

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

i2rs RFC and Internet-Draft Index

Index

Active

	draft-ietf-i2rs-yang-dc-fabric-network-topology-12 A YANG Data Model for Fabric Topology in Data Center Networks

	draft-ietf-i2rs-yang-l2-network-topology-06 A YANG Data Model for Layer-2 Network Topologies

RFC

	RFC7920 Problem Statement for the Interface to the Routing System

	RFC7921 An Architecture for the Interface to the Routing System

	RFC7922 Interface to the Routing System (I2RS) Traceability: Framework and Information Model

	RFC7923 Requirements for Subscription to YANG Datastores

	RFC8241 Interface to the Routing System (I2RS) Security-Related Requirements

	RFC8242 Interface to the Routing System (I2RS) Ephemeral State Requirements

	RFC8345 A YANG Data Model for Network Topologies

	RFC8346 A YANG Data Model for Layer 3 Topologies

	RFC8430 RIB Information Model

	RFC8431 A YANG Data Model for the Routing Information Base (RIB)

draft-ietf-i2rs-yang-dc-fabric-network-topology-12 - A YANG Data Model for Fabri

Index
Next
Forward 5

I2RS Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 25, 2019

Y. Zhuang

D. Shi

Huawei

R. Gu

China Mobile

H. Ananthakrishnan

Netflix

November 21, 2018

A YANG Data Model for Fabric Topology in Data Center Networks

draft-ietf-i2rs-yang-dc-fabric-network-topology-12

Abstract

 This document defines a YANG data model for fabric topology in Data
 Center Networks and it represents one possible view of the data
 center fabric. This document focuses on the data model only and does
 not endorse any kind of network design that could be based on the
 abovementioned model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Definitions and Acronyms
	 2.1. Terminology

	3. Model Overview
	 3.1. Topology Model structure

	 3.2. Fabric Topology Model
	 3.2.1. Fabric Topology

	 3.2.2. Fabric node extension

	 3.2.3. Fabric termination-point extension

	4. Fabric YANG Module

	5. IANA Considerations

	6. Security Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Non NMDA -state modules

	Authors' Addresses

1. Introduction

 A data center (DC) network can be composed of single or multiple
 fabrics which are also known as PODs (Points Of Delivery). These
 fabrics may be heterogeneous due to implementation of different
 technologies when a DC network is upgraded or new techniques and
 features are rolled out. For example, Fabric A may use VXLAN while
 Fabric B may use VLAN within a DC network. Likewise, an existing
 fabric may use VXLAN while a new fabric, for example a fabric
 introduced for DC upgrade and expansion, may implement a technique
 discussed in NVO3 WG, such as Geneve [I-D. draft-ietf-nvo3-geneve].
 The configuration and management of such DC networks with
 heterogeneous fabrics could result in considerable complexity.

 For a DC network, a fabric can be considered as an atomic structure
 for management purposes. From this point of view, the management of
 the DC network can be decomposed into a set of tasks to manage each
 fabric separately, as well as the fabric interconnections. The
 advantage of this method is to make the overall management tasks
 flexible and easy to extend in the future.

 As a basis for DC fabric management, this document defines a YANG
 data model [RFC6020][RFC7950] for a possible view of the fabric-based
 data center topology. To do so, it augments the generic network and
 network topology data models defined in [RFC8345] with information
 that is specific to data center fabric networks.

 The model defines the generic configuration and operational state for
 a fabric-based network topology, which can subsequently be extended
 by vendors with vendor-specific information as needed. The model can
 be used by a network controller to represent its view of the fabric
 topology that it controls and expose this view to network
 administrators or applications for DC network management.

 Within the context of topology architecture defined in [RFC8345],
 this model can also be treated as an application of the I2RS network
 topology model [RFC8345] in the scenario of data center network
 management. It can also act as a service topology when mapping
 network elements at the fabric layer to elements of other topologies,
 such as L3 topologies as defined in [RFC8346].

 By using the fabric topology model defined in this document, people
 can treat a fabric as a holistic entity and focus on characteristics
 of a fabric (such as encapsulation type, gateway type.) as well as
 its connections to other fabrics while putting the underlay topology
 aside. As such, clients can consume the topology information at the
 fabric level with no need to be aware of the entire set of links and
 nodes in the corresponding underlay networks. A fabric topology can
 be configured by a network administrator using the controller by
 adding physical devices and links into a fabric. Alternatively,
 fabric topology can be learned from the underlay network
 infrastructure.

2. Definitions and Acronyms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. Terminology

 POD: a module of network, compute, storage, and application
 components that work together to deliver networking services. It
 represents a repeatable design pattern. Its components maximize the
 modularity, scalability, and manageability of data centers.

 Fabric: composed of several PODs to form a data center network.

3. Model Overview

 This section provides an overview of the data center fabric topology
 model and its relationship with other topology models.

3.1. Topology Model structure

 The relationship of the DC fabric topology model and other topology
 models is shown in the following figure.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | network model |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑V‑‑‑‑‑‑‑‑‑‑‑+
 | network topology model |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
+‑‑‑V‑‑‑‑+ +‑‑‑V‑‑‑‑+ +‑‑‑V‑‑‑‑+ +‑‑‑‑V‑‑‑+
L1		L2		L3		Fabric
topology		topology		topology		topology
model		model		model		model
+‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+
 Figure 1: The network data model structure

 From the perspective of resource management and service provisioning
 for a data center network, the fabric topology model augments the
 basic network topology model with definitions and features specific
 to a DC fabric, to provide common configuration and operations for
 heterogeneous fabrics.

3.2. Fabric Topology Model

 The fabric topology model module is designed to be generic and can be
 applied to data center fabrics built with different technologies,
 such as VLAN, VXLAN. The main purpose of this module is to configure
 and manage fabrics and their connections. It provides a fabric-based
 topology view for data center applications.

3.2.1. Fabric Topology

 In the fabric topology module, a fabric is modeled as a node of a
 network, as such the fabric-based data center network consists of a
 set of fabric nodes and their connections. The following depicts a
 snippet of the definitions to show the main structure of the model.
 The notation syntax follows [RFC8340].

module: ietf‑dc‑fabric‑topology
augment /nw:networks/nw:network/nw:network‑types:
 +‑‑rw fabric‑network!
augment /nw:networks/nw:network/nw:node:
 +‑‑rw fabric‑attributes
 +‑‑rw fabric‑id? fabric‑id
 +‑‑rw name? string
 +‑‑rw type? fabrictype:underlay‑network‑type
 +‑‑rw description? string
 +‑‑rw options
 +‑‑...
augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑ro fport‑attributes
 +‑‑ro name? string
 +‑‑ro role? fabric‑port‑role
 +‑‑ro type? fabric‑port‑type

 The fabric topology module augments the generic ietf-network and
 ietf-network-topology modules as follows:

 o A new topology type "ietf-dc-fabric-topology" is defined and added
 under the "network-types" container of the ietf-network module.

 o Fabric is defined as a node under the network/node container. A
 new container "fabric-attributes" is defined to carry attributes
 for a fabric such as gateway mode, fabric types, involved device
 nodes, and links.

 o Termination points (in network topology module) are augmented with
 fabric port attributes defined in a container. The "termination-
 point" here is used to represent a fabric "port" that provides
 connections to other nodes, such as an internal device, another
 fabric externally, or end hosts.

 Details of the fabric node and the fabric termination point extension
 will be explained in the following sections.

3.2.2. Fabric node extension

 As an atomic network (that is a set of nodes and links which composes
 a POD and also supports a single overlay/underlay instance), a fabric
 itself is composed of a set of network elements i.e. devices, and
 related links. The configuration of a fabric is contained under the
 "fabric-attributes" container depicted as follows. The notation
 syntax follows [RFC8340].

+‑‑rw fabric‑attributes
 +‑‑rw fabric‑id? fabrictypes:fabric‑id
 +‑‑rw name? string
 +‑‑rw type? fabrictype:underlay‑network‑type
 +‑‑rw vni‑capacity
 | +‑‑rw min? int32
 | +‑‑rw max? int32
 +‑‑rw description? string
 +‑‑rw options
 | +‑‑rw gateway‑mode? enumeration
 | +‑‑rw traffic‑behavior? enumeration
 | +‑‑rw capability‑supported* fabrictype:service‑capabilities
 +‑‑rw device‑nodes* [device‑ref]
 | +‑‑rw device‑ref fabrictype:node‑ref
 | +‑‑rw role*? fabrictype:device‑role
 +‑‑rw device‑links* [link‑ref]
 | +‑‑rw link‑ref fabrictype:link‑ref
 +‑‑rw device‑ports* [port‑ref]
 +‑‑rw port‑ref fabrictype:tp‑ref
 +‑‑rw port‑type? fabrictypes:port‑type
 +‑‑rw bandwidth? fabrictypes:bandwidth

 In the module, additional data objects for fabric nodes are
 introduced by augmenting the "node" list of the network module. New
 objects include fabric name, type of the fabric, descriptions of the
 fabric as well as a set of options defined in an "options" container.
 The "options" container includes the gateway-mode type (centralized
 or distributed) and traffic-behavior (whether an Access Control Lists
 (ACLs) is needed for the traffic). Also, it includes a list of
 device-nodes and related links as supporting-nodes to form a fabric
 network. These device nodes and links are represented as leaf-refs
 of existing nodes and links in the underlay topology. For the
 device-node, the "role" object is defined to represent the role of a
 device within the fabric, such as "SPINE" or "LEAF", which should
 work together with the gateway-mode.

3.2.3. Fabric termination-point extension

 Since a fabric can be considered as a node, "termination-points" can
 represent fabric "ports" that connect to other fabrics, end hosts, as
 well as devices inside the fabric.

 As such, the set of "termination-points" of a fabric indicate all
 connections of the fabric, including its internal connections,
 interconnections with other fabrics, and connections to end hosts.

 The structure of fabric ports is as follows. The notation syntax
 follows [RFC8340].

 The structure of fabric ports is as follows:

augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑ro fport‑attributes
 +‑‑ro name? string
 +‑‑ro role? fabric‑port‑role
 +‑‑ro type? fabric‑port‑type
 +‑‑ro device‑port? tp‑ref
 +‑‑ro (tunnel‑option)?

 It augments the termination points (in network topology module) with
 fabric port attributes defined in a container.

 New nodes are defined for fabric ports including fabric name, role of
 the port within the fabric (internal port, external port to outside
 network, access port to end hosts), port type (L2 interface, L3
 interface). By defining the device-port as a tp-ref, a fabric port
 can be mapped to a device node in the underlay network.

 Also, a new container for tunnel-options is introduced to present the
 tunnel configuration on a port.

 The termination point information is learned from the underlay
 networks, not configured by the fabric topology layer.

4. Fabric YANG Module

 This module imports typedefs from [RFC8345], and it references
 [RFC7348] and [RFC8344].

 <CODE BEGINS> file "ietf-dc-fabric-types@2018-11-08.yang"

 module ietf-dc-fabric-types {

yang‑version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf‑dc‑fabric‑types";
prefix fabrictypes;

 import ietf-network {

 prefix nw;

 reference
 "RFC 8345:A Data Model for Network Topologies";
}

organization
"IETF I2RS (Interface to the Routing System) Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/i2rs/ >
 WG List: <mailto:i2rs@ietf.org>

 Editor: Yan Zhuang
 <mailto:zhuangyan.zhuang@huawei.com>

 Editor: Danian Shi
 <mailto:shidanian@huawei.com>";

 description

 "This module contains a collection of YANG definitions for
 Fabric.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

This version of this YANG module is part of
draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology;
see the RFC itself for full legal notices.

 NOTE TO RFC EDITOR: Please replace above reference to
 draft-ietf-i2rs-yang-dc-fabric-network-topology-12 with RFC
 number when published (i.e. RFC xxxx).";

revision "2018‑11‑08"{
 description
 "Initial revision.
 NOTE TO RFC EDITOR:
 Please replace the following reference to
 draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12
 with RFC number when published (i.e. RFC xxxx).";
 reference
 "draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12";

 }

 identity fabric‑type {
 description
 "Base type for fabric networks";
 }

 identity vxlan‑fabric {
 base fabric‑type;
 description
 "VXLAN fabric";
 }

 identity vlan‑fabric {
 base fabric‑type;
 description
 "VLAN fabric";
 }

 identity trill‑fabric {
 base fabric‑type;
 description "TRILL fabric";
 }
 identity port‑type {
 description
 "Base type for fabric port";
 }
 identity eth {
 base port‑type;
 description "Ethernet";
 }
 identity serial {
 base port‑type;
 description "Serial";
 }

 identity bandwidth {
 description "Base for bandwidth";
 }
 identity bw‑1M {
 base bandwidth;
 description "1M";
 }
 identity bw‑10M {
 base bandwidth;
 description "10Mbps";
 }
 identity bw‑100M {

 base bandwidth;
 description "100Mbps";
 }
 identity bw‑1G {
 base bandwidth;
 description "1Gbps";
 }
 identity bw‑10G {
 base bandwidth;
 description "10Gbps";
 }
 identity bw‑25G {
 base bandwidth;
 description "25Gbps";
 }
 identity bw‑40G {
 base bandwidth;
 description "40Gbps";
 }
 identity bw‑100G{
 base bandwidth;
 description "100Gbps";
 }
 identity bw‑400G {
 base bandwidth;
 description "400Gbps";
 }
 identity device‑role {
 description "Base for the device role in a fabric.";
 }
 identity spine {
 base device‑role;
 description "This is a spine node in a fabric.";
 }
 identity leaf {
 base device‑role;
 description "This is a leaf node in a fabric. ";
 }
 identity border {
 base device‑role;
 description "This is a border node to connect to other
 fabric/network.";
 }
 identity fabric‑port‑role {
 description "Base for the port's role in a fabric.";
 }
 identity internal {
 base fabric‑port‑role;

 description "The port is used for devices to access each
 other within a fabric.";
 }
 identity external {
 base fabric‑port‑role;
 description "The port is used for a fabric to connect to
 outside network.";
 }
 identity access {
 base fabric‑port‑role;
 description "The port is used for an endpoint to connect
 to a fabric.";
 }

 identity service‑capability {
 description "Base for the service of the fabric ";
 }
 identity ip‑mapping {
 base service‑capability;
 description "NAT.";
 }
 identity acl‑redirect {
 base service‑capability;
 description "ACL redirect, which can provide SFC function.";
 }
 identity dynamic‑route‑exchange {
 base service‑capability;
 description "Dynamic route exchange.";
 }

 /*
 * Typedefs
 */
 typedef fabric‑id {
 type nw:node‑id;
 description
 "An identifier for a fabric in a topology.
 This identifier can be generated when composing a fabric.
 The composition of a fabric can be achieved by defining a
 RPC, which is left for vendor specific implementation
 and not provided in this model.";
 }

 typedef service‑capabilities {
 type identityref {
 base service‑capability;
 }

 description
 "Service capability of the fabric";
 }

 typedef port‑type {
 type identityref {
 base port‑type;
 }
 description "Port type: ethernet or serial or others.";
 }
 typedef bandwidth {
 type identityref {
 base bandwidth;
 }
 description "Bandwidth of the port.";
 }
 typedef node‑ref {
 type instance‑identifier;
 description "A reference to a node in topology";
 }

 typedef tp‑ref {
 type instance‑identifier;
 description "A reference to a termination point in topology";
 }

 typedef link‑ref {
 type instance‑identifier;
 description "A reference to a link in topology";
 }

 typedef underlay‑network‑type {
 type identityref {
 base fabric‑type;
 }
 description "The type of physical network that implements
 this fabric.Examples are VLAN, and TRILL.";
 }
 typedef device‑role {
 type identityref {
 base device‑role;
 }
 description "Role of the device node.";
 }
 typedef fabric‑port‑role {
 type identityref {
 base fabric‑port‑role;
 }

 description "Role of the port in a fabric.";
 }

 typedef fabric‑port‑type {
 type enumeration {
 enum layer2interface {
 description "L2 interface";
 }
 enum layer3interface {
 description "L3 interface";
 }
 enum layer2Tunnel {
 description "L2 tunnel";
 }
 enum layer3Tunnel {
 description "L3 tunnel";
 }
 }
 description
 "Fabric port type";
 }

 grouping fabric‑port {
 description
 "Attributes of a fabric port.";
 leaf name {
 type string;
 description "Name of the port.";
 }
 leaf role {
 type fabric‑port‑role;
 description "Role of the port in a fabric.";
 }
 leaf type {
 type fabric‑port‑type;
 description "Type of the port";
 }
 leaf device‑port {
 type tp‑ref;
 description "The device port it mapped to.";
 }
 choice tunnel‑option {
 description "Tunnel options to connect two fabrics.
 It could be L2 Tunnel or L3 Tunnel.";
 }
 }
}
<CODE ENDS>

 <CODE BEGINS> file "ietf-dc-fabric-topology@2018-11-08.yang"

 module ietf-dc-fabric-topology {

yang‑version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf‑dc‑fabric‑topology";
prefix fabric;

 import ietf-network {

 prefix nw;

 reference
 "RFC 8345:A Data Model for Network Topologies";
}

 import ietf-network-topology {

 prefix nt;

 reference
 "RFC 8345:A Data Model for Network Topologies";
}

 import ietf-dc-fabric-types {

 prefix fabrictypes;

 reference
 "draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12
 NOTE TO RFC EDITOR:
 (1) Please replace above reference to
 draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12
 with RFC number when publised (i.e. RFC xxxx).
 (2) Please replace the data in the revision statement
 with the data of publication when published.";
}

organization
"IETF I2RS (Interface to the Routing System) Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/i2rs/ >
 WG List: <mailto:i2rs@ietf.org>

 Editor: Yan Zhuang
 <mailto:zhuangyan.zhuang@huawei.com>

 Editor: Danian Shi
 <mailto:shidanian@huawei.com>";

description
"This module contains a collection of YANG definitions for
Fabric.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license‑info).

This version of this YANG module is part of
draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology;
see the RFC itself for full legal notices.

NOTE TO RFC EDITOR: Please replace above reference to
draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12 with RFC
number when published (i.e. RFC xxxx).";

revision "2018‑11‑08"{
 description
 "Initial revision.
 NOTE TO RFC EDITOR: Please replace the following
 reference to draft‑ietf‑i2rs‑yang‑dc‑fabric‑network
 ‑topology‑12 with RFC number when published
 (i.e. RFC xxxx).";
 reference
 "draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12";
}

//grouping statements
grouping fabric‑network‑type {
 description "Identify the topology type to be fabric.";
 container fabric‑network {
 presence "indicates fabric Network";
 description
 "The presence of the container node indicates
 fabric Topology";
 }
}

 grouping fabric-options {

 description "Options for a fabric";

 leaf gateway‑mode {
 type enumeration {
 enum centralized {
 description "The Fabric uses centralized
 gateway, in which gateway is deployed on SPINE
 node.";
 }
 enum distributed {
 description "The Fabric uses distributed
 gateway, in which gateway is deployed on LEAF
 node.";
 }
 }
 default "distributed";
 description "Gateway mode of the fabric";
 }

 leaf traffic‑behavior {
 type enumeration {
 enum normal {
 description "Normal means no policy is needed
 for all traffic";
 }
 enum policy‑driven {
 description "Policy driven means policy is
 needed for the traffic otherwise the traffic
 will be discard.";
 }
 }
 default "normal";
 description "Traffic behavior of the fabric";
 }

 leaf‑list capability‑supported {
 type fabrictypes:service‑capabilities;
 description
 "It provides a list of supported services of the
 fabric. The service‑capabilities is defined as
 identity‑ref. Users can define more services
 by defining new identities.";
 }
}

grouping device‑attributes {
 description "device attributes";
 leaf device‑ref {
 type fabrictypes:node‑ref;
 description

 "The device that the fabric includes which refers
 to a node in another topology.";
 }
 leaf‑list role {
 type fabrictypes:device‑role;
 default fabrictypes:leaf;
 description
 "It is a list of device‑role to represent the roles
 that a device plays within a POD, such as SPINE,
 LEAF, Border, or Border‑Leaf.
 The device‑role is defined as identity‑ref. If more
 than 2 stage is used for a POD, users can
 define new identities for the device‑role.";
 }
}

grouping link‑attributes {
 description "Link attributes";
 leaf link‑ref {
 type fabrictypes:link‑ref;
 description
 "The link that the fabric includes which refers to
 a link in another topology.";
 }
}

grouping port‑attributes {
 description "Port attributes";
 leaf port‑ref {
 type fabrictypes:tp‑ref;
 description
 "The port that the fabric includes which refers to
 a termination‑point in another topology.";
 }
 leaf port‑type {
 type fabrictypes:port‑type;
 description
 "Port type is defined as identity‑ref. If current
 types includes ethernet or serial. If more types
 are needed, developers can define new identities.";
 }
 leaf bandwidth {
 type fabrictypes:bandwidth;
 description
 "Bandwidth of the port. It is defined as identity‑ref.
 If more speeds are introduced, developers can define
 new identities for them. Current speeds include 1M, 10M,
 100M, 1G, 10G, 25G, 40G, 100G and 400G.";

 }
}

 grouping fabric-attributes {

 description "Attributes of a fabric";

leaf fabric‑id {
 type fabrictypes:fabric‑id;
 description
 "An identifier for a fabric in a topology.
 This identifier can be generated when composing a fabric.
 The composition of a fabric can be achieved by defining a
 RPC, which is left for vendor specific implementation and
 not provided in this model.";
}

leaf name {
 type string;
 description
 "Name of the fabric";
}

leaf type {
 type fabrictypes:underlay‑network‑type;
 description
 "The type of physical network that implements this
 fabric.Examples are VLAN, and TRILL.";
}

 container vni-capacity {

 description "The range of the VNI(VXLAN Network Identifier
 defined in RFC 7348)s that the POD uses.";

 leaf min {
 type int32;
 description
 "The lower limit VNI.";
 }

 leaf max {
 type int32;
 description
 "The upper limit VNI.";
 }
}

 leaf description {

 type string;

 description
 "Description of the fabric";
}

container options {
 description "Options of the fabric";
 uses fabric‑options;
}

list device‑nodes {
 key device‑ref;
 description "Device nodes that are included in a fabric.";
 uses device‑attributes;
}

list device‑links {
 key link‑ref;
 description "Links that are included within a fabric.";
 uses link‑attributes;
}

list device‑ports {
 key port‑ref;
 description "Ports that are included in the fabric.";
 uses port‑attributes;
}

 }

 // augment statements

 augment "/nw:networks/nw:network/nw:network‑types" {
 description
 "Introduce a new network type for Fabric‑based topology";

 uses fabric‑network‑type;
 }

 augment "/nw:networks/nw:network/nw:node" {
 when "/nw:networks/nw:network/nw:network‑types/"
 +"fabric:fabric‑network"{
 description
 "Augmentation parameters apply only for networks
 with fabric topology";
 }
 description "Augmentation for fabric nodes created by
 fabric topology.";

 container fabric‑attributes {
 description
 "Attributes for a fabric network";

 uses fabric‑attributes;
 }
 }

 augment "/nw:networks/nw:network/nw:node/nt:termination‑point" {
 when "/nw:networks/nw:network/nw:network‑types/"
 +"fabric:fabric‑network" {
 description
 "Augmentation parameters apply only for networks
 with fabric topology";
 }
 description "Augmentation for port on fabric.";

 container fport‑attributes {
 config false;
 description
 "Attributes for fabric ports";
 uses fabrictypes:fabric‑port;
 }
 }
}
<CODE ENDS>

5. IANA Considerations

 This document registers the following namespace URIs in the "IETF XML
 Registry" [RFC3688]:

 URI:urn:ietf:params:xml:ns:yang:ietf-dc-fabric-types

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 URI:urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 URI:urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology-state

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG modules in the "YANG
 Module Names" registry [RFC6020]:

 NOTE TO THE RFC EDITOR: In the list below, please replace references
 to "draft-ietf-i2rs-yang-dc-fabric-network-topology-12 (RFC form)"
 with RFC number when published (i.e. RFC xxxx).

 Name: ietf-dc-fabric-types

 Namespace: urn:ietf:params:xml:ns:yang:ietf-dc-fabric-types

 Prefix: fabrictypes

 Reference: draft-ietf-i2rs-yang-dc-fabric-network-topology-12.txt
 (RFC form)

 Name: ietf-dc-fabric-topology

 Namespace: urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology

 Prefix: fabric

 Reference: draft-ietf-i2rs-yang-dc-fabric-network-topology-12.txt
 (RFC form)

 Name: ietf-dc-fabric-topology-state

 Namespace: urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology-state

 Prefix: sfabric

 Reference: draft-ietf-i2rs-yang-dc-fabric-network-topology-12.txt
 (RFC form)

6. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via network management protocols such as NETCONF [RFC6241] or
 RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport
 layer, and the mandatory-to-implement secure transport is Secure
 Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the
 mandatory-to-implement secure transport is TLS [RFC5246].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content. The subtrees and data nodes and their
 sensitivity/vulnerability in the ietf-dc-fabric-topology module are
 as follows:

 fabric-attributes: A malicious client could attempt to sabotage the
 configuration of important fabric attributes, such as device-nodes or
 type.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. The subtrees and data nodes and
 their sensitivity/vulnerability in the ietf-dc-fabric-topology module
 are as follows:

 fport-attributes: A malicious client could attempt to read the
 connections of fabrics without permission, such as device-port, name.

7. Acknowledgements

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Alexander Clemm, Donald E.
 Eastlake, Xufeng Liu, Susan Hares, Wei Song, Luis M. Contreras and
 Benoit Claise.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "Transport Layer Security
 (TLS) Protocol Version 1.2", August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6020]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6241]
 Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", June
 2011, <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC7950]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, Auguest 2016.

 [RFC8040]
 Bierman, A., Bjorklund, B., and K. Watsen, "RESTCONF
 Protocol", Jan 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <http://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol Access Control Model", March 2018,
 <http://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore
 Architecture", RFC 8342, March 2018.

 [RFC8345]
 Clemm, A., Medved, J., Tkacik, T., Varga, R., Bahadur, N.,
 and H. Ananthakrishnan, "A YANG Data Model for Network
 Topologies", RFC 8345, March 2018,
 <http://www.rfc-editor.org/info/rfc8345>.

8.2. Informative References

 [I-D.draft-ietf-nvo3-geneve]

 Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
 Network Virtualization Encapsulation", I-D draft-ietf-
 nvo3-geneve-06, March 2018.

 [RFC7348]
 Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", August 2014,
 <http://www.rfc-editor.org/info/rfc7348>.

 [RFC8340]
 Bjorklund, M. and L. Berger, "YANG Tree Diagrams",
 RFC 8340, March 2018,
 <http://www.rfc-editor.org/info/rfc8340>.

 [RFC8344]
 Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, March 2018,
 <http://www.rfc-editor.org/info/rfc8344>.

 [RFC8346]
 Clemm, A., Medved, J., Tkacik, T., Liu, X., Bryskin, I.,
 Guo, A., Ananthakrishnan, H., Bahadur, N., and V. Beeram,
 "A YANG Data Model for Layer 3 Topologies", RFC 8346,
 March 2018, <http://www.rfc-editor.org/info/rfc8346>.

Appendix A. Non NMDA -state modules

 The YANG module ietf-dc-fabric-topology defined in this document
 augments two modules, ietf-network and ietf-network-topology, that
 are designed to be used in conjunction with implementations that
 support the Network Management Datastore Architecture (NMDA) defined
 in [RFC8342]. In order to allow implementations to use the model
 even in case when NMDA is not supported, a set of companion modules
 have been defined that represent a state model of networks and
 network topologies, ietf-network-state and ietf-network-topology-
 state, respectively.

 In order to be able to use the model for fabric topologies defined in
 this in this document in conjunction with non-NMDA compliant
 implementations, a corresponding companion module needs to be
 introduced as well. This companion module, ietf-dc-fabric-topology-
 state, mirrors ietf-dc-fabric-topology. However, the module augments
 ietf-network-state (instead of ietf-network and ietf-network-
 topology) and all of its data nodes are non-configurable.

 Like ietf-network-state and ietf-network-topology-state, ietf-dc-
 fabric-topology-state SHOULD NOT be supported by implementations that
 support NMDA. It is for this reason that the module is defined in
 the Appendix.

 The definition of the module follows below. As the structure of the
 module mirrors that of its underlying module, the YANG tree is not
 depicted separately.

<CODE BEGINS>
file "ietf‑dc‑fabric‑topology‑state@2018‑11‑08.yang"
 module ietf‑dc‑fabric‑topology‑state {

 yang‑version 1.1;
 namespace

 "urn:ietf:params:xml:ns:yang:ietf-dc-fabric-topology-state";
 prefix sfabric;

import ietf‑network‑state {
 prefix nws;
 reference
 "RFC 8345:A Data Model for Network Topologies";
}
import ietf‑dc‑fabric‑types {
 prefix fabrictypes;

 reference
 "draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12
 NOTE TO RFC EDITOR:
 (1) Please replace above reference to draft‑ietf‑i2rs‑yang
 ‑dc‑fabric‑network‑topology‑09 with RFC number when
 published (i.e. RFC xxxx).
 (2) Please replace the data in the revision statement
 with the data of publication when published.";
}

organization
"IETF I2RS (Interface to the Routing System) Working Group";

contact
"WG Web: <http://tools.ietf.org/wg/i2rs/ >
 WG List: <mailto:i2rs@ietf.org>

 Editor: Yan Zhuang
 <mailto:zhuangyan.zhuang@huawei.com>

 Editor: Danian Shi
 <mailto:shidanian@huawei.com>";

 description

 "This module contains a collection of YANG definitions for
 Fabric state, representing topology that is either learned,
 or topology that results from applying toplogy that has been
 configured per the ietf-dc-fabric-topology model, mirroring
 the corresponding data nodes in this model.

 This model mirrors the configuration tree of ietf-dc-fabric
 -topology, but contains only read-only state data. The model
 is not needed when the implementation infrastructure supports
 the Network Management Datastore Architecture(NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's Legal
Provisions Relating to IETF Documents
(http:s//trustee.ietf.org/license‑info).

This version of this YANG module is part of
draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology;
see the RFC itself for full legal notices.

 NOTE TO RFC EDITOR: Please replace above reference to
 draft-ietf-i2rs-yang-dc-fabric-network-topology-12 with RFC
 number when published (i.e. RFC xxxx).";

 revision "2018‑11‑08"{
 description
 "Initial revision.
 NOTE TO RFC EDITOR:
 Please replace the following reference to
 draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12
 with RFC number when published (i.e. RFC xxxx).";
 reference
 "draft‑ietf‑i2rs‑yang‑dc‑fabric‑network‑topology‑12";
 }

//grouping statements
 grouping fabric‑network‑type {
 description "Identify the topology type to be fabric.";
 container fabric‑network {
 presence "indicates fabric Network";
 description
 "The presence of the container node indicates
 fabric topology";
 }
 }

 grouping fabric-options {

 description "Options for a fabric";

 leaf gateway‑mode {
 type enumeration {
 enum centralized {
 description "The Fabric uses centralized
 gateway, in which gateway is deployed on SPINE

 node.";
 }
 enum distributed {
 description "The Fabric uses distributed
 gateway, in which gateway is deployed on LEAF
 node.";
 }
 }
 default "distributed";
 description "Gateway mode of the fabric";
 }

 leaf traffic‑behavior {
 type enumeration {
 enum normal {
 description "Normal means no policy is needed
 for all traffic";
 }
 enum policy‑driven {
 description "Policy driven means policy is
 needed for the traffic otherwise the traffic
 will be discarded.";
 }
 }
 default "normal";
 description "Traffic behavior of the fabric";
 }

 leaf‑list capability‑supported {
 type fabrictypes:service‑capabilities;
 description
 "It provides a list of supported services of the
 fabric. The service‑capabilities is defined as
 identity‑ref. Users can define more services
 by defining new identities.";
 }
}

grouping device‑attributes {
 description "device attributes";
 leaf device‑ref {
 type fabrictypes:node‑ref;
 description
 "The device that the fabric includes which refers
 to a node in another topology.";
 }
 leaf‑list role {
 type fabrictypes:device‑role;

 default fabrictypes:leaf;
 description
 "It is a list of devce‑role to represent the roles
 that a device plays within a POD, such as SPINE,
 LEAF, Border, or Border‑Leaf.
 The device‑role is defined as identity‑ref. If more
 than 2 stage is used for a POD, users can
 define new identities for the device‑role.";
 }
}

grouping link‑attributes {
 description "Link attributes";
 leaf link‑ref {
 type fabrictypes:link‑ref;
 description
 "The link that the fabric includes which refers to
 a link in another topology.";
 }
}

grouping port‑attributes {
 description "Port attributes";
 leaf port‑ref {
 type fabrictypes:tp‑ref;
 description
 "The port that the fabric includes which refers to
 a termination‑point in another topology.";
 }
 leaf port‑type {
 type fabrictypes:port‑type;
 description
 "Port type is defined as identity‑ref. If current
 types includes ethernet or serial. If more types
 are needed, developers can define new identities.";
 }
 leaf bandwidth {
 type fabrictypes:bandwidth;
 description
 "Bandwidth of the port. It is defined as
 identity‑ref. If more speeds are introduced,
 developers can define new identities for them.
 Current speeds include 1M, 10M, 100M, 1G, 10G,
 25G, 40G, 100G and 400G.";
 }
}

 grouping fabric-attributes {

 description "Attributes of a fabric";

leaf fabric‑id {
 type fabrictypes:fabric‑id;
 description
 "Fabric id";
}

leaf name {
 type string;
 description
 "Name of the fabric";
}

leaf type {
 type fabrictypes:underlay‑network‑type;
 description
 "The type of physical network that implements this
 fabric. Examples are VLAN, and TRILL.";
}

 container vni-capacity {

 description "The range of the VNI(VXLAN Network
 Identifier defined in RFC 7348)s that the POD uses.";

 leaf min {
 type int32;
 description
 "The lower limit VNI.";
 }

 leaf max {
 type int32;
 description
 "The upper limit VNI.";
 }
 }

 leaf description {
 type string;
 description
 "Description of the fabric";
 }

 container options {
 description "Options of the fabric";
 uses fabric‑options;
 }

 list device‑nodes {
 key device‑ref;
 description "Device nodes that are included in a fabric.";
 uses device‑attributes;
 }

 list device‑links {
 key link‑ref;
 description "Links that are included within a fabric.";
 uses link‑attributes;
 }

 list device‑ports {
 key port‑ref;
 description "Ports that are included in the fabric.";
 uses port‑attributes;
 }
}

 // augment statements

 augment "/nws:networks/nws:network/nws:network‑types" {
 description
 "Introduce a new network type for Fabric‑based logical
 topology";
 uses fabric‑network‑type;
 }

 augment "/nws:networks/nws:network/nws:node" {
 when "/nws:networks/nws:network/nws:network‑types"
 +"/sfabric:fabric‑network"{
 description "Augmentation parameters apply only for
 networks with fabric topology.";
 }
 description "Augmentation for fabric nodes.";
 container fabric‑attributes‑state {
 description
 "Attributes for a fabric network";
 uses fabric‑attributes;
 }
 }
}
<CODE ENDS>

Authors' Addresses

Yan Zhuang
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: zhuangyan.zhuang@huawei.com

Danian Shi
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: shidanian@huawei.com

Rong Gu
China Mobile
32 Xuanwumen West Ave, Xicheng District
Beijing, Beijing 100053
China

 Email: gurong_cmcc@outlook.com

Hariharan Ananthakrishnan
Netflix

 Email: hari@netflix.com

draft-ietf-i2rs-yang-l2-network-topology-06 - A YANG Data Model for Layer-2 Netw

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

J. Dong

X. Wei

Q. Wu

Huawei Technologies

October 22, 2018

A YANG Data Model for Layer-2 Network Topologies

draft-ietf-i2rs-yang-l2-network-topology-06

Abstract

 This document defines a YANG data model for Layer 2 network
 topologies.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Layer 2 Topology Model

	3. Layer 2 Topology Yang Module

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgements

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Companion YANG model for non-NMDA compliant implementations

	Appendix B. An Example

	Authors' Addresses

1. Introduction

 [RFC8345] defines the YANG [RFC6020] [RFC7950] data models of the
 abstract (generic) network and network topology. Such models can be
 augmented with technology-specific details to build more specific
 topology models.

 This document defines the YANG data model for Layer 2 network
 topologies by augmenting the generic network and network topology
 data models with L2 specific topology attributes.

2. Layer 2 Topology Model

 The Layer 2 network topology model is designed to be generic and
 applicable to Layer 2 networks built with different L2 technologies.
 It can be used to describe both the physical and the logical
 (virtual) L2 network topologies.

 The Layer 2 topology model applies the generic network and network
 topology models to Layer 2 network topologies, and augments the
 generic models with information specific to Layer 2 networks. The
 relationship between the Layer 2 topology model and the generic
 network and network topology model is shown in the figure below:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ietf‑network |
 +‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |ietf‑network‑topology|
 +‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑+
 | ietf‑l2‑topology |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Figure 1. L2‑topology model structure

 In order to represent a Layer 2 network topology, the generic network
 and topology models are augmented with Layer-2 specific information,
 such as the identifiers, descriptions, attributes and states of the
 Layer-2 networks, nodes, links and termination points. Some of the
 information may be collected via Link Layer Discovery Protocol (LLDP)
 or other Layer-2 protocols, and some of them may be locally
 configured.

 The structure of "ietf-l2-topology" data model is depicted in the
 following diagram. The notation syntax follows [RFC8340]. For
 purpose of brevity, notifications are not depicted.

module: ietf‑l2‑topology
 augment /nw:networks/nw:network/nw:network‑types:
 +‑‑rw l2‑network!
 augment /nw:networks/nw:network:
 +‑‑rw l2‑network‑attributes
 +‑‑rw name? string
 +‑‑rw flag* l2‑flag‑type
 augment /nw:networks/nw:network/nw:node:
 +‑‑rw l2‑node‑attributes
 +‑‑rw name? string
 +‑‑rw description? string
 +‑‑rw management‑address* inet:ip‑address
 +‑‑rw sys‑mac‑address? yang:mac‑address
 +‑‑rw management‑vid? vlan {VLAN}?
 +‑‑rw flag* node‑flag‑type
 augment /nw:networks/nw:network/nt:link:
 +‑‑rw l2‑link‑attributes
 +‑‑rw name? string
 +‑‑rw flag* link‑flag‑type
 +‑‑rw rate? decimal64
 +‑‑rw delay? uint32

 +‑‑rw srlg* uint32
 augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑rw l2‑termination‑point‑attributes
 +‑‑rw description? string
 +‑‑rw maximum‑frame‑size? uint32
 +‑‑rw (l2‑termination‑point‑type)?
 | +‑‑:(ethernet)
 | | +‑‑rw mac‑address? yang:mac‑address
 | | +‑‑rw eth‑encapsulation? identityref
 | | +‑‑rw port‑vlan‑id? vlan {VLAN}?
 | | +‑‑rw vlan‑id‑name* [vlan‑id] {VLAN}?
 | | +‑‑rw vlan‑id vlan
 | | +‑‑rw vlan‑name? string
 | +‑‑:(legacy)
 | +‑‑rw layer‑2‑address? yang:phys‑address
 | +‑‑rw encapsulation? identityref
 +‑‑ro tp‑state? enumeration
 notifications:
 +‑‑‑n l2‑node‑event
 | +‑‑ro event‑type?
 | +‑‑ro node‑ref?
 | +‑‑ro network‑ref?
 | +‑‑ro l2‑network!
 | +‑‑ro l2‑node‑attributes
 +‑‑‑n l2‑link‑event
 | +‑‑ro event‑type?
 | +‑‑ro link‑ref?
 | +‑‑ro network‑ref?
 | +‑‑ro l2‑network!
 | +‑‑ro l2‑link‑attributes
 +‑‑‑n l2‑termination‑point‑event
 +‑‑ro event‑type?
 +‑‑ro tp‑ref?
 +‑‑ro node‑ref?
 +‑‑ro network‑ref?
 +‑‑ro l2‑network!
 +‑‑ro l2‑termination‑point‑attributes

 The L2-topology module augments the generic ietf-network and ietf-
 network-topology modules as follows:

 o A new network type "l2-network-type" is introduced. This is
 represented by a container object, and is inserted under the
 "network-types" container of the generic ietf-network module in
 [RFC8345].

 o Additional network attributes are introduced in a grouping "l2-
 network-attributes", which augments the "network" list of the

 ietf-network module. The attributes include Layer-2 network name
 and a set of flags. Each type of flag is represented by a
 separate identity.

 o Additional data objects for Layer-2 nodes are introduced by
 augmenting the "node" list of the generic ietf-network module.
 New objects include Layer-2 node identifier, description,
 management address, and a set of flags.

 o Additional data objects for Layer-2 termination points are
 introduced by augmenting the "termination-point" list of the ietf-
 network-topology module defined in [RFC8345]. New objects include
 Layer-2 termination point descriptions, Layer-2 termination point
 type specific attributes and Layer-2 termination point states.

 o Links in the ietf-network-topology module are augmented as well
 with a set of Layer-2 parameters, allowing to associate a link
 with a name, a set of Layer-2 link attributes and flags.

 o The optional L2 technology specific attributes are introduced in
 this module as Layer-2 features.

3. Layer 2 Topology Yang Module

<CODE BEGINS> file "ietf‑l2‑topology@2018‑10‑18.yang"
module ietf‑l2‑topology {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑l2‑topology";
 prefix "l2t";

 import ietf‑network {
 prefix "nw";
 }

 import ietf‑network‑topology {
 prefix "nt";
 }

 import ietf‑inet‑types {
 prefix "inet";
 reference "RFC 6991";
 }

 import ietf‑yang‑types {
 prefix "yang";
 reference "RFC 6991";
 }

 organization
 "IETF I2RS (Interface to the Routing System) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>
 Editor: Jie Dong
 <mailto:jie.dong@huawei.com>

 Editor: Xiugang Wei
 <mailto:weixiugang@huawei.com>";

 description
 "This module defines a basic model for
 the layer‑2 topology of a network.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of
 draft‑ietf‑i2rs‑yang‑l2‑network‑topo‑06;
 see the RFC itself for full legal notices.";

 revision "2018‑10‑18" {
 description "Initial revision";
 reference "draft‑ietf‑i2rs‑l2‑network‑topology‑06";
 }

/*
 * Typedefs
 */

 typedef vlan {
 type uint16 {
 range "0..4095";
 }
 description "VLAN ID";
 reference "IEEE 802.1Q";
 }

 typedef trill-nickname {

 type uint16;

 description "TRILL Nickname";
 reference "RFC 6326";
 }

 typedef vni {
 type uint32 {
 range "1..16777215";
 }
 description "VxLAN Network Identifier";
 reference "RFC 7348";
 }

 typedef l2‑flag‑type {
 type identityref {
 base "flag‑identity";
 }
 description "Base type for l2 flags";
 }
typedef node‑flag‑type {
 type identityref {
 base "flag‑identity";
 }
 description "Node flag attributes";
 }
typedef link‑flag‑type {
 type identityref {
 base "flag‑identity";
 }
 description "Link flag attributes";
 }

 typedef l2‑network‑event‑type {
 type enumeration {
 enum "add" {
 value 0;
 description "An L2 node or link or termination‑point
 has been added";
 }
 enum "remove" {
 value 1;
 description "An L2 node or link or termination‑point
 has been removed";
 }
 enum "update" {
 value 2;
 description "An L2 node or link or termination‑point
 has been updated";
 }

 }
 description "l2 network event type for notifications";
 } // l2‑topology‑event‑type

 /*
 * Features
 */

 feature VLAN {
 description
 "Indicates that the system supports the
 vlan functions";
 }

 feature QinQ {
 description
 "Indicates that the system supports the
 qinq functions";
 reference "IEEE 802.1ad";
 }

 feature PBB {
 description
 "Indicates that the device supports the
 provider‑backbone‑bridging functions";
 reference "IEEE 802.1ah";
 }

 feature VPLS {
 description
 "Indicates that the device supports the
 VPLS functions";
 reference "RFC 4761, RFC 4762";
 }

 feature TRILL {
 description
 "Indicates that the device supports the
 TRILL functions";
 reference "RFC 6325";
 }

 feature VXLAN {
 description
 "Indicates that the device supports the
 VXLAN functions";

 reference "RFC 7348";
 }

/*
 * Identities
 */

 identity flag‑identity {
 description "Base type for flags";
 }

 identity encapsulation‑type {
 description
 "Base identity from which specific encapsulation
 types are derived.";
 }

 identity eth‑encapsulation‑type {
 base encapsulation‑type;
 description
 "Base identity from which specific ethernet
 encapsulation types are derived.";

 }

identity ethernet {
 base eth‑encapsulation‑type;
 description
 "native ethernet encapsulation";
}

identity vlan {
 base eth‑encapsulation‑type;
 description
 "vlan encapsulation";
}

identity qinq {
 base eth‑encapsulation‑type;
 description
 "qinq encapsulation";
}

identity pbb {
 base eth‑encapsulation‑type;
 description
 "pbb encapsulation";

 }

identity trill {
 base eth‑encapsulation‑type;
 description
 "trill encapsulation";
}

identity vpls {
 base eth‑encapsulation‑type;
 description
 "vpls encapsulation";
}

identity vxlan {
 base eth‑encapsulation‑type;
 description
 "vxlan encapsulation";
}

identity frame‑relay {
 base encapsulation‑type;
 description
 "Frame Relay encapsulation";
}

identity ppp {
 base encapsulation‑type;
 description
 "PPP encapsulation";
}

identity hdlc {
 base encapsulation‑type;
 description
 "HDLC encapsulation";
}

identity atm {
 base encapsulation‑type;
 description
 "Base identity from which specific ATM
 encapsulation types are derived.";

 }

 identity pwe3 {

 base encapsulation-type;

 description
 "Base identity from which specific pw
 encapsulation types are derived.";
 }

/*
 * Groupings
 */

 grouping l2‑network‑type {
 description "Identify the topology type to be L2.";
 container l2‑network {
 presence "indicates L2 Network";
 description
 "The presence of the container node indicates
 L2 Topology";
 }
 }

 grouping l2‑network‑attributes {
 description "L2 Topology scope attributes";
 container l2‑network‑attributes {
 description "Containing L2 network attributes";
 leaf name {
 type string;
 description "Name of the L2 network";
 }

 leaf‑list flag {
 type l2‑flag‑type;
 description "L2 network flags";
 }
 }
 }

 grouping l2‑node‑attributes {
 description "L2 node attributes";
 container l2‑node‑attributes {
 description "Containing L2 node attributes";
 leaf name {
 type string;
 description "Node name";
 }
 leaf description {
 type string;
 description "Node description";

 }
 leaf‑list management‑address {
 type inet:ip‑address;
 description "System management address";
 }
 leaf sys‑mac‑address {
 type yang:mac‑address;
 description "System MAC‑address";
 }
 leaf management‑vid {
 if‑feature VLAN;
 type vlan;
 description "System management VID";
 }
 leaf‑list flag {
 type node‑flag‑type;
 description "Node operational flags";
 }
 }
 } // grouping l2‑node‑attributes

 grouping l2‑link‑attributes {
 description "L2 link attributes";
 container l2‑link‑attributes {
 description "Containing L2 link attributes";
 leaf name {
 type string;
 description "Link name";
 }
 leaf‑list flag {
 type link‑flag‑type;
 description "Link flags";
 }
 leaf rate {
 type decimal64 {
 fraction‑digits 2;
 }
 description "Link rate";

 }
 leaf delay {
 type uint32;
 description "Link delay in microseconds";
 }
 leaf‑list srlg {
 type uint32;
 description
 "List of Shared Risk Link Groups

 this link belongs to.";
 reference "RFC 4202";
 }
 }
 } // grouping l2‑link‑attributes

 grouping l2‑termination‑point‑attributes {
 description "L2 termination point attributes";
 container l2‑termination‑point‑attributes {
 description "Containing L2 TP attributes";
 leaf description {
 type string;
 description "Port description";
 }

 leaf maximum‑frame‑size {
 type uint32;
 description "Maximum frame size";
 }

 choice l2‑termination‑point‑type {
 description
 "Indicates termination‑point type
 specific attributes";
 case ethernet {
 leaf mac‑address {
 type yang:mac‑address;
 description "Interface MAC address";
 }

 leaf eth‑encapsulation {
 type identityref {
 base eth‑encapsulation‑type;
 }
 description
 "Encapsulation type of this
 ternimation point.";
 }

 leaf port‑vlan‑id {
 if‑feature VLAN;
 type vlan;
 description "Port VLAN ID";
 }

 list vlan‑id‑name {
 if‑feature VLAN;
 key "vlan‑id";

 description "Interface configured VLANs";
 leaf vlan‑id {
 type vlan;
 description "VLAN ID";
 }
 leaf vlan‑name {
 type string;
 description "VLAN name";
 }
 }
 } //case ethernet

 case legacy {
 leaf layer‑2‑address {
 type yang:phys‑address;
 description "Interface Layer 2 address";
 }

 leaf encapsulation {
 type identityref {
 base encapsulation‑type;
 }
 description
 "Encapsulation type of this termination point.";
 }
 } //case legacy such as atm, ppp, hdlc,etc.

 } //choice termination-point-type

 leaf tp‑state {
 type enumeration {
 enum in‑use {
 value 0;
 description
 "the termination point is in forwarding state";
 }
 enum blocking {
 value 1;
 description
 "the termination point is in blocking state";
 }
 enum down {
 value 2;
 description
 "the termination point is in down state";
 }
 enum others {
 value 3;

 description
 "the termination point is in other state";
 }
 }
 config false;
 description "State of the termination point";
 }
 }
 } // grouping l2‑termination‑point‑attributes

/*
 * Data nodes
 */

 augment "/nw:networks/nw:network/nw:network‑types" {
 description
 "Introduce new network type for L2 topology";
 uses l2‑network‑type;
 }

 augment "/nw:networks/nw:network" {
 when "/nw:networks/nw:network/nw:network‑types/l2t:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description
 "Configuration parameters for the L2 network
 as a whole";
 uses l2‑network‑attributes;
 }

 augment "/nw:networks/nw:network/nw:node" {
 when "/nw:networks/nw:network/nw:network‑types/l2t:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description
 "Configuration parameters for L2 at the node
 level";
 uses l2‑node‑attributes;
 }

 augment "/nw:networks/nw:network/nt:link" {

 when "/nw:networks/nw:network/nw:network-types/l2t:l2-network" {
 description

 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description "Augment L2 topology link information";
 uses l2‑link‑attributes;
 }

 augment "/nw:networks/nw:network/nw:node/nt:termination‑point" {
 when "/nw:networks/nw:network/nw:network‑types/l2t:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description
 "Augment L2 topology termination point information";
 uses l2‑termination‑point‑attributes;
 }

 /*
 * Notifications
 */

 notification l2‑node‑event {
 description "Notification event for L2 node";
 leaf event‑type {
 type l2‑network‑event‑type;
 description "Event type";
 }
 uses nw:node‑ref;
 uses l2‑network‑type;
 uses l2‑node‑attributes;
 }

 notification l2‑link‑event {
 description "Notification event for L2 link";
 leaf event‑type {
 type l2‑network‑event‑type;
 description "Event type";
 }
 uses nt:link‑ref;
 uses l2‑network‑type;
 uses l2‑link‑attributes;
 }

 notification l2‑termination‑point‑event {
 description "Notification event for L2 termination point";
 leaf event‑type {
 type l2‑network‑event‑type;

 description "Event type";
 }
 uses nt:tp‑ref;
 uses l2‑network‑type;
 uses l2‑termination‑point‑attributes;
 }

} // module l2‑topology
<CODE ENDS>

4. IANA Considerations

 This document registers the following namespace URIs in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑l2‑topology
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑l2‑topology‑state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG modules in the "YANG
 Module Names" registry [RFC6020]:

Name: ietf‑l2‑topology
Namespace: urn:ietf:params:xml:ns:yang:ietf‑l2‑topology
Prefix: l2t
Reference: draft‑ietf‑i2rs‑yang‑l2‑network‑topology‑06.txt (RFC form)

Name: ietf‑l2‑topology‑state
Namespace: urn:ietf:params:xml:ns:yang:ietf‑l2‑topology‑state
Prefix: l2t‑s
Reference: draft‑ietf‑i2rs‑yang‑l2‑network‑topology‑06.txt (RFC form)

5. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via network management protocols such as NETCONF [RFC6241] or
 RESTCONF [RFC8040] . The lowest NETCONF layer is the secure transport
 layer, and the mandatory-to-implement secure transport is Secure
 Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the
 mandatory-to-implement secure transport is TLS [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 In general, Layer 2 network topologies are system-controlled and
 provide ephemeral topology information. In an NMDA-complient server,
 they are only part of <operational> which provides read-only access
 to clients, they are less vulnerable. That said, the YANG module
 does in principle allow information to be configurable.

 The Layer 2 topology module define information that can be
 configurable in certain instances, for example in the case of virtual
 topologies that can be created by client applications. In such
 cases, a malicious client could introduce topologies that are
 undesired. Specifically, a malicious client could attempt to remove
 or add a node, a link, a termination point, by creating or deleting
 corresponding elements in the node, link, and termination point
 lists, respectively. In the case of a topology that is learned, the
 server will automatically prohibit such misconfiguration attempts.
 In the case of a topology that is configured, i.e. whose origin is
 "intended", the undesired configuration could become effective and be
 reflected in the operational state datastore, leading to disruption
 of services provided via this topology might be disrupted. For those
 reasons, it is important that the NETCONF access control model is
 vigorously applied to prevent topology misconfiguration by
 unauthorized clients.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability in the ietf-network module:

 l2-network-attributes: A malicious client could attempt to sabotage
 the configuration of any of the contained attributes, such as the
 name or the flag data nodes.

 l2-node-attributes: A malicious client could attempt to sabotage the
 configuration of important node attributes, such as the name or the
 management-address.

 l2-link-attributes: A malicious client could attempt to sabotage the
 configuration of important link attributes, such as the rate or the
 delay data nodes.

 l2-termination-point-attributes: A malicious client could attempt to
 sabotage the configuration of important termination point attributes,
 such as the maximum-frame-size.

6. Acknowledgements

 The authors would like to acknowledge the comments and suggestions
 received from Susan Hares, Alia Atlas, Juergen Schoenwaelder, Mach
 Chen, Alexander Clemm and Sriganesh Kini.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

7.2. Informative References

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Companion YANG model for non-NMDA compliant implementations

 The YANG module ietf-l2-topology defined in this document augments
 two modules, ietf-network and ietf-network-topology, that are
 designed to be used in conjunction with implementations that support
 the Network Management Datastore Architecture (NMDA) defined in
 [RFC8342]. In order to allow implementations to use the model even
 in cases when NMDA is not supported, a set of companion modules have
 been defined that represent a state model of networks and network
 topologies, ietf- network-state and ietf-network-topology-state,
 respectively.

 In order to be able to use the model for layer 2 topologies defined
 in this document in conjunction with non-NMDA compliant
 implementations, a corresponding companion module is defined that
 represent the operational state of layer 2 network topologies. The
 module ietf-l2-topology-state mirrors the module ietf-l2-topology
 defined earlier in this document. However, it augments ietf-network-
 state and ietf-network-topology-state (instead of ietf-network and
 ietf-network-topology) and all its data nodes are non-configurable.

 The companion module ietf-l2-topology SHOULD NOT be supported by
 implementations that support NMDA. It is for this reason that this
 module is defined in the Appendix.

 As the structure of this modules mirrors that of its underlying
 modules, the YANG tree is not depicted separately.

<CODE BEGINS> file "ietf‑l2‑topology‑state@2018‑10‑18.yang"
module ietf‑l2‑topology‑state {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑l2‑topology‑state";
 prefix "l2t‑s";

 import ietf‑network‑state {
 prefix "nw‑s";
 }

 import ietf‑network‑topology‑state {
 prefix "nt‑s";
 }

 import ietf‑l2‑topology {
 prefix "l2t";
 }

 organization
 "IETF I2RS (Interface to the Routing System) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>
 Editor: Jie Dong
 <mailto:jie.dong@huawei.com>
 Editor: Xiugang Wei
 <mailto:weixiugang@huawei.com>";

 description
 "This module defines a basic model for
 the layer‑2 topology of a network.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of
 draft‑ietf‑i2rs‑yang‑l2‑network‑topo‑05;
 see the RFC itself for full legal notices.";

 revision "2018‑10‑18" {
 description "Initial revision";
 reference "draft‑ietf‑i2rs‑l2‑network‑topology‑06";
 }

/*
 * Data nodes
 */

 augment "/nw‑s:networks/nw‑s:network/nw‑s:network‑types" {
 description
 "Introduce new network type for L2 topology";
 uses l2t:l2‑network‑type;
 }

 augment "/nw‑s:networks/nw‑s:network" {
 when "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"+
 "l2t‑s:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description
 "Configuration parameters for the L2 network
 as a whole";
 uses l2t:l2‑network‑attributes;
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node" {
 when "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"+
 "l2t‑s:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";

 }
 description
 "Configuration parameters for L2 at the node
 level";
 uses l2t:l2‑node‑attributes;
 }

 augment "/nw‑s:networks/nw‑s:network/nt‑s:link" {
 when "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"+
 "l2t‑s:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description "Augment L2 topology link information";
 uses l2t:l2‑link‑attributes;
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"+
 "nt‑s:termination‑point" {
 when "/nw‑s:networks/nw‑s:network/nw‑s:network‑types/"+
 "l2t‑s:l2‑network" {
 description
 "Augmentation parameters apply only for networks
 with L2 topology";
 }
 description
 "Augment L2 topology termination point information";
 uses l2t:l2‑termination‑point‑attributes;
 }

/*
 * Notifications
 */

 notification l2‑node‑event {
 description "Notification event for L2 node";
 leaf event‑type {
 type l2t:l2‑network‑event‑type;
 description "Event type";
 }
 uses nw‑s:node‑ref;
 uses l2t:l2‑network‑type;
 uses l2t:l2‑node‑attributes;
 }

 notification l2-link-event {

 description "Notification event for L2 link";

 leaf event‑type {
 type l2t:l2‑network‑event‑type;
 description "Event type";
 }
 uses nt‑s:link‑ref;
 uses l2t:l2‑network‑type;
 uses l2t:l2‑link‑attributes;
 }

 notification l2‑termination‑point‑event {
 description "Notification event for L2 termination point";
 leaf event‑type {
 type l2t:l2‑network‑event‑type;
 description "Event type";
 }
 uses nt‑s:tp‑ref;
 uses l2t:l2‑network‑type;
 uses l2t:l2‑termination‑point‑attributes;
 }

} // module l2‑topology‑state
<CODE ENDS>

Appendix B. An Example

 This section contains an example of an instance data tree in JSON
 encoding [RFC7951]. The example instantiates "ietf-l2- topology" for
 the topology that is depicted in the following diagram. There are
 three nodes: D1, D2, and D3. D1 has three termination points: 1-0-1,
 1-2-1, and 1-3-1. D2 has three termination points as well: 2-1-1,
 2-0-1, and 2-3-1. D3 has two termination points: 3-1-1 and 3-2-1.
 In addition, there are six links, two between each pair of nodes,
 with one going in each direction.

