

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

mls RFC and Internet-Draft Index

Index

Active

	draft-ietf-mls-architecture-01 The Messaging Layer Security (MLS) Architecture

	draft-ietf-mls-protocol-02 The Messaging Layer Security (MLS) Protocol

draft-ietf-mls-architecture-01 - The Messaging Layer Security (MLS) Architecture

Index
Next

Network Working Group

Internet-Draft

Intended status: Informational

Expires: April 25, 2019

E. Omara

Google

B. Beurdouche

INRIA

E. Rescorla

Mozilla

S. Inguva

Twitter

A. Kwon

MIT

A. Duric

Wire

October 22, 2018

The Messaging Layer Security (MLS) Architecture

draft-ietf-mls-architecture-01

Abstract

 This document describes the architecture and requirements for the
 Messaging Layer Security (MLS) protocol. MLS provides a security
 layer for group messaging applications with from two to a large
 number of clients. It is meant to protect against eavesdropping,
 tampering, and message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. General Setting
	 2.1. Group, Members and Clients

	 2.2. Authentication Service

	 2.3. Delivery Service
	 2.3.1. Key Storage

	 2.3.2. Key Retrieval

	 2.3.3. Delivery of messages and attachments

	 2.3.4. Membership knowledge

	 2.3.5. Membership and offline members

	3. System Requirements
	 3.1. Functional Requirements
	 3.1.1. Asynchronous Usage

	 3.1.2. Recovery After State Loss

	 3.1.3. Support for Multiple Devices

	 3.1.4. Extensibility / Pluggability

	 3.1.5. Privacy

	 3.1.6. Federation

	 3.1.7. Compatibility with future versions of MLS

	 3.2. Security Requirements
	 3.2.1. Connections between Clients and Servers (one-to-one)

	 3.2.2. Message Secrecy and Authentication

	4. Security Considerations
	 4.1. Transport Security Links

	 4.2. Delivery Service Compromise

	 4.3. Authentication Service Compromise

	 4.4. Client Compromise

	5. Contributors

	6. Informative References

	Authors' Addresses

1. Introduction

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

 The source for this draft is maintained in GitHub. Suggested changes
 should be submitted as pull requests at https://github.com/mlswg/mls-
 architecture. Instructions are on that page as well. Editorial
 changes can be managed in GitHub, but any substantive change should
 be discussed on the MLS mailing list.

 End-to-end security is a requirement for instant messaging systems
 and is commonly deployed in many such systems. In this context,
 "end-to-end" captures the notion that users of the system enjoy some
 level of security - with the precise level depending on the system
 design - even when the messaging service they are using performs
 unsatisfactorily.

 Messaging Layer Security (MLS) specifies an architecture (this
 document) and an abstract protocol [MLSPROTO] for providing end-to-
 end security in this setting. MLS is not intended as a full instant
 messaging protocol but rather is intended to be embedded in a
 concrete protocol such as XMPP [RFC6120]. In addition, it does not
 specify a complete wire encoding, but rather a set of abstract data
 structures which can then be mapped onto a variety of concrete
 encodings, such as TLS [I-D.ietf-tls-tls13], CBOR [RFC7049], and JSON
 [RFC7159]. Implementations which adopt compatible encodings will
 have some degree of interoperability at the message level, though
 they may have incompatible identity/authentication infrastructures.

 This document is intended to describe the overall messaging system
 architecture which the MLS protocol fits into, and the requirements
 which it is intended to fulfill.

2. General Setting

 A Group using a Messaging Service (MS) comprises a set of
 participants called Members where each Member is typically expected
 to own multiple devices, called Clients. A group may be as small as
 two members (the simple case of person to person messaging) or as
 large as thousands. In order to communicate securely, Group Members
 initially use services at their disposal to obtain the necessary
 secrets and credentials required for security.

 The Messaging Service (MS) presents as two abstract services that
 allow Members to prepare for sending and receiving messages securely:

 o An Authentication Service (AS) which is responsible for
 maintaining user long term identities, issuing credentials which
 allow them to authenticate each other, and potentially allowing
 users to discover each others long-term identity keys.

 o A Delivery Service (DS) which is responsible for receiving and
 redistributing messages between group members. In the case of
 group messaging, the delivery service may also be responsible for
 acting as a "broadcaster" where the sender sends a single message
 to a group which is then forwarded to each recipient in the group
 by the DS. The DS is also responsible for storing and delivering
 initial public key material required in order to proceed with the
 group secret key establishment process.

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
| Authentication | | Delivery |
| Service (AS) | | Service (DS) |
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 / | \ Group

* / | \ *
* / | \ *
* ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ *
* | Client 0 | | Client 1 | | Client N | *
* ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑ *
* *
* Member 0 Member 1 *
* *

 In many systems, the AS and the DS are actually operated by the same
 entity and may even be the same server. However, they are logically
 distinct and, in other systems, may be operated by different
 entities, hence we show them as being separate here. Other
 partitions are also possible, such as having a separate directory
 server.

 A typical group messaging scenario might look like this:

 1. Alice, Bob and Charlie create accounts with a messaging service
 and obtain credentials from the AS.

 2. Alice, Bob and Charlie authenticate to the DS and store some
 initial keying material which can be used to send encrypted
 messages to them for the first time. This keying material is
 authenticated with their long term credentials.

 3. When Alice wants to send a message to Bob and Charlie, she
 contacts the DS and looks up their initial keying material. She
 uses these keys to establish a new set of keys which she can use
 to send encrypted messages to Bob and Charlie. She then sends
 the encrypted message(s) to the DS, which forwards them to the
 recipients.

 4. Bob and/or Charlie respond to Alice's message. Their messages
 might trigger a new key derivation step which allows the shared
 group key to be updated to provide post-compromise security
 Section 3.2.2.1.

 Clients may wish to do the following:

 o create a group by inviting a set of other members;

 o add one or more members to an existing group;

 o remove one or more members from an existing group;

 o join an existing group;

 o leave a group;

 o send a message to everyone in the group;

 o receive a message from someone in the group.

 At the cryptographic level, Clients in groups (and by extension
 Members) are peers. For instance, any Client can add a member to a
 group. This is in contrast to some designs in which there is a
 single group controller who can modify the group. MLS is compatible
 with having group administration restricted to certain users, but we
 assume that those restrictions are enforced by authentication and
 access control. Thus, for instance, while it might be technically
 possible for any member to send a message adding a new member to a
 group, the group might have the policy that only certain members are
 allowed to make changes and thus other members can ignore or reject
 such a message from an unauthorized user.

2.1. Group, Members and Clients

 In MLS a Group is defined as a set of Members who possibly use
 multiple endpoint devices (Clients) to interact with the Messaging
 Service. These Clients will typically correspond to end-user devices
 such as phones, web clients or other devices running MLS.

 Each member device owns a long term identity key pair that uniquely
 defines its identity to other Members of the Group. Because a single
 Member may operate multiple devices simultaneously (e.g., a desktop
 and a phone) or sequentially (e.g., replacing one phone with
 another), the formal definition of a Group in MLS is the set of
 Clients that has legitimate knowledge of the shared (Encryption)
 Group Key established in the group key establishment phase of the
 protocol.

 In some messaging systems, Clients belonging to the same Member must
 all share the same identity key pair, but MLS does not assume this.
 The MLS architecture considers the more general case and allows for
 important use cases, such as a Member adding a new Client when all
 their existing clients are offline.

 MLS has been designed to provide similar security guarantees to all
 Clients, for all group sizes, even when it reduces to only two
 Clients.

2.2. Authentication Service

 The basic function of the Authentication Service is to provide a
 trusted mapping from user identities (usernames, phone numbers,
 etc.), which exist 1:1 with Members, to identity keys, which may
 either be one per Client or may be shared amongst the Clients
 attached to a Member.

 o A certification authority or similar service which signs some sort
 of portable credential binding an identity to a key.

 o A directory server which provides the key for a given identity
 (presumably this connection is secured via some form of transport
 security such as TLS).

 By definition, the AS is invested with a large amount of trust. A
 malicious AS can impersonate - or allow an attacker to impersonate -
 any user of the system. This risk can be mitigated by publishing the
 binding between identities and keys in a public log such as Key
 Transparency (KT) [KeyTransparency]. It is possible to build a
 functional MLS system without any kind of public key logging, but
 such a system will necessarily be somewhat vulnerable to attack by a
 malicious or untrusted AS.

2.3. Delivery Service

 The Delivery Service (DS) is expected to play multiple roles in the
 Messaging Service architecture:

 o To act as a directory service providing the keying material
 (authentication keys and initial keying material) for Clients to
 use. This allows a Client to establish a shared key and send
 encrypted messages to other Clients even if the other Client is
 offline.

 o To route messages between Clients and to act as a message
 broadcaster, taking in one message and forwarding it to multiple
 Clients (also known as "server side fanout").

 Depending on the level of trust given by the Group to the Delivery
 Service, the functional and security guarantees provided by MLS may
 differ.

2.3.1. Key Storage

 Upon joining the system, each Client stores its initial cryptographic
 key material with the DS. This key material represents the initial
 contribution from each member that will be used in the establishment
 of the shared group key. This initial keying material is
 authenticated using the Client's identity key. Thus, the Client
 stores:

 o A credential from the Authentication service attesting to the
 binding between the Member and the Client's identity key.

 o The member's initial keying material signed with the Client's
 identity key.

 As noted above, Members may have multiple Clients, each with their
 own keying material, and thus there may be multiple entries stored by
 each Member.

2.3.2. Key Retrieval

 When a Client wishes to establish a group and send an initial message
 to that group, it contacts the DS and retrieves the initial key
 material for each other Member, verifies it using the identity key,
 and then is able to form a joint key with each other Client, and from
 those forms the group key, which it can use for the encryption of
 messages.

2.3.3. Delivery of messages and attachments

 The DS's main responsibility is to ensure delivery of messages.
 Specifically, we assume that DSs provide:

 o Reliable delivery: when a message is provided to the DS, it is
 eventually delivered to all group members.

 o In-order delivery: messages are delivered to the group in the
 order they are received from a given Client and in approximately
 the order in which they are sent by Clients. The latter is an
 approximate guarantee because multiple Clients may send messages

 at the same time and so the DS needs some latitude in reordering
 between Clients.

 o Consistent ordering: the DS must ensure that all Clients have the
 same view of message ordering.

