> +==+ +==+
 +‑‑‑‑‑‑‑‑‑‑‑‑+ +==+ +==+

Source Packet: +‑‑+ Repair Packet: +==+
 +‑‑+ +==+

 Figure 1: Block diagram for systematic parity FEC encoder

 +‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑+ X X +‑‑+ ‑‑> | Systematic | ‑‑> +‑‑+ +‑‑+ +‑‑+ +‑‑+
+‑‑+ +‑‑+ | Parity FEC | +‑‑+ +‑‑+ +‑‑+ +‑‑+
 | Decoder |
 +==+ +==+ ‑‑> | (Receiver) |
 +==+ +==+ +‑‑‑‑‑‑‑‑‑‑‑‑+

Source Packet: +‑‑+ Repair Packet: +==+ Lost Packet: X
 +‑‑+ +==+

 Figure 2: Block diagram for systematic parity FEC decoder

 Suppose that we have a group of D x L source packets that have
 sequence numbers starting from 1 running to D x L. If we apply the
 XOR operation to the group of the source packets whose sequence
 numbers are L apart from each other as sketched in Figure 3, we
 generate L repair packets. This process is referred to as 1-D
 interleaved FEC protection, and the resulting L repair packets are
 referred to as interleaved (or column) FEC packets.

+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
S_1		S_2		S3	...	S_L
S_L+1		S_L+2		S_L+3	...	S_2xL
.		.				
.		.				
.		.				
S_(D‑1)xL+1		S_(D‑1)xL+2		S_(D‑1)xL+3	...	S_DxL
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
 + + + +
 ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
| XOR | | XOR | | XOR | ... | XOR |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑
 = = = =
 +===+ +===+ +===+ +===+
 |C_1| |C_2| |C_3| ... |C_L|
 +===+ +===+ +===+ +===+

 Figure 3: Generating interleaved (column) FEC packets

 In Figure 3, S_n and C_m denote the source packet with a sequence
 number n and the interleaved (column) FEC packet with a sequence
 number m, respectively.

1.1. Use Cases

 We generate one interleaved FEC packet out of D non-consecutive
 source packets. This repair packet can provide a full recovery of
 the missing information if there is only one packet missing among the
 corresponding source packets. This implies that 1-D interleaved FEC
 protection performs well under bursty loss conditions provided that a
 large enough value is chosen for L, i.e., L packet duration should
 not be shorter than the duration of the burst that is intended to be
 repaired.

 For example, consider the scenario depicted in Figure 4 in which the
 sender generates interleaved FEC packets and a bursty loss hits the
 source packets. Since the number of columns is larger than the
 number of packets lost due to the bursty loss, the repair operation
 succeeds.

+‑‑‑+
| 1 | X X X
+‑‑‑+

+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
| 5 | | 6 | | 7 | | 8 |
+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+

+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
| 9 | | 10| | 11| | 12|
+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+

+===+ +===+ +===+ +===+
|C_1| |C_2| |C_3| |C_4|
+===+ +===+ +===+ +===+

 Figure 4: Example scenario where 1-D interleaved FEC protection

 succeeds error recovery

 The sender may generate interleaved FEC packets to combat the bursty
 packet losses. However, two or more random packet losses may hit the
 source and repair packets in the same column. In that case, the
 repair operation fails. This is illustrated in Figure 5. Note that
 it is possible that two or more bursty losses may occur in the same
 source block, in which case interleaved FEC packets may still fail to
 recover the lost data.

+‑‑‑+ +‑‑‑+ +‑‑‑+
| 1 | X | 3 | | 4 |
+‑‑‑+ +‑‑‑+ +‑‑‑+

+‑‑‑+ +‑‑‑+ +‑‑‑+
| 5 | X | 7 | | 8 |
+‑‑‑+ +‑‑‑+ +‑‑‑+

+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+
| 9 | | 10| | 11| | 12|
+‑‑‑+ +‑‑‑+ +‑‑‑+ +‑‑‑+

+===+ +===+ +===+ +===+
|C_1| |C_2| |C_3| |C_4|
+===+ +===+ +===+ +===+

 Figure 5: Example scenario where 1-D interleaved FEC protection fails

 error recovery

1.2. Overhead Computation

 The overhead is defined as the ratio of the number of bytes that
 belong to the repair packets to the number of bytes that belong to
 the protected source packets.

 Assuming that each repair packet carries an equal number of bytes
 carried by a source packet and ignoring the size of the FEC header,
 we can compute the overhead as follows:

 Overhead = 1/D

 where D is the number of rows in the source block.

1.3. Relation to Existing Specifications

 This section discusses the relation of the current specification to
 other existing specifications.

1.3.1. RFCs 2733 and 3009

 The current specification extends the FEC header defined in [RFC2733]
 and registers a new RTP payload format. This new payload format is
 not backward compatible with the payload format that was registered
 by [RFC3009].

1.3.2. SMPTE 2022-1

 In 2007, the Society of Motion Picture and Television Engineers
 (SMPTE) - Technology Committee N26 on File Management and Networking
 Technology - decided to revise the Pro-MPEG Code of Practice (CoP) #3
 Release 2 specification (initially produced by the Pro-MPEG Forum in
 2004), which discussed several aspects of the transmission of MPEG-2
 transport streams over IP networks. The new SMPTE specification is
 referred to as [SMPTE2022-1].

 The Pro-MPEG CoP #3 Release 2 document was originally based on
 [RFC2733]. SMPTE revised the document by extending the FEC header
 proposed in [RFC2733] (by setting the E bit). This extended header
 offers some improvements.

 For example, instead of utilizing the bitmap field used in [RFC2733],
 [SMPTE2022-1] introduces separate fields to convey the number of rows
 (D) and columns (L) of the source block as well as the type of the
 repair packet (i.e., whether the repair packet is an interleaved FEC
 packet computed over a column or a non-interleaved FEC packet
 computed over a row). These fields, plus the base sequence number,
 allow the receiver side to establish associations between the source
 and repair packets. Note that although the bitmap field is not
 utilized, the FEC header of [SMPTE2022-1] inherently carries over the
 bitmap field from [RFC2733].

 On the other hand, some parts of [SMPTE2022-1] are not in compliance
 with RTP [RFC3550]. For example, [SMPTE2022-1] sets the
 Synchronization Source (SSRC) field to zero and does not use the
 timestamp field in the RTP headers of the repair packets (receivers
 ignore the timestamps of the repair packets). Furthermore,
 [SMPTE2022-1] also sets the CSRC Count (CC) field in the RTP header
 to zero and does not allow any Contributing Source (CSRC) entry in
 the RTP header.

 The current document adopts the extended FEC header of [SMPTE2022-1]
 and registers a new RTP payload format. At the same time, this
 document fixes the parts of [SMPTE2022-1] that are not compliant with
 RTP [RFC3550], except the one discussed below.

 The baseline header format first proposed in [RFC2733] does not have
 fields to protect the P and X bits and the CC fields of the source
 packets associated with a repair packet. Rather, the P bit, X bit,
 and CC field in the RTP header of the repair packet are used to
 protect those bits and fields. This, however, may sometimes result
 in failures when doing the RTP header validity checks as specified in
 [RFC3550]. While this behavior has been fixed in [RFC5109], which
 obsoleted [RFC2733], the RTP payload format defined in this document
 still allows this behavior for legacy purposes. Implementations
 following this specification must be aware of this potential issue
 when RTP header validity checks are applied.

1.3.3. ETSI TS 102 034

 In 2009, the Digital Video Broadcasting (DVB) consortium published a
 technical specification [ETSI-TS-102-034] through the European
 Telecommunications Standards Institute (ETSI). This specification
 covers several areas related to the transmission of MPEG-2 transport
 stream-based services over IP networks.

 Annex E of [ETSI-TS-102-034] defines an optional protocol for
 Application-layer FEC (AL-FEC) protection of streaming media for
 DVB-IP services carried over RTP [RFC3550] transport. The DVB-IPTV
 AL-FEC protocol uses two layers for protection: a base layer that is
 produced by a packet-based interleaved parity code, and an
 enhancement layer that is produced by a Raptor code [DVB-AL-FEC].
 While the use of the enhancement layer is optional, the use of the
 base layer is mandatory wherever AL-FEC is used. The DVB-IPTV AL-FEC
 protocol is also described in [DVB-AL-FEC].

 The interleaved parity code that is used in the base layer is a
 subset of [SMPTE2022-1]. In particular, the AL-FEC base layer uses
 only the 1-D interleaved FEC protection from [SMPTE2022-1]. The new
 RTP payload format that is defined and registered in this document
 (with some exceptions listed in [DVB-AL-FEC]) is used as the AL-FEC
 base layer.

1.4. Scope of the Payload Format

 The payload format specified in this document must only be used in
 legacy applications where the limitations explained in Section 1.3.2
 are known not to impact any system components or other RTP elements.
 Whenever possible, a payload format that is fully compliant with
 [RFC3550], such as [RFC5109] or other newer payload formats, must be
 used.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Definitions, Notations, and Abbreviations

 The definitions and notations commonly used in this document are
 summarized in this section.

3.1. Definitions

 This document uses the following definitions:

 Source Flow: The packet flow(s) carrying the source data to which FEC
 protection is to be applied.

 Repair Flow: The packet flow(s) carrying the repair data.

 Symbol: A unit of data. Its size, in bytes, is referred to as the
 symbol size.

 Source Symbol: The smallest unit of data used during the encoding
 process.

 Repair Symbol: Repair symbols are generated from the source symbols.

 Source Packet: Data packets that contain only source symbols.

 Repair Packet: Data packets that contain only repair symbols.

 Source Block: A block of source symbols that are considered together
 in the encoding process.

3.2. Notations

 o L: Number of columns of the source block.

 o D: Number of rows of the source block.

4. Packet Formats

 This section defines the formats of the source and repair packets.

4.1. Source Packets

 The source packets need to contain information that identifies the
 source block and the position within the source block occupied by the
 packet. Since the source packets that are carried within an RTP
 stream already contain unique sequence numbers in their RTP headers
 [RFC3550], we can identify the source packets in a straightforward
 manner, and there is no need to append additional field(s). The
 primary advantage of not modifying the source packets in any way is
 that it provides backward compatibility for the receivers that do not
 support FEC at all. In multicast scenarios, this backward
 compatibility becomes quite useful as it allows the non-FEC-capable
 and FEC-capable receivers to receive and interpret the same source
 packets sent in the same multicast session.

4.2. Repair Packets

 The repair packets MUST contain information that identifies the
 source block to which they pertain and the relationship between the
 contained repair symbols and the original source block. For this
 purpose, we use the RTP header of the repair packets as well as
 another header within the RTP payload, which we refer to as the FEC
 header, as shown in Figure 6.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RTP Header | __
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| FEC Header | \
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ > RTP Payload
| Repair Symbols | /
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ __|

 Figure 6: Format of repair packets

 The RTP header is formatted according to [RFC3550] with some further
 clarifications listed below:

 o Version: The version field is set to 2.

 o Padding (P) Bit: This bit is equal to the XOR sum of the
 corresponding P bits from the RTP headers of the source packets
 protected by this repair packet. However, padding octets are
 never present in a repair packet, independent of the value of the
 P bit.

 o Extension (X) Bit: This bit is equal to the XOR sum of the
 corresponding X bits from the RTP headers of the source packets
 protected by this repair packet. However, an RTP header extension
 is never present in a repair packet, independent of the value of
 the X bit.

 o CSRC Count (CC): This field is equal to the XOR sum of the
 corresponding CC values from the RTP headers of the source packets
 protected by this repair packet. However, a CSRC list is never
 present in a repair packet, independent of the value of the CC
 field.

 o Marker (M) Bit: This bit is equal to the XOR sum of the
 corresponding M bits from the RTP headers of the source packets
 protected by this repair packet.

 o Payload Type: The (dynamic) payload type for the repair packets is
 determined through out-of-band means. Note that this document
 registers a new payload format for the repair packets (refer to
 Section 5 for details). According to [RFC3550], an RTP receiver
 that cannot recognize a payload type must discard it. This action
 provides backward compatibility. The FEC mechanisms can then be
 used in a multicast group with mixed FEC-capable and non-FEC-

 capable receivers. If a non-FEC-capable receiver receives a
 repair packet, it will not recognize the payload type, and hence,
 discards the repair packet.

 o Sequence Number (SN): The sequence number has the standard
 definition. It MUST be one higher than the sequence number in the
 previously transmitted repair packet. The initial value of the
 sequence number SHOULD be random (unpredictable) [RFC3550].

 o Timestamp (TS): The timestamp SHALL be set to a time corresponding
 to the repair packet's transmission time. Note that the timestamp
 value has no use in the actual FEC protection process and is
 usually useful for jitter calculations.

 o Synchronization Source (SSRC): The SSRC value SHALL be randomly
 assigned as suggested by [RFC3550]. This allows the sender to
 multiplex the source and repair flows on the same port or
 multiplex multiple repair flows on a single port. The repair
 flows SHOULD use the RTP Control Protocol (RTCP) CNAME field to
 associate themselves with the source flow.

 In some networks, the RTP Source (which produces the source
 packets) and the FEC Source (which generates the repair packets
 from the source packets) may not be the same host. In such
 scenarios, using the same CNAME for the source and repair flows
 means that the RTP Source and the FEC Source MUST share the same
 CNAME (for this specific source-repair flow association). A
 common CNAME may be produced based on an algorithm that is known
 both to the RTP and FEC Source. This usage is compliant with
 [RFC3550].

 Note that due to the randomness of the SSRC assignments, there is
 a possibility of SSRC collision. In such cases, the collisions
 MUST be resolved as described in [RFC3550].

 Note that the P bit, X bit, CC field, and M bit of the source packets
 are protected by the corresponding bits/fields in the RTP header of
 the repair packet. On the other hand, the payload of a repair packet
 protects the concatenation of (if present) the CSRC list, RTP
 extension, payload, and padding of the source RTP packets associated
 with this repair packet.

 The FEC header is 16 octets. The format of the FEC header is shown
 in Figure 7.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| SN base low | Length recovery |
+‑+
|E| PT recovery | Mask |
+‑+
| TS recovery |
+‑+
|N|D|Type |Index| Offset | NA | SN base ext |
+‑+

 Figure 7: Format of the FEC header

 The FEC header consists of the following fields:

 o The SN base low field is used to indicate the lowest sequence
 number, taking wraparound into account, of those source packets
 protected by this repair packet.

 o The Length recovery field is used to determine the length of any
 recovered packets.

 o The E bit is the extension flag introduced in [RFC2733] and used
 to extend the [RFC2733] FEC header.

 o The PT recovery field is used to determine the payload type of the
 recovered packets.

 o The Mask field is not used.

 o The TS recovery field is used to determine the timestamp of the
 recovered packets.

 o The N bit is the extension flag that is reserved for future use.

 o The D bit is not used.

 o The Type field indicates the type of the error-correcting code
 used. This document defines only one error-correcting code.

 o The Index field is not used.

 o The Offset and NA fields are used to indicate the number of
 columns (L) and rows (D) of the source block, respectively.

 o The SN base ext field is not used.

 The details on setting the fields in the FEC header are provided in
 Section 6.2.

 It should be noted that a Mask-based approach (similar to the one
 specified in [RFC2733]) may not be very efficient to indicate which
 source packets in the current source block are associated with a
 given repair packet. In particular, for the applications that would
 like to use large source block sizes, the size of the Mask that is
 required to describe the source-repair packet associations may be
 prohibitively large. Instead, a systematized approach is inherently
 more efficient.

5. Payload Format Parameters

 This section provides the media subtype registration for the 1-D
 interleaved parity FEC. The parameters that are required to
 configure the FEC encoding and decoding operations are also defined
 in this section.

5.1. Media Type Registration

 This registration is done using the template defined in [RFC4288] and
 following the guidance provided in [RFC4855].

5.1.1. Registration of audio/1d-interleaved-parityfec

 Type name: audio

 Subtype name: 1d-interleaved-parityfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate in Hz. The (integer) rate
 SHALL be larger than 1000 to provide sufficient resolution to RTCP
 operations. However, it is RECOMMENDED to select the rate that
 matches the rate of the protected source RTP stream.

 o L: Number of columns of the source block. L is a positive integer
 that is less than or equal to 255.

 o D: Number of rows of the source block. D is a positive integer
 that is less than or equal to 255.

 o repair-window: The time that spans the FEC block (i.e., source
 packets and the corresponding repair packets). An FEC encoder
 processes a block of source packets and generates a number of
 repair packets, which are then transmitted within a certain
 duration not larger than the value of the repair window. At the

 receiver side, the FEC decoder should wait at least for the
 duration of the repair window after getting the first packet in an
 FEC block to allow all the repair packets to arrive (the waiting
 time can be adjusted if there are missing packets at the beginning
 of the FEC block). The FEC decoder can start decoding the already
 received packets sooner; however, it SHOULD NOT register an FEC
 decoding failure until it waits at least for the repair-window
 duration. The size of the repair window is specified in
 microseconds.

 Optional parameters: None.

 Encoding considerations: This media type is framed (see Section 4.8
 in the template document [RFC4288]) and contains binary data.

 Security considerations: See Section 9 of [RFC6015].

 Interoperability considerations: None.

 Published specification: [RFC6015].

 Applications that use this media type: Multimedia applications that
 want to improve resiliency against packet loss by sending redundant
 data in addition to the source media.

 Additional information: None.

 Person & email address to contact for further information: Ali Begen
 <abegen@cisco.com> and the IETF Audio/Video Transport Working Group.

 Intended usage: COMMON.

 Restriction on usage: This media type depends on RTP framing, and
 hence, is only defined for transport via RTP [RFC3550].

 Author: Ali Begen <abegen@cisco.com>.

 Change controller: IETF Audio/Video Transport Working Group delegated
 from the IESG.

5.1.2. Registration of video/1d-interleaved-parityfec

 Type name: video

 Subtype name: 1d-interleaved-parityfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate in Hz. The (integer) rate
 SHALL be larger than 1000 to provide sufficient resolution to RTCP
 operations. However, it is RECOMMENDED to select the rate that
 matches the rate of the protected source RTP stream.

 o L: Number of columns of the source block. L is a positive integer
 that is less than or equal to 255.

 o D: Number of rows of the source block. D is a positive integer
 that is less than or equal to 255.

 o repair-window: The time that spans the FEC block (i.e., source
 packets and the corresponding repair packets). An FEC encoder
 processes a block of source packets and generates a number of
 repair packets, which are then transmitted within a certain
 duration not larger than the value of the repair window. At the
 receiver side, the FEC decoder should wait at least for the
 duration of the repair window after getting the first packet in an
 FEC block to allow all the repair packets to arrive (the waiting
 time can be adjusted if there are missing packets at the beginning
 of the FEC block). The FEC decoder can start decoding the already
 received packets sooner; however, it SHOULD NOT register an FEC
 decoding failure until it waits at least for the repair-window
 duration. The size of the repair window is specified in
 microseconds.

 Optional parameters: None.

 Encoding considerations: This media type is framed (see Section 4.8
 in the template document [RFC4288]) and contains binary data.

 Security considerations: See Section 9 of [RFC6015].

 Interoperability considerations: None.

 Published specification: [RFC6015].

 Applications that use this media type: Multimedia applications that
 want to improve resiliency against packet loss by sending redundant
 data in addition to the source media.

 Additional information: None.

 Person & email address to contact for further information: Ali Begen
 <abegen@cisco.com> and the IETF Audio/Video Transport Working Group.

 Intended usage: COMMON.

 Restriction on usage: This media type depends on RTP framing, and
 hence, is only defined for transport via RTP [RFC3550].

 Author: Ali Begen <abegen@cisco.com>.

 Change controller: IETF Audio/Video Transport Working Group delegated
 from the IESG.

5.1.3. Registration of text/1d-interleaved-parityfec

 Type name: text

 Subtype name: 1d-interleaved-parityfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate in Hz. The (integer) rate
 SHALL be larger than 1000 to provide sufficient resolution to RTCP
 operations. However, it is RECOMMENDED to select the rate that
 matches the rate of the protected source RTP stream.

 o L: Number of columns of the source block. L is a positive integer
 that is less than or equal to 255.

 o D: Number of rows of the source block. D is a positive integer
 that is less than or equal to 255.

 o repair-window: The time that spans the FEC block (i.e., source
 packets and the corresponding repair packets). An FEC encoder
 processes a block of source packets and generates a number of
 repair packets, which are then transmitted within a certain
 duration not larger than the value of the repair window. At the
 receiver side, the FEC decoder should wait at least for the
 duration of the repair window after getting the first packet in an
 FEC block to allow all the repair packets to arrive (the waiting
 time can be adjusted if there are missing packets at the beginning
 of the FEC block). The FEC decoder can start decoding the already
 received packets sooner; however, it SHOULD NOT register an FEC
 decoding failure until it waits at least for the repair-window
 duration. The size of the repair window is specified in
 microseconds.

 Optional parameters: None.

 Encoding considerations: This media type is framed (see Section 4.8
 in the template document [RFC4288]) and contains binary data.

 Security considerations: See Section 9 of [RFC6015].

 Interoperability considerations: None.

 Published specification: [RFC6015].

 Applications that use this media type: Multimedia applications that
 want to improve resiliency against packet loss by sending redundant
 data in addition to the source media.

 Additional information: None.

 Person & email address to contact for further information: Ali Begen
 <abegen@cisco.com> and the IETF Audio/Video Transport Working Group.

 Intended usage: COMMON.

 Restriction on usage: This media type depends on RTP framing, and
 hence, is only defined for transport via RTP [RFC3550].

 Author: Ali Begen <abegen@cisco.com>.

 Change controller: IETF Audio/Video Transport Working Group delegated
 from the IESG.

5.1.4. Registration of application/1d-interleaved-parityfec

 Type name: application

 Subtype name: 1d-interleaved-parityfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate in Hz. The (integer) rate
 SHALL be larger than 1000 to provide sufficient resolution to RTCP
 operations. However, it is RECOMMENDED to select the rate that
 matches the rate of the protected source RTP stream.

 o L: Number of columns of the source block. L is a positive integer
 that is less than or equal to 255.

 o D: Number of rows of the source block. D is a positive integer
 that is less than or equal to 255.

 o repair-window: The time that spans the FEC block (i.e., source
 packets and the corresponding repair packets). An FEC encoder
 processes a block of source packets and generates a number of
 repair packets, which are then transmitted within a certain
 duration not larger than the value of the repair window. At the
 receiver side, the FEC decoder should wait at least for the

 duration of the repair window after getting the first packet in an
 FEC block to allow all the repair packets to arrive (the waiting
 time can be adjusted if there are missing packets at the beginning
 of the FEC block). The FEC decoder can start decoding the already
 received packets sooner; however, it SHOULD NOT register an FEC
 decoding failure until it waits at least for the repair-window
 duration. The size of the repair window is specified in
 microseconds.

 Optional parameters: None.

 Encoding considerations: This media type is framed (see Section 4.8
 in the template document [RFC4288]) and contains binary data.

 Security considerations: See Section 9 of [RFC6015].

 Interoperability considerations: None.

 Published specification: [RFC6015].

 Applications that use this media type: Multimedia applications that
 want to improve resiliency against packet loss by sending redundant
 data in addition to the source media.

 Additional information: None.

 Person & email address to contact for further information: Ali Begen
 <abegen@cisco.com> and the IETF Audio/Video Transport Working Group.

 Intended usage: COMMON.

 Restriction on usage: This media type depends on RTP framing, and
 hence, is only defined for transport via RTP [RFC3550].

 Author: Ali Begen <abegen@cisco.com>.

 Change controller: IETF Audio/Video Transport Working Group delegated
 from the IESG.

5.2. Mapping to SDP Parameters

 Applications that use RTP transport commonly use Session Description
 Protocol (SDP) [RFC4566] to describe their RTP sessions. The
 information that is used to specify the media types in an RTP session
 has specific mappings to the fields in an SDP description. In this
 section, we provide these mappings for the media subtype registered
 by this document ("1d-interleaved-parityfec"). Note that if an
 application does not use SDP to describe the RTP sessions, an
 appropriate mapping must be defined and used to specify the media
 types and their parameters for the control/description protocol
 employed by the application.

 The mapping of the media type specification for "1d-interleaved-
 parityfec" and its parameters in SDP is as follows:

 o The media type (e.g., "application") goes into the "m=" line as
 the media name.

 o The media subtype ("1d-interleaved-parityfec") goes into the
 "a=rtpmap" line as the encoding name. The RTP clock rate
 parameter ("rate") also goes into the "a=rtpmap" line as the clock
 rate.

 o The remaining required payload-format-specific parameters go into
 the "a=fmtp" line by copying them directly from the media type
 string as a semicolon-separated list of parameter=value pairs.

 SDP examples are provided in Section 7.

5.2.1. Offer-Answer Model Considerations

 When offering 1-D interleaved parity FEC over RTP using SDP in an
 Offer/Answer model [RFC3264], the following considerations apply:

 o Each combination of the L and D parameters produces a different
 FEC data and is not compatible with any other combination. A
 sender application may desire to offer multiple offers with
 different sets of L and D values as long as the parameter values
 are valid. The receiver SHOULD normally choose the offer that has
 a sufficient amount of interleaving. If multiple such offers
 exist, the receiver may choose the offer that has the lowest
 overhead or the one that requires the smallest amount of
 buffering. The selection depends on the application requirements.

 o The value for the repair-window parameter depends on the L and D
 values and cannot be chosen arbitrarily. More specifically, L and
 D values determine the lower limit for the repair-window size.
 The upper limit of the repair-window size does not depend on the L
 and D values.

 o Although combinations with the same L and D values but with
 different repair-window sizes produce the same FEC data, such
 combinations are still considered different offers. The size of
 the repair-window is related to the maximum delay between the

 transmission of a source packet and the associated repair packet.
 This directly impacts the buffering requirement on the receiver
 side, and the receiver must consider this when choosing an offer.

 o There are no optional format parameters defined for this payload.
 Any unknown option in the offer MUST be ignored and deleted from
 the answer. If FEC is not desired by the receiver, it can be
 deleted from the answer.

5.2.2. Declarative Considerations

 In declarative usage, like SDP in the Real-time Streaming Protocol
 (RTSP) [RFC2326] or the Session Announcement Protocol (SAP)
 [RFC2974], the following considerations apply:

 o The payload format configuration parameters are all declarative
 and a participant MUST use the configuration that is provided for
 the session.

 o More than one configuration may be provided (if desired) by
 declaring multiple RTP payload types. In that case, the receivers
 should choose the repair flow that is best for them.

6. Protection and Recovery Procedures

 This section provides a complete specification of the 1-D interleaved
 parity code and its RTP payload format.

6.1. Overview

 The following sections specify the steps involved in generating the
 repair packets and reconstructing the missing source packets from the
 repair packets.

6.2. Repair Packet Construction

 The RTP header of a repair packet is formed based on the guidelines
 given in Section 4.2.

 The FEC header includes 16 octets. It is constructed by applying the
 XOR operation on the bit strings that are generated from the
 individual source packets protected by this particular repair packet.
 The set of the source packets that are associated with a given repair
 packet can be computed by the formula given in Section 6.3.1.

 The bit string is formed for each source packet by concatenating the
 following fields together in the order specified:

 o Padding bit (1 bit) (This is the most significant bit of the bit
 string.)

 o Extension bit (1 bit)

 o CC field (4 bits)

 o Marker bit (1 bit)

 o PT field (7 bits)

 o Timestamp (32 bits)

 o Unsigned network-ordered 16-bit representation of the source
 packet length in bytes minus 12 (for the fixed RTP header), i.e.,
 the sum of the lengths of all the following if present: the CSRC
 list, header extension, RTP payload, and RTP padding (16 bits).

 o If CC is nonzero, the CSRC list (variable length)

 o If X is 1, the header extension (variable length)

 o Payload (variable length)

 o Padding, if present (variable length)

 Note that if the lengths of the source packets are not equal, each
 shorter packet MUST be padded to the length of the longest packet by
 adding octet(s) of 0 at the end. Due to this possible padding and
 mandatory FEC header, a repair packet has a larger size than the
 source packets it protects. This may cause problems if the resulting
 repair packet size exceeds the Maximum Transmission Unit (MTU) size
 of the path over which the repair flow is sent.

 By applying the parity operation on the bit strings produced from the
 source packets, we generate the FEC bit string. Some parts of the
 RTP header and the FEC header of the repair packet are generated from
 the FEC bit string as follows:

 o The first (most significant) bit in the FEC bit string is written
 into the Padding bit in the RTP header of the repair packet.

 o The next bit in the FEC bit string is written into the Extension
 bit in the RTP header of the repair packet.

 o The next 4 bits of the FEC bit string are written into the CC
 field in the RTP header of the repair packet.

 o The next bit of the FEC bit string is written into the Marker bit
 in the RTP header of the repair packet.

 o The next 7 bits of the FEC bit string are written into the PT
 recovery field in the FEC header.

 o The next 32 bits of the FEC bit string are written into the TS
 recovery field in the FEC header.

 o The next 16 bits are written into the Length recovery field in the
 FEC header. This allows the FEC procedure to be applied even when
 the lengths of the protected source packets are not identical.

 o The remaining bits are set to be the payload of the repair packet.

 The remaining parts of the FEC header are set as follows:

 o The SN base low field MUST be set to the lowest sequence number,
 taking wraparound into account, of those source packets protected
 by this repair packet.

 o The E bit MUST be set to 1 to extend the [RFC2733] FEC header.

 o The Mask field SHALL be set to 0 and ignored by the receiver.

 o The N bit SHALL be set to 0 and ignored by the receiver.

 o The D bit SHALL be set to 0 and ignored by the receiver.

 o The Type field MUST be set to 0 and ignored by the receiver.

 o The Index field SHALL be set to 0 and ignored by the receiver.

 o The Offset field MUST be set to the number of columns of the
 source block (L).

 o The NA field MUST be set to the number of rows of the source block
 (D).

 o The SN base ext field SHALL be set to 0 and ignored by the
 receiver.

6.3. Source Packet Reconstruction

 This section describes the recovery procedures that are required to
 reconstruct the missing source packets. The recovery process has two
 steps. In the first step, the FEC decoder determines which source
 and repair packets should be used in order to recover a missing
 packet. In the second step, the decoder recovers the missing packet,
 which consists of an RTP header and RTP payload.

 In the following, we describe the RECOMMENDED algorithms for the
 first and second steps. Based on the implementation, different
 algorithms MAY be adopted. However, the end result MUST be identical
 to the one produced by the algorithms described below.

6.3.1. Associating the Source and Repair Packets

 The first step is to associate the source and repair packets. The SN
 base low field in the FEC header shows the lowest sequence number of
 the source packets that form the particular column. In addition, the
 information of how many source packets are available in each column
 and row is available from the media type parameters specified in the
 SDP description. This set of information uniquely identifies all of
 the source packets associated with a given repair packet.

 Mathematically, for any received repair packet, p*, we can determine
 the sequence numbers of the source packets that are protected by this
 repair packet as follows:

 p*_snb + i * L (modulo 65536)

 where p*_snb denotes the value in the SN base low field of the FEC
 header of the p*, L is the number of columns of the source block and

 0 <= i < D

 where D is the number of rows of the source block.

 We denote the set of the source packets associated with repair packet
 p* by set T(p*). Note that in a source block whose size is L columns
 by D rows, set T includes D source packets. Recall that 1-D
 interleaved FEC protection can fully recover the missing information
 if there is only one source packet missing in set T. If the repair
 packet that protects the source packets in set T is missing, or the
 repair packet is available but two or more source packets are
 missing, then missing source packets in set T cannot be recovered by
 1-D interleaved FEC protection.

6.3.2. Recovering the RTP Header and Payload

 For a given set T, the procedure for the recovery of the RTP header
 of the missing packet, whose sequence number is denoted by SEQNUM, is
 as follows:

 1. For each of the source packets that are successfully received in
 set T, compute the bit string as described in Section 6.2.

 2. For the repair packet associated with set T, compute the bit
 string in the same fashion except use the PT recovery field
 instead of the PT field and TS recovery field instead of the
 Timestamp field, and set the CSRC list, header extension and
 padding to null regardless of the values of the CC field, X bit,
 and P bit.

 3. If any of the bit strings generated from the source packets are
 shorter than the bit string generated from the repair packet,
 pad them to be the same length as the bit string generated from
 the repair packet. For padding, the padding of octet 0 MUST be
 added at the end of the bit string.

 4. Calculate the recovered bit string as the XOR of the bit strings
 generated from all source packets in set T and the FEC bit
 string generated from the repair packet associated with set T.

 5. Create a new packet with the standard 12-byte RTP header and no
 payload.

 6. Set the version of the new packet to 2.

 7. Set the Padding bit in the new packet to the first bit in the
 recovered bit string.

 8. Set the Extension bit in the new packet to the next bit in the
 recovered bit string.

 9. Set the CC field to the next 4 bits in the recovered bit string.

 10. Set the Marker bit in the new packet to the next bit in the
 recovered bit string.

 11. Set the Payload type in the new packet to the next 7 bits in the
 recovered bit string.

 12. Set the SN field in the new packet to SEQNUM.

 13. Set the TS field in the new packet to the next 32 bits in the
 recovered bit string.

 14. Take the next 16 bits of the recovered bit string and set the
 new variable Y to whatever unsigned integer this represents
 (assuming network order). Convert Y to host order and then take
 Y bytes from the recovered bit string and append them to the new
 packet. Y represents the length of the new packet in bytes
 minus 12 (for the fixed RTP header), i.e., the sum of the
 lengths of all the following if present: the CSRC list, header
 extension, RTP payload, and RTP padding.

 15. Set the SSRC of the new packet to the SSRC of the source RTP
 stream.

 This procedure completely recovers both the header and payload of an
 RTP packet.

7. Session Description Protocol (SDP) Signaling

 This section provides an SDP [RFC4566] example. The following
 example uses the FEC grouping semantics [RFC5956].

 In this example, we have one source video stream (mid:S1) and one FEC
 repair stream (mid:R1). We form one FEC group with the "a=group:
 FEC-FR S1 R1" line. The source and repair streams are sent to the
 same port on different multicast groups. The repair window is set to
 200 ms.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=Interleaved Parity FEC Example
t=0 0
a=group:FEC‑FR S1 R1
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=mid:S1
m=application 30000 RTP/AVP 110
c=IN IP4 233.252.0.2/127
a=rtpmap:110 1d‑interleaved‑parityfec/90000
a=fmtp:110 L=5; D=10; repair‑window=200000
a=mid:R1

8. Congestion Control Considerations

 FEC is an effective approach to provide applications with resiliency
 against packet losses. However, in networks where the congestion is
 a major contributor to the packet loss, the potential impacts of
 using FEC SHOULD be considered carefully before injecting the repair
 flows into the network. In particular, in bandwidth-limited
 networks, FEC repair flows may consume most or all of the available
 bandwidth and may consequently congest the network. In such cases,
 the applications MUST NOT arbitrarily increase the amount of FEC
 protection since doing so may lead to a congestion collapse. If
 desired, stronger FEC protection MAY be applied only after the source
 rate has been reduced.

 In a network-friendly implementation, an application SHOULD NOT send/
 receive FEC repair flows if it knows that sending/receiving those FEC
 repair flows would not help at all in recovering the missing packets.
 Such a practice helps reduce the amount of wasted bandwidth. It is
 RECOMMENDED that the amount of FEC protection is adjusted dynamically
 based on the packet loss rate observed by the applications.

 In multicast scenarios, it may be difficult to optimize the FEC
 protection per receiver. If there is a large variation among the
 levels of FEC protection needed by different receivers, it is
 RECOMMENDED that the sender offers multiple repair flows with
 different levels of FEC protection and the receivers join the
 corresponding multicast sessions to receive the repair flow(s) that
 is best for them.

9. Security Considerations

 RTP packets using the payload format defined in this specification
 are subject to the security considerations discussed in the RTP
 specification [RFC3550] and in any applicable RTP profile.

 The main security considerations for the RTP packet carrying the RTP
 payload format defined within this memo are confidentiality,
 integrity, and source authenticity. Confidentiality is achieved by
 encrypting the RTP payload. Altering the FEC packets can have a big
 impact on the reconstruction operation. An attack that changes some
 bits in the FEC packets can have a significant effect on the
 calculation and the recovery of the source packets. For example,
 changing the length recovery field can result in the recovery of a
 packet that is too long. Depending on the application, it may be
 helpful to perform a sanity check on the received source and FEC
 packets before performing the recovery operation and to determine the
 validity of the recovered packets before using them.

 The integrity of the RTP packets is achieved through a suitable
 cryptographic integrity protection mechanism. Such a cryptographic
 system may also allow the authentication of the source of the
 payload. A suitable security mechanism for this RTP payload format
 should provide source authentication capable of determining if an RTP
 packet is from a member of the RTP session.

 Note that the appropriate mechanism to provide security to RTP and
 payloads following this memo may vary. It is dependent on the
 application, transport and signaling protocol employed. Therefore, a
 single mechanism is not sufficient, although if suitable, using the
 Secure Real-time Transport Protocol (SRTP) [RFC3711] is RECOMMENDED.
 Other mechanisms that may be used are IPsec [RFC4301] and Transport
 Layer Security (TLS) [RFC5246]; other alternatives may exist.

 If FEC protection is applied on already encrypted source packets,
 there is no need for additional encryption. However, if the source
 packets are encrypted after FEC protection is applied, the FEC
 packets should be cryptographically as secure as the source packets.
 Failure to provide an equal level of confidentiality, integrity, and
 authentication to the FEC packets can compromise the source packets'
 confidentiality, integrity or authentication since the FEC packets
 are generated by applying XOR operation across the source packets.

10. IANA Considerations

 New media subtypes are subject to IANA registration. For the
 registration of the payload format and its parameters introduced in
 this document, refer to Section 5.

11. Acknowledgments

 A major part of this document is borrowed from [RFC2733], [RFC5109],
 and [SMPTE2022-1]. Thus, the author would like to thank the authors
 and editors of these earlier specifications. The author also thanks
 Colin Perkins for his constructive suggestions for this document.

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC3550]
 Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP:
 Session Description Protocol", RFC 4566,
 July 2006.

 [RFC5956]
 Begen, A., "Forward Error Correction Grouping
 Semantics in Session Description Protocol",
 RFC 5956, September 2010.

 [RFC4288]
 Freed, N. and J. Klensin, "Media Type
 Specifications and Registration Procedures",
 BCP 13, RFC 4288, December 2005.

 [RFC4855]
 Casner, S., "Media Type Registration of RTP
 Payload Formats", RFC 4855, February 2007.

 [RFC3264]
 Rosenberg, J. and H. Schulzrinne, "An Offer/Answer
 Model with Session Description Protocol (SDP)",
 RFC 3264, June 2002.

