

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

netconf RFC and Internet-Draft Index

Index

Active

	draft-ietf-netconf-crypto-types-02 Common YANG Data Types for Cryptography

	draft-ietf-netconf-keystore-07 YANG Data Model for a Centralized Keystore Mechanism

	draft-ietf-netconf-netconf-client-server-08 NETCONF Client and Server Models

	draft-ietf-netconf-netconf-event-notifications-16 Dynamic subscription to YANG Events and Datastores over NETCONF

	draft-ietf-netconf-nmda-netconf-08 NETCONF Extensions to Support the Network Management Datastore Architecture

	draft-ietf-netconf-nmda-restconf-05 RESTCONF Extensions to Support the Network Management Datastore Architecture

	draft-ietf-netconf-notification-capabilities-00 YangPush Notification Capabilities

	draft-ietf-netconf-notification-messages-04 Notification Message Headers and Bundles

	draft-ietf-netconf-restconf-client-server-08 RESTCONF Client and Server Models

	draft-ietf-netconf-restconf-notif-12 Dynamic subscription to YANG Events and Datastores over RESTCONF

	draft-ietf-netconf-rfc7895bis-07 YANG Library

	draft-ietf-netconf-ssh-client-server-08 YANG Groupings for SSH Clients and SSH Servers

	draft-ietf-netconf-subscribed-notifications-21 Subscription to YANG Event Notifications

	draft-ietf-netconf-tls-client-server-08 YANG Groupings for TLS Clients and TLS Servers

	draft-ietf-netconf-trust-anchors-02 YANG Data Model for Global Trust Anchors

	draft-ietf-netconf-udp-pub-channel-04 UDP based Publication Channel for Streaming Telemetry

	draft-ietf-netconf-yang-push-20 Subscription to YANG Datastores

	draft-ietf-netconf-zerotouch-28 Secure Zero Touch Provisioning (SZTP)

RFC

	RFC4741 NETCONF Configuration Protocol

	RFC4742 Using the NETCONF Configuration Protocol over Secure SHell (SSH)

	RFC4743 Using NETCONF over the Simple Object Access Protocol (SOAP)

	RFC4744 Using the NETCONF Protocol over the Blocks Extensible Exchange Protocol (BEEP)

	RFC5277 NETCONF Event Notifications

	RFC5539 NETCONF over Transport Layer Security (TLS)

	RFC5717 Partial Lock Remote Procedure Call (RPC) for NETCONF

	RFC6022 YANG Module for NETCONF Monitoring

	RFC6241 Network Configuration Protocol (NETCONF)

	RFC6242 Using the NETCONF Protocol over Secure Shell (SSH)

	RFC6243 With-defaults Capability for NETCONF

	RFC6470 Network Configuration Protocol (NETCONF) Base Notifications

	RFC6536 Network Configuration Protocol (NETCONF) Access Control Model

	RFC7589 Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual X.509 Authentication

	RFC7895 YANG Module Library

	RFC8040 RESTCONF Protocol

	RFC8071 NETCONF Call Home and RESTCONF Call Home

	RFC8072 YANG Patch Media Type

	RFC8341 Network Configuration Access Control Model

Related Active

	draft-wu-netconf-nmda-compatibility-00 NMDA Backwards-Compatibility with Legacy Devices

	draft-wu-netconf-restconf-factory-restore-03 Factory default Setting

	draft-zheng-netconf-inline-action-capability-02 Inline Action Capability for NETCONF

	draft-zhou-netconf-multi-stream-originators-03 Subscription to Multiple Stream Originators

draft-ietf-netconf-crypto-types-02 - Common YANG Data Types for Cryptography

Index
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

H. Wang

Huawei

October 22, 2018

Common YANG Data Types for Cryptography

draft-ietf-netconf-crypto-types-02

Abstract

 This document defines YANG identities, typedefs, the groupings useful
 for cryptographic applications.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix B. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. The Crypto Types Module
	 2.1. Tree Diagram

	 2.2. YANG Module

	3. Security Considerations

	4. IANA Considerations
	 4.1. The IETF XML Registry

	 4.2. The YANG Module Names Registry

	5. References
	 5.1. Normative References

	 5.2. Informative References

	Appendix A. Examples
	 A.1. The "asymmetric-key-pair-with-certs-grouping" Grouping

	 A.2. The "generate-hidden-key" Action

	 A.3. The "install-hidden-key" Action

	 A.4. The "generate-certificate-signing-request" Action

	 A.5. The "certificate-expiration" Notification

	Appendix B. Change Log
	 B.1. I-D to 00

	 B.2. 00 to 01

	 B.3. 01 to 02

	Acknowledgements

	Authors' Addresses

1. Introduction

 This document defines a YANG 1.1 [RFC7950] module specifying
 identities, typedefs, and groupings useful for cryptography.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. The Crypto Types Module

2.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-crypto-
 types" module. Only the groupings as represented, as tree diagrams
 have no means to represent identities or typedefs.

 [Note: '\' line wrapping for formatting only]

 module: ietf-crypto-types

 grouping asymmetric‑key‑pair‑grouping
 +‑‑ algorithm? asymmetric‑key‑encryption‑algorithm‑r\
ef
 +‑‑ public‑key? binary
 +‑‑ private‑key? union
 +‑‑‑x generate‑hidden‑key
 | +‑‑‑w input
 | +‑‑‑w algorithm asymmetric‑key‑encryption‑algorithm‑ref
 +‑‑‑x install‑hidden‑key
 +‑‑‑w input
 +‑‑‑w algorithm asymmetric‑key‑encryption‑algorithm‑r\
ef
 +‑‑‑w public‑key? binary
 +‑‑‑w private‑key? binary
 grouping public‑key‑grouping
 +‑‑ algorithm? asymmetric‑key‑encryption‑algorithm‑ref
 +‑‑ public‑key? binary
 grouping asymmetric‑key‑pair‑with‑certs‑grouping
 +‑‑ algorithm?
 | asymmetric‑key‑encryption‑algorithm‑ref
 +‑‑ public‑key? binary
 +‑‑ private‑key? union
 +‑‑‑x generate‑hidden‑key
 | +‑‑‑w input

 | +‑‑‑w algorithm asymmetric‑key‑encryption‑algorithm‑ref
 +‑‑‑x install‑hidden‑key
 | +‑‑‑w input
 | +‑‑‑w algorithm asymmetric‑key‑encryption‑algorithm‑r\
ef
 | +‑‑‑w public‑key? binary
 | +‑‑‑w private‑key? binary
 +‑‑ certificates
 | +‑‑ certificate* [name]
 | +‑‑ name? string
 | +‑‑ cert? end‑entity‑cert‑cms
 | +‑‑‑n certificate‑expiration
 | +‑‑ expiration‑date yang:date‑and‑time
 +‑‑‑x generate‑certificate‑signing‑request
 +‑‑‑w input
 | +‑‑‑w subject binary
 | +‑‑‑w attributes? binary
 +‑‑ro output
 +‑‑ro certificate‑signing‑request binary
 grouping end‑entity‑cert‑grouping
 +‑‑ cert? end‑entity‑cert‑cms
 +‑‑‑n certificate‑expiration
 +‑‑ expiration‑date yang:date‑and‑time
 grouping trust‑anchor‑cert‑grouping
 +‑‑ cert? trust‑anchor‑cert‑cms
 +‑‑‑n certificate‑expiration
 +‑‑ expiration‑date yang:date‑and‑time

2.2. YANG Module

 This module has normative references to [RFC2404], [RFC2986],
 [RFC3174], [RFC3565], [RFC3686], [RFC4106], [RFC4253], [RFC4279],
 [RFC4309], [RFC4493], [RFC4494], [RFC4543], [RFC4868], [RFC5280],
 [RFC5652], [RFC5656], [RFC5915], [RFC6187], [RFC6234], [RFC6239],
 [RFC6507], [RFC6991], [RFC7539], [RFC7919], [RFC8017], [RFC8032],
 [RFC8268], [RFC8332], [RFC8341], [RFC8422], [RFC8446], and
 [ITU.X690.2015].

 This module has an informational reference to [RFC6125].

<CODE BEGINS> file "ietf‑crypto‑types@2018‑10‑22.yang"
module ietf‑crypto‑types {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑crypto‑types";
 prefix "ct";

 import ietf-yang-types {

 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑netconf‑acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Wang Haiguang
 <wang.haiguang.shieldlab@huawei.com>";

 description

 "This module defines common YANG types for cryptographic
 applications.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: Common YANG Data Types for Cryptography";
}

/**************************************/
/* Identities for Hash Algorithms */
/**************************************/

identity hash‑algorithm {
 description
 "A base identity for hash algorithm verification.";
}

identity sha‑224 {
 base "hash‑algorithm";
 description "The SHA‑224 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
}

identity sha‑256 {
 base "hash‑algorithm";
 description "The SHA‑256 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
}

identity sha‑384 {
 base "hash‑algorithm";
 description "The SHA‑384 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
}

identity sha‑512 {
 base "hash‑algorithm";
 description "The SHA‑512 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
}

/**/
/* Identities for Asymmetric Key Encyption Algorithms */
/**/

identity asymmetric‑key‑encryption‑algorithm {
 description
 "Base identity from which all asymmetric key
 encryption Algorithm.";
}

identity rsa1024 {
 base asymmetric‑key‑encryption‑algorithm;
 description
 "The RSA algorithm using a 1024‑bit key.";
 reference

 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
}

identity rsa2048 {
 base asymmetric‑key‑encryption‑algorithm;
 description
 "The RSA algorithm using a 2048‑bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
}

identity rsa3072 {
 base asymmetric‑key‑encryption‑algorithm;
 description
 "The RSA algorithm using a 3072‑bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
}

identity rsa4096 {
 base asymmetric‑key‑encryption‑algorithm;
 description
 "The RSA algorithm using a 4096‑bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
}

identity rsa7680 {
 base asymmetric‑key‑encryption‑algorithm;
 description
 "The RSA algorithm using a 7680‑bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
}

identity rsa15360 {
 base asymmetric‑key‑encryption‑algorithm;
 description
 "The RSA algorithm using a 15360‑bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
}

/*************************************/
/* Identities for MAC Algorithms */
/*************************************/

identity mac‑algorithm {
 description
 "A base identity for mac generation.";
}

identity hmac‑sha1 {
 base "mac‑algorithm";
 description "Generating MAC using SHA1 hash function";
 reference "RFC 3174: US Secure Hash Algorithm 1 (SHA1)";
}

identity hmac‑sha1‑96 {
 base "mac‑algorithm";
 description "Generating MAC using SHA1 hash function";
 reference "RFC 2404: The Use of HMAC‑SHA‑1‑96 within ESP and AH";
}

identity hmac‑sha2‑224 {
 base "mac‑algorithm";
 description
 "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA‑based HMAC and HKDF)";
}

identity hmac‑sha2‑256 {
 base "mac‑algorithm";
 description
 "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA‑based HMAC and HKDF)";
}

identity hmac‑sha2‑256‑128 {
 base "mac‑algorithm";
 description
 "Generating a 256 bits MAC using SHA2 hash function and truncate
 it to 128 bits";
 reference
 "RFC 4868:
 Using HMAC‑SHA‑256, HMAC‑SHA‑384, and HMAC‑SHA‑512 with
 IPsec";

 }

identity hmac‑sha2‑384 {
 base "mac‑algorithm";
 description
 "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA‑based HMAC and HKDF)";
}

identity hmac‑sha2‑384‑192 {
 base "mac‑algorithm";
 description
 "Generating a 384 bits MAC using SHA2 hash function and truncate
 it to 192 bits";
 reference
 "RFC 4868:
 Using HMAC‑SHA‑256, HMAC‑SHA‑384, and HMAC‑SHA‑512 with
 IPsec";
}

identity hmac‑sha2‑512 {
 base "mac‑algorithm";
 description "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA‑based HMAC and HKDF)";
}

identity hmac‑sha2‑512‑256 {
 base "mac‑algorithm";
 description
 "Generating a 512 bits MAC using SHA2 hash function and
 truncating it to 256 bits";
 reference
 "RFC 4868:
 Using HMAC‑SHA‑256, HMAC‑SHA‑384, and HMAC‑SHA‑512 with
 IPsec";
}

identity aes‑128‑gmac {
 base "mac‑algorithm";
 description
 "Generating MAC using the Advanced Encryption Standard (AES)
 Galois Message Authentication Code (GMAC) as a mechanism to
 provide data origin authentication";
 reference

 "RFC 4543:
 The Use of Galois Message Authentication Code (GMAC) in
 IPsec ESP and AH";
}

identity aes‑192‑gmac {
 base "mac‑algorithm";
 description
 "Generating MAC using the Advanced Encryption Standard (AES)
 Galois Message Authentication Code (GMAC) as a mechanism to
 provide data origin authentication";
 reference
 "RFC 4543:
 The Use of Galois Message Authentication Code (GMAC) in
 IPsec ESP and AH";

 }

identity aes‑256‑gmac {
 base "mac‑algorithm";
 description
 "Generating MAC using the Advanced Encryption Standard (AES)
 Galois Message Authentication Code (GMAC) as a mechanism to
 provide data origin authentication";
 reference
 "RFC 4543:
 The Use of Galois Message Authentication Code (GMAC) in
 IPsec ESP and AH";
}

identity aes‑cmac‑96 {
 base "mac‑algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES)
 Cipher‑based Message Authentication Code (CMAC)";
 reference
 "RFC 4494: The AES‑CMAC‑96 Algorithm and its Use with IPsec";
}

identity aes‑cmac‑128 {
 base "mac‑algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES)
 Cipher‑based Message Authentication Code (CMAC)";
 reference
 "RFC 4493: The AES‑CMAC Algorithm";
}

identity mac‑aes‑128‑ccm {
 base "mac‑algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES) in
 CCM (Counter with CBC‑MAC) mode (AES CCM)";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with
 IPsec Encapsulating Security Payload (ESP)";
}

identity mac‑aes‑192‑ccm {
 base "mac‑algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES) in
 CCM (Counter with CBC‑MAC) mode (AES CCM)";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with
 IPsec Encapsulating Security Payload (ESP)";
}

identity mac‑aes‑256‑ccm {
 base "mac‑algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES) in
 CCM (Counter with CBC‑MAC) mode (AES CCM)";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with
 IPsec Encapsulating Security Payload (ESP)";
}

identity mac‑aes‑128‑gcm {
 base "mac‑algorithm";
 description
 "Generating MAC when using Advanced Encryption Standard (AES)
 GCM mode for encryption";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
}

identity mac‑aes‑192‑gcm {
 base "mac‑algorithm";
 description
 "Generating MAC when using Advanced Encryption Standard (AES)

 GCM mode for encryption";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
}

identity mac‑aes‑256‑gcm {
 base "mac‑algorithm";
 description
 "Generating MAC when using Advanced Encryption Standard (AES)
 GCM mode for encryption";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
}

identity mac‑chacha20‑poly1305 {
 base "mac‑algorithm";
 description
 "Generating MAC using poly1305 algorithm";
 reference
 "RFC 7539: ChaCha20 and Poly1305 for IETF Protocols";
}

/***/
/* Identities for Symmetric Key Encryption Algorithms*/
/***/

identity symmetric‑key‑encryption‑algorithm {
 description
 "A base identity for encryption algorithm.";
}

identity aes‑128‑cbc {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CBC mode with a key
 length of 128 bits";
 reference
 "RFC 3565:
 Use of the Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS)";
}

 identity aes-192-cbc {

 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CBC mode with a key
 length of 192 bits";
 reference
 "RFC 3565:
 Use of the Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS)";
}

identity aes‑256‑cbc {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CBC mode with a key
 length of 256 bits";
 reference
 "RFC 3565:
 Use of the Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS)";
}

identity aes‑128‑ctr {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CTR mode with a key
 length of 128 bits";
 reference
 "RFC 3686:
 Using Advanced Encryption Standard (AES) Counter Mode with
 IPsec Encapsulating Security Payload (ESP)";
}

identity aes‑192‑ctr {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CTR mode with a key
 length of 192 bits";
 reference
 "RFC 3686:
 Using Advanced Encryption Standard (AES) Counter Mode with
 IPsec Encapsulating Security Payload (ESP)";
}

identity aes‑256‑ctr {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CTR mode with a key
 length of 256 bits";

 reference
 "RFC 3686:
 Using Advanced Encryption Standard (AES) Counter Mode with
 IPsec Encapsulating Security Payload (ESP)";
}

identity enc‑aes‑128‑ccm {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CCM mode with a key
 length of 128 bits";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)";
}

identity enc‑aes‑192‑ccm {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CCM mode with a key
 length of 192 bits";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)";
}

identity enc‑aes‑256‑ccm {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in CCM mode with a key
 length of 256 bits";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)";
}

identity enc‑aes‑128‑gcm {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in GCM mode with a key
 length of 128 bits";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";

 }

identity enc‑aes‑192‑gcm {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in GCM mode with a key
 length of 192 bits";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
}

identity enc‑aes‑256‑gcm {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with AES algorithm in GCM mode with a key
 length of 256 bits";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
}

identity enc‑chacha20‑poly1305 {
 base "symmetric‑key‑encryption‑algorithm";
 description
 "Encrypt message with chacha20 algorithm and generate MAC with
 POLY1305";
 reference
 "RFC 7539: ChaCha20 and Poly1305 for IETF Protocols";
}

/**/
/* Identities for signature algorithm */
/**/

identity signature‑algorithm {
 description
 "A base identity for asymmetric key encryption algorithm.";
}

identity dsa‑sha1 {
 base "signature‑algorithm";
 description
 "The signature algorithm using DSA algorithm with SHA1 hash
 algorithm";
 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity rsa‑pkcs1‑sha1 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PKCS1‑v1_5 with the SHA1
 hash algorithm.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity rsa‑pkcs1‑sha256 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PKCS1‑v1_5 with the
 SHA256 hash algorithm.";
 reference
 "RFC 8332:
 Use of RSA Keys with SHA‑256 and SHA‑512 in the Secure Shell
 (SSH) Protocol
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pkcs1‑sha384 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PKCS1‑v1_5 with the
 SHA384 hash algorithm.";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pkcs1‑sha512 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PKCS1‑v1_5 with the
 SHA512 hash algorithm.";
 reference
 "RFC 8332:
 Use of RSA Keys with SHA‑256 and SHA‑512 in the Secure Shell
 (SSH) Protocol
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pss‑rsae‑sha256 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the rsaEncryption
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pss‑rsae‑sha384 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PSS with mask generation
 function 1 and SHA384 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the rsaEncryption
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pss‑rsae‑sha512 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PSS with mask generation
 function 1 and SHA512 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the rsaEncryption
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pss‑pss‑sha256 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the RSASSA‑PSS
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pss‑pss‑sha384 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the RSASSA‑PSS
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity rsa‑pss‑pss‑sha512 {
 base "signature‑algorithm";
 description
 "The signature algorithm using RSASSA‑PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the RSASSA‑PSS
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity ecdsa‑secp256r1‑sha256 {
 base "signature‑algorithm";
 description
 "The signature algorithm using ECDSA wtih curve name secp256r1
 and SHA256 hash algorithm.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity ecdsa‑secp384r1‑sha384 {
 base "signature‑algorithm";
 description
 "The signature algorithm using ECDSA wtih curve name secp384r1
 and SHA384 hash algorithm.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity ecdsa‑secp521r1‑sha512 {
 base "signature‑algorithm";
 description
 "The signature algorithm using ECDSA wtih curve name secp521r1
 and SHA512 hash algorithm.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity x509v3‑rsa‑pkcs1‑sha1 {
 base "signature‑algorithm";
 description
 "The signature algorithm using x509v3‑ssh‑rsa key format and
 RSASSA‑PKCS1‑v1_5 with the SHA1 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
}

identity x509v3‑rsa2048‑pkcs1‑sha256 {
 base "signature‑algorithm";
 description
 "The signature algorithm using x509v3‑rsa2048‑sha256
 key format and RSASSA‑PKCS1‑v1_5 with the SHA‑256
 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
}

identity x509v3‑ecdsa‑secp256r1‑sha256 {
 base "signature‑algorithm";
 description
 "The signature algorithm using x509v3‑ecdsa‑sha2‑secp256r1 key
 format and ECDSA algorithm with the SHA‑256 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
}

identity x509v3‑ecdsa‑secp384r1‑sha384 {
 base "signature‑algorithm";
 description
 "The signature algorithm using x509v3‑ecdsa‑sha2‑secp384r1 key
 format and ECDSA algorithm with the SHA‑384 hash algorithm.";

 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
}

identity x509v3‑ecdsa‑secp521r1‑sha512 {
 base "signature‑algorithm";
 description
 "The signature algorithm using x509v3‑ecdsa‑sha2‑secp521r1 key
 format and ECDSA algorithm with the SHA‑512 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
}

identity ed25519 {
 base "signature‑algorithm";
 description
 "The signature algorithm using EdDSA as defined in RFC 8032 or
 its successors.";
 reference
 "RFC 8032: Edwards‑Curve Digital Signature Algorithm (EdDSA)";
}

identity ed448 {
 base "signature‑algorithm";
 description
 "The signature algorithm using EdDSA as defined in RFC 8032 or
 its successors.";
 reference
 "RFC 8032: Edwards‑Curve Digital Signature Algorithm (EdDSA)";
}

identity eccsi {
 base "signature‑algorithm";
 description
 "The signature algorithm using ECCSI signature as defined in
 RFC 6507.";
 reference
 "RFC 6507:
 Elliptic Curve‑Based Certificateless Signatures for
 Identity‑based Encryption (ECCSI)";
}

/**/
/* Identities for key exchange algorithms */
/**/

identity key‑exchange‑algorithm {
 description
 "A base identity for Diffe‑Hellman based key exchange
 algorithm.";
}

identity psk‑only {
 base "key‑exchange‑algorithm";
 description
 "Using Pre‑shared key for authentication and key exhange";
 reference
 "RFC 4279:
 Pre‑Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
}

identity dhe‑ffdhe2048 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 2048 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie‑Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
}

identity dhe‑ffdhe3072 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 3072 bit finite
 field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie‑Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
}

identity dhe‑ffdhe4096 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 4096 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie‑Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
}

identity dhe‑ffdhe6144 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 6144 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie‑Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
}

identity dhe‑ffdhe8192 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 8192 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie‑Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
}

identity psk‑dhe‑ffdhe2048 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with Diffie‑Hellman key
 generation mechansim, where the DH group is FFDHE2048";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity psk‑dhe‑ffdhe3072 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with Diffie‑Hellman key
 generation mechansim, where the DH group is FFDHE3072";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity psk‑dhe‑ffdhe4096 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with Diffie‑Hellman key
 generation mechansim, where the DH group is FFDHE4096";
 reference

 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity psk‑dhe‑ffdhe6144 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with Diffie‑Hellman key
 generation mechansim, where the DH group is FFDHE6144";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity psk‑dhe‑ffdhe8192 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with Diffie‑Hellman key
 generation mechansim, where the DH group is FFDHE8192";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
}

identity ecdhe‑secp256r1 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve secp256r1";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
}

identity ecdhe‑secp384r1 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve secp384r1";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
}

 identity ecdhe-secp521r1 {

 base "key-exchange-algorithm";

 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve secp521r1";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity ecdhe‑x25519 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve x25519";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity ecdhe‑x448 {
 base "key‑exchange‑algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve x448";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity psk‑ecdhe‑secp256r1 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with elliptic group‑based
 Ephemeral Diffie Hellman key exhange over curve secp256r1";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk‑ecdhe‑secp384r1 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with elliptic group‑based
 Ephemeral Diffie Hellman key exhange over curve secp384r1";
 reference
 "RFC 8446:

 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk‑ecdhe‑secp521r1 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with elliptic group‑based
 Ephemeral Diffie Hellman key exhange over curve secp521r1";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk‑ecdhe‑x25519 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with elliptic group‑based
 Ephemeral Diffie Hellman key exhange over curve x25519";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk‑ecdhe‑x448 {
 base "key‑exchange‑algorithm";
 description
 "Key exchange using pre‑shared key with elliptic group‑based
 Ephemeral Diffie Hellman key exhange over curve x448";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity diffie‑hellman‑group14‑sha1 {
 base "key‑exchange‑algorithm";
 description
 "Using DH group14 and SHA1 for key exchange";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

identity diffie‑hellman‑group14‑sha256 {
 base "key‑exchange‑algorithm";
 description
 "Using DH group14 and SHA256 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie‑Hellman (DH)

 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie‑hellman‑group15‑sha512 {
 base "key‑exchange‑algorithm";
 description
 "Using DH group15 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie‑Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie‑hellman‑group16‑sha512 {
 base "key‑exchange‑algorithm";
 description
 "Using DH group16 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie‑Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie‑hellman‑group17‑sha512 {
 base "key‑exchange‑algorithm";
 description
 "Using DH group17 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie‑Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie‑hellman‑group18‑sha512 {
 base "key‑exchange‑algorithm";
 description
 "Using DH group18 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie‑Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity ecdh‑sha2‑secp256r1 {
 base "key‑exchange‑algorithm";
 description
 "Elliptic curve‑based Diffie Hellman key exhange over curve
 secp256r1 and using SHA2 for MAC generation";

 reference

 "RFC 6239: Suite B Cryptographic Suites for Secure Shell (SSH)";
 }

identity ecdh‑sha2‑secp384r1 {
 base "key‑exchange‑algorithm";
 description
 "Elliptic curve‑based Diffie Hellman key exhange over curve
 secp384r1 and using SHA2 for MAC generation";
 reference
 "RFC 6239: Suite B Cryptographic Suites for Secure Shell (SSH)";
}

/***/
/* Typedefs for identityrefs to above base identites */
/***/

typedef hash‑algorithm‑ref {
 type identityref {
 base "hash‑algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the 'hash‑algorithm' base identity.";
}

typedef signature‑algorithm‑ref {
 type identityref {
 base "signature‑algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the 'signature‑algorithm' base identity.";
}

typedef mac‑algorithm‑ref {
 type identityref {
 base "mac‑algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the 'mac‑algorithm' base identity.";
}

typedef symmetric‑key‑encryption‑algorithm‑ref {
 type identityref {
 base "symmetric‑key‑encryption‑algorithm";
 }

 description
 "This typedef enables importing modules to easily define an
 identityref to the 'symmetric‑key‑encryption‑algorithm'
 base identity.";
}

typedef asymmetric‑key‑encryption‑algorithm‑ref {
 type identityref {
 base "asymmetric‑key‑encryption‑algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the 'asymmetric‑key‑encryption‑algorithm'
 base identity.";
}

typedef key‑exchange‑algorithm‑ref {
 type identityref {
 base "key‑exchange‑algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the 'key‑exchange‑algorithm' base identity.";
}

/***/
/* Typedefs for ASN.1 structures from RFC 5280 */
/***/

typedef x509 {
 type binary;
 description
 "A Certificate structure, as specified in RFC 5280,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU‑T X.690.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
}

 typedef crl {

 type binary;

 description
 "A CertificateList structure, as specified in RFC 5280,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU‑T X.690.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
}

/***/
/* Typedefs for ASN.1 structures from 5652 */
/***/

typedef cms {
 type binary;
 description
 "A ContentInfo structure, as specified in RFC 5652,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU‑T X.690.";
 reference
 "RFC 5652:
 Cryptographic Message Syntax (CMS)
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
}

typedef data‑content‑cms {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the
 data content type, as described by Section 4 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
}

typedef signed‑data‑cms {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the

 signed‑data content type, as described by Section 5 in
 RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
}

typedef enveloped‑data‑cms {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the
 enveloped‑data content type, as described by Section 6
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
}

typedef digested‑data‑cms {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the
 digested‑data content type, as described by Section 7
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
}

typedef encrypted‑data‑cms {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the
 encrypted‑data content type, as described by Section 8
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
}

typedef authenticated‑data‑cms {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the
 authenticated‑data content type, as described by Section 9
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
}

/***/
/* Typedefs for structures related to RFC 4253 */

 /***/

typedef ssh‑host‑key {
 type binary;
 description
 "The binary public key data for this SSH key, as
 specified by RFC 4253, Section 6.6, i.e.:

 string certificate or public key format
 identifier
 byte[n] key/certificate data.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer
 Protocol";
}

/***/
/* Typedefs for ASN.1 structures related to RFC 5280 */
/***/

typedef trust‑anchor‑cert‑x509 {
 type x509;
 description
 "A Certificate structure that MUST encode a self‑signed
 root certificate.";
}

typedef end‑entity‑cert‑x509 {
 type x509;
 description
 "A Certificate structure that MUST encode a certificate
 that is neither self‑signed nor having Basic constraint
 CA true.";
}

/***/
/* Typedefs for ASN.1 structures related to RFC 5652 */
/***/

typedef trust‑anchor‑cert‑cms {
 type signed‑data‑cms;
 description
 "A CMS SignedData structure that MUST contain the chain of
 X.509 certificates needed to authenticate the certificate
 presented by a client or end‑entity.

 The CMS MUST contain only a single chain of certificates.
 The client or end‑entity certificate MUST only authenticate

 to last intermediate CA certificate listed in the chain.

 In all cases, the chain MUST include a self‑signed root
 certificate. In the case where the root certificate is
 itself the issuer of the client or end‑entity certificate,
 only one certificate is present.

 This CMS structure MAY (as applicable where this type is
 used) also contain suitably fresh (as defined by local
 policy) revocation objects with which the device can
 verify the revocation status of the certificates.

 This CMS encodes the degenerate form of the SignedData
 structure that is commonly used to disseminate X.509
 certificates and revocation objects (RFC 5280).";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.";
}

typedef end‑entity‑cert‑cms {
 type signed‑data‑cms;
 description
 "A CMS SignedData structure that MUST contain the end
 entity certificate itself, and MAY contain any number
 of intermediate certificates leading up to a trust
 anchor certificate. The trust anchor certificate
 MAY be included as well.

 The CMS MUST contain a single end entity certificate.
 The CMS MUST NOT contain any spurious certificates.

 This CMS structure MAY (as applicable where this type is
 used) also contain suitably fresh (as defined by local
 policy) revocation objects with which the device can
 verify the revocation status of the certificates.

 This CMS encodes the degenerate form of the SignedData
 structure that is commonly used to disseminate X.509
 certificates and revocation objects (RFC 5280).";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.";
}

/**/
/* Groupings for keys and/or certificates */
/**/

grouping public‑key‑grouping {
 description
 "A public key.";
 leaf algorithm {
 type asymmetric‑key‑encryption‑algorithm‑ref;
 description
 "Identifies the key's algorithm. More specifically,
 this leaf specifies how the 'public‑key' binary leaf
 is encoded.";
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }
 leaf public‑key {
 type binary;
 description
 "A binary that contains the value of the public key. The
 interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an RSA
 key is represented as RSAPublicKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented using the 'publicKey' described in
 RFC 5915.";
 reference
 "RFC 8017: Public‑Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 }
} // end public‑key‑grouping

grouping asymmetric‑key‑pair‑grouping {
 description
 "A private/public key pair.";
 uses public‑key‑grouping;
 leaf private‑key {
 nacm:default‑deny‑all;
 type union {
 type binary;
 type enumeration {
 enum "permanently‑hidden" {
 description
 "The private key is inaccessible due to being
 protected by the system (e.g., a cryptographic
 hardware module). It is not possible to

 configure a permanently hidden key, as a real
 private key value must be set. Permanently
 hidden keys cannot be archived or backed up.";
 }
 }
 }
 description
 "A binary that contains the value of the private key. The
 interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an RSA
 key is represented as RSAPrivateKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented as ECPrivateKey as defined in RFC 5915.";
 reference
 "RFC 8017: Public‑Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 } // end private‑key

 action generate‑hidden‑key {
 description
 "Requests the device to generate a hidden key using the
 specified asymmetric key algorithm. This action is
 used to request the system to generate a key that
 is 'permanently‑hidden', perhaps protected by a
 cryptographic hardware module. The resulting
 asymmetric key values are considered operational
 state and hence present only in <operational>.";
 input {
 leaf algorithm {
 type asymmetric‑key‑encryption‑algorithm‑ref;
 mandatory true;
 description
 "The algorithm to be used when generating the
 asymmetric key.";
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }
 }
 } // end generate‑hidden‑key

 action install‑hidden‑key {
 description
 "Requests the device to load the specified values into
 a hidden key. The resulting asymmetric key values are
 considered operational state and hence present only in
 <operational>.";
 input {

 leaf algorithm {
 type asymmetric‑key‑encryption‑algorithm‑ref;
 mandatory true;
 description
 "The algorithm to be used when generating the
 asymmetric key.";
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }
 leaf public‑key {
 type binary;
 description
 "A binary that contains the value of the public key.
 The interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an
 RSA key is represented as RSAPublicKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented using the 'publicKey' described in
 RFC 5915.";
 reference
 "RFC 8017: Public‑Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 }
 leaf private‑key {
 type binary;
 description
 "A binary that contains the value of the private key.
 The interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an RSA
 key is represented as RSAPrivateKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented as ECPrivateKey as defined in RFC 5915.";
 reference
 "RFC 8017: Public‑Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 }
 }
 } // end install‑hidden‑key
} // end asymmetric‑key‑pair‑grouping

grouping trust‑anchor‑cert‑grouping {
 description
 "A certificate, and a notification for when it might expire.";
 leaf cert {
 type trust‑anchor‑cert‑cms;

 description
 "The binary certificate data for this certificate.";
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }
 notification certificate‑expiration {
 description
 "A notification indicating that the configured certificate
 is either about to expire or has already expired. When to
 send notifications is an implementation specific decision,
 but it is RECOMMENDED that a notification be sent once a
 month for 3 months, then once a week for four weeks, and
 then once a day thereafter until the issue is resolved.";
 leaf expiration‑date {
 type yang:date‑and‑time;
 mandatory true;
 description
 "Identifies the expiration date on the certificate.";
 }
 }
} // end trust‑anchor‑cert‑grouping

grouping end‑entity‑cert‑grouping {
 description
 "A certificate, and a notification for when it might expire.";
 leaf cert {
 type end‑entity‑cert‑cms;
 description
 "The binary certificate data for this certificate.";
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }
 notification certificate‑expiration {
 description
 "A notification indicating that the configured certificate
 is either about to expire or has already expired. When to
 send notifications is an implementation specific decision,
 but it is RECOMMENDED that a notification be sent once a
 month for 3 months, then once a week for four weeks, and
 then once a day thereafter until the issue is resolved.";
 leaf expiration‑date {
 type yang:date‑and‑time;
 mandatory true;
 description
 "Identifies the expiration date on the certificate.";
 }
 }

 } // end end-entity-cert-grouping

grouping asymmetric‑key‑pair‑with‑certs‑grouping {
 description
 "A private/public key pair and associated certificates.";
 uses asymmetric‑key‑pair‑grouping;
 container certificates {
 description
 "Certificates associated with this asymmetric key.
 More than one certificate supports, for instance,
 a TPM‑protected asymmetric key that has both IDevID
 and LDevID certificates associated.";
 list certificate {
 key name;
 description
 "A certificate for this asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the certificate. If the name
 matches the name of a certificate that exists
 independently in <operational> (i.e., an IDevID),
 then the 'cert' node MUST NOT be configured.";

 }
 uses end‑entity‑cert‑grouping;
 } // end certificate
 } // end certificates

 action generate‑certificate‑signing‑request {
 description
 "Generates a certificate signing request structure for
 the associated asymmetric key using the passed subject
 and attribute values. The specified assertions need
 to be appropriate for the certificate's use. For
 example, an entity certificate for a TLS server
 SHOULD have values that enable clients to satisfy
 RFC 6125 processing.";
 input {
 leaf subject {
 type binary;
 mandatory true;
 description
 "The 'subject' field per the CertificationRequestInfo
 structure as specified by RFC 2986, Section 4.1
 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU‑T X.690.";

 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax
 Specification Version 1.7.
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 leaf attributes {
 type binary;
 description
 "The 'attributes' field from the structure
 CertificationRequestInfo as specified by RFC 2986,
 Section 4.1 encoded using the ASN.1 distinguished
 encoding rules (DER), as specified in ITU‑T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax
 Specification Version 1.7.
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 output {
 leaf certificate‑signing‑request {
 type binary;
 mandatory true;
 description
 "A CertificationRequest structure as specified by
 RFC 2986, Section 4.2 encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU‑T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax
 Specification Version 1.7.
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";

 }

 }
 } // end generate‑certificate‑signing‑request
 } // end asymmetric‑key‑pair‑with‑certs‑grouping

}
<CODE ENDS>

3. Security Considerations

 In order to use YANG identities for algorithm identifiers, only the
 most commonly used RSA key lengths are supported for the RSA
 algorithm. Additional key lengths can be defined in another module
 or added into a future version of this document.

 This document limits the number of elliptical curves supported. This
 was done to match industry trends and IETF best practice (e.g.,
 matching work being done in TLS 1.3). If additional algorithms are
 needed, they can be defined by another module or added into a future
 version of this document.

 Some of the operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

generate‑certificate‑signing‑request: For this action, it is
 RECOMMENDED that implementations assert channel binding
 [RFC5056], so as to ensure that the application layer that sent
 the request is the same as the device authenticated when the
 secure transport layer was established.

 This document uses PKCS #10 [RFC2986] for the "generate-certificate-
 signing-request" action. The use of Certificate Request Message
 Format (CRMF) [RFC4211] was considered, but is was unclear if there
 was market demand for it. If it is desired to support CRMF in the
 future, placing a "choice" statement in both the input and output
 statements, along with an "if-feature" statement on the CRMF option,
 would enable a backwards compatible solution.

 NACM:default-deny-all is set on asymmetric-key-pair-grouping's
 "private-key" node, as private keys should never be revealed without
 explicit permission.

4. IANA Considerations

4.1. The IETF XML Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registration is requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑crypto‑types
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

4.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

name: ietf‑crypto‑types
namespace: urn:ietf:params:xml:ns:yang:ietf‑crypto‑types
prefix: ct
reference: RFC XXXX

5. References

5.1. Normative References

 [ITU.X690.2015]

 International Telecommunication Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, ISO/IEC 8825-1, August 2015,
 <https://www.itu.int/rec/T-REC-X.690/>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2404]
 Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
 ESP and AH", RFC 2404, DOI 10.17487/RFC2404, November
 1998, <https://www.rfc-editor.org/info/rfc2404>.

 [RFC2986]
 Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

 [RFC3174]
 Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <https://www.rfc-editor.org/info/rfc3174>.

 [RFC3565]
 Schaad, J., "Use of the Advanced Encryption Standard (AES)
 Encryption Algorithm in Cryptographic Message Syntax
 (CMS)", RFC 3565, DOI 10.17487/RFC3565, July 2003,
 <https://www.rfc-editor.org/info/rfc3565>.

 [RFC3686]
 Housley, R., "Using Advanced Encryption Standard (AES)
 Counter Mode With IPsec Encapsulating Security Payload
 (ESP)", RFC 3686, DOI 10.17487/RFC3686, January 2004,
 <https://www.rfc-editor.org/info/rfc3686>.

 [RFC4106]
 Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",
 RFC 4106, DOI 10.17487/RFC4106, June 2005,
 <https://www.rfc-editor.org/info/rfc4106>.

 [RFC4253]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4279]
 Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC4309]
 Housley, R., "Using Advanced Encryption Standard (AES) CCM
 Mode with IPsec Encapsulating Security Payload (ESP)",
 RFC 4309, DOI 10.17487/RFC4309, December 2005,
 <https://www.rfc-editor.org/info/rfc4309>.

 [RFC4493]
 Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC4494]
 Song, JH., Poovendran, R., and J. Lee, "The AES-CMAC-96
 Algorithm and Its Use with IPsec", RFC 4494,
 DOI 10.17487/RFC4494, June 2006,
 <https://www.rfc-editor.org/info/rfc4494>.

 [RFC4543]
 McGrew, D. and J. Viega, "The Use of Galois Message
 Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
 DOI 10.17487/RFC4543, May 2006,
 <https://www.rfc-editor.org/info/rfc4543>.

 [RFC4868]
 Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868,
 DOI 10.17487/RFC4868, May 2007,
 <https://www.rfc-editor.org/info/rfc4868>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC5656]
 Stebila, D. and J. Green, "Elliptic Curve Algorithm
 Integration in the Secure Shell Transport Layer",
 RFC 5656, DOI 10.17487/RFC5656, December 2009,
 <https://www.rfc-editor.org/info/rfc5656>.

 [RFC5915]
 Turner, S. and D. Brown, "Elliptic Curve Private Key
 Structure", RFC 5915, DOI 10.17487/RFC5915, June 2010,
 <https://www.rfc-editor.org/info/rfc5915>.

 [RFC6187]
 Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <https://www.rfc-editor.org/info/rfc6187>.

 [RFC6234]
 Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6239]
 Igoe, K., "Suite B Cryptographic Suites for Secure Shell
 (SSH)", RFC 6239, DOI 10.17487/RFC6239, May 2011,
 <https://www.rfc-editor.org/info/rfc6239>.

 [RFC6507]
 Groves, M., "Elliptic Curve-Based Certificateless
 Signatures for Identity-Based Encryption (ECCSI)",
 RFC 6507, DOI 10.17487/RFC6507, February 2012,
 <https://www.rfc-editor.org/info/rfc6507>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7539]
 Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <https://www.rfc-editor.org/info/rfc7539>.

 [RFC7919]
 Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for Transport Layer Security (TLS)",
 RFC 7919, DOI 10.17487/RFC7919, August 2016,
 <https://www.rfc-editor.org/info/rfc7919>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8017]
 Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",
 RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8032]
 Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8268]
 Baushke, M., "More Modular Exponentiation (MODP) Diffie-
 Hellman (DH) Key Exchange (KEX) Groups for Secure Shell
 (SSH)", RFC 8268, DOI 10.17487/RFC8268, December 2017,
 <https://www.rfc-editor.org/info/rfc8268>.

 [RFC8332]
 Bider, D., "Use of RSA Keys with SHA-256 and SHA-512 in
 the Secure Shell (SSH) Protocol", RFC 8332,
 DOI 10.17487/RFC8332, March 2018,
 <https://www.rfc-editor.org/info/rfc8332>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8422]
 Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

5.2. Informative References

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4211]
 Schaad, J., "Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)", RFC 4211,
 DOI 10.17487/RFC4211, September 2005,
 <https://www.rfc-editor.org/info/rfc4211>.

 [RFC5056]
 Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <https://www.rfc-editor.org/info/rfc5056>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Examples

A.1. The "asymmetric-key-pair-with-certs-grouping" Grouping

 The following example module has been constructed to illustrate use
 of the "asymmetric-key-pair-with-certs-grouping" grouping defined in
 the "ietf-crypto-types" module.

 Note that the "asymmetric-key-pair-with-certs-grouping" grouping uses
 both the "asymmetric-key-pair-grouping" and "end-entity-cert-
 grouping" groupings, and that the "asymmetric-key-pair-grouping"
 grouping uses the "public-key-grouping" grouping. Thus, a total of
 four of the five groupings defined in the "ietf-crypto-types" module
 are illustrated through the use of this one grouping. The only
 grouping not represented is the "trust-anchor-cert-grouping"
 grouping.

 module ex-crypto-types-usage {

 yang-version 1.1;

 namespace "http://example.com/ns/example-crypto-types-usage";
 prefix "ectu";

import ietf‑crypto‑types {
 prefix ct;
 reference
 "RFC XXXX: Common YANG Data Types for Cryptography";
}

 organization

 "Example Corporation";

 contact

 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This module illustrates the grouping
 defined in the crypto‑types draft called
 'asymmetric‑key‑pair‑with‑certs‑grouping'.";

 revision "1001‑01‑01" {
 description
 "Initial version";
 reference
 "RFC ????: Usage Example for RFC XXXX";
 }

 container keys {
 description
 "A container of keys.";
 list key {
 key name;
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ct:asymmetric‑key‑pair‑with‑certs‑grouping;
 description
 "An asymmetric key pair with associated certificates.";
 }
 }
}

 Given the above example usage module, the following example
 illustrates some configured keys.

<keys xmlns="http://example.com/ns/example‑crypto‑types‑usage">
 <key>
 <name>ex‑key</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types">
 ct:rsa2048
 </algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <certificates>
 <certificate>
 <name>ex‑cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </key>
</keys>

A.2. The "generate-hidden-key" Action

 The following example illustrates the "generate-hidden-key" action in
 use with the NETCONF protocol.

REQUEST
‑‑‑‑‑‑‑
<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keys xmlns="http://example.com/ns/example‑crypto‑types‑usage">
 <key>
 <name>empty‑key</name>
 <generate‑hidden‑key>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types">
 ct:rsa2048
 </algorithm>
 </generate‑hidden‑key>
 </key>
 </keys>
 </action>
</rpc>

RESPONSE
‑‑‑‑‑‑‑‑
<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

A.3. The "install-hidden-key" Action

 The following example illustrates the "install-hidden-key" action in
 use with the NETCONF protocol.

REQUEST
‑‑‑‑‑‑‑
<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keys xmlns="http://example.com/ns/example‑crypto‑types‑usage">
 <key>
 <name>empty‑key</name>
 <install‑hidden‑key>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types">
 ct:rsa2048
 </algorithm>
 <public‑key>base64encodedvalue==</public‑key>
 <private‑key>base64encodedvalue==</private‑key>
 </install‑hidden‑key>
 </key>
 </keys>
 </action>
</rpc>

RESPONSE
‑‑‑‑‑‑‑‑
<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

A.4. The "generate-certificate-signing-request" Action

 The following example illustrates the "generate-certificate-signing-
 request" action in use with the NETCONF protocol.

REQUEST
‑‑‑‑‑‑‑
<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keys xmlns="http://example.com/ns/example‑crypto‑types‑usage">
 <key>
 <name>ex‑key‑sect571r1</name>
 <generate‑certificate‑signing‑request>
 <subject>base64encodedvalue==</subject>
 <attributes>base64encodedvalue==</attributes>
 </generate‑certificate‑signing‑request>
 </key>
 </keys>
 </action>
</rpc>

RESPONSE
‑‑‑‑‑‑‑‑
<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <certificate‑signing‑request
 xmlns="http://example.com/ns/example‑crypto‑types‑usage">
 base64encodedvalue==
 </certificate‑signing‑request>
</rpc‑reply>

A.5. The "certificate-expiration" Notification

 The following example illustrates the "certificate-expiration"
 notification in use with the NETCONF protocol.

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018‑05‑25T00:01:00Z</eventTime>
 <keys xmlns="http://example.com/ns/example‑crypto‑types‑usage">
 <key>
 <name>locally‑defined key</name>
 <certificates>
 <certificate>
 <name>my‑cert</name>
 <certificate‑expiration>
 <expiration‑date>
 2018‑08‑05T14:18:53‑05:00
 </expiration‑date>
 </certificate‑expiration>
 </certificate>
 </certificates>
 </key>
 </keys>
</notification>

Appendix B. Change Log

B.1. I-D to 00

 o Removed groupings and notifications.

 o Added typedefs for identityrefs.

 o Added typedefs for other RFC 5280 structures.

 o Added typedefs for other RFC 5652 structures.

 o Added convenience typedefs for RFC 4253, RFC 5280, and RFC 5652.

B.2. 00 to 01

 o Moved groupings from the draft-ietf-netconf-keystore here.

B.3. 01 to 02

 o Removed unwanted "mandatory" and "must" statements.

 o Added many new crypto algorithms (thanks Haiguang!)

 o Clarified in asymmetric-key-pair-with-certs-grouping, in
 certificates/certificate/name/description, that if the name MUST
 not match the name of a certificate that exists independently in

 <operational>, enabling certs installed by the manufacturer (e.g.,
 an IDevID).

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Martin Bjorklund,
 Balazs Kovacs, Eric Voit, and Liang Xia.

Authors' Addresses

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

Wang Haiguang
Huawei

 EMail: wang.haiguang.shieldlab@huawei.com

draft-ietf-netconf-keystore-07 - YANG Data Model for a Centralized Keystore Mech

Index
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

October 22, 2018

YANG Data Model for a Centralized Keystore Mechanism

draft-ietf-netconf-keystore-07

Abstract

 This document defines a YANG 1.1 module called "ietf-keystore" that
 enables centralized configuration of asymmetric keys and their
 associated certificates, and notification for when configured
 certificates are about to expire.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "VVVV" --> the assigned RFC value for this draft

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.
 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Requirements Language

	3. The Keystore Model
	 3.1. Tree Diagram

	 3.2. Example Usage

	 3.3. YANG Module

	4. Security Considerations

	5. IANA Considerations
	 5.1. The IETF XML Registry

	 5.2. The YANG Module Names Registry

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Change Log
	 A.1. 00 to 01

	 A.2. 01 to 02

	 A.3. 02 to 03

	 A.4. 03 to 04

	 A.5. 04 to 05

	 A.6. 05 to 06

	 A.7. 06 to 07

	Acknowledgements

	Author's Address

1. Introduction

 This document defines a YANG 1.1 [RFC7950] module called "ietf-
 keystore" that enables centralized configuration of asymmetric keys
 and their associated certificates, and notification for when
 configured certificates are about to expire.

 This module also defines Six groupings designed for maximum reuse.
 These groupings include one for the public half of an asymmetric key,
 one for both the public and private halves of an asymmetric key, one
 for both halves of an asymmetric key and a list of associated
 certificates, one for an asymmetric key that may be configured
 locally or via a reference to an asymmetric key in the keystore, one
 for a trust anchor certificate and, lastly, one for an end entity
 certificate.

 Special consideration has been given for systems that have
 cryptographic hardware, such as a Trusted Protection Module (TPM).
 These systems are unique in that the cryptographic hardware
 completely hides the private keys and must perform all private key
 operations. To support such hardware, the "private-key" can be the
 special value "permanently-hidden" and the actions "generate-hidden-
 key" and "generate-certificate-signing-request" can be used to direct
 these operations to the hardware .

 This document in compliant with Network Management Datastore
 Architecture (NMDA) [RFC8342]. For instance, to support keys and
 associated certificates installed during manufacturing (e.g., for a
 IDevID [Std-802.1AR-2009] certificate), it is expected that such data
 may appear only in <operational>.

 While only asymmetric keys are currently supported, the module has
 been designed to enable other key types to be introduced in the
 future.

 The module does not support protecting the contents of the keystore
 (e.g., via encryption), though it could be extended to do so in the
 future.