 Note that the DS may provide ordering guarantees by ensuring in-order
 delivery or by providing messages with some kind of sequence
 information and allowing clients to reorder on receipt.

 The MLS protocol itself can verify these properties. For instance,
 if the DS reorders messages from a Client or provides different
 Clients with inconsistent orderings, then Clients can to detect this
 misconduct. However, MLS need not provide mechanisms to recover from
 a misbehaving DS.

 Note that some forms of DS misbehavior are still possible and
 difficult to detect. For instance, a DS can simply refuse to relay
 messages to and from a given Client. Without some sort of side
 information, other Clients cannot generally distinguish this form of
 Denial of Service (DoS) attack from the Client being actually
 offline.

2.3.4. Membership knowledge

 Group membership is itself sensitive information and MLS is designed
 so that neither the DS nor the AS need have static knowledge of which
 Clients are in which Group. However, they may learn this information
 through traffic analysis. For instance, in a server side fanout
 model, the DS learns that a given Client is sending the same message
 to a set of other Clients. In addition, there may be applications of
 MLS in which the Group membership list is stored on some server
 associated with the MS.

2.3.5. Membership and offline members

 Because Forward Secrecy (FS) and Post-Compromise Security (PCS) rely
 on the deletion and replacement of keying material, any Client which
 is persistently offline may still be holding old keying material and
 thus be a threat to both FS and PCS if it is later compromised. MLS
 does not inherently defend against this problem, but MLS-using
 systems can enforce some mechanism for doing so. Typically this will
 consist of evicting Clients which are idle for too long, thus
 containing the threat of compromise. The precise details of such
 mechanisms are a matter of local policy and beyond the scope of this
 document.

3. System Requirements

3.1. Functional Requirements

 MLS is designed as a large scale group messaging protocol and hence
 aims to provide performance and safety to its users. Messaging
 systems that implement MLS provide support for conversations
 involving two or more participants, and aim to scale to approximately
 50,000 clients, typically including many Members using multiple
 devices.

3.1.1. Asynchronous Usage

 No operation in MLS requires two distinct users to be online
 simultaneously. In particular, clients participating in
 conversations protected using MLS can update shared keys, add or
 remove new members, and send messages and attachments without waiting
 for another user's reply.

 Messaging systems that implement MLS provide a transport layer for
 delivering messages asynchronously and reliably.

3.1.2. Recovery After State Loss

 Conversation participants whose local MLS state is lost or corrupted
 can reinitialize their state and continue participating in the
 conversation. This may entail some level of message loss, but does
 not result in permanent exclusion from the group.

3.1.3. Support for Multiple Devices

 It is typically expected for Members of the Group to own different
 devices.

 A new device can join the group and will be considered as a new
 Client by the protocol. This Client will not gain access to the
 history even if it is owned by someone who is already a Member of the
 Group. Restoring history is typically not allowed at the protocol
 level but applications can elect to provide such a mechanism outside
 of MLS.

3.1.4. Extensibility / Pluggability

 Messages that do not affect the group state can carry an arbitrary
 payload with the purpose of sharing that payload between group
 members. No assumptions are made about the format of the payload.

3.1.5. Privacy

 The protocol is designed in a way that limits the server-side (AS and
 DS) metadata footprint. The DS only persists data required for the
 delivery of messages and avoid Personally Identifiable Information
 (PII) or other sensitive metadata wherever possible. A Messaging
 Service provider that has control over both the AS and the DS, will
 not be able to correlate encrypted messages forwarded by the DS, with
 the initial public keys signed by the AS.

3.1.6. Federation

 The protocol aims to be compatible with federated environments.
 While this document does not specify all necessary mechanisms
 required for federation, multiple MLS implementations can
 interoperate and to form federated systems if they use compatible
 wire encodings.

3.1.7. Compatibility with future versions of MLS

 It is important that multiple versions of MLS be able to coexist in
 the future. Thus, MLS offers a version negotiation mechanism; this
 mechanism prevents version downgrade attacks where an attacker would
 actively rewrite messages messages with a lower protocol version than
 the ones originally offered by the endpoints. When multiple versions
 of MLS are available, the negotiation protocol guarantees that the
 version agreed upon will be the highest version supported in common
 by the group.

3.2. Security Requirements

3.2.1. Connections between Clients and Servers (one-to-one)

 We assume that all transport connections are secured via some
 transport layer security mechanism such as TLS [I-D.ietf-tls-tls13].
 However, as noted above, the security of MLS will generally survive
 compromise of the transport layer, so long as identities provided by
 the AS are authenticated at a minimum.

3.2.2. Message Secrecy and Authentication

 The trust establishment step of the MLS protocol is followed by a
 conversation protection step where encryption is used by clients to
 transmit authenticated messages to other clients through the DS.
 This ensures that the DS does not have access to the Group's private
 content.

 MLS aims to provide Secrecy, Integrity and Authentication for all
 messages.

 Message Secrecy in the context of MLS means that only intended
 recipients (current group members), can read any message sent to the
 group, even in the context of an active adversary as described in the
 threat model.

 Message Integrity and Authentication mean that an honest Client can
 only accept a message if it was sent by a group member and that one
 Client cannot send a message which other Clients accept as being from
 another Client.

 A corollary to this statement is that the AS and the DS cannot read
 the content of messages sent between Members as they are not Members
 of the Group. MLS optionally provides additional protections
 regarding traffic analysis so as to reduce the ability of
 adversaries, or a compromised member of the messaging system, to
 deduce the content of the messages depending on (for example) their
 size. One of these protections includes padding messages in order to
 produce ciphertexts of standard length. While this protection is
 highly recommended it is not mandatory as it can be costly in terms
 of performance for clients and the MS.

 Message content can be deniable if the signature keys are exchanged
 over a deniable channel prior to signing messages.

3.2.2.1. Forward and Post-Compromise Security

 MLS provides additional protection regarding secrecy of past messages
 and future messages. These cryptographic security properties are
 Forward Secrecy (FS) and Post-Compromise Security (PCS).

 FS means that access to all encrypted traffic history combined with
 an access to all current keying material on clients will not defeat
 the secrecy properties of messages older than the oldest key of the
 client. Note that this means that clients have the extremely
 important role of deleting appropriate keys as soon as they have been
 used with the expected message, otherwise the secrecy of the messages
 and the security for MLS is considerably weakened.

 PCS means that if a group member is compromised at some time t but
 subsequently performs an update at some time t', then all MLS
 guarantees apply to messages sent after time t'. For example, if an
 adversary learns all secrets known to Alice at time t, including both
 Alice's secret keys and all shared group keys, but Alice performs a
 key update at time t', then the adversary is unable to violate any of
 the MLS security properties after time t'.

 Both of these properties are satisfied even against compromised DSs
 and ASs.

3.2.2.2. Membership Changes

 MLS aims to provide agreement on group membership, meaning that all
 group members have agreed on the list of current group members.

 Some applications may wish to enforce ACLs to limit addition or
 removal of group members, to privileged users. Others may wish to
 require authorization from the current group members or a subset
 thereof. Regardless, MLS does not allow addition or removal of group
 members without informing all other members.

 Once a Member is part of a Group, the set of devices controlled by
 the member can only be altered by an authorized member of the group.
 This authorization could depend on the application: some applications
 might want to allow certain other members of the group to add or
 remove devices on behalf of another member, while other applications
 might want a more strict policy and allow only the owner of the
 devices to add or remove them at the potential cost of weaker PCS
 guarantees.

 Members who are removed from a group do not enjoy special privileges:
 compromise of a removed group member does not affect the security of
 messages sent after their removal.

3.2.2.3. Security of Attachments

 The security properties expected for attachments in the MLS protocol
 are very similar to the ones expected from messages. The distinction
 between messages and attachments stems from the fact that the typical
 average time between the download of a message and the one from the
 attachments may be different. For many reasons (a typical reason
 being the lack of high bandwidth network connectivity), the lifetime
 of the cryptographic keys for attachments is usually higher than for
 messages, hence slightly weakening the PCS guarantees for
 attachments.

3.2.2.4. Denial of Service

 In general we do not consider Denial of Service (DoS) resistance to
 be the responsibility of the protocol. However, it should not be
 possible for anyone aside from the DS to perform a trivial DoS attack
 from which it is hard to recover.

3.2.2.5. Non-Repudiation and Deniability

 As described in Section 4.4, MLS provides data origin authentication
 within a group, such that one group member cannot send a message that
 appears to be from another group member. Additionally, some services
 require that a recipient be able to prove to the messaging service
 that a message was sent by a given Client, in order to report abuse.
 MLS supports both of these use cases. In some deployments, these
 services are provided by mechanisms which allow the receiver to prove
 a message's origin to a third party (this if often called "non-
 repudiation"), but it should also be possible to operate MLS in a
 "deniable" mode where such proof is not possible. [[OPEN ISSUE:
 Exactly how to supply this is still a protocol question.]]

4. Security Considerations

 MLS adopts the Internet threat model [RFC3552] and therefore assumes
 that the attacker has complete control of the network. It is
 intended to provide the security services described in in the face of
 such attackers. In addition, these guarantees are intended to
 degrade gracefully in the presence of compromise of the transport
 security links as well as of both Clients and elements of the
 messaging system, as described in the remainder of this section.

4.1. Transport Security Links

 [TODO: Mostly DoS, message suppression, and leakage of group
 membership.]

4.2. Delivery Service Compromise

 MLS is intended to provide strong guarantees in the face of
 compromise of the DS. Even a totally compromised DS should not be
 able to read messages or inject messages that will be acceptable to
 legitimate Clients. It should also not be able to undetectably
 remove, reorder or replay messages.

 However, a DS can mount a variety of DoS attacks on the system,
 including total DoS attacks (where it simply refuses to forward any
 messages) and partial DoS attacks (where it refuses to forward
 messages to and from specific Clients). As noted in Section 2.3.3,
 these attacks are only partially detectable by clients without an
 out-of-band channel. Ultimately, failure of the DS to provide
 reasonable service must be dealt with as a customer service matter,
 not via technology.