12.2. Informative References

 [DVB-AL-FEC]
 Begen, A. and T. Stockhammer, "Guidelines for
 Implementing DVB-IPTV Application-Layer Hybrid FEC
 Protection", Work in Progress, December 2009.

 [RFC2733]
 Rosenberg, J. and H. Schulzrinne, "An RTP Payload
 Format for Generic Forward Error Correction",
 RFC 2733, December 1999.

 [RFC3009]
 Rosenberg, J. and H. Schulzrinne, "Registration of
 parityfec MIME types", RFC 3009, November 2000.

 [RFC5109]
 Li, A., "RTP Payload Format for Generic Forward
 Error Correction", RFC 5109, December 2007.

 [ETSI-TS-102-034]
 ETSI TS 102 034 V1.4.1, "Transport of MPEG 2 TS
 Based DVB Services over IP Based Networks",
 August 2009.

 [RFC2326]
 Schulzrinne, H., Rao, A., and R. Lanphier, "Real
 Time Streaming Protocol (RTSP)", RFC 2326,
 April 1998.

 [RFC2974]
 Handley, M., Perkins, C., and E. Whelan, "Session
 Announcement Protocol", RFC 2974, October 2000.

 [SMPTE2022-1]
 SMPTE 2022-1-2007, "Forward Error Correction for
 Real-Time Video/Audio Transport over IP Networks",
 2007.

 [RFC3711]
 Baugher, M., McGrew, D., Naslund, M., Carrara, E.,
 and K. Norrman, "The Secure Real-time Transport
 Protocol (SRTP)", RFC 3711, March 2004.

 [RFC4301]
 Kent, S. and K. Seo, "Security Architecture for
 the Internet Protocol", RFC 4301, December 2005.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.2", RFC 5246,
 August 2008.

Author's Address

Ali Begen
Cisco
181 Bay Street
Toronto, ON M5J 2T3
Canada

 EMail: abegen@cisco.com

6363 - Forward Error Correction (FEC) Framework

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6363

Category: Standards Track

ISSN: 2070-1721

M. Watson

Netflix, Inc.

A. Begen

Cisco

V. Roca

INRIA

October 2011

Forward Error Correction (FEC) Framework

Abstract

 This document describes a framework for using Forward Error
 Correction (FEC) codes with applications in public and private IP
 networks to provide protection against packet loss. The framework
 supports applying FEC to arbitrary packet flows over unreliable
 transport and is primarily intended for real-time, or streaming,
 media. This framework can be used to define Content Delivery
 Protocols that provide FEC for streaming media delivery or other
 packet flows. Content Delivery Protocols defined using this
 framework can support any FEC scheme (and associated FEC codes) that
 is compliant with various requirements defined in this document.
 Thus, Content Delivery Protocols can be defined that are not specific
 to a particular FEC scheme, and FEC schemes can be defined that are
 not specific to a particular Content Delivery Protocol.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6363.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Definitions and Abbreviations

	3. Architecture Overview

	4. Procedural Overview
	 4.1. General

	 4.2. Sender Operation

	 4.3. Receiver Operation

	5. Protocol Specification
	 5.1. General

	 5.2. Structure of the Source Block

	 5.3. Packet Format for FEC Source Packets
	 5.3.1. Generic Explicit Source FEC Payload ID

	 5.4. Packet Format for FEC Repair Packets
	 5.4.1. Packet Format for FEC Repair Packets over RTP

	 5.5. FEC Framework Configuration Information

	 5.6. FEC Scheme Requirements

	6. Feedback

	7. Transport Protocols

	8. Congestion Control
	 8.1. Motivation

	 8.2. Normative Requirements

	9. Security Considerations
	 9.1. Problem Statement

	 9.2. Attacks against the Data Flows
	 9.2.1. Access to Confidential Content

	 9.2.2. Content Corruption

	 9.3. Attacks against the FEC Parameters

	 9.4. When Several Source Flows Are to Be Protected Together

	 9.5. Baseline Secure FEC Framework Operation

	10. Operations and Management Considerations
	 10.1. What Are the Key Aspects to Consider?

	 10.2. Operational and Management Recommendations

	11. IANA Considerations

	12. Acknowledgments

	13. References
	 13.1. Normative References

	 13.2. Informative References

1. Introduction

 Many applications have a requirement to transport a continuous stream
 of packetized data from a source (sender) to one or more destinations
 (receivers) over networks that do not provide guaranteed packet
 delivery. Primary examples are real-time, or streaming, media
 applications such as broadcast, multicast, or on-demand forms of
 audio, video, or multimedia.

 Forward Error Correction (FEC) is a well-known technique for
 improving the reliability of packet transmission over networks that
 do not provide guaranteed packet delivery, especially in multicast
 and broadcast applications. The FEC Building Block, defined in
 [RFC5052], provides a framework for the definition of Content
 Delivery Protocols (CDPs) for object delivery (including, primarily,
 file delivery) that make use of separately defined FEC schemes. Any
 CDP defined according to the requirements of the FEC Building Block
 can then easily be used with any FEC scheme that is also defined
 according to the requirements of the FEC Building Block.

 Note that the term "Forward Erasure Correction" is sometimes used,
 erasures being a type of error in which data is lost and this loss
 can be detected, rather than being received in corrupted form. The
 focus of this document is strictly on erasures, and the term "Forward
 Error Correction" is more widely used.

 This document defines a framework for the definition of CDPs that
 provide for FEC protection for arbitrary packet flows over unreliable
 transports such as UDP. As such, this document complements the FEC
 Building Block of [RFC5052], by providing for the case of arbitrary
 packet flows over unreliable transport, the same kind of framework as
 that document provides for object delivery. This document does not
 define a complete CDP; rather, it defines only those aspects that are
 expected to be common to all CDPs based on this framework.

 This framework does not define how the flows to be protected are
 determined, nor does it define how the details of the protected flows
 and the FEC streams that protect them are communicated from sender to
 receiver. It is expected that any complete CDP specification that
 makes use of this framework will address these signaling
 requirements. However, this document does specify the information
 that is required by the FEC Framework at the sender and receiver,
 e.g., details of the flows to be FEC protected, the flow(s) that will
 carry the FEC protection data, and an opaque container for
 FEC-Scheme-Specific Information.

 FEC schemes designed for use with this framework must fulfill a
 number of requirements defined in this document. These requirements
 are different from those defined in [RFC5052] for FEC schemes for
 object delivery. However, there is a great deal of commonality, and
 FEC schemes defined for object delivery may be easily adapted for use
 with the framework defined in this document.

 Since RTP [RFC3550] is (often) used over UDP, this framework can be
 applied to RTP flows as well. FEC repair packets may be sent
 directly over UDP or RTP. The latter approach has the advantage that
 RTP instrumentation, based on the RTP Control Protocol (RTCP), can be
 used for the repair flow. Additionally, the post-repair RTCP
 extended reports [RFC5725] may be used to obtain information about
 the loss rate after FEC recovery.

 The use of RTP for repair flows is defined for each FEC scheme by
 defining an RTP payload format for that particular FEC scheme
 (possibly in the same document).

2. Definitions and Abbreviations

 Application Data Unit (ADU): The unit of source data provided as

 payload to the transport layer.

 ADU Flow: A sequence of ADUs associated with a transport-layer flow

 identifier (such as the standard 5-tuple {source IP address,
 source port, destination IP address, destination port, transport
 protocol}).

 AL-FEC: Application-layer Forward Error Correction.

 Application Protocol: Control protocol used to establish and control

 the source flow being protected, e.g., the Real-Time Streaming
 Protocol (RTSP).

 Content Delivery Protocol (CDP): A complete application protocol

 specification that, through the use of the framework defined in
 this document, is able to make use of FEC schemes to provide FEC
 capabilities.

 FEC Code: An algorithm for encoding data such that the encoded data

 flow is resilient to data loss. Note that, in general, FEC codes
 may also be used to make a data flow resilient to corruption, but
 that is not considered in this document.

 FEC Framework: A protocol framework for the definition of Content

 Delivery Protocols using FEC, such as the framework defined in
 this document.

 FEC Framework Configuration Information: Information that controls

 the operation of the FEC Framework.

 FEC Payload ID: Information that identifies the contents of a packet

 with respect to the FEC scheme.

 FEC Repair Packet: At a sender (respectively, at a receiver), a

 payload submitted to (respectively, received from) the transport
 protocol containing one or more repair symbols along with a Repair
 FEC Payload ID and possibly an RTP header.

 FEC Scheme: A specification that defines the additional protocol

 aspects required to use a particular FEC code with the FEC
 Framework.

 FEC Source Packet: At a sender (respectively, at a receiver), a

 payload submitted to (respectively, received from) the transport
 protocol containing an ADU along with an optional Explicit Source
 FEC Payload ID.

 Protection Amount: The relative increase in data sent due to the use

 of FEC.

 Repair Flow: The packet flow carrying FEC data.

 Repair FEC Payload ID: A FEC Payload ID specifically for use with

 repair packets.

 Source Flow: The packet flow to which FEC protection is to be

 applied. A source flow consists of ADUs.

 Source FEC Payload ID: A FEC Payload ID specifically for use with

 source packets.

 Source Protocol: A protocol used for the source flow being protected,

 e.g., RTP.

 Transport Protocol: The protocol used for the transport of the source

 and repair flows, e.g., UDP and the Datagram Congestion Control
 Protocol (DCCP).

 The following definitions are aligned with [RFC5052]:

 Code Rate: The ratio between the number of source symbols and the

 number of encoding symbols. By definition, the code rate is such
 that 0 < code rate <= 1. A code rate close to 1 indicates that a
 small number of repair symbols have been produced during the
 encoding process.

 Encoding Symbol: Unit of data generated by the encoding process.

 With systematic codes, source symbols are part of the encoding
 symbols.

 Packet Erasure Channel: A communication path where packets are either

 dropped (e.g., by a congested router, or because the number of
 transmission errors exceeds the correction capabilities of the
 physical-layer codes) or received. When a packet is received, it
 is assumed that this packet is not corrupted.

 Repair Symbol: Encoding symbol that is not a source symbol.

 Source Block: Group of ADUs that are to be FEC protected as a single

 block.

 Source Symbol: Unit of data used during the encoding process.

 Systematic Code: FEC code in which the source symbols are part of the

 encoding symbols.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Architecture Overview

 The FEC Framework is described in terms of an additional layer
 between the transport layer (e.g., UDP or DCCP) and protocols running
 over this transport layer. As such, the data path interface between
 the FEC Framework and both underlying and overlying layers can be
 thought of as being the same as the standard interface to the
 transport layer; i.e., the data exchanged consists of datagram
 payloads each associated with a single ADU flow identified by the
 standard 5-tuple {source IP address, source port, destination IP
 address, destination port, transport protocol}. In the case that RTP
 is used for the repair flows, the source and repair data can be
 multiplexed using RTP onto a single UDP flow and needs to be
 consequently demultiplexed at the receiver. There are various ways
 in which this multiplexing can be done (for example, as described in
 [RFC4588]).

 It is important to understand that the main purpose of the FEC
 Framework architecture is to allocate functional responsibilities to
 separately documented components in such a way that specific
 instances of the components can be combined in different ways to
 describe different protocols.

 The FEC Framework makes use of a FEC scheme, in a similar sense to
 that defined in [RFC5052], and uses the terminology of that document.
 The FEC scheme defines the FEC encoding and decoding, and it defines
 the protocol fields and procedures used to identify packet payload
 data in the context of the FEC scheme. The interface between the FEC
 Framework and a FEC scheme, which is described in this document, is a
 logical one that exists for specification purposes only. At an
 encoder, the FEC Framework passes ADUs to the FEC scheme for FEC
 encoding. The FEC scheme returns repair symbols with their
 associated Repair FEC Payload IDs and, in some cases, Source FEC
 Payload IDs, depending on the FEC scheme. At a decoder, the FEC
 Framework passes transport packet payloads (source and repair) to the
 FEC scheme, and the FEC scheme returns additional recovered source
 packet payloads.

 This document defines certain FEC Framework Configuration Information
 that MUST be available to both sender and receiver(s). For example,
 this information includes the specification of the ADU flows that are
 to be FEC protected, specification of the ADU flow(s) that will carry
 the FEC protection (repair) data, and the relationship(s) between
 these source and repair flows (i.e., which source flow(s) are
 protected by repair flow(s)). The FEC Framework Configuration
 Information also includes information fields that are specific to the
 FEC scheme. This information is analogous to the FEC Object
 Transmission Information defined in [RFC5052].

 The FEC Framework does not define how the FEC Framework Configuration
 Information for the stream is communicated from sender to receiver.
 This has to be defined by any CDP specification, as described in the
 following sections.

 In this architecture, we assume that the interface to the transport
 layer supports the concepts of data units (referred to here as
 Application Data Units (ADUs)) to be transported and identification
 of ADU flows on which those data units are transported. Since this
 is an interface internal to the architecture, we do not specify this
 interface explicitly. We do require that ADU flows that are distinct
 from the transport layer point of view (for example, distinct UDP
 flows as identified by the UDP source/destination addresses/ports)
 are also distinct on the interface between the transport layer and
 the FEC Framework.

 As noted above, RTP flows are a specific example of ADU flows that
 might be protected by the FEC Framework. From the FEC Framework
 point of view, RTP source flows are ADU flows like any other, with
 the RTP header included within the ADU.

 Depending on the FEC scheme, RTP can also be used as a transport for
 repair packet flows. In this case, a FEC scheme has to define an RTP
 payload format for the repair data.

 The architecture outlined above is illustrated in Figure 1. In this
 architecture, two (optional) RTP instances are shown, for the source
 and repair data, respectively. This is because the use of RTP for
 the source data is separate from, and independent of, the use of RTP
 for the repair data. The appearance of two RTP instances is more
 natural when one considers that in many FEC codes, the repair payload
 contains repair data calculated across the RTP headers of the source
 packets. Thus, a repair packet carried over RTP starts with an RTP
 header of its own, which is followed (after the Repair Payload ID) by
 repair data containing bytes that protect the source RTP headers (as
 well as repair data for the source RTP payloads).

 +‑‑+
 | Application |
 +‑‑+
 |
 |
 |
+ ‑+
| +‑‑+ |
 | Application Layer |
| +‑‑+ |
 | |
| + ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑+ | |
 | RTP (Optional) | |
| | | |‑ Configuration/
 +‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑+ | Coordination
| | | |
 | ADU flows |
| | v |
 +‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| | FEC Framework (This document) |<‑‑‑>| FEC Scheme |
 +‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| | | |
 Source | Repair |
| | | |
 +‑‑ ‑‑ ‑‑ ‑‑ ‑‑|‑‑ ‑‑+ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ + ‑‑ ‑‑+
| | RTP Layer | | RTP Processing | | |
 | (Optional) | +‑‑ ‑‑ ‑‑ |‑ ‑‑ ‑+ |
| | +‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ |‑‑+ | |
 | | RTP (De)multiplexing | |
| +‑‑ ‑‑ ‑‑ ‑‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑+ |
 |
| +‑‑+ |
 | Transport Layer (e.g., UDP) |
| +‑‑+ |
 |
| +‑‑+ |
 | IP |
| +‑‑+ |

| Content Delivery Protocol |
+ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ +

 Figure 1: FEC Framework Architecture

 The content of the transport payload for repair packets is fully
 defined by the FEC scheme. For a specific FEC scheme, a means MAY be
 defined for repair data to be carried over RTP, in which case, the
 repair packet payload format starts with the RTP header. This
 corresponds to defining an RTP payload format for the specific FEC
 scheme.

 The use of RTP for repair packets is independent of the protocols
 used for source packets: if RTP is used for source packets, repair
 packets may or may not use RTP and vice versa (although it is
 unlikely that there are useful scenarios where non-RTP source flows
 are protected by RTP repair flows). FEC schemes are expected to
 recover entire transport payloads for recovered source packets in all
 cases. For example, if RTP is used for source flows, the FEC scheme
 is expected to recover the entire UDP payload, including the RTP
 header.

4. Procedural Overview

4.1. General

 The mechanism defined in this document does not place any
 restrictions on the ADUs that can be protected together, except that
 the ADU be carried over a supported transport protocol (see
 Section 7). The data can be from multiple source flows that are
 protected jointly. The FEC Framework handles the source flows as a
 sequence of source blocks each consisting of a set of ADUs, possibly
 from multiple source flows that are to be protected together. For
 example, each source block can be constructed from those ADUs related
 to a particular segment in time of the flow.

 At the sender, the FEC Framework passes the payloads for a given
 block to the FEC scheme for FEC encoding. The FEC scheme performs
 the FEC encoding operation and returns the following information:

 o Optionally, FEC Payload IDs for each of the source payloads
 (encoded according to a FEC-Scheme-Specific format).

 o One or more FEC repair packet payloads.

 o FEC Payload IDs for each of the repair packet payloads (encoded
 according to a FEC-Scheme-Specific format).

 The FEC Framework then performs two operations. First, it appends
 the Source FEC Payload IDs, if provided, to each of the ADUs, and
 sends the resulting packets, known as "FEC source packets", to the
 receiver. Second, it places the provided FEC repair packet payloads
 and corresponding Repair FEC Payload IDs appropriately to construct
 FEC repair packets and send them to the receiver.

 This document does not define how the sender determines which ADUs
 are included in which source blocks or the sending order and timing
 of FEC source and repair packets. A specific CDP MAY define this
 mapping, or it MAY be left as implementation dependent at the sender.
 However, a CDP specification MUST define how a receiver determines a
 minimum length of time that it needs to wait to receive FEC repair
 packets for any given source block. FEC schemes MAY define
 limitations on this mapping, such as maximum size of source blocks,
 but they SHOULD NOT attempt to define specific mappings. The
 sequence of operations at the sender is described in more detail in
 Section 4.2.

 At the receiver, original ADUs are recovered by the FEC Framework
 directly from any FEC source packets received simply by removing the
 Source FEC Payload ID, if present. The receiver also passes the
 contents of the received ADUs, plus their FEC Payload IDs, to the FEC
 scheme for possible decoding.

 If any ADUs related to a given source block have been lost, then the
 FEC scheme can perform FEC decoding to recover the missing ADUs
 (assuming sufficient FEC source and repair packets related to that
 source block have been received).

 Note that the receiver might need to buffer received source packets
 to allow time for the FEC repair packets to arrive and FEC decoding
 to be performed before some or all of the received or recovered
 packets are passed to the application. If such a buffer is not
 provided, then the application has to be able to deal with the severe
 re-ordering of packets that can occur. However, such buffering is
 CDP- and/or implementation-specific and is not specified here. The
 receiver operation is described in more detail in Section 4.3.

 The FEC source packets MUST contain information that identifies the
 source block and the position within the source block (in terms
 specific to the FEC scheme) occupied by the ADU. This information is
 known as the Source FEC Payload ID. The FEC scheme is responsible
 for defining and interpreting this information. This information MAY
 be encoded into a specific field within the FEC source packet format
 defined in this specification, called the Explicit Source FEC Payload
 ID field. The exact contents and format of the Explicit Source FEC
 Payload ID field are defined by the FEC schemes. Alternatively, the
 FEC scheme MAY define how the Source FEC Payload ID is derived from
 other fields within the source packets. This document defines the
 way that the Explicit Source FEC Payload ID field is appended to
 source packets to form FEC source packets.

 The FEC repair packets MUST contain information that identifies the
 source block and the relationship between the contained repair
 payloads and the original source block. This is known as the Repair
 FEC Payload ID. This information MUST be encoded into a specific
 field, the Repair FEC Payload ID field, the contents and format of
 which are defined by the FEC schemes.

 The FEC scheme MAY use different FEC Payload ID field formats for
 source and repair packets.

4.2. Sender Operation

 It is assumed that the sender has constructed or received original
 data packets for the session. These could be carrying any type of
 data. The following operations, illustrated in Figure 2 for the case
 of UDP repair flows and in Figure 3 for the case of RTP repair flows,
 describe a possible way to generate compliant source and repair
 flows:

 1. ADUs are provided by the application.

 2. A source block is constructed as specified in Section 5.2.

 3. The source block is passed to the FEC scheme for FEC encoding.
 The Source FEC Payload ID information of each source packet is
 determined by the FEC scheme. If required by the FEC scheme, the
 Source FEC Payload ID is encoded into the Explicit Source FEC
 Payload ID field.

 4. The FEC scheme performs FEC encoding, generating repair packet
 payloads from a source block and a Repair FEC Payload ID field
 for each repair payload.

 5. The Explicit Source FEC Payload IDs (if used), Repair FEC Payload
 IDs, and repair packet payloads are provided back from the FEC
 scheme to the FEC Framework.

 6. The FEC Framework constructs FEC source packets according to
 Section 5.3, and FEC repair packets according to Section 5.4,
 using the FEC Payload IDs and repair packet payloads provided by
 the FEC scheme.

 7. The FEC source and repair packets are sent using normal
 transport-layer procedures. The port(s) and multicast group(s)
 to be used for FEC repair packets are defined in the FEC
 Framework Configuration Information. The FEC source packets are
 sent using the same ADU flow identification information as would
 have been used for the original source packets if the FEC
 Framework were not present (for example, in the UDP case, the UDP
 source and destination addresses and ports on the IP datagram
 carrying the source packet will be the same whether or not the
 FEC Framework is applied).

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |(1) ADUs
 |
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FEC Framework		
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	FEC Scheme
(2) Construct source	(3) Source Block	
blocks		(4) FEC Encoding
(6) Construct FEC	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
source and repair		
packets	(5) Explicit Source FEC	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Payload IDs +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Repair FEC Payload IDs
 | Repair symbols
 |
 |(7) FEC source and repair packets
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Layer |
| (e.g., UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: Sender Operation

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |(1) ADUs
 |
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FEC Framework		
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	FEC Scheme
(2) Construct source	(3) Source Block	
blocks		(4) FEC Encoding
(6) Construct FEC	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
source packets and		
repair payloads	(5) Explicit Source FEC	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Payload IDs +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | Repair FEC Payload IDs
 | | Repair symbols
 | |
 |(7) Source |(7') Repair payloads
 | packets |
 | |
 | + ‑‑ ‑‑ ‑‑ ‑‑ ‑+
 | | RTP |
 | +‑‑ ‑‑ ‑‑ ‑‑ ‑‑+
 v v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Layer |
| (e.g., UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3: Sender Operation with RTP Repair Flows

4.3. Receiver Operation

 The following describes a possible receiver algorithm, illustrated in
 Figures 4 and 5 for the case of UDP and RTP repair flows,
 respectively, when receiving a FEC source or repair packet:

 1. FEC source packets and FEC repair packets are received and passed
 to the FEC Framework. The type of packet (source or repair) and
 the source flow to which it belongs (in the case of source
 packets) are indicated by the ADU flow information, which
 identifies the flow at the transport layer.

 In the special case that RTP is used for repair packets, and
 source and repair packets are multiplexed onto the same UDP flow,
 then RTP demultiplexing is required to demultiplex source and
 repair flows. However, RTP processing is applied only to the
 repair packets at this stage; source packets continue to be
 handled as UDP payloads (i.e., including their RTP headers).

 2. The FEC Framework extracts the Explicit Source FEC Payload ID
 field (if present) from the source packets and the Repair FEC
 Payload ID from the repair packets.

 3. The Explicit Source FEC Payload IDs (if present), Repair FEC
 Payload IDs, and FEC source and repair payloads are passed to the
 FEC scheme.

 4. The FEC scheme uses the received FEC Payload IDs (and derived FEC
 Source Payload IDs in the case that the Explicit Source FEC
 Payload ID field is not used) to group source and repair packets
 into source blocks. If at least one source packet is missing
 from a source block, and at least one repair packet has been
 received for the same source block, then FEC decoding can be
 performed in order to recover missing source payloads. The FEC
 scheme determines whether source packets have been lost and
 whether enough data for decoding of any or all of the missing
 source payloads in the source block has been received.

 5. The FEC scheme returns the ADUs to the FEC Framework in the form
 of source blocks containing received and decoded ADUs and
 indications of any ADUs that were missing and could not be
 decoded.

 6. The FEC Framework passes the received and recovered ADUs to the
 application.

 The description above defines functionality responsibilities but does
 not imply a specific set of timing relationships. Source packets
 that are correctly received and those that are reconstructed MAY be
 delivered to the application out of order and in a different order
 from the order of arrival at the receiver. Alternatively, buffering
 and packet re-ordering MAY be applied to re-order received and
 reconstructed source packets into the order they were placed into the
 source block, if that is necessary according to the application.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 |(6) ADUs
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FEC Framework		
	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	FEC Scheme
(2)Extract FEC Payload	(5) ADUs	
IDs and pass IDs &		(4) FEC Decoding
payloads to FEC	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	
scheme	(3) Explicit Source FEC	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Payload IDs +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^ Repair FEC Payload IDs
 | Source payloads
 | Repair payloads
 |
 |(1) FEC source and repair packets
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Layer |
| (e.g., UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4: Receiver Operation

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 |(6) ADUs
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FEC Framework		
	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	FEC Scheme
(2)Extract FEC Payload	(5) ADUs	
IDs and pass IDs &		(4) FEC Decoding
payloads to FEC	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	
scheme	(3) Explicit Source FEC	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Payload IDs +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^ ^ Repair FEC Payload IDs
 | | Source payloads
 | | Repair payloads
 | |
 |Source |Repair payloads
 |packets |
 | |
+‑‑ |‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑+
|RTP| | RTP Processing |
| | +‑‑ ‑‑ ‑‑ ‑‑|‑‑ ‑+
| +‑‑ ‑‑ ‑‑ ‑‑ ‑‑ |‑‑+ |
| | RTP Demux | |
+‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑‑ ‑+
 ^
 |(1) FEC source and repair packets
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Layer |
| (e.g., UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 5: Receiver Operation with RTP Repair Flows

 Note that the above procedure might result in a situation in which
 not all ADUs are recovered.

5. Protocol Specification

5.1. General

 This section specifies the protocol elements for the FEC Framework.
 Three components of the protocol are defined in this document and are
 described in the following sections:

 1. Construction of a source block from ADUs. The FEC code will be
 applied to this source block to produce the repair payloads.

 2. A format for packets containing source data.

 3. A format for packets containing repair data.

 The operation of the FEC Framework is governed by certain FEC
 Framework Configuration Information, which is defined in this
 section. A complete protocol specification that uses this framework
 MUST specify the means to determine and communicate this information
 between sender and receiver.

5.2. Structure of the Source Block

 The FEC Framework and FEC scheme exchange ADUs in the form of source
 blocks. A source block is generated by the FEC Framework from an
 ordered sequence of ADUs. The allocation of ADUs to blocks is
 dependent on the application. Note that some ADUs may not be
 included in any block. Each source block provided to the FEC scheme
 consists of an ordered sequence of ADUs where the following
 information is provided for each ADU:

 o A description of the source flow with which the ADU is associated.

 o The ADU itself.

 o The length of the ADU.

5.3. Packet Format for FEC Source Packets

 The packet format for FEC source packets MUST be used to transport
 the payload of an original source packet. As depicted in Figure 6,
 it consists of the original packet, optionally followed by the
 Explicit Source FEC Payload ID field. The FEC scheme determines
 whether the Explicit Source FEC Payload ID field is required. This
 determination is specific to each ADU flow.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application Data Unit |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Explicit Source FEC Payload ID |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 6: Structure of the FEC Packet Format for FEC Source Packets

 The FEC source packets MUST be sent using the same ADU flow as would
 have been used for the original source packets if the FEC Framework
 were not present. The transport payload of the FEC source packet
 MUST consist of the ADU followed by the Explicit Source FEC Payload
 ID field, if required.

 The Explicit Source FEC Payload ID field contains information
 required to associate the source packet with a source block and for
 the operation of the FEC algorithm, and is defined by the FEC scheme.
 The format of the Source FEC Payload ID field is defined by the FEC
 scheme. In the case that the FEC scheme or CDP defines a means to
 derive the Source FEC Payload ID from other information in the packet
 (for example, a sequence number used by the application protocol),
 then the Source FEC Payload ID field is not included in the packet.
 In this case, the original source packet and FEC source packet are
 identical.

 In applications where avoidance of IP packet fragmentation is a goal,
 CDPs SHOULD consider the Explicit Source FEC Payload ID size when
 determining the size of ADUs that will be delivered using the FEC
 Framework. This is because the addition of the Explicit Source FEC
 Payload ID increases the packet length.

 The Explicit Source FEC Payload ID is placed at the end of the
 packet, so that in the case that Robust Header Compression (ROHC)
 [RFC3095] or other header compression mechanisms are used, and in the
 case that a ROHC profile is defined for the protocol carried within
 the transport payload (for example, RTP), then ROHC will still be
 applied for the FEC source packets. Applications that are used with
 this framework need to consider that FEC schemes can add this
 Explicit Source FEC Payload ID and thereby increase the packet size.

 In many applications, support for FEC is added to a pre-existing
 protocol, and in this case, use of the Explicit Source FEC Payload ID
 can break backward compatibility, since source packets are modified.

5.3.1. Generic Explicit Source FEC Payload ID

 In order to apply FEC protection using multiple FEC schemes to a
 single source flow, all schemes have to use the same Explicit Source
 FEC Payload ID format. In order to enable this, it is RECOMMENDED
 that FEC schemes support the Generic Explicit Source FEC Payload ID
 format described below.

 The Generic Explicit Source FEC Payload ID has a length of two octets
 and consists of an unsigned packet sequence number in network-byte
 order. The allocation of sequence numbers to packets is independent
 of any FEC scheme and of the source block construction, except that
 the use of this sequence number places a constraint on source block
 construction. Source packets within a given source block MUST have
 consecutive sequence numbers (where consecutive includes wrap-around
 from the maximum value that can be represented in two octets (65535)
 to 0). Sequence numbers SHOULD NOT be reused until all values in the
 sequence number space have been used.

 Note that if the original packets of the source flow are already
 carrying a packet sequence number that is at least two bytes long,
 there is no need to add the generic Explicit Source FEC Payload ID
 and modify the packets.

5.4. Packet Format for FEC Repair Packets

 The packet format for FEC repair packets is shown in Figure 7. The
 transport payload consists of a Repair FEC Payload ID field followed
 by repair data generated in the FEC encoding process.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair FEC Payload ID |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair Symbols |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 7: Packet Format for FEC Repair Packets

 The Repair FEC Payload ID field contains information required for the
 operation of the FEC algorithm at the receiver. This information is
 defined by the FEC scheme. The format of the Repair FEC Payload ID
 field is defined by the FEC scheme.

5.4.1. Packet Format for FEC Repair Packets over RTP

 For FEC schemes that specify the use of RTP for repair packets, the
 packet format for repair packets includes an RTP header as shown in
 Figure 8.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header (UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| RTP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair FEC Payload ID |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair Symbols |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 8: Packet Format for FEC Repair Packets over RTP

5.5. FEC Framework Configuration Information

 The FEC Framework Configuration Information is information that the
 FEC Framework needs in order to apply FEC protection to the ADU
 flows. A complete CDP specification that uses the framework
 specified here MUST include details of how this information is
 derived and communicated between sender and receiver.

 The FEC Framework Configuration Information includes identification
 of the set of source flows. For example, in the case of UDP, each
 source flow is uniquely identified by a tuple {source IP address,
 source UDP port, destination IP address, destination UDP port}. In
 some applications, some of these fields can contain wildcards, so
 that the flow is identified by a subset of the fields. In
 particular, in many applications the limited tuple {destination IP
 address, destination UDP port} is sufficient.

 A single instance of the FEC Framework provides FEC protection for
 packets of the specified set of source flows, by means of one or more
 packet flows consisting of repair packets. The FEC Framework
 Configuration Information includes, for each instance of the FEC
 Framework:

 1. Identification of the repair flows.

 2. For each source flow protected by the repair flow(s):

 A. Definition of the source flow.

 B. An integer identifier for this flow definition (i.e., tuple).

 This identifier MUST be unique among all source flows that
 are protected by the same FEC repair flow. Integer
 identifiers can be allocated starting from zero and
 increasing by one for each flow. However, any random (but
 still unique) allocation is also possible. A source flow
 identifier need not be carried in source packets, since
 source packets are directly associated with a flow by virtue
 of their packet headers.

 3. The FEC Encoding ID, identifying the FEC scheme.

 4. The length of the Explicit Source FEC Payload ID (in octets).

 5. Zero or more FEC-Scheme-Specific Information (FSSI) elements,
 each consisting of a name and a value where the valid element
 names and value ranges are defined by the FEC scheme.

 Multiple instances of the FEC Framework, with separate and
 independent FEC Framework Configuration Information, can be present
 at a sender or receiver. A single instance of the FEC Framework
 protects packets of the source flows identified in (2) above; i.e.,
 all packets sent on those flows MUST be FEC source packets as defined
 in Section 5.3. A single source flow can be protected by multiple
 instances of the FEC Framework.

 The integer flow identifier identified in (2B) above is a shorthand
 to identify source flows between the FEC Framework and the FEC
 scheme. The reason for defining this as an integer, and including it
 in the FEC Framework Configuration Information, is so that the FEC
 scheme at the sender and receiver can use it to identify the source
 flow with which a recovered packet is associated. The integer flow
 identifier can therefore take the place of the complete flow
 description (e.g., UDP 4-tuple).

 Whether and how this flow identifier is used is defined by the FEC
 scheme. Since repair packets can provide protection for multiple
 source flows, repair packets either would not carry the identifier at
 all or can carry multiple identifiers. However, in any case, the
 flow identifier associated with a particular source packet can be
 recovered from the repair packets as part of a FEC decoding
 operation.

 A single FEC repair flow provides repair packets for a single
 instance of the FEC Framework. Other packets MUST NOT be sent within
 this flow; i.e., all packets in the FEC repair flow MUST be FEC
 repair packets as defined in Section 5.4 and MUST relate to the same
 FEC Framework instance.

 In the case that RTP is used for repair packets, the identification
 of the repair packet flow can also include the RTP payload type to be
 used for repair packets.

 FSSI includes the information that is specific to the FEC scheme used
 by the CDP. FSSI is used to communicate the information that cannot
 be adequately represented otherwise and is essential for proper FEC
 encoding and decoding operations. The motivation behind separating
 the FSSI required only by the sender (which is carried in a Sender-
 Side FEC-Scheme-Specific Information (SS-FSSI) container) from the
 rest of the FSSI is to provide the receiver or the third-party
 entities a means of controlling the FEC operations at the sender.
 Any FSSI other than the one solely required by the sender MUST be
 communicated via the FSSI container.

 The variable-length SS-FSSI and FSSI containers transmit the
 information in textual representation and contain zero or more
 distinct elements, whose descriptions are provided by the fully
 specified FEC schemes.

 For the CDPs that choose the Session Description Protocol (SDP)
 [RFC4566] for their multimedia sessions, the ABNF [RFC5234] syntax
 for the SS-FSSI and FSSI containers is provided in Section 4.5 of
 [RFC6364].

5.6. FEC Scheme Requirements

 In order to be used with this framework, a FEC scheme MUST be capable
 of processing data arranged into blocks of ADUs (source blocks).

 A specification for a new FEC scheme MUST include the following:

 1. The FEC Encoding ID value that uniquely identifies the FEC
 scheme. This value MUST be registered with IANA, as described in
 Section 11.

 2. The type, semantics, and encoding format of the Repair FEC
 Payload ID.

 3. The name, type, semantics, and text value encoding rules for zero
 or more FEC-Scheme-Specific Information elements.

 4. A full specification of the FEC code.

 This specification MUST precisely define the valid FEC-Scheme-
 Specific Information values, the valid FEC Payload ID values, and
 the valid packet payload sizes (where packet payload refers to
 the space within a packet dedicated to carrying encoding
 symbols).

 Furthermore, given a source block as defined in Section 5.2,
 valid values of the FEC-Scheme-Specific Information, a valid
 Repair FEC Payload ID value, and a valid packet payload size, the
 specification MUST uniquely define the values of the encoding
 symbols to be included in the repair packet payload of a packet
 with the given Repair FEC Payload ID value.

 A common and simple way to specify the FEC code to the required
 level of detail is to provide a precise specification of an
 encoding algorithm that -- given a source block, valid values of
 the FEC-Scheme-Specific Information, a valid Repair FEC Payload
 ID value, and a valid packet payload size as input -- produces
 the exact value of the encoding symbols as output.

 5. A description of practical encoding and decoding algorithms.

 This description need not be to the same level of detail as for
 the encoding above; however, it has to be sufficient to
 demonstrate that encoding and decoding of the code are both
 possible and practical.

 FEC scheme specifications MAY additionally define the following:

 Type, semantics, and encoding format of an Explicit Source FEC
 Payload ID.

 Whenever a FEC scheme specification defines an 'encoding format' for
 an element, this has to be defined in terms of a sequence of bytes
 that can be embedded within a protocol. The length of the encoding
 format either MUST be fixed or it MUST be possible to derive the
 length from examining the encoded bytes themselves. For example, the
 initial bytes can include some kind of length indication.

 FEC scheme specifications SHOULD use the terminology defined in this
 document and SHOULD follow the following format:

1. Introduction <Describe the use cases addressed by this FEC
 scheme>

 2. Formats and Codes

 2.1. Source FEC Payload ID(s) <Either define the type and

 format of the Explicit Source FEC Payload ID or define how
 Source FEC Payload ID information is derived from source
 packets>

 2.2. Repair FEC Payload ID <Define the type and format of the
 Repair FEC Payload ID>

 2.3. FEC Framework Configuration Information <Define the names,
 types, and text value encoding formats of the FEC‑Scheme‑
 Specific Information elements>

3. Procedures <Describe any procedures that are specific to this
 FEC scheme, in particular derivation and interpretation of the
 fields in the FEC Payload IDs and FEC‑Scheme‑Specific
 Information>

4. FEC Code Specification <Provide a complete specification of the
 FEC Code>

 Specifications can include additional sections including examples.

 Each FEC scheme MUST be specified independently of all other FEC
 schemes, for example, in a separate specification or a completely
 independent section of a larger specification (except, of course, a
 specification of one FEC scheme can include portions of another by
 reference). Where an RTP payload format is defined for repair data
 for a specific FEC scheme, the RTP payload format and the FEC scheme
 can be specified within the same document.

6. Feedback

 Many applications require some kind of feedback on transport
 performance, e.g., how much data arrived at the receiver, at what
 rate, and when? When FEC is added to such applications, feedback
 mechanisms may also need to be enhanced to report on the performance
 of the FEC, e.g., how much lost data was recovered by the FEC?

 When used to provide instrumentation for engineering purposes, it is
 important to remember that FEC is generally applied to relatively
 small blocks of data (in the sense that each block is transmitted
 over a relatively small period of time). Thus, feedback information
 that is averaged over longer periods of time will likely not provide
 sufficient information for engineering purposes. More detailed
 feedback over shorter time scales might be preferred. For example,
 for applications using RTP transport, see [RFC5725].