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | D1 | | D2 |
/‑\ /‑\ /‑\ /‑\
| | 1‑0‑1 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | 2‑1‑1 | |
| | 1‑2‑1 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | 2‑0‑1 | |
\‑/ 1‑3‑1 \‑/ \‑/ 2‑3‑1 \‑/
 | /‑‑‑‑\ | | /‑‑‑‑\ |
 +‑‑‑| |‑‑‑+ +‑‑‑| |‑‑‑+
 \‑‑‑‑/ \‑‑‑‑/
 A | A |
 | | | | | |
 | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | D3 | | |
 | | /‑\ /‑\ | |
 | +‑‑‑‑‑>| | 3‑1‑1 | |‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑| | 3‑2‑1 | |<‑‑‑‑‑‑‑‑‑+
 \‑/ \‑/
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2. A Network Topology Example

 The corresponding instance data tree is depicted as below. Note that
 some lines have been wrapped to adhere to the 72-character line
 limitation of RFCs.

{
 "ietf‑network:networks": {
 "network": [
 {
 "network‑types": {
 "ietf‑l2‑topology:l2‑network": {}
 },
 "network‑id": "l2‑topo‑example",
 "node": [
 {
 "node‑id": "D1",
 "termination‑point": [
 {
 "tp‑id": "1‑0‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A1:B2:C3:D4:E5:F0"
 }
 },
 {
 "tp‑id": "1‑2‑1",

 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A1:B2:C3:D4:E5:F1"
 }
 },
 {
 "tp‑id": "1‑3‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A1:B2:C3:D4:E5:F2"
 }
 }
],
 "ietf‑l2‑topology:l2‑node‑attributes": {
 "management‑address": ["10.1.1.1"]
 }
 },
 {
 "node‑id": "D2",
 "termination‑point": [
 {
 "tp‑id": "2‑0‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A2:B2:C3:D4:E5:F0"
 }
 },
 {
 "tp‑id": "2‑1‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A2:B2:C3:D4:E5:F2"
 }
 },
 {
 "tp‑id": "2‑3‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A2:B2:C3:D4:E5:F3"
 }
 }
],
 "ietf‑l2‑topology:l2‑node‑attributes": {
 "management‑address": ["10.1.1.2"]
 }
 },
 {
 "node‑id": "D3",

 "termination‑point": [
 {
 "tp‑id": "3‑1‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A3:B2:C3:D4:E5:F0"
 }
 },
 {
 "tp‑id": "3‑2‑1",
 "ietf‑l2‑topology:
 l2‑termination‑point‑attributes": {
 "mac‑address": "A3:B2:C3:D4:E5:F1"
 }
 }
],
 "ietf‑l2‑topology:l2‑node‑attributes": {
 "management‑address": ["10.1.1.3"]
 }
 }
],
 "ietf‑network‑topology:link": [
 {
 "link‑id": "D1,1‑2‑1,D2,2‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑2‑1"
 }
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑1‑1"
 },
 "ietf‑l2‑topology:l2‑link‑attributes": {
 "rate": "1000"
 }
 },
 {
 "link‑id": "D2,2‑1‑1,D1,1‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑1‑1"
 }
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑2‑1"
 },
 "ietf‑l2‑topology:l2‑link‑attributes": {
 "rate": "1000"

 }
 },
 {
 "link‑id": "D1,1‑3‑1,D3,3‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑3‑1"
 }
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑1‑1"
 },
 "ietf‑l2‑topology:l2‑link‑attributes": {
 "rate": "1000"
 }
 },
 {
 "link‑id": "D3,3‑1‑1,D1,1‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑1‑1"
 }
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑3‑1"
 },
 "ietf‑l2‑topology:l2‑link‑attributes": {
 "rate": "1000"
 }
 },
 {
 "link‑id": "D2,2‑3‑1,D3,3‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑3‑1"
 }
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑2‑1"
 },
 "ietf‑l2‑topology:l2‑link‑attributes": {
 "rate": "1000"
 }
 },
 {
 "link‑id": "D3,3‑2‑1,D2,2‑3‑1",
 "source": {
 "source‑node": "D3",

 "source‑tp": "3‑2‑1"
 }
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑3‑1"
 },
 "ietf‑l2‑topology:l2‑link‑attributes": {
 "rate": "1000"
 }
 }
]
 }
]
 }
 }

Authors' Addresses

Jie Dong
Huawei Technologies
Huawei Campus, No. 156 Beiqing Rd.
Beijing 100095
China

 Email: jie.dong@huawei.com

Xiugang Wei
Huawei Technologies
Huawei Campus, No. 156 Beiqing Rd.
Beijing 100095
China

 Email: weixiugang@huawei.com

Qin Wu
Huawei Technologies
101 Software Avenue, Yuhua District
Nanjing 210012
China

 Email: bill.wu@huawei.com

7920 - Problem Statement for the Interface to the Routing System

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7920

Category: Informational

ISSN: 2070-1721

A. Atlas, Ed.

Juniper Networks

T. Nadeau, Ed.

Brocade

D. Ward

Cisco Systems

June 2016

Problem Statement for the Interface to the Routing System

Abstract

 Traditionally, routing systems have implemented routing and signaling
 (e.g., MPLS) to control traffic forwarding in a network. Route
 computation has been controlled by relatively static policies that
 define link cost, route cost, or import and export routing policies.
 Requirements have emerged to more dynamically manage and program
 routing systems due to the advent of highly dynamic data-center
 networking, on-demand WAN services, dynamic policy-driven traffic
 steering and service chaining, the need for real-time security threat
 responsiveness via traffic control, and a paradigm of separating
 policy-based decision-making from the router itself. These
 requirements should allow controlling routing information and traffic
 paths and extracting network topology information, traffic
 statistics, and other network analytics from routing systems.

 This document proposes meeting this need via an Interface to the
 Routing System (I2RS).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7920.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. I2RS Model and Problem Area for the IETF

	3. Standard Data Models of Routing State for Installation

	4. Learning Router Information

	5. Aspects to be Considered for an I2RS Protocol

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Existing Management Interfaces

	Acknowledgements

	Authors' Addresses

1. Introduction

 Traditionally, routing systems have implemented routing and signaling
 (e.g., MPLS) to control traffic forwarding in a network. Route
 computation has been controlled by relatively static policies that
 define link cost, route cost, or import and export routing policies.
 The advent of highly dynamic data-center networking, on-demand WAN
 services, dynamic policy-driven traffic steering and service
 chaining, the need for real-time security threat responsiveness via
 traffic control, and a paradigm of separating policy-based decision-
 making from the router itself has created the need to more
 dynamically manage and program routing systems in order to control
 routing information and traffic paths and to extract network topology
 information, traffic statistics, and other network analytics from
 routing systems.

 As modern networks continue to grow in scale and complexity and
 desired policy has become more complex and dynamic, there is a need
 to support rapid control and analytics. The scale of modern networks
 and data centers and the associated operational expense drives the
 need to automate even the simplest operations. The ability to
 quickly interact via more complex operations to support dynamic
 policy is even more critical.

 In order to enable network applications to have access to and control
 over information in the different vendors' routing systems, a
 publicly documented interface is required. The interface needs to
 support real-time, asynchronous interactions using efficient data
 models and encodings that are based on and extend those previously
 defined. Furthermore, the interface must be tailored to provide a
 solid base on which a variety of use cases can be supported.

 To support the requirements of orchestration software and automated
 network applications to dynamically modify the network, there is a
 need to learn topology, network analytics, and existing state from
 the network as well as to create or modify routing information and
 network paths. A feedback loop is needed so that changes made can be
 verifiable and so that these applications can learn and react to
 network changes.

 Proprietary solutions to partially support the requirements outlined
 above have been developed to handle specific situations and needs.
 Standardizing an interface to the routing system will make it easier
 to integrate use of it into a network. Because there are proprietary
 partial solutions already, the standardization of a common interface
 should be feasible.

 It should be noted that during the course of this document, the term
 "applications" is used. This is meant to refer to an executable
 program of some sort that has access to a network, such as an IP or
 MPLS network, via a routing system.

2. I2RS Model and Problem Area for the IETF

 Managing a network of systems running a variety of routing protocols
 and/or providing one or more additional services (e.g., forwarding,
 classification and policing, firewalling) involves interactions
 between multiple components within these systems. Some of these
 systems or system components may be virtualized, co-located within
 the same physical system, or distributed. In all cases, it is
 desirable to enable network applications to manage and control the
 services provided by many, if not all, of these components, subject
 to authenticated and authorized access and policies.

 A data-model-driven interface to the routing system is needed. This
 will allow expansion of what information can be read and controlled
 and allow for future flexibility. At least one accompanying protocol
 with clearly defined operations is needed; the suitable protocol(s)
 can be identified and expanded to support the requirements of an
 Interface to the Routing System (I2RS). These solutions must be
 designed to facilitate rapid, isolated, secure, and dynamic changes
 to a device's routing system. These would facilitate wide-scale
 deployment of interoperable applications and routing systems.

 The I2RS model and problem area for IETF work is illustrated in
 Figure 1. This document uses terminology defined in [RFC7921]. The
 I2RS agent is associated with a routing element, which may or may not
 be co-located with a data plane. The I2RS client could be integrated
 in a network application or controlled and used by one or more
 separate network applications. For instance, an I2RS client could be
 provided by a network controller or a network orchestration system
 that provides a non-I2RS interface to network applications and an
 I2RS interface to I2RS agents on the systems being managed. The
 scope of the data models used by I2RS extends across the entire
 routing system and the selected protocol(s) for I2RS.

 As depicted in Figure 1, the I2RS client and I2RS agent in a routing
 system are objects with in the I2RS scope. The selected protocol(s)
 for I2RS extend between the I2RS client and I2RS agent. All other
 objects and interfaces in Figure 1 are outside the I2RS scope for
 standardization.

 +***************+ +***************+ +***************+
 * Application * * Application * * Application *
 +***************+ +***************+ +***************+
 | I2RS Client | ^ ^
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * *
 ^ * ****************
 | * *
 | v v
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | I2RS Client |<‑‑‑‑‑‑‑>| Other I2RS |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | Agents |
 | ^ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |________________ |
 | | <== I2RS Protocol
 | |
 |..|..................................
 . v v .
 . +*************+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +****************+ .
 . * Policy * | | * Routing & * .
 . * Database *<***>| I2RS Agent |<****>* Signaling * .
 . +*************+ | | * Protocols * .
 . +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +****************+ .
 . ^ ^ ^ ^ .
 . +*************+ * * * * .
 . * Topology * * * * * .
 . * Database *<*******+ * * v .
 . +*************+ * * +****************+ .
 . * +********>* RIB Manager * .
 . * +****************+ .
 . * ^ .
 . v * .
 . +*******************+ * .
 . * Subscription & * * .
 . * Configuration * v .
 . * Templates for * +****************+ .
 . * Measurements, * * FIB Manager * .
 . * Events, QoS, etc. * * & Data Plane * .
 . +*******************+ +****************+ .
 ...

<‑‑> interfaces inside the scope of I2RS Protocol

+‑‑+ objects inside the scope of I2RS‑defined behavior

<**> interfaces NOT within the scope of I2RS Protocol

+**+ objects NOT within the scope of I2RS‑defined behavior

<== used to point to the interface where the I2RS Protocol
 would be used

 boundary of a router supporting I2RS

 Figure 1: I2RS Model and Problem Area

 The protocol(s) used to carry messages between I2RS clients and I2RS
 agents should provide the key features specified in Section 5.

 I2RS will use a set of meaningful data models for information in the
 routing system and in a topology database. Each data model should
 describe the meaning and relationships of the modeled items. The
 data models should be separable across different features of the
 managed components, versioned, and extendable. As shown in Figure 1,
 I2RS needs to interact with several logical components of the routing
 element: policy database, topology database, subscription and
 configuration for dynamic measurements/events, routing and signaling
 protocols, and its Routing Information Base (RIB) manager. This
 interaction is both for writing (e.g., to policy databases or RIB
 manager) as well as for reading (e.g., dynamic measurement or
 topology database). An application should be able to combine data
 from individual routing elements to provide network-wide data
 model(s).

 The data models should translate into a concise transfer syntax, sent
 via the I2RS protocol, that is straightforward for applications to
 use (e.g., a web services design paradigm). The information transfer
 should use existing transport protocols to provide the reliability,
 security, and timeliness appropriate for the particular data.

3. Standard Data Models of Routing State for Installation

 As described in Section 1, there is a need to be able to precisely
 control routing and signaling state based upon policy or external
 measures. One set of data models that I2RS should focus on is for
 interacting with the RIB layer (e.g., RIB, Label Information Base
 (LIB), multicast RIB, policy-based routing) to provide flexibility
 and routing abstractions. As an example, the desired routing and
 signaling state might range from simple static routes to policy-based
 routing to static multicast replication and routing state. This
 means that, to usefully model next hops, the data model employed
 needs to handle next-hop indirection and recursion (e.g., a prefix X
 is routed like prefix Y) as well as different types of tunneling and
 encapsulation.

 Efforts to provide this level of control have focused on
 standardizing data models that describe the forwarding plane (e.g.,
 Forwarding and Control Element Separation (ForCES) [RFC3746]). I2RS
 recognizes that the routing system and a router's OS provide useful
 mechanisms that applications could usefully harness to accomplish
 application-level goals. Using routing indirection, recursion, and
 common routing abstractions (e.g., tunnels, Label Switched Paths
 (LSPs), etc.) provides significant flexibility and functionality over
 collapsing the state to individual routes in the Forwarding
 Information Base (FIB) that need to be individually modified when a
 change occurs.

 In addition to interfaces to control the RIB layer, there is a need
 to dynamically configure policies and parameter values for the
 various routing and signaling protocols based upon application-level
 policy decisions.

4. Learning Router Information

 A router has information that applications may require so that they
 can understand the network, verify that programmed state is
 installed, measure the behavior of various flows, and understand the
 existing configuration and state of the router. I2RS should provide
 a framework so that applications can register for asynchronous
 notifications and can make specific requests for information.

 Although there are efforts to extend the topological information
 available, even the best of these (e.g., BGP-LS [RFC7752]) still only
 provide the current active state as seen at the IGP and BGP layers.
 Detailed topological state that provides more information than the
 current functional status (e.g., active paths and links) is needed by
 applications. Examples of missing information include paths or links
 that are potentially available (e.g., administratively down) or
 unknown (e.g., to peers or customers) to the routing topology.

 For applications to have a feedback loop that includes awareness of
 the relevant traffic, an application must be able to request the
 measurement and timely, scalable reporting of data. While a
 mechanism such as IP Flow Information Export (IPFIX) [RFC5470] may be
 the facilitator for delivering the data, providing the ability for an
 application to dynamically request that measurements be taken and
 data delivered is important.

 There is a wide range of events that applications could use to
 support verification of router state before other network state is
 changed (e.g., that a route has been installed) and to allow timely
 action in response to changes of relevant routes by others or to
 router events (e.g., link up/down). While a few of these (e.g., link
 up/down) may be available via MIB notifications today, the full range
 is not (e.g., route installed, route changed, primary LSP changed,
 etc.)

5. Aspects to be Considered for an I2RS Protocol

 This section describes required aspects of a protocol that could
 support I2RS. Whether such a protocol is built upon extending
 existing mechanisms or requires a new mechanism requires further
 investigation.

 The key aspects needed in an interface to the routing system are:

Multiple Simultaneous Asynchronous Operations: A single application
 should be able to send multiple independent atomic operations via
 I2RS without being required to wait for each to complete before
 sending the next.

Very Fine Granularity of Data Locking for Writing: When an I2RS
 operation is processed, it is required that the data locked for
 writing be very granular (e.g., a particular prefix and route)
 rather than extremely coarse, as is done for writing
 configuration. This should improve the number of concurrent I2RS
 operations that are feasible and reduce blocking delays.

Multi‑Headed Control: Multiple applications may communicate to the
 same I2RS agent in a minimally coordinated fashion. It is
 necessary that the I2RS agent can handle multiple requests in a
 well‑known policy‑based fashion. Data written can be owned by
 different I2RS clients at different times; data may even be
 overwritten by a different I2RS client. The details of how this
 should be handled are described in [RFC7921].

Duplex: Communications can be established by either the I2RS client
 (i.e., that resides within the application or is used by it to
 communicate with the I2RS agent) or the I2RS agent. Similarly,
 events, acknowledgements, failures, operations, etc., can be sent
 at any time by both the router and the application. The I2RS is
 not a pure pull model where only the application queries to pull
 responses.

High Throughput: At a minimum, the I2RS agent and associated router
 should be able to handle a considerable number of operations per
 second (for example, 10,000 per second to handle many individual
 subscriber routes changing simultaneously).

Low Latency: Within a sub‑second timescale, it should be possible
 to complete simple operations (e.g., reading or writing a single
 prefix route).

Multiple Channels: It should be possible for information to be
 communicated via the interface from different components in the
 router without requiring going through a single channel. For
 example, for scaling, some exported data or events may be better
 sent directly from the forwarding plane, while other interactions
 may come from the control plane. One channel, with authorization
 and authentication, may be considered primary; only an authorized
 client can then request that information be delivered on a
 different channel. Writes from a client are only expected on
 channels that provide authorization and authentication.

Scalable, Filterable Information Access: To extract information in a
 scalable fashion that is more easily used by applications, the
 ability to specify filtering constructs in an operation requesting
 data or requesting an asynchronous notification is very valuable.

Secure Control and Access: Any ability to manipulate routing state
 must be subject to authentication and authorization. Sensitive
 routing information also may need to be provided via secure access
 back to the I2RS client. Such communications must be integrity
 protected. Most communications will also require confidentiality.

Extensibility and Interoperability: Both the I2RS protocol and
 models must be extensible and interoperate between different
 versions of protocols and models.

6. Security Considerations

 Security is a key aspect of any protocol that allows state
 installation and extracting of detailed router state. The need for
 secure control and access is mentioned in Section 5. More
 architectural security considerations are discussed in [RFC7921].
 Briefly, the I2RS agent is assumed to have a separate authentication
 and authorization channel by which it can validate both the identity
 and the permissions associated with an I2RS client. Mutual
 authentication between the I2RS agent and I2RS client is required.
 Different levels of integrity, confidentiality, and replay protection
 are relevant for different aspects of I2RS.

7. References

7.1. Normative References

 [RFC7921]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
 <http://www.rfc-editor.org/info/rfc7921>.

7.2. Informative References

 [RFC3746]
 Yang, L., Dantu, R., Anderson, T., and R. Gopal,
 "Forwarding and Control Element Separation (ForCES)
 Framework", RFC 3746, DOI 10.17487/RFC3746, April 2004,
 <http://www.rfc-editor.org/info/rfc3746>.

 [RFC5470]
 Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
 "Architecture for IP Flow Information Export", RFC 5470,
 DOI 10.17487/RFC5470, March 2009,
 <http://www.rfc-editor.org/info/rfc5470>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <http://www.rfc-editor.org/info/rfc7752>.

Appendix A. Existing Management Interfaces

 This section discusses as a single entity the combination of the
 abstract data models, their representation in a data language, and
 the transfer protocol commonly used with them. While other
 combinations of these existing standard technologies are possible,
 the ways described are ones that have significant deployment.

 There are three basic ways that routers are managed. The most
 popular is the command-line interface (CLI), which allows both
 configuration and learning of device state. This is a proprietary
 interface resembling a UNIX shell that allows for very customized
 control and observation of a device, and, specifically of interest in
 this case, its routing system. Some form of this interface exists on
 almost every device (virtual or otherwise). Processing of
 information returned to the CLI (called "screen scraping") is a
 burdensome activity because the data is normally formatted for use by
 a human operator and because the layout of the data can vary from
 device to device and between different software versions. Despite
 its ubiquity, this interface has never been standardized and is
 unlikely to ever be standardized. CLI standardization is not
 considered as a candidate solution for the problems motivating I2RS.

 The second most popular interface for interrogation of a device's
 state, statistics, and configuration is the Simple Network Management
 Protocol (SNMP) and a set of relevant standards-based and proprietary
 Management Information Base (MIB) modules. SNMP has a strong history
 of being used by network managers to gather statistical and state
 information about devices, including their routing systems. However,
 SNMP is very rarely used to configure a device or any of its systems
 for reasons that vary depending upon the network operator. Some
 example reasons include complexity, the lack of desired configuration
 semantics (e.g., configuration rollback, sandboxing, or configuration
 versioning) and the difficulty of using the semantics (or lack
 thereof) as defined in the MIB modules to configure device features.
 Therefore, SNMP is not considered as a candidate solution for the
 problems motivating I2RS.

 Finally, the IETF's Network Configuration Protocol (NETCONF)
 [RFC6241] has made many strides at overcoming most of the limitations
 around configuration that were just described. However, as a new
 technology and with the initial lack of standard data models, the
 adoption of NETCONF has been slow. As needed, I2RS will identify and
 define information and data models to support I2RS applications.
 Additional extensions to handle multi-headed control may need to be
 added to NETCONF and/or appropriate data models.

Acknowledgements

 The authors would like to thank Ken Gray, Ed Crabbe, Nic Leymann,
 Carlos Pignataro, Kwang-koog Lee, Linda Dunbar, Sue Hares, Russ
 Housley, Eric Grey, Qin Wu, Stephen Kent, Nabil Bitar, Deborah
 Brungard, and Sarah Banks for their suggestions and review.

Authors' Addresses

Alia Atlas (editor)
Juniper Networks

 Email: akatlas@juniper.net

Thomas D. Nadeau (editor)
Brocade

 Email: tnadeau@lucidvision.com

Dave Ward
Cisco Systems

 Email: wardd@cisco.com

7921 - An Architecture for the Interface to the Routing System

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7921

Category: Informational

ISSN: 2070-1721

A. Atlas

Juniper Networks

J. Halpern

Ericsson

S. Hares

Huawei

D. Ward

Cisco Systems

T. Nadeau

Brocade

June 2016

An Architecture for the Interface to the Routing System

Abstract

 This document describes the IETF architecture for a standard,
 programmatic interface for state transfer in and out of the Internet
 routing system. It describes the high-level architecture, the
 building blocks of this high-level architecture, and their
 interfaces, with particular focus on those to be standardized as part
 of the Interface to the Routing System (I2RS).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7921.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Drivers for the I2RS Architecture

	 1.2. Architectural Overview

	2. Terminology

	3. Key Architectural Properties
	 3.1. Simplicity

	 3.2. Extensibility

	 3.3. Model-Driven Programmatic Interfaces

	4. Security Considerations
	 4.1. Identity and Authentication

	 4.2. Authorization

	 4.3. Client Redundancy

	 4.4. I2RS in Personal Devices

	5. Network Applications and I2RS Client
	 5.1. Example Network Application: Topology Manager

	6. I2RS Agent Role and Functionality
	 6.1. Relationship to Its Routing Element

	 6.2. I2RS State Storage
	 6.2.1. I2RS Agent Failure

	 6.2.2. Starting and Ending

	 6.2.3. Reversion

	 6.3. Interactions with Local Configuration
	 6.3.1. Examples of Local Configuration vs. I2RS Ephemeral Configuration

	 6.4. Routing Components and Associated I2RS Services
	 6.4.1. Routing and Label Information Bases

	 6.4.2. IGPs, BGP, and Multicast Protocols

	 6.4.3. MPLS

	 6.4.4. Policy and QoS Mechanisms

	 6.4.5. Information Modeling, Device Variation, and Information Relationships
	 6.4.5.1. Managing Variation: Object Classes/Types and Inheritance

	 6.4.5.2. Managing Variation: Optionality

	 6.4.5.3. Managing Variation: Templating

	 6.4.5.4. Object Relationships
	 6.4.5.4.1. Initialization

	 6.4.5.4.2. Correlation Identification

	 6.4.5.4.3. Object References

	 6.4.5.4.4. Active References

	7. I2RS Client Agent Interface
	 7.1. One Control and Data Exchange Protocol

	 7.2. Communication Channels

	 7.3. Capability Negotiation

	 7.4. Scope Policy Specifications

	 7.5. Connectivity

	 7.6. Notifications

	 7.7. Information Collection

	 7.8. Multi-headed Control

	 7.9. Transactions

	8. Operational and Manageability Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 Routers that form the Internet routing infrastructure maintain state
 at various layers of detail and function. For example, a typical
 router maintains a Routing Information Base (RIB) and implements
 routing protocols such as OSPF, IS-IS, and BGP to exchange
 reachability information, topology information, protocol state, and
 other information about the state of the network with other routers.

 Routers convert all of this information into forwarding entries,
 which are then used to forward packets and flows between network
 elements. The forwarding plane and the specified forwarding entries
 then contain active state information that describes the expected and
 observed operational behavior of the router and that is also needed
 by the network applications. Network-oriented applications require
 easy access to this information to learn the network topology, to
 verify that programmed state is installed in the forwarding plane, to
 measure the behavior of various flows, routes or forwarding entries,
 as well as to understand the configured and active states of the
 router. Network-oriented applications also require easy access to an
 interface, which will allow them to program and control state related
 to forwarding.

 This document sets out an architecture for a common, standards-based
 interface to this information. This Interface to the Routing System
 (I2RS) facilitates control and observation of the routing-related
 state (for example, a Routing Element RIB manager's state), as well
 as enabling network-oriented applications to be built on top of
 today's routed networks. The I2RS is a programmatic asynchronous
 interface for transferring state into and out of the Internet routing
 system. This I2RS architecture recognizes that the routing system
 and a router's Operating System (OS) provide useful mechanisms that
 applications could harness to accomplish application-level goals.
 These network-oriented applications can leverage the I2RS
 programmatic interface to create new ways to combine retrieving
 Internet routing data, analyzing this data, and setting state within
 routers.

 Fundamental to I2RS are clear data models that define the semantics
 of the information that can be written and read. I2RS provides a way
 for applications to customize network behavior while leveraging the
 existing routing system as desired. I2RS provides a framework for
 applications (including controller applications) to register and to
 request the appropriate information for each particular application.

 Although the I2RS architecture is general enough to support
 information and data models for a variety of data, and aspects of the
 I2RS solution may be useful in domains other than routing, I2RS and
 this document are specifically focused on an interface for routing
 data.

 Security is a concern for any new I2RS. Section 4 provides an
 overview of the security considerations for the I2RS architecture.
 The detailed requirements for I2RS protocol security are contained in
 [I2RS-PROT-SEC], and the detailed security requirements for
 environment in which the I2RS protocol exists are contained in
 [I2RS-ENV-SEC].

1.1. Drivers for the I2RS Architecture

 There are four key drivers that shape the I2RS architecture. First
 is the need for an interface that is programmatic and asynchronous
 and that offers fast, interactive access for atomic operations.
 Second is the access to structured information and state that is
 frequently not directly configurable or modeled in existing
 implementations or configuration protocols. Third is the ability to
 subscribe to structured, filterable event notifications from the
 router. Fourth, the operation of I2RS is to be data-model-driven to
 facilitate extensibility and provide standard data models to be used
 by network applications.

 I2RS is described as an asynchronous programmatic interface, the key
 properties of which are described in Section 5 of [RFC7920].

 The I2RS architecture facilitates obtaining information from the
 router. The I2RS architecture provides the ability to not only read
 specific information, but also to subscribe to targeted information
 streams, filtered events, and thresholded events.

 Such an interface also facilitates the injection of ephemeral state
 into the routing system. Ephemeral state on a router is the state
 that does not survive the reboot of a routing device or the reboot of
 the software handling the I2RS software on a routing device. A non-
 routing protocol or application could inject state into a routing
 element via the state-insertion functionality of I2RS and that state
 could then be distributed in a routing or signaling protocol and/or
 be used locally (e.g., to program the co-located forwarding plane).
 I2RS will only permit modification of state that would be possible to
 modify via Local Configuration; no direct manipulation of protocol-
 internal, dynamically determined data is envisioned.

1.2. Architectural Overview

 Figure 1 shows the basic architecture for I2RS between applications
 using I2RS, their associated I2RS clients, and I2RS agents.
 Applications access I2RS services through I2RS clients. A single
 I2RS client can provide access to one or more applications. This
 figure also shows the types of data models associated with the
 routing system (dynamic configuration, static configuration, Local
 Configuration, and routing and signaling configuration) that the I2RS
 agent data models may access or augment.

 Figure 1 is similar to Figure 1 in [RFC7920], but the figure in this
 document shows additional detail on how the applications utilize I2RS
 clients to interact with I2RS agents. It also shows a logical view
 of the data models associated with the routing system rather than a
 functional view (RIB, Forwarding Information Base (FIB), topology,
 policy, routing/signaling protocols, etc.)

 In Figure 1, Clients A and B each provide access to a single
 application (Applications A and B, respectively), while Client P
 provides access to multiple applications.

 Applications can access I2RS services through local or remote
 clients. A local client operates on the same physical box as the
 routing system. In contrast, a remote client operates across the
 network. In the figure, Applications A and B access I2RS services
 through local clients, while Applications C, D, and E access I2RS
 services through a remote client. The details of how applications
 communicate with a remote client is out of scope for I2RS.

 An I2RS client can access one or more I2RS agents. In Figure 1,
 Clients B and P access I2RS agents 1 and 2. Likewise, an I2RS agent
 can provide service to one or more clients. In this figure, I2RS
 agent 1 provides services to Clients A, B, and P while Agent 2
 provides services to only Clients B and P.

 I2RS agents and clients communicate with one another using an
 asynchronous protocol. Therefore, a single client can post multiple
 simultaneous requests, either to a single agent or to multiple
 agents. Furthermore, an agent can process multiple requests, either
 from a single client or from multiple clients, simultaneously.

 The I2RS agent provides read and write access to selected data on the
 routing element that are organized into I2RS services. Section 4
 describes how access is mediated by authentication and access control
 mechanisms. Figure 1 shows I2RS agents being able to write ephemeral
 static state (e.g., RIB entries) and to read from dynamic static
 (e.g., MPLS Label Switched Path Identifier (LSP-ID) or number of
 active BGP peers).

 In addition to read and write access, the I2RS agent allows clients
 to subscribe to different types of notifications about events
 affecting different object instances. One example of a notification
 of such an event (which is unrelated to an object creation,
 modification or deletion) is when a next hop in the RIB is resolved
 in a way that allows it to be used by a RIB manager for installation
 in the forwarding plane as part of a particular route. Please see
 Sections 7.6 and 7.7 for details.

 The scope of I2RS is to define the interactions between the I2RS
 agent and the I2RS client and the associated proper behavior of the
 I2RS agent and I2RS client.

 ****************** ***************** *****************
 * Application C * * Application D * * Application E *
 ****************** ***************** *****************
 ^ ^ ^
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | | |
 v v v

 * Client P *

 ^ ^
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 *********************** | *********************** |
 * Application A * | * Application B * |
 * * | * * |
 * +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * | * +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * |
 * | Client A | * | * | Client B | * |
 * +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * | * +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * |
 ******* ^ ************* | ***** ^ ****** ^ ****** |
 | | | | | | |
 | |‑‑‑‑‑‑‑‑‑‑‑‑‑| | | |‑‑‑‑‑|
 | | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | |
 | | | | |
************ v * v * v ********* ***************** v * v ********
* +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ *
* | Agent 1 | * * | Agent 2 | *
* +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ *
* ^ ^ ^ ^ * * ^ ^ ^ ^ *
* | | | | * * | | | | *
* v | | v * * v | | v *
* +‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑‑+ | | +‑‑‑‑‑‑‑‑+ *
* | Routing | | | | Local | * * | Routing | | | | Local | *
* | and | | | | Config | * * | and | | | | Config | *
* |Signaling| | | +‑‑‑‑‑‑‑‑+ * * |Signaling| | | +‑‑‑‑‑‑‑‑+ *
* +‑‑‑‑‑‑‑‑‑+ | | ^ * * +‑‑‑‑‑‑‑‑‑+ | | ^ *
* ^ | | | * * ^ | | | *
* | |‑‑‑‑| | | * * | |‑‑‑‑| | | *
* v | v v * * v | v v *
* +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ *
* | Dynamic | | Static | * * | Dynamic | | Static | *
* | System | | System | * * | System | | System | *
* | State | | State | * * | State | | State | *
* +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ *
* * * *
* Routing Element 1 * * Routing Element 2 *
******************************** ********************************

 Figure 1: Architecture of I2RS Clients and Agents

Routing Element: A Routing Element implements some subset of the
 routing system. It does not need to have a forwarding plane
 associated with it. Examples of Routing Elements can include:

 * A router with a forwarding plane and RIB Manager that runs
 IS-IS, OSPF, BGP, PIM, etc.,

 * A BGP speaker acting as a Route Reflector,

 * A Label Switching Router (LSR) that implements RSVP-TE,
 OSPF-TE, and the Path Computation Element (PCE) Communication
 Protocol (PCEP) and has a forwarding plane and associated RIB
 Manager, and

 * A server that runs IS-IS, OSPF, and BGP and uses Forwarding and
 Control Element Separation (ForCES) to control a remote
 forwarding plane.

 A Routing Element may be locally managed, whether via command-line
 interface (CLI), SNMP, or the Network Configuration Protocol
 (NETCONF).

Routing and Signaling: This block represents that portion of the
 Routing Element that implements part of the Internet routing
 system. It includes not merely standardized protocols (i.e.,
 IS‑IS, OSPF, BGP, PIM, RSVP‑TE, LDP, etc.), but also the RIB
 Manager layer.

Local Configuration: The black box behavior for interactions between
 the ephemeral state that I2RS installs into the routing element;
 Local Configuration is defined by this document and the behaviors
 specified by the I2RS protocol.

Dynamic System State: An I2RS agent needs access to state on a
 routing element beyond what is contained in the routing subsystem.
 Such state may include various counters, statistics, flow data,
 and local events. This is the subset of operational state that is
 needed by network applications based on I2RS that is not contained
 in the routing and signaling information. How this information is
 provided to the I2RS agent is out of scope, but the standardized
 information and data models for what is exposed are part of I2RS.

Static System State: An I2RS agent needs access to static state on a
 routing element beyond what is contained in the routing subsystem.
 An example of such state is specifying queueing behavior for an
 interface or traffic. How the I2RS agent modifies or obtains this
 information is out of scope, but the standardized information and
 data models for what is exposed are part of I2RS.

I2RS agent: See the definition in Section 2.

Application: A network application that needs to observe the network
 or manipulate the network to achieve its service requirements.

I2RS client: See the definition in Section 2.

 As can be seen in Figure 1, an I2RS client can communicate with
 multiple I2RS agents. Similarly, an I2RS agent may communicate with
 multiple I2RS clients -- whether to respond to their requests, to
 send notifications, etc. Timely notifications are critical so that
 several simultaneously operating applications have up-to-date
 information on the state of the network.

 As can also be seen in Figure 1, an I2RS agent may communicate with
 multiple clients. Each client may send the agent a variety of write
 operations. In order to keep the protocol simple, two clients should
 not attempt to write (modify) the same piece of information on an
 I2RS agent. This is considered an error. However, such collisions
 may happen and Section 7.8 ("Multi-headed Control") describes how the
 I2RS agent resolves collision by first utilizing priority to resolve
 collisions and second by servicing the requests in a first-in, first-
 served basis. The I2RS architecture includes this definition of
 behavior for this case simply for predictability, not because this is
 an intended result. This predictability will simplify error handling
 and suppress oscillations. If additional error cases beyond this
 simple treatment are required, these error cases should be resolved
 by the network applications and management systems.

 In contrast, although multiple I2RS clients may need to supply data
 into the same list (e.g., a prefix or filter list), this is not
 considered an error and must be correctly handled. The nuances so
 that writers do not normally collide should be handled in the
 information models.

 The architectural goal for I2RS is that such errors should produce
 predictable behaviors and be reportable to interested clients. The
 details of the associated policy is discussed in Section 7.8. The
 same policy mechanism (simple priority per I2RS client) applies to
 interactions between the I2RS agent and the CLI/SNMP/NETCONF as
 described in Section 6.3.

 In addition, it must be noted that there may be indirect interactions
 between write operations. A basic example of this is when two
 different but overlapping prefixes are written with different
 forwarding behavior. Detection and avoidance of such interactions is
 outside the scope of the I2RS work and is left to agent design and
 implementation.

2. Terminology

 The following terminology is used in this document.

agent or I2RS agent: An I2RS agent provides the supported I2RS
 services from the local system's routing subsystems by interacting
 with the routing element to provide specified behavior. The I2RS
 agent understands the I2RS protocol and can be contacted by I2RS
 clients.

client or I2RS client: A client implements the I2RS protocol, uses
 it to communicate with I2RS agents, and uses the I2RS services to
 accomplish a task. It interacts with other elements of the
 policy, provisioning, and configuration system by means outside of
 the scope of the I2RS effort. It interacts with the I2RS agents
 to collect information from the routing and forwarding system.
 Based on the information and the policy‑oriented interactions, the
 I2RS client may also interact with I2RS agents to modify the state
 of their associated routing systems to achieve operational goals.
 An I2RS client can be seen as the part of an application that uses
 and supports I2RS and could be a software library.

service or I2RS service: For the purposes of I2RS, a service refers
 to a set of related state access functions together with the
 policies that control their usage. The expectation is that a
 service will be represented by a data model. For instance, 'RIB
 service' could be an example of a service that gives access to
 state held in a device's RIB.

read scope: The read scope of an I2RS client within an I2RS agent
 is the set of information that the I2RS client is authorized to
 read within the I2RS agent. The read scope specifies the access
 restrictions to both see the existence of data and read the value
 of that data.

notification scope: The notification scope is the set of events and
 associated information that the I2RS client can request be pushed
 by the I2RS agent. I2RS clients have the ability to register for
 specific events and information streams, but must be constrained
 by the access restrictions associated with their notification
 scope.

write scope: The write scope is the set of field values that the
 I2RS client is authorized to write (i.e., add, modify or delete).
 This access can restrict what data can be modified or created, and
 what specific value sets and ranges can be installed.

scope: When unspecified as either read scope, write scope, or
 notification scope, the term "scope" applies to the read scope,
 write scope, and notification scope.

resources: A resource is an I2RS‑specific use of memory, storage,
 or execution that a client may consume due to its I2RS operations.
 The amount of each such resource that a client may consume in the
 context of a particular agent may be constrained based upon the
 client's security role. An example of such a resource could
 include the number of notifications registered for. These are not
 protocol‑specific resources or network‑specific resources.

role or security role: A security role specifies the scope,
 resources, priorities, etc., that a client or agent has. If an
 identity has multiple roles in the security system, the identity
 is permitted to perform any operations any of those roles permit.
 Multiple identities may use the same security role.

identity: A client is associated with exactly one specific
 identity. State can be attributed to a particular identity. It
 is possible for multiple communication channels to use the same
 identity; in that case, the assumption is that the associated
 client is coordinating such communication.

identity and scope: A single identity can be associated with
 multiple roles. Each role has its own scope, and an identity
 associated with multiple roles can use the combined scope of all
 its roles. More formally, each identity has:

 * a read scope that is the logical OR of the read scopes
 associated with its roles,

 * a write scope that is the logical OR of the write scopes
 associated with its roles, and

 * a notification scope that is the logical OR of the notification
 scopes associated with its roles.

secondary identity: An I2RS client may supply a secondary opaque
 identifier for a secondary identity that is not interpreted by the
 I2RS agent. An example of the use of the secondary opaque
 identifier is when the I2RS client is a go‑between for multiple
 applications and it is necessary to track which application has
 requested a particular operation.

ephemeral data: Ephemeral data is data that does not persist across
 a reboot (software or hardware) or a power on/off condition.
 Ephemeral data can be configured data or data recorded from
 operations of the router. Ephemeral configuration data also has
 the property that a system cannot roll back to a previous
 ephemeral configuration state.

group: The NETCONF Access Control Model [RFC6536] uses the term
 "group" in terms of an administrative group that supports the
 well‑established distinction between a root account and other
 types of less‑privileged conceptual user accounts. "Group" still
 refers to a single identity (e.g., root) that is shared by a group
 of users.

routing system/subsystem: A routing system or subsystem is a set of
 software and/or hardware that determines where packets are
 forwarded. The I2RS agent is a component of a routing system.
 The term "packets" may be qualified to be layer 1 frames, layer 2
 frames, or layer 3 packets. The phrase "Internet routing system"
 implies the packets that have IP as layer 3. A routing
 "subsystem" indicates that the routing software/hardware is only
 the subsystem of another larger system.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Key Architectural Properties

 Several key architectural properties for the I2RS protocol are
 elucidated below (simplicity, extensibility, and model-driven
 programmatic interfaces). However, some architectural properties
 such as performance and scaling are not described below because they
 are discussed in [RFC7920] and because they may vary based on the
 particular use cases.

3.1. Simplicity

 There have been many efforts over the years to improve access to the
 information available to the routing and forwarding system. Making
 such information visible and usable to network management and
 applications has many well-understood benefits. There are two
 related challenges in doing so. First, the quantity and diversity of
 information potentially available is very large. Second, the
 variation both in the structure of the data and in the kinds of
 operations required tends to introduce protocol complexity.

 While the types of operations contemplated here are complex in their
 nature, it is critical that I2RS be easily deployable and robust.
 Adding complexity beyond what is needed to satisfy well known and
 understood requirements would hinder the ease of implementation, the
 robustness of the protocol, and the deployability of the protocol.
 Overly complex data models tend to ossify information sets by
 attempting to describe and close off every possible option,
 complicating extensibility.

 Thus, one of the key aims for I2RS is to keep the protocol and
 modeling architecture simple. So for each architectural component or
 aspect, we ask ourselves, "Do we need this complexity, or is the
 behavior merely nice to have?" If we need the complexity, we should
 ask ourselves, "Is this the simplest way to provide this complexity
 in the I2RS external interface?"

3.2. Extensibility

 Extensibility of the protocol and data model is very important. In
 particular, given the necessary scope limitations of the initial
 work, it is critical that the initial design include strong support
 for extensibility.

 The scope of I2RS work is being designed in phases to provide
 deliverable and deployable results at every phase. Each phase will
 have a specific set of requirements, and the I2RS protocol and data
 models will progress toward these requirements. Therefore, it is
 clearly desirable for the I2RS data models to be easily and highly
 extensible to represent additional aspects of the network elements or
 network systems. It should be easy to integrate data models from
 I2RS with other data. This reinforces the criticality of designing
 the data models to be highly extensible, preferably in a regular and
 simple fashion.

 The I2RS Working Group is defining operations for the I2RS protocol.
 It would be optimistic to assume that more and different ones may not
 be needed when the scope of I2RS increases. Thus, it is important to
 consider extensibility not only of the underlying services' data
 models, but also of the primitives and protocol operations.

3.3. Model-Driven Programmatic Interfaces

 A critical component of I2RS is the standard information and data
 models with their associated semantics. While many components of the
 routing system are standardized, associated data models for them are
 not yet available. Instead, each router uses different information,
 different mechanisms, and different CLI, which makes a standard
 interface for use by applications extremely cumbersome to develop and
 maintain. Well-known data modeling languages exist and may be used
 for defining the data models for I2RS.

 There are several key benefits for I2RS in using model-driven
 architecture and protocol(s). First, it allows for data-model-
 focused processing of management data that provides modular
 implementation in I2RS clients and I2RS agents. The I2RS client only
 needs to implement the models the I2RS client is able to access. The
 I2RS agent only needs to implement the data models the I2RS agent
 supports.

 Second, tools can automate checking and manipulating data; this is
 particularly valuable for both extensibility and for the ability to
 easily manipulate and check proprietary data models.

 The different services provided by I2RS can correspond to separate
 data models. An I2RS agent may indicate which data models are
 supported.

 The purpose of the data model is to provide a definition of the
 information regarding the routing system that can be used in
 operational networks. If routing information is being modeled for
 the first time, a logical information model may be standardized prior
 to creating the data model.

4. Security Considerations

 This I2RS architecture describes interfaces that clearly require
 serious consideration of security. As an architecture, I2RS has been
 designed to reuse existing protocols that carry network management
 information. Two of the existing protocols that are being reused for
 the I2RS protocol version 1 are NETCONF [RFC6241] and RESTCONF
 [RESTCONF]. Additional protocols may be reused in future versions of
 the I2RS protocol.

 The I2RS protocol design process will be to specify additional
 requirements (including security) for the existing protocols in order
 in order to support the I2RS architecture. After an existing
 protocol (e.g., NETCONF or RESTCONF) has been altered to fit the I2RS
 requirements, then it will be reviewed to determine if it meets these
 requirements. During this review of changes to existing protocols to
 serve the I2RS architecture, an in-depth security review of the
 revised protocol should be done.

 Due to the reuse strategy of the I2RS architecture, this security
 section describes the assumed security environment for I2RS with
 additional details on a) identity and authentication, b)
 authorization, and c) client redundancy. Each protocol proposed for
 inclusion as an I2RS protocol will need to be evaluated for the
 security constraints of the protocol. The detailed requirements for
 the I2RS protocol and the I2RS security environment will be defined
 within these global security environments.

 The I2RS protocol security requirements for I2RS protocol version 1
 are contained in [I2RS-PROT-SEC], and the global I2RS security
 environment requirements are contained [I2RS-ENV-SEC].

 First, here is a brief description of the assumed security
 environment for I2RS. The I2RS agent associated with a Routing
 Element is a trusted part of that Routing Element. For example, it
 may be part of a vendor-distributed signed software image for the
 entire Routing Element, or it may be a trusted signed application
 that an operator has installed. The I2RS agent is assumed to have a
 separate authentication and authorization channel by which it can
 validate both the identity and permissions associated with an I2RS
 client. To support numerous and speedy interactions between the I2RS
 agent and I2RS client, it is assumed that the I2RS agent can also
 cache that particular I2RS clients are trusted and their associated
 authorized scope. This implies that the permission information may
 be old either in a pull model until the I2RS agent re-requests it or
 in a push model until the authentication and authorization channel
 can notify the I2RS agent of changes.

 Mutual authentication between the I2RS client and I2RS agent is
 required. An I2RS client must be able to trust that the I2RS agent
 is attached to the relevant Routing Element so that write/modify
 operations are correctly applied and so that information received
 from the I2RS agent can be trusted by the I2RS client.

 An I2RS client is not automatically trustworthy. Each I2RS client is
 associated with an identity with a set of scope limitations.
 Applications using an I2RS client should be aware that the scope
 limitations of an I2RS client are based on its identity (see
 Section 4.1) and the assigned role that the identity has. A role
 sets specific authorization limits on the actions that an I2RS client
 can successfully request of an I2RS agent (see Section 4.2). For
 example, one I2RS client may only be able to read a static route
 table, but another client may be able add an ephemeral route to the
 static route table.

 If the I2RS client is acting as a broker for multiple applications,
 then managing the security, authentication, and authorization for
 that communication is out of scope; nothing prevents the broker from
 using the I2RS protocol and a separate authentication and
 authorization channel from being used. Regardless of the mechanism,
 an I2RS client that is acting as a broker is responsible for
 determining that applications using it are trusted and permitted to
 make the particular requests.

 Different levels of integrity, confidentiality, and replay protection
 are relevant for different aspects of I2RS. The primary
 communication channel that is used for client authentication and then
 used by the client to write data requires integrity, confidentiality
 and replay protection. Appropriate selection of a default required
 transport protocol is the preferred way of meeting these
 requirements.

 Other communications via I2RS may not require integrity,
 confidentiality, and replay protection. For instance, if an I2RS
 client subscribes to an information stream of prefix announcements
 from OSPF, those may require integrity but probably not
 confidentiality or replay protection. Similarly, an information
 stream of interface statistics may not even require guaranteed
 delivery. In Section 7.2, additional logins regarding multiple
 communication channels and their use is provided. From the security
 perspective, it is critical to realize that an I2RS agent may open a
 new communication channel based upon information provided by an I2RS
 client (as described in Section 7.2). For example, an I2RS client
 may request notifications of certain events, and the agent will open
 a communication channel to report such events. Therefore, to avoid
 an indirect attack, such a request must be done in the context of an
 authenticated and authorized client whose communications cannot have
 been altered.

4.1. Identity and Authentication

 As discussed above, all control exchanges between the I2RS client and
 agent should be authenticated and integrity-protected (such that the
 contents cannot be changed without detection). Further, manipulation
 of the system must be accurately attributable. In an ideal
 architecture, even information collection and notification should be
 protected; this may be subject to engineering trade-offs during the
 design.

 I2RS clients may be operating on behalf of other applications. While
 those applications' identities are not needed for authentication or
 authorization, each application should have a unique opaque
 identifier that can be provided by the I2RS client to the I2RS agent
 for purposes of tracking attribution of operations to an application
 identifier (and from that to the application's identity). This
 tracking of operations to an application supports I2RS functionality
 for tracing actions (to aid troubleshooting in routers) and logging
 of network changes.

4.2. Authorization

 All operations using I2RS, both observation and manipulation, should
 be subject to appropriate authorization controls. Such authorization
 is based on the identity and assigned role of the I2RS client
 performing the operations and the I2RS agent in the network element.
 Multiple identities may use the same role(s). As noted in the
 definitions of "identity" and "role" above, if multiple roles are
 associated with an identity then the identity is authorized to
 perform any operation authorized by any of its roles.

 I2RS agents, in performing information collection and manipulation,
 will be acting on behalf of the I2RS clients. As such, each
 operation authorization will be based on the lower of the two
 permissions of the agent itself and of the authenticated client. The
 mechanism by which this authorization is applied within the device is
 outside of the scope of I2RS.

 The appropriate or necessary level of granularity for scope can
 depend upon the particular I2RS service and the implementation's
 granularity. An approach to a similar access control problem is
 defined in the NETCONF Access Control Model (NACM) [RFC6536]; it
 allows arbitrary access to be specified for a data node instance
 identifier while defining meaningful manipulable defaults. The
 identity within NACM [RFC6536] can be specified as either a user name
 or a group user name (e.g., Root), and this name is linked a scope
 policy that is contained in a set of access control rules.
 Similarly, it is expected the I2RS identity links to one role that
 has a scope policy specified by a set of access control rules. This
 scope policy can be provided via Local Configuration, exposed as an
 I2RS service for manipulation by authorized clients, or via some
 other method (e.g., Authentication, Authorization, and Accounting
 (AAA) service)

 While the I2RS agent allows access based on the I2RS client's scope
 policy, this does not mean the access is required to arrive on a
 particular transport connection or from a particular I2RS client by
 the I2RS architecture. The operator-applied scope policy may or may
 not restrict the transport connection or the identities that can
 access a local I2RS agent.

 When an I2RS client is authenticated, its identity is provided to the
 I2RS agent, and this identity links to a role that links to the scope
 policy. Multiple identities may belong to the same role; for
 example, such a role might be an Internal-Routes-Monitor that allows
 reading of the portion of the I2RS RIB associated with IP prefixes
 used for internal device addresses in the AS.

4.3. Client Redundancy

 I2RS must support client redundancy. At the simplest, this can be
 handled by having a primary and a backup network application that
 both use the same client identity and can successfully authenticate
 as such. Since I2RS does not require a continuous transport
 connection and supports multiple transport sessions, this can provide
 some basic redundancy. However, it does not address the need for
 troubleshooting and logging of network changes to be informed about
 which network application is actually active. At a minimum, basic
 transport information about each connection and time can be logged
 with the identity.

4.4. I2RS in Personal Devices

 If an I2RS agent or I2RS client is tightly correlated with a person
 (such as if an I2RS agent is running on someone's phone to control
 tethering), then this usage can raise privacy issues, over and above
 the security issues that normally need to be handled in I2RS. One
 example of an I2RS interaction that could raise privacy issues is if
 the I2RS interaction enabled easier location tracking of a person's
 phone. The I2RS protocol and data models should consider if privacy
 issues can arise when clients or agents are used for such use cases.

5. Network Applications and I2RS Client

 I2RS is expected to be used by network-oriented applications in
 different architectures. While the interface between a network-
 oriented application and the I2RS client is outside the scope of
 I2RS, considering the different architectures is important to
 sufficiently specify I2RS.

 In the simplest architecture of direct access, a network-oriented
 application has an I2RS client as a library or driver for
 communication with routing elements.

 In the broker architecture, multiple network-oriented applications
 communicate in an unspecified fashion to a broker application that
 contains an I2RS client. That broker application requires additional
 functionality for authentication and authorization of the network-
 oriented applications; such functionality is out of scope for I2RS,
 but similar considerations to those described in Section 4.2 do
 apply. As discussed in Section 4.1, the broker I2RS client should
 determine distinct opaque identifiers for each network-oriented
 application that is using it. The broker I2RS client can pass along
 the appropriate value as a secondary identifier, which can be used
 for tracking attribution of operations.

 In a third architecture, a routing element or network-oriented
 application that uses an I2RS client to access services on a
 different routing element may also contain an I2RS agent to provide
 services to other network-oriented applications. However, where the
 needed information and data models for those services differs from
 that of a conventional routing element, those models are, at least
 initially, out of scope for I2RS. The following section describes an
 example of such a network application.

5.1. Example Network Application: Topology Manager

 A Topology Manager includes an I2RS client that uses the I2RS data
 models and protocol to collect information about the state of the
 network by communicating directly with one or more I2RS agents. From
 these I2RS agents, the Topology Manager collects routing
 configuration and operational data, such as interface and Label
 Switched Path (LSP) information. In addition, the Topology Manager
 may collect link-state data in several ways -- via I2RS models, by
 peering with BGP-LS [RFC7752], or by listening into the IGP.

 The set of functionality and collected information that is the
 Topology Manager may be embedded as a component of a larger
 application, such as a path computation application. As a stand-
 alone application, the Topology Manager could be useful to other
 network applications by providing a coherent picture of the network
 state accessible via another interface. That interface might use the
 same I2RS protocol and could provide a topology service using
 extensions to the I2RS data models.

6. I2RS Agent Role and Functionality

 The I2RS agent is part of a routing element. As such, it has
 relationships with that routing element as a whole and with various
 components of that routing element.

6.1. Relationship to Its Routing Element

 A Routing Element may be implemented with a wide variety of different
 architectures: an integrated router, a split architecture,
 distributed architecture, etc. The architecture does not need to
 affect the general I2RS agent behavior.

 For scalability and generality, the I2RS agent may be responsible for
 collecting and delivering large amounts of data from various parts of
 the routing element. Those parts may or may not actually be part of
 a single physical device. Thus, for scalability and robustness, it
 is important that the architecture allow for a distributed set of
 reporting components providing collected data from the I2RS agent
 back to the relevant I2RS clients. There may be multiple I2RS agents
 within the same router. In such a case, they must have non-
 overlapping sets of information that they manipulate.

 To facilitate operations, deployment, and troubleshooting, it is
 important that traceability of the requests received by I2RS agent's
 and actions taken be supported via a common data model.

6.2. I2RS State Storage

 State modification requests are sent to the I2RS agent in a routing
 element by I2RS clients. The I2RS agent is responsible for applying
 these changes to the system, subject to the authorization discussed
 above. The I2RS agent will retain knowledge of the changes it has
 applied, and the client on whose behalf it applied the changes. The
 I2RS agent will also store active subscriptions. These sets of data
 form the I2RS datastore. This data is retained by the agent until
 the state is removed by the client, it is overridden by some other
 operation such as CLI, or the device reboots. Meaningful logging of
 the application and removal of changes are recommended. I2RS-applied
 changes to the routing element state will not be retained across
 routing element reboot. The I2RS datastore is not preserved across
 routing element reboots; thus, the I2RS agent will not attempt to
 reapply such changes after a reboot.

6.2.1. I2RS Agent Failure

 It is expected that an I2RS agent may fail independently of the
 associated routing element. This could happen because I2RS is
 disabled on the routing element or because the I2RS agent, which may
 be a separate process or even running on a separate processor,
 experiences an unexpected failure. Just as routing state learned
 from a failed source is removed, the ephemeral I2RS state will
 usually be removed shortly after the failure is detected or as part
 of a graceful shutdown process. To handle these two types of
 failures, the I2RS agent MUST support two different notifications: a
 notification for the I2RS agent terminating gracefully, and a
 notification for the I2RS agent starting up after an unexpected
 failure. The two notifications are described below followed by a
 description of their use in unexpected failures and graceful
 shutdowns.