 Because the DS is responsible for providing the initial keying
 material to Clients, it can provide stale keys. This does not
 inherently lead to compromise of the message stream, but does allow
 it to attack forward security to a limited extent. This threat can
 be mitigated by having initial keys expire.

4.3. Authentication Service Compromise

 A compromised AS is a serious matter, as the AS can provide incorrect
 or adversarial identities to clients. As noted in Section 2.2,
 mitigating this form of attack requires some sort of transparency/
 logging mechanism. Without such a mechanism, MLS will only provide
 limited security against a compromised AS.

4.4. Client Compromise

 In general, MLS only provides limited protection against compromised
 Clients. When the Client is compromised, then the attacker will
 obviously be able to decrypt any messages for groups in which the
 Client is a member. It will also be able to send messages
 impersonating the compromised Client until the Client updates its
 keying material (see Section 3.2.2.1). MLS attempts to provide some
 security in the face of client compromise.

 In addition, a Client cannot send a message to a group which appears
 to be from another Client with a different identity. Note that if
 Clients from the same Member share keying material, then one will be
 able to impersonate another.

 Finally, Clients should not be able to perform DoS attacks
 Section 3.2.2.4.

5. Contributors

o Katriel Cohn‑Gordon
 University of Oxford
 me@katriel.co.uk

o Cas Cremers
 University of Oxford
 cas.cremers@cs.ox.ac.uk

o Thyla van der Merwe
 Royal Holloway, University of London
 thyla.van.der@merwe.tech

o Jon Millican
 Facebook
 jmillican@fb.com

o Raphael Robert
 Wire
 raphael@wire.com

6. Informative References

 [I-D.ietf-tls-tls13]

 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [KeyTransparency]

 Google, ., "Key Transparency", n.d.,
 <https://KeyTransparency.org>.

 [MLSPROTO]

 Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., and
 R. Robert, "Messaging Layer Security Protocol", 2018.

 [RFC3552]
 Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC6120]
 Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <https://www.rfc-editor.org/info/rfc6120>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7159]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

Authors' Addresses

Emad Omara
Google

 Email: emadomara@google.com

Benjamin Beurdouche
INRIA

 Email: benjamin.beurdouche@inria.fr

Eric Rescorla
Mozilla

 Email: ekr@rtfm.com

Srinivas Inguva
Twitter

 Email: singuva@twitter.com

Albert Kwon
MIT

 Email: kwonal@mit.edu

Alan Duric
Wire

 Email: alan@wire.com

draft-ietf-mls-protocol-02 - The Messaging Layer Security (MLS) Protocol

Index
Prev
Next

Network Working Group

Internet-Draft

Intended status: Informational

Expires: April 25, 2019

R. Barnes

Cisco

J. Millican

Facebook

E. Omara

Google

K. Cohn-Gordon

University of Oxford

R. Robert

Wire

October 22, 2018

The Messaging Layer Security (MLS) Protocol

draft-ietf-mls-protocol-02

Abstract

 Messaging applications are increasingly making use of end-to-end
 security mechanisms to ensure that messages are only accessible to
 the communicating endpoints, and not to any servers involved in
 delivering messages. Establishing keys to provide such protections
 is challenging for group chat settings, in which more than two
 participants need to agree on a key but may not be online at the same
 time. In this document, we specify a key establishment protocol that
 provides efficient asynchronous group key establishment with forward
 secrecy and post-compromise security for groups in size ranging from
 two to thousands.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Change Log

	2. Terminology

	3. Basic Assumptions

	4. Protocol Overview

	5. Ratchet Trees
	 5.1. Tree Computation Terminology

	 5.2. Ratchet Tree Nodes

	 5.3. Blank Nodes and Resolution

	 5.4. Ratchet Tree Updates

	 5.5. Cryptographic Objects
	 5.5.1. Curve25519, SHA-256, and AES-128-GCM

	 5.5.2. P-256, SHA-256, and AES-128-GCM

	 5.6. Credentials

	 5.7. Group State

	 5.8. Direct Paths

	 5.9. Key Schedule

	6. Initialization Keys

	7. Handshake Messages
	 7.1. Init

	 7.2. Add

	 7.3. Update

	 7.4. Remove

	8. Sequencing of State Changes
	 8.1. Server-Enforced Ordering

	 8.2. Client-Enforced Ordering

	 8.3. Merging Updates

	9. Message Protection
	 9.1. Application Key Schedule
	 9.1.1. Updating the Application Secret

	 9.1.2. Application AEAD Key Calculation

	 9.2. Message Encryption and Decryption
	 9.2.1. Delayed and Reordered Application messages

	10. Security Considerations
	 10.1. Confidentiality of the Group Secrets

	 10.2. Authentication

	 10.3. Forward and post-compromise security

	 10.4. Init Key Reuse

	11. IANA Considerations

	12. Contributors

	13. References
	 13.1. Normative References

	 13.2. Informative References

	Appendix A. Tree Math

	Authors' Addresses

1. Introduction

 DISCLAIMER: This is a work-in-progress draft of MLS and has not yet
 seen significant security analysis. It should not be used as a basis
 for building production systems.

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this
 draft is maintained in GitHub. Suggested changes should be submitted
 as pull requests at https://github.com/mlswg/mls-protocol.
 Instructions are on that page as well. Editorial changes can be
 managed in GitHub, but any substantive change should be discussed on
 the MLS mailing list.

 A group of agents who want to send each other encrypted messages
 needs a way to derive shared symmetric encryption keys. For two
 parties, this problem has been studied thoroughly, with the Double
 Ratchet emerging as a common solution [doubleratchet] [signal].
 Channels implementing the Double Ratchet enjoy fine-grained forward
 secrecy as well as post-compromise security, but are nonetheless
 efficient enough for heavy use over low-bandwidth networks.

 For a group of size greater than two, a common strategy is to
 unilaterally broadcast symmetric "sender" keys over existing shared
 symmetric channels, and then for each agent to send messages to the
 group encrypted with their own sender key. Unfortunately, while this
 improves efficiency over pairwise broadcast of individual messages
 and (with the addition of a hash ratchet) provides forward secrecy,
 it is difficult to achieve post-compromise security with sender keys.
 An adversary who learns a sender key can often indefinitely and
 passively eavesdrop on that sender's messages. Generating and
 distributing a new sender key provides a form of post-compromise
 security with regard to that sender. However, it requires
 computation and communications resources that scale linearly as the
 size of the group.

 In this document, we describe a protocol based on tree structures
 that enable asynchronous group keying with forward secrecy and post-
 compromise security. Based on earlier work on "asynchronous
 ratcheting trees" [art], the mechanism presented here use a
 asynchronous key-encapsulation mechanism for tree structures. This
 mechanism allows the members of the group to derive and update shared
 keys with costs that scale as the log of the group size.

1.1. Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

 draft-02

 o Removed ART (*)

 o Allowed partial trees to avoid double-joins (*)

 o Added explicit key confirmation (*)

 draft-01

 o Initial description of the Message Protection mechanism. (*)

 o Initial specification proposal for the Application Key Schedule
 using the per-participant chaining of the Application Secret
 design. (*)

 o Initial specification proposal for an encryption mechanism to
 protect Application Messages using an AEAD scheme. (*)

 o Initial specification proposal for an authentication mechanism of
 Application Messages using signatures. (*)

 o Initial specification proposal for a padding mechanism to
 improving protection of Application Messages against traffic
 analysis. (*)

 o Inversion of the Group Init Add and Application Secret derivations
 in the Handshake Key Schedule to be ease chaining in case we
 switch design. (*)

 o Removal of the UserAdd construct and split of GroupAdd into Add
 and Welcome messages (*)

 o Initial proposal for authenticating Handshake messages by signing
 over group state and including group state in the key schedule (*)

 o Added an appendix with example code for tree math

 o Changed the ECIES mechanism used by TreeKEM so that it uses nonces
 generated from the shared secret

 draft-00

 o Initial adoption of draft-barnes-mls-protocol-01 as a WG item.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Participant: An agent that uses this protocol to establish shared
 cryptographic state with other participants. A participant is
 defined by the cryptographic keys it holds. An application may
 use one participant per device (keeping keys local to each device)
 or sync keys among a user's devices so that each user appears as a
 single participant.

Group: A collection of participants with shared cryptographic state.

Member: A participant that is included in the shared state of a
 group, and has access to the group's secrets.

Initialization Key: A short‑lived Diffie‑Hellman key pair used to
 introduce a new member to a group. Initialization keys are
 published for individual participants (UserInitKey).

Leaf Key: A short‑lived Diffie‑Hellman key pair that represents a
 group member's contribution to the group secret, so called because
 the participants leaf keys are the leaves in the group's ratchet
 tree.

Identity Key: A long‑lived signing key pair used to authenticate the
 sender of a message.

 Terminology specific to tree computations is described in Section 5.

 We use the TLS presentation language [RFC8446] to describe the
 structure of protocol messages.

3. Basic Assumptions

 This protocol is designed to execute in the context of a Messaging
 Service (MS) as described in [I-D.ietf-mls-architecture]. In
 particular, we assume the MS provides the following services:

 o A long-term identity key provider which allows participants to
 authenticate protocol messages in a group. These keys MUST be
 kept for the lifetime of the group as there is no mechanism in the
 protocol for changing a participant's identity key.

 o A broadcast channel, for each group, which will relay a message to
 all members of a group. For the most part, we assume that this
 channel delivers messages in the same order to all participants.
 (See Section 8 for further considerations.)

 o A directory to which participants can publish initialization keys,
 and from which participant can download initialization keys for
 other participants.

4. Protocol Overview

 The goal of this protocol is to allow a group of participants to
 exchange confidential and authenticated messages. It does so by
 deriving a sequence of secrets and keys known only to group members.
 Those should be secret against an active network adversary and should
 have both forward and post-compromise secrecy with respect to
 compromise of a participant.