 Applications that use feedback for congestion control purposes MUST
 calculate such feedback on the basis of packets received before FEC
 recovery is applied. If this requirement conflicts with other uses
 of the feedback information, then the application MUST be enhanced to
 support information calculated both pre- and post-FEC recovery. This
 is to ensure that congestion control mechanisms operate correctly
 based on congestion indications received from the network, rather
 than on post-FEC recovery information that would give an inaccurate
 picture of congestion conditions.

 New applications that require such feedback SHOULD use RTP/RTCP
 [RFC3550].

7. Transport Protocols

 This framework is intended to be used to define CDPs that operate
 over transport protocols providing an unreliable datagram service,
 including in particular the User Datagram Protocol (UDP) and the
 Datagram Congestion Control Protocol (DCCP).

8. Congestion Control

 This section starts with some informative background on the
 motivation of the normative requirements for congestion control,
 which are spelled out in Section 8.2.

8.1. Motivation

 o The enforcement of congestion control principles has gained a lot
 of momentum in the IETF over recent years. While the need for
 congestion control over the open Internet is unquestioned, and the
 goal of TCP friendliness is generally agreed upon for most (but
 not all) applications, the problem of congestion detection and
 measurement in heterogeneous networks can hardly be considered
 solved. Most congestion control algorithms detect and measure
 congestion by taking (primarily or exclusively) the packet loss
 rate into account. This appears to be inappropriate in
 environments where a large percentage of the packet losses are the
 result of link-layer errors and independent of the network load.

 o The authors of this document are primarily interested in
 applications where the application reliability requirements and
 end-to-end reliability of the network differ, such that it
 warrants higher-layer protection of the packet stream, e.g., due
 to the presence of unreliable links in the end-to-end path and
 where real-time, scalability, or other constraints prohibit the
 use of higher-layer (transport or application) feedback. A
 typical example for such applications is multicast and broadcast
 streaming or multimedia transmission over heterogeneous networks.
 In other cases, application reliability requirements can be so
 high that the required end-to-end reliability will be difficult to
 achieve. Furthermore, the end-to-end network reliability is not
 necessarily known in advance.

 o This FEC Framework is not defined as, nor is it intended to be, a
 quality-of-service (QoS) enhancement tool to combat losses
 resulting from highly congested networks. It should not be used
 for such purposes.

 o In order to prevent such misuse, one approach is to leave
 standardization to bodies most concerned with the problem
 described above. However, the IETF defines base standards used by
 several bodies, including the Digital Video Broadcasting (DVB)
 Project, the Third Generation Partnership Project (3GPP), and
 3GPP2, all of which appear to share the environment and the
 problem described.

 o Another approach is to write a clear applicability statement. For
 example, one could restrict the use of this framework to networks
 with certain loss characteristics (e.g., wireless links).
 However, there can be applications where the use of FEC is
 justified to combat congestion-induced packet losses --
 particularly in lightly loaded networks, where congestion is the
 result of relatively rare random peaks in instantaneous traffic
 load -- thereby intentionally violating congestion control
 principles. One possible example for such an application could be
 a no-matter-what, brute-force FEC protection of traffic generated
 as an emergency signal.

 o A third approach is to require, at a minimum, that the use of this
 framework with any given application, in any given environment,
 does not cause congestion issues that the application alone would
 not itself cause; i.e., the use of this framework must not make
 things worse.

 o Taking the above considerations into account, Section 8.2
 specifies a small set of constraints for FEC; these constraints
 are mandatory for all senders compliant with this FEC Framework.
 Further restrictions can be imposed by certain CDPs.

8.2. Normative Requirements

 o The bandwidth of FEC repair data MUST NOT exceed the bandwidth of
 the original source data being protected (without the possible
 addition of an Explicit Source FEC Payload ID). This disallows
 the (static or dynamic) use of excessively strong FEC to combat
 high packet loss rates, which can otherwise be chosen by naively
 implemented dynamic FEC-strength selection mechanisms. We
 acknowledge that there are a few exotic applications, e.g., IP
 traffic from space-based senders, or senders in certain hardened
 military devices, that could warrant a higher FEC strength.
 However, in this specification, we give preference to the overall
 stability and network friendliness of average applications.

 o Whenever the source data rate is adapted due to the operation of
 congestion control mechanisms, the FEC repair data rate MUST be
 similarly adapted.

9. Security Considerations

 First of all, it must be clear that the application of FEC protection
 to a stream does not provide any kind of security. On the contrary,
 the FEC Framework itself could be subject to attacks or could pose
 new security risks. The goals of this section are to state the
 problem, discuss the risks, and identify solutions when feasible. It
 also defines a mandatory-to-implement (but not mandatory-to-use)
 security scheme.

9.1. Problem Statement

 A content delivery system is potentially subject to many attacks.
 Attacks can target the content, the CDP, or the network itself, with
 completely different consequences, particularly in terms of the
 number of impacted nodes.

 Attacks can have several goals:

 o They can try to give access to confidential content (e.g., in the
 case of non-free content).

 o They can try to corrupt the source flows (e.g., to prevent a
 receiver from using them), which is a form of denial-of-service
 (DoS) attack.

 o They can try to compromise the receiver's behavior (e.g., by
 making the decoding of an object computationally expensive), which
 is another form of DoS attack.

 o They can try to compromise the network's behavior (e.g., by
 causing congestion within the network), which potentially impacts
 a large number of nodes.

 These attacks can be launched either against the source and/or repair
 flows (e.g., by sending fake FEC source and/or repair packets) or
 against the FEC parameters that are sent either in-band (e.g., in the
 Repair FEC Payload ID or in the Explicit Source FEC Payload ID) or
 out-of-band (e.g., in the FEC Framework Configuration Information).

 Several dimensions to the problem need to be considered. The first
 one is the way the FEC Framework is used. The FEC Framework can be
 used end-to-end, i.e., it can be included in the final end-device
 where the upper application runs, or the FEC Framework can be used in
 middleboxes, for instance, to globally protect several source flows
 exchanged between two or more distant sites.

 A second dimension is the threat model. When the FEC Framework
 operates in the end-device, this device (e.g., a personal computer)
 might be subject to attacks. Here, the attacker is either the end-
 user (who might want to access confidential content) or somebody
 else. In all cases, the attacker has access to the end-device but
 does not necessarily fully control this end-device (a secure domain
 can exist). Similarly, when the FEC Framework operates in a
 middlebox, this middlebox can be subject to attacks or the attacker
 can gain access to it. The threats can also concern the end-to-end
 transport (e.g., through the Internet). Here, examples of threats
 include the transmission of fake FEC source or repair packets; the
 replay of valid packets; the drop, delay, or misordering of packets;
 and, of course, traffic eavesdropping.

 The third dimension consists in the desired security services. Among
 them, the content integrity and sender authentication services are
 probably the most important features. We can also mention DoS
 mitigation, anti-replay protection, or content confidentiality.

 Finally, the fourth dimension consists in the security tools
 available. This is the case of the various Digital Rights Management
 (DRM) systems, defined outside of the context of the IETF, that can
 be proprietary solutions. Otherwise, the Secure Real-Time Transport
 Protocol (SRTP) [RFC3711] and IPsec/Encapsulating Security Payload
 (IPsec/ESP) [RFC4303] are two tools that can turn out to be useful in
 the context of the FEC Framework. Note that using SRTP requires that
 the application generate RTP source flows and, when applied below the
 FEC Framework, that both the FEC source and repair packets be regular
 RTP packets. Therefore, SRTP is not considered to be a universal
 solution applicable in all use cases.

 In the following sections, we further discuss security aspects
 related to the use of the FEC Framework.

9.2. Attacks against the Data Flows

9.2.1. Access to Confidential Content

 Access control to the source flow being transmitted is typically
 provided by means of encryption. This encryption can be done by the
 content provider itself, or within the application (for instance, by
 using SRTP [RFC3711]), or at the network layer on a per-packet basis
 when IPsec/ESP is used [RFC4303]. If confidentiality is a concern,
 it is RECOMMENDED that one of these solutions be used. Even if we
 mention these attacks here, they are neither related to nor
 facilitated by the use of FEC.

 Note that when encryption is applied, this encryption MUST be applied
 either on the source data before the FEC protection or, if done after
 the FEC protection, on both the FEC source packets and repair packets
 (and an encryption at least as cryptographically secure as the
 encryption applied on the FEC source packets MUST be used for the FEC
 repair packets). Otherwise, if encryption were to be performed only
 on the FEC source packets after FEC encoding, a non-authorized
 receiver could be able to recover the source data after decoding the
 FEC repair packets, provided that a sufficient number of such packets
 were available.

 The following considerations apply when choosing where to apply
 encryption (and more generally where to apply security services
 beyond encryption). Once decryption has taken place, the source data
 is in plaintext. The full path between the output of the deciphering
 module and the final destination (e.g., the TV display in the case of
 a video) MUST be secured, in order to prevent any unauthorized access
 to the source data.

 When the FEC Framework endpoint is the end-system (i.e., where the
 upper application runs) and if the threat model includes the
 possibility that an attacker has access to this end-system, then the
 end-system architecture is very important. More precisely, in order
 to prevent an attacker from getting hold of the plaintext, all
 processing, once deciphering has taken place, MUST occur in a
 protected environment. If encryption is applied after FEC protection
 at the sending side (i.e., below the FEC Framework), it means that
 FEC decoding MUST take place in the protected environment. With
 certain use cases, this MAY be complicated or even impossible. In
 such cases, applying encryption before FEC protection is preferred.

 When the FEC Framework endpoint is a middlebox, the recovered source
 flow, after FEC decoding, SHOULD NOT be sent in plaintext to the
 final destination(s) if the threat model includes the possibility
 that an attacker eavesdrops on the traffic. In that case, it is
 preferable to apply encryption before FEC protection.

 In some cases, encryption could be applied both before and after the
 FEC protection. The considerations described above still apply in
 such cases.

9.2.2. Content Corruption

 Protection against corruptions (e.g., against forged FEC source/
 repair packets) is achieved by means of a content integrity
 verification/source authentication scheme. This service is usually
 provided at the packet level. In this case, after removing all the
 forged packets, the source flow might sometimes be recovered.
 Several techniques can provide this content integrity/source
 authentication service:

 o At the application layer, SRTP [RFC3711] provides several
 solutions to check the integrity and authenticate the source of
 RTP and RTCP messages, among other services. For instance, when
 associated with the Timed Efficient Stream Loss-Tolerant
 Authentication (TESLA) [RFC4383], SRTP is an attractive solution
 that is robust to losses, provides a true authentication/integrity
 service, and does not create any prohibitive processing load or
 transmission overhead. Yet, with TESLA, checking a packet
 requires a small delay (a second or more) after its reception.
 Whether or not this extra delay, both in terms of startup delay at
 the client and end-to-end delay, is appropriate depends on the
 target use case. In some situations, this might degrade the user
 experience. In other situations, this will not be an issue.
 Other building blocks can be used within SRTP to provide content
 integrity/authentication services.

 o At the network layer, IPsec/ESP [RFC4303] offers (among other
 services) an integrity verification mechanism that can be used to
 provide authentication/content integrity services.

 It is up to the developer and the person in charge of deployment, who
 know the security requirements and features of the target application
 area, to define which solution is the most appropriate. Nonetheless,
 it is RECOMMENDED that at least one of these techniques be used.

 Note that when integrity protection is applied, it is RECOMMENDED
 that it take place on both FEC source and repair packets. The
 motivation is to keep corrupted packets from being considered during
 decoding, as such packets would often lead to a decoding failure or
 result in a corrupted decoded source flow.

9.3. Attacks against the FEC Parameters

 Attacks on these FEC parameters can prevent the decoding of the
 associated object. For instance, modifying the finite field size of
 a Reed-Solomon FEC scheme (when applicable) will lead a receiver to
 consider a different FEC code.

 Therefore, it is RECOMMENDED that security measures be taken to
 guarantee the integrity of the FEC Framework Configuration
 Information. Since the FEC Framework does not define how the FEC
 Framework Configuration Information is communicated from sender to
 receiver, we cannot provide further recommendations on how to
 guarantee its integrity. However, any complete CDP specification
 MUST give recommendations on how to achieve it. When the FEC
 Framework Configuration Information is sent out-of-band, e.g., in a
 session description, it SHOULD be protected, for instance, by
 digitally signing it.

 Attacks are also possible against some FEC parameters included in the
 Explicit Source FEC Payload ID and Repair FEC Payload ID. For
 instance, modifying the Source Block Number of a FEC source or repair
 packet will lead a receiver to assign this packet to a wrong block.

 Therefore, it is RECOMMENDED that security measures be taken to
 guarantee the integrity of the Explicit Source FEC Payload ID and
 Repair FEC Payload ID. To that purpose, one of the packet-level
 source authentication/content integrity techniques described in
 Section 9.2.2 can be used.

9.4. When Several Source Flows Are to Be Protected Together

 When several source flows, with different security requirements, need
 to be FEC protected jointly, within a single FEC Framework instance,
 then each flow MAY be processed appropriately, before the protection.
 For instance, source flows that require access control MAY be
 encrypted before they are FEC protected.

 There are also situations where the only insecure domain is the one
 over which the FEC Framework operates. In that case, this situation
 MAY be addressed at the network layer, using IPsec/ESP (see
 Section 9.5), even if only a subset of the source flows has strict
 security requirements.

 Since the use of the FEC Framework should not add any additional
 threat, it is RECOMMENDED that the FEC Framework aggregate flow be in
 line with the maximum security requirements of the individual source
 flows. For instance, if denial-of-service (DoS) protection is
 required, an integrity protection SHOULD be provided below the FEC
 Framework, using, for instance, IPsec/ESP.

 Generally speaking, whenever feasible, it is RECOMMENDED that FEC
 protecting flows with totally different security requirements be
 avoided. Otherwise, significant processing overhead would be added
 to protect source flows that do not need it.

9.5. Baseline Secure FEC Framework Operation

 The FEC Framework has been defined in such a way to be independent
 from the application that generates source flows. Some applications
 might use purely unidirectional flows, while other applications might
 also use unicast feedback from the receivers. For instance, this is
 the case when considering RTP/RTCP-based source flows.

 This section describes a baseline mode of secure FEC Framework
 operation based on the application of the IPsec protocol, which is
 one possible solution to solve or mitigate the security threats
 introduced by the use of the FEC Framework.

 Two related documents are of interest. First, Section 5.1 of
 [RFC5775] defines a baseline secure Asynchronous Layered Coding (ALC)
 operation for sender-to-group transmissions, assuming the presence of
 a single sender and a source-specific multicast (SSM) or SSM-like
 operation. The proposed solution, based on IPsec/ESP, can be used to
 provide a baseline FEC Framework secure operation, for the downstream
 source flow.

 Second, Section 7.1 of [RFC5740] defines a baseline secure NACK-
 Oriented Reliable Multicast (NORM) operation, for sender-to-group
 transmissions as well as unicast feedback from receivers. Here, it
 is also assumed there is a single sender. The proposed solution is
 also based on IPsec/ESP. However, the difference with respect to
 [RFC5775] relies on the management of IPsec Security Associations
 (SAs) and corresponding Security Policy Database (SPD) entries, since
 NORM requires a second set of SAs and SPD entries to be defined to
 protect unicast feedback from receivers.

 Note that the IPsec/ESP requirement profiles outlined in [RFC5775]
 and [RFC5740] are commonly available on many potential hosts. They
 can form the basis of a secure mode of operation. Configuration and
 operation of IPsec typically require privileged user authorization.
 Automated key management implementations are typically configured
 with the privileges necessary to allow the needed system IPsec
 configuration.

10. Operations and Management Considerations

 The question of operating and managing the FEC Framework and the
 associated FEC scheme(s) is of high practical importance. The goals
 of this section are to discuss aspects and recommendations related to
 specific deployments and solutions.

 In particular, this section discusses the questions of
 interoperability across vendors/use cases and whether defining
 mandatory-to-implement (but not mandatory-to-use) solutions is
 beneficial.

10.1. What Are the Key Aspects to Consider?

 Several aspects need to be considered, since they will directly
 impact the way the FEC Framework and the associated FEC schemes can
 be operated and managed.

 This section lists them as follows:

 1. A Single Small Generic Component within a Larger (and Often
 Legacy) Solution: The FEC Framework is one component within a
 larger solution that includes one or several upper-layer
 applications (that generate one or several ADU flows) and an
 underlying protocol stack. A key design principle is that the
 FEC Framework should be able to work without making any
 assumption with respect to either the upper-layer application(s)
 or the underlying protocol stack, even if there are special cases
 where assumptions are made.

 2. One-to-One with Feedback vs. One-to-Many with Feedback vs. One-
 to-Many without Feedback Scenarios: The FEC Framework can be used
 in use cases that completely differ from one another. Some use
 cases are one-way (e.g., in broadcast networks), with either a
 one-to-one, one-to-many, or many-to-many transmission model, and
 the receiver(s) cannot send any feedback to the sender(s). Other
 use cases follow a bidirectional one-to-one, one-to-many, or
 many-to-many scenario, and the receiver(s) can send feedback to
 the sender(s).

 3. Non-FEC Framework Capable Receivers: With the one-to-many and
 many-to-many use cases, the receiver population might have
 different capabilities with respect to the FEC Framework itself
 and the supported FEC schemes. Some receivers might not be
 capable of decoding the repair packets belonging to a particular
 FEC scheme, while some other receivers might not support the FEC
 Framework at all.

 4. Internet vs. Non-Internet Networks: The FEC Framework can be
 useful in many use cases that use a transport network that is not
 the public Internet (e.g., with IPTV or Mobile TV). In such
 networks, the operational and management considerations can be
 achieved through an open or proprietary solution, which is
 specified outside of the IETF.

 5. Congestion Control Considerations: See Section 8 for a discussion
 on whether or not congestion control is needed, and its
 relationships with the FEC Framework.

 6. Within End-Systems vs. within Middleboxes: The FEC Framework can
 be used within end-systems, very close to the upper-layer
 application, or within dedicated middleboxes (for instance, when
 it is desired to protect one or several flows while they cross a
 lossy channel between two or more remote sites).

 7. Protecting a Single Flow vs. Several Flows Globally: The FEC
 Framework can be used to protect a single flow or several flows
 globally.

10.2. Operational and Management Recommendations

 Overall, from the discussion in Section 10.1, it is clear that the
 CDPs and FEC schemes compatible with the FEC Framework differ widely
 in their capabilities, application, and deployment scenarios such
 that a common operation and management method or protocol that works
 well for all of them would be too complex to define. Thus, as a
 design choice, the FEC Framework does not dictate the use of any
 particular technology or protocol for transporting FEC data, managing
 the hosts, signaling the configuration information, or encoding the
 configuration information. This provides flexibility and is one of
 the main goals of the FEC Framework. However, this section gives
 some RECOMMENDED guidelines.

 1. A Single Small Generic Component within a Larger (and Often
 Legacy) Solution: It is anticipated that the FEC Framework will
 often be used to protect one or several RTP streams. Therefore,
 implementations SHOULD make feedback information accessible via
 RTCP to enable users to take advantage of the tools using (or
 used by) RTCP to operate and manage the FEC Framework instance
 along with the associated FEC schemes.

 2. One-to-One with Feedback vs. One-to-Many with Feedback vs. One-
 to-Many without Feedback Scenarios: With use cases that are
 one-way, the FEC Framework sender does not have any way to gather
 feedback from receivers. With use cases that are bidirectional,
 the FEC Framework sender can collect detailed feedback (e.g., in
 the case of a one-to-one scenario) or at least occasional
 feedback (e.g., in the case of a multicast, one-to-many
 scenario). All these applications have naturally different
 operational and management aspects. They also have different
 requirements or features, if any, for collecting feedback,
 processing it, and acting on it. The data structures for
 carrying the feedback also vary.

 Implementers SHOULD make feedback available using either an
 in-band or out-of-band asynchronous reporting mechanism. When an
 out-of-band solution is preferred, a standardized reporting
 mechanism, such as Syslog [RFC5424] or Simple Network Management
 Protocol (SNMP) notifications [RFC3411], is RECOMMENDED. When
 required, a mapping mechanism between the Syslog and SNMP
 reporting mechanisms could be used, as described in [RFC5675] and
 [RFC5676].

 3. Non-FEC Framework Capable Receivers: Section 5.3 gives
 recommendations on how to provide backward compatibility in the
 presence of receivers that cannot support the FEC scheme being
 used or the FEC Framework itself: basically, the use of Explicit
 Source FEC Payload ID is banned. Additionally, a non-FEC
 Framework capable receiver MUST also have a means not to receive
 the repair packets that it will not be able to decode in the
 first place or a means to identify and discard them appropriately
 upon receiving them. This SHOULD be achieved by sending repair
 packets on a different transport-layer flow. In the case of RTP
 transport, and if both source and repair packets will be sent on
 the same transport-layer flow, this SHOULD be achieved by using
 an RTP framing for FEC repair packets with a different payload
 type. It is the responsibility of the sender to select the
 appropriate mechanism when needed.

 4. Within End-Systems vs. within Middleboxes: When the FEC Framework
 is used within middleboxes, it is RECOMMENDED that the paths
 between the hosts where the sending applications run and the
 middlebox that performs FEC encoding be as reliable as possible,
 i.e., not be prone to packet loss, packet reordering, or varying
 delays in delivering packets.

 Similarly, when the FEC Framework is used within middleboxes, it
 is RECOMMENDED that the paths be as reliable as possible between
 the middleboxes that perform FEC decoding and the end-systems
 where the receiving applications operate.

 5. Management of Communication Issues before Reaching the Sending
 FECFRAME Instance: Let us consider situations where the FEC
 Framework is used within middleboxes. At the sending side, the
 general reliability recommendation for the path between the
 sending applications and the middlebox is important, but it may
 not guarantee that a loss, reordering, or long delivery delay
 cannot happen, for whatever reason. If such a rare event
 happens, this event SHOULD NOT compromise the operation of the
 FECFRAME instances, at either the sending side or the receiving
 side. This is particularly important with FEC schemes that do
 not modify the ADU for backward-compatibility purposes (i.e., do
 not use any Explicit Source FEC Payload ID) and rely on, for
 instance, the RTP sequence number field to identify FEC source
 packets within their source block. In this case, packet loss or
 packet reordering leads to a gap in the RTP sequence number space
 seen by the FECFRAME instance. Similarly, varying delay in
 delivering packets over this path can lead to significant timing
 issues. With FEC schemes that indicate in the Repair FEC Payload
 ID, for each source block, the base RTP sequence number and
 number of consecutive RTP packets that belong to this source
 block, a missing ADU or an ADU delivered out of order could cause
 the FECFRAME sender to switch to a new source block. However,
 some FEC schemes and/or receivers may not necessarily handle such
 varying source block sizes. In this case, one could consider
 duplicating the last ADU received before the loss, or inserting
 zeroed ADU(s), depending on the nature of the ADU flow.
 Implementers SHOULD consider the consequences of such alternative
 approaches, based on their use cases.

 6. Protecting a Single Flow vs. Several Flows Globally: In the
 general case, the various ADU flows that are globally protected
 can have different features, and in particular different real-
 time requirements (in the case of real-time flows). The process
 of globally protecting these flows SHOULD take into account the
 requirements of each individual flow. In particular, it would be
 counterproductive to add repair traffic to a real-time flow for
 which the FEC decoding delay at a receiver makes decoded ADUs for
 this flow useless because they do not satisfy the associated
 real-time constraints. From a practical point of view, this
 means that the source block creation process at the sending FEC
 Framework instance SHOULD consider the most stringent real-time
 requirements of the ADU flows being globally protected.

 7. ADU Flow Bundle Definition and Flow Delivery: By design, a repair
 flow might enable a receiver to recover the ADU flow(s) that it
 protects even if none of the associated FEC source packets are
 received. Therefore, when defining the bundle of ADU flows that
 are globally protected and when defining which receiver receives
 which flow, the sender SHOULD make sure that the ADU flow(s) and
 repair flow(s) of that bundle will only be received by receivers
 that are authorized to receive all the ADU flows of that bundle.
 See Section 9.4 for additional recommendations for situations
 where strict access control for ADU flows is needed.

 Additionally, when multiple ADU flows are globally protected, a
 receiver that wants to benefit from FECFRAME loss protection
 SHOULD receive all the ADU flows of the bundle. Otherwise, the
 missing FEC source packets would be considered lost, which might
 significantly reduce the efficiency of the FEC scheme.

11. IANA Considerations

 FEC schemes for use with this framework are identified in protocols
 using FEC Encoding IDs. Values of FEC Encoding IDs are subject to
 IANA registration. For this purpose, this document creates a new
 registry called the "FEC Framework (FECFRAME) FEC Encoding IDs".

 The values that can be assigned within the "FEC Framework (FECFRAME)
 FEC Encoding IDs" registry are numeric indexes in the range (0, 255).
 Values of 0 and 255 are reserved. Assignment requests are granted on
 an IETF Review basis as defined in [RFC5226]. Section 5.6 defines
 explicit requirements that documents defining new FEC Encoding IDs
 should meet.

12. Acknowledgments

 This document is based in part on [FEC-SF], and so thanks are due to
 the additional authors of that document: Mike Luby, Magnus
 Westerlund, and Stephan Wenger. That document was in turn based on
 the FEC Streaming Protocol defined by 3GPP in [MBMSTS], and thus,
 thanks are also due to the participants in 3GPP SA Working Group 4.
 Further thanks are due to the members of the FECFRAME Working Group
 for their comments and reviews.

13. References

13.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC5052]
 Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC5424]
 Gerhards, R., "The Syslog Protocol", RFC 5424, March 2009.

13.2. Informative References

 [FEC-SF]
 Watson, M., Luby, M., Westerlund, M., and S. Wenger,
 "Forward Error Correction (FEC) Streaming Framework", Work
 in Progress, July 2005.

 [MBMSTS]
 3GPP, "Multimedia Broadcast/Multicast Service (MBMS);
 Protocols and codecs", 3GPP TS 26.346, March 2009,
 <http://ftp.3gpp.org/specs/html-info/26346.htm>.

 [RFC3095]
 Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
 K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
 Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
 Compression (ROHC): Framework and four profiles: RTP, UDP,
 ESP, and uncompressed", RFC 3095, July 2001.

 [RFC3550]
 Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3711]
 Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC4303]
 Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC4383]
 Baugher, M. and E. Carrara, "The Use of Timed Efficient
 Stream Loss-Tolerant Authentication (TESLA) in the Secure
 Real-time Transport Protocol (SRTP)", RFC 4383,
 February 2006.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4588]
 Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
 Hakenberg, "RTP Retransmission Payload Format", RFC 4588,
 July 2006.

 [RFC5675]
 Marinov, V. and J. Schoenwaelder, "Mapping Simple Network
 Management Protocol (SNMP) Notifications to SYSLOG
 Messages", RFC 5675, October 2009.

 [RFC5676]
 Schoenwaelder, J., Clemm, A., and A. Karmakar,
 "Definitions of Managed Objects for Mapping SYSLOG
 Messages to Simple Network Management Protocol (SNMP)
 Notifications", RFC 5676, October 2009.

 [RFC5725]
 Begen, A., Hsu, D., and M. Lague, "Post-Repair Loss RLE
 Report Block Type for RTP Control Protocol (RTCP) Extended
 Reports (XRs)", RFC 5725, February 2010.

 [RFC5740]
 Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, November 2009.

 [RFC5775]
 Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 April 2010.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for FEC
 Framework", RFC 6364, October 2011.

Authors' Addresses

Mark Watson
Netflix, Inc.
100 Winchester Circle
Los Gatos, CA 95032
USA

 EMail: watsonm@netflix.com

Ali Begen
Cisco
181 Bay Street
Toronto, ON M5J 2T3
Canada

 EMail: abegen@cisco.com

Vincent Roca
INRIA
655, av. de l'Europe
Inovallee; Montbonnot
ST ISMIER cedex 38334
France

EMail: vincent.roca@inria.fr
URI: http://planete.inrialpes.fr/people/roca/

6364 - Session Description Protocol Elements for the Forward Error Correction (F

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6364

Category: Standards Track

ISSN: 2070-1721

A. Begen

Cisco

October 2011

Session Description Protocol Elements for the Forward Error Correction (FEC) Framework

Abstract

 This document specifies the use of the Session Description Protocol
 (SDP) to describe the parameters required to signal the Forward Error
 Correction (FEC) Framework Configuration Information between the
 sender(s) and receiver(s). This document also provides examples that
 show the semantics for grouping multiple source and repair flows
 together for the applications that simultaneously use multiple
 instances of the FEC Framework.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6364.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Requirements Notation

	3. Forward Error Correction (FEC) and FEC Framework
	 3.1. Forward Error Correction (FEC)

	 3.2. FEC Framework

	 3.3. FEC Framework Configuration Information

	4. SDP Elements
	 4.1. Transport Protocol Identifiers

	 4.2. Media Stream Grouping

	 4.3. Source IP Addresses

	 4.4. Source Flows

	 4.5. Repair Flows

	 4.6. Repair Window

	 4.7. Bandwidth Specification

	5. Scenarios and Examples
	 5.1. Declarative Considerations

	 5.2. Offer/Answer Model Considerations

	6. SDP Examples
	 6.1. One Source Flow, One Repair Flow, and One FEC Scheme

	 6.2. Two Source Flows, One Repair Flow, and One FEC Scheme

	 6.3. Two Source Flows, Two Repair Flows, and Two FEC Schemes

	 6.4. One Source Flow, Two Repair Flows, and Two FEC Schemes

	7. Security Considerations

	8. IANA Considerations
	 8.1. Registration of Transport Protocols

	 8.2. Registration of SDP Attributes

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

1. Introduction

 The Forward Error Correction (FEC) Framework, described in [RFC6363],
 outlines a general framework for using FEC-based error recovery in
 packet flows carrying media content. While a continuous signaling
 between the sender(s) and receiver(s) is not required for a Content
 Delivery Protocol (CDP) that uses the FEC Framework, a set of
 parameters pertaining to the FEC Framework has to be initially
 communicated between the sender(s) and receiver(s). A signaling
 protocol (such as the one described in [FECFRAME-CFG-SIGNAL]) is
 required to enable such communication, and the parameters need to be
 appropriately encoded so that they can be carried by the signaling
 protocol.

 One format to encode the parameters is the Session Description
 Protocol (SDP) [RFC4566]. SDP provides a simple text-based format
 for announcements and invitations to describe multimedia sessions.
 These SDP announcements and invitations include sufficient
 information for the sender(s) and receiver(s) to participate in the
 multimedia sessions. SDP also provides a framework for capability
 negotiation, which can be used to negotiate all, or a subset, of the
 parameters pertaining to the individual sessions.

 The purpose of this document is to introduce the SDP elements that
 are used by the CDPs using the FEC Framework that choose SDP
 [RFC4566] for their multimedia sessions.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Forward Error Correction (FEC) and FEC Framework

 This section gives a brief overview of FEC and the FEC Framework.

3.1. Forward Error Correction (FEC)

 Any application that needs reliable transmission over an unreliable
 packet network has to cope with packet losses. FEC is an effective
 approach that provides reliable transmission, particularly in
 multicast and broadcast applications where the feedback from the
 receiver(s) is either not available or quite limited.

 In a nutshell, FEC groups source packets into blocks and applies
 protection to generate a desired number of repair packets. These
 repair packets can be sent on demand or independently of any receiver
 feedback. The choice depends on the FEC scheme or the Content
 Delivery Protocol used by the application, the packet loss
 characteristics of the underlying network, the transport scheme
 (e.g., unicast, multicast, and broadcast), and the application
 itself. At the receiver side, lost packets can be recovered by
 erasure decoding provided that a sufficient number of source and
 repair packets have been received.

3.2. FEC Framework

 The FEC Framework [RFC6363] outlines a general framework for using
 FEC codes in multimedia applications that stream audio, video, or
 other types of multimedia content. It defines the common components
 and aspects of Content Delivery Protocols (CDPs). The FEC Framework
 also defines the requirements for the FEC schemes that need to be
 used within a CDP. However, the details of the FEC schemes are not
 specified within the FEC Framework. For example, the FEC Framework
 defines what configuration information has to be known at the sender
 and receiver(s) at a minimum, but the FEC Framework neither specifies
 how the FEC repair packets are generated and used to recover missing
 source packets, nor dictates how the configuration information is
 communicated between the sender and receiver(s). These are rather
 specified by the individual FEC schemes or CDPs.

3.3. FEC Framework Configuration Information

 The FEC Framework [RFC6363] defines a minimum set of information that
 has to be communicated between the sender and receiver(s) for proper
 operation of a FEC scheme. This information is called the "FEC
 Framework Configuration Information". This information includes
 unique identifiers for the source and repair flows that carry the
 source and repair packets, respectively. It also specifies how the
 sender applies protection to the source flow(s) and how the repair
 flow(s) can be used to recover lost data.

 Multiple instances of the FEC Framework can simultaneously exist at
 the sender and the receiver(s) for different source flows, for the
 same source flow, or for various combinations of the source flows.
 Each instance of the FEC Framework provides the following FEC
 Framework Configuration Information:

 1. Identification of the repair flows.

 2. For each source flow protected by the repair flow(s):

 A. Definition of the source flow.

 B. An integer identifier for this flow definition (i.e., tuple).

 This identifier MUST be unique among all source flows that
 are protected by the same FEC repair flow. Integer
 identifiers can be allocated starting from zero and
 increasing by one for each flow. However, any random (but
 still unique) allocation is also possible. A source flow
 identifier need not be carried in source packets, since
 source packets are directly associated with a flow by virtue
 of their packet headers.

 3. The FEC Encoding ID, identifying the FEC scheme.

 4. The length of the Explicit Source FEC Payload ID (in octets).

 5. Zero or more FEC-Scheme-Specific Information (FSSI) elements,
 each consisting of a name and a value where the valid element
 names and value ranges are defined by the FEC scheme.

 FSSI includes the information that is specific to the FEC scheme used
 by the CDP. FSSI is used to communicate the information that cannot
 be adequately represented otherwise and is essential for proper FEC
 encoding and decoding operations. The motivation behind separating
 the FSSI required only by the sender (which is carried in a Sender-
 Side FEC-Scheme-Specific Information (SS-FSSI) container) from the
 rest of the FSSI is to provide the receiver or the third-party
 entities a means of controlling the FEC operations at the sender.
 Any FSSI other than the one solely required by the sender MUST be
 communicated via the FSSI container.

 The variable-length SS-FSSI and FSSI containers transmit the
 information in textual representation and contain zero or more
 distinct elements, whose descriptions are provided by the fully
 specified FEC schemes.

4. SDP Elements

 This section defines the SDP elements that MUST be used to describe
 the FEC Framework Configuration Information in multimedia sessions by
 the CDPs that choose SDP [RFC4566] for their multimedia sessions.
 Example SDP descriptions can be found in Section 6.

4.1. Transport Protocol Identifiers

 This specification defines a new transport protocol identifier for
 the FEC schemes that take a UDP-formatted input stream and append an
 Explicit Source FEC Payload ID, as described in Section 5.3 of
 [RFC6363], to generate a source flow. This new protocol identifier
 is called 'FEC/UDP'. To use input streams that are formatted
 according to another <proto> (as listed in the table for the 'proto'
 field in the "Session Description Protocol (SDP) Parameters"
 registry), the corresponding 'FEC/<proto>' transport protocol
 identifier MUST be registered with IANA by following the instructions
 specified in [RFC4566].

Note that if a FEC scheme does not use the Explicit Source FEC
Payload ID as described in Section 4.1 of [RFC6363], then the
original transport protocol identifier MUST be used to support
backward compatibility with the receivers that do not support FEC
at all.

 This specification also defines another transport protocol
 identifier, 'UDP/FEC', to indicate the FEC repair packet format
 defined in Section 5.4 of [RFC6363]. For detailed registration
 information, refer to Section 8.1.

4.2. Media Stream Grouping

 In the FEC Framework, the 'group' attribute and the FEC grouping
 semantics defined in [RFC5888] and [RFC5956], respectively, are used
 to associate source and repair flows.

4.3. Source IP Addresses

 The 'source-filter' attribute of SDP ("a=source-filter") as defined
 in [RFC4570] is used to express the source addresses or fully
 qualified domain names in the FEC Framework.

4.4. Source Flows

 The FEC Framework allows that multiple source flows MAY be grouped
 and protected together by single or multiple FEC Framework instances.
 For this reason, as described in Section 3.3, individual source flows
 MUST be identified with unique identifiers. For this purpose, we
 introduce the attribute 'fec-source-flow'.

 The syntax for the new attribute in ABNF [RFC5234] is as follows:

 fec-source-flow-line = "a=fec-source-flow:" SP source-id

 [";" SP tag-length] CRLF

source‑id = "id=" src‑id
src‑id = 1*DIGIT ; Represented as 32‑bit non‑negative
 ; integers, and leading zeros are ignored

tag‑length = "tag‑len=" tlen
tlen = %x31‑39 *DIGIT

 The REQUIRED parameter 'id' is used to identify the source flow.
 Parameter 'id' MUST be an integer.

 The 'tag-len' parameter is used to specify the length of the Explicit
 Source FEC Payload ID field (in octets). In the case that an
 Explicit Source FEC Payload ID is used, the 'tag-len' parameter MUST
 exist and indicate its length. Otherwise, the 'tag-len' parameter
 MUST NOT exist.

4.5. Repair Flows

 A repair flow MUST contain only repair packets formatted as described
 in [RFC6363] for a single FEC Framework instance; i.e., packets
 belonging to source flows or other repair flows from a different FEC
 Framework instance cannot be sent within this flow. We introduce the
 attribute 'fec-repair-flow' to describe the repair flows.

 The syntax for the new attribute in ABNF is as follows (CHAR and CTL
 are defined in [RFC5234]):

fec‑repair‑flow‑line = "a=fec‑repair‑flow:" SP fec‑encoding‑id
 [";" SP flow‑preference]
 [";" SP sender‑side‑scheme‑specific]
 [";" SP scheme‑specific] CRLF

fec‑encoding‑id = "encoding‑id=" enc‑id
enc‑id = 1*DIGIT ; FEC Encoding ID

 flow-preference = "preference-lvl=" preference-level-of-the-flow
 preference-level-of-the-flow = 1*DIGIT

sender‑side‑scheme‑specific = "ss‑fssi=" sender‑info
sender‑info = element *("," element)
element = name ":" value
name = token
token = 1*<any CHAR except CTLs or separators>
value = *<any CHAR except CTLs or separators>
separator = "(" / ")" / "<" / ">" / "@"
 / "," / ";" / ":" / "\" / DQUOTE
 / "/" / "[" / "]" / "?" / "="
 / "{" / "}" / SP / HTAB

scheme‑specific = "fssi=" scheme‑info
scheme‑info = element *("," element)

 The REQUIRED parameter 'encoding-id' is used to identify the FEC
 scheme used to generate this repair flow. These identifiers (in the
 range of [0 - 255]) are registered by the FEC schemes that use the
 FEC Framework and are maintained by IANA.