NOTIFICATION_I2RS_AGENT_TERMINATING: This notification reports that
 the associated I2RS agent is shutting down gracefully and that
 I2RS ephemeral state will be removed. It can optionally include a
 timestamp indicating when the I2RS agent will shut down. Use of
 this timestamp assumes that time synchronization has been done,
 and the timestamp should not have granularity finer than one
 second because better accuracy of shutdown time is not guaranteed.

NOTIFICATION_I2RS_AGENT_STARTING: This notification signals to the
 I2RS client(s) that the associated I2RS agent has started. It
 includes an agent‑boot‑count that indicates how many times the
 I2RS agent has restarted since the associated routing element
 restarted. The agent‑boot‑count allows an I2RS client to
 determine if the I2RS agent has restarted. (Note: This
 notification will be sent by the I2RS agent to I2RS clients that
 are known by the I2RS agent after a reboot. How the I2RS agent
 retains the knowledge of these I2RS clients is out of scope of
 this architecture.)

 There are two different failure types that are possible, and each has
 different behavior.

Unexpected failure: In this case, the I2RS agent has unexpectedly
 crashed and thus cannot notify its clients of anything. Since
 I2RS does not require a persistent connection between the I2RS
 client and I2RS agent, it is necessary to have a mechanism for the
 I2RS agent to notify I2RS clients that had subscriptions or
 written ephemeral state; such I2RS clients should be cached by the
 I2RS agent's system in persistent storage. When the I2RS agent
 starts, it should send a NOTIFICATION_I2RS_AGENT_STARTING to each
 cached I2RS client.

Graceful shutdowns: In this case, the I2RS agent can do specific
 limited work as part of the process of being disabled. The I2RS
 agent must send a NOTIFICATION_I2RS_AGENT_TERMINATING to all its
 cached I2RS clients. If the I2RS agent restarts after a graceful
 termination, it will send a NOTIFICATION_I2RS_AGENT_STARTING to
 each cached I2RS client.

6.2.2. Starting and Ending

 When an I2RS client applies changes via the I2RS protocol, those
 changes are applied and left until removed or the routing element
 reboots. The network application may make decisions about what to
 request via I2RS based upon a variety of conditions that imply
 different start times and stop times. That complexity is managed by
 the network application and is not handled by I2RS.

6.2.3. Reversion

 An I2RS agent may decide that some state should no longer be applied.
 An I2RS client may instruct an agent to remove state it has applied.
 In all such cases, the state will revert to what it would have been
 without the I2RS client-agent interaction; that state is generally
 whatever was specified via the CLI, NETCONF, SNMP, etc., I2RS agents
 will not store multiple alternative states, nor try to determine
 which one among such a plurality it should fall back to. Thus, the
 model followed is not like the RIB, where multiple routes are stored
 at different preferences. (For I2RS state in the presence of two
 I2RS clients, please see Sections 1.2 and 7.8)

 An I2RS client may register for notifications, subject to its
 notification scope, regarding state modification or removal by a
 particular I2RS client.

6.3. Interactions with Local Configuration

 Changes may originate from either Local Configuration or from I2RS.
 The modifications and data stored by I2RS are separate from the local
 device configuration, but conflicts between the two must be resolved
 in a deterministic manner that respects operator-applied policy. The
 deterministic manner is the result of general I2RS rules, system
 rules, knobs adjusted by operator-applied policy, and the rules
 associated with the YANG data model (often in "MUST" and "WHEN"
 clauses for dependencies).

 The operator-applied policy knobs can determine whether the Local
 Configuration overrides a particular I2RS client's request or vice
 versa. Normally, most devices will have an operator-applied policy
 that will prioritize the I2RS client's ephemeral configuration
 changes so that ephemeral data overrides the Local Configuration.

 These operator-applied policy knobs can be implemented in many ways.
 One way is for the routing element to configure a priority on the
 Local Configuration and a priority on the I2RS client's write of the
 ephemeral configuration. The I2RS mechanism would compare the I2RS
 client's priority to write with that priority assigned to the Local
 Configuration in order to determine whether Local Configuration or
 I2RS client's write of ephemeral data wins.

 To make sure the I2RS client's requests are what the operator
 desires, the I2RS data modules have a general rule that, by default,
 the Local Configuration always wins over the I2RS ephemeral
 configuration.

 The reason for this general rule is if there is no operator-applied
 policy to turn on I2RS ephemeral overwrites of Local Configuration,
 then the I2RS overwrites should not occur. This general rule allows
 the I2RS agents to be installed in routing systems and the
 communication tested between I2RS clients and I2RS agents without the
 I2RS agent overwriting configuration state. For more details, see
 the examples below.

 In the case when the I2RS ephemeral state always wins for a data
 model, if there is an I2RS ephemeral state value, it is installed
 instead of the Local Configuration state value. The Local
 Configuration information is stored so that if/when an I2RS client
 removes I2RS ephemeral state, the Local Configuration state can be
 restored.

 When the Local Configuration always wins, some communication between
 that subsystem and the I2RS agent is still necessary. As an I2RS
 agent connects to the routing subsystem, the I2RS agent must also
 communicate with the Local Configuration to exchange model
 information so the I2RS agent knows the details of each specific
 device configuration change that the I2RS agent is permitted to
 modify. In addition, when the system determines that a client's I2RS
 state is preempted, the I2RS agent must notify the affected I2RS
 clients; how the system determines this is implementation dependent.

 It is critical that policy based upon the source is used because the
 resolution cannot be time based. Simply allowing the most recent
 state to prevail could cause race conditions where the final state is
 not repeatably deterministic.

6.3.1. Examples of Local Configuration vs. I2RS Ephemeral Configuration

 A set of examples is useful in order to illustrated these
 architecture principles. Assume there are three routers: Router A,
 Router B, and Router C. There are two operator-applied policy knobs
 that these three routers must have regarding ephemeral state.

 o Policy Knob 1: Ephemeral configuration overwrites Local
 Configuration.

 o Policy Knob 2: Update of Local Configuration value supersedes and
 overwrites the ephemeral configuration.

 For Policy Knob 1, the routers with an I2RS agent receiving a write
 for an ephemeral entry in a data model must consider the following:

 1. Does the operator policy allow the ephemeral configuration
 changes to have priority over existing Local Configuration?

 2. Does the YANG data model have any rules associated with the
 ephemeral configuration (such as the "MUST" or "WHEN" rule)?

 For this example, there is no "MUST" or "WHEN" rule in the data being
 written.

 The policy settings are:

 Policy Knob 1 Policy Knob 2
 =================== ==================
Router A ephemeral has ephemeral has
 priority priority

Router B Local Configuration Local Configuration
 has priority has priority

Router C ephemeral has Local Configuration
 priority has priority

 Router A has the normal operator policy in Policy Knob 1 and Policy
 Knob 2 that prioritizes ephemeral configuration over Local
 Configuration in the I2RS agent. An I2RS client sends a write to an
 ephemeral configuration value via an I2RS agent in Router A. The
 I2RS agent overwrites the configuration value in the intended
 configuration, and the I2RS agent returns an acknowledgement of the
 write. If the Local Configuration value changes, Router A stays with
 the ephemeral configuration written by the I2RS client.

 Router B's operator has no desire to allow ephemeral writes to
 overwrite Local Configuration even though it has installed an I2RS
 agent. Router B's policy prioritizes the Local Configuration over
 the ephemeral write. When the I2RS agent on Router B receives a
 write from an I2RS client, the I2RS agent will check the operator
 Policy Knob 1 and return a response to the I2RS client indicating the
 operator policy did not allow the overwriting of the Local
 Configuration.

 The Router B case demonstrates why the I2RS architecture sets the
 default to the Local Configuration wins. Since I2RS functionality is
 new, the operator must enable it. Otherwise, the I2RS ephemeral
 functionality is off. Router B's operators can install the I2RS code
 and test responses without engaging the I2RS overwrite function.
 Router C's operator sets Policy Knob 1 for the I2RS clients to
 overwrite existing Local Configuration and Policy Knob 2 for the
 Local Configuration changes to update ephemeral state. To understand
 why an operator might set the policy knobs this way, consider that
 Router C is under the control of an operator that has a back-end
 system that re-writes the Local Configuration of all systems at 11
 p.m. each night. Any ephemeral change to the network is only
 supposed to last until 11 p.m. when the next Local Configuration
 changes are rolled out from the back-end system. The I2RS client
 writes the ephemeral state during the day, and the I2RS agent on
 Router C updates the value. At 11 p.m., the back-end configuration
 system updates the Local Configuration via NETCONF, and the I2RS
 agent is notified that the Local Configuration updated this value.
 The I2RS agent notifies the I2RS client that the value has been
 overwritten by the Local Configuration. The I2RS client in this use
 case is a part of an application that tracks any ephemeral state
 changes to make sure all ephemeral changes are included in the next
 configuration run.

6.4. Routing Components and Associated I2RS Services

 For simplicity, each logical protocol or set of functionality that
 can be compactly described in a separable information and data model
 is considered as a separate I2RS service. A routing element need not
 implement all routing components described nor provide the associated
 I2RS services. I2RS services should include a capability model so
 that peers can determine which parts of the service are supported.
 Each I2RS service requires an information model that describes at
 least the following: data that can be read, data that can be written,
 notifications that can be subscribed to, and the capability model
 mentioned above.

 The initial services included in the I2RS architecture are as
 follows.

*************************** ************** *****************
* I2RS Protocol * * * * Dynamic *
* * * Interfaces * * Data & *
* +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ * * * * Statistics *
* | Client | | Agent | * ************** *****************
* +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+ *
* * ************** *************
*************************** * * * *
 * Policy * * Base QoS *
******************** ******** * Templates * * Templates *
* +‑‑‑‑‑‑‑‑+ * * * * * *************
* BGP | BGP‑LS | * * PIM * **************
* +‑‑‑‑‑‑‑‑+ * * *
******************** ******** ****************************
 * MPLS +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑+ *
********************************** * | RSVP‑TE | | LDP | *
* IGPs +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑+ *
* +‑‑‑‑‑‑‑‑+ | OSPF | |IS‑IS | * * +‑‑‑‑‑‑‑‑+ *
* | Common | +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ * * | Common | *
* +‑‑‑‑‑‑‑‑+ * * +‑‑‑‑‑‑‑‑+ *
********************************** ****************************

**
* RIB Manager *
* +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ *
* | Unicast/multicast | | Policy‑Based | | RIB Policy | *
* | RIBs & LIBs | | Routing | | Controls | *
* | route instances | | (ACLs, etc) | +‑‑‑‑‑‑‑‑‑‑‑‑+ *
* +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ *
**

 Figure 2: Anticipated I2RS Services

 There are relationships between different I2RS services -- whether
 those be the need for the RIB to refer to specific interfaces, the
 desire to refer to common complex types (e.g., links, nodes, IP
 addresses), or the ability to refer to implementation-specific
 functionality (e.g., pre-defined templates to be applied to
 interfaces or for QoS behaviors that traffic is directed into).
 Section 6.4.5 discusses information modeling constructs and the range
 of relationship types that are applicable.

6.4.1. Routing and Label Information Bases

 Routing elements may maintain one or more information bases.
 Examples include Routing Information Bases such as IPv4/IPv6 Unicast
 or IPv4/IPv6 Multicast. Another such example includes the MPLS Label
 Information Bases, per platform, per interface, or per context. This
 functionality, exposed via an I2RS service, must interact smoothly
 with the same mechanisms that the routing element already uses to
 handle RIB input from multiple sources. Conceptually, this can be
 handled by having the I2RS agent communicate with a RIB Manager as a
 separate routing source.

 The point-to-multipoint state added to the RIB does not need to match
 to well-known multicast protocol installed state. The I2RS agent can
 create arbitrary replication state in the RIB, subject to the
 advertised capabilities of the routing element.

6.4.2. IGPs, BGP, and Multicast Protocols

 A separate I2RS service can expose each routing protocol on the
 device. Such I2RS services may include a number of different kinds
 of operations:

 o reading the various internal RIB(s) of the routing protocol is
 often helpful for understanding the state of the network.
 Directly writing to these protocol-specific RIBs or databases is
 out of scope for I2RS.

 o reading the various pieces of policy information the particular
 protocol instance is using to drive its operations.

 o writing policy information such as interface attributes that are
 specific to the routing protocol or BGP policy that may indirectly
 manipulate attributes of routes carried in BGP.

 o writing routes or prefixes to be advertised via the protocol.

 o joining/removing interfaces from the multicast trees.

 o subscribing to an information stream of route changes.

 o receiving notifications about peers coming up or going down.

 For example, the interaction with OSPF might include modifying the
 local routing element's link metrics, announcing a locally attached
 prefix, or reading some of the OSPF link-state database. However,
 direct modification of the link-state database must not be allowed in
 order to preserve network state consistency.

6.4.3. MPLS

 I2RS services will be needed to expose the protocols that create
 transport LSPs (e.g., LDP and RSVP-TE) as well as protocols (e.g.,
 BGP, LDP) that provide MPLS-based services (e.g., pseudowires,
 L3VPNs, L2VPNs, etc). This should include all local information
 about LSPs originating in, transiting, or terminating in this Routing
 Element.

6.4.4. Policy and QoS Mechanisms

 Many network elements have separate policy and QoS mechanisms,
 including knobs that affect local path computation and queue control
 capabilities. These capabilities vary widely across implementations,
 and I2RS cannot model the full range of information collection or
 manipulation of these attributes. A core set does need to be
 included in the I2RS information models and supported in the expected
 interfaces between the I2RS agent and the network element, in order
 to provide basic capabilities and the hooks for future extensibility.

 By taking advantage of extensibility and subclassing, information
 models can specify use of a basic model that can be replaced by a
 more detailed model.

6.4.5. Information Modeling, Device Variation, and Information
 Relationships

 I2RS depends heavily on information models of the relevant aspects of
 the Routing Elements to be manipulated. These models drive the data
 models and protocol operations for I2RS. It is important that these
 information models deal well with a wide variety of actual
 implementations of Routing Elements, as seen between different
 products and different vendors. There are three ways that I2RS
 information models can address these variations: class or type
 inheritance, optional features, and templating.

6.4.5.1. Managing Variation: Object Classes/Types and Inheritance

 Information modeled by I2RS from a Routing Element can be described
 in terms of classes or types or object. Different valid inheritance
 definitions can apply. What is appropriate for I2RS to use is not
 determined in this architecture; for simplicity, "class" and
 "subclass" will be used as the example terminology. This I2RS
 architecture does require the ability to address variation in Routing
 Elements by allowing information models to define parent or base
 classes and subclasses.

 The base or parent class defines the common aspects that all Routing
 Elements are expected to support. Individual subclasses can
 represent variations and additional capabilities. When applicable,
 there may be several levels of refinement. The I2RS protocol can
 then provide mechanisms to allow an I2RS client to determine which
 classes a given I2RS agent has available. I2RS clients that only
 want basic capabilities can operate purely in terms of base or parent
 classes, while a client needing more details or features can work
 with the supported subclass(es).

 As part of I2RS information modeling, clear rules should be specified
 for how the parent class and subclass can relate; for example, what
 changes can a subclass make to its parent? The description of such
 rules should be done so that it can apply across data modeling tools
 until the I2RS data modeling language is selected.

6.4.5.2. Managing Variation: Optionality

 I2RS information models must be clear about what aspects are
 optional. For instance, must an instance of a class always contain a
 particular data field X? If so, must the client provide a value for
 X when creating the object or is there a well-defined default value?
 From the Routing Element perspective, in the above example, each
 information model should provide information regarding the following
 questions:

 o Is X required for the data field to be accepted and applied?

 o If X is optional, then how does "X" as an optional portion of the
 data field interact with the required aspects of the data field?

 o Does the data field have defaults for the mandatory portion of the
 field and the optional portions of the field?

 o Is X required to be within a particular set of values (e.g.,
 range, length of strings)?

 The information model needs to be clear about what read or write
 values are set by the client and what responses or actions are
 required by the agent. It is important to indicate what is required
 or optional in client values and agent responses/actions.

6.4.5.3. Managing Variation: Templating

 A template is a collection of information to address a problem; it
 cuts across the notions of class and object instances. A template
 provides a set of defined values for a set of information fields and
 can specify a set of values that must be provided to complete the
 template. Further, a flexible template scheme may allow some of the
 defined values to be overwritten.

 For instance, assigning traffic to a particular service class might
 be done by specifying a template queueing with a parameter to
 indicate Gold, Silver, or Best Effort. The details of how that is
 carried out are not modeled. This does assume that the necessary
 templates are made available on the Routing Element via some
 mechanism other than I2RS. The idea is that by providing suitable
 templates for tasks that need to be accomplished, with templates
 implemented differently for different kinds of Routing Elements, the
 client can easily interact with the Routing Element without concern
 for the variations that are handled by values included in the
 template.

 If implementation variation can be exposed in other ways, templates
 may not be needed. However, templates themselves could be objects
 referenced in the protocol messages, with Routing Elements being
 configured with the proper templates to complete the operation. This
 is a topic for further discussion.

6.4.5.4. Object Relationships

 Objects (in a Routing Element or otherwise) do not exist in
 isolation. They are related to each other. One of the important
 things a class definition does is represent the relationships between
 instances of different classes. These relationships can be very
 simple or quite complicated. The following sections list the
 information relationships that the information models need to
 support.

6.4.5.4.1. Initialization

 The simplest relationship is that one object instance is initialized
 by copying another. For example, one may have an object instance
 that represents the default setup for a tunnel, and all new tunnels
 have fields copied from there if they are not set as part of
 establishment. This is closely related to the templates discussed
 above, but not identical. Since the relationship is only momentary,
 it is often not formally represented in modeling but only captured in
 the semantic description of the default object.

6.4.5.4.2. Correlation Identification

 Often, it suffices to indicate in one object that it is related to a
 second object, without having a strong binding between the two. So
 an identifier is used to represent the relationship. This can be
 used to allow for late binding or a weak binding that does not even
 need to exist. A policy name in an object might indicate that if a
 policy by that name exists, it is to be applied under some
 circumstance. In modeling, this is often represented by the type of
 the value.

6.4.5.4.3. Object References

 Sometimes the relationship between objects is stronger. A valid ARP
 entry has to point to the active interface over which it was derived.
 This is the classic meaning of an object reference in programming.
 It can be used for relationships like containment or dependence.
 This is usually represented by an explicit modeling link.

6.4.5.4.4. Active References

 There is an even stronger form of coupling between objects if changes
 in one of the two objects are always to be reflected in the state of
 the other. For example, if a tunnel has an MTU (maximum transmit
 unit), and link MTU changes need to immediately propagate to the
 tunnel MTU, then the tunnel is actively coupled to the link
 interface. This kind of active state coupling implies some sort of
 internal bookkeeping to ensure consistency, often conceptualized as a
 subscription model across objects.

7. I2RS Client Agent Interface

7.1. One Control and Data Exchange Protocol

 This I2RS architecture assumes a data-model-driven protocol where the
 data models are defined in YANG 1.1 [YANG1.1] and associated YANG
 based model documents [RFC6991], [RFC7223], [RFC7224], [RFC7277],
 [RFC7317]. Two of the protocols to be expanded to support the I2RS
 protocol are NETCONF [RFC6241] and RESTCONF [RESTCONF]. This helps
 meet the goal of simplicity and thereby enhances deployability. The
 I2RS protocol may need to use several underlying transports (TCP,
 SCTP (Stream Control Transport Protocol), DCCP (Datagram Congestion
 Control Protocol)), with suitable authentication and integrity-
 protection mechanisms. These different transports can support
 different types of communication (e.g., control, reading,
 notifications, and information collection) and different sets of
 data. Whatever transport is used for the data exchange, it must also
 support suitable congestion-control mechanisms. The transports
 chosen should be operator and implementor friendly to ease adoption.

 Each version of the I2RS protocol will specify the following: a)
 which transports may be used by the I2RS protocol, b) which
 transports are mandatory to implement, and c) which transports are
 optional to implement.

7.2. Communication Channels

 Multiple communication channels and multiple types of communication
 channels are required. There may be a range of requirements (e.g.,
 confidentiality, reliability), and to support the scaling, there may
 need to be channels originating from multiple subcomponents of a
 routing element and/or to multiple parts of an I2RS client. All such
 communication channels will use the same higher-layer I2RS protocol
 (which combines secure transport and I2RS contextual information).
 The use of additional channels for communication will be coordinated
 between the I2RS client and the I2RS agent using this protocol.

 I2RS protocol communication may be delivered in-band via the routing
 system's data plane. I2RS protocol communication might be delivered
 out-of-band via a management interface. Depending on what operations
 are requested, it is possible for the I2RS protocol communication to
 cause the in-band communication channels to stop working; this could
 cause the I2RS agent to become unreachable across that communication
 channel.

7.3. Capability Negotiation

 The support for different protocol capabilities and I2RS services
 will vary across I2RS clients and Routing Elements supporting I2RS
 agents. Since each I2RS service is required to include a capability
 model (see Section 6.4), negotiation at the protocol level can be
 restricted to protocol specifics and which I2RS services are
 supported.

 Capability negotiation (such as which transports are supported beyond
 the minimum required to implement) will clearly be necessary. It is
 important that such negotiations be kept simple and robust, as such
 mechanisms are often a source of difficulty in implementation and
 deployment.

 The protocol capability negotiation can be segmented into the basic
 version negotiation (required to ensure basic communication), and the
 more complex capability exchange that can take place within the base
 protocol mechanisms. In particular, the more complex protocol and
 mechanism negotiation can be addressed by defining information models
 for both the I2RS agent and the I2RS client. These information
 models can describe the various capability options. This can then
 represent and be used to communicate important information about the
 agent and the capabilities thereof.

7.4. Scope Policy Specifications

 As Sections 4.1 and 4.2 describe, each I2RS client will have a unique
 identity and may have a secondary identity (see Section 2) to aid in
 troubleshooting. As Section 4 indicates, all authentication and
 authorization mechanisms are based on the primary identity, which
 links to a role with scope policy for reading data, for writing data,
 and for limiting the resources that can be consumed. The
 specifications for data scope policy (for read, write, or resources
 consumption) need to specify the data being controlled by the policy,
 and acceptable ranges of values for the data.

7.5. Connectivity

 An I2RS client may or may not maintain an active communication
 channel with an I2RS agent. Therefore, an I2RS agent may need to
 open a communication channel to the client to communicate previously
 requested information. The lack of an active communication channel
 does not imply that the associated I2RS client is non-functional.
 When communication is required, the I2RS agent or I2RS client can
 open a new communication channel.

 State held by an I2RS agent that is owned by an I2RS client should
 not be removed or cleaned up when a client is no longer
 communicating, even if the agent cannot successfully open a new
 communication channel to the client.

 For many applications, it may be desirable to clean up state if a
 network application dies before removing the state it has created.
 Typically, this is dealt with in terms of network application
 redundancy. If stronger mechanisms are desired, mechanisms outside
 of I2RS may allow a supervisory network application to monitor I2RS
 clients and, based on policy known to the supervisor, clean up state
 if applications die. More complex mechanisms instantiated in the
 I2RS agent would add complications to the I2RS protocol and are thus
 left for future work.

 Some examples of such a mechanism include the following. In one
 option, the client could request state cleanup if a particular
 transport session is terminated. The second is to allow state
 expiration, expressed as a policy associated with the I2RS client's
 role. The state expiration could occur after there has been no
 successful communication channel to or from the I2RS client for the
 policy-specified duration.

7.6. Notifications

 As with any policy system interacting with the network, the I2RS
 client needs to be able to receive notifications of changes in
 network state. Notifications here refer to changes that are
 unanticipated, represent events outside the control of the systems
 (such as interface failures on controlled devices), or are
 sufficiently sparse as to be anomalous in some fashion. A
 notification may also be due to a regular event.

 Such events may be of interest to multiple I2RS clients controlling
 data handled by an I2RS agent and to multiple other I2RS clients that
 are collecting information without exerting control. The
 architecture therefore requires that it be practical for I2RS clients
 to register for a range of notifications and for the I2RS agents to
 send notifications to a number of clients. The I2RS client should be
 able to filter the specific notifications that will be received; the
 specific types of events and filtering operations can vary by
 information model and need to be specified as part of the information
 model.

 The I2RS information model needs to include representation of these
 events. As discussed earlier, the capability information in the
 model will allow I2RS clients to understand which events a given I2RS
 agent is capable of generating.

 For performance and scaling by the I2RS client and general
 information confidentiality, an I2RS client needs to be able to
 register for just the events it is interested in. It is also
 possible that I2RS might provide a stream of notifications via a
 publish/subscribe mechanism that is not amenable to having the I2RS
 agent do the filtering.

7.7. Information Collection

 One of the other important aspects of I2RS is that it is intended to
 simplify collecting information about the state of network elements.
 This includes both getting a snapshot of a large amount of data about
 the current state of the network element and subscribing to a feed of
 the ongoing changes to the set of data or a subset thereof. This is
 considered architecturally separate from notifications due to the
 differences in information rate and total volume.

7.8. Multi-headed Control

 As described earlier, an I2RS agent interacts with multiple I2RS
 clients who are actively controlling the network element. From an
 architecture and design perspective, the assumption is that by means
 outside of this system, the data to be manipulated within the network
 element is appropriately partitioned so that any given piece of
 information is only being manipulated by a single I2RS client.

 Nonetheless, unexpected interactions happen, and two (or more) I2RS
 clients may attempt to manipulate the same piece of data. This is
 considered an error case. This architecture does not attempt to
 determine what the right state of data should be when such a
 collision happens. Rather, the architecture mandates that there be
 decidable means by which I2RS agents handle the collisions. The
 mechanism for ensuring predictability is to have a simple priority
 associated with each I2RS client, and the highest priority change
 remains in effect. In the case of priority ties, the first I2RS
 client whose attribution is associated with the data will keep
 control.

 In order for this approach to multi-headed control to be useful for
 I2RS clients, it is necessary that an I2RS client can register to
 receive notifications about changes made to writeable data, whose
 state is of specific interest to that I2RS client. This is included
 in the I2RS event mechanisms. This also needs to apply to changes
 made by CLI/NETCONF/SNMP within the write scope of the I2RS agent, as
 the same priority mechanism (even if it is "CLI always wins") applies
 there. The I2RS client may then respond to the situation as it sees
 fit.

7.9. Transactions

 In the interest of simplicity, the I2RS architecture does not include
 multi-message atomicity and rollback mechanisms. Rather, it includes
 a small range of error handling for a set of operations included in a
 single message. An I2RS client may indicate one of the following
 three methods of error handling for a given message with multiple
 operations that it sends to an I2RS agent:

Perform all or none: This traditional SNMP semantic indicates that
 the I2RS agent will keep enough state when handling a single
 message to roll back the operations within that message. Either
 all the operations will succeed, or none of them will be applied,
 and an error message will report the single failure that caused
 them not to be applied. This is useful when there are, for
 example, mutual dependencies across operations in the message.

Perform until error: In this case, the operations in the message are
 applied in the specified order. When an error occurs, no further
 operations are applied, and an error is returned indicating the
 failure. This is useful if there are dependencies among the
 operations and they can be topologically sorted.

Perform all storing errors: In this case, the I2RS agent will
 attempt to perform all the operations in the message and will
 return error indications for each one that fails. This is useful
 when there is no dependency across the operation or when the I2RS
 client would prefer to sort out the effect of errors on its own.

 In the interest of robustness and clarity of protocol state, the
 protocol will include an explicit reply to modification or write
 operations even when they fully succeed.

8. Operational and Manageability Considerations

 In order to facilitate troubleshooting of routing elements
 implementing I2RS agents, the routing elements should provide for a
 mechanism to show actively provisioned I2RS state and other I2RS
 agent internal information. Note that this information may contain
 highly sensitive material subject to the security considerations of
 any data models implemented by that agent and thus must be protected
 according to those considerations. Preferably, this mechanism should
 use a different privileged means other than simply connecting as an
 I2RS client to learn the data. Using a different mechanism should
 improve traceability and failure management.

 Manageability plays a key aspect in I2RS. Some initial examples
 include:

Resource Limitations: Using I2RS, applications can consume
 resources, whether those be operations in a time frame, entries in
 the RIB, stored operations to be triggered, etc. The ability to
 set resource limits based upon authorization is important.

Configuration Interactions: The interaction of state installed via
 I2RS and via a router's configuration needs to be clearly defined.
 As described in this architecture, a simple priority that is
 configured is used to provide sufficient policy flexibility.

Traceability of Interactions: The ability to trace the interactions
 of the requests received by the I2RS agent's and actions taken by
 the I2RS agents is needed so that operations can monitor I2RS
 agents during deployment, and troubleshoot software or network
 problems.

Notification Subscription Service: The ability for an I2RS client to
 subscribe to a notification stream pushed from the I2RS agent
 (rather than having I2RS client poll the I2RS agent) provides a
 more scalable notification handling for the I2RS agent‑client
 interactions.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7920]
 Atlas, A., Ed., Nadeau, T., Ed., and D. Ward, "Problem
 Statement for the Interface to the Routing System",
 RFC 7920, DOI 10.17487/RFC7920, June 2016,
 <http://www.rfc-editor.org/info/rfc7920>.

9.2. Informative References

 [I2RS-ENV-SEC]

 Migault, D., Ed., Halpern, J., and S. Hares, "I2RS
 Environment Security Requirements", Work in Progress,
 draft-ietf-i2rs-security-environment-reqs-01, April 2016.

 [I2RS-PROT-SEC]

 Hares, S., Migault, D., and J. Halpern, "I2RS Security
 Related Requirements", Work in Progress, draft-ietf-i2rs-
 protocol-security-requirements-06, May 2016.

 [RESTCONF]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", Work in Progress, draft-ietf-netconf-
 restconf-14, June 2016.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7223]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7224]
 Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <http://www.rfc-editor.org/info/rfc7224>.

 [RFC7277]
 Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 7277, DOI 10.17487/RFC7277, June 2014,
 <http://www.rfc-editor.org/info/rfc7277>.

 [RFC7317]
 Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

 [RFC7752]
 Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <http://www.rfc-editor.org/info/rfc7752>.

 [YANG1.1]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 Work in Progress, draft-ietf-netmod-rfc6020bis-14, June
 2016.

Acknowledgements

 Significant portions of this draft came from "Interface to the
 Routing System Framework" (February 2013) and "A Policy Framework for
 the Interface to the Routing System" (February 2013).

 The authors would like to thank Nitin Bahadur, Shane Amante, Ed
 Crabbe, Ken Gray, Carlos Pignataro, Wes George, Ron Bonica, Joe
 Clarke, Juergen Schoenwalder, Jeff Haas, Jamal Hadi Salim, Scott
 Brim, Thomas Narten, Dean Bogdanovic, Tom Petch, Robert Raszuk,
 Sriganesh Kini, John Mattsson, Nancy Cam-Winget, DaCheng Zhang, Qin
 Wu, Ahmed Abro, Salman Asadullah, Eric Yu, Deborah Brungard, Russ
 Housley, Russ White, Charlie Kaufman, Benoit Claise, Spencer Dawkins,
 and Stephen Farrell for their suggestions and review.

Authors' Addresses

Alia Atlas
Juniper Networks
10 Technology Park Drive
Westford, MA 01886
United States

 Email: akatlas@juniper.net

Joel Halpern
Ericsson

 Email: Joel.Halpern@ericsson.com

Susan Hares
Huawei
7453 Hickory Hill
Saline, MI 48176
United States

Phone: +1 734‑604‑0332
Email: shares@ndzh.com

Dave Ward
Cisco Systems
Tasman Drive
San Jose, CA 95134
United States

 Email: wardd@cisco.com

Thomas D. Nadeau
Brocade

 Email: tnadeau@lucidvision.com

7922 - Interface to the Routing System (I2RS) Traceability: Framework and Inform

Index
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7922

Category: Informational

ISSN: 2070-1721

J. Clarke

G. Salgueiro

C. Pignataro

Cisco

June 2016

Interface to the Routing System (I2RS) Traceability: Framework and Information Model

Abstract

 This document describes a framework for traceability in the Interface
 to the Routing System (I2RS) and the information model for that
 framework. It specifies the motivation, requirements, and use cases,
 and defines an information model for recording interactions between
 elements implementing the I2RS protocol. This framework provides a
 consistent tracing interface for components implementing the I2RS
 architecture to record what was done, by which component, and when.
 It aims to improve the management of I2RS implementations, and can be
 used for troubleshooting, auditing, forensics, and accounting
 purposes.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7922.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology and Conventions

	3. Motivation

	4. Use Cases

	5. Information Model
	 5.1. I2RS Traceability Framework

	 5.2. I2RS Trace Log Fields

	 5.3. End of Message Marker

	6. Examples

	7. Operational Guidance
	 7.1. Trace Log Creation

	 7.2. Trace Log Temporary Storage

	 7.3. Trace Log Rotation

	 7.4. Trace Log Retrieval
	 7.4.1. Retrieval via Syslog

	 7.4.2. Retrieval via I2RS Information Collection

	 7.4.3. Retrieval via I2RS Pub/Sub

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 The architecture for the Interface to the Routing System [RFC7921]
 specifies that I2RS clients wishing to retrieve or change the routing
 state on a routing element MUST authenticate to an I2RS agent. The
 I2RS client will have a unique identity it provides for
 authentication, and should provide another opaque identity for
 applications communicating through it. The programming of routing
 state will produce a return code containing the results of the
 specified operation and associated reason(s) for the result. All of
 this is critical information to be used for understanding the history
 of I2RS interactions.

 This document defines the framework necessary to trace those
 interactions between the I2RS client and I2RS agent. It goes on to
 describe use cases for traceability within I2RS. Based on these use
 cases, the document proposes an information model and reporting
 requirements to provide for effective recording of I2RS interactions.
 In this context, effective troubleshooting means being able to
 identify what operation was performed by a specific I2RS client via
 the I2RS agent, what was the result of the operation, and when that
 operation was performed.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The architecture specification for I2RS [RFC7921] defines additional
 terms used in this document that are specific to the I2RS domain,
 such as "I2RS agent", "I2RS client", etc. The reader is expected to
 be familiar with the terminology and concepts defined in [RFC7921].

3. Motivation

 As networks scale and policy becomes an increasingly important part
 of the control plane that creates and maintains the forwarding state,
 operational complexity increases as well. I2RS offers more granular
 and coherent control over policy and control-plane state, but it also
 removes or reduces the locality of the policy that has been applied
 to the control plane at any individual forwarding device. The
 ability to automate and abstract even complex policy-based controls
 highlights the need for an equally scalable traceability function to
 provide recording at event-level granularity of the evolution of the
 routing system compliant with the requirements of I2RS (Section 5 of
 [RFC7920]).

4. Use Cases

 An obvious motivation for I2RS traceability is the need to
 troubleshoot and identify root causes of problems in these
 increasingly complex routing systems. For example, since I2RS is a
 high-throughput multi-channel, full duplex, and highly responsive
 interface, I2RS clients may be performing a large number of
 operations on I2RS agents concurrently or at nearly the same time and
 quite possibly in very rapid succession. As these many changes are
 made, the network reacts accordingly. These changes might lead to a
 race condition, performance issues, data loss, or disruption of
 services. In order to isolate the root cause of these issues, it is
 critical that a network operator or administrator has visibility into
 what changes were made via I2RS at a specific time.

 Some network environments have strong auditing requirements for
 configuration and runtime changes. Other environments have policies
 that require saving logging information for operational or regulatory
 compliance considerations. These requirements therefore demand that
 I2RS provides an account of changes made to network element routing
 systems.

 As I2RS becomes increasingly pervasive in routing environments, a
 traceability model that supports controllable trace log retention
 using a standardized structured data format offers significant
 advantages, such as the ability to create common tools supporting
 automated testing, and facilitates the following use cases:

 o real-time monitoring and troubleshooting of router events;

 o automated event correlation, trend analysis, and anomaly
 detection;

 o offline (manual or tools-based) analysis of router state evolution
 from the retained trace logs;

 o enhanced network audit, management, and forensic analysis
 capabilities;

 o improved accounting of routing system operations; and

 o providing a standardized format for incident reporting and test
 logging.

5. Information Model

 These sections describe the I2RS traceability information model and
 the details about each of the fields to be logged.

5.1. I2RS Traceability Framework

 This section describes a framework for I2RS traceability based on the
 I2RS Architecture.

 The interaction between the optional network application that drives
 client activity, I2RS client, I2RS agent, the Routing System, and the
 data captured in the I2RS trace log is shown in Figure 1.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 |Application | |
 |.............. | | 0 or more Applications
 | Application ID | +
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 |
 v
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 |I2RS Client | |
 |.............| | 1 or more Clients
 | Client ID | +
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 |
 v
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |I2RS Agent |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|Trace Log |
 | | |.............................|
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ |Log Entry [1 .. N] |
 | ^ |.............................| |
 | | |Event ID |
 | | |Starting Timestamp |
 | | |Request State |
 | | |Client ID |
 | | |Client Priority |
 | | |Secondary ID |
Operation + | | Result Code |Client Address |
 Op Data | | |Requested Operation |
 | | |Applied Operation |
 | | |Operation Data Present |
 | | |Requested Operation Data |
 | | |Applied Operation Data |
 | | |Transaction ID |
 | | |Result Code |
 | | |Ending Timestamp |
 | | |Timeout Occurred |
 v | |End Of Message |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |Routing |
 |System |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: I2RS Interaction Trace Log Capture

5.2. I2RS Trace Log Fields

 The following fields comprise an I2RS trace log. These fields ensure
 that each I2RS interaction can be properly traced back to the client
 that made the request at a specific point in time.

 The list below describes the fields captured in the I2RS trace log.
 This list represents a common set of fields that MUST appear in all
 I2RS trace logs. In addition to these fields, I2RS agent
 implementations MAY choose to log additional fields such as I2RS
 client vendor or agent statistics like free memory, performance
 metrics, etc.

Event ID: This is a unique identifier for each event in the I2RS
 trace log. An event can be a client authenticating with the
 agent, a client to agent operation, or a client disconnecting from
 an agent. Operation events can either be logged atomically upon
 completion (in which case they will have both a Starting and an
 Ending Timestamp field) or they can be logged at the beginning of
 each Request State transition. Since operations can occur from
 the same client at the same time, it is important to have an
 identifier that can be unambiguously associated to a specific
 entry. If each state transition is logged for an operation, the
 same ID MUST be used for each of the Request State log entries.
 In this way, the life of a request can be easily followed in the
 I2RS trace log. Beyond the requirement that the Event ID MUST be
 unique for each event, the specific type and value is left up to
 the implementation.

Starting Timestamp: The specific time at which the I2RS operation
 enters the specified Request State within the agent. If the log
 entry covers the entire duration of the request, then this will be
 the time that it was first received by the agent. This field MUST
 be present in all entries that specify the beginning of the state
 transition, as well as those entries that log the entire duration
 of the request. The time is passed in the full timestamp format
 [RFC3339], including the date and offset from Coordinated
 Universal Time (UTC). Given that many I2RS operations can occur
 in rapid succession, the fractional seconds element of the
 timestamp MUST be used to provide adequate granularity.
 Fractional seconds SHOULD be expressed with at least three
 significant digits in second.microsecond format.

Request State: The state of the given operation within the I2RS
 agent state machine at the specified Starting or Ending
 Timestamps. The I2RS agent SHOULD generate a log entry at the
 moment a request enters and exits a state. Upon entering a new
 state, the log entry will have a Starting Timestamp set to the
 time of entry and no Ending Timestamp. Upon exiting a state, the
 log entry will have an Ending Timestamp set to the time of exit
 and no Starting Timestamp. The progression of the request through
 its various states can be linked using the Event ID. The states
 can be one of the following values:

 PENDING: The request has been received and queued for
 processing.

 IN PROCESS: The request is currently being handled by the I2RS
 agent.

 COMPLETED: The request has reached a terminal point.

 Every state transition SHOULD be logged unless doing so will put
 an undue performance burden on the I2RS agent. However, an entry
 with the Request State set to COMPLETED MUST be logged for all
 operations. If the COMPLETED state is the only entry for a given
 request, then it MUST have both Starting and Ending Timestamps
 that cover the entire duration of the request from ingress to the
 agent until completion.

Client Identity: The I2RS client identity used to authenticate the
 client to the I2RS agent.

Client Priority: The I2RS client priority assigned by the access
 control model that authenticates the client. For example, this
 can be set by the Network Configuration Protocol (NETCONF) Access
 Control Model (NACM) as described in [RFC6536].

Secondary Identity: This is an opaque identity that may be known to
 the client from a controlling network application. This is used
 to trace the network application driving the actions of the
 client. The client may not provide this identity to the agent if
 there is no external network application driving the client.
 However, this field MUST be logged even if the client does not
 provide a Secondary Identity. In that case, the field will be
 logged with an empty value.

Client Address: This is the network address of the client that
 connected to the agent. For example, this may be an IPv4 or an
 IPv6 address.

Requested Operation: This is the I2RS operation that was requested
 to be performed. For example, this may be an add route operation
 if a route is being inserted into a routing table. This may not
 be the operation that was actually applied to the agent.

 In the case of a client authenticating to the agent, the Requested
 Operation MUST be "CLIENT AUTHENTICATE". In the case of a client
 disconnecting from the agent, the Requested Operation MUST be
 "CLIENT DISCONNECT".

Applied Operation: This is the I2RS operation that was actually
 performed. This can differ from the Requested Operation in cases
 where the agent cannot satisfy the Requested Operation. This
 field may not be logged unless the Request State is COMPLETED.

Operation Data Present: This is a Boolean field that indicates
 whether or not additional per‑Operation Data is present.

Requested Operation Data: This field comprises the data passed to
 the agent to complete the desired operation. For example, if the
 operation is a route add operation, the Operation Data would
 include the route prefix, prefix length, and next‑hop information
 to be inserted as well as the specific routing table to which the
 route will be added. If Operation Data is provided, then the
 Operation Data Present field MUST be set to TRUE. Some operations
 may not provide operation data. In those cases, the Operation
 Data Present field MUST be set to FALSE, and this field MUST be
 empty. This may not represent the data that was used for the
 operation that was actually applied on the agent.

 When a client authenticates to the agent, the Requested Operation
 Data MUST contain the client priority. Other attributes such as
 credentials used for authentication MAY be logged.

Applied Operation Data: This field comprises the data that was
 actually applied as part of the Applied Operation. If the agent
 cannot satisfy the Requested Operation with the Requested
 Operation Data, then this field can differ from the Requested
 Operation Data. This field will be empty unless the Requested
 Operation Data was specified. This field may not be logged unless
 the Request State is COMPLETED.

Transaction ID: The Transaction Identity represents that this
 particular operation is part of a long‑running I2RS transaction
 that can consist of multiple, related I2RS operations. Using this
 value, one can relate multiple log entries together as they are
 part of a single, overall I2RS operation. This is an optional
 field that may not be logged unless the event is part of a long‑
 running transaction.

Result Code: This field holds the result of the operation once the
 Request State is COMPLETED. In the case of Routing Information
 Base (RIB) operations, this MUST be the return code as specified
 in Section 4 of [RIBINFO]. The operation may not complete with a
 result code in the case of a timeout. If the operation fails to
 complete, it MUST still log the attempted operation with an
 appropriate result code.

Timeout Occurred: This is a Boolean field that indicates whether or
 not a timeout occurred in the operation. When this is true, the
 value of the Ending Timestamp MUST be set to the time the agent
 recorded for the timeout occurrence. This field may not be logged
 unless the Request State is COMPLETED.

Ending Timestamp: The specific time at which the I2RS operation
 exits the specified Request State within the I2RS agent. If the
 log entry covers the entire duration of the request, then this
 will be the time that the request reached a terminal point within
 the agent. This field MUST be present in all entries that specify
 the ending of the state transition, as well as those entries that
 log the entire duration of the request. The time is passed in the
 full timestamp format [RFC3339], including the date and offset
 from Coordinated Universal Time (UTC). See the description for
 Starting Timestamp above for the proper format of the Ending
 Timestamp.

End Of Message: Each log entry SHOULD have an appropriate End Of
 Message (EOM) indicator. See Section 5.3 below for more details.

5.3. End of Message Marker

 Because of variability within I2RS trace log fields, implementors
 MUST use a format-appropriate End Of Message (EOM) indicator in order
 to signify the end of a particular record. That is, regardless of
 format, the I2RS trace log MUST provide a distinct way of
 distinguishing between the end of one record and the beginning of
 another. For example, in a linear-formatted log (similar to a
 syslog) the EOM marker may be a newline character. In an XML-
 formatted log, the schema would provide for element tags that denote
 the beginning and end of records. In a JSON-formatted log, the
 syntax would provide record separation (likely by comma-separated
 array elements).

6. Examples

 This section shows a sample of what the fields and values could look
 like.

Event ID: 1
Starting Timestamp: 2013‑09‑03T12:00:01.21+00:00
Request State: COMPLETED
Client ID: 5CEF1870‑0326‑11E2‑A21F‑0800200C9A66
Client Priority: 100
Secondary ID: com.example.RoutingApp
Client Address: 2001:db8:c0c0::2
Requested Operation: ROUTE_ADD
Applied Operation: ROUTE_ADD
Operation Data Present: TRUE
Requested Operation Data: PREFIX 2001:db8:feed:: PREFIX‑LEN 64
 NEXT‑HOP 2001:db8:cafe::1
Applied Operation Data: PREFIX 2001:db8:feed:: PREFIX‑LEN 64
 NEXT‑HOP 2001:db8:cafe::1
Transaction ID: 2763461
Result Code: SUCCESS(0)
Timeout Occurred: FALSE
Ending Timestamp: 2013‑09‑03T12:00:01.23+00:00

7. Operational Guidance

 Specific operational procedures regarding temporary log storage,
 rollover, retrieval, and access of I2RS trace logs is out of scope
 for this document. Organizations employing I2RS trace logging are
 responsible for establishing proper operational procedures that are
 appropriately suited to their specific requirements and operating
 environment. In this section, we only provide fundamental and
 generalized operational guidelines that are implementation
 independent.

7.1. Trace Log Creation

 The I2RS agent interacts with the Routing and Signaling functions of
 the Routing Element. Since the I2RS agent is responsible for
 actually making the routing changes on the associated network device,
 it creates and maintains a log of operations that can be retrieved to
 troubleshoot I2RS-related impact to the network. Changes that occur
 to the network element's local configuration outside of the I2RS
 protocol that preempt I2RS state will only be logged if the network
 element notifies the I2RS agent.

7.2. Trace Log Temporary Storage

 The trace information may be temporarily stored either in an
 in-memory buffer or as a file local to the agent. Care should be
 given to the number of I2RS operations expected on a given agent so
 that the appropriate storage medium is used, and to maximize the
 effectiveness of the log while not impacting the performance and
 health of the agent. client requests may not always be processed
 synchronously or within a bounded time period. Consequently, to
 ensure that trace log fields, such as "Operation" and "Result Code",
 are part of the same trace log record, buffering of the trace log
 entries may be required. This buffering may result in additional
 resource load on the agent and the network element.

 Section 7.3 discusses rotating the trace log in order to preserve the
 operation history without exhausting agent or network device
 resources. It is perfectly acceptable, therefore, to use both an
 in-memory buffer for recent operations while rotating or archiving
 older operations to a local file.

 It is outside the scope of this document to specify the
 implementation details (i.e., size, throughput, data protection,
 etc.) for the physical storage of the I2RS log file. In terms of
 data retention, attention should be paid to the length of time that
 the I2RS trace log data is kept when that data contains security- or
 privacy-sensitive attributes. The longer this data is retained, the
 higher the impact if it were to be leaked. It is also possible that
 legislation may impose some additional requirements on the minimum
 and/or maximum durations for which some kinds of data may be
 retained.

7.3. Trace Log Rotation

 In order to prevent the exhaustion of resources on the I2RS agent or
 its associated network device, it is RECOMMENDED that the I2RS agent
 implements trace log rotation. The details on how this is achieved
 are left to the implementation and are outside the scope of this
 document. However, it should be possible to do a file rotation based
 on either the time or size of the current trace log. If file
 rollover is supported, multiple archived log files should be
 supported in order to maximize the troubleshooting and accounting
 benefits of the trace log.

7.4. Trace Log Retrieval

 Implementors are free to provide their own, proprietary interfaces
 and develop custom tools to retrieve and display the I2RS trace log.
 These may include the display of the I2RS trace log as command-line
 interface (CLI) output. However, a key intention of defining this
 information model is to establish a vendor-agnostic and consistent
 interface to collect I2RS trace data. Correspondingly, retrieval of
 the data should also be made vendor-agnostic.

 Despite the fact that export of I2RS trace log information could be
 an invaluable diagnostic tool for off-box analysis, exporting this
 information MUST NOT interfere with the ability of the agent to
 process new incoming operations.

 The following three sections describe potential ways the trace log
 can be accessed. The use of I2RS pub/sub for accessing trace log
 data is mandatory-to-implement, while others are optional.

7.4.1. Retrieval via Syslog

 The syslog protocol [RFC5424] is a standard way of sending event
 notification messages from a host to a collector. However, the
 protocol does not define any standard format for storing the
 messages, and thus implementors of I2RS tracing would be left to
 define their own format. So, while the data contained within the
 syslog message would adhere to this information model, and may be
 consumable by a human operator, it would not be easily parseable by a
 machine. Syslog MAY be employed as a means of retrieving or
 disseminating the I2RS trace log contents.

 If syslog is used for trace log retrieval, then existing logging
 infrastructure and capabilities of syslog [RFC5424] should be
 leveraged without the need to define or extend existing formats.
 That is, the various fields described in Section 5.2 SHOULD be
 modeled and encoded as Structured Data Elements (referred to as
 "SD-ELEMENT"), as described in Section 6.3.1 of [RFC5424].

7.4.2. Retrieval via I2RS Information Collection

 Section 7.7 of the I2RS architecture [RFC7921] defines a mechanism
 for information collection. The information collected includes
 obtaining a snapshot of a large amount of data from the network
 element. It is the intent of I2RS to make this data available in an
 implementor-agnostic fashion. Therefore, the I2RS trace log SHOULD
 be made available via the I2RS information collection mechanism
 either as a single snapshot or via a subscription stream.

7.4.3. Retrieval via I2RS Pub/Sub

 Section 7.6 of the I2RS architecture [RFC7921] goes on to describe
 notification mechanisms for a feed of changes happening within the
 I2RS layer. Specifically, the requirements for a publish-subscribe
 system for I2RS are defined in [RFC7923]. I2RS agents MUST support
 publishing I2RS trace log information to that feed as described in
 [RFC7923]. Subscribers would then receive a live stream of I2RS
 interactions in trace log format and could flexibly choose to do a
 number of things with the log messages. For example, the subscribers
 could log the messages to a datastore, aggregate, and summarize
 interactions from a single client, etc. The full range of potential
 activities is virtually limitless and the details of how they are
 performed are outside the scope of this document, however.

8. Security Considerations

 The I2RS trace log, like any log file, reveals the state of the
 entity producing it as well as the identifying information elements
 and detailed interactions of the system containing it. The
 information model described in this document does not itself
 introduce any security issues, but it does define the set of
 attributes that make up an I2RS log file. These attributes may
 contain sensitive information, and thus should adhere to the
 security, privacy, and permission policies of the organization making
 use of the I2RS log file.

 It is outside the scope of this document to specify how to protect
 the stored log file, but it is expected that adequate precautions and
 security best practices such as disk encryption, appropriately
 restrictive file/directory permissions, suitable hardening and
 physical security of logging entities, mutual authentication,
 transport encryption, channel confidentiality, and channel integrity
 if transferring log files. Additionally, the potentially sensitive
 information contained in a log file SHOULD be adequately anonymized
 or obfuscated by operators to ensure its privacy.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339]
 Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5424]
 Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <http://www.rfc-editor.org/info/rfc5424>.

 [RFC7921]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
 <http://www.rfc-editor.org/info/rfc7921>.

 [RFC7923]
 Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016.

9.2. Informative References

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7920]
 Atlas, A., Ed., Nadeau, T., Ed., and D. Ward, "Problem
 Statement for the Interface to the Routing System",
 RFC 7923, DOI 10.17487/RFC7923, June 2016,
 <http://www.rfc-editor.org/info/rfc7920>.

 [RIBINFO]
 Bahadur, N., Ed., Kini, S., Ed., and J. Medved, "Routing
 Information Base Info Model", Work in Progress,
 draft-ietf-i2rs-rib-info-model-08, October 2015.

Acknowledgments

 The authors would like to thank Alia Atlas for her initial feedback
 and overall support for this work. Additionally, the authors
 acknowledge Alvaro Retana, Russ White, Matt Birkner, Jeff Haas, Joel
 Halpern, Dean Bogdanovich, Ignas Bagdonas, Nobo Akiya, Kwang-koog
 Lee, Sue Hares, Mach Chen, Alex Clemm, Stephen Farrell, Benoit
 Claise, Les Ginsberg, Suresh Krishnan, and Elwyn Davies for their
 reviews, contributed text, and suggested improvements to this
 document.

Authors' Addresses

Joe Clarke
Cisco Systems, Inc.
7200‑12 Kit Creek Road
Research Triangle Park, NC 27709
United States

Phone: +1‑919‑392‑2867
Email: jclarke@cisco.com

Gonzalo Salgueiro
Cisco Systems, Inc.
7200‑12 Kit Creek Road
Research Triangle Park, NC 27709
United States

 Email: gsalguei@cisco.com

Carlos Pignataro
Cisco Systems, Inc.
7200‑11 Kit Creek Road
Research Triangle Park, NC 27709
United States

 Email: cpignata@cisco.com

7923 - Requirements for Subscription to YANG Datastores

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7923

Category: Informational

ISSN: 2070-1721

E. Voit

A. Clemm

A. Gonzalez Prieto

Cisco Systems

June 2016

Requirements for Subscription to YANG Datastores

Abstract

 This document provides requirements for a service that allows client
 applications to subscribe to updates of a YANG datastore. Based on
 criteria negotiated as part of a subscription, updates will be pushed
 to targeted recipients. Such a capability eliminates the need for
 periodic polling of YANG datastores by applications and fills a
 functional gap in existing YANG transports (i.e., Network
 Configuration Protocol (NETCONF) and RESTCONF). Such a service can
 be summarized as a "pub/sub" service for YANG datastore updates.
 Beyond a set of basic requirements for the service, various
 refinements are addressed. These refinements include: periodicity of
 object updates, filtering out of objects underneath a requested a
 subtree, and delivery QoS guarantees.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7923.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Business Drivers
	 2.1. Pub/Sub in the Interface to the Routing System (I2RS)

	 2.2. Pub/Sub Variants on Network Elements

	 2.3. Existing Generalized Pub/Sub Implementations

	3. Terminology

	4. Requirements
	 4.1. Assumptions for Subscriber Behavior

	 4.2. Subscription Service Requirements
	 4.2.1. General

	 4.2.2. Negotiation

	 4.2.3. Update Distribution

	 4.2.4. Transport

	 4.2.5. Security Requirements

	 4.2.6. Subscription QoS

	 4.2.7. Filtering

	 4.2.8. Assurance and Monitoring

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 Applications interacting with YANG datastores require capabilities
 beyond the traditional client-server configuration of network
 elements. One class of such applications are service-assurance
 applications, which must maintain a continuous view of operational
 data and state. Another class of applications are security
 applications, which must continuously track changes made upon network
 elements to ensure compliance with corporate policy.

 Periodic fetching of data is not an adequate solution for
 applications requiring frequent or prompt updates of remote object
 state. Applying polling-based solutions here imposes a load on
 networks, devices, and applications. Additionally, polling solutions
 are brittle in the face of communication glitches, and have
 limitations in their ability to synchronize and calibrate retrieval
 intervals across a network. These limitations can be addressed by
 including generic object subscription mechanisms within network
 elements, and allowing these mechanisms to be applied in the context
 of data that is conceptually contained in YANG datastores.

 This document aggregates requirements for such subscription from a
 variety of deployment scenarios.

2. Business Drivers

 For decades, information delivery of current network state has been
 accomplished either by fetching from operations interfaces, or via
 dedicated, customized networking protocols. With the growth of
 centralized orchestration infrastructures, imperative policy
 distribution, and YANG's ascent as the dominant data modeling
 language for use in programmatic interfaces to network elements, this
 mixture of fetch plus custom networking protocols is no longer
 sufficient. What is needed is a push mechanism that is able to
 deliver object changes as they happen.

 These push distribution mechanisms will not replace existing
 networking protocols. Instead they will supplement these protocols,
 providing different response time, peering, scale, and security
 characteristics.

 Push solutions will not displace all existing operations
 infrastructure needs. And SNMP and MIBs will remain widely deployed
 and the de facto choice for many monitoring solutions. But some
 functions could be displaced. Arguably the biggest shortcoming of
 SNMP for those applications concerns the need to rely on periodic
 polling, because it introduces an additional load on the network and
 devices, because it is brittle if polling cycles are missed, and
 because it is hard to synchronize and calibrate across a network. If
 applications can only use polling type interaction patterns with YANG
 datastores, similar issues can be expected.

2.1. Pub/Sub in the Interface to the Routing System (I2RS)

 Various documents about the Interface to the Routing System (I2RS)
 highlight the need to provide pub/sub capabilities between network
 elements. From [RFC7921], there are references throughout the
 document beginning in Section 6.2. Some specific examples include:

 o Section 7.6 of [RFC7921] provides high-level pub/sub
 (notification) guidance.

 o Section 6.4.2 of [RFC7921] identifies "subscribing to an
 information stream of route changes" and "receiving notifications
 about peers coming up or going down".

 o Section 6.3 of [RFC7921] notes that when Local Configuration
 preempts I2RS, external notification might be necessary.