 It is not required that a system has an operating system level
 keystore utility to implement this module.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The Keystore Model

3.1. Tree Diagram

 This section provides a tree diagrams [RFC8340] for the "ietf-
 keystore" module that presents both the protocol-accessible
 "keystore" as well the all the groupings intended for external usage.

module: ietf‑keystore
 +‑‑rw keystore
 +‑‑rw asymmetric‑keys
 +‑‑rw asymmetric‑key* [name]
 +‑‑rw name string
 +‑‑rw algorithm?
 | asymmetric‑key‑encryption‑algorithm‑ref
 +‑‑rw public‑key? binary
 +‑‑rw private‑key? union
 +‑‑‑x generate‑hidden‑key
 | +‑‑‑w input
 | +‑‑‑w algorithm
 | asymmetric‑key‑encryption‑algorithm‑ref
 +‑‑‑x install‑hidden‑key
 | +‑‑‑w input
 | +‑‑‑w algorithm
 | | asymmetric‑key‑encryption‑algorithm‑ref
 | +‑‑‑w public‑key? binary
 | +‑‑‑w private‑key? binary
 +‑‑rw certificates
 | +‑‑rw certificate* [name]
 | +‑‑rw name string
 | +‑‑rw cert? end‑entity‑cert‑cms
 | +‑‑‑n certificate‑expiration
 | +‑‑ expiration‑date yang:date‑and‑time
 +‑‑‑x generate‑certificate‑signing‑request
 +‑‑‑w input
 | +‑‑‑w subject binary
 | +‑‑‑w attributes? binary
 +‑‑ro output
 +‑‑ro certificate‑signing‑request binary

 grouping local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping
 +‑‑ (local‑or‑keystore)
 +‑‑:(local) {local‑keys‑supported}?
 | +‑‑ algorithm?
 | | asymmetric‑key‑encryption‑algorithm‑ref

 | +‑‑ public‑key? binary
 | +‑‑ private‑key? union
 | +‑‑‑x generate‑hidden‑key
 | | +‑‑‑w input
 | | +‑‑‑w algorithm
 | | asymmetric‑key‑encryption‑algorithm‑ref
 | +‑‑‑x install‑hidden‑key
 | | +‑‑‑w input
 | | +‑‑‑w algorithm
 | | | asymmetric‑key‑encryption‑algorithm‑ref
 | | +‑‑‑w public‑key? binary
 | | +‑‑‑w private‑key? binary
 | +‑‑ cert? end‑entity‑cert‑cms
 | +‑‑‑n certificate‑expiration
 | +‑‑ expiration‑date yang:date‑and‑time
 +‑‑:(keystore) {keystore‑supported}?
 +‑‑ reference?
 ks:asymmetric‑key‑certificate‑ref
 grouping local‑or‑keystore‑asymmetric‑key‑grouping
 +‑‑ (local‑or‑keystore)
 +‑‑:(local) {local‑keys‑supported}?
 | +‑‑ algorithm?
 | | asymmetric‑key‑encryption‑algorithm‑ref
 | +‑‑ public‑key? binary
 | +‑‑ private‑key? union
 | +‑‑‑x generate‑hidden‑key
 | | +‑‑‑w input
 | | +‑‑‑w algorithm
 | | asymmetric‑key‑encryption‑algorithm‑ref
 | +‑‑‑x install‑hidden‑key
 | +‑‑‑w input
 | +‑‑‑w algorithm
 | | asymmetric‑key‑encryption‑algorithm‑ref
 | +‑‑‑w public‑key? binary
 | +‑‑‑w private‑key? binary
 +‑‑:(keystore) {keystore‑supported}?
 +‑‑ reference? ks:asymmetric‑key‑ref
 grouping local‑or‑keystore‑asymmetric‑key‑with‑certs‑grouping
 +‑‑ (local‑or‑keystore)
 +‑‑:(local) {local‑keys‑supported}?
 | +‑‑ algorithm?
 | | asymmetric‑key‑encryption‑algorithm‑ref
 | +‑‑ public‑key? binary
 | +‑‑ private‑key? union
 | +‑‑‑x generate‑hidden‑key
 | | +‑‑‑w input
 | | +‑‑‑w algorithm
 | | asymmetric‑key‑encryption‑algorithm‑ref

 | +‑‑‑x install‑hidden‑key
 | | +‑‑‑w input
 | | +‑‑‑w algorithm
 | | | asymmetric‑key‑encryption‑algorithm‑ref
 | | +‑‑‑w public‑key? binary
 | | +‑‑‑w private‑key? binary
 | +‑‑ certificates
 | | +‑‑ certificate* [name]
 | | +‑‑ name? string
 | | +‑‑ cert? end‑entity‑cert‑cms
 | | +‑‑‑n certificate‑expiration
 | | +‑‑ expiration‑date yang:date‑and‑time
 | +‑‑‑x generate‑certificate‑signing‑request
 | +‑‑‑w input
 | | +‑‑‑w subject binary
 | | +‑‑‑w attributes? binary
 | +‑‑ro output
 | +‑‑ro certificate‑signing‑request binary
 +‑‑:(keystore) {keystore‑supported}?
 +‑‑ reference?
 ks:asymmetric‑key‑ref

3.2. Example Usage

 The following example illustrates what a fully configured keystore
 might look like in <operational>, as described by Section 5.3 in
 [RFC8342]. This datastore view illustrates data set by the
 manufacturing process alongside conventional configuration. This
 keystore instance has four keys, two having one associated
 certificate, one having two associated certificates, and one empty
 key.

 [Note: '\' line wrapping for formatting only]

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf‑keystore"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf‑origin"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types"
 or:origin="or:intended">
 <asymmetric‑keys>

 <asymmetric‑key>
 <name>ex‑rsa‑key</name>
 <algorithm>ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <certificates>
 <certificate>

 <name>ex‑rsa‑cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric‑key>

<!‑‑ waiting for Haiguang fix...
 <asymmetric‑key>
 <name>tls‑ec‑key</name>
 <algorithm>ct:secp256r1</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <certificates>
 <certificate>
 <name>tls‑ec‑cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric‑key>
‑‑>

 <asymmetric‑key>
 <name>tpm‑protected‑key</name>
 <algorithm or:origin="or:system">ct:rsa2048</algorithm>
 <private‑key or:origin="or:system">permanently‑hidden</private\
‑key>
 <public‑key or:origin="or:system">base64encodedvalue==</public\
‑key>
 <certificates>
 <certificate or:origin="or:system">
 <name>builtin‑idevid‑cert</name>
 <cert or:origin="or:system">base64encodedvalue==</cert>
 </certificate>
 <certificate>
 <name>my‑ldevid‑cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric‑key>

 <asymmetric‑key>
 <name>tpm‑protected‑key2</name>
 <certificates>
 <certificate>
 <name>builtin‑idevid‑cert2</name>
 </certificate>
 <certificate>
 <name>my‑ldevid‑cert2</name>

 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric‑key>

 </asymmetric‑keys>
</keystore>

 The following example module has been constructed to illustrate the
 "local-or-keystore-asymmetric-key-grouping" grouping defined in the
 "ietf-keystore" module.

 module ex-keystore-usage {

 yang-version 1.1;

namespace "http://example.com/ns/example‑keystore‑usage";
prefix "eku";

import ietf‑keystore {
 prefix ks;
 reference
 "RFC VVVV: YANG Data Model for a 'Keystore' Mechanism";
}

 organization

 "Example Corporation";

 contact

 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description

 "This module illustrates the grouping in the keystore draft called
 'local-or-keystore-asymmetric-key-with-certs-grouping'.";

revision "YYYY‑MM‑DD" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Data Model for a 'Keystore' Mechanism";
}

container keystore‑usage {
 description
 "An illustration of the various keystore groupings.";

 list just-a-key {

 key name;

 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:local‑or‑keystore‑asymmetric‑key‑grouping;
 description
 "An asymmetric key, with no certs, that may be configured
 locally or be a reference to an asymmetric key in the
 keystore. The intent is to reference just the asymmetric
 key, not any certificates that may also be associated
 with the asymmetric key.";
 }

 list key‑with‑certs {
 key name;
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:local‑or‑keystore‑asymmetric‑key‑with‑certs‑grouping;
 description
 "An asymmetric key and its associated certs, that may be
 configured locally or be a reference to an asymmetric key
 (and its associated certs) in the keystore.";
 }

 list end‑entity‑cert‑with‑key {
 key name;
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping;
 description
 "An end‑entity certificate, and its associated private key,
 that may be configured locally or be a reference to a
 specific certificate (and its associated private key) in
 the keystore.";
 }
}

 }

 The following example illustrates what two configured keys, one local
 and the other remote, might look like. This example consistent with
 other examples above (i.e., the referenced key is in an example
 above).

 [Note: '\' line wrapping for formatting only]

 <keystore-usage xmlns="http://example.com/ns/example-keystore-usage">

 <!‑‑ ks:local‑or‑keystore‑asymmetric‑key‑grouping ‑‑>

 <just‑a‑key>
 <name>a locally‑defined key</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types">
 ct:rsa2048
 </algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </just‑a‑key>

 <just‑a‑key>
 <name>a keystore‑defined key (and its associated certs)</name>
 <reference>ex‑rsa‑key</reference>
 </just‑a‑key>

 <!‑‑ ks:local‑or‑keystore‑key‑and‑end‑entity‑cert‑grouping ‑‑>

 <key‑with‑certs>
 <name>a locally‑defined key with certs</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types">
 ct:rsa2048
 </algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <certificates>
 <certificate>
 <name>a locally‑defined cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </key‑with‑certs>

 <key‑with‑certs>
 <name>a keystore‑defined key (and its associated certs)</name>
 <reference>ex‑rsa‑key</reference>
 </key‑with‑certs>

 <!‑‑ ks:local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping ‑‑>

 <end‑entity‑cert‑with‑key>
 <name>a locally‑defined end‑entity cert with key</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑types">
 ct:rsa2048
 </algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </end‑entity‑cert‑with‑key>

 <end‑entity‑cert‑with‑key>
 <name>a keystore‑defined certificate (and its associated key)</n\
ame>
 <reference>ex‑rsa‑cert</reference>
 </end‑entity‑cert‑with‑key>

 </keystore-usage>

3.3. YANG Module

 This YANG module has normative references to [RFC8341] and
 [I-D.ietf-netconf-crypto-types], and an informative reference to
 [RFC8342].

<CODE BEGINS> file "ietf‑keystore@2018‑10‑22.yang"
module ietf‑keystore {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑keystore";
 prefix "ks";

 import ietf‑crypto‑types {
 prefix ct;
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }

 import ietf‑netconf‑acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

description
 "This module defines a keystore to centralize management
 of security credentials.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC VVVV; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC VVVV:
 YANG Data Model for a Centralized Keystore Mechanism";
}

 // Features

feature keystore‑supported {
 description
 "The 'keystore‑supported' feature indicates that the server
 supports the keystore.";
}

feature local‑keys‑supported {
 description
 "The 'local‑keys‑supported' feature indocates that the
 server supports locally‑defined keys.";
}

 // Typedefs

typedef asymmetric‑key‑ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric‑keys/ks:asymmetric‑key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to an asymmetric key stored in the keystore.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
}

typedef asymmetric‑key‑certificate‑ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric‑keys/ks:asymmetric‑key"
 + "/ks:certificates/ks:certificate/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to a specific certificate associated with an asymmetric key
 stored in the keystore.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
}

 // Groupings

grouping local‑or‑keystore‑asymmetric‑key‑grouping {
 description
 "A grouping that expands to allow the asymmetric key to be
 either stored locally, within the using data model, or be
 a reference to an asymmetric key stored in the keystore.";
 choice local‑or‑keystore {
 mandatory true;
 case local {
 if‑feature "local‑keys‑supported";
 uses ct:asymmetric‑key‑pair‑grouping;
 }
 case keystore {
 if‑feature "keystore‑supported";
 leaf reference {
 type ks:asymmetric‑key‑ref;
 description
 "A reference to an asymmetric key that exists in
 the keystore. The intent is to reference just the
 asymmetric key, not any certificates that may also
 be associated with the asymmetric key.";

 }
 }
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 }
}

grouping local‑or‑keystore‑asymmetric‑key‑with‑certs‑grouping {
 description
 "A grouping that expands to allow an asymmetric key and its
 associated certificates to be either stored locally, within
 the using data model, or be a reference to an asymmetric key
 (and its associated certificates) stored in the keystore.";
 choice local‑or‑keystore {
 mandatory true;
 case local {
 if‑feature "local‑keys‑supported";
 uses ct:asymmetric‑key‑pair‑with‑certs‑grouping;
 }
 case keystore {
 if‑feature "keystore‑supported";
 leaf reference {
 type ks:asymmetric‑key‑ref;
 description
 "A reference to a value that exists in the keystore.";
 }
 }
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 }
}

grouping local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping {
 description
 "A grouping that expands to allow an end‑entity certificate
 (and its associated private key) to be either stored locally,
 within the using data model, or be a reference to a specific
 certificate in the keystore.";
 choice local‑or‑keystore {
 mandatory true;
 case local {
 if‑feature "local‑keys‑supported";
 uses ct:asymmetric‑key‑pair‑grouping;
 uses ct:end‑entity‑cert‑grouping;
 }
 case keystore {

 if‑feature "keystore‑supported";
 leaf reference {
 type ks:asymmetric‑key‑certificate‑ref;
 description
 "A reference to a specific certificate, and its
 associated private key, stored in the keystore.";
 }
 }
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 }
}

 // protocol accessible nodes

 container keystore {

 nacm:default-deny-write;

 description

 "The keystore contains a list of keys.";

 container asymmetric‑keys {
 description
 "A list of asymmetric keys.";
 list asymmetric‑key {
 must "(algorithm and public‑key and private‑key)
 or not (algorithm or public‑key or private‑key)";
 key name;
 description
 "An asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the asymmetric key. If the name
 matches the name of a key that exists independently in
 <operational> (i.e., a 'permanently‑hidden' key), then
 the 'algorithm', 'public‑key', and 'private‑key' nodes
 MUST NOT be configured.";
 }
 uses ct:asymmetric‑key‑pair‑with‑certs‑grouping;
 } // end asymmetric‑key

 } // end asymmetric‑keys
 } // end keystore

}
<CODE ENDS>

4. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree defined by this module is sensitive to

 write operations. For instance, the addition or removal of
 keys, certificates, etc., can dramatically alter the
 implemented security policy. For this reason, the NACM
 extension "default-deny-write" has been set for the entire data
 tree.

/keystore/asymmetric‑keys/asymmetric‑key/private‑key: When
 writing this node, implementations MUST ensure that the
 strength of the key being configured is not greater than the
 strength of the underlying secure transport connection over
 which it is communicated. Implementations SHOULD fail the
 write‑request if ever the strength of the private key is
 greater then the strength of the underlying transport, and
 alert the client that the strength of the key may have been
 compromised. Additionally, when deleting this node,
 implementations SHOULD automatically (without explicit request)
 zeroize these keys in the most secure manner available, so as
 to prevent the remnants of their persisted storage locations
 from being analyzed in any meaningful way.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

/keystore/asymmetric‑keys/asymmetric‑key/private‑key: This node
 is additionally sensitive to read operations such that, in
 normal use cases, it should never be returned to a client. The
 best reason for returning this node is to support backup/
 restore type workflows. For this reason, the NACM extension
 "default‑deny‑all" has been set for this data node. Note that
 this extension is inherited from the grouping in the
 [I‑D.ietf‑netconf‑crypto‑types] module.

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registration is requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑keystore
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

name: ietf‑keystore
namespace: urn:ietf:params:xml:ns:yang:ietf‑keystore
prefix: ks
reference: RFC VVVV

6. References

6.1. Normative References

 [I-D.ietf-netconf-crypto-types]

 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

6.2. Informative References

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [Std-802.1AR-2009]

 IEEE SA-Standards Board, "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

Appendix A. Change Log

A.1. 00 to 01

 o Replaced the 'certificate-chain' structures with PKCS#7
 structures. (Issue #1)

 o Added 'private-key' as a configurable data node, and removed the
 'generate-private-key' and 'load-private-key' actions. (Issue #2)

 o Moved 'user-auth-credentials' to the ietf-ssh-client module.
 (Issues #4 and #5)

A.2. 01 to 02

 o Added back 'generate-private-key' action.

 o Removed 'RESTRICTED' enum from the 'private-key' leaf type.

 o Fixed up a few description statements.

A.3. 02 to 03

 o Changed draft's title.

 o Added missing references.

 o Collapsed sections and levels.

 o Added RFC 8174 to Requirements Language Section.

 o Renamed 'trusted-certificates' to 'pinned-certificates'.

 o Changed 'public-key' from config false to config true.

 o Switched 'host-key' from OneAsymmetricKey to definition from RFC
 4253.

A.4. 03 to 04

 o Added typedefs around leafrefs to common keystore paths

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Removed Design Considerations section

 o Moved key and certificate definitions from data tree to groupings

A.5. 04 to 05

 o Removed trust anchors (now in their own draft)

 o Added back global keystore structure

 o Added groupings enabling keys to either be locally defined or a
 reference to the keystore.

A.6. 05 to 06

 o Added feature "local-keys-supported"

 o Added nacm:default-deny-all and nacm:default-deny-write

 o Renamed generate-asymmetric-key to generate-hidden-key

 o Added an install-hidden-key action

 o Moved actions inside fo the "asymmetric-key" container

 o Moved some groupings to draft-ietf-netconf-crypto-types

A.7. 06 to 07

 o Removed a "require-instance false"

 o Clarified some description statements

 o Improved the keystore-usage examples

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Mahesh Jethanandani, Radek
 Krejci, Reshad Rahman, Tom Petch, Juergen Schoenwaelder, Phil Shafer,
 Sean Turner, Eric Voit, Bert Wijnen, and Liang Xia.

Author's Address

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

draft-ietf-netconf-netconf-client-server-08 - NETCONF Client and Server Models

Index
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

October 22, 2018

NETCONF Client and Server Models

draft-ietf-netconf-netconf-client-server-08

Abstract

 This document defines two YANG modules, one module to configure a
 NETCONF client and the other module to configure a NETCONF server.
 Both modules support both the SSH and TLS transport protocols, and
 support both standard NETCONF and NETCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-keystore

 o I-D.ietf-netconf-ssh-client-server

 o I-D.ietf-netconf-tls-client-server

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

o "YYYY" ‑‑> the assigned RFC value for I‑D.ietf‑netconf‑ssh‑client‑
 server

o "ZZZZ" ‑‑> the assigned RFC value for I‑D.ietf‑netconf‑tls‑client‑
 server

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. The NETCONF Client Model
	 3.1. Tree Diagram

	 3.2. Example Usage

	 3.3. YANG Module

	4. The NETCONF Server Model
	 4.1. Tree Diagram

	 4.2. Example Usage

	 4.3. YANG Module

	5. Design Considerations
	 5.1. Support all NETCONF transports

	 5.2. Enable each transport to select which keys to use

	 5.3. Support authenticating NETCONF clients certificates

	 5.4. Support mapping authenticated NETCONF client certificates to usernames

	 5.5. Support both listening for connections and call home

	 5.6. For Call Home connections
	 5.6.1. Support more than one NETCONF client

	 5.6.2. Support NETCONF clients having more than one endpoint

	 5.6.3. Support a reconnection strategy

	 5.6.4. Support both persistent and periodic connections

	 5.6.5. Reconnection strategy for periodic connections

	 5.6.6. Keep-alives for persistent connections

	 5.6.7. Customizations for periodic connections

	6. Security Considerations

	7. IANA Considerations
	 7.1. The IETF XML Registry

	 7.2. The YANG Module Names Registry

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Change Log
	 A.1. 00 to 01

	 A.2. 01 to 02

	 A.3. 02 to 03

	 A.4. 03 to 04

	 A.5. 04 to 05

	 A.6. 05 to 06

	 A.7. 06 to 07

	 A.8. 07 to 08

	Acknowledgements

	Author's Address

1. Introduction

 This document defines two YANG [RFC7950] modules, one module to
 configure a NETCONF [RFC6241] client and the other module to
 configure a NETCONF server. Both modules support both NETCONF over
 SSH [RFC6242] and NETCONF over TLS [RFC7589] and NETCONF Call Home
 connections [RFC8071].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The NETCONF Client Model

 The NETCONF client model presented in this section supports both
 clients initiating connections to servers, as well as clients
 listening for connections from servers calling home.

 This model supports both the SSH and TLS transport protocols, using
 the SSH client and TLS client groupings defined in
 [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-tls-client-server] respectively.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the NETCONF client supports.

3.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-netconf-client" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "netconf-client-grouping" that the container is using.

 [Note: '\' line wrapping for formatting only]

module: ietf‑netconf‑client
 +‑‑rw netconf‑client
 +‑‑rw initiate! {initiate}?
 | +‑‑rw netconf‑server* [name]
 | +‑‑rw name string
 | +‑‑rw endpoints
 | | +‑‑rw endpoint* [name]
 | | +‑‑rw name string
 | | +‑‑rw (transport)
 | | +‑‑:(ssh) {ssh‑initiate}?
 | | | +‑‑rw ssh
 | | | +‑‑rw address? inet:host
 | | | +‑‑rw port? inet:port‑number

 | | | +‑‑rw client‑identity
 | | | | +‑‑rw username? string
 | | | | +‑‑rw (auth‑type)
 | | | | +‑‑:(password)
 | | | | | +‑‑rw password? string
 | | | | +‑‑:(public‑key)
 | | | | | +‑‑rw public‑key
 | | | | | +‑‑rw (local‑or‑keystore)
 | | | | | +‑‑:(local)
 | | | | | | {local‑keys‑suppor\
ted}?
 | | | | | | +‑‑rw algorithm?
 | | | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | | | | +‑‑rw public‑key?
 | | | | | | | binary
 | | | | | | +‑‑rw private‑key?
 | | | | | | | union
 | | | | | | +‑‑‑x generate‑hidden‑key
 | | | | | | | +‑‑‑w input
 | | | | | | | +‑‑‑w algorithm
 | | | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | | | +‑‑‑x install‑hidden‑key
 | | | | | | +‑‑‑w input
 | | | | | | +‑‑‑w algorithm
 | | | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | | | +‑‑‑w public‑key?
 | | | | | | | binary
 | | | | | | +‑‑‑w private‑key?
 | | | | | | binary
 | | | | | +‑‑:(keystore)
 | | | | | {keystore‑supporte\
d}?
 | | | | | +‑‑rw reference?
 | | | | | ks:asymmetric‑ke\
y‑ref
 | | | | +‑‑:(certificate)
 | | | | +‑‑rw certificate
 | | | | {sshcmn:ssh‑x509‑certs}?
 | | | | +‑‑rw (local‑or‑keystore)
 | | | | +‑‑:(local)
 | | | | | {local‑keys‑suppor\
ted}?
 | | | | | +‑‑rw algorithm?
 | | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref

 | | | | | +‑‑rw public‑key?
 | | | | | | binary
 | | | | | +‑‑rw private‑key?
 | | | | | | union
 | | | | | +‑‑‑x generate‑hidden‑key
 | | | | | | +‑‑‑w input
 | | | | | | +‑‑‑w algorithm
 | | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | | +‑‑‑x install‑hidden‑key
 | | | | | | +‑‑‑w input
 | | | | | | +‑‑‑w algorithm
 | | | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | | | +‑‑‑w public‑key?
 | | | | | | | binary
 | | | | | | +‑‑‑w private‑key?
 | | | | | | binary
 | | | | | +‑‑rw cert?
 | | | | | | end‑entity‑cert‑\
cms
 | | | | | +‑‑‑n certificate‑expira\
tion
 | | | | | +‑‑ expiration‑date
 | | | | | yang:date‑and\
‑time
 | | | | +‑‑:(keystore)
 | | | | {keystore‑supporte\
d}?
 | | | | +‑‑rw reference?
 | | | | ks:asymmetric‑ke\
y‑certificate‑ref
 | | | +‑‑rw server‑auth
 | | | | +‑‑rw pinned‑ssh‑host‑keys?
 | | | | | ta:pinned‑host‑keys‑ref
 | | | | | {ta:ssh‑host‑keys}?
 | | | | +‑‑rw pinned‑ca‑certs?
 | | | | | ta:pinned‑certificates‑ref
 | | | | | {sshcmn:ssh‑x509‑certs,ta:x509‑\
certificates}?
 | | | | +‑‑rw pinned‑server‑certs?
 | | | | ta:pinned‑certificates‑ref
 | | | | {sshcmn:ssh‑x509‑certs,ta:x509‑\
certificates}?
 | | | +‑‑rw transport‑params
 | | | {ssh‑client‑transport‑params‑confi\
g}?
 | | | +‑‑rw host‑key

 | | | | +‑‑rw host‑key‑alg* identityref
 | | | +‑‑rw key‑exchange
 | | | | +‑‑rw key‑exchange‑alg* identityref
 | | | +‑‑rw encryption
 | | | | +‑‑rw encryption‑alg* identityref
 | | | +‑‑rw mac
 | | | +‑‑rw mac‑alg* identityref
 | | +‑‑:(tls) {tls‑initiate}?
 | | +‑‑rw tls
 | | +‑‑rw address? inet:host
 | | +‑‑rw port? inet:port‑number
 | | +‑‑rw client‑identity
 | | | +‑‑rw (auth‑type)
 | | | +‑‑:(certificate)
 | | | +‑‑rw certificate
 | | | +‑‑rw (local‑or‑keystore)
 | | | +‑‑:(local)
 | | | | {local‑keys‑suppor\
ted}?
 | | | | +‑‑rw algorithm?
 | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | | +‑‑rw public‑key?
 | | | | | binary
 | | | | +‑‑rw private‑key?
 | | | | | union
 | | | | +‑‑‑x generate‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | +‑‑‑x install‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | | +‑‑‑w public‑key?
 | | | | | | binary
 | | | | | +‑‑‑w private‑key?
 | | | | | binary
 | | | | +‑‑rw cert?
 | | | | | end‑entity‑cert‑\
cms
 | | | | +‑‑‑n certificate‑expira\
tion
 | | | | +‑‑ expiration‑date
 | | | | yang:date‑and\
‑time

 | | | +‑‑:(keystore)
 | | | {keystore‑supporte\
d}?
 | | | +‑‑rw reference?
 | | | ks:asymmetric‑ke\
y‑certificate‑ref
 | | +‑‑rw server‑auth
 | | | +‑‑rw pinned‑ca‑certs?
 | | | | ta:pinned‑certificates‑ref
 | | | | {ta:x509‑certificates}?
 | | | +‑‑rw pinned‑server‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw hello‑params
 | | {tls‑client‑hello‑params‑config}?
 | | +‑‑rw tls‑versions
 | | | +‑‑rw tls‑version* identityref
 | | +‑‑rw cipher‑suites
 | | +‑‑rw cipher‑suite* identityref
 | +‑‑rw connection‑type
 | | +‑‑rw (connection‑type)
 | | +‑‑:(persistent‑connection)
 | | | +‑‑rw persistent!
 | | | +‑‑rw keep‑alives
 | | | +‑‑rw max‑wait? uint16
 | | | +‑‑rw max‑attempts? uint8
 | | +‑‑:(periodic‑connection)
 | | +‑‑rw periodic!
 | | +‑‑rw period? uint16
 | | +‑‑rw anchor‑time? yang:date‑and‑time
 | | +‑‑rw idle‑timeout? uint16
 | +‑‑rw reconnect‑strategy
 | +‑‑rw start‑with? enumeration
 | +‑‑rw max‑attempts? uint8
 +‑‑rw listen! {listen}?
 +‑‑rw idle‑timeout? uint16
 +‑‑rw endpoint* [name]
 +‑‑rw name string
 +‑‑rw (transport)
 +‑‑:(ssh) {ssh‑listen}?
 | +‑‑rw ssh
 | +‑‑rw address? inet:ip‑address
 | +‑‑rw port? inet:port‑number
 | +‑‑rw client‑identity
 | | +‑‑rw username? string
 | | +‑‑rw (auth‑type)
 | | +‑‑:(password)
 | | | +‑‑rw password? string

 | | +‑‑:(public‑key)
 | | | +‑‑rw public‑key
 | | | +‑‑rw (local‑or‑keystore)
 | | | +‑‑:(local) {local‑keys‑supported\
}?
 | | | | +‑‑rw algorithm?
 | | | | | asymmetric‑key‑encrypt\
ion‑algorithm‑ref
 | | | | +‑‑rw public‑key?
 | | | | | binary
 | | | | +‑‑rw private‑key?
 | | | | | union
 | | | | +‑‑‑x generate‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | | +‑‑‑x install‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | | +‑‑‑w public‑key? bin\
ary
 | | | | +‑‑‑w private‑key? bin\
ary
 | | | +‑‑:(keystore) {keystore‑supporte\
d}?
 | | | +‑‑rw reference?
 | | | ks:asymmetric‑key‑ref
 | | +‑‑:(certificate)
 | | +‑‑rw certificate {sshcmn:ssh‑x509‑cert\
s}?
 | | +‑‑rw (local‑or‑keystore)
 | | +‑‑:(local) {local‑keys‑supported\
}?
 | | | +‑‑rw algorithm?
 | | | | asymmetric‑key‑encrypt\
ion‑algorithm‑ref
 | | | +‑‑rw public‑key?
 | | | | binary
 | | | +‑‑rw private‑key?
 | | | | union
 | | | +‑‑‑x generate‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref

 | | | +‑‑‑x install‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | | +‑‑‑w public‑key? bin\
ary
 | | | | +‑‑‑w private‑key? bin\
ary
 | | | +‑‑rw cert?
 | | | | end‑entity‑cert‑cms
 | | | +‑‑‑n certificate‑expiration
 | | | +‑‑ expiration‑date
 | | | yang:date‑and‑time
 | | +‑‑:(keystore) {keystore‑supporte\
d}?
 | | +‑‑rw reference?
 | | ks:asymmetric‑key‑cert\
ificate‑ref
 | +‑‑rw server‑auth
 | | +‑‑rw pinned‑ssh‑host‑keys?
 | | | ta:pinned‑host‑keys‑ref
 | | | {ta:ssh‑host‑keys}?
 | | +‑‑rw pinned‑ca‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {sshcmn:ssh‑x509‑certs,ta:x509‑certif\
icates}?
 | | +‑‑rw pinned‑server‑certs?
 | | ta:pinned‑certificates‑ref
 | | {sshcmn:ssh‑x509‑certs,ta:x509‑certif\
icates}?
 | +‑‑rw transport‑params
 | {ssh‑client‑transport‑params‑config}?
 | +‑‑rw host‑key
 | | +‑‑rw host‑key‑alg* identityref
 | +‑‑rw key‑exchange
 | | +‑‑rw key‑exchange‑alg* identityref
 | +‑‑rw encryption
 | | +‑‑rw encryption‑alg* identityref
 | +‑‑rw mac
 | +‑‑rw mac‑alg* identityref
 +‑‑:(tls) {tls‑listen}?
 +‑‑rw tls
 +‑‑rw address? inet:ip‑address
 +‑‑rw port? inet:port‑number
 +‑‑rw client‑identity
 | +‑‑rw (auth‑type)
 | +‑‑:(certificate)

 | +‑‑rw certificate
 | +‑‑rw (local‑or‑keystore)
 | +‑‑:(local) {local‑keys‑supported\
}?
 | | +‑‑rw algorithm?
 | | | asymmetric‑key‑encrypt\
ion‑algorithm‑ref
 | | +‑‑rw public‑key?
 | | | binary
 | | +‑‑rw private‑key?
 | | | union
 | | +‑‑‑x generate‑hidden‑key
 | | | +‑‑‑w input
 | | | +‑‑‑w algorithm
 | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | +‑‑‑x install‑hidden‑key
 | | | +‑‑‑w input
 | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | +‑‑‑w public‑key? bin\
ary
 | | | +‑‑‑w private‑key? bin\
ary
 | | +‑‑rw cert?
 | | | end‑entity‑cert‑cms
 | | +‑‑‑n certificate‑expiration
 | | +‑‑ expiration‑date
 | | yang:date‑and‑time
 | +‑‑:(keystore) {keystore‑supporte\
d}?
 | +‑‑rw reference?
 | ks:asymmetric‑key‑cert\
ificate‑ref
 +‑‑rw server‑auth
 | +‑‑rw pinned‑ca‑certs?
 | | ta:pinned‑certificates‑ref
 | | {ta:x509‑certificates}?
 | +‑‑rw pinned‑server‑certs?
 | ta:pinned‑certificates‑ref
 | {ta:x509‑certificates}?
 +‑‑rw hello‑params
 {tls‑client‑hello‑params‑config}?
 +‑‑rw tls‑versions
 | +‑‑rw tls‑version* identityref
 +‑‑rw cipher‑suites
 +‑‑rw cipher‑suite* identityref

3.2. Example Usage

 The following example illustrates configuring a NETCONF client to
 initiate connections, using both the SSH and TLS transport protocols,
 as well as listening for call-home connections, again using both the
 SSH and TLS transport protocols.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: '\' line wrapping for formatting only]

 <netconf-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-client">

 <!‑‑ NETCONF servers to initiate connections to ‑‑>
 <initiate>
 <netconf‑server>
 <name>corp‑fw1</name>
 <endpoints>
 <endpoint>
 <name>corp‑fw1.example.com</name>
 <ssh>
 <address>corp‑fw1.example.com</address>
 <client‑identity>
 <username>foobar</username>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
f‑crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </client‑identity>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</\
pinned‑server‑certs>
 </server‑auth>
 </ssh>
 </endpoint>
 <endpoint>
 <name>corp‑fw2.example.com</name>
 <ssh>
 <address>corp‑fw2.example.com</address>
 <client‑identity>
 <username>foobar</username>

 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
f‑crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </client‑identity>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</\
pinned‑server‑certs>
 </server‑auth>
 </ssh>
 </endpoint>
 </endpoints>
 <connection‑type>
 <persistent/>
 </connection‑type>
 <reconnect‑strategy>
 <start‑with>last‑connected</start‑with>
 </reconnect‑strategy>
 </netconf‑server>
 </initiate>

 <!‑‑ endpoints to listen for NETCONF Call Home connections on ‑‑>
 <listen>
 <endpoint>
 <name>Intranet‑facing listener</name>
 <ssh>
 <address>192.0.2.7</address>
 <client‑identity>
 <username>foobar</username>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑cr\
ypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </client‑identity>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</pinne\
d‑ca‑certs>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</pinn\
ed‑server‑certs>
 <pinned‑ssh‑host‑keys>explicitly‑trusted‑ssh‑host‑keys</pi\
nned‑ssh‑host‑keys>
 </server‑auth>

 </ssh>
 </endpoint>
 </listen>
</netconf‑client>

3.3. YANG Module

 This YANG module has normative references to [RFC6242], [RFC6991],
 [RFC7589], [RFC8071], [I-D.ietf-netconf-ssh-client-server], and
 [I-D.ietf-netconf-tls-client-server].

<CODE BEGINS> file "ietf‑netconf‑client@2018‑10‑22.yang"
module ietf‑netconf‑client {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-client";
 prefix "ncc";

import ietf‑yang‑types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑inet‑types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑ssh‑client {
 prefix ss;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC YYYY: YANG Groupings for SSH Clients and SSH Servers";
}

import ietf‑tls‑client {
 prefix ts;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

"WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

 "This module contains a collection of YANG definitions for
 configuring NETCONF clients.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
}

 // Features

feature initiate {
 description
 "The 'initiate' feature indicates that the NETCONF client
 supports initiating NETCONF connections to NETCONF servers
 using at least one transport (e.g., SSH, TLS, etc.).";
}

feature ssh‑initiate {
 description
 "The 'ssh‑initiate' feature indicates that the NETCONF client
 supports initiating SSH connections to NETCONF servers.";
 reference

 "RFC 6242:
 Using the NETCONF Protocol over Secure Shell (SSH)";
}

feature tls‑initiate {
 description
 "The 'tls‑initiate' feature indicates that the NETCONF client
 supports initiating TLS connections to NETCONF servers.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport
 Layer Security (TLS) with Mutual X.509
 Authentication";
}

feature listen {
 description
 "The 'listen' feature indicates that the NETCONF client
 supports opening a port to accept NETCONF server call
 home connections using at least one transport (e.g.,
 SSH, TLS, etc.).";
}

feature ssh‑listen {
 description
 "The 'ssh‑listen' feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call‑home SSH connections.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

feature tls‑listen {
 description
 "The 'tls‑listen' feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call‑home TLS connections.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

container netconf‑client {
 uses netconf‑client‑grouping;
 description
 "Top‑level container for NETCONF client configuration.";
}

 grouping netconf-client-grouping {

 description

 "Top-level grouping for NETCONF client configuration.";

container initiate {
 if‑feature initiate;
 presence "Enables client to initiate TCP connections";
 description
 "Configures client initiating underlying TCP connections.";
 list netconf‑server {
 key name;
 min‑elements 1;
 description
 "List of NETCONF servers the NETCONF client is to
 initiate connections to in parallel.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF server.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min‑elements 1;
 ordered‑by user;
 description
 "A user‑ordered list of endpoints that the NETCONF
 client will attempt to connect to in the specified
 sequence. Defining more than one enables
 high‑availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for the endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if‑feature ssh‑initiate;
 container ssh {
 description
 "Specifies IP and SSH specific configuration
 for the connection.";
 leaf address {
 type inet:host;
 description

 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the DNS resolution results in
 multiple IP addresses, the IP addresses will
 be tried according to local preference order
 until a connection has been established or
 until all IP addresses have failed.";
 }
 leaf port {
 type inet:port‑number;
 default 830;
 description
 "The IP port for this endpoint. The NETCONF
 client will use the IANA‑assigned well‑known
 port for 'netconf‑ssh' (830) if no value is
 specified.";
 }
 uses ss:ssh‑client‑grouping;
 }
 } // end ssh
 case tls {
 if‑feature tls‑initiate;
 container tls {
 description
 "Specifies IP and TLS specific configuration
 for the connection.";
 leaf address {
 type inet:host;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the DNS resolution results in
 multiple IP addresses, the IP addresses will
 be tried according to local preference order
 until a connection has been established or
 until all IP addresses have failed.";
 }
 leaf port {
 type inet:port‑number;
 default 6513;
 description
 "The IP port for this endpoint. The NETCONF
 client will use the IANA‑assigned well‑
 known port for 'netconf‑tls' (6513) if no
 value is specified.";
 }

 uses ts:tls‑client‑grouping {
 refine "client‑identity/auth‑type" {
 mandatory true;
 description
 "NETCONF/TLS clients MUST pass some
 authentication credentials.";
 }
 }
 }
 } // end tls
 }
 }
 }

 container connection‑type {
 description
 "Indicates the kind of connection to use.";
 choice connection‑type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent‑connection {
 container persistent {
 presence
 "Indicates that a persistent connection is to be
 maintained.";
 description
 "Maintain a persistent connection to the NETCONF
 server. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any NETCONF server
 to NETCONF client data‑transfer delay, albeit at
 the expense of holding resources longer.";
 container keep‑alives {
 description
 "Configures the keep‑alive policy, to
 proactively test the aliveness of the SSH/TLS
 server. An unresponsive SSH/TLS server will
 be dropped after approximately max‑attempts *
 max‑wait seconds.";
 leaf max‑wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;

 description
 "Sets the amount of time in seconds after
 which if no data has been received from the
 SSH/TLS server, a SSH/TLS‑level message will
 be sent to test the aliveness of the SSH/TLS
 server.";
 }
 leaf max‑attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep‑
 alive messages that can fail to obtain a
 response from the SSH/TLS server before
 assuming the SSH/TLS server is no longer
 alive.";
 }
 }
 }
 }
 case periodic‑connection {
 container periodic {
 presence
 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the NETCONF server. The
 NETCONF server should close the connection upon
 completing planned activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 NETCONF server to NETCONF client interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic connections.";
 }
 leaf anchor‑time {
 type yang:date‑and‑time {
 // constrained to minute‑level granularity
 pattern '\d{4}‑\d{2}‑\d{2}T\d{2}:\d{2}'
 + '(Z|[\+\‑]\d{2}:\d{2})';
 }
 description
 "Designates a timestamp before or after which a

 series of periodic connections are determined.
 The periodic connections occur at a whole
 multiple interval from the anchor time. For
 example, for an anchor time is 15 minutes past
 midnight and a period interval of 24 hours, then
 a periodic connection will occur 15 minutes past
 midnight everyday.";
 }
 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds that
 a NETCONF session may remain idle. A NETCONF
 session will be dropped if it is idle for an
 interval longer than this number of seconds.
 If set to zero, then the NETCONF client will
 never drop a session because it is idle.";
 }
 }
 }
 }
 }
 container reconnect‑strategy {
 description
 "The reconnection strategy directs how a NETCONF client
 reconnects to a NETCONF server, after discovering its
 connection to the server has dropped, even if due to a
 reboot. The NETCONF client starts with the specified
 endpoint and tries to connect to it max‑attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start‑with {
 type enumeration {
 enum first‑listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last‑connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. NETCONF
 clients SHOULD be able to remember the last
 endpoint connected to across reboots.";

 }
 enum random‑selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first‑listed;
 description
 "Specifies which of the NETCONF server's endpoints
 the NETCONF client should start with when trying
 to connect to the NETCONF server.";
 }
 leaf max‑attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the NETCONF client tries
 to connect to a specific endpoint before moving on
 to the next endpoint in the list (round robin).";
 }
 }
 } // end netconf‑server
} // end initiate

container listen {
 if‑feature listen;
 presence "Enables client to accept call‑home connections";
 description
 "Configures client accepting call‑home TCP connections.";

 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour
 description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be
 dropped if it is idle for an interval longer than this
 number of seconds. If set to zero, then the server
 will never drop a session because it is idle. Sessions
 that have a notification subscription active are never
 dropped.";
 }

 list endpoint {

 key name;
 min‑elements 1;
 description
 "List of endpoints to listen for NETCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if‑feature ssh‑listen;
 container ssh {
 description
 "SSH‑specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip‑address;
 description
 "The IP address to listen on for incoming call‑
 home connections. The NETCONF client will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port‑number;
 default 4334;
 description
 "The port number to listen on for call‑home
 connections. The NETCONF client will listen
 on the IANA‑assigned well‑known port for
 'netconf‑ch‑ssh' (4334) if no value is
 specified.";
 }
 uses ss:ssh‑client‑grouping;
 }
 }
 case tls {
 if‑feature tls‑listen;
 container tls {
 description
 "TLS‑specific listening configuration for inbound

 connections.";
 leaf address {
 type inet:ip‑address;
 description
 "The IP address to listen on for incoming call‑
 home connections. The NETCONF client will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port‑number;
 default 4335;
 description
 "The port number to listen on for call‑home
 connections. The NETCONF client will listen
 on the IANA‑assigned well‑known port for
 'netconf‑ch‑tls' (4335) if no value is
 specified.";
 }
 uses ts:tls‑client‑grouping {
 refine "client‑identity/auth‑type" {
 mandatory true;
 description
 "NETCONF/TLS clients MUST pass some
 authentication credentials.";
 }
 }
 }
 }
 } // end transport
 } // end endpoint
 } // end listen

 } // end netconf‑client
}
<CODE ENDS>

4. The NETCONF Server Model

 The NETCONF server model presented in this section supports servers
 both listening for connections as well as initiating call-home
 connections.

 This model supports both the SSH and TLS transport protocols, using
 the SSH server and TLS server groupings defined in
 [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-tls-client-server] respectively.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the NETCONF server supports.

4.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-netconf-server" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "netconf-server-grouping" that the container is using.

 [Note: '\' line wrapping for formatting only]

module: ietf‑netconf‑server
 +‑‑rw netconf‑server
 +‑‑rw listen! {listen}?
 | +‑‑rw idle‑timeout? uint16
 | +‑‑rw endpoint* [name]
 | +‑‑rw name string
 | +‑‑rw (transport)
 | +‑‑:(ssh) {ssh‑listen}?
 | | +‑‑rw ssh
 | | +‑‑rw address inet:ip‑address
 | | +‑‑rw port? inet:port‑number
 | | +‑‑rw server‑identity
 | | | +‑‑rw host‑key* [name]
 | | | +‑‑rw name string
 | | | +‑‑rw (host‑key‑type)
 | | | +‑‑:(public‑key)
 | | | | +‑‑rw public‑key
 | | | | +‑‑rw (local‑or‑keystore)
 | | | | +‑‑:(local)
 | | | | | {local‑keys‑supported\
}?
 | | | | | +‑‑rw algorithm?
 | | | | | | asymmetric‑key‑encr\
yption‑algorithm‑ref
 | | | | | +‑‑rw public‑key?
 | | | | | | binary
 | | | | | +‑‑rw private‑key?
 | | | | | | union
 | | | | | +‑‑‑x generate‑hidden‑key

 | | | | | | +‑‑‑w input
 | | | | | | +‑‑‑w algorithm
 | | | | | | asymmetric‑ke\
y‑encryption‑algorithm‑ref
 | | | | | +‑‑‑x install‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | | asymmetric‑ke\
y‑encryption‑algorithm‑ref
 | | | | | +‑‑‑w public‑key?
 | | | | | | binary
 | | | | | +‑‑‑w private‑key?
 | | | | | binary
 | | | | +‑‑:(keystore)
 | | | | {keystore‑supported}?
 | | | | +‑‑rw reference?
 | | | | ks:asymmetric‑key‑r\
ef
 | | | +‑‑:(certificate)
 | | | +‑‑rw certificate
 | | | {sshcmn:ssh‑x509‑certs}?
 | | | +‑‑rw (local‑or‑keystore)
 | | | +‑‑:(local)
 | | | | {local‑keys‑supported\
}?
 | | | | +‑‑rw algorithm?
 | | | | | asymmetric‑key‑encr\
yption‑algorithm‑ref
 | | | | +‑‑rw public‑key?
 | | | | | binary
 | | | | +‑‑rw private‑key?
 | | | | | union
 | | | | +‑‑‑x generate‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑ke\
y‑encryption‑algorithm‑ref
 | | | | +‑‑‑x install‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | | asymmetric‑ke\
y‑encryption‑algorithm‑ref
 | | | | | +‑‑‑w public‑key?
 | | | | | | binary
 | | | | | +‑‑‑w private‑key?
 | | | | | binary
 | | | | +‑‑rw cert?
 | | | | | end‑entity‑cert‑cms

 | | | | +‑‑‑n certificate‑expiration
 | | | | +‑‑ expiration‑date
 | | | | yang:date‑and‑ti\
me
 | | | +‑‑:(keystore)
 | | | {keystore‑supported}?
 | | | +‑‑rw reference?
 | | | ks:asymmetric‑key‑c\
ertificate‑ref
 | | +‑‑rw client‑cert‑auth {sshcmn:ssh‑x509‑certs}?
 | | | +‑‑rw pinned‑ca‑certs?
 | | | | ta:pinned‑certificates‑ref
 | | | | {ta:x509‑certificates}?
 | | | +‑‑rw pinned‑client‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw transport‑params
 | | {ssh‑server‑transport‑params‑config}?
 | | +‑‑rw host‑key
 | | | +‑‑rw host‑key‑alg* identityref
 | | +‑‑rw key‑exchange
 | | | +‑‑rw key‑exchange‑alg* identityref
 | | +‑‑rw encryption
 | | | +‑‑rw encryption‑alg* identityref
 | | +‑‑rw mac
 | | +‑‑rw mac‑alg* identityref
 | +‑‑:(tls) {tls‑listen}?
 | +‑‑rw tls
 | +‑‑rw address inet:ip‑address
 | +‑‑rw port? inet:port‑number
 | +‑‑rw server‑identity
 | | +‑‑rw (local‑or‑keystore)
 | | +‑‑:(local) {local‑keys‑supported}?
 | | | +‑‑rw algorithm?
 | | | | asymmetric‑key‑encryption‑algor\
ithm‑ref
 | | | +‑‑rw public‑key? binary
 | | | +‑‑rw private‑key? union
 | | | +‑‑‑x generate‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑encryption\
‑algorithm‑ref
 | | | +‑‑‑x install‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑encryption\
‑algorithm‑ref

 | | | | +‑‑‑w public‑key? binary
 | | | | +‑‑‑w private‑key? binary
 | | | +‑‑rw cert?
 | | | | end‑entity‑cert‑cms
 | | | +‑‑‑n certificate‑expiration
 | | | +‑‑ expiration‑date
 | | | yang:date‑and‑time
 | | +‑‑:(keystore) {keystore‑supported}?
 | | +‑‑rw reference?
 | | ks:asymmetric‑key‑certificate‑r\
ef
 | +‑‑rw client‑auth
 | | +‑‑rw pinned‑ca‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw pinned‑client‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw cert‑maps
 | | +‑‑rw cert‑to‑name* [id]
 | | +‑‑rw id uint32
 | | +‑‑rw fingerprint
 | | | x509c2n:tls‑fingerprint
 | | +‑‑rw map‑type identityref
 | | +‑‑rw name string
 | +‑‑rw hello‑params
 | {tls‑server‑hello‑params‑config}?
 | +‑‑rw tls‑versions
 | | +‑‑rw tls‑version* identityref
 | +‑‑rw cipher‑suites
 | +‑‑rw cipher‑suite* identityref
 +‑‑rw call‑home! {call‑home}?
 +‑‑rw netconf‑client* [name]
 +‑‑rw name string
 +‑‑rw endpoints
 | +‑‑rw endpoint* [name]
 | +‑‑rw name string
 | +‑‑rw (transport)
 | +‑‑:(ssh) {ssh‑call‑home}?
 | | +‑‑rw ssh
 | | +‑‑rw address inet:host
 | | +‑‑rw port? inet:port‑number
 | | +‑‑rw server‑identity
 | | | +‑‑rw host‑key* [name]
 | | | +‑‑rw name string
 | | | +‑‑rw (host‑key‑type)
 | | | +‑‑:(public‑key)
 | | | | +‑‑rw public‑key

 | | | | +‑‑rw (local‑or‑keystore)
 | | | | +‑‑:(local)
 | | | | | {local‑keys‑sup\
ported}?
 | | | | | +‑‑rw algorithm?
 | | | | | | asymmetric‑ke\
y‑encryption‑algorithm‑ref
 | | | | | +‑‑rw public‑key?
 | | | | | | binary
 | | | | | +‑‑rw private‑key?
 | | | | | | union
 | | | | | +‑‑‑x generate‑hidden\
‑key
 | | | | | | +‑‑‑w input
 | | | | | | +‑‑‑w algorithm
 | | | | | | asymmet\
ric‑key‑encryption‑algorithm‑ref
 | | | | | +‑‑‑x install‑hidden‑\
key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | | asymmet\
ric‑key‑encryption‑algorithm‑ref
 | | | | | +‑‑‑w public‑ke\
y?
 | | | | | | binary
 | | | | | +‑‑‑w private‑k\
ey?
 | | | | | binary
 | | | | +‑‑:(keystore)
 | | | | {keystore‑suppo\
rted}?
 | | | | +‑‑rw reference?
 | | | | ks:asymmetric\
‑key‑ref
 | | | +‑‑:(certificate)
 | | | +‑‑rw certificate
 | | | {sshcmn:ssh‑x509‑certs\
}?
 | | | +‑‑rw (local‑or‑keystore)
 | | | +‑‑:(local)
 | | | | {local‑keys‑sup\
ported}?
 | | | | +‑‑rw algorithm?
 | | | | | asymmetric‑ke\
y‑encryption‑algorithm‑ref
 | | | | +‑‑rw public‑key?
 | | | | | binary

 | | | | +‑‑rw private‑key?
 | | | | | union
 | | | | +‑‑‑x generate‑hidden\
‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | asymmet\
ric‑key‑encryption‑algorithm‑ref
 | | | | +‑‑‑x install‑hidden‑\
key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | | asymmet\
ric‑key‑encryption‑algorithm‑ref
 | | | | | +‑‑‑w public‑ke\
y?
 | | | | | | binary
 | | | | | +‑‑‑w private‑k\
ey?
 | | | | | binary
 | | | | +‑‑rw cert?
 | | | | | end‑entity‑ce\
rt‑cms
 | | | | +‑‑‑n certificate‑exp\
iration
 | | | | +‑‑ expiration‑date
 | | | | yang:date‑\
and‑time
 | | | +‑‑:(keystore)
 | | | {keystore‑suppo\
rted}?
 | | | +‑‑rw reference?
 | | | ks:asymmetric\
‑key‑certificate‑ref
 | | +‑‑rw client‑cert‑auth
 | | | {sshcmn:ssh‑x509‑certs}?
 | | | +‑‑rw pinned‑ca‑certs?
 | | | | ta:pinned‑certificates‑ref
 | | | | {ta:x509‑certificates}?
 | | | +‑‑rw pinned‑client‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw transport‑params
 | | {ssh‑server‑transport‑params‑confi\
g}?
 | | +‑‑rw host‑key
 | | | +‑‑rw host‑key‑alg* identityref
 | | +‑‑rw key‑exchange

 | | | +‑‑rw key‑exchange‑alg* identityref
 | | +‑‑rw encryption
 | | | +‑‑rw encryption‑alg* identityref
 | | +‑‑rw mac
 | | +‑‑rw mac‑alg* identityref
 | +‑‑:(tls) {tls‑call‑home}?
 | +‑‑rw tls
 | +‑‑rw address inet:host
 | +‑‑rw port? inet:port‑number
 | +‑‑rw server‑identity
 | | +‑‑rw (local‑or‑keystore)
 | | +‑‑:(local) {local‑keys‑supported}?
 | | | +‑‑rw algorithm?
 | | | | asymmetric‑key‑encryption\
‑algorithm‑ref
 | | | +‑‑rw public‑key?
 | | | | binary
 | | | +‑‑rw private‑key?
 | | | | union
 | | | +‑‑‑x generate‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑encr\
yption‑algorithm‑ref
 | | | +‑‑‑x install‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑encr\
yption‑algorithm‑ref
 | | | | +‑‑‑w public‑key? binary
 | | | | +‑‑‑w private‑key? binary
 | | | +‑‑rw cert?
 | | | | end‑entity‑cert‑cms
 | | | +‑‑‑n certificate‑expiration
 | | | +‑‑ expiration‑date
 | | | yang:date‑and‑time
 | | +‑‑:(keystore) {keystore‑supported}?
 | | +‑‑rw reference?
 | | ks:asymmetric‑key‑certifi\
cate‑ref
 | +‑‑rw client‑auth
 | | +‑‑rw pinned‑ca‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw pinned‑client‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw cert‑maps

 | | +‑‑rw cert‑to‑name* [id]
 | | +‑‑rw id uint32
 | | +‑‑rw fingerprint
 | | | x509c2n:tls‑fingerprint
 | | +‑‑rw map‑type identityref
 | | +‑‑rw name string
 | +‑‑rw hello‑params
 | {tls‑server‑hello‑params‑config}?
 | +‑‑rw tls‑versions
 | | +‑‑rw tls‑version* identityref
 | +‑‑rw cipher‑suites
 | +‑‑rw cipher‑suite* identityref
 +‑‑rw connection‑type
 | +‑‑rw (connection‑type)
 | +‑‑:(persistent‑connection)
 | | +‑‑rw persistent!
 | | +‑‑rw keep‑alives
 | | +‑‑rw max‑wait? uint16
 | | +‑‑rw max‑attempts? uint8
 | +‑‑:(periodic‑connection)
 | +‑‑rw periodic!
 | +‑‑rw period? uint16
 | +‑‑rw anchor‑time? yang:date‑and‑time
 | +‑‑rw idle‑timeout? uint16
 +‑‑rw reconnect‑strategy
 +‑‑rw start‑with? enumeration
 +‑‑rw max‑attempts? uint8

4.2. Example Usage

 The following example illustrates configuring a NETCONF server to
 listen for NETCONF client connections using both the SSH and TLS
 transport protocols, as well as configuring call-home to two NETCONF
 clients, one using SSH and the other using TLS.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: '\' line wrapping for formatting only]

 <netconf-server

 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server"
 xmlns:x509c2n="urn:ietf:params:xml:ns:yang:ietf-x509-cert-to-name">

 <!‑‑ endpoints to listen for NETCONF connections on ‑‑>
 <listen>
 <endpoint> <!‑‑ listening for SSH connections ‑‑>

 <name>netconf/ssh</name>
 <ssh>
 <address>192.0.2.7</address>
 <server‑identity>
 <host‑key>
 <name>deployment‑specific‑certificate</name>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑\
crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </host‑key>
 </server‑identity>
 <client‑cert‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinne\
d‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinn\
ed‑client‑certs>
 </client‑cert‑auth>
 </ssh>
 </endpoint>
 <endpoint> <!‑‑ listening for TLS sessions ‑‑>
 <name>netconf/tls</name>
 <tls>
 <address>192.0.2.7</address>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑cryp\
to‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinne\
d‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinn\
ed‑client‑certs>
 <cert‑maps>
 <cert‑to‑name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map‑type>x509c2n:san‑any</map‑type>
 </cert‑to‑name>
 <cert‑to‑name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map‑type>x509c2n:specified</map‑type>

 <name>scooby‑doo</name>
 </cert‑to‑name>
 </cert‑maps>
 </client‑auth>
 </tls>
 </endpoint>
 </listen>

 <!‑‑ calling home to SSH and TLS based NETCONF clients ‑‑>
 <call‑home>
 <netconf‑client> <!‑‑ SSH‑based client ‑‑>
 <name>config‑mgr</name>
 <endpoints>
 <endpoint>
 <name>east‑data‑center</name>
 <ssh>
 <address>east.config‑mgr.example.com</address>
 <server‑identity>
 <host‑key>
 <name>deployment‑specific‑certificate</name>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:i\
etf‑crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </host‑key>
 </server‑identity>
 <client‑cert‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</\
pinned‑client‑certs>
 </client‑cert‑auth>
 </ssh>
 </endpoint>
 <endpoint>
 <name>west‑data‑center</name>
 <ssh>
 <address>west.config‑mgr.example.com</address>
 <server‑identity>
 <host‑key>
 <name>deployment‑specific‑certificate</name>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:i\
etf‑crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>

 </public‑key>
 </host‑key>
 </server‑identity>
 <client‑cert‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</\
pinned‑client‑certs>
 </client‑cert‑auth>
 </ssh>
 </endpoint>
 </endpoints>
 <connection‑type>
 <periodic>
 <idle‑timeout>300</idle‑timeout>
 <period>60</period>
 </periodic>
 </connection‑type>
 <reconnect‑strategy>
 <start‑with>last‑connected</start‑with>
 <max‑attempts>3</max‑attempts>
 </reconnect‑strategy>
 </netconf‑client>
 <netconf‑client> <!‑‑ TLS‑based client ‑‑>
 <name>data‑collector</name>
 <endpoints>
 <endpoint>
 <name>east‑data‑center</name>
 <tls>
 <address>east.analytics.example.com</address>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑\
crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</\
pinned‑client‑certs>
 <cert‑maps>
 <cert‑to‑name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map‑type>x509c2n:san‑any</map‑type>
 </cert‑to‑name>

 <cert‑to‑name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map‑type>x509c2n:specified</map‑type>
 <name>scooby‑doo</name>
 </cert‑to‑name>
 </cert‑maps>
 </client‑auth>
 </tls>
 </endpoint>
 <endpoint>
 <name>west‑data‑center</name>
 <tls>
 <address>west.analytics.example.com</address>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑\
crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</\
pinned‑client‑certs>
 <cert‑maps>
 <cert‑to‑name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map‑type>x509c2n:san‑any</map‑type>
 </cert‑to‑name>
 <cert‑to‑name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map‑type>x509c2n:specified</map‑type>
 <name>scooby‑doo</name>
 </cert‑to‑name>
 </cert‑maps>
 </client‑auth>
 </tls>
 </endpoint>
 </endpoints>
 <connection‑type>
 <persistent>
 <keep‑alives>
 <max‑wait>30</max‑wait>
 <max‑attempts>3</max‑attempts>

 </keep‑alives>
 </persistent>
 </connection‑type>
 <reconnect‑strategy>
 <start‑with>first‑listed</start‑with>
 <max‑attempts>3</max‑attempts>
 </reconnect‑strategy>
 </netconf‑client>
 </call‑home>
</netconf‑server>

4.3. YANG Module

 This YANG module has normative references to [RFC6242], [RFC6991],
 [RFC7407], [RFC7589], [RFC8071],
 [I-D.ietf-netconf-ssh-client-server], and
 [I-D.ietf-netconf-tls-client-server].