 The OPTIONAL parameter 'preference-lvl' is used to indicate the
 preferred order for using the repair flows. The exact usage of the
 parameter 'preference-lvl' and the pertaining rules MAY be defined by
 the FEC scheme or the CDP. If the parameter 'preference-lvl' does
 not exist, it means that the receiver(s) MAY receive and use the
 repair flows in any order. However, if a preference level is
 assigned to the repair flow(s), the receivers are encouraged to
 follow the specified order in receiving and using the repair flow(s).

 The OPTIONAL parameters 'ss-fssi' and 'fssi' are containers to convey
 the FEC-Scheme-Specific Information (FSSI) that includes the
 information that is specific to the FEC scheme used by the CDP and is
 necessary for proper FEC encoding and decoding operations. The FSSI
 required only by the sender (the Sender-Side FSSI) MUST be
 communicated in the container specified by the parameter 'ss-fssi'.
 Any other FSSI MUST be communicated in the container specified by the
 parameter 'fssi'. In both containers, FSSI is transmitted in the
 form of textual representation and MAY contain multiple distinct
 elements. If the FEC scheme does not require any specific
 information, the 'ss-fssi' and 'fssi' parameters MUST NOT exist.

4.6. Repair Window

 The repair window is the time that spans a FEC block, which consists
 of the source block and the corresponding repair packets.

 At the sender side, the FEC encoder processes a block of source
 packets and generates a number of repair packets. Then, both the
 source and repair packets are transmitted within a certain duration
 not larger than the value of the repair window. The value of the
 repair window impacts the maximum number of source packets that can
 be included in a FEC block.

 At the receiver side, the FEC decoder should wait at least for the
 duration of the repair window after getting the first packet in a FEC
 block, to allow all the repair packets to arrive. (The waiting time
 can be adjusted if there are missing packets at the beginning of the
 FEC block.) The FEC decoder can start decoding the already received
 packets sooner; however, it SHOULD NOT register a FEC decoding
 failure until it waits at least for the duration of the repair
 window.

 This document specifies a new attribute to describe the size of the
 repair window in milliseconds and microseconds.

 The syntax for the attribute in ABNF is as follows:

 repair-window-line = "a=repair-window:" window-size unit CRLF

 window-size = %x31-39 *DIGIT ; Represented as

 ; 32-bit non-negative integers

 unit = "ms" / "us"

 <unit> is the unit of time specified for the repair window size. Two
 units are defined here: 'ms', which stands for milliseconds; and
 'us', which stands for microseconds.

 The 'a=repair-window' attribute is a media-level attribute, since
 each repair flow MAY have a different repair window size.

 Specifying the repair window size in an absolute time value does not
 necessarily correspond to an integer number of packets or exactly
 match with the clock rate used in RTP (in the case of RTP transport),
 causing mismatches among subsequent repair windows. However, in
 practice, this mismatch does not break anything in the FEC decoding
 process.

4.7. Bandwidth Specification

 The bandwidth specification as defined in [RFC4566] denotes the
 proposed bandwidth to be used by the session or media. The
 specification of bandwidth is OPTIONAL.

 In the context of the FEC Framework, the bandwidth specification can
 be used to express the bandwidth of the repair flows or the bandwidth
 of the session. If included in the SDP, it SHALL adhere to the
 following rules.

 The session-level bandwidth for a FEC Framework instance or the
 media-level bandwidth for the individual repair flows MAY be
 specified. In this case, it is RECOMMENDED that the Transport
 Independent Application Specific (TIAS) bandwidth modifier [RFC3890]
 and the 'a=maxprate' attribute be used, unless the Application-
 Specific (AS) bandwidth modifier [RFC4566] is used. The use of the
 AS bandwidth modifier is NOT RECOMMENDED, since TIAS allows the
 calculation of the bitrate according to the IP version and transport
 protocol whereas AS does not. Thus, in TIAS-based bitrate
 calculations, the packet size SHALL include all headers and payload,
 excluding the IP and UDP headers. In AS-based bitrate calculations,
 the packet size SHALL include all headers and payload, plus the IP
 and UDP headers.

 For the ABNF syntax information of the TIAS and AS, refer to
 [RFC3890] and [RFC4566], respectively.

5. Scenarios and Examples

 This section discusses the considerations for Session Announcement
 and Offer/Answer Models.

5.1. Declarative Considerations

 In multicast-based applications, the FEC Framework Configuration
 Information pertaining to all FEC protection options available at the
 sender MAY be advertised to the receivers as a part of a session
 announcement. This way, the sender can let the receivers know all
 available options for FEC protection. Based on their needs, the
 receivers can choose protection provided by one or more FEC Framework
 instances and subscribe to the respective multicast session(s) to
 receive the repair flow(s). Unless explicitly required by the CDP,
 the receivers SHOULD NOT send an answer back to the sender specifying
 their choices, since this can easily overwhelm the sender,
 particularly in large-scale multicast applications.

5.2. Offer/Answer Model Considerations

 In unicast-based applications, a sender and receiver MAY adopt the
 Offer/Answer Model [RFC3264] to set the FEC Framework Configuration
 Information. In this case, the sender offers the options available
 to this particular receiver, and the receiver answers back to the
 sender with its choice(s).

 Receivers supporting the SDP Capability Negotiation Framework
 [RFC5939] MAY also use this framework to negotiate all, or a subset,
 of the FEC Framework parameters.

 The backward compatibility in the Offer/Answer Model is handled as
 specified in [RFC5956].

6. SDP Examples

 This section provides SDP examples that can be used by the FEC
 Framework.

 [RFC5888] defines the media stream identification attribute ('mid')
 as a token in ABNF. In contrast, the identifiers for the source
 flows are integers and can be allocated starting from zero and
 increasing by one for each flow. To avoid any ambiguity, using the
 same values for identifying the media streams and source flows is NOT
 RECOMMENDED, even when 'mid' values are integers.

 In the examples below, random FEC Encoding IDs will be used for
 illustrative purposes. Artificial content for the SS-FSSI and FSSI
 will also be provided.

6.1. One Source Flow, One Repair Flow, and One FEC Scheme

SOURCE FLOWS | INSTANCE #1
S1: Source Flow |‑‑‑‑‑‑‑‑| R1: Repair Flow
 |

 Figure 1: Scenario #1

 In this example, we have one source video flow (mid:S1) and one FEC
 repair flow (mid:R1). We form one FEC group with the
 "a=group:FEC-FR S1 R1" line. The source and repair flows are sent to
 the same port on different multicast groups. The repair window is
 set to 150 ms.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=FEC Framework Examples
t=0 0
a=group:FEC‑FR S1 R1
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S1
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.2/127
a=fec‑repair‑flow: encoding‑id=0; ss‑fssi=n:7,k:5
a=repair‑window:150ms
a=mid:R1

6.2. Two Source Flows, One Repair Flow, and One FEC Scheme

SOURCE FLOWS
S2: Source Flow | | INSTANCE #1
 |‑‑‑‑‑‑‑‑‑| R2: Repair Flow
S3: Source Flow |

 Figure 2: Scenario #2

 In this example, we have two source video flows (mid:S2 and mid:S3)
 and one FEC repair flow (mid:R2) protecting both source flows. We
 form one FEC group with the "a=group:FEC-FR S2 S3 R2" line. The
 source and repair flows are sent to the same port on different
 multicast groups. The repair window is set to 150500 us.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=FEC Framework Examples
t=0 0
a=group:FEC‑FR S2 S3 R2
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S2
m=video 30000 RTP/AVP 101
c=IN IP4 233.252.0.2/127
a=rtpmap:101 MP2T/90000
a=fec‑source‑flow: id=1
a=mid:S3
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.3/127
a=fec‑repair‑flow: encoding‑id=0; ss‑fssi=n:7,k:5
a=repair‑window:150500us
a=mid:R2

6.3. Two Source Flows, Two Repair Flows, and Two FEC Schemes

SOURCE FLOWS | INSTANCE #1
S4: Source Flow |‑‑‑‑‑‑‑‑| R3: Repair Flow

S5: Source Flow |‑‑‑‑‑‑‑‑| INSTANCE #2
 | R4: Repair Flow

 Figure 3: Scenario #3

 In this example, we have two source video flows (mid:S4 and mid:S5)
 and two FEC repair flows (mid:R3 and mid:R4). The source flows
 mid:S4 and mid:S5 are protected by the repair flows mid:R3 and
 mid:R4, respectively. We form two FEC groups with the
 "a=group:FEC-FR S4 R3" and "a=group:FEC-FR S5 R4" lines. The source
 and repair flows are sent to the same port on different multicast
 groups. The repair window is set to 200 ms and 400 ms for the first
 and second FEC group, respectively.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=FEC Framework Examples
t=0 0
a=group:FEC‑FR S4 R3
a=group:FEC‑FR S5 R4
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S4
m=video 30000 RTP/AVP 101
c=IN IP4 233.252.0.2/127
a=rtpmap:101 MP2T/90000
a=fec‑source‑flow: id=1
a=mid:S5
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.3/127
a=fec‑repair‑flow: encoding‑id=0; ss‑fssi=n:7,k:5
a=repair‑window:200ms
a=mid:R3
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.4/127
a=fec‑repair‑flow: encoding‑id=0; ss‑fssi=n:14,k:10
a=repair‑window:400ms
a=mid:R4

6.4. One Source Flow, Two Repair Flows, and Two FEC Schemes

SOURCE FLOWS | INSTANCE #1
S6: Source Flow |‑‑‑‑‑‑‑‑| R5: Repair Flow
 |
 |‑‑‑‑‑‑‑‑| INSTANCE #2
 | R6: Repair Flow

 Figure 4: Scenario #4

 In this example, we have one source video flow (mid:S6) and two FEC
 repair flows (mid:R5 and mid:R6) with different preference levels.
 The source flow mid:S6 is protected by both of the repair flows. We
 form two FEC groups with the "a=group:FEC-FR S6 R5" and
 "a=group:FEC-FR S6 R6" lines. The source and repair flows are sent
 to the same port on different multicast groups. The repair window is
 set to 200 ms for both FEC groups.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=FEC Framework Examples
t=0 0
a=group:FEC‑FR S6 R5
a=group:FEC‑FR S6 R6
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S6
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.3/127
a=fec‑repair‑flow: encoding‑id=0; preference‑lvl=0; ss‑fssi=n:7,k:5
a=repair‑window:200ms
a=mid:R5
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.4/127
a=fec‑repair‑flow: encoding‑id=1; preference‑lvl=1; ss‑fssi=t:3
a=repair‑window:200ms
a=mid:R6

7. Security Considerations

 There is a weak threat if the SDP is modified in a way that it shows
 an incorrect association and/or grouping of the source and repair
 flows. Such attacks can result in failure of FEC protection and/or
 mishandling of other media streams. It is RECOMMENDED that the
 receiver perform an integrity check on SDP to only trust SDP from
 trusted sources. The receiver MUST also follow the security
 considerations of SDP [RFC4566]. For other general security
 considerations related to SDP, refer to [RFC4566]. For the security
 considerations related to the use of source address filters in SDP,
 refer to [RFC4570].

 The security considerations for the FEC Framework also apply. Refer
 to [RFC6363] for details.

8. IANA Considerations

8.1. Registration of Transport Protocols

 This specification updates the "Session Description Protocol (SDP)
 Parameters" registry as defined in Section 8.2.2 of [RFC4566].
 Specifically, it adds the following values to the table for the
 'proto' field.

Type SDP Name Reference
‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑
proto FEC/UDP [RFC6364]
proto UDP/FEC [RFC6364]

8.2. Registration of SDP Attributes

 This document registers new attribute names in SDP.

SDP Attribute ("att‑field"):
 Attribute name: fec‑source‑flow
 Long form: Pointer to FEC Source Flow
 Type of name: att‑field
 Type of attribute: Media level
 Subject to charset: No
 Purpose: Provide parameters for a FEC source flow
 Reference: [RFC6364]
 Values: See [RFC6364]

SDP Attribute ("att‑field"):
 Attribute name: fec‑repair‑flow
 Long form: Pointer to FEC Repair Flow
 Type of name: att‑field
 Type of attribute: Media level
 Subject to charset: No
 Purpose: Provide parameters for a FEC repair flow
 Reference: [RFC6364]
 Values: See [RFC6364]

SDP Attribute ("att‑field"):
 Attribute name: repair‑window
 Long form: Pointer to FEC Repair Window
 Type of name: att‑field
 Type of attribute: Media level
 Subject to charset: No
 Purpose: Indicate the size of the repair window
 Reference: [RFC6364]
 Values: See [RFC6364]

9. Acknowledgments

 The author would like to thank the FEC Framework Design Team for
 their inputs, suggestions, and contributions.

10. References

10.1. Normative References

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4570]
 Quinn, B. and R. Finlayson, "Session Description Protocol
 (SDP) Source Filters", RFC 4570, July 2006.

 [RFC5888]
 Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

 [RFC5956]
 Begen, A., "Forward Error Correction Grouping Semantics in
 the Session Description Protocol", RFC 5956,
 September 2010.

 [RFC3890]
 Westerlund, M., "A Transport Independent Bandwidth
 Modifier for the Session Description Protocol (SDP)",
 RFC 3890, September 2004.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC3264]
 Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

10.2. Informative References

 [FECFRAME-CFG-SIGNAL]

 Asati, R., "Methods to convey FEC Framework Configuration
 Information", Work in Progress, September 2011.

 [RFC5939]
 Andreasen, F., "Session Description Protocol (SDP)
 Capability Negotiation", RFC 5939, September 2010.

Author's Address

Ali Begen
Cisco
181 Bay Street
Toronto, ON M5J 2T3
Canada

 EMail: abegen@cisco.com

6681 - Raptor Forward Error Correction (FEC) Schemes for FECFRAME

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6681

Category: Standards Track

ISSN: 2070-1721

M. Watson

Netflix

T. Stockhammer

Nomor Research

M. Luby

Qualcomm Incorporated

August 2012

Raptor Forward Error Correction (FEC) Schemes for FECFRAME

Abstract

 This document describes Fully-Specified Forward Error Correction
 (FEC) Schemes for the Raptor and RaptorQ codes and their application
 to reliable delivery of media streams in the context of the FEC
 Framework. The Raptor and RaptorQ codes are systematic codes, where
 a number of repair symbols are generated from a set of source symbols
 and sent in one or more repair flows in addition to the source
 symbols that are sent to the receiver(s) within a source flow. The
 Raptor and RaptorQ codes offer close to optimal protection against
 arbitrary packet losses at a low computational complexity. Six FEC
 Schemes are defined: two for the protection of arbitrary packet
 flows, two that are optimized for small source blocks, and two for
 the protection of a single flow that already contains a sequence
 number. Repair data may be sent over arbitrary datagram transport
 (e.g., UDP) or using RTP.

Status of This Memo

 This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 5741.

Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
http://www.rfc‑editor.org/info/rfc6681.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Document Outline

	3. Requirements Notation

	4. Definitions and Abbreviations
	 4.1. Definitions

	 4.2. Abbreviations

	5. General Procedures for Raptor FEC Schemes

	6. Raptor FEC Schemes for Arbitrary Packet Flows
	 6.1. Introduction

	 6.2. Formats and Codes
	 6.2.1. FEC Framework Configuration Information

	 6.2.2. Source FEC Payload ID

	 6.2.3. Repair FEC Payload ID

	 6.3. Procedures
	 6.3.1. Source Symbol Construction

	 6.3.2. Repair Packet Construction

	 6.4. FEC Code Specification

	7. Optimized Raptor FEC Scheme for Arbitrary Packet Flows
	 7.1. Introduction

	 7.2. Formats and Codes
	 7.2.1. FEC Framework Configuration Information

	 7.2.2. Source FEC Payload ID

	 7.2.3. Repair FEC Payload ID

	 7.3. Procedures
	 7.3.1. Source Symbol Construction

	 7.3.2. Repair Packet Construction

	 7.4. FEC Code Specification

	8. Raptor FEC Scheme for a Single Sequenced Flow
	 8.1. Formats and Codes
	 8.1.1. FEC Framework Configuration Information

	 8.1.2. Source FEC Payload ID

	 8.1.3. Repair FEC Payload ID

	 8.2. Procedures
	 8.2.1. Source Symbol Construction

	 8.2.2. Derivation of Source FEC Packet Identification Information

	 8.2.3. Repair Packet Construction

	 8.2.4. Procedures for RTP Source Flows

	 8.3. FEC Code Specification

	9. Security Considerations

	10. Session Description Protocol (SDP) Signaling

	11. Congestion Control Considerations

	12. IANA Considerations
	 12.1. Registration of FEC Scheme IDs

	13. Acknowledgements

	14. References

1. Introduction

 The "Forward Error Correction (FEC) Framework" [RFC6363] describes a
 general framework for the use of Forward Error Correction in
 association with arbitrary packet flows. Modeled after the FEC
 Building Block developed by the IETF Reliable Multicast Transport
 working group [RFC5052], the FEC Framework defines the concept of FEC
 Schemes that provide specific Forward Error Correction Schemes. This
 document describes six FEC Schemes that make use of the Raptor and
 RaptorQ FEC codes as defined in [RFC5053] and [RFC6330].

 The FEC protection mechanism is independent of the type of source
 data that can be an arbitrary sequence of packets, for example audio
 or video data. In general, the operation of the protection mechanism
 is as follows:

 o The sender determines a set of source packets (a source block) to
 be protected together based on the FEC Framework Configuration
 Information.

 o The sender arranges the source packets into a set of source
 symbols, each of which is the same size.

 o The sender applies the Raptor/RaptorQ protection operation on the
 source symbols to generate the required number of repair symbols.

 o The sender packetizes the repair symbols and sends the repair
 packet(s) and the source packets to the receiver(s). Per the FEC
 Framework requirements, the sender MUST transmit the source and
 repair packets in different source and repair flows, or in the
 case Real-time Transport Protocol (RTP) transport is used for
 repair packets, in different RTP streams.

 o At the receiver side, if all of the source packets are
 successfully received, there is no need for FEC recovery and the
 repair packets are discarded. However, if there are missing
 source packets, the repair packets can be used to recover the
 missing information.

 The operation of the FEC mechanism requires that the receiver is able
 to identify the relationships between received source packets and
 repair packets, in particular, which source packets are missing. In
 many cases, data already exists in the source packets that can be
 used to refer to source packets and to identify which packets are
 missing. In this case, we assume it is possible to derive a
 "sequence number" directly or indirectly from the source packets, and
 this sequence number can be used within the FEC Scheme. This case is
 referred to as a "single sequenced flow". In this case, the FEC
 Source Payload ID defined in [RFC6363] is empty and the source
 packets are not modified by the application of FEC, with obvious
 backwards compatibility advantages.

 Otherwise, it is necessary to add data to the source packets for FEC
 purposes in the form of a non-empty FEC Source Payload ID. This is
 referred to as the "arbitrary packet flow" case. This document
 defines six FEC Schemes, two for the case of a single sequenced flow
 and four for the case of arbitrary packet flows.

2. Document Outline

 This document is organized as follows:

 o Section 5 defines general procedures applicable to the use of the
 Raptor and RaptorQ codes in the context of the FEC Framework.

 o Section 6 defines a FEC Scheme for the case of arbitrary source
 flows and follows the format defined for FEC Schemes in [RFC6363].
 When used with Raptor codes, this scheme is equivalent to that
 defined in 3GPP TS 26.346, "Multimedia Broadcast/Multicast Service
 (MBMS); Protocols and codecs" [MBMSTS].

 o Section 7 defines a FEC Scheme similar to that defined in Section
 6 but with optimizations for the case where only limited source
 block sizes are required. When used with Raptor codes, this
 scheme is equivalent to that defined in ETSI TS 102.034, "Digital
 Video Broadcasting (DVB); Transport of MPEG-2 Based DVB Services
 over IP Based Networks" [DVBTS] for arbitrary packet flows.

 o Section 8 defines a FEC Scheme for the case of a single flow,
 which is already provided with a source packet sequence number.
 When used with Raptor codes, this scheme is equivalent to that
 defined in [DVBTS] for the case of a single sequenced flow.

3. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

4. Definitions and Abbreviations

 The definitions, notations, and abbreviations commonly used in this
 document are summarized in this section.

4.1. Definitions

 The FEC-specific terminology used in this document is defined in
 [RFC6363]. In this document, as in [RFC6363], the first letter of
 each FEC-specific term is capitalized along with the new terms
 defined here:

Symbol: A unit of data. Its size, in octets, is referred to as the
 symbol size.

FEC Framework Configuration Information: Information that controls
 the operation of the FEC Framework. Each FEC Framework instance
 has its own configuration information.

4.2. Abbreviations

 This document uses abbreviations that apply to the FEC Framework in
 general as defined in [RFC6363]. In addition, this document uses the
 following abbreviations

FSSI: FEC‑Scheme‑Specific Information.

ADU: Application Data Unit

ADUI: Application Data Unit Information.

SPI: Source Packet Information.

MSBL: Maximum Source Block Length

5. General Procedures for Raptor FEC Schemes

 This section specifies general procedures that apply to all Raptor
 and RaptorQ FEC Schemes, specifically the construction of source
 symbols from a set of source transport payloads.

 For any field defined in this document, the octets are ordered in
 network byte order.

 As described in [RFC6363], for each Application Data Unit (ADU) in a
 source block, the FEC Scheme is provided with:

 o A description of the source data flow with which the ADU is
 associated and an integer identifier associated with that flow.

 o The ADU itself.

 o The length of the ADU.

 For each ADU, we define the Application Data Unit Information (ADUI)
 as follows:

 Let

 o n be the number of ADUs in the source block.

 o T be the source symbol size in octets. Note: this information is
 provided by the FEC Scheme as defined below.

 o i the index to the (i+1)-th ADU to be added to the source block,
 0 <= i < n.

 o f[i] denote the integer identifier associated with the source data
 flow from which the i-th ADU was taken.

 o F[i] denote a single octet representing the value of f[i].

 o l[i] be a length indication associated with the i-th ADU -- the
 nature of the length indication is defined by the FEC Scheme.

 o L[i] denote two octets representing the value of l[i] in network
 byte order (high order octet first) of the i-th ADU.

 o R[i] denote the number of octets in the (i+1)-th ADU.

 o s[i] be the smallest integer such that s[i]*T >= (l[i]+3). Note:
 s[i] is the length of SPI[i] in units of symbols of size T octets.

 o P[i] denote s[i]*T-(l[i]+3) zero octets. Note: P[i] are padding
 octets to align the start of each UDP packet with the start of a
 symbol.

 o ADUI[i] be the concatenation of F[i], L[i], R[i], and P[i].

Then, a source data block is constructed by concatenating ADUI[i] for
i = 0, 1, 2, ... n‑1. The source data block size, S, is then given
by sum {s[i]*T, i=0, ..., n‑1}. Symbols are allocated integer
encoding symbol IDs (ESI) consecutively starting from zero within the
source block. Each ADU is associated with the ESI of the first
symbol containing SPI for that packet. Thus, the encoding symbol ID
value associated with the j‑th source packet, ESI[j], is given by
ESI[j] = 0, for j=0 and ESI[j] = sum{s[i], i=0,...,(j‑1)}, for
0 < j < n.

 Source blocks are identified by integer Source Block Numbers. This
 specification does not specify how Source Block Numbers are allocated
 to the source blocks. The Source FEC Packet Identification
 Information consists of the identity of the source block and the
 encoding symbol ID associated with the packet.

6. Raptor FEC Schemes for Arbitrary Packet Flows

6.1. Introduction

 This section specifies a FEC Scheme for the application of the Raptor
 and RaptorQ codes to arbitrary packet flows. This scheme is
 recommended in scenarios where maximal generality is required.

 When used with the Raptor codes specified in [RFC5053], this scheme
 is equivalent to that specified in [MBMSTS].

6.2. Formats and Codes

6.2.1. FEC Framework Configuration Information

6.2.1.1. FEC Scheme ID

 The value of the FEC Scheme ID for the Fully-Specified FEC scheme
 defined in this section is 1 when [RFC5053] is used and 2 when
 [RFC6330] is used, as assigned by IANA.

6.2.1.2. Scheme-Specific Elements

 The scheme-specific elements of the FEC Framework Configuration
 information for this scheme are as follows:

 MSBL: The maximum source block length. A non-negative integer less

 than 8192 for FEC Scheme 1 and less than 56403 for FEC Scheme 2,
 in units of symbols. The field type is unsigned integer.

 T: The encoding symbol size. A non-negative integer less than 65536,

 in units of octets. The field type is unsigned integer.

 P: The payload ID format indicator. The P bit shall be set to zero

 to indicate payload ID format A or to one to indicate payload ID
 format B. The field type is unsigned integer.

An encoding format for the encoding symbol size, MSBL and payload ID
format indicator is defined below.
 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +‑+
 | Symbol Size (T) | MSBL |
 +‑+
 |P| Reserved |
 +‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 1: FEC-Scheme-Specific Information

 The P bit shall be set to zero to indicate Payload ID format A or to
 one to indicate Payload ID format B. The last octet of FEC-Scheme-
 Specific Information SHOULD be omitted, indicating that Payload ID
 format A is in use. The payload ID format indicator defines which of
 the Source FEC Payload ID and Repair FEC Payload ID formats defined
 below shall be used. Payload ID format B SHALL NOT be used for FEC
 Scheme 1. The two formats enable different use cases. Format A is
 appropriate in case the stream has many typically smaller source
 blocks, and format B is applicable if the stream has fewer large
 source blocks, each with many encoding symbols.

6.2.2. Source FEC Payload ID

 This scheme makes use of an Explicit Source FEC Payload ID, which is
 appended to the end of the source packets. Two formats are defined
 for the Source FEC Payload ID, format A and format B. The format
 that is used is signaled as part of the FEC Framework Configuration
 Information.

 The Source FEC Payload ID for format A is provided in Figure 2.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Number (SBN) | Encoding Symbol ID (ESI) |
+‑+

 Figure 2: Source FEC Payload ID - Format A

 Source Block Number (SBN), (16 bits): Identifier for the source block

 that the source data within the packet relates. The field type is
 unsigned integer.

 Encoding Symbol ID (ESI), (16 bits): The starting symbol index of the

 source packet in the source block. The field type is unsigned
 integer.

 The Source FEC Payload ID for format B is provided in Figure 3.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| SBN | Encoding Symbol ID (ESI) |
+‑+

 Figure 3: Source FEC Payload ID - Format B

 Source Block Number (SBN), (8 bits): Identifier for the source block

 that the source data within the packet relates. The field type is
 unsigned integer.

 Encoding Symbol ID (ESI), (24 bits): The starting symbol index of the

 source packet in the source block. The field type is unsigned
 integer.

6.2.3. Repair FEC Payload ID

 Two formats for the Repair FEC Payload ID, format A and format B, are
 defined below.

 The Repair FEC Payload ID for format A is provided in Figure 4.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Number (SBN) | Encoding Symbol ID (ESI) |
+‑+
| Source Block Length (SBL) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 4: Repair FEC Payload ID - Format A

 Source Block Number (SBN), (16 bits): Identifier for the source block

 that the repair symbols within the packet relate. For format A,
 it is of size 16 bits. The field type is unsigned integer.

 Encoding Symbol ID (ESI), (16 bits): Identifier for the encoding

 symbols within the packet. The field type is unsigned integer.

 Source Block Length (SBL), (16 bits): The number of source symbols in

 the source block. The field type is unsigned integer.

 The Repair FEC Payload ID for format B is provided in Figure 5.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| SBN | Encoding Symbol ID (ESI) |
+‑+
| Source Block Length (SBL) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 5: Repair FEC Payload ID - Format B

 Source Block Number (SBN), (8 bits): Identifier for the source block

 that the repair symbols within the packet relate. For format B,
 it is of size 8 bits. The field type is unsigned integer.

 Encoding Symbol ID (ESI), (24 bits): Identifier for the encoding

 symbols within the packet. The field type is unsigned integer.

 Source Block Length (SBL), (16 bits): The number of source symbols in

 the source block. The field type is unsigned integer.

 The interpretation of the Source Block Number, encoding symbol ID,
 and Source Block Length is defined by the FEC Code Specification in
 [RFC5053] for FEC Scheme 1 and [RFC6330] for FEC Scheme 2.

6.3. Procedures

6.3.1. Source Symbol Construction

 FEC Scheme 1 and FEC Scheme 2 use the procedures defined in Section 5
 to construct a set of source symbols to which the FEC Code can be
 applied. The sender MUST allocate Source Block Numbers to source
 blocks sequentially, wrapping around to zero after Source Block
 Number 65535 (format A) or 255 (format B).

 During the construction of the source block:

 o the length indication, l[i], included in the Source Packet
 Information for each packet shall be the transport payload length,
 i.e., the length of the ADU.

 o the value of s[i] in the construction of the Source Packet
 Information for each packet shall be the smallest integer such
 that s[i]*T >= (l[i]+3).

6.3.2. Repair Packet Construction

 For FEC Scheme 1 [RFC5053], the ESI value placed into a repair packet
 is calculated as specified in Section 5.3.2 of [RFC5053].

 For FEC Scheme 2 [RFC6330], the ESI value placed into a repair packet
 is calculated as specified in Section 4.4.2 of [RFC6330].

 In both cases, K is identical to SBL.

6.4. FEC Code Specification

 The FEC encoder defined in [RFC5053] SHALL be used for FEC Scheme 1
 and the FEC encoder defined in [RFC6330] SHALL be used for FEC Scheme
 2. For both FEC Scheme 1 and FEC Scheme 2, the source symbols passed
 to the FEC encoder SHALL consist of the source symbols constructed
 according to Section 6.3.1. Thus, the value of the parameter K used
 by the FEC encoder (equal to the Source Block Length) may vary
 amongst the blocks of the stream but SHALL NOT exceed the Maximum
 Source Block Length signaled in the FEC-Scheme-Specific Information.
 The symbol size, T, to be used for source block construction and the
 repair symbol construction is equal to the encoding symbol size
 signaled in the FEC-Scheme-Specific Information.

7. Optimized Raptor FEC Scheme for Arbitrary Packet Flows

7.1. Introduction

 This section specifies a slightly modified version of the FEC Scheme
 specified in Section 6 that is applicable to scenarios in which only
 relatively small block sizes will be used. These modifications admit
 substantial optimizations to both sender and receiver
 implementations.

 In outline, the modifications are:

 o All source blocks within a stream are encoded using the same
 source block size. Code shortening is used to encode blocks of
 different sizes. This is achieved by padding every block to the
 required size using zero symbols before encoding. The zero
 symbols are then discarded after decoding. The source block size
 to be used for a stream is signaled in the Maximum Source Block
 Length (MSBL) field of the scheme-specific information. The
 extended source block is constructed by adding zero or more
 padding symbols such that the total number of symbols, MSBL, is
 one of the values listed in Section 7.4. Each padding symbol
 consists of T octets where the value of each octet is zero. MSBL

 MUST be selected as the smallest value of the possible values in
 Section 7.4 that is greater than or equal to K.

 o The possible choices of the MSBL for a stream is restricted to a
 small specified set. This allows explicit operation sequences for
 encoding and decoding the restricted set of source block lengths
 to be pre-calculated and embedded in software or hardware.

 When used with the Raptor codes specified in [RFC5053], this scheme
 is equivalent to that specified in [DVBTS] for arbitrary packet
 flows.

7.2. Formats and Codes

7.2.1. FEC Framework Configuration Information

7.2.1.1. FEC Scheme ID

 The value of the FEC Scheme ID for the Fully-Specified FEC scheme
 defined in this section is 3 when [RFC5053] is used and 4 when
 [RFC6330] is used, as assigned by IANA.

7.2.1.2. FEC-Scheme-Specific Information

 The elements for FEC Scheme 3 are the same as specified for FEC
 Scheme 1, and the elements specified for FEC Scheme 4 are the same as
 specified for FEC 2, as specified in Section 6.2.1.2, except that the
 MSBL value is as defined in Section 7.4.

7.2.2. Source FEC Payload ID

 The elements for FEC Scheme 3 are the same as specified for FEC
 Scheme 1, and the elements specified for FEC Scheme 4 are the same as
 specified for FEC 2, as specified in Section 6.2.2.

7.2.3. Repair FEC Payload ID

 The elements for FEC Scheme 3 are the same as specified for FEC
 Scheme 1, and the elements specified for FEC Scheme 4 are the same as
 specified for FEC 2, as specified in Section 6.2.3.

7.3. Procedures

7.3.1. Source Symbol Construction

 See Section 6.3.1.

7.3.2. Repair Packet Construction

 The number of repair symbols contained within a repair packet is
 computed from the packet length. The ESI value placed into a repair
 packet is calculated as X + MSBL - SBL, where X would be the ESI
 value of the repair packet if the ESI were calculated as specified in
 Section 5.3.2 of [RFC5053] for FEC Scheme 3 and as specified in
 Section 4.4.2 of [RFC6330] for FEC Scheme 4, where K=SBL. The value
 of SBL SHALL be, at most, the value of MSBL.

7.4. FEC Code Specification

 The FEC encoder defined in [RFC5053] SHALL be used for FEC Scheme 3
 and the FEC encoder defined in [RFC6330] SHALL be used for FEC Scheme
 4. The source symbols passed to the FEC encoder SHALL consist of the
 source symbols constructed according to Section 6.3.1 extended with
 zero or more padding symbols. The extension SHALL be such that the
 total number of symbols in the source block is equal to the MSBL
 signaled in the FEC-Scheme-Specific Information. Thus, the value of
 the parameter K used by the FEC encoder is equal to the MSBL for all
 blocks of the stream. Padding symbols shall consist entirely of
 octets set to the value zero. The symbol size, T, to be used for the
 source block construction and the repair symbol construction, is
 equal to the encoding symbol size signaled in the FEC-Scheme-Specific
 Information.

 For FEC Scheme 3, the parameter T SHALL be set such that the number
 of source symbols in any source block is, at most, 8192. The MSBL
 parameter, and hence the number of symbols used in the FEC Encoding
 and Decoding operations, SHALL be set to one of the following values:

 101, 120, 148, 164, 212, 237, 297, 371, 450, 560, 680, 842, 1031,
 1139, 1281

 For FEC Scheme 4, the parameter T SHALL be set such that the number
 of source symbols in any source block is less than 56403. The MSBL
 parameter SHALL be set to one of the supported values for K' defined
 in Section 5.6 of [RFC6330].

8. Raptor FEC Scheme for a Single Sequenced Flow

8.1. Formats and Codes

8.1.1. FEC Framework Configuration Information

8.1.1.1. FEC Scheme ID

 The value of the FEC Scheme ID for the Fully-Specified FEC scheme
 defined in this section is 5 when [RFC5053] is used and 6 when
 [RFC6330] is used, as assigned by IANA.

8.1.1.2. Scheme-Specific Elements

 The elements for FEC Scheme 5 are the same as specified for FEC
 Scheme 1, and the elements specified for FEC Scheme 6 are the same as
 specified for FEC 2, as specified in Section 6.2.1.2.

8.1.2. Source FEC Payload ID

 The Source FEC Payload ID field is not used by this FEC Scheme.
 Source packets are not modified by this FEC Scheme.

8.1.3. Repair FEC Payload ID

 Two formats for the Repair FEC Payload ID are defined, format A and
 format B.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Initial Sequence Number | Source Block Length |
+‑+
| Encoding Symbol ID |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 6: Repair FEC Payload ID - Format A

 Initial Sequence Number (Flow i ISN), (16 bits): This field specifies

 the lowest 16 bits of the sequence number of the first packet to
 be included in this sub-block. If the sequence numbers are
 shorter than 16 bits, then the received Sequence Number SHALL be
 logically padded with zero bits to become 16 bits in length,
 respectively. The field type is unsigned integer.

 Source Block Length (SBL), (16 bits): This field specifies the length

 of the source block in symbols. The field type is unsigned
 integer.

 Encoding Symbol ID (ESI), (16 bits): This field indicates which

 repair symbols are contained within this repair packet. The ESI
 provided is the ESI of the first repair symbol in the packet. The
 field type is unsigned integer.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Initial Sequence Number | Source Block Length |
+‑+
| Encoding Symbol ID |
+‑+

 Figure 7: Repair FEC Payload ID - Format B

 Initial Sequence Number (Flow i ISN), (16 bits): This field specifies

 the lowest 16 bits of the sequence number in the first packet to
 be included in this sub-block. If the sequence numbers are
 shorter than 16 bits, then the received Sequence Number SHALL be
 logically padded with zero bits to become 16 bits in length,
 respectively. The field type is unsigned integer.

 Source Block Length (SBL), (16 bits): This field specifies the length

 of the source block in symbols. The field type is unsigned
 integer.

 Encoding Symbol ID (ESI); (24 bits): This field indicates which

 repair symbols are contained within this repair packet. The ESI
 provided is the ESI of the first repair symbol in the packet. The
 field type is unsigned integer.

8.2. Procedures

8.2.1. Source Symbol Construction

 FEC Scheme 5 and FEC Scheme 6 use the procedures defined in Section 5
 to construct a set of source symbols to which the FEC code can be
 applied.

 During the construction of the source block:

 o the length indication, l[i], included in the Source Packet
 Information for each packet shall be dependent on the protocol
 carried within the transport payload. Rules for RTP are specified
 below.

 o the value of s[i] in the construction of the Source Packet
 Information for each packet shall be the smallest integer such
 that s[i]*T >= (l[i]+3)

8.2.2. Derivation of Source FEC Packet Identification Information

 The Source FEC Packet Identification Information for a source packet
 is derived from the sequence number of the packet and information
 received in any repair FEC packet belonging to this source block.
 Source blocks are identified by the sequence number of the first
 source packet in the block. This information is signaled in all
 repair FEC packets associated with the source block in the Initial
 Sequence Number field.

 The length of the Source Packet Information (in octets) for source
 packets within a source block is equal to the length of the payload
 containing encoding symbols of the repair packets (i.e., not
 including the Repair FEC Payload ID) for that block, which MUST be
 the same for all repair packets. The Application Data Unit
 Information Length (ADUIL) in symbols is equal to this length divided
 by the encoding symbol size (which is signaled in the FEC Framework
 Configuration Information). The set of source packets included in
 the source block is determined by the Initial Sequence Number (ISN)
 and Source Block Length (SBL) as follows:

 Let,

 o I be the Initial Sequence Number of the source block

 o LP be the Source Packet Information Length in symbols

 o LB be the Source Block Length in symbols

 Then, source packets with sequence numbers from I to I +(LB/LP)-1
 inclusive are included in the source block. The Source Block Length,
 LB, MUST be chosen such that it is at least as large as the largest
 Source Packet Information Length LP.