 In addition, [USECASE] has relevant requirements. A small subset
 includes:

 o L-Data-REQ-12: The I2RS interface should support user
 subscriptions to data with the following parameters: push of data
 synchronously or asynchronously via registered subscriptions...

 o L-DATA-REQ-07: The I2RS interface (protocol and instant messages
 (IMs)) should allow a subscriber to select portions of the data
 model.

 o PI-REQ01: Monitor the available routes installed in the Routing
 Information Base (RIB) of each forwarding device, including near
 real-time notification of route installation and removal.

 o BGP-REQ10: The I2RS client SHOULD be able to instruct the I2RS
 agent(s) to notify the I2RS client when the BGP processes on an
 associated routing system observe a route change to a specific set
 of IP Prefixes and associated prefixes.... The I2RS agent should
 be able to notify the client via the publish or subscribe
 mechanism.

 o IGP-REQ-07: The I2RS interface (protocol and IMs) should support a
 mechanism where the I2RS Clients can subscribe to the I2RS Agent's
 notification of critical node IGP events.

 o MPLS-LDP-REQ-03: The I2RS Agent notifications should allow an I2RS
 client to subscribe to a stream of state changes regarding the LDP
 sessions or LDP Label Switched Paths (LSPs) from the I2RS Agent.

 o L-Data-REQ-01: I2RS must be able to collect large data sets from
 the network with high frequency and resolution, and with minimal
 impact to the device's CPU and memory.

 Also, Section 7.4.3 of [RFC7922] includes this pub/sub requirement:

 o I2RS agents MUST support publishing I2RS trace log information to
 that feed as described in [this document]. Subscribers would then
 receive a live stream of I2RS interactions in trace log format and
 could flexibly choose to do a number of things with the log
 messages.

2.2. Pub/Sub Variants on Network Elements

 This document is intended to cover requirements beyond I2RS. Looking
 at history, there are many examples of switching and routing
 protocols that have done explicit or implicit pub/sub in the past.
 In addition, new policy notification mechanisms that operate on
 switches and routers are being specified now. A small subset of
 current and past subscription mechanisms includes:

 o Multicast topology establishment is accomplished before any
 content delivery is made to endpoints (IGMP, PIM, etc.).

 o Secure Automation and Continuous Monitoring (SACM) allows
 subscription into devices, which may then push spontaneous changes
 in their configured hardware and software [SACMREQ].

 o In MPLS VPNs [RFC6513], a Customer Edge router exchanges PIM
 control messages before Provider Edge (PE) Routing Adjacencies are
 passed [RFC6513].

 o After OSPF establishes its adjacencies, Link State Advertisement
 will then commence [RFC2328].

 Worthy of note in the examples above is the wide variety of
 underlying transports. A generalized pub/sub mechanism, therefore
 should be structured to support alternative transports. Based on
 current I2RS requirements, NETCONF should be the initially supported
 transport due to the need for connection-oriented/unicast
 communication. Eventual support for multicast and broadcast
 subscription update distribution will be needed as well.

2.3. Existing Generalized Pub/Sub Implementations

 TIBCO, RSS, Common Object Request Broker Architecture (CORBA), and
 other technologies all show precursor pub/sub technologies. However,
 there are new needs (described in Section 4 below) that these
 technologies do not serve. We need a new pub/sub technology.

 There are at least two widely deployed generalized pub/sub
 implementations that come close to current needs: Extensible
 Messaging and Presence Protocol (XMPP) [XEP-0060] and Data
 Distribution Service (DDS) [OMG-DDS]. Both serve as proof-points
 that a highly scalable distributed datastore implementation
 connecting millions of edge devices is possible.

 Because of these proof-points, we can be comfortable that the
 underlying technologies can enable reusable generalized YANG object
 distribution. Analysis will need to fully dimension the speed and
 scale of such object distribution for various subtree sizes and
 transport types.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Although
 this document is not a protocol specification, the use of this
 language clarifies the instructions to protocol designers producing
 solutions that satisfy the requirements set out in this document.

 A Subscriber makes requests for set(s) of YANG object data.

 A Publisher is responsible for distributing subscribed YANG object
 data per the terms of a subscription. In general, a Publisher is the
 owner of the YANG datastore that is subjected to the subscription.

 A Receiver is the target to which a Publisher pushes updates. In
 general, the Receiver and Subscriber will be the same entity. A
 Subscription Service provides subscriptions to Subscribers of YANG
 data.

 A Subscription Service interacts with the Publisher of the YANG data
 as needed to provide the data per the terms of the subscription.

 A subscription request for one or more YANG subtrees (including
 single leafs) is made by the Subscriber of a Publisher and is
 targeted to a Receiver. A subscription may include constraints that
 dictate how often or under what conditions YANG information updates
 might be sent.

 A subscription is a contract between a Subscription Service and a
 Subscriber that stipulates the data to be pushed and the associated
 terms.

 A datastore is defined in [RFC6241].

 An Update provides object changes that have occurred within
 subscribed YANG subtree(s). An Update must include the current
 status of (data) node instances for which filtering has indicated
 they have different status than previously provided. An Update may
 include a bundled set of ordered/sequential changes for a given
 object that have been made since the last update.

 A Filter contains evaluation criteria, which are evaluated against
 YANG object(s) within a subscription. There are two types of
 Filters: Subtree Filters, which identify selected objects/nodes
 published under a target data node, and object element and attribute
 Filters where an object should only be published if it has properties
 meeting specified Filter criteria.

4. Requirements

 Many of the requirements within this section have been adapted from
 the XMPP [XEP-0060] and DDS [OMG-DDS] requirements specifications.

4.1. Assumptions for Subscriber Behavior

 This document provides requirements for the Subscription Service. It
 does not define all the requirements for the Subscriber/Receiver.
 However in order to frame the desired behavior of the Subscription
 Service, it is important to specify key input constraints.

 A Subscriber SHOULD avoid attempting to establish multiple
 subscriptions pertaining to the same information, i.e., referring to
 the same datastore YANG subtrees.

 A Subscriber MAY provide subscription QoS criteria to the
 Subscription Service; if the Subscription Service is unable to meet
 those criteria, the subscription SHOULD NOT be established.

 When a Subscriber and Receiver are the same entity and the transport
 session is lost/terminated, the Subscriber MUST re-establish any
 subscriptions it previously created via signaling over the transport
 session. That is, there is no requirement for the life span of such
 signaled subscriptions to extend beyond the life span of the
 transport session.

 A Subscriber MUST be able to infer when a Subscription Service is no
 longer active and when no more updates are being sent.

 A Subscriber MAY check with a Subscription Service to validate the
 existence and monitored subtrees of a subscription.

 A Subscriber MUST be able to periodically lease and extend the lease
 of a subscription from a Subscription Service.

4.2. Subscription Service Requirements

4.2.1. General

 A Subscription Service MUST support the ability to create, renew,
 time out, and terminate a subscription.

 A Subscription Service MUST be able to support and independently
 track multiple subscription requests by the same Subscriber.

 A Subscription Service MUST be able to support an add/change/delete
 of subscriptions to multiple YANG subtrees as part of the same
 subscription request.

 A Subscription Service MUST support subscriptions against operational
 datastores, configuration datastores, or both.

 A Subscription Service MUST be able support filtering so that the
 subscribed updates under a target node might publish only operational
 data, only configuration data, or both.

 A subscription MAY include Filters as defined within a subscription
 request, therefore the Subscription Service MUST publish only data
 nodes that meet the Filter criteria within a subscription.

 A Subscription Service MUST support the ability to subscribe to
 periodic updates. The subscription period MUST be configurable as
 part of the subscription request.

 A Subscription Service SHOULD support the ability to subscribe to
 updates on-change, i.e., whenever values of subscribed data objects
 change.

 For on-change updates, the Subscription Service MUST support a
 dampening period that needs to be passed before the first or
 subsequent on-change updates are sent. The dampening period SHOULD
 be configurable as part of the subscription request.

 A Subscription Service MUST allow subscriptions to be monitored.
 Specifically, a Subscription Service MUST at a minimum maintain
 information about which subscriptions are being serviced, the terms
 of those subscriptions (e.g., what data is being subscribed,
 associated Filters, update policy -- on change, periodic), and the
 overall status of the subscription -- e.g., active or suspended.

 A Subscription Service MUST support the termination of a subscription
 when requested by the Subscriber.

 A Subscription Service SHOULD support the ability to suspend and to
 resume a subscription on request of a client.

 A Subscription Service MAY at its discretion revoke or suspend an
 existing subscription. Reasons may include transitory resource
 limitation, credential expiry, failure to reconfirm a subscription,
 loss of connectivity with the Receiver, operator command-line
 interface (CLI), and/or others. When this occurs, the Subscription
 Service MUST notify the Subscriber and update the subscription
 status.

 A Subscription Service MAY offer the ability to modify a subscription
 Filter. If such an ability is offered, the service MUST provide
 subscribers with an indication telling at what point the modified
 subscription goes into effect.

4.2.2. Negotiation

 A Subscription Service MUST be able to negotiate the following terms
 of a subscription:

 o The policy, i.e., whether updates are on-change or periodic

 o The interval, for periodic publication policy

 o The on-change policy dampening period (if the on-change policy is
 supported)

 o Any Filters associated with a subtree subscription

 A Subscription Service SHOULD be able to negotiate QoS criteria for a
 subscription. Examples of subscription QoS criteria may include
 reliability of the Subscription Service, reaction time between a
 monitored YANG subtree/object change and a corresponding notification
 push, and the Subscription Service's ability to support certain
 levels of object liveliness.

 In cases where a subscription request cannot be fulfilled due to
 insufficient platform resources, the Subscription Service SHOULD
 include within its decline hints on criteria that would have been
 acceptable when the subscription request was made. For example, if
 periodic updates were requested with update intervals that were too
 short for the specified data set, an alternative acceptable interval
 period might be returned from the Publisher. If on-change updates
 were requested with too aggressive a dampening period, then an
 acceptable dampening period may be returned, or alternatively an
 indication that only periodic updates are supported for the requested
 object(s).

4.2.3. Update Distribution

 For on-change updates, the Subscription Service MUST only send deltas
 to the object data for which a change occurred. (Otherwise the
 subscriber might not know what has actually undergone change.) The
 updates for each object MUST include an indication of whether it was
 removed, added, or changed.

 When a Subscription Service is not able to send updates per its
 subscription contract, the subscription MUST notify subscribers and
 put the subscription into a state indicating that the subscription
 was suspended by the service. When able to resume service,
 subscribers need to be notified as well. If unable to resume
 service, the Subscription Service MAY terminate the subscription and
 notify Subscribers accordingly.

 When a subscription with on-change updates is suspended and then
 resumed, the first update SHOULD include updates of any changes that
 occurred while the subscription was suspended, with the current
 value. The Subscription Service MUST provide a clear indication when
 this capability is not supported (because in this case, a client
 application may have to synchronize state separately).

 Multiple objects being pushed to a Subscriber, perhaps from different
 subscriptions, SHOULD be bundled together into a single Update.

 The sending of an Update MUST NOT be delayed beyond the Push Latency
 of any enclosed object changes.

 The sending of an Update MUST NOT be delayed beyond the dampening
 period of any enclosed object changes.

 The sending of an Update MUST NOT occur before the dampening period
 expires for any enclosed object changes.

 A Subscription Service MAY, as an option, support a replay capability
 so that a set of updates generated during a previous time internal
 can be sent to a Receiver.

4.2.4. Transport

 It is possible for updates coming from a Subscription Service to be
 pushed over different types of transports such as NETCONF, RESTCONF,
 and HTTP. Beyond existing transports, this Subscription Service will
 be applicable for emerging protocols such as those being defined in
 [USECASE]. The need for such transport flexibility drives the
 following requirements:

 o A Subscription Service SHOULD support different transports.

 o A Subscription Service SHOULD support different encodings of a
 payload.

 o It MUST be possible for Receivers to associate the update with a
 specific subscription.

 o In the case of connection-oriented transport, when a transport
 connection drops, the associated subscription SHOULD be
 terminated. It is up the Subscriber to request a new
 subscription.

4.2.5. Security Requirements

 Some uses of this Subscription Service will push privacy-sensitive
 updates and metadata. For privacy-sensitive deployments,
 subscription information MUST be bound within secure, encrypted
 transport-layer mechanisms. For example, if NETCONF is used as
 transport, then [RFC7589] would be a valid option to secure the
 transported information. The Subscription Service can also be used
 with emerging privacy-sensitive deployment contexts as well. As an
 example, deployments based on [USECASE] would apply these
 requirements in conjunction with those documented within
 [I2RS-ENV-SEC] and [I2RS-PROT-SEC] to secure ephemeral state
 information being pushed from a network element.

 As part of the subscription establishment, mutual authentication MUST
 be used between the Subscriber and the Subscription Service.

 Subscribers MUST NOT be able to pose as the original Subscription
 Service.

 Versioning of any subscription protocols MUST be supported so that
 the capabilities and behaviors expected of specific technology
 implementations can be exposed.

 A subscription could be used to attempt to retrieve information to
 which a client has no authorized access. Therefore, it is important
 that data being pushed based on subscriptions is authorized in the
 same way that regular data retrieval operations are authorized. Data
 being pushed to a client MUST be filtered accordingly, just like if
 the data were being retrieved on demand. For Unicast transports, the
 NETCONF Authorization Control Model applies.

 Additions or changes within a subscribed subtree structure MUST be
 validated against authorization methods before subscription updates,
 including new subtree information, are pushed.

 A loss of authenticated access to the target subtree or node SHOULD
 be communicated to the Subscriber.

 For any encrypted information exchanges, commensurate strength
 security mechanisms MUST be available and SHOULD be used. This
 includes all stages of the subscription and update push process.

 Subscription requests, including requests to create, terminate,
 suspend, and resume subscriptions MUST be properly authorized.

 When the Subscriber and Receiver are different, the Receiver MUST be
 able to terminate any subscription to it where objects are being
 delivered over a Unicast transport.

 A Subscription Service SHOULD decline a subscription request if it is
 likely to deplete its resources. It is preferable to decline a
 subscription when originally requested, rather than having to
 terminate it prematurely later.

 When the Subscriber and Receiver are different, and when the
 underlying transport connection passes credentials as part of
 transport establishment, then potentially pushed objects MUST be
 excluded from a push update if that object doesn't have read access
 visibility for that Receiver.

4.2.6. Subscription QoS

 A Subscription Service SHOULD be able to negotiate the following
 subscription QoS parameters with a Subscriber: Dampening,
 Reliability, Deadline, and Bundling.

 A Subscription Service SHOULD be able to interpret subscription QoS
 parameters, and only establish a subscription if it is possible to
 meet the QoS needs of the provided QoS parameters.

4.2.6.1. Liveliness

 A Subscription Service MUST be able to respond to requests to verify
 the Liveliness of a subscription.

 A Subscription Service MUST be able to report the currently monitored
 Nodes of a subscription.

4.2.6.2. Dampening

 A Subscription Service MUST be able to negotiate the minimum time
 separation since the previous update before transmitting a subsequent
 update for subscription. (Note: this is intended to confine the
 visibility of volatility into something digestible by the receiver.)

4.2.6.3. Reliability

 A Subscription Service MAY send Updates over Best Effort and Reliable
 transports.

4.2.6.4. Coherence

 For a particular subscription, every update to a subscribed object
 MUST be sent to the Receiver in sequential order.

4.2.6.5. Presentation

 The Subscription Service MAY have the ability to bundle a set of
 discrete object notifications into a single publishable update for a
 subscription. A bundle MAY include information on different Data
 Nodes and/or multiple updates about a single Data Node.

 For any bundled updates, the Subscription Service MUST provide
 information for a Receiver to reconstruct the order and timing of
 updates.

4.2.6.6. Deadline

 The Subscription Service MUST be able to push updates at a regular
 cadence that corresponds with the Subscriber's specified start and
 end timestamps. (Note: the regular cadence can drive one update, a
 discrete quantity of updates, or an unbounded set of periodic
 updates.)

4.2.6.7. Push Latency

 The Subscription Service SHOULD be able to delay Updates on object
 push for a configurable period per Subscriber.

 It MUST be possible for an administrative entity to determine the
 Push latency between object change in a monitored subtree and the
 Subscription Service Push of the update transmission.

4.2.6.8. Relative Priority

 The Subscription Service SHOULD support the relative prioritization
 of subscriptions so that the dequeuing and discarding of push updates
 can consider this if there is insufficient bandwidth between the
 Publisher and the Receiver.

4.2.7. Filtering

 If no filtering criteria are provided, or if filtering criteria are
 met, updates for a subscribed object MUST be pushed, subject to the
 QoS limits established for the subscription.

 It MUST be possible for the Subscription Service to receive Filter(s)
 from a Subscriber and apply them to the corresponding object(s)
 within a subscription.

 It MUST be possible to attach one or more Subtree and/or object
 element and attribute Filters to a subscription. Mandatory Filter
 types include:

 o For character-based object properties, Filter values that are
 exactly equal to a provided string, not equal to the string, or
 containing a string.

 o For numeric object properties, Filter values that are =, !=, <,
 <=, >, or >= a provided number.

 It SHOULD be possible for Filtering criteria to evaluate more than
 one property of a particular subscribed object as well as apply
 multiple Filters against a single object.

 It SHOULD be possible to establish query match criteria on additional
 objects to be used in conjunction with Filtering criteria on a
 subscribed object. (For example, if A has changed and B=1, then Push
 A.) Query match capability may be done on objects within the
 datastore even if those objects are not included within the
 subscription. This of course assumes that the subscriber has read
 access to those objects.

 For on-change subscription updates, an object MUST pass a Filter
 through a Filter if it has changed since the previous update. This
 includes if the object has changed multiple times since the last
 update, and if the value happens to be the exact same value as the
 last one sent.

4.2.8. Assurance and Monitoring

 It MUST be possible to fetch the state of a single subscription from
 a Subscription Service.

 It MUST be possible to fetch the state of all subscriptions of a
 particular Subscriber.

 It MUST be possible to fetch a list and status of all subscription
 requests over a period of time. If there is a failure, some failure
 reasons might include:

 o Improper security credentials provided to access the target node;

 o Target node referenced does not exist;

 o Subscription type requested is not available upon the target node;

 o Out of resources, or resources not available;

 o Incomplete negotiations with the Subscriber.

5. Security Considerations

 There are no additional security considerations beyond the
 requirements listed in Section 4.2.5.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2328]
 Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <http://www.rfc-editor.org/info/rfc2328>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6513]
 Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
 BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
 2012, <http://www.rfc-editor.org/info/rfc6513>.

 [RFC7589]
 Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

 [RFC7921]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
 <http://www.rfc-editor.org/info/rfc7921>.

 [RFC7922]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", RFC 7922, DOI 10.17487/RFC7922, June
 2016, <http://www.rfc-editor.org/info/rfc7922>.

6.2. Informative References

 [I2RS-ENV-SEC]

 Migault, D., Ed., Halpern, J., and S. Hares, "I2RS
 Environment Security Requirements", Work in Progress,
 draft-ietf-i2rs-security-environment-reqs-01, April 2016.

 [I2RS-PROT-SEC]

 Hares, S., Migault, D., and J. Halpern, "I2RS Security
 Related Requirements", Work in Progress, draft-ietf-i2rs-
 protocol-security-requirements-06, May 2016.

 [OMG-DDS]
 Object Management Group (OMG), "Data Distribution Service
 for Real-time Systems, Version 1.2", January 2007,
 <http://www.omg.org/spec/DDS/1.2/>.

 [SACMREQ]
 Nancy, N. and L. Lorenzin, "Security Automation and
 Continuous Monitoring (SACM) Requirements", Work in
 Progress, draft-ietf-sacm-requirements-13, March 2016.

 [USECASE]
 Hares, S. and M. Chen, "Summary of I2RS Use Case
 Requirements", Work in Progress, draft-ietf-i2rs-usecase-
 reqs-summary-02, March 2016.

 [XEP-0060]
 Millard, P., Saint-Andre, P., and R. Meijer, "Publish-
 Subscribe", XSF XEP-0060, July 2010,
 <http://xmpp.org/extensions/xep-0060.html>.

Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Ambika Tripathy and Prabhakara
 Yellai as well as the helpfulness of related end-to-end system
 context info from Nancy Cam Winget, Ken Beck, and David McGrew.

Authors' Addresses

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Alexander Clemm
Cisco Systems

 Email: alex@cisco.com

Alberto Gonzalez Prieto
Cisco Systems

 Email: albertgo@cisco.com

8241 - Interface to the Routing System (I2RS) Security-Related Requirements

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8241

Category: Informational

ISSN: 2070-1721

S. Hares

Huawei

D. Migault

J. Halpern

Ericsson

September 2017

Interface to the Routing System (I2RS) Security-Related Requirements

Abstract

 This document presents security-related requirements for the
 Interface to the Routing System (I2RS) protocol, which provides a new
 interface to the routing system described in the I2RS architecture
 document (RFC 7921). The I2RS protocol is implemented by reusing
 portions of existing IETF protocols and adding new features to them.
 One such reuse is of the security features of a secure transport
 (e.g., Transport Layer Security (TLS), Secure SHell (SSH) Protocol,
 Datagram TLS (DTLS)) such as encryption, message integrity, mutual
 peer authentication, and anti-replay protection. The new I2RS
 features to consider from a security perspective are as follows: a
 priority mechanism to handle multi-headed write transactions, an
 opaque secondary identifier that identifies an application using the
 I2RS client, and an extremely constrained read-only non-secure
 transport.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8241.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology and Concepts
	 2.1. Requirements Language

	 2.2. Security Terminology

	 2.3. I2RS-Specific Terminology

	 2.4. Concepts

	3. Security Features and Protocols: Reused and New
	 3.1. Security Protocols Reused by the I2RS Protocol

	 3.2. New Features Related to Security

	 3.3. I2RS Protocol Security Requirements vs. IETF Management Protocols

	4. Security-Related Requirements
	 4.1. I2RS Peer (Agent and Client) Identity Authentication

	 4.2. Identity Validation before Role-Based Message Actions

	 4.3. Peer Identity, Priority, and Client Redundancy

	 4.4. Multi-Channel Transport: Secure and Non-Secure

	 4.5. Management Protocol Security

	 4.6. Role-Based Data Model Security

	 4.7. Security of the Environment

	5. IANA Considerations

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 The Interface to the Routing System (I2RS) protocol provides read and
 write access to information and state within the routing system. An
 I2RS client interacts with one or more I2RS agents to collect
 information from network routing systems. [RFC7921] describes the
 architecture of this interface, and this document assumes the reader
 is familiar with this architecture and its definitions.

 The I2RS interface is instantiated by the I2RS protocol connecting an
 I2RS client and an I2RS agent associated with a routing system. The
 I2RS protocol is implemented by reusing portions of existing IETF
 protocols and adding new features to them. As a reuse protocol, it
 can be considered a higher-layer protocol because it can be
 instantiated in multiple management protocols (e.g., NETCONF
 [RFC6241] or RESTCONF [RFC8040]) operating over a secure transport.
 These protocols are what provide its security.

 This document is part of a suite of documents outlining requirements
 for the I2RS protocol, which also includes the following:

 o "An Architecture for the Interface to the Routing System"
 [RFC7921]

 o "I2RS Ephemeral State Requirements" [RFC8242]

 o "Interface to the Routing System (I2RS) Traceability: Framework
 and Information Model" (which discusses traceability) [RFC7923]

 o "Requirements for Subscription to YANG Datastores" (which
 highlights the publication/subscription requirements) [RFC7922]

 Since the I2RS "higher-layer" protocol changes the interface to the
 routing systems, it is important that implementers understand the new
 security requirements for the environment the I2RS protocol operates
 in. A summary of the I2RS protocol security environment is found in
 the I2RS architecture [RFC7921].

 I2RS reuses the secure transport protocols (TLS, SSH, DTLS) that
 support encryption, message integrity, peer authentication, and key
 distribution protocols. Optionally, implementers may utilize
 Authentication, Authorization, and Accounting (AAA) protocols (Radius
 over TLS or Diameter over TLS) to securely distribute identity
 information.

 Section 2 highlights some of the terminology and concepts that the
 reader is required to be familiar with.

 Section 3 provides an overview of security features and protocols
 being reused (Section 3.1), lists the new security features being
 required (Section 3.2), and explores how existing and new security
 features and protocols would be paired with existing IETF management
 protocols (Section 3.3).

 The new features I2RS extends to these protocols are a priority
 mechanism to handle multi-headed writes, an opaque secondary
 identifier to allow traceability of an application utilizing a
 specific I2RS client to communicate with an I2RS agent, and non-
 secure transport constrained to be used only for read-only data,
 which may include publicly available data (e.g., public BGP events,
 public telemetry information, web service availability) and some
 legacy data.

 Section 4 provides the I2RS protocol security requirements of several
 security features. Protocols designed to be I2RS higher-layer
 protocols need to fulfill these security requirements.

2. Terminology and Concepts

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Security Terminology

 This document uses the terminology found in [RFC4949] and [RFC7921].
 Specifically, this document reuses the following terms from
 [RFC4949]:

o access control
o authentication
o data confidentiality
o data integrity
o data privacy
o identity
o identifier
o mutual authentication
o role
o role‑based access control
o security audit trail
o trust

 [RFC7922] describes traceability for the I2RS interface and the I2RS
 protocol. Traceability is not equivalent to a security audit trail
 or simple logging of information. A security audit trail may utilize
 traceability information.

2.3. I2RS-Specific Terminology

 This document discusses the security of the multiple I2RS
 communication channels that operate over the higher-layer I2RS
 protocol. The higher-layer I2RS protocol combines a secure transport
 and I2RS contextual information, and it reuses IETF protocols and
 data models to create the secure transport and the contextual
 information driven by the I2RS data model. To describe how the I2RS
 higher-layer protocol combines other protocols, the following terms
 are used:

 I2RS component protocols

 Protocols that are reused and combined to create the I2RS higher-
 layer protocol.

 I2RS secure transport component protocols (required)

 Secure transport protocols that combine to support the I2RS
 higher-layer protocol.

 I2RS management component protocols (required)

 Management protocols that combine to provide the management-
 information context for the I@RS higher-layer protocol.

 I2RS AAA component protocols (optional)

 AAA protocols supporting the I2RS higher-layer protocol.

2.4. Concepts

 The reader should be familiar with the pervasive security
 requirements in [RFC7258].

 This document uses the following concepts from the I2RS architecture
 [RFC7921] listed below with their respective section numbers from
 said RFC:

 o I2RS client, agent, and protocol (Section 2)

 o I2RS higher-layer protocol (Section 7.2)

 o scope: read, notification, identity, and write (Section 2)

 o identity and secondary identity (Section 2)

 o roles or security rules (Section 2)

 o routing system/subsystem (Section 2)

 o I2RS assumed security environment (Section 4)

 o I2RS identity and authentication (Section 4.1)

 o scope of Authorization in I2RS client and agent (Section 4.2)

 o client redundancy with a single client identity (Section 4.3),

 o restrictions on I2RS in personal devices (Section 4.4)

o communication channels and I2RS higher‑layer protocol
 (Section 7.2)

 o active communication versus connectivity (Section 7.5)

 o multi-headed control (Section 7.8)

 o transaction, message, multi-message atomicity (Section 7.9)

3. Security Features and Protocols: Reused and New

3.1. Security Protocols Reused by the I2RS Protocol

 I2RS requires a secure transport protocol and key distribution
 protocols. The secure transport for I2RS requires one to provide
 peer authentication. In addition, the features required for I2RS
 messages are confidentiality, authentication, and replay protection.
 According to [RFC8095], the secure transport protocols that support
 peer authentication, confidentiality, data integrity, and replay
 protection are the following:

 1. TLS [RFC5246] over TCP or Stream Control Transmission Protocol
 (SCTP)

 2. DTLS over UDP with replay detection and an anti-DoS stateless
 cookie mechanism required for the I2RS protocol and the DTLS
 options of record-size negotiation and conveyance of the Don't
 Fragment (DF) bit are set for IPv4, or no fragmentation extension
 headers for IPv6 to be optional in deployments are allowed by the
 I2RS protocol

 3. HTTP over TLS (over TCP or SCTP)

 4. HTTP over DTLS (with the requirements and optional features
 specified above in item 2)

 As detailed in Section 3.3, the following protocols would need to be
 extended to provide confidentiality, data integrity, peer
 authentication, and key distribution and to run over a secure
 transport (TLS or DTLS):

 o IP Flow Information Export (IPFIX) over SCTP, TCP, or UDP

 o Forwarding and Control Element Separation (ForCES) Transport
 Mapping Layer (TML) over SCTP

 The specific type of key management protocols an I2RS secure
 transport uses depends on the transport. Key management protocols
 utilized for the I2RS protocols SHOULD support automatic rotation.

 An I2RS implementer may use AAA protocols over secure transport to
 distribute the identities for the I2RS client, I2RS agent, and role-
 authorization information. Two AAA protocols are as follows:
 Diameter [RFC6733] and Radius [RFC2865]. To provide I2RS peer
 identities with the best security, the AAA protocols MUST be run over
 a secure transport (Diameter over secure transport (TLS over TCP)
 [RFC6733]), Radius over a secure transport (TLS) [RFC6614]).

3.2. New Features Related to Security

 The new features are priority, an opaque secondary identifier, and a
 non-secure protocol for read-only data constrained to specific
 standard usages. The I2RS protocol allows multi-headed control by
 several I2RS clients. This multi-headed control is based on the
 assumption that the operator deploying the I2RS clients, I2RS agents,
 and the I2RS protocol will coordinate the read, write, and
 notification scope so the I2RS clients will not contend for the same
 write scope. However, just in case there is an unforeseen overlap of
 I2RS clients attempting to write a particular piece of data, the I2RS
 architecture [RFC7921] provides the concept of each I2RS client
 having a priority. The I2RS client with the highest priority will
 have its write succeed. This document specifies requirements for
 this new concept of priority (see Section 4.3).

 The opaque secondary identifier identifies an application that uses
 communication from the I2RS client to I2RS agent to manage the
 routing system. The secondary identifier is opaque to the I2RS
 protocol. In order to protect personal privacy, the secondary
 identifier should not contain identifiable personal information.
 The last new feature related to I2RS security is the ability to allow
 nonconfidential data to be transferred over a non-secure transport.
 It is expected that most I2RS data models will describe information
 that will be transferred with confidentiality. Therefore, any model
 that transfers data over a non-secure transport is marked. The use
 of a non-secure transport is optional, and an implementer SHOULD
 create knobs that allow data marked as nonconfidential to be sent
 over a secure transport.

 Nonconfidential data can only be data with read-scope or
 notification-scope transmission of events. Nonconfidential data
 cannot have write-scope or notification-scope configuration.
 Examples of nonconfidential data would be the telemetry information
 that is publicly known (e.g., BGP route-views data or website status
 data) or some legacy data (e.g., interface) that cannot be
 transported using secure transport. The IETF I2RS data models MUST
 indicate (in the model) the specific data that is nonconfidential.

 Most I2RS data models will expect that the information described in
 the model will be transferred with confidentiality.

3.3. I2RS Protocol Security Requirements vs. IETF Management Protocols

 Figure 1 provides a partial list of the candidate management
 protocols. It also lists the secure transports each protocol
 supports. The column on the right of the table indicates whether or
 not the transport protocol will need I2RS security extensions.

Management I2RS Security
Protocol Transport Protocol Extensions
========= ===================== =================
NETCONF TLS over TCP (*1) None required (*2)

RESTCONF HTTP over TLS with None required (*2)
 X.509v3 certificates,
 certificate validation,
 mutual authentication:
 1) authenticated
 server identity,
 2) authenticated
 client identity
 (*1)

 ForCES TML over SCTP Needs an extension to
 (*1) TML to run TML over
 TLS over SCTP, or
 DTLS with options for
 replay protection
 and anti‑DoS stateless
 cookie mechanism.
 (DTLS record size
 negotiation and conveyance
 of DF bits are optional).
 The IPsec mechanism is
 not sufficient for
 I2RS traveling over
 multiple hops
 (router + link) (*2)

 IPFIX SCTP, TCP, UDP Needs an extension
 TLS or DTLS for to support TLS or DTLS with
 secure client (*1) options for replay protection
 and anti‑DoS stateless
 cookie mechanism.
 (DTLS record size
 negotiation and conveyance
 of DF bits are optional)

 *1 - Key management protocols MUST support appropriate key

 rotation.

 *2 - Identity and role authorization distributed by Diameter or

 Radius MUST use Diameter over TLS or Radius over TLS.

 Figure 1: Candidate Management Protocols and Their Secure Transports

4. Security-Related Requirements

 This section discusses security requirements based on the following
 security functions:

 o peer identity authentication (Section 4.1)

 o Peer Identity validation before role-based message actions
 (Section 4.2)

 o peer identity and client redundancy (Section 4.3)

 o multi-channel transport requirements: Secure transport and non-
 secure Transport (Section 4.4)

 o management protocol security requirements (Section 4.5)

 o role-based security (Section 4.6)

 o security environment (Section 4.7)

 The I2RS protocol depends upon a secure transport layer for peer
 authentication, data integrity, confidentiality, and replay
 protection. The optional non-secure transport can only be used for a
 restricted set of data available publicly (events or information) or
 a select set of legacy data. Data passed over the non-secure
 transport channel MUST NOT contain any data that identifies a person.

4.1. I2RS Peer (Agent and Client) Identity Authentication

 Requirements:

 SEC-REQ-01: All I2RS clients and agents MUST have an identity and
 at least one unique identifier for each party in the I2RS protocol
 context.

 SEC-REQ-02: The I2RS protocol MUST utilize these identifiers for
 mutual identification of the I2RS client and agent.

 SEC-REQ-03: Identifier distribution and the loading of these
 identifiers into the I2RS agent and client SHOULD occur outside
 the I2RS protocol prior to the I2RS protocol establishing a
 connection between I2RS client and agent. AAA protocols MAY be
 used to distribute these identifiers, but other mechanism can be
 used.

 Explanation:

 These requirements are for I2RS peer (I2RS agent and client)
 authentication. A secure transport (e.g., TLS) will authenticate
 based on these identities, but these identities are for the I2RS
 management layer. A AAA protocol distributing I2RS identity
 information SHOULD transport its information over a secure transport.

4.2. Identity Validation before Role-Based Message Actions

 Requirements:

 SEC-REQ-04: An I2RS agent receiving a request from an I2RS client
 MUST confirm that the I2RS client has a valid identity.

 SEC-REQ-05: An I2RS client receiving an I2RS message over a secure
 transport MUST confirm that the I2RS agent has a valid identifier.

 SEC-REQ-06: An I2RS agent receiving an I2RS message over a non-
 secure transport MUST confirm that the content is suitable for
 transfer over such a transport.

 Explanation:

 Each I2RS client has a scope based on its identity and the security
 roles (read, write, or events) associated with that identity, and
 that scope must be considered in processing an I2RS message sent on a
 communication channel. An I2RS communication channel may utilize
 multiple transport sessions or establish a transport session and then
 close the transport session. Therefore, it is important that the
 I2RS peers operate utilizing valid peer identities when a message is
 processed rather than checking if a transport session exists.

 During the time period when a secure transport session is active, the
 I2RS agent SHOULD assume that the I2RS client's identity remains
 valid. Similarly, while a secure connection exists that included
 validating the I2RS agent's identity and a message is received via
 that connection, the I2RS client SHOULD assume that the I2RS agent's
 identity remains valid.

 The definition of what constitutes a valid identity or a valid
 identifier MUST be defined by the I2RS protocol.

4.3. Peer Identity, Priority, and Client Redundancy

 Requirements:

 SEC-REQ-07: Each I2RS identifier MUST be associated with just one
 priority.

 SEC-REQ-08: Each identifier is associated with one secondary
 identifier during a particular I2RS transaction (e.g., read/write
 sequence), but the secondary identifier may vary during the time a
 connection between the I2RS client and I2RS agent is active.

 Explanation:

 The I2RS architecture also allows multiple I2RS clients with unique
 identities to connect to an I2RS agent (see Section 7.8 of
 [RFC7921]). The I2RS deployment using multiple clients SHOULD
 coordinate this multi-headed control of I2RS agents by I2RS clients
 so no conflict occurs in the write scope. However, in the case of
 conflict on a write-scope variable, the error resolution mechanisms
 defined by the I2RS architecture multi-headed control (Section 7.8 of
 [RFC7921]) allow the I2RS agent to deterministically choose one I2RS
 client. The I2RS client with highest priority is given permission to
 write the variable, and the second client receives an error message.

 A single I2RS client may be associated with multiple applications
 with different tasks (e.g., weekly configurations or emergency
 configurations). The secondary identity is an opaque value that the
 I2RS client passes to the I2RS agent so that this opaque value can be
 placed in the tracing file or event stream to identify the
 application using the communication from I2RS client to agent. The
 I2RS client is trusted to simply assert the secondary identifier.

 One example of the use of the secondary identity is the situation
 where an operator of a network has two applications that use an I2RS
 client. The first application is a weekly configuration application
 that uses the I2RS protocol to change configurations. The second
 application allows operators to makes emergency changes to routers in
 the network. Both of these applications use the same I2RS client to
 write to an I2RS agent. In order for traceability to determine which
 application (weekly configuration or emergency) wrote some
 configuration changes to a router, the I2RS client sends a different
 opaque value for each of the applications. The weekly configuration
 secondary opaque value could be "xzzy-splot" and the emergency
 secondary opaque value could be "splish-splash".

 A second example is if the I2RS client is used for the monitoring of
 critical infrastructure. The operator of a network using the I2RS
 client may desire I2RS client redundancy where the monitoring
 application with the I2RS client is deployed on two different boxes
 with the same I2RS client identity (see Section 4.3 of [RFC7921]).
 These two monitoring applications pass to the I2RS client whether the
 application is the primary or back-up application, and the I2RS
 client passes this information in the I2RS secondary identifier, as
 the figure below shows. The primary application's secondary
 identifier is "primary-monitoring", and the back-up application
 secondary identifier is "backup-monitoring". The I2RS tracing
 information will include the secondary identifier information along
 with the transport information in the tracing file in the agent.

Application A‑‑I2RS client‑‑Secure transport(#1)
 [I2RS identity 1, secondary identifier: "primary‑monitoring"]‑‑>

Application B‑‑I2RS client‑‑Secure transport(#2)
 [I2RS identity 1, secondary identifier: "backup‑monitoring"]‑‑>

 Figure 2: Primary and Back-Up Application for Monitoring

 Identification Sent to Agent

4.4. Multi-Channel Transport: Secure and Non-Secure

 Requirements:

 SEC-REQ-09: The I2RS protocol MUST be able to transfer data over a
 secure transport and optionally MAY be able to transfer data over
 a non-secure transport. The default transport is a secure
 transport, and this secure transport is mandatory to implement in
 all I2RS agents and in any I2RS client that a) performs a write
 scope transaction that is sent to the I2RS agent or b) configures
 an Event Scope transaction. This secure transport is mandatory to
 use on any I2RS client's Write transaction or the configuration of
 an Event Scope transaction.

 SEC-REQ-10: The secure transport MUST provide data
 confidentiality, data integrity, and practical replay prevention.

 SEC-REQ-11: The I2RS client and I2RS agent SHOULD implement
 mechanisms that mitigate DoS attacks. This means the secure
 transport must support DoS prevention. For the non-secure
 transport, the I2RS higher-layer protocol MUST contain a transport
 management layer that considers the detection of DoS attacks and
 provides a warning over a secure transport channel.

 SEC-REQ-12: A secure transport MUST be associated with a key
 management solution that can guarantee that only the entities
 having sufficient privileges can get the keys to encrypt/decrypt
 the sensitive data.

 SEC-REQ-13: A machine-readable mechanism to indicate that a data
 model contains nonconfidential data MUST be provided. A non-
 secure transport MAY be used to publish only read-scope or
 notification-scope data if the associated data model indicates
 that the data in question is nonconfidential.

 SEC-REQ-14: The I2RS protocol MUST be able to support multiple
 secure transport sessions providing protocol and data
 communication between an I2RS agent and client. However, a single
 connection between I2RS agent and client MAY elect to use a single
 secure transport session or a single non-secure transport session
 conforming to the requirements above.

 SEC-REQ-15: Deployment configuration knobs SHOULD be created to
 allow operators to send "nonconfidential" read scope (data or
 event streams) over a secure transport.

 SEC-REQ-16: The I2RS protocol makes use of both secure and non-
 secure transports, but this use MUST NOT be done in any way that
 weakens the secure transport protocol used in the I2RS protocol or
 other contexts that do not have this requirement for mixing secure
 and non-secure modes of operation.

 Explanation:

 The I2RS architecture defines three scopes: read, write, and
 notification. Non-secure data can only be used for read and
 notification scopes of "nonconfidential data". The configuration of
 ephemeral data in the I2RS agent uses write scope either for data or
 for configuration of event notification streams. The requirement to
 use secure transport for configuration prevents accidental or
 malevolent entities from altering the I2RS routing system through the
 I2RS agent.

 It is anticipated that the passing of most I2RS ephemeral state
 operational statuses SHOULD be done over a secure transport.

 In most circumstances, the secure transport protocol will be
 associated with a key management system. Most deployments of the
 I2RS protocol will allow for automatic key management systems. Since
 the data models for the I2RS protocol will control key routing
 functions, it is important that deployments of I2RS use automatic key
 management systems.

 Per BCP 107 [RFC4107], while key management systems SHOULD be
 automatic, the systems MAY be manual in the following scenarios:

 a) The environment has limited bandwidth or high round-trip times.

 b) The information being protected has low value.

 c) The total volume of traffic over the entire lifetime of the long-
 term session key will be very low.

 d) The scale of the deployment is limited.

 Operators deploying the I2RS protocol selecting manual key management
 SHOULD consider both short- and medium-term plans. Deploying
 automatic systems initially may save effort in the long term.

4.5. Management Protocol Security

 Requirements:

 SEC-REQ-17: In a critical infrastructure, certain data within
 routing elements is sensitive and read/write operations on such
 data SHOULD be controlled in order to protect its confidentiality.
 To achieve this, higher-layer protocols MUST utilize a secure
 transport, and they SHOULD provide access-control functions to
 protect confidentiality of the data.

 SEC-REQ-18: An integrity protection mechanism for I2RS MUST be
 provided that will be able to ensure the following:

 1) the data being protected is not modified without detection
 during its transportation,

 2) the data is actually from where it is expected to come from,
 and

 3) the data is not repeated from some earlier interaction the
 higher-layer protocol (best effort).

 The I2RS higher-layer protocol operating over a secure transport
 provides this integrity. The I2RS higher-layer protocol operating
 over a non-secure transport SHOULD provide some way for the client
 receiving nonconfidential read-scoped or event-scoped data over
 the non-secure connection to detect when the data integrity is
 questionable; and in the event of a questionable data integrity,
 the I2RS client should disconnect the non-secure transport
 connection.

 SEC-REQ-19: The I2RS higher-layer protocol MUST provide a
 mechanism for message traceability (requirements in [RFC7922])
 that supports the tracking higher-layer functions run across
 secure connection or a non-secure transport.

 Explanation:

 Most carriers do not want a router's configuration and data-flow
 statistics to be known by hackers or their competitors. While
 carriers may share peering information, most carriers do not share
 configuration and traffic statistics. To achieve this, the I2RS
 higher-layer protocol (e.g., NETCONF) requires access control
 (NETCONF Access Control Model [RFC6536]) for sensitive data needs to
 be provided; and the confidentiality protection on such data during
 transportation needs to be enforced.

 Integrity of data is important even if the I2RS protocol is sending
 nonconfidential data over a non-secure connection. The ability to
 trace I2RS protocol messages that enact I2RS transactions provides a
 minimal aid to helping operators check how messages enact
 transactions on a secure or non-secure transport. Contextual checks
 on specific nonconfidential data sent over a non-secure connection
 may indicate the data has been modified.

4.6. Role-Based Data Model Security

 In order to make access control more manageable, the I2RS
 architecture [RFC7921] specifies a "role" to categorize users into a
 group (rather than handling them individually) for access-control
 purposes (role-based access control). Therefore, an I2RS role
 specifies the access control for a group as being read, write, or
 notification.

 SEC-REQ-20: The rules around what I2RS security role is permitted
 to access and manipulate what information over a secure transport
 (which protects the data in transit) SHOULD ensure that data of
 any level of sensitivity is reasonably protected from being
 observed by those without permission to view it, so that privacy
 requirements are met.

 SEC-REQ-21: Role security MUST work when multiple transport
 connections are being used between the I2RS client and agent as
 the I2RS architecture [RFC7921] describes.

 Sec-REQ-22: If an I2RS agent or client is tightly correlated with
 a person, then the I2RS protocol and data models SHOULD provide
 additional security that protects the person's privacy.

 Explanation:

 An I2RS higher-layer protocol uses a management protocol (e.g.,
 NETCONF, RESTCONF) to pass messages in order to enact I2RS
 transactions. Role security must secure data (sensitive and normal
 data) in a router even when it is operating over multiple connections
 at the same time. NETCONF can run over TLS (over TCP or SCTP) or
 SSH. RESTCONF runs over HTTP over a secure transport (TLS). SCTP
 [RFC4960] provides security for multiple streams plus end-to-end
 transport of data. Some I2RS functions may wish to operate over DTLS
 [RFC6347], which runs over UDP ([RFC768]) and SCTP ([RFC5764]).

 Please note the security of the connection between application and
 I2RS client is outside of the I2RS protocol or I2RS interface.

 While I2RS clients are expected to be related to network devices and
 not individual people, if an I2RS client ran on a person's phone,
 then privacy protection to anonymize any data relating to a person's
 identity or location would be needed.

 A variety of forms of management may set policy on roles: "operator-
 applied knobs", roles that restrict personal access, data models with
 specific "privacy roles", and access filters.

4.7. Security of the Environment

 The security for the implementation of a protocol also considers the
 protocol environment. Implementers should review the summary of the
 I2RS security environment in [RFC7921].

5. IANA Considerations

 This document does not require any IANA actions.

6. Security Considerations

 This is a document about security requirements for the I2RS protocol
 and data models. Security considerations for the I2RS protocol
 include both the protocol and the security environment.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4107]
 Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, DOI 10.17487/RFC4107,
 June 2005, <https://www.rfc-editor.org/info/rfc4107>.

 [RFC4949]
 Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7258]
 Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7921]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
 <https://www.rfc-editor.org/info/rfc7921>.

 [RFC7922]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", RFC 7922, DOI 10.17487/RFC7922, June
 2016, <https://www.rfc-editor.org/info/rfc7922>.

 [RFC7923]
 Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC768]
 Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC4960]
 Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5764]
 McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8095]
 Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8242]
 Haas, J. and S. Hares, "Interface to the Routing System
 (I2RS) Ephemeral State Requirements", RFC 8242,
 DOI 10.17487/RFC8242, September 2017,
 <http://www.rfc-editor.org/info/rfc8242>.

Acknowledgements

 The authors would like to thank Wes George, Ahmed Abro, Qin Wu, Eric
 Yu, Joel Halpern, Scott Brim, Nancy Cam-Winget, Dacheng Zhang, Alia
 Atlas, and Jeff Haas for their contributions to the I2RS security
 requirements discussion and this document. The authors would like to
 thank Bob Moskowitz, Kathleen Moriarty, Stephen Farrell, Radia
 Perlman, Alvaro Retana, Ben Campbell, and Alissa Cooper for their
 review of these requirements.

Authors' Addresses

Susan Hares
Huawei
7453 Hickory Hill
Saline, MI 48176
United States of America

 Email: shares@ndzh.com

Daniel Migault
Ericsson
8275 Trans Canada Route
Saint Laurent, QC H4S
Canada

 Email: daniel.migault@ericsson.com

Joel Halpern
Ericsson
United States of America

 Email: joel.halpern@ericsson.com

8242 - Interface to the Routing System (I2RS) Ephemeral State Requirements

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8242

Category: Informational

ISSN: 2070-1721

J. Haas

Juniper

S. Hares

Huawei

September 2017

Interface to the Routing System (I2RS) Ephemeral State Requirements

Abstract

 "An Architecture for the Interface to the Routing System" (RFC 7921)
 abstractly describes a number of requirements for ephemeral state (in
 terms of capabilities and behaviors) that any protocol suite
 attempting to meet the needs of the Interface to the Routing System
 (I2RS) protocol has to provide. This document describes, in detail,
 requirements for ephemeral state for those implementing the I2RS
 protocol.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8242.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Architectural Requirements for Ephemeral State

	3. Ephemeral State Requirements
	 3.1. Persistence

	 3.2. Constraints

	 3.3. Hierarchy

	 3.4. Ephemeral Configuration Overlapping Local Configuration

	4. YANG Features for Ephemeral State

	5. NETCONF Features for Ephemeral State

	6. RESTCONF Features for Ephemeral State

	7. Requirements regarding Supporting Multi-Head Control via Client

	8. Multiple Message Transactions

	9. Pub/Sub Requirements Expanded for Ephemeral State

	10. IANA Considerations

	11. Security Considerations

	12. Normative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 The Interface to the Routing System (I2RS) Working Group (WG) is
 chartered with providing architecture and mechanisms to inject into
 and retrieve information from the routing system. The I2RS
 Architecture document [RFC7921] abstractly documents a number of
 requirements for implementing the I2RS and defines ephemeral state as
 "state that does not survive the reboot of a routing device or the
 reboot of the software handling the I2RS software on a routing
 device" (see Section 1.1 of [RFC7921]). Section 2 of this document
 describes the specific requirements that the I2RS WG has identified
 based on the I2RS architecture's abstract requirements. The
 Interface to the Routing System (I2RS) Working Group (WG) is
 chartered with providing architecture and mechanisms to inject into
 and retrieve information from the routing system. The I2RS
 Architecture document [RFC7921] abstractly documents a number of
 requirements for implementing the I2RS and defines ephemeral state as
 "state that does not survive the reboot of a routing device or the
 reboot of the software handling the I2RS software on a routing
 device" (see Section 1.1 of [RFC7921]). Section 2 of this document
 provides a summary of these abstract requirements, and section 3
 recasts these abstract requirements into specific requirements for
 the Ephemeral state for any IETF network management system.

 The I2RS WG has chosen to use the YANG data modeling language
 [RFC7950] as the basis to implement its mechanisms.

 Additionally, the I2RS WG has chosen to reuse two existing protocols,
 NETCONF [RFC6241] and its similar but lighter-weight relative
 RESTCONF [RFC8040], as the protocols for carrying I2RS.

 What does reuse of a protocol mean? Reuse means that while the
 combination of the YANG modeling language and the NETCONF and
 RESTCONF protocols is a good starting basis for the I2RS data
 modeling language and protocol, the requirements for I2RS protocol
 implementations should:

 1. select features from the YANG modeling language and the NETCONF
 and RESTCONF protocols per version of the I2RS protocol (see
 Sections 4, 5, and 6), and

 2. propose additions to YANG, NETCONF, and RESTCONF per version of
 the I2RS protocol for key functions (ephemeral state, protocol
 security, publication/subscription service, traceability).

 The purpose of these requirements is to ensure clarity during I2RS
 protocol creation.

 Support for ephemeral state is an I2RS protocol requirement that
 necessitates datastore changes (see Section 3), YANG additions (see
 Section 4), NETCONF additions (see Section 5), and RESTCONF additions
 (see Section 6).

 Sections 7-9 provide details that expand upon the changes in Sections
 3-6 to clarify requirements discussed by the I2RS and NETCONF WGs.
 Section 7 provides additional requirements that detail how write-
 conflicts should be resolved if two I2RS client write the same data.
 Section 8 describes I2RS requirements for support of multiple message
 transactions. Section 9 highlights two requirements for I2RS
 publication/subscription [RFC7923] that must be expanded for
 ephemeral state.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Architectural Requirements for Ephemeral State

 The I2RS architecture [RFC7921] and the I2RS problem statement
 [RFC7920] define the important high-level requirements for the I2RS
 protocol in abstract terms. This section distills this high-level
 abstract guidance into specific requirements for the I2RS protocol.
 To aid the reader, there are references back to the abstract
 descriptions in the I2RS architecture document and the I2RS problem
 statement, but the reader should note the requirements below are not
 explicitly stated in the I2RS architecture document or in the I2RS
 problem statement.

 Requirements:

 1. The I2RS protocol SHOULD support an asynchronous programmatic
 interface with properties described in Section 5 of [RFC7920]
 (e.g., high throughput) with support for target information
 streams, filtered events, and thresholded events (real-time
 events) sent by an I2RS agent to an I2RS client (from Section 1.1
 of [RFC7921]).

 2. An I2RS agent MUST record the client identity when a node is
 created or modified. The I2RS agent SHOULD be able to read the
 client identity of a node and use the client identity's
 associated priority to resolve conflicts. The secondary identity
 is useful for traceability and may also be recorded (from
 Section 4 of [RFC7921]).

 3. An I2RS client identity MUST have only one priority for the
 client's identifier. A collision on writes is considered an
 error, but the priority associated with each client identifier is
 utilized to compare requests from two different clients in order
 to modify an existing node entry. Only an entry from a client
 that is higher priority can modify an existing entry (first entry
 wins). Priority only has meaning at the time of use (from
 Section 7.8 of [RFC7921]).

 4. An I2RS client's secondary identity data is read-only metadata
 that is recorded by the I2RS agent associated with a data model's
 node when the data node is written. Just like the primary client
 identity, the secondary identity SHOULD only be recorded when the
 data node is written (from Sections 7.4 of [RFC7921].)

 5. An I2RS agent MAY have a lower-priority I2RS client attempting to
 modify a higher-priority client's entry in a data model. The
 filtering out of lower-priority clients attempting to write or
 modify a higher-priority client's entry in a data model SHOULD be
 effectively handled and SHOULD not put an undue strain on the
 I2RS agent. (See Section 7.8 of [RFC7921] augmented by the
 resource limitation language in Section 8 [RFC7921].)

3. Ephemeral State Requirements

 In requirements Ephemeral-REQ-01 to Ephemeral-REQ-15, Ephemeral state
 is defined as potentially including in a data model ephemeral
 configuration and operational state which is flagged as ephemeral.

3.1. Persistence

 Ephemeral-REQ-01: I2RS requires ephemeral state, i.e., state that
 does not persist across reboots. If state must be restored, it
 should be done solely by replay actions from the I2RS client via the
 I2RS agent.

 At first glance, the I2RS ephemeral state may seem equivalent to the
 writable-running datastore in NETCONF (e.g., running-config), which
 can be copied to a datastore that persists across a reboot (software
 or hardware). However, I2RS ephemeral state MUST NOT persist across
 a reboot (software or hardware).

3.2. Constraints

 Ephemeral-REQ-02: Non-ephemeral state MUST NOT refer to ephemeral
 state for constraint purposes; it SHALL be considered a validation
 error if it does.

 Ephemeral-REQ-03: Ephemeral state MUST be able to have constraints
 that refer to operational state, this includes potentially fast-
 changing or short-lived operational state nodes, such as MPLS LSP-ID
 (label-switched path ID) or a BGP Adj-RIB-IN (Adjacent RIB Inbound).
 Ephemeral state constraints should be assessed when the ephemeral
 state is written, and if any of the constraints change to make the
 constraints invalid after that time, the I2RS agent SHOULD notify the
 I2RS client.

 Ephemeral-REQ-04: Ephemeral state MUST be able to refer to non-
 ephemeral state as a constraint. Non-ephemeral state can be
 configuration state or operational state.

 Ephemeral-REQ-05: I2RS pub-sub [RFC7923], tracing [RFC7922], RPC, or
 other mechanisms may lead to undesirable or unsustainable resource
 consumption on a system implementing an I2RS agent. It is
 RECOMMENDED that mechanisms be made available to permit
 prioritization of I2RS operations, when appropriate, to permit
 implementations to shed work load when operating under constrained
 resources. An example of such a work-shedding mechanism is rate-
 limiting.

3.3. Hierarchy

 Ephemeral-REQ-06: YANG MUST have the ability to do the following:

 1. define a YANG module or submodule schema that only contains data
 nodes with the property of being ephemeral, and

 2. augment a YANG module with additional YANG schema nodes that have
 the property of being ephemeral.

3.4. Ephemeral Configuration Overlapping Local Configuration

 Ephemeral-REQ-07: Local configuration MUST have a priority that is
 comparable with individual I2RS client priorities for making changes.
 This priority will determine whether local configuration changes or
 individual ephemeral configuration changes take precedence as
 described in [RFC7921]. The I2RS protocol MUST support this
 mechanism.

4. YANG Features for Ephemeral State

 Ephemeral-REQ-08: In addition to config true/false, there MUST be a
 way to indicate that YANG schema nodes represent ephemeral state. It
 is desirable to allow for, and have a way to indicate, config false
 YANG schema nodes that are writable operational state.

5. NETCONF Features for Ephemeral State

 Ephemeral-REQ-09: The changes to NETCONF must include:

 1. Support for communication mechanisms to enable an I2RS client to
 determine that an I2RS agent supports the mechanisms needed for
 I2RS operation.

 2. The ephemeral state MUST support notification of write conflicts
 using the priority requirements defined in Section 7 (see
 requirements Ephemeral-REQ-11 through Ephemeral-REQ-14).

6. RESTCONF Features for Ephemeral State

 Ephemeral-REQ-10: The conceptual changes to RESTCONF are:

 1. Support for communication mechanisms to enable an I2RS client to
 determine that an I2RS agent supports the mechanisms needed for
 I2RS operation.

 2. The ephemeral state MUST support notification of write conflicts
 using the priority requirements defined in Section 7 (see
 requirements Ephemeral-REQ-11 through Ephemeral-REQ-14).