 This YANG module imports YANG types from [RFC6991], and YANG
 groupings from [RFC7407], [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-ssh-client-server].

<CODE BEGINS> file "ietf‑netconf‑server@2018‑10‑22.yang"
module ietf‑netconf‑server {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server";
 prefix "ncs";

import ietf‑yang‑types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑inet‑types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑x509‑cert‑to‑name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
}

 import ietf-ssh-server {

 prefix ss;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC YYYY: YANG Groupings for SSH Clients and SSH Servers";
}

import ietf‑tls‑server {
 prefix ts;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs‑university.de>";

 description

 "This module contains a collection of YANG definitions for
 configuring NETCONF servers.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license‑info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";

 revision "2018-10-22" {

 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
}

 // Features

feature listen {
 description
 "The 'listen' feature indicates that the NETCONF server
 supports opening a port to accept NETCONF client connections
 using at least one transport (e.g., SSH, TLS, etc.).";
}

feature ssh‑listen {
 description
 "The 'ssh‑listen' feature indicates that the NETCONF server
 supports opening a port to accept NETCONF over SSH
 client connections.";
 reference
 "RFC 6242:
 Using the NETCONF Protocol over Secure Shell (SSH)";
}

feature tls‑listen {
 description
 "The 'tls‑listen' feature indicates that the NETCONF server
 supports opening a port to accept NETCONF over TLS
 client connections.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport
 Layer Security (TLS) with Mutual X.509
 Authentication";
}

feature call‑home {
 description
 "The 'call‑home' feature indicates that the NETCONF server
 supports initiating NETCONF call home connections to
 NETCONF clients using at least one transport (e.g., SSH,
 TLS, etc.).";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

 feature ssh-call-home {

 description
 "The 'ssh‑call‑home' feature indicates that the NETCONF
 server supports initiating a NETCONF over SSH call
 home connection to NETCONF clients.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

feature tls‑call‑home {
 description
 "The 'tls‑call‑home' feature indicates that the NETCONF
 server supports initiating a NETCONF over TLS call
 home connection to NETCONF clients.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

 // protocol accessible nodes

container netconf‑server {
 uses netconf‑server‑grouping;
 description
 "Top‑level container for NETCONF server configuration.";
}

 // reusable groupings

grouping netconf‑server‑grouping {
 description
 "Top‑level grouping for NETCONF server configuration.";
 container listen {
 if‑feature listen;
 presence "Enables server to listen for TCP connections";
 description "Configures listen behavior";
 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour
 description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be
 dropped if it is idle for an interval longer than this
 number of seconds. If set to zero, then the server
 will never drop a session because it is idle. Sessions
 that have a notification subscription active are never
 dropped.";
 }

 list endpoint {
 key name;
 min‑elements 1;
 description
 "List of endpoints to listen for NETCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if‑feature ssh‑listen;
 container ssh {
 description
 "SSH‑specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip‑address;
 mandatory true;
 description
 "The IP address to listen on for incoming
 connections. The NETCONF server will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port‑number;
 default 830;
 description
 "The local port number to listen on. If no value
 is specified, the IANA‑assigned port value for
 'netconf‑ssh' (830) is used.";
 }
 uses ss:ssh‑server‑grouping;
 }
 }
 case tls {
 if‑feature tls‑listen;
 container tls {
 description
 "TLS‑specific listening configuration for inbound

 connections.";
 leaf address {
 type inet:ip‑address;
 mandatory true;
 description
 "The IP address to listen on for incoming
 connections. The NETCONF server will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port‑number;
 default 6513;
 description
 "The local port number to listen on. If no value
 is specified, the IANA‑assigned port value for
 'netconf‑tls' (6513) is used.";
 }
 uses ts:tls‑server‑grouping {
 refine "client‑auth" {
 must 'pinned‑ca‑certs or pinned‑client‑certs';
 description
 "NETCONF/TLS servers MUST validate client
 certiticates.";
 }
 augment "client‑auth" {
 description
 "Augments in the cert‑to‑name structure.";
 container cert‑maps {
 uses x509c2n:cert‑to‑name;
 description
 "The cert‑maps container is used by a TLS‑
 based NETCONF server to map the NETCONF
 client's presented X.509 certificate to a
 NETCONF username. If no matching and valid
 cert‑to‑name list entry can be found, then
 the NETCONF server MUST close the connection,
 and MUST NOT accept NETCONF messages over
 it.";
 reference
 "RFC WWWW: NETCONF over TLS, Section 7";
 }
 }
 }
 }

 }
 }
 }
 }

 container call‑home {
 if‑feature call‑home;
 presence "Enables server to initiate TCP connections";
 description "Configures call‑home behavior";
 list netconf‑client {
 key name;
 min‑elements 1;
 description
 "List of NETCONF clients the NETCONF server is to
 initiate call‑home connections to in parallel.";
 leaf name {
 type string;
 description
 "An arbitrary name for the remote NETCONF client.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min‑elements 1;
 ordered‑by user;
 description
 "A non‑empty user‑ordered list of endpoints for this
 NETCONF server to try to connect to in sequence.
 Defining more than one enables high‑availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if‑feature ssh‑call‑home;
 container ssh {
 description
 "Specifies SSH‑specific call‑home transport
 configuration.";
 leaf address {
 type inet:host;

 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the the DNS resolution results
 in multiple IP addresses, the IP addresses
 will be tried according to local preference
 order until a connection has been established
 or until all IP addresses have failed.";
 }
 leaf port {
 type inet:port‑number;
 default 4334;
 description
 "The IP port for this endpoint. The NETCONF
 server will use the IANA‑assigned well‑known
 port for 'netconf‑ch‑ssh' (4334) if no value
 is specified.";
 }
 uses ss:ssh‑server‑grouping;
 }
 }
 case tls {
 if‑feature tls‑call‑home;
 container tls {
 description
 "Specifies TLS‑specific call‑home transport
 configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the the DNS resolution results
 in multiple IP addresses, the IP addresses
 will be tried according to local preference
 order until a connection has been established
 or until all IP addresses have failed.";
 }
 leaf port {
 type inet:port‑number;
 default 4335;
 description
 "The IP port for this endpoint. The NETCONF
 server will use the IANA‑assigned well‑known

 port for 'netconf‑ch‑tls' (4335) if no value
 is specified.";
 }
 uses ts:tls‑server‑grouping {
 refine "client‑auth" {
 must 'pinned‑ca‑certs or pinned‑client‑certs';
 description
 "NETCONF/TLS servers MUST validate client
 certiticates.";
 }
 augment "client‑auth" {
 description
 "Augments in the cert‑to‑name structure.";
 container cert‑maps {
 uses x509c2n:cert‑to‑name;
 description
 "The cert‑maps container is used by a
 TLS‑based NETCONF server to map the
 NETCONF client's presented X.509
 certificate to a NETCONF username. If
 no matching and valid cert‑to‑name list
 entry can be found, then the NETCONF
 server MUST close the connection, and
 MUST NOT accept NETCONF messages over
 it.";
 reference
 "RFC WWWW: NETCONF over TLS, Section 7";
 }
 }
 }
 }
 } // end tls
 } // end choice
 } // end endpoint
 }
 container connection‑type {
 description
 "Indicates the kind of connection to use.";
 choice connection‑type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent‑connection {
 container persistent {
 presence
 "Indicates that a persistent connection is to be
 maintained.";
 description

 "Maintain a persistent connection to the NETCONF

 client. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any NETCONF client
 to NETCONF server data‑transfer delay, albeit at
 the expense of holding resources longer.";
 container keep‑alives {
 description
 "Configures the keep‑alive policy, to
 proactively test the aliveness of the SSH/TLS
 client. An unresponsive SSH/TLS client will
 be dropped after approximately max‑attempts *
 max‑wait seconds.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF
 Call Home, Section 4.1, item S7";
 leaf max‑wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;
 description
 "Sets the amount of time in seconds after
 which if no data has been received from
 the SSH/TLS client, a SSH/TLS‑level message
 will be sent to test the aliveness of the
 SSH/TLS client.";
 }
 leaf max‑attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep‑
 alive messages that can fail to obtain a
 response from the SSH/TLS client before
 assuming the SSH/TLS client is no longer
 alive.";
 }
 }
 }
 }

 case periodic‑connection {
 container periodic {
 presence

 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the NETCONF client. The
 NETCONF client should close the underlying TLS
 connection upon completing planned activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 NETCONF client to NETCONF client interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic connections.";
 }
 leaf anchor‑time {
 type yang:date‑and‑time {
 // constrained to minute‑level granularity
 pattern '\d{4}‑\d{2}‑\d{2}T\d{2}:\d{2}'
 + '(Z|[\+\‑]\d{2}:\d{2})';
 }
 description
 "Designates a timestamp before or after which a
 series of periodic connections are determined.
 The periodic connections occur at a whole
 multiple interval from the anchor time. For
 example, for an anchor time is 15 minutes past
 midnight and a period interval of 24 hours, then
 a periodic connection will occur 15 minutes past
 midnight everyday.";
 }
 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds that
 a NETCONF session may remain idle. A NETCONF
 session will be dropped if it is idle for an
 interval longer than this number of seconds.
 If set to zero, then the server will never
 drop a session because it is idle.";
 }
 }
 }
 }

 }
 container reconnect‑strategy {
 description
 "The reconnection strategy directs how a NETCONF server
 reconnects to a NETCONF client, after discovering its
 connection to the client has dropped, even if due to a
 reboot. The NETCONF server starts with the specified
 endpoint and tries to connect to it max‑attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start‑with {
 type enumeration {
 enum first‑listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last‑connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. NETCONF
 servers SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 enum random‑selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first‑listed;
 description
 "Specifies which of the NETCONF client's endpoints
 the NETCONF server should start with when trying
 to connect to the NETCONF client.";
 }
 leaf max‑attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the NETCONF server tries
 to connect to a specific endpoint before moving on
 to the next endpoint in the list (round robin).";
 }

 }
 }
 }
 }
}

 <CODE ENDS>

5. Design Considerations

 Editorial: this section is a hold over from before, previously called
 "Objectives". It was only written two support the "server" (not the
 "client"). The question is if it's better to add the missing
 "client" parts, or remove this section altogether.

 The primary purpose of the YANG modules defined herein is to enable
 the configuration of the NETCONF client and servers. This scope
 includes the following objectives:

5.1. Support all NETCONF transports

 The YANG module should support all current NETCONF transports, namely
 NETCONF over SSH [RFC6242], NETCONF over TLS [RFC7589], and to be
 extensible to support future transports as necessary.

 Because implementations may not support all transports, the modules
 should use YANG "feature" statements so that implementations can
 accurately advertise which transports are supported.

5.2. Enable each transport to select which keys to use

 Servers may have a multiplicity of host-keys or server-certificates
 from which subsets may be selected for specific uses. For instance,
 a NETCONF server may want to use one set of SSH host-keys when
 listening on port 830, and a different set of SSH host-keys when
 calling home. The data models provided herein should enable
 configuration of which keys to use on a per-use basis.

5.3. Support authenticating NETCONF clients certificates

 When a certificate is used to authenticate a NETCONF client, there is
 a need to configure the server to know how to authenticate the
 certificates. The server should be able to authenticate the client's
 certificate either by using path-validation to a configured trust
 anchor or by matching the client-certificate to one previously
 configured.

5.4. Support mapping authenticated NETCONF client certificates to
 usernames

 When a client certificate is used for TLS client authentication, the
 NETCONF server must be able to derive a username from the
 authenticated certificate. Thus the modules defined herein should
 enable this mapping to be configured.

5.5. Support both listening for connections and call home

 The NETCONF protocols were originally defined as having the server
 opening a port to listen for client connections. More recently the
 NETCONF working group defined support for call-home ([RFC8071]),
 enabling the server to initiate the connection to the client. Thus
 the modules defined herein should enable configuration for both
 listening for connections and calling home. Because implementations
 may not support both listening for connections and calling home, YANG
 "feature" statements should be used so that implementation can
 accurately advertise the connection types it supports.

5.6. For Call Home connections

 The following objectives only pertain to call home connections.

5.6.1. Support more than one NETCONF client

 A NETCONF server may be managed by more than one NETCONF client. For
 instance, a deployment may have one client for provisioning and
 another for fault monitoring. Therefore, when it is desired for a
 server to initiate call home connections, it should be able to do so
 to more than one client.

5.6.2. Support NETCONF clients having more than one endpoint

 A NETCONF client managing a NETCONF server may implement a high-
 availability strategy employing a multiplicity of active and/or
 passive endpoint. Therefore, when it is desired for a server to
 initiate call home connections, it should be able to connect to any
 of the client's endpoints.

5.6.3. Support a reconnection strategy

 Assuming a NETCONF client has more than one endpoint, then it becomes
 necessary to configure how a NETCONF server should reconnect to the
 client should it lose its connection to one the client's endpoints.
 For instance, the NETCONF server may start with first endpoint
 defined in a user-ordered list of endpoints or with the last
 endpoints it was connected to.

5.6.4. Support both persistent and periodic connections

 NETCONF clients may vary greatly on how frequently they need to
 interact with a NETCONF server, how responsive interactions need to
 be, and how many simultaneous connections they can support. Some
 clients may need a persistent connection to servers to optimize real-
 time interactions, while others prefer periodic interactions in order
 to minimize resource requirements. Therefore, when it is necessary
 for server to initiate connections, it should be configurable if the
 connection is persistent or periodic.

5.6.5. Reconnection strategy for periodic connections

 The reconnection strategy should apply to both persistent and
 periodic connections. How it applies to periodic connections becomes
 clear when considering that a periodic "connection" is a logical
 connection to a single server. That is, the periods of
 unconnectedness are intentional as opposed to due to external
 reasons. A periodic "connection" should always reconnect to the same
 server until it is no longer able to, at which time the reconnection
 strategy guides how to connect to another server.

5.6.6. Keep-alives for persistent connections

 If a persistent connection is desired, it is the responsibility of
 the connection initiator to actively test the "aliveness" of the
 connection. The connection initiator must immediately work to
 reestablish a persistent connection as soon as the connection is
 lost. How often the connection should be tested is driven by NETCONF
 client requirements, and therefore keep-alive settings should be
 configurable on a per-client basis.

5.6.7. Customizations for periodic connections

 If a periodic connection is desired, it is necessary for the NETCONF
 server to know how often it should connect. This frequency
 determines the maximum amount of time a NETCONF client may have to
 wait to send data to a server. A server may connect to a client
 before this interval expires if desired (e.g., to send data to a
 client).

6. Security Considerations

 The YANG module defined in this document uses groupings defined in
 [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-tls-client-server]. Please see the Security
 Considerations section in those documents for concerns related those
 groupings.

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data trees defined by the modules defined in this

 draft are sensitive to write operations. For instance, the
 addition or removal of references to keys, certificates,
 trusted anchors, etc., can dramatically alter the implemented
 security policy. However, no NACM annotations are applied as
 the data SHOULD be editable by users other than a designated
 'recovery session'.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 NONE

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers two URIs in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑netconf‑client
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑netconf‑server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

7.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

name: ietf‑netconf‑client
namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑client
prefix: ncc
reference: RFC XXXX

name: ietf‑netconf‑server
namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑server
prefix: ncs
reference: RFC XXXX

8. References

8.1. Normative References

 [I-D.ietf-netconf-keystore]

 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-ssh-client-server]

 Watsen, K. and G. Wu, "YANG Groupings for SSH Clients and
 SSH Servers", draft-ietf-netconf-ssh-client-server-07
 (work in progress), September 2018.

 [I-D.ietf-netconf-tls-client-server]

 Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and
 TLS Servers", draft-ietf-netconf-tls-client-server-07
 (work in progress), September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7407]
 Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <https://www.rfc-editor.org/info/rfc7407>.

 [RFC7589]
 Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <https://www.rfc-editor.org/info/rfc7589>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

Appendix A. Change Log

A.1. 00 to 01

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Added to ietf-netconf-client ability to connected to a cluster of
 endpoints, including a reconnection-strategy.

 o Added to ietf-netconf-client the ability to configure connection-
 type and also keep-alive strategy.

 o Updated both modules to accomodate new groupings in the ssh/tls
 drafts.

A.3. 02 to 03

 o Refined use of tls-client-grouping to add a must statement
 indicating that the TLS client must specify a client-certificate.

 o Changed 'netconf-client' to be a grouping (not a container).

A.4. 03 to 04

 o Added RFC 8174 to Requirements Language Section.

 o Replaced refine statement in ietf-netconf-client to add a
 mandatory true.

 o Added refine statement in ietf-netconf-server to add a must
 statement.

 o Now there are containers and groupings, for both the client and
 server models.

A.5. 04 to 05

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated examples to inline key and certificates (no longer a
 leafref to keystore)

A.6. 05 to 06

 o Fixed change log missing section issue.

 o Updated examples to match latest updates to the crypto-types,
 trust-anchors, and keystore drafts.

 o Reduced line length of the YANG modules to fit within 69 columns.

A.7. 06 to 07

 o Removed "idle-timeout" from "persistent" connection config.

 o Added "random-selection" for reconnection-strategy's "starts-with"
 enum.

 o Replaced "connection-type" choice default (persistent) with
 "mandatory true".

 o Reduced the periodic-connection's "idle-timeout" from 5 to 2
 minutes.

 o Replaced reconnect-timeout with period/anchor-time combo.

A.8. 07 to 08

 o Modified examples to be compatible with new crypto-types algs

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, and Bert Wijnen.

Author's Address

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

draft-ietf-netconf-netconf-event-notifications-16 - Dynamic subscription to YANG

Index
Prev
Next
Forward 5

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: July 12, 2019

E. Voit

Cisco Systems

A. Clemm

Huawei

A. Gonzalez Prieto

Microsoft

E. Nilsen-Nygaard

A. Tripathy

Cisco Systems

January 8, 2019

Dynamic subscription to YANG Events and Datastores over NETCONF

draft-ietf-netconf-netconf-event-notifications-16

Abstract

 This document provides a NETCONF binding to the dynamic subscription
 capability of both subscribed notifications and YANG push.

 RFC Editor note: please replace the four references to pre-RFC
 normative drafts with the actual assigned RFC numbers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Compatibility with RFC-5277's create-subscription

	4. Mandatory XML, event stream and datastore support

	5. NETCONF connectivity and the Dynamic Subscriptions

	6. Notification Messages

	7. Dynamic Subscriptions and RPC Error Responses

	8. Security Considerations

	9. IANA Considerations

	10. Acknowledgments

	11. Notes to the RFC Editor

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. Examples
	 A.1. Event Stream Discovery

	 A.2. Dynamic Subscriptions

	 A.3. Subscription State Notifications

	 A.4. Filter Examples

	Appendix B. Changes between revisions
	 B.1. v15 to v16

	 B.2. v14 to v15

	 B.3. v13 to v14

	 B.4. v11 to v13

	 B.5. v10 to v11

	 B.6. v09 to v10

	 B.7. v08 to v09

	 B.8. v07 to v08

	 B.9. v06 to v07

	 B.10. v05 to v06

	 B.11. v03 to v04

	 B.12. v01 to v03

	 B.13. v00 to v01

	Authors' Addresses

1. Introduction

 This document provides a binding for events streamed over the NETCONF
 protocol [RFC6241] for dynamic subscriptions as defined in
 [I-D.draft-ietf-netconf-subscribed-notifications]. In addition, as
 [I-D.ietf-netconf-yang-push] is itself built upon
 [I-D.draft-ietf-netconf-subscribed-notifications], this document
 enables a NETCONF client to request via a dynamic subscription and
 receive updates from a YANG datastore located on a NETCONF server.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in
 [I-D.draft-ietf-netconf-subscribed-notifications]: dynamic
 subscription, event stream, notification message, publisher,
 receiver, subscriber, subscription. No additional terms are defined.

3. Compatibility with RFC-5277's create-subscription

 A publisher is allowed to concurrently support dynamic subscription
 RPCs of [I-D.draft-ietf-netconf-subscribed-notifications] at the same
 time as [RFC5277]'s "create-subscription" RPC. However a single
 NETCONF transport session cannot support both this specification and
 a subscription established by [RFC5277]'s "create-subscription" RPC.
 To protect against any attempts to use a single NETCONF transport
 session in this way:

o A solution must reply with the [RFC6241] error "operation‑not‑
 supported" if a "create‑subscription" RPC is received on a NETCONF
 session where an [I‑D.draft‑ietf‑netconf‑subscribed‑notifications]
 established subscription exists.
o A solution must reply with the [RFC6241] error "operation‑not‑
 supported" if an "establish‑subscription" request has been
 received on a NETCONF session where the "create‑subscription" RPC
 has successfully [RFC5277] created a subscription.

 If a publisher supports this specification but not subscriptions via
 [RFC5277], the publisher MUST NOT advertise
 "urn:ietf:params:netconf:capability:notification:1.0".

4. Mandatory XML, event stream and datastore support

 The "encode-xml" feature of
 [I-D.draft-ietf-netconf-subscribed-notifications] MUST be supported.
 This indicates that XML is a valid encoding for RPCs, state change
 notifications, and subscribed content.

 A NETCONF publisher supporting event stream subscription via
 [I-D.draft-ietf-netconf-subscribed-notifications] MUST support the
 "NETCONF" event stream identified in that document.

5. NETCONF connectivity and the Dynamic Subscriptions

 For a dynamic subscription, if the NETCONF session involved with the
 "establish-subscription" terminates the subscription MUST be
 terminated.

 For a dynamic subscription, any "modify-subscription", "delete-
 subscription", or "resynch-subscription" RPCs MUST be sent using the
 same NETCONF session upon which the referenced subscription was
 established.

6. Notification Messages

 Notification messages transported over the NETCONF protocol MUST be
 encoded in a <notification> message as defined within [RFC5277],
 Section 4. And per [RFC5277]'s "eventTime" object definition, the
 "eventTime" MUST be populated with the event occurrence time.

 For dynamic subscriptions, all notification messages MUST use the
 NETCONF transport session used by the "establish-subscription" RPC.

7. Dynamic Subscriptions and RPC Error Responses

 Management of dynamic subscriptions occurs via RPCs as defined in
 [I-D.ietf-netconf-yang-push] and
 [I-D.draft-ietf-netconf-subscribed-notifications]. When an RPC error
 occurs, the NETCONF RPC reply MUST include an "rpc-error" element per
 [RFC6241] with the error information populated as follows:

o an "error‑type" node of "application".
o an "error‑tag" node of "operation‑failed".
o an "error‑severity" of "error" (this MAY but does not have to be
 included).
o an "error‑app‑tag" node with the value being a string that
 corresponds to an identity associated with the error, as defined
 in [I‑D.draft‑ietf‑netconf‑subscribed‑notifications] section 2.4.6
 for general subscriptions, and [I‑D.ietf‑netconf‑yang‑push]

 Appendix A.1, for datastore subscriptions. The specific identity
 to use depends on the RPC for which the error occurred. Each
 error identity will be inserted as the "error-app-tag" following
 the form <modulename>:<identityname>. An example of such as valid
 encoding would be "ietf-subscribed-notifications:no-such-
 subscription". Viable errors for different RPCs are as follows:

RPC use base identity
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
establish‑subscription establish‑subscription‑error
modify‑subscription modify‑subscription‑error
delete‑subscription delete‑subscription‑error
kill‑subscription kill‑subscription‑error
resynch‑subscription resynch‑subscription‑error

 o In case of error responses to an "establish-subscription" or
 "modify-subscription" request there is the option of including an
 "error-info" node. This node may contain XML-encoded data with
 hints for parameter settings that might lead to successful RPC
 requests in the future. Following are the yang-data structures
 from [I-D.draft-ietf-netconf-subscribed-notifications] and
 [I-D.ietf-netconf-yang-push] which may be returned:

establish‑subscription returns hints in yang‑data structure
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
target: event stream establish‑subscription‑stream‑error‑info
target: datastore establish‑subscription‑datastore‑error‑info

modify‑subscription returns hints in yang‑data structure
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
target: event stream modify‑subscription‑stream‑error‑info
target: datastore modify‑subscription‑datastore‑error‑info

 The yang-data included within "error-info" SHOULD NOT include the
 optional leaf "error-reason", as such a leaf would be redundant
 with information that is already placed within the
 "error-app-tag".

 In case of an rpc error resulting from a "delete-subscription",
 "kill-subscription", or "resynch-subscription" request, no "error-
 info" needs to be included, as the "subscription-id" is the only RPC
 input parameter and no hints regarding this RPC input parameters need
 to be provided.

8. Security Considerations

 If a malicious or buggy NETCONF subscriber sends a number of
 establish-subscription requests, then these subscriptions accumulate
 and may use up system resources. In such a situation, subscriptions
 MAY be terminated by terminating the underlying NETCONF session. The
 publisher MAY also suspend or terminate a subset of the active
 subscriptions on that NETCONF session.

9. IANA Considerations

 This document has no actions for IANA.

10. Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from: Andy Bierman, Yan Gang, Sharon
 Chisholm, Hector Trevino, Peipei Guo, Susan Hares, Tim Jenkins,
 Balazs Lengyel, Martin Bjorklund, Mahesh Jethanandani, Kent Watsen,
 Qin Wu, and Guangying Zheng.

11. Notes to the RFC Editor

 This section can be removed by the RFC editor after the requests have
 been performed.

 RFC 6241 needs to be updated based on the needs of this draft.
 RFC-6241 section 1.2 bullet "(2)" targets RFC-5277 (actually it
 identifies RFC 5717, but that was an error fixed after RFC
 publication). Anyway the current phrasing in RFC-5277 says that a
 notification message can only be sent after a successful "create-
 subscription". Therefore the reference text must be modified to also
 allow notification messages be sent after a successful "establish-
 subscription". Proposed text for bullet (2) of RFC-6241 would be:

(2) The Messages layer provides a simple, transport‑independent
 framing mechanism for encoding RPCs and notifications.
 Section 4 documents the RPC messages, [RFC5277] documents
 Notifications sent as a result of a <create‑subscription> RPC,
 and [RFC xxxx] documents Notifications sent as a result of
 an <establish‑subscription> RPC.

 (where xxxx is replaced with this RFC number)

12. References

12.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Customized Subscriptions to a
 Publisher's Event Streams", September 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-subscribed-notifications/>.

 [I-D.ietf-netconf-yang-push]

 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", September 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [RFC8347]
 Liu, X., Ed., Kyparlis, A., Parikh, R., Lindem, A., and M.
 Zhang, "A YANG Data Model for the Virtual Router
 Redundancy Protocol (VRRP)", RFC 8347,
 DOI 10.17487/RFC8347, March 2018,
 <https://www.rfc-editor.org/info/rfc8347>.

 [XPATH]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Appendix A. Examples

 This section is non-normative.

A.1. Event Stream Discovery

 As defined in [I-D.draft-ietf-netconf-subscribed-notifications] an
 event stream exposes a continuous set of events available for
 subscription. A NETCONF client can retrieve the list of available
 event streams from a NETCONF publisher using the "get" operation
 against the top-level container "/streams" defined in
 [I-D.draft-ietf-netconf-subscribed-notifications] Section 3.1.

 The following example illustrates the retrieval of the list of
 available event streams:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <streams
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications"/>
 </filter>
 </get>
</rpc>

 Figure 1: Get streams request

 After such a request, the NETCONF publisher returns a list of event
 streams available, as well as additional information which might
 exist in the container.

A.2. Dynamic Subscriptions

A.2.1. Establishing Dynamic Subscriptions

 The following figure shows two successful "establish-subscription"
 RPC requests as per
 [I-D.draft-ietf-netconf-subscribed-notifications]. The first request
 is given a subscription "id" of 22, the second, an "id" of 23.

+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
| Subscriber | | Publisher |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | Capability Exchange |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | |
 | |
 | establish‑subscription |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| (a)
 | RPC Reply: OK, id = 22 |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| (b)
 | |
 | notification message (for 22)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | |
 | establish‑subscription |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | notification message (for 22)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | RPC Reply: OK, id = 23 |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | |
 | notification message (for 22)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | notification message (for 23)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 2: Multiple subscriptions over a NETCONF session

 To provide examples of the information being transported, example
 messages for interactions (a) and (b) in Figure 2 are detailed below:

<rpc message‑id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <stream>NETCONF</stream>
 <stream‑xpath‑filter xmlns:ds="http://example.com/events">
 /ds:foo/
 </stream‑xpath‑filter>
 <dscp>10</dscp>
 </establish‑subscription>
</rpc>

 Figure 3: establish-subscription request (a)

 As NETCONF publisher was able to fully satisfy the request (a), the
 publisher sends the subscription "id" of the accepted subscription
 within message (b):

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <id
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 22
 </id>
</rpc‑reply>

 Figure 4: establish-subscription success (b)

 If the NETCONF publisher had not been able to fully satisfy the
 request, or subscriber has no authorization to establish the
 subscription, the publisher would have sent an RPC error response.
 For instance, if the "dscp" value of 10 asserted by the subscriber in
 Figure 3 proved unacceptable, the publisher may have returned:

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>operation‑failed</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑app‑tag>
 ietf‑subscribed‑notifications:dscp‑unavailable
 </error‑app‑tag>
 </rpc‑error>
</rpc‑reply>

 Figure 5: an unsuccessful establish subscription

 The subscriber can use this information in future attempts to
 establish a subscription.

A.2.2. Modifying Dynamic Subscriptions

 An existing subscription may be modified. The following exchange
 shows a negotiation of such a modification via several exchanges
 between a subscriber and a publisher. This negotiation consists of a
 failed RPC modification request/response, followed by a successful
 one.

+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
| Subscriber | | Publisher |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | notification message (for 23)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | modify‑subscription (id = 23)|
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| (c)
 | RPC error (with hint) |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| (d)
 | |
 | modify‑subscription (id = 23)|
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | RPC Reply: OK |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | notification message (for 23)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 6: Interaction model for successful subscription modification

 If the subscription being modified in Figure 6 is a datastore
 subscription as per [I-D.ietf-netconf-yang-push], the modification
 request made in (c) may look like that shown in Figure 7. As can be
 seen, the modifications being attempted are the application of a new
 XPath filter as well as the setting of a new periodic time interval.

<rpc message‑id="303"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <id>23</id>
 <yp:datastore‑xpath‑filter xmlns:ds="http://example.com/datastore">
 /ds:foo/ds:bar
 </yp:datastore‑xpath‑filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </modify‑subscription>
</rpc>

 Figure 7: Subscription modification request (c)

 If the NETCONF publisher can satisfy both changes, the publisher
 sends a positive result for the RPC. If the NETCONF publisher cannot
 satisfy either of the proposed changes, the publisher sends an RPC
 error response (d). The following is an example RPC error response
 for (d) which includes a hint. This hint is an alternative time
 period value which might have resulted in a successful modification:

<rpc‑reply message‑id="303"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>operation‑failed</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑app‑tag>
 ietf‑yang‑push:period‑unsupported
 </error‑app‑tag>
 <error‑info>
 <modify‑subscription‑datastore‑error‑info
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <period‑hint>
 3000
 </period‑hint>
 </modify‑subscription‑datastore‑error‑info>
 </error‑info>
 </rpc‑error>
</rpc‑reply>

 Figure 8: Modify subscription failure with hint (d)

A.2.3. Deleting Dynamic Subscriptions

 The following demonstrates deleting a subscription. This
 subscription may have been to either a stream or a datastore.

<rpc message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <id>22</id>
 </delete‑subscription>
</rpc>

 Figure 9: Delete subscription

 If the NETCONF publisher can satisfy the request, the publisher
 replies with success to the RPC request.

 If the NETCONF publisher cannot satisfy the request, the publisher
 sends an error-rpc element indicating the modification didn't work.
 Figure 10 shows a valid response for existing valid subscription
 "id", but that subscription "id" was created on a different NETCONF
 transport session:

<rpc‑reply message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>operation‑failed</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑app‑tag>
 ietf‑subscribed‑notifications:no‑such‑subscription
 </error‑app‑tag>
 </rpc‑error>
</rpc‑reply>

 Figure 10: Unsuccessful delete subscription

A.3. Subscription State Notifications

 A publisher will send subscription state notifications for dynamic
 subscriptions according to the definitions within
 [I-D.draft-ietf-netconf-subscribed-notifications].

A.3.1. subscription-modified

 As per Section 2.7.2 of
 [I-D.draft-ietf-netconf-subscribed-notifications], a "subscription-
 modified" might be sent over NETCONF if the definition of a
 configured filter changes. A subscription state notification encoded
 in XML would look like:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑09‑01T10:00:00Z</eventTime>
 <subscription‑modified
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <id>39</id>
 <stream‑xpath‑filter xmlns:ex="http://example.com/events">
 /ex:foo
 </stream‑xpath‑filter>
 <stream>NETCONF</stream>
 </subscription‑modified>
</notification>

 Figure 11: subscription-modified subscription state notification

A.3.2. subscription-resumed, and replay-complete

 A "subscription-resumed" would look like:

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑09‑01T10:00:00Z</eventTime>
 <subscription‑resumed
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <id>39</id>
 </subscription‑resumed>
</notification>

 Figure 12: subscription-resumed notification in XML

 The "replay-complete" is virtually identical, with "subscription-
 resumed" simply being replaced by "replay-complete".

A.3.3. subscription-terminated and subscription-suspended

 A "subscription-terminated" would look like:

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑09‑01T10:00:00Z</eventTime>
 <subscription‑terminated
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <id>39</id>
 <reason>
 suspension‑timeout
 </reason>
 </subscription‑terminated>
</notification>

 Figure 13: subscription-terminated subscription state notification

 The "subscription-suspended" is virtually identical, with
 "subscription-terminated" simply being replaced by "subscription-
 suspended".

A.4. Filter Examples

 This section provides examples which illustrate both XPath and
 subtree methods of filtering event record contents. The examples are
 based on the YANG notification "vrrp-protocol-error-event" as defined
 per the ietf-vrrp.yang model within [RFC8347]. Event records based
 on this specification which are generated by the publisher might
 appear as:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018‑09‑14T08:22:33.44Z</eventTime>
 <vrrp‑protocol‑error‑event
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑vrrp">
 <protocol‑error‑reason>checksum‑error</protocol‑error‑reason>
 </vrrp‑protocol‑error‑event>
</notification>

 Figure 14: RFC 8347 (VRRP) - Example Notification

 Suppose a subscriber wanted to establish a subscription which only
 passes instances of event records where there is a "checksum-error"
 as part of a VRRP protocol event. Also assume the publisher places
 such event records into the NETCONF stream. To get a continuous
 series of matching event records, the subscriber might request the
 application of an XPath filter against the NETCONF stream. An
 "establish-subscription" RPC to meet this objective might be:

<rpc message‑id="601" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <stream>NETCONF</stream>
 <stream‑xpath‑filter xmlns="urn:ietf:params:xml:ns:yang:ietf‑vrrp">
 /vrrp‑protocol‑error‑event[
 vrrp:protocol‑error‑reason="vrrp:checksum‑error"]
 </stream‑xpath‑filter>
 </establish‑subscription>
</rpc>

 Figure 15: Establishing a subscription error reason via XPath

 For more examples of XPath filters, see [XPATH].

 Suppose the "establish-subscription" in Figure 15 was accepted. And
 suppose later a subscriber decided they wanted to broaden this
 subscription cover to all VRRP protocol events (i.e., not just those
 with a "checksum error"). The subscriber might attempt to modify the
 subscription in a way which replaces the XPath filter with a subtree
 filter which sends all VRRP protocol events to a subscriber. Such a
 "modify-subscription" RPC might look like:

<rpc message‑id="602" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <id>99</id>
 <stream‑subtree‑filter>
 <vrrp‑protocol‑error‑event
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑vrrp"/>
 </stream‑subtree‑filter>
 </modify‑subscription>
</rpc>

 Figure 16

 For more examples of subtree filters, see [RFC6241], section 6.4.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

B.1. v15 to v16

 o During the shepherd review, two clarifications were requested
 which do not impact the technical details of this document. These
 clarifications were: (a) further describing that dynamic
 subscriptions can have state change notifications, and (b) more
 details about the recommended text refinement desired for RFC6241.

B.2. v14 to v15

 o Per Kent's request, added name attribute to artwork. This would
 be needed for an automated extraction.

B.3. v13 to v14

 o Title change.

B.4. v11 to v13

o Subscription identifier renamed to id.
o Appendix A.4 for filter examples
o for v13, Tweak of example to /foo/bar

B.5. v10 to v11

 o Configured removed.

B.6. v09 to v10

o Tweaks to examples and text.
o Downshifted state names.
o Removed address from examples.

B.7. v08 to v09

o Tweaks based on Kent's comments.
o Updated examples in Appendix A. And updates to some object names
 based on changes in the subscribed‑notifications draft.
o Added a YANG model for the NETCONF identity.

B.8. v07 to v08

 o Tweaks and clarification on :interleave.

B.9. v06 to v07

o XML encoding and operational datastore mandatory.
o Error mechanisms and examples updated.

B.10. v05 to v06

o Moved examples to appendices
o All examples rewritten based on namespace learnings
o Normative text consolidated in front
o Removed all mention of JSON
o Call home process detailed
o Note: this is a major revision attempting to cover those comments
 received from two week review.

B.11. v03 to v04

o Added additional detail to "configured subscriptions"
o Added interleave capability
o Adjusted terminology to that in draft‑ietf‑netconf‑subscribed‑
 notifications
o Corrected namespaces in examples

B.12. v01 to v03

o Text simplifications throughout
o v02 had no meaningful changes

B.13. v00 to v01

o Added Call Home in solution for configured subscriptions.
o Clarified support for multiple subscription on a single session.
 No need to support multiple create‑subscription.
o Added mapping between terminology in yang‑push and [RFC6241] (the
 one followed in this document).
o Editorial improvements.

Authors' Addresses

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Alexander Clemm
Huawei

 Email: ludwig@clemm.org

Alberto Gonzalez Prieto
Microsoft

 Email: alberto.gonzalez@microsoft.com

Einar Nilsen‑Nygaard
Cisco Systems

 Email: einarnn@cisco.com

Ambika Prasad Tripathy
Cisco Systems

 Email: ambtripa@cisco.com

draft-ietf-netconf-nmda-netconf-08 - NETCONF Extensions to Support the Network M

Index
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 6241, 7950 (if approved)

Intended status: Standards Track

Expires: April 20, 2019

M. Bjorklund

Tail-f Systems

J. Schoenwaelder

Jacobs University

P. Shafer

K. Watsen

Juniper Networks

R. Wilton

Cisco Systems

October 17, 2018

NETCONF Extensions to Support the Network Management Datastore Architecture

draft-ietf-netconf-nmda-netconf-08

Abstract

 This document extends the NETCONF protocol defined in RFC 6241 in
 order to support the Network Management Datastore Architecture
 defined in RFC 8342.

 This document updates both RFC 6241 and RFC 7950. The update to RFC
 6241 adds new operations <get-data> and <edit-data>, and augments
 existing operations <lock>, <unlock>, and <validate>. The update to
 RFC 7950 requires the usage of I-D.ietf-netconf-rfc7895bis by NETCONF
 servers implementing the Network Management Datastore Architecture.

 RFC Ed.: Please replace "I-D.ietf-netconf-rfc7895bis" above with its
 final RFC assignment and remove this note.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 20, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Diagrams

	2. Datastore and YANG Library Requirements

	3. NETCONF Extensions
	 3.1. New NETCONF Operations
	 3.1.1. The <get-data> Operation

	 3.1.2. The <edit-data> Operation

	 3.2. Augmentations to NETCONF Operations

	4. NETCONF Datastores YANG Module

	5. IANA Considerations

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Authors' Addresses

1. Introduction

 This document extends the NETCONF protocol defined in [RFC6241] in
 order to support the Network Management Datastore Architecture (NMDA)
 defined in [RFC8342].

 This document updates [RFC6241] in order to enable NETCONF clients to
 interact with all the datastores supported by a server implementing
 the NMDA. The update both adds new operations <get-data> and
 <edit-data>, and augments existing operations <lock>, <unlock>, and
 <validate>.

 This document also updates [RFC7950] in order to enable NETCONF
 clients to both discover which datastores are supported by the
 NETCONF server, as well as determine which modules are supported in
 each datastore. The update requires NETCONF servers implementing the
 NMDA to support [I-D.ietf-netconf-rfc7895bis].

1.1. Terminology

 This document uses the terminology defined by the NMDA [RFC8342].

 The following term is defined in [I-D.ietf-netconf-rfc7895bis]:

 o YANG library content identifier

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Datastore and YANG Library Requirements

 RFC Ed.: Update 201X-XX-XX below with correct date.

 An NMDA-compliant NETCONF server MUST implement the module
 "ietf-netconf-nmda" defined in this document, MUST support the
 operational state datastore, and it MUST implement at least revision
 201X-XX-XX of the "ietf-yang-library" module defined in
 [I-D.ietf-netconf-rfc7895bis].

 A NETCONF client can discover which datastores and YANG modules the
 server supports by reading the YANG library information from the
 operational state datastore.

 The server MUST advertise the following capability in the <hello>
 message (line breaks and whitespaces are used for formatting reasons
 only):

 urn:ietf:params:netconf:capability:yang-library:1.1?

 revision=<date>&content-id=<content-id-value>

 The parameter "revision" has the same value as the revision date of
 the "ietf-yang-library" module implemented by the server. This
 parameter MUST be present.

 The parameter "content-id" contains the YANG library content
 identifier [I-D.ietf-netconf-rfc7895bis]. This parameter MUST be
 present.

 With this mechanism, a client can cache the supported datastores and
 YANG modules for a server and only update the cache if the
 "content-id" value in the <hello> message changes.

 This document updates [RFC7950], Section 5.6.4, to allow servers to
 advertise the capability :yang-library:1.1 instead of :yang-
 library:1.0, and to implement the subtree "/yang-library"
 [I-D.ietf-netconf-rfc7895bis] instead of "/modules-state".

3. NETCONF Extensions

 This section describes the NETCONF extensions needed to support the
 NMDA. These changes are defined in a new YANG ([RFC7950]) module
 "ietf-netconf-nmda".

 These changes include the use of source and target parameters based
 on the "datastore" identity defined in the "ietf-datastores" module
 [RFC8342]. The use of identities allows future expansion in a way
 that the choice-based strategy from the original operations (e.g.,
 <get-config>, <edit-config>) does not.

3.1. New NETCONF Operations

 Two new operations <get-data> and <edit-data> are defined in this
 document in order to support the NMDA. These operations are similar
 to the <get-config> and <edit-config> operations but they can work on
 an extensible set of datastores.

3.1.1. The <get-data> Operation

 The <get-data> operation retrieves data from a specific NMDA
 datastore. This operation is similar to NETCONF's <get-config>
 operation defined in [RFC6241], but it adds the flexibility to select
 the source datastore.

+‑‑‑x get‑data
 +‑‑‑w input
 | +‑‑‑w datastore ds:datastore‑ref
 | +‑‑‑w (filter‑spec)?
 | | +‑‑:(subtree‑filter)
 | | | +‑‑‑w subtree‑filter? <anydata>
 | | +‑‑:(xpath‑filter)
 | | +‑‑‑w xpath‑filter? yang:xpath1.0 {nc:xpath}?
 | +‑‑‑w config‑filter? boolean
 | +‑‑‑w (origin‑filters)? {origin}?
 | | +‑‑:(origin‑filter)
 | | | +‑‑‑w origin‑filter* or:origin‑ref
 | | +‑‑:(negated‑origin‑filter)
 | | +‑‑‑w negated‑origin‑filter* or:origin‑ref
 | +‑‑‑w max‑depth? union
 | +‑‑‑w with‑origin? empty {origin}?
 | +‑‑‑w with‑defaults? with‑defaults‑mode
 +‑‑ro output
 +‑‑ro data? <anydata>

 The "datastore" parameter indicates the datastore which is the source
 of the data to be retrieved. This is a datastore identity.

 The <get-data> operation accepts a content filter parameter, similar
 to the "filter" parameter of <get-config>, but using explicit nodes
 for subtree filtering ("subtree-filter") and XPath filtering
 ("xpath-filter").

 The "config-filter" parameter can be used to retrieve only "config
 true" or "config false" nodes.

 The "origin-filter" parameter, which can be present multiple times,
 selects nodes equal to or derived from any of the given values. The
 "negated-origin-filter", which can be present multiple times, selects
 nodes that do are not equal or derived from any of the given values.
 The "origin-filter" and "negated-origin-filter" parameters cannot be
 used together.

 The "max-depth" parameter can be used by the client to limit the
 number of sub-tree levels that are returned in the reply.

3.1.1.1. Origin Metadata Attribute

 The <get-data> operation defines a parameter named "with-origin",
 which if present, requests that the server includes "origin" metadata
 annotations in its response, as detailed in the NMDA. This parameter
 is only valid for the operational state datastore and any datastores
 with identities derived from the "operational" identity. Otherwise,
 if an invalid datastore is specified then an error is returned, as
 specified in "ietf-netconf-nmda" (see Section 4). Note that "origin"
 metadata annotations are not included in a response unless a client
 explicitly requests them.

 Data in the operational state datastore can come from multiple
 sources. The server should return the most accurate value for the
 "origin" metadata annotation as possible, indicating the source of
 the operational value, as specified in Section 5.3.4 of [RFC8342].

 When encoding the origin metadata annotation for a hierarchy of
 returned nodes, the annotation may be omitted for a child node when
 the value matches that of the parent node, as described in the
 "ietf-origin" YANG module [RFC8342].

 The "with-origin" parameter is OPTIONAL to support. It is identified
 with the feature "origin".

3.1.1.2. With-defaults interactions

 If the "with-defaults" capability is supported by the server, then
 the "with-defaults" parameter, defined in [RFC6243], is supported for
 <get-data> operations that target conventional configuration
 datastores.