 Note that if no FEC repair packets are received, then no FEC decoding
 is possible, and it is unnecessary for the receiver to identify the
 Source FEC Packet Identification Information for the source packets.

 The encoding symbol ID for a packet is derived from the following
 information:

 o The sequence number, Ns, of the packet

 o The Source Packet Information Length for the source block, LP

 o The Initial Sequence Number of the source block, I

 Then, the encoding symbol ID for the packet with sequence number Ns
 is determined by the following formula:

 ESI = (Ns - I) * LP

 Note that all repair packets associated to a given source block MUST
 contain the same Source Block Length and Initial Sequence Number.

 Note also that the source packet flow processed by the FEC encoder
 MUST have consecutive sequence numbers. In case the incoming source
 packet flow has a gap in the sequence numbers, then implementors
 SHOULD insert an ADU in the source block that complies to the format
 of the source packet flow, but is ignored at the application with
 high probability. For additional guidelines, refer to [RFC6363],
 Section 10.2, paragraph 5.

8.2.3. Repair Packet Construction

 See Section 7.3.2

8.2.4. Procedures for RTP Source Flows

 In the specific case of RTP source packet flows, the RTP Sequence
 Number field SHALL be used as the sequence number in the procedures
 described above. The length indication included in the Application
 Data Unit Information SHALL be the RTP payload length plus the length
 of the contributing sources (CSRCs), if any, the RTP Header
 Extension, if present, and the RTP padding octets, if any. Note that
 this length is always equal to the UDP payload length of the packet
 minus 12.

8.3. FEC Code Specification

 The elements for FEC Scheme 5 are the same as specified for FEC
 Scheme 3, and the elements specified for FEC Scheme 6 are the same as
 specified for FEC 4, as specified in Section 7.4.

9. Security Considerations

 For the general security considerations related to the use of FEC,
 refer to [RFC6363]. Also consider relevant security considerations
 in [RFC5053] and [RFC6330]. No security vulnerabilities specific to
 this document have been identified.

10. Session Description Protocol (SDP) Signaling

 This section provides an SDP [RFC4566] example. The syntax follows
 the definition in [RFC6364]. Assume we have one source video stream
 (mid:S1) and one FEC repair stream (mid:R1). We form one FEC group
 with the "a=group:FEC-FR S1 R1" line. The source and repair streams
 are sent to the same port on different multicast groups. The repair
 window is set to 200 ms.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=Raptor FEC Example
t=0 0
a=group:FEC‑FR S1 R1
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S1
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.2/127
a=fec‑repair‑flow: encoding‑id=6; fssi=Kmax:8192,T:128,P:A
a=repair‑window:200ms
a=mid:R1

11. Congestion Control Considerations

 For the general congestion control considerations related to the use
 of FEC, refer to [RFC6363].

12. IANA Considerations

12.1. Registration of FEC Scheme IDs

 The value of FEC Scheme IDs is subject to IANA registration. For
 general guidelines on IANA considerations as they apply to this
 document, refer to [RFC6363].

 This document registers six values in the "FEC Framework (FECFRAME)
 FEC Encoding IDs" registry (http://www.iana.org/assignments/
 rmt-fec-parameters/) as provided in Table 1. Each value refers to a
 Fully-Specified FEC scheme.

+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FEC	FEC Scheme	Reference
Encoding	Description	
ID		
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
1	Raptor FEC Scheme	Section 6 in this document using
	for Arbitrary	[RFC5053]
	Packet Flows	
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
2	RaptorQ FEC Scheme	Section 6 in this document using
	for Arbitrary	[RFC6330].
	Packet Flows	
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
3	Raptor FEC Scheme	Section 7 in this document using
	Optimized for	Raptor [RFC5053].
	Arbitrary Packet	
	Flows	
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
4	RaptorQ FEC Scheme	Section 7 in this document
	Optimized for	using RaptorQ [RFC6330].
	Arbitrary Packet	
	Flows	
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
5	Raptor FEC Scheme	Section 8 in this document using
	for a Single	Raptor [RFC5053].
	Sequence Flow	
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+		
6	RaptorQ FEC Scheme	Section 8 in this document using
	for a Single	RaptorQ [RFC6330].
	Sequence Flow	
+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: FEC Framework (FECFRAME) FEC Encoding IDs

13. Acknowledgements

 Thanks are due to Ali C. Begen and David Harrington for thorough
 review of earlier draft versions of this document.

14. References

14.1. Normative References

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC5053]
 Luby, M., Shokrollahi, A., Watson, M., and T. Stockhammer,
 "Raptor Forward Error Correction Scheme for Object
 Delivery", RFC 5053, October 2007.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6330]
 Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T.,
 and L. Minder, "RaptorQ Forward Error Correction Scheme
 for Object Delivery", RFC 6330, August 2011.

14.2. Informative References

 [RFC5052]
 Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for the
 Forward Error Correction (FEC) Framework", RFC 6364,
 October 2011.

 [DVBTS]
 ETSI, "Digital Video Broadcasting (DVB); Transport of
 MPEG-2 Based DVB Services over IP Based Networks", ETSI TS
 102 034, March 2009.

 [MBMSTS]
 3GPP, "Multimedia Broadcast/Multicast Service (MBMS);
 Protocols and codecs", 3GPP TS 26.346, April 2005.

Authors' Addresses

Mark Watson
Netflix
100 Winchester Circle
Los Gatos, CA 95032
United States

EMail: watsonm@netflix.com

Thomas Stockhammer
Nomor Research
Brecherspitzstrasse 8
Munich 81541
Germany

EMail: stockhammer@nomor.de

Michael Luby
Qualcomm Research Berkeley
2030 Addison Street
Berkeley, CA 94704
United States

EMail: luby@qualcomm.com

6682 - RTP Payload Format for Raptor Forward Error Correction (FEC)

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6682

Category: Standards Track

ISSN: 2070-1721

M. Watson

Netflix

T. Stockhammer

Nomor Research

M. Luby

Qualcomm Incorporated

August 2012

RTP Payload Format for Raptor Forward Error Correction (FEC)

Abstract

 This document specifies an RTP payload format for the Forward Error
 Correction (FEC) repair data produced by the Raptor FEC Schemes.
 Raptor FEC Schemes are specified for use with the IETF FEC Framework
 that supports the transport of repair data over both UDP and RTP.
 This document specifies the payload format that is required for the
 use of RTP to carry Raptor repair flows.

Status of This Memo

 This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by
the Internet Engineering Steering Group (IESG). Further
information on Internet Standards is available in Section 2 of
RFC 5741.

Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
http://www.rfc‑editor.org/info/rfc6682.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Conventions, Definitions, and Acronyms

	3. Media Format Background

	4. Payload Format for FEC Repair Packets
	 4.1. RTP Header Usage

	 4.2. Payload Header

	 4.3. Payload Data

	5. Congestion Control Considerations

	6. Media Types
	 6.1. Registration of the 'application/raptorfec' Media Type
	 6.1.1. Media Type Definition

	 6.2. Registration of the 'video/raptorfec' Media Type
	 6.2.1. Media Type Definition

	 6.3. Registration of the 'audio/raptorfec' Media Type
	 6.3.1. Media Type Definition

	 6.4. Registration of the 'text/raptorfec' Media Type
	 6.4.1. Media Type Definition

	7. Mapping to the Session Description Protocol (SDP)

	8. Offer/Answer Considerations

	9. Declarative SDP Considerations

	10. Repair Flow Generation and Recovery Procedures
	 10.1. Overview

	 10.2. Repair Packet Construction

	 10.3. Usage of RTCP

	 10.4. Source Packet Reconstruction

	11. Session Description Protocol (SDP) Example

	12. IANA Considerations

	13. Security Considerations

	14. References
	 14.1. Normative References

	 14.2. Informative References

1. Introduction

 The FEC Framework [RFC6363] defines a general framework for the use
 of Forward Error Correction in association with arbitrary packet
 flows, including flows over UDP and RTP [RFC3550]. Forward Error
 Correction operates by generating redundant data packets ("repair
 data") that can be sent independently from the original flow. At a
 receiver, the original flow can be reconstructed provided a
 sufficient set of redundant data packets and possibly original data
 packets are received.

 The FEC Framework provides for independence between application
 protocols and FEC codes. The use of a particular FEC code within the
 framework is defined by means of a FEC Scheme, which may then be used
 with any application protocol compliant to the framework.

 Repair data flows may be sent directly over a transport protocol,
 such as UDP, or they may be encapsulated within specialized
 transports for multimedia, such as RTP.

 This document defines the RTP payload format for the Raptor FEC
 Schemes defined in [RFC6681].

2. Conventions, Definitions, and Acronyms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Media Format Background

 The Raptor and RaptorQ codes are efficient block-based fountain
 codes, meaning that from any group of source packets (or 'source
 block'), one can generate an arbitrary number of repair packets. The
 Raptor and RaptorQ codes have the property that the original group of
 source symbols can be recovered with a very high probability from any
 set of symbols (source and repair) only slightly greater in number
 than the original number of source symbols. The RaptorQ code
 additionally has the property that the probability that the original
 group of source symbols can be recovered from a set of symbols
 (source and repair) equal in number to the original number of source
 symbols is in many cases also very high.

 [RFC6681] defines six FEC Schemes for the use of the Raptor and
 RaptorQ codes with arbitrary packet flows. The first two schemes are
 fully applicable to arbitrary packet flows (using Raptor and RaptorQ
 respectively). The third and fourth schemes are slightly optimized
 versions of the first two schemes, which are applicable in
 applications with relatively small block sizes. The fifth and sixth
 schemes are variants of the third and fourth schemes, which are
 applicable to a single source flow that already has some kind of
 identifiable sequence number. The presence of a sequence number in
 the source flow allows for backwards-compatible operation (the source
 flows do not need to be modified in order to apply FEC). In this
 case, in the language of the FEC Framework, there is no need for an
 explicit FEC Source Payload ID; therefore, it is not included in the
 packets.

 This document specifies the payload format for RTP repair flows and
 can be used with any of the FEC Schemes defined in [RFC6681].

4. Payload Format for FEC Repair Packets

4.1. RTP Header Usage

 Header fields SHALL be set according to the rules of [RFC3550]. In
 addition, the following rules and definitions apply for the RTP
 headers used with FEC repair packets:

 o Marker bit: The marker bit SHALL be set to 1 for the last
 protection RTP packet sent for each source block, and otherwise
 set to 0.

 o Payload Type (PT): The payload type codes SHALL be assigned
 dynamically through non-RTP means. If the Session Description
 Protocol (SDP) is used for signaling, the rules in Section 7
 apply.

 o Timestamp: This field contains the time at which the packet is
 transmitted. The time SHOULD be as close as possible to the
 packet's actual time of transmission. The timestamp value has no
 use in the actual FEC protection process. However,
 implementations SHOULD supply a value that can be used for packet-
 arrival timing or jitter calculations. The timestamp rate is
 specified using the "rate" media type parameter defined in Section
 6. The operator SHALL select a "rate" larger than 1000 Hz to
 provide sufficient resolution to the Real-Time Transport Control
 Protocol (RTCP) operations, and the operator SHOULD select the
 rate that matches the rate of the protected source RTP stream.

 o Synchronization Source (SSRC): The SSRC values MUST be set
 according to [RFC3550]. The SSRC value of the RTP repair flow
 MUST be different from the SSRC value of the protected source
 flow.

4.2. Payload Header

 There is no payload header in this payload format.

4.3. Payload Data

 Procedures and data formats for the use of Raptor Forward Error
 Correction in a FECFRAME context are fully defined in [RFC6363] and
 [RFC6681] and are not duplicated here. The procedures of those
 documents apply in order to generate repair data streams to be
 carried by the payload formats defined in this document.

 The RTP Payload SHALL contain a Repair FEC Payload ID as defined in
 [RFC6363] and [RFC6681].

5. Congestion Control Considerations

 See [RFC6363].

6. Media Types

6.1. Registration of the 'application/raptorfec' Media Type

 This RTP payload format is identified using the
 'application/raptorfec' media type that is registered in accordance
 with [RFC4855] and uses the template of [RFC4288].

6.1.1. Media Type Definition

 Type name: application

 Subtype name: raptorfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate. The RTP timestamp (clock)
 rate is specified in Hz and the format is unsigned integer.

 o raptor-scheme-id: The value of this parameter is the FEC Scheme ID
 for the specific Raptor FEC Scheme that will be used as defined in
 [RFC6681].

 o Kmax: The value of this parameter is the FEC Framework
 Configuration Information element, Maximum Source Block Length
 (MSBL), as defined in [RFC6681], encoded as a unsigned integer.
 For specific requirements for this value, refer to [RFC6681].

 o T: The value of this parameter is the FEC Framework Configuration
 Information element, encoding symbol size, as defined in
 [RFC6681], encoded as a unsigned integer. For specific
 requirements for this value, refer to [RFC6681].

 o repair-window: The maximum time that spans the source packets and
 the corresponding repair packets. The size of the repair window
 is specified in microseconds and the format is unsigned integer.

 Optional parameters:

 o P: The value of this parameter is the FEC Framework Configuration
 Information element, Payload ID Format, as defined in [RFC6681].
 The default value of this parameter (when it does not appear
 explicitly) is 'A'.

 Encoding considerations: This media type is framed and binary; see
 Section 4.8 in [RFC4288]

 Security considerations: Please see the security considerations in
 [RFC6363].

 Interoperability considerations:

 Published specification: [RFC6681]

 Applications that use this media type: Real-time multimedia
 applications like video streaming, audio streaming, and video
 conferencing.

 Additional information:

 Magic number(s): <none defined>

 File extension(s): <none defined>

 Macintosh file type code(s): <none defined>

Person & email address to contact for further information:
Thomas Stockhammer, stockhammer@nomor.de

 Intended usage: COMMON

 Restrictions on usage: This media type depends on RTP framing, and
 hence is only defined for transfer via RTP [RFC3550]. Transport
 within other framing protocols is not defined at this time.

 Author: Thomas Stockhammer, Nomor Research

 Change controller: IETF PAYLOAD working group delegated from the
 IESG.

6.2. Registration of the 'video/raptorfec' Media Type

 This RTP payload format is identified using the 'video/raptorfec'
 media type that is registered in accordance with [RFC4855] and uses
 the template of [RFC4288].

6.2.1. Media Type Definition

 Type name: video

 Subtype name: raptorfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate. The RTP timestamp (clock)
 rate is specified in Hz and the format is unsigned integer.

 o raptor-scheme-id: The value of this parameter is the FEC Scheme ID
 for the specific Raptor FEC Scheme that will be used as defined in
 [RFC6681].

 o Kmax: The value of this parameter is the FEC Framework
 Configuration Information element, MSBL, as defined in [RFC6681],
 encoded as a unsigned integer. For specific requirements for this
 value, refer to [RFC6681].

 o T: The value of this parameter is the FEC Framework Configuration
 Information element, encoding symbol size, as defined in
 [RFC6681], encoded as a unsigned integer. For specific
 requirements for this value, refer to [RFC6681].

 o repair-window: The maximum time that spans the source packets and
 the corresponding repair packets. The size of the repair window
 is specified in microseconds, and the format is unsigned integer.

 Optional parameters:

 o P: The value of this parameter is the FEC Framework Configuration
 Information element, Payload ID Format, as defined in [RFC6681].
 The default value of this parameter (when it does not appear
 explicitly) is 'A'.

 Encoding considerations: This media type is framed and binary; see
 Section 4.8 in [RFC4288].

 Security considerations: Please see the security considerations in
 [RFC6363].

 Interoperability considerations:

 Published specification: [RFC6681]

 Applications that use this media type: Real-time multimedia
 applications like video streaming, audio streaming, and video
 conferencing.

 Additional information:

 Magic number(s): <none defined>

 File extension(s): <none defined>

 Macintosh file type code(s): <none defined>

Person & email address to contact for further information:
Thomas Stockhammer, stockhammer@nomor.de

 Intended usage: COMMON

 Restrictions on usage: This media type depends on RTP framing, and
 hence is only defined for transfer via RTP [RFC3550]. Transport
 within other framing protocols is not defined at this time.

 Author: Thomas Stockhammer, Nomor Research.

 Change controller: IETF PAYLOAD working group delegated from the
 IESG.

6.3. Registration of the 'audio/raptorfec' Media Type

 This RTP payload format is identified using the 'audio/raptorfec'
 media type that is registered in accordance with [RFC4855] and uses
 the template of [RFC4288].

6.3.1. Media Type Definition

 Type name: audio

 Subtype name: raptorfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate. The RTP timestamp (clock)
 rate is specified in Hz and the format is unsigned integer.

 o raptor-scheme-id: The value of this parameter is the FEC Scheme ID
 for the specific Raptor FEC Scheme that will be used as defined in
 [RFC6681].

 o Kmax: The value of this parameter is the FEC Framework
 Configuration Information element, MSBL, as defined in [RFC6681],
 encoded as a unsigned integer. For specific requirements for this
 value, refer to [RFC6681].

 o T: The value of this parameter is the FEC Framework Configuration
 Information element, encoding symbol size, as defined in
 [RFC6681], encoded as a unsigned integer. For specific
 requirements for this value, refer to [RFC6681].

 o repair-window: The maximum time that spans the source packets and
 the corresponding repair packets. The size of the repair window
 is specified in microseconds and the format is unsigned integer.

 Optional parameters:

 o P: The value of this parameter is the FEC Framework Configuration
 Information element, Payload ID Format, as defined in [RFC6681].
 The default value of this parameter (when it does not appear
 explicitly) is 'A'.

 Encoding considerations: This media type is framed and binary; see
 Section 4.8 in [RFC4288].

 Security considerations: Please see the security considerations in
 [RFC6363].

 Interoperability considerations:

 Published specification: [RFC6681]

 Applications that use this media type: Real-time multimedia
 applications like video streaming, audio streaming, and video
 conferencing.

 Additional information:

 Magic number(s): <none defined>

 File extension(s): <none defined>

 Macintosh file type code(s): <none defined>

Person & email address to contact for further information:
Thomas Stockhammer, stockhammer@nomor.de

 Intended usage: COMMON

 Restrictions on usage: This media type depends on RTP framing, and
 hence is only defined for transfer via RTP [RFC3550]. Transport
 within other framing protocols is not defined at this time.

 Author: Thomas Stockhammer, Nomor Research.

 Change controller: IETF PAYLOAD working group delegated from the
 IESG.

6.4. Registration of the 'text/raptorfec' Media Type

 This RTP payload format is identified using the 'text/raptorfec'
 media type that is registered in accordance with [RFC4855] and uses
 the template of [RFC4288].

6.4.1. Media Type Definition

 Type name: text

 Subtype name: raptorfec

 Required parameters:

 o rate: The RTP timestamp (clock) rate. The RTP timestamp (clock)
 rate is specified in Hz and the format is unsigned integer.

 o raptor-scheme-id: The value of this parameter is the FEC Scheme ID
 for the specific Raptor FEC Scheme that will be used as defined in
 [RFC6681].

 o Kmax: The value of this parameter is the FEC Framework
 Configuration Information element, MSBL, as defined in [RFC6681],
 encoded as a unsigned integer. For specific requirements for this
 value, refer to [RFC6681].

 o T: The value of this parameter is the FEC Framework Configuration
 Information element, encoding symbol size, as defined in
 [RFC6681], encoded as a unsigned integer. For specific
 requirements for this value, refer to [RFC6681].

 o repair-window: The maximum time that spans the source packets and
 the corresponding repair packets. The size of the repair window
 is specified in microseconds and the format is unsigned integer.

 Optional parameters:

 o P: The value of this parameter is the FEC Framework Configuration
 Information element, Payload ID Format, as defined in [RFC6681].
 The default value of this parameter (when it does not appear
 explicitly) is 'A'.

 Encoding considerations: This media type is framed and binary; see
 Section 4.8 in [RFC4288].

 Security considerations: Please see the security considerations in
 [RFC6363].

 Interoperability considerations:

 Published specification: [RFC6681]

 Applications that use this media type: Real-time multimedia
 applications like video streaming, audio streaming, and video
 conferencing.

 Additional information:

 Magic number(s): <none defined>

 File extension(s): <none defined>

 Macintosh file type code(s): <none defined>

Person & email address to contact for further information:
Thomas Stockhammer, stockhammer@nomor.de

 Intended usage: COMMON

 Restrictions on usage: This media type depends on RTP framing, and
 hence is only defined for transfer via RTP [RFC3550]. Transport
 within other framing protocols is not defined at this time.

 Author: Thomas Stockhammer, Nomor Research.

 Change controller: IETF PAYLOAD working group delegated from the
 IESG.

7. Mapping to the Session Description Protocol (SDP)

 Applications that are using RTP transport commonly use the Session
 Description Protocol (SDP) [RFC4566] to describe their RTP sessions.
 The information that is used to specify the media types in an RTP
 session has specific mappings to the fields in an SDP description.
 Note that if an application does not use SDP to describe the RTP
 sessions, an appropriate mapping must be defined and used to specify
 the media types and their parameters for the control/description
 protocol employed by the application.

 The mapping of the above defined payload format media type and its
 parameters SHALL be done according to Section 3 of [RFC4855],
 following the suggestion therein regarding the mapping of payload-
 format-specific parameters into the "a=fmtp" field.

 When the RTP payload formats defined in this document are used, the
 media type parameters defined above MUST use the media types in this
 document and MUST NOT use those specified in [RFC6364].

8. Offer/Answer Considerations

 When offering Raptor FEC over RTP using SDP in an Offer/Answer model
 [RFC3264], the following considerations apply:

 o Each combination of the Kmax and T parameters produces different
 FEC data and is not compatible with any other combination. A
 sender application MAY desire to provide multiple offers with
 different sets of Kmax and T values, which is possible as long as
 the parameter values are valid. The receiver SHOULD normally
 choose the offer with the largest value of the product of Kmax and
 T that it supports.

 o The size of the repair window is related to the maximum delay
 between the transmission of a source packet and the associated
 repair packet. This directly impacts the buffering requirement on
 the receiver side and the receiver must consider this when
 choosing an offer.

 o When the P parameter is not present, the receiver MUST use FEC
 Payload ID Format A. In an answer that selects an offer in which
 the P parameter was omitted, the P parameter MUST either be
 omitted, or included with value "A".

9. Declarative SDP Considerations

 In declarative usage, like SDP in the Real-Time Streaming Protocol
 (RTSP) [RFC2326] or the Session Announcement Protocol (SAP)
 [RFC2974], the following considerations apply:

 o The payload format configuration parameters are all declarative
 and a participant MUST use the configuration that is provided for
 the session.

 o More than one configuration MAY be provided (if desired) by
 declaring multiple RTP payload types. In this case, the receivers
 should choose the repair session that is best for them.

10. Repair Flow Generation and Recovery Procedures

10.1. Overview

 This document only specifies repair flow construction when the repair
 packets are delivered with RTP. Source packet construction is
 covered in [RFC6681]. This section provides an overview on how to
 generate a repair flow, including the repair packets and how to
 reconstruct missing source packets from a set of available source and
 repair packets. Detailed algorithms for the generation of Raptor and
 RaptorQ symbols are provided in [RFC5053] and [RFC6330],
 respectively.

 As per the FEC Framework document [RFC6363], the FEC Framework
 Configuration Information includes, among others, the identification
 of the repair flow(s) and the source flow(s). Methods to convey FEC
 Framework Configuration Information are provided in [FEC-SIG].
 Specifically, the reader is referred to the SDP elements document
 [RFC6364], which describes the usage of the 'SDP' encoding format as
 an example encoding format for FEC Framework Configuration
 Information.

 For the generation of a repair flow:

 o repair packets SHALL be constructed according to Section 10.2, and

 o RTCP SHALL be used according to Section 10.3.

 For the reconstruction of a source packet of a source RTP session at
 the receiver, based on the availability of a source RTP session and a
 repair RTP session, the procedures in Section 10.4 may be used.

10.2. Repair Packet Construction

 The construction of the repair packet is fully specified in Section
 4. A repair packet is constructed by the concatenation of

 o an RTP header as specified in Section 4.1, and

 o payload data as defined in Section 4.3.

 Repair Packet Construction may make use of the Sender Operation for
 RTP repair flows as specified in see [RFC6363], Section 4.2.

10.3. Usage of RTCP

 RTCP SHALL be used according to [RFC3550]. If the repair RTP session
 is sent in a separate RTP session, the two sessions MUST be
 associated using RTCP CNAME (Canonical Name).

10.4. Source Packet Reconstruction

 Source Packet Reconstruction may make use of the receiver operation
 for the case of RTP repair flows as specified in [RFC6363], Section
 4.3. Depending on the FEC Scheme using the ones defined in
 [RFC6681], the appropriate source blocks are formed. If enough data
 for decoding any or all of the missing source payloads in the source
 block has been received, the respective FEC decoding procedures are
 applied.

 In case the FEC Scheme uses Raptor codes as defined in [RFC5053],
 then the Example FEC Decoder, as specified in [RFC5053], Section 5.5,
 may be used.

 In case the FEC Scheme uses RaptorQ codes as defined in [RFC6330],
 then the Example FEC Decoder, as specified in [RFC6330], Section 5.4,
 may be used.

11. Session Description Protocol (SDP) Example

 This section provides an SDP [RFC4566] example. Assume we have one
 source video stream (mid:S1) and one FEC repair stream (mid:R1). The
 'group' attribute and the FEC grouping semantics defined in [RFC5888]
 and [RFC5956], respectively, are used to associate source and repair
 flows. We form one FEC group with the "a=group:FEC S1 R1" line. The
 source and repair streams are sent to the same port on different
 multicast groups. The repair window is set to 200 ms.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=Raptor RTP FEC Example
t=0 0
a=group:FEC‑FR S1 R1
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S1
m=application 30000 RTP/AVP 110
c=IN IP4 233.252.0.2/127
a=rtpmap:110 raptorfec/90000
a=fmtp:110 raptor‑scheme‑id=1; Kmax=8192; T=128;
 P=A; repair‑window=200000
a=mid:R1

12. IANA Considerations

 IANA has registered 'application/raptorfec' as specified in Section
 6.1.1, 'video/raptorfec' as specified in Section 6.2.1,
 'audio/raptorfec' as specified in Section 6.3.1, and 'text/raptorfec'
 as specified in Section 6.4.1. The media type has also been added to
 the IANA registry for "RTP Payload Format media types"
 (http://www.iana.org/assignments/rtp-parameters).

13. Security Considerations

 Security Considerations related to the use of the FEC Framework are
 addressed in [RFC6363]. These considerations apply in full to users
 of the RTP payload formats defined in this document, since these are
 defined in terms of the FEC Framework.

 No further security considerations related specifically to the Raptor
 FEC Schemes defined in [RFC6681] have been identified.

 RTP packets using the payload format defined in this specification
 are subject to the security considerations discussed in the RTP
 specification [RFC3550] and in any applicable RTP profile. The main
 security considerations for the RTP packet carrying the RTP payload
 format defined within this memo are confidentiality, integrity, and
 source authenticity. Confidentiality is achieved by encrypting the
 RTP payload. Integrity of the RTP packets is achieved through a
 suitable cryptographic integrity protection mechanism. Such a
 cryptographic system can also allow the authentication of the source
 of the payload. A suitable security mechanism for this RTP payload
 format should provide confidentiality, integrity protection, and at
 least source authentication capable of determining if an RTP packet
 is from a member of the RTP session. Note that the appropriate
 mechanism to provide security to RTP and payloads following this memo
 MAY vary. It is dependent on the application, transport, and
 signaling protocol employed. Therefore, a single mechanism is not
 sufficient; although, if suitable, using the Secure Real-Time
 Transport Protocol (SRTP) [RFC3711] is RECOMMENDED. Other mechanisms
 that may be used are IPsec [RFC4301] and Transport Layer Security
 (TLS) [RFC5246] (RTP over TCP); other alternatives exist.

14. References

14.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3550]
 Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC4288]
 Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC4855]
 Casner, S., "Media Type Registration of RTP Payload
 Formats", RFC 4855, February 2007.

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for the
 Forward Error Correction (FEC) Framework", RFC 6364,
 October 2011.

 [RFC6681]
 Watson, M., Stockhammer, T., and M. Luby, "Raptor Forward
 Error Correction (FEC) Schemes for FECFRAME", RFC 6681,
 August 2012.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC3264]
 Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC3711]
 Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC4301]
 Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5053]
 Luby, M., Shokrollahi, A., Watson, M., and T. Stockhammer,
 "Raptor Forward Error Correction Scheme for Object
 Delivery", RFC 5053, October 2007.

 [RFC6330]
 Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T.,
 and L. Minder, "RaptorQ Forward Error Correction Scheme
 for Object Delivery", RFC 6330, August 2011.

14.2. Informative References

 [RFC2326]
 Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
 Streaming Protocol (RTSP)", RFC 2326, April 1998.

 [RFC2974]
 Handley, M., Perkins, C., and E. Whelan, "Session
 Announcement Protocol", RFC 2974, October 2000.

 [RFC5888]
 Camarillo, G. and H. Schulzrinne, "The Session Description
 Protocol (SDP) Grouping Framework", RFC 5888, June 2010.

 [RFC5956]
 Begen, A., "Forward Error Correction Grouping Semantics in
 the Session Description Protocol", RFC 5956, September
 2010.

 [FEC-SIG]
 Asati, R., "Methods to convey FEC Framework Configuration
 Information", Work in Progress, February 2012.

Authors' Addresses

Mark Watson
Netflix
100 Winchester Circle
Los Gatos, CA 95032
United States

 EMail: watsonm@netflix.com

Thomas Stockhammer
Nomor Research
Brecherspitzstrasse 8
Munich 81541
Germany

 EMail: stockhammer@nomor.de

Michael Luby
Qualcomm Research Berkeley
2030 Addison Street
Berkeley, CA 94704
United States

 EMail: luby@qualcomm.com

6683 - Guidelines for Implementing Digital Video Broadcasting - IPTV (DVB-IPTV)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6683

Category: Informational

ISSN: 2070-1721

A. Begen

Cisco

T. Stockhammer

Nomor Research

August 2012

Guidelines for Implementing Digital Video Broadcasting - IPTV (DVB-IPTV) Application-Layer Hybrid Forward Error Correction (FEC) Protection

Abstract

 Annex E of the Digital Video Broadcasting - IPTV (DVB-IPTV) technical
 specification defines an optional Application-Layer Forward Error
 Correction (AL-FEC) protocol to protect the streaming media
 transported using RTP. The DVB-IPTV AL-FEC protocol uses two layers
 for FEC protection. The first (base) layer is based on the 1-D
 interleaved parity code. The second (enhancement) layer is based on
 the Raptor code. By offering a layered approach, the DVB-IPTV AL-FEC
 protocol offers good protection against both bursty and random packet
 losses at a cost of decent complexity. This document describes how
 one can implement the DVB-IPTV AL-FEC protocol by using the 1-D
 interleaved parity code and Raptor code that have already been
 specified in separate documents.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6683.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. DVB-IPTV AL-FEC Specification
	 2.1. Base-Layer FEC

	 2.2. Enhancement-Layer FEC

	 2.3. Hybrid Decoding Procedures

	3. Session Description Protocol (SDP) Signaling

	4. Security Considerations

	5. Acknowledgments

	6. References
	 6.1. Normative References

	 6.2. Informative References

1. Introduction

 In 2007, the IP Infrastructure (IPI) Technical Module (TM) of the
 Digital Video Broadcasting (DVB) consortium published a technical
 specification [ETSI-TS-102-034v1.3.1] through the European
 Telecommunications Standards Institute (ETSI).
 [ETSI-TS-102-034v1.3.1] covers several areas related to the
 transmission of MPEG2 transport stream-based services over IP
 networks.

 Annex E of [ETSI-TS-102-034v1.3.1] defines an optional protocol for
 Application-Layer Forward Error Correction (AL-FEC) to protect the
 streaming media for DVB-IP services transported using RTP [RFC3550].
 In 2009, DVB updated the specification in a new revision that is
 available as [ETSI-TS-102-034v1.4.1]. Among others, some updates and
 modifications to the AL-FEC protocol have been made. This document
 describes how one can implement the DVB-IPTV AL-FEC protocol by using
 the 1-D interleaved parity code [RFC6015] and Raptor code
 specifications [RFC6681] [RFC6682].

The DVB‑IPTV AL‑FEC protocol uses two layers for protection: a base
layer that is produced by the 1‑D interleaved parity code (also
simply referred to as "parity code" in the remainder of this
document), and an enhancement layer that is produced by the Raptor
code. Whenever a receiver supports the DVB‑IPTV AL‑FEC protocol, the
decoding support for the base‑layer FEC is mandatory while the
decoding support for the enhancement‑layer FEC is optional. Both the
interleaved parity code and the Raptor code are systematic FEC codes,
meaning that source packets are not modified in any way during the
FEC encoding process.

 The DVB-IPTV AL-FEC protocol considers protection of single-sequence
 source RTP flows only. In the AL-FEC protocol, the source stream can
 only be an MPEG-2 transport stream. The FEC data at each layer are
 generated based on some configuration information, which also
 determines the exact associations and relationships between the
 source and repair packets. This document shows how this
 configuration may be communicated out-of-band in the Session
 Description Protocol (SDP) [RFC4566].

 In DVB-IPTV AL-FEC, the source packets are carried in the source RTP
 stream and the generated FEC repair packets at each layer are carried
 in separate streams. At the receiver side, if all of the source
 packets are successfully received, there is no need for FEC recovery
 and the repair packets may be discarded. However, if there are
 missing source packets, the repair packets can be used to recover the
 missing information.

 The block diagram of the encoder side for the systematic DVB-IPTV
 AL-FEC protection is described in Figure 1. Here, the source packets
 are fed into the parity encoder to produce the parity repair packets.
 The source packets may also be fed to the Raptor encoder to produce
 the Raptor repair packets. Source packets as well as the repair
 packets are then sent to the receiver(s) over an IP network.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑+ +‑‑+ +‑‑+ +‑‑+ ‑‑> | Systematic | ‑> +‑‑+ +‑‑+ +‑‑+ +‑‑+
+‑‑+ +‑‑+ +‑‑+ +‑‑+ |FEC Protection| +‑‑+ +‑‑+ +‑‑+ +‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Parity | ‑> +==+ +==+ +==+
 | Encoder | +==+ +==+ +==+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Raptor | ‑> +~~+ +~~+
 | Encoder | +~~+ +~~+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Source Packet: +--+

 +--+

 Base-layer Repair Packet: +==+

 +==+

 Enhancement-layer Repair Packet: +~~+

 +~~+

 Figure 1: Block Diagram for the DVB-IPTV AL-FEC Encoder

 The block diagram of the decoder side for the systematic DVB-IPTV
 AL-FEC protection is described in Figure 2. This is a minimum
 performance decoder since the receiver only supports decoding the
 base-layer repair packets. If there is a loss among the source
 packets, the parity decoder attempts to recover the missing source
 packets by using the base-layer repair packets.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑+ X X +‑‑+ ‑‑> | Systematic | ‑> +‑‑+ +‑‑+ +‑‑+ +‑‑+
+‑‑+ +‑‑+ |FEC Protection| +‑‑+ +‑‑+ +‑‑+ +‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +==+ +==+ +==+ ‑‑> | Parity |
 +==+ +==+ +==+ | Decoder |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Lost Packet: X

 Figure 2: Block Diagram for the DVB-IPTV AL-FEC Minimum Performance

 Decoder

 On the other hand, if the receiver supports decoding both the base-
 layer and enhancement-layer repair packets, a combined (hybrid)
 decoding approach is employed to improve the recovery rate of the
 lost packets. In this case, the decoder is called an enhanced
 decoder. Section 2.3 outlines the procedures for hybrid decoding.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
+‑‑+ X X X ‑‑> | Systematic | ‑> +‑‑+ +‑‑+ +‑‑+ +‑‑+
+‑‑+ |FEC Protection| +‑‑+ +‑‑+ +‑‑+ +‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +==+ +==+ +==+ ‑‑> | Parity |
 +==+ +==+ +==+ | Decoder |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +~~+ +~~+ ‑‑> | Raptor |
 +~~+ +~~+ | Decoder |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Lost Packet: X

 Figure 3: Block Diagram for the DVB-IPTV AL-FEC Enhanced Decoder

2. DVB-IPTV AL-FEC Specification

 The DVB-IPTV AL-FEC protocol comprises two layers of FEC protection:
 1-D interleaved parity FEC for the base layer and Raptor FEC for the
 enhancement layer. The performance of these FEC codes has been
 examined in detail in [DVB-A115].

2.1. Base-Layer FEC

 The 1-D interleaved parity FEC uses the exclusive OR (XOR) operation
 to generate the repair symbols. In a group of D x L source packets,
 the XOR operation is applied to each group of D source packets whose
 sequence numbers are L apart from each other to generate a total of L
 repair packets. Due to interleaving, this FEC is effective against
 bursty packet losses up to burst sizes of length L.

 The DVB-IPTV AL-FEC protocol requires that the D x L block of the
 source packets protected by the 1-D interleaved FEC code be wholly
 contained within a single source block of the Raptor code, if both
 FEC layers are used.

 Originally, the DVB-IPTV AL-FEC protocol had adopted the 1-D
 interleaved FEC payload format from [SMPTE2022-1] in
 [ETSI-TS-102-034v1.3.1]. However, some incompatibilities with RTP
 [RFC3550] have been discovered in this specification. These issues
 have all been addressed in [RFC6015] (for details, refer to Section 1
 of [RFC6015]). Some of the changes required by [RFC6015] are,
 however, not backward compatible with the existing implementations
 that were based on [SMPTE2022-1].

 In a recent liaison statement from the IETF AVT WG to DVB TM-IPI, it
 has been recommended that DVB TM-IPI define a new RTP profile for the
 AL-FEC protocol since in the new profile, several of the issues could
 easily be addressed without jeopardizing the compliance to RTP
 [RFC3550].

 At the writing of this document, it was not clear whether or not a
 new RTP profile would be defined for the AL-FEC protocol. DVB TM-IPI
 attempted to address some of the issues in the updated specification
 [ETSI-TS-102-034v1.4.1]; however, there are still outstanding issues.

 The following is a list of the exceptions that need to be considered
 by an implementation adopting [RFC6015] to be compliant with the DVB-
 IPTV AL-FEC protocol as specified in [ETSI-TS-102-034v1.4.1].

o SSRC (synchronization source)
 The DVB‑IPTV AL‑FEC protocol requires that the SSRC fields of the
 FEC packets be set to zero.

 This requirement conflicts with RTP [RFC3550]. Unless signaled
 otherwise, RTP uses random SSRC values with collision detection.
 An explicit SSRC signaling mechanism is currently defined in
 [RFC5576] and can be used for this purpose.

o CSRC (contributing source)
 The DVB‑IPTV AL‑FEC protocol does not support the protection of
 the CSRC entries in the source packets. Thus, in an
 implementation compliant to DVB‑IPTV AL‑FEC protocol, the source
 stream must not have any CSRC entries in its packets, and
 subsequently the CC fields of the source RTP packets will be zero.