7. Requirements regarding Supporting Multi-Head Control via Client
 Priority

 To support multi-headed control, I2RS requires that there be a
 decidable means of arbitrating the correct state of data when
 multiple clients attempt to manipulate the same piece of data. This
 is done via a priority mechanism with the highest priority winning.
 This priority is per client.

 Ephemeral-REQ-11: The following requirements must be supported by the
 I2RS protocol in order to support I2RS client identity and priority:

 o the data nodes MUST store I2RS client identity and MAY store the
 effective priority at the time the data node is stored.

 o Per SEC-REQ-07 in Section 4.3 of [RFC8241], an I2RS Identifier
 MUST have just one priority. The I2RS protocol MUST support the
 ability to have data nodes store I2RS client identity and not the
 effective priority of the I2RS client at the time the data node is
 stored.

 o The priority MAY be dynamically changed by AAA, but the exact
 actions are part of the protocol definition as long as collisions
 are handled as described in Ephemeral-REQ-12, Ephemeral-REQ-13,
 and Ephemeral-REQ-14.

 Ephemeral-REQ-12: When a collision occurs as two I2RS clients are
 trying to write the same data node, this collision is considered an
 error. The I2RS priorities are used to provide a deterministic
 resolution to the conflict. When there is a collision, and the data
 node is changed, a notification (which includes indicating the data
 node the collision occurred on) MUST be sent to the original client
 to give the original client a chance to deal with the issues
 surrounding the collision. The original client may need to fix their
 state.

 Explanation: RESTCONF and NETCONF updates can come in concurrently
 from alternative sources. Therefore, the collision detection and
 comparison of priority needs to occur for any type of update.

 For example, RESTCONF tracks the source of configuration change via
 the entity-tag (see Section 3.5.2 of [RFC8040]), which the server
 returns to the client along with the value in GET or HEAD methods.
 RESTCONF requires that this resource entity-tag be updated whenever a
 resource or configuration resource within the resource is altered.
 In the RESTCONF processing, when the resource or a configuration
 resource within the resource is altered, the processing of the
 configuration change for two I2RS clients must detect an I2RS
 collision and resolve the collision using the priority mechanism.

 Ephemeral-REQ-13: Multi-headed control is required for collisions and
 the priority resolution of collisions. Multi-headed control is not
 tied to ephemeral state. The I2RS protocol MUST NOT mandate the
 internal mechanism for how AAA protocols (e.g., Radius or Diameter)
 or mechanisms distribute priority per identity except that any AAA
 protocols MUST operate over a secure transport layer (see Radius
 [RFC6614] and Diameter [RFC6733]). Mechanisms that prevent
 collisions of two clients trying to modify the same node of data are
 the focus.

 Ephemeral-REQ-14: A deterministic conflict resolution mechanism MUST
 be provided to handle the error scenario in which two clients, with
 the same priority, update the same configuration data node. The I2RS
 architecture gives one way that this could be achieved: by specifying
 that the first update wins. Other solutions that prevent oscillation
 of the config data node are also acceptable.

8. Multiple Message Transactions

 Ephemeral-REQ-15: Section 7.9 of the [RFC7921] states the I2RS
 architecture does not include multi-message atomicity and roll-back
 mechanisms. The I2RS protocol implementation MUST NOT require the
 support of these features. As part of this requirement, the I2RS
 protocol should support:

 multiple operations in one message. An error in one operation
 MUST NOT stop additional operations from being carried out, nor
 can it cause previous operations to be rolled back.

 multiple operations in multiple messages, but multiple message-
 command error handling MUST NOT insert errors into the I2RS
 ephemeral state.

9. Pub/Sub Requirements Expanded for Ephemeral State

 I2RS clients require the ability to monitor changes to ephemeral
 state. While subscriptions are well defined for receiving
 notifications, the need to create a notification set for all
 ephemeral configuration state may be overly burdensome to the user.

 Thus, there is a need for a general subscription mechanism that can
 provide notification of changed state, with sufficient information to
 permit the client to retrieve the impacted nodes. This should be
 doable without requiring the notifications to be created as part of
 every single I2RS module.

 The publication/subscription requirements for I2RS are in [RFC7923],
 and the following general requirements SHOULD be understood to be
 expanded to include ephemeral state:

 o Pub-Sub-REQ-01: The subscription service MUST support
 subscriptions against ephemeral state in operational datastores,
 configuration datastores, or both.

 o Pub-Sub-REQ-02: The subscription service MUST support filtering so
 that subscribed updates under a target node might publish either:

 1. only ephemeral state in operational data or configuration
 data, or

 2. both ephemeral and operational data.

 o Pub-Sub-REQ-03: The subscription service MUST support
 subscriptions that are ephemeral. (For example, an ephemeral data
 model that has ephemeral subscriptions.)

10. IANA Considerations

 This document does not require any IANA actions.

11. Security Considerations

 The security requirements for the I2RS protocol are covered in
 [RFC8241].

12. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <https://www.rfc-editor.org/info/rfc6614>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC7920]
 Atlas, A., Ed., Nadeau, T., Ed., and D. Ward, "Problem
 Statement for the Interface to the Routing System",
 RFC 7920, DOI 10.17487/RFC7920, June 2016,
 <https://www.rfc-editor.org/info/rfc7920>.

 [RFC7921]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
 <https://www.rfc-editor.org/info/rfc7921>.

 [RFC7922]
 Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
 the Routing System (I2RS) Traceability: Framework and
 Information Model", RFC 7922, DOI 10.17487/RFC7922, June
 2016, <https://www.rfc-editor.org/info/rfc7922>.

 [RFC7923]
 Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8241]
 Hares, S., Migault, D., and J. Halpern, "Interface to the
 Routing System (I2RS) Security-Related Requirements",
 RFC 8241, DOI 10.17487/RFC8241, September 2017,
 <https://www.rfc-editor.org/info/rfc8241>.

Acknowledgements

 This document is an attempt to distill lengthy conversations on the
 I2RS mailing list for an architecture that was, for a long period of
 time, a moving target. Some individuals in particular warrant
 specific mention for their extensive help in providing the basis for
 this document:

Alia Atlas,
Andy Bierman,
Martin Bjorklund,
Dean Bogdanavic,
Rex Fernando,
Joel Halpern,
Thomas Nadeau,
Juergen Schoenwaelder,
Kent Watsen,
Robert Wilton, and
Joe Clarke.

Authors' Addresses

Jeff Haas
Juniper

 Email: jhaas@juniper.net

Susan Hares
Huawei
Saline
United States of America

 Email: shares@ndzh.com

8345 - A YANG Data Model for Network Topologies

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8345

Category: Standards Track

ISSN: 2070-1721

A. Clemm

Huawei

J. Medved

Cisco

R. Varga

Pantheon Technologies SRO

N. Bahadur

Bracket Computing

H. Ananthakrishnan

Packet Design

X. Liu

Jabil

March 2018

A YANG Data Model for Network Topologies

Abstract

 This document defines an abstract (generic, or base) YANG data model
 for network/service topologies and inventories. The data model
 serves as a base model that is augmented with technology-specific
 details in other, more specific topology and inventory data models.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8345.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Key Words

	3. Definitions and Abbreviations

	4. Model Structure Details
		 4.1. Base Network Model

	 4.2. Base Network Topology Data Model

	 4.3. Extending the Data Model

	 4.4. Discussion and Selected Design Decisions
	 4.4.1. Container Structure

	 4.4.2. Underlay Hierarchies and Mappings

	 4.4.3. Dealing with Changes in Underlay Networks

	 4.4.4. Use of Groupings

	 4.4.5. Cardinality and Directionality of Links

	 4.4.6. Multihoming and Link Aggregation

	 4.4.7. Mapping Redundancy

	 4.4.8. Typing

	 4.4.9. Representing the Same Device in Multiple Networks

	 4.4.10. Supporting Client-Configured and System-Controlled Network Topologies

	 4.4.11. Identifiers of String or URI Type

	5. Interactions with Other YANG Modules

	6. YANG Modules
		 6.1. Defining the Abstract Network: ietf-network

	 6.2. Creating Abstract Network Topology: ietf-network-topology

	7. IANA Considerations

	8. Security Considerations

	9. References
		 9.1. Normative References

	 9.2. Informative References

	Appendix A. Model Use Cases
	 A.1. Fetching Topology from a Network Element

	 A.2. Modifying TE Topology Imported from an Optical Controller

	 A.3. Annotating Topology for Local Computation

	 A.4. SDN Controller-Based Configuration of Overlays on Top of Underlays

	Appendix B. Companion YANG Data Models for Implementations Not Compliant with NMDA
	 B.1. YANG Module for Network State

	 B.2. YANG Module for Network Topology State

	Appendix C. An Example

	Acknowledgments

	Contributors

	Authors' Addresses

1. Introduction

This document introduces an abstract (base) YANG [RFC7950] data model
[RFC3444] to represent networks and topologies. The data model is
divided into two parts: The first part of the data model defines a
network data model that enables the definition of network
hierarchies, or network stacks (i.e., networks that are layered on
top of each other) and maintenance of an inventory of nodes contained
in a network. The second part of the data model augments the basic
network data model with information to describe topology information.
Specifically, it adds the concepts of "links" and
"termination points" to describe how nodes in a network are connected
to each other. Moreover, the data model introduces vertical layering
relationships between networks that can be augmented to cover both
network inventories and network/service topologies.

 Although it would be possible to combine both parts into a single
 data model, the separation facilitates integration of network
 topology and network inventory data models, because it allows network
 inventory information to be augmented separately, and without concern
 for topology, into the network data model.

 The data model can be augmented to describe the specifics of
 particular types of networks and topologies. For example, an
 augmenting data model can provide network node information with
 attributes that are specific to a particular network type. Examples
 of augmenting models include data models for Layer 2 network
 topologies; Layer 3 network topologies such as unicast IGP, IS-IS
 [RFC1195], and OSPF [RFC2328]; traffic engineering (TE) data
 [RFC3209]; or any of the variety of transport and service topologies.
 Information specific to particular network types will be captured in
 separate, technology-specific data models.

 The basic data models introduced in this document are generic in
 nature and can be applied to many network and service topologies and
 inventories. The data models allow applications to operate on an
 inventory or topology of any network at a generic level, where the
 specifics of particular inventory/topology types are not required.
 At the same time, where data specific to a network type comes into
 play and the data model is augmented, the instantiated data still
 adheres to the same structure and is represented in a consistent
 fashion. This also facilitates the representation of network
 hierarchies and dependencies between different network components and
 network types.

 The abstract (base) network YANG module introduced in this document,
 entitled "ietf-network" (Section 6.1), contains a list of abstract
 network nodes and defines the concept of "network hierarchy" (network
 stack). The abstract network node can be augmented in inventory and
 topology data models with inventory-specific and topology-specific
 attributes. The network hierarchy (stack) allows any given network
 to have one or more "supporting networks". The relationship between
 the base network data model, the inventory data models, and the
 topology data models is shown in Figure 1 (dotted lines in the figure
 denote possible augmentations to models defined in this document).

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | Abstract Network Model |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+
 | |
 V V
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | Abstract | : Inventory :
 | Topology | : Model(s) :
 | Model | : :
 +‑‑‑‑‑‑‑‑‑‑‑‑+ ''''''''''''''
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
 V V V V
............
: L1 : : L2 : : L3 : : Service :
: Topology : : Topology : : Topology : : Topology :
: Model : : Model : : Model : : Model :
'''''''''''' '''''''''''' '''''''''''' ''''''''''''

 Figure 1: The Network Data Model Structure

 The network-topology YANG module introduced in this document,
 entitled "ietf-network-topology" (Section 6.2), defines a generic
 topology data model at its most general level of abstraction. The
 module defines a topology graph and components from which it is
 composed: nodes, edges, and termination points. Nodes (from the
 "ietf-network" module) represent graph vertices and links represent
 graph edges. Nodes also contain termination points that anchor the
 links. A network can contain multiple topologies -- for example,
 topologies at different layers and overlay topologies. The data
 model therefore allows relationships between topologies, as well as
 dependencies between nodes and termination points across topologies,
 to be captured. An example of a topology stack is shown in Figure 2.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / _[X1]_ "Service" /
 / _/ : _ /
 / _/ : _ /
 / _/ : _ /
 / / : \ /
 / [X2]__________________[X3] /
+‑‑‑‑‑‑‑‑‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑‑‑‑‑:‑‑‑‑‑‑‑+
 : : :
 +‑‑‑‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑‑‑:‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / : : : "L3" /
 / : : : /
 / : : : /
 / [Y1]_____________[Y2] /
 / * * * /
 / * * * /
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑*‑‑*‑‑‑‑‑‑‑+
 * * *
 +‑‑‑‑‑‑‑‑*‑‑‑‑‑‑‑‑‑‑*‑‑‑‑*‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / [Z1]_______________[Z2] "Optical" /
 / _ * _/ /
 / _ * _/ /
 / _ * _/ /
 / \ * / /
 / [Z] /
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: Topology Hierarchy (Stack) Example

 Figure 2 shows three topology levels. At the top, the "Service"
 topology shows relationships between service entities, such as
 service functions in a service chain. The "L3" topology shows
 network elements at Layer 3 (IP), and the "Optical" topology shows
 network elements at Layer 1. Service functions in the "Service"
 topology are mapped onto network elements in the "L3" topology, which
 in turn are mapped onto network elements in the "Optical" topology.
 Two service functions (X1 and X3) are mapped onto a single L3 network
 element (Y2); this could happen, for example, if two service
 functions reside in the same Virtual Machine (VM) (or server) and
 share the same set of network interfaces. A single "L3" network
 element (Y2) is mapped onto two "Optical" network elements (Z2 and
 Z). This could happen, for example, if a single IP router attaches
 to multiple Reconfigurable Optical Add/Drop Multiplexers (ROADMs) in
 the optical domain.

 Another example of a service topology stack is shown in Figure 3.

 VPN1 VPN2
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / [Y5]... / / [Z5]______[Z3] /
 / / \ : / / : _ / : /
 / / \ : / / : _ / : /
 / / \ : / / : \ / : /
 / [Y4]____[Y1] : / / : [Z2] : /
+‑‑‑‑‑‑:‑‑‑‑‑‑‑:‑‑‑:‑‑+ +‑‑‑:‑‑‑‑‑‑‑‑‑:‑‑‑‑‑:‑+
 : : : : : :
 : : : : : :
 : +‑‑‑‑‑‑‑:‑‑‑:‑‑‑‑‑:‑‑‑‑‑‑‑‑‑‑‑‑:‑‑‑‑‑:‑‑‑‑‑+
 : / [X1]__:___:___________[X2] : /
 :/ / _ : : _____/ / : /
 : / _ : _____/ / : /
 /: / \: / / : /
 / : / [X5] / : /
 / : / __/ __ / : /
 / : / ___/ __ / : /
 / : / ___/ \ / : /
 / [X4]__________________[X3]..: /
+‑‑+
 L3 Topology

 Figure 3: Topology Hierarchy (Stack) Example

 Figure 3 shows two VPN service topologies (VPN1 and VPN2)
 instantiated over a common L3 topology. Each VPN service topology is
 mapped onto a subset of nodes from the common L3 topology.

 There are multiple applications for such a data model. For example,
 within the context of Interface to the Routing System (I2RS), nodes
 within the network can use the data model to capture their
 understanding of the overall network topology and expose it to a
 network controller. A network controller can then use the
 instantiated topology data to compare and reconcile its own view of
 the network topology with that of the network elements that it
 controls. Alternatively, nodes within the network could propagate
 this understanding to compare and reconcile this understanding either
 among themselves or with the help of a controller. Beyond the
 network element and the immediate context of I2RS itself, a network
 controller might even use the data model to represent its view of the
 topology that it controls and expose it to applications north of
 itself. Further use cases where the data model can be applied are
 described in [USECASE-REQS].

 In this data model, a network is categorized as either system
 controlled or not. If a network is system controlled, then it is
 automatically populated by the server and represents dynamically
 learned information that can be read from the operational state
 datastore. The data model can also be used to create or modify
 network topologies that might be associated with an inventory model
 or with an overlay network. Such a network is not system controlled;
 rather, it is configured by a client.

 The data model allows a network to refer to a supporting network,
 supporting nodes, supporting links, etc. The data model also allows
 the layering of a network that is configured on top of a network that
 is system controlled. This permits the configuration of overlay
 networks on top of networks that are discovered. Specifically, this
 data model is structured to support being implemented as part of the
 ephemeral datastore [RFC8342], the requirements for which are defined
 in Section 3 of [RFC8242]. This allows network topology data that is
 written, i.e., configured by a client and not system controlled, to
 refer to dynamically learned data that is controlled by the system,
 not configured by a client. A simple use case might involve creating
 an overlay network that is supported by the dynamically discovered
 IP-routed network topology. When an implementation places written
 data for this data model in the ephemeral datastore, such a network
 MAY refer to another network that is system controlled.

2. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Definitions and Abbreviations

Datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof. A
 datastore maps to an instantiated YANG data tree (definition from
 [RFC8342]).

Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

IGP: Interior Gateway Protocol.

IS‑IS: Intermediate System to Intermediate System.

OSPF: Open Shortest Path First (a link‑state routing protocol).

SDN: Software‑Defined Networking.

URI: Uniform Resource Identifier.

VM: Virtual Machine.

4. Model Structure Details

4.1. Base Network Model

 The abstract (base) network data model is defined in the
 "ietf-network" module. Its structure is shown in Figure 4. The
 notation syntax follows the syntax used in [RFC8340].

module: ietf‑network
 +‑‑rw networks
 +‑‑rw network* [network‑id]
 +‑‑rw network‑id network‑id
 +‑‑rw network‑types
 +‑‑rw supporting‑network* [network‑ref]
 | +‑‑rw network‑ref ‑> /networks/network/network‑id
 +‑‑rw node* [node‑id]
 +‑‑rw node‑id node‑id
 +‑‑rw supporting‑node* [network‑ref node‑ref]
 +‑‑rw network‑ref
 | ‑> ../../../supporting‑network/network‑ref
 +‑‑rw node‑ref ‑> /networks/network/node/node‑id

 Figure 4: The Structure of the Abstract (Base) Network Data Model

 The data model contains a container with a list of networks. Each
 network is captured in its own list entry, distinguished via a
 network-id.

 A network has a certain type, such as L2, L3, OSPF, or IS-IS. A
 network can even have multiple types simultaneously. The type or
 types are captured underneath the container "network-types". In this
 model, it serves merely as an augmentation target; network-specific
 modules will later introduce new data nodes to represent new network
 types below this target, i.e., will insert them below "network-types"
 via YANG augmentation.

 When a network is of a certain type, it will contain a corresponding
 data node. Network types SHOULD always be represented using presence
 containers, not leafs of type "empty". This allows the
 representation of hierarchies of network subtypes within the instance
 information. For example, an instance of an OSPF network (which, at
 the same time, is a Layer 3 unicast IGP network) would contain
 underneath "network-types" another presence container
 "l3-unicast-igp-network", which in turn would contain a presence
 container "ospf-network". Actual examples of this pattern can be
 found in [RFC8346].

 A network can in turn be part of a hierarchy of networks, building on
 top of other networks. Any such networks are captured in the list
 "supporting-network". A supporting network is, in effect, an
 underlay network.

 Furthermore, a network contains an inventory of nodes that are part
 of the network. The nodes of a network are captured in their own
 list. Each node is identified relative to its containing network by
 a node-id.

 It should be noted that a node does not exist independently of a
 network; instead, it is a part of the network that contains it. In
 cases where the same device or entity takes part in multiple
 networks, or at multiple layers of a networking stack, the same
 device or entity will be represented by multiple nodes, one for each
 network. In other words, the node represents an abstraction of the
 device for the particular network of which it is a part. To indicate
 that the same entity or device is part of multiple topologies or
 networks, it is possible to create one "physical" network with a list
 of nodes for each of the devices or entities. This (physical)
 network -- the nodes (entities) in that network -- can then be
 referred to as an underlay network and as nodes from the other
 (logical) networks and nodes, respectively. Note that the data model
 allows for the definition of more than one underlay network (and
 node), allowing for simultaneous representation of layered network
 topologies and service topologies, and their physical instantiation.

 Similar to a network, a node can be supported by other nodes and map
 onto one or more other nodes in an underlay network. This is
 captured in the list "supporting-node". The resulting hierarchy of
 nodes also allows for the representation of device stacks, where a
 node at one level is supported by a set of nodes at an underlying
 level. For example:

 o a "router" node might be supported by a node representing a route
 processor and separate nodes for various line cards and service
 modules,

 o a virtual router might be supported or hosted on a physical device
 represented by a separate node,

 and so on.

 Network data of a network at a particular layer can come into being
 in one of two ways: (1) the network data is configured by client
 applications -- for example, in the case of overlay networks that are
 configured by an SDN Controller application, or (2) the network data
 is automatically controlled by the system, in the case of networks
 that can be discovered. It is possible for a configured (overlay)
 network to refer to a (discovered) underlay network.

 The revised datastore architecture [RFC8342] is used to account for
 those possibilities. Specifically, for each network, the origin of
 its data is indicated per the "origin" metadata [RFC7952] annotation
 (as defined in [RFC8342]) -- "intended" for data that was configured
 by a client application and "learned" for data that is discovered.
 Network data that is discovered is automatically populated as part of
 the operational state datastore. Network data that is configured is
 part of the configuration and intended datastores, respectively.
 Configured network data that is actually in effect is, in addition,
 reflected in the operational state datastore. Data in the
 operational state datastore will always have complete referential
 integrity. Should a configured data item (such as a node) have a
 dangling reference that refers to a non-existing data item (such as a
 supporting node), the configured data item will automatically be
 removed from the operational state datastore and thus only appear in
 the intended datastore. It will be up to the client application
 (such as an SDN Controller) to resolve the situation and ensure that
 the reference to the supporting resources is configured properly.

4.2. Base Network Topology Data Model

 The abstract (base) network topology data model is defined in the
 "ietf-network-topology" module. It builds on the network data model
 defined in the "ietf-network" module, augmenting it with links
 (defining how nodes are connected) and termination points (which
 anchor the links and are contained in nodes). The structure of the
 network topology module is shown in Figure 5. The notation syntax
 follows the syntax used in [RFC8340].

module: ietf‑network‑topology
 augment /nw:networks/nw:network:
 +‑‑rw link* [link‑id]
 +‑‑rw link‑id link‑id
 +‑‑rw source
 | +‑‑rw source‑node? ‑> ../../../nw:node/node‑id
 | +‑‑rw source‑tp? leafref
 +‑‑rw destination
 | +‑‑rw dest‑node? ‑> ../../../nw:node/node‑id
 | +‑‑rw dest‑tp? leafref
 +‑‑rw supporting‑link* [network‑ref link‑ref]
 +‑‑rw network‑ref
 | ‑> ../../../nw:supporting‑network/network‑ref
 +‑‑rw link‑ref leafref
 augment /nw:networks/nw:network/nw:node:
 +‑‑rw termination‑point* [tp‑id]
 +‑‑rw tp‑id tp‑id
 +‑‑rw supporting‑termination‑point*
 [network‑ref node‑ref tp‑ref]
 +‑‑rw network‑ref
 | ‑> ../../../nw:supporting‑node/network‑ref
 +‑‑rw node‑ref
 | ‑> ../../../nw:supporting‑node/node‑ref
 +‑‑rw tp‑ref leafref

 Figure 5: The Structure of the Abstract (Base) Network Topology

 Data Model

 A node has a list of termination points that are used to terminate
 links. An example of a termination point might be a physical or
 logical port or, more generally, an interface.

 Like a node, a termination point can in turn be supported by an
 underlying termination point, contained in the supporting node of the
 underlay network.

 A link is identified by a link-id that uniquely identifies the link
 within a given topology. Links are point-to-point and
 unidirectional. Accordingly, a link contains a source and a
 destination. Both source and destination reference a corresponding
 node, as well as a termination point on that node. Similar to a
 node, a link can map onto one or more links (which are terminated by
 the corresponding underlay termination points) in an underlay
 topology. This is captured in the list "supporting-link".

4.3. Extending the Data Model

 In order to derive a data model for a specific type of network, the
 base data model can be extended. This can be done roughly as
 follows: a new YANG module for the new network type is introduced.
 In this module, a number of augmentations are defined against the
 "ietf-network" and "ietf-network-topology" modules.

 We start with augmentations against the "ietf-network" module.
 First, a new network type needs to be defined; this is done by
 defining a presence container that represents the new network type.
 The new network type is inserted, by means of augmentation, below the
 network-types container. Subsequently, data nodes for any node
 parameters that are specific to a network type are defined and
 augmented into the node list. The new data nodes can be defined as
 conditional ("when") on the presence of the corresponding network
 type in the containing network. In cases where there are any
 requirements or restrictions in terms of network hierarchies, such as
 when a network of a new network type requires a specific type of
 underlay network, it is possible to define corresponding constraints
 as well and augment the supporting-network list accordingly.
 However, care should be taken to avoid excessive definitions of
 constraints.

 Subsequently, augmentations are defined against the
 "ietf-network-topology" module. Data nodes are defined for link
 parameters, as well as termination point parameters, that are
 specific to the new network type. Those data nodes are inserted via
 augmentation into the link and termination-point lists, respectively.
 Again, data nodes can be defined as conditional on the presence of
 the corresponding network type in the containing network, by adding a
 corresponding "when" statement.

 It is possible, but not required, to group data nodes for a given
 network type under a dedicated container. Doing so introduces
 additional structure but lengthens data node path names.

 In cases where a hierarchy of network types is defined, augmentations
 can in turn be applied against augmenting modules, with the module of
 a network whose type is more specific augmenting the module of a
 network whose type is more general.

4.4. Discussion and Selected Design Decisions

4.4.1. Container Structure

 Rather than maintaining lists in separate containers, the data model
 is kept relatively flat in terms of its containment structure. Lists
 of nodes, links, termination points, and supporting nodes; supporting
 links; and supporting termination points are not kept in separate
 containers. Therefore, path identifiers that are used to refer to
 specific nodes -- in management operations or in specifications of
 constraints -- can remain relatively compact. Of course, this means
 that there is no separate structure in instance information that
 separates elements of different lists from one another. Such a
 structure is semantically not required, but it might provide enhanced
 "human readability" in some cases.

4.4.2. Underlay Hierarchies and Mappings

 To minimize assumptions regarding what a particular entity might
 actually represent, mappings between networks, nodes, links, and
 termination points are kept strictly generic. For example, no
 assumptions are made regarding whether a termination point actually
 refers to an interface or whether a node refers to a specific
 "system" or device; the data model at this generic level makes no
 provisions for these.

 Where additional specifics about mappings between upper and lower
 layers are required, the information can be captured in augmenting
 modules. For example, to express that a termination point in a
 particular network type maps to an interface, an augmenting module
 can introduce an augmentation to the termination point. The
 augmentation introduces a leaf of type "interface-ref". That leaf
 references the corresponding interface [RFC8343]. Similarly, if a
 node maps to a particular device or network element, an augmenting
 module can augment the node data with a leaf that references the
 network element.

 It is possible for links at one level of a hierarchy to map to
 multiple links at another level of the hierarchy. For example, a VPN
 topology might model VPN tunnels as links. Where a VPN tunnel maps
 to a path that is composed of a chain of several links, the link will
 contain a list of those supporting links. Likewise, it is possible
 for a link at one level of a hierarchy to aggregate a bundle of links
 at another level of the hierarchy.

4.4.3. Dealing with Changes in Underlay Networks

 It is possible for a network to undergo churn even as other networks
 are layered on top of it. When a supporting node, link, or
 termination point is deleted, the supporting leafrefs in the overlay
 will be left dangling. To allow for this possibility, the data model
 makes use of the "require-instance" construct of YANG 1.1 [RFC7950].

A dangling leafref of a configured object leaves the corresponding
instance in a state in which it lacks referential integrity,
effectively rendering it nonoperational. Any corresponding object
instance is therefore removed from the operational state datastore
until the situation has been resolved, i.e., until either (1) the
supporting object is added to the operational state datastore or
(2) the instance is reconfigured to refer to another object that is
actually reflected in the operational state datastore. It will
remain part of the intended datastore.

 It is the responsibility of the application maintaining the overlay
 to deal with the possibility of churn in the underlay network. When
 a server receives a request to configure an overlay network, it
 SHOULD validate whether supporting nodes / links / termination points
 refer to nodes in the underlay that actually exist, i.e., verify that
 the nodes are reflected in the operational state datastore.
 Configuration requests in which supporting nodes / links /
 termination points refer to objects currently not in existence SHOULD
 be rejected. It is the responsibility of the application to update
 the overlay when a supporting node / link / termination point is
 deleted at a later point in time. For this purpose, an application
 might subscribe to updates when changes to the underlay occur -- for
 example, using mechanisms defined in [YANG-Push].

4.4.4. Use of Groupings

 The data model makes use of groupings instead of simply defining data
 nodes "inline". This makes it easier to include the corresponding
 data nodes in notifications, which then do not need to respecify each
 data node that is to be included. The trade-off is that it makes the
 specification of constraints more complex, because constraints
 involving data nodes outside the grouping need to be specified in
 conjunction with a "uses" statement where the grouping is applied.
 This also means that constraints and XML Path Language (XPath)
 statements need to be specified in such a way that they navigate
 "down" first and select entire sets of nodes, as opposed to being
 able to simply specify them against individual data nodes.

4.4.5. Cardinality and Directionality of Links

 The topology data model includes links that are point-to-point and
 unidirectional. It does not directly support multipoint and
 bidirectional links. Although this may appear as a limitation, the
 decision to do so keeps the data model simple and generic, and it
 allows it to be very easily subjected to applications that make use
 of graph algorithms. Bidirectional connections can be represented
 through pairs of unidirectional links. Multipoint networks can be
 represented through pseudonodes (similar to IS-IS, for example). By
 introducing hierarchies of nodes with nodes at one level mapping onto
 a set of other nodes at another level and by introducing new links
 for nodes at that level, topologies with connections representing
 non-point-to-point communication patterns can be represented.

4.4.6. Multihoming and Link Aggregation

 Links are terminated by a single termination point, not sets of
 termination points. Connections involving multihoming or link
 aggregation schemes need to be represented using multiple point-to-
 point links and then defining a link at a higher layer that is
 supported by those individual links.

4.4.7. Mapping Redundancy

 In a hierarchy of networks, there are nodes mapping to nodes, links
 mapping to links, and termination points mapping to termination
 points. Some of this information is redundant. Specifically, if the
 mapping of a link to one or more other links is known and the
 termination points of each link are known, the mapping information
 for the termination points can be derived via transitive closure and
 does not have to be explicitly configured. Nonetheless, in order to
 not constrain applications regarding which mappings they want to
 configure and which should be derived, the data model provides the
 option to configure this information explicitly. The data model
 includes integrity constraints to allow for validating for
 consistency.

4.4.8. Typing

 A network's network types are represented using a container that
 contains a data node for each of its network types. A network can
 encompass several types of networks simultaneously; hence, a
 container is used instead of a case construct, with each network type
 in turn represented by a dedicated presence container. The reason
 for not simply using an empty leaf, or (even more simply) even doing
 away with the network container and just using a leaf-list of
 "network-type" instead, is to be able to represent "class
 hierarchies" of network types, with one network type "refining" the
 other. Containers specific to a network type are to be defined in
 the network-specific modules, augmenting the network-types container.

4.4.9. Representing the Same Device in Multiple Networks

 One common requirement concerns the ability to indicate that the same
 device can be part of multiple networks and topologies. However, the
 data model defines a node as relative to the network that contains
 it. The same node cannot be part of multiple topologies. In many
 cases, a node will be the abstraction of a particular device in a
 network. To reflect that the same device is part of multiple
 topologies, the following approach might be chosen: a new type of
 network to represent a "physical" (or "device") network is
 introduced, with nodes representing devices. This network forms an
 underlay network for logical networks above it, with nodes of the
 logical network mapping onto nodes in the physical network.

This scenario is depicted in Figure 6. This figure depicts three
networks with two nodes each. A physical network ("P" in the figure)
consists of an inventory of two nodes (D1 and D2), each representing
a device. A second network, X, has a third network, Y, as its
underlay. Both X and Y also have the physical network (P) as their
underlay. X1 has both Y1 and D1 as underlay nodes, while Y1 has D1
as its underlay node. Likewise, X2 has both Y2 and D2 as underlay
nodes, while Y2 has D2 as its underlay node. The fact that X1 and Y1
are both instantiated on the same physical node (D1) can be
easily seen.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 / [X1]____[X2] / X(Service Overlay)
 +‑‑‑‑:‑‑:‑‑‑‑:‑‑‑‑‑‑‑‑+
 ..: :..: :
 : : : :....
 +‑‑‑‑‑:‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑+ : :...
 / [Y1]____[Y2]....: / :.. :
 +‑‑‑‑‑‑|‑‑‑‑‑‑‑|‑‑‑‑‑‑‑+ :.. :...
 Y(L3) | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑:‑‑‑‑‑+ :
 | +‑‑‑‑:‑‑‑‑|‑:‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/‑‑‑[D1] [D2] /
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 P (Physical Network)

 Figure 6: Topology Hierarchy Example - Multiple Underlays

 In the case of a physical network, nodes represent physical devices
 and termination points represent physical ports. It should be noted
 that it is also possible to augment the data model for a physical
 network type, defining augmentations that have nodes reference system
 information and termination points reference physical interfaces, in
 order to provide a bridge between network and device models.

4.4.10. Supporting Client-Configured and System-Controlled Network
 Topologies

 YANG requires data nodes to be designated as either configuration
 data ("config true") or operational data ("config false"), but not
 both, yet it is important to have all network information, including
 vertical cross-network dependencies, captured in one coherent data
 model. In most cases, network topology information about a network
 is discovered; the topology is considered a property of the network
 that is reflected in the data model. That said, certain types of
 topologies need to also be configurable by an application, e.g., in
 the case of overlay topologies.

 The YANG data model for network topologies designates all data as
 "config true". The distinction between data that is actually
 configured and data that is in effect, including network data that is
 discovered, is provided through the datastores introduced as part of
 the Network Management Datastore Architecture (NMDA) [RFC8342].
 Network topology data that is discovered is automatically populated
 as part of the operational state datastore, i.e., <operational>. It
 is "system controlled". Network topology that is configured is
 instantiated as part of a configuration datastore, e.g., <intended>.
 Only when it has actually taken effect will it also be instantiated
 as part of the operational state datastore, i.e., <operational>.

 In general, a configured network topology will refer to an underlay
 topology and include layering information, such as the supporting
 node(s) underlying a node, supporting link(s) underlying a link, and
 supporting termination point(s) underlying a termination point. The
 supporting objects must be instantiated in the operational state
 datastore in order for the dependent overlay object to be reflected
 in the operational state datastore. Should a configured data item
 (such as a node) have a dangling reference that refers to a
 nonexistent data item (such as a supporting node), the configured
 data item will automatically be removed from <operational> and show
 up only in <intended>. It will be up to the client application to
 resolve the situation and ensure that the reference to the supporting
 resources is configured properly.

 For each network, the origin of its data is indicated per the
 "origin" metadata [RFC7952] annotation defined in [RFC8342]. In
 general, the origin of discovered network data is "learned"; the
 origin of configured network data is "intended".

4.4.11. Identifiers of String or URI Type

 The current data model defines identifiers of nodes, networks, links,
 and termination points as URIs. Alternatively, they could have been
 defined as strings.

 The case for strings is that they will be easier to implement. The
 reason for choosing URIs is that the topology / node / termination
 point exists in a larger context; hence, it is useful to be able to
 correlate identifiers across systems. Although strings -- being the
 universal data type -- are easier for human beings, they also muddle
 things. What typically happens is that strings have some structure
 that is magically assigned, and the knowledge of this structure has
 to be communicated to each system working with the data. A URI makes
 the structure explicit and also attaches additional semantics: the
 URI, unlike a free-form string, can be fed into a URI resolver, which
 can point to additional resources associated with the URI. This
 property is important when the topology data is integrated into a
 larger and more complex system.

5. Interactions with Other YANG Modules

 The data model makes use of data types that have been defined in
 [RFC6991].

 This is a protocol-independent YANG data model with topology
 information. It is separate from, and not linked with, data models
 that are used to configure routing protocols or routing information.
 This includes, for example, the "ietf-routing" YANG module [RFC8022].
 The data model obeys the requirements for the ephemeral state as
 specified in [RFC8242]. For ephemeral topology data that is system
 controlled, the process tasked with maintaining topology information
 will load information from the routing process (such as OSPF) into
 the operational state datastore without relying on a configuration
 datastore.

6. YANG Modules

6.1. Defining the Abstract Network: ietf-network

 <CODE BEGINS> file "ietf-network@2018-02-26.yang"

module ietf‑network {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑network";
 prefix nw;

 import ietf‑inet‑types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Jan Medved
 <mailto:jmedved@cisco.com>

 Editor: Robert Varga
 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan
 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>";

description
 "This module defines a common base data model for a collection
 of nodes in a network. Node definitions are further used
 in network topologies and inventories.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8345;
 see the RFC itself for full legal notices.";

 revision 2018‑02‑26 {
 description
 "Initial revision.";
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 typedef node‑id {
 type inet:uri;
 description
 "Identifier for a node. The precise structure of the node‑id
 will be up to the implementation. For example, some
 implementations MAY pick a URI that includes the network‑id
 as part of the path. The identifier SHOULD be chosen
 such that the same node in a real network topology will
 always be identified through the same identifier, even if
 the data model is instantiated in separate datastores. An
 implementation MAY choose to capture semantics in the
 identifier ‑‑ for example, to indicate the type of node.";
 }

 typedef network‑id {
 type inet:uri;
 description
 "Identifier for a network. The precise structure of the
 network‑id will be up to the implementation. The identifier
 SHOULD be chosen such that the same network will always be
 identified through the same identifier, even if the data model
 is instantiated in separate datastores. An implementation MAY
 choose to capture semantics in the identifier ‑‑ for example,
 to indicate the type of network.";
 }

 grouping network‑ref {
 description
 "Contains the information necessary to reference a network ‑‑
 for example, an underlay network.";
 leaf network‑ref {
 type leafref {
 path "/nw:networks/nw:network/nw:network‑id";
 require‑instance false;
 }
 description
 "Used to reference a network ‑‑ for example, an underlay
 network.";
 }
 }

 grouping node‑ref {
 description
 "Contains the information necessary to reference a node.";
 leaf node‑ref {
 type leafref {
 path "/nw:networks/nw:network[nw:network‑id=current()/../"+
 "network‑ref]/nw:node/nw:node‑id";
 require‑instance false;
 }
 description
 "Used to reference a node.
 Nodes are identified relative to the network that
 contains them.";
 }
 uses network‑ref;
 }

 container networks {
 description
 "Serves as a top‑level container for a list of networks.";
 list network {
 key "network‑id";
 description
 "Describes a network.
 A network typically contains an inventory of nodes,
 topological information (augmented through the
 network‑topology data model), and layering information.";
 leaf network‑id {
 type network‑id;
 description
 "Identifies a network.";
 }
 container network‑types {
 description
 "Serves as an augmentation target.
 The network type is indicated through corresponding
 presence containers augmented into this container.";
 }
 list supporting‑network {
 key "network‑ref";
 description
 "An underlay network, used to represent layered network
 topologies.";
 leaf network‑ref {
 type leafref {
 path "/nw:networks/nw:network/nw:network‑id";
 require‑instance false;
 }
 description
 "References the underlay network.";
 }
 }

 list node {
 key "node‑id";
 description
 "The inventory of nodes of this network.";
 leaf node‑id {
 type node‑id;
 description
 "Uniquely identifies a node within the containing
 network.";
 }
 list supporting‑node {
 key "network‑ref node‑ref";
 description
 "Represents another node that is in an underlay network
 and that supports this node. Used to represent layering
 structure.";
 leaf network‑ref {
 type leafref {
 path "../../../nw:supporting‑network/nw:network‑ref";
 require‑instance false;
 }
 description
 "References the underlay network of which the
 underlay node is a part.";
 }
 leaf node‑ref {
 type leafref {
 path "/nw:networks/nw:network/nw:node/nw:node‑id";
 require‑instance false;
 }
 description
 "References the underlay node itself.";
 }
 }
 }
 }
 }
}

 <CODE ENDS>

6.2. Creating Abstract Network Topology: ietf-network-topology

 <CODE BEGINS> file "ietf-network-topology@2018-02-26.yang"

module ietf‑network‑topology {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑network‑topology";
 prefix nt;

 import ietf‑inet‑types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf‑network {
 prefix nw;
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Jan Medved
 <mailto:jmedved@cisco.com>

 Editor: Robert Varga
 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan
 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>";

description
 "This module defines a common base model for a network topology,
 augmenting the base network data model with links to connect
 nodes, as well as termination points to terminate links
 on nodes.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8345;
 see the RFC itself for full legal notices.";

 revision 2018‑02‑26 {
 description
 "Initial revision.";
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 typedef link‑id {
 type inet:uri;
 description
 "An identifier for a link in a topology. The precise
 structure of the link‑id will be up to the implementation.
 The identifier SHOULD be chosen such that the same link in a
 real network topology will always be identified through the
 same identifier, even if the data model is instantiated in
 separate datastores. An implementation MAY choose to capture
 semantics in the identifier ‑‑ for example, to indicate the
 type of link and/or the type of topology of which the link is
 a part.";
 }

 typedef tp‑id {
 type inet:uri;
 description
 "An identifier for termination points on a node. The precise
 structure of the tp‑id will be up to the implementation.
 The identifier SHOULD be chosen such that the same termination
 point in a real network topology will always be identified
 through the same identifier, even if the data model is

 instantiated in separate datastores. An implementation MAY
 choose to capture semantics in the identifier ‑‑ for example,
 to indicate the type of termination point and/or the type of
 node that contains the termination point.";
 }

 grouping link‑ref {
 description
 "This grouping can be used to reference a link in a specific
 network. Although it is not used in this module, it is
 defined here for the convenience of augmenting modules.";
 leaf link‑ref {
 type leafref {
 path "/nw:networks/nw:network[nw:network‑id=current()/../"+
 "network‑ref]/nt:link/nt:link‑id";
 require‑instance false;
 }
 description
 "A type for an absolute reference to a link instance.
 (This type should not be used for relative references.
 In such a case, a relative path should be used instead.)";
 }
 uses nw:network‑ref;
 }

 grouping tp‑ref {
 description
 "This grouping can be used to reference a termination point
 in a specific node. Although it is not used in this module,
 it is defined here for the convenience of augmenting
 modules.";
 leaf tp‑ref {
 type leafref {
 path "/nw:networks/nw:network[nw:network‑id=current()/../"+
 "network‑ref]/nw:node[nw:node‑id=current()/../"+
 "node‑ref]/nt:termination‑point/nt:tp‑id";
 require‑instance false;
 }
 description
 "A type for an absolute reference to a termination point.
 (This type should not be used for relative references.
 In such a case, a relative path should be used instead.)";
 }
 uses nw:node‑ref;
 }

 augment "/nw:networks/nw:network" {
 description
 "Add links to the network data model.";
 list link {
 key "link‑id";
 description
 "A network link connects a local (source) node and
 a remote (destination) node via a set of the respective
 node's termination points. It is possible to have several
 links between the same source and destination nodes.
 Likewise, a link could potentially be re‑homed between
 termination points. Therefore, in order to ensure that we
 would always know to distinguish between links, every link
 is identified by a dedicated link identifier. Note that a
 link models a point‑to‑point link, not a multipoint link.";
 leaf link‑id {
 type link‑id;
 description
 "The identifier of a link in the topology.
 A link is specific to a topology to which it belongs.";
 }
 container source {
 description
 "This container holds the logical source of a particular
 link.";
 leaf source‑node {
 type leafref {
 path "../../../nw:node/nw:node‑id";
 require‑instance false;
 }
 description
 "Source node identifier. Must be in the same topology.";
 }
 leaf source‑tp {
 type leafref {
 path "../../../nw:node[nw:node‑id=current()/../"+
 "source‑node]/termination‑point/tp‑id";
 require‑instance false;
 }
 description
 "This termination point is located within the source node
 and terminates the link.";
 }
 }

 container destination {
 description
 "This container holds the logical destination of a
 particular link.";
 leaf dest‑node {
 type leafref {
 path "../../../nw:node/nw:node‑id";
 require‑instance false;
 }
 description
 "Destination node identifier. Must be in the same
 network.";
 }
 leaf dest‑tp {
 type leafref {
 path "../../../nw:node[nw:node‑id=current()/../"+
 "dest‑node]/termination‑point/tp‑id";
 require‑instance false;
 }
 description
 "This termination point is located within the
 destination node and terminates the link.";
 }
 }
 list supporting‑link {
 key "network‑ref link‑ref";
 description
 "Identifies the link or links on which this link depends.";
 leaf network‑ref {
 type leafref {
 path "../../../nw:supporting‑network/nw:network‑ref";
 require‑instance false;
 }
 description
 "This leaf identifies in which underlay topology
 the supporting link is present.";
 }

 leaf link‑ref {
 type leafref {
 path "/nw:networks/nw:network[nw:network‑id=current()/"+
 "../network‑ref]/link/link‑id";
 require‑instance false;
 }
 description
 "This leaf identifies a link that is a part
 of this link's underlay. Reference loops in which
 a link identifies itself as its underlay, either
 directly or transitively, are not allowed.";
 }
 }
 }
 }
 augment "/nw:networks/nw:network/nw:node" {
 description
 "Augments termination points that terminate links.
 Termination points can ultimately be mapped to interfaces.";
 list termination‑point {
 key "tp‑id";
 description
 "A termination point can terminate a link.
 Depending on the type of topology, a termination point
 could, for example, refer to a port or an interface.";
 leaf tp‑id {
 type tp‑id;
 description
 "Termination point identifier.";
 }
 list supporting‑termination‑point {
 key "network‑ref node‑ref tp‑ref";
 description
 "This list identifies any termination points on which a
 given termination point depends or onto which it maps.
 Those termination points will themselves be contained
 in a supporting node. This dependency information can be
 inferred from the dependencies between links. Therefore,
 this item is not separately configurable. Hence, no
 corresponding constraint needs to be articulated.
 The corresponding information is simply provided by the
 implementing system.";

 leaf network‑ref {
 type leafref {
 path "../../../nw:supporting‑node/nw:network‑ref";
 require‑instance false;
 }
 description
 "This leaf identifies in which topology the
 supporting termination point is present.";
 }
 leaf node‑ref {
 type leafref {
 path "../../../nw:supporting‑node/nw:node‑ref";
 require‑instance false;
 }
 description
 "This leaf identifies in which node the supporting
 termination point is present.";
 }
 leaf tp‑ref {
 type leafref {
 path "/nw:networks/nw:network[nw:network‑id=current()/"+
 "../network‑ref]/nw:node[nw:node‑id=current()/../"+
 "node‑ref]/termination‑point/tp‑id";
 require‑instance false;
 }
 description
 "Reference to the underlay node (the underlay node must
 be in a different topology).";
 }
 }
 }
 }
}

 <CODE ENDS>

7. IANA Considerations

 This document registers the following namespace URIs in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑network
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑network‑topology
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑network‑state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑network‑topology‑state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG modules in the "YANG
 Module Names" registry [RFC6020]:

Name: ietf‑network
Namespace: urn:ietf:params:xml:ns:yang:ietf‑network
Prefix: nw
Reference: RFC 8345

Name: ietf‑network‑topology
Namespace: urn:ietf:params:xml:ns:yang:ietf‑network‑topology
Prefix: nt
Reference: RFC 8345

Name: ietf‑network‑state
Namespace: urn:ietf:params:xml:ns:yang:ietf‑network‑state
Prefix: nw‑s
Reference: RFC 8345

Name: ietf‑network‑topology‑state
Namespace: urn:ietf:params:xml:ns:yang:ietf‑network‑topology‑state
Prefix: nt‑s
Reference: RFC 8345

8. Security Considerations

 The YANG modules specified in this document define a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 The network topology and inventory created by these modules reveal
 information about the structure of networks that could be very
 helpful to an attacker. As a privacy consideration, although there
 is no personally identifiable information defined in these modules,
 it is possible that some node identifiers may be associated with
 devices that are in turn associated with specific users.

 The YANG modules define information that can be configurable in
 certain instances -- for example, in the case of overlay topologies
 that can be created by client applications. In such cases, a
 malicious client could introduce topologies that are undesired.
 Specifically, a malicious client could attempt to remove or add a
 node, a link, or a termination point by creating or deleting
 corresponding elements in node, link, or termination point lists,
 respectively. In the case of a topology that is learned, the server
 will automatically prohibit such misconfiguration attempts. In the
 case of a topology that is configured, i.e., whose origin is
 "intended", the undesired configuration could become effective and be
 reflected in the operational state datastore, leading to disruption
 of services provided via this topology. For example, the topology
 could be "cut" or could be configured in a suboptimal way, leading to
 increased consumption of resources in the underlay network due to the
 routing and bandwidth utilization inefficiencies that would result.
 Likewise, it could lead to degradation of service levels as well as
 possible disruption of service. For those reasons, it is important
 that the NETCONF access control model be vigorously applied to
 prevent topology misconfiguration by unauthorized clients.

 There are a number of data nodes defined in these YANG modules that
 are writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 In the "ietf-network" module:

 o network: A malicious client could attempt to remove or add a
 network in an effort to remove an overlay topology or to create an
 unauthorized overlay.

 o supporting network: A malicious client could attempt to disrupt
 the logical structure of the model, resulting in a lack of overall
 data integrity and making it more difficult to, for example,
 troubleshoot problems rooted in the layering of network
 topologies.

 o node: A malicious client could attempt to remove or add a node
 from the network -- for example, in order to sabotage the topology
 of a network overlay.

 o supporting node: A malicious client could attempt to change the
 supporting node in order to sabotage the layering of an overlay.

 In the "ietf-network-topology" module:

 o link: A malicious client could attempt to remove a link from a
 topology, add a new link, manipulate the way the link is layered
 over supporting links, or modify the source or destination of the
 link. In each case, the structure of the topology would be
 sabotaged, and this scenario could, for example, result in an
 overlay topology that is less than optimal.

 o termination point: A malicious client could attempt to remove
 termination points from a node, add "phantom" termination points
 to a node, or change the layering dependencies of termination
 points, again in an effort to sabotage the integrity of a topology
 and potentially disrupt orderly operations of an overlay.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

9.2. Informative References

 [RFC1195]
 Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
 dual environments", RFC 1195, DOI 10.17487/RFC1195,
 December 1990, <https://www.rfc-editor.org/info/rfc1195>.

 [RFC2328]
 Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <https://www.rfc-editor.org/info/rfc2328>.

 [RFC3209]
 Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
 and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
 <https://www.rfc-editor.org/info/rfc3209>.

 [RFC3444]
 Pras, A. and J. Schoenwaelder, "On the Difference between
 Information Models and Data Models", RFC 3444,
 DOI 10.17487/RFC3444, January 2003,
 <https://www.rfc-editor.org/info/rfc3444>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC7952]
 Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8022]
 Lhotka, L. and A. Lindem, "A YANG Data Model for Routing
 Management", RFC 8022, DOI 10.17487/RFC8022,
 November 2016, <https://www.rfc-editor.org/info/rfc8022>.

 [RFC8242]
 Haas, J. and S. Hares, "Interface to the Routing System
 (I2RS) Ephemeral State Requirements", RFC 8242,
 DOI 10.17487/RFC8242, September 2017,
 <https://www.rfc-editor.org/info/rfc8242>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8346]
 Clemm, A., Medved, J., Varga, R., Liu, X.,
 Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
 for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
 March 2018, <https://www.rfc-editor.org/info/rfc8346>.

 [USECASE-REQS]

 Hares, S. and M. Chen, "Summary of I2RS Use Case
 Requirements", Work in Progress, draft-ietf-i2rs-usecase-
 reqs-summary-03, November 2016.

 [YANG-Push]

 Clemm, A., Voit, E., Gonzalez Prieto, A., Tripathy, A.,
 Nilsen-Nygaard, E., Bierman, A., and B. Lengyel, "YANG
 Datastore Subscription", Work in Progress,
 draft-ietf-netconf-yang-push-15, February 2018.

Appendix A. Model Use Cases

A.1. Fetching Topology from a Network Element

 In its simplest form, topology is learned by a network element (e.g.,
 a router) through its participation in peering protocols (IS-IS, BGP,
 etc.). This learned topology can then be exported (e.g., to a
 Network Management System) for external utilization. Typically, any
 network element in a domain can be queried for its topology and be
 expected to return the same result.

 In a slightly more complex form, the network element may be a
 controller. It could be a network element with satellite or
 subtended devices hanging off of it, or it could be a controller in
 the more classical sense -- that is, a special device designated to
 orchestrate the activities of a number of other devices (e.g., an
 Optical Controller). In this case, the controller device is
 logically a singleton and must be queried distinctly.

 It is worth noting that controllers can be built on top of other
 controllers to establish a topology incorporating all of the domains
 within an entire network.

 In all of the cases above, the topology learned by the network
 element is considered to be operational state data. That is, the
 data is accumulated purely by the network element's interactions with
 other systems and is subject to change dynamically without input or
 consent.

A.2. Modifying TE Topology Imported from an Optical Controller

 Consider a scenario where an Optical Controller presents its
 topology, in abstract TE terms, to a client packet controller. This
 customized topology (which gets merged into the client's native
 topology) contains sufficient information for the path-computing
 client to select paths across the optical domain according to its
 policies. If the client determines (at any given point in time) that
 this imported topology does not cater exactly to its requirements, it
 may decide to request modifications to the topology. Such
 customization requests may include the addition or deletion of
 topological elements or the modification of attributes associated
 with existing topological elements. From the perspective of the
 Optical Controller, these requests translate into configuration
 changes to the exported abstract topology.

A.3. Annotating Topology for Local Computation

 In certain scenarios, the topology learned by a controller needs to
 be augmented with additional attributes before running a computation
 algorithm on it. Consider the case where a path-computation
 application on the controller needs to take the geographic
 coordinates of the nodes into account while computing paths on the
 learned topology. If the learned topology does not contain these
 coordinates, then these additional attributes must be configured on
 the corresponding topological elements.

A.4. SDN Controller-Based Configuration of Overlays on Top of Underlays

 In this scenario, an SDN Controller (for example, Open Daylight)
 maintains a view of the topology of the network that it controls
 based on information that it discovers from the network. In
 addition, it provides an application in which it configures and
 maintains an overlay topology.

 The SDN Controller thus maintains two roles:

 o It is a client to the network.

 o It is a server to its own northbound applications and clients,
 e.g., an Operations Support System (OSS).

 In other words, one system's client (or controller, in this case) may
 be another system's server (or managed system).

 In this scenario, the SDN Controller maintains a consolidated data
 model of multiple layers of topology. This includes the lower layers
 of the network topology, built from information that is discovered
 from the network. It also includes upper layers of topology overlay,
 configurable by the controller's client, i.e., the OSS. To the OSS,
 the lower topology layers constitute "read-only" information. The
 upper topology layers need to be read-writable.

Appendix B. Companion YANG Data Models for Implementations Not
 Compliant with NMDA

 The YANG modules defined in this document are designed to be used in
 conjunction with implementations that support the Network Management
 Datastore Architecture (NMDA) as defined in [RFC8342]. In order to
 allow implementations to use the data model even in cases when NMDA
 is not supported, the following two companion modules --
 "ietf-network-state" and "ietf-network-topology-state" -- are
 defined; they represent the operational state of networks and network
 topologies, respectively. These modules mirror the "ietf-network"
 and "ietf-network-topology" modules (defined in Sections 6.1 and 6.2
 of this document); however, in the case of these modules, all data
 nodes are non-configurable. They represent state that comes into
 being by either (1) learning topology information from the network or
 (2) applying configuration from the mirrored modules.

The "ietf‑network‑state" and "ietf‑network‑topology‑state" companion
modules are redundant and SHOULD NOT be supported by implementations
that support NMDA; therefore, we define these modules in
Appendices B.1 and B.2 (below) instead of the main body of this
document.

 As the structure of both modules mirrors that of their underlying
 modules, the YANG tree is not depicted separately.

B.1. YANG Module for Network State

<CODE BEGINS> file "ietf-network-state@2018-02-26.yang"

module ietf‑network‑state {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑network‑state";
 prefix nw‑s;

 import ietf‑network {
 prefix nw;
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Jan Medved
 <mailto:jmedved@cisco.com>

 Editor: Robert Varga
 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan
 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>";

description
 "This module defines a common base data model for a collection
 of nodes in a network. Node definitions are further used
 in network topologies and inventories. It represents
 information that either (1) is learned and automatically
 populated or (2) results from applying network information
 that has been configured per the 'ietf‑network' data model,
 mirroring the corresponding data nodes in this data model.