 The "with-defaults" parameter is OPTIONAL to support for <get-data>
 operations that target <operational>. The associated capability to
 indicate a server's support is identified with the URI:

 urn:ietf:params:netconf:capability:with-operational-defaults:1.0

 If the "with-defaults" parameter is supported for <get-data>
 operations on <operational>, then all retrieval modes specified in
 either the 'basic-mode' or 'also-supported' parameters of the
 "with-defaults" capability are permitted. The behavior of the
 "with-defaults" parameter for <operational> is defined as below:

 o If no "with-defaults" parameter is specified, or if it is set to
 "explicit", "report-all", or "report-all-tagged", then the "in
 use" values, as defined in [RFC8342] section 5.3, are returned
 from the operational state datastore, even if a node happens to
 have a default statement in the YANG module, and this default
 value is being used by the server. If the "with-defaults"
 parameter is set to "report-all-tagged", any values that match the
 schema default are tagged with additional metadata, as described
 in [RFC6243] section 3.4.

 o If the "with-defaults" parameter is set to "trim", all "in use"
 values are returned, except that the output is filtered to exclude
 any values that match the default defined in the YANG schema.

 Support for "with-defaults" in <get-data> operations on any datastore
 not defined in [RFC8342] should be defined by the specification for
 the datastore.

3.1.1.3. Example: Retrieving an entire subtree from <running>

 The following example shows the <get-data> version of the
 <get-config> example shown in Section 7.1 of [RFC6241], which selects
 the entire "/users" subtree:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores">
 <datastore>ds:running</datastore>
 <subtree‑filter>
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </subtree‑filter>
 </get‑data>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full‑name>Charlie Root</full‑name>
 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>
 <!‑‑ additional <user> elements appear here... ‑‑>
 </users>
 </top>
 </data>
</rpc‑reply>

3.1.1.4. Example: Retrieving a filtered subtree from <operational>

 The following example shows how the "origin-filter" can be used to
 retrieve nodes from <operational>. The example uses the fictional
 data model defined in Appendix C of [RFC8342].

<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf‑origin">
 <datastore>ds:operational</datastore>
 <subtree‑filter>
 <bgp xmlns="http://example.com/ns/bgp"/>
 </subtree‑filter>
 <origin‑filter>or:intended</origin‑filter>
 <origin‑filter>or:system</origin‑filter>
 <with‑origin/>
 </get‑data>
</rpc>

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda">
 <bgp xmlns="http://example.com/ns/bgp"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf‑origin"
 or:origin="or:intended">
 <peer>
 <name>2001:db8::2:3</name>
 <local‑port or:origin="or:system">60794</local‑port>
 <state>established</state>
 </peer>
 </bgp>
 </data>
</rpc‑reply>

3.1.2. The <edit-data> Operation

 The <edit-data> operation changes the contents of a writable
 datastore, similar to the <edit-config> operation defined in
 [RFC6241], but with additional flexibility in naming the target
 datastore. If an <edit-data> operation is invoked on a non-writable
 datastore, then an error is returned, as specified in
 "ietf-netconf-nmda" (see Section 4).

+‑‑‑x edit‑data
 +‑‑‑w input
 +‑‑‑w datastore ds:datastore‑ref
 +‑‑‑w default‑operation? enumeration
 +‑‑‑w (edit‑content)
 +‑‑:(config)
 | +‑‑‑w config? <anydata>
 +‑‑:(url)
 +‑‑‑w url? inet:uri {nc:url}?

 The "datastore" parameter is a datastore identity that indicates the
 desired target datastore where changes should be made.

 The "default-operation" parameter selects the default operation to
 use. It is a copy of the "default-operation" parameter of the
 <edit-config> operation.

 The "edit-content" parameter specifies the content for the edit
 operation. It mirrors the "edit-content" choice of the <edit-config>
 operation. Note, however, that the "config" element in the
 "edit-content" choice of <edit-data> uses "anydata" (introduced in
 YANG 1.1) while the "config" element in the "edit-content" choice of
 <edit-config> used "anyxml".

 The <edit-data> operation does not support the "error-option" and the
 "test-option" parameters that were part of the <edit-config>
 operation. The error behaviour of <edit-data> corresponds to the
 "error-option" "rollback-on-error".

 If the "with-defaults" capability is supported by the server, the
 semantics of editing modes is the same as for <edit-config>, as
 described in section 4.5.2 of [RFC6243].

 Semantics for "with-defaults" in <edit-data> operations on any non
 conventional configuration datastores should be defined by the
 specification for the datastore.

3.1.2.1. Example: Setting a leaf of an interface in <running>

 The following example shows the <edit-data> version of the first
 <edit-config> example in Section 7.2 of [RFC6241], setting the MTU to
 1500 on an interface named "Ethernet0/0" in the running configuration
 datastore.

<rpc message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑data xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores">
 <datastore>ds:running</datastore>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit‑data>
</rpc>

<rpc‑reply message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 The other <edit-config> examples shown in Section 7.2 can be
 translated to <edit-data> examples in a similar way.

3.2. Augmentations to NETCONF Operations

 Several of the operations defined in the base NETCONF YANG module
 "ietf-netconf" [RFC6241] may be used with new datastores. Hence, the
 <lock>, <unlock>, and <validate> operations are augmented with a new
 "datastore" leaf that can select the desired datastore. If a <lock>,
 <unlock>, or <validate> operation is not supported on a particular
 datastore then an error is returned, as specified in
 "ietf-netconf-nmda" (see Section 4).

4. NETCONF Datastores YANG Module

 This module imports definitions from [RFC6991], [RFC6241], [RFC6243],
 and [RFC8342].

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-netconf-nmda@2018-10-09"

 module ietf-netconf-nmda {

 yang-version 1.1;

namespace "urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda";
prefix ncds;

import ietf‑yang‑types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types.";
}
import ietf‑inet‑types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types.";
}
import ietf‑datastores {
 prefix ds;
 reference "RFC 8342: Network Management Datastore Architecture.";
}
import ietf‑origin {
 prefix or;
 reference "RFC 8342: Network Management Datastore Architecture.";
}
import ietf‑netconf {
 prefix nc;
 reference "RFC 6241: Network Configuration Protocol (NETCONF)";
}
import ietf‑netconf‑with‑defaults {
 prefix ncwd;
 reference "RFC 6243: With‑defaults Capability for NETCONF.";
}

organization
 "IETF NETCONF Working Group";
contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Martin Bjorklund
 <mailto:mbj@tail‑f.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs‑university.de>

 Author: Phil Shafer
 <mailto:phil@juniper.net>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Rob Wilton

 <rwilton@cisco.com>";
description
 "This YANG module defines a set of NETCONF operations to support
 the Network Management Datastore Architecture (NMDA).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (http://www.rfc-editor.org/info/rfcxxxx); see the RFC itself
 for full legal notices.";

// RFC Ed.: update the date below with the date of RFC publication
// and remove this note.
// RFC Ed.: replace XXXX with actual RFC number and remove this
// note.
revision 2018‑10‑09 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: NETCONF Extensions to Support the Network Management
 Datastore Architecture";
}

feature origin {
 description
 "Indicates that the server supports the 'origin' annotation.";
 reference
 "RFC 8342: Network Management Datastore Architecture";
}

feature with‑defaults {
 description
 "NETCONF :with‑defaults capability; If the server advertises
 the :with‑defaults capability for a session, then this
 feature must also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference
 "RFC 6243: With‑defaults Capability for NETCONF, section 4; and
 RFC XXXX: NETCONF Extensions to Support the Network Management
 Datastore Architecture, section 3.1.1.1.";

 }

rpc get‑data {
 description
 "Retrieve data from an NMDA datastore. The content returned
 by get‑data must satisfy all filters, i.e., the filter
 criteria are logically ANDed.

 Any ancestor nodes (including list keys) of nodes selected by
 the filters are included in the response.

 The 'with-origin' parameter is only valid for an operational
 datastore. If 'with-origin' is used with an invalid datastore,
 then the server MUST return an <rpc-error> element with an
 <error-tag> value of 'invalid-value'.

 The 'with‑defaults' parameter only applies to the operational
 datastore if the NETCONF :with‑defaults and
 :with‑operational‑defaults capabilities are both advertised.
 If the 'with‑defaults' parameter is present in a request for
 which it is not supported, then the server MUST return an
 <rpc‑error> element with an <error‑tag> value of
 'invalid‑value'.";
input {
 leaf datastore {
 type ds:datastore‑ref;
 mandatory true;
 description
 "Datastore from which to retrieve data.

 If the datastore is not supported by the server, then the
 server MUST return an <rpc‑error> element with an
 <error‑tag> value of 'invalid‑value'.";
 }

 choice filter‑spec {
 description
 "The content filter specification for this request.";

 anydata subtree‑filter {
 description
 "This parameter identifies the portions of the
 target datastore to retrieve.";
 reference
 "RFC 6241: Network Configuration Protocol, Section 6.";
 }
 leaf xpath‑filter {

 if‑feature nc:xpath;
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression identifying
 the portions of the target datastore to retrieve.

 If the expression returns a node-set, all nodes in the
 node-set are selected by the filter. Otherwise, if the
 expression does not return a node-set, then the get-data
 operation fails.

 The expression is evaluated in the following XPath
 context:

 o The set of namespace declarations are those in
 scope on the 'xpath-filter' leaf element.

 o The set of variable bindings is empty.

 o The function library is the core function library,
 and the XPath functions defined in section 10 in
 RFC 7950.

 o The context node is the root node of the target
 datastore.";
 }
 }

 leaf config‑filter {
 type boolean;
 description
 "Filter for nodes with the given value for their
 'config' property. If this leaf is not present, all
 nodes are selected.

 For example, when this leaf is set to 'true', only 'config
 true' nodes are selected.";
 }
 choice origin‑filters {
 when 'derived‑from‑or‑self(datastore, "ds:operational")';
 if‑feature origin;
 description
 "Filters based on the 'origin' annotation.";

 leaf‑list origin‑filter {
 type or:origin‑ref;
 description
 "Filter based on the 'origin' annotation. A node matches

 the filter if its 'origin' annotation is derived from or
 equal to any of the given filter values.";
 }
 leaf‑list negated‑origin‑filter {
 type or:origin‑ref;
 description
 "Filter based on the 'origin' annotation. A node matches
 the filter if its 'origin' annotation is not derived
 from and not equal to any of the given filter values.";
 }
 }

 leaf max‑depth {
 type union {
 type uint16 {
 range "1..65535";
 }
 type enumeration {
 enum "unbounded" {
 description
 "All descendant nodes are included.";
 }
 }
 }
 default "unbounded";
 description
 "For each node selected by the filters, this parameter
 selects how many conceptual sub‑tree levels should be
 returned in the reply. If the depth is 1, the reply
 includes just the selected nodes but no children. If the
 depth is 'unbounded', all descendant nodes are included.";
 }

 leaf with‑origin {
 when 'derived‑from‑or‑self(../datastore, "ds:operational")';
 if‑feature origin;
 type empty;
 description
 "If this parameter is present, the server will return
 the 'origin' annotation for the nodes that has one.";
 }

 uses ncwd:with‑defaults‑parameters {
 if‑feature with‑defaults;
 }
}

 output {

 anydata data {
 description
 "Copy of the source datastore subset which matched
 the filter criteria (if any). An empty data
 container indicates that the request did not
 produce any results.";
 }
 }
}

rpc edit‑data {
 description
 "Edit data in an NMDA datastore.

 If an error condition occurs such that an error severity
 <rpc‑error> element is generated, the server will stop
 processing the <edit‑data> operation and restore the
 specified configuration to its complete state at
 the start of this <edit‑data> operation.";
 input {
 leaf datastore {
 type ds:datastore‑ref;
 mandatory true;
 description
 "Datastore which is the target of the edit‑data operation.

 If the target datastore is not writable, or is not
 supported by the server, then the server MUST return an
 <rpc‑error> element with an <error‑tag> value of
 'invalid‑value'.";
 }
 leaf default‑operation {
 type enumeration {
 enum "merge" {
 description
 "The default operation is merge.";
 }
 enum "replace" {
 description
 "The default operation is replace.";
 }
 enum "none" {
 description
 "There is no default operation.";
 }
 }
 default "merge";
 description

 "The default operation to use.";
 }
 choice edit‑content {
 mandatory true;
 description
 "The content for the edit operation.";

 anydata config {
 description
 "Inline config content.";
 }
 leaf url {
 if‑feature nc:url;
 type inet:uri;
 description
 "URL based config content.";
 }
 }
 }
}

/*
 * Augment the lock and unlock operations with a
 * "datastore" parameter.
 */

augment "/nc:lock/nc:input/nc:target/nc:config‑target" {
 description
 "Add NMDA Datastore as target.";
 leaf datastore {
 type ds:datastore‑ref;
 description
 "Datastore to lock.

 The lock operation is only supported on writable datastores.

 If the lock operation is not supported by the server on the
 specified target datastore, then the server MUST return an
 <rpc‑error> element with an <error‑tag> value of
 'invalid‑value'.";
 }
}
augment "/nc:unlock/nc:input/nc:target/nc:config‑target" {
 description
 "Add NMDA Datastore as target.";
 leaf datastore {
 type ds:datastore‑ref;
 description

 "Datastore to unlock.

 The unlock operation is only supported on writable
 datastores.

 If the unlock operation is not supported by the server on
 the specified target datastore, then the server MUST return
 an <rpc‑error> element with an <error‑tag> value of
 'invalid‑value'.";
 }
}

/*
 * Augment the validate operation with a
 * "datastore" parameter.
 */

augment "/nc:validate/nc:input/nc:source/nc:config‑source" {
 description
 "Add NMDA Datastore as source.";
 leaf datastore {
 type ds:datastore‑ref;
 description
 "Datastore to validate.

 The validate operation is supported only on configuration
 datastores.

 If the validate operation is not supported by the server on
 the specified target datastore, then the server MUST return
 an <rpc-error> element with an <error-tag> value of
 'invalid-value'.";

 }
 }
}

 <CODE ENDS>

5. IANA Considerations

 This document registers two capability identifier URNs in the
 "Network Configuration Protocol (NETCONF) Capability URNs" registry:

Index
Capability Identifier
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
:yang‑library:1.1
urn:ietf:params:netconf:capability:yang‑library:1.1

 :with-operational-defaults
 urn:ietf:params:netconf:capability:with-operational-defaults:1.0

 This document registers a URI in the "IETF XML Registry" [RFC3688].
 Following the format in RFC 3688, the following registration has been
 made.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-nmda

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the "YANG Module Names"
 registry [RFC6020].

name: ietf‑netconf‑nmda
namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑nmda
prefix: ncds
reference: RFC XXXX

6. Security Considerations

 The YANG module defined in this document extends the base operations
 of the NETCONF [RFC6241] protocol. The lowest NETCONF layer is the
 secure transport layer and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242].

 The network configuration access control model [RFC8341] provides the
 means to restrict access for particular NETCONF users to a
 preconfigured subset of all available NETCONF protocol operations and
 content.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241]) apply to the new NETCONF <get-data> and
 <edit-data> operations defined in this document.

7. References

7.1. Normative References

 [I-D.ietf-netconf-rfc7895bis]

 Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", draft-ietf-netconf-
 rfc7895bis-06 (work in progress), April 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
 editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010, <https://www.rfc-
 editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6243]
 Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
 <https://www.rfc-editor.org/info/rfc6243>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018, <https://www.rfc-
 editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

7.2. Informative References

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Authors' Addresses

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

Juergen Schoenwaelder
Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

Phil Shafer
Juniper Networks

 Email: phil@juniper.net

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

Robert Wilton
Cisco Systems

 Email: rwilton@cisco.com

draft-ietf-netconf-nmda-restconf-05 - RESTCONF Extensions to Support the Network

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Updates: 8040 (if approved)

Intended status: Standards Track

Expires: April 12, 2019

M. Bjorklund

Tail-f Systems

J. Schoenwaelder

Jacobs University

P. Shafer

K. Watsen

Juniper Networks

R. Wilton

Cisco Systems

October 9, 2018

RESTCONF Extensions to Support the Network Management Datastore Architecture

draft-ietf-netconf-nmda-restconf-05

Abstract

 This document extends the RESTCONF protocol defined in RFC 8040 in
 order to support the Network Management Datastore Architecture
 defined in RFC 8342.

 This document updates RFC 8040 by introducing new datastore
 resources, adding a new query parameter, and requiring the usage of
 I-D.ietf-netconf-rfc7895bis by RESTCONF servers implementing the
 Network Management Datastore Architecture.

 RFC Ed.: Please replace "I-D.ietf-netconf-rfc7895bis" above with its
 final RFC assignment and remove this note.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 12, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Datastore and YANG Library Requirements

	3. RESTCONF Extensions
	 3.1. New Datastore Resources

	 3.2. Protocol Operations
	 3.2.1. With-defaults query parameter on the operational state datastore

	 3.2.2. New "with-origin" Query Parameter

	4. IANA Considerations

	5. Security Considerations

	6. Normative References

	Authors' Addresses

1. Introduction

 This document extends the RESTCONF protocol defined in [RFC8040] in
 order to support the Network Management Datastore Architecture (NMDA)
 defined in [RFC8342].

 This document updates [RFC8040] in order to enable RESTCONF clients
 to discover which datastores are supported by the RESTCONF server,
 determine which modules are supported in each datastore, and to
 interact with all the datastores supported by the NMDA.
 Specifically, the update introduces new datastore resources, adds a
 new query parameter, and requires the usage of
 [I-D.ietf-netconf-rfc7895bis] by RESTCONF servers implementing the
 NMDA.

 The solution presented in this document is backwards compatible with
 [RFC8040]. This is achieved by only adding new resources and leaving
 the semantics of the existing resources unchanged.

1.1. Terminology

 This document uses the terminology defined by the NMDA [RFC8342].

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Datastore and YANG Library Requirements

 RFC Ed.: Please update 201X-XX-XX below with correct date and remove
 this note.

 An NMDA-compliant RESTCONF server MUST support the operational state
 datastore and it MUST implement at least revision 201X-XX-XX of the
 "ietf-yang-library" module defined in [I-D.ietf-netconf-rfc7895bis].

 Such a server identifies that it supports the NMDA both by
 implementing the {+restconf}/ds/ietf-datastores:operational resource,
 and by implementing at least revision 201X-XX-XX of the
 "ietf-yang-library" module.

 A RESTCONF client can test if a server supports the NMDA by using
 either the HEAD or GET methods on {+restconf}/ds/ietf-
 datastores:operational.

 A RESTCONF client can discover which datastores and YANG modules the
 server supports by reading the YANG library information from the
 operational state datastore.

3. RESTCONF Extensions

 This section describes the RESTCONF extensions needed to support the
 NMDA.

3.1. New Datastore Resources

 This document defines a set of new resources representing datastores
 as defined in [RFC8342]. These resources are available using the
 following resource path template:

 {+restconf}/ds/<datastore>

 The <datastore> path component is encoded as an "identityref"
 according to the JSON encoding rules for identities, defined in
 Section 6.8 of [RFC7951]. The namespace-qualified form MUST be used.
 Such an identity MUST be derived from the "datastore" identity
 defined in the "ietf-datastores" YANG module [RFC8342].

 Specifically:

 o The resource {+restconf}/ds/ietf-datastores:operational refers to
 the operational state datastore.

 o The resource {+restconf}/ds/ietf-datastores:running refers to the
 running configuration datastore.

 o The resource {+restconf}/ds/ietf-datastores:intended refers to the
 intended configuration datastore.

 An NMDA-compliant server MUST implement {+restconf}/ds/ietf-
 datastores:operational. Other datastore resources MAY be
 implemented.

 YANG actions can only be invoked in {+restconf}/ds/ietf-
 datastores:operational.

 If a server implements other datastores, such as the example
 datastore "ds-ephemeral" in the module "example-ds-ephemeral", the
 server would implement the resource {+restconf}/ds/example- ds-
 ephemeral:ds-ephemeral.

3.2. Protocol Operations

 The protocol operations available for the new datastore resources
 (Section 3.1) are the same as the protocol operations defined in
 [RFC8040] for the {+restconf}/data resource with the following
 exceptions:

 o Dynamic configuration datastores are excluded, as each dynamic
 configuration datastore definition needs to be reviewed for what
 protocol operations it supports.

 o Some datastores are read-only by nature (e.g., <intended>), and
 hence any attempt to modify these datastores will fail. A server
 MUST return a response with a "405 Method Not Allowed" status-line
 and error-tag value "operation-not-supported".

 o The semantics of the "with-defaults" query parameter ([RFC8040],
 Section 4.8.9) differs when interacting with the operational state
 datastore. The semantics are described below, in Section 3.2.1.

 o [RFC8040], Section 3.5.4, paragraph 3 does not apply when
 interacting with any resource under {+restconf}/ds.

3.2.1. With-defaults query parameter on the operational state datastore

 The "with-defaults" query parameter ([RFC8040], Section 4.8.9) is
 OPTIONAL to support when interacting with {+restconf}/ds/ietf-
 datastores:operational. The associated capability to indicate a
 server's support is identified with the URI:

 urn:ietf:params:restconf:capability:with-operational-defaults:1.0

 For servers that support it, the behavior of the "with-defaults"
 query parameter on the operational state datastore is defined as
 follows:

 o If no "with-defaults" query parameter is specified, or if it is
 set to "explicit", "report-all", or "report-all-tagged", then the
 "in use" values, as defined in [RFC8342] section 5.3, are returned
 from the operational state datastore, even if a node happens to
 have a default statement in the YANG module and this default value
 is being used by the server. If the "with-defaults" parameter is
 set to "report-all-tagged", any values that match the schema
 default are tagged with additional metadata, as described in
 [RFC8040], Section 4.8.9.

 o If the "with-defaults" query parameter is set to "trim", all "in
 use" values are returned, except that the output is filtered to
 exclude any values that match the default defined in the YANG
 schema.

 Servers are not required to support all values in the "with-defaults"
 query parameter on the operational state datastore. If a request is
 made using a value that is not supported, then the error handling
 behavior is as described in ([RFC8040], Section 4.8.9).

3.2.2. New "with-origin" Query Parameter

 A new query parameter named "with-origin" is added to the GET
 operation. If present, it requests that the server includes "origin"
 metadata annotations in its response, as detailed in the NMDA. This
 parameter is only valid when querying {+restconf}/ds/ietf-
 datastores:operational or any datastores with identities derived from
 the "operational" identity. Otherwise, if an invalid datastore is
 specified then the server MUST return a response with a "400 Bad
 Request" status-line, using an error-tag value of "invalid-value".
 "origin" metadata annotations are not included unless a client
 explicitly requests them.

 Data in the operational state datatstore can come from multiple
 sources. The server should return the most accurate value for the
 "origin" metadata annotation as possible, indicating the source of
 the operational value, as specified in Section 5.3.4 of [RFC8342].

 When encoding the origin metadata annotation for a hierarchy of
 returned nodes, the annotation can be omitted for a child node when
 the value matches that of the parent node, as described in
 "ietf-origin" YANG module [RFC8342].

 The "with-origin" query parameter is OPTIONAL to support. It is
 identified with the URI:

 urn:ietf:params:restconf:capability:with-origin:1.0

4. IANA Considerations

 This document defines two capability identifier URNs in the "RESTCONF
 Capability URNs" registry defined in [RFC8040]:

Index
Capability Identifier
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

:with‑origin
urn:ietf:params:restconf:capability:with‑origin:1.0

 :with-operational-defaults
 urn:ietf:params:restconf:capability:with-operational-defaults:1.0

5. Security Considerations

 This document extends the RESTCONF protocol by introducing new
 datastore resources. The lowest RESTCONF layer is HTTPS, and the
 mandatory-to-implement secure transport is TLS [RFC8446]. The
 RESTCONF protocol uses the network configuration access control model
 [RFC8341], which provides the means to restrict access for particular
 RESTCONF users to a preconfigured subset of all available RESTCONF
 protocol operations and content.

 The security constraints for the base RESTCONF protocol (see
 Section 12 of [RFC8040]) apply to the new RESTCONF datastore
 resources defined in this document.

6. Normative References

 [I-D.ietf-netconf-rfc7895bis]

 Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", draft-ietf-netconf-
 rfc7895bis-06 (work in progress), April 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018, <https://www.rfc-
 editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

Juergen Schoenwaelder
Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

Phil Shafer
Juniper Networks

 Email: phil@juniper.net

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

Robert Wilton
Cisco Systems

 Email: rwilton@cisco.com

draft-ietf-netconf-notification-capabilities-00 - YangPush Notification Capabili

Index
Back 5
Prev
Next
Forward 5

Netconf

Internet-Draft

Intended status: Standards Track

Expires: April 5, 2019

B. Lengyel

Ericsson

A. Clemm

Huawei USA

October 2, 2018

YangPush Notification Capabilities

draft-ietf-netconf-notification-capabilities-00

Abstract

 This document proposes a YANG module that allows a YANG server to
 specify for which data nodes it will send "YANG Datastore
 Subscription" on-change notifications. It also proposes to use YANG
 Instance Data to document this information in implementation time.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 5, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Terminology

	2. Introduction

	3. On-change Notification Capability Model
	 3.1. Tree Diagram

	 3.2. YANG Module

	4. Security Considerations

	5. IANA Considerations
	 5.1. The IETF XML Registry

	 5.2. The YANG Module Names Registry

	6. Open Issues

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Changes between revisions

	Authors' Addresses

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 On-change Notification Capability: The capability of the YANG server
 to send on-change notifications on the change of the value for a
 specific data node.

 Implementation-time information: Information about the YANG server's
 behavior that is made available during the implementation of the
 server, available from a source other then a running Yang server.

 Rutime-information: Information about the YANG server's behavior that
 is available from the running YANG server via a protocol like
 NETCONF, RESTCONF or HTTPS.

2. Introduction

 As defined in [I-D.ietf-netconf-yang-push] a YANG server may allow
 clients to subscribe to updates from a datastore and subsequently
 push such update notifications to the client. Notifications may be
 sent periodically or on-change (more or less immendiately after each
 change).

 In some cases, a publisher supporting on-change notifications will
 not be able to push updates for some object types on-change. Reasons
 for this might be that the value of the datastore node changes
 frequently (e.g. in-octets counter), that small object changes are
 frequent and meaningless (e.g., a temperature gauge changing 0.1
 degrees), or that the implementation is not capable of on-change
 notification for a particular object. In those cases, it will be
 important for client applications to have a way to identify for which
 objects on-change notifications are supported and for which ones are
 not supported.

 Faced with the reality that support for on-change notification does
 not mean that such notifications will be sent for any specific data
 node, client/management applications can not rely on the on-change
 functionality unless the client has some means to identify for which
 objects on-change notifications are supported and for which ones are
 not supported. YANG models are meant to be used as an interface
 contract. Without identification of data nodes supporting on-change,
 this contract would only state the YANG server may (or may not) send
 on-change notifications for a data node specified in a YANG module.

 This document proposes a YANG module that allows a client to identify
 which data nodes support on-change notification, removing the
 uncertainty for on-change notifications.

 On-change Notification Capability information will be needed both in
 implementation-time and run-time.

 Run-time information is needed

 o for any "purely model driven" client, e.g. a Netconf-browser. As
 long as it has a valid model, it does not care which data nodes
 send notification, it will just handle whats available.

 o to check that early implementation time information about the
 capability is indeed what the server supports

 o in case the capability might change during run-time e.g. due to
 licensing, HW constraints etc.

 Implementation time information is needed by Network Management
 System (NMS) implementers. During NMS implementation for any
 functionality that depends on the notifications the information about
 on change notification capability is needed. If the information is
 not available early in some document, but only as instance data from
 the network node, the NMS implementation will be delayed, because it
 has to wait for the network node to be ready. Also assuming that all
 NMS implementers will have a correctly configured network node
 available to retrieve data from, is an expensive proposition. (An
 NMS may handle dozens of network node types.) Often a fully
 functional NMS is a requirement for introducing a new network node
 type into a network, so delaying the NMS effectively delays the
 availability of the network node as well.

 Implementation time information is needed by system integrators.
 System integrators will need information about on change notification
 capability early. When introducing a network node type into their
 network operators often need to integrate the node type into their
 own management system. The NMS may have management functions that
 depend on on-change notifications. The network operator needs to
 plan his management practices and NMS implementation before he even
 decides to buy the specific network node type. Moreover the decision
 to buy the node type sometimes depends on these management
 possibilities.

3. On-change Notification Capability Model

 As described above a number of stakeholders need information about
 the on change notification capability both in implementation and run-
 time. It is a goal to provide this information in a format that is

 o vendor independent (standard)

 o formal (no freeform English text please)

 o the same both in implementation-time and run-time

 The YANG module ietf-notification-capabilities is defined to provide
 information about the on-change notification capabilities. There is
 a default notification capability separately for config false and
 config true data nodes. There is also an on-change-notification-
 capability list containing a potentially different true/false
 notification capability for any data node in the schema tree. Unless
 a node is in the list with a specific capability value, it inherits
 its on-change-notification-capability from its parent in the data
 tree, or from the relevant default values.

 The instance information SHALL be provided in two ways both following
 the ietf-notification-capabilities module:

 o It SHALL be provided by the implementer as YANG instance data file
 complying to the [I-D.lengyel-netmod-yang-instance-data]. The
 file SHALL be available already in implementation time retrievable
 in a way that does not depend on a live network node. E.g.
 download from product Website.

 o It SHALL be available via Netconf or Restconf from the live YANG
 server during runtime.

3.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model.

module: ietf‑notification‑capabilities
 +‑‑ro on‑change‑notification‑capability
 +‑‑ro notification‑sent‑for‑config‑default? boolean
 +‑‑ro notification‑sent‑for‑state‑default? boolean
 +‑‑ro on‑change‑notification‑capability* [node‑selector]
 +‑‑ro node‑selector nacm:node‑instance‑identifier
 +‑‑ro on‑change‑notification‑sent boolean

3.2. YANG Module

 <CODE BEGINS> file "ietf-notification-capabilities.yang"

module ietf‑notification‑capabilities {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑notification‑capabilities";
 prefix inc;

 import ietf-netconf-acm { prefix nacm; }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Kent Watsen

 <mailto:kwatsen@juniper.net>

 WG Chair: Mahesh Jethanandani

 <mailto:mjethanandani@gmail.com>

Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description "This module specifies for which data nodes will the

 YANG server send on-change notifications.

On‑change notification capability is marked as true or false.
This marking is inherited from the parent down the data tree
unless explicitly marked otherwise.

On‑change notifications SHALL be sent for a config=true
data node if one of the following is true:
‑ it is specified in the on‑change‑notification‑capability
list and has a on‑change‑notification‑sent value true or
‑ notifications are sent for its parent data node and it is
not specified in the on‑change‑notification‑capability list or
‑ if it is a top level data‑node and is not specified in the
on‑change‑notification‑capability list and the
notification‑sent‑for‑config‑default is true.

On‑change notifications SHALL be sent for a config=false
data node if one of the following is true:
‑ it is specified in the on‑change‑notification‑capability
list and has an on‑change‑notification‑sent value true or
‑ notifications are sent for its parent data node
which is also config=false and it is
not specified in the on‑change‑notification‑capability list or
‑ if it is a top level data‑node or has a config=true parent
data node and is not specified in the
on‑change‑notification‑capability list and the
notification‑sent‑for‑state‑default is true.
";

 reference "RFC XXXX Yang-Push";

 revision 2018‑07‑02 {
 description "Initial version";
 reference
 "RFC XXX: YangPush Notification Capabilities";
 }

 container on‑change‑notification‑capability {
 config false;
 description "Contains default values for the
 on‑change‑notifiction‑capability and a list of data nodes that
 have the on‑change‑notification‑capability specifically defined.";

 leaf notification‑sent‑for‑config‑default {
 type boolean;
 default true;
 description "Specifies the default value for
 top level configuration data nodes for the
 on‑change‑notification‑sent capability.";
 }

 leaf notification‑sent‑for‑state‑default {
 type boolean;
 default false;

 description "Specifies the default value
 top level state data nodes for the
 on‑change‑notification‑sent capability.";
 }

 list on‑change‑notification‑capability {
 key node‑selector ;
 description "A list of data nodes that have the
 on‑change‑notification‑capability specifically defined.

 Should be used when specific data nodes support
 on‑change notification in a module/subtree that
 generally does not support it or when some data nodes
 do not support the notification in a module/subtree
 that generally supports on‑change notifications.";

 leaf node‑selector {
 type nacm:node‑instance‑identifier;
 }

 leaf on‑change‑notification‑sent {
 type boolean;
 mandatory true;
 description "Specifies whether the YANG server will
 send on‑change notifications for the selected
 data nodes.";
 }
 }
 }
}

 <CODE ENDS>

4. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF and RESTCONF.
 Both of these protocols have mandatory-to- implement secure transport
 layers (e.g., SSH, TLS) with mutual authentication.

 The NETCONF access control model (NACM) provides the means to
 restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers one URI in the IETF XML registry [RFC3688].
 Following the format in [RFC3688], the following registrations are
 requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑notification‑capabilities
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC7950]. Following the format in [RFC7950], the the
 following registrations are requested:

name: ietf‑notification‑capabilities
namespace: urn:ietf:params:xml:ns:yang:ietf‑notification‑capabilities
prefix: inc
reference: RFC XXXX

6. Open Issues

 Do we need separate defaults/individual lists for every datastore?
 Proposal: no, it would be an overkill.

 Should type nacm:node-instance-identifier be moved to yang-types?
 It is useful for more then just nacm.

7. References

7.1. Normative References

 [I-D.ietf-netconf-yang-push]

 Clemm, A., Voit, E., Prieto, A., Tripathy, A., Nilsen-
 Nygaard, E., Bierman, A., and B. Lengyel, "YANG Datastore
 Subscription", draft-ietf-netconf-yang-push-19 (work in
 progress), September 2018.

 [I-D.lengyel-netmod-yang-instance-data]

 Lengyel, B. and B. Claise, "YANG Instance Data Files and
 their use for Documenting Server Capabilities", draft-
 lengyel-netmod-yang-instance-data-03 (work in progress),
 July 2018.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

7.2. Informative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Changes between revisions

 v01 - v02

 o Instead of augmenting ietf-yang-library a more simple standalone
 model is proposed.

 v00 - v01

 o Corrections

 o Augment only the new yanglib

 o Correct the condtions for notifying state data

Authors' Addresses

Balazs Lengyel
Ericsson
Magyar Tudosok korutja 11
1117 Budapest
Hungary

 Email: balazs.lengyel@ericsson.com

Alexander Clemm
Huawei USA
2330 Central Expressway
Santa Clara, CA 95050
USA

 Email: ludwig@clemm.org

draft-ietf-netconf-notification-messages-04 - Notification Message Headers and B

Index
Back 5
Prev
Next
Forward 5

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: February 23, 2019

E. Voit

Cisco Systems

H. Birkholz

Fraunhofer SIT

A. Bierman

YumaWorks

A. Clemm

Huawei

T. Jenkins

Cisco Systems

August 22, 2018

Notification Message Headers and Bundles

draft-ietf-netconf-notification-messages-04

Abstract

 This document defines a new notification message format, using yang-
 data. Included are:

 o a new notification mechanism and encoding to replace the one way
 operation of RFC-5277

 o a set of common, transport agnostic message header objects.

 o how to bundle multiple event records into a single notification
 message.

 o how to ensure these new capabilities are only used with capable
 receivers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 23, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Header Objects

	4. Encapsulation of Header Objects in Messages
	 4.1. One Notification per Message

	 4.2. Many Notifications per Message

	5. Configuration of Headers

	6. Discovering Receiver Support

	7. YANG Module

	8. Backwards Compatibility

	9. Security Considerations

	10. Acknowledgments

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Changes between revisions

	Appendix B. Issues being worked

	Appendix C. Subscription Specific Headers

	Appendix D. Implications to Existing RFCs
	 D.1. Implications to RFC-7950

	 D.2. Implications to RFC-8040

	Authors' Addresses

1. Introduction

 Mechanisms to support subscription to event notifications and yang
 datastore push are being defined in
 [I-D.draft-ietf-netconf-subscribed-notifications] and
 [I-D.ietf-netconf-yang-push]. Work on those documents has shown that
 notifications described in [RFC7950] section 7.16 could benefit from
 transport independent headers. Communicating the following
 information to receiving applications can be done without explicit
 linkage to an underlying transport protocol:

 o the time information was generated

 o the time the information was placed in a message and queued for
 transport

 o a signature to verify authenticity

 o the process generating the information

 o an originating request correlation

 o an ability to bundle information records into one a message

 o the ability to check for message loss/reordering

 The document describes information elements needed for the functions
 above. It also provides YANG structures for sending messages
 containing one or more events and/or update records to a receiver.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The definition of notification is in RFC 7950 [RFC7950]. Publisher,
 receiver, subscription, and event occurence time are defined in
 [I-D.draft-ietf-netconf-subscribed-notifications].

3. Header Objects

 There are a number of transport independent headers which should have
 common definition. These include:

 o subscription-id: provides a reference into the reason the
 publisher believed the receiver wishes to be notified of this
 specific information.

 o notification-time: the time an event, datastore update, or other
 item is recognized and recorded within the publisher.

 o notification-id: Identifies the name of the notification, per the
 YANG notification statement. May also provide the name of a yang-

 data statement (whether transporting other types of messages is in
 scope is tbd).

 o observation-domain-id: identifies the publisher process which
 discovered and recorded the event notification. (note: look to
 reuse the domains set up with IPFIX.)

 o message-time: the time the message was packaged sent to the
 transport layer for delivery to the receiver.

 o signature: allows an application to sign a message so that a
 receiver can verify the authenticity of the message.

 o message-id: for a specific message generator, this identifies a
 message which includes one or more event records. The message-id
 increments by one with sequential messages.

 o message-generator-id: identifier for the process which created the
 message. This allows disambiguation of an information source,
 such as the identification of different line cards sending the
 messages. Used in conjunction with previous-message-id, this can
 help find drops and duplications when messages are coming from
 multiple sources on a device. If there is a message-generator-id
 in the header, then the previous-message-id MUST be the message-id
 from the last time that message-generator-id was sent.

4. Encapsulation of Header Objects in Messages

 A specific set of well-known objects are of potential use to
 networking layers prior being interpreted by some receiving
 application layer process. By exposing this object information as
 part of a header, and by using standardized object names, it becomes
 possible for this object information to be leveraged in transit.

 The objects defined in the previous section are these well-known
 header objects. These objects are identified within a dedicated
 header subtree which leads off a particular transportable message.
 This allows header objects to be easily be decoupled, stripped, and
 processed separately.

 There are two types of transportable messages: one format is used
 when there is one notification being encapsulated, and another format
 used when there are many notifications being bundled into one
 message.

 A receiver which supporting this document MUST be able to handle
 receipt of either type of message from an publisher. It is possible
 that changes between message types can occur without any prior
 indication.

4.1. One Notification per Message

 This section will be re-instated if NETCONF WG members are not
 comfortable with the efficiency of the solution which can encode many
 notifications per message described below.

4.2. Many Notifications per Message

 While possible in some scenarios, it often inefficient to marshal and
 transport every notification independently. Instead, scale and
 processing speed can be improved by placing multiple notifications
 into one transportable bundle.

 The format of this bundle appears in the yata-data tree below, and is
 more completely defined in the yang module. There are three parts of
 this bundle:

 o a message header describing the marshaling, including information
 such as when the marshaling occurred

 o a list of encapsulated information

 o an optional message footer for whole-message signing and message-
 generator integrity verification.

 Within the list of encapsulated notifications, there are also three
 parts:

 o a notification header defining what is in an encapsulated
 notification

 o the actual notification itself

 o an optional notification footer for individual notification
 signing and observation-domain integrity verification.

yang‑data message
 +‑‑ro message!
 +‑‑ro message‑header
 | +‑‑ro message‑time yang:date‑and‑time
 | +‑‑ro message‑id? uint32
 | +‑‑ro message‑generator‑id? string
 | +‑‑ro notification‑count? uint16
 +‑‑ro notifications*
 | +‑‑ro notification‑header
 | | +‑‑ro notification‑time yang:date‑and‑time
 | | +‑‑ro yang‑module? yang:yang‑identifier
 | | +‑‑ro yang‑notification‑name? notification‑type
 | | +‑‑ro subscription‑id* uint32
 | | +‑‑ro notification‑id? uint32
 | | +‑‑ro observation‑domain‑id? string
 | +‑‑ro notification‑contents?
 | +‑‑ro notification‑footer!
 | +‑‑ro signature‑algorithm string
 | +‑‑ro signature‑value string
 | +‑‑ro integrity‑evidence? string
 +‑‑ro message‑footer!
 +‑‑ro signature‑algorithm string
 +‑‑ro signature‑value string
 +‑‑ro integrity‑evidence? string

 An XML instance of a message might look like:

<yang‑data bundled‑message
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑notification‑messages:1.0">
 <message‑header>
 <message‑time>
 2017‑02‑14T00:00:05Z
 </message‑time>
 <message‑id>
 456
 </message‑id>
 <notification‑count>
 2
 </notification‑count>
 </message‑header>
 <notifications>
 <notification>
 <notification‑header>
 <notification‑time>
 2017‑02‑14T00:00:02Z
 </notification‑time>
 <subscription‑id>
 823472
 </subscription‑id>
 <yang‑module>
 ietf‑yang‑push
 </yang‑module>
 <yang‑notification‑name>
 push‑change‑update
 </yang‑notification‑name>
 </notification‑header>
 <notification‑contents>
 <push‑change‑update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf‑yang‑push:1.0">
 <datastore‑changes‑xml>
 <alpha xmlns="http://example.com/sample‑data/1.0">
 <beta urn:ietf:params:xml:ns:netconf:base:1.0:
 operation="delete"/>
 </alpha>
 </datastore‑changes‑xml>
 </push‑change‑update>
 </notification‑contents>
 </notification>
 <notification>
 ...(record #2)...
 </notification>
 </notifications>
</yang‑data>

5. Configuration of Headers

 A publisher MUST select the set of headers to use within any
 particular message. The two mandatory headers which MUST always be
 applied are 'message-time' and 'subscription-id'

 Beyond these two mandatory headers, additional headers MAY be
 included. Configuration of what these optional headers should be can
 come from the following sources:

 1. Publisher wide default headers for all notifications. These are
 included if an optional header is inserted into 'additional-
 headers' leaf-list shown in the yang tree below.

 2. More notification specific headers may also be desired. If new
 headers are needed for a specific type of YANG notification,
 these can be populated through 'additional-notification-headers'
 leaf-list.

 3. An application process may also identify common headers to use
 when transporting notifications for a specific subscription. How
 these are identified to a publisher is out-of-scope.

 The set of headers used for any particular message is the superset of
 headers for the items listed above.

 The YANG tree showing elements of configuration is depicted in the
 following figure.

module: ietf‑notification‑messages
 +‑‑rw additional‑default‑headers {publisher}?
 +‑‑rw additional‑headers* optional‑header
 +‑‑rw yang‑notification‑specific‑default*
 | [yang‑module yang‑notification‑name]
 +‑‑rw yang‑module yang:yang‑identifier
 +‑‑rw yang‑notification‑name notification‑type
 +‑‑rw additional‑notification‑headers*
 optional‑notification‑header

 Configuration Model structure

 Of note in this tree is the optional feature of 'publisher'. This
 feature indicates an ability to send notifications. A publisher
 supporting this specification MUST also be able to parse any messages
 received as defined in this document.

6. Discovering Receiver Support

 We need capability exchange from the receiver to the publisher at
 transport session initiation to indicate support for this
 specification.

 For all types of transport connections, if the receiver indicates
 support for this specification, then it MAY be used. In addition,
 [RFC5277] one-way notifications MUST NOT be used if the receiver
 indicates support for this specification to a publisher which also
 supports it.

 Where NETCONF transport is used, advertising this specification's
 namespace during an earlier client capabilities discovery phase MAY
 be used to indicate support for this specification:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:yang:ietf‑notification‑messages:1.0
 </capability>
 </capabilities>
 <session‑id>4</session‑id>
</hello>

 NOTE: It is understood that even though it is allowed in [RFC6241]
 section 8.1, robust NETCONF client driven capabilities exchange is
 not something which is common in implementation. Therefore reviewers
 are asked to submit alternative proposals to the mailing list.

 For RESTCONF, a mechanism for capability discovery is TBD. Proposals
 are also welcome here.

 The mechanism described above assumes that a capability discovery
 phase happens before a subscription is started. This is not always
 the case. As an example, consider HTTP2 configured subscriptions
 from section 3.1.3 of [I-D.draft-ietf-netconf-restconf-notif], there
 is no guarantee that a capability exchange has taken place before the
 updates are pushed. A solution for this could be that a receiver
 would reply "ok" and reply with the client capabilities as part of
 the POST. (Or just use a different HTTP status code like 202 instead
 of 200 'ok'). As such a requirement creates a new dependency for
 [I-D.draft-ietf-netconf-restconf-notif] upon this specification, more
 discussion is required to decide if this is a viable solution.

7. YANG Module

<CODE BEGINS> file "ietf-notification-messages@2018-01-31.yang"

module ietf‑notification‑messages {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑notification‑messages";
 prefix nm;

 import ietf‑yang‑types { prefix yang; }
 import ietf‑restconf { prefix rc; }

 organization "IETF";
 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Henk Birkholz
 <mailto:henk.birkholz@sit.fraunhofer.de>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Tim Jenkins
 <mailto:timjenki@cisco.com>";

 description

 "This module contains conceptual YANG specifications for yang-data
 messages carrying notifications with well known header objects.";

revision 2018‑01‑31 {
 description
 "Initial version.";

 reference
 "draft‑ietf‑netconf‑notification‑messages‑03";
}

 /*

 * FEATURES

 */

feature publisher {
 description
 "This feature indicates that support for both publisher and
 receiver of messages complying to the specification.";
}

/*
 * IDENTITIES
 */

 /* Identities for common headers */

identity common‑header {
 description
 "A well known header which can be included somewhere within a
 message.";
}

identity message‑time {
 base common‑header;
 description
 "Header information consisting of time the message headers were
 placed generated prior to being sent to transport";
}

identity subscription‑id {
 base common‑header;
 description
 "Header information consisting of the identifier of the
 subscription associated with the notification being
 encapsulated.";
}

identity notification‑count {
 base common‑header;
 description
 "Header information consisting of the quantity of notifications in
 a bundled‑message for a specific receiver.";
}

identity optional‑header {
 base common‑header;
 description
 "A well known header which an application may choose to include
 within a message.";
}

identity message‑id {
 base optional‑header;
 description
 "Header information that identifies a message to a specific
 receiver";
}

identity message‑generator‑id {
 base optional‑header;
 description
 "Header information consisting of an identifier for a software
 entity which created the message (e.g., linecard 1).";
}

identity message‑signature {
 base optional‑header;
 description
 "Identifies two elements of header information consisting of a
 signature and the signtature type for the contents of a message.
 Signatures can be useful for originating applications to
 verify record contents even when shipping over unsecure
 transport.";
}

identity message‑integrity‑evidence {
 base optional‑header;
 description
 "Header information consisting of the information which backs up
 the assertions made as to the validity of the information
 provided within the message.";
}

identity optional‑notification‑header {
 base optional‑header;
 description
 "A well known header which an application may choose to include
 within a message.";
}

identity notification‑time {
 base optional‑notification‑header;
 description
 "Header information consisting of the time an originating process
 created the notification.";
}

 identity notification-id {

 base optional‑notification‑header;
 description
 "Header information consisting of an identifier for an instance
 of a notification egressing a publisher. ";
 }

 identity observation‑domain‑id {
 base optional‑notification‑header;
 description
 "Header information identifying the software entity which created
 the notification (e.g., process id).";
 }

 identity notification‑signature {
 base optional‑notification‑header;
 description
 "Header information consisting of the information which backs up
 the assertions made as to the validity of the information
 provided within the notification.";
 }

 identity notification‑integrity‑evidence {
 base optional‑notification‑header;
 description
 "Header information consisting of the information which backs up
 the assertions made as to the validity of the information
 provided within the notification.";
 }

 /*
 * TYPEDEFs
 */

 typedef optional‑header {
 type identityref {
 base optional‑header;
 }
 description
 "Type of header object which may be included somewhere within a
 message.";
 }

 typedef optional‑notification‑header {
 type identityref {
 base optional‑notification‑header;
 }

 description
 "Type of header object which may be included somewhere within a
 message.";
 }

 typedef notification‑type {
 type string {
 pattern '[a‑zA‑Z_][a‑zA‑Z0‑9\‑_.]*';
 }
 description
 "The name of a notification within a YANG module.";
 reference
 "RFC‑7950 Section 7.16";
 }

 /*
 * GROUPINGS
 */

 grouping message‑header {
 description
 "Header information included with a message.";
 leaf message‑time {
 type yang:date‑and‑time;
 mandatory true;
 description
 "time the message was generated prior to being sent to
 transport.";
 }
 leaf message‑id {
 type uint32;
 description
 "Id for a message going to a receiver from a message
 generator. The id will increment by one with each message sent
 from a particular message generator, allowing the message‑id
 to be used as a sequence number.";
 }
 leaf message‑generator‑id {
 type string;
 description
 "Software entity which created the message (e.g., linecard 1).
 The combination of message‑id and message‑generator‑id must be
 unique until reset or a roll‑over occurs.";
 }
 leaf notification‑count {
 type uint16;
 description
 "Quantity of notification records in a bundled‑message

 specific receiver.";
 }
 }

 grouping notification‑within‑a‑module {
 description
 "A location of a notification within a yang model.";
 leaf yang‑module {
 type yang:yang‑identifier;
 description
 "Name of the YANG module supported by the publisher.";
 }
 leaf yang‑notification‑name {
 type notification‑type;
 description
 "The name of a notification likely from a YANG module. Note
 that this object should be in the notification contents, so a
 debate is needed whether this is redundant.";
 }
 }

 grouping notification‑header {
 description
 "Common informational objects which might help a receiver
 interpret the meaning, details, or importance of a notification.";
 leaf notification‑time {
 type yang:date‑and‑time;
 mandatory true;
 description
 "Time the system recognized the occurrence of an event.";
 }
 uses notification‑within‑a‑module;
 leaf‑list subscription‑id {
 type uint32;
 description
 "Id of the subscription which led to the notification being
 generated.";
 }
 leaf notification‑id {
 type uint32;
 description
 "Identifier for the notification record.";
 }
 leaf observation‑domain‑id {
 type string;
 description
 "Software entity which created the notification record (e.g.,
 process id).";

 }
 }

 grouping security‑footer {
 description
 "Reusable grouping for common objects which apply to the the
 signing of notifications or messages.";
 leaf signature‑algorithm {
 type string;
 mandatory true;
 description
 "The technology with which an originator signed of some
 delineated contents.";
 }
 leaf signature‑value {
 type string;
 mandatory true;
 description
 "Any originator signing of the contents of a header and
 content. This is useful for verifying contents even when
 shipping over unsecure transport.";
 }
 leaf integrity‑evidence {
 type string;
 description
 "This mechanism allows a verifier to ensure that the use of the
 private key, represented by the corresponding public key
 certificate, was performed with a TCG compliant TPM
 environment. This evidence is never included in within any
 signature.";
 reference
 "TCG Infrastructure Workgroup, Subject Key Attestation Evidence
 Extension, Specification Version 1.0, Revision 7.";
 }
 }

 /*
 * YANG‑DATA messages for receivers
 */

 rc:yang‑data message {
 container message {
 presence
 "Indicates attempt to communicate notifications to a receiver.";
 description
 "Message to a receiver containing one or more notifications";

 container message‑header {
 description
 "Header info for messages.";
 uses message‑header;
 }
 list notifications {
 description
 "Set of notifications to a receiver.";
 container notification‑header {
 description
 "Header info for a notification.";
 uses notification‑header;
 }
 anydata notification‑contents {
 description
 "Encapsulates objects following YANG's notification‑stmt
 grammar of RFC‑7950 section 14. Within are the notified
 objects the publisher actually generated in order to be
 passed to a receiver after all filtering has completed.";
 }
 container notification‑footer {
 presence
 "Indicates attempt to secure a notification.";
 description
 "Signature and evidence for messages.";
 uses security‑footer;
 }
 }
 container message‑footer {
 presence
 "Indicates attempt to secure the entire message.";
 description
 "Signature and evidence for messages.";
 uses security‑footer;
 }
 }
 }

 /*
 * DATA‑NODES
 */

 container additional‑default‑headers {
 if‑feature "publisher";
 description
 "This container maintains a list of which additional notifications
 should use which optional headers if the receiver supports this
 specification.";

 leaf‑list additional‑headers {
 type optional‑header;
 description
 "This list contains the identities of the optional header types
 which are to be included within each message from this
 publisher.";
 }
 list yang‑notification‑specific‑default {
 key "yang‑module yang‑notification‑name";
 description
 "For any included YANG notifications, this list provides
 additional optional headers which should be placed within the
 container notification‑header if the receiver supports this
 specification. This list incrementally adds to any headers
 indicated within the leaf‑list 'additional‑headers'.";
 uses notification‑within‑a‑module;
 leaf‑list additional‑notification‑headers {
 type optional‑notification‑header;
 description
 "The set of additional default headers which will be sent
 for a specific YANG notification.";
 }
 }
 }
}

<CODE ENDS>

8. Backwards Compatibility

 With this specification, there is no change to YANG's 'notification'
 statement

 Legacy clients are unaffected, and existing users of [RFC5277],
 [RFC7950], and [RFC8040] are free to use current behaviors until all
 involved device support this specification.