 We describe the information stored by each participant as a _state_,
 which includes both public and private data. An initial state,
 including an initial set of participants, is set up by a group
 creator using the _Init_ algorithm and based on information pre-
 published by the initial members. The creator sends the _GroupInit_
 message to the participants, who can then set up their own group
 state and derive the same shared secret. Participants then exchange
 messages to produce new shared states which are causally linked to
 their predecessors, forming a logical Directed Acyclic Graph (DAG) of
 states. Participants can send _Update_ messages for post-compromise
 secrecy and new participants can be added or existing participants
 removed from the group.

 The protocol algorithms we specify here follow. Each algorithm
 specifies both (i) how a participant performs the operation and (ii)
 how other participants update their state based on it.

 There are four major operations in the lifecycle of a group:

 o Adding a member, initiated by a current member;

 o Adding a member, initiated by the new member;

 o Updating the leaf secret of a member;

 o Removing a member.

 Before the initialization of a group, participants publish
 UserInitKey objects to a directory provided to the Messaging Service.

 Group
A B C Directory Channel
UserInitKeyA			
‑‑‑>			
	UserInitKeyB		
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>		
		UserInitKeyC	
		‑‑‑‑‑‑‑‑‑‑‑‑‑>	

 When a participant A wants to establish a group with B and C, it
 first downloads InitKeys for B and C. It then initializes a group
 state containing only itself and uses the InitKeys to compute Add
 messages to add B and C, in a sequence chosen by A. These messages
 are broadcasted to the Group, and processed in sequence by B and C.
 Messages received before a participant has joined the group are
 ignored. Only after A has received its Add messages back from the
 server does it update its state to reflect their addition.

 Group
A B C Directory Channel
UserInitKeyB, UserInitKeyC			
<‑‑‑			
			Add(A‑>AB)
‑‑‑>			
			Add(AB‑>ABC)
‑‑‑>			
			Add(A‑>AB)
<‑‑‑			
state.add(B)	<‑‑		
	state.init()	x‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
			Add(AB‑>ABC)
<‑‑‑			
state.add(C)	<‑‑		
	state.add(C)	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
		state.init()	

 Subsequent additions of group members proceed in the same way. Any
 member of the group can download an InitKey for a new participant and
 broadcast an Add message that the current group can use to update
 their state and the new participant can use to initialize its state.

 To enforce forward secrecy and post-compromise security of messages,
 each participant periodically updates its leaf secret which
 represents its contribution to the group secret. Any member of the
 group can send an Update at any time by generating a fresh leaf
 secret and sending an Update message that describes how to update the
 group secret with that new information. Once all participants have
 processed this message, the group's secrets will be unknown to an
 attacker that had compromised the sender's prior leaf secret.

 It is left to the application to determine the interval of time
 between Update messages. This policy could require a change for each
 message, or it could require sending an update every week or more.

 Group
A B ... Z Directory Channel
| | | | |
| Update(A) | | | |
|‑‑>|
| | | | |
| | | | Update(A) |
|<‑‑|
state.upd(A)	<‑‑‑		
	state.upd(A)	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
		state.upd(A)	

 Users are removed from the group in a similar way, as an update is
 effectively removing the old leaf from the group. Any member of the
 group can generate a Remove message that adds new entropy to the
 group state that is known to all members except the removed member.
 After other participants have processed this message, the group's
 secrets will be unknown to the removed participant. Note that this
 does not necessarily imply that any member is actually allowed to
 evict other members; groups can layer authentication-based access
 control policies on top of these basic mechanism.

 Group
A B ... Z Directory Channel
		Remove(B)	
		‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	
			Remove(B)
<‑‑			
state.del(B)		<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
		state.del(B)	

5. Ratchet Trees

 The protocol uses "ratchet trees" for deriving shared secrets among a
 group of participants.

5.1. Tree Computation Terminology

 Trees consist of _nodes_. A node is a _leaf_ if it has no children,
 and a _parent_ otherwise; note that all parents in our ratchet trees
 have precisely two children, a _left_ child and a _right_ child. A
 node is the _root_ of a tree if it has no parents, and _intermediate_
 if it has both children and parents. The _descendants_ of a node are
 that node, its children, and the descendants of its children, and we
 say a tree _contains_ a node if that node is a descendant of the root
 of the tree. Nodes are _siblings_ if they share the same parent.

 A _subtree_ of a tree is the tree given by the descendants of any
 node, the _head_ of the subtree. The _size_ of a tree or subtree is
 the number of leaf nodes it contains. For a given parent node, its
 left subtree is the subtree with its left child as head
 (respectively _right subtree_).

 All trees used in this protocol are left-balanced binary trees. A
 binary tree is _full_ (and _balanced_) if it its size is a power of
 two and for any parent node in the tree, its left and right subtrees
 have the same size. If a subtree is full and it is not a subset of
 any other full subtree, then it is _maximal_.

 A binary tree is _left-balanced_ if for every parent, either the
 parent is balanced, or the left subtree of that parent is the largest
 full subtree that could be constructed from the leaves present in the
 parent's own subtree. Note that given a list of "n" items, there is
 a unique left-balanced binary tree structure with these elements as
 leaves. In such a left-balanced tree, the "k-th" leaf node refers to
 the "k-th" leaf node in the tree when counting from the left,
 starting from 0.

 The _direct path_ of a root is the empty list, and of any other node
 is the concatenation of that node with the direct path of its parent.
 The _copath_ of a node is the list of siblings of nodes in its direct
 path, excluding the root. The _frontier_ of a tree is the list of
 heads of the maximal full subtrees of the tree, ordered from left to
 right.

 For example, in the below tree:

 o The direct path of C is (C, CD, ABCD)

 o The copath of C is (D, AB, EFG)

 o The frontier of the tree is (ABCD, EF, G)

 ABCDEFG
 / \
 / \
 / \
 ABCD EFG
 / \ / \
 / \ / \
 AB CD EF |
 / \ / \ / \ |
A B C D E F G

 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2

 Each node in the tree is assigned an _index_, starting at zero and
 running from left to right. A node is a leaf node if and only if it
 has an even index. The indices for the nodes in the above tree are
 as follows:

 o 0 = A

 o 1 = AB

 o 2 = B

 o 3 = ABCD

 o 4 = C

 o 5 = CD

 o 6 = D

 o 7 = ABCDEFG

 o 8 = E

 o 9 = EF

 o 10 = F

 o 11 = EFG

 o 12 = G

 (Note that left-balanced binary trees are the same structure that is
 used for the Merkle trees in the Certificate Transparency protocol
 [I-D.ietf-trans-rfc6962-bis].)

5.2. Ratchet Tree Nodes

 Ratchet trees are used for generating shared group secrets. In this
 section, we describe the structure of a ratchet tree. A particular
 instance of a ratchet tree is based on the following cryptographic
 primitives, defined by the ciphersuite in use:

 o A Diffie-Hellman finite-field group or elliptic curve

 o A Derive-Key-Pair function that produces a key pair from an octet
 string

 o A hash function

 A ratchet tree is a left-balanced binary tree, in which each node
 contains up to three values:

 o A secret octet string (optional)

 o An asymmetric private key (optional)

 o An asymmetric public key

 The private key and public key for a node are derived from its secret
 value using the Derive-Key-Pair operation.

 The contents of a parent node are computed from one of its children
 as follows:

parent_secret = Hash(child_secret)
parent_private, parent_public = Derive‑Key‑Pair(parent_secret)

 The contents of the parent are based on the latest-updated child.
 For example, if participants with leaf secrets A, B, C, and D join a
 group in that order, then the resulting tree will have the following
 structure:

 H(H(D))
 / \
 H(B) H(D)
 / \ / \
A B C D

 If the first participant subsequently changes its leaf secret to be
 X, then the tree will have the following structure.

 H(H(X))
 / \
 H(X) H(D)
 / \ / \
X B C D

5.3. Blank Nodes and Resolution

 A node in the tree may be _blank_, indicating that no value is
 present at that node. The _resolution_ of a node is an ordered list
 of non-blank nodes that collectively cover all non-blank descendants
 of the node. The nodes in a resolution are ordered according to
 their indices.

 o The resolution of a non-blank node is a one element list
 containing the node itself

 o The resolution of a blank leaf node is the empty list

 o The resolution of a blank intermediate node is the result of
 concatinating the resolution of its left child with the resolution
 of its right child, in that order

 For example, consider the following tree, where the "_" character
 represents a blank node:

 _
 / \
 / \
 _ CD
 / \ / \
A _ C D

 0 1 2 3 4 5 6

 In this tree, we can see all three of the above rules in play:

 o The resolution of node 5 is the list [CD]

 o The resolution of node 2 is the empty list []

 o The resolution of node 3 is the list [A, CD]

5.4. Ratchet Tree Updates

 In order to update the state of the group such as adding and removing
 participants, MLS messages are used to make changes to the group's
 ratchet tree. The participant proposing an update to the tree
 transmits a representation of a set of tree nodes along the direct
 path from a leaf to the root. Other participants in the group can
 use these nodes to update their view of the tree, aligning their copy
 of the tree to the sender's.

 To perform an update for a leaf, the sender transmits the following
 information for each node in the direct path from leaf leaf to the
 root:

 o The public key for the node

 o Zero or more encrypted copies of the node's secret value

 The secret value is encrypted for the subtree corresponding to the
 node's non-updated child, i.e., the child not on the direct path.
 There is one encrypted secret for each public key in the resolution
 of the non-updated child. In particular, for the leaf node, there
 are no encrypted secrets, since a leaf node has no children.

 The recipient of an update processes it with the following steps:

 1. Compute the updated secret values * Identify a node in the direct
 path for which the local participant is in the subtree of the
 non-updated child * Identify a node in the resolution of the non-
 updated child for which this node has a private key * Decrypt the
 secret value for the direct path node using the private key from
 the resolution node * Compute secret values for ancestors of that
 node by hashing the decrypted secret

 2. Merge the updated secrets into the tree * Replace the public keys
 for nodes on the direct path with the received public keys * For
 nodes where an updated secret was computed in step 1, replace the
 secret value for the node with the updated value

 For example, suppose we had the following tree:

 G
 / \
 / \
 E _
 / \ / \
A B C D

 If an update is made along the direct path B-E-G, then the following
 values will be transmitted (using pk(X) to represent the public key
 corresponding to the secret value X and E(K, S) to represent public-
 key encryption to the public key K of the secret value S):

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Public Key | Ciphertext(s) |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
pk(G)	E(pk(C), G), E(pk(D), G)
pk(E)	E(pk(A), E)
pk(B)	
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

5.5. Cryptographic Objects

 Each MLS session uses a single ciphersuite that specifies the
 following primitives to be used in group key computations:

 o A hash function

 o A Diffie-Hellman finite-field group or elliptic curve

 o An AEAD encryption algorithm [RFC5116]

 The ciphersuite must also specify an algorithm "Derive-Key-Pair" that
 maps octet strings with the same length as the output of the hash
 function to key pairs for the asymmetric encryption scheme.