 The data model mirrors 'ietf‑network' but contains only
 read‑only state data. The data model is not needed when the
 underlying implementation infrastructure supports the Network
 Management Datastore Architecture (NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8345;
 see the RFC itself for full legal notices.";

 revision 2018‑02‑26 {
 description
 "Initial revision.";
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 grouping network‑ref {
 description
 "Contains the information necessary to reference a network ‑‑
 for example, an underlay network.";
 leaf network‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network/nw‑s:network‑id";
 require‑instance false;
 }
 description
 "Used to reference a network ‑‑ for example, an underlay
 network.";
 }
 }

 grouping node‑ref {
 description
 "Contains the information necessary to reference a node.";
 leaf node‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network[nw‑s:network‑id=current()"+
 "/../network‑ref]/nw‑s:node/nw‑s:node‑id";
 require‑instance false;
 }
 description
 "Used to reference a node.
 Nodes are identified relative to the network that
 contains them.";
 }
 uses network‑ref;
 }

 container networks {
 config false;
 description
 "Serves as a top‑level container for a list of networks.";
 list network {
 key "network‑id";
 description
 "Describes a network.
 A network typically contains an inventory of nodes,
 topological information (augmented through the
 network‑topology data model), and layering information.";
 container network‑types {
 description
 "Serves as an augmentation target.
 The network type is indicated through corresponding
 presence containers augmented into this container.";
 }
 leaf network‑id {
 type nw:network‑id;
 description
 "Identifies a network.";
 }
 list supporting‑network {
 key "network‑ref";
 description
 "An underlay network, used to represent layered network
 topologies.";
 leaf network‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network/nw‑s:network‑id";
 require‑instance false;
 }
 description
 "References the underlay network.";
 }
 }

 list node {
 key "node‑id";
 description
 "The inventory of nodes of this network.";
 leaf node‑id {
 type nw:node‑id;
 description
 "Uniquely identifies a node within the containing
 network.";
 }
 list supporting‑node {
 key "network‑ref node‑ref";
 description
 "Represents another node that is in an underlay network
 and that supports this node. Used to represent layering
 structure.";
 leaf network‑ref {
 type leafref {
 path "../../../nw‑s:supporting‑network/nw‑s:network‑ref";
 require‑instance false;
 }
 description
 "References the underlay network of which the
 underlay node is a part.";
 }
 leaf node‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network/nw‑s:node/nw‑s:node‑id";
 require‑instance false;
 }
 description
 "References the underlay node itself.";
 }
 }
 }
 }
 }
}

<CODE ENDS>

B.2. YANG Module for Network Topology State

 <CODE BEGINS> file "ietf-network-topology-state@2018-02-26.yang"

module ietf‑network‑topology‑state {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑network‑topology‑state";
 prefix nt‑s;

 import ietf‑network‑state {
 prefix nw‑s;
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }
 import ietf‑network‑topology {
 prefix nt;
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 organization

 "IETF I2RS (Interface to the Routing System) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Jan Medved
 <mailto:jmedved@cisco.com>

 Editor: Robert Varga
 <mailto:robert.varga@pantheon.tech>

 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>

 Editor: Hariharan Ananthakrishnan
 <mailto:hari@packetdesign.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>";

 description

 "This module defines a common base data model for network
 topology state, representing topology that either (1) is learned
 or (2) results from applying topology that has been configured
 per the 'ietf-network-topology' data model, mirroring the
 corresponding data nodes in this data model. It augments the
 base network state data model with links to connect nodes, as
 well as termination points to terminate links on nodes.

 The data model mirrors 'ietf-network-topology' but contains only
 read-only state data. The data model is not needed when the
 underlying implementation infrastructure supports the Network
 Management Datastore Architecture (NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8345;
 see the RFC itself for full legal notices.";

 revision 2018‑02‑26 {
 description
 "Initial revision.";
 reference
 "RFC 8345: A YANG Data Model for Network Topologies";
 }

 grouping link‑ref {
 description
 "References a link in a specific network. Although this
 grouping is not used in this module, it is defined here for
 the convenience of augmenting modules.";
 leaf link‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network[nw‑s:network‑id=current()"+
 "/../network‑ref]/nt‑s:link/nt‑s:link‑id";
 require‑instance false;
 }
 description
 "A type for an absolute reference to a link instance.
 (This type should not be used for relative references.
 In such a case, a relative path should be used instead.)";
 }
 uses nw‑s:network‑ref;
 }

 grouping tp‑ref {
 description
 "References a termination point in a specific node. Although
 this grouping is not used in this module, it is defined here
 for the convenience of augmenting modules.";
 leaf tp‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network[nw‑s:network‑id=current()"+
 "/../network‑ref]/nw‑s:node[nw‑s:node‑id=current()/../"+
 "node‑ref]/nt‑s:termination‑point/nt‑s:tp‑id";
 require‑instance false;
 }
 description
 "A type for an absolute reference to a termination point.
 (This type should not be used for relative references.
 In such a case, a relative path should be used instead.)";
 }
 uses nw‑s:node‑ref;
 }

 augment "/nw‑s:networks/nw‑s:network" {
 description
 "Add links to the network data model.";
 list link {
 key "link‑id";
 description
 "A network link connects a local (source) node and
 a remote (destination) node via a set of the respective
 node's termination points. It is possible to have several

 links between the same source and destination nodes.
 Likewise, a link could potentially be re‑homed between
 termination points. Therefore, in order to ensure that we
 would always know to distinguish between links, every link
 is identified by a dedicated link identifier. Note that a
 link models a point‑to‑point link, not a multipoint link.";
 container source {
 description
 "This container holds the logical source of a particular
 link.";
 leaf source‑node {
 type leafref {
 path "../../../nw‑s:node/nw‑s:node‑id";
 require‑instance false;
 }
 description
 "Source node identifier. Must be in the same topology.";
 }
 leaf source‑tp {
 type leafref {
 path "../../../nw‑s:node[nw‑s:node‑id=current()/../"+
 "source‑node]/termination‑point/tp‑id";
 require‑instance false;
 }
 description
 "This termination point is located within the source node
 and terminates the link.";
 }
 }
 container destination {
 description
 "This container holds the logical destination of a
 particular link.";
 leaf dest‑node {
 type leafref {
 path "../../../nw‑s:node/nw‑s:node‑id";
 require‑instance false;
 }
 description
 "Destination node identifier. Must be in the same
 network.";
 }

 leaf dest‑tp {
 type leafref {
 path "../../../nw‑s:node[nw‑s:node‑id=current()/../"+
 "dest‑node]/termination‑point/tp‑id";
 require‑instance false;
 }
 description
 "This termination point is located within the
 destination node and terminates the link.";
 }
 }
 leaf link‑id {
 type nt:link‑id;
 description
 "The identifier of a link in the topology.
 A link is specific to a topology to which it belongs.";
 }
 list supporting‑link {
 key "network‑ref link‑ref";
 description
 "Identifies the link or links on which this link depends.";
 leaf network‑ref {
 type leafref {
 path "../../../nw‑s:supporting‑network/nw‑s:network‑ref";
 require‑instance false;
 }
 description
 "This leaf identifies in which underlay topology
 the supporting link is present.";
 }
 leaf link‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network[nw‑s:network‑id="+
 "current()/../network‑ref]/link/link‑id";
 require‑instance false;
 }
 description
 "This leaf identifies a link that is a part
 of this link's underlay. Reference loops in which
 a link identifies itself as its underlay, either
 directly or transitively, are not allowed.";
 }
 }
 }
 }

 augment "/nw‑s:networks/nw‑s:network/nw‑s:node" {
 description
 "Augments termination points that terminate links.
 Termination points can ultimately be mapped to interfaces.";
 list termination‑point {
 key "tp‑id";
 description
 "A termination point can terminate a link.
 Depending on the type of topology, a termination point
 could, for example, refer to a port or an interface.";
 leaf tp‑id {
 type nt:tp‑id;
 description
 "Termination point identifier.";
 }
 list supporting‑termination‑point {
 key "network‑ref node‑ref tp‑ref";
 description
 "This list identifies any termination points on which a
 given termination point depends or onto which it maps.
 Those termination points will themselves be contained
 in a supporting node. This dependency information can be
 inferred from the dependencies between links. Therefore,
 this item is not separately configurable. Hence, no
 corresponding constraint needs to be articulated.
 The corresponding information is simply provided by the
 implementing system.";
 leaf network‑ref {
 type leafref {
 path "../../../nw‑s:supporting‑node/nw‑s:network‑ref";
 require‑instance false;
 }
 description
 "This leaf identifies in which topology the
 supporting termination point is present.";
 }
 leaf node‑ref {
 type leafref {
 path "../../../nw‑s:supporting‑node/nw‑s:node‑ref";
 require‑instance false;
 }
 description
 "This leaf identifies in which node the supporting
 termination point is present.";
 }

 leaf tp‑ref {
 type leafref {
 path "/nw‑s:networks/nw‑s:network[nw‑s:network‑id="+
 "current()/../network‑ref]/nw‑s:node[nw‑s:node‑id="+
 "current()/../node‑ref]/termination‑point/tp‑id";
 require‑instance false;
 }
 description
 "Reference to the underlay node (the underlay node must
 be in a different topology).";
 }
 }
 }
 }
}

 <CODE ENDS>

Appendix C. An Example

This section contains an example of an instance data tree in JSON
encoding [RFC7951]. The example instantiates "ietf‑network‑topology"
(and "ietf‑network", which "ietf‑network‑topology" augments) for the
topology depicted in Figure 7. There are three nodes: D1, D2, and
D3. D1 has three termination points (1‑0‑1, 1‑2‑1, and 1‑3‑1).
D2 has three termination points as well (2‑1‑1, 2‑0‑1, and 2‑3‑1).
D3 has two termination points (3‑1‑1 and 3‑2‑1). In addition, there
are six links, two between each pair of nodes with one going in each
direction.

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | D1 | | D2 |
 /‑\ /‑\ /‑\ /‑\
 | | 1‑0‑1 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | 2‑1‑1 | |
 | | 1‑2‑1 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | 2‑0‑1 | |
 \‑/ 1‑3‑1 \‑/ \‑/ 2‑3‑1 \‑/
 | /‑‑‑‑\ | | /‑‑‑‑\ |
 +‑‑‑| |‑‑‑+ +‑‑‑| |‑‑‑+
 \‑‑‑‑/ \‑‑‑‑/
 A | A |
 | | | | | |
 | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | D3 | | |
 | | /‑\ /‑\ | |
 | +‑‑‑‑‑>| | 3‑1‑1 | |‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑| | 3‑2‑1 | |<‑‑‑‑‑‑‑‑‑+
 \‑/ \‑/
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 7: A Network Topology Example

 The corresponding instance data tree is depicted in Figure 8:

{
 "ietf‑network:networks": {
 "network": [
 {
 "network‑types": {
 },
 "network‑id": "otn‑hc",
 "node": [
 {
 "node‑id": "D1",
 "termination‑point": [
 {
 "tp‑id": "1‑0‑1"
 },
 {
 "tp‑id": "1‑2‑1"
 },
 {
 "tp‑id": "1‑3‑1"
 }
]
 },
 {
 "node‑id": "D2",
 "termination‑point": [
 {
 "tp‑id": "2‑0‑1"
 },
 {
 "tp‑id": "2‑1‑1"
 },
 {
 "tp‑id": "2‑3‑1"
 }
]
 },

 {
 "node‑id": "D3",
 "termination‑point": [
 {
 "tp‑id": "3‑1‑1"
 },
 {
 "tp‑id": "3‑2‑1"
 }
]
 }
],
 "ietf‑network‑topology:link": [
 {
 "link‑id": "D1,1‑2‑1,D2,2‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑2‑1"
 }
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑1‑1"
 }
 },
 {
 "link‑id": "D2,2‑1‑1,D1,1‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑1‑1"
 }
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑2‑1"
 }
 },
 {
 "link‑id": "D1,1‑3‑1,D3,3‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑3‑1"
 }
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑1‑1"
 }
 },

 {
 "link‑id": "D3,3‑1‑1,D1,1‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑1‑1"
 }
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑3‑1"
 }
 },
 {
 "link‑id": "D2,2‑3‑1,D3,3‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑3‑1"
 }
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑2‑1"
 }
 },
 {
 "link‑id": "D3,3‑2‑1,D2,2‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑2‑1"
 }
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑3‑1"
 }
 }
]
 }
]
 }
}

 Figure 8: Instance Data Tree

Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Alia Atlas, Andy Bierman, Martin
 Bjorklund, Igor Bryskin, Benoit Claise, Susan Hares, Ladislav Lhotka,
 Carlos Pignataro, Juergen Schoenwaelder, Robert Wilton, Qin Wu, and
 Xian Zhang.

Contributors

 More people contributed to the data model presented in this paper
 than can be listed in the "Authors' Addresses" section. Additional
 contributors include:

 o Vishnu Pavan Beeram, Juniper

 o Ken Gray, Cisco

 o Tom Nadeau, Brocade

 o Tony Tkacik

 o Kent Watsen, Juniper

 o Aleksandr Zhdankin, Cisco

Authors' Addresses

Alexander Clemm
Huawei USA ‑ Futurewei Technologies Inc.
Santa Clara, CA
United States of America

 Email: ludwig@clemm.org, alexander.clemm@huawei.com

Jan Medved
Cisco

 Email: jmedved@cisco.com

Robert Varga
Pantheon Technologies SRO

 Email: robert.varga@pantheon.tech

Nitin Bahadur
Bracket Computing

 Email: nitin_bahadur@yahoo.com

Hariharan Ananthakrishnan
Packet Design

 Email: hari@packetdesign.com

Xufeng Liu
Jabil

 Email: xufeng.liu.ietf@gmail.com

8346 - A YANG Data Model for Layer 3 Topologies

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8346

Category: Standards Track

ISSN: 2070-1721

A. Clemm

Huawei

J. Medved

Cisco

R. Varga

Pantheon Technologies SRO

X. Liu

Jabil

H. Ananthakrishnan

Packet Design

N. Bahadur

Bracket Computing

March 2018

A YANG Data Model for Layer 3 Topologies

Abstract

 This document defines a YANG data model for Layer 3 network
 topologies.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8346.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Key Words

	3. Definitions and Acronyms

	4. Model Structure

	5. Layer 3 Unicast Topology Model Overview

	6. Layer 3 Unicast Topology YANG Module

	7. Interactions with Other YANG Modules

	8. IANA Considerations

	9. Security Considerations

	10. References
		 10.1. Normative References

	 10.2. Informative References

	Appendix A. Companion YANG Data Model for Implementations Not Compliant with NMDA

	Appendix B. Extending the Model
	 B.1. Example OSPF Topology
		 B.1.1. Model Overview

	 B.1.2. OSPF Topology YANG Module

	Appendix C. An Example

	Acknowledgments

	Contributors

	Authors' Addresses

1. Introduction

 This document introduces a YANG [RFC7950] [RFC6991] data model for
 Layer 3 (L3) network topologies, specifically Layer 3 Unicast. The
 model allows an application to have a holistic view of the topology
 of a Layer 3 network, all contained in a single conceptual YANG
 datastore. The data model builds on top of, and augments, the data
 model for network topologies defined in [RFC8345].

 This document also shows how the model can be further refined to
 cover different Layer 3 Unicast topology types. For this purpose, an
 example model is introduced that covers OSPF [RFC2328]. This example
 is intended purely for illustrative purpose; we expect that a
 complete OSPF model will be more comprehensive and refined than the
 example shown in this document.

 There are multiple applications for a topology data model. A number
 of use cases have been defined in Section 6 of [USECASE-REQS]. For
 example, nodes within the network can use the data model to capture
 their understanding of the overall network topology and expose it to
 a network controller. A network controller can then use the
 instantiated topology data to compare and reconcile its own view of
 the network topology with that of the network elements that it
 controls. Alternatively, nodes within the network could propagate
 this understanding to compare and reconcile this understanding either
 amongst themselves or with help of a controller. Beyond the network
 element itself, a network controller might even use the data model to
 represent its view of the topology that it controls and expose it to
 applications north of itself.

 The data model for Layer 3 Unicast topologies defined in this
 document is specified in the YANG module "ietf-l3-unicast-topology".
 This YANG module augments the general network topology model defined
 in [RFC8345] with information specific to Layer 3 Unicast. In this
 way, the general topology model is extended to be able to meet the
 needs of Layer 3 Unicast topologies.

 Information that is kept in the Traffic Engineering Database (TED)
 will be specified in a separate model [YANG-TE] and is outside the
 scope of this specification.

2. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Definitions and Acronyms

 This document defines a YANG data model and thus uses many terms
 defined in YANG [RFC7950] and NETCONF [RFC6241]. Some terms, such as
 "datastore" and "data tree", are repeated here for clarity and
 context.

Datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof. A
 datastore maps to an instantiated YANG data tree (definition
 adopted from [RFC8342]).

Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

IS‑IS: Intermediate System to Intermediate System protocol

LSP: Label Switched Path

NETCONF: Network Configuration Protocol

NMDA: Network Management Datastore Architecture

OSPF: Open Shortest Path First (a link‑state routing protocol)

URI: Uniform Resource Identifier

TED: Traffic Engineering Database

YANG: YANG is a data modeling language used to model configuration
 data, state data, Remote Procedure Calls, and notifications for
 network management protocols [RFC7950].

4. Model Structure

 The Layer 3 Unicast topology model is defined by YANG module
 "l3-unicast-topology". The relationship of this module with other
 YANG modules is roughly depicted in the figure below.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | ietf‑network | |
| +‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | |
| +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| | ietf‑network‑topology | |
| +‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑+ |
+‑‑‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ietf‑l3‑unicast‑topology |
 +‑‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑+
 | example‑ospf‑topology |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Overall Model Structure

 YANG modules "ietf-network" and "ietf-network-topology" collectively
 define the basic network topology model [RFC8345]. YANG module
 "ietf-l3-unicast-topology" augments those models with additional
 definitions needed to represent Layer 3 Unicast topologies. This
 module in turn can be augmented by YANG modules with additional
 definitions for specific types of Layer 3 Unicast topologies, such as
 OSPF and IS-IS topologies.

 The YANG modules "ietf-network" and "ietf-network-topology" are
 designed to be used in conjunction with implementations that support
 the Network Management Datastore Architecture (NMDA) defined in
 [RFC8342]. Accordingly, the same is true for the YANG modules that
 augment it. In order to allow implementations to use the model even
 in cases when NMDA is not supported, companion YANG modules (that
 SHOULD NOT be supported by implementations that support NMDA) are
 defined in Appendix A.

5. Layer 3 Unicast Topology Model Overview

 The Layer 3 Unicast topology model is defined by YANG module
 "ietf-l3-unicast-topology". Its structure is depicted in the
 following diagram. The notation syntax follows [RFC8340]. For
 purposes of brevity, notifications are not depicted.

module: ietf‑l3‑unicast‑topology
 augment /nw:networks/nw:network/nw:network‑types:
 +‑‑rw l3‑unicast‑topology!
 augment /nw:networks/nw:network:
 +‑‑rw l3‑topology‑attributes
 +‑‑rw name? string
 +‑‑rw flag* l3‑flag‑type
 augment /nw:networks/nw:network/nw:node:
 +‑‑rw l3‑node‑attributes
 +‑‑rw name? inet:domain‑name
 +‑‑rw flag* node‑flag‑type
 +‑‑rw router‑id* rt‑types:router‑id
 +‑‑rw prefix* [prefix]
 +‑‑rw prefix inet:ip‑prefix
 +‑‑rw metric? uint32
 +‑‑rw flag* prefix‑flag‑type
 augment /nw:networks/nw:network/nt:link:
 +‑‑rw l3‑link‑attributes
 +‑‑rw name? string
 +‑‑rw flag* link‑flag‑type
 +‑‑rw metric1? uint64
 +‑‑rw metric2? uint64
 augment /nw:networks/nw:network/nw:node/nt:termination‑point:
 +‑‑rw l3‑termination‑point‑attributes
 +‑‑rw (termination‑point‑type)?
 +‑‑:(ip)
 | +‑‑rw ip‑address* inet:ip‑address
 +‑‑:(unnumbered)
 | +‑‑rw unnumbered‑id? uint32
 +‑‑:(interface‑name)
 +‑‑rw interface‑name? string

 The module augments the original "ietf-network" and "ietf-network-
 topology" modules as follows:

 o A new network topology type is introduced, l3-unicast-topology.
 The corresponding container augments the network-types of the
 "ietf-network" module.

 o Additional topology attributes are introduced, defined in a
 grouping that augments the "network" list of the network module.
 The attributes include a name for the topology and a set of flags
 (represented by a leaf-list). Each type of flag is represented by
 a separate identity. This allows additional flags to be
 introduced in augmenting modules using additional identities
 without needing to revise this module.

 o Additional data objects for nodes are introduced by augmenting the
 "node" list of the network module. New objects include a set of
 flags and a list of prefixes. Each prefix includes an IP prefix,
 a metric, and a prefix-specific set of flags.

 o Links (in the "ietf-network-topology" module) are augmented with a
 set of parameters that allow a link to be associated with a link
 name, another set of flags, and a link metric.

 o Termination points (in the "ietf-network-topology" module) are
 augmented with a choice of IP address, identifier, or name.

 In addition, the module defines a set of notifications to alert
 clients of any events concerning links, nodes, prefixes, and
 termination points. Each notification includes an indication of the
 type of event, the topology from which it originated, and the
 affected node, link, prefix, or termination point. Also, as a
 convenience to applications, additional data of the affected node,
 link, prefix, or termination point is included. While this makes
 notifications larger in volume than they need to be, it avoids the
 need for subsequent retrieval of context information that might have
 changed in the meantime.

6. Layer 3 Unicast Topology YANG Module

 This YANG module makes reference to the following documents:
 [RFC2863] and [RFC8343].

<CODE BEGINS> file "ietf‑l3‑unicast‑topology@2018‑02‑26.yang"
module ietf‑l3‑unicast‑topology {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑l3‑unicast‑topology";
 prefix "l3t";
 import ietf‑network {
 prefix "nw";
 }
 import ietf‑network‑topology {
 prefix "nt";
 }

 import ietf‑inet‑types {
 prefix "inet";
 }
 import ietf‑routing‑types {
 prefix "rt‑types";
 }
 organization
 "IETF I2RS (Interface to the Routing System) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>
 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>
 Editor: Jan Medved
 <mailto:jmedved@cisco.com>
 Editor: Robert Varga
 <mailto:robert.varga@pantheon.tech>
 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>
 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>
 Editor: Hariharan Ananthakrishnan
 <mailto:hari@packetdesign.com>";
 description
 "This module defines a model for Layer 3 Unicast
 topologies.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of
 RFC 8346; see the RFC itself for full legal notices.";
revision "2018‑02‑26" {
 description
 "Initial revision.";
 reference
 "RFC 8346: A YANG Data Model for Layer 3 Topologies";
}

 identity flag-identity {

 description "Base type for flags";

 }

 typedef l3‑event‑type {
 type enumeration {
 enum "add" {
 description
 "A Layer 3 node, link, prefix, or termination point has
 been added";
 }
 enum "remove" {
 description
 "A Layer 3 node, link, prefix, or termination point has
 been removed";
 }
 enum "update" {
 description
 "A Layer 3 node, link, prefix, or termination point has
 been updated";
 }
 }
 description "Layer 3 event type for notifications";
 }

 typedef prefix‑flag‑type {
 type identityref {
 base "flag‑identity";
 }
 description "Prefix flag attributes";
 }

 typedef node‑flag‑type {
 type identityref {
 base "flag‑identity";
 }
 description "Node flag attributes";
 }

 typedef link‑flag‑type {
 type identityref {
 base "flag‑identity";
 }
 description "Link flag attributes";
 }

 typedef l3‑flag‑type {
 type identityref {
 base "flag‑identity";
 }

 description "L3 flag attributes";
 }

 grouping l3‑prefix‑attributes {
 description
 "L3 prefix attributes";
 leaf prefix {
 type inet:ip‑prefix;
 description
 "IP prefix value";
 }
 leaf metric {
 type uint32;
 description
 "Prefix metric";
 }
 leaf‑list flag {
 type prefix‑flag‑type;
 description
 "Prefix flags";
 }
 }
 grouping l3‑unicast‑topology‑type {
 description "Identifies the topology type to be L3 Unicast.";
 container l3‑unicast‑topology {
 presence "indicates L3 Unicast topology";
 description
 "The presence of the container node indicates L3 Unicast
 topology";
 }
 }
 grouping l3‑topology‑attributes {
 description "Topology scope attributes";
 container l3‑topology‑attributes {
 description "Contains topology attributes";
 leaf name {
 type string;
 description
 "Name of the topology";
 }
 leaf‑list flag {
 type l3‑flag‑type;
 description
 "Topology flags";
 }
 }
 }
 grouping l3‑node‑attributes {

 description "L3 node scope attributes";
 container l3‑node‑attributes {
 description
 "Contains node attributes";
 leaf name {
 type inet:domain‑name;
 description
 "Node name";
 }
 leaf‑list flag {
 type node‑flag‑type;
 description
 "Node flags";
 }
 leaf‑list router‑id {
 type rt‑types:router‑id;
 description
 "Router‑id for the node";
 }
 list prefix {
 key "prefix";
 description
 "A list of prefixes along with their attributes";
 uses l3‑prefix‑attributes;
 }
 }
 }
 grouping l3‑link‑attributes {
 description
 "L3 link scope attributes";
 container l3‑link‑attributes {
 description
 "Contains link attributes";
 leaf name {
 type string;
 description
 "Link Name";
 }
 leaf‑list flag {
 type link‑flag‑type;
 description
 "Link flags";
 }
 leaf metric1 {
 type uint64;
 description
 "Link Metric 1";
 }

 leaf metric2 {
 type uint64;
 description
 "Link Metric 2";
 }
 }
 }
 grouping l3‑termination‑point‑attributes {
 description "L3 termination point scope attributes";
 container l3‑termination‑point‑attributes {
 description
 "Contains termination point attributes";
 choice termination‑point‑type {
 description
 "Indicates the termination point type";
 case ip {
 leaf‑list ip‑address {
 type inet:ip‑address;
 description
 "IPv4 or IPv6 address.";
 }
 }
 case unnumbered {
 leaf unnumbered‑id {
 type uint32;
 description
 "Unnumbered interface identifier.
 The identifier will correspond to the ifIndex value
 of the interface, i.e., the ifIndex value of the
 ifEntry that represents the interface in
 implementations where the Interfaces Group MIB
 (RFC 2863) is supported.";
 reference
 "RFC 2863: The Interfaces Group MIB";
 }
 }
 case interface‑name {
 leaf interface‑name {
 type string;
 description
 "Name of the interface. The name can (but does not
 have to) correspond to an interface reference of a
 containing node's interface, i.e., the path name of a
 corresponding interface data node on the containing
 node reminiscent of data type interface‑ref defined
 in RFC 8343. It should be noted that data type
 interface‑ref of RFC 8343 cannot be used directly,

 as this data type is used to reference an interface
 in a datastore of a single node in the network, not
 to uniquely reference interfaces across a network.";
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 }
 }
 }
 }
 augment "/nw:networks/nw:network/nw:network‑types" {
 description
 "Introduces new network type for L3 Unicast topology";
 uses l3‑unicast‑topology‑type;
 }
 augment "/nw:networks/nw:network" {
 when "nw:network‑types/l3t:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description
 "L3 Unicast for the network as a whole";
 uses l3‑topology‑attributes;
 }
 augment "/nw:networks/nw:network/nw:node" {
 when "../nw:network‑types/l3t:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description
 "L3 Unicast node‑level attributes ";
 uses l3‑node‑attributes;
 }
 augment "/nw:networks/nw:network/nt:link" {
 when "../nw:network‑types/l3t:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description
 "Augments topology link attributes";
 uses l3‑link‑attributes;
 }
 augment "/nw:networks/nw:network/nw:node/"
 +"nt:termination‑point" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology" {

 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description "Augments topology termination point configuration";
 uses l3‑termination‑point‑attributes;
 }
 notification l3‑node‑event {
 description
 "Notification event for L3 node";
 leaf l3‑event‑type {
 type l3‑event‑type;
 description
 "Event type";
 }
 uses nw:node‑ref;
 uses l3‑unicast‑topology‑type;
 uses l3‑node‑attributes;
 }
 notification l3‑link‑event {
 description
 "Notification event for L3 link";
 leaf l3‑event‑type {
 type l3‑event‑type;
 description
 "Event type";
 }
 uses nt:link‑ref;
 uses l3‑unicast‑topology‑type;
 uses l3‑link‑attributes;
 }
 notification l3‑prefix‑event {
 description
 "Notification event for L3 prefix";
 leaf l3‑event‑type {
 type l3‑event‑type;
 description
 "Event type";
 }
 uses nw:node‑ref;
 uses l3‑unicast‑topology‑type;
 container prefix {
 description
 "Contains L3 prefix attributes";
 uses l3‑prefix‑attributes;
 }
 }
 notification termination‑point‑event {

 description
 "Notification event for L3 termination point";
 leaf l3‑event‑type {
 type l3‑event‑type;
 description
 "Event type";
 }
 uses nt:tp‑ref;
 uses l3‑unicast‑topology‑type;
 uses l3‑termination‑point‑attributes;
 }
}

 <CODE ENDS>

7. Interactions with Other YANG Modules

 As described in Section 4, the model defined in this document builds
 on top of, and augments, the YANG modules defined in [RFC8345].
 Specifically, the "ietf-l3-unicast-topology" module augments the
 "ietf-network" and "ietf-network-topology" modules. In addition, the
 model makes use of data types defined in [RFC6991].

 The model defined in this document is a protocol-independent YANG
 data model with Layer 3 topology information. It is separate from
 and not linked with data models that are used to configure routing
 protocols or routing information, e.g., "ietf-routing" [RFC8022] and
 "ietf-rib-extension" [YANG-RIB]. That said, the model does import a
 type definition from model "ietf-routing-types" [RFC8294].

 The model complies with the requirements for the ephemeral state
 found in [RFC8242]. For ephemeral topology data that is server
 provided, the process tasked with maintaining topology information
 will load information from the routing process (such as OSPF) into
 the data model without relying on a configuration datastore.

8. IANA Considerations

 This document registers the following namespace URIs in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑l3‑unicast‑topology
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑l3‑unicast‑topology‑state
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG modules in the "YANG
 Module Names" registry [RFC6020]:

Name: ietf‑l3‑unicast‑topology
Namespace: urn:ietf:params:xml:ns:yang:ietf‑l3‑unicast‑topology
Prefix: l3t
Reference: RFC 8346

Name: ietf‑l3‑unicast‑topology‑state
Namespace: urn:ietf:params:xml:ns:yang:ietf‑l3‑unicast‑topology‑state
Prefix: l3t‑s
Reference: RFC 8346

9. Security Considerations

 The YANG modules specified in this document define a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 In general, Layer 3 Unicast topologies are system-controlled and
 provide ephemeral topology information. In an NMDA-compliant server,
 they are only part of <operational>, which provides read-only access
 to clients, so they are less vulnerable. That said, the YANG modules
 do in principle allow information to be configurable.

 There are a number of data nodes defined in these YANG modules that
 are writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability in the "ietf-l3-unicast-topology"
 module:

 o l3-topology-attributes: A malicious client could attempt to
 sabotage the configuration of any of the contained attributes,
 i.e., the name or the flag data nodes.

 o l3-node-attributes: A malicious client could attempt to sabotage
 the configuration of important node attributes, such as the
 router-id or node prefix.

 o l3-link-attributes: A malicious client could attempt to sabotage
 the configuration of important link attributes, such as name,
 flag, and metrics of the link.

 o l3-termination-point-attributes: A malicious client could attempt
 to sabotage the configuration information of a termination point,
 such as the termination point's IP address and interface name.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2328]
 Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <https://www.rfc-editor.org/info/rfc2328>.

 [RFC2863]
 McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
 <https://www.rfc-editor.org/info/rfc2863>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8294]
 Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/info/rfc8294>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

10.2. Informative References

 [RFC8022]
 Lhotka, L. and A. Lindem, "A YANG Data Model for Routing
 Management", RFC 8022, DOI 10.17487/RFC8022, November
 2016, <https://www.rfc-editor.org/info/rfc8022>.

 [RFC8242]
 Haas, J. and S. Hares, "Interface to the Routing System
 (I2RS) Ephemeral State Requirements", RFC 8242,
 DOI 10.17487/RFC8242, September 2017,
 <https://www.rfc-editor.org/info/rfc8242>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [USECASE-REQS]

 Hares, S. and M. Chen, "Summary of I2RS Use Case
 Requirements", Work in Progress, draft-ietf-i2rs-usecase-
 reqs-summary-03, November 2016.

 [YANG-RIB]
 Lindem, A. and Y. Qu, "RIB YANG Data Model", Work in
 Progress, draft-acee-rtgwg-yang-rib-extend-06, January
 2018.

 [YANG-TE]
 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Gonzalez de Dios, "YANG Data Model for Traffic
 Engineering (TE) Topologies", Work in Progress,
 draft-ietf-teas-yang-te-topo-15, February 2018.

Appendix A. Companion YANG Data Model for Implementations Not Compliant
 with NMDA

 The YANG module "ietf-l3-unicast-topology" defined in this document
 augments two modules defined in [RFC8345]: "ietf-network" and
 "ietf-network-topology". These two modules were designed to be used
 in conjunction with implementations that support the Network
 Management Datastore Architecture (NMDA) defined in [RFC8342]. In
 order to allow implementations to use the model in cases when NMDA is
 not supported, [RFC8345] defines two companion modules,
 "ietf-network- state" and "ietf-network-topology-state", that
 represent state models of networks and network topologies,
 respectively.

 In order to be able to use the model for Layer 3 topologies defined
 in this document in conjunction with implementations not compliant
 with NMDA, a corresponding companion module needs to be introduced as
 well. This companion module, "ietf-l3-unicast-topology-state",
 mirrors "ietf-l3-unicast-topology". However, the module augments
 "ietf-network-state" and "ietf-network-topology-state" (instead of
 "ietf-network" and "ietf-network-topology"), and all of its data
 nodes are non-configurable.

 Similar considerations apply to any module that augments "ietf-l3-
 unicast-topology", such as the example module defined in Appendix B
 (i.e., example-ospf-topology). For implementations that are not
 compliant with NMDA, companion modules that represent state
 information and that are non-configurable will need to be introduced.
 These modules augment "ietf-l3-unicast-topology-state" instead of
 "ietf-l3-unicast-topology". Companion modules for the example module
 defined in Appendix B are not provided (since it is just an example).

 Like "ietf-network-state" and "ietf-network-topology-state",
 "ietf-l3-unicast-topology" SHOULD NOT be supported by implementations
 that support NMDA. The module is therefore defined in an appendix.

 The definition of the module follows below. As the structure of the
 module mirrors that of its underlying module, the YANG tree is not
 depicted separately.

<CODE BEGINS> file "ietf‑l3‑unicast‑topology‑state@2018‑02‑26.yang"
module ietf‑l3‑unicast‑topology‑state {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑l3‑unicast‑topology‑state";
 prefix "l3t‑s";
 import ietf‑network‑state {
 prefix "nw‑s";

 }
 import ietf‑network‑topology‑state {
 prefix "nt‑s";
 }
 import ietf‑l3‑unicast‑topology {
 prefix "l3t";
 }
 organization
 "IETF I2RS (Interface to the Routing System) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>
 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>
 Editor: Jan Medved
 <mailto:jmedved@cisco.com>
 Editor: Robert Varga
 <mailto:robert.varga@pantheon.tech>
 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>
 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>
 Editor: Hariharan Ananthakrishnan
 <mailto:hari@packetdesign.com>";
 description
 "This module defines a model for Layer 3 Unicast topology
 state, representing topology that either is learned or
 results from applying topology that has been configured per
 the 'ietf‑l3‑unicast‑topology' model, mirroring the
 corresponding data nodes in this model.

 This model mirrors 'ietf-l3-unicast-topology' but contains only
 read-only state data. The model is not needed when the
 underlying implementation infrastructure supports the Network
 Management Datastore Architecture (NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8346;
 see the RFC itself for full legal notices.";

 revision "2018‑02‑26" {
 description
 "Initial revision.";
 reference
 "RFC 8346: A YANG Data Model for Layer 3 Topologies";
 }
 augment "/nw‑s:networks/nw‑s:network/nw‑s:network‑types" {
 description
 "Introduce new network type for L3 Unicast topology";
 uses l3t:l3‑unicast‑topology‑type;
 }
 augment "/nw‑s:networks/nw‑s:network" {
 when "nw‑s:network‑types/l3t‑s:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description
 "L3 Unicast for the network as a whole";
 uses l3t:l3‑topology‑attributes;
 }
 augment "/nw‑s:networks/nw‑s:network/nw‑s:node" {
 when "../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description
 "L3 Unicast node‑level attributes ";
 uses l3t:l3‑node‑attributes;
 }
 augment "/nw‑s:networks/nw‑s:network/nt‑s:link" {
 when "../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }
 description
 "Augments topology link attributes";
 uses l3t:l3‑link‑attributes;
 }
 augment "/nw‑s:networks/nw‑s:network/nw‑s:node/"
 +"nt‑s:termination‑point" {
 when "../../nw‑s:network‑types/l3t‑s:l3‑unicast‑topology" {
 description
 "Augmentation parameters apply only for networks with
 L3 Unicast topology";
 }

 description "Augments topology termination point configuration";
 uses l3t:l3‑termination‑point‑attributes;
 }
 notification l3‑node‑event {
 description
 "Notification event for L3 node";
 leaf l3‑event‑type {
 type l3t:l3‑event‑type;
 description
 "Event type";
 }
 uses nw‑s:node‑ref;
 uses l3t:l3‑unicast‑topology‑type;
 uses l3t:l3‑node‑attributes;
 }
 notification l3‑link‑event {
 description
 "Notification event for L3 link";
 leaf l3‑event‑type {
 type l3t:l3‑event‑type;
 description
 "Event type";
 }
 uses nt‑s:link‑ref;
 uses l3t:l3‑unicast‑topology‑type;
 uses l3t:l3‑link‑attributes;
 }
 notification l3‑prefix‑event {
 description
 "Notification event for L3 prefix";
 leaf l3‑event‑type {
 type l3t:l3‑event‑type;
 description
 "Event type";
 }
 uses nw‑s:node‑ref;
 uses l3t:l3‑unicast‑topology‑type;
 container prefix {
 description
 "Contains L3 prefix attributes";
 uses l3t:l3‑prefix‑attributes;
 }
 }
 notification termination‑point‑event {
 description
 "Notification event for L3 termination point";
 leaf l3‑event‑type {
 type l3t:l3‑event‑type;

 description
 "Event type";
 }
 uses nt‑s:tp‑ref;
 uses l3t:l3‑unicast‑topology‑type;
 uses l3t:l3‑termination‑point‑attributes;
 }
}

 <CODE ENDS>

Appendix B. Extending the Model

 The model can be extended for specific Layer 3 Unicast types.
 Examples include OSPF and IS-IS topologies. This appendix introduces
 a YANG module that defines a simple topology model for OSPF. This
 module is intended to serve as an example that illustrates how the
 general topology model can be refined across multiple levels. It
 does not constitute a full-fledged OSPF topology model, which may be
 more comprehensive and refined than the model that is described here.

B.1. Example OSPF Topology

B.1.1. Model Overview

 The following model shows how the Layer 3 Unicast topology model can
 be extended, in this case, to cover OSPF topologies. For this
 purpose, a set of augmentations are introduced in a separate YANG
 module, "example-ospf-topology", whose structure is depicted in the
 following diagram. As before, the notation syntax follows [RFC8340].
 Note that one of the lines has been wrapped to adhere to the
 72-character line limitation of RFCs.

module: example‑ospf‑topology
augment /nw:networks/nw:network/nw:network‑types/
 l3t:l3‑unicast‑topology:
 +‑‑rw ospf!
augment /nw:networks/nw:network/l3t:l3‑topology‑attributes:
 +‑‑rw ospf‑topology‑attributes
 +‑‑rw area‑id? area‑id‑type
augment /nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes:
 +‑‑rw ospf‑node‑attributes
 +‑‑rw (router‑type)?
 | +‑‑:(abr)
 | | +‑‑rw abr? empty
 | +‑‑:(asbr)
 | | +‑‑rw asbr? empty
 | +‑‑:(internal)
 | | +‑‑rw internal? empty
 | +‑‑:(pseudonode)
 | +‑‑rw pseudonode? empty
 +‑‑rw dr‑interface‑id? uint32
augment /nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes:
 +‑‑rw ospf‑link‑attributes
augment /l3t:l3‑node‑event:
 +‑‑‑‑ ospf!
 +‑‑‑‑ ospf‑node‑attributes
 +‑‑‑‑ (router‑type)?
 | +‑‑:(abr)
 | | +‑‑‑‑ abr? empty
 | +‑‑:(asbr)
 | | +‑‑‑‑ asbr? empty
 | +‑‑:(internal)
 | | +‑‑‑‑ internal? empty
 | +‑‑:(pseudonode)
 | +‑‑‑‑ pseudonode? empty
 +‑‑‑‑ dr‑interface‑id? uint32
augment /l3t:l3‑link‑event:
 +‑‑‑‑ ospf!
 +‑‑‑‑ ospf‑link‑attributes

 The module augments "ietf-l3-unicast-topology" as follows:

 o A new topology type for an OSPF topology is introduced.

 o Additional topology attributes are defined in a new grouping that
 augments l3-topology-attributes of the "ietf-l3-unicast-topology"
 module. The attributes include an OSPF area-id identifying the
 OSPF area.

 o Additional data objects for nodes are introduced by augmenting the
 l3-node-attributes of the "ietf-l3-unicast-topology" module. New
 objects include router-type and dr-interface-id for pseudonodes.

 o Links are augmented with OSPF link attributes.

 In addition, the module extends notifications for events concerning
 Layer 3 nodes and links with OSPF attributes.

 It should be noted that the model defined here represents topology
 and is intended as an example. It does not define how to configure
 OSPF routers or interfaces.

B.1.2. OSPF Topology YANG Module

 The OSPF Topology YANG module is specified below. As mentioned, the
 module is intended as an example for how the Layer 3 Unicast topology
 model can be extended to cover OSPF topologies, but it is not
 normative. Accordingly, the module is not delimited with
 <CODE BEGINS> and <CODE ENDS> tags.

file "example‑ospf‑topology@2017‑12‑16.yang"
module example‑ospf‑topology {
 yang‑version 1.1;
 namespace "urn:example:example‑ospf‑topology";
 prefix "ex‑ospft";
 import ietf‑yang‑types {
 prefix "yang";
 }
 import ietf‑network {
 prefix "nw";
 }
 import ietf‑network‑topology {
 prefix "nt";
 }
 import ietf‑l3‑unicast‑topology {
 prefix "l3t";
 }
 description
 "This module is intended as an example for how the
 Layer 3 Unicast topology model can be extended to cover
 OSPF topologies.";
 typedef area‑id‑type {
 type yang:dotted‑quad;
 description
 "Area ID type.";
 }
 grouping ospf‑topology‑type {

 description
 "Identifies the OSPF topology type.";
 container ospf {
 presence "indicates OSPF Topology";
 description
 "Its presence identifies the OSPF topology type.";
 }
 }
 augment "/nw:networks/nw:network/nw:network‑types/"
 + "l3t:l3‑unicast‑topology" {
 description
 "Defines the OSPF topology type.";
 uses ospf‑topology‑type;
 }
 augment "/nw:networks/nw:network/l3t:l3‑topology‑attributes" {
 when "../nw:network‑types/l3t:l3‑unicast‑topology/" +
 "ex‑ospft:ospf" {
 description
 "Augments only for OSPF topology";
 }
 description
 "Augments topology configuration";
 container ospf‑topology‑attributes {
 description
 "Contains topology attributes";
 leaf area‑id {
 type area‑id‑type;
 description
 "OSPF area ID";
 }
 }
 }
 augment "/nw:networks/nw:network/nw:node/l3t:l3‑node‑attributes" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology/" +
 "ex‑ospft:ospf" {
 description
 "Augments only for OSPF topology";
 }
 description
 "Augments node configuration";
 uses ospf‑node‑attributes;
 }
 augment "/nw:networks/nw:network/nt:link/l3t:l3‑link‑attributes" {
 when "../../nw:network‑types/l3t:l3‑unicast‑topology/" +
 "ex‑ospft:ospf" {
 description
 "Augments only for OSPF topology";
 }

 description
 "Augments link configuration";
 uses ospf‑link‑attributes;
 }
 grouping ospf‑node‑attributes {
 description
 "OSPF node scope attributes";
 container ospf‑node‑attributes {
 description
 "Contains node attributes";
 choice router‑type {
 description
 "Indicates router type";
 case abr {
 leaf abr {
 type empty;
 description
 "The node is ABR";
 }
 }
 case asbr {
 leaf asbr {
 type empty;
 description
 "The node is ASBR";
 }
 }
 case internal {
 leaf internal {
 type empty;
 description
 "The node is internal";
 }
 }
 case pseudonode {
 leaf pseudonode {
 type empty;
 description
 "The node is pseudonode";
 }
 }
 }
 leaf dr‑interface‑id {
 when "../pseudonode" {
 description
 "Valid only for pseudonode";
 }
 type uint32;

 default "0";
 description
 "For pseudonodes, DR interface‑id";
 }
 }
 }
 grouping ospf‑link‑attributes {
 description
 "OSPF link scope attributes";
 container ospf‑link‑attributes {
 description
 "Contains OSPF link attributes";
 }
 } // ospf‑link‑attributes
 augment "/l3t:l3‑node‑event" {
 description
 "OSPF node event";
 uses ospf‑topology‑type;
 uses ospf‑node‑attributes;
 }
 augment "/l3t:l3‑link‑event" {
 description
 "OSPF link event";
 uses ospf‑topology‑type;
 uses ospf‑link‑attributes;
 }
}

Appendix C. An Example

 This section contains an example of an instance data tree in JSON
 encoding [RFC7951]. The example instantiates "ietf-l3-unicast-
 topology" for the topology that is depicted in the following diagram.
 There are three nodes: D1, D2, and D3. D1 has three termination
 points: 1-0-1, 1-2-1, and 1-3-1. D2 has three termination points as
 well: 2-1-1, 2-0-1, and 2-3-1. D3 has two termination points: 3-1-1
 and 3-2-1. In addition, there are six links, two between each pair
 of nodes, with one going in each direction.

 +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | D1 | | D2 |
/‑\ /‑\ /‑\ /‑\
| | 1‑0‑1 | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | 2‑1‑1 | |
| | 1‑2‑1 | |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| | 2‑0‑1 | |
\‑/ 1‑3‑1 \‑/ \‑/ 2‑3‑1 \‑/
 | /‑‑‑‑\ | | /‑‑‑‑\ |
 +‑‑‑| |‑‑‑+ +‑‑‑| |‑‑‑+
 \‑‑‑‑/ \‑‑‑‑/
 A | A |
 | | | | | |
 | | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | | | D3 | | |
 | | /‑\ /‑\ | |
 | +‑‑‑‑‑>| | 3‑1‑1 | |‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑| | 3‑2‑1 | |<‑‑‑‑‑‑‑‑‑+
 \‑/ \‑/
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2: A Network Topology Example

 The corresponding instance data tree is depicted below. Note that
 some lines have been wrapped to adhere to the 72-character line
 limitation of RFCs.

{
 "ietf‑network:networks": {
 "network": [
 {
 "network‑types": {
 "ietf‑l3‑unicast‑topology:l3‑unicast‑topology": {}
 },
 "network‑id": "l3‑topo‑example",
 "node": [
 {
 "node‑id": "D1",
 "termination‑point": [
 {
 "tp‑id": "1‑0‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 101
 }
 },
 {
 "tp‑id": "1‑2‑1",

 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 121
 }
 },
 {
 "tp‑id": "1‑3‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 131
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.1"]
 }
 },
 {
 "node‑id": "D2",
 "termination‑point": [
 {
 "tp‑id": "2‑0‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 201
 }
 },
 {
 "tp‑id": "2‑1‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 211
 }
 },
 {
 "tp‑id": "2‑3‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 231
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.2"]
 }
 },
 {
 "node‑id": "D3",

 "termination‑point": [
 {
 "tp‑id": "3‑1‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 311
 }
 },
 {
 "tp‑id": "3‑2‑1",
 "ietf‑l3‑unicast‑topology:
 l3‑termination‑point‑attributes": {
 "unnumbered‑id:": 321
 }
 }
],
 "ietf‑l3‑unicast‑topology:l3‑node‑attributes": {
 "router‑id": ["203.0.113.3"]
 }
 }
],
 "ietf‑network‑topology:link": [
 {
 "link‑id": "D1,1‑2‑1,D2,2‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑2‑1"
 }
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑1‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 },
 {
 "link‑id": "D2,2‑1‑1,D1,1‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑1‑1"
 }
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑2‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"

 }
 },
 {
 "link‑id": "D1,1‑3‑1,D3,3‑1‑1",
 "source": {
 "source‑node": "D1",
 "source‑tp": "1‑3‑1"
 }
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑1‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 },
 {
 "link‑id": "D3,3‑1‑1,D1,1‑3‑1",
 "source": {
 "source‑node": "D3",
 "source‑tp": "3‑1‑1"
 }
 "destination": {
 "dest‑node": "D1",
 "dest‑tp": "1‑3‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 },
 {
 "link‑id": "D2,2‑3‑1,D3,3‑2‑1",
 "source": {
 "source‑node": "D2",
 "source‑tp": "2‑3‑1"
 }
 "destination": {
 "dest‑node": "D3",
 "dest‑tp": "3‑2‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 },
 {
 "link‑id": "D3,3‑2‑1,D2,2‑3‑1",
 "source": {
 "source‑node": "D3",

 "source‑tp": "3‑2‑1"
 }
 "destination": {
 "dest‑node": "D2",
 "dest‑tp": "2‑3‑1"
 },
 "ietf‑l3‑unicast‑topology:l3‑link‑attributes": {
 "metric1": "100"
 }
 }
]
 }
]
 }
}

 Figure 3: Instance Data Tree

Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Alia Atlas, Andy Bierman, Benoit
 Claise, Joel Halpern, Susan Hares, Ladislav Lhotka, Carl Moberg,
 Carlos Pignataro, Juergen Schoenwaelder, Michal Vasco, and Kent
 Watsen.

Contributors

 The model presented in this document was contributed to by more
 people than can be listed on the author list. Additional
 contributors include:

 o Vishnu Pavan Beeram, Juniper

 o Igor Bryskin, Huawei

 o Ken Gray, Cisco

 o Aihua Guo, Huawei

 o Tom Nadeau, Brocade

 o Tony Tkacik

 o Aleksandr Zhdankin, Cisco

Authors' Addresses

Alexander Clemm
Huawei USA ‑ Futurewei Technologies Inc.
Santa Clara, CA
United States of America

 Email: ludwig@clemm.org, alexander.clemm@huawei.com

Jan Medved
Cisco

 Email: jmedved@cisco.com

Robert Varga
Pantheon Technologies SRO

 Email: robert.varga@pantheon.tech

Xufeng Liu
Jabil

 Email: xufeng.liu.ietf@gmail.com

Hariharan Ananthakrishnan
Packet Design

 Email: hari@packetdesign.com

Nitin Bahadur
Bracket Computing

 Email: nitin_bahadur@yahoo.com

8430 - RIB Information Model

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8430

Category: Informational

ISSN: 2070-1721

N. Bahadur, Ed.

Uber

S. Kini, Ed.

J. Medved

Cisco

September 2018

RIB Information Model

Abstract

 Routing and routing functions in enterprise and carrier networks are
 typically performed by network devices (routers and switches) using a
 Routing Information Base (RIB). Protocols and configurations push
 data into the RIB, and the RIB manager installs state into the
 hardware for packet forwarding. This document specifies an
 information model for the RIB to enable defining a standardized data
 model. The IETF's I2RS WG used this document to design the I2RS RIB
 data model. This document is being published to record the higher-
 level information model decisions for RIBs so that other developers
 of RIBs may benefit from the design concepts.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8430.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Conventions Used in This Document

	2. RIB Data
	 2.1. RIB Definition

	 2.2. Routing Instance

	 2.3. Route

	 2.4. Nexthop
	 2.4.1. Base Nexthops

	 2.4.2. Derived Nexthops

	 2.4.3. Nexthop Indirection

	3. Reading from the RIB

	4. Writing to the RIB

	5. Notifications

	6. RIB Grammar
	 6.1. Nexthop Grammar Explained

	7. Using the RIB Grammar
	 7.1. Using Route Preference

	 7.2. Using Different Nexthop Types
	 7.2.1. Tunnel Nexthops

	 7.2.2. Replication Lists

	 7.2.3. Weighted Lists

	 7.2.4. Protection

	 7.2.5. Nexthop Chains

	 7.2.6. Lists of Lists

	 7.3. Performing Multicast

	8. RIB Operations at Scale
	 8.1. RIB Reads

	 8.2. RIB Writes

	 8.3. RIB Events and Notifications

	9. Security Considerations

	10. IANA Considerations

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

Routing and routing functions in enterprise and carrier networks are
traditionally performed in network devices. Customarily, routers run
routing protocols, and the routing protocols (along with static
configuration information) populate the Routing Information Base
(RIB) of the router. The RIB is managed by the RIB manager, and the
RIB manager provides a northbound interface to its clients (i.e., the
routing protocols) to insert routes into the RIB. The RIB manager
consults the RIB and decides how to program the Forwarding
Information Base (FIB) of the hardware by interfacing with the FIB
manager. The relationship between these entities is shown in
Figure 1.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |RIB Client 1 | |RIB Client N |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^ ^
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RIB Manager |
 | |
 | +‑‑‑‑‑‑‑‑+ |
 | | RIB(s) | |
 | +‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 V V
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
FIB Manager 1		FIB Manager M				
+‑‑‑‑‑‑‑‑+	+‑‑‑‑‑‑‑‑+				
	FIB(s)				FIB(s)	
+‑‑‑‑‑‑‑‑+		+‑‑‑‑‑‑‑‑+				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: RIB Manager, RIB Clients, and FIB Managers

 Routing protocols are inherently distributed in nature, and each
 router makes an independent decision based on the routing data
 received from its peers. With the advent of newer deployment
 paradigms and the need for specialized applications, there is an
 emerging need to guide the router's routing function [RFC7920]. The
 traditional network-device RIB population that is protocol based
 suffices for most use cases where distributed network control is
 used. However, there are use cases that the network operators
 currently address by configuring static routes, policies, and RIB
 import/export rules on the routers. There is also a growing list of
 use cases in which a network operator might want to program the RIB
 based on data unrelated to just routing (within that network's
 domain). Programming the RIB could be based on other information
 (such as routing data in the adjacent domain or the load on storage
 and compute) in the given domain. Or, it could simply be a
 programmatic way of creating on-demand dynamic overlays (e.g., GRE
 tunnels) between compute hosts (without requiring the hosts to run
 traditional routing protocols). If there was a standardized,
 publicly documented programmatic interface to a RIB, it would enable
 further networking applications that address a variety of use cases
 [RFC7920].

 A programmatic interface to the RIB involves two types of operations:
 reading from the RIB and writing (adding/modifying/deleting) to the
 RIB.

 In order to understand what is in a router's RIB, methods like per-
 protocol SNMP MIBs and screen scraping are used. These methods are
 not scalable since they are client pull mechanisms and not proactive
 push (from the router) mechanisms. Screen scraping is error prone
 (since the output format can change) and is vendor dependent.
 Building a RIB from per-protocol MIBs is error prone since the MIB
 data represents protocol data and not the exact information that went
 into the RIB. Thus, just getting read-only RIB information from a
 router is a hard task.

 Adding content to the RIB from a RIB client can be done today using
 static configuration mechanisms provided by router vendors. However,
 the mix of what can be modified in the RIB varies from vendor to
 vendor, and the method of configuring it is also vendor dependent.
 This makes it hard for a RIB client to program a multi-vendor network
 in a consistent and vendor-independent way.

 The purpose of this document is to specify an information model for
 the RIB. Using the information model, one can build a detailed data
 model for the RIB. That data model could then be used by a RIB
 client to program a network device. One data model that has been
 based on this document is the I2RS RIB data model [RFC8431].

 The rest of this document is organized as follows. Section 2 goes
 into the details of what constitutes and can be programmed in a RIB.
 Guidelines for reading and writing the RIB are provided in Sections 3
 and 4, respectively. Section 5 provides a high-level view of the
 events and notifications going from a network device to a RIB client
 to update the RIB client on asynchronous events. The RIB grammar is
 specified in Section 6. Examples of using the RIB grammar are shown
 in Section 7. Section 8 covers considerations for performing RIB
 operations at scale.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. RIB Data

 This section describes the details of a RIB. It makes forward
 references to objects in the RIB grammar (see Section 6). A high-
 level description of the RIB contents is as shown in Figure 2.
 Please note that for ease of representation in ASCII art, this
 drawing shows a single routing instance, a single RIB, and a single
 route. Subsections of this section describe the logical data nodes
 that should be contained within a RIB. Sections 3 and 4 describe the
 high-level read and write operations.

 network‑device
 |
 | 0..N
 |
 routing instance(s)
 | |
 | |
0..N | | 0..N
 | |
 interface(s) RIB(s)
 |
 |
 | 0..N
 |
 route(s)

 Figure 2: RIB Information Model

2.1. RIB Definition

 A RIB, in the context of the RIB information model, is an entity that
 contains routes. It is identified by its name and is contained
 within a routing instance (see Section 2.2). A network device MAY
 contain routing instances, and each routing instance MAY contain
 RIBs. The name MUST be unique within a routing instance. All routes
 in a given RIB MUST be of the same address family (e.g., IPv4). Each
 RIB MUST belong to a routing instance.

 A routing instance may contain two or more RIBs of the same address
 family (e.g., IPv6). A typical case where this can be used is for
 multi-topology routing [RFC4915] [RFC5120].

 Each RIB MAY be associated with an ENABLE_IP_RPF_CHECK attribute that
 enables Reverse Path Forwarding (RPF) checks on all IP routes in that
 RIB. The RPF check is used to prevent spoofing and limit malicious
 traffic. For IP packets, the IP source address is looked up and the
 RPF interface(s) associated with the route for that IP source address
 is found. If the incoming IP packet's interface matches one of the
 RPF interfaces, then the IP packet is forwarded based on its IP
 destination address; otherwise, the IP packet is discarded.