9. Security Considerations

 Certain headers might be computationally complex for a publisher to
 deliver. Signatures or encryption are two examples of this. It MUST
 be possible to suspend or terminate a subscription due to lack of
 resources based on this reason.

 Decisions on whether to bundle or not to a receiver are fully under
 the purview of the Publisher. A receiver could slow delivery to
 existing subscriptions by creating new ones. (Which would result in
 the publisher going into a bundling mode.)

10. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Martin Bjorklund, Einar Nilsen-Nygaard, and Kent Watsen.

11. References

11.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Custom Subscription to Event
 Streams", draft-ietf-netconf-subscribed-notifications-16
 (work in progress), August 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.draft-ietf-netconf-restconf-notif]

 Voit, Eric., Clemm, Alexander., Tripathy, A., Nilsen-
 Nygaard, E., and Alberto. Gonzalez Prieto, "Restconf and
 HTTP transport for event notifications", June 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-restconf-notif/>.

 [I-D.ietf-netconf-yang-push]

 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", August 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

Appendix A. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v03 - v04

 o Terminology tweaks.

 o Revision before expiration. Awaiting closure of SN prior to
 update.

 v02 - v03

 o Removed the option for an unbundled message. This might be re-
 added later for transport efficiency if desired by the WG

 o New message structure driven by the desire to put the signature
 information at the end.

 v01 - v02

 o Fixed the yang-data encapsulation container issue

 o Updated object definitions to point to RFC-7950 definitions

 o Added headers for module and notification-type.

 v00 - v01

 o Alternative to 5277 one-way notification added

 o Storage of default headers by notification type

 o Backwards compatibility

 o Capability discovery

 o Move to yang-data

 o Removed dscp and record-type as common headers. (Record type can
 be determined by the namespace of the record contents. Dscp is
 useful where applications need internal communications within a
 Publisher, but it is unclear as to whether this use case need be
 exposed to a receiver.

Appendix B. Issues being worked

 (To be removed by RFC editor prior to publication)

 Is this capability just for notifications, or is it for any yang-data
 element too?

 A complete JSON document is supposed to be sent as part of Media Type
 "application/yang-data+json". As we are sending separate
 notifications after each other, we need to choose whether we start
 with some extra encapsulation for the very first message pushed, or
 if we want a new Media Type for streaming updates.

 Improved discovery mechanisms for NETCONF

 Should we defer support for HTTP2 configured subscriptions until this
 draft is available? Without capabilities exchange, it might just be
 easier to wait. In addition, JSON encoding still needs a
 notification type which is not exising or represented in
 referenceable in existing yang-models.

 Need to ensure the proper references exist to a notification
 definition driven by RFC-7950 which is acceptable to other eventual
 users of this specification.

 We need to link to Andy Bierman's anydata extensibility draft for
 informational purposes. This is under a WG adoption call.

Appendix C. Subscription Specific Headers

 (To be removed by RFC editor prior to publication)

 This section discusses a future functional addition which could
 leverage this draft. It is included for informational purposes only.

 A dynamic subscriber might want to mandate that certain headers be
 used for push updates from a publisher. Some examples of this
 include a subscriber requesting to:

 o establish this subscription, but just if transport messages
 containing the pushed data will be encrypted,

 o establish this subscription, but only if you can attest to the
 information being delivered in requested notification records, or

 o provide a sequence-id for all messages to this receiver (in order
 to check for loss).

 Providing this type of functionality would necessitate a new revision
 of the [I-D.draft-ietf-netconf-subscribed-notifications]'s RPCs and
 state change notifications. Subscription specific header information
 would overwrite the default headers identified in this document.

Appendix D. Implications to Existing RFCs

 (To be removed by RFC editor prior to publication)

 YANG one-way exchanges currently use a non-extensible header and
 encoding defined in section 4 of RFC-5277. These RFCs MUST be
 updated to enable this draft. These RFCs SHOULD be updated to
 provide examples

D.1. Implications to RFC-7950

 Sections which expose netconf:capability:notification:1.0 are 4.2.10

 Sections which provide examples using netconf:notification:1.0 are
 7.10.4, 7.16.3, and 9.9.6

D.2. Implications to RFC-8040

 Section 6.4 demands use of RFC-5277's netconf:notification:1.0, and
 later in the section provides an example.

Authors' Addresses

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Henk Birkholz
Fraunhofer SIT

 Email: henk.birkholz@sit.fraunhofer.de

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

Alexander Clemm
Huawei

 Email: ludwig@clemm.org

Tim Jenkins
Cisco Systems

 Email: timjenki@cisco.com

draft-ietf-netconf-restconf-client-server-08 - RESTCONF Client and Server Models

Index
Back 5
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

October 22, 2018

RESTCONF Client and Server Models

draft-ietf-netconf-restconf-client-server-08

Abstract

 This document defines two YANG modules, one module to configure a
 RESTCONF client and the other module to configure a RESTCONF server.
 Both modules support the TLS transport protocol with both standard
 RESTCONF and RESTCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-keystore

 o I-D.ietf-netconf-tls-client-server

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

o "ZZZZ" ‑‑> the assigned RFC value for I‑D.ietf‑netconf‑tls‑client‑
 server

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. The RESTCONF Client Model
	 2.1. Tree Diagram

	 2.2. Example Usage

	 2.3. YANG Module

	3. The RESTCONF Server Model
	 3.1. Tree Diagram

	 3.2. Example Usage

	 3.3. YANG Module

	4. Security Considerations

	5. IANA Considerations
	 5.1. The IETF XML Registry

	 5.2. The YANG Module Names Registry

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Change Log
	 A.1. 00 to 01

	 A.2. 01 to 02

	 A.3. 02 to 03

	 A.4. 03 to 04

	 A.5. 04 to 05

	 A.6. 05 to 06

	 A.7. 06 to 07

	 A.8. 07 to 08

	Acknowledgements

	Author's Address

1. Introduction

 This document defines two YANG [RFC7950] modules, one module to
 configure a RESTCONF client and the other module to configure a
 RESTCONF server [RFC8040]. Both modules support the TLS [RFC8446]
 transport protocol with both standard RESTCONF and RESTCONF Call Home
 connections [RFC8071].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. The RESTCONF Client Model

 The RESTCONF client model presented in this section supports both
 clients initiating connections to servers, as well as clients
 listening for connections from servers calling home.

 This model, like that presented in
 [I-D.ietf-netconf-netconf-client-server], is designed to support any
 number of possible transports. RESTCONF only supports the TLS
 transport currently, thus this model only supports the TLS transport.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the RESTCONF client supports.

2.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-restconf-client" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "restconf-client-grouping" that the container is using.

 [Note: '\' line wrapping for formatting only]

module: ietf‑restconf‑client
 +‑‑rw restconf‑client
 +‑‑rw initiate! {initiate}?
 | +‑‑rw restconf‑server* [name]
 | +‑‑rw name string
 | +‑‑rw endpoints
 | +‑‑rw endpoint* [name]
 | +‑‑rw name string
 | +‑‑rw (transport)
 | | +‑‑:(tls) {tls‑initiate}?
 | | +‑‑rw tls
 | | +‑‑rw address inet:host
 | | +‑‑rw port? inet:port‑number
 | | +‑‑rw client‑identity
 | | | +‑‑rw (auth‑type)
 | | | +‑‑:(certificate)
 | | | +‑‑rw certificate
 | | | +‑‑rw (local‑or‑keystore)
 | | | +‑‑:(local)
 | | | | {local‑keys‑suppor\
ted}?
 | | | | +‑‑rw algorithm?
 | | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | | +‑‑rw public‑key?
 | | | | | binary
 | | | | +‑‑rw private‑key?
 | | | | | union
 | | | | +‑‑‑x generate‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref
 | | | | +‑‑‑x install‑hidden‑key
 | | | | | +‑‑‑w input
 | | | | | +‑‑‑w algorithm
 | | | | | | asymmetric\
‑key‑encryption‑algorithm‑ref

 | | | | | +‑‑‑w public‑key?
 | | | | | | binary
 | | | | | +‑‑‑w private‑key?
 | | | | | binary
 | | | | +‑‑rw cert?
 | | | | | end‑entity‑cert‑\
cms
 | | | | +‑‑‑n certificate‑expira\
tion
 | | | | +‑‑ expiration‑date
 | | | | yang:date‑and\
‑time
 | | | +‑‑:(keystore)
 | | | {keystore‑supporte\
d}?
 | | | +‑‑rw reference?
 | | | ks:asymmetric‑ke\
y‑certificate‑ref
 | | +‑‑rw server‑auth
 | | | +‑‑rw pinned‑ca‑certs?
 | | | | ta:pinned‑certificates‑ref
 | | | | {ta:x509‑certificates}?
 | | | +‑‑rw pinned‑server‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw hello‑params
 | | {tls‑client‑hello‑params‑config}?
 | | +‑‑rw tls‑versions
 | | | +‑‑rw tls‑version* identityref
 | | +‑‑rw cipher‑suites
 | | +‑‑rw cipher‑suite* identityref
 | +‑‑rw connection‑type
 | | +‑‑rw (connection‑type)
 | | +‑‑:(persistent‑connection)
 | | | +‑‑rw persistent!
 | | | +‑‑rw keep‑alives
 | | | +‑‑rw max‑wait? uint16
 | | | +‑‑rw max‑attempts? uint8
 | | +‑‑:(periodic‑connection)
 | | +‑‑rw periodic!
 | | +‑‑rw period? uint16
 | | +‑‑rw anchor‑time? yang:date‑and‑time
 | | +‑‑rw idle‑timeout? uint16
 | +‑‑rw reconnect‑strategy
 | +‑‑rw start‑with? enumeration
 | +‑‑rw max‑attempts? uint8
 +‑‑rw listen! {listen}?
 +‑‑rw idle‑timeout? uint16

 +‑‑rw endpoint* [name]
 +‑‑rw name string
 +‑‑rw (transport)
 +‑‑:(tls) {tls‑listen}?
 +‑‑rw tls
 +‑‑rw address? inet:ip‑address
 +‑‑rw port? inet:port‑number
 +‑‑rw client‑identity
 | +‑‑rw (auth‑type)
 | +‑‑:(certificate)
 | +‑‑rw certificate
 | +‑‑rw (local‑or‑keystore)
 | +‑‑:(local) {local‑keys‑supported\
}?
 | | +‑‑rw algorithm?
 | | | asymmetric‑key‑encrypt\
ion‑algorithm‑ref
 | | +‑‑rw public‑key?
 | | | binary
 | | +‑‑rw private‑key?
 | | | union
 | | +‑‑‑x generate‑hidden‑key
 | | | +‑‑‑w input
 | | | +‑‑‑w algorithm
 | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | +‑‑‑x install‑hidden‑key
 | | | +‑‑‑w input
 | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑e\
ncryption‑algorithm‑ref
 | | | +‑‑‑w public‑key? bin\
ary
 | | | +‑‑‑w private‑key? bin\
ary
 | | +‑‑rw cert?
 | | | end‑entity‑cert‑cms
 | | +‑‑‑n certificate‑expiration
 | | +‑‑ expiration‑date
 | | yang:date‑and‑time
 | +‑‑:(keystore) {keystore‑supporte\
d}?
 | +‑‑rw reference?
 | ks:asymmetric‑key‑cert\
ificate‑ref
 +‑‑rw server‑auth
 | +‑‑rw pinned‑ca‑certs?
 | | ta:pinned‑certificates‑ref

 | | {ta:x509‑certificates}?
 | +‑‑rw pinned‑server‑certs?
 | ta:pinned‑certificates‑ref
 | {ta:x509‑certificates}?
 +‑‑rw hello‑params
 {tls‑client‑hello‑params‑config}?
 +‑‑rw tls‑versions
 | +‑‑rw tls‑version* identityref
 +‑‑rw cipher‑suites
 +‑‑rw cipher‑suite* identityref

2.2. Example Usage

 The following example illustrates configuring a RESTCONF client to
 initiate connections, as well as listening for call-home connections.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: '\' line wrapping for formatting only]

 <restconf-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-client">

 <!‑‑ RESTCONF servers to initiate connections to ‑‑>
 <initiate>
 <restconf‑server>
 <name>corp‑fw1</name>
 <endpoints>
 <endpoint>
 <name>corp‑fw1.example.com</name>
 <tls>
 <address>corp‑fw1.example.com</address>
 <client‑identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
f‑crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </client‑identity>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</\
pinned‑server‑certs>

 </server‑auth>
 </tls>
 <connection‑type>
 <persistent/>
 </connection‑type>
 </endpoint>
 <endpoint>
 <name>corp‑fw2.example.com</name>
 <tls>
 <address>corp‑fw2.example.com</address>
 <client‑identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
f‑crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </client‑identity>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</\
pinned‑server‑certs>
 </server‑auth>
 </tls>
 <connection‑type>
 <persistent/>
 </connection‑type>
 </endpoint>
 </endpoints>
 </restconf‑server>
 </initiate>

 <!‑‑ endpoints to listen for RESTCONF Call Home connections on ‑‑>
 <listen>
 <endpoint>
 <name>Intranet‑facing listener</name>
 <tls>
 <address>11.22.33.44</address>
 <client‑identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑cr\
ypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </certificate>

 </client‑identity>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</pinne\
d‑ca‑certs>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</pinn\
ed‑server‑certs>
 </server‑auth>
 </tls>
 </endpoint>
 </listen>
</restconf‑client>

2.3. YANG Module

 This YANG module has normative references to [RFC6991], [RFC8040],
 and [RFC8071], and [I-D.ietf-netconf-tls-client-server].

<CODE BEGINS> file "ietf‑restconf‑client@2018‑10‑22.yang"
module ietf‑restconf‑client {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-client";
 prefix "rcc";

import ietf‑yang‑types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑inet‑types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑tls‑client {
 prefix ts;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/restconf/>

 WG List: <mailto:restconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

 "This module contains a collection of YANG definitions for
 configuring RESTCONF clients.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: RESTCONF Client and Server Models";
}

 // Features

 feature initiate {
 description
 "The 'initiate' feature indicates that the RESTCONF client
 supports initiating RESTCONF connections to RESTCONF servers
 using at least one transport (e.g., TLS, etc.).";
 }

 feature tls‑initiate {
 if‑feature initiate;
 description
 "The 'tls‑initiate' feature indicates that the RESTCONF client
 supports initiating TLS connections to RESTCONF servers. This
 feature exists as TLS might not be a mandatory to implement

 transport in the future.";
 reference
 "RFC 8040: RESTCONF Protocol";
 }

 feature listen {
 description
 "The 'listen' feature indicates that the RESTCONF client
 supports opening a port to accept RESTCONF server call
 home connections using at least one transport (e.g.,
 TLS, etc.).";
 }

 feature tls‑listen {
 if‑feature listen;
 description
 "The 'tls‑listen' feature indicates that the RESTCONF client
 supports opening a port to listen for incoming RESTCONF
 server call‑home TLS connections. This feature exists as
 TLS might not be a mandatory to implement transport in the
 future.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 container restconf‑client {
 uses restconf‑client‑grouping;
 description
 "Top‑level container for RESTCONF client configuration.";
 }

 grouping restconf‑client‑grouping {
 description
 "Top‑level grouping for RESTCONF client configuration.";

 container initiate {
 if‑feature initiate;
 presence "Enables client to initiate TCP connections";
 description
 "Configures client initiating underlying TCP connections.";
 list restconf‑server {
 key name;
 min‑elements 1;
 description
 "List of RESTCONF servers the RESTCONF client is to
 initiate connections to in parallel.";
 leaf name {
 type string;

 description
 "An arbitrary name for the RESTCONF server.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min‑elements 1;
 ordered‑by user;
 description
 "A non‑empty user‑ordered list of endpoints for this
 RESTCONF client to try to connect to in sequence.
 Defining more than one enables high‑availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 'choice' statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if‑feature tls‑initiate;
 container tls {
 description
 "Specifies TLS‑specific transport
 configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the the DNS resolution results
 in multiple IP addresses, the IP addresses
 will be tried according to local preference
 order until a connection has been established
 or until all IP addresses have failed.";
 }
 leaf port {
 type inet:port‑number;
 default 443;
 description

 "The IP port for this endpoint. The RESTCONF
 client will use the IANA‑assigned well‑known
 port for 'https' (443) if no value is
 specified.";
 }
 uses ts:tls‑client‑grouping {
 refine "client‑identity/auth‑type" {
 mandatory true;
 description
 "RESTCONF clients MUST pass some
 authentication credentials.";
 }
 }
 }
 } // end tls
 } // end transport
 container connection‑type {
 description
 "Indicates the kind of connection to use.";
 choice connection‑type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent‑connection {
 container persistent {
 presence
 "Indicates that a persistent connection is
 to be maintained.";
 description
 "Maintain a persistent connection to the
 RESTCONF server. If the connection goes down,
 immediately start trying to reconnect to it,
 using the reconnection strategy. This
 connection type minimizes any RESTCONF server
 to RESTCONF client data‑transfer delay, albeit
 at the expense of holding resources longer.";
 container keep‑alives {
 description
 "Configures the keep‑alive policy, to
 proactively test the aliveness of the TLS
 server. An unresponsive TLS server will
 be dropped after approximately max‑attempts
 * max‑wait seconds.";
 leaf max‑wait {
 type uint16 {
 range "1..max";
 }
 units seconds;

 default 30;
 description
 "Sets the amount of time in seconds after
 which if no data has been received from
 the TLS server, a TLS‑level message will
 be sent to test the aliveness of the TLS
 server.";
 }
 leaf max‑attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential
 keep‑alive messages that can fail to
 obtain a response from the TLS server
 before assuming the TLS server is no
 longer alive.";
 }
 }
 }
 }
 case periodic‑connection {
 container periodic {
 presence
 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the NETCONF server.
 The RESTCONF server should close the underlying
 TLS connection upon completing planned
 activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 RESTCONF server to RESTCONF client
 interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic
 connections.";
 }
 leaf anchor‑time {
 type yang:date‑and‑time {
 // constrained to minute‑level granularity
 pattern '\d{4}‑\d{2}‑\d{2}T\d{2}:\d{2}'

 + '(Z|[\+\‑]\d{2}:\d{2})';
 }
 description
 "Designates a timestamp before or after which
 a series of periodic connections are
 determined. The periodic connections occur
 at a whole multiple interval from the anchor
 time. For example, for an anchor time is 15
 minutes past midnight and a period interval
 of 24 hours, then a periodic connection will
 occur 15 minutes past midnight everyday.";
 }
 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds
 that the underlying TLS session may remain
 idle. A TLS session will be dropped if it
 is idle for an interval longer than this
 number of seconds If set to zero, then the
 RESTCONF client will never drop a session
 because it is idle.";
 }
 }
 } // end periodic‑connection
 } // end connection‑type
 } // end connection‑type
 container reconnect‑strategy {
 description
 "The reconnection strategy directs how a RESTCONF
 client reconnects to a RESTCONF server, after
 discovering its connection to the server has
 dropped, even if due to a reboot. The RESTCONF
 client starts with the specified endpoint and
 tries to connect to it max‑attempts times before
 trying the next endpoint in the list (round
 robin).";
 leaf start‑with {
 type enumeration {
 enum first‑listed {
 description
 "Indicates that reconnections should start
 with the first endpoint listed.";
 }
 enum last‑connected {
 description

 "Indicates that reconnections should start
 with the endpoint last connected to. If
 no previous connection has ever been
 established, then the first endpoint
 configured is used. RESTCONF clients
 SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 enum random‑selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first‑listed;
 description
 "Specifies which of the RESTCONF server's
 endpoints the RESTCONF client should start
 with when trying to connect to the RESTCONF
 server.";
 }
 leaf max‑attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the RESTCONF client
 tries to connect to a specific endpoint before
 moving on to the next endpoint in the list
 (round robin).";
 }
 } // end reconnect‑strategy
 } // end endpoint
 } // end endpoints
 } // end restconf‑server
 } // end initiate

 container listen {
 if‑feature listen;
 presence "Enables client to accept call‑home connections";
 description
 "Configures client accepting call‑home TCP connections.";

 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour

 description
 "Specifies the maximum number of seconds that an
 underlying TLS session may remain idle. A TLS session
 will be dropped if it is idle for an interval longer
 than this number of seconds. If set to zero, then
 the server will never drop a session because it is
 idle. Sessions that have a notification subscription
 active are never dropped.";
 }

 list endpoint {
 key name;
 min‑elements 1;
 description
 "List of endpoints to listen for RESTCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the RESTCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 'choice' statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if‑feature tls‑listen;
 container tls {
 description
 "TLS‑specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip‑address;
 description
 "The IP address to listen on for incoming call‑
 home connections. The RESTCONF client will
 listen on all configured interfaces if no
 value is specified. INADDR_ANY (0.0.0.0) or
 INADDR6_ANY (0:0:0:0:0:0:0:0 a.k.a. ::) MUST
 be used when the server is to listen on all
 IPv4 or IPv6 addresses, respectively.";
 }
 leaf port {
 type inet:port‑number;
 default 4336;
 description
 "The port number to listen on for call‑home

 connections. The RESTCONF client will listen
 on the IANA‑assigned well‑known port for
 'restconf‑ch‑tls' (4336) if no value is
 specified.";
 }
 uses ts:tls‑client‑grouping {
 refine "client‑identity/auth‑type" {
 mandatory true;
 description
 "RESTCONF clients MUST pass some authentication
 credentials.";
 }
 }
 }
 }
 } // end transport
 } // end endpoint
 } // end listen
 } // end restconf‑client
}
<CODE ENDS>

3. The RESTCONF Server Model

 The RESTCONF server model presented in this section supports servers
 both listening for connections as well as initiating call-home
 connections.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the RESTCONF server supports.

3.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-restconf-server" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "restconf-server-grouping" that the container is using.

 [Note: '\' line wrapping for formatting only]

module: ietf‑restconf‑server
 +‑‑rw restconf‑server
 +‑‑rw listen! {listen}?
 | +‑‑rw endpoint* [name]

 | +‑‑rw name string
 | +‑‑rw (transport)
 | +‑‑:(tls) {tls‑listen}?
 | +‑‑rw tls
 | +‑‑rw address? inet:ip‑address
 | +‑‑rw port? inet:port‑number
 | +‑‑rw server‑identity
 | | +‑‑rw (local‑or‑keystore)
 | | +‑‑:(local) {local‑keys‑supported}?
 | | | +‑‑rw algorithm?
 | | | | asymmetric‑key‑encryption‑algor\
ithm‑ref
 | | | +‑‑rw public‑key? binary
 | | | +‑‑rw private‑key? union
 | | | +‑‑‑x generate‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑encryption\
‑algorithm‑ref
 | | | +‑‑‑x install‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑encryption\
‑algorithm‑ref
 | | | | +‑‑‑w public‑key? binary
 | | | | +‑‑‑w private‑key? binary
 | | | +‑‑rw cert?
 | | | | end‑entity‑cert‑cms
 | | | +‑‑‑n certificate‑expiration
 | | | +‑‑ expiration‑date
 | | | yang:date‑and‑time
 | | +‑‑:(keystore) {keystore‑supported}?
 | | +‑‑rw reference?
 | | ks:asymmetric‑key‑certificate‑r\
ef
 | +‑‑rw client‑auth
 | | +‑‑rw pinned‑ca‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw pinned‑client‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw cert‑maps
 | | +‑‑rw cert‑to‑name* [id]
 | | +‑‑rw id uint32
 | | +‑‑rw fingerprint
 | | | x509c2n:tls‑fingerprint
 | | +‑‑rw map‑type identityref

 | | +‑‑rw name string
 | +‑‑rw hello‑params
 | {tls‑server‑hello‑params‑config}?
 | +‑‑rw tls‑versions
 | | +‑‑rw tls‑version* identityref
 | +‑‑rw cipher‑suites
 | +‑‑rw cipher‑suite* identityref
 +‑‑rw call‑home! {call‑home}?
 +‑‑rw restconf‑client* [name]
 +‑‑rw name string
 +‑‑rw endpoints
 | +‑‑rw endpoint* [name]
 | +‑‑rw name string
 | +‑‑rw (transport)
 | +‑‑:(tls) {tls‑call‑home}?
 | +‑‑rw tls
 | +‑‑rw address inet:host
 | +‑‑rw port? inet:port‑number
 | +‑‑rw server‑identity
 | | +‑‑rw (local‑or‑keystore)
 | | +‑‑:(local) {local‑keys‑supported}?
 | | | +‑‑rw algorithm?
 | | | | asymmetric‑key‑encryption\
‑algorithm‑ref
 | | | +‑‑rw public‑key?
 | | | | binary
 | | | +‑‑rw private‑key?
 | | | | union
 | | | +‑‑‑x generate‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | asymmetric‑key‑encr\
yption‑algorithm‑ref
 | | | +‑‑‑x install‑hidden‑key
 | | | | +‑‑‑w input
 | | | | +‑‑‑w algorithm
 | | | | | asymmetric‑key‑encr\
yption‑algorithm‑ref
 | | | | +‑‑‑w public‑key? binary
 | | | | +‑‑‑w private‑key? binary
 | | | +‑‑rw cert?
 | | | | end‑entity‑cert‑cms
 | | | +‑‑‑n certificate‑expiration
 | | | +‑‑ expiration‑date
 | | | yang:date‑and‑time
 | | +‑‑:(keystore) {keystore‑supported}?
 | | +‑‑rw reference?
 | | ks:asymmetric‑key‑certifi\

cate‑ref
 | +‑‑rw client‑auth
 | | +‑‑rw pinned‑ca‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw pinned‑client‑certs?
 | | | ta:pinned‑certificates‑ref
 | | | {ta:x509‑certificates}?
 | | +‑‑rw cert‑maps
 | | +‑‑rw cert‑to‑name* [id]
 | | +‑‑rw id uint32
 | | +‑‑rw fingerprint
 | | | x509c2n:tls‑fingerprint
 | | +‑‑rw map‑type identityref
 | | +‑‑rw name string
 | +‑‑rw hello‑params
 | {tls‑server‑hello‑params‑config}?
 | +‑‑rw tls‑versions
 | | +‑‑rw tls‑version* identityref
 | +‑‑rw cipher‑suites
 | +‑‑rw cipher‑suite* identityref
 +‑‑rw connection‑type
 | +‑‑rw (connection‑type)
 | +‑‑:(persistent‑connection)
 | | +‑‑rw persistent!
 | | +‑‑rw keep‑alives
 | | +‑‑rw max‑wait? uint16
 | | +‑‑rw max‑attempts? uint8
 | +‑‑:(periodic‑connection)
 | +‑‑rw periodic!
 | +‑‑rw period? uint16
 | +‑‑rw anchor‑time? yang:date‑and‑time
 | +‑‑rw idle‑timeout? uint16
 +‑‑rw reconnect‑strategy
 +‑‑rw start‑with? enumeration
 +‑‑rw max‑attempts? uint8

3.2. Example Usage

 The following example illustrates configuring a RESTCONF server to
 listen for RESTCONF client connections, as well as configuring call-
 home to one RESTCONF client.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: '\' line wrapping for formatting only]

 <restconf-server

 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-server"
 xmlns:x509c2n="urn:ietf:params:xml:ns:yang:ietf-x509-cert-to-name">

 <!‑‑ endpoints to listen for RESTCONF connections on ‑‑>
 <listen>
 <endpoint>
 <name>netconf/tls</name>
 <tls>
 <address>11.22.33.44</address>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑cryp\
to‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinne\
d‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinn\
ed‑client‑certs>
 <cert‑maps>
 <cert‑to‑name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map‑type>x509c2n:san‑any</map‑type>
 </cert‑to‑name>
 <cert‑to‑name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map‑type>x509c2n:specified</map‑type>
 <name>scooby‑doo</name>
 </cert‑to‑name>
 </cert‑maps>
 </client‑auth>
 </tls>
 </endpoint>
 </listen>

 <!‑‑ call home to a RESTCONF client with two endpoints ‑‑>
 <call‑home>
 <restconf‑client>
 <name>config‑manager</name>
 <endpoints>
 <endpoint>
 <name>east‑data‑center</name>
 <tls>

 <address>22.33.44.55</address>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑\
crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</\
pinned‑client‑certs>
 <cert‑maps>
 <cert‑to‑name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map‑type>x509c2n:san‑any</map‑type>
 </cert‑to‑name>
 <cert‑to‑name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map‑type>x509c2n:specified</map‑type>
 <name>scooby‑doo</name>
 </cert‑to‑name>
 </cert‑maps>
 </client‑auth>
 </tls>
 </endpoint>
 <endpoint>
 <name>west‑data‑center</name>
 <tls>
 <address>33.44.55.66</address>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑\
crypto‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</p\
inned‑ca‑certs>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</\
pinned‑client‑certs>
 <cert‑maps>
 <cert‑to‑name>
 <id>1</id>

 <fingerprint>11:0A:05:11:00</fingerprint>
 <map‑type>x509c2n:san‑any</map‑type>
 </cert‑to‑name>
 <cert‑to‑name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map‑type>x509c2n:specified</map‑type>
 <name>scooby‑doo</name>
 </cert‑to‑name>
 </cert‑maps>
 </client‑auth>
 </tls>
 </endpoint>
 </endpoints>
 <connection‑type>
 <periodic>
 <idle‑timeout>300</idle‑timeout>
 <period>60</period>
 </periodic>
 </connection‑type>
 <reconnect‑strategy>
 <start‑with>last‑connected</start‑with>
 <max‑attempts>3</max‑attempts>
 </reconnect‑strategy>
 </restconf‑client>
 </call‑home>
</restconf‑server>

3.3. YANG Module

 This YANG module has normative references to [RFC6991], [RFC7407],
 [RFC8040], [RFC8071], and [I-D.ietf-netconf-tls-client-server].

<CODE BEGINS> file "ietf‑restconf‑server@2018‑10‑22.yang"
module ietf‑restconf‑server {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-server";
 prefix "rcs";

import ietf‑yang‑types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}

 import ietf-inet-types {

 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
}

import ietf‑x509‑cert‑to‑name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
}

import ietf‑tls‑server {
 prefix ts;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs‑university.de>";

 description

 "This module contains a collection of YANG definitions for
 configuring RESTCONF servers.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: RESTCONF Client and Server Models";
}

 // Features

feature listen {
 description
 "The 'listen' feature indicates that the RESTCONF server
 supports opening a port to accept RESTCONF client connections
 using at least one transport (e.g., TLS, etc.).";
}

feature tls‑listen {
 if‑feature listen;
 description
 "The 'tls‑listen' feature indicates that the RESTCONF server
 supports opening a port to listen for incoming RESTCONF
 client connections. This feature exists as TLS might not
 be a mandatory to implement transport in the future.";
 reference
 "RFC 8040: RESTCONF Protocol";
}

feature call‑home {
 description
 "The 'call‑home' feature indicates that the RESTCONF
 server supports initiating RESTCONF call home connections
 to RESTCONF clients using at least one transport (e.g.,
 TLS, etc.).";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

feature tls‑call‑home {
 if‑feature call‑home;
 description
 "The 'tls‑call‑home' feature indicates that the RESTCONF
 server supports initiating connections to RESTCONF clients.
 This feature exists as TLS might not be a mandatory to
 implement transport in the future.";

 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
}

container restconf‑server {
 uses restconf‑server‑grouping;
 description
 "Top‑level container for RESTCONF server configuration.";
}

grouping restconf‑server‑grouping {
 description
 "Top‑level grouping for RESTCONF server configuration.";

 container listen {
 if‑feature listen;
 presence "Enables server to listen for TCP connections";
 description "Configures listen behavior";
 list endpoint {
 key name;
 min‑elements 1;
 description
 "List of endpoints to listen for RESTCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the RESTCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 'choice' statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if‑feature tls‑listen;
 container tls {
 description
 "TLS‑specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip‑address;
 description
 "The IP address to listen on for incoming
 connections. The RESTCONF server will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when

 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port‑number;
 default 443;
 description
 "The local port number to listen on. If no value
 is specified, the IANA‑assigned port value for
 'https' (443) is used.";
 }
 uses ts:tls‑server‑grouping {
 refine "client‑auth" {
 must 'pinned‑ca‑certs or pinned‑client‑certs';
 description
 "RESTCONF servers MUST be able to validate
 clients.";
 }
 augment "client‑auth" {
 description
 "Augments in the cert‑to‑name structure,
 so the RESTCONF server can map TLS‑layer
 client certificates to RESTCONF usernames.";
 container cert‑maps {
 uses x509c2n:cert‑to‑name;
 description
 "The cert‑maps container is used by a TLS‑
 based RESTCONF server to map the RESTCONF
 client's presented X.509 certificate to
 a RESTCONF username. If no matching and
 valid cert‑to‑name list entry can be found,
 then the RESTCONF server MUST close the
 connection, and MUST NOT accept RESTCONF
 messages over it.";
 reference
 "RFC 7407: A YANG Data Model for SNMP
 Configuration.";
 }
 }
 }
 } // end tls container
 } // end tls case
 } // end transport
 } // end endpoint
 } // end listen

 container call-home {

 if-feature call-home;

 presence "Enables server to initiate TCP connections";
 description "Configures call‑home behavior";
 list restconf‑client {
 key name;
 min‑elements 1;
 description
 "List of RESTCONF clients the RESTCONF server is to
 initiate call‑home connections to in parallel.";
 leaf name {
 type string;
 description
 "An arbitrary name for the remote RESTCONF client.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min‑elements 1;
 ordered‑by user;
 description
 "User‑ordered list of endpoints for this RESTCONF
 client. Defining more than one enables high‑
 availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 'choice' statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if‑feature tls‑call‑home;
 container tls {
 description
 "Specifies TLS‑specific call‑home transport
 configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage

 attempt. If the DNS resolution results in
 multiple IP addresses, the IP addresses will
 be tried according to local preference order
 until a connection has been established or
 until all IP addresses have failed.";
 }
 leaf port {
 type inet:port‑number;
 default 4336;
 description
 "The IP port for this endpoint. The RESTCONF
 server will use the IANA‑assigned well‑known
 port for 'restconf‑ch‑tls' (4336) if no value
 is specified.";
 }
 uses ts:tls‑server‑grouping {
 refine "client‑auth" {
 must 'pinned‑ca‑certs or pinned‑client‑certs';
 description
 "RESTCONF servers MUST be able to validate
 clients.";
 }
 augment "client‑auth" {
 description
 "Augments in the cert‑to‑name structure,
 so the RESTCONF server can map TLS‑layer
 client certificates to RESTCONF usernames.";
 container cert‑maps {
 uses x509c2n:cert‑to‑name;
 description
 "The cert‑maps container is used by a
 TLS‑based RESTCONF server to map the
 RESTCONF client's presented X.509
 certificate to a RESTCONF username. If
 no matching and valid cert‑to‑name list
 entry can be found, then the RESTCONF
 server MUST close the connection, and
 MUST NOT accept RESTCONF messages over
 it.";
 reference
 "RFC 7407: A YANG Data Model for SNMP
 Configuration.";
 }
 }
 }
 }
 }
 } // end transport

 } // end endpoint
 } // end endpoints
 container connection‑type {
 description
 "Indicates the RESTCONF client's preference for how the
 RESTCONF server's connection is maintained.";
 choice connection‑type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent‑connection {
 container persistent {
 presence
 "Indicates that a persistent connection is to be
 maintained.";
 description
 "Maintain a persistent connection to the RESTCONF
 client. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any RESTCONF
 client to RESTCONF server data‑transfer delay,
 albeit at the expense of holding resources
 longer.";
 container keep‑alives {
 description
 "Configures the keep‑alive policy, to
 proactively test the aliveness of the TLS
 client. An unresponsive TLS client will
 be dropped after approximately (max‑attempts
 * max‑wait) seconds.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF
 Call Home, Section 4.1, item S7";
 leaf max‑wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;
 description
 "Sets the amount of time in seconds after
 which if no data has been received from
 the TLS client, a TLS‑level message will
 be sent to test the aliveness of the TLS
 client.";
 }

 leaf max‑attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep‑
 alive messages that can fail to obtain a
 response from the TLS client before assuming
 the TLS client is no longer alive.";
 }
 }
 }
 }
 case periodic‑connection {
 container periodic {
 presence
 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the RESTCONF client. The
 RESTCONF client should close the underlying TLS
 connection upon completing planned activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 RESTCONF client to RESTCONF client interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic connections.";
 }
 leaf anchor‑time {
 type yang:date‑and‑time {
 // constrained to minute‑level granularity
 pattern '\d{4}‑\d{2}‑\d{2}T\d{2}:\d{2}'
 + '(Z|[\+\‑]\d{2}:\d{2})';
 }
 description
 "Designates a timestamp before or after which a
 series of periodic connections are determined.
 The periodic connections occur at a whole
 multiple interval from the anchor time. For
 example, for an anchor time is 15 minutes past
 midnight and a period interval of 24 hours, then
 a periodic connection will occur 15 minutes past
 midnight everyday.";
 }

 leaf idle‑timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds that
 the underlying TLS session may remain idle.
 A TLS session will be dropped if it is idle
 for an interval longer than this number of
 seconds. If set to zero, then the server
 will never drop a session because it is idle.";
 }
 }
 }
 }
 }
 container reconnect‑strategy {
 description
 "The reconnection strategy directs how a RESTCONF server
 reconnects to a RESTCONF client after discovering its
 connection to the client has dropped, even if due to a
 reboot. The RESTCONF server starts with the specified
 endpoint and tries to connect to it max‑attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start‑with {
 type enumeration {
 enum first‑listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last‑connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. RESTCONF
 servers SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 enum random‑selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first‑listed;

 description
 "Specifies which of the RESTCONF client's endpoints
 the RESTCONF server should start with when trying
 to connect to the RESTCONF client.";
 }
 leaf max‑attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the RESTCONF server tries
 to connect to a specific endpoint before moving on to
 the next endpoint in the list (round robin).";
 }
 }
 }
 }
 }
}
<CODE ENDS>

4. Security Considerations

 The YANG module defined in this document uses a grouping defined in
 [I-D.ietf-netconf-tls-client-server]. Please see the Security
 Considerations section in that document for concerns related that
 grouping.

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data trees defined by the modules defined in this

 draft are sensitive to write operations. For instance, the
 addition or removal of references to keys, certificates,
 trusted anchors, etc., can dramatically alter the implemented
 security policy. However, no NACM annotations are applied as
 the data SHOULD be editable by users other than a designated
 'recovery session'.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 NONE

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers two URIs in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑restconf‑client
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑restconf‑server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

name: ietf‑restconf‑client
namespace: urn:ietf:params:xml:ns:yang:ietf‑restconf‑client
prefix: ncc
reference: RFC XXXX

name: ietf‑restconf‑server
namespace: urn:ietf:params:xml:ns:yang:ietf‑restconf‑server
prefix: ncs
reference: RFC XXXX

6. References

6.1. Normative References

 [I-D.ietf-netconf-keystore]

 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-tls-client-server]

 Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and
 TLS Servers", draft-ietf-netconf-tls-client-server-07
 (work in progress), September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7407]
 Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <https://www.rfc-editor.org/info/rfc7407>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [I-D.ietf-netconf-netconf-client-server]

 Watsen, K., "NETCONF Client and Server Models", draft-
 ietf-netconf-netconf-client-server-07 (work in progress),
 September 2018.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Change Log

A.1. 00 to 01

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Filled in previously missing 'ietf-restconf-client' module.

 o Updated the ietf-restconf-server module to accomodate new grouping
 'ietf-tls-server-grouping'.

A.3. 02 to 03

 o Refined use of tls-client-grouping to add a must statement
 indicating that the TLS client must specify a client-certificate.

 o Changed restconf-client??? to be a grouping (not a container).

A.4. 03 to 04

 o Added RFC 8174 to Requirements Language Section.

 o Replaced refine statement in ietf-restconf-client to add a
 mandatory true.

 o Added refine statement in ietf-restconf-server to add a must
 statement.

 o Now there are containers and groupings, for both the client and
 server models.

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated examples to inline key and certificates (no longer a
 leafref to keystore)

A.5. 04 to 05

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated examples to inline key and certificates (no longer a
 leafref to keystore)

A.6. 05 to 06

 o Fixed change log missing section issue.

 o Updated examples to match latest updates to the crypto-types,
 trust-anchors, and keystore drafts.

 o Reduced line length of the YANG modules to fit within 69 columns.

A.7. 06 to 07

 o removed "idle-timeout" from "persistent" connection config.

 o Added "random-selection" for reconnection-strategy's "starts-with"
 enum.

 o Replaced "connection-type" choice default (persistent) with
 "mandatory true".

 o Reduced the periodic-connection's "idle-timeout" from 5 to 2
 minutes.

 o Replaced reconnect-timeout with period/anchor-time combo.

A.8. 07 to 08

 o Modified examples to be compatible with new crypto-types algs

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, and Bert Wijnen.

Author's Address

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

draft-ietf-netconf-restconf-notif-12 - Dynamic subscription to YANG Events and D

Index
Back 5
Prev
Next
Forward 5

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: July 15, 2019

E. Voit

R. Rahman

E. Nilsen-Nygaard

Cisco Systems

A. Clemm

Huawei

A. Bierman

YumaWorks

January 11, 2019

Dynamic subscription to YANG Events and Datastores over RESTCONF

draft-ietf-netconf-restconf-notif-12

Abstract

 This document provides a RESTCONF binding to the dynamic subscription
 capability of both subscribed notifications and YANG-Push.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 15, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. Dynamic Subscriptions
	 3.1. Transport Connectivity

	 3.2. Discovery

	 3.3. RESTCONF RPCs and HTTP Status Codes

	 3.4. Call Flow for Server-Sent Events (SSE)

	4. QoS Treatment

	5. Notification Messages

	6. YANG Tree

	7. YANG module

	8. IANA Considerations

	9. Security Considerations

	10. Acknowledgments

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Examples
	 A.1. Dynamic Subscriptions
	 A.1.1. Establishing Dynamic Subscriptions

	 A.1.2. Modifying Dynamic Subscriptions

	 A.1.3. Deleting Dynamic Subscriptions

	 A.2. Subscription State Notifications
	 A.2.1. subscription-modified

	 A.2.2. subscription-completed, subscription-resumed, and replay-complete

	 A.2.3. subscription-terminated and subscription-suspended

	 A.3. Filter Example

	Appendix B. Changes between revisions

	Authors' Addresses

1. Introduction

 Mechanisms to support event subscription and push are defined in
 [I-D.draft-ietf-netconf-subscribed-notifications]. Enhancements to
 [I-D.draft-ietf-netconf-subscribed-notifications] which enable YANG
 datastore subscription and push are defined in
 [I-D.ietf-netconf-yang-push]. This document provides a transport
 specification for dynamic subscriptions over RESTCONF [RFC8040].
 Driving these requirements is [RFC7923].

 The streaming of notifications encapsulating the resulting
 information push is done via the mechanism described in section 6.3
 of [RFC8040].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms use the definitions from
 [I-D.draft-ietf-netconf-subscribed-notifications]: dynamic
 subscription, event stream, notification message, publisher,
 receiver, subscriber, and subscription.

 Other terms reused include datastore, which is defined in [RFC8342],
 and HTTP2 stream which maps to the definition of "stream" within
 [RFC7540], Section 2.

 [note to the RFC Editor - please replace XXXX within this document
 with the number of this document]

3. Dynamic Subscriptions

 This section provides specifics on how to establish and maintain
 dynamic subscriptions over RESTCONF [RFC8040]. Subscribing to event
 streams is accomplished in this way via RPCs defined within
 [I-D.draft-ietf-netconf-subscribed-notifications] Section 2.4, the
 RPCs are done via RESTCONF POSTs. YANG datastore subscription is
 accomplished via augmentations to
 [I-D.draft-ietf-netconf-subscribed-notifications] as described within
 [I-D.ietf-netconf-yang-push] Section 4.4.

 As described in [RFC8040] Section 6.3, a GET needs to be made against
 a specific URI on the publisher. Subscribers cannot pre-determine
 the URI against which a subscription might exist on a publisher, as
 the URI will only exist after the "establish-subscription" RPC has
 been accepted. Therefore, the POST for the "establish-subscription"
 RPC replaces the GET request for the "location" leaf which is used in
 [RFC8040] to obtain the URI. The subscription URI will be determined
 and sent as part of the response to the "establish-subscription" RPC,
 and a subsequent GET to this URI will be done in order to start the
 flow of notification messages back to the subscriber. A subscription
 does not move to the active state as per Section 2.4.1. of
 [I-D.draft-ietf-netconf-subscribed-notifications] until the GET is
 received.

3.1. Transport Connectivity

 For a dynamic subscription, where a RESTCONF session doesn't already
 exist, a new RESTCONF session is initiated from the subscriber.

 As stated in Section 2.1 of [RFC8040], a subscriber MUST establish
 the HTTP session over TLS [RFC5246] in order to secure the content in
 transit.

 Without the involvement of additional protocols, HTTP sessions by
 themselves do not allow for a quick recognition of when the
 communication path has been lost with the publisher. Where quick
 recognition of the loss of a publisher is required, a subscriber
 SHOULD use a TLS heartbeat [RFC6520], just from receiver to
 publisher, to track HTTP session continuity.

 Loss of the heartbeat MUST result in any subscription related TCP
 sessions between those endpoints being torn down. A subscriber can
 then attempt to re-establish the dynamic subscription by using the
 procedure described in Section 3.

3.2. Discovery

 Subscribers can learn what event streams a RESTCONF server supports
 by querying the "streams" container of ietf-subscribed-
 notification.yang in
 [I-D.draft-ietf-netconf-subscribed-notifications]. Support for the
 "streams" container of ietf-restconf-monitoring.yang in [RFC8040] is
 not required. If it is supported, the event streams which are in the
 "streams" container of ietf-subscribed-notifications.yang SHOULD also
 be in the "streams" container of ietf-restconf-monitoring.yang.

 Subscribers can learn what datastores a RESTCONF server supports by
 following Section 2 of [I-D.draft-ietf-netconf-nmda-restconf].

3.3. RESTCONF RPCs and HTTP Status Codes

 Specific HTTP responses codes as defined in [RFC7231] section 6 will
 indicate the result of RESTCONF RPC requests with publisher. An HTTP
 status code of 200 is the proper response to any successful RPC
 defined within [I-D.draft-ietf-netconf-subscribed-notifications] or
 [I-D.ietf-netconf-yang-push].

 If a publisher fails to serve the RPC request for one of the reasons
 indicated in [I-D.draft-ietf-netconf-subscribed-notifications]
 Section 2.4.6 or [I-D.ietf-netconf-yang-push] Appendix A, this will
 be indicated by "406" status code transported in the HTTP response.
 When a "406" status code is returned, the RPC reply MUST include an
 "rpc-error" element per [RFC8040] Section 7.1 with the following
 parameter values:

 o an "error-type" node of "application".

 o an "error-tag" node of "operation-failed".

 o an "error-app-tag" node with the value being a string that
 corresponds to an identity associated with the error, as defined
 in [I-D.draft-ietf-netconf-subscribed-notifications] section 2.4.6
 for general subscriptions, and [I-D.ietf-netconf-yang-push]
 Appendix A.1, for datastore subscriptions. The tag to use depends
 on the RPC for which the error occurred. Viable errors for
 different RPCs are as follows:

RPC select an identity with a base
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
establish‑subscription establish‑subscription‑error
modify‑subscription modify‑subscription‑error
delete‑subscription delete‑subscription‑error
kill‑subscription delete‑subscription‑error
resync‑subscription resync‑subscription‑error

 Each error identity will be inserted as the "error-app-tag" using
 JSON encoding following the form <modulename>:<identityname>. An
 example of such as valid encoding would be "ietf-subscribed-
 notifications:no-such-subscription".

 In case of error responses to an "establish-subscription" or "modify-
 subscription" request there is the option of including an "error-
 info" node. This node may contain hints for parameter settings that
 might lead to successful RPC requests in the future. Following are
 the yang-data structures which may be returned:

establish‑subscription returns hints in yang‑data structure
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
target: event stream establish‑subscription‑stream‑error‑info
target: datastore establish‑subscription‑datastore‑error‑info

modify‑subscription returns hints in yang‑data structure
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
target: event stream modify‑subscription‑stream‑error‑info
target: datastore modify‑subscription‑datastore‑error‑info

 The yang-data included within "error-info" SHOULD NOT include the
 optional leaf "error-reason", as such a leaf would be redundant
 with information that is already placed within the
 "error-app-tag".

 In case of an rpc error as a result of a "delete-subscription", a
 "kill-subscription", or a "resync-subscription" request, no
 "error-info" needs to be included, as the "subscription-id" is
 the only RPC input parameter and no hints regarding this RPC input
 parameters need to be provided.

 Note that "error-path" [RFC8040] does not need to be included with
 the "rpc-error" element, as subscription errors are generally
 associated with the choice of RPC input parameters.

3.4. Call Flow for Server-Sent Events (SSE)

 The call flow is defined in Figure 1. The logical connections
 denoted by (a) and (b) can be a TCP connection or an HTTP2 stream
 (multiple HTTP2 streams can be carried in one TCP connection).
 Requests to [I-D.draft-ietf-netconf-subscribed-notifications] or
 [I-D.ietf-netconf-yang-push] augmented RPCs are sent on a connection
 indicated by (a). A successful "establish-subscription" will result
 in an RPC response returned with both a subscription identifier which
 uniquely identifies a subscription, as well as a URI which uniquely
 identifies the location of subscription on the publisher (b). This
 URI is defined via the "uri" leaf the Data Model in Section 7.

 An HTTP GET is then sent on a separate logical connection (b) to the
 URI on the publisher. This initiates the publisher to initiate the
 flow of notification messages which are sent in SSE [W3C-20150203] as
 a response to the GET.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Subscriber		Publisher
Logical		Logical
Connection		Connection
(a) (b)		(a) (b)
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RESTCONF POST (RPC:establish‑subscription) |
 |‑‑‑>|
 | HTTP 200 OK (ID,URI)|
 |<‑‑‑|
 | |HTTP GET (URI) | |
 | |‑‑‑>|
 | | HTTP 200 OK|
 | |<‑‑‑|
 | | SSE (notif‑message)|
 | |<‑‑‑|
 | RESTCONF POST (RPC:modify‑subscription) | |
 |‑‑‑>| |
 | | HTTP 200 OK| |
 |<‑‑‑| |
 | | SSE (subscription‑modified)|
 | |<‑‑(c)|
 | | SSE (notif‑message)|
 | |<‑‑‑|
 | RESTCONF POST (RPC:delete‑subscription) | |
 |‑‑‑>| |
 | | HTTP 200 OK| |
 |<‑‑‑| |
 | | | |
 | | | |
 (a) (b) (a) (b)

 Figure 1: Dynamic with server-sent events

 Additional requirements for dynamic subscriptions over SSE include:

 o All subscription state notifications from a publisher MUST be
 returned in a separate SSE message used by the subscription to
 which the state change refers.

 o Subscription RPCs MUST NOT use the connection currently providing
 notification messages for that subscription.

 o In addition to an RPC response for a "modify-subscription" RPC
 traveling over (a), a "subscription-modified" state change
 notification MUST be sent within (b). This allows the receiver to

 know exactly when the new terms of the subscription have been
 applied to the notification messages. See arrow (c).

 o In addition to any required access permissions (e.g., NACM), RPCs
 modify-subscription, resync-subscription and delete-subscription
 SHOULD only be allowed by the same RESTCONF username [RFC8040]
 which invoked establish-subscription.

 o The kill-subscription RPC can be invoked by any RESTCONF username
 with the required administrative permissions.