 Note that if there are no RTP mixers used in a system running the
 DVB-IPTV AL-FEC protocol, the CC field of the source RTP packets
 will be zero and this is no longer an issue. Thus, if defined,
 the new RTP profile for the DVB-IPTV AL-FEC protocol should forbid
 the use of any RTP mixers.

o Timestamp
 In the DVB‑IPTV AL‑FEC protocol, the timestamp fields of the FEC
 packets are ignored by the receivers.

o Payload Type
 The DVB‑IPTV AL‑FEC protocol sets the PT fields of the FEC packets
 to 96.

 A static payload type assignment for the base-layer FEC packets is
 outside the scope of [RFC6015]. If defined, the new RTP profile
 for the DVB-IPTV AL-FEC protocol may assign 96 as the payload type
 for the base-layer FEC packets.

 In implementations that are based on [RFC6015] and are willing to be
 compliant with the DVB-IPTV AL-FEC protocol as specified in
 [ETSI-TS-102-034v1.3.1], all these exceptions must be considered as
 well; however, in this case, the sender does not have to select a
 random initial sequence number for the FEC stream as suggested by
 [RFC3550].

 Note that neither [ETSI-TS-102-034v1.3.1] nor [ETSI-TS-102-034v1.4.1]
 implements the 1-D interleaved parity code as specified in [RFC6015].
 Thus, the payload format registered in [RFC6015] must not be used by
 the implementations that are compliant with the
 [ETSI-TS-102-034v1.3.1] or [ETSI-TS-102-034v1.4.1] specification.

2.2. Enhancement-Layer FEC

 The Raptor code is a fountain code where as many encoding symbols as
 needed can be generated by the encoder on-the-fly from source data.
 Due to the fountain property of the Raptor code, multiple enhancement
 layers may also be specified, if needed.

 The details of the Raptor code are provided in [RFC6681]. The FEC
 scheme for the enhancement layer SHALL be the Raptor FEC scheme for a
 Single Sequenced Flow with FEC encoding ID 5. The RTP payload format
 for Raptor FEC is specified in [RFC6682].

 It is important to note that the DVB-IPTV AL-FEC protocol in the
 latest specification [ETSI-TS-102-034v1.4.1] allows both UDP-only and
 RTP-over-UDP encapsulations for the enhancement-layer FEC stream.
 The initial specification [ETSI-TS-102-034v1.3.1] exclusively permits
 UDP-only encapsulation for the enhancement-layer FEC stream.

 When SDP is used for signaling, the transport protocol identifier
 indicates whether an RTP-over-UDP or UDP-only encapsulation is used.
 In case of any other signaling framework, the differentiation of the
 protocol for the enhancement-layer stream is achieved either
 explicitly through a protocol identifier or implicitly by the version
 number of the DVB IPTV Handbook. If none of the above signaling is
 provided, the receiver shall concur from the packet size of the
 repair packets if RTP-over-UDP or UDP-only encapsulation is used.

2.3. Hybrid Decoding Procedures

 The receivers that support receiving and decoding both the base- and
 enhancement-layer FEC perform hybrid decoding to improve the repair
 performance. The following steps may be followed to perform hybrid
 decoding:

1. Base‑layer (Parity) Decoding: In this step, the repair packets
 that are encoded by the parity encoder are processed as usual to
 repair as many missing source packets as possible.

2. Enhancement‑layer (Raptor) Decoding: If there are still missing
 source packets after the first step, the repair packets that are
 Raptor encoded are processed with the source packets already
 received and the source packets that are recovered in the first
 step.

3. Hybrid Decoding: If there are still missing source packets after
 the second step, the unprocessed base‑layer (parity) repair
 packets are converted to a form in which they can be added to the
 Raptor decoding process. With this additional information,
 Raptor decoding may potentially recover any remaining missing
 source packet.

 The procedure that should be followed to benefit from the base-layer
 repair packets in the Raptor decoding process is explained in detail
 in Annex E.5.2 of [ETSI-TS-102-034v1.4.1].

3. Session Description Protocol (SDP) Signaling

 This section provides an SDP [RFC4566] example for
 [ETSI-TS-102-034v1.4.1]. The example uses the FEC grouping semantics
 [RFC5956].

 In the example, we have one source video stream (mid:S1), one FEC
 repair stream (mid:R1) that is produced by the 1-D interleaved parity
 FEC code, as well as another FEC repair stream (mid:R2) that is
 produced by the Raptor FEC code. We form one FEC group with the
 "a=group:FEC-FR S1 R1 R2" line. The source and repair streams are
 sent to the same port on different multicast groups. The source,
 base-layer FEC, and enhancement-layer FEC streams are all
 encapsulated in RTP.

 Due to the exceptions described in Section 2.1, a
 [ETSI-TS-102-034v1.4.1]-compliant implementation must not use the RTP
 payload format defined in [RFC6015]. Instead, it may use the payload
 format that has been registered by DVB TM-IPI for
 [ETSI-TS-102-034v1.3.1].

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=DVB‑IPTV AL‑FEC Example
t=0 0
a=group:FEC‑FR S1 R1 R2
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=mid:S1
m=application 30000 RTP/AVP 96
c=IN IP4 233.252.0.2/127
a=rtpmap:96 vnd.dvb.iptv.alfec‑base/90000
a=mid:R1
m=application 30000 RTP/AVP 111
c=IN IP4 233.252.0.3/127
a=rtpmap:111 vnd.dvb.iptv.alfec‑enhancement/90000
a=mid:R2

 Note that in the example above, the payload type has been chosen as
 96 for the base-layer FEC stream and there is no "a=fmtp:" line to
 specify the format parameters. Due to the lack of the format
 parameters for "vnd.dvb.iptv.alfec-base", it is not possible to learn
 the FEC parameters from the SDP description.

4. Security Considerations

 This specification adds no new security considerations to the DVB-
 IPTV AL-FEC protocol.

5. Acknowledgments

 This document is based on [ETSI-TS-102-034v1.3.1] and
 [ETSI-TS-102-034v1.4.1]. Thus, the authors would like to thank the
 editors of [ETSI-TS-102-034v1.3.1] and [ETSI-TS-102-034v1.4.1]. The
 authors also would like to thank those who reviewed earlier versions
 of this document.

6. References

6.1. Normative References

 [ETSI-TS-102-034v1.3.1]

 ETSI TS 102 034 V1.3.1, "Transport of MPEG 2 TS Based DVB
 Services over IP Based Networks", October 2007.

 [ETSI-TS-102-034v1.4.1]

 ETSI TS 102 034 V1.4.1, "Transport of MPEG 2 TS Based DVB
 Services over IP Based Networks", August 2009.

 [RFC6015]
 Begen, A., "RTP Payload Format for 1-D Interleaved Parity
 Forward Error Correction (FEC)", RFC 6015, October 2010.

 [RFC6681]
 Watson, M., Stockhammer, T., and M. Luby, "Raptor FEC
 Schemes for FECFRAME", RFC RFC6681, August 2012.

 [RFC6682]
 Watson, M., Stockhammer, T., and M. Luby, "RTP Payload
 Format for Raptor Forward Error Correction (FEC)",
 RFC 6682, August 2012.

 [RFC3550]
 Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC5576]
 Lennox, J., Ott, J., and T. Schierl, "Source-Specific
 Media Attributes in the Session Description Protocol
 (SDP)", RFC 5576, June 2009.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC5956]
 Begen, A., "Forward Error Correction Grouping Semantics in
 the Session Description Protocol", RFC 5956,
 September 2010.

6.2. Informative References

 [DVB-A115]

 "DVB Application Layer FEC Evaluations (DVB Document
 A115)", May 2007, <http://www.dvb.org/technology/
 standards/a115.tm3783.AL-FEC_Evaluation.pdf>.

 [SMPTE2022-1]

 SMPTE 2022-1-2007, "Forward Error Correction for Real-Time
 Video/Audio Transport over IP Networks", 2007.

Authors' Addresses

Ali Begen
Cisco
181 Bay Street
Toronto, ON M5J 2T3
Canada

EMail: abegen@cisco.com

Thomas Stockhammer
Nomor Research
Brecherspitzstrasse 8
Munich, 81541
Germany

EMail: stockhammer@nomor.de

6695 - Methods to Convey Forward Error Correction (FEC) Framework Configuration

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 6695

Category: Informational

ISSN: 2070-1721

R. Asati

Cisco Systems

August 2012

Methods to Convey Forward Error Correction (FEC) Framework Configuration Information

Abstract

 The Forward Error Correction (FEC) Framework document (RFC 6363)
 defines the FEC Framework Configuration Information necessary for the
 FEC Framework operation. This document describes how to use
 signaling protocols such as the Session Announcement Protocol (SAP),
 the Session Initiation Protocol (SIP), the Real Time Streaming
 Protocol (RTSP), etc. for determining and communicating the
 configuration information between sender(s) and receiver(s).

 This document doesn't define any new signaling protocol.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6695.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Specification Language

	3. Terminology/Abbreviations

	4. FEC Framework Configuration Information
	 4.1. Encoding Format

	5. Signaling Protocol Usage
	 5.1. Signaling Protocol for Multicasting
	 5.1.1. Sender Procedure

	 5.1.2. Receiver Procedure

	 5.2. Signaling Protocol for Unicasting
	 5.2.1. SIP

	 5.2.2. RTSP

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgments

	9. References
	 9.1. Normative References

	 9.2. Informative References

1. Introduction

 The FEC Framework document [RFC6363] defines the FEC Framework
 Configuration Information that governs the overall FEC Framework
 operation common to any FEC scheme. This information must be
 available at both the sender and receiver(s).

 This document describes how various signaling protocols such as the
 Session Announcement Protocol (SAP) [RFC2974], the Session Initiation
 Protocol (SIP) [RFC3261], the Real Time Streaming Protocol (RTSP)
 [RFC2326], etc. could be used by the FEC scheme (and/or the Content
 Delivery Protocol (CDP)) to communicate the configuration information
 between the sender and receiver(s). The configuration information
 may be encoded in any compatible format, such as the Session
 Description Protocol (SDP) [RFC4566], XML, etc., though this document
 refers to SDP encoding usage quite extensively.

 Note that this document doesn't define any new signaling protocol;
 rather, it just provides examples of how existing protocols should
 be used. Also, the list of signaling protocols for unicast is not
 intended to be a complete list.

 This document doesn't describe any FEC-Scheme-Specific Information
 (FSSI) (for example, how source blocks are constructed) or any
 sender- or receiver-side operation for a particular FEC scheme (for
 example, whether the receiver makes use of one or more repair flows
 that are received). Such FEC scheme specifics should be covered in
 separate document(s). This document doesn't mandate a particular
 encoding format for the configuration information either.

 This document is structured as follows: Section 3 describes the terms
 used in this document, Section 4 describes the FEC Framework
 Configuration Information, Section 5 describes how to use signaling
 protocols for multicast and unicast applications, and Section 6
 discusses security considerations.

2. Specification Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology/Abbreviations

 This document makes use of the terms/abbreviations defined in the FEC
 Framework document [RFC6363] and defines the following additional
 terms:

 o Media Sender - Node providing original media flow(s) to the 'FEC
 Sender'

 o Media Receiver - Node performing the media decoding

 o FEC Sender - Node performing the FEC encoding on the original
 media flow(s) to produce the FEC repair flow(s)

 o FEC Receiver - Node performing the FEC decoding, as needed, and
 providing the original media flow(s) to the Media Receiver

 o Sender - Same as FEC Sender

 o Receiver - Same as FEC Receiver

 o (Media) Flow - A single media instance, i.e., an audio stream or a
 video stream

 This document deliberately refers to the 'FEC Sender' and 'FEC
 Receiver' as the 'Sender' and 'Receiver', respectively.

4. FEC Framework Configuration Information

 The FEC Framework [RFC6363] defines a minimum set of information that
 is communicated between the sender and receiver(s) for a proper
 operation of an FEC scheme. This information is referred to as "FEC
 Framework Configuration Information". This is the information that
 the FEC Framework needs in order to apply FEC protection to the
 transport flows.

 A single instance of the FEC Framework provides FEC protection for
 all packets of a specified set of source packet flows, by means of
 one or more packet flows consisting of repair packets. As per
 Section 5.5 of the FEC Framework document [RFC6363], the FEC
 Framework Configuration Information includes the following for each
 FEC Framework instance:

 1. Identification of the repair flow(s)

 2. Identification of source flow(s)

 3. Identification of FEC scheme

 4. Length of Explicit Source FEC Payload ID

 5. FSSI

 FSSI basically provides an opaque container to encode FEC-scheme-
 specific configuration information such as buffer size, decoding
 wait-time, etc. Please refer to the FEC Framework document [RFC6363]
 for more details.

 The usage of signaling protocols described in this document requires
 that the application layer responsible for the FEC Framework instance
 provide the value for each of the configuration information
 parameters (listed above) encoded as per the chosen encoding format.
 In case of failure to receive the complete information, the signaling
 protocol module must return an error for Operations, Administration,
 and Maintenance (OAM) purposes and optionally convey this error to
 the application layer. Please refer to Figure 1 of the FEC Framework
 document [RFC6363] for further illustration.

 This document does not make any assumption that the 'FEC Sender' and
 'Media Sender' functionalities are implemented on the same device,
 though that may be the case. Similarly, this document does not make
 any assumption that 'FEC Receiver' and 'Media Receiver'
 functionalities are implemented on the same device, though that may
 be the case. There may also be more than one Media Sender.

4.1. Encoding Format

 The FEC Framework Configuration Information (listed above in
 Section 4) may be encoded in any format, such as SDP, XML, etc., as
 chosen or preferred by a particular FEC Framework instance. The
 selection of such encoding formats or syntax is independent of the
 signaling protocol and beyond the scope of this document.

 Any encoding format that is selected for a particular FEC Framework
 instance must be known to the signaling protocol. This is to provide
 a means (e.g., a field such as Payload Type) in the signaling
 protocol message(s) to convey the chosen encoding format for the
 configuration information so that the payload (i.e., configuration
 information) can be correctly parsed as per the semantics of the
 chosen encoding format at the receiver. Please note that the
 encoding format is not a negotiated parameter, but rather a property
 of a particular FEC Framework instance and/or its implementation.

 Additionally, the encoding format for each FEC Framework
 configuration parameter must be defined in terms of a sequence of
 octets that can be embedded within the payload of the signaling
 protocol message(s). The length of the encoding format must either
 be fixed or be derived by examining the encoded octets themselves.
 For example, the initial octets may include some kind of length
 indication.

 Independent of the encoding formats supported by an FEC scheme, each
 instance of the FEC Framework must use a single encoding format to
 describe all of the configuration information associated with that
 instance. The signaling protocol specified in this document should
 not validate the encoded information, though it may validate the
 syntax or length of the encoded information.

 The reader may refer to the SDP elements document [RFC6364], which
 describes the usage of the 'SDP' encoding format as an example
 encoding format for the FEC Framework Configuration Information.

5. Signaling Protocol Usage

 The FEC Framework [RFC6363] requires that certain FEC Framework
 Configuration Information be available to both the sender and
 receiver(s). This configuration information is almost always
 formulated at the sender (or on behalf of the sender) and somehow
 made available at the receiver(s). While one may envision a static
 method to populate the configuration information at both the sender
 and receiver(s), it would not be optimal, since it would (a) require
 the knowledge of every receiver in advance, (b) require the time and
 means to configure each receiver and sender, and (c) increase the
 possibility of misconfiguration. Hence, there is a benefit in using
 a dynamic method (i.e., signaling protocol) to convey the
 configuration information between the sender and one or more
 receivers.

 Since the configuration information may be needed at a particular
 receiver versus many receivers (depending on the multimedia stream
 being unicast (e.g., Video on Demand (VoD); or multicast, e.g.,
 broadcast or IPTV), we need two types of signaling protocols -- one
 to deliver the configuration information to many receivers via
 multicasting (as described in Section 5.1), and the other to deliver
 the configuration information to one and only one receiver via
 unicasting (as described in Section 5.2).

 Figure 1 below illustrates a sample topology showing the FEC Sender
 and FEC Receiver (which may or may not be the Media Sender and Media
 Receiver, respectively) such that FEC_Sender1 is serving
 FEC_Receiver11, FEC_Receiver12, and FEC_Receiver13 via the multicast
 signaling protocol, whereas FEC_Sender2 is serving only FEC_Receiver2
 via the unicast signaling protocol.

FEC_Sender2‑‑‑‑‑‑‑‑‑| |‑‑‑‑‑‑‑‑FEC_Receiver2
 | |
FEC_Sender1‑‑‑‑‑‑‑IP/MPLS network
 |‑‑‑‑‑‑‑‑‑‑‑FEC_Receiver11
 |‑‑‑‑‑‑‑‑‑‑‑FEC_Receiver12
 |‑‑‑‑‑‑‑‑‑‑‑FEC_Receiver13

 Figure 1. Topology Using Sender and Receiver

 The rest of the document continues to use the terms 'Sender' and
 'Receiver' to refer to the 'FEC Sender' and 'FEC Receiver',
 respectively.

5.1. Signaling Protocol for Multicasting

 This specification describes using SAP version 2 [RFC2974] as the
 signaling protocol to multicast the configuration information from
 one sender to many receivers. The apparent advantage is that the
 server doesn't need to maintain any state for any receiver using SAP.

 SAP messages are carried over UDP over IP with destination UDP
 port 9875, as described in [RFC2974], and a source UDP port of any
 available number. The SAP message(s) MUST contain an
 authentication header using Pretty Good Privacy (PGP)
 authentication.

 At the high level, a sender, acting as the SAP announcer, signals the
 FEC Framework Configuration Information for each FEC Framework
 instance available at the sender, using the SAP message(s). The
 configuration information, encoded in a suitable format as per
 Section 4.1, is carried in the payload of the SAP message(s). A
 receiver, acting as the SAP listener, listens on a well-known UDP
 port and at least one well-known multicast group IP address (as
 explained in Section 5.1.1). This enables the receiver to receive
 the SAP message(s) and obtain the FEC Framework Configuration
 Information for each FEC Framework instance.

 Using the configuration information, the receiver becomes aware of
 available FEC protection options, corresponding multicast trees (S,G
 or *,G addresses), etc. The receiver may subsequently subscribe to
 one or more multicast trees to receive the FEC streams using out-of-
 band multicasting techniques such as PIM [RFC4601]. This, however,
 is outside the scope of this document.

 Figure 2 below (reprinted from [RFC2974]) illustrates the SAP packet
 format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| V=1 |A|R|T|E|C| auth len | msg id hash |
+‑+
| |
: originating source (32 or 128 bits) :
: :
+‑+
| optional authentication data |
: :
‑
| optional payload type |
+ +‑+‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑+
| |0| |
+ ‑ +‑+ |
| |
: payload :
| |
+‑+

 Figure 2. SAP Message Format

 While [RFC2974] includes explanations for each field, it is worth
 discussing the 'Payload' and 'Payload Type' fields. The 'Payload'
 field is used to carry the FEC Framework Configuration Information.
 Subsequently, the optional 'Payload Type' field, which is a MIME
 content type specifier, is used to describe the encoding format used
 to encode the payload.

 For example, the 'Payload Type' field may be application/sdp if
 the FEC Framework Configuration Information is encoded in SDP
 format and carried in the SAP payload. Similarly, it would be
 application/xml if the FEC Framework Configuration Information
 were encoded in XML format.

 Section 5.1.1 describes the sender procedure, whereas Section 5.1.2
 describes the receiver procedure in the context of config signaling
 using [RFC2974].

5.1.1. Sender Procedure

 The sender signals the FEC Framework Configuration Information for
 each FEC Framework instance in a periodic SAP announcement message
 [RFC2974]. The SAP announcement message is sent to a well-known
 multicast IP address and UDP port, as specified in [RFC2974]. The
 announcement is multicast with the same scope as the session being
 announced.

 The SAP module at the sender obtains the FEC Framework Configuration
 Information per instance from the 'FEC Framework' module and places
 that in the SAP payload accordingly. A single SAP (announcement)
 message must carry the FEC Framework Configuration Information for a
 single FEC Framework instance. The SAP message is then sent over UDP
 over IP.

 While it is possible to aggregate multiple SAP (announcement)
 messages in a single UDP datagram as long as the resulting UDP
 datagram length is less than the IP MTU of the outgoing interface,
 this specification does not recommend it, since there is no length
 field in the SAP header to identify a SAP message boundary.
 Hence, this specification recommends that a single SAP
 announcement message be sent in a UDP datagram.

 The IP packet carrying the SAP message must be sent to a destination
 IP address of one of the following, depending on the selected scope:

 - 224.2.127.254 (if IPv4 global scope 224.0.1.0-238.255.255.255 is
 selected for the FEC stream), or

 - ff0x:0:0:0:0:0:2:7ffe (if IPv6 multicasting is selected for the FEC
 stream, where x is the 4-bit scope value), or

 - the highest multicast address (239.255.255.255, for example) in the
 relevant administrative scope zone (if IPv4 administrative scope
 239.0.0.0-239.255.255.255 is selected for the FEC stream)

 As defined in [RFC2974], the IP packet carrying a SAP message must
 use destination UDP port 9875 and a source UDP port of any available
 number. The default IP Time to Live (TTL) value (or Hop Limit value)
 should be 255 at the sender, though the sender implementation may
 allow it to be any other value to implicitly create the multicast
 boundary for SAP announcements. The IP Differentiated Services Code
 Point (DSCP) field may be set to any value that indicates a desired
 QoS treatment in the IP network.

 The IP packet carrying the SAP message must be sent with a source IP
 address that is reachable by the receiver. The sender may assign the
 same IP address in the 'originating source' field of the SAP message
 as that used in the source IP address of the IP packet.

 Furthermore, the FEC Framework Configuration Information must not
 include any of the reserved multicast group IP addresses for the FEC
 streams (i.e., source or repair flows), though it may use the same IP
 address as the 'originating source' address to identify the FEC
 streams (i.e., source or repair flows). Please refer to IANA
 assignments for multicast addresses.

 The sender must periodically send the 'SAP announcement' message to
 ensure that the receiver doesn't purge the cached entry or entries
 from the database and doesn't trigger the deletion of the FEC
 Framework Configuration Information.

 While the time interval between repetitions of an announcement can be
 calculated as per the very sophisticated but complex method explained
 in [RFC2974], this document recommends a simpler method in which the
 user specifies the time interval in the range of 1-200 seconds, with
 a suggested default value of 60 seconds. In this method, the 'time
 interval' may be signaled in the SAP message payload, e.g., within
 the FEC Framework Configuration Information.

 Note that SAP doesn't allow the time interval to be signaled in
 the SAP header. Hence, the usage of a simpler method requires
 that the time interval be included in the FEC Framework
 Configuration Information if the default time interval (60
 seconds) for SAP message repetitions is not used. For example,
 the usage of the 'r=' (repeat time) field in SDP may convey the
 time interval value if the SDP encoding format is used.

The time interval must be chosen to ensure that SAP announcement
messages are sent out before the corresponding multicast routing
entry, e.g., (S,G) or (*,G) (corresponding to the SAP multicast
tree(s)) on the router(s) times out. (It is worth noting that the
default timeout period for the multicast routing entry is
210 seconds, per the PIM specification [RFC4601], though the timeout
period may be set to another value as allowed by the router
implementation.)

 A SAP implementation may also support the complex method for
 determining the SAP announcement time interval and provide the
 option to select it.

 The sender may choose to delete the announced FEC Framework
 Configuration Information, as defined in Section 4 of [RFC2974]. The
 explicit deletion is useful if the sender no longer desires to send
 any more FEC streams.

 If the sender needs to modify the announced FEC Framework
 Configuration Information for one or more FEC instances, then the
 sender must send a new announcement message with a different 'Message
 Identifier Hash' value as per the rules described in Section 5 of
 RFC 2974 [RFC2974]. Such an announcement message should be sent
 immediately (without having to wait for the time interval) to ensure
 that the modifications are received by the receiver as soon as
 possible. The sender must also send the SAP deletion message to
 delete the previous SAP announcement message (i.e., with the previous
 'Message Identifier Hash' value).

5.1.2. Receiver Procedure

 The receiver must listen on UDP port 9875 for packets arriving with
 an IP destination address of either 224.2.127.254 (if an IPv4 global
 scope session is used for the FEC stream), ff0x:0:0:0:0:0:2:7ffe (if
 IPv6 is selected, where x is the 4-bit scope value), or the highest
 IP address (239.255.255.255, for example) in the relevant
 administrative scope zone (if IPv4 administrative scope 239.0.0.0-
 239.255.255.255 is selected for the FEC stream). These IP addresses
 are mandated for SAP usage by RFC 2974 [RFC2974].

 The receiver, upon receiving a SAP announcement message, creates an
 entry, if it doesn't already exist, in a local database and passes
 the FEC Framework Configuration Information from the SAP Payload
 field to the 'FEC Framework' module. Each entry also maintains a
 timeout value, which is (re)set to five times the time interval
 value, which in turn is either the default of 60 seconds or the value
 signaled by the sender.

 Note that SAP doesn't allow the time interval to be signaled in
 the SAP header. Hence, the time interval should be included in
 the FEC Framework Configuration Information -- for example, the
 usage of the 'r=' (repeat time) field in SDP to convey the time
 interval value if the SDP encoding format is used.

 The timeout value associated with each entry is reset when the
 corresponding announcement (please see Section 5 of [RFC2974]) is
 received. If the timeout value for any entry reaches zero, then that
 entry must be deleted from the database, as described in Section 4 of
 [RFC2974]. The receiver, upon receiving a SAP delete message, must
 delete the matching SAP entry in its database, as described in
 Section 4 of [RFC2974].

 The deletion of a SAP entry must result in the receiver no longer
 using the relevant FEC Framework Configuration Information for the
 corresponding instance and no longer subscribing to any related FEC
 streams.

5.2. Signaling Protocol for Unicasting

 This document describes leveraging any signaling protocol that is
 already used by the unicast application, for exchanging the FEC
 Framework Configuration Information between two nodes.

 For example, a multimedia (VoD) client may send a request via
 unicasting for a particular content to the multimedia (VoD) server,
 which may offer various options such as encodings, bitrates,
 transport, etc. for the content. The client selects the suitable
 options and answers the server, paving the way for the content to be
 unicast on the chosen transport from the server to the client. This
 offer/answer signaling, described in [RFC3264], is commonly utilized
 by many application protocols, such as SIP, RTSP, etc.

 The fact that two nodes desiring unicast communication almost always
 rely on an application to first exchange the application-related
 parameters via the signaling protocol makes it logical to enhance
 such signaling protocol(s) to (a) convey the desire for the FEC
 protection and (b) subsequently also exchange FEC parameters, i.e.,
 the FEC Framework Configuration Information. This enables the node
 acting as the offerer to offer 'FEC Framework Configuration
 Information' for each available FEC instance and the node acting as
 the answerer to convey the chosen FEC Framework instance(s) to the
 offerer. The usage of the FEC Framework instance is explained in the
 FEC Framework document [RFC6363].

 While enhancing an application's signaling protocol to exchange FEC
 parameters is one method (briefly explained above), an alternative
 method would be to have a unicast-based generic protocol that could
 be used by two nodes, independent of the application's signaling
 protocol. The latter is not covered by this document, of course.

 The remainder of this section provides example signaling protocols
 and explains how they can be used to exchange the FEC Framework
 Configuration Information.

5.2.1. SIP

 SIP [RFC3261] is an application-level signaling protocol to create,
 modify, and terminate multimedia sessions with one or more
 participants. SIP also enables the participants to discover one
 another and to agree on a characterization of a multimedia session
 they would like to share. SIP runs on either TCP, UDP, or Stream
 Control Transmission Protocol (SCTP) transport and uses SDP as the
 encoding format to describe multimedia session attributes.

 SIP already uses an offer/answer model with SDP as described in
 [RFC3264] to exchange information between two nodes to establish
 unicast sessions between them. This document extends the usage of
 this model for exchanging the FEC Framework Configuration Information
 (described in Section 4). Any SDP-specific enhancements to
 accommodate the FEC Framework are covered in the SDP elements
 specification [RFC6364].

5.2.2. RTSP

 RTSP [RFC2326] is an application-level signaling protocol for control
 over the delivery of data with real-time properties. RTSP provides
 an extensible framework to enable controlled, on-demand delivery of
 real-time data such as audio and video. RTSP runs on either TCP or
 UDP transports.

 RTSP already provides an ability to extend the existing method with
 new parameters. This specification defines the
 'FEC-protection-needed' option tag (please see Section 7 for IANA
 Considerations) and prescribes including it in the Require (or
 Proxy-Require) header of SETUP (method) request messages, so as to
 request FEC protection for the data.

 The node receiving such a request either responds with a '200 OK'
 message that includes offers, i.e., available FEC options (e.g., FEC
 Framework Configuration Information for each instance) or a '551
 Option not supported' message. A sample of a related message
 exchange is shown below.

Node1‑>Node2: SETUP < ... > RTSP/1.0
 CSeq: 1
 Transport: <omitted for simplicity>
 Require: FEC‑protection‑needed

Node2‑>Node1: RTSP/1.0 200 OK
 CSeq: 1
 Transport: <omitted for simplicity>

 The requesting node (Node1) may then send a new SETUP message to
 convey the selected FEC protection to Node2 and proceed with regular
 RTSP messaging.

 Suffice it to say that if the requesting node (Node1) received a '551
 Option not supported' response from Node2, then the requesting node
 (Node1) may send the SETUP message without using the Require header.

6. Security Considerations

 This document recommends that SAP message(s) be authenticated to
 ensure sender authentication, as described in Section 5.1.

 There are no additional security considerations other than those
 already covered in [RFC2974] for SAP, [RFC2326] for RTSP, and
 [RFC3261] for SIP.

7. IANA Considerations

 IANA has registered a new RTSP option tag (option-tag), listed below,
 in the RTSP/1.0 Option Tags table of the "Real Time Streaming
 Protocol (RTSP)/1.0 Parameters" registry available from
 http://www.iana.org/, and it provides the following information in
 compliance with Section 3.8.1 of [RFC2326]:

 o Name of option-tag: FEC-protection-needed

 o Description: See Section 5.2.2

 o Change Control: IETF

8. Acknowledgments

 Thanks to Colin Perkins for pointing out the issue with the time
 interval for the SAP messages. Additionally, thanks to Vincent Roca,
 Ali Begen, Mark Watson, Ulas Kozat, and David Harrington for greatly
 improving this document.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2974]
 Handley, M., Perkins, C., and E. Whelan, "Session
 Announcement Protocol", RFC 2974, October 2000.

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for the
 Forward Error Correction (FEC) Framework", RFC 6364,
 October 2011.

9.2. Informative References

 [RFC2326]
 Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
 Streaming Protocol (RTSP)", RFC 2326, April 1998.

 [RFC3261]
 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264]
 Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC4566]
 Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4601]
 Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
 "Protocol Independent Multicast - Sparse Mode (PIM-SM):
 Protocol Specification (Revised)", RFC 4601, August 2006.

Author's Address

Rajiv Asati
Cisco Systems
7025‑6 Kit Creek Rd.
RTP, NC 27709‑4987

 EMail: rajiva@cisco.com

6801 - Pseudo Content Delivery Protocol (CDP) for Protecting Multiple Source Flo

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 6801

Category: Informational

ISSN: 2070-1721

U. Kozat

DOCOMO Innovations

A. Begen

Cisco

November 2012

Pseudo Content Delivery Protocol (CDP) for Protecting Multiple Source Flows in the Forward Error Correction (FEC) Framework

Abstract

 This document provides a pseudo Content Delivery Protocol (CDP) to
 protect multiple source flows with one or more repair flows based on
 the Forward Error Correction (FEC) Framework and the Session
 Description Protocol (SDP) elements defined for the framework. The
 purpose of the document is not to provide a full-fledged protocol but
 to show how the defined framework and SDP elements can be combined
 together to implement a CDP.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6801.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Definitions/Abbreviations

	3. Construction of a Repair Flow from Multiple Source Flows
	 3.1. Example: Two Source Flows Protected by a Single Repair Flow

	4. Reconstruction of Source Flows from Repair Flow(s)
	 4.1. Example: Multiple Source Flows Protected by a Single Repair Flow

	5. Security Considerations

	6. Acknowledgments

	7. Normative References

1. Introduction

 The Forward Error Correction (FEC) Framework (described in [RFC6363])
 and SDP Elements for FEC Framework (described in [RFC6364]) together
 define mechanisms sufficient enough to build an actual Content
 Delivery Protocol (CDP) with FEC protection. Methods to convey FEC
 Framework Configuration Information (described in [RFC6695]), on the
 other hand, provide the signaling protocols that may be used as part
 of CDP to communicate FEC-Scheme-Specific Information from FEC sender
 to a single as well as multiple FEC receivers. This document
 provides a guideline on how the mechanisms defined in [RFC6363] and
 [RFC6364] can be sufficiently used to design a CDP over a non-trivial
 scenario, namely, protection of multiple source flows with one or
 more repair flows.

 In particular, we provide clarifications and descriptions on how:

 o source and repair flows may be uniquely identified,

 o source blocks may be generated from one or more source flows,

 o repair flows may be paired with the source flows,

 o the receiver explicitly and implicitly identifies individual
 flows, and

 o source blocks are regenerated at the receiver and the missing
 source symbols in a source block are recovered.

2. Definitions/Abbreviations

 This document uses all the definitions and abbreviations from Section
 2 of [RFC6363] minus the RFC 2119 requirements language.

3. Construction of a Repair Flow from Multiple Source Flows

 At the sender side, CDP constructs the source blocks (SBs) by
 multiplexing transport payloads from multiple flows (see Figures 1
 and 2). According to the FEC Framework, each source block is FEC-
 protected separately. Each source block is given to the specific FEC
 encoder used within the CDP as input and as the outputs Explicit
 Source FEC Payload ID, Repair FEC Payload ID, and Repair Payloads
 corresponding to that source block are generated. Note that the
 Explicit Source FEC Payload ID is optional, and if the CDP has an
 implicit means of constructing the source block at the sender/
 receiver (e.g., by using any existing sequence numbers in the
 payload), the Explicit Source FEC Payload ID might not be output.

 +‑‑‑‑‑‑‑‑‑‑‑‑+
s_1 ‑‑‑‑‑‑‑‑> | |
 . Source | Source | +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 . Flows | Block |==> ..|SB_(j+1)| | SB_j | |SB_(j‑1)| ..
s_n ‑‑‑‑‑‑‑‑> | Generation | +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Source Block Generation for a FEC Scheme

 Figure 2 shows the structure of a source block. A CDP must clearly
 specify which payload corresponds to which source flow and the length
 of each payload.

<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Source Block (SB) ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>

+‑‑‑‑‑‑‑...‑‑‑‑‑+‑‑‑‑‑‑‑...‑‑‑‑‑+‑ ‑+‑‑‑‑‑‑‑...‑‑‑‑‑+
| Payload_1 | Payload_2 | . . . | Payload_n |
+‑‑‑‑‑‑‑...‑‑‑‑‑+‑‑‑‑‑‑‑...‑‑‑‑‑+‑ ‑+‑‑‑‑‑‑‑...‑‑‑‑‑+
______ _______|______ _______| |______ _______|
 \/ \/ \/
 FID_1,Len_1 FID_2,Len_2 FID_n,Len_n

 Figure 2: Structure of a Source Block

 The Flow ID (FID) value provides a unique shorthand identifier for
 the source flows. FID is specified and associated with the possibly
 wildcarded tuple of {source IP address, source port, destination IP
 address, destination port, transport protocol} in the SDP
 description. When wildcarded, certain fields in the tuple are not
 needed for distinguishing the source flows. The tuple is carried in
 the IP and transport headers of the source packets. Since FID is
 utilized by the CDP and FEC scheme to distinguish between the source
 packets, the tuple must have a one-to-one mapping to a valid FID.
 This point will be clearer in the specific example given later in
 this section. The length of FID must be a priori fixed and known to
 both the receiver and sender. Alternatively, it might be specified
 in the FEC-Scheme-Specific Information field in the SDP element
 [RFC6364].

 The payload length (Len) information is needed to figure out how many
 bits, bytes, or symbols (depending on the FEC scheme) from a
 particular source flow are included in the source block. If the
 payload is not an integer multiple of the specified symbol length,
 the remaining portion is padded with zeros (see Figures 3 and 4).

 +‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ | | ‑‑‑‑‑‑‑> r_1
.. |SB_(j+1)| | SB_j | |SB_(j‑1)| .. ==> | FEC | Repair .
 +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ |Scheme| Flows .
 | | ‑‑‑‑‑‑‑> r_k
 +‑‑‑‑‑‑+

 Figure 3: Repair Flow Generation by a FEC Scheme

<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Source Block (SB) ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
| | | | | |
+‑‑‑‑‑‑‑...‑‑‑‑‑+‑‑‑‑‑‑‑...‑‑‑‑‑+‑ ‑+‑‑‑‑‑‑‑...‑‑‑‑‑+ |
| Payload_1 | Payload_2 | . . . | Payload_n |0|
+‑‑‑‑‑‑‑...‑‑‑‑‑+‑‑‑‑‑‑‑...‑‑‑‑‑+‑ ‑+‑‑‑‑‑‑‑...‑‑‑‑‑+ |
Symbol_1	Symbol_2	Symbol_3	. . .	Symbol_m
<‑‑‑‑‑‑‑‑>	<‑‑‑‑‑‑‑‑>	<‑‑‑‑‑‑‑‑>		<‑‑‑‑‑‑‑‑>

 +‑‑‑‑‑‑+
Symbol_1,..,Symbol_m => | FEC | => Symbol_u,..,Symbol_1
 | Enc. |
 +‑‑‑‑‑‑+

 Figure 4: Repair Flow Payload Generation

 FEC schemes typically expect a source block of certain size, say, m
 symbols. Therefore, the FEC encoder divides each source block into m
 symbols (with some padding if the source block is shorter than the
 expected m symbols) and generates u repair symbols, which are
 functions of the m symbols in the original source block. The repair
 symbols are grouped by the FEC scheme into repair payloads with each
 repair payload assigned a Repair FEC Payload ID in order to associate
 each repair payload with a particular source block at the receiver.
 If the payloads in a given source block have sequence numbers that
 can uniquely specify their location in the source block, an Explicit
 Source FEC Payload ID may not be generated for these payloads.
 Otherwise, Explicit Source FEC Payload IDs are generated for each
 payload and indicate the order the payloads appear in the source
 block.

 Note that FID and length information are not actually transmitted
 with the source payloads since both information can be gathered by
 other means as it will be clear in the next sections.