2.2. Routing Instance

 A routing instance, in the context of the RIB information model, is a
 collection of RIBs, interfaces, and routing parameters. A routing
 instance creates a logical slice of the router. It allows different
 logical slices across a set of routers to communicate with each
 other. Layer 3 VPNs, Layer 2 VPNs (L2VPNs), and Virtual Private LAN
 Service (VPLS) can be modeled as routing instances. Note that
 modeling an L2VPN using a routing instance only models the Layer 3
 (RIB) aspect and does not model any Layer 2 information (like ARP)
 that might be associated with the L2VPN.

 The set of interfaces indicates which interfaces are associated with
 this routing instance. The RIBs specify how incoming traffic is to
 be forwarded, and the routing parameters control the information in
 the RIBs. The intersection set of interfaces of two routing
 instances MUST be the null set. In other words, an interface MUST
 NOT be present in two routing instances. Thus, a routing instance
 describes the routing information and parameters across a set of
 interfaces.

 A routing instance MUST contain the following mandatory fields:

 o INSTANCE_NAME: A routing instance is identified by its name,
 INSTANCE_NAME. This MUST be unique across all routing instances
 in a given network device.

 o rib-list: This is the list of RIBs associated with this routing
 instance. Each routing instance can have multiple RIBs to
 represent routes of different types. For example, one would put
 IPv4 routes in one RIB and MPLS routes in another RIB. The list
 of RIBs can be an empty list.

 A routing instance MAY contain the following fields:

 o interface-list: This represents the list of interfaces associated
 with this routing instance. The interface list helps constrain
 the boundaries of packet forwarding. Packets coming in on these
 interfaces are directly associated with the given routing
 instance. The interface list contains a list of identifiers, with
 each identifier uniquely identifying an interface.

 o ROUTER_ID: This field identifies the network device in control
 plane interactions with other network devices. This field is to
 be used if one wants to virtualize a physical router into multiple
 virtual routers. Each virtual router MUST have a unique
 ROUTER_ID. A ROUTER_ID MUST be unique across all network devices
 in a given domain.

 A routing instance may be created purely for the purposes of packet
 processing and may not have any interfaces associated with it. For
 example, an incoming packet in routing instance A might have a
 nexthop of routing instance B, and after packet processing in B, the
 nexthop might be routing instance C. Thus, routing instance B is not
 associated with any interface. And, given that this routing instance
 does not do any control-plane interaction with other network devices,
 a ROUTER_ID is also not needed.

2.3. Route

 A route is essentially a match condition and an action following the
 match. The match condition specifies the kind of route (IPv4, MPLS,
 etc.) and the set of fields to match on. Figure 3 represents the
 overall contents of a route. Please note that for ease of depiction
 in ASCII art, only a single instance of the route-attribute, match
 flags, and nexthop is depicted.

 route
 | | |
 +‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑+
 | | |
 0..N | | |

route‑attribute match nexthop
 |
 |
 +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+
 | | | | |
 | | | | |

 IPv4 IPv6 MPLS MAC Interface

 Figure 3: Route Model

 This document specifies the following match types:

 o IPv4: Match on destination and/or source IP address in the IPv4
 header

 o IPv6: Match on destination and/or source IP address in the IPv6
 header

 o MPLS: Match on an MPLS label at the top of the MPLS label stack

 o MAC: Match on Media Access Control (MAC) destination addresses in
 the Ethernet header

 o Interface: Match on the incoming interface of the packet

 A route MAY be matched on one or more of these match types by policy
 as either an "AND" (to restrict the number of routes) or an "OR" (to
 combine two filters).

 Each route MUST have the following mandatory route-attributes
 associated with it:

 o ROUTE_PREFERENCE: This is a numerical value that allows for
 comparing routes from different protocols. Static configuration
 is also considered a protocol for the purpose of this field. It
 is also known as "administrative distance". The lower the value,
 the higher the preference. For example, there can be an OSPF
 route for 192.0.2.1/32 (or IPv6 2001:DB8::1/128) with a preference
 of 5. If a controller programs a route for 192.0.2.1/32 (or IPv6
 2001:DB8::1/128) with a preference of 2, then the controller's
 route will be preferred by the RIB manager. Preference should be

 used to dictate behavior. For more examples of preference, see
 Section 7.1.

 Each route can have one or more optional route-attributes associated
 with it.

 o route-vendor-attributes: Vendors can specify vendor-specific
 attributes using this. The details of this attribute are outside
 the scope of this document.

 Each route has a nexthop associated with it. Nexthops are described
 in Section 2.4.

 Additional features to match multicast packets were considered (e.g.,
 TTL of the packet to limit the range of a multicast group), but these
 were not added to this information model. Future RIB information
 models should investigate these multicast features.

2.4. Nexthop

 A nexthop represents an object resulting from a route lookup. For
 example, if a route lookup results in sending the packet out of a
 given interface, then the nexthop represents that interface.

 Nexthops can be either fully resolved or unresolved. A resolved
 nexthop has adequate information to send the outgoing packet to the
 destination by forwarding it on an interface to a directly connected
 neighbor. For example, a nexthop to a point-to-point interface or a
 nexthop to an IP address on an Ethernet interface has the nexthop
 resolved. An unresolved nexthop is something that requires the RIB
 manager to determine the final resolved nexthop. For example, a
 nexthop could be an IP address. The RIB manager would resolve how to
 reach that IP address; for example, is the IP address reachable by
 regular IP forwarding, by an MPLS tunnel, or by both? If the RIB
 manager cannot resolve the nexthop, then the nexthop remains in an
 unresolved state and is NOT a candidate for installation in the FIB.
 Future RIB events can cause an unresolved nexthop to get resolved
 (e.g., an IP address being advertised by an IGP neighbor).
 Conversely, resolved nexthops can also become unresolved (e.g., in
 the case of a tunnel going down); hence, they would no longer be
 candidates to be installed in the FIB.

 When at least one of a route's nexthops is resolved, then the route
 can be used to forward packets. Such a route is considered eligible
 to be installed in the FIB and is henceforth referred to as a FIB-
 eligible route. Conversely, when all the nexthops of a route are
 unresolved, that route can no longer be used to forward packets.
 Such a route is considered ineligible to be installed in the FIB and
 is henceforth referred to as a FIB-ineligible route. The RIB
 information model allows a RIB client to program routes whose
 nexthops may be unresolved initially. Whenever an unresolved nexthop
 gets resolved, the RIB manager will send a notification of the same
 (see Section 5).

 The overall structure and usage of a nexthop is as shown in the
 figure below. For ease of description using ASCII art, only a single
 instance of any component of the nexthop is shown in Figure 4.

 route
 |
 | 0..N
 |
 nexthop <‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | | | | |
 | | | | | |
 base load‑balance protection replicate chain |
 | | | | | |
 | |2..N |2..N |2..N |1..N |
 | | | | | |
 | | V | | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑>+<‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+
 | | | | |
 | | | | |
 nexthop‑id egress‑interface ip‑address logical‑tunnel |
 |
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | |
 | | | |
tunnel‑encapsulation tunnel‑decapsulation rib‑name special‑nexthop

 Figure 4: Nexthop Model

 This document specifies a very generic, extensible, and recursive
 grammar for nexthops. A nexthop can be a base nexthop or a derived
 nexthop. Section 2.4.1 details base nexthops, and Section 2.4.2
 explains various kinds of derived nexthops. There are certain
 special nexthops, and those are described in Section 2.4.1.1.
 Lastly, Section 2.4.3 delves into nexthop indirection and its use.
 Examples of when and how to use tunnel nexthops and derived nexthops
 are shown in Section 7.2.

2.4.1. Base Nexthops

 At the lowest level, a nexthop can be one of the following:

 o Identifier: This is an identifier returned by the network device
 representing a nexthop. This can be used as a way of reusing a
 nexthop when programming derived nexthops.

 o Interface nexthops: These are nexthops that are pointing to an
 interface. Various attributes associated with these nexthops are:

 * Egress-interface: This represents a physical, logical, or
 virtual interface on the network device. Address resolution
 must not be required on this interface. This interface may
 belong to any routing instance.

 * IP address: A route lookup on this IP address is done to
 determine the egress-interface. Address resolution may be
 required depending on the interface.

 + An optional rib-name can also be specified to indicate the
 RIB in which the IP address is to be looked up. One can use
 the rib-name field to direct the packet from one domain into
 another domain. By default the RIB will be the same as the
 one that route belongs to.

 These attributes can be used in combination as follows:

 * Egress-interface and IP address: This can be used in cases
 where, e.g., the IP address is a link-local address.

 * Egress-interface and MAC address: The egress-interface must be
 an Ethernet interface. Address resolution is not required for
 this nexthop.

 o Tunnel nexthops: These are nexthops that are pointing to a tunnel.
 The types of tunnel nexthops are:

 * tunnel-encapsulation: This can be an encapsulation representing
 an IP tunnel, MPLS tunnel, or others as defined in this
 document. An optional egress-interface can be chained to the
 tunnel-encapsulation to indicate which interface to send the
 packet out on. The egress-interface is useful when the network
 device contains Ethernet interfaces and one needs to perform
 address resolution for the IP packet.

 * tunnel-decapsulation: This is to specify decapsulating a tunnel
 header. After decapsulation, further lookup on the packet can
 be done via chaining it with another nexthop. The packet can
 also be sent out via an egress-interface directly.

 * logical-tunnel: This can be an MPLS Label Switched Path (LSP)
 or a GRE tunnel (or others as defined in this document) that is
 represented by a unique identifier (e.g., name).

 o rib-name: A nexthop pointing to a RIB. This indicates that the
 route lookup needs to continue in the specified RIB. This is a
 way to perform chained lookups.

 Tunnel nexthops allow a RIB client to program static tunnel headers.
 There can be cases where the remote tunnel endpoint does not support
 dynamic signaling (e.g., no LDP support on a host); in those cases,
 the RIB client might want to program the tunnel header on both ends
 of the tunnel. The tunnel nexthop is kept generic with
 specifications provided for some commonly used tunnels. It is
 expected that the data model will model these tunnel types with
 complete accuracy.

2.4.1.1. Special Nexthops

 Special nexthops are for performing specific well-defined functions
 (e.g., DISCARD). The purpose of each of them is explained below:

 o DISCARD: This indicates that the network device should drop the
 packet and increment a drop counter.

 o DISCARD_WITH_ERROR: This indicates that the network device should
 drop the packet, increment a drop counter, and send back an
 appropriate error message (like ICMP error).

 o RECEIVE: This indicates that the traffic is destined for the
 network device, for example, protocol packets or Operations,
 Administration, and Maintenance (OAM) packets. All locally
 destined traffic SHOULD be throttled to avoid a denial-of-service
 attack on the router's control plane. An optional rate limiter
 can be specified to indicate how to throttle traffic destined for
 the control plane. The description of the rate limiter is outside
 the scope of this document.

2.4.2. Derived Nexthops

 Derived nexthops can be:

 o weighted lists, which are used for load-balancing;

 o preference lists, which are used for protection using primary and
 backup;

 o replication lists, which are lists of nexthops to which to
 replicate a packet;

 o nexthop chains, which are for chaining multiple operations or
 attaching multiple headers; or

 o lists of lists, which are a recursive application of the above.

 Nexthop chains (see Section 7.2.5 for usage) are a way to perform
 multiple operations on a packet by logically combining them. For
 example, one can chain together "decapsulate MPLS header" and "send
 it out a specific egress-interface". Chains can be used to specify
 multiple headers over a packet before a packet is forwarded. One
 simple example is that of MPLS over GRE, wherein the packet has an
 inner MPLS header followed by a GRE header followed by an IP header.
 The outermost IP header is decided by the network device, whereas the
 MPLS header or GRE header is specified by the controller. Not every
 network device will be able to support all kinds of nexthop chains
 and an arbitrary number of headers chained together. The RIB data
 model SHOULD provide a way to expose a nexthop chaining capability
 supported by a given network device.

 It is expected that all network devices will have a limit on how many
 levels of lookup can be performed, and not all hardware will be able
 to support all kinds of nexthops. RIB capability negotiation becomes
 very important for this reason, and a RIB data model MUST specify a
 way for a RIB client to learn about the network device's
 capabilities.

2.4.2.1. Nexthop List Attributes

 For nexthops that are of the form of a list(s), attributes can be
 associated with each member of the list to indicate the role of an
 individual member of the list. Two attributes are specified:

 o NEXTHOP_PREFERENCE: This is used for protection schemes. It is an
 integer value between 1 and 99. A lower value indicates higher
 preference. To download a primary/standby pair to the FIB, the
 nexthops that are resolved and have the two highest preferences
 are selected. Each <NEXTHOP_PREFERENCE> should have a unique
 value within a <nexthop-protection> (see Section 6).

 o NEXTHOP_LB_WEIGHT: This is used for load-balancing. Each list
 member MUST be assigned a weight between 1 and 99. The weight
 determines the proportion of traffic to be sent over a nexthop
 used for forwarding as a ratio of the weight of this nexthop
 divided by the weights of all the nexthops of this route that are
 used for forwarding. To perform equal load-balancing, one MAY
 specify a weight of "0" for all the member nexthops. The value
 "0" is reserved for equal load-balancing and, if applied, MUST be
 applied to all member nexthops. Note that a weight of 0 is
 special because of historical reasons.

2.4.3. Nexthop Indirection

 Nexthops can be identified by an identifier to create a level of
 indirection. The identifier is set by the RIB manager and returned
 to the RIB client on request.

 One example of usage of indirection is a nexthop that points to
 another network device (e.g., a BGP peer). The returned nexthop
 identifier can then be used for programming routes to point to the
 this nexthop. Given that the RIB manager has created an indirection
 using the nexthop identifier, if the transport path to the network
 device (BGP peer) changes, that change in path will be seamless to
 the RIB client and all routes that point to that network device will
 automatically start going over the new transport path. Nexthop
 indirection using identifiers could be applied to not only unicast
 nexthops but also nexthops that contain chains and nested nexthops.
 See Section 2.4.2 for examples.

3. Reading from the RIB

 A RIB data model MUST allow a RIB client to read entries for RIBs
 created by that entity. The network device administrator MAY allow
 reading of other RIBs by a RIB client through access lists on the
 network device. The details of access lists are outside the scope of
 this document.

 The data model MUST support a full read of the RIB and subsequent
 incremental reads of changes to the RIB. When sending data to a RIB
 client, the RIB manager SHOULD try to send all dependencies of an
 object prior to sending that object.

4. Writing to the RIB

 A RIB data model MUST allow a RIB client to write entries for RIBs
 created by that entity. The network device administrator MAY allow
 writes to other RIBs by a RIB client through access lists on the
 network device. The details of access lists are outside the scope of
 this document.

 When writing an object to a RIB, the RIB client SHOULD try to write
 all dependencies of the object prior to sending that object. The
 data model SHOULD support requesting identifiers for nexthops and
 collecting the identifiers back in the response.

 Route programming in the RIB MUST result in a return code that
 contains the following attributes:

 o Installed: Yes/No (indicates whether the route got installed in
 the FIB)

 o Active: Yes/No (indicates whether a route is fully resolved and is
 a candidate for selection)

 o Reason: E.g., "Not authorized"

 The data model MUST specify which objects can be modified. An object
 that can be modified is one whose contents can be changed without
 having to change objects that depend on it and without affecting any
 data forwarding. To change a non-modifiable object, one will need to
 create a new object and delete the old one. For example, routes that
 use a nexthop that is identified by a nexthop identifier should be
 unaffected when the contents of that nexthop changes.

5. Notifications

 Asynchronous notifications are sent by the network device's RIB
 manager to a RIB client when some event occurs on the network device.
 A RIB data model MUST support sending asynchronous notifications. A
 brief list of suggested notifications is as below:

 o Route change notification (with a return code as specified in
 Section 4)

 o Nexthop resolution status (resolved/unresolved) notification

6. RIB Grammar

 This section specifies the RIB information model in Routing Backus-
 Naur Form (rBNF) [RFC5511]. This grammar is intended to help the
 reader better understand Section 2 in order to derive a data model.

<routing‑instance> ::= <INSTANCE_NAME>
 [<interface‑list>] <rib‑list>
 [<ROUTER_ID>]

 <interface-list> ::= (<INTERFACE_IDENTIFIER> ...)

<rib‑list> ::= (<rib> ...)
<rib> ::= <rib‑name> <address‑family>
 [<route> ...]
 [ENABLE_IP_RPF_CHECK]
<address‑family> ::= <IPV4_ADDRESS_FAMILY> | <IPV6_ADDRESS_FAMILY> |
 <MPLS_ADDRESS_FAMILY> | <IEEE_MAC_ADDRESS_FAMILY>

<route> ::= <match> <nexthop>
 [<route‑attributes>]
 [<route‑vendor‑attributes>]

<match> ::= <IPV4> <ipv4‑route> | <IPV6> <ipv6‑route> |
 <MPLS> <MPLS_LABEL> | <IEEE_MAC> <MAC_ADDRESS> |
 <INTERFACE> <INTERFACE_IDENTIFIER>
<route‑type> ::= <IPV4> | <IPV6> | <MPLS> | <IEEE_MAC> | <INTERFACE>

<ipv4‑route> ::= <ip‑route‑type>
 (<destination‑ipv4‑address> | <source‑ipv4‑address> |
 (<destination‑ipv4‑address> <source‑ipv4‑address>))
<destination‑ipv4‑address> ::= <ipv4‑prefix>
<source‑ipv4‑address> ::= <ipv4‑prefix>
<ipv4‑prefix> ::= <IPV4_ADDRESS> <IPV4_PREFIX_LENGTH>

<ipv6‑route> ::= <ip‑route‑type>
 (<destination‑ipv6‑address> | <source‑ipv6‑address> |
 (<destination‑ipv6‑address> <source‑ipv6‑address>))
<destination‑ipv6‑address> ::= <ipv6‑prefix>
<source‑ipv6‑address> ::= <ipv6‑prefix>
<ipv6‑prefix> ::= <IPV6_ADDRESS> <IPV6_PREFIX_LENGTH>
<ip‑route‑type> ::= <SRC> | <DEST> | <DEST_SRC>

 <route-attributes> ::= <ROUTE_PREFERENCE> [<LOCAL_ONLY>]

 [<address-family-route-attributes>]

<address‑family‑route‑attributes> ::= <ip‑route‑attributes> |
 <mpls‑route‑attributes> |
 <ethernet‑route‑attributes>
<ip‑route‑attributes> ::= <>
<mpls‑route‑attributes> ::= <>
<ethernet‑route‑attributes> ::= <>
<route‑vendor‑attributes> ::= <>

 <nexthop> ::= <nexthop-base> |

 (<NEXTHOP_LOAD_BALANCE> <nexthop-lb>) |
 (<NEXTHOP_PROTECTION> <nexthop-protection>) |
 (<NEXTHOP_REPLICATE> <nexthop-replicate>) |
 <nexthop-chain>

<nexthop‑base> ::= <NEXTHOP_ID> |
 <nexthop‑special> |
 <egress‑interface> |
 <ipv4‑address> | <ipv6‑address> |
 (<egress‑interface>
 (<ipv4‑address> | <ipv6‑address>)) |
 (<egress‑interface> <IEEE_MAC_ADDRESS>) |
 <tunnel‑encapsulation> | <tunnel‑decapsulation> |
 <logical‑tunnel> |
 <rib‑name>

 <egress-interface> ::= <INTERFACE_IDENTIFIER>

 <nexthop-special> ::= <DISCARD> | <DISCARD_WITH_ERROR> |

 (<RECEIVE> [<COS_VALUE>])

 <nexthop-lb> ::= <NEXTHOP_LB_WEIGHT> <nexthop>

 (<NEXTHOP_LB_WEIGHT> <nexthop) ...

 <nexthop-protection> = <NEXTHOP_PREFERENCE> <nexthop>

 (<NEXTHOP_PREFERENCE> <nexthop>)...

 <nexthop-replicate> ::= <nexthop> <nexthop> ...

 <nexthop-chain> ::= <nexthop> ...

<logical‑tunnel> ::= <tunnel‑type> <TUNNEL_NAME>
<tunnel‑type> ::= <IPV4> | <IPV6> | <MPLS> | <GRE> | <VxLAN> | <NVGRE>

<tunnel‑encapsulation> ::= (<IPV4> <ipv4‑header>) |
 (<IPV6> <ipv6‑header>) |
 (<MPLS> <mpls‑header>) |
 (<GRE> <gre‑header>) |
 (<VXLAN> <vxlan‑header>) |
 (<NVGRE> <nvgre‑header>)

 <ipv4-header> ::= <SOURCE_IPv4_ADDRESS> <DESTINATION_IPv4_ADDRESS>

 <PROTOCOL> [<TTL>] [<DSCP>]

<ipv6‑header> ::= <SOURCE_IPV6_ADDRESS> <DESTINATION_IPV6_ADDRESS>
 <NEXT_HEADER> [<TRAFFIC_CLASS>]
 [<FLOW_LABEL>] [<HOP_LIMIT>]

<mpls‑header> ::= (<mpls‑label‑operation> ...)
<mpls‑label‑operation> ::= (<MPLS_PUSH> <MPLS_LABEL> [<S_BIT>]
 [<TOS_VALUE>] [<TTL_VALUE>]) |
 (<MPLS_SWAP> <IN_LABEL> <OUT_LABEL>
 [<TTL_ACTION>])

<gre‑header> ::= <GRE_IP_DESTINATION> <GRE_PROTOCOL_TYPE> [<GRE_KEY>]
<vxlan‑header> ::= (<ipv4‑header> | <ipv6‑header>)
 [<VXLAN_IDENTIFIER>]
<nvgre‑header> ::= (<ipv4‑header> | <ipv6‑header>)
 <VIRTUAL_SUBNET_ID>
 [<FLOW_ID>]

 <tunnel-decapsulation> ::= ((<IPV4> <IPV4_DECAP> [<TTL_ACTION>]) |

 (<IPV6> <IPV6_DECAP> [<HOP_LIMIT_ACTION>]) |
 (<MPLS> <MPLS_POP> [<TTL_ACTION>]))

 Figure 5: RIB rBNF Grammar

6.1. Nexthop Grammar Explained

 A nexthop is used to specify the next network element to forward the
 traffic to. It is also used to specify how the traffic should be
 load-balanced, protected using preference, or multicast using
 replication. This is explicitly specified in the grammar. The
 nexthop has recursion built in to address complex use cases like the
 one defined in Section 7.2.6.

7. Using the RIB Grammar

 The RIB grammar is very generic and covers a variety of features.
 This section provides examples on using objects in the RIB grammar
 and examples to program certain use cases.

7.1. Using Route Preference

 Using route preference, a client can preinstall alternate paths in
 the network. For example, if OSPF has a route preference of 10, then
 another client can install a route with a route preference of 20 to
 the same destination. The OSPF route will get precedence and will
 get installed in the FIB. When the OSPF route is withdrawn, the
 alternate path will get installed in the FIB.

 Route preference can also be used to prevent denial-of-service
 attacks by installing routes with the best preference, which either
 drops the offending traffic or routes it to some monitoring/analysis
 station. Since the routes are installed with the best preference,
 they will supersede any route installed by any other protocol.

7.2. Using Different Nexthop Types

 The RIB grammar allows one to create a variety of nexthops. This
 section describes uses for certain types of nexthops.

7.2.1. Tunnel Nexthops

 A tunnel nexthop points to a tunnel of some kind. Traffic that goes
 over the tunnel gets encapsulated with the tunnel-encapsulation.
 Tunnel nexthops are useful for abstracting out details of the network
 by having the traffic seamlessly route between network edges. At the
 end of a tunnel, the tunnel will get decapsulated. Thus, the grammar
 supports two kinds of operations: one for encapsulation and another
 for decapsulation.

7.2.2. Replication Lists

 One can create a replication list for replicating traffic to multiple
 destinations. The destinations, in turn, could be derived nexthops
 in themselves (at a level supported by the network device); point to
 multipoint and broadcast are examples that involve replication.

 A replication list (at the simplest level) can be represented as:

 <nexthop> ::= <NEXTHOP_REPLICATE> <nexthop> [<nexthop> ...]

 The above can be derived from the grammar as follows:

<nexthop> ::= <nexthop‑replicate>
<nexthop> ::= <NEXTHOP_REPLICATE> <nexthop> <nexthop> ...

7.2.3. Weighted Lists

 A weighted list is used to load-balance traffic among a set of
 nexthops. From a modeling perspective, a weighted list is very
 similar to a replication list, with the difference that each member
 nexthop MUST have a NEXTHOP_LB_WEIGHT associated with it.

 A weighted list (at the simplest level) can be represented as:

 <nexthop> ::= <NEXTHOP_LOAD_BALANCE> (<nexthop> <NEXTHOP_LB_WEIGHT>)

 [(<nexthop> <NEXTHOP_LB_WEIGHT>)...]

 The above can be derived from the grammar as follows:

<nexthop> ::= <nexthop‑lb>
<nexthop> ::= <NEXTHOP_LOAD_BALANCE>
 <NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...
<nexthop> ::= <NEXTHOP_LOAD_BALANCE> (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...

7.2.4. Protection

 A primary/backup protection can be represented as:

 <nexthop> ::= <NEXTHOP_PROTECTION> <1> <interface-primary>

 <2> <interface-backup>)

 The above can be derived from the grammar as follows:

<nexthop> ::= <nexthop‑protection>
<nexthop> ::= <NEXTHOP_PROTECTION> (<NEXTHOP_PREFERENCE> <nexthop>
 (<NEXTHOP_PREFERENCE> <nexthop>)...)
<nexthop> ::= <NEXTHOP_PROTECTION> (<NEXTHOP_PREFERENCE> <nexthop>
 (<NEXTHOP_PREFERENCE> <nexthop>))
<nexthop> ::= <NEXTHOP_PROTECTION> ((<NEXTHOP_PREFERENCE> <nexthop‑base>
 (<NEXTHOP_PREFERENCE> <nexthop‑base>))
<nexthop> ::= <NEXTHOP_PROTECTION> (<1> <interface‑primary>
 (<2> <interface‑backup>))

 Traffic can be load-balanced among multiple primary nexthops and a
 single backup. In such a case, the nexthop will look like:

<nexthop> ::= <NEXTHOP_PROTECTION> (<1>
 (<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop‑base>
 (<NEXTHOP_LB_WEIGHT> <nexthop‑base>) ...))
 <2> <nexthop‑base>)

 A backup can also have another backup. In such a case, the list will
 look like:

 <nexthop> ::= <NEXTHOP_PROTECTION> (<1> <nexthop>

 <2> <NEXTHOP_PROTECTION>(<1> <nexthop> <2> <nexthop>))

7.2.5. Nexthop Chains

 A nexthop chain is a way to perform multiple operations on a packet
 by logically combining them. For example, when a VPN packet comes on
 the WAN interface and has to be forwarded to the correct VPN
 interface, one needs to pop the VPN label before sending the packet
 out. Using a nexthop chain, one can chain together "pop MPLS header"
 and "send it out a specific egress-interface".

 The above example can be derived from the grammar as follows:

<nexthop‑chain> ::= <nexthop> <nexthop>
<nexthop‑chain> ::= <nexthop‑base> <nexthop‑base>
<nexthop‑chain> ::= <tunnel‑decapsulation> <egress‑interface>
<nexthop‑chain> ::= (<MPLS> <MPLS_POP>) <interface‑outgoing>

 Elements in a nexthop chain are evaluated left to right.

 A nexthop chain can also be used to put one or more headers on an
 outgoing packet. One example is a pseudowire, which is MPLS over
 some transport (MPLS or GRE, for instance). Another example is
 Virtual eXtensible Local Area Network (VXLAN) over IP. A nexthop
 chain thus allows a RIB client to break up the programming of the
 nexthop into independent pieces (one per encapsulation).

 A simple example of MPLS over GRE can be represented as follows:

 <nexthop-chain> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)

 <interface-outgoing>

 The above can be derived from the grammar as follows:

<nexthop‑chain> ::= <nexthop> <nexthop> <nexthop>
<nexthop‑chain> ::= <nexthop‑base> <nexthop‑base> <nexthop‑base>
<nexthop‑chain> ::= <tunnel‑encapsulation> <tunnel‑encapsulation>
 <egress‑interface>
<nexthop‑chain> ::= (<MPLS> <mpls‑header>) (<GRE> <gre‑header>)
 <interface‑outgoing>

7.2.6. Lists of Lists

 Lists of lists is a derived construct. One example of usage of such
 a construct is to replicate traffic to multiple destinations with
 load-balancing. In other words, for each branch of the replication
 tree, there are multiple interfaces on which traffic needs to be
 load-balanced. So, the outer list is a replication list for
 multicast and the inner lists are weighted lists for load-balancing.
 Let's take an example of a network element that has to replicate
 traffic to two other network elements. Traffic to the first network
 element should be load-balanced equally over two interfaces:
 outgoing-1-1 and outgoing-1-2. Traffic to the second network element
 should be load-balanced over three interfaces: outgoing-2-1,
 outgoing-2-2, and outgoing-2-3 (in the ratio 20:20:60).

 This can be derived from the grammar as follows:

<nexthop> ::= <nexthop‑replicate>
<nexthop> ::= <NEXTHOP_REPLICATE> (<nexthop> <nexthop>...)
<nexthop> ::= <NEXTHOP_REPLICATE> (<nexthop> <nexthop>)
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE> <nexthop‑lb>)
 (<NEXTHOP_LOAD_BALANCE> <nexthop‑lb>))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...))
 ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
 ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
 ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
<nexthop> ::= <NEXTHOP_REPLICATE>
 ((<NEXTHOP_LOAD_BALANCE>
 (50 <outgoing‑1‑1>)
 (50 <outgoing‑1‑2>)))
 ((<NEXTHOP_LOAD_BALANCE>
 (20 <outgoing‑2‑1>)
 (20 <outgoing‑2‑2>)
 (60 <outgoing‑2‑3>)))

7.3. Performing Multicast

 IP multicast involves matching a packet on (S,G) or (*,G), where both
 S (Source) and G (Group) are IP prefixes. Following the match, the
 packet is replicated to one or more recipients. How the recipients
 subscribe to the multicast group is outside the scope of this
 document.

 In PIM-based multicast, the packets are IP forwarded on an IP
 multicast tree. The downstream nodes on each point in the multicast
 tree are one or more IP addresses. These can be represented as a
 replication list (see Section 7.2.2).

 In MPLS-based multicast, the packets are forwarded on a Point-to-
 Multipoint (P2MP) LSP. The nexthop for a P2MP LSP can be represented
 in the nexthop grammar as a <logical-tunnel> (P2MP LSP identifier) or
 a replication list (see Section 7.2.2) of <tunnel-encapsulation>,
 with each tunnel-encapsulation representing a single MPLS downstream
 nexthop.

8. RIB Operations at Scale

 This section discusses the scale requirements for a RIB data model.
 The RIB data model should be able to handle a large scale of
 operations to enable deployment of RIB applications in large
 networks.

8.1. RIB Reads

 Bulking (grouping of multiple objects in a single message) MUST be
 supported when a network device sends RIB data to a RIB client.
 Similarly, the data model MUST enable a RIB client to request data in
 bulk from a network device.

8.2. RIB Writes

 Bulking (grouping of multiple write operations in a single message)
 MUST be supported when a RIB client wants to write to the RIB. The
 response from the network device MUST include a return-code for each
 write operation in the bulk message.

8.3. RIB Events and Notifications

 There can be cases where a single network event results in multiple
 events and/or notifications from the network device to a RIB client.
 On the other hand, due to timing of multiple things happening at the
 same time, a network device might have to send multiple events and/or
 notifications to a RIB client. The network-device-originated event/
 notification message MUST support the bulking of multiple events and
 notifications in a single message.

9. Security Considerations

 The information model specified in this document defines a schema for
 data models that are designed to be accessed via network management
 protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The
 lowest NETCONF layer is the secure transport layer, and the
 mandatory-to-implement secure transport is Secure Shell (SSH)
 [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-
 implement secure transport is TLS [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 The RIB information model specifies read and write operations to
 network devices. These network devices might be considered sensitive
 or vulnerable in some network environments. Write operations to
 these network devices without proper protection can have a negative
 effect on network operations. Due to this factor, it is recommended
 that data models also consider the following in their design:

 o Require utilization of the authentication and authorization
 features of the NETCONF or RESTCONF suite of protocols.

 o Augment the limits on how much data can be written or updated by a
 remote entity built to include enough protection for a RIB data
 model.

 o Expose the specific RIB data model implemented via NETCONF/
 RESTCONF data models.

10. IANA Considerations

 This document has no IANA actions.

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

 [RFC4915]
 Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
 Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
 RFC 4915, DOI 10.17487/RFC4915, June 2007,
 <https://www.rfc-editor.org/info/rfc4915>.

 [RFC5120]
 Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
 Topology (MT) Routing in Intermediate System to
 Intermediate Systems (IS-ISs)", RFC 5120,
 DOI 10.17487/RFC5120, February 2008,
 <https://www.rfc-editor.org/info/rfc5120>.

 [RFC5511]
 Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
 Used to Form Encoding Rules in Various Routing Protocol
 Specifications", RFC 5511, DOI 10.17487/RFC5511, April
 2009, <https://www.rfc-editor.org/info/rfc5511>.

 [RFC7920]
 Atlas, A., Ed., Nadeau, T., Ed., and D. Ward, "Problem
 Statement for the Interface to the Routing System",
 RFC 7920, DOI 10.17487/RFC7920, June 2016,
 <https://www.rfc-editor.org/info/rfc7920>.

 [RFC8431]
 Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini,
 S., and N. Bahadur, "A YANG Data Model for the Routing
 Information Base (RIB)", RFC 8431, DOI 10.17487/RFC8431,
 September 2018, <http://www.rfc-editor.org/info/rfc8431>.

Acknowledgements

 The authors would like to thank Ron Folkes, Jeffrey Zhang, the WG
 co-Chairs, and reviewers for their comments and suggestions on this
 document. The following people contributed to the design of the RIB
 information model as part of the I2RS Interim meeting in April 2013:

 Wes George, Chris Liljenstolpe, Jeff Tantsura, Susan Hares, and
 Fabian Schneider.

Authors' Addresses

Nitin Bahadur (editor)
Uber
900 Arastradero Rd
Palo Alto, CA 94304
United States of America

 Email: nitin_bahadur@yahoo.com

 Sriganesh Kini (editor)

 Email: sriganeshkini@gmail.com

Jan Medved
Cisco

 Email: jmedved@cisco.com

8431 - A YANG Data Model for the Routing Information Base (RIB)

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8431

Category: Standards Track

ISSN: 2070-1721

L. Wang

Individual

M. Chen

Huawei

A. Dass

Ericsson

H. Ananthakrishnan

Netflix

S. Kini

Individual

N. Bahadur

Uber

September 2018

A YANG Data Model for the Routing Information Base (RIB)

Abstract

 This document defines a YANG data model for the Routing Information
 Base (RIB) that aligns with the Interface to the Routing System
 (I2RS) RIB information model.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8431.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Definitions and Abbreviations

	 1.3. Tree Diagrams

	2. Model Structure
	 2.1. RIB Capability

	 2.2. Routing Instance and RIB

	 2.3. Route

	 2.4. Nexthop

	 2.5. RPC Operations

	 2.6. Notifications

	3. YANG Module

	4. IANA Considerations

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Acknowledgements

	Contributors

	Authors' Addresses

1. Introduction

 The Interface to the Routing System (I2RS) [RFC7921] provides read
 and write access to the information and state within the routing
 process that exists inside the routing elements; this is achieved via
 protocol message exchange between I2RS clients and I2RS agents
 associated with the routing system. One of the functions of I2RS is
 to read and write data of the Routing Information Base (RIB).
 [I2RS-REQS] introduces a set of RIB use cases. The RIB information
 model is defined in [RFC8430].

 This document defines a YANG data model [RFC7950] [RFC6991] for the
 RIB that satisfies the RIB use cases and aligns with the RIB
 information model.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Definitions and Abbreviations

 RIB: Routing Information Base

 FIB: Forwarding Information Base

 RPC: Remote Procedure Call

 IM: Information Model. An abstract model of a conceptual domain,
 which is independent of a specific implementation or data
 representation.

1.3. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Model Structure

 The following figure shows an overview of the structure tree of the
 ietf-i2rs-rib module. To give a whole view of the structure tree,
 some details of the tree are omitted. The relevant details are
 introduced in the subsequent subsections.

module: ietf‑i2rs‑rib
 +‑‑rw routing‑instance
 +‑‑rw name string
 +‑‑rw interface‑list* [name]
 | +‑‑rw name if:interface‑ref
 +‑‑rw router‑id? yang:dotted‑quad
 +‑‑rw lookup‑limit? uint8
 +‑‑rw rib‑list* [name]
 +‑‑rw name string
 +‑‑rw address‑family address‑family‑definition
 +‑‑rw ip‑rpf‑check? boolean
 +‑‑rw route‑list* [route‑index]
 | +‑‑rw route‑index uint64
 | +‑‑rw match
 | | +‑‑rw (route‑type)?
 | | +‑‑:(ipv4)
 | | | ...
 | | +‑‑:(ipv6)
 | | | ...
 | | +‑‑:(mpls‑route)
 | | | ...
 | | +‑‑:(mac‑route)
 | | | ...
 | | +‑‑:(interface‑route)
 | | ...
 | +‑‑rw nexthop
 | | +‑‑rw nexthop‑id? uint32
 | | +‑‑rw sharing‑flag? boolean
 | | +‑‑rw (nexthop‑type)?
 | | +‑‑:(nexthop‑base)
 | | | ...
 | | +‑‑:(nexthop‑chain) {nexthop‑chain}?
 | | | ...
 | | +‑‑:(nexthop‑replicate) {nexthop‑replicate}?
 | | | ...
 | | +‑‑:(nexthop‑protection) {nexthop‑protection}?
 | | | ...
 | | +‑‑:(nexthop‑load‑balance) {nexthop‑load‑balance}?
 | | ...
 | +‑‑rw route‑status
 | | ...
 | +‑‑rw route‑attributes
 | | ...
 | +‑‑rw route‑vendor‑attributes
 +‑‑rw nexthop‑list* [nexthop‑member‑id]
 +‑‑rw nexthop‑member‑id uint32

rpcs:
 +‑‑‑x rib‑add
 | +‑‑‑w input
 | | +‑‑‑w name string
 | | +‑‑‑w address‑family address‑family‑definition
 | | +‑‑‑w ip‑rpf‑check? boolean
 | +‑‑ro output
 | +‑‑ro result boolean
 | +‑‑ro reason? string
 +‑‑‑x rib‑delete
 | +‑‑‑w input
 | | +‑‑‑w name string
 | +‑‑ro output
 | +‑‑ro result boolean
 | +‑‑ro reason? string
 +‑‑‑x route‑add
 | +‑‑‑w input
 | | +‑‑‑w return‑failure‑detail? boolean
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w routes
 | | +‑‑‑w route‑list* [route‑index]
 | | ...
 | +‑‑ro output
 | +‑‑ro success‑count uint32
 | +‑‑ro failed‑count uint32
 | +‑‑ro failure‑detail
 | +‑‑ro failed‑routes* [route‑index]
 | +‑‑ro route‑index uint32
 | +‑‑ro error‑code? uint32
 +‑‑‑x route‑delete
 | +‑‑‑w input
 | | +‑‑‑w return‑failure‑detail? boolean
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w routes
 | | +‑‑‑w route‑list* [route‑index]
 | | ...
 | +‑‑ro output
 | +‑‑ro success‑count uint32
 | +‑‑ro failed‑count uint32
 | +‑‑ro failure‑detail
 | +‑‑ro failed‑routes* [route‑index]
 | +‑‑ro route‑index uint32
 | +‑‑ro error‑code? uint32
 +‑‑‑x route‑update
 | +‑‑‑w input
 | | +‑‑‑w return‑failure‑detail? boolean
 | | +‑‑‑w rib‑name string

 | | +‑‑‑w (match‑options)?
 | | +‑‑:(match‑route‑prefix)
 | | | ...
 | | +‑‑:(match‑route‑attributes)
 | | | ...
 | | +‑‑:(match‑route‑vendor‑attributes) {...}?
 | | | ...
 | | +‑‑:(match‑nexthop)
 | | ...
 | +‑‑ro output
 | +‑‑ro success‑count uint32
 | +‑‑ro failed‑count uint32
 | +‑‑ro failure‑detail
 | +‑‑ro failed‑routes* [route‑index]
 | +‑‑ro route‑index uint32
 | +‑‑ro error‑code? uint32
 +‑‑‑x nh‑add
 | +‑‑‑w input
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w nexthop‑id? uint32
 | | +‑‑‑w sharing‑flag? boolean
 | | +‑‑‑w (nexthop‑type)?
 | | +‑‑:(nexthop‑base)
 | | | ...
 | | +‑‑:(nexthop‑chain) {nexthop‑chain}?
 | | | ...
 | | +‑‑:(nexthop‑replicate) {nexthop‑replicate}?
 | | | ...
 | | +‑‑:(nexthop‑protection) {nexthop‑protection}?
 | | | ...
 | | +‑‑:(nexthop‑load‑balance) {nexthop‑load‑balance}?
 | | ...
 | +‑‑ro output
 | +‑‑ro result boolean
 | +‑‑ro reason? string
 | +‑‑ro nexthop‑id? uint32
 +‑‑‑x nh‑delete
 +‑‑‑w input
 | +‑‑‑w rib‑name string
 | +‑‑‑w nexthop‑id? uint32
 | +‑‑‑w sharing‑flag? boolean
 | +‑‑‑w (nexthop‑type)?
 | +‑‑:(nexthop‑base)
 | | ...
 | +‑‑:(nexthop‑chain) {nexthop‑chain}?
 | | ...
 | +‑‑:(nexthop‑replicate) {nexthop‑replicate}?
 | | ...

 | +‑‑:(nexthop‑protection) {nexthop‑protection}?
 | | ...
 | +‑‑:(nexthop‑load‑balance) {nexthop‑load‑balance}?
 | ...
 +‑‑ro output
 +‑‑ro result boolean
 +‑‑ro reason? string
notifications:
 +‑‑‑n nexthop‑resolution‑status‑change
 | +‑‑ro nexthop
 | | +‑‑ro nexthop‑id? uint32
 | | +‑‑ro sharing‑flag? boolean
 | | +‑‑ro (nexthop‑type)?
 | | +‑‑:(nexthop‑base)
 | | | ...
 | | +‑‑:(nexthop‑chain) {nexthop‑chain}?
 | | | ...
 | | +‑‑:(nexthop‑replicate) {nexthop‑replicate}?
 | | | ...
 | | +‑‑:(nexthop‑protection) {nexthop‑protection}?
 | | | ...
 | | +‑‑:(nexthop‑load‑balance) {nexthop‑load‑balance}?
 | | ...
 | +‑‑ro nexthop‑state nexthop‑state‑definition
 +‑‑‑n route‑change
 +‑‑ro rib‑name string
 +‑‑ro address‑family address‑family‑definition
 +‑‑ro route‑index uint64
 +‑‑ro match
 | +‑‑ro (route‑type)?
 | +‑‑:(ipv4)
 | | ...
 | +‑‑:(ipv6)
 | | ...
 | +‑‑:(mpls‑route)
 | | ...
 | +‑‑:(mac‑route)
 | | ...
 | +‑‑:(interface‑route)
 | ...
 +‑‑ro route‑installed‑state route‑installed‑state‑definition
 +‑‑ro route‑state route‑state‑definition
 +‑‑ro route‑change‑reasons* [route‑change‑reason]
 +‑‑ro route‑change‑reason route‑change‑reason‑definition

 Figure 1: Overview of I2RS RIB Module Structure

2.1. RIB Capability

 RIB capability negotiation is very important because not all of the
 hardware will be able to support all kinds of nexthops, and there
 might be a limitation on how many levels of lookup can be practically
 performed. Therefore, a RIB data model needs to specify a way for an
 external entity to learn about the functional capabilities of a
 network device.

 At the same time, nexthop chains can be used to specify multiple
 headers over a packet before that particular packet is forwarded.
 Not every network device will be able to support all kinds of nexthop
 chains along with the arbitrary number of headers that are chained
 together. The RIB data model needs a way to expose the nexthop
 chaining capability supported by a given network device.

 This module uses the feature and if-feature statements to achieve
 above capability advertisement.

2.2. Routing Instance and RIB

 A routing instance, in the context of the RIB information model, is a
 collection of RIBs, interfaces, and routing protocol parameters. A
 routing instance creates a logical slice of the router and can allow
 multiple different logical slices, across a set of routers, to
 communicate with each other. The routing protocol parameters control
 the information available in the RIBs. More details about a routing
 instance can be found in Section 2.2 of [RFC8430].

 For a routing instance, there can be multiple RIBs. Therefore, this
 model uses "list" to express the RIBs. The structure tree is shown
 below:

+‑‑rw routing‑instance
 +‑‑rw name string
 +‑‑rw interface‑list* [name]
 | +‑‑rw name if:interface‑ref
 +‑‑rw router‑id? yang:dotted‑quad
 +‑‑rw lookup‑limit? uint8
 +‑‑rw rib‑list* [name]
 +‑‑rw name string
 +‑‑rw address‑family address‑family‑definition
 +‑‑rw ip‑rpf‑check? boolean
 +‑‑rw route‑list* [route‑index]
 ... // refer to Section 2.3

 Figure 2: Routing Instance Structure

2.3. Route

 A route is essentially a match condition and an action following that
 match. The match condition specifies the kind of route (e.g., IPv4,
 MPLS, Media Access Control (MAC), Interface, etc.) and the set of
 fields to match on.

 A route MUST contain the ROUTE_PREFERENCE attribute (see Section 2.3
 of [RFC8430]).

 In addition, a route MUST associate with the following status
 attributes in responses to a RIB writing/reading operation:

 o Active: Indicates whether a route has at least one fully resolved
 nexthop and is therefore eligible for installation in the FIB.

 o Installed: Indicates whether the route got installed in the FIB.

 o Reason: Indicates the specific reason that caused the failure,
 e.g., "Not authorized".

 In addition, a route can be associated with one or more optional
 route-attributes (e.g., route-vendor-attributes).

 A RIB will have a number of routes, so the routes are expressed as a
 list under a specific RIB. Each RIB has its own route list.

+‑‑rw route‑list* [route‑index]
 +‑‑rw route‑index uint64
 +‑‑rw match
 | +‑‑rw (route‑type)?
 | +‑‑:(ipv4)
 | | +‑‑rw ipv4
 | | +‑‑rw (ip‑route‑match‑type)?
 | | +‑‑:(dest‑ipv4‑address)
 | | | ...
 | | +‑‑:(src‑ipv4‑address)
 | | | ...
 | | +‑‑:(dest‑src‑ipv4‑address)
 | | ...
 | +‑‑:(ipv6)
 | | +‑‑rw ipv6
 | | +‑‑rw (ip‑route‑match‑type)?
 | | +‑‑:(dest‑ipv6‑address)
 | | | ...
 | | +‑‑:(src‑ipv6‑address)
 | | | ...
 | | +‑‑:(dest‑src‑ipv6‑address)
 | | ...
 | +‑‑:(mpls‑route)
 | | +‑‑rw mpls‑label uint32
 | +‑‑:(mac‑route)
 | | +‑‑rw mac‑address uint32
 | +‑‑:(interface‑route)
 | +‑‑rw interface‑identifier if:interface‑ref
 +‑‑rw nexthop
 | ...(refer to Section 2.4)

 Figure 3: Routes Structure

2.4. Nexthop

 A nexthop represents an object resulting from a route lookup. As
 illustrated in Figure 4 of [RFC8430], to support various use cases
 (e.g., load-balancing, protection, multicast, or a combination of
 them), the nexthop is modeled as a multilevel structure and supports
 recursion. The first level of the nexthop includes the following
 four types:

 o Base: The "base" nexthop is the foundation of all other nexthop
 types. It includes the following basic nexthops:

 * nexthop-id

 * IPv4 address

 * IPv6 address

 * egress-interface

 * egress-interface with IPv4 address

 * egress-interface with IPv6 address

 * egress-interface with MAC address

 * logical-tunnel

 * tunnel-encapsulation

 * tunnel-decapsulation

 * rib-name

 o Chain: The "chain" nexthop provides a way to perform multiple
 operations on a packet by logically combining them.

 o Load-Balance: The "load-balance" nexthop is designed for a load-
 balance case where it normally will have multiple weighted
 nexthops.

 o Protection: The "protection" nexthop is designed for a protection
 scenario where it normally will have primary and standby nexthop.

 o Replicate: The "replicate" nexthop is designed for multiple
 destinations forwarding.

 The structure tree of nexthop is shown in the following figures.

+‑‑rw nexthop
| +‑‑rw nexthop‑id? uint32
| +‑‑rw sharing‑flag? boolean
| +‑‑rw (nexthop‑type)?
| +‑‑:(nexthop‑base)
| | ...(refer to Figure 5)
| +‑‑:(nexthop‑chain) {nexthop‑chain}?
| | +‑‑rw nexthop‑chain
| | +‑‑rw nexthop‑list* [nexthop‑member‑id]
| | +‑‑rw nexthop‑member‑id uint32
| +‑‑:(nexthop‑replicate) {nexthop‑replicate}?
| | +‑‑rw nexthop‑replicate
| | +‑‑rw nexthop‑list* [nexthop‑member‑id]
| | +‑‑rw nexthop‑member‑id uint32
| +‑‑:(nexthop‑protection) {nexthop‑protection}?
| | +‑‑rw nexthop‑protection
| | +‑‑rw nexthop‑list* [nexthop‑member‑id]
| | +‑‑rw nexthop‑member‑id uint32
| | +‑‑rw nexthop‑preference nexthop‑preference‑definition
| +‑‑:(nexthop‑load‑balance) {nexthop‑load‑balance}?
| +‑‑rw nexthop‑lb
| +‑‑rw nexthop‑list* [nexthop‑member‑id]
| +‑‑rw nexthop‑member‑id uint32
| +‑‑rw nexthop‑lb‑weight nexthop‑lb‑weight‑definition

 Figure 4: Nexthop Structure

 Figure 5 (as shown below) is a subtree of nexthop. It's under the
 nexthop base node and shows the structure of the "base" nexthop.

+‑‑:(nexthop‑base)
| +‑‑rw nexthop‑base
| +‑‑rw (nexthop‑base‑type)?
| +‑‑:(special‑nexthop)
| | +‑‑rw special? special‑nexthop‑definition
| +‑‑:(egress‑interface‑nexthop)
| | +‑‑rw outgoing‑interface if:interface‑ref
| +‑‑:(ipv4‑address‑nexthop)
| | +‑‑rw ipv4‑address inet:ipv4‑address
| +‑‑:(ipv6‑address‑nexthop)
| | +‑‑rw ipv6‑address inet:ipv6‑address
| +‑‑:(egress‑interface‑ipv4‑nexthop)
| | +‑‑rw egress‑interface‑ipv4‑address
| | +‑‑rw outgoing‑interface if:interface‑ref
| | +‑‑rw ipv4‑address inet:ipv4‑address

| +‑‑:(egress‑interface‑ipv6‑nexthop)
| | +‑‑rw egress‑interface‑ipv6‑address
| | +‑‑rw outgoing‑interface if:interface‑ref
| | +‑‑rw ipv6‑address inet:ipv6‑address
| +‑‑:(egress‑interface‑mac‑nexthop)
| | +‑‑rw egress‑interface‑mac‑address
| | +‑‑rw outgoing‑interface if:interface‑ref
| | +‑‑rw ieee‑mac‑address yang:mac‑address
| +‑‑:(tunnel‑encapsulation‑nexthop) {nexthop‑tunnel}?
| | +‑‑rw tunnel‑encapsulation
| | +‑‑rw (tunnel‑type)?
| | +‑‑:(ipv4) {ipv4‑tunnel}?
| | | +‑‑rw ipv4‑header
| | | +‑‑rw src‑ipv4‑address inet:ipv4‑address
| | | +‑‑rw dest‑ipv4‑address inet:ipv4‑address
| | | +‑‑rw protocol uint8
| | | +‑‑rw ttl? uint8
| | | +‑‑rw dscp? uint8
| | +‑‑:(ipv6) {ipv6‑tunnel}?
| | | +‑‑rw ipv6‑header
| | | +‑‑rw src‑ipv6‑address inet:ipv6‑address
| | | +‑‑rw dest‑ipv6‑address inet:ipv6‑address
| | | +‑‑rw next‑header uint8
| | | +‑‑rw traffic‑class? uint8
| | | +‑‑rw flow‑label?
| | | inet:ipv6‑flow‑label
| | | +‑‑rw hop‑limit? uint8
| | +‑‑:(mpls) {mpls‑tunnel}?
| | | +‑‑rw mpls‑header
| | | +‑‑rw label‑operations* [label‑oper‑id]
| | | +‑‑rw label‑oper‑id uint32
| | | +‑‑rw (label‑actions)?
| | | +‑‑:(label‑push)
| | | | +‑‑rw label‑push
| | | | +‑‑rw label uint32
| | | | +‑‑rw s‑bit? boolean
| | | | +‑‑rw tc‑value? uint8
| | | | +‑‑rw ttl‑value? uint8
| | | +‑‑:(label‑swap)
| | | +‑‑rw label‑swap
| | | +‑‑rw out‑label uint32
| | | +‑‑rw ttl‑action?
| | | ttl‑action‑definition
| | +‑‑:(gre) {gre‑tunnel}?
| | | +‑‑rw gre‑header
| | | +‑‑rw (dest‑address‑type)?

| | | | +‑‑:(ipv4)
| | | | | +‑‑rw ipv4‑dest inet:ipv4‑address
| | | | +‑‑:(ipv6)
| | | | +‑‑rw ipv6‑dest inet:ipv6‑address
| | | +‑‑rw protocol‑type uint16
| | | +‑‑rw key? uint64
| | +‑‑:(nvgre) {nvgre‑tunnel}?
| | | +‑‑rw nvgre‑header
| | | +‑‑rw (nvgre‑type)?
| | | | +‑‑:(ipv4)
| | | | | +‑‑rw src‑ipv4‑address inet:ipv4‑address
| | | | | +‑‑rw dest‑ipv4‑address inet:ipv4‑address
| | | | | +‑‑rw protocol uint8
| | | | | +‑‑rw ttl? uint8
| | | | | +‑‑rw dscp? uint8
| | | | +‑‑:(ipv6)
| | | | +‑‑rw src‑ipv6‑address inet:ipv6‑address
| | | | +‑‑rw dest‑ipv6‑address inet:ipv6‑address
| | | | +‑‑rw next‑header uint8
| | | | +‑‑rw traffic‑class? uint8
| | | | +‑‑rw flow‑label?
| | | | inet:ipv6‑flow‑label
| | | | +‑‑rw hop‑limit? uint8
| | | +‑‑rw virtual‑subnet‑id uint32
| | | +‑‑rw flow‑id? uint8
| | +‑‑:(vxlan) {vxlan‑tunnel}?
| | +‑‑rw vxlan‑header
| | +‑‑rw (vxlan‑type)?
| | | +‑‑:(ipv4)
| | | | +‑‑rw src‑ipv4‑address inet:ipv4‑address
| | | | +‑‑rw dest‑ipv4‑address inet:ipv4‑address
| | | | +‑‑rw protocol uint8
| | | | +‑‑rw ttl? uint8
| | | | +‑‑rw dscp? uint8
| | | +‑‑:(ipv6)
| | | +‑‑rw src‑ipv6‑address inet:ipv6‑address
| | | +‑‑rw dest‑ipv6‑address inet:ipv6‑address
| | | +‑‑rw next‑header uint8
| | | +‑‑rw traffic‑class? uint8
| | | +‑‑rw flow‑label? inet:ipv6‑flow‑label
| | | +‑‑rw hop‑limit? uint8
| | +‑‑rw vxlan‑identifier uint32
| +‑‑:(tunnel‑decapsulation‑nexthop) {nexthop‑tunnel}?
| | +‑‑rw tunnel‑decapsulation
| | +‑‑rw (tunnel‑type)?

| | +‑‑:(ipv4) {ipv4‑tunnel}?
| | | +‑‑rw ipv4‑decapsulation
| | | +‑‑rw ipv4‑decapsulation
| | | tunnel‑decapsulation‑action‑definition
| | | +‑‑rw ttl‑action? ttl‑action‑definition
| | +‑‑:(ipv6) {ipv6‑tunnel}?
| | | +‑‑rw ipv6‑decapsulation
| | | +‑‑rw ipv6‑decapsulation
| | | tunnel‑decapsulation‑action‑definition
| | | +‑‑rw hop‑limit‑action?
| | | hop‑limit‑action‑definition
| | +‑‑:(mpls) {mpls‑tunnel}?
| | +‑‑rw label‑pop
| | +‑‑rw label‑pop mpls‑label‑action‑definition
| | +‑‑rw ttl‑action? ttl‑action‑definition
| +‑‑:(logical‑tunnel‑nexthop) {nexthop‑tunnel}?
| | +‑‑rw logical‑tunnel
| | +‑‑rw tunnel‑type tunnel‑type‑definition
| | +‑‑rw tunnel‑name string
| +‑‑:(rib‑name‑nexthop)
| | +‑‑rw rib‑name? string
| +‑‑:(nexthop‑identifier)
| +‑‑rw nexthop‑ref nexthop‑ref

 Figure 5: Nexthop Base Structure

2.5. RPC Operations

 This module defines the following RPC operations:

 o rib-add: Add a RIB to a routing instance. The following are
 passed as the input parameters: the name of the RIB, the address
 family of the RIB, and (optionally) whether the RPF check is
 enabled. The output is the result of the add operation:

 * true - success

 * false - failed (when failed, the I2RS agent may return the
 specific reason that caused the failure)

 o rib-delete: Delete a RIB from a routing instance. When a RIB is
 deleted, all routes installed in the RIB will be deleted. A rib-
 name is passed as the input parameter. The output is the result
 of the delete operation:

 * true - success

 * false - failed (when failed, the I2RS agent may return the
 specific reason that caused the failure)

 o route-add: Add a route or a set of routes to a RIB. The following
 are passed as the input parameters: the name of the RIB, the route
 prefix(es), the route-attributes, the route-vendor-attributes, the
 nexthop, and the "whether to return failure details" indication.
 Before calling the route-add rpc, it is required to call the nh-
 add rpc to create and/or return the nexthop identifier. However,
 in situations when the nexthop already exists and the nexthop-id
 is known, this action is not expected. The output is a
 combination of the route operation states while querying the
 appropriate node in the data tree, which includes:

 * success-count: the number of routes that were successfully
 added;

 * failed-count: the number of the routes that failed to be added;
 and,

 * failure-detail: this shows the specific routes that failed to
 be added.

 o route-delete: Delete a route or a set of routes from a RIB. The
 following are passed as the input parameters: the name of the RIB,
 the route prefix(es), and the "whether to return failure details"
 indication. The output is a combination of route operation
 states, which includes:

 * success-count: the number of routes that were successfully
 deleted;

 * failed-count: the number of the routes that failed to be
 deleted; and,

 * failure-detail: this shows the specific routes that failed to
 be deleted.

 o route-update: Update a route or a set of routes. The following
 are passed as the input parameters: the name of the RIB, the route
 prefix(es), the route-attributes, the route-vendor-attributes, or
 the nexthop. The match conditions can be either route prefix(es),
 route-attributes, route-vendor-attributes, or nexthops. The
 update actions include the following: update the nexthops, update
 the route-attributes, and update the route-vendor-attributes. The
 output is a combination of the route operation states, which
 includes:

 * success-count: the number of routes that were successfully
 updated;

 * failed-count: the number of the routes that failed to be
 updated; and,

 * failure-detail: this shows the specific routes that failed to
 be updated.

 o nh-add: Add a nexthop to a RIB. The following are passed as the
 input parameters: the name of the RIB and the nexthop. The
 network node is required to allocate a nexthop identifier to the
 nexthop. The outputs include the result of the nexthop add
 operation.