 A publisher MUST terminate a subscription in the following cases:

 o Receipt of a "delete-subscription" or a "kill-subscription" RPC
 for that subscription.

 o Loss of TLS heartbeat

 A publisher MAY terminate a subscription at any time as stated in
 [I-D.draft-ietf-netconf-subscribed-notifications] Section 1.3

4. QoS Treatment

 To meet subscription quality of service promises, the publisher MUST
 take any existing subscription "dscp" and apply it to the DSCP
 marking in the IP header.

 In addition, where HTTP2 transport is available to a notification
 message queued for transport to a receiver, the publisher MUST:

 o take any existing subscription "priority", as specified by the
 "weighting" leaf node in
 [I-D.draft-ietf-netconf-subscribed-notifications], and copy it
 into the HTTP2 stream weight, [RFC7540] section 5.3, and

 o take any existing subscription "dependency", as specified by the
 "dependency" leaf node in
 [I-D.draft-ietf-netconf-subscribed-notifications], and use the
 HTTP2 stream for the parent subscription as the HTTP2 stream
 dependency, [RFC7540] section 5.3.1, of the dependent
 subscription.

 o set the exclusive flag, [RFC7540] section 5.3.1, to 0.

5. Notification Messages

 Notification messages transported over RESTCONF will be encoded
 according to [RFC8040], section 6.4.

6. YANG Tree

 The YANG model defined in Section 7 has one leaf augmented into three
 places of [I-D.draft-ietf-netconf-subscribed-notifications].

module: ietf‑restconf‑subscribed‑notifications
 augment /sn:establish‑subscription/sn:output:
 +‑‑ro uri? inet:uri
 augment /sn:subscriptions/sn:subscription:
 +‑‑ro uri? inet:uri
 augment /sn:subscription‑modified:
 +‑‑ro uri? inet:uri

7. YANG module

 This module references
 [I-D.draft-ietf-netconf-subscribed-notifications].

<CODE BEGINS> file
 "ietf‑restconf‑subscribed‑notifications@2019‑01‑11.yang"
module ietf‑restconf‑subscribed‑notifications {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:" +
 "ietf‑restconf‑subscribed‑notifications";

 prefix rsn;

import ietf‑subscribed‑notifications {
 prefix sn;
}
import ietf‑inet‑types {
 prefix inet;
}

organization "IETF NETCONF (Network Configuration) Working Group";
contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Reshad Rahman
 <mailto:rrahman@cisco.com>";

description
 "Defines RESTCONF as a supported transport for subscribed
 event notifications.

 Copyright (c) 2019 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

revision 2019‑01‑11 {
 description
 "Initial version";
 reference
 "RFC XXXX: RESTCONF Transport for Event Notifications";
}

grouping uri {
 description
 "Provides a reusable description of a URI.";
 leaf uri {
 type inet:uri;
 config false;
 description
 "Location of a subscription specific URI on the publisher.";
 }
}

augment "/sn:establish‑subscription/sn:output" {
 description
 "This augmentation allows RESTCONF specific parameters for a
 response to a publisher's subscription request.";
 uses uri;
}

 augment "/sn:subscriptions/sn:subscription" {

 description
 "This augmentation allows RESTCONF specific parameters to be
 exposed for a subscription.";
 uses uri;
 }

 augment "/sn:subscription‑modified" {
 description
 "This augmentation allows RESTCONF specific parameters to be
 included as part of the notification that a subscription has been
 modified.";
 uses uri;
 }
}
<CODE ENDS>

8. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑restconf‑subscribed‑
notifications
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

Name: ietf‑restconf‑subscribed‑notifications
Namespace: urn:ietf:params:xml:ns:yang:ietf‑restconf‑subscribed‑
notifications
Prefix: rsn
Reference: RFC XXXX: RESTCONF Transport for Event Notifications

9. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management transports
 such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC5246].

 The one new data node introduced in this YANG module may be
 considered sensitive or vulnerable in some network environments. It
 is thus important to control read access (e.g., via get, get-config,
 or notification) to this data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Container: "/subscriptions"

 o "uri": leaf will show where subscribed resources might be located
 on a publisher. Access control must be set so that only someone
 with proper access permissions, and perhaps even HTTP session has
 the ability to access this resource.

 The subscription URI is implementation specific and is encrypted via
 the use of TLS. Therefore, even if an attacker succeeds in guessing
 the subscription URI, a RESTCONF username [RFC8040] with the required
 administrative permissions must be used to be able to access or
 modify that subscription.

10. Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from: Ambika Prasad Tripathy, Alberto
 Gonzalez Prieto, Susan Hares, Tim Jenkins, Balazs Lengyel, Kent
 Watsen, Michael Scharf, Guangying Zheng, Martin Bjorklund, Qin Wu and
 Robert Wilton.

11. References

11.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Custom Subscription to Event
 Streams", draft-ietf-netconf-subscribed-notifications-21
 (work in progress), January 2019.

 [I-D.ietf-netconf-yang-push]

 Clemm, A., Voit, E., Gonzalez Prieto, A., Prasad Tripathy,
 A., Nilsen-Nygaard, E., Bierman, A., and B. Lengyel,
 "Subscribing to YANG datastore push updates", draft-ietf-
 netconf-yang-push-20 (work in progress), October 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6520]
 Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <https://www.rfc-editor.org/info/rfc6520>.

 [RFC7540]
 Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [W3C-20150203]

 "Server-Sent Events, World Wide Web Consortium CR CR-
 eventsource-20121211", February 2015,
 <https://www.w3.org/TR/2015/REC-eventsource-20150203/>.

11.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]

 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Nilsen-Nygaard, E., and A. Tripathy, "NETCONF support for
 event notifications", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-netconf-event-notifications/>.

 [I-D.draft-ietf-netconf-nmda-restconf]

 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "RESTCONF Extensions to Support the Network
 Management Datastore Architecture", April 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-nmda-restconf/>.

 [RFC7231]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7923]
 Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8347]
 Liu, X., Ed., Kyparlis, A., Parikh, R., Lindem, A., and M.
 Zhang, "A YANG Data Model for the Virtual Router
 Redundancy Protocol (VRRP)", RFC 8347,
 DOI 10.17487/RFC8347, March 2018,
 <https://www.rfc-editor.org/info/rfc8347>.

 [XPATH]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Appendix A. Examples

 This section is non-normative. To allow easy comparison, this
 section mirrors the functional examples shown with NETCONF over XML
 within [I-D.draft-ietf-netconf-netconf-event-notifications]. In
 addition, HTTP2 vs HTTP1.1 headers are not shown as the contents of
 the JSON encoded objects are identical within.

A.1. Dynamic Subscriptions

A.1.1. Establishing Dynamic Subscriptions

 The following figure shows two successful "establish-subscription"
 RPC requests as per
 [I-D.draft-ietf-netconf-subscribed-notifications]. The first request
 is given a subscription identifier of 22, the second, an identifier
 of 23.

+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
| Subscriber | | Publisher |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 |establish‑subscription |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| (a)
 | HTTP 200 OK, id#22, URI#1 |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| (b)
 |GET (URI#1) |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| (c)
 | HTTP 200 OK,notif‑mesg (id#22)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | |
 |establish‑subscription |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | HTTP 200 OK, id#23, URI#2|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 |GET (URI#2) |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | |
 | |
 | notif‑mesg (id#22)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | HTTP 200 OK,notif‑mesg (id#23)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 2: Multiple subscriptions over RESTCONF/HTTP

 To provide examples of the information being transported, example
 messages for interactions in Figure 2 are detailed below:

 POST /restconf/operations

 /ietf-subscribed-notifications:establish-subscription

{
 "ietf‑subscribed‑notifications:input": {
 "stream‑xpath‑filter": "/example‑module:foo/",
 "stream": "NETCONF",
 "dscp": "10"
 }
}

 Figure 3: establish-subscription request (a)

 As publisher was able to fully satisfy the request, the publisher
 sends the subscription identifier of the accepted subscription, and
 the URI:

 HTTP status code - 200

{
 "id": "22",
 "uri": "https://example.com/restconf/subscriptions/22"
}

 Figure 4: establish-subscription success (b)

 Upon receipt of the successful response, the subscriber does a GET
 the provided URI to start the flow of notification messages. When
 the publisher receives this, the subscription is moved to the active
 state (c).

 GET /restconf/subscriptions/22

 Figure 5: establish-subscription subsequent POST

 While not shown in Figure 2, if the publisher had not been able to
 fully satisfy the request, or subscriber has no authorization to
 establish the subscription, the publisher would have sent an RPC
 error response. For instance, if the "dscp" value of 10 asserted by
 the subscriber in Figure 3 proved unacceptable, the publisher may
 have returned:

 HTTP status code - 406

{ "ietf‑restconf:errors" : {
 "error" : [
 {
 "error‑type": "application",
 "error‑tag": "operation‑failed",
 "error‑severity": "error",
 "error‑app‑tag":
 "ietf‑subscribed‑notifications:dscp‑unavailable"
 }
]
 }
}

 Figure 6: an unsuccessful establish subscription

 The subscriber can use this information in future attempts to
 establish a subscription.

A.1.2. Modifying Dynamic Subscriptions

 An existing subscription may be modified. The following exchange
 shows a negotiation of such a modification via several exchanges
 between a subscriber and a publisher. This negotiation consists of a
 failed RPC modification request/response, followed by a successful
 one.

+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
| Subscriber | | Publisher |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | notification message (id#23)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 |modify‑subscription (id#23) |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| (d)
 | HTTP 406 error (with hint)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| (e)
 | |
 |modify‑subscription (id#23) |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | HTTP 200 OK |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | notif‑mesg (id#23)|
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |

 Figure 7: Interaction model for successful subscription modification

 If the subscription being modified in Figure 7 is a datastore
 subscription as per [I-D.ietf-netconf-yang-push], the modification
 request made in (d) may look like that shown in Figure 8. As can be
 seen, the modifications being attempted are the application of a new
 xpath filter as well as the setting of a new periodic time interval.

 POST /restconf/operations

 /ietf-subscribed-notifications:modify-subscription

{
 "ietf‑subscribed‑notifications:input": {
 "id": "23",
 "ietf‑yang‑push:datastore‑xpath‑filter":
 "/example‑module:foo/example‑module:bar",
 "ietf‑yang‑push:periodic": {
 "ietf‑yang‑push:period": "500"
 }
 }
}

 Figure 8: Subscription modification request (c)

 If the publisher can satisfy both changes, the publisher sends a
 positive result for the RPC. If the publisher cannot satisfy either
 of the proposed changes, the publisher sends an RPC error response
 (e). The following is an example RPC error response for (e) which
 includes a hint. This hint is an alternative time period value which
 might have resulted in a successful modification:

 HTTP status code - 406

{ "ietf‑restconf:errors" : {
 "error" : [
 "error‑type": "application",
 "error‑tag": "operation‑failed",
 "error‑severity": "error",
 "error‑app‑tag": "ietf‑yang‑push:period‑unsupported",
 "error‑info": {
 "ietf‑yang‑push":
 "modify‑subscription‑datastore‑error‑info": {
 "period‑hint": "3000"
 }
 }
]
 }
}

 Figure 9: Modify subscription failure with Hint (e)

A.1.3. Deleting Dynamic Subscriptions

 The following demonstrates deleting a subscription. This
 subscription may have been to either a stream or a datastore.

 POST /restconf/operations

 /ietf-subscribed-notifications:delete-subscription

{
 "delete‑subscription": {
 "id": "22"
 }
}

 Figure 10: Delete subscription

 If the publisher can satisfy the request, the publisher replies with
 success to the RPC request.

 If the publisher cannot satisfy the request, the publisher sends an
 error-rpc element indicating the modification didn't work. Figure 11
 shows a valid response for existing valid subscription identifier,
 but that subscription identifier was created on a different transport
 session:

 HTTP status code - 406

{
 "ietf‑restconf:errors" : {
 "error" : [
 "error‑type": "application",
 "error‑tag": "operation‑failed",
 "error‑severity": "error",
 "error‑app‑tag":
 "ietf‑subscribed‑notifications:no‑such‑subscription"
]
 }
}

 Figure 11: Unsuccessful delete subscription

A.2. Subscription State Notifications

 A publisher will send subscription state notifications according to
 the definitions within
 [I-D.draft-ietf-netconf-subscribed-notifications]).

A.2.1. subscription-modified

 A "subscription-modified" encoded in JSON would look like:

{
 "ietf‑restconf:notification" : {
 "eventTime": "2007‑09‑01T10:00:00Z",
 "ietf‑subscribed‑notifications:subscription‑modified": {
 "id": "39",
 "uri": "https://example.com/restconf/subscriptions/22"
 "stream‑xpath‑filter": "/example‑module:foo",
 "stream": {
 "ietf‑netconf‑subscribed‑notifications" : "NETCONF"
 }
 }
 }
}

 Figure 12: subscription-modified subscription state notification

A.2.2. subscription-completed, subscription-resumed, and replay-
 complete

 A "subscription-completed" would look like:

{
 "ietf‑restconf:notification" : {
 "eventTime": "2007‑09‑01T10:00:00Z",
 "ietf‑subscribed‑notifications:subscription‑completed": {
 "id": "39",
 }
 }
}

 Figure 13: subscription-completed notification in JSON

 The "subscription-resumed" and "replay-complete" are virtually
 identical, with "subscription-completed" simply being replaced by
 "subscription-resumed" and "replay-complete".

A.2.3. subscription-terminated and subscription-suspended

 A "subscription-terminated" would look like:

{
 "ietf‑restconf:notification" : {
 "eventTime": "2007‑09‑01T10:00:00Z",
 "ietf‑subscribed‑notifications:subscription‑terminated": {
 "id": "39",
 "error‑id": "suspension‑timeout"
 }
 }
}

 Figure 14: subscription-terminated subscription state notification

 The "subscription-suspended" is virtually identical, with
 "subscription-terminated" simply being replaced by "subscription-
 suspended".

A.3. Filter Example

 This section provides an example which illustrate the method of
 filtering event record contents. The example is based on the YANG
 notification "vrrp-protocol-error-event" as defined per the ietf-
 vrrp.yang module within [RFC8347]. Event records based on this
 specification which are generated by the publisher might appear as:

data: {
data: "ietf‑restconf:notification" : {
data: "eventTime" : "2018‑09‑14T08:22:33.44Z",
data: "ietf‑vrrp:vrrp‑protocol‑error‑event" : {
data: "protocol‑error‑reason" : "checksum‑error"
data: }
data: }
data: }

 Figure 15: RFC 8347 (VRRP) - Example Notification

 Suppose a subscriber wanted to establish a subscription which only
 passes instances of event records where there is a "checksum-error"
 as part of a VRRP protocol event. Also assume the publisher places
 such event records into the NETCONF stream. To get a continuous
 series of matching event records, the subscriber might request the
 application of an XPath filter against the NETCONF stream. An
 "establish-subscription" RPC to meet this objective might be:

POST /restconf/operations
 /ietf‑subscribed‑notifications:establish‑subscription
{
 "ietf‑subscribed‑notifications:input": {
 "stream": "NETCONF",
 "stream‑xpath‑filter":
 "/ietf‑vrrp:vrrp‑protocol‑error‑event[
 protocol‑error‑reason='checksum‑error']/",
 }
}

 Figure 16: Establishing a subscription error reason via XPath

 For more examples of XPath filters, see [XPATH].

 Suppose the "establish-subscription" in Figure 16 was accepted. And
 suppose later a subscriber decided they wanted to broaden this
 subscription cover to all VRRP protocol events (i.e., not just those
 with a "checksum error"). The subscriber might attempt to modify the
 subscription in a way which replaces the XPath filter with a subtree
 filter which sends all VRRP protocol events to a subscriber. Such a
 "modify-subscription" RPC might look like:

POST /restconf/operations
 /ietf‑subscribed‑notifications:modify‑subscription
{
 "ietf‑subscribed‑notifications:input": {
 "stream": "NETCONF",
 "stream‑subtree‑filter": {
 "/ietf‑vrrp:vrrp‑protocol‑error‑event" : {}
 }
 }
}

 Figure 17

 For more examples of subtree filters, see [RFC6241], section 6.4.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v11 - v12

 o Added text in 3.2 for expected behavior when ietf-restconf-
 monitoring.yang is also supported.

 o Added section 2 to the reference to draft-ietf-netconf-nmda-
 restconf.

 o Replaced kill-subscription-error by delete-subscription-error in
 section 3.3.

 o Clarified vertical lines (a) and (b) in Figure 1 of section 3.4

 o Section 3.4, 3rd bullet after Figure 1, replaced "must" with
 "MUST".

 o Modified text in section 3.4 regarding access to RPCs modify-
 subscription, resync-subscription, delete-subscription and kill-
 subscription.

 o Section 4, first bullet for HTTP2: replaced dscp and priority with
 weighting and weight.

 o Section 6, added YANG tree diagram and fixed description of the
 module.

 o Section 7, fixed indentation of module description statement.

 o Section 7, in YANG module changed year in copyright statement to
 2019.

 o Section 8, added text on how server protects access to the
 subscription URI.

 o Fixed outdated references and removed unused references.

 o Fixed the instances of line too long.

 o Fixed example in Figure 3.

 v10 - v11

 o Per Kent's request, added name attribute to artwork which need to
 be extracted

 v09 - v10

 o Fixed typo for resync.

 o Added text wrt RPC permissions and RESTCONF username.

 v08 - v09

 o Addressed comments received during WGLC.

 v07 - v08

 o Aligned with RESTCONF mechanism.

 o YANG model: removed augment of subscription-started, added
 restconf transport.

 o Tweaked Appendix A.1 to match draft-ietf-netconf-netconf-event-
 notifications-13.

 o Added Appendix A.3 for filter example.

 v06 - v07

 o Removed configured subscriptions.

 o Subscription identifier renamed to id.

 v05 - v06

 o JSON examples updated by Reshad.

 v04 - v05

 o Error mechanisms updated to match embedded RESTCONF mechanisms

 o Restructured format and sections of document.

 o Added a YANG data model for HTTP specific parameters.

 o Mirrored the examples from the NETCONF transport draft to allow
 easy comparison.

 v03 - v04

 o Draft not fully synched to new version of subscribed-notifications
 yet.

 o References updated

 v02 - v03

 o Event notification reframed to notification message.

 o Tweaks to wording/capitalization/format.

 v01 - v02

 o Removed sections now redundant with
 [I-D.draft-ietf-netconf-subscribed-notifications] and
 [I-D.ietf-netconf-yang-push] such as: mechanisms for subscription
 maintenance, terminology definitions, stream discovery.

 o 3rd party subscriptions are out-of-scope.

 o SSE only used with RESTCONF and HTTP1.1 dynamic subscriptions

 o Timeframes for event tagging are self-defined.

 o Clean-up of wording, references to terminology, section numbers.

 v00 - v01

 o Removed the ability for more than one subscription to go to a
 single HTTP2 stream.

 o Updated call flows. Extensively.

 o SSE only used with RESTCONF and HTTP1.1 dynamic subscriptions

 o HTTP is not used to determine that a receiver has gone silent and
 is not Receiving Event Notifications

 o Many clean-ups of wording and terminology

Authors' Addresses

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Reshad Rahman
Cisco Systems

 Email: rrahman@cisco.com

Einar Nilsen‑Nygaard
Cisco Systems

 Email: einarnn@cisco.com

Alexander Clemm
Huawei

 Email: ludwig@clemm.org

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

draft-ietf-netconf-rfc7895bis-07 - YANG Library

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Internet-Draft

Obsoletes: 7895 (if approved)

Intended status: Standards Track

Expires: April 20, 2019

A. Bierman

YumaWorks

M. Bjorklund

Tail-f Systems

J. Schoenwaelder

Jacobs University

K. Watsen

Juniper Networks

R. Wilton

Cisco Systems

October 17, 2018

YANG Library

draft-ietf-netconf-rfc7895bis-07

Abstract

 This document describes a YANG library that provides information
 about the YANG modules, datastores, and datastore schemas used by a
 network management server. Simple caching mechanisms are provided to
 allow clients to minimize retrieval of this information. This
 version of the YANG library supports the Network Management Datastore
 Architecture by listing all datastores supported by a network
 management server and the schema that is used by each of these
 datastores.

 This document obsoletes RFC 7895.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 20, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Objectives

	3. YANG Library Data Model

	4. YANG Library YANG Module

	5. IANA Considerations

	6. Security Considerations

	7. Acknowledgments

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Summary of Changes from RFC 7895

	Appendix B. Example YANG Library Instance for a Basic Server

	Appendix C. Example YANG Library Instance for an Advanced Server

	Authors' Addresses

1. Introduction

 There is a need for a standard mechanism to expose which YANG modules
 [RFC7950], datastores and datastore schemas [RFC8342] are in use by a
 network management server.

 This document defines the YANG module "ietf-yang-library" that
 provides this information. This version of the YANG library is
 compatible with the Network Management Datastore Architecture (NMDA)
 [RFC8342]. The previous version of the YANG library, defined in
 [RFC7895], is not compatible with the NMDA since it assumes that all
 datastores have exactly the same schema. This is not necessarily
 true in the NMDA since dynamic configuration datastores may have
 their own datastore schema. Furthermore, the operational state
 datastore may support non-configurable YANG modules in addition to
 the YANG modules supported by conventional configuration datastores.

 The old YANG library definitions have been retained (for backwards
 compatibility reasons) but the definitions have been marked as
 deprecated. For backwards compatibility, an NMDA-supporting server
 SHOULD populate the deprecated "/modules-state" tree in a backwards-
 compatible manner. The new "/yang-library" tree would be ignored by
 legacy clients, while providing all the data needed for NMDA-aware
 clients, which would themselves ignore the "/modules-state" tree.
 The recommended approach to populate "/modules-state" is to report
 the schema for YANG modules that are configurable via conventional
 configuration datastores and for which config false data nodes are
 returned via a NETCONF <get> operation, or equivalent.

 The YANG library information can be different on every server and it
 can change at runtime or across a server reboot. If a server
 implements multiple network management protocols to access the
 server's datastores, then each such protocol may have its own
 conceptual instantiation of the YANG library.

 If a large number of YANG modules are utilized by a server, then the
 YANG library contents can be relatively large. Since the YANG
 library contents changes very infrequently, it is important that
 clients be able to cache the YANG library contents and easily
 identify whether their cache is out of date.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950]:

 o module

 o submodule

 o data node

 This document uses the phrase "implementing a module" as defined in
 [RFC7950] Section 5.6.5.

 The following terms are defined in [RFC8342]:

 o datastore

 o datastore schema

 o configuration

 o configuration datastore

 o conventional configuration

 o conventional configuration datastore

 o operational state

 o operational state datastore

 o dynamic configuration datastore

 o client and server

 The following terms are used within this document:

 o YANG library: A collection of YANG modules, submodules,
 datastores, and datastore schemas used by a server.

 o YANG library content identifier: A server-generated identifier of
 the contents of the YANG library.

 Tree diagrams used in this document use the notation defined in
 [RFC8340].

2. Objectives

 The following information is needed by a client application (for each
 YANG module in the library) to fully utilize the YANG data modeling
 language:

 o name: The name of the YANG module.

 o revision: If defined in the YANG module or submodule, the revision
 is derived from the most recent revision statement within the
 module or submodule.

 o submodule list: The name, and if defined, revision of each
 submodule used by the module must be identified.

 o feature list: The name of each YANG feature supported by the
 server, in a given datastore schema, must be identified.

 o deviation list: The name of each YANG module with deviation
 statements affecting a given YANG module, in a given datastore
 schema, must be identified.

 In addition, the following information is needed by a client
 application for each datastore supported by a server:

 o identity: The YANG identity for the datastore.

 o schema: The schema (i.e., the set of modules) implemented by the
 datastore.

 In order to select one out of several possible data model designs,
 the following criteria were used:

 1. The information must be efficient for a client to consume. Since
 the size of the YANG library can be quite large, it should be
 possible for clients to cache the YANG library information.

 2. A dynamic configuration datastore must be able to implement a
 module or feature that is not implemented in the conventional
 configuration datastores.

 3. It must be possible to not implement a module or feature in
 <operational>, even if it is implemented in some other datastore.
 This is required for transition purposes; a server that wants to
 implement <operational> should not have to implement all modules
 at once.

 4. A given module can only be implemented in one revision in all
 datastores. If a module is implemented in more than one
 datastore, the same revision is implemented in all these
 datastores.

 5. Multiple revisions can be used for import, if import-by revision
 is used.

 6. It must be possible to use the YANG library by schema mount
 [I-D.ietf-netmod-schema-mount].

3. YANG Library Data Model

 The "ietf-yang-library" YANG module provides information about the
 modules, submodules, datastores, and datastore schemas supported by a
 server. All data nodes in "ietf-yang-library" are "config false",
 and thus only accessible in the operational state datastore.

+‑‑‑‑‑‑‑‑‑‑‑+
| datastore |
+‑‑‑‑‑‑‑‑‑‑‑+
 |
 | has a
 V
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| datastore | union of | module | consists of | modules + |
| schema |‑‑‑‑‑‑‑‑‑‑‑>| set |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| submodules |
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1

 The conceptual model of the YANG library is depicted in Figure 1.
 Following the NMDA, every datastore has an associated datastore
 schema. A datastore schema is a union of module sets and every
 module set is a collection of modules and submodules, including the
 modules and submodules used for imports. Note that multiple
 datastores may refer to the same datastore schema. Furthermore, it
 is possible that individual datastore schemas share module sets. A
 common use case is the operational state datastore schema which is a
 superset of the schema used by conventional configuration datastores.

 Below is the YANG Tree Diagram for the "ietf-yang-library" module,
 excluding the deprecated "modules-state" tree:

module: ietf‑yang‑library
 +‑‑ro yang‑library
 +‑‑ro module‑set* [name]
 | +‑‑ro name string
 | +‑‑ro module* [name]
 | | +‑‑ro name yang:yang‑identifier
 | | +‑‑ro revision? revision‑identifier
 | | +‑‑ro namespace inet:uri
 | | +‑‑ro location* inet:uri
 | | +‑‑ro submodule* [name]
 | | | +‑‑ro name yang:yang‑identifier
 | | | +‑‑ro revision? revision‑identifier
 | | | +‑‑ro location* inet:uri
 | | +‑‑ro feature* yang:yang‑identifier
 | | +‑‑ro deviation* ‑> ../../module/name
 | +‑‑ro import‑only‑module* [name revision]
 | +‑‑ro name yang:yang‑identifier
 | +‑‑ro revision union
 | +‑‑ro namespace inet:uri
 | +‑‑ro location* inet:uri
 | +‑‑ro submodule* [name]
 | +‑‑ro name yang:yang‑identifier
 | +‑‑ro revision? revision‑identifier
 | +‑‑ro location* inet:uri
 +‑‑ro schema* [name]
 | +‑‑ro name string
 | +‑‑ro module‑set* ‑> ../../module‑set/name
 +‑‑ro datastore* [name]
 | +‑‑ro name ds:datastore‑ref
 | +‑‑ro schema ‑> ../../schema/name
 +‑‑ro content‑id string

 notifications:
 +‑‑‑n yang‑library‑update
 +‑‑ro content‑id ‑> /yang‑library/content‑id

 The "/yang-library" container holds the entire YANG library. The
 container has the following child nodes:

 o The "/yang-library/module-set" contains entries representing
 module sets. The list "/yang-library/module-set/module"
 enumerates the modules that belong to the module set. A module is
 listed together with its submodules (if any), a set of features,
 and any deviation modules. The list "/yang-library/module-set/
 import-only-module" lists all modules (and their submodules) used
 only for imports. The assignment of a module to a module-set is
 at the server's discretion. This revision of the YANG library

 attaches no semantics as to which module-set a module is listed
 in.

 o The "/yang-library/schema" list contains an entry for each
 datastore schema supported by the server. All conventional
 configuration datastores use the same "schema" list entry. A
 dynamic configuration datastore may use a different datastore
 schema from the conventional configuration datastores, and hence
 may require a separate "schema" entry. A "schema" entry has a
 leaf-list of references to entries in the "module-set" list. The
 schema consists of the union of all modules in all referenced
 module sets.

 o The "/yang-library/datastore" list contains one entry for each
 datastore supported by the server, and it identifies the datastore
 schema associated with a datastore via a reference to an entry in
 the "schema" list. Each supported conventional configuration
 datastore has a separate entry, pointing to the same "schema" list
 element.

 o The "/yang-library/content-id" leaf contains the YANG library
 content identifier, which is an implementation-specific identifier
 representing the current information in the YANG library on a
 specific server. The value of this leaf MUST change whenever the
 information in the YANG library changes. There is no requirement
 that the same information always results in the same "content-id"
 value. This leaf allows a client to fetch all schema information
 once, cache it, and only refetch it if the value of this leaf has
 been changed. If the value of this leaf changes, the server also
 generates a "yang-library-update" notification.

 Note that for a NETCONF server implementing the NETCONF extensions to
 support the NMDA [I-D.ietf-netconf-nmda-netconf], a change of the
 YANG library content identifier results in a new value for the :yang-
 library:1.1 capability defined in [I-D.ietf-netconf-nmda-netconf].
 Thus, if such a server implements NETCONF notifications [RFC5277],
 and the notification "netconf-capability-change" [RFC6470], a
 "netconf-capability-change" notification is generated whenever the
 YANG library content identifier changes.

4. YANG Library YANG Module

 The "ietf-yang-library" YANG module imports definitions from
 "ietf-yang-types" and "ietf-inet-types" defined in [RFC6991] and from
 "ietf-datastores" defined in [RFC8342]. While the YANG module is
 defined using YANG version 1.1, the YANG library supports the YANG
 modules written in any version of YANG.

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-yang-library@2018-10-16.yang"

module ietf‑yang‑library {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑yang‑library";
 prefix "yanglib";

 import ietf‑yang‑types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types.";
 }
 import ietf‑inet‑types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types.";
 }
 import ietf‑datastores {
 prefix ds;
 reference "RFC 8342: Network Management Datastore Architecture.";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail‑f.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs‑university.de>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";

 description

 "This module provides information about the YANG modules,
 datastores, and datastore schemas used by a network

 management server.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

// RFC Ed.: update the date below with the date of RFC publication
// and remove this note.
// RFC Ed.: replace XXXX with actual RFC number and remove this
// note.
revision 2018‑10‑16 {
 description
 "Added support for multiple datastores according to the
 Network Management Datastore Architecture (NMDA).";
 reference
 "RFC XXXX: YANG Library.";
}
revision 2016‑04‑09 {
 description
 "Initial revision.";
 reference
 "RFC 7895: YANG Module Library.";
}

/*
 * Typedefs
 */

typedef revision‑identifier {
 type string {
 pattern '\d{4}‑\d{2}‑\d{2}';
 }
 description
 "Represents a specific date in YYYY‑MM‑DD format.";
}

/*
 * Groupings
 */

grouping module‑identification‑leafs {
 description
 "Parameters for identifying YANG modules and submodules.";

 leaf name {
 type yang:yang‑identifier;
 mandatory true;
 description
 "The YANG module or submodule name.";
 }
 leaf revision {
 type revision‑identifier;
 description
 "The YANG module or submodule revision date. If no revision
 statement is present in the YANG module or submodule, this
 leaf is not instantiated.";
 }
}

grouping location‑leaf‑list {
 description
 "Common location leaf list parameter for modules and
 submodules.";

 leaf‑list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema
 resource for this module or submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }
}

grouping module‑implementation‑parameters {
 description
 "Parameters for describing the implementation of a module.";

 leaf‑list feature {
 type yang:yang‑identifier;
 description
 "List of all YANG feature names from this module that are
 supported by the server, regardless whether they are defined
 in the module or any included submodule.";
 }
 leaf‑list deviation {
 type leafref {

 path "../../module/name";
 }
 description
 "List of all YANG deviation modules used by this server to
 modify the conformance of the module associated with this
 entry. Note that the same module can be used for deviations
 for multiple modules, so the same entry MAY appear within
 multiple 'module' entries.

 This reference MUST NOT (directly or indirectly)
 refer to the module being deviated.

 Robust clients may want to make sure that they handle a
 situation where a module deviates itself (directly or
 indirectly) gracefully.";
 }
}

grouping module‑set‑parameters {
 description
 "A set of parameters that describe a module set.";

 leaf name {
 type string;
 description
 "An arbitrary name of the module set.";
 }
 list module {
 key "name";
 description
 "An entry in this list represents a module implemented by the
 server, as per RFC 7950 section 5.6.5, with a particular set
 of supported features and deviations.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language.";

 uses module-identification-leafs;

leaf namespace {
 type inet:uri;
 mandatory true;
 description
 "The XML namespace identifier for this module.";
}

 uses location-leaf-list;

 list submodule {

 key "name";
 description
 "Each entry represents one submodule within the
 parent module.";
 uses module‑identification‑leafs;
 uses location‑leaf‑list;
 }

 uses module‑implementation‑parameters;
}
list import‑only‑module {
 key "name revision";
 description
 "An entry in this list indicates that the server imports
 reusable definitions from the specified revision of the
 module, but does not implement any protocol accessible
 objects from this revision.

 Multiple entries for the same module name MAY exist. This
 can occur if multiple modules import the same module, but
 specify different revision-dates in the import statements.";

leaf name {
 type yang:yang‑identifier;
 description
 "The YANG module name.";
}
leaf revision {
 type union {
 type revision‑identifier;
 type string {
 length 0;
 }
 }
 description
 "The YANG module revision date.
 A zero‑length string is used if no revision statement
 is present in the YANG module.";
}
leaf namespace {
 type inet:uri;
 mandatory true;
 description
 "The XML namespace identifier for this module.";
}

 uses location-leaf-list;

 list submodule {
 key "name";
 description
 "Each entry represents one submodule within the
 parent module.";

 uses module‑identification‑leafs;
 uses location‑leaf‑list;
 }
 }
}

grouping yang‑library‑parameters {
 description
 "The YANG library data structure is represented as a grouping
 so it can be reused in configuration or another monitoring
 data structure.";

 list module‑set {
 key name;
 description
 "A set of modules that may be used by one or more schemas.

 A module set does not have to be referentially complete,
 i.e., it may define modules that contain import statements
 for other modules not included in the module set.";

 uses module‑set‑parameters;
}

list schema {
 key "name";
 description
 "A datastore schema that may be used by one or more
 datastores.

 The schema must be valid and referentially complete, i.e.,
 it must contain modules to satisfy all used import
 statements for all modules specified in the schema.";

 leaf name {
 type string;
 description
 "An arbitrary name of the schema.";
 }
 leaf‑list module‑set {
 type leafref {
 path "../../module‑set/name";

 }
 description
 "A set of module‑sets that are included in this schema.
 If a non import‑only module appears in multiple module
 sets, then the module revision and the associated features
 and deviations must be identical.";
 }
}

list datastore {
 key "name";
 description
 "A datastore supported by this server.

 Each datastore indicates which schema it supports.

 The server MUST instantiate one entry in this list per
 specific datastore it supports.

 Each datstore entry with the same datastore schema SHOULD
 reference the same schema.";

 leaf name {
 type ds:datastore‑ref;
 description
 "The identity of the datastore.";
 }
 leaf schema {
 type leafref {
 path "../../schema/name";
 }
 mandatory true;
 description
 "A reference to the schema supported by this datastore.
 All non import‑only modules of the schema are implemented
 with their associated features and deviations.";
 }
 }
}

/*
 * Top‑level container
 */

container yang‑library {
 config false;
 description
 "Container holding the entire YANG library of this server.";

 uses yang-library-parameters;

 leaf content‑id {
 type string;
 mandatory true;
 description
 "A server‑generated identifier of the contents of the
 'yang‑library' tree. The server MUST change the value of
 this leaf if the information represented by the
 'yang‑library' tree, except 'yang‑library/content‑id', has
 changed.";
 }
}

/*
 * Notifications
 */

notification yang‑library‑update {
 description
 "Generated when any YANG library information on the
 server has changed.";

 leaf content‑id {
 type leafref {
 path "/yanglib:yang‑library/yanglib:content‑id";
 }
 mandatory true;
 description
 "Contains the YANG library content identifier for the updated
 YANG library at the time the notification is generated.";
 }
}

/*
 * Legacy groupings
 */

grouping module‑list {
 status deprecated;
 description
 "The module data structure is represented as a grouping
 so it can be reused in configuration or another monitoring
 data structure.";

 grouping common‑leafs {
 status deprecated;
 description

 "Common parameters for YANG modules and submodules.";

 leaf name {
 type yang:yang‑identifier;
 status deprecated;
 description
 "The YANG module or submodule name.";
 }
 leaf revision {
 type union {
 type revision‑identifier;
 type string {
 length 0;
 }
 }
 status deprecated;
 description
 "The YANG module or submodule revision date.
 A zero‑length string is used if no revision statement
 is present in the YANG module or submodule.";
 }
}
grouping schema‑leaf {
 status deprecated;
 description
 "Common schema leaf parameter for modules and submodules.";
 leaf schema {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema
 resource for this module or submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }
}

list module {
 key "name revision";
 status deprecated;
 description
 "Each entry represents one revision of one module
 currently supported by the server.";

 uses common‑leafs {
 status deprecated;
 }
 uses schema‑leaf {

 status deprecated;
 }

 leaf namespace {
 type inet:uri;
 mandatory true;
 status deprecated;
 description
 "The XML namespace identifier for this module.";
 }
 leaf‑list feature {
 type yang:yang‑identifier;
 status deprecated;
 description
 "List of YANG feature names from this module that are
 supported by the server, regardless whether they are
 defined in the module or any included submodule.";
 }
 list deviation {
 key "name revision";
 status deprecated;
 description
 "List of YANG deviation module names and revisions
 used by this server to modify the conformance of
 the module associated with this entry. Note that
 the same module can be used for deviations for
 multiple modules, so the same entry MAY appear
 within multiple 'module' entries.

 The deviation module MUST be present in the 'module'
 list, with the same name and revision values.
 The 'conformance‑type' value will be 'implement' for
 the deviation module.";
 uses common‑leafs {
 status deprecated;
 }
 }
 leaf conformance‑type {
 type enumeration {
 enum implement {
 description
 "Indicates that the server implements one or more
 protocol‑accessible objects defined in the YANG module
 identified in this entry. This includes deviation
 statements defined in the module.

 For YANG version 1.1 modules, there is at most one
 module entry with conformance type 'implement' for a
 particular module name, since YANG 1.1 requires that
 at most one revision of a module is implemented.

 For YANG version 1 modules, there SHOULD NOT be more
 than one module entry for a particular module name.";
 }
 enum import {
 description
 "Indicates that the server imports reusable definitions
 from the specified revision of the module, but does
 not implement any protocol accessible objects from
 this revision.

 Multiple module entries for the same module name MAY
 exist. This can occur if multiple modules import the
 same module, but specify different revision‑dates in
 the import statements.";
 }
 }
 mandatory true;
 status deprecated;
 description
 "Indicates the type of conformance the server is claiming
 for the YANG module identified by this entry.";
 }
 list submodule {
 key "name revision";
 status deprecated;
 description
 "Each entry represents one submodule within the
 parent module.";
 uses common‑leafs {
 status deprecated;
 }
 uses schema‑leaf {
 status deprecated;
 }
 }
 }
}

/*
 * Legacy operational state data nodes
 */

container modules‑state {
 config false;
 status deprecated;

 description

 "Contains YANG module monitoring information.";

 leaf module‑set‑id {
 type string;
 mandatory true;
 status deprecated;
 description
 "Contains a server‑specific identifier representing
 the current set of modules and submodules. The
 server MUST change the value of this leaf if the
 information represented by the 'module' list instances
 has changed.";
 }

 uses module‑list {
 status deprecated;
 }
}

/*
 * Legacy notifications
 */

notification yang‑library‑change {
 status deprecated;
 description
 "Generated when the set of modules and submodules supported
 by the server has changed.";
 leaf module‑set‑id {
 type leafref {
 path "/yanglib:modules‑state/yanglib:module‑set‑id";
 }
 mandatory true;
 status deprecated;
 description
 "Contains the module‑set‑id value representing the
 set of modules and submodules supported at the server
 at the time the notification is generated.";
 }
}

 }

 <CODE ENDS>

5. IANA Considerations

 RFC 7895 previously registered one URI in the IETF XML registry
 [RFC3688]. This document takes over this registration entry made by
 RFC 7895 and changes the Registrant to the IESG according to
 Section 4 in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 RFC 7895 previously registered one YANG module in the "YANG Module
 Names" registry [RFC6020] as follows:

name: ietf‑yang‑library
namespace: urn:ietf:params:xml:ns:yang:ietf‑yang‑library
prefix: yanglib
reference: RFC 7895

 This document takes over this registration entry made by RFC 7895.

6. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is accessed by network management protocols such as NETCONF
 [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 The "/yang-library" subtree of the YANG library may help an attacker
 identify the server capabilities and server implementations with
 known bugs since the set of YANG modules supported by a server may
 reveal the kind of device and the manufacturer of the device.
 Although some of this information may be available to all NETCONF
 users via the NETCONF <hello> message (or similar messages in other
 management protocols), this YANG module potentially exposes
 additional details that could be of some assistance to an attacker.
 Server vulnerabilities may be specific to particular modules, module
 revisions, module features, or even module deviations. For example,
 if a particular operation on a particular data node is known to cause
 a server to crash or significantly degrade device performance, then
 the module list information will help an attacker identify server
 implementations with such a defect, in order to launch a denial-of-
 service attack on the device.

7. Acknowledgments

 Contributions to this material by Andy Bierman are based upon work
 supported by the The Space & Terrestrial Communications Directorate
 (S&TCD) under Contract No. W15P7T-13-C-A616. Any opinions, findings
 and conclusions or recommendations expressed in this material are
 those of the author(s) and do not necessarily reflect the views of
 The Space & Terrestrial Communications Directorate (S&TCD).

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
 editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010, <https://www.rfc-
 editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018, <https://www.rfc-
 editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

8.2. Informative References

 [I-D.ietf-netconf-nmda-netconf]

 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", draft-ietf-netconf-
 nmda-netconf-07 (work in progress), October 2018.

 [I-D.ietf-netconf-nmda-restconf]

 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "RESTCONF Extensions to Support the Network
 Management Datastore Architecture", draft-ietf-netconf-
 nmda-restconf-05 (work in progress), October 2018.

 [I-D.ietf-netmod-schema-mount]

 Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft-
 ietf-netmod-schema-mount-11 (work in progress), August
 2018.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6470]
 Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

 [RFC7895]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8344]
 Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, DOI 10.17487/RFC8344, March 2018,
 <https://www.rfc-editor.org/info/rfc8344>.

 [RFC8345]
 Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [RFC8348]
 Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
 YANG Data Model for Hardware Management", RFC 8348,
 DOI 10.17487/RFC8348, March 2018, <https://www.rfc-
 editor.org/info/rfc8348>.

 [RFC8349]
 Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
 Routing Management (NMDA Version)", RFC 8349,
 DOI 10.17487/RFC8349, March 2018, <https://www.rfc-
 editor.org/info/rfc8349>.

Appendix A. Summary of Changes from RFC 7895

 This document updates [RFC7895] in the following ways:

 o Renamed document title from "YANG Module Library" to "YANG
 Library".

 o Added a new top-level "/yang-library" container to hold the entire
 YANG library providing information about module sets, schemas, and
 datastores.

 o Refactored the "/modules-state" container into a new
 "/yang-library/module-set" list.

 o Added a new "/yang-library/schema" list and a new "/yang-library/
 datastore" list.

 o Added a set of new groupings as replacements for the deprecated
 groupings.

 o Added a "yang-library-update" notification as a replacement for
 the deprecated "yang-library-change" notification.

 o Deprecated the "/modules-state" tree.

 o Deprecated the "/module-list" grouping.

 o Deprecated the "/yang-library-change" notification.

Appendix B. Example YANG Library Instance for a Basic Server

 The following example shows the YANG Library of a basic server
 implementing the "ietf-interfaces" [RFC8343] and "ietf-ip" [RFC8344]
 modules in the <running>, <startup>, and <operational> datastores and
 the "ietf-hardware" [RFC8348] module in the <operational> datastore.

 Newlines in leaf values are added for formatting reasons.

 <yang-library

 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

<module‑set>
 <name>config‑modules</name>
 <module>
 <name>ietf‑interfaces</name>
 <revision>2018‑01‑09</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑interfaces
 </namespace>
 </module>
 <module>
 <name>ietf‑ip</name>
 <revision>2018‑01‑09</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>

 urn:ietf:params:xml:ns:yang:ietf‑ip
 </namespace>
 </module>
 <import‑only‑module>
 <name>ietf‑yang‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑yang‑types
 </namespace>
 </import‑only‑module>
 <import‑only‑module>
 <name>ietf‑inet‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑inet‑types
 </namespace>
 </import‑only‑module>
</module‑set>

<module‑set>
 <name>state‑modules</name>
 <module>
 <name>ietf‑hardware</name>
 <revision>2018‑12‑18</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑hardware
 </namespace>
 </module>
 <import‑only‑module>
 <name>ietf‑inet‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑inet‑types
 </namespace>
 </import‑only‑module>
 <import‑only‑module>
 <name>ietf‑yang‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑yang‑types
 </namespace>
 </import‑only‑module>
 <import‑only‑module>
 <name>iana‑hardware</name>
 <revision>2017‑12‑18</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:iana‑hardware
 </namespace>

 </import‑only‑module>
</module‑set>

<schema>
 <name>config‑schema</name>
 <module‑set>config‑modules</module‑set>
</schema>
<schema>
 <name>state‑schema</name>
 <module‑set>config‑modules</module‑set>
 <module‑set>state‑modules</module‑set>
</schema>

<datastore>
 <name>ds:startup</name>
 <schema>config‑schema</schema>
</datastore>
<datastore>
 <name>ds:running</name>
 <schema>config‑schema</schema>
</datastore>
<datastore>
 <name>ds:operational</name>
 <schema>state‑schema</schema>
</datastore>

 <content-id>75a43df9bd56b92aacc156a2958fbe12312fb285</content-id>
 </yang-library>

Appendix C. Example YANG Library Instance for an Advanced Server

 The following example extends the preceding Basic Server YANG Library
 example, by using modules from [RFC8345] and [RFC8349], to illustrate
 a slightly more advanced server that:

 o Has a module with features only enabled in <operational>; the
 "ietf-routing module" is supported in <running>, <startup>, and
 <operational>, but the "multiple-ribs" and "router-id" features
 are only enabled in <operational>. Hence the "router-id" leaf may
 be read but not configured.

 o Supports a dynamic configuration datastore "example-ds-ephemeral",
 with only the "ietf-network" and "ietf-network-topology" modules
 configurable via a notional dynamic configuration protocol.

 o Shows an example of datastore specific deviations. The module
 "example-vendor-hardware-deviations" is included in the schema for

 <operational> to remove data nodes that cannot be supported by the
 server.

 o Shows how module-sets can be used to organize related modules
 together.

 <yang-library

 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"
 xmlns:ex-ds-eph="urn:example:ds-ephemeral">

<module‑set>
 <name>config‑state‑modules</name>
 <module>
 <name>ietf‑interfaces</name>
 <revision>2018‑01‑09</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑interfaces
 </namespace>
 </module>
 <module>
 <name>ietf‑ip</name>
 <revision>2018‑01‑09</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑ip
 </namespace>
 </module>
 <module>
 <name>ietf‑routing</name>
 <revision>2018‑01‑25</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑routing
 </namespace>
 </module>
 <import‑only‑module>
 <name>ietf‑yang‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑yang‑types
 </namespace>
 </import‑only‑module>
 <import‑only‑module>
 <name>ietf‑inet‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑inet‑types
 </namespace>
 </import‑only‑module>

 </module-set>

<module‑set>
 <name>config‑only‑modules</name>
 <module>
 <name>ietf‑routing</name>
 <revision>2018‑01‑25</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑routing
 </namespace>
 </module>
</module‑set>

<module‑set>
 <name>dynamic‑config‑state‑modules</name>
 <module>
 <name>ietf‑network</name>
 <revision>2017‑12‑18</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑network
 </namespace>
 </module>
 <module>
 <name>ietf‑network‑topology</name>
 <revision>2017‑12‑18</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑network‑topology
 </namespace>
 </module>
 <import‑only‑module>
 <name>ietf‑inet‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑inet‑types
 </namespace>
 </import‑only‑module>
</module‑set>

<module‑set>
 <name>state‑only‑modules</name>
 <module>
 <name>ietf‑hardware</name>
 <revision>2018‑12‑18</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑hardware
 </namespace>
 <deviation>example‑vendor‑hardware‑deviations</deviation>
 </module>

 <module>
 <name>ietf‑routing</name>
 <revision>2018‑01‑25</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑routing
 </namespace>
 <feature>multiple‑ribs</feature>
 <feature>router‑id</feature>
 </module>
 <module>
 <name>example‑vendor‑hardware‑deviations</name>
 <revision>2018‑01‑31</revision>
 <namespace>
 urn:example:example‑vendor‑hardware‑deviations
 </namespace>
 </module>
 <import‑only‑module>
 <name>ietf‑inet‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑inet‑types
 </namespace>
 </import‑only‑module>
 <import‑only‑module>
 <name>ietf‑yang‑types</name>
 <revision>2013‑07‑15</revision>
 <namespace>
 urn:ietf:params:xml:ns:yang:ietf‑yang‑types
 </namespace>
 </import‑only‑module>
 <import‑only‑module>
 <name>iana‑hardware</name>
 <revision>2017‑12‑18</revision> <!‑‑ RFC Ed. update this ‑‑>
 <namespace>
 urn:ietf:params:xml:ns:yang:iana‑hardware
 </namespace>
 </import‑only‑module>
</module‑set>

<schema>
 <name>config‑schema</name>
 <module‑set>config‑state‑modules</module‑set>
 <module‑set>config‑only‑modules</module‑set>
</schema>
<schema>
 <name>dynamic‑config‑schema</name>
 <module‑set>dynamic‑config‑state‑modules</module‑set>
</schema>

<schema>
 <name>state‑schema</name>
 <module‑set>config‑state‑modules</module‑set>
 <module‑set>dynamic‑config‑state‑modules</module‑set>
 <module‑set>state‑only‑modules</module‑set>
</schema>

<datastore>
 <name>ds:startup</name>
 <schema>config‑schema</schema>
</datastore>
<datastore>
 <name>ds:running</name>
 <schema>config‑schema</schema>
</datastore>
<datastore>
 <name>ex‑ds‑eph:ds‑ephemeral</name>
 <schema>dynamic‑config‑schema</schema>
</datastore>
<datastore>
 <name>ds:operational</name>
 <schema>state‑schema</schema>
</datastore>

 <content-id>14782ab9bd56b92aacc156a2958fbe12312fb285</content-id>
 </yang-library>

Authors' Addresses

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

Juergen Schoenwaelder
Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

Robert Wilton
Cisco Systems

 Email: rwilton@cisco.com

draft-ietf-netconf-ssh-client-server-08 - YANG Groupings for SSH Clients and SSH

Index
Back 5
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

G. Wu

Cisco Systems

L. Xia

Huawei

October 22, 2018

YANG Groupings for SSH Clients and SSH Servers

draft-ietf-netconf-ssh-client-server-08

Abstract

 This document defines three YANG modules: the first defines groupings
 for a generic SSH client, the second defines groupings for a generic
 SSH server, and the third defines common identities and groupings
 used by both the client and the server. It is intended that these
 groupings will be used by applications using the SSH protocol.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-trust-anchors

 o I-D.ietf-netconf-keystore

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

o "YYYY" ‑‑> the assigned RFC value for I‑D.ietf‑netconf‑trust‑
 anchors

 o "ZZZZ" --> the assigned RFC value for I-D.ietf-netconf-keystore

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. The SSH Client Model
	 3.1. Tree Diagram

	 3.2. Example Usage

	 3.3. YANG Module

	4. The SSH Server Model
	 4.1. Tree Diagram

	 4.2. Example Usage

	 4.3. YANG Module

	5. The SSH Common Model
	 5.1. Tree Diagram

	 5.2. Example Usage

	 5.3. YANG Module

	6. Security Considerations

	7. IANA Considerations
	 7.1. The IETF XML Registry

	 7.2. The YANG Module Names Registry

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Change Log
	 A.1. 00 to 01

	 A.2. 01 to 02

	 A.3. 02 to 03

	 A.4. 03 to 04

	 A.5. 04 to 05

	 A.6. 05 to 06

	 A.7. 06 to 07

	 A.8. 07 to 08

	Acknowledgements

	Authors' Addresses

1. Introduction

 This document defines three YANG 1.1 [RFC7950] modules: the first
 defines a grouping for a generic SSH client, the second defines a
 grouping for a generic SSH server, and the third defines identities
 and groupings common to both the client and the server. It is
 intended that these groupings will be used by applications using the
 SSH protocol [RFC4252], [RFC4253], and [RFC4254]. For instance,
 these groupings could be used to help define the data model for an
 OpenSSH [OPENSSH] server or a NETCONF over SSH [RFC6242] based
 server.