 Public keys used in the protocol are opaque values in a format
 defined by the ciphersuite, using the following types:

uint16 CipherSuite;
opaque DHPublicKey<1..2^16‑1>;
opaque SignaturePublicKey<1..2^16‑1>;

5.5.1. Curve25519, SHA-256, and AES-128-GCM

 This ciphersuite uses the following primitives:

 o Hash function: SHA-256

 o Diffie-Hellman group: Curve25519 [RFC7748]

 o AEAD: AES-128-GCM

 Given an octet string X, the private key produced by the Derive-Key-
 Pair operation is SHA-256(X). (Recall that any 32-octet string is a
 valid Curve25519 private key.) The corresponding public key is
 X25519(SHA-256(X), 9).

 Implementations SHOULD use the approach specified in [RFC7748] to
 calculate the Diffie-Hellman shared secret. Implementations MUST
 check whether the computed Diffie-Hellman shared secret is the all-
 zero value and abort if so, as described in Section 6 of [RFC7748].
 If implementers use an alternative implementation of these elliptic
 curves, they SHOULD perform the additional checks specified in
 Section 7 of [RFC7748]

 Encryption keys are derived from shared secrets by taking the first
 16 bytes of H(Z), where Z is the shared secret and H is SHA-256.

5.5.2. P-256, SHA-256, and AES-128-GCM

 This ciphersuite uses the following primitives:

 o Hash function: P-256

 o Diffie-Hellman group: secp256r1 (NIST P-256)

 o AEAD: AES-128-GCM

 Given an octet string X, the private key produced by the Derive-Key-
 Pair operation is SHA-256(X), interpreted as a big-endian integer.
 The corresponding public key is the result of multiplying the
 standard P-256 base point by this integer.

 P-256 ECDH calculations (including parameter and key generation as
 well as the shared secret calculation) are performed according to
 [IEEE1363] using the ECKAS-DH1 scheme with the identity map as key
 derivation function (KDF), so that the shared secret is the
 x-coordinate of the ECDH shared secret elliptic curve point
 represented as an octet string. Note that this octet string (Z in
 IEEE 1363 terminology) as output by FE2OSP, the Field Element to
 Octet String Conversion Primitive, has constant length for any given
 field; leading zeros found in this octet string MUST NOT be
 truncated.

 (Note that this use of the identity KDF is a technicality. The
 complete picture is that ECDH is employed with a non-trivial KDF
 because MLS does not directly use this secret for anything other than
 for computing other secrets.)

 Clients MUST validate remote public values by ensuring that the point
 is a valid point on the elliptic curve. The appropriate validation
 procedures are defined in Section 4.3.7 of [X962] and alternatively
 in Section 5.6.2.3 of [keyagreement]. This process consists of three
 steps: (1) verify that the value is not the point at infinity (O),
 (2) verify that for Y = (x, y) both integers are in the correct
 interval, (3) ensure that (x, y) is a correct solution to the
 elliptic curve equation. For these curves, implementers do not need
 to verify membership in the correct subgroup.

 Encryption keys are derived from shared secrets by taking the first
 16 bytes of H(Z), where Z is the shared secret and H is SHA-256.

5.6. Credentials

 A member of a group authenticates the identities of other
 participants by means of credentials issued by some authentication
 system, e.g., a PKI. Each type of credential MUST express the
 holder's identity as well as the public key of a signature key pair
 that the holder of the credential will use to sign MLS messages.
 Credentials MAY also include information that allows a relying party
 to verify the identity / signing key binding.

enum {
 basic(0),
 x509(1),
 (255)
} CredentialType;

struct {
 opaque identity<0..2^16‑1>;
 SignaturePublicKey public_key;
} BasicCredential;

struct {
 CredentialType credential_type;
 select (credential_type) {
 case basic:
 BasicCredential;

 case x509:
 opaque cert_data<1..2^24‑1>;
 };
} Credential;

5.7. Group State

 Each participant in the group maintains a representation of the state
 of the group:

struct {
 uint8 present;
 switch (present) {
 case 0: struct{};
 case 1: T value;
 }
} optional<T>;

struct {
 opaque group_id<0..255>;
 uint32 epoch;
 optional<Credential> roster<1..2^32‑1>;
 optional<PublicKey> tree<1..2^32‑1>;
 opaque transcript_hash<0..255>;
} GroupState;

 The fields in this state have the following semantics:

 o The "group_id" field is an application-defined identifier for the
 group.

 o The "epoch" field represents the current version of the group key.

 o The "roster" field contains credentials for the occupied slots in
 the tree, including the identity and signature public key for the
 holder of the slot.

 o The "tree" field contains the public keys corresponding to the
 nodes of the ratchet tree for this group. The length of this
 vector MUST be "2*size + 1", where "size" is the length of the
 roster, since this is the number of nodes in a tree with "size"
 leaves, according to the structure described in Section 5.

 o The "transcript" field contains the list of "GroupOperation"
 messages that led to this state.

 When a new member is added to the group, an existing member of the
 group provides the new member with a Welcome message. The Welcome
 message provides the information the new member needs to initialize
 its GroupState.

 Different group operations will have different effects on the group
 state. These effects are described in their respective subsections
 of Section 7. The following rules apply to all operations:

 o The "group_id" field is constant

 o The "epoch" field increments by one for each GroupOperation that
 is processed

 o The "transcript_hash" is updated by a GroupOperation message
 "operation" in the following way:

 transcript_hash_[n] = Hash(transcript_hash_[n-1] || operation)

 When a new one-member group is created (which requires no
 GroupOperation), the "transcript_hash" field is set to an all-zero
 vector of length Hash.length.

5.8. Direct Paths

 As described in Section 5.4, each MLS message needs to transmit node
 values along the direct path from a leaf to the root. The path
 contains a public key for the leaf node, and a public key and
 encrypted secret value for intermediate nodes in the path. In both
 cases, the path is ordered from the leaf to the root; each node MUST
 be the parent of its predecessor.

struct {
 DHPublicKey ephemeral_key;
 opaque ciphertext<0..255>;
} ECIESCiphertext;

struct {
 DHPublicKey public_key;
 ECIESCiphertext node_secrets<0..2^16‑1>;
} RatchetNode

struct {
 RatchetNode nodes<0..2^16‑1>;
} DirectPath;

 The length of the "node_secrets" vector MUST be zero for the first
 node in the path. For the remaining elements in the vector, the
 number of ciphertexts in the "node_secrets" vector MUST be equal to
 the length of the resolution of the corresponding copath node. Each
 ciphertext in the list is the encryption to the corresponding node in
 the resolution.

 The ECIESCiphertext values encoding the encrypted secret values are
 computed as follows:

 o Generate an ephemeral DH key pair (x, x*G) in the DH group
 specified by the ciphersuite in use

 o Compute the shared secret Z with the node's other child

 o Derive a key and nonce as described below

 o Encrypt the node's secret value using the AEAD algorithm specified
 by the ciphersuite in use, with the following inputs:

 * Key: The key derived from Z

 * Nonce: The nonce derived from Z

 * Additional Authenticated Data: The empty octet string

 * Plaintext: The secret value, without any further formatting

 o Encode the ECIESCiphertext with the following values:

 * ephemeral_key: The ephemeral public key x*G

 * ciphertext: The AEAD output

key = HKDF‑Expand(Secret, ECIESLabel("key"), Length)
nonce = HKDF‑Expand(Secret, ECIESLabel("nonce"), Length)

 Where ECIESLabel is specified as:

struct {
 uint16 length = Length;
 opaque label<12..255> = "mls10 ecies " + Label;
} ECIESLabel;

 Decryption is performed in the corresponding way, using the private
 key of the resolution node and the ephemeral public key transmitted
 in the message.

5.9. Key Schedule

 Group keys are derived using the HKDF-Extract and HKDF-Expand
 functions as defined in [RFC5869], as well as the functions defined
 below:

 Derive-Secret(Secret, Label, State) =

 HKDF-Expand(Secret, HkdfLabel, Hash.length)

 Where HkdfLabel is specified as:

struct {
 uint16 length = Length;
 opaque label<6..255> = "mls10 " + Label;
 GroupState state = State;
} HkdfLabel;

 The Hash function used by HKDF is the ciphersuite hash algorithm.
 Hash.length is its output length in bytes. In the below diagram:

 o HKDF-Extract takes its Salt argument from the top and its IKM
 argument from the left

 o Derive-Secret takes its Secret argument from the incoming arrow

 When processing a handshake message, a participant combines the
 following information to derive new epoch secrets:

 o The init secret from the previous epoch

 o The update secret for the current epoch

 o The GroupState object for current epoch

 Given these inputs, the derivation of secrets for an epoch proceeds
 as shown in the following diagram:

 init_secret_[n‑1] (or 0)
 |
 V
update_secret ‑> HKDF‑Extract = epoch_secret
 |
 +‑‑> Derive‑Secret(., "app", GroupState_[n])
 | = application_secret
 |
 +‑‑> Derive‑Secret(., "confirm", GroupState_[n])
 | = confirmation_key
 |
 V
 Derive‑Secret(., "init", GroupState_[n])
 |
 V
 init_secret_[n]

6. Initialization Keys

 In order to facilitate asynchronous addition of participants to a
 group, it is possible to pre-publish initialization keys that provide
 some public information about a user. UserInitKey messages provide
 information about a potential group member, that a group member can
 use to add this user to a group asynchronously.

 A UserInitKey object specifies what ciphersuites a client supports,
 as well as providing public keys that the client can use for key
 derivation and signing. The client's identity key is intended to be
 stable throughout the lifetime of the group; there is no mechanism to
 change it. Init keys are intended to be used a very limited number
 of times, potentially once. (see Section 10.4).