 * true - success (when success, a nexthop identifier will be
 returned to the I2RS client)

 * false - failed (when failed, the I2RS agent may return the
 specific reason that caused the failure)

 o nh-delete: Delete a nexthop from a RIB. The following are passed
 as the input parameters: the name of the RIB and a nexthop or
 nexthop identifier. The output is the result of the delete
 operation:

 * true - success

 * false - failed (when failed, the I2RS agent may return the
 specific reason that caused the failure)

 The structure tree of rpcs is shown in following figure.

rpcs:
 +‑‑‑x rib‑add
 | +‑‑‑w input
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w address‑family address‑family‑definition
 | | +‑‑‑w ip‑rpf‑check? boolean
 | +‑‑ro output
 | +‑‑ro result uint32
 | +‑‑ro reason? string
 +‑‑‑x rib‑delete
 | +‑‑‑w input
 | | +‑‑‑w rib‑name string
 | +‑‑ro output
 | +‑‑ro result uint32
 | +‑‑ro reason? string
 +‑‑‑x route‑add
 | +‑‑‑w input
 | | +‑‑‑w return‑failure‑detail? boolean
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w routes
 | | +‑‑‑w route‑list* [route‑index]
 | | ...
 | +‑‑ro output
 | +‑‑ro success‑count uint32
 | +‑‑ro failed‑count uint32
 | +‑‑ro failure‑detail
 | +‑‑ro failed‑routes* [route‑index]
 | +‑‑ro route‑index uint32
 | +‑‑ro error‑code? uint32
 +‑‑‑x route‑delete
 | +‑‑‑w input
 | | +‑‑‑w return‑failure‑detail? boolean
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w routes
 | | +‑‑‑w route‑list* [route‑index]
 | | ...
 | +‑‑ro output
 | +‑‑ro success‑count uint32
 | +‑‑ro failed‑count uint32
 | +‑‑ro failure‑detail
 | +‑‑ro failed‑routes* [route‑index]
 | +‑‑ro route‑index uint32
 | +‑‑ro error‑code? uint32

 +‑‑‑x route‑update
 | +‑‑‑w input
 | | +‑‑‑w return‑failure‑detail? boolean
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w (match‑options)?
 | | +‑‑:(match‑route‑prefix)
 | | | ...
 | | +‑‑:(match‑route‑attributes)
 | | | ...
 | | +‑‑:(match‑route‑vendor‑attributes) {...}?
 | | | ...
 | | +‑‑:(match‑nexthop)
 | | ...
 | +‑‑ro output
 | +‑‑ro success‑count uint32
 | +‑‑ro failed‑count uint32
 | +‑‑ro failure‑detail
 | +‑‑ro failed‑routes* [route‑index]
 | +‑‑ro route‑index uint32
 | +‑‑ro error‑code? uint32
 +‑‑‑x nh‑add
 | +‑‑‑w input
 | | +‑‑‑w rib‑name string
 | | +‑‑‑w nexthop‑id? uint32
 | | +‑‑‑w sharing‑flag? boolean
 | | +‑‑‑w (nexthop‑type)?
 | | ...
 | +‑‑ro output
 | +‑‑ro result uint32
 | +‑‑ro reason? string
 | +‑‑ro nexthop‑id? uint32
 +‑‑‑x nh‑delete
 +‑‑‑w input
 | +‑‑‑w rib‑name string
 | +‑‑‑w nexthop‑id? uint32
 | +‑‑‑w sharing‑flag? boolean
 | +‑‑‑w (nexthop‑type)?
 | ...
 +‑‑ro output
 +‑‑ro result uint32
 +‑‑ro reason? string

 Figure 6: RPCs Structure

2.6. Notifications

 Asynchronous notifications are sent by the RIB manager of a network
 device to an external entity when some event triggers on the network
 device. An implementation of this RIB data model MUST support
 sending two kinds of asynchronous notifications.

 1. Route change notification:

 o Installed (indicates whether the route got installed in the FIB)

 o Active (indicates whether a route has at least one fully resolved
 nexthop and is therefore eligible for installation in the FIB)

 o Reason (e.g., "Not authorized")

 2. Nexthop resolution status notification

 Nexthops can be fully resolved or unresolved.

 A resolved nexthop has an adequate level of information to send the
 outgoing packet towards the destination by forwarding it on an
 interface to a directly connected neighbor.

 An unresolved nexthop is something that requires the RIB manager to
 determine the final resolved nexthop. In one example, a nexthop
 could be an IP address. The RIB manager would resolve how to reach
 that IP address, e.g., by checking if that particular IP address is
 reachable by regular IP forwarding, by an MPLS tunnel, or by both.
 If the RIB manager cannot resolve the nexthop, then the nexthop
 remains in an unresolved state and is NOT a suitable candidate for
 installation in the FIB.

 An implementation of this RIB data model MUST support sending route-
 change notifications whenever a route transitions between the
 following states:

 o from the active state to the inactive state

 o from the inactive state to the active state

 o from the installed state to the uninstalled state

 o from the uninstalled state to the installed state

 A single notification MAY be used when a route transitions from
 inactive/uninstalled to active/installed or in the other direction.
 The structure tree of notifications is shown in the following figure.

notifications:
 +‑‑‑n nexthop‑resolution‑status‑change
 | +‑‑ro nexthop
 | | +‑‑ro nexthop‑id uint32
 | | +‑‑ro sharing‑flag boolean
 | | +‑‑ro (nexthop‑type)?
 | | +‑‑:(nexthop‑base)
 | | | ...
 | | +‑‑:(nexthop‑chain) {nexthop‑chain}?
 | | | ...
 | | +‑‑:(nexthop‑replicate) {nexthop‑replicate}?
 | | | ...
 | | +‑‑:(nexthop‑protection) {nexthop‑protection}?
 | | | ...
 | | +‑‑:(nexthop‑load‑balance) {nexthop‑load‑balance}?
 | | ...
 | +‑‑ro nexthop‑state nexthop‑state‑definition
 +‑‑‑n route‑change
 +‑‑ro rib‑name string
 +‑‑ro address‑family address‑family‑definition
 +‑‑ro route‑index uint64
 +‑‑ro match
 | +‑‑ro (route‑type)?
 | +‑‑:(ipv4)
 | | ...
 | +‑‑:(ipv6)
 | | ...
 | +‑‑:(mpls‑route)
 | | ...
 | +‑‑:(mac‑route)
 | | ...
 | +‑‑:(interface‑route)
 | ...
 +‑‑ro route‑installed‑state route‑installed‑state‑definition
 +‑‑ro route‑state route‑state‑definition
 +‑‑ro route‑change‑reason route‑change‑reason‑definition

 Figure 7: Notifications Structure

3. YANG Module

 This YANG module references [RFC2784], [RFC7348], [RFC7637], and
 [RFC8344].

 <CODE BEGINS> file "ietf-i2rs-rib@2018-09-13.yang"

module ietf‑i2rs‑rib {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑i2rs‑rib";
 prefix iir;

 import ietf‑inet‑types {
 prefix inet;
 reference "RFC 6991";
 }
 import ietf‑interfaces {
 prefix if;
 reference "RFC 8344";
 }
 import ietf‑yang‑types {
 prefix yang;
 reference "RFC 6991";
 }

 organization
 "IETF I2RS (Interface to Routing System) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/i2rs/>
 WG List: <mailto:i2rs@ietf.org>

 Editor: Lixing Wang
 <mailto:wang_little_star@sina.com>

 Editor: Mach(Guoyi) Chen
 <mailto:mach.chen@huawei.com>

 Editor: Amit Dass
 <mailto:dass.amit@gmail.com>

 Editor: Hariharan Ananthakrishnan
 <mailto:hari@netflix.com>

 Editor: Sriganesh Kini
 <mailto:sriganeshkini@gmail.com>

 Editor: Nitin Bahadur
 <mailto:nitin_bahadur@yahoo.com>";

 description
 "This module defines a YANG data model for
 Routing Information Base (RIB) that aligns
 with the I2RS RIB information model.

 Copyright (c) 2018 IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8341; see
 the RFC itself for full legal notices.";

 revision 2018‑09‑13 {
 description
 "initial revision";
 reference "RFC 8431";
 }

 //Features

feature nexthop‑tunnel {
 description
 "This feature means that a node supports
 tunnel nexthop capability.";
}

feature nexthop‑chain {
 description
 "This feature means that a node supports
 chain nexthop capability.";
}

feature nexthop‑protection {
 description
 "This feature means that a node supports
 protection nexthop capability.";
}

feature nexthop‑replicate {
 description
 "This feature means that a node supports
 replicate nexthop capability.";

 }

feature nexthop‑load‑balance {
 description
 "This feature means that a node supports
 load‑balance nexthop capability.";
}

feature ipv4‑tunnel {
 description
 "This feature means that a node supports
 IPv4 tunnel encapsulation capability.";
}

feature ipv6‑tunnel {
 description
 "This feature means that a node supports
 IPv6 tunnel encapsulation capability.";
}

feature mpls‑tunnel {
 description
 "This feature means that a node supports
 MPLS tunnel encapsulation capability.";
}

feature vxlan‑tunnel {
 description
 "This feature means that a node supports
 Virtual eXtensible Local Area Network
 (VXLAN) tunnel encapsulation capability.";
 reference "RFC 7348";
}

feature gre‑tunnel {
 description
 "This feature means that a node supports
 GRE tunnel encapsulation capability.";
 reference "RFC 2784";
}

feature nvgre‑tunnel {
 description
 "This feature means that a node supports
 Network Virtualization Using GRE (NVGRE)
 tunnel encapsulation capability.";
 reference "RFC 7637";
}

feature route‑vendor‑attributes {
 description
 "This feature means that a node supports
 route vendor attributes.";
}

 //Identities and Type Definitions

identity mpls‑label‑action {
 description
 "Base identity from which all MPLS label
 operations are derived.

 The MPLS label stack operations include:
 push ‑ to add a new label to a label stack
 pop ‑ to pop the top label from a label stack
 swap ‑ to exchange the top label of a label
 stack with a new label";
}

identity label‑push {
 base mpls‑label‑action;
 description
 "MPLS label stack operation: push.";
}

identity label‑pop {
 base mpls‑label‑action;
 description
 "MPLS label stack operation: pop.";
}

identity label‑swap {
 base mpls‑label‑action;
 description
 "MPLS label stack operation: swap.";
}

typedef mpls‑label‑action‑definition {
 type identityref {
 base mpls‑label‑action;
 }
 description
 "MPLS label action definition.";
}

 identity tunnel-decapsulation-action {

 description

 "Base identity from which all tunnel decapsulation
 actions are derived.
 Tunnel decapsulation actions include
 ipv4‑decapsulation (to decapsulate an IPv4 tunnel)
 ipv6‑decapsulation (to decapsulate an IPv6 tunnel)";
}

identity ipv4‑decapsulation {
 base tunnel‑decapsulation‑action;
 description
 "IPv4 tunnel decapsulation.";
}

identity ipv6‑decapsulation {
 base tunnel‑decapsulation‑action;
 description
 "IPv6 tunnel decapsulation.";
}

typedef tunnel‑decapsulation‑action‑definition {
 type identityref {
 base tunnel‑decapsulation‑action;
 }
 description
 "Tunnel decapsulation definition.";
}

identity ttl‑action {
 description
 "Base identity from which all TTL
 actions are derived.";
}

identity no‑action {
 base ttl‑action;
 description
 "Do nothing regarding the TTL.";
}

identity copy‑to‑inner {
 base ttl‑action;
 description
 "Copy the TTL of the outer header
 to the inner header.";
}

 identity decrease-and-copy-to-inner {

 base ttl-action;

 description
 "Decrease TTL by one and copy the TTL
 to the inner header.";
}

identity decrease‑and‑copy‑to‑next {
 base ttl‑action;
 description
 "Decrease TTL by one and copy the TTL
 to the next header; for example, when
 MPLS label swapping, decrease the TTL
 of the in_label and copy it to the
 out_label.";
}

typedef ttl‑action‑definition {
 type identityref {
 base ttl‑action;
 }
 description
 "TTL action definition.";
}

identity hop‑limit‑action {
 description
 "Base identity from which all hop limit
 actions are derived.";
}

identity hop‑limit‑no‑action {
 base hop‑limit‑action;
 description
 "Do nothing regarding the hop limit.";
}

identity hop‑limit‑copy‑to‑inner {
 base hop‑limit‑action;
 description
 "Copy the hop limit of the outer header
 to the inner header.";
}

typedef hop‑limit‑action‑definition {
 type identityref {
 base hop‑limit‑action;
 }
 description
 "IPv6 hop limit action definition.";

 }

identity special‑nexthop {
 description
 "Base identity from which all special
 nexthops are derived.";
}

identity discard {
 base special‑nexthop;
 description
 "This indicates that the network
 device should drop the packet and
 increment a drop counter.";
}

identity discard‑with‑error {
 base special‑nexthop;
 description
 "This indicates that the network
 device should drop the packet,
 increment a drop counter, and send
 back an appropriate error message
 (like ICMP error).";
}

identity receive {
 base special‑nexthop;
 description
 "This indicates that the traffic is
 destined for the network device, e.g.,
 protocol packets or Operations,
 Administration, and Maintenance (OAM) packets.
 All locally destined traffic SHOULD be
 throttled to avoid a denial‑of‑service
 attack on the router's control plane. An
 optional rate‑limiter can be specified
 to indicate how to throttle traffic
 destined for the control plane.";
}

identity cos‑value {
 base special‑nexthop;
 description
 "Cos‑value special nexthop.";
}

 typedef special-nexthop-definition {

 type identityref {
 base special‑nexthop;
 }
 description
 "Special nexthop definition.";
}

identity ip‑route‑match‑type {
 description
 "Base identity from which all route
 match types are derived.
 The route match type could be:
 match source, or
 match destination, or
 match source and destination.";
}

identity match‑ip‑src {
 base ip‑route‑match‑type;
 description
 "Source route match type.";
}

identity match‑ip‑dest {
 base ip‑route‑match‑type;
 description
 "Destination route match type";
}

identity match‑ip‑src‑dest {
 base ip‑route‑match‑type;
 description
 "Source and Destination route match type";
}

typedef ip‑route‑match‑type‑definition {
 type identityref {
 base ip‑route‑match‑type;
 }
 description
 "IP route match type definition.";
}

identity address‑family {
 description
 "Base identity from which all RIB
 address families are derived.";
}

identity ipv4‑address‑family {
 base address‑family;
 description
 "IPv4 RIB address family.";
}

identity ipv6‑address‑family {
 base address‑family;
 description
 "IPv6 RIB address family.";
}

identity mpls‑address‑family {
 base address‑family;
 description
 "MPLS RIB address family.";
}

identity ieee‑mac‑address‑family {
 base address‑family;
 description
 "MAC RIB address family.";
}

typedef address‑family‑definition {
 type identityref {
 base address‑family;
 }
 description
 "RIB address family definition.";
}

identity route‑type {
 description
 "Base identity from which all route types
 are derived.";
}

identity ipv4‑route {
 base route‑type;
 description
 "IPv4 route type.";
}

identity ipv6‑route {
 base route‑type;
 description
 "IPv6 route type.";

 }

identity mpls‑route {
 base route‑type;
 description
 "MPLS route type.";
}

identity ieee‑mac {
 base route‑type;
 description
 "MAC route type.";
}

identity interface {
 base route‑type;
 description
 "Interface route type.";
}

typedef route‑type‑definition {
 type identityref {
 base route‑type;
 }
 description
 "Route type definition.";
}

identity tunnel‑type {
 description
 "Base identity from which all tunnel
 types are derived.";
}

identity ipv4‑tunnel {
 base tunnel‑type;
 description
 "IPv4 tunnel type";
}

identity ipv6‑tunnel {
 base tunnel‑type;
 description
 "IPv6 tunnel type";
}

 identity mpls-tunnel {

 base tunnel-type;

 description
 "MPLS tunnel type";
}

identity gre‑tunnel {
 base tunnel‑type;
 description
 "GRE tunnel type";
}

identity vxlan‑tunnel {
 base tunnel‑type;
 description
 "VXLAN tunnel type";
}

identity nvgre‑tunnel {
 base tunnel‑type;
 description
 "NVGRE tunnel type";
}

typedef tunnel‑type‑definition {
 type identityref {
 base tunnel‑type;
 }
 description
 "Tunnel type definition.";
}

identity route‑state {
 description
 "Base identity from which all route
 states are derived.";
}

identity active {
 base route‑state;
 description
 "Active state.";
}

identity inactive {
 base route‑state;
 description
 "Inactive state.";
}

typedef route‑state‑definition {
 type identityref {
 base route‑state;
 }
 description
 "Route state definition.";
}

identity nexthop‑state {
 description
 "Base identity from which all nexthop
 states are derived.";
}

identity resolved {
 base nexthop‑state;
 description
 "Resolved nexthop state.";
}

identity unresolved {
 base nexthop‑state;
 description
 "Unresolved nexthop state.";
}

typedef nexthop‑state‑definition {
 type identityref {
 base nexthop‑state;
 }
 description
 "Nexthop state definition.";
}

identity route‑installed‑state {
 description
 "Base identity from which all route
 installed states are derived.";
}

identity uninstalled {
 base route‑installed‑state;
 description
 "Uninstalled state.";
}

 identity installed {

 base route-installed-state;

 description
 "Installed state.";
}

typedef route‑installed‑state‑definition {
 type identityref {
 base route‑installed‑state;
 }
 description
 "Route installed state definition.";
}

 //Route Change Reason Identities

identity route‑change‑reason {
 description
 "Base identity from which all route change
 reasons are derived.";
}

identity lower‑route‑preference {
 base route‑change‑reason;
 description
 "This route was installed in the FIB because it had
 a lower route preference value (and thus was more
 preferred) than the route it replaced.";
}

identity higher‑route‑preference {
 base route‑change‑reason;
 description
 "This route was uninstalled from the FIB because it had
 a higher route preference value (and thus was less
 preferred) than the route that replaced it.";
}

identity resolved‑nexthop {
 base route‑change‑reason;
 description
 "This route was made active because at least
 one of its nexthops was resolved.";
}

identity unresolved‑nexthop {
 base route‑change‑reason;
 description
 "This route was made inactive because all of
 its nexthops are unresolved.";

 }

typedef route‑change‑reason‑definition {
 type identityref {
 base route‑change‑reason;
 }
 description
 "Route change reason definition.";
}

typedef nexthop‑preference‑definition {
 type uint8 {
 range "1..99";
 }
 description
 "Nexthop‑preference is used for protection schemes.
 It is an integer value between 1 and 99. Lower
 values are preferred. To download N
 nexthops to the FIB, the N nexthops with the lowest
 value are selected. If there are more than N
 nexthops that have the same preference, an
 implementation of the I2RS client should select N
 nexthops and download them. As for how to select
 the nexthops, this is left to the implementations.";
}

typedef nexthop‑lb‑weight‑definition {
 type uint8 {
 range "1..99";
 }
 description
 "Nexthop‑lb‑weight is used for load‑balancing.
 Each list member SHOULD be assigned a weight
 between 1 and 99. The weight determines the
 proportion of traffic to be sent over a nexthop
 used for forwarding as a ratio of the weight of
 this nexthop divided by the sum of the weights
 of all the nexthops of this route that are used
 for forwarding. To perform equal load‑balancing,
 one MAY specify a weight of 0 for all the member
 nexthops. The value 0 is reserved for equal
 load‑balancing and, if applied, MUST be applied
 to all member nexthops.
 Note that the weight of 0 is special because of
 historical reasons. It's typically used in
 hardware devices to signify ECMP.";
}

typedef nexthop‑ref {
 type leafref {
 path "/iir:routing‑instance" +
 "/iir:rib‑list" +
 "/iir:route‑list" +
 "/iir:nexthop" +
 "/iir:nexthop‑id";
 }
 description
 "A nexthop reference that provides
 an indirection reference to a nexthop.";
}

 //Groupings

grouping route‑prefix {
 description
 "The common attributes used for all types of route prefixes.";
 leaf route‑index {
 type uint64;
 mandatory true;
 description
 "Route index.";
 }
 container match {
 description
 "The match condition specifies the
 kind of route (IPv4, MPLS, etc.)
 and the set of fields to match on.";
 choice route‑type {
 description
 "Route types: IPv4, IPv6, MPLS, MAC, etc.";
 case ipv4 {
 description
 "IPv4 route case.";
 container ipv4 {
 description
 "IPv4 route match.";
 choice ip‑route‑match‑type {
 description
 "IP route match type options:
 match source, or
 match destination, or
 match source and destination.";
 case dest‑ipv4‑address {
 leaf dest‑ipv4‑prefix {
 type inet:ipv4‑prefix;
 mandatory true;

 description
 "An IPv4 destination address as the match.";
 }
 }
 case src‑ipv4‑address {
 leaf src‑ipv4‑prefix {
 type inet:ipv4‑prefix;
 mandatory true;
 description
 "An IPv4 source address as the match.";
 }
 }
 case dest‑src‑ipv4‑address {
 container dest‑src‑ipv4‑address {
 description
 "A combination of an IPv4 source and
 an IPv4 destination address as the match.";
 leaf dest‑ipv4‑prefix {
 type inet:ipv4‑prefix;
 mandatory true;
 description
 "The IPv4 destination address of the match.";
 }
 leaf src‑ipv4‑prefix {
 type inet:ipv4‑prefix;
 mandatory true;
 description
 "The IPv4 source address of the match.";
 }
 }
 }
 }
 }
 }
 case ipv6 {
 description
 "IPv6 route case.";
 container ipv6 {
 description
 "IPv6 route match.";
 choice ip‑route‑match‑type {
 description
 "IP route match type options:
 match source,
 match destination, or
 match source and destination.";
 case dest‑ipv6‑address {
 leaf dest‑ipv6‑prefix {

 type inet:ipv6‑prefix;
 mandatory true;
 description
 "An IPv6 destination address as the match.";
 }
 }
 case src‑ipv6‑address {
 leaf src‑ipv6‑prefix {
 type inet:ipv6‑prefix;
 mandatory true;
 description
 "An IPv6 source address as the match.";
 }
 }
 case dest‑src‑ipv6‑address {
 container dest‑src‑ipv6‑address {
 description
 "A combination of an IPv6 source and
 an IPv6 destination address as the match.";
 leaf dest‑ipv6‑prefix {
 type inet:ipv6‑prefix;
 mandatory true;
 description
 "The IPv6 destination address of the match.";
 }
 leaf src‑ipv6‑prefix {
 type inet:ipv6‑prefix;
 mandatory true;
 description
 "The IPv6 source address of the match.";
 }
 }
 }
 }
 }
 }
 case mpls‑route {
 description
 "MPLS route case.";
 leaf mpls‑label {
 type uint32;
 mandatory true;
 description
 "The label used for matching.";
 }
 }
 case mac‑route {
 description

 "MAC route case.";
 leaf mac‑address {
 type yang:mac‑address;
 mandatory true;
 description
 "The MAC address used for matching.";
 }
 }
 case interface‑route {
 description
 "Interface route case.";
 leaf interface‑identifier {
 type if:interface‑ref;
 mandatory true;
 description
 "The interface used for matching.";
 }
 }
 }
 }
}

grouping route {
 description
 "The common attributes used for all types of routes.";
 uses route‑prefix;
 container nexthop {
 description
 "The nexthop of the route.";
 uses nexthop;
 }
 //In the information model, it is called route‑statistic
 container route‑status {
 description
 "The status information of the route.";
 leaf route‑state {
 type route‑state‑definition;
 config false;
 description
 "Indicate a route's state: active or inactive.";
 }
 leaf route‑installed‑state {
 type route‑installed‑state‑definition;
 config false;
 description
 "Indicate that a route's installed states:
 installed or uninstalled.";
 }

 leaf route‑reason {
 type route‑change‑reason‑definition;
 config false;
 description
 "Indicate the reason that caused the route change.";
 }
 }
 container route‑attributes {
 description
 "Route attributes.";
 uses route‑attributes;
 }
 container route‑vendor‑attributes {
 description
 "Route vendor attributes.";
 uses route‑vendor‑attributes;
 }
}

grouping nexthop‑list {
 description
 "A generic nexthop list.";
 list nexthop‑list {
 key "nexthop‑member‑id";
 description
 "A list of nexthops.";
 leaf nexthop‑member‑id {
 type uint32;
 mandatory true;
 description
 "A nexthop identifier that points
 to a nexthop list member.
 A nexthop list member is a nexthop.";
 }
 }
}

grouping nexthop‑list‑p {
 description
 "A nexthop list with preference parameter.";
 list nexthop‑list {
 key "nexthop‑member‑id";
 description
 "A list of nexthop.";
 leaf nexthop‑member‑id {
 type uint32;
 mandatory true;
 description

 "A nexthop identifier that points
 to a nexthop list member.
 A nexthop list member is a nexthop.";
 }
 leaf nexthop‑preference {
 type nexthop‑preference‑definition;
 mandatory true;
 description
 "Nexthop‑preference is used for protection schemes.
 It is an integer value between 1 and 99. Lower
 values are more preferred. To download a
 primary/standby/tertiary group to the FIB, the
 nexthops that are resolved and are most preferred
 are selected.";
 }
 }
}

grouping nexthop‑list‑w {
 description
 "A nexthop list with a weight parameter.";
 list nexthop‑list {
 key "nexthop‑member‑id";
 description
 "A list of nexthop.";
 leaf nexthop‑member‑id {
 type uint32;
 mandatory true;
 description
 "A nexthop identifier that points
 to a nexthop list member.
 A nexthop list member is a nexthop.";
 }
 leaf nexthop‑lb‑weight {
 type nexthop‑lb‑weight‑definition;
 mandatory true;
 description
 "The weight of a nexthop of
 the load‑balance nexthops.";
 }
 }
}

grouping nexthop {
 description
 "The nexthop structure.";
 leaf nexthop‑id {
 type uint32;

 description
 "An identifier that refers to a nexthop.";
 }
 leaf sharing‑flag {
 type boolean;
 description
 "To indicate whether a nexthop is sharable
 or non‑sharable:
 true ‑ sharable (which means the nexthop can be
 shared with other routes)
 false ‑ non‑sharable (which means the nexthop can
 not be shared with other routes)";
 }
 choice nexthop‑type {
 description
 "Nexthop type options.";
 case nexthop‑base {
 container nexthop‑base {
 description
 "The base nexthop.";
 uses nexthop‑base;
 }
 }
 case nexthop‑chain {
 if‑feature "nexthop‑chain";
 container nexthop‑chain {
 description
 "A chain nexthop.";
 uses nexthop‑list;
 }
 }
 case nexthop‑replicate {
 if‑feature "nexthop‑replicate";
 container nexthop‑replicate {
 description
 "A replicate nexthop.";
 uses nexthop‑list;
 }
 }
 case nexthop‑protection {
 if‑feature "nexthop‑protection";
 container nexthop‑protection {
 description
 "A protection nexthop.";
 uses nexthop‑list‑p;
 }
 }
 case nexthop‑load‑balance {

 if‑feature "nexthop‑load‑balance";
 container nexthop‑lb {
 description
 "A load‑balance nexthop.";
 uses nexthop‑list‑w;
 }
 }
 }
}

grouping nexthop‑base {
 description
 "The base nexthop.";
 choice nexthop‑base‑type {
 description
 "Nexthop base type options.";
 case special‑nexthop {
 leaf special {
 type special‑nexthop‑definition;
 description
 "A special nexthop.";
 }
 }
 case egress‑interface‑nexthop {
 leaf outgoing‑interface {
 type if:interface‑ref;
 mandatory true;
 description
 "The nexthop is an outgoing interface.";
 }
 }
 case ipv4‑address‑nexthop {
 leaf ipv4‑address {
 type inet:ipv4‑address;
 mandatory true;
 description
 "The nexthop is an IPv4 address.";
 }
 }
 case ipv6‑address‑nexthop {
 leaf ipv6‑address {
 type inet:ipv6‑address;
 mandatory true;
 description
 "The nexthop is an IPv6 address.";
 }
 }
 case egress‑interface‑ipv4‑nexthop {

 container egress‑interface‑ipv4‑address {
 leaf outgoing‑interface {
 type if:interface‑ref;
 mandatory true;
 description
 "Name of the outgoing interface.";
 }
 leaf ipv4‑address {
 type inet:ipv4‑address;
 mandatory true;
 description
 "The nexthop points to an interface with
 an IPv4 address.";
 }
 description
 "The nexthop is an egress‑interface and an IP
 address. This can be used in cases where, e.g.,
 the IP address is a link‑local address.";
 }
 }
 case egress‑interface‑ipv6‑nexthop {
 container egress‑interface‑ipv6‑address {
 leaf outgoing‑interface {
 type if:interface‑ref;
 mandatory true;
 description
 "Name of the outgoing interface.";
 }
 leaf ipv6‑address {
 type inet:ipv6‑address;
 mandatory true;
 description
 "The nexthop points to an interface with
 an IPv6 address.";
 }
 description
 "The nexthop is an egress‑interface and an IP
 address. This can be used in cases where, e.g.,
 the IP address is a link‑local address.";
 }
 }
 case egress‑interface‑mac‑nexthop {
 container egress‑interface‑mac‑address {
 leaf outgoing‑interface {
 type if:interface‑ref;
 mandatory true;
 description
 "Name of the outgoing interface.";

 }
 leaf ieee‑mac‑address {
 type yang:mac‑address;
 mandatory true;
 description
 "The nexthop points to an interface with
 a specific MAC address.";
 }
 description
 "The egress‑interface must be an Ethernet
 interface. Address resolution is not required
 for this nexthop.";
 }
 }
 case tunnel‑encapsulation‑nexthop {
 if‑feature "nexthop‑tunnel";
 container tunnel‑encapsulation {
 uses tunnel‑encapsulation;
 description
 "This can be an encapsulation representing an IP
 tunnel, MPLS tunnel, or others as defined in the info
 model. An optional egress‑interface can be chained
 to the tunnel encapsulation to indicate which
 interface to send the packet out on. The
 egress‑interface is useful when the network device
 contains Ethernet interfaces and one needs to
 perform address resolution for the IP packet.";
 }
 }
 case tunnel‑decapsulation‑nexthop {
 if‑feature "nexthop‑tunnel";
 container tunnel‑decapsulation {
 uses tunnel‑decapsulation;
 description
 "This is to specify the decapsulation of a tunnel
 header.";
 }
 }
 case logical‑tunnel‑nexthop {
 if‑feature "nexthop‑tunnel";
 container logical‑tunnel {
 uses logical‑tunnel;
 description
 "This can be an MPLS Label Switched Path (LSP)
 or a GRE tunnel (or others as defined in this
 document) that is represented by a unique
 identifier (e.g., name).";
 }

 }
 case rib‑name‑nexthop {
 leaf rib‑name {
 type string;
 description
 "A nexthop pointing to a RIB indicates that the
 route lookup needs to continue in the specified
 RIB. This is a way to perform chained lookups.";
 }
 }
 case nexthop‑identifier {
 leaf nexthop‑ref {
 type nexthop‑ref;
 mandatory true;
 description
 "A nexthop reference that points to a nexthop.";
 }
 }
 }
}

grouping route‑vendor‑attributes {
 description
 "Route vendor attributes.";
}

grouping logical‑tunnel {
 description
 "A logical tunnel that is identified
 by a type and a tunnel name.";
 leaf tunnel‑type {
 type tunnel‑type‑definition;
 mandatory true;
 description
 "A tunnel type.";
 }
 leaf tunnel‑name {
 type string;
 mandatory true;
 description
 "A tunnel name that points to a logical tunnel.";
 }
}

grouping ipv4‑header {
 description
 "The IPv4 header encapsulation information.";
 leaf src‑ipv4‑address {

 type inet:ipv4‑address;
 mandatory true;
 description
 "The source IP address of the header.";
 }
 leaf dest‑ipv4‑address {
 type inet:ipv4‑address;
 mandatory true;
 description
 "The destination IP address of the header.";
 }
 leaf protocol {
 type uint8;
 mandatory true;
 description
 "The protocol id of the header.";
 }
 leaf ttl {
 type uint8;
 description
 "The TTL of the header.";
 }
 leaf dscp {
 type uint8;
 description
 "The Differentiated Services Code Point
 (DSCP) field of the header.";
 }
}

grouping ipv6‑header {
 description
 "The IPv6 header encapsulation information.";
 leaf src‑ipv6‑address {
 type inet:ipv6‑address;
 mandatory true;
 description
 "The source IP address of the header.";
 }
 leaf dest‑ipv6‑address {
 type inet:ipv6‑address;
 mandatory true;
 description
 "The destination IP address of the header.";
 }
 leaf next‑header {
 type uint8;
 mandatory true;

 description
 "The next header of the IPv6 header.";
 }
 leaf traffic‑class {
 type uint8;
 description
 "The traffic class value of the header.";
 }
 leaf flow‑label {
 type inet:ipv6‑flow‑label;
 description
 "The flow label of the header.";
 }
 leaf hop‑limit {
 type uint8 {
 range "1..255";
 }
 description
 "The hop limit of the header.";
 }
}

grouping nvgre‑header {
 description
 "The NVGRE header encapsulation information.";
 choice nvgre‑type {
 description
 "NVGRE can use either an IPv4
 or an IPv6 header for encapsulation.";
 case ipv4 {
 uses ipv4‑header;
 }
 case ipv6 {
 uses ipv6‑header;
 }
 }
 leaf virtual‑subnet‑id {
 type uint32;
 mandatory true;
 description
 "The subnet identifier of the NVGRE header.";
 }
 leaf flow‑id {
 type uint8;
 description
 "The flow identifier of the NVGRE header.";
 }
}

grouping vxlan‑header {
 description
 "The VXLAN encapsulation header information.";
 choice vxlan‑type {
 description
 "NVGRE can use either an IPv4
 or an IPv6 header for encapsulation.";
 case ipv4 {
 uses ipv4‑header;
 }
 case ipv6 {
 uses ipv6‑header;
 }
 }
 leaf vxlan‑identifier {
 type uint32;
 mandatory true;
 description
 "The VXLAN identifier of the VXLAN header.";
 }
}

grouping gre‑header {
 description
 "The GRE encapsulation header information.";
 choice dest‑address‑type {
 description
 "GRE options: IPv4 and IPv6";
 case ipv4 {
 leaf ipv4‑dest {
 type inet:ipv4‑address;
 mandatory true;
 description
 "The destination IP address of the GRE header.";
 }
 }
 case ipv6 {
 leaf ipv6‑dest {
 type inet:ipv6‑address;
 mandatory true;
 description
 "The destination IP address of the GRE header.";
 }
 }
 }
 leaf protocol‑type {
 type uint16;
 mandatory true;

 description
 "The protocol type of the GRE header.";
 }
 leaf key {
 type uint64;
 description
 "The GRE key of the GRE header.";
 }
}

grouping mpls‑header {
 description
 "The MPLS encapsulation header information.";
 list label‑operations {
 key "label‑oper‑id";
 description
 "Label operations.";
 leaf label‑oper‑id {
 type uint32;
 description
 "An optional identifier that points
 to a label operation.";
 }
 choice label‑actions {
 description
 "Label action options.";
 case label‑push {
 container label‑push {
 description
 "Label push operation.";
 leaf label {
 type uint32;
 mandatory true;
 description
 "The label to be pushed.";
 }
 leaf s‑bit {
 type boolean;
 description
 "The s‑bit ('Bottom of Stack' bit) of the label to be
 pushed.";
 }
 leaf tc‑value {
 type uint8;
 description
 "The traffic class value of the label to be pushed.";
 }
 leaf ttl‑value {

 type uint8;
 description
 "The TTL value of the label to be pushed.";
 }
 }
 }
 case label‑swap {
 container label‑swap {
 description
 "Label swap operation.";
 leaf in‑label {
 type uint32;
 mandatory true;
 description
 "The label to be swapped.";
 }
 leaf out‑label {
 type uint32;
 mandatory true;
 description
 "The out MPLS label.";
 }
 leaf ttl‑action {
 type ttl‑action‑definition;
 description
 "The label TTL actions:
 ‑ No‑action
 ‑ Copy to inner label
 ‑ Decrease (the in‑label)
 by 1 and copy to the out‑label";
 }
 }
 }
 }
 }
}

grouping tunnel‑encapsulation {
 description
 "Tunnel encapsulation information.";
 choice tunnel‑type {
 description
 "Tunnel options for nexthops.";
 case ipv4 {
 if‑feature "ipv4‑tunnel";
 container ipv4‑header {
 uses ipv4‑header;
 description

 "IPv4 header.";
 }
 }
 case ipv6 {
 if‑feature "ipv6‑tunnel";
 container ipv6‑header {
 uses ipv6‑header;
 description
 "IPv6 header.";
 }
 }
 case mpls {
 if‑feature "mpls‑tunnel";
 container mpls‑header {
 uses mpls‑header;
 description
 "MPLS header.";
 }
 }
 case gre {
 if‑feature "gre‑tunnel";
 container gre‑header {
 uses gre‑header;
 description
 "GRE header.";
 }
 }
 case nvgre {
 if‑feature "nvgre‑tunnel";
 container nvgre‑header {
 uses nvgre‑header;
 description
 "NVGRE header.";
 }
 }
 case vxlan {
 if‑feature "vxlan‑tunnel";
 container vxlan‑header {
 uses vxlan‑header;
 description
 "VXLAN header.";
 }
 }
 }
}

 grouping tunnel-decapsulation {

 description

 "Tunnel decapsulation information.";
 choice tunnel‑type {
 description
 "Nexthop tunnel type options.";
 case ipv4 {
 if‑feature "ipv4‑tunnel";
 container ipv4‑decapsulation {
 description
 "IPv4 decapsulation.";
 leaf ipv4‑decapsulation {
 type tunnel‑decapsulation‑action‑definition;
 mandatory true;
 description
 "IPv4 decapsulation operations.";
 }
 leaf ttl‑action {
 type ttl‑action‑definition;
 description
 "The TTL actions:
 no‑action or copy to inner header.";
 }
 }
 }
 case ipv6 {
 if‑feature "ipv6‑tunnel";
 container ipv6‑decapsulation {
 description
 "IPv6 decapsulation.";
 leaf ipv6‑decapsulation {
 type tunnel‑decapsulation‑action‑definition;
 mandatory true;
 description
 "IPv6 decapsulation operations.";
 }
 leaf hop‑limit‑action {
 type hop‑limit‑action‑definition;
 description
 "The hop limit actions:
 no‑action or copy to inner header.";
 }
 }
 }
 case mpls {
 if‑feature "mpls‑tunnel";
 container label‑pop {
 description
 "MPLS decapsulation.";
 leaf label‑pop {

 type mpls‑label‑action‑definition;
 mandatory true;
 description
 "Pop a label from the label stack.";
 }
 leaf ttl‑action {
 type ttl‑action‑definition;
 description
 "The label TTL action.";
 }
 }
 }
 }
}

grouping route‑attributes {
 description
 "Route attributes.";
 leaf route‑preference {
 type uint32;
 mandatory true;
 description
 "ROUTE_PREFERENCE: This is a numerical value that
 allows for comparing routes from different
 protocols. Static configuration is also
 considered a protocol for the purpose of this
 field. It is also known as administrative‑distance.
 The lower the value, the higher the preference.";
 }
 leaf local‑only {
 type boolean;
 mandatory true;
 description
 "Indicate whether the attribute is local only.";
 }
 container address‑family‑route‑attributes {
 description
 "Address‑family‑related route attributes.";
 choice route‑type {
 description
 "Address‑family‑related route attributes. Future
 documents should specify these attributes by augmenting
 the cases in this choice.";
 case ip‑route‑attributes {
 }
 case mpls‑route‑attributes {
 }
 case ethernet‑route‑attributes {

 }
 }
 }
}

container routing‑instance {
 description
 "A routing instance, in the context of
 the RIB information model, is a collection
 of RIBs, interfaces, and routing parameters.";
 leaf name {
 type string;
 description
 "The name of the routing instance. This MUST
 be unique across all routing instances in
 a given network device.";
 }
 list interface‑list {
 key "name";
 description
 "This represents the list of interfaces associated
 with this routing instance. The interface list helps
 constrain the boundaries of packet forwarding.
 Packets coming on these interfaces are directly
 associated with the given routing instance. The
 interface list contains a list of identifiers with
 each identifier uniquely identifying an interface.";
 leaf name {
 type if:interface‑ref;
 description
 "A reference to the name of a network‑layer interface.";
 }
 }
 leaf router‑id {
 type yang:dotted‑quad;
 description
 "Router ID: The 32‑bit number in the form of a dotted quad.";
 }
 leaf lookup‑limit {
 type uint8;
 description
 "A limit on how many levels of a lookup can be performed.";
 }
 list rib‑list {
 key "name";
 description
 "A list of RIBs that are associated with the routing
 instance.";

 leaf name {
 type string;
 mandatory true;
 description
 "A reference to the name of each RIB.";
 }
 leaf address‑family {
 type address‑family‑definition;
 mandatory true;
 description
 "The address family of a RIB.";
 }
 leaf ip‑rpf‑check {
 type boolean;
 description
 "Each RIB can be optionally associated with a
 ENABLE_IP_RPF_CHECK attribute that enables Reverse
 Path Forwarding (RPF) checks on all IP routes in that
 RIB. An RPF check is used to
 prevent spoofing and limit malicious traffic.";
 }
 list route‑list {
 key "route‑index";
 description
 "A list of routes of a RIB.";
 uses route;
 }
 // This is a list that maintains the nexthops added to the RIB.
 uses nexthop‑list;
 }
}

 //RPC Operations

rpc rib‑add {
 description
 "To add a RIB to an instance";
 input {
 leaf name {
 type string;
 mandatory true;
 description
 "A reference to the name of the RIB
 that is to be added.";
 }
 leaf address‑family {
 type address‑family‑definition;
 mandatory true;

 description
 "The address family of the RIB.";
 }
 leaf ip‑rpf‑check {
 type boolean;
 description
 "Each RIB can be optionally associated with an
 ENABLE_IP_RPF_CHECK attribute that enables
 RPF checks on all IP routes in that
 RIB. An RPF check is used to
 prevent spoofing and limit malicious traffic.";
 }
 }
 output {
 leaf result {
 type boolean;
 mandatory true;
 description
 "Return the result of the rib‑add operation.
 true ‑ success;
 false ‑ failed";
 }
 leaf reason {
 type string;
 description
 "The specific reason that caused the failure.";
 }
 }
}

rpc rib‑delete {
 description
 "To delete a RIB from a routing instance.
 After deleting the RIB, all routes installed
 in the RIB will be deleted as well.";
 input {
 leaf name {
 type string;
 mandatory true;
 description
 "A reference to the name of the RIB
 that is to be deleted.";
 }
 }
 output {
 leaf result {
 type boolean;
 mandatory true;

 description
 "Return the result of the rib‑delete operation.
 true ‑ success;
 false ‑ failed";
 }
 leaf reason {
 type string;
 description
 "The specific reason that caused failure.";
 }
 }
}

grouping route‑operation‑state {
 description
 "Route operation state.";
 leaf success‑count {
 type uint32;
 mandatory true;
 description
 "The numbers of routes that are successfully
 added/deleted/updated.";
 }
 leaf failed‑count {
 type uint32;
 mandatory true;
 description
 "The numbers of the routes that fail
 to be added/deleted/updated.";
 }
 container failure‑detail {
 description
 "The failure detail reflects the reason why a route
 operation fails. It is an array that includes the route
 index and error code of the failed route.";
 list failed‑routes {
 key "route‑index";
 description
 "The list of failed routes.";
 leaf route‑index {
 type uint32;
 description
 "The route index of the failed route.";
 }
 leaf error‑code {
 type uint32;
 description
 "The error code that reflects the failure reason.

 0 ‑ Reserved
 1 ‑ Trying to add a repeat route
 2 ‑ Trying to delete or update a route that does not
 exist
 3 ‑ Malformed route attributes";
 }
 }
 }
}

rpc route‑add {
 description
 "To add a route or a list of routes to a RIB";
 input {
 leaf return‑failure‑detail {
 type boolean;
 default "false";
 description
 "Whether to return the failure detail.
 true ‑ return the failure detail
 false ‑ do not return the failure detail
 The default is false.";
 }
 leaf rib‑name {
 type string;
 mandatory true;
 description
 "A reference to the name of a RIB.";
 }
 container routes {
 description
 "The routes to be added to the RIB.";
 list route‑list {
 key "route‑index";
 description
 "The list of routes to be added.";
 uses route‑prefix;
 container route‑attributes {
 uses route‑attributes;
 description
 "The route attributes.";
 }
 container route‑vendor‑attributes {
 if‑feature "route‑vendor‑attributes";
 uses route‑vendor‑attributes;
 description
 "The route vendor attributes.";
 }

 container nexthop {
 uses nexthop;
 description
 "The nexthop of the added route.";
 }
 }
 }
 }
 output {
 uses route‑operation‑state;
 }
}

rpc route‑delete {
 description
 "To delete a route or a list of routes from a RIB";
 input {
 leaf return‑failure‑detail {
 type boolean;
 default "false";
 description
 "Whether to return the failure detail.
 true ‑ return the failure detail
 false ‑ do not return the failure detail
 The default is false.";
 }
 leaf rib‑name {
 type string;
 mandatory true;
 description
 "A reference to the name of a RIB.";
 }
 container routes {
 description
 "The routes to be added to the RIB.";
 list route‑list {
 key "route‑index";
 description
 "The list of routes to be deleted.";
 uses route‑prefix;
 }
 }
 }
 output {
 uses route‑operation‑state;
 }
}

grouping route‑update‑options {
 description
 "Update options:
 1. update the nexthop
 2. update the route attributes
 3. update the route‑vendor‑attributes";
 choice update‑options {
 description
 "Update options:
 1. update the nexthop
 2. update the route attributes
 3. update the route‑vendor‑attributes";
 case update‑nexthop {
 container updated‑nexthop {
 uses nexthop;
 description
 "The nexthop used for updating.";
 }
 }
 case update‑route‑attributes {
 container updated‑route‑attr {
 uses route‑attributes;
 description
 "The route attributes used for updating.";
 }
 }
 case update‑route‑vendor‑attributes {
 container updated‑route‑vendor‑attr {
 uses route‑vendor‑attributes;
 description
 "The vendor route attributes used for updating.";
 }
 }
 }
}

rpc route‑update {
 description
 "To update a route or a list of routes of a RIB.
 The inputs:
 1. The match conditions, which could be:
 a. route prefix,
 b. route attributes, or
 c. nexthop.
 2. The update parameters to be used:
 a. new nexthop,
 b. new route attributes, or
 c. nexthop.

 Actions:
 1. update the nexthop
 2. update the route attributes
 The outputs:
 success‑count ‑ the number of routes updated
 failed‑count ‑ the number of routes fail to update
 failure‑detail ‑ the detail failure info
 ";
 input {
 leaf return‑failure‑detail {
 type boolean;
 default "false";
 description
 "Whether to return the failure detail.
 true ‑ return the failure detail
 false ‑ do not return the failure detail
 The default is false.";
 }
 leaf rib‑name {
 type string;
 mandatory true;
 description
 "A reference to the name of a RIB.";
 }
 choice match‑options {
 description
 "Match options.";
 case match‑route‑prefix {
 description
 "Update the routes that match the route
 prefix(es) condition.";
 container input‑routes {
 description
 "The matched routes to be updated.";
 list route‑list {
 key "route‑index";
 description
 "The list of routes to be updated.";
 uses route‑prefix;
 uses route‑update‑options;
 }
 }
 }
 case match‑route‑attributes {
 description
 "Update the routes that match the
 route attributes condition.";
 container input‑route‑attributes {

 description
 "The route attributes are used for matching.";
 uses route‑attributes;
 }
 container update‑parameters {
 description
 "Update options:
 1. update the nexthop
 2. update the route attributes
 3. update the route‑vendor‑attributes";
 uses route‑update‑options;
 }
 }
 case match‑route‑vendor‑attributes {
 if‑feature "route‑vendor‑attributes";
 description
 "Update the routes that match the
 vendor attributes condition";
 container input‑route‑vendor‑attributes {
 description
 "The vendor route attributes are used for matching.";
 uses route‑vendor‑attributes;
 }
 container update‑parameters‑vendor {
 description
 "Update options:
 1. update the nexthop
 2. update the route attributes
 3. update the route‑vendor‑attributes";
 uses route‑update‑options;
 }
 }
 case match‑nexthop {
 description
 "Update the routes that match the nexthop.";
 container input‑nexthop {
 description
 "The nexthop used for matching.";
 uses nexthop;
 }
 container update‑parameters‑nexthop {
 description
 "Update options:
 1. update the nexthop
 2. update the route attributes
 3. update the route‑vendor‑attributes";
 uses route‑update‑options;
 }

 }
 }
 }
 output {
 uses route‑operation‑state;
 }
}
rpc nh‑add {
 description
 "To add a nexthop to a RIB.
 Inputs parameters:
 1. rib‑name
 2. nexthop
 Actions:
 Add the nexthop to the RIB
 Outputs:
 1. Operation result:
 true ‑ success
 false ‑ failed
 2. nexthop identifier";
 input {
 leaf rib‑name {
 type string;
 mandatory true;
 description
 "A reference to the name of a RIB.";
 }
 uses nexthop;
 }
 output {
 leaf result {
 type boolean;
 mandatory true;
 description
 "Return the result of the rib‑add operation:
 true ‑ success
 false ‑ failed";
 }
 leaf reason {
 type string;
 description
 "The specific reason that caused the failure.";
 }
 leaf nexthop‑id {
 type uint32;
 description
 "A nexthop identifier that is allocated to the nexthop.";
 }

 }
}

rpc nh‑delete {
 description
 "To delete a nexthop from a RIB";
 input {
 leaf rib‑name {
 type string;
 mandatory true;
 description
 "A reference to the name of a RIB.";
 }
 uses nexthop;
 }
 output {
 leaf result {
 type boolean;
 mandatory true;
 description
 "Return the result of the rib‑add operation:
 true ‑ success;
 false ‑ failed";
 }
 leaf reason {
 type string;
 description
 "The specific reason that caused the failure.";
 }
 }
}

 //Notifications

 notification nexthop‑resolution‑status‑change {
 description
 "Nexthop resolution status (resolved/unresolved)
 notification.";
 container nexthop {
 description
 "The nexthop.";
 uses nexthop;
 }
 leaf nexthop‑state {
 type nexthop‑state‑definition;
 mandatory true;
 description
 "Nexthop resolution status (resolved/unresolved)

 notification.";
 }
 }

 notification route‑change {
 description
 "Route change notification.";
 leaf rib‑name {
 type string;
 mandatory true;
 description
 "A reference to the name of a RIB.";
 }
 leaf address‑family {
 type address‑family‑definition;
 mandatory true;
 description
 "The address family of a RIB.";
 }
 uses route‑prefix;
 leaf route‑installed‑state {
 type route‑installed‑state‑definition;
 mandatory true;
 description
 "Indicates whether the route got installed in the FIB.";
 }
 leaf route‑state {
 type route‑state‑definition;
 mandatory true;
 description
 "Indicates whether a route is active or inactive.";
 }
 list route‑change‑reasons {
 key "route‑change‑reason";
 description
 "The reasons that cause the route change. A route
 change may result from several reasons; for
 example, a nexthop becoming resolved will make a
 route A active, which is of better preference than
 a currently active route B, which results in the
 route A being installed";
 leaf route‑change‑reason {
 type route‑change‑reason‑definition;
 mandatory true;
 description
 "The reason that caused the route change.";
 }
 }

 }
}

 <CODE ENDS>

4. IANA Considerations

 This document registers a URI in the "ns" registry within the "IETF
 XML Registry" [RFC3688]:

‑‑‑
URI: urn:ietf:params:xml:ns:yang:ietf‑i2rs‑rib
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
‑‑‑

 This document registers a YANG module in the "YANG Module Names"
 registry [RFC7950]:

‑‑‑
name: ietf‑i2rs‑rib
namespace: urn:ietf:params:xml:ns:yang:ietf‑i2rs‑rib
prefix: iir
reference: RFC 8431
‑‑‑

5. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 The YANG module defines information that can be configurable in
 certain instances, for example, a RIB, a route, a nexthop can be
 created or deleted by client applications; the YANG module also
 defines RPCs that can be used by client applications to add/delete
 RIBs, routes, and nexthops. In such cases, a malicious client could
 attempt to remove, add, or update a RIB, a route, or a nexthop by
 creating or deleting corresponding elements in the RIB, route, and
 nexthop lists, respectively. Removing a RIB or a route could lead to
 disruption or impact in performance of a service; updating a route
 may lead to suboptimal path and degradation of service levels as well
 as possibly disruption of service. For those reasons, it is
 important that the NETCONF access control model is vigorously applied
 to prevent misconfiguration by unauthorized clients.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 o RIB: A malicious client could attempt to remove a RIB from a
 routing instance, for example, in order to sabotage the services
 provided by the RIB or to add a RIB to a routing instance (hence,
 to inject unauthorized traffic into the nexthop).

 o route: A malicious client could attempt to remove or add a route
 from/to a RIB, for example, in order to sabotage the services
 provided by the RIB.

 o nexthop: A malicious client could attempt to remove or add a
 nexthop from/to RIB, which may lead to a suboptimal path, a
 degradation of service levels, and a possible disruption of
 service.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8344]
 Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, DOI 10.17487/RFC8344, March 2018,
 <https://www.rfc-editor.org/info/rfc8344>.

 [RFC8430]
 Bahadur, N., Ed., Kini, S., Ed., and J. Medved, "RIB
 Information Model", RFC 8430, DOI 10.17487/RFC8430,
 September 2018, <http://www.rfc-editor.org/info/rfc8430>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

6.2. Informative References

 [I2RS-REQS]

 Hares, S. and M. Chen, "Summary of I2RS Use Case
 Requirements", Work in Progress, draft-ietf-i2rs-usecase-
 reqs-summary-03, November 2016.

 [RFC2784]
 Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 DOI 10.17487/RFC2784, March 2000,
 <https://www.rfc-editor.org/info/rfc2784>.

 [RFC7348]
 Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
 eXtensible Local Area Network (VXLAN): A Framework for
 Overlaying Virtualized Layer 2 Networks over Layer 3
 Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
 <https://www.rfc-editor.org/info/rfc7348>.

 [RFC7637]
 Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
 Virtualization Using Generic Routing Encapsulation",
 RFC 7637, DOI 10.17487/RFC7637, September 2015,
 <https://www.rfc-editor.org/info/rfc7637>.

 [RFC7921]
 Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
 Nadeau, "An Architecture for the Interface to the Routing
 System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
 <https://www.rfc-editor.org/info/rfc7921>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Acknowledgements

 The authors would like to thank Chris Bowers, John Scudder, Tom
 Petch, Mike McBride, and Ebben Aries for their review, suggestions,
 and comments to this document.

Contributors

 The following individuals also contributed to this document.

 o Zekun He, Tencent Holdings Ltd.

 o Sujian Lu, Tencent Holdings Ltd.

 o Jeffery Zhang, Juniper Networks

Authors' Addresses

Lixing Wang
Individual

 Email: wang_little_star@sina.com

Mach(Guoyi) Chen
Huawei

 Email: mach.chen@huawei.com

Amit Dass
Ericsson

 Email: dass.amit@gmail.com

Hariharan Ananthakrishnan
Netflix

 Email: hari@netflix.com

Sriganesh Kini
Individual

 Email: sriganeshkini@gmail.com

Nitin Bahadur
Uber

 Email: nitin_bahadur@yahoo.com

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
i12rs
Documents
2019-01-13

SO ¢

1 E T F

Kindle trans formation by Tero Kivinen
o017