 The client and server YANG modules in this document each define one
 grouping, which is focused on just SSH-specific configuration, and
 specifically avoids any transport-level configuration, such as what
 ports to listen on or connect to. This affords applications the
 opportunity to define their own strategy for how the underlying TCP
 connection is established. For instance, applications supporting
 NETCONF Call Home [RFC8071] could use the "ssh-server-grouping"
 grouping for the SSH parts it provides, while adding data nodes for
 the TCP-level call-home configuration.

 The modules defined in this document uses groupings defined in
 [I-D.ietf-netconf-keystore] enabling keys to be either locally
 defined or a reference to globally configured values.

 The modules defined in this document optionally support [RFC6187]
 enabling X.509v3 certificate based host keys and public keys.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The SSH Client Model

3.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-ssh-
 client" module that does not have groupings expanded.

 module: ietf-ssh-client

grouping transport‑params‑grouping
 +‑‑ transport‑params {ssh‑client‑transport‑params‑config}?
 +‑‑‑u transport‑params‑grouping
grouping client‑identity‑grouping
 +‑‑ client‑identity
 +‑‑ username? string
 +‑‑ (auth‑type)
 +‑‑:(password)
 | +‑‑ password? string
 +‑‑:(public‑key)
 | +‑‑ public‑key
 | +‑‑‑u client‑identity‑grouping
 +‑‑:(certificate)
 +‑‑ certificate {sshcmn:ssh‑x509‑certs}?
 +‑‑‑u client‑identity‑grouping
grouping ssh‑client‑grouping
 +‑‑‑u client‑identity‑grouping
 +‑‑‑u server‑auth‑grouping
 +‑‑‑u transport‑params‑grouping
grouping server‑auth‑grouping
 +‑‑ server‑auth
 +‑‑ pinned‑ssh‑host‑keys? ta:pinned‑host‑keys‑ref
 | {ta:ssh‑host‑keys}?
 +‑‑ pinned‑ca‑certs? ta:pinned‑certificates‑ref
 | {sshcmn:ssh‑x509‑certs,ta:x509‑certificates}?
 +‑‑ pinned‑server‑certs? ta:pinned‑certificates‑ref
 {sshcmn:ssh‑x509‑certs,ta:x509‑certificates}?

3.2. Example Usage

 This section presents two examples showing the ssh-client-grouping
 populated with some data. These examples are effectively the same
 except the first configures the client identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of
 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the client identity using a local
 key:

 [Note: '\' line wrapping for formatting only]

 <ssh-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-client"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!‑‑ how this client will authenticate itself to the server ‑‑>
 <client‑identity>
 <username>foobar</username>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑t\
ypes">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </client‑identity>

 <!‑‑ which host‑keys will this client trust ‑‑>
 <server‑auth>
 <pinned‑ssh‑host‑keys>explicitly‑trusted‑ssh‑host‑keys</pinned‑s\
sh‑host‑keys>
 </server‑auth>

 <transport‑params>
 <host‑key>
 <host‑key‑alg>algs:ssh‑rsa</host‑key‑alg>
 </host‑key>
 <key‑exchange>
 <key‑exchange‑alg>
 algs:diffie‑hellman‑group‑exchange‑sha256
 </key‑exchange‑alg>
 </key‑exchange>
 <encryption>
 <encryption‑alg>algs:aes256‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes192‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes128‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes256‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes192‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes128‑cbc</encryption‑alg>
 </encryption>
 <mac>
 <mac‑alg>algs:hmac‑sha2‑256</mac‑alg>
 <mac‑alg>algs:hmac‑sha2‑512</mac‑alg>
 </mac>
 </transport‑params>

 </ssh-client>

 The following example configures the client identity using a key from
 the keystore:

 [Note: '\' line wrapping for formatting only]

 <ssh-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-client"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!‑‑ how this client will authenticate itself to the server ‑‑>
 <client‑identity>
 <username>foobar</username>
 <public‑key>
 <reference>ex‑rsa‑key</reference>
 </public‑key>
 </client‑identity>

 <!‑‑ which host‑keys will this client trust ‑‑>
 <server‑auth>
 <pinned‑ssh‑host‑keys>explicitly‑trusted‑ssh‑host‑keys</pinned‑s\
sh‑host‑keys>
 </server‑auth>

 <transport‑params>
 <host‑key>
 <host‑key‑alg>algs:ssh‑rsa</host‑key‑alg>
 </host‑key>
 <key‑exchange>
 <key‑exchange‑alg>
 algs:diffie‑hellman‑group‑exchange‑sha256
 </key‑exchange‑alg>
 </key‑exchange>
 <encryption>
 <encryption‑alg>algs:aes256‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes192‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes128‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes256‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes192‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes128‑cbc</encryption‑alg>
 </encryption>
 <mac>
 <mac‑alg>algs:hmac‑sha2‑256</mac‑alg>
 <mac‑alg>algs:hmac‑sha2‑512</mac‑alg>
 </mac>
 </transport‑params>

 </ssh-client>

3.3. YANG Module

 This YANG module has normative references to
 [I-D.ietf-netconf-trust-anchors], and [I-D.ietf-netconf-keystore].

<CODE BEGINS> file "ietf‑ssh‑client@2018‑10‑22.yang"
module ietf‑ssh‑client {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑ssh‑client";
 prefix "sshc";

 import ietf‑ssh‑common {
 prefix sshcmn;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 import ietf‑trust‑anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf‑keystore {
 prefix ks;
 reference
 "RFC ZZZZ:
 YANG Data Model for a Centralized Keystore Mechanism";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

 "This module defines a reusable grouping for a SSH client that

 can be used as a basis for specific SSH client instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
}

 // features

feature ssh‑client‑transport‑params‑config {
 description
 "SSH transport layer parameters are configurable on an SSH
 client.";
}

 // groupings

 grouping ssh‑client‑grouping {
 description
 "A reusable grouping for configuring a SSH client without
 any consideration for how an underlying TCP session is
 established.";
 uses client‑identity‑grouping;
 uses server‑auth‑grouping;
 uses transport‑params‑grouping;
 }

 grouping client‑identity‑grouping {
 description
 "A reusable grouping for configuring a SSH client identity.";
 container client‑identity {
 description
 "The credentials used by the client to authenticate to

 the SSH server.";
 leaf username {
 type string;
 description
 "The username of this user. This will be the username
 used, for instance, to log into an SSH server.";
 }
 choice auth‑type {
 mandatory true;
 description
 "The authentication type.";
 leaf password {
 type string;
 description
 "A password to be used for client authentication.";
 }
 container public‑key {
 uses ks:local‑or‑keystore‑asymmetric‑key‑grouping;
 description
 "A locally‑defined or referenced asymmetric key pair
 to be used for client authentication.";
 reference
 "RFC ZZZZ:
 YANG Data Model for a Centralized Keystore Mechanism";
 }
 container certificate {
 if‑feature sshcmn:ssh‑x509‑certs;
 uses ks:local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping;
 description
 "A locally‑defined or referenced certificate
 to be used for client authentication.";
 reference
 "RFC ZZZZ
 YANG Data Model for a Centralized Keystore Mechanism";
 }
 } // end auth‑type
 } // end client‑identity
 } // end client‑identity‑grouping

 grouping server‑auth‑grouping {
 description
 "A reusable grouping for configuring SSH server
 authentication.";
 container server‑auth {
 must 'pinned‑ssh‑host‑keys or pinned‑ca‑certs or '
 + 'pinned‑server‑certs';
 description
 "Trusted server identities.";

 leaf pinned‑ssh‑host‑keys {
 if‑feature "ta:ssh‑host‑keys";
 type ta:pinned‑host‑keys‑ref;
 description
 "A reference to a list of SSH host keys used by the
 SSH client to authenticate SSH server host keys.
 A server host key is authenticated if it is an exact
 match to a configured SSH host key.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 leaf pinned‑ca‑certs {
 if‑feature sshcmn:ssh‑x509‑certs;
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the SSH client to authenticate
 SSH server certificates. A server certificate is
 authenticated if it has a valid chain of trust to
 a configured CA certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 leaf pinned‑server‑certs {
 if‑feature sshcmn:ssh‑x509‑certs;
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of server certificates used by
 the SSH client to authenticate SSH server certificates.
 A server certificate is authenticated if it is an
 exact match to a configured server certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 } // end server‑auth
 } // end server‑auth‑grouping

 grouping transport‑params‑grouping {
 description
 "A reusable grouping for configuring a SSH transport
 parameters.";
 container transport‑params {
 if‑feature ssh‑client‑transport‑params‑config;
 description
 "Configurable parameters of the SSH transport layer.";

 uses sshcmn:transport‑params‑grouping;
 }
 } // end transport‑params‑grouping

}
<CODE ENDS>

4. The SSH Server Model

4.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-ssh-
 server" module that does not have groupings expanded.

 module: ietf-ssh-server

grouping transport‑params‑grouping
 +‑‑ transport‑params {ssh‑server‑transport‑params‑config}?
 +‑‑‑u transport‑params‑grouping
grouping client‑auth‑grouping
 +‑‑ client‑cert‑auth {sshcmn:ssh‑x509‑certs}?
 +‑‑ pinned‑ca‑certs? ta:pinned‑certificates‑ref
 | {ta:x509‑certificates}?
 +‑‑ pinned‑client‑certs? ta:pinned‑certificates‑ref
 {ta:x509‑certificates}?
grouping server‑identity‑grouping
 +‑‑ server‑identity
 +‑‑ host‑key* [name]
 +‑‑ name? string
 +‑‑ (host‑key‑type)
 +‑‑:(public‑key)
 | +‑‑ public‑key
 | +‑‑‑u server‑identity‑grouping
 +‑‑:(certificate)
 +‑‑ certificate {sshcmn:ssh‑x509‑certs}?
 +‑‑‑u server‑identity‑grouping
grouping ssh‑server‑grouping
 +‑‑‑u server‑identity‑grouping
 +‑‑‑u client‑auth‑grouping
 +‑‑‑u transport‑params‑grouping

4.2. Example Usage

 This section presents two examples showing the ssh-server-grouping
 populated with some data. These examples are effectively the same
 except the first configures the server identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of
 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the server identity using a local
 key:

 [Note: '\' line wrapping for formatting only]

 <ssh-server xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!‑‑ which host‑keys will this SSH server present ‑‑>
 <server‑identity>
 <host‑key>
 <name>deployment‑specific‑certificate</name>
 <public‑key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto\
‑types">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 </public‑key>
 </host‑key>
 </server‑identity>

 <!‑‑ which client‑certs will this SSH server trust ‑‑>
 <client‑cert‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinned‑ca‑c\
erts>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinned‑cli\
ent‑certs>
 </client‑cert‑auth>

 <transport‑params>
 <host‑key>
 <host‑key‑alg>algs:ssh‑rsa</host‑key‑alg>
 </host‑key>
 <key‑exchange>
 <key‑exchange‑alg>
 algs:diffie‑hellman‑group‑exchange‑sha256
 </key‑exchange‑alg>
 </key‑exchange>
 <encryption>
 <encryption‑alg>algs:aes256‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes192‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes128‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes256‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes192‑cbc</encryption‑alg>

 <encryption‑alg>algs:aes128‑cbc</encryption‑alg>
 </encryption>
 <mac>
 <mac‑alg>algs:hmac‑sha2‑256</mac‑alg>
 <mac‑alg>algs:hmac‑sha2‑512</mac‑alg>
 </mac>
 </transport‑params>

 </ssh-server>

 The following example configures the server identity using a key from
 the keystore:

 [Note: '\' line wrapping for formatting only]

 <ssh-server xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!‑‑ which host‑keys will this SSH server present ‑‑>
 <server‑identity>
 <host‑key>
 <name>deployment‑specific‑certificate</name>
 <public‑key>
 <reference>ex‑rsa‑key</reference>
 </public‑key>
 </host‑key>
 </server‑identity>

 <!‑‑ which client‑certs will this SSH server trust ‑‑>
 <client‑cert‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinned‑ca‑c\
erts>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinned‑cli\
ent‑certs>
 </client‑cert‑auth>

 <transport‑params>
 <host‑key>
 <host‑key‑alg>algs:ssh‑rsa</host‑key‑alg>
 </host‑key>
 <key‑exchange>
 <key‑exchange‑alg>
 algs:diffie‑hellman‑group‑exchange‑sha256
 </key‑exchange‑alg>
 </key‑exchange>
 <encryption>
 <encryption‑alg>algs:aes256‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes192‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes128‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes256‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes192‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes128‑cbc</encryption‑alg>
 </encryption>
 <mac>
 <mac‑alg>algs:hmac‑sha2‑256</mac‑alg>
 <mac‑alg>algs:hmac‑sha2‑512</mac‑alg>
 </mac>
 </transport‑params>

 </ssh-server>

4.3. YANG Module

 This YANG module has normative references to
 [I-D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore] and
 informative references to [RFC4253] and [RFC7317].

<CODE BEGINS> file "ietf‑ssh‑server@2018‑10‑22.yang"
module ietf‑ssh‑server {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑ssh‑server";
 prefix "sshs";

 import ietf‑ssh‑common {
 prefix sshcmn;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 import ietf‑trust‑anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf‑keystore {
 prefix ks;
 reference
 "RFC ZZZZ:
 YANG Data Model for a Centralized Keystore Mechanism";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

 "This module defines a reusable grouping for a SSH server that

 can be used as a basis for specific SSH server instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
}

 // features

feature ssh‑server‑transport‑params‑config {
 description
 "SSH transport layer parameters are configurable on an SSH
 server.";
}

 // groupings

 grouping ssh‑server‑grouping {
 description
 "A reusable grouping for configuring a SSH server without
 any consideration for how underlying TCP sessions are
 established.";
 uses server‑identity‑grouping;
 uses client‑auth‑grouping;
 uses transport‑params‑grouping;
 }

 grouping server‑identity‑grouping {
 description
 "A reusable grouping for configuring an SSH server identity.";
 container server‑identity {
 description

 "The list of host‑keys the SSH server will present when
 establishing a SSH connection.";
 list host‑key {
 key name;
 min‑elements 1;
 ordered‑by user;
 description
 "An ordered list of host keys the SSH server will use to
 construct its ordered list of algorithms, when sending
 its SSH_MSG_KEXINIT message, as defined in Section 7.1
 of RFC 4253.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer
 Protocol";
 leaf name {
 type string;
 description
 "An arbitrary name for this host‑key";
 }
 choice host‑key‑type {
 mandatory true;
 description
 "The type of host key being specified";
 container public‑key {
 uses ks:local‑or‑keystore‑asymmetric‑key‑grouping;
 description
 "A locally‑defined or referenced asymmetric key pair
 to be used for the SSH server's host key.";
 reference
 "RFC ZZZZ: YANG Data Model for a Centralized
 Keystore Mechanism";
 }
 container certificate {
 if‑feature sshcmn:ssh‑x509‑certs;
 uses
 ks:local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping;
 description
 "A locally‑defined or referenced end‑entity
 certificate to be used for the SSH server's
 host key.";
 reference
 "RFC ZZZZ: YANG Data Model for a Centralized
 Keystore Mechanism";
 }
 }
 }
 } // end server‑identity
 } // end server‑identity‑grouping

 grouping client‑auth‑grouping {
 description
 "A reusable grouping for configuring a SSH client
 authentication.";
 container client‑cert‑auth {
 if‑feature sshcmn:ssh‑x509‑certs;
 description
 "A reference to a list of pinned certificate authority (CA)
 certificates and a reference to a list of pinned client
 certificates.

 Note: password and public‑key based client authentication
 are not configured in this YANG module as they are
 expected to be configured by the ietf‑system module
 defined in RFC 7317.";
 reference
 "RFC 7317: A YANG Data Model for System Management";
 leaf pinned‑ca‑certs {
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the SSH server to authenticate
 SSH client certificates. A client certificate is
 authenticated if it has a valid chain of trust to
 a configured pinned CA certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 leaf pinned‑client‑certs {
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of client certificates used by
 the SSH server to authenticate SSH client certificates.
 A clients certificate is authenticated if it is an
 exact match to a configured pinned client certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 }
 } // end client‑auth‑grouping

 grouping transport‑params‑grouping {
 description
 "A reusable grouping for configuring a SSH transport
 parameters.";
 container transport‑params {

 if‑feature ssh‑server‑transport‑params‑config;
 description
 "Configurable parameters of the SSH transport layer.";
 uses sshcmn:transport‑params‑grouping;
 }
 } // end transport‑params‑grouping

}
<CODE ENDS>

5. The SSH Common Model

 The SSH common model presented in this section contains identities
 and groupings common to both SSH clients and SSH servers. The
 transport-params-grouping can be used to configure the list of SSH
 transport algorithms permitted by the SSH client or SSH server. The
 lists of algorithms are ordered such that, if multiple algorithms are
 permitted by the client, the algorithm that appears first in its list
 that is also permitted by the server is used for the SSH transport
 layer connection. The ability to restrict the the algorithms allowed
 is provided in this grouping for SSH clients and SSH servers that are
 capable of doing so and may serve to make SSH clients and SSH servers
 compliant with security policies.

 [I-D.ietf-netconf-crypto-types]
 defines six categories of
 cryptographic algorithms (hash-algorithm, symmetric-key-encryption-
 algorithm, mac-algorithm, asymmetric-key-encryption-algorithm,
 signature-algorithm, key-negotiation-algorithm) and lists several
 widely accepted algorithms for each of them. The SSH client and
 server models use one or more of these algorithms. The SSH common
 model includes four parameters for configuring its permitted SSH
 algorithms, which are: host-key-alg, key-exchange-alg, encryption-alg
 and mac-alg. The following tables are provided, in part, to define
 the subset of algorithms defined in the crypto-types model used by
 SSH and, in part, to ensure compatibility of configured SSH
 cryptographic parameters for configuring its permitted SSH algorithms
 ("sshcmn" representing SSH common model, and "ct" representing
 crypto-types model which the SSH client/server model is based on):

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| sshcmn:host‑key‑alg | ct:signature‑algorithm |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
dsa‑sha1	dsa‑sha1
rsa‑pkcs1‑sha1	rsa‑pkcs1‑sha1
rsa‑pkcs1‑sha256	rsa‑pkcs1‑sha256
rsa‑pkcs1‑sha512	rsa‑pkcs1‑sha512
ecdsa‑secp256r1‑sha256	ecdsa‑secp256r1‑sha256
ecdsa‑secp384r1‑sha384	ecdsa‑secp384r1‑sha384
ecdsa‑secp521r1‑sha512	ecdsa‑secp521r1‑sha512
x509v3‑rsa‑pkcs1‑sha1	x509v3‑rsa‑pkcs1‑sha1
x509v3‑rsa2048‑pkcs1‑sha256	x509v3‑rsa2048‑pkcs1‑sha1
x509v3‑ecdsa‑secp256r1‑sha256	x509v3‑ecdsa‑secp256r1‑sha256
x509v3‑ecdsa‑secp384r1‑sha384	x509v3‑ecdsa‑secp384r1‑sha384
x509v3‑ecdsa‑secp521r1‑sha512	x509v3‑ecdsa‑secp521r1‑sha512
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1 The SSH Host-key-alg Compatibility Matrix

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| sshcmn:key‑exchange‑alg | ct:key‑negotiation‑algorithm |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
diffie‑hellman‑group14‑sha1	diffie‑hellman‑group14‑sha1
diffie‑hellman‑group14‑sha256	diffie‑hellman‑group14‑sha256
diffie‑hellman‑group15‑sha512	diffie‑hellman‑group15‑sha512
diffie‑hellman‑group16‑sha512	diffie‑hellman‑group16‑sha512
diffie‑hellman‑group17‑sha512	diffie‑hellman‑group17‑sha512
diffie‑hellman‑group18‑sha512	diffie‑hellman‑group18‑sha512
ecdh‑sha2‑secp256r1	ecdh‑sha2‑secp256r1
ecdh‑sha2‑secp384r1	ecdh‑sha2‑secp384r1
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2 The SSH Key-exchange-alg Compatibility Matrix

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| sshcmn:encryption‑alg | ct:symmetric‑key‑encryption‑algorithm |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
aes‑128‑cbc	aes‑128‑cbc
aes‑192‑cbc	aes‑192‑cbc
aes‑256‑cbc	aes‑256‑cbc
aes‑128‑ctr	aes‑128‑ctr
aes‑192‑ctr	aes‑192‑ctr
aes‑256‑ctr	aes‑256‑ctr
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 3 The SSH Encryption-alg Compatibility Matrix

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| sshcmn:mac‑alg | ct:mac‑algorithm |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
hmac‑sha1	hmac‑sha1
hmac‑sha1‑96	hmac‑sha1‑96
hmac‑sha2‑256	hmac‑sha2‑256
hmac‑sha2‑512	hmac‑sha2‑512
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 4 The SSH Mac-alg Compatibility Matrix

 As is seen in the tables above, the names of the "sshcmn" algorithms
 are all identical to the names of algorithms defined in
 [I-D.ietf-netconf-crypto-types]. While appearing to be redundant, it
 is important to realize that not all the algorithms defined in
 [I-D.ietf-netconf-crypto-types] are supported by SSH. That is, the
 algorithms supported by SSH are a subset of the algorithms defined in
 [I-D.ietf-netconf-crypto-types]. The algorithms used by SSH are
 redefined in this document in order to constrain the algorithms that
 may be selected to just the ones used by SSH.

 Features are defined for algorithms that are OPTIONAL or are not
 widely supported by popular implementations. Note that the list of
 algorithms is not exhaustive. As well, some algorithms that are
 REQUIRED by [RFC4253] are missing, notably "ssh-dss" and "diffie-
 hellman-group1-sha1" due to their weak security and there being
 alternatives that are widely supported.

5.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-ssh-common" module.

 module: ietf-ssh-common

grouping transport‑params‑grouping
 +‑‑ host‑key
 | +‑‑ host‑key‑alg* identityref
 +‑‑ key‑exchange
 | +‑‑ key‑exchange‑alg* identityref
 +‑‑ encryption
 | +‑‑ encryption‑alg* identityref
 +‑‑ mac
 +‑‑ mac‑alg* identityref

5.2. Example Usage

 This following example illustrates how the transport-params-grouping
 appears when populated with some data.

<transport‑params
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑ssh‑common"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf‑ssh‑common">
 <host‑key>
 <host‑key‑alg>algs:x509v3‑rsa2048‑sha256</host‑key‑alg>
 <host‑key‑alg>algs:ssh‑rsa</host‑key‑alg>
 </host‑key>
 <key‑exchange>
 <key‑exchange‑alg>
 algs:diffie‑hellman‑group‑exchange‑sha256
 </key‑exchange‑alg>
 </key‑exchange>
 <encryption>
 <encryption‑alg>algs:aes256‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes192‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes128‑ctr</encryption‑alg>
 <encryption‑alg>algs:aes256‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes192‑cbc</encryption‑alg>
 <encryption‑alg>algs:aes128‑cbc</encryption‑alg>
 </encryption>
 <mac>
 <mac‑alg>algs:hmac‑sha2‑256</mac‑alg>
 <mac‑alg>algs:hmac‑sha2‑512</mac‑alg>
 </mac>
</transport‑params>

5.3. YANG Module

 This YANG module has normative references to [RFC4253], [RFC4344],
 [RFC4419], [RFC5656], [RFC6187], and [RFC6668].

<CODE BEGINS> file "ietf‑ssh‑common@2018‑10‑22.yang"
module ietf‑ssh‑common {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑ssh‑common";
 prefix "sshcmn";

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

description
 "This module defines a common features, identities, and
 groupings for Secure Shell (SSH).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
}

 // features

feature ssh‑ecc {
 description
 "Elliptic Curve Cryptography is supported for SSH.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
}

feature ssh‑x509‑certs {
 description
 "X.509v3 certificates are supported for SSH per RFC 6187.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";

 }

feature ssh‑dh‑group‑exchange {
 description
 "Diffie‑Hellman Group Exchange is supported for SSH.";
 reference
 "RFC 4419: Diffie‑Hellman Group Exchange for the
 Secure Shell (SSH) Transport Layer Protocol";
}

feature ssh‑ctr {
 description
 "SDCTR encryption mode is supported for SSH.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer
 Encryption Modes";
}

feature ssh‑sha2 {
 description
 "The SHA2 family of cryptographic hash functions is
 supported for SSH.";
 reference
 "FIPS PUB 180‑4: Secure Hash Standard (SHS)";
}

 // identities

identity public‑key‑alg‑base {
 description
 "Base identity used to identify public key algorithms.";
}

identity ssh‑dss {
 base public‑key‑alg‑base;
 description
 "Digital Signature Algorithm using SHA‑1 as the
 hashing algorithm.";
 reference
 "RFC 4253:
 The Secure Shell (SSH) Transport Layer Protocol";
}

identity ssh‑rsa {
 base public‑key‑alg‑base;
 description
 "RSASSA‑PKCS1‑v1_5 signature scheme using SHA‑1 as the
 hashing algorithm.";

 reference
 "RFC 4253:
 The Secure Shell (SSH) Transport Layer Protocol";
}

identity ecdsa‑sha2‑nistp256 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the
 nistp256 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
}

identity ecdsa‑sha2‑nistp384 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the
 nistp384 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
}

identity ecdsa‑sha2‑nistp521 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the
 nistp521 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
}

identity x509v3‑ssh‑rsa {
 base public‑key‑alg‑base;
 if‑feature ssh‑x509‑certs;
 description
 "RSASSA‑PKCS1‑v1_5 signature scheme using a public key stored
 in an X.509v3 certificate and using SHA‑1 as the hashing
 algorithm.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";

 }

identity x509v3‑rsa2048‑sha256 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑x509‑certs and ssh‑sha2";
 description
 "RSASSA‑PKCS1‑v1_5 signature scheme using a public key stored
 in an X.509v3 certificate and using SHA‑256 as the hashing
 algorithm. RSA keys conveyed using this format MUST have a
 modulus of at least 2048 bits.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
}

identity x509v3‑ecdsa‑sha2‑nistp256 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑x509‑certs and ssh‑sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA)
 using the nistp256 curve with a public key stored in
 an X.509v3 certificate and using the SHA2 family of
 hashing algorithms.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
}

identity x509v3‑ecdsa‑sha2‑nistp384 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑x509‑certs and ssh‑sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA)
 using the nistp384 curve with a public key stored in
 an X.509v3 certificate and using the SHA2 family of
 hashing algorithms.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
}

identity x509v3‑ecdsa‑sha2‑nistp521 {
 base public‑key‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑x509‑certs and ssh‑sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA)
 using the nistp521 curve with a public key stored in
 an X.509v3 certificate and using the SHA2 family of

 hashing algorithms.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
}

identity key‑exchange‑alg‑base {
 description
 "Base identity used to identify key exchange algorithms.";
}

identity diffie‑hellman‑group14‑sha1 {
 base key‑exchange‑alg‑base;
 description
 "Diffie‑Hellman key exchange with SHA‑1 as HASH and
 Oakley Group 14 (2048‑bit MODP Group).";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity diffie‑hellman‑group‑exchange‑sha1 {
 base key‑exchange‑alg‑base;
 if‑feature ssh‑dh‑group‑exchange;
 description
 "Diffie‑Hellman Group and Key Exchange with SHA‑1 as HASH.";
 reference
 "RFC 4419: Diffie‑Hellman Group Exchange for the
 Secure Shell (SSH) Transport Layer Protocol";
}

identity diffie‑hellman‑group‑exchange‑sha256 {
 base key‑exchange‑alg‑base;
 if‑feature "ssh‑dh‑group‑exchange and ssh‑sha2";
 description
 "Diffie‑Hellman Group and Key Exchange with SHA‑256 as HASH.";
 reference
 "RFC 4419: Diffie‑Hellman Group Exchange for the
 Secure Shell (SSH) Transport Layer Protocol";
}

identity ecdh‑sha2‑nistp256 {
 base key‑exchange‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑sha2";
 description
 "Elliptic Curve Diffie‑Hellman (ECDH) key exchange using the
 nistp256 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";
}

identity ecdh‑sha2‑nistp384 {
 base key‑exchange‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑sha2";
 description
 "Elliptic Curve Diffie‑Hellman (ECDH) key exchange using the
 nistp384 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
}

identity ecdh‑sha2‑nistp521 {
 base key‑exchange‑alg‑base;
 if‑feature "ssh‑ecc and ssh‑sha2";
 description
 "Elliptic Curve Diffie‑Hellman (ECDH) key exchange using the
 nistp521 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
}

identity encryption‑alg‑base {
 description
 "Base identity used to identify encryption algorithms.";
}

identity triple‑des‑cbc {
 base encryption‑alg‑base;
 description
 "Three‑key 3DES in CBC mode.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity aes128‑cbc {
 base encryption‑alg‑base;
 description
 "AES in CBC mode, with a 128‑bit key.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

 identity aes192-cbc {

 base encryption-alg-base;

 description
 "AES in CBC mode, with a 192‑bit key.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity aes256‑cbc {
 base encryption‑alg‑base;
 description
 "AES in CBC mode, with a 256‑bit key.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity aes128‑ctr {
 base encryption‑alg‑base;
 if‑feature ssh‑ctr;
 description
 "AES in SDCTR mode, with 128‑bit key.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption
 Modes";
}

identity aes192‑ctr {
 base encryption‑alg‑base;
 if‑feature ssh‑ctr;
 description
 "AES in SDCTR mode, with 192‑bit key.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption
 Modes";
}

identity aes256‑ctr {
 base encryption‑alg‑base;
 if‑feature ssh‑ctr;
 description
 "AES in SDCTR mode, with 256‑bit key.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption
 Modes";
}

identity mac‑alg‑base {
 description
 "Base identity used to identify message authentication
 code (MAC) algorithms.";

 }

identity hmac‑sha1 {
 base mac‑alg‑base;
 description
 "HMAC‑SHA1";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
}

identity hmac‑sha2‑256 {
 base mac‑alg‑base;
 if‑feature "ssh‑sha2";
 description
 "HMAC‑SHA2‑256";
 reference
 "RFC 6668: SHA‑2 Data Integrity Verification for the
 Secure Shell (SSH) Transport Layer Protocol";
}

identity hmac‑sha2‑512 {
 base mac‑alg‑base;
 if‑feature "ssh‑sha2";
 description
 "HMAC‑SHA2‑512";
 reference
 "RFC 6668: SHA‑2 Data Integrity Verification for the
 Secure Shell (SSH) Transport Layer Protocol";
}

 // groupings

grouping transport‑params‑grouping {
 description
 "A reusable grouping for SSH transport parameters.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 container host‑key {
 description
 "Parameters regarding host key.";
 leaf‑list host‑key‑alg {
 type identityref {
 base public‑key‑alg‑base;
 }
 ordered‑by user;
 description
 "Acceptable host key algorithms in order of descending
 preference. The configured host key algorithms should

 be compatible with the algorithm used by the configured
 private key. Please see Section 5 of RFC XXXX for
 valid combinations.

 If this leaf‑list is not configured (has zero elements)
 the acceptable host key algorithms are implementation‑
 defined.";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }
 }
 container key‑exchange {
 description
 "Parameters regarding key exchange.";
 leaf‑list key‑exchange‑alg {
 type identityref {
 base key‑exchange‑alg‑base;
 }
 ordered‑by user;
 description
 "Acceptable key exchange algorithms in order of descending
 preference.

 If this leaf‑list is not configured (has zero elements)
 the acceptable key exchange algorithms are implementation
 defined.";
 }
 }
 container encryption {
 description
 "Parameters regarding encryption.";
 leaf‑list encryption‑alg {
 type identityref {
 base encryption‑alg‑base;
 }
 ordered‑by user;
 description
 "Acceptable encryption algorithms in order of descending
 preference.

 If this leaf‑list is not configured (has zero elements)
 the acceptable encryption algorithms are implementation
 defined.";
 }
 }
 container mac {
 description
 "Parameters regarding message authentication code (MAC).";

 leaf‑list mac‑alg {
 type identityref {
 base mac‑alg‑base;
 }
 ordered‑by user;
 description
 "Acceptable MAC algorithms in order of descending
 preference.

 If this leaf‑list is not configured (has zero elements)
 the acceptable MAC algorithms are implementation‑
 defined.";
 }
 }

 } // transport-params-grouping

}
<CODE ENDS>

6. Security Considerations

 The YANG modules defined in this document are designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 Since the modules defined in this document define only groupings,
 these considerations are primarily for the designers of other modules
 that use these groupings.

 There are a number of data nodes defined in the YANG modules that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree defined by all the modules defined in this

 draft are sensitive to write operations. For instance, the
 addition or removal of references to keys, certificates,
 trusted anchors, etc., can dramatically alter the implemented
 security policy. However, no NACM annotations are applied as
 the data SHOULD be editable by users other than a designated
 'recovery session'.

 Some of the readable data nodes in the YANG modules may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

/client‑auth/password: This node in the 'ietf‑ssh‑client' module
 is additionally sensitive to read operations such that, in
 normal use cases, it should never be returned to a client. The
 only time this node should be returned is to support backup/
 restore type workflows. However, no NACM annotations are
 applied as the data SHOULD be writable by users other than a
 designated 'recovery session'.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers three URIs in the "ns" subregistry of the
 IETF XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑ssh‑client
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf‑ssh‑server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf‑ssh‑common
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

7.2. The YANG Module Names Registry

 This document registers three YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

name: ietf‑ssh‑client
namespace: urn:ietf:params:xml:ns:yang:ietf‑ssh‑client
prefix: sshc
reference: RFC XXXX
name: ietf‑ssh‑server
namespace: urn:ietf:params:xml:ns:yang:ietf‑ssh‑server
prefix: sshs
reference: RFC XXXX
name: ietf‑ssh‑common
namespace: urn:ietf:params:xml:ns:yang:ietf‑ssh‑common
prefix: sshcmn
reference: RFC XXXX

8. References

8.1. Normative References

 [I-D.ietf-netconf-crypto-types]

 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [I-D.ietf-netconf-keystore]

 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-trust-anchors]

 Watsen, K., "YANG Data Model for Global Trust Anchors",
 draft-ietf-netconf-trust-anchors-01 (work in progress),
 September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4344]
 Bellare, M., Kohno, T., and C. Namprempre, "The Secure
 Shell (SSH) Transport Layer Encryption Modes", RFC 4344,
 DOI 10.17487/RFC4344, January 2006,
 <https://www.rfc-editor.org/info/rfc4344>.

 [RFC4419]
 Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
 Group Exchange for the Secure Shell (SSH) Transport Layer
 Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,
 <https://www.rfc-editor.org/info/rfc4419>.

 [RFC5656]
 Stebila, D. and J. Green, "Elliptic Curve Algorithm
 Integration in the Secure Shell Transport Layer",
 RFC 5656, DOI 10.17487/RFC5656, December 2009,
 <https://www.rfc-editor.org/info/rfc5656>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6187]
 Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <https://www.rfc-editor.org/info/rfc6187>.

 [RFC6668]
 Bider, D. and M. Baushke, "SHA-2 Data Integrity
 Verification for the Secure Shell (SSH) Transport Layer
 Protocol", RFC 6668, DOI 10.17487/RFC6668, July 2012,
 <https://www.rfc-editor.org/info/rfc6668>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

8.2. Informative References

 [OPENSSH]
 "OpenSSH", 2016, <http://www.openssh.com>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4252]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
 January 2006, <https://www.rfc-editor.org/info/rfc4252>.

 [RFC4253]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4254]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,
 January 2006, <https://www.rfc-editor.org/info/rfc4254>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7317]
 Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <https://www.rfc-editor.org/info/rfc7317>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Change Log

A.1. 00 to 01

 o Noted that '0.0.0.0' and '::' might have special meanings.

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Removed the groupings 'listening-ssh-client-grouping' and
 'listening-ssh-server-grouping'. Now modules only contain the
 transport-independent groupings.

 o Simplified the "client-auth" part in the ietf-ssh-client module.
 It now inlines what it used to point to keystore for.

 o Added cipher suites for various algorithms into new 'ietf-ssh-
 common' module.

A.3. 02 to 03

 o Removed 'RESTRICTED' enum from 'password' leaf type.

 o Added a 'must' statement to container 'server-auth' asserting that
 at least one of the various auth mechanisms must be specified.

 o Fixed description statement for leaf 'trusted-ca-certs'.

A.4. 03 to 04

 o Change title to "YANG Groupings for SSH Clients and SSH Servers"

 o Added reference to RFC 6668

 o Added RFC 8174 to Requirements Language Section.

 o Enhanced description statement for ietf-ssh-server's "trusted-ca-
 certs" leaf.

 o Added mandatory true to ietf-ssh-client's "client-auth" 'choice'
 statement.

 o Changed the YANG prefix for module ietf-ssh-common from 'sshcom'
 to 'sshcmn'.

 o Removed the compression algorithms as they are not commonly
 configurable in vendors' implementations.

 o Updating descriptions in transport-params-grouping and the
 servers's usage of it.

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated YANG to use typedefs around leafrefs to common keystore
 paths

 o Now inlines key and certificates (no longer a leafref to keystore)

A.5. 04 to 05

 o Merged changes from co-author.

A.6. 05 to 06

 o Updated to use trust anchors from trust-anchors draft (was
 keystore draft)

 o Now uses new keystore grouping enabling asymmetric key to be
 either locally defined or a reference to the keystore.

A.7. 06 to 07

 o factored the ssh-[client|server]-groupings into more reusable
 groupings.

 o added if-feature statements for the new "ssh-host-keys" and
 "x509-certificates" features defined in draft-ietf-netconf-trust-
 anchors.

A.8. 07 to 08

 o Added a number of compatibility matricies to Section 5 (thanks
 Frank!)

 o Claified that any configured "host-key-alg" values need to be
 compatible with the configured private key.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, Michal Vasko, and
 Bert Wijnen.

Authors' Addresses

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

Gary Wu
Cisco Systems

 EMail: garywu@cisco.com

Liang Xia
Huawei

 EMail: frank.xialiang@huawei.com

draft-ietf-netconf-subscribed-notifications-21 - Subscription to YANG Event Noti

Index
Back 5
Prev
Next
Forward 5

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: July 13, 2019

E. Voit

Cisco Systems

A. Clemm

Huawei

A. Gonzalez Prieto

Microsoft

E. Nilsen-Nygaard

A. Tripathy

Cisco Systems

January 9, 2019

Subscription to YANG Event Notifications

draft-ietf-netconf-subscribed-notifications-21

Abstract

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher's event
 streams. Applying these elements allows a subscriber to request for
 and receive a continuous, custom feed of publisher generated
 information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 13, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Motivation

	 1.2. Terminology

	 1.3. Solution Overview

	 1.4. Relationship to RFC 5277

	2. Solution
	 2.1. Event Streams

	 2.2. Event Stream Filters

	 2.3. QoS

	 2.4. Dynamic Subscriptions

	 2.5. Configured Subscriptions

	 2.6. Event Record Delivery

	 2.7. subscription state change notifications

	 2.8. Subscription Monitoring

	 2.9. Advertisement

	3. YANG Data Model Trees
	 3.1. Event Streams Container

	 3.2. Filters Container

	 3.3. Subscriptions Container

	4. Data Model

	5. Considerations
	 5.1. IANA Considerations

	 5.2. Implementation Considerations

	 5.3. Transport Requirements

	 5.4. Security Considerations

	6. Acknowledgments

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Appendix A. Example Configured Transport Augmentation

	Appendix B. Changes between revisions

	Authors' Addresses

1. Introduction

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher's event
 streams. Effectively this enables a 'subscribe then publish'
 capability where the customized information needs and access
 permissions of each target receiver are understood by the publisher
 before subscribed event records are marshaled and pushed. The
 receiver then gets a continuous, custom feed of publisher generated
 information.

 While the functionality defined in this document is transport-
 agnostic, transports like NETCONF [RFC6241] or RESTCONF [RFC8040] can
 be used to configure or dynamically signal subscriptions, and there
 are bindings defined for subscribed event record delivery for NETCONF
 within [I-D.draft-ietf-netconf-netconf-event-notifications], and for
 RESTCONF within [I-D.draft-ietf-netconf-restconf-notif].

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342].

1.1. Motivation

 Various limitations in [RFC5277] are discussed in [RFC7923].
 Resolving these issues is the primary motivation for this work. Key
 capabilities supported by this document include:

 o multiple subscriptions on a single transport session

 o support for dynamic and configured subscriptions

 o modification of an existing subscription in progress

 o per-subscription operational counters

 o negotiation of subscription parameters (through the use of hints
 returned as part of declined subscription requests)

 o subscription state change notifications (e.g., publisher driven
 suspension, parameter modification)

 o independence from transport

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Client: defined in [RFC8342].

 Configuration: defined in [RFC8342].

 Configuration datastore: defined in [RFC8342].

 Configured subscription: A subscription installed via configuration
 into a configuration datastore.

 Dynamic subscription: A subscription created dynamically by a
 subscriber via a remote procedure call.

 Event: An occurrence of something that may be of interest. Examples
 include a configuration change, a fault, a change in status, crossing
 a threshold, or an external input to the system.

 Event occurrence time: a timestamp matching the time an originating
 process identified as when an event happened.

 Event record: A set of information detailing an event.

 Event stream: A continuous, chronologically ordered set of events
 aggregated under some context.

 Event stream filter: Evaluation criteria which may be applied against
 event records within an event stream. Event records pass the filter
 when specified criteria are met.

 Notification message: Information intended for a receiver indicating
 that one or more events have occurred.

 Publisher: An entity responsible for streaming notification messages
 per the terms of a subscription.

 Receiver: A target to which a publisher pushes subscribed event
 records. For dynamic subscriptions, the receiver and subscriber are
 the same entity.

 Subscriber: A client able to request and negotiate a contract for the
 generation and push of event records from a publisher. For dynamic
 subscriptions, the receiver and subscriber are the same entity.

 Subscription: A contract with a publisher, stipulating which
 information one or more receivers wish to have pushed from the
 publisher without the need for further solicitation.

 All YANG tree diagrams used in this document follow the notation
 defined in [RFC8340].

1.3. Solution Overview

 This document describes a transport agnostic mechanism for
 subscribing to and receiving content from an event stream within a
 publisher. This mechanism is through the use of a subscription.

 Two types of subscriptions are supported:

 1. Dynamic subscriptions, where a subscriber initiates a
 subscription negotiation with a publisher via an RPC. If the
 publisher is able to serve this request, it accepts it, and then
 starts pushing notification messages back to the subscriber. If
 the publisher is not able to serve it as requested, then an error
 response is returned. This response MAY include hints at
 subscription parameters that, had they been present, may have
 enabled the dynamic subscription request to be accepted.

 2. Configured subscriptions, which allow the management of
 subscriptions via a configuration so that a publisher can send
 notification messages to a receiver. Support for configured
 subscriptions is optional, with its availability advertised via a
 YANG feature.

 Additional characteristics differentiating configured from dynamic
 subscriptions include:

 o The lifetime of a dynamic subscription is bound by the transport
 session used to establish it. For connection-oriented stateful
 transports like NETCONF, the loss of the transport session will
 result in the immediate termination of any associated dynamic
 subscriptions. For connectionless or stateless transports like
 HTTP, a lack of receipt acknowledgment of a sequential set of
 notification messages and/or keep-alives can be used to trigger a
 termination of a dynamic subscription. Contrast this to the
 lifetime of a configured subscription. This lifetime is driven by
 relevant configuration being present within the publisher's
 applied configuration. Being tied to configuration operations
 implies configured subscriptions can be configured to persist
 across reboots, and implies a configured subscription can persist
 even when its publisher is fully disconnected from any network.

 o Configured subscriptions can be modified by any configuration
 client with write permission on the configuration of the
 subscription. Dynamic subscriptions can only be modified via an
 RPC request made by the original subscriber, or a change to
 configuration data referenced by the subscription.

 Note that there is no mixing-and-matching of dynamic and configured
 operations on a single subscription. Specifically, a configured
 subscription cannot be modified or deleted using RPCs defined in this
 document. Similarly, a dynamic subscription cannot be directly
 modified or deleted by configuration operations. It is however
 possible to perform a configuration operation which indirectly
 impacts a dynamic subscription. By changing value of a pre-
 configured filter referenced by an existing dynamic subscription, the
 selected event records passed to a receiver might change.

 Also note that transport specific transport drafts based on this
 specification MUST detail the life cycle of dynamic subscriptions, as
 well as the lifecycle of configured subscriptions (if supported).

 A publisher MAY terminate a dynamic subscription at any time.
 Similarly, it MAY decide to temporarily suspend the sending of
 notification messages for any dynamic subscription, or for one or
 more receivers of a configured subscription. Such termination or
 suspension is driven by internal considerations of the publisher.

1.4. Relationship to RFC 5277

 This document is intended to provide a superset of the subscription
 capabilities initially defined within [RFC5277]. Especially when
 extending an existing [RFC5277] implementation, it is important to
 understand what has been reused and what has been replaced. Key
 relationships between these two documents include:

 o this document defines a transport independent capability,
 [RFC5277] is specific to NETCONF.

 o the data model in this document is used instead of the data model
 in Section 3.4 of [RFC5277] for the new operations.

 o the RPC operations in this draft replace the operation "create-
 subscription" defined in [RFC5277], section 4.

 o the <notification> message of [RFC5277], Section 4 is used.

 o the included contents of the "NETCONF" event stream are identical
 between this document and [RFC5277].

 o a publisher MAY implement both the Notification Management Schema
 and RPCs defined in [RFC5277] and this new document concurrently.

 o unlike [RFC5277], this document enables a single transport session
 to intermix notification messages and RPCs for different
 subscriptions.

2. Solution

 Per the overview provided in Section 1.3, this section details the
 overall context, state machines, and subsystems which may be
 assembled to allow the subscription of events from a publisher.

2.1. Event Streams

 An event stream is a named entity on a publisher which exposes a
 continuously updating set of YANG encoded event records. An event
 record is an intantiation of a "notification" YANG statement. If the
 "notification" is defined as a child to a data node, the intantiation
 includes the hierarchy of nodes that identifies the data node in the
 datastore (see Section 7.16.2 of [RFC7950]). Each event stream is
 available for subscription. It is out of the scope of this document
 to identify a) how event streams are defined (other than the NETCONF
 stream), b) how event records are defined/generated, and c) how event
 records are assigned to event streams.

 There is only one reserved event stream name within this document:
 "NETCONF". The "NETCONF" event stream contains all NETCONF event
 record information supported by the publisher, except where an event
 record has explicitly been excluded from the stream. Beyond the
 "NETCONF" stream, implementations MAY define additional event
 streams.

 As YANG encoded event records are created by a system, they may be
 assigned to one or more streams. The event record is distributed to
 a subscription's receiver(s) where: (1) a subscription includes the
 identified stream, and (2) subscription filtering does not exclude
 the event record from that receiver.

 Access control permissions may be used to silently exclude event
 records from within an event stream for which the receiver has no
 read access. As an example of how this might be accomplished, see
 [RFC8341] section 3.4.6. Note that per Section 2.7 of this document,
 subscription state change notifications are never filtered out.

 If no access control permissions are in place for event records on an
 event stream, then a receiver MUST be allowed access to all the event
 records. If subscriber permissions change during the lifecycle of a
 subscription and event stream access is no longer permitted, then the
 subscription MUST be terminated.

 Event records MUST NOT be delivered to a receiver in a different
 order than they were placed onto an event stream.

2.2. Event Stream Filters

 This document defines an extensible filtering mechanism. The filter
 itself is a boolean test which is placed on the content of an event
 record. A 'false' filtering result causes the event message to be
 excluded from delivery to a receiver. A filter never results in
 information being stripped from within an event record prior to that
 event record being encapsulated within a notification message. The
 two optional event stream filtering syntaxes supported are [XPATH]
 and subtree [RFC6241].

 If no event stream filter is provided within a subscription, all
 event records on an event stream are to be sent.

2.3. QoS

 This document provide for several QoS parameters. These parameters
 indicate the treatment of a subscription relative to other traffic
 between publisher and receiver. Included are:

 o A "dscp" marking to differentiate prioritization of notification
 messages during network transit.

 o A "weighting" so that bandwidth proportional to this weighting can
 be allocated to this subscription relative to other subscriptions.

 o a "dependency" upon another subscription.

 If the publisher supports the "dscp" feature, then a subscription
 with a "dscp" leaf MUST result in a corresponding [RFC2474] DSCP
 marking being placed within the IP header of any resulting
 notification messages and subscription state change notifications.

 For the "weighting" parameter, when concurrently dequeuing
 notification messages from multiple subscriptions to a receiver, the
 publisher MUST allocate bandwidth to each subscription proportionally
 to the weights assigned to those subscriptions. "Weighting" is an
 optional capability of the publisher; support for it is identified
 via the "qos" feature.

 If a subscription has the "dependency" parameter set, then any
 buffered notification messages containing event records selected by
 the parent subscription MUST be dequeued prior to the notification
 messages of the dependent subscription. If notification messages
 have dependencies on each other, the notification message queued the
 longest MUST go first. If a "dependency" included within an RPC
 references a subscription which does not exist or is no longer
 accessible to that subscriber, that "dependency" MUST be silently
 removed. "Dependency" is an optional capability of the publisher;
 support for it is identified via the "qos" feature.

2.4. Dynamic Subscriptions

 Dynamic subscriptions are managed via protocol operations (in the
 form of [RFC7950], Section 7.14 RPCs) made against targets located
 within the publisher. These RPCs have been designed extensibly so
 that they may be augmented for subscription targets beyond event
 streams. For examples of such augmentations, see the RPC
 augmentations within [I-D.ietf-netconf-yang-push]'s YANG model.

2.4.1. Dynamic Subscription State Model

 Below is the publisher's state machine for a dynamic subscription.
 Each state is shown in its own box. It is important to note that
 such a subscription doesn't exist at the publisher until an
 "establish-subscription" RPC is accepted. The mere request by a
 subscriber to establish a subscription is insufficient for that
 subscription to be externally visible. Start and end states are
 depicted to reflect subscription creation and deletion events.

 : start :
 :.......:
 |
 establish‑subscription
 |
 | .‑‑‑‑‑‑‑modify‑subscription‑‑‑‑‑‑‑‑.
 v v |
 .‑‑‑‑‑‑‑‑‑‑‑. .‑‑‑‑‑‑‑‑‑‑‑.
 .‑‑‑‑‑‑‑‑. | receiver |‑‑insufficient CPU, b/w‑‑>| receiver |
modify‑ '| active | | suspended |
subscription | |<‑‑‑‑CPU, b/w sufficient‑‑| |
 ‑‑‑‑‑‑‑‑‑‑>'‑‑‑‑‑‑‑‑‑‑‑' '‑‑‑‑‑‑‑‑‑‑‑'
 | |
 delete/kill‑subscription delete/kill‑
 | subscription
 v |
 |
 : end :<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑'
 :.......:

 Figure 1: Publisher's state for a dynamic subscription

 Of interest in this state machine are the following:

 o Successful "establish-subscription" or "modify-subscription" RPCs
 put the subscription into the active state.

 o Failed "modify-subscription" RPCs will leave the subscription in
 its previous state, with no visible change to any streaming
 updates.

 o A "delete-subscription" or "kill-subscription" RPC will end the
 subscription, as will the reaching of a "stop-time".

 o A publisher may choose to suspend a subscription when there is
 insufficient CPU or bandwidth available to service the
 subscription. This is notified to a subscriber with a
 "subscription-suspended" subscription state change notification.

 o A suspended subscription may be modified by the subscriber (for
 example in an attempt to use fewer resources). Successful
 modification returns the subscription to the active state.

 o Even without a "modify-subscription" request, a publisher may
 return a subscription to the active state should the resource
 constraints become sufficient again. This is announced to the
 subscriber via the "subscription-resumed" subscription state
 change notification.