 The init_keys array MUST have the same length as the cipher_suites
 array, and each entry in the init_keys array MUST be a public key for
 the DH group defined by the corresponding entry in the cipher_suites
 array.

 The whole structure is signed using the client's identity key. A
 UserInitKey object with an invalid signature field MUST be considered
 malformed. The input to the signature computation comprises all of
 the fields except for the signature field.

struct {
 CipherSuite cipher_suites<0..255>;
 DHPublicKey init_keys<1..2^16‑1>;
 SignaturePublicKey identity_key;
 SignatureScheme algorithm;
 opaque signature<0..2^16‑1>;
} UserInitKey;

7. Handshake Messages

 Over the lifetime of a group, its state will change for:

 o Group initialization

 o A current member adding a new participant

 o A current participant updating its leaf key

 o A current member deleting another current member

 In MLS, these changes are accomplished by broadcasting "handshake"
 messages to the group. Note that unlike TLS and DTLS, there is not a
 consolidated handshake phase to the protocol. Rather, handshake
 messages are exchanged throughout the lifetime of a group, whenever a
 change is made to the group state. This means an unbounded number of
 interleaved application and handshake messages.

 An MLS handshake message encapsulates a specific "key exchange"
 message that accomplishes a change to the group state. It also
 includes a signature by the sender of the message over the GroupState
 object representing the state of the group after the change has been
 made.

enum {
 init(0),
 add(1),
 update(2),
 remove(3),
 (255)
} GroupOperationType;

struct {
 GroupOperationType msg_type;
 select (GroupOperation.msg_type) {
 case init: Init;
 case add: Add;
 case update: Update;
 case remove: Remove;
 };
} GroupOperation;

struct {
 uint32 prior_epoch;
 GroupOperation operation;

 uint32 signer_index;
 SignatureScheme algorithm;
 opaque signature<1..2^16‑1>;
 opaque confirmation[Hash.length];
} Handshake;

 The high-level flow for processing a Handshake message is as follows:

 1. Verify that the "prior_epoch" field of the Handshake message is
 equal the "epoch" field of the current GroupState object.

 2. Use the "operation" message to produce an updated, provisional
 GroupState object incorporating the proposed changes.

 3. Look up the public key for slot index "signer_index" from the
 roster in the current GroupState object (before the update).

 4. Use that public key to verify the "signature" field in the
 Handshake message, with the updated GroupState object as input.

 5. If the signature fails to verify, discard the updated GroupState
 object and consider the Handshake message invalid.

 6. Use the "confirmation_key" for the new group state to compute the
 finished MAC for this message, as described below, and verify
 that it is the same as the "finished_mac" field.

 7. If the the above checks are successful, consider the updated
 GroupState object as the current state of the group.

 The "finished_mac" value is computed over the provisional group state
 and the current handshake message (with the confirmation value set to
 zero):

struct {
 GroupState state; // Provisional group state
 Handshake handshake; // Handshake message, confirmation = 0
} ConfirmationData;

 confirmation = HMAC(confirmation_key, ConfirmationData)

 HMAC [RFC2104] uses the Hash algorithm for the ciphersuite in use.

 [[OPEN ISSUE: The Add and Remove operations create a "double-join"
 situation, where a participants leaf key is also known to another
 participant. When a participant A is double-joined to another B,
 deleting A will not remove them from the conversation, since they
 will still hold the leaf key for B. These situations are resolved by
 updates, but since operations are asynchronous and participants may
 be offline for a long time, the group will need to be able to
 maintain security in the presence of double-joins.]]

 [[OPEN ISSUE: It is not possible for the recipient of a handshake
 message to verify that ratchet tree information in the message is
 accurate, because each node can only compute the secret and private
 key for nodes in its direct path. This creates the possibility that
 a malicious participant could cause a denial of service by sending a
 handshake message with invalid values for public keys in the ratchet
 tree.]]

7.1. Init

 [[OPEN ISSUE: Direct initialization is currently undefined. A
 participant can create a group by initializing its own state to
 reflect a group including only itself, then adding the initial
 participants. This has computation and communication complexity O(N
 log N) instead of the O(N) complexity of direct initialization.]]

7.2. Add

 In order to add a new member to the group, an existing member of the
 group must take two actions:

 1. Send a Welcome message to the new member

 2. Send an Add message to the group (including the new member)

 The Welcome message contains the information that the new member
 needs to initialize a GroupState object that can be updated to the
 current state using the Add message:

struct {
 opaque group_id<0..255>;
 uint32 epoch;
 Credential roster<1..2^32‑1>;
 PublicKey tree<1..2^32‑1>;
 GroupOperation transcript<0..2^32‑1>;
 opaque init_secret<0..255>;
} Welcome;

 Note that the "init_secret" in the Welcome message is the
 "init_secret" at the output of the key schedule diagram in
 Section 5.9. That is, if the "epoch" value in the Welcome message is
 "n", then the "init_secret" value is "init_secret_[n]". The new
 member can combine this init secret with the update secret
 transmitted in the corresponding Add message to get the epoch secret
 for the epoch in which it is added. No secrets from prior epochs are
 revealed to the new member.

 Since the new member is expected to process the Add message for
 itself, the Welcome message should reflect the state of the group
 before the new user is added. The sender of the Welcome message can
 simply copy all fields except the "leaf_secret" from its GroupState
 object.

 [[OPEN ISSUE: The Welcome message needs to be sent encrypted for the
 new member. This should be done using the public key in the
 UserInitKey, either with ECIES or X3DH.]]

 [[OPEN ISSUE: The Welcome message needs to be synchronized in the
 same way as the Add. That is, the Welcome should be sent only if the
 Add succeeds, and is not in conflict with another, simultaneous Add.
]]

 An Add message provides existing group members with the information
 they need to update their GroupState with information about the new
 member:

struct {
 UserInitKey init_key;
} Add;

 A group member generates this message by requesting a UserInitKey
 from the directory for the user to be added, and encoding it into an
 Add message.

 The new participant processes Welcome and Add messages together as
 follows:

 o Prepare a new GroupState object based on the Welcome message

 o Process the Add message as an existing participant would

 An existing participant receiving a Add message first verifies the
 signature on the message, then updates its state as follows:

 o Increment the size of the group

 o Verify the signature on the included UserInitKey; if the signature
 verification fails, abort

 o Append an entry to the roster containing the credential in the
 included UserInitKey

 o Update the ratchet tree by adding a new leaf node for the new
 member, containing the public key from the UserInitKey in the Add
 corresponding to the ciphersuite in use

 o Update the ratchet tree by setting to blank all nodes in the
 direct path of the new node, except for the leaf (which remains
 set to the new member's public key)

 The update secret resulting from this change is an all-zero octet
 string of length Hash.length.

 On receipt of an Add message, new participants SHOULD send an update
 immediately to their key. This will help to limit the tree structure
 degrading into subtrees, and thus maintain the protocol's efficiency.

7.3. Update

 An Update message is sent by a group participant to update its leaf
 key pair. This operation provides post-compromise security with
 regard to the participant's prior leaf private key.

struct {
 DirectPath path;
} Update;

 The sender of an Update message creates it in the following way:

 o Generate a fresh leaf key pair

 o Compute its direct path in the current ratchet tree

 An existing participant receiving a Update message first verifies the
 signature on the message, then updates its state as follows:

 o Update the cached ratchet tree by replacing nodes in the direct
 path from the updated leaf using the information contained in the
 Update message

 The update secret resulting from this change is the secret for the
 root node of the ratchet tree.

7.4. Remove

 A Remove message is sent by a group member to remove one or more
 participants from the group.

struct {
 uint32 removed;
 DirectPath path;
} Remove;

 The sender of a Remove message generates it as as follows:

 o Generate a fresh leaf key pair

 o Compute its direct path in the current ratchet tree, starting from
 the removed leaf

 An existing participant receiving a Remove message first verifies the
 signature on the message, then verifies its identity proof against
 the identity tree held by the participant. The participant then
 updates its state as follows:

 o Update the roster by setting the credential in the removed slot to
 the null optional value

 o Update the ratchet tree by replacing nodes in the direct path from
 the removed leaf using the information in the Remove message

 o Update the ratchet tree by setting to blank all nodes in the
 direct path from the removed leaf to the root

 The update secret resulting from this change is the secret for the
 root node of the ratchet tree after the second step (after the third
 step, the root is blank).

8. Sequencing of State Changes

 [[OPEN ISSUE: This section has an initial set of considerations
 regarding sequencing. It would be good to have some more detailed
 discussion, and hopefully have a mechanism to deal with this issue.
]]

 Each handshake message is premised on a given starting state,
 indicated in its "prior_epoch" field. If the changes implied by a
 handshake messages are made starting from a different state, the
 results will be incorrect.

 This need for sequencing is not a problem as long as each time a
 group member sends a handshake message, it is based on the most
 current state of the group. In practice, however, there is a risk
 that two members will generate handshake messages simultaneously,
 based on the same state.

 When this happens, there is a need for the members of the group to
 deconflict the simultaneous handshake messages. There are two
 general approaches:

 o Have the delivery service enforce a total order

 o Have a signal in the message that clients can use to break ties

 As long as handshake messages cannot be merged, there is a risk of
 starvation. In a sufficiently busy group, a given member may never
 be able to send a handshake message, because he always loses to other
 members. The degree to which this is a practical problem will depend
 on the dynamics of the application.

 It might be possible, because of the non-contributivity of
 intermediate nodes, that update messages could be applied one after
 the other without the Delivery Service having to reject any handshake
 message, which would make MLS more resilient regarding the
 concurrency of handshake messages. The Messaging system can decide
 to choose the order for applying the state changes. Note that there
 are certain cases (if no total ordering is applied by the Delivery
 Service) where the ordering is important for security, ie. all
 updates must be executed before removes.

 Regardless of how messages are kept in sequence, implementations MUST
 only update their cryptographic state when valid handshake messages
 are received. Generation of handshake messages MUST be stateless,
 since the endpoint cannot know at that time whether the change
 implied by the handshake message will succeed or not.