3.1. Example: Two Source Flows Protected by a Single Repair Flow

 In this section, we present an example of source flow and repair flow
 generation by the CDP. We have two source flows with flow IDs of 0
 and 1 to be protected by a single repair flow (see Figure 5). The
 first source flow is multicast to 233.252.0.1, and the second source
 flow is multicast to 233.252.0.2. Both flows use the port number
 30000.

SOURCE FLOWS
S1: Source Flow | | INSTANCE #1
 |‑‑‑‑‑‑‑‑‑| R3: Repair Flow
S2: Source Flow |

 Figure 5: Example: Two Source Flows and One Repair Flow

 The SDP description below states that the source flow defined by the
 tuple {*,*,233.252.0.1,30000} is identified with FID=0 and the source
 flow defined by the tuple {*,*,233.252.0.2,30000} is identified with
 FID=1 (via the 'id' parameter of the "fec-source-flow" attribute).
 The SDP description also states that the repair flow is to be
 received at the multicast address of 233.252.0.3 and at port 30000.

v=0
o=ali 1122334455 1122334466 IN IP4 fec.example.com
s=FEC Framework Examples
t=0 0
a=group:FEC‑FR S1 S2 R3
m=video 30000 RTP/AVP 100
c=IN IP4 233.252.0.1/127
a=rtpmap:100 MP2T/90000
a=fec‑source‑flow: id=0
a=mid:S1
m=video 30000 RTP/AVP 101
c=IN IP4 233.252.0.2/127
a=rtpmap:101 MP2T/90000
a=fec‑source‑flow: id=1
a=mid:S2
m=application 30000 UDP/FEC
c=IN IP4 233.252.0.3/127
a=fec‑repair‑flow: encoding‑id=0; ss‑fssi=n:7,k:5
a=repair‑window:150ms
a=mid:R3

 Figure 6 shows the first and the second source blocks (SB_1 and SB_2)
 generated from these two source flows. In this example, SB_1 is of
 length 10000 bytes. Suppose that the FEC scheme uses a symbol length
 of 512 bytes. Then, SB_1 can be divided into 20 symbols after
 padding the source block for 240 bytes. Assume that the FEC scheme
 is rate-2/3 erasure code; hence, it generates 10 repair symbols from
 20 original symbols for SB_1. On the other hand, SB_2 is 7000 bytes
 long and can be divided into 14 symbols after padding 168 bytes.
 Using the same encoder, suppose that seven repair symbols are
 generated for SB_2.

 <‑‑‑‑‑‑‑‑ Source Block 1 ‑‑‑‑‑‑‑‑>
 +‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | $1 $2 $3 $4| #1 #2 #3 #4 #5 #6 | 0..00
 +‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 __________________ __________________/
 \/
 @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

 <‑‑‑‑ Source Block 2 ‑‑‑‑>
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
 | $5 $6 $7 $8 $9 | #7 #8 |0..00
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
 ______________ _____________/
 \/
 @11 @12 @13 @14 @15 @16 @17

$: 1000‑byte payload from source flow 1
#: 1000‑byte payload from source flow 2
@: Repair symbol

 Figure 6: Source Block with Two Source Flows

 The information on the unit of payload length, FEC scheme, symbol
 size, and coding rates can be specified in the FEC-Scheme-Specific
 Information (FSSI) field of the SDP element. If the values of the
 payload lengths from each source flow and the order of appearance of
 source flows in every source block are fixed during the session,
 these values may be also provided in the FSSI field. To carry FSSI
 information to the FEC receivers, one may use the signaling methods
 described in [RFC6695]. In our example, we will consider the case
 where the ordering is fixed and known both at the sender and the
 receiver, but the payload lengths will be variable from one source
 block to another. We assume that the payload of a source flow with
 an FID smaller than another flow's FID precedes other payloads in a
 source block.

 The FEC scheme gets the source blocks as input and generates the
 parity blocks for each source block to protect the whole source
 block. In the example, the repair payloads for SB_1 consist of 512-
 byte symbols, denoted by @1 to @10. Similarly, @11 to @17
 constitutes the repair payloads for SB_2. The FEC scheme outputs the
 repair payloads along with the Repair FEC Payload IDs. In our
 example, Repair FEC Payload ID provides information on the source
 block sequence number and the order the repair symbols are generated.
 For instance, @3 is the third FEC repair symbol for SB_1, and the
 three tuple {@3,SB_1,3} can uniquely deliver this information. In
 our example, the FEC scheme also provides Explicit Source FEC Payload
 IDs that carry information to indicate which source symbols
 correspond to which source block sequence number and the relative
 position in the source block. For instance, the two tuple {SB_2,2}
 can be attached to $6 as the Explicit Source FEC Payload ID to
 indicate that $6 is protected together with packets belonging to
 SB_2, and $6 is the second payload in SB_2.

 The source packets are generated from the source symbols by
 concatenating consecutive symbols in one packet. There should not be
 any fragmentation of a source symbol; e.g., symbols #7 and #8 can be
 concatenated in one transport payload of 2000 bytes (the
 implementation should make sure that the size of the resulting source
 packet -- payload plus the overhead -- is not larger than the path
 MTU), but one portion of symbol #7 should not be put in one source
 packet and the remaining portion in another source packet. The
 simplest implementation is to place each source symbol in a different
 source packet as shown in Figure 7.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP header {233.252.0.1} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport header {30000} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Original Transport Payload {$6} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Source FEC Payload ID {SB_2,2} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 7: Example of a Source Packet for IPv4

 The repair packets are generated from the repair symbols belonging to
 the same source block by grouping consecutive symbols in one packet.
 There should not be any fragmentation of a repair symbol; e.g.,
 symbols @4, @5, and @6 can be concatenated in one transport payload
 of 1536 bytes, but @6 should not be divided into smaller sub-symbols
 and spread over multiple repair packets. The Repair FEC Payload ID
 must carry sufficient information for the decoding process. In our
 example, for instance, indicating source block sequence number,
 length of each source payload, and the order that the first parity
 symbol in the repair packet among all the parity symbols generated
 for the same source block is sufficient. The exact header format of
 Repair FEC Payload ID may be specified in the FSSI field of the SDP
 element. In Figure 8, for instance, the repair symbols @4, @5, and
 @6 are concatenated together. The Payload ID {SB_1,4,4,6} states
 that the repair symbols protect SB_1, the first repair symbol in the
 payload is generated as the fourth symbol and the source block
 consists of two source flows carrying four and six packets from each.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP header {233.252.0.3} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport header {30000} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair FEC Payload ID {SB_1,4,4,6} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair Symbols {@4,@5,@6} |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 8: Example of a Repair Packet for IPv4

4. Reconstruction of Source Flows from Repair Flow(s)

 Here we provide an example for reconstructing multiple source flows
 from a single repair flow.

4.1. Example: Multiple Source Flows Protected by a Single Repair Flow

 At the receiver, source flows 1 and 2 are received at
 {233.252.0.1,30000} and {233.252.0.2,30000}, while the repair flow is
 received at {233.252.0.3,30000}. The CDP can map these tuples to the
 flow IDs using the SDP elements. Accordingly, the payloads received
 at {233.252.0.1,30000} and {233.252.0.2,30000} are mapped to flow IDs
 0 and 1, respectively.

 The CDP passes the flow IDs and received payloads along with the
 Explicit Source FEC Payload ID to the FEC scheme defined in the SDP
 description. The CDP also passes the received repair packet payloads
 and Repair FEC Payload ID to the FEC scheme. The FEC scheme can
 construct the original source block with missing packets by using the
 information given in the FEC Payload IDs. The FEC Repair Payload ID
 provides the information that SB_1 has packets from two flows with
 four packets from the first one and six packets from the second one.
 Flow IDs state that the packets from source flow 0 precede the
 packets from source flow 1. Explicit Source FEC Payload IDs, on the
 other hand, provide the information about which source payload
 appears in what order. Therefore, the FEC scheme can depict a source
 block with exact locations of the missing packets. Figure 9 depicts
 the case for SB_1. Since the original source block with missing
 packets can be constructed at the decoder and the FEC scheme knows
 the coding rate (e.g., it might be carried in the FSSI field in the
 SDP description), a proper decoding operation can start as soon as
 the repair symbols are provided to the FEC scheme.

<‑‑‑‑‑‑‑‑ Source Block 1 ‑‑‑‑‑‑‑‑>
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| $1 $2 X X | #1 X #3 #4 #5 #6 |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

O: Symbols received from the source flow 1 for SB_1
#: Symbols received from the source flow 2 for SB_1
X: Lost source symbols

 Figure 9: Source Block Regeneration

 When the FEC scheme can recover any missing symbol while more repair
 symbols are arriving, it provides the recovered blocks along with the
 source flow IDs of the recovered blocks as outputs to the CDP. The
 receiver knows how long to wait to repair the remaining missing
 packets (e.g., specified by the 'repair-window' attribute in the SDP
 description). After the associated timer expires, the CDP hands over
 whatever could be recovered from the source flow to the application
 layer and continues with processing the next source block.

5. Security Considerations

 For the general security considerations related to the FEC Framework,
 refer to [RFC6363]. For the security considerations related to the
 SDP elements in the FEC Framework, refer to [RFC6364]. There are no
 additional security considerations that apply to this document.

6. Acknowledgments

 The authors would like to thank the FEC Framework design team for
 their inputs, suggestions, and contributions.

7. Normative References

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for the
 Forward Error Correction (FEC) Framework", RFC 6364,
 October 2011.

 [RFC6695]
 Asati, R., "Methods to Convey Forward Error Correction
 (FEC) Framework Configuration Information", RFC 6695,
 August 2012.

Authors' Addresses

Ulas C. Kozat
DOCOMO Innovations
3240 Hillview Avenue
Palo Alto, CA 94304‑1201
USA

Phone: +1 650 496 4739
EMail: kozat@docomolabs‑usa.com

Ali Begen
Cisco
181 Bay Street
Toronto, ON M5J 2T3
Canada

 EMail: abegen@cisco.com

6816 - Simple Low-Density Parity Check (LDPC) Staircase Forward Error Correction

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 6816

Category: Standards Track

ISSN: 2070-1721

V. Roca

INRIA

M. Cunche

INSA-Lyon/INRIA

J. Lacan

ISAE, Univ. of Toulouse

December 2012

Simple Low-Density Parity Check (LDPC) Staircase Forward Error Correction (FEC) Scheme for FECFRAME

Abstract

 This document describes a fully specified simple Forward Error
 Correction (FEC) scheme for Low-Density Parity Check (LDPC) Staircase
 codes that can be used to protect media streams along the lines
 defined by FECFRAME. These codes have many interesting properties:
 they are systematic codes, they perform close to ideal codes in many
 use-cases, and they also feature very high encoding and decoding
 throughputs. LDPC-Staircase codes are therefore a good solution to
 protect a single high bitrate source flow or to protect globally
 several mid-rate flows within a single FECFRAME instance. They are
 also a good solution whenever the processing load of a software
 encoder or decoder must be kept to a minimum.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6816.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Definitions Notations and Abbreviations
	 3.1. Definitions

	 3.2. Notations

	 3.3. Abbreviations

	4. Common Procedures Related to the ADU Block and Source Block Creation
	 4.1. Restrictions

	 4.2. ADU Block Creation

	 4.3. Source Block Creation

	5. LDPC-Staircase FEC Scheme for Arbitrary ADU Flows
	 5.1. Formats and Codes
	 5.1.1. FEC Framework Configuration Information

	 5.1.2. Explicit Source FEC Payload ID

	 5.1.3. Repair FEC Payload ID

	 5.2. Procedures

	 5.3. FEC Code Specification

	6. Security Considerations
	 6.1. Attacks against the Data Flow
	 6.1.1. Access to Confidential Content

	 6.1.2. Content Corruption

	 6.2. Attacks against the FEC Parameters

	 6.3. When Several Source Flows Are to Be Protected Together

	 6.4. Baseline Secure FEC Framework Operation

	7. Operations and Management Considerations
	 7.1. Operational Recommendations

	8. IANA Considerations

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

1. Introduction

 The use of Forward Error Correction (FEC) codes is a classic solution
 to improve the reliability of unicast, multicast, and broadcast
 Content Delivery Protocols (CDPs) and applications [RFC3453].
 "Forward Error Correction (FEC) Framework" [RFC6363] describes a
 generic framework to use FEC schemes with media delivery applications
 and, for instance, with real-time streaming media applications based
 on the RTP real-time protocol. Similarly, "Forward Error Correction
 (FEC) Building Block" [RFC5052] describes a generic framework to use
 FEC schemes with objects (e.g., files) delivery applications based on
 either the Asynchronous Layered Coding (ALC) [RFC5775] or the NACK-
 Oriented Reliable Multicast (NORM) [RFC5740] protocols.

 More specifically, the [RFC5053] (Raptor) and [RFC5170] (LDPC-
 Staircase and LDPC-Triangle) FEC schemes introduce erasure codes
 based on sparse parity check matrices for object delivery protocols
 like ALC and NORM. Similarly, "Reed-Solomon Forward Error Correction
 (FEC) Schemes" [RFC5510] introduces Reed-Solomon codes based on
 Vandermonde matrices for the same object delivery protocols. All
 these codes are systematic codes, meaning that the k source symbols
 are part of the n encoding symbols. Additionally, the Reed-Solomon
 FEC codes belong to the class of Maximum Distance Separable (MDS)
 codes that are optimal in terms of erasure recovery capabilities. It
 means that a receiver can recover the k source symbols from any set
 of exactly k encoding symbols out of n. This is not the case with
 either Raptor or LDPC-Staircase codes, and these codes require a
 certain number of encoding symbols in excess to k. However, this
 number is small in practice when an appropriate decoding scheme is
 used at the receiver [Cunche08]. Another key difference is the high
 encoding/decoding complexity of Reed-Solomon codecs compared to
 Raptor or LDPC-Staircase codes. A difference of one or more orders
 of magnitude in terms of encoding/decoding speed exists between the
 Reed-Solomon and LDPC-Staircase software codecs
 [Cunche08][CunchePHD10]. Finally, Raptor and LDPC-Staircase codes
 are large block FEC codes, in the sense of [RFC3453], since they can
 efficiently deal with a large number of source symbols.

 The present document focuses on LDPC-Staircase codes that belong to
 the well-known class of "Low Density Parity Check" codes. Because of
 their key features, these codes are a good solution in many
 situations, as detailed in Section 7.

 This document inherits from [RFC5170], Section 6 "Full Specification
 of the LDPC-Staircase Scheme", the specifications of the core LDPC-
 Staircase codes, and from Section 5.7 "Pseudo-Random Number
 Generator", the specifications of the PRNG used by these codes.
 Therefore, this document specifies only the information specific to
 the FECFRAME context and refers to [RFC5170] for the core
 specifications of the codes. To that purpose, the present document
 introduces:

 o the Fully Specified FEC Scheme with FEC Encoding ID 7 that
 specifies a simple way of using LDPC-Staircase codes in order to
 protect arbitrary Application Data Unit (ADU) flows.

 Therefore Sections 4 and 5 (except Section 5.7, see above) of
 [RFC5170], that define [RFC5052] specific Formats and Procedures, are
 not considered and are replaced by FECFRAME specific Formats and
 Procedures.

 Finally, publicly available reference implementations of these codes
 are available [LDPC-codec] [LDPC-codec-OpenFEC].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Definitions Notations and Abbreviations

3.1. Definitions

 This document uses the following terms and definitions. Those in the
 list below are FEC scheme specific and are in line with [RFC5052]:

Source symbol: unit of data used during the encoding process. In
 this specification, there is always one source symbol per ADU.

Encoding symbol: unit of data generated by the encoding process.
 With systematic codes, source symbols are part of the encoding
 symbols.

Repair symbol: encoding symbol that is not a source symbol.

Code rate: the k/n ratio, i.e., the ratio between the number of
 source symbols and the number of encoding symbols. By definition,
 the code rate is such that: 0 < code rate <= 1. A code rate close
 to 1 indicates that a small number of repair symbols have been
 produced during the encoding process.

Systematic code: FEC code in which the source symbols are part of
 the encoding symbols. The LDPC‑Staircase codes introduced in this
 document are systematic.

Source block: a block of k source symbols that are considered
 together for the encoding.

Packet erasure channel: a communication path where packets are
 either dropped (e.g., by a congested router, or because the number
 of transmission errors exceeds the correction capabilities of the
 physical layer codes) or received. When a packet is received, it
 is assumed that this packet is not corrupted.

 The following are FECFRAME specific and are in line with [RFC6363]:

Application Data Unit (ADU): the unit of source data provided as
 payload to the transport layer. Depending on the use‑case, an ADU
 may use an RTP encapsulation.

(Source) ADU Flow: a sequence of ADUs associated with a transport‑
 layer flow identifier (such as the standard 5‑tuple {Source IP
 address, source port, destination IP address, destination port,
 transport protocol}). Depending on the use‑case, several ADU
 flows may be protected together by FECFRAME.

ADU Block: a set of ADUs that are considered together by the
 FECFRAME instance for the purpose of the FEC scheme. Along with
 the flow ID (F[]), length (L[]), and padding (Pad[]) fields, they
 form the set of source symbols over which FEC encoding will be
 performed.

ADU Information (ADUI): a unit of data constituted by the ADU and
 the associated Flow ID, Length, and Padding fields (Section 4.3).
 This is the unit of data that is used as source symbol.

FEC Framework Configuration Information (FFCI): information that
 controls the operation of the FEC Framework. The FFCI enables the
 synchronization of the FECFRAME sender and receiver instances.

FEC Source Packet: at a sender (respectively, at a receiver) a
 payload submitted to (respectively, received from) the transport
 protocol containing an ADU along with an optional Explicit Source
 FEC Payload ID.

FEC Repair Packet: at a sender (respectively, at a receiver) a
 payload submitted to (respectively, received from) the transport
 protocol containing one repair symbol along with a Repair FEC
 Payload ID and possibly an RTP header.

 The above terminology is illustrated in Figure 1 (sender's point of
 view):

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 | (1) Application Data Units (ADUs)
 |
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FEC Framework		
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	FEC Scheme
(2) Construct source	(3) Source Block	
blocks		(4) FEC Encoding
(6) Construct FEC	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
source and repair		
packets	(5) Explicit Source FEC	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Payload IDs +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Repair FEC Payload IDs
 | Repair symbols
 |
 |(7) FEC source and repair packets
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Layer |
| (e.g., UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Terminology Used in This Document (Sender)

3.2. Notations

 This document uses the following notations. Those in the list below
 are FEC scheme specific:

k denotes the number of source symbols in a source block.

max_k denotes the maximum number of source symbols for any source
 block.

n denotes the number of encoding symbols generated for a source
 block.

E denotes the encoding symbol length in bytes.

CR denotes the "code rate", i.e., the k/n ratio.

N1 denotes the target number of "1s" per column in the left side
 of the parity check matrix.

N1m3 denotes the value N1 ‑ 3.

G G denotes the number of encoding symbols per group, i.e., the
 number of symbols sent in the same packet.

a^^b denotes a raised to the power b.

 The following are FECFRAME specific:

B denotes the number of ADUs per ADU block.

max_B denotes the maximum number of ADUs for any ADU block.

3.3. Abbreviations

 This document uses the following abbreviations:

ADU Application Data Unit

ESI Encoding Symbol ID

FEC Forward Error (or Erasure) Correction

FFCI FEC Framework Configuration Information

FSSI FEC Scheme‑Specific Information

LDPC Low‑Density Parity Check

MDS Maximum Distance Separable

PRNG Pseudo‑Random Number Generator

SDP Session Description Protocol

4. Common Procedures Related to the ADU Block and Source Block Creation

 This section introduces the procedures that are used during the ADU
 block and related source block creation, for the FEC scheme
 considered.

4.1. Restrictions

 This specification has the following restrictions:

 o there MUST be exactly one source symbol per ADUI, and therefore
 per ADU;

 o there MUST be exactly one repair symbol per FEC repair packet;

 o there MUST be exactly one source block per ADU block;

 o the use of the LDPC-Staircase scheme is such that there MUST be
 exactly one encoding symbol per group; i.e., G MUST be equal to 1
 [RFC5170];

4.2. ADU Block Creation

 Two kinds of limitations exist that impact the ADU block creation:

 o at the FEC scheme level: the FEC scheme and the FEC codec have
 limitations that define a maximum source block size;

 o at the FECFRAME instance level: the target use-case can have real-
 time constraints that can/will define a maximum ADU block size;

 Note that the use of the terminology "maximum source block size" and
 "maximum ADU block size" depends on the point of view that is adopted
 (FEC scheme versus FECFRAME instance). However, in this document,
 both refer to the same value since Section 4.1 requires there be
 exactly one source symbol per ADU. We now detail each of these
 aspects.

 The maximum source block size in symbols, max_k, depends on several
 parameters: the code rate (CR) and the Encoding Symbol ID (ESI) field
 length in the Explicit Source/Repair FEC Payload ID (16 bits), as
 well as possible internal codec limitations. More specifically,
 max_k cannot be larger than the following values, derived from the
 ESI field size limitation, for a given code rate:

 max1_k = 2^^(16 - ceil(Log2(1/CR)))

 Some common max1_k values are:

 o CR == 1 (no repair symbol): max1_k = 2^^16 = 65536 symbols

 o 1/2 <= CR < 1: max1_k = 2^^15 = 32,768 symbols

 o 1/4 <= CR < 1/2: max1_k = 2^^14 = 16,384 symbols

 Additionally, a codec can impose other limitations on the maximum
 source block size, for instance, because of a limited working memory
 size. This decision MUST be clarified at implementation time, when
 the target use-case is known. This results in a max2_k limitation.

 Then, max_k is given by:

 max_k = min(max1_k, max2_k)

 Note that this calculation is only required at the encoder (sender),
 since the actual k parameter (k <= max_k) is communicated to the
 decoder (receiver) through the Explicit Source/Repair FEC Payload ID.

 The source ADU flows can have real-time constraints. When there are
 multiple flows, with different real-time constraints, let us consider
 the most stringent constraints (see [RFC6363], Section 10.2, item 6,
 for recommendations when several flows are globally protected). In
 that case the maximum number of ADUs of an ADU block must not exceed
 a certain threshold since it directly impacts the decoding delay.
 The larger the ADU block size, the longer a decoder may have to wait
 until it has received a sufficient number of encoding symbols for
 decoding to succeed, and therefore the larger the decoding delay.
 When the target use-case is known, these real-time constraints result
 in an upper bound to the ADU block size, max_rt.

 For instance, if the use-case specifies a maximum decoding latency,
 l, and if each source ADU covers a duration d of a continuous media
 (we assume here the simple case of a constant bit rate ADU flow),
 then the ADU block size must not exceed:

 max_rt = floor(l / d)

 After encoding, this block will produce a set of at most n = max_rt /
 CR encoding symbols. These n encoding symbols will have to be sent
 at a rate of n / l packets per second. For instance, with d = 10 ms,
 l = 1 s, max_rt = 100 ADUs.

 If we take into account all these constraints, we find:

 max_B = min(max_k, max_rt)

 This max_B parameter is an upper bound to the number of ADUs that can
 constitute an ADU block.

4.3. Source Block Creation

 In its most general form, FECFRAME and the LDPC-Staircase FEC Scheme
 are meant to protect a set of independent flows. Since the flows
 have no relationship to one another, the ADU size of each flow can
 potentially vary significantly. Even in the special case of a single
 flow, the ADU sizes can largely vary (e.g., the various frames of a
 Group of Pictures (GOP) of an H.264 flow). This diversity must be
 addressed since the LDPC-Staircase FEC Scheme requires a constant
 encoding symbol size (E parameter) per source block. Since this
 specification requires that there be only one source symbol per ADU,
 E must be large enough to contain all the ADUs of an ADU block along
 with their prepended 3 bytes (see below).

 In situations where E is determined per source block (default,
 specified by the FFCI/FSSI with S = 0, Section 5.1.1.2), E is equal
 to the size of the largest ADU of this source block plus three (for
 the prepended 3 bytes, see below). In this case, upon receiving the
 first FEC repair packet for this source block, since this packet MUST
 contain a single repair symbol (Section 5.1.3), a receiver determines
 the E parameter used for this source block.

 In situations where E is fixed (specified by the FFCI/FSSI with S =
 1, Section 5.1.1.2), then E must be greater or equal to the size of
 the largest ADU of this source block plus three (for the prepended 3
 bytes, see below). If this is not the case, an error is returned.
 How to handle this error is use-case specific (e.g., a larger E
 parameter may be communicated to the receivers in an updated FFCI
 message, using an appropriate mechanism) and is not considered by
 this specification.

 The ADU block is always encoded as a single source block. There are
 a total of B <= max_B ADUs in this ADU block. For the ADU i, with 0
 <= i <= B-1, 3 bytes are prepended (Figure 2):

 o The first byte, F[i] (Flow ID), contains the integer identifier
 associated to the source ADU flow to which this ADU belongs. It
 is assumed that a single byte is sufficient, or said differently,
 that no more than 256 flows will be protected by a single instance
 of FECFRAME.

 o The following two bytes, L[i] (Length), contain the length of this
 ADU, in network byte order (i.e., big endian). This length is for
 the ADU itself and does not include the F[i], L[i], or Pad[i]
 fields.

 Then, zero padding is added to ADU i (if needed) in field Pad[i], for
 alignment purposes up to a size of exactly E bytes. The data unit
 resulting from the ADU i and the F[i], L[i], and Pad[i] fields is
 called ADU Information (or ADUI). Each ADUI contributes to exactly
 one source symbol of the source block.

 Encoding Symbol Length (E)
< ‑‑ >
+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|F[0]|L[0]| ADU[0] | Pad[0] |
+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|F[1]|L[1]| ADU[1] | Pad[1] |
+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑+
|F[2]|L[2]| ADU[2] |
+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑+‑‑‑+
|F[3]|L[3]|ADU[3]| Pad[3] |
+‑‑‑‑+‑‑‑‑+‑‑‑‑‑‑+‑‑‑+
_______________________________ _______________________________/
 \/
 simple FEC encoding

+‑‑+
| Repair 4 |
+‑‑+
. .
. .
+‑‑+
| Repair 7 |
+‑‑+

 Figure 2: Source Block Creation, for Code Rate 1/2 (Equal Number of

 Source and Repair Symbols, 4 in This Example), and S = 0

 Note that neither the initial 3 bytes nor the optional padding are
 sent over the network. However, they are considered during FEC
 encoding. It means that a receiver who lost a certain FEC source
 packet (e.g., the UDP datagram containing this FEC source packet)
 will be able to recover the ADUI if FEC decoding succeeds. Thanks to
 the initial 3 bytes, this receiver will get rid of the padding (if
 any) and identify the corresponding ADU flow.

5. LDPC-Staircase FEC Scheme for Arbitrary ADU Flows

5.1. Formats and Codes

5.1.1. FEC Framework Configuration Information

 The FEC Framework Configuration Information (or FFCI) includes
 information that MUST be communicated between the sender and
 receiver(s). More specifically, it enables the synchronization of
 the FECFRAME sender and receiver instances. It includes both
 mandatory elements and scheme-specific elements, as detailed below.

5.1.1.1. Mandatory Information

 o FEC Encoding ID: the value assigned to this fully specified FEC
 scheme MUST be 7, as assigned by IANA (Section 8).

 When SDP is used to communicate the FFCI, this FEC Encoding ID is
 carried in the 'encoding-id' parameter.

5.1.1.2. FEC Scheme-Specific Information

 The FEC Scheme-Specific Information (FSSI) includes elements that are
 specific to the present FEC scheme. More precisely:

 o PRNG seed (seed): a non-negative 32-bit integer used as the seed
 of the Pseudo-Random Number Generator, as defined in [RFC5170].

 o Encoding symbol length (E): a non-negative integer that indicates
 either the length of each encoding symbol in bytes (strict mode,
 i.e., if S = 1) or the maximum length of any encoding symbol
 (i.e., if S = 0).

 o Strict (S) flag: when set to 1, this flag indicates that the E
 parameter is the actual encoding symbol length value for each
 block of the session (unless otherwise notified by an updated FFCI
 if this possibility is considered by the use-case or CDP). When
 set to 0, this flag indicates that the E parameter is the maximum
 encoding symbol length value for each block of the session (unless
 otherwise notified by an updated FFCI if this possibility is
 considered by the use-case or CDP).

 o N1 minus 3 (n1m3): an integer between 0 (default) and 7,
 inclusive. The number of "1s" per column in the left side of the
 parity check matrix, N1, is then equal to N1m3 + 3, as specified
 in [RFC5170].

 These elements are required both by the sender (LDPC-Staircase
 encoder) and the receiver(s) (LDPC-Staircase decoder).

 When SDP is used to communicate the FFCI, this FEC scheme-specific
 information is carried in the 'fssi' parameter in textual
 representation as specified in [RFC6364]. For instance:

 fssi=seed:1234,E:1400,S:0,n1m3:0

 If another mechanism requires the FSSI to be carried as an opaque
 octet string (for instance, after a Base64 encoding), the encoding
 format consists of the following 7 octets:

 o PRNG seed (seed): 32-bit field.

 o Encoding symbol length (E): 16-bit field.

 o Strict (S) flag: 1-bit field.

 o Reserved: a 4-bit field that MUST be set to zero.

 o N1m3 parameter (n1m3): 3-bit field.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+‑+
| PRNG seed (seed) |
+‑+
| Encoding Symbol Length (E) |S| resvd | n1m3|
+‑+

 Figure 3: FSSI Encoding Format

5.1.2. Explicit Source FEC Payload ID

 A FEC source packet MUST contain an Explicit Source FEC Payload ID
 that is appended to the end of the packet as illustrated in Figure 4.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ADU |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Explicit Source FEC Payload ID |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4: Structure of a FEC Source Packet with the

 Explicit Source FEC Payload ID

 More precisely, the Explicit Source FEC Payload ID is composed of the
 following fields (Figure 5):

 o Source Block Number (SBN) (16-bit field): this field identifies
 the source block to which this FEC source packet belongs.

 o Encoding Symbol ID (ESI) (16-bit field): this field identifies the
 source symbol contained in this FEC source packet. This value is
 such that 0 <= ESI <= k - 1 for source symbols.

 o Source Block Length (k) (16-bit field): this field provides the
 number of source symbols for this source block, i.e., the k
 parameter.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Number (SBN) | Encoding Symbol ID (ESI) |
+‑+
| Source Block Length (k) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 5: Source FEC Payload ID Encoding Format

5.1.3. Repair FEC Payload ID

A FEC repair packet MUST contain a Repair FEC Payload ID that is
prepended to the repair symbol(s) as illustrated in Figure 6. There
MUST be a single repair symbol per FEC repair packet.
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | IP Header |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Transport Header |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Repair FEC Payload ID |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Repair Symbol |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 6: Structure of a FEC Repair Packet with

 the Repair Payload ID

 More precisely, the Repair FEC Payload ID is composed of the
 following fields (Figure 7):

 o Source Block Number (SBN) (16-bit field): this field identifies
 the source block to which the FEC repair packet belongs.

 o Encoding Symbol ID (ESI) (16-bit field): this field identifies the
 repair symbol contained in this FEC repair packet. This value is
 such that k <= ESI <= n - 1 for repair symbols.

 o Source Block Length (k) (16-bit field): this field provides the
 number of source symbols for this source block, i.e., the k
 parameter.

 o Number of Encoding Symbols (n) (16-bit field): this field provides
 the number of encoding symbols for this source block, i.e., the n
 parameter.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Number (SBN) | Encoding Symbol ID (ESI) |
+‑+
| Source Block Length (k) | Number Encoding Symbols (n) |
+‑+

 Figure 7: Repair FEC Payload ID Encoding Format

5.2. Procedures

 The following procedures apply:

 o The source block creation MUST follow the procedures specified in
 Section 4.3.

 o The SBN value MUST start with value 0 for the first block of the
 ADU flow and MUST be incremented by 1 for each new source block.
 Wrapping to zero will happen for long sessions, after value 2^^16
 - 1.

 o The ESI of encoding symbols MUST start with value 0 for the first
 symbol and MUST be managed sequentially. The first k values (0 <=
 ESI <= k - 1) identify source symbols whereas the last n-k values
 (k <= ESI <= n - 1) identify repair symbols.

 o The FEC repair packet creation MUST follow the procedures
 specified in Section 5.1.3.

5.3. FEC Code Specification

 The present document inherits from [RFC5170] the specification of the
 core LDPC-Staircase codes for a packet erasure transmission channel
 (see Section 1).

 Because of the requirement to have exactly one encoding symbol per
 group, i.e., because G MUST be equal to 1 (Section 4.1), several
 parts of [RFC5170] are not of use. In particular, this is the case
 of Section 5.6, "Identifying the G Symbols of an Encoding Symbol
 Group".

6. Security Considerations

 The FEC Framework document [RFC6363] provides a comprehensive
 analysis of security considerations applicable to FEC schemes.
 Therefore, the present section follows the security considerations
 section of [RFC6363] and only discusses topics that are specific to
 the use of LDPC-Staircase codes.

6.1. Attacks against the Data Flow

6.1.1. Access to Confidential Content

 The LDPC-Staircase FEC Scheme specified in this document does not
 change the recommendations of [RFC6363]. To summarize, if
 confidentiality is a concern, it is RECOMMENDED that one of the
 solutions mentioned in [RFC6363] be used, with special considerations
 to the way this solution is applied (e.g., Is encryption applied
 before or after FEC protection? Is it within the end-system or in a
 middlebox?), to the operational constraints (e.g., performing FEC
 decoding in a protected environment may be complicated or even
 impossible) and to the threat model.

6.1.2. Content Corruption

 The LDPC-Staircase FEC Scheme specified in this document does not
 change the recommendations of [RFC6363]. To summarize, it is
 RECOMMENDED that one of the solutions mentioned in [RFC6363] be used
 on both the FEC source and repair packets.

6.2. Attacks against the FEC Parameters

The FEC scheme specified in this document defines parameters that can
be the basis of several attacks. More specifically, the following
parameters of the FFCI may be modified by an attacker
(Section 5.1.1.2):

 o FEC Encoding ID: changing this parameter leads the receiver to
 consider a different FEC scheme, which enables an attacker to
 create a Denial of Service (DoS).

 o Encoding symbol length (E): setting this E parameter to a value
 smaller than the valid one enables an attacker to create a DoS
 since the repair symbols and certain source symbols will be larger
 than E, which is an incoherency for the receiver. Setting this E
 parameter to a value larger than the valid one has similar impacts
 when S=1 since the received repair symbol size will be smaller
 than expected. Contrarily, it will not lead to any incoherency
 when S=0 since the actual symbol length value for the block is
 determined by the size of any received repair symbol, as long as
 this value is smaller than E. However, setting this E parameter
 to a larger value may have impacts on receivers that pre-allocate
 memory space in advance to store incoming symbols.

 o Strict (S) flag: flipping this S flag from 0 to 1 (i.e., E is now
 considered as a strict value) enables an attacker to mislead the
 receiver if the actual symbol size varies over different source
 blocks. Flipping this S flag from 1 to 0 has no major
 consequences unless the receiver requires to have a fixed E value
 (e.g., because the receiver pre-allocates memory space).

 o N1 minus 3 (n1m3): changing this parameter leads the receiver to
 consider a different code, which enables an attacker to create a
 DoS.

 Therefore, it is RECOMMENDED that security measures be taken to
 guarantee the FFCI integrity, as specified in [RFC6363]. How to
 achieve this depends on the way the FFCI is communicated from the
 sender to the receiver, which is not specified in this document.

 Similarly, attacks are possible against the Explicit Source FEC
 Payload ID and Repair FEC Payload ID: by modifying the Source Block
 Number (SBN), or the Encoding Symbol ID (ESI), or the Source Block
 Length (k), or the Number Encoding Symbols (n), an attacker can
 easily corrupt the block identified by the SBN. Other consequences,
 that are use-case and/or CDP dependent, may also happen. It is
 therefore RECOMMENDED that security measures be taken to guarantee
 the FEC source and repair packets as stated in [RFC6363].

6.3. When Several Source Flows Are to Be Protected Together

 The LDPC-Staircase FEC Scheme specified in this document does not
 change the recommendations of [RFC6363].

6.4. Baseline Secure FEC Framework Operation

 The LDPC-Staircase FEC Scheme specified in this document does not
 change the recommendations of [RFC6363] concerning the use of the
 IPsec/ESP security protocol as a mandatory to implement (but not
 mandatory to use) security scheme. This is well suited to situations
 where the only insecure domain is the one over which the FEC
 Framework operates.

7. Operations and Management Considerations

 The FEC Framework document [RFC6363] provides a comprehensive
 analysis of operations and management considerations applicable to
 FEC schemes. Therefore, the present section only discusses topics
 that are specific to the use of LDPC-Staircase codes as specified in
 this document.

7.1. Operational Recommendations

 LDPC-Staircase codes have excellent erasure recovery capabilities
 with large source blocks, close to ideal MDS codes. For instance,
 independently of FECFRAME, let us consider a source block of size
 k=1024 symbols, CR=2/3 (i.e., 512 repair symbols are added), N1=7,
 G=1, a transmission scheme where all the symbols are sent in a random
 order, and a hybrid ITerative/Maximum Likelihood (IT/ML) decoder (see
 below). An ideal MDS code with code rate 2/3 can recover from
 erasures up to a 33.33% channel loss rate. With LDPC-Staircase
 codes, the average overhead amounts to 0.237% (i.e., receiving 2.43
 symbols in addition to k, which corresponds to a 33.18% channel loss
 rate, enables a successful decoding with a probability 0.5), and an
 overhead of 1.46% (i.e., receiving 15 symbols in addition to k, which
 corresponds to a 32.36% channel loss rate) is sufficient to reduce
 the probability that decoding fails down to 8.2*10^^-5. This is why
 these codes are a good solution to protect a single high bitrate
 source flow as in [Matsuzono10] or to protect globally several mid-
 rate source flows within a single FECFRAME instance: in both cases,
 the source block size can be assumed to be equal to a few hundred (or
 more) source symbols.

 LDPC-Staircase codes are also a good solution whenever the processing
 load at a software encoder or decoder must be kept to a minimum.
 This is true when the decoder uses an IT decoding algorithm, an ML
 algorithm (we use a Gaussian Elimination as the ML algorithm) when
 carefully implemented, or a mixture of both techniques, which is the
 recommended solution [Cunche08][CunchePHD10][LDPC-codec-OpenFEC].
 Let us consider the same conditions as above (k=1024 source symbols,
 CR=2/3, N1=7, G=1), with encoding symbols of size 1024 bytes. With
 an Intel Xeon 5120/1.86 GHz workstation running Linux/64 bits, the
 average decoding speed is between 1.78 Gbps (overhead of 2 symbols in
 addition to k, corresponding to a very bad channel with a 33.20% loss
 rate, close to the theoretical decoding limit, where ML decoding is
 required) and 3.91 Gbps (corresponding to a good channel with a 5%
 loss rate only, where IT decoding is sufficient). Under the same
 conditions, on a Samsung Galaxy SII smartphone (GT-I9100P model,
 featuring an ARM Cortex-A9/1.2 GHz processor and running Android
 2.3.4), the decoding speed is between 397 Mbps (bad channel with a
 33.20% loss rate, close to the theoretical decoding limit) and 813
 Mbps (good channel with a 5% loss rate only).

 As the source block size decreases, the erasure recovery capabilities
 of LDPC codes in general also decrease. In the case of LDPC-
 Staircase codes, in order to limit this phenomenon, it is recommended
 to use a value of the N1 parameter at least equal to 7 (e.g.,
 experiments carried out in [Matsuzono10] use N1=7 if k=170 symbols,
 and N1=5 otherwise). For instance, independently of FECFRAME, with a
 source block of size k=256 symbols, CR=2/3 (i.e., 128 repair symbols
 are added), N1=7, and G=1, the average overhead amounts to 0.706%
 (i.e., receiving 1.8 symbols in addition to k enables a successful
 decoding with a probability 0.5), and an overhead of 5.86% (i.e.,
 receiving 15 symbols in addition to k) is sufficient to reduce the
 decoding failure probability to 5.9*10^^-5.

 The processing load also decreases with the source block size. For
 instance, under these conditions (k=256 source symbols, CR=2/3, N1=7,
 and G=1), with encoding symbols of size 1024 bytes, on a Samsung
 Galaxy SII smartphone, the decoding speed is between 518 Mbps (bad
 channel) and 863 Mbps (good channel with a 5% loss rate only).

 With very small source blocks (e.g., a few tens of symbols), using
 for instance Reed-Solomon codes [SIMPLE_RS] or 2D parity check codes
 may be more appropriate.

 The way the FEC repair packets are transmitted is of high importance.
 A good strategy, that works well for any kind of channel loss model,
 consists in sending FEC repair packets in random order (rather than
 in sequence) while FEC source packets are sent first and in sequence.
 Sending all packets in a random order is another possibility, but it
 requires that all repair symbols for a source block be produced
 first, which adds some extra delay at a sender.

8. IANA Considerations

 This document registers one value in the "FEC Framework (FECFRAME)
 FEC Encoding IDs" registry [RFC6363] as follows:

 o 7 refers to the Simple LDPC-Staircase FEC Scheme for Arbitrary
 Packet Flows, as defined in Section 5 of this document.

9. Acknowledgments

 The authors want to thank K. Matsuzono, J. Detchart, and H. Asaeda
 for their contributions in evaluating the use of LDPC-Staircase codes
 in the context of FECFRAME [Matsuzono10].

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5170]
 Roca, V., Neumann, C., and D. Furodet, "Low Density
 Parity Check (LDPC) Staircase and Triangle Forward Error
 Correction (FEC) Schemes", RFC 5170, June 2008.

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for
 the Forward Error Correction (FEC) Framework", RFC 6364,
 October 2011.

10.2. Informative References

 [Cunche08]
 Cunche, M. and V. Roca, "Optimizing the Error Recovery
 Capabilities of LDPC-Staircase Codes Featuring a
 Gaussian Elimination Decoding Scheme", 10th IEEE
 International Workshop on Signal Processing for Space
 Communications (SPSC'08), October 2008.

 [CunchePHD10]

 Cunche, M., "High performances AL-FEC codes for the
 erasure channel : variation around LDPC codes", PhD
 dissertation (in French) (http://
 tel.archives-ouvertes.fr/tel-00451336/en/), June 2010.

 [LDPC-codec]

 Cunche, M., Roca, V., Neumann, C., and J. Laboure,
 "LDPC-Staircase/LDPC-Triangle Codec Reference
 Implementation", INRIA Rhone-Alpes and
 STMicroelectronics,
 <http://planete-bcast.inrialpes.fr/>.

 [LDPC-codec-OpenFEC]

 "The OpenFEC project", <http://openfec.org/>.

 [Matsuzono10]

 Matsuzono, K., Detchart, J., Cunche, M., Roca, V., and
 H. Asaeda, "Performance Analysis of a High-Performance
 Real-Time Application with Several AL-FEC Schemes", 35th
 Annual IEEE Conference on Local Computer Networks (LCN
 2010), October 2010.

 [RFC3453]
 Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley,
 M., and J. Crowcroft, "The Use of Forward Error
 Correction (FEC) in Reliable Multicast", RFC 3453,
 December 2002.

 [RFC5052]
 Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC5053]
 Luby, M., Shokrollahi, A., Watson, M., and T.
 Stockhammer, "Raptor Forward Error Correction Scheme for
 Object Delivery", RFC 5053, October 2007.

 [RFC5510]
 Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",
 RFC 5510, April 2009.

 [RFC5740]
 Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, November 2009.

 [RFC5775]
 Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 April 2010.

 [SIMPLE_RS]
 Roca, V., Cunche, M., Lacan, J., Bouabdallah, A., and K.
 Matsuzono, "Simple Reed-Solomon Forward Error Correction
 (FEC) Scheme for FECFRAME", Work in Progress, October
 2012.

Authors' Addresses

Vincent Roca
INRIA
655, av. de l'Europe
Inovallee; Montbonnot
ST ISMIER cedex 38334
France

EMail: vincent.roca@inria.fr
URI: http://planete.inrialpes.fr/people/roca/

Mathieu Cunche
INSA‑Lyon/INRIA
Laboratoire CITI
6 av. des Arts
Villeurbanne cedex 69621
France

EMail: mathieu.cunche@inria.fr
URI: http://mathieu.cunche.free.fr/

Jerome Lacan
ISAE, Univ. of Toulouse
10 av. Edouard Belin; BP 54032
Toulouse cedex 4 31055
France

EMail: jerome.lacan@isae.fr
URI: http://personnel.isae.fr/jerome‑lacan/

6865 - Simple Reed-Solomon Forward Error Correction (FEC) Scheme for FECFRAME

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 6865

Category: Standards Track

ISSN: 2070-1721

V. Roca

INRIA

M. Cunche

INSA-Lyon/INRIA

J. Lacan

ISAE, Univ. of Toulouse

A. Bouabdallah

CDTA

K. Matsuzono

Keio University

February 2013

Simple Reed-Solomon Forward Error Correction (FEC) Scheme for FECFRAME

Abstract

 This document describes a fully-specified simple Forward Error
 Correction (FEC) scheme for Reed-Solomon codes over the finite field
 (also known as the Galois Field) GF(2^^m), with 2 <= m <= 16, that
 can be used to protect arbitrary media streams along the lines
 defined by FECFRAME. The Reed-Solomon codes considered have
 attractive properties, since they offer optimal protection against
 packet erasures and the source symbols are part of the encoding
 symbols, which can greatly simplify decoding. However, the price to
 pay is a limit on the maximum source block size, on the maximum
 number of encoding symbols, and a computational complexity higher
 than that of the Low-Density Parity Check (LDPC) codes, for instance.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6865.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Definitions Notations and Abbreviations
	 3.1. Definitions

	 3.2. Notations

	 3.3. Abbreviations

	4. Common Procedures Related to the ADU Block and Source Block Creation
	 4.1. Restrictions

	 4.2. ADU Block Creation

	 4.3. Source Block Creation

	5. Simple Reed-Solomon FEC Scheme over GF(2^^m) for Arbitrary ADU Flows
	 5.1. Formats and Codes
	 5.1.1. FEC Framework Configuration Information

	 5.1.2. Explicit Source FEC Payload ID

	 5.1.3. Repair FEC Payload ID

	 5.2. Procedures

	 5.3. FEC Code Specification

	6. Security Considerations
	 6.1. Attacks Against the Data Flow
	 6.1.1. Access to Confidential Content

	 6.1.2. Content Corruption

	 6.2. Attacks Against the FEC Parameters

	 6.3. When Several Source Flows Are to Be Protected Together

	 6.4. Baseline Secure FECFRAME Operation

	7. Operations and Management Considerations
	 7.1. Operational Recommendations: Finite Field Size (m)

	8. IANA Considerations

	9. Acknowledgments

	10. References
	 10.1. Normative References

	 10.2. Informative References

1. Introduction

 The use of the Forward Error Correction (FEC) codes is a classic
 solution to improve the reliability of unicast, multicast, and
 broadcast Content Delivery Protocols (CDP) and applications.
 [RFC6363] describes a generic framework to use FEC schemes with media
 delivery applications, and for instance with real-time streaming
 media applications based on the Real-time Transport Protocol (RTP).
 Similarly, [RFC5052] describes a generic framework to use FEC schemes
 with object delivery applications (where the objects are files, for
 example) based on the Asynchronous Layered Coding (ALC) [RFC5775] and
 NACK-Oriented Reliable Multicast (NORM) [RFC5740] transport
 protocols.

 More specifically, the [RFC5053] and [RFC5170] FEC schemes introduce
 erasure codes based on sparse parity-check matrices for object
 delivery protocols like ALC and NORM. These codes are efficient in
 terms of processing but not optimal in terms of erasure recovery
 capabilities when dealing with "small" objects.

 The Reed-Solomon FEC codes described in this document belong to the
 class of Maximum Distance Separable (MDS) codes that are optimal in
 terms of erasure recovery capability. It means that a receiver can
 recover the k source symbols from any set of exactly k encoding
 symbols. These codes are also systematic codes, which means that the
 k source symbols are part of the encoding symbols. However, they are
 limited in terms of maximum source block size and number of encoding
 symbols. Since the real-time constraints of media delivery
 applications usually limit the maximum source block size, this is not
 considered to be a major issue in the context of FECFRAME for many
 (but not necessarily all) use cases. Additionally, if the encoding/
 decoding complexity is higher with Reed-Solomon codes than it is with
 [RFC5053] or [RFC5170] codes, it remains reasonable for most use
 cases, even in case of a software codec.

 Many applications dealing with reliable content transmission or
 content storage already rely on packet-based Reed-Solomon erasure
 recovery codes. In particular, many of them use the Reed-Solomon
 codec of Luigi Rizzo [RS-codec] [Rizzo97]. The goal of the present
 document is to specify a simple Reed-Solomon scheme that is
 compatible with this codec.

 More specifically, [RFC5510] introduced such Reed-Solomon codes and
 several associated FEC schemes that are compatible with the [RFC5052]
 framework. The present document inherits from Section 8 of
 [RFC5510], "Reed-Solomon Codes Specification for the Erasure
 Channel", the specifications of the core Reed-Solomon codes based on
 Vandermonde matrices and specifies a simple FEC scheme that is
 compatible with FECFRAME [RFC6363]:

The Fully‑Specified FEC Scheme with FEC Encoding ID 8 specifies a
simple way of using of Reed‑Solomon codes over GF(2^^m), with
2 <= m <= 16, in order to protect arbitrary Application Data Unit
(ADU) flows.

 Therefore, Sections 4, 5, 6, and 7 of [RFC5510] that define
 [RFC5052]-specific Formats and Procedures are not considered and are
 replaced by FECFRAME-specific Formats and Procedures.

 For instance, with this scheme, a set of Application Data Units
 (ADUs) coming from one or several media delivery applications (e.g.,
 a set of RTP packets), are grouped in an ADU block and FEC encoded as
 a whole. With Reed-Solomon codes over GF(2^^8), there is a strict
 limit over the number of ADUs that can be protected together, since
 the number of encoded symbols, n, must be inferior or equal to 255.
 This constraint is relaxed when using a higher finite field size (m >
 8), at the price of an increased computational complexity.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Definitions Notations and Abbreviations

3.1. Definitions

 This document uses the following terms and definitions. Some of
 these terms and definitions are FEC scheme specific and are in line
 with [RFC5052]:

Source symbol: unit of data used during the encoding process. In
 this specification, there is always one source symbol per ADU.

Encoding symbol: unit of data generated by the encoding process.
 With systematic codes, source symbols are part of the encoding
 symbols.

Repair symbol: encoding symbol that is not a source symbol.

Code rate: the k/n ratio, i.e., the ratio between the number of
 source symbols and the number of encoding symbols. By definition,
 the code rate is such that: 0 < code rate <= 1. A code rate close
 to 1 indicates that a small number of repair symbols have been
 produced during the encoding process.

Systematic code: FEC code in which the source symbols are part of
 the encoding symbols. The Reed‑Solomon codes introduced in this
 document are systematic.

Source Block: a block of k source symbols that are considered
 together for the encoding.

Packet erasure channel: a communication path where packets are
 either dropped (e.g., by a congested router, or because the number
 of transmission errors exceeds the correction capabilities of the
 physical layer codes) or received. When a packet is received, it
 is assumed that this packet is not corrupted.

 Some of these terms and definitions are FECFRAME specific and are in
 line with [RFC6363]:

Application Data Unit (ADU): The unit of source data provided as
 payload to the transport layer. Depending on the use case, an ADU
 may use an RTP encapsulation.

(Source) ADU Flow: A sequence of ADUs associated with a transport‑
 layer flow identifier (such as the standard 5‑tuple {Source IP
 address, source port, destination IP address, destination port,
 transport protocol}). Depending on the use case, several ADU
 flows may be protected together by FECFRAME.

ADU Block: a set of ADUs that are considered together by the
 FECFRAME instance for the purpose of the FEC scheme. Along with
 the flow ID (F[]), length (L[]), and padding (Pad[]) fields, they
 form the set of source symbols over which FEC encoding will be
 performed.

ADU Information (ADUI): a unit of data constituted by the ADU and
 the associated Flow ID, Length and Padding fields (Section 4.3).
 This is the unit of data that is used as source symbol.

FEC Framework Configuration Information (FFCI): Information that
 controls the operation of FECFRAME. The FFCI enables the
 synchronization of the FECFRAME sender and receiver instances.

FEC Source Packet: At a sender (respectively, at a receiver) a
 payload submitted to (respectively, received from) the transport
 protocol containing an ADU along with an Explicit Source FEC
 Payload ID (that must be present in the FEC scheme defined by the
 present document, see Section 5.1.2).

FEC Repair Packet: At a sender (respectively, at a receiver) a
 payload submitted to (respectively, received from) the transport
 protocol containing one repair symbol along with a Repair FEC
 Payload ID and possibly an RTP header.

 The above terminology is illustrated in Figure 1 (sender's point of
 view):

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Application |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 | (1) Application Data Units (ADUs)
 |
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FECFRAME		
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	FEC Scheme
(2) Construct source	(3) Source Block	
blocks		(4) FEC Encoding
(6) Construct FEC	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
source and repair		
packets	(5) Explicit Source FEC	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ Payload IDs +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Repair FEC Payload IDs
 | Repair symbols
 |
 |(7) FEC source and repair packets
 v
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Layer |
| (e.g., UDP) |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Terminology used in this document (sender).

3.2. Notations

 This document uses the following notations. Some of them are FEC
 scheme specific.

k denotes the number of source symbols in a source block.

max_k denotes the maximum number of source symbols for any source
 block.

n denotes the number of encoding symbols generated for a source
 block.

E denotes the encoding symbol length in bytes.

 GF(q) denotes a finite field (also known as the Galois Field) with q

 elements. We assume that q = 2^^m in this document.

m defines the length of the elements in the finite field, in
 bits. In this document, m is such that 2 <= m <= 16.

q defines the number of elements in the finite field. We have:
 q = 2^^m in this specification.

CR denotes the "code rate", i.e., the k/n ratio.

a^^b denotes a raised to the power b.

 Some of them are FECFRAME specific:

B denotes the number of ADUs per ADU block.

max_B denotes the maximum number of ADUs for any ADU block.

3.3. Abbreviations

 This document uses the following abbreviations:

ADU stands for Application Data Unit.

ADUI stands for Application Data Unit Information.

ESI stands for Encoding Symbol ID.

FEC stands for Forward Error (or Erasure) Correction code.

FFCI stands for FEC Framework Configuration Information.

FSSI stands for FEC Scheme‑Specific Information.

MDS stands for Maximum Distance Separable code.

SBN stands for Source Block Number.

SDP stands for Session Description Protocol.

4. Common Procedures Related to the ADU Block and Source Block Creation

 This section introduces the procedures that are used during the ADU
 block and the related source block creation for the FEC scheme
 considered.

4.1. Restrictions

 This specification has the following restrictions:

 o there MUST be exactly one source symbol per ADUI, and therefore
 per ADU;

 o there MUST be exactly one repair symbol per FEC Repair Packet;

 o there MUST be exactly one source block per ADU block.

4.2. ADU Block Creation

 Two kinds of limitations exist that impact the ADU block creation:

 o at the FEC Scheme level: the finite field size (m parameter)
 directly impacts the maximum source block size and the maximum
 number of encoding symbols;

 o at the FECFRAME instance level: the target use case can have real-
 time constraints that can/will define a maximum ADU block size.

 Note that terms "maximum source block size" and "maximum ADU block
 size" depend on the point of view that is adopted (FEC Scheme versus
 FECFRAME instance). However, in this document, both refer to the
 same value since Section 4.1 requires there is exactly one source
 symbol per ADU. We now detail each of these aspects.

 The finite field size parameter m defines the number of non-zero
 elements in this field, which is equal to: q - 1 = 2^^m - 1. This q
 - 1 value is also the theoretical maximum number of encoding symbols
 that can be produced for a source block. For instance, when m = 8
 (default) there is a maximum of 2^^8 - 1 = 255 encoding symbols. So:
 k < n <= 255. Given the target FEC code rate (e.g., provided by the
 end-user or upper application when starting the FECFRAME instance,
 and taking into account the known or estimated packet loss rate), the
 sender calculates:

 max_k = floor((2^^m - 1) * CR)

 This max_k value leaves enough room for the sender to produce the
 desired number of repair symbols. Since there is one source symbol
 per ADU, max_k is also an upper bound to the maximum number of ADUs
 per ADU block.

 The source ADU flows can have real-time constraints. When there are
 multiple flows, with different real-time constraints, let us consider
 the most stringent constraints (see [RFC6363], Section 10.2, item 6
 for recommendations when several flows are globally protected). In
 that case, the maximum number of ADUs of an ADU block must not exceed
 a certain threshold since it directly impacts the decoding delay.
 The larger the ADU block size, the longer a decoder may have to wait
 until it has received a sufficient number of encoding symbols for
 decoding to succeed, and therefore the larger the decoding delay.
 When the target use case is known, these real-time constraints result
 in an upper bound to the ADU block size, max_rt.

 For instance, if the use case specifies a maximum decoding latency l,
 and if each source ADU covers a duration d of a continuous media (we
 assume here the simple case of a constant bit-rate ADU flow), then
 the ADU block size must not exceed:

 max_rt = floor(l / d)

 After encoding, this block will produce a set of at most n = max_rt /
 CR encoding symbols. These n encoding symbols will have to be sent
 at a rate of n / l packets per second. For instance, with d = 10 ms,
 l = 1 s, max_rt = 100 ADUs.

 If we take into account all these constraints, we find:

 max_B = min(max_k, max_rt)

 This max_B parameter is an upper bound to the number of ADUs that can
 constitute an ADU block.

4.3. Source Block Creation

 In their most general form, FECFRAME and the Reed-Solomon FEC scheme
 are meant to protect a set of independent flows. Since the flows
 have no relationship to one another, the ADU size of each flow can
 potentially vary significantly. Even in the special case of a single
 flow, the ADU sizes can largely vary (e.g., the various frames of a
 "Group of Pictures" (GOP) of an H.264 flow will have different
 sizes). This diversity must be addressed since the Reed-Solomon FEC
 scheme requires a constant encoding symbol size (E parameter) per
 source block. Since this specification requires that there is only
 one source symbol per ADU, E must be large enough to contain all the
 ADUs of an ADU block along with their prepended 3 bytes (see below).

 In situations where E is determined per source block (default,
 specified by the FFCI/FSSI with S = 0, Section 5.1.1.2), E is equal
 to the size of the largest ADU of this source block plus 3 (for the
 prepended 3 bytes; see below). In this case, upon receiving the
 first FEC Repair Packet for this source block, since this packet MUST
 contain a single repair symbol (Section 5.1.3), a receiver determines
 the E parameter used for this source block.

In situations where E is fixed (specified by the FFCI/FSSI with
S = 1, Section 5.1.1.2), then E must be greater or equal to the size
of the largest ADU of this source block plus 3 (for the prepended 3
bytes; see below). If this is not the case, an error is returned.
How to handle this error is use‑case specific (e.g., a larger E
parameter may be communicated to the receivers in an updated FFCI
message using an appropriate mechanism) and is not considered by this
specification.

The ADU block is always encoded as a single source block. There are
a total of B <= max_B ADUs in this ADU block. For the ADU i, with
0 <= i <= B‑1, 3 bytes are prepended (Figure 2):

 o The first byte, F[i] (Flow ID), contains the integer identifier
 associated to the source ADU flow to which this ADU belongs to.
 It is assumed that a single byte is sufficient, or said
 differently, that no more than 256 flows will be protected by a
 single instance of FECFRAME.

 o The following 2 bytes, L[i] (Length), contain the length of this
 ADU, in network byte order (i.e., big endian). This length is for
 the ADU itself and does not include the F[i], L[i], or Pad[i]
 fields.

 Then zero padding is added to ADU i (if needed), in field Pad[i], for
 alignment purposes up to a size of exactly E bytes. The data unit
 resulting from the ADU i and the F[i], L[i], and Pad[i] fields, is
 called ADU Information (or ADUI). Each ADUI contributes to exactly
 one source symbol of the source block.

 Encoding Symbol Length (E)
< ‑‑‑ >
+‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|F[0]| L[0] | ADU[0] | Pad[0] |
+‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|F[1]| L[1] | ADU[1] | Pad[1] |
+‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+‑‑+
|F[2]| L[2] | ADU[2] |
+‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑+
|F[3]| L[3] |ADU[3]| Pad[3] |
+‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑+‑‑+
_________________________________ ________________________________/
 \/
 simple FEC encoding

+‑‑‑+
| Repair 4 |
+‑‑‑+
. .
. .
+‑‑‑+
| Repair 7 |
+‑‑‑+

 Figure 2: Source block creation, for code rate 1/2 (equal number of

 source and repair symbols; 4 in this example), and S = 0.

 Note that neither the initial 3 bytes nor the optional padding are
 sent over the network. However, they are considered during FEC
 encoding. It means that a receiver who lost a certain FEC source
 packet (e.g., the UDP datagram containing this FEC source packet)
 will be able to recover the ADUI if FEC decoding succeeds. Thanks to
 the initial 3 bytes, this receiver will get rid of the padding (if
 any) and identify the corresponding ADU flow.

5. Simple Reed-Solomon FEC Scheme over GF(2^^m) for Arbitrary ADU Flows

 This Fully-Specified FEC Scheme specifies the use of Reed-Solomon
 codes over GF(2^^m), with 2 <= m <= 16, with a simple FEC encoding
 for arbitrary packet flows.

5.1. Formats and Codes

5.1.1. FEC Framework Configuration Information

 The FEC Framework Configuration Information (or FFCI) includes
 information that must be communicated between the sender and
 receiver(s) [RFC6363]. More specifically, it enables the
 synchronization of the FECFRAME sender and receiver instances. It
 includes both mandatory elements and scheme-specific elements, as
 detailed below.

5.1.1.1. Mandatory Information

 o FEC Encoding ID: the value assigned to this Fully-Specified FEC
 scheme MUST be 8, as assigned by IANA (Section 8).

 When SDP is used to communicate the FFCI, this FEC Encoding ID MUST
 be carried in the 'encoding-id' parameter of the 'fec-repair-flow'
 attribute specified in RFC 6364 [RFC6364].

5.1.1.2. FEC Scheme-Specific Information

 The FEC Scheme-Specific Information (FSSI) includes elements that are
 specific to the present FEC scheme. More precisely:

 o Encoding Symbol Length (E): a non-negative integer, inferior to
 2^^16, that indicates either the length of each encoding symbol in
 bytes ("strict" mode, i.e., if S = 1), or the maximum length of
 any encoding symbol (i.e., if S = 0).

 o Strict (S) flag: when set to 1, this flag indicates that the E
 parameter is the actual encoding symbol length value for each
 block of the session (unless otherwise notified by an updated FFCI
 if this possibility is considered by the use case or CDP). When
 set to 0, this flag indicates that the E parameter is the maximum
 encoding symbol length value for each block of the session (unless
 otherwise notified by an updated FFCI if this possibility is
 considered by the use case or CDP).

 o m parameter (m): an integer that defines the length of the
 elements in the finite field, in bits. We have: 2 <= m <= 16.

 These elements are required both by the sender (Reed-Solomon encoder)
 and the receiver(s) (Reed-Solomon decoder).

 When SDP is used to communicate the FFCI, this FEC scheme-specific
 information MUST be carried in the 'fssi' parameter of the
 'fec-repair-flow' attribute, in textual representation as specified
 in RFC 6364 [RFC6364]. For instance:

 a=fec-repair-flow: encoding-id=8; fssi=E:1400,S:0,m:8

 If another mechanism requires the FSSI to be carried as an opaque
 octet string (for instance after a Base64 encoding), the encoding
 format consists of the following 3 octets of Figure 3:

 o Encoding symbol length (E): 16-bit field.

 o Strict (S) flag: 1-bit field.

 o m parameter (m): 7-bit field.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+‑+
| Encoding Symbol Length (E) |S| m |
+‑+

 Figure 3: FSSI encoding format.

5.1.2. Explicit Source FEC Payload ID

 A FEC source packet MUST contain an Explicit Source FEC Payload ID
 that is appended to the end of the packet as illustrated in Figure 4.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ADU |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Explicit Source FEC Payload ID |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4: Structure of a FEC Source Packet with the Explicit Source

 FEC Payload ID.

 More precisely, the Explicit Source FEC Payload ID is composed of the
 Source Block Number, the Encoding Symbol ID, and the Source Block
 Length. The length of the first 2 fields depends on the m parameter
 (transmitted separately in the FFCI, Section 5.1.1.2):

 o Source Block Number (SBN) ((32-m)-bit field): this field
 identifies the source block to which this FEC source packet
 belongs.

 o Encoding Symbol ID (ESI) (m-bit field): this field identifies the
 source symbol contained in this FEC source packet. This value is
 such that 0 <= ESI <= k - 1 for source symbols.

 o Source Block Length (k) (16-bit field): this field provides the
 number of source symbols for this source block, i.e., the k
 parameter. If 16 bits are too much when m <= 8, it is needed when
 8 < m <= 16. Therefore, we provide a single common format
 regardless of m.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Number (24 bits) | Enc. Symb. ID |
+‑+
| Source Block Length (k) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 5: Source FEC Payload ID encoding format for m = 8 (default).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Nb (16 bits) | Enc. Symbol ID (16 bits) |
+‑+
| Source Block Length (k) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 6: Source FEC Payload ID encoding format for m = 16.

 The format of the Source FEC Payload ID for m = 8 and m = 16 are
 illustrated in Figures 5 and 6, respectively.

5.1.3. Repair FEC Payload ID

 A FEC repair packet MUST contain a Repair FEC Payload ID that is
 prepended to the repair symbol(s) as illustrated in Figure 7. There
 MUST be a single repair symbol per FEC repair packet.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Transport Header |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair FEC Payload ID |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Repair Symbol |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 7: Structure of a FEC Repair Packet with the Repair FEC

 Payload ID.

 More precisely, the Repair FEC Payload ID is composed of the Source
 Block Number, the Encoding Symbol ID, and the Source Block Length.
 The length of the first 2 fields depends on the m parameter
 (transmitted separately in the FFCI, Section 5.1.1.2):

 o Source Block Number (SBN) ((32-m)-bit field): this field
 identifies the source block to which the FEC repair packet
 belongs.

 o Encoding Symbol ID (ESI) (m-bit field): this field identifies the
 repair symbol contained in this FEC repair packet. This value is
 such that k <= ESI <= n - 1 for repair symbols.

 o Source Block Length (k) (16-bit field): this field provides the
 number of source symbols for this source block, i.e., the k
 parameter. If 16 bits are too much when m <= 8, it is needed when
 8 < m <= 16. Therefore, we provide a single common format
 regardless of m.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Number (24 bits) | Enc. Symb. ID |
+‑+
| Source Block Length (k) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 8: Repair FEC Payload ID encoding format for m = 8 (default).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Source Block Nb (16 bits) | Enc. Symbol ID (16 bits) |
+‑+
| Source Block Length (k) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 9: Repair FEC Payload ID encoding format for m = 16.

 The format of the Repair FEC Payload ID for m = 8 and m = 16 are
 illustrated in Figures 8 and 9, respectively.

5.2. Procedures

 The following procedures apply:

 o The source block creation MUST follow the procedures specified in
 Section 4.3.

 o The SBN value MUST start with value 0 for the first block of the
 ADU flow and MUST be incremented by 1 for each new source block.
 Wrapping to zero will happen for long sessions, after value
 2^^(32-m) - 1.

o The ESI of encoding symbols MUST start with value 0 for the first
 symbol and MUST be managed sequentially. The first k values
 (0 <= ESI <= k ‑ 1) identify source symbols, whereas the last n‑k
 values (k <= ESI <= n ‑ 1) identify repair symbols.

 o The FEC repair packet creation MUST follow the procedures
 specified in Section 5.1.3.

5.3. FEC Code Specification

 The present document inherits from Section 8 of [RFC5510], "Reed-
 Solomon Codes Specification for the Erasure Channel", the
 specifications of the core Reed-Solomon codes based on Vandermonde
 matrices.

6. Security Considerations

 The FECFRAME document [RFC6363] provides a comprehensive analysis of
 security considerations applicable to FEC schemes. Therefore, the
 present section follows the security considerations section of
 [RFC6363] and only discusses topics that are specific to the use of
 Reed-Solomon codes.

6.1. Attacks Against the Data Flow

6.1.1. Access to Confidential Content

 The Reed-Solomon FEC Scheme specified in this document does not
 change the recommendations of [RFC6363]. To summarize, if
 confidentiality is a concern, it is RECOMMENDED that one of the
 solutions mentioned in [RFC6363] is used with special considerations
 to the way this solution is applied (e.g., is encryption applied
 before or after FEC protection, within the end-system or in a
 middlebox) to the operational constraints (e.g., performing FEC
 decoding in a protected environment may be complicated or even
 impossible) and to the threat model.

6.1.2. Content Corruption

 The Reed-Solomon FEC Scheme specified in this document does not
 change the recommendations of [RFC6363]. To summarize, it is
 RECOMMENDED that one of the solutions mentioned in [RFC6363] is used
 on both the FEC Source and Repair Packets.

6.2. Attacks Against the FEC Parameters

The FEC Scheme specified in this document defines parameters that can
be the basis of several attacks. More specifically, the following
parameters of the FFCI may be modified by an attacker
(Section 5.1.1.2):

 o FEC Encoding ID: changing this parameter leads the receiver to
 consider a different FEC Scheme, which enables an attacker to
 create a Denial of Service (DoS).

 o Encoding symbol length (E): setting this E parameter to a value
 smaller than the valid one enables an attacker to create a DoS
 since the repair symbols and certain source symbols will be larger
 than E, which is an incoherency for the receiver. Setting this E
 parameter to a value larger than the valid one has similar impacts
 when S = 1 since the received repair symbol size will be smaller
 than expected. On the opposite, it will not lead to any
 incoherency when S = 0 since the actual symbol length value for
 the block is determined by the size of any received repair symbol,
 as long as this value is smaller than E. However, setting this E
 parameter to a larger value may have impacts on receivers that
 pre-allocate memory space in advance to store incoming symbols.

 o Strict (S) flag: flipping this S flag from 0 to 1 (i.e., E is now
 considered as a strict value) enables an attacker to mislead the
 receiver if the actual symbol size varies over different source
 blocks. Flipping this S flag from 1 to 0 has no major
 consequences unless the receiver requires to have a fixed E value
 (e.g., because the receiver pre-allocates memory space).

 o m parameter: changing this parameter triggers a DoS since the
 receiver and sender will consider different codes, and the
 receiver will interpret the Explicit Source FEC Payload ID and
 Repair FEC Payload ID differently. Additionally, by increasing
 this m parameter to a larger value (typically m = 16 rather than
 8, when both values are possible in the target use case) will
 create additional processing load at a receiver if decoding is
 attempted.

 It is therefore RECOMMENDED that security measures are taken to
 guarantee the FFCI integrity, as specified in [RFC6363]. How to
 achieve this depends on the way the FFCI is communicated from the
 sender to the receiver, which is not specified in this document.

 Similarly, attacks are possible against the Explicit Source FEC
 Payload ID and Repair FEC Payload ID: by modifying the Source Block
 Number (SBN), or the Encoding Symbol ID (ESI), or the Source Block
 Length (k), an attacker can easily corrupt the block identified by
 the SBN. Other consequences, that are use case and/or CDP dependent,
 may also happen. It is therefore RECOMMENDED that security measures
 are taken to guarantee the FEC Source and Repair Packets as stated in
 [RFC6363].

6.3. When Several Source Flows Are to Be Protected Together

 The Reed-Solomon FEC Scheme specified in this document does not
 change the recommendations of [RFC6363].

6.4. Baseline Secure FECFRAME Operation

 The Reed-Solomon FEC Scheme specified in this document does not
 change the recommendations of [RFC6363] concerning the use of the
 IPsec/ESP security protocol as a mandatory to implement (but not
 mandatory to use) security scheme. This is well suited to situations
 where the only insecure domain is the one over which FECFRAME
 operates.

7. Operations and Management Considerations

 The FECFRAME document [RFC6363] provides a comprehensive analysis of
 operations and management considerations applicable to FEC schemes.
 Therefore, the present section only discusses topics that are
 specific to the use of Reed-Solomon codes as specified in this
 document.

7.1. Operational Recommendations: Finite Field Size (m)

 The present document requires that m, the length of the elements in
 the finite field in bits, is such that 2 <= m <= 16. However, all
 possibilities are not equally interesting from a practical point of
 view. It is expected that m = 8, the default value, will be mostly
 used since it offers the possibility to have small to medium sized
 source blocks and/or a significant number of repair symbols (i.e., k
 < n <= 255). Additionally, elements in the finite field are 8 bits
 long, which makes read/write memory operations aligned on bytes
 during encoding and decoding.

 An alternative when it is known that only very small source blocks
 will be used is m = 4 (i.e., k < n <= 15). Elements in the finite
 field are 4 bits long, so if 2 elements are accessed at a time, read/
 write memory operations are aligned on bytes during encoding and
 decoding.

 An alternative when very large source blocks are needed is m = 16
 (i.e., k < n<= 65535). However, this choice has significant impact
 on the processing load. For instance, using pre-calculated tables to
 speed up operations over the finite field (as done with smaller
 finite fields) may require a prohibitive amount of memory to be used
 on embedded platforms. Alternative lightweight solutions (e.g., LDPC
 FEC [RFC5170]) may be preferred in situations where the processing
 load is an issue and the source block length is large enough
 [Matsuzono10].

 Since several values for the m parameter are possible, the use case
 SHOULD define which value or values need to be supported. In
 situations where this is not specified, the default m = 8 value MUST
 be used.

 In any case, any compliant implementation MUST support at least the
 default m = 8 value.

8. IANA Considerations

 Values of FEC Encoding IDs are subject to IANA registration.
 [RFC6363] defines general guidelines on IANA considerations. In
 particular, it defines the "FEC Framework (FECFRAME) FEC Encoding
 IDs" subregistry of the "Reliable Multicast Transport (RMT) FEC
 Encoding IDs and FEC Instance IDs" registry, whose registration
 procedure is IETF Review.

 This document registers one value in the "FEC Framework (FECFRAME)
 FEC Encoding IDs" subregistry as follows:

 8 refers to the Simple Reed-Solomon [RFC5510] FEC Scheme over
 GF(2^^m) for Arbitrary Packet Flows.

9. Acknowledgments

 The authors want to thank Hitoshi Asaeda and Ali Begen for their
 valuable comments.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5052]
 Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052,
 August 2007.

 [RFC5510]
 Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",
 RFC 5510, April 2009.

 [RFC6363]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC6364]
 Begen, A., "Session Description Protocol Elements for
 the Forward Error Correction (FEC) Framework",
 RFC 6364, October 2011.

10.2. Informative References

 [Matsuzono10]
 Matsuzono, K., Detchart, J., Cunche, M., Roca, V., and
 H. Asaeda, "Performance Analysis of a High-Performance
 Real-Time Application with Several AL-FEC Schemes",
 35th Annual IEEE Conference on Local Computer
 Networks (LCN 2010), October 2010.

 [RFC5053]
 Luby, M., Shokrollahi, A., Watson, M., and T.
 Stockhammer, "Raptor Forward Error Correction Scheme
 for Object Delivery", RFC 5053, October 2007.

 [RFC5170]
 Roca, V., Neumann, C., and D. Furodet, "Low Density
 Parity Check (LDPC) Staircase and Triangle Forward
 Error Correction (FEC) Schemes", RFC 5170, June 2008.

 [RFC5740]
 Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, November 2009.

 [RFC5775]
 Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation",
 RFC 5775, April 2010.

 [Rizzo97]
 Rizzo, L., "Effective Erasure Codes for Reliable
 Computer Communication Protocols", ACM SIGCOMM
 Computer Communication Review, Vol.27, No.2, pp.24-36,
 April 1997.

 [RS-codec]
 Rizzo, L., "Reed-Solomon FEC codec (C language)",
 original codec: http://info.iet.unipi.it/~luigi/vdm98/
 vdm980702.tgz, improved codec: http://openfec.org/,
 July 1998.

Authors' Addresses

Vincent Roca
INRIA
655, av. de l'Europe
Inovallee; Montbonnot
ST ISMIER cedex 38334
France

EMail: vincent.roca@inria.fr
URI: http://planete.inrialpes.fr/people/roca/

Mathieu Cunche
INSA‑Lyon/INRIA
Laboratoire CITI
6 av. des Arts
Villeurbanne cedex 69621
France

EMail: mathieu.cunche@inria.fr
URI: http://mathieu.cunche.free.fr/

Jerome Lacan
ISAE, Univ. of Toulouse
10 av. Edouard Belin; BP 54032
Toulouse cedex 4 31055
France

EMail: jerome.lacan@isae.fr
URI: http://personnel.isae.fr/jerome‑lacan/

Amine Bouabdallah
CDTA
Center for Development of Advanced Technologies
Cite 20 aout 1956, Baba Hassen
Algiers
Algeria

 EMail: abouabdallah@cdta.dz

Kazuhisa Matsuzono
Keio University
Graduate School of Media and Governance
5322 Endo
Fujisawa, Kanagawa 252‑8520
Japan

 EMail: kazuhisa@sfc.wide.ad.jp

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
fecframe
Documents
2013-03-03

QU0+

1 E T F

Kindle transformation by Tero Kivinen
00:12:17