8.1. Server-Enforced Ordering

 With this approach, the delivery service ensures that incoming
 messages are added to an ordered queue and outgoing messages are
 dispatched in the same order. The server is trusted to resolve
 conflicts during race-conditions (when two members send a message at
 the same time), as the server doesn't have any additional knowledge
 thanks to the confidentiality of the messages.

 Messages should have a counter field sent in clear-text that can be
 checked by the server and used for tie-breaking. The counter starts
 at 0 and is incremented for every new incoming message. If two group
 members send a message with the same counter, the first message to
 arrive will be accepted by the server and the second one will be
 rejected. The rejected message needs to be sent again with the
 correct counter number.

 To prevent counter manipulation by the server, the counter's
 integrity can be ensured by including the counter in a signed message
 envelope.

 This applies to all messages, not only state changing messages.

8.2. Client-Enforced Ordering

 Order enforcement can be implemented on the client as well, one way
 to achieve it is to use a two step update protocol: the first client
 sends a proposal to update and the proposal is accepted when it gets
 50%+ approval from the rest of the group, then it sends the approved
 update. Clients which didn't get their proposal accepted, will wait
 for the winner to send their update before retrying new proposals.

 While this seems safer as it doesn't rely on the server, it is more
 complex and harder to implement. It also could cause starvation for
 some clients if they keep failing to get their proposal accepted.

8.3. Merging Updates

 It is possible in principle to partly address the problem of
 concurrent changes by having the recipients of the changes merge
 them, rather than having the senders retry. Because the value of
 intermediate node is determined by its last updated child, updates
 can be merged by recipients as long as the recipients agree on an
 order - the only question is which node was last updated.

 Recall that the processing of an update proceeds in two steps:

 1. Compute updated secret values by hashing up the tree

 2. Update the tree with the new secret and public values

 To merge an ordered list of updates, a recipient simply performs
 these updates in the specified order.

 For example, suppose we have a tree in the following configuration:

 H(H(D))
 / \
 H(B) H(D)
 / \ / \
A B C D

 Now suppose B and C simultaneously decide to update to X and Y,
 respectively. They will send out updates of the following form:

Update from B Update from C
============= =============
 H(H(X)) H(H(Y))
 / \
H(X) H(Y)
 \ /
 X Y

 Assuming that the ordering agreed by the group says that B's update
 should be processed before C's, the other participants in the group
 will overwrite the root value for B with the root value from C, and
 all arrive at the following state:

 H(H(Y))
 / \
 H(X) H(Y)
 / \ / \
A X Y D

9. Message Protection

 The primary purpose of the handshake protocol is to provide an
 authenticated group key exchange to participants. In order to
 protect Application messages sent among those participants, the
 Application secret provided by the Handshake key schedule is used to
 derive encryption keys for the Message Protection Layer.

 Application messages MUST be protected with the Authenticated-
 Encryption with Associated-Data (AEAD) encryption scheme associated
 with the MLS ciphersuite. Note that "Authenticated" in this context
 does not mean messages are known to be sent by a specific participant
 but only from a legitimate member of the group. To authenticate a
 message from a particular member, signatures are required. Handshake
 messages MUST use asymmetric signatures to strongly authenticate the
 sender of a message.

 Each participant maintains their own chain of Application secrets,
 where the first one is derived based on a secret chained from the
 Epoch secret. As shown in Section 5.9, the initial Application
 secret is bound to the identity of each participant to avoid
 collisions and allow support for decryption of reordered messages.

 Subsequent Application secrets MUST be rotated for each message sent
 in order to provide stronger cryptographic security guarantees. The
 Application Key Schedule use this rotation to generate fresh AEAD
 encryption keys and nonces used to encrypt and decrypt future
 Application messages. In all cases, a participant MUST NOT encrypt
 more than expected by the security bounds of the AEAD scheme used.

 Note that each change to the Group through a Handshake message will
 cause a change of the Group Secret. Hence this change MUST be
 applied before encrypting any new Application message. This is
 required for confidentiality reasons in order for Members to avoid
 receiving messages from the group after leaving, being added to, or
 excluded from the Group.

9.1. Application Key Schedule

 After computing the initial Application Secret shared by the group,
 each Participant creates an initial Participant Application Secret to
 be used for its own sending chain:

application_secret
 |
 V
Derive‑Secret(., "app sender", [sender])
 |
 V
application_secret_[sender]_[0]

 Note that [sender] represent the uint32 value encoding the index of
 the participant in the ratchet tree.

 Updating the Application secret and deriving the associated AEAD key
 and nonce can be summarized as the following Application key schedule
 where each participant's Application secret chain looks as follows
 after the initial derivation:

application_secret_[sender]_[N‑1]
 |
 +‑‑> HKDF‑Expand‑Label(.,"nonce", "", nonce_length)
 | = write_nonce_[sender]_[N‑1]
 |
 +‑‑> HKDF‑Expand‑Label(.,"key", "", key_length)
 | = write_key_[sender]_[N‑1]
 V
Derive‑Secret(., "app upd","")
 |
 V
application_secret_[sender]_[N]

 The Application context provided together with the previous
 Application secret is used to bind the Application messages with the
 next key and add some freshness.

 [[OPEN ISSUE: The HKDF context field is left empty for now. A proper
 security study is needed to make sure that we do not need more
 information in the context to achieve the security goals.]]

 [[OPEN ISSUE: At the moment there is no contributivity of
 Application secrets chained from the initial one to the next
 generation of Epoch secret. While this seems safe because
 cryptographic operations using the application secrets can't affect
 the group init_secret, it remains to be proven correct.]]

9.1.1. Updating the Application Secret

 The following rules apply to an Application Secret:

 o Senders MUST only use the Application Secret once and
 monotonically increment the generation of their secret. This is
 important to provide Forward Secrecy at the level of Application
 messages. An attacker getting hold of a Participant's Application
 Secret at generation [N+1] will not be able to derive the
 Participant's Application Secret [N] nor the associated AEAD key
 and nonce.

 o Receivers MUST delete an Application Secret once it has been used
 to derive the corresponding AEAD key and nonce as well as the next
 Application Secret. Receivers MAY keep the AEAD key and nonce
 around for some reasonable period.

 o Receivers MUST delete AEAD keys and nonces once they have been
 used to successfully decrypt a message.

9.1.2. Application AEAD Key Calculation

 The Application AEAD keying material is generated from the following
 input values:

 o The Application Secret value;

 o A purpose value indicating the specific value being generated;

 o The length of the key being generated.

 Note, that because the identity of the participant using the keys to
 send data is included in the initial Application Secret, all
 successive updates to the Application secret will implicitly inherit
 this ownership.

 All the traffic keying material is recomputed whenever the underlying
 Application Secret changes.

9.2. Message Encryption and Decryption

 The Group participants MUST use the AEAD algorithm associated with
 the negotiated MLS ciphersuite to AEAD encrypt and decrypt their
 Application messages and sign them as follows:

struct {
 opaque content<0..2^32‑1>;
 opaque signature<0..2^16‑1>;
 uint8 zeros[length_of_padding];
} ApplicationPlaintext;

struct {
 uint8 group[32];
 uint32 epoch;
 uint32 generation;
 uint32 sender;
 opaque encrypted_content<0..2^32‑1>;
} Application;

 The Group identifier and epoch allow a device to know which Group
 secrets should be used and from which Epoch secret to start computing
 other secrets and keys. The participant identifier is used to derive
 the participant Application secret chain from the initial shared
 Application secret. The application generation field is used to
 determine which Application secret should be used from the chain to
 compute the correct AEAD keys before performing decryption.

 The signature field allows strong authentication of messages:

struct {
 uint8 group[32];
 uint32 epoch;
 uint32 generation;
 uint32 sender;
 opaque content<0..2^32‑1>;
} MLSSignatureContent;

 The signature used in the MLSPlaintext is computed over the
 MLSSignatureContent which covers the metadata information about the
 current state of the group (group identifier, epoch, generation and
 sender's Leaf index) to prevent Group participants from impersonating
 other participants. It is also necessary in order to prevent cross-
 group attacks.

 [[TODO: A preliminary formal security analysis has yet to be
 performed on this authentication scheme.]]

 [[OPEN ISSUE: Currently, the group identifier, epoch and generation
 are contained as meta-data of the Signature. A different solution
 could be to include the GroupState instead, if more information is
 required to achieve the security goals regarding cross-group attacks.
]]

 [[OPEN ISSUE: Should the padding be required for Handshake messages
 ? Can an adversary get more than the position of a participant in the
 tree without padding ? Should the base ciphertext block length be
 negotiated or is is reasonable to allow to leak a range for the
 length of the plaintext by allowing to send a variable number of
 ciphertext blocks ?]]

 Application messages SHOULD be padded to provide some resistance
 against traffic analysis techniques over encrypted traffic. [CLINIC]
 [HCJ16] While MLS might deliver the same payload less frequently
 across a lot of ciphertexts than traditional web servers, it might
 still provide the attacker enough information to mount an attack. If
 Alice asks Bob: "When are we going to the movie ?" the answer
 "Wednesday" might be leaked to an adversary by the ciphertext length.
 An attacker expecting Alice to answer Bob with a day of the week
 might find out the plaintext by correlation between the question and
 the length.

 Similarly to TLS 1.3, if padding is used, the MLS messages MUST be
 padded with zero-valued bytes before AEAD encryption. Upon AEAD
 decryption, the length field of the plaintext is used to compute the
 number of bytes to be removed from the plaintext to get the correct
 data. As the padding mechanism is used to improve protection against
 traffic analysis, removal of the padding SHOULD be implemented in a
 "constant-time" manner at the MLS layer and above layers to prevent
 timing side-channels that would provide attackers with information on
 the size of the plaintext.

9.2.1. Delayed and Reordered Application messages

 Since each Application message contains the Group identifier, the
 epoch and a message counter, a participant can receive messages out
 of order. If they are able to retrieve or recompute the correct AEAD
 decryption key from currently stored cryptographic material
 participants can decrypt these messages.

 For usability, MLS Participants might be required to keep the AEAD
 key and nonce for a certain amount of time to retain the ability to
 decrypt delayed or out of order messages, possibly still in transit
 while a decryption is being done.

 [[TODO: Describe here or in the Architecture spec the details.
 Depending on which Secret or key is kept alive, the security
 guarantees will vary.]]

10. Security Considerations

 The security goals of MLS are described in [I-D.ietf-mls-
 architecture]. We describe here how the protocol achieves its goals
 at a high level, though a complete security analysis is outside of
 the scope of this document.

10.1. Confidentiality of the Group Secrets

 Group secrets are derived from (i) previous group secrets, and (ii)
 the root key of a ratcheting tree. Only group members know their
 leaf private key in the group, therefore, the root key of the group's
 ratcheting tree is secret and thus so are all values derived from it.

 Initial leaf keys are known only by their owner and the group
 creator, because they are derived from an authenticated key exchange
 protocol. Subsequent leaf keys are known only by their owner.
 [[TODO: or by someone who replaced them.]]

 Note that the long-term identity keys used by the protocol MUST be
 distributed by an "honest" authentication service for parties to
 authenticate their legitimate peers.

10.2. Authentication

 There are two forms of authentication we consider. The first form
 considers authentication with respect to the group. That is, the
 group members can verify that a message originated from one of the
 members of the group. This is implicitly guaranteed by the secrecy
 of the shared key derived from the ratcheting trees: if all members
 of the group are honest, then the shared group key is only known to
 the group members. By using AEAD or appropriate MAC with this shared
 key, we can guarantee that a participant in the group (who knows the
 shared secret key) has sent a message.

 The second form considers authentication with respect to the sender,
 meaning the group members can verify that a message originated from a
 particular member of the group. This property is provided by digital
 signatures on the messages under identity keys.

 [[OPEN ISSUE: Signatures under the identity keys, while simple, have
 the side-effect of preclude deniability. We may wish to allow other
 options, such as (ii) a key chained off of the identity key, or (iii)
 some other key obtained through a different manner, such as a
 pairwise channel that provides deniability for the message
 contents.]]

10.3. Forward and post-compromise security

 Message encryption keys are derived via a hash ratchet, which
 provides a form of forward secrecy: learning a message key does not
 reveal previous message or root keys. Post-compromise security is
 provided by Update operations, in which a new root key is generated
 from the latest ratcheting tree. If the adversary cannot derive the
 updated root key after an Update operation, it cannot compute any
 derived secrets.

10.4. Init Key Reuse

 Initialization keys are intended to be used only once and then
 deleted. Reuse of init keys is not believed to be inherently
 insecure [dhreuse], although it can complicate protocol analyses.

11. IANA Considerations

 TODO: Registries for protocol parameters, e.g., ciphersuites

12. Contributors

o Benjamin Beurdouche
 INRIA
 benjamin.beurdouche@ens.fr

o Karthikeyan Bhargavan
 INRIA
 karthikeyan.bhargavan@inria.fr

o Cas Cremers
 University of Oxford
 cas.cremers@cs.ox.ac.uk

o Alan Duric
 Wire
 alan@wire.com

o Srinivas Inguva
 Twitter
 singuva@twitter.com

o Albert Kwon
 MIT
 kwonal@mit.edu

o Eric Rescorla
 Mozilla

 ekr@rtfm.com

o Thyla van der Merwe
 Royal Holloway, University of London
 thyla.van.der@merwe.tech

13. References

13.1. Normative References

 [IEEE1363]

 "IEEE Standard Specifications for Password-Based Public-
 Key Cryptographic Techniques", IEEE standard,
 DOI 10.1109/ieeestd.2009.4773330, n.d..

 [RFC2104]
 Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5116]
 McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5869]
 Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7748]
 Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [X962]
 ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998.

13.2. Informative References

 [art]
 Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J.,
 and K. Milner, "On Ends-to-Ends Encryption: Asynchronous
 Group Messaging with Strong Security Guarantees", January
 2018, <https://eprint.iacr.org/2017/666.pdf>.

 [CLINIC]
 Miller, B., Huang, L., Joseph, A., and J. Tygar, "I Know
 Why You Went to the Clinic: Risks and Realization of HTTPS
 Traffic Analysis", Privacy Enhancing Technologies pp.
 143-163, DOI 10.1007/978-3-319-08506-7_8, 2014.

 [dhreuse]
 Menezes, A. and B. Ustaoglu, "On reusing ephemeral keys in
 Diffie-Hellman key agreement protocols", International
 Journal of Applied Cryptography Vol. 2, pp. 154,
 DOI 10.1504/ijact.2010.038308, 2010.

 [doubleratchet]

 Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L.,
 and D. Stebila, "A Formal Security Analysis of the Signal
 Messaging Protocol", 2017 IEEE European Symposium on
 Security and Privacy (EuroS&P),
 DOI 10.1109/eurosp.2017.27, April 2017.

 [HCJ16]
 Husak, M., Čermak, M., Jirsik, T., and P.
 Čeleda, "HTTPS traffic analysis and client
 identification using passive SSL/TLS fingerprinting",
 EURASIP Journal on Information Security Vol. 2016,
 DOI 10.1186/s13635-016-0030-7, February 2016.

 [I-D.ietf-trans-rfc6962-bis]

 Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency Version 2.0", draft-
 ietf-trans-rfc6962-bis-29 (work in progress), October
 2018.

 [keyagreement]

 Barker, E., Chen, L., Roginsky, A., and M. Smid,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.sp.800-56ar2, May 2013.

 [signal]
 Perrin(ed), T. and M. Marlinspike, "The Double Ratchet
 Algorithm", n.d.,
 <https://www.signal.org/docs/specifications/
 doubleratchet/>.

Appendix A. Tree Math

 One benefit of using left-balanced trees is that they admit a simple
 flat array representation. In this representation, leaf nodes are
 even-numbered nodes, with the n-th leaf at 2*n. Intermediate nodes
 are held in odd-numbered nodes. For example, a 11-element tree has
 the following structure:

 X
 X
 X X X
 X X X X X
X X X X X X X X X X X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 This allows us to compute relationships between tree nodes simply by
 manipulating indices, rather than having to maintain complicated
 structures in memory, even for partial trees. The basic rule is that
 the high-order bits of parent and child nodes have the following
 relation (where "x" is an arbitrary bit string):

 parent=01x => left=00x, right=10x

 The following python code demonstrates the tree computations
 necessary for MLS. Test vectors can be derived from the diagram
 above.

The largest power of 2 less than n. Equivalent to:
int(math.floor(math.log(x, 2)))
def log2(x):
 if x == 0:
 return 0

 k = 0
 while (x >> k) > 0:
 k += 1
 return k‑1

The level of a node in the tree. Leaves are level 0, their
parents are level 1, etc. If a node's children are at different
level, then its level is the max level of its children plus one.
def level(x):
 if x & 0x01 == 0:

 return 0

 k = 0
 while ((x >> k) & 0x01) == 1:
 k += 1
 return k

The number of nodes needed to represent a tree with n leaves
def node_width(n):
 return 2*(n ‑ 1) + 1

The index of the root node of a tree with n leaves
def root(n):
 w = node_width(n)
 return (1 << log2(w)) ‑ 1

The left child of an intermediate node. Note that because the
tree is left‑balanced, there is no dependency on the size of the
tree. The child of a leaf node is itself.
def left(x):
 k = level(x)
 if k == 0:
 return x

 return x ^ (0x01 << (k - 1))

The right child of an intermediate node. Depends on the size of
the tree because the straightforward calculation can take you
beyond the edge of the tree. The child of a leaf node is itself.
def right(x, n):
 k = level(x)
 if k == 0:
 return x

 r = x ^ (0x03 << (k ‑ 1))
 while r >= node_width(n):
 r = left(r)
 return r

The immediate parent of a node. May be beyond the right edge of
the tree.
def parent_step(x):
 k = level(x)
 b = (x >> (k + 1)) & 0x01
 return (x | (1 << k)) ^ (b << (k + 1))

The parent of a node. As with the right child calculation, have
to walk back until the parent is within the range of the tree.

def parent(x, n):
 if x == root(n):
 return x

 p = parent_step(x)
 while p >= node_width(n):
 p = parent_step(p)
 return p

The other child of the node's parent. Root's sibling is itself.
def sibling(x, n):
 p = parent(x, n)
 if x < p:
 return right(p, n)
 elif x > p:
 return left(p)

 return p

The direct path from a node to the root, ordered from the root
down, not including the root or the terminal node
def direct_path(x, n):
 d = []
 p = parent(x, n)
 r = root(n)
 while p != r:
 d.append(p)
 p = parent(p, n)
 return d

The copath of the node is the siblings of the nodes on its direct
path (including the node itself)
def copath(x, n):
 d = dirpath(x, n)
 if x != sibling(x, n):
 d.append(x)

 return [sibling(y, n) for y in d]

Frontier is is the list of full subtrees, from left to right. A
balance binary tree with n leaves has a full subtree for every
power of two where n has a bit set, with the largest subtrees
furthest to the left. For example, a tree with 11 leaves has full
subtrees of size 8, 2, and 1.
def frontier(n):
 st = [1 << k for k in range(log2(n) + 1) if n & (1 << k) != 0]
 st = reversed(st)

 base = 0
 f = []
 for size in st:
 f.append(root(size) + base)
 base += 2*size
 return f

Leaves are in even‑numbered nodes
def leaves(n):
 return [2*i for i in range(n)]

The resolution of a node is the collection of non‑blank
descendants of this node. Here the tree is represented by a list
of nodes, where blank nodes are represented by None
def resolve(tree, x, n):
 if tree[x] != None:
 return [x]

 if level(x) == 0:

 return []

L = resolve(tree, left(x), n)
R = resolve(tree, right(x, n), n)
return L + R

Authors' Addresses

Richard Barnes
Cisco

 Email: rlb@ipv.sx

Jon Millican
Facebook

 Email: jmillican@fb.com

Emad Omara
Google

 Email: emadomara@google.com

Katriel Cohn‑Gordon
University of Oxford

 Email: me@katriel.co.uk

Raphael Robert
Wire

 Email: raphael@wire.com

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
mis
Documents
2018-11-11

SO ¢

1 E T F

Kindle transformation by Tero Kivinen
003025