2.4.2. Establishing a Dynamic Subscription

 The "establish-subscription" RPC allows a subscriber to request the
 creation of a subscription.

 The input parameters of the operation are:

 o A "stream" name which identifies the targeted event stream against
 which the subscription is applied.

 o An event stream filter which may reduce the set of event records
 pushed.

 o Where the transport used by the RPC supports multiple encodings,
 an optional "encoding" for the event records pushed. If no
 "encoding" is included, the encoding of the RPC MUST be used.

 o An optional "stop-time" for the subscription. If no "stop-time"
 is present, notification messages will continue to be sent until
 the subscription is terminated.

 o An optional "replay-start-time" for the subscription. The
 "replay-start-time" MUST be in the past and indicates that the

 subscription is requesting a replay of previously generated
 information from the event stream. For more on replay, see
 Section 2.4.2.1. Where there is no "replay-start-time", the
 subscription starts immediately.

 If the publisher can satisfy the "establish-subscription" request, it
 replies with an identifier for the subscription, and then immediately
 starts streaming notification messages.

 Below is a tree diagram for "establish-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑x establish‑subscription
 +‑‑‑w input
 | +‑‑‑w (target)
 | | +‑‑:(stream)
 | | +‑‑‑w (stream‑filter)?
 | | | +‑‑:(by‑reference)
 | | | | +‑‑‑w stream‑filter‑name
 | | | | stream‑filter‑ref
 | | | +‑‑:(within‑subscription)
 | | | +‑‑‑w (filter‑spec)?
 | | | +‑‑:(stream‑subtree‑filter)
 | | | | +‑‑‑w stream‑subtree‑filter? <anydata>
 | | | | {subtree}?
 | | | +‑‑:(stream‑xpath‑filter)
 | | | +‑‑‑w stream‑xpath‑filter?
 | | | yang:xpath1.0 {xpath}?
 | | +‑‑‑w stream stream‑ref
 | | +‑‑‑w replay‑start‑time?
 | | yang:date‑and‑time {replay}?
 | +‑‑‑w stop‑time?
 | | yang:date‑and‑time
 | +‑‑‑w dscp? inet:dscp
 | | {dscp}?
 | +‑‑‑w weighting? uint8
 | | {qos}?
 | +‑‑‑w dependency?
 | | subscription‑id {qos}?
 | +‑‑‑w encoding? encoding
 +‑‑ro output
 +‑‑ro id subscription‑id
 +‑‑ro replay‑start‑time‑revision? yang:date‑and‑time
 {replay}?

 Figure 2: establish-subscription RPC tree diagram

 A publisher MAY reject the "establish-subscription" RPC for many
 reasons as described in Section 2.4.6. The contents of the resulting
 RPC error response MAY include details on input parameters which if
 considered in a subsequent "establish-subscription" RPC, may result
 in a successful subscription establishment. Any such hints MUST be
 transported within a yang-data "establish-subscription-stream-error-
 info" container included within the RPC error response.

yang‑data establish‑subscription‑stream‑error‑info
 +‑‑ro establish‑subscription‑stream‑error‑info
 +‑‑ro reason? identityref
 +‑‑ro filter‑failure‑hint? string

 Figure 3: establish-subscription RPC yang-data tree diagram

2.4.2.1. Requesting a replay of event records

 Replay provides the ability to establish a subscription which is also
 capable of passing recently generated event records. In other words,
 as the subscription initializes itself, it sends any event records
 within the target event stream which meet the filter criteria, which
 have an event time which is after the "replay-start-time", and which
 have an event time before the "stop-time" should this "stop-time"
 exist. The end of these historical event records is identified via a
 "replay-completed" subscription state change notification. Any event
 records generated since the subscription establishment may then
 follow. For a particular subscription, all event records will be
 delivered in the order they are placed into the event stream.

 Replay is an optional feature which is dependent on an event stream
 supporting some form of logging. This document puts no restrictions
 on the size or form of the log, where it resides within the
 publisher, or when event record entries in the log are purged.

 The inclusion of a "replay-start-time" within an "establish-
 subscription" RPC indicates a replay request. If the "replay-start-
 time" contains a value that is earlier than what a publisher's
 retained history supports, then if the subscription is accepted, the
 actual publisher's revised start time MUST be set in the returned
 "replay-start-time-revision" object.

 A "stop-time" parameter may be included in a replay subscription.
 For a replay subscription, the "stop-time" MAY be earlier than the
 current time, but MUST be later than the "replay-start-time".

 If the given "replay-start-time" is later than the time marked within
 any event records retained within the replay buffer, then the
 publisher MUST send a "replay-completed" notification immediately
 after a successful establish-subscription RPC response.

 If an event stream supports replay, the "replay-support" leaf is
 present in the "/streams/stream" list entry for the event stream. An
 event stream that does support replay is not expected to have an
 unlimited supply of saved notifications available to accommodate any
 given replay request. To assess the timeframe available for replay,
 subscribers can read the leafs "replay-log-creation-time" and
 "replay-log-aged-time". See Figure 18 for the YANG tree, and
 Section 4 for the YANG model describing these elements. The actual
 size of the replay log at any given time is a publisher specific
 matter. Control parameters for the replay log are outside the scope
 of this document.

2.4.3. Modifying a Dynamic Subscription

 The "modify-subscription" operation permits changing the terms of an
 existing dynamic subscription. Dynamic subscriptions can be modified
 any number of times. Dynamic subscriptions can only be modified via
 this RPC using a transport session connecting to the subscriber. If
 the publisher accepts the requested modifications, it acknowledges
 success to the subscriber, then immediately starts sending event
 records based on the new terms.

 Subscriptions created by configuration cannot be modified via this
 RPC. However configuration may be used to modify objects referenced
 by the subscription (such as a referenced filter).

 Below is a tree diagram for "modify-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑x modify‑subscription
 +‑‑‑w input
 +‑‑‑w id
 | subscription‑id
 +‑‑‑w (target)
 | +‑‑:(stream)
 | +‑‑‑w (stream‑filter)?
 | +‑‑:(by‑reference)
 | | +‑‑‑w stream‑filter‑name
 | | stream‑filter‑ref
 | +‑‑:(within‑subscription)
 | +‑‑‑w (filter‑spec)?
 | +‑‑:(stream‑subtree‑filter)
 | | +‑‑‑w stream‑subtree‑filter? <anydata>
 | | {subtree}?
 | +‑‑:(stream‑xpath‑filter)
 | +‑‑‑w stream‑xpath‑filter?
 | yang:xpath1.0 {xpath}?
 +‑‑‑w stop‑time?
 yang:date‑and‑time

 Figure 4: modify-subscription RPC tree diagram

 If the publisher accepts the requested modifications on a currently
 suspended subscription, the subscription will immediately be resumed
 (i.e., the modified subscription is returned to the active state.)
 The publisher MAY immediately suspend this newly modified
 subscription through the "subscription-suspended" notification before
 any event records are sent.

 If the publisher rejects the RPC request, the subscription remains as
 prior to the request. That is, the request has no impact whatsoever.
 Rejection of the RPC for any reason is indicated by via RPC error as
 described in Section 2.4.6. The contents of such a rejected RPC MAY
 include hints on inputs which (if considered) may result in a
 successfully modified subscription. These hints MUST be transported
 within a yang-data "modify-subscription-stream-error-info" container
 inserted into the RPC error response.

 Below is a tree diagram for "modify-subscription-RPC-yang-data". All
 objects contained in this tree are described within the included YANG
 model within Section 4.

yang‑data modify‑subscription‑stream‑error‑info
 +‑‑ro modify‑subscription‑stream‑error‑info
 +‑‑ro reason? identityref
 +‑‑ro filter‑failure‑hint? string

 Figure 5: modify-subscription RPC yang-data tree diagram

2.4.4. Deleting a Dynamic Subscription

 The "delete-subscription" operation permits canceling an existing
 subscription. If the publisher accepts the request, and the
 publisher has indicated success, the publisher MUST NOT send any more
 notification messages for this subscription.

 Below is a tree diagram for "delete-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑x delete‑subscription
 +‑‑‑w input
 +‑‑‑w id subscription‑id

 Figure 6: delete-subscription RPC tree diagram

 Dynamic subscriptions can only be deleted via this RPC using a
 transport session connecting to the subscriber. Configured
 subscriptions cannot be deleted using RPCs.

2.4.5. Killing a Dynamic Subscription

 The "kill-subscription" operation permits an operator to end a
 dynamic subscription which is not associated with the transport
 session used for the RPC. A publisher MUST terminate any dynamic
 subscription identified by the "id" parameter in the RPC request, if
 such a subscription exists.

 Configured subscriptions cannot be killed using this RPC. Instead,
 configured subscriptions are deleted as part of regular configuration
 operations. Publishers MUST reject any RPC attempt to kill a
 configured subscription.

 Below is a tree diagram for "kill-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑x kill‑subscription
 +‑‑‑w input
 +‑‑‑w id subscription‑id

 Figure 7: kill-subscription RPC tree diagram

2.4.6. RPC Failures

 Whenever an RPC is unsuccessful, the publisher returns relevant
 information as part of the RPC error response. Transport level error
 processing MUST be done before RPC error processing described in this
 section. In all cases, RPC error information returned will use
 existing transport layer RPC structures, such as those seen with
 NETCONF in [RFC6241] Appendix A, or with RESTCONF in [RFC8040]
 Section 7.1. These structures MUST be able to encode subscription
 specific errors identified below and defined within this document's
 YANG model.

 As a result of this mixture, how subscription errors are encoded
 within an RPC error response is transport dependent. Following are
 valid errors which can occur for each RPC:

establish‑subscription modify‑subscription
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
dscp‑unavailable filter‑unsupported
encoding‑unsupported insufficient‑resources
filter‑unsupported no‑such‑subscription
insufficient‑resources
replay‑unsupported

delete‑subscription kill‑subscription
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
no‑such‑subscription no‑such‑subscription

 To see a NETCONF based example of an error response from above, see
 [I-D.draft-ietf-netconf-netconf-event-notifications], Figure 10.

 There is one final set of transport independent RPC error elements
 included in the YANG model. These are three yang-data structures
 which enable the publisher to provide to the receiver that error
 information which does not fit into existing transport layer RPC
 structures. These three yang-data structures are:

 1. "establish-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere within the transport portion of a failed
 "establish-subscription" RPC response. This MUST be sent if
 hints on how to overcome the RPC error are included.

 2. "modify-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere within the transport portion of a failed
 "modify-subscription" RPC response. This MUST be sent if hints
 on how to overcome the RPC error are included.

 3. "delete-subscription-error-info": This MUST be returned with the
 leaf "reason" populated if an RPC error reason has not been
 placed elsewhere within the transport portion of a failed
 "delete-subscription" or "kill-subscription" RPC response.

2.5. Configured Subscriptions

 A configured subscription is a subscription installed via
 configuration. Configured subscriptions may be modified by any
 configuration client with the proper permissions. Subscriptions can
 be modified or terminated via configuration at any point of their
 lifetime. Multiple configured subscriptions MUST be supportable over
 a single transport session.

 Configured subscriptions have several characteristics distinguishing
 them from dynamic subscriptions:

 o persistence across publisher reboots,

 o persistence even when transport is unavailable, and

 o an ability to send notification messages to more than one receiver
 (note that receivers are unaware of the existence of any other
 receivers.)

 On the publisher, supporting configured subscriptions is optional and
 advertised using the "configured" feature. On a receiver of a
 configured subscription, support for dynamic subscriptions is
 optional except where replaying missed event records is required.

 In addition to the subscription parameters available to dynamic
 subscriptions described in Section 2.4.2, the following additional
 parameters are also available to configured subscriptions:

 o A "transport" which identifies the transport protocol to use to
 connect with all subscription receivers.

 o One or more receivers, each intended as the destination for event
 records. Note that each individual receiver is identifiable by
 its "name".

 o Optional parameters to identify where traffic should egress a
 publisher:

 * A "source-interface" which identifies the egress interface to
 use from the publisher. Publisher support for this is optional
 and advertised using the "interface-designation" feature.

 * A "source-address" address, which identifies the IP address to
 stamp on notification messages destined for the receiver.

 * A "source-vrf" which identifies the VRF on which to reach
 receivers. This VRF is a network instance as defined within
 [I-D.draft-ietf-rtgwg-ni-model]. Publisher support for VRFs is
 optional and advertised using the "supports-vrf" feature.

 If none of the above parameters are set, notification messages
 MUST egress the publisher's default interface.

 A tree diagram describing these parameters is shown in Figure 20
 within Section 3.3. All parameters are described within the YANG
 model in Section 4.

2.5.1. Configured Subscription State Model

 Below is the state machine for a configured subscription on the
 publisher. This state machine describes the three states (valid,
 invalid, and concluded), as well as the transitions between these
 states. Start and end states are depicted to reflect configured
 subscription creation and deletion events. The creation or
 modification of a configured subscription initiates an evaluation by
 the publisher to determine if the subscription is in valid or invalid
 states. The publisher uses its own criteria in making this
 determination. If in the valid state, the subscription becomes
 operational. See (1) in the diagram below.

.........
: start :‑.
:.......: |
 create .‑‑‑modify‑‑‑‑‑.‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.
 | | | |
 V V .‑‑‑‑‑‑‑. ‑‑‑‑‑‑‑‑‑.
 .‑‑‑‑[evaluate]‑‑no‑‑‑>|invalid|‑delete‑>: end :<‑delete‑|concluded|
 | '‑‑‑‑‑‑‑' :.....: '‑‑‑‑‑‑‑‑‑'
 |‑[evaluate]‑‑no‑(2). ^ ^ ^
 | ^ | | | |
yes | '‑>unsupportable delete stop‑time
 | modify (subscription‑ (subscription‑ (subscription‑
 | | terminated*) terminated*) concluded*)
 | | | | |
(1) | (3) (4) (5)
 | .‑‑‑.
 '‑‑>| valid |
 '‑‑‑'

Legend:
dotted boxes: subscription added or removed via configuration
dashed boxes: states for a subscription
[evaluate]: decision point on whether the subscription is supportable
(*): resulting subscription state change notification

 Figure 8: Publisher state model for a configured subscription

 A subscription in the valid state may move to the invalid state in
 one of two ways. First, it may be modified in a way which fails a
 re-evaluation. See (2) in the diagram. Second, the publisher might
 determine that the subscription is no longer supportable. This could
 be for reasons of an unexpected but sustained increase in an event
 stream's event records, degraded CPU capacity, a more complex
 referenced filter, or other higher priority subscriptions which have
 usurped resources. See (3) in the diagram. No matter the case, a
 "subscription-terminated" notification is sent to any receivers in an
 active or suspended state. A subscription in the valid state may
 also transition to the concluded state via (5) if a configured stop
 time has been reached. In this case, a "subscription-concluded"
 notification is sent to any receivers in active or suspended states.
 Finally, a subscription may be deleted by configuration (4).

 When a subscription is in the valid state, a publisher will attempt
 to connect with all receivers of a configured subscription and
 deliver notification messages. Below is the state machine for each
 receiver of a configured subscription. This receiver state machine
 is fully contained within the state machine of the configured
 subscription, and is only relevant when the configured subscription
 is in the valid state.

.‑‑‑.
| valid |
| .‑‑‑‑‑‑‑‑‑‑. .‑‑‑‑‑‑‑‑‑‑‑‑. |
	receiver	‑‑‑timeout‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	receiver	
	connecting	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑reset‑‑(c)	disconnected	
		<‑transport '‑‑‑‑‑‑‑‑‑‑‑‑'		
'‑‑‑‑‑‑‑‑‑‑' loss,reset‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑.				
(a)				
subscription‑ (b) (b)				
started* .‑‑‑‑‑‑‑‑. .‑‑‑‑‑‑‑‑‑.				
'‑‑‑‑‑>		(d)‑insufficient CPU,‑‑‑‑‑‑‑>		
	receiver	buffer overflow	receiver	
subscription‑	active		suspended	
modified*		<‑‑‑‑CPU, b/w sufficient,‑(e)		
'‑‑‑‑>'‑‑‑‑‑‑‑‑' subscription‑modified* '‑‑‑‑‑‑‑‑‑'				
'‑‑‑'

 Legend:

 dashed boxes which include the word 'receiver' show the possible
 states for an individual receiver of a valid configured subscription.
 * indicates a subscription state change notification

 Figure 9: Receiver state for a configured subscription on a Publisher

 When a configured subscription first moves to the valid state, the
 "state" leaf of each receiver is initialized to the connecting state.
 If transport connectivity is not available to any receiver and there
 are any notification messages to deliver, a transport session is
 established (e.g., through [RFC8071]). Individual receivers are
 moved to the active state when a "subscription-started" subscription
 state change notification is successfully passed to that receiver
 (a). Event records are only sent to active receivers. Receivers of
 a configured subscription remain active if both transport
 connectivity can be verified to the receiver, and event records are
 not being dropped due to a publisher buffer overflow. The result is
 that a receiver will remain active on the publisher as long as events
 aren't being lost, or the receiver cannot be reached. In addition, a
 configured subscription's receiver MUST be moved to the connecting
 state if the receiver is reset via the "reset" action (b), (c). For
 more on reset, see Section 2.5.5. If transport connectivity cannot
 be achieved while in the connecting state, the receiver MAY be moved
 to the disconnected state.

 A configured subscription's receiver MUST be moved to the suspended
 state if there is transport connectivity between the publisher and
 receiver, but notification messages are failing to be delivered due
 to publisher buffer overflow, or notification messages are not able
 to be generated for that receiver due to insufficient CPU (d). This
 is indicated to the receiver by the "subscription-suspended"
 subscription state change notification.

 A configured subscription receiver MUST be returned to the active
 state from the suspended state when notification messages are able to
 be generated, bandwidth is sufficient to handle the notification
 messages, and a receiver has successfully been sent a "subscription-
 resumed" or "subscription-modified" subscription state change
 notification (e). The choice as to which of these two subscription
 state change notifications is sent is determined by whether the
 subscription was modified during the period of suspension.

 Modification of a configured subscription is possible at any time. A
 "subscription-modified" subscription state change notification will
 be sent to all active receivers, immediately followed by notification
 messages conforming to the new parameters. Suspended receivers will
 also be informed of the modification. However this notification will
 await the end of the suspension for that receiver (e).

 The mechanisms described above are mirrored in the RPCs and
 notifications within the document. It should be noted that these
 RPCs and notifications have been designed to be extensible and allow
 subscriptions into targets other than event streams. For instance,
 the YANG module defined in Section 5 of [I-D.ietf-netconf-yang-push]
 augments "/sn:modify-subscription/sn:input/sn:target".

2.5.2. Creating a Configured Subscription

 Configured subscriptions are established using configuration
 operations against the top-level "subscriptions" subtree.

 Because there is no explicit association with an existing transport
 session, configuration operations MUST include additional parameters
 beyond those of dynamic subscriptions. These parameters identify
 each receiver, how to connect with that receiver, and possibly
 whether the notification messages need to come from a specific egress
 interface on the publisher. Receiver specific transport connectivity
 parameters MUST be configured via transport specific augmentations to
 this specification. See Section 2.5.7 for details.

 After a subscription is successfully established, the publisher
 immediately sends a "subscription-started" subscription state change
 notification to each receiver. It is quite possible that upon
 configuration, reboot, or even steady-state operations, a transport
 session may not be currently available to the receiver. In this
 case, when there is something to transport for an active
 subscription, transport specific call-home operations will be used to
 establish the connection. When transport connectivity is available,
 notification messages may then be pushed.

 With active configured subscriptions, it is allowable to buffer event
 records even after a "subscription-started" has been sent. However
 if events are lost (rather than just delayed) due to replay buffer
 overflow, a new "subscription-started" must be sent. This new
 "subscription-started" indicates an event record discontinuity.

 To see an example of subscription creation using configuration
 operations over NETCONF, see Appendix A of
 [I-D.draft-ietf-netconf-netconf-event-notifications].

2.5.3. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level "subscriptions" subtree.

 If the modification involves adding receivers, added receivers are
 placed in the connecting state. If a receiver is removed, the
 subscription state change notification "subscription-terminated" is
 sent to that receiver if that receiver is active or suspended.

 If the modification involves changing the policies for the
 subscription, the publisher sends to currently active receivers a
 "subscription-modified" notification. For any suspended receivers, a
 "subscription-modified" notification will be delayed until the
 receiver is resumed. (Note: in this case, the "subscription-
 modified" notification informs the receiver that the subscription has
 been resumed, so no additional "subscription-resumed" need be sent.
 Also note that if multiple modifications have occurred during the
 suspension, only the "subscription-modified" notification describing
 the latest one need be sent to the receiver.)

2.5.4. Deleting a Configured Subscription

 Subscriptions can be deleted through configuration against the top-
 level "subscriptions" subtree.

 Immediately after a subscription is successfully deleted, the
 publisher sends to all receivers of that subscription a subscription
 state change notification stating the subscription has ended (i.e.,
 "subscription-terminated").

2.5.5. Resetting a Configured Subscription Receiver

 It is possible that a configured subscription to a receiver needs to
 be reset. This is accomplished via the "reset" action within the
 YANG model at "/subscriptions/subscription/receivers/receiver/reset".
 This action may be useful in cases where a publisher has timed out
 trying to reach a receiver. When such a reset occurs, a transport
 session will be initiated if necessary, and a new "subscription-
 started" notification will be sent. This action does not have any
 effect on transport connectivity if the needed connectivity already
 exists.

2.5.6. Replay for a Configured Subscription

 It is possible to do replay on a configured subscription. This is
 supported via the configuration of the "configured-replay" object on
 the subscription. The setting of this object enables the streaming
 of the buffered event records for the subscribed event stream. All
 buffered event records which have been retained since the last
 publisher restart will be sent to each configured receiver.

 Replay of events records created since restart is useful. It allows
 event records generated before transport connectivity establishment
 to be passed to a receiver. Setting the restart time as the earliest
 configured replay time precludes possibility of resending of event
 records logged prior to publisher restart. It also ensures the same
 records will be sent to each configured receiver, regardless of the
 speed of transport connectivity establishment to each receiver.
 Finally, establishing restart as the earliest potential time for
 event records to be included within notification messages, a well-
 understood timeframe for replay is defined.

 As a result, when any configured subscription receivers become
 active, buffered event records will be sent immediately after the
 "subscription-started" notification. If the publisher knows the last
 event record sent to a receiver, and the publisher has not rebooted,
 the next event record on the event stream which meets filtering
 criteria will be the leading event record sent. Otherwise, the
 leading event record will be the first event record meeting filtering
 criteria subsequent to the latest of three different times: the
 "replay-log-creation-time", "replay-log-aged-time", or the most
 recent publisher boot time. The "replay-log-creation-time" and
 "replay-log-aged-time" are discussed in Section 2.4.2.1. The most
 recent publisher boot time ensures that duplicate event records are
 not replayed from a previous time the publisher was booted.

 It is quite possible that a receiver might want to retrieve event
 records from an event stream prior to the latest boot. If such
 records exist where there is a configured replay, the publisher MUST
 send the time of the event record immediately preceding the "replay-
 start-time" within the "replay-previous-event-time" leaf. Through
 the existence of the "replay-previous-event-time", the receiver will
 know that earlier events prior to reboot exist. In addition, if the
 subscriber was previously receiving event records with the same
 subscription "id", the receiver can determine if there was a timegap
 where records generated on the publisher were not successully
 received. And with this information, the receiver may choose to
 dynamically subscribe to retrieve any event records placed into the
 event stream before the most recent boot time.

 All other replay functionality remains the same as with dynamic
 subscriptions as described in Section 2.4.2.1.

2.5.7. Transport Connectivity for a Configured Subscription

 This specification is transport independent. However supporting a
 configured subscription will often require the establishment of
 transport connectivity. And the parameters used for this transport
 connectivity establishment are transport specific. As a result, the
 YANG model defined within Section 4 is not able to directly define
 and expose these transport parameters.

 It is necessary for an implementation to support the connection
 establishment process. To support this function, the YANG model does
 include a node where transport specific parameters for a particular
 receiver may be augmented. This node is
 "/subscriptions/subscription/receivers/receiver". By augmenting
 transport parameters from this node, system developers are able to
 incorporate the YANG objects necessary to support the transport
 connectivity establishment process.

 The result of this is the following requirement. A publisher
 supporting the feature "configured" MUST also support least one YANG
 model which augments transport connectivity parameters on
 "/subscriptions/subscription/receivers/receiver". For an example of
 such an augmentation, see Appendix A.

2.6. Event Record Delivery

 Whether dynamic or configured, once a subscription has been set up,
 the publisher streams event records via notification messages per the
 terms of the subscription. For dynamic subscriptions, notification
 messages are sent over the session used to establish the
 subscription. For configured subscriptions, notification messages
 are sent over the connections specified by the transport and each
 receiver of a configured subscription.

 A notification message is sent to a receiver when an event record is
 not blocked by either the specified filter criteria or receiver
 permissions. This notification message MUST include an "eventTime"
 object as defined per [RFC5277] Section 4. This "eventTime" MUST be
 at the top level of YANG structured event record.

 The following example within [RFC7950] section 7.16.3 is an example
 of a compliant message:

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑09‑01T10:00:00Z</eventTime>
 <link‑failure xmlns="http://acme.example.com/system">
 <if‑name>so‑1/2/3.0</if‑name>
 <if‑admin‑status>up</if‑admin‑status>
 <if‑oper‑status>down</if‑oper‑status>
 </link‑failure>
</notification>

 Figure 10: subscribed notification message

 When a dynamic subscription has been started or modified, with
 "establish-subscription" or "modify-subscription" respectively, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the RPC reply has been sent.

 When a configured subscription has been started or modified, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the "subscription-started" or "subscription-modified"
 notifications has been sent, respectively.

2.7. subscription state change notifications

 In addition to sending event records to receivers, a publisher MUST
 also send subscription state change notifications when events related
 to subscription management have occurred.

 subscription state change notifications are unlike other
 notifications in that they are never included in any event stream.
 Instead, they are inserted (as defined in this section) within the
 sequence of notification messages sent to a particular receiver.
 subscription state change notifications cannot be filtered out, they
 cannot be stored in replay buffers, and they are delivered only to
 impacted receivers of a subscription. The identification of
 subscription state change notifications is easy to separate from
 other notification messages through the use of the YANG extension
 "subscription-state-notif". This extension tags a notification as a
 subscription state change notification.

 The complete set of subscription state change notifications is
 described in the following subsections.

2.7.1. subscription-started

 This notification indicates that a configured subscription has
 started, and event records may be sent. Included in this
 subscription state change notification are all the parameters of the
 subscription, except for the receiver(s) transport connection
 information and origin information indicating where notification
 messages will egress the publisher. Note that if a referenced filter
 from the "filters" container has been used within the subscription,
 the notification still provides the contents of that referenced
 filter under the "within-subscription" subtree.

 Note that for dynamic subscriptions, no "subscription-started"
 notifications are ever sent.

 Below is a tree diagram for "subscription-started". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n subscription‑started {configured}?
 +‑‑ro id
 | subscription‑id
 +‑‑ro (target)
 | +‑‑:(stream)
 | +‑‑ro (stream‑filter)?
 | | +‑‑:(by‑reference)
 | | | +‑‑ro stream‑filter‑name
 | | | stream‑filter‑ref
 | | +‑‑:(within‑subscription)
 | | +‑‑ro (filter‑spec)?
 | | +‑‑:(stream‑subtree‑filter)
 | | | +‑‑ro stream‑subtree‑filter? <anydata>
 | | | {subtree}?
 | | +‑‑:(stream‑xpath‑filter)
 | | +‑‑ro stream‑xpath‑filter? yang:xpath1.0
 | | {xpath}?
 | +‑‑ro stream stream‑ref
 | +‑‑ro replay‑start‑time?
 | | yang:date‑and‑time {replay}?
 | +‑‑ro replay‑previous‑event‑time?
 | yang:date‑and‑time {replay}?
 +‑‑ro stop‑time?
 | yang:date‑and‑time
 +‑‑ro dscp? inet:dscp
 | {dscp}?
 +‑‑ro weighting? uint8 {qos}?
 +‑‑ro dependency?
 | subscription‑id {qos}?
 +‑‑ro transport? transport
 | {configured}?
 +‑‑ro encoding? encoding
 +‑‑ro purpose? string
 {configured}?

 Figure 11: subscription-started notification tree diagram

2.7.2. subscription-modified

 This notification indicates that a subscription has been modified by
 configuration operations. It is delivered directly after the last
 event records processed using the previous subscription parameters,
 and before any event records processed after the modification.

 Below is a tree diagram for "subscription-modified". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n subscription‑modified
 +‑‑ro id
 | subscription‑id
 +‑‑ro (target)
 | +‑‑:(stream)
 | +‑‑ro (stream‑filter)?
 | | +‑‑:(by‑reference)
 | | | +‑‑ro stream‑filter‑name
 | | | stream‑filter‑ref
 | | +‑‑:(within‑subscription)
 | | +‑‑ro (filter‑spec)?
 | | +‑‑:(stream‑subtree‑filter)
 | | | +‑‑ro stream‑subtree‑filter? <anydata>
 | | | {subtree}?
 | | +‑‑:(stream‑xpath‑filter)
 | | +‑‑ro stream‑xpath‑filter? yang:xpath1.0
 | | {xpath}?
 | +‑‑ro stream stream‑ref
 | +‑‑ro replay‑start‑time?
 | yang:date‑and‑time {replay}?
 +‑‑ro stop‑time?
 | yang:date‑and‑time
 +‑‑ro dscp? inet:dscp
 | {dscp}?
 +‑‑ro weighting? uint8 {qos}?
 +‑‑ro dependency?
 | subscription‑id {qos}?
 +‑‑ro transport? transport
 | {configured}?
 +‑‑ro encoding? encoding
 +‑‑ro purpose? string
 {configured}?

 Figure 12: subscription-modified notification tree diagram

 A publisher most often sends this notification directly after the
 modification of any configuration parameters impacting a configured
 subscription. But it may also be sent at two other times:

 1. Where a configured subscription has been modified during the
 suspension of a receiver, the notification will be delayed until
 the receiver's suspension is lifted. In this situation, the
 notification indicates that the subscription has been both
 modified and resumed.

 2. A "subscription-modified" subscription state change notification
 MUST be sent if the contents of the filter identified by the
 subscription's "stream-filter-ref" leaf has changed. This state
 change notification is to be sent for a filter change impacting
 any active receiver of a configured or dynamic subscription.

2.7.3. subscription-terminated

 This notification indicates that no further event records for this
 subscription should be expected from the publisher. A publisher may
 terminate the sending event records to a receiver for the following
 reasons:

 1. Configuration which removes a configured subscription, or a
 "kill-subscription" RPC which ends a dynamic subscription. These
 are identified via the reason "no-such-subscription".

 2. A referenced filter is no longer accessible. This is identified
 by "filter-unavailable".

 3. The event stream referenced by a subscription is no longer
 accessible by the receiver. This is identified by "stream-
 unavailable".

 4. A suspended subscription has exceeded some timeout. This is
 identified by "suspension-timeout".

 Each of the reasons above correspond one-to-one with a "reason"
 identityref specified within the YANG model.

 Below is a tree diagram for "subscription-terminated". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n subscription‑terminated
 +‑‑ro id subscription‑id
 +‑‑ro reason identityref

 Figure 13: subscription-terminated notification tree diagram

 Note: this subscription state change notification MUST be sent to a
 dynamic subscription's receiver when the subscription ends
 unexpectedly. The cases when this might happen are when a "kill-
 subscription" RPC is successful, or when some other event not
 including the reaching the subscription's "stop-time" results in a
 publisher choosing to end the subscription.

2.7.4. subscription-suspended

 This notification indicates that a publisher has suspended the
 sending of event records to a receiver, and also indicates the
 possible loss of events. Suspension happens when capacity
 constraints stop a publisher from serving a valid subscription. The
 two conditions where is this possible are:

 1. "insufficient-resources" when a publisher is unable to produce
 the requested event stream of notification messages, and

 2. "unsupportable-volume" when the bandwidth needed to get generated
 notification messages to a receiver exceeds a threshold.

 These conditions are encoded within the "reason" object. No further
 notification will be sent until the subscription resumes or is
 terminated.

 Below is a tree diagram for "subscription-suspended". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n subscription‑suspended
 +‑‑ro id subscription‑id
 +‑‑ro reason identityref

 Figure 14: subscription-suspended notification tree diagram

2.7.5. subscription-resumed

 This notification indicates that a previously suspended subscription
 has been resumed under the unmodified terms previously in place.
 Subscribed event records generated after the issuance of this
 subscription state change notification may now be sent.

 Below is the tree diagram for "subscription-resumed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n subscription‑resumed
 +‑‑ro id subscription‑id

 Figure 15: subscription-resumed notification tree diagram

2.7.6. subscription-completed

 This notification indicates that a subscription that includes a
 "stop-time" has successfully finished passing event records upon the
 reaching of that time.

 Below is a tree diagram for "subscription-completed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n subscription‑completed {configured}?
 +‑‑ro id subscription‑id

 Figure 16: subscription-completed notification tree diagram

2.7.7. replay-completed

 This notification indicates that all of the event records prior to
 the current time have been passed to a receiver. It is sent before
 any notification message containing an event record with a timestamp
 later than (1) the "stop-time" or (2) the subscription's start time.

 If a subscription contains no "stop-time", or has a "stop-time" that
 has not been reached, then after the "replay-completed" notification
 has been sent, additional event records will be sent in sequence as
 they arise naturally on the publisher.

 Below is a tree diagram for "replay-completed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

+‑‑‑n replay‑completed {replay}?
 +‑‑ro id subscription‑id

 Figure 17: replay-completed notification tree diagram

2.8. Subscription Monitoring

 In the operational state datastore, the container "subscriptions"
 maintains the state of all dynamic subscriptions, as well as all
 configured subscriptions. Using datastore retrieval operations, or
 subscribing to the "subscriptions" container
 [I-D.ietf-netconf-yang-push] allows the state of subscriptions and
 their connectivity to receivers to be monitored.

 Each subscription in the operational state datastore is represented
 as a list element. Included in this list are event counters for each
 receiver, the state of each receiver, as well as the subscription
 parameters currently in effect. The appearance of the leaf
 "configured-subscription-state" indicates that a particular
 subscription came into being via configuration. This leaf also
 indicates if the current state of that subscription is valid,
 invalid, and concluded.

 To understand the flow of event records within a subscription, there
 are two counters available for each receiver. The first counter is
 "sent-event-records" which shows the quantity of events actually
 identified for sending to a receiver. The second counter is
 "excluded-event-records" which shows event records not sent to
 receiver. "excluded-event-records" shows the combined results of
 both access control and per-subscription filtering. For configured
 subscriptions, counters are reset whenever the subscription is
 evaluated to valid (see (1) in Figure 8).

 Dynamic subscriptions are removed from the operational state
 datastore once they expire (reaching stop-time) or when they are
 terminated. While many subscription objects are shown as
 configurable, dynamic subscriptions are only included within the
 operational state datastore and as a result are not configurable.

2.9. Advertisement

 Publishers supporting this document MUST indicate support of the YANG
 model "ietf-subscribed-notifications" within the YANG library of the
 publisher. In addition if supported, the optional features "encode-
 xml", "encode-json", "configured" "supports-vrf", "qos", "xpath",
 "subtree", "interface-designation", "dscp", and "replay" MUST be
 indicated.

3. YANG Data Model Trees

 This section contains tree diagrams for nodes defined in Section 4.
 For tree diagrams of subscription state change notifications, see
 Section 2.7. For the tree diagrams for the RPCs, see Section 2.4.

3.1. Event Streams Container

 A publisher maintains a list of available event streams as
 operational data. This list contains both standardized and vendor-
 specific event streams. This enables subscribers to discover what
 streams a publisher supports.

+‑‑ro streams
 +‑‑ro stream* [name]
 +‑‑ro name string
 +‑‑ro description string
 +‑‑ro replay‑support? empty {replay}?
 +‑‑ro replay‑log‑creation‑time yang:date‑and‑time
 | {replay}?
 +‑‑ro replay‑log‑aged‑time? yang:date‑and‑time
 {replay}?

 Figure 18: Stream Container tree diagram

 Above is a tree diagram for the "streams" container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

3.2. Filters Container

 The "filters" container maintains a list of all subscription filters
 that persist outside the life-cycle of a single subscription. This
 enables pre-defined filters which may be referenced by more than one
 subscription.

+‑‑rw filters
 +‑‑rw stream‑filter* [name]
 +‑‑rw name string
 +‑‑rw (filter‑spec)?
 +‑‑:(stream‑subtree‑filter)
 | +‑‑rw stream‑subtree‑filter? <anydata> {subtree}?
 +‑‑:(stream‑xpath‑filter)
 +‑‑rw stream‑xpath‑filter? yang:xpath1.0 {xpath}?

 Figure 19: Filter Container tree diagram

 Above is a tree diagram for the filters container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

3.3. Subscriptions Container

 The "subscriptions" container maintains a list of all subscriptions
 on a publisher, both configured and dynamic. It can be used to
 retrieve information about the subscriptions which a publisher is
 serving.

 +--rw subscriptions

+‑‑rw subscription* [id]
 +‑‑rw id
 | subscription‑id
 +‑‑rw (target)
 | +‑‑:(stream)
 | +‑‑rw (stream‑filter)?
 | | +‑‑:(by‑reference)
 | | | +‑‑rw stream‑filter‑name
 | | | stream‑filter‑ref
 | | +‑‑:(within‑subscription)
 | | +‑‑rw (filter‑spec)?
 | | +‑‑:(stream‑subtree‑filter)
 | | | +‑‑rw stream‑subtree‑filter? <anydata>
 | | | {subtree}?
 | | +‑‑:(stream‑xpath‑filter)
 | | +‑‑rw stream‑xpath‑filter?
 | | yang:xpath1.0 {xpath}?
 | +‑‑rw stream stream‑ref
 | +‑‑ro replay‑start‑time?
 | | yang:date‑and‑time {replay}?
 | +‑‑rw configured‑replay? empty
 | {configured,replay}?
 +‑‑rw stop‑time?
 | yang:date‑and‑time
 +‑‑rw dscp? inet:dscp
 | {dscp}?
 +‑‑rw weighting? uint8 {qos}?
 +‑‑rw dependency?
 | subscription‑id {qos}?
 +‑‑rw transport? transport
 | {configured}?
 +‑‑rw encoding? encoding
 +‑‑rw purpose? string
 | {configured}?
 +‑‑rw (notification‑message‑origin)? {configured}?
 | +‑‑:(interface‑originated)
 | | +‑‑rw source‑interface?
 | | if:interface‑ref {interface‑designation}?
 | +‑‑:(address‑originated)
 | +‑‑rw source‑vrf?
 | | ‑> /ni:network‑instances/network‑instance/name
 | | {supports‑vrf}?
 | +‑‑rw source‑address?
 | inet:ip‑address‑no‑zone
 +‑‑ro configured‑subscription‑state? enumeration
 | {configured}?
 +‑‑rw receivers
 +‑‑rw receiver* [name]

 +‑‑rw name string
 +‑‑ro sent‑event‑records?
 | yang:zero‑based‑counter64
 +‑‑ro excluded‑event‑records?
 | yang:zero‑based‑counter64
 +‑‑ro state enumeration
 +‑‑‑x reset {configured}?
 +‑‑ro output
 +‑‑ro time yang:date‑and‑time

 Figure 20: Subscriptions tree diagram

 Above is a tree diagram for the subscriptions container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

4. Data Model

 This module imports typedefs from [RFC6991], [RFC8343], and
 [RFC8040], and it references [I-D.draft-ietf-rtgwg-ni-model],
 [XPATH], [RFC6241], [RFC7540], [RFC7951] and [RFC7950].

 [note to the RFC Editor - please replace XXXX within this YANG model
 with the number of this document, and XXXY with the number of
 [I-D.draft-ietf-rtgwg-ni-model]]

 [note to the RFC Editor - please replace the two dates within the
 YANG module with the date of publication]

<CODE BEGINS> file "ietf‑subscribed‑notifications@2018‑12‑19.yang"
module ietf‑subscribed‑notifications {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications";

 prefix sn;

import ietf‑inet‑types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
}
import ietf‑interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
}

import ietf‑netconf‑acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
}
import ietf‑network‑instance {
 prefix ni;
 reference
 "draft‑ietf‑rtgwg‑ni‑model‑12: YANG Model for Network Instances";
}
import ietf‑restconf {
 prefix rc;
 reference
 "RFC 8040: RESTCONF Protocol";
}
import ietf‑yang‑types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}

organization "IETF NETCONF (Network Configuration) Working Group";
contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Author: Eric Voit
 <mailto:evoit@cisco.com>

 Author: Alberto Gonzalez Prieto
 <mailto:alberto.gonzalez@microsoft.com>

 Author: Einar Nilsen‑Nygaard
 <mailto:einarnn@cisco.com>

 Author: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>";

 description

 "Contains a YANG specification for subscribing to event records
 and receiving matching content within notification messages.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

revision 2018‑12‑19 {
 description
 "Initial version";
 reference
 "RFC XXXX:Customized Subscriptions to a Publisher's Event Streams";
}

/*
 * FEATURES
 */

feature configured {
 description
 "This feature indicates that configuration of subscription is
 supported.";
}

feature dscp {
 description
 "This feature indicates a publisher supports the placement of
 suggested prioritization levels for network transport within
 notification messages.";
}

feature encode‑json {
 description
 "This feature indicates that JSON encoding of notification
 messages is supported.";
}

feature encode‑xml {
 description
 "This feature indicates that XML encoding of notification
 messages is supported.";
}

feature interface‑designation {
 description
 "This feature indicates a publisher supports sourcing all

 receiver interactions for a configured subscription from a single
 designated egress interface.";
}

feature qos {
 description
 "This feature indicates a publisher supports absolute
 dependencies of one subscription's traffic over another, as well
 as weighted bandwidth sharing between subscriptions. Both of
 these are Quality of Service (QoS) features which allow
 differentiated treatment of notification messages between a
 publisher and a specific receiver.";
}

feature replay {
 description
 "This feature indicates that historical event record replay is
 supported. With replay, it is possible for past event records to
 be streamed in chronological order.";
}

feature subtree {
 description
 "This feature indicates support for YANG subtree filtering.";
 reference "RFC 6241, Section 6.";
}

feature supports‑vrf {
 description
 "This feature indicates a publisher supports VRF configuration
 for configured subscriptions. VRF support for dynamic
 subscriptions does not require this feature.";
 reference "RFC XXXY, Section 6.";
}

feature xpath {
 description
 "This feature indicates support for XPath filtering.";
 reference "http://www.w3.org/TR/1999/REC‑xpath‑19991116";
}

/*
 * EXTENSIONS
 */

extension subscription‑state‑notification {
 description
 "This statement applies only to notifications. It indicates that

 the notification is a subscription state change notification.
 Therefore it does not participate in a regular event stream and
 does not need to be specifically subscribed to in order to be
 received. This statement can only occur as a substatement to the
 YANG 'notification' statement. This statement is not for use
 outside of this YANG module.";
}

/*
 * IDENTITIES
 */

 /* Identities for RPC and Notification errors */

identity delete‑subscription‑error {
 description
 "Problem found while attempting to fulfill either a
 'delete‑subscription' RPC request or a 'kill‑subscription'
 RPC request.";
}

identity establish‑subscription‑error {
 description
 "Problem found while attempting to fulfill an
 'establish‑subscription' RPC request.";
}

identity modify‑subscription‑error {
 description
 "Problem found while attempting to fulfill a
 'modify‑subscription' RPC request.";
}

identity subscription‑suspended‑reason {
 description
 "Problem condition communicated to a receiver as part of a
 'subscription‑terminated' notification.";
}

identity subscription‑terminated‑reason {
 description
 "Problem condition communicated to a receiver as part of a
 'subscription‑terminated' notification.";
}

identity dscp‑unavailable {
 base establish‑subscription‑error;
 if‑feature "dscp";

 description
 "The publisher is unable mark notification messages with a
 prioritization information in a way which will be respected
 during network transit.";
}

identity encoding‑unsupported {
 base establish‑subscription‑error;
 description
 "Unable to encode notification messages in the desired format.";
}

identity filter‑unavailable {
 base subscription‑terminated‑reason;
 description
 "Referenced filter does not exist. This means a receiver is
 referencing a filter which doesn't exist, or to which they do not
 have access permissions.";
}

identity filter‑unsupported {
 base establish‑subscription‑error;
 base modify‑subscription‑error;
 description
 "Cannot parse syntax within the filter. This failure can be from
 a syntax error, or a syntax too complex to be processed by the
 publisher.";
}

identity insufficient‑resources {
 base establish‑subscription‑error;
 base modify‑subscription‑error;
 base subscription‑suspended‑reason;
 description
 "The publisher has insufficient resources to support the
 requested subscription. An example might be that allocated CPU
 is too limited to generate the desired set of notification
 messages.";
}

identity no‑such‑subscription {
 base modify‑subscription‑error;
 base delete‑subscription‑error;
 base subscription‑terminated‑reason;
 description
 "Referenced subscription doesn't exist. This may be as a result of
 a non‑existent subscription id, an id which belongs to another
 subscriber, or an id for configured subscription.";

 }

identity replay‑unsupported {
 base establish‑subscription‑error;
 if‑feature "replay";
 description
 "Replay cannot be performed for this subscription. This means the
 publisher will not provide the requested historic information
 from the event stream via replay to this receiver.";
}

identity stream‑unavailable {
 base subscription‑terminated‑reason;
 description
 "Not a subscribable event stream. This means the referenced event
 stream is not available for subscription by the receiver.";
}

identity suspension‑timeout {
 base subscription‑terminated‑reason;
 description
 "Termination of previously suspended subscription. The publisher
 has eliminated the subscription as it exceeded a time limit for
 suspension.";
}

identity unsupportable‑volume {
 base subscription‑suspended‑reason;
 description
 "The publisher does not have the network bandwidth needed to get
 the volume of generated information intended for a receiver.";
}

 /* Identities for encodings */

identity configurable‑encoding {
 description
 "If a transport identity derives from this identity, it means
 that it supports configurable encodings.";
}

identity encoding {
 description
 "Base identity to represent data encodings";
}

 identity encode-xml {

 base encoding;

 if‑feature "encode‑xml";
 description
 "Encode data using XML as described in RFC 7950";
 reference
 "RFC 7950 ‑ The YANG 1.1 Data Modeling Language";
}

identity encode‑json {
 base encoding;
 if‑feature "encode‑json";
 description
 "Encode data using JSON as described in RFC 7951";
 reference
 "RFC 7951 ‑ JSON Encoding of Data Modeled with YANG";
}

/* Identities for transports */
identity transport {
 description
 "An identity that represents the underlying mechanism for
 passing notification messages.";
}

/*
 * TYPEDEFs
 */

typedef encoding {
 type identityref {
 base encoding;
 }
 description
 "Specifies a data encoding, e.g. for a data subscription.";
}

typedef stream‑filter‑ref {
 type leafref {
 path "/sn:filters/sn:stream‑filter/sn:name";
 }
 description
 "This type is used to reference an event stream filter.";
}

typedef stream‑ref {
 type leafref {
 path "/sn:streams/sn:stream/sn:name";
 }
 description

 "This type is used to reference a system-provided event stream.";
 }

typedef subscription‑id {
 type uint32;
 description
 "A type for subscription identifiers.";
}

typedef transport {
 type identityref {
 base transport;
 }
 description
 "Specifies transport used to send notification messages to a
 receiver.";
}

/*
 * GROUPINGS
 */

grouping stream‑filter‑elements {
 description
 "This grouping defines the base for filters applied to event
 streams.";
 choice filter‑spec {
 description
 "The content filter specification for this request.";
 anydata stream‑subtree‑filter {
 if‑feature "subtree";
 description
 "Event stream evaluation criteria encoded in the syntax of a
 subtree filter as defined in RFC 6241, Section 6.

 The subtree filter is applied to the representation of
 individual, delineated event records as contained within the
 event stream.

 If the subtree filter returns a non‑empty node set, the
 filter matches the event record, and the event record is
 included in the notification message sent to the receivers.";
 reference "RFC 6241, Section 6.";
}
leaf stream‑xpath‑filter {
 if‑feature "xpath";
 type yang:xpath1.0;
 description

 "Event stream evaluation criteria encoded in the syntax of

 an XPath 1.0 expression.

 The XPath expression is evaluated on the representation of
 individual, delineated event records as contained within
 the event stream.

 The result of the XPath expression is converted to a
 boolean value using the standard XPath 1.0 rules. If the
 boolean value is 'true', the filter matches the event
 record, and the event record is included in the notification
 message sent to the receivers.

 The expression is evaluated in the following XPath context:

 o The set of namespace declarations is the set of prefix
 and namespace pairs for all YANG modules implemented
 by the server, where the prefix is the YANG module
 name and the namespace is as defined by the
 'namespace' statement in the YANG module.

 If the leaf is encoded in XML, all namespace
 declarations in scope on the 'stream-xpath-filter'
 leaf element are added to the set of namespace
 declarations. If a prefix found in the XML is
 already present in the set of namespace declarations,
 the namespace in the XML is used.

 o The set of variable bindings is empty.

 o The function library is the core function library, and
 the XPath functions defined in section 10 in RFC 7950.

 o The context node is the root node.";
 reference
 "http://www.w3.org/TR/1999/REC‑xpath‑19991116
 RFC 7950, Section 10.";

 }
 }
}

grouping update‑qos {
 description
 "This grouping describes Quality of Service information
 concerning a subscription. This information is passed to lower
 layers for transport prioritization and treatment";
 leaf dscp {

 if‑feature "dscp";
 type inet:dscp;
 default "0";
 description
 "The desired network transport priority level. This is the
 priority set on notification messages encapsulating the
 results of the subscription. This transport priority is
 shared for all receivers of a given subscription.";
 }
 leaf weighting {
 if‑feature "qos";
 type uint8 {
 range "0 .. 255";
 }
 description
 "Relative weighting for a subscription. Allows an underlying
 transport layer perform informed load balance allocations
 between various subscriptions";
 reference
 "RFC‑7540, section 5.3.2";
 }
 leaf dependency {
 if‑feature "qos";
 type subscription‑id;
 description
 "Provides the 'subscription‑id' of a parent subscription which
 has absolute precedence should that parent have push updates
 ready to egress the publisher. In other words, there should be
 no streaming of objects from the current subscription if
 the parent has something ready to push.

 If a dependency is asserted via configuration or via RPC, but
 the referenced 'subscription‑id' does not exist, the
 dependency is silently discarded. If a referenced
 subscription is deleted this dependency is removed.";
 reference
 "RFC‑7540, section 5.3.1";
 }
}

grouping subscription‑policy‑modifiable {
 description
 "This grouping describes all objects which may be changed
 in a subscription.";
 choice target {
 mandatory true;
 description
 "Identifies the source of information against which a

 subscription is being applied, as well as specifics on the
 subset of information desired from that source.";
 case stream {
 choice stream‑filter {
 description
 "An event stream filter can be applied to a subscription.
 That filter will come either referenced from a global list,
 or be provided within the subscription itself.";
 case by‑reference {
 description
 "Apply a filter that has been configured separately.";
 leaf stream‑filter‑name {
 type stream‑filter‑ref;
 mandatory true;
 description
 "References an existing event stream filter which is to
 be applied to an event stream for the subscription.";
 }
 }
 case within‑subscription {
 description
 "Local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses stream‑filter‑elements;
 }
 }
 }
 }
 leaf stop‑time {
 type yang:date‑and‑time;
 description
 "Identifies a time after which notification messages for a
 subscription should not be sent. If 'stop‑time' is not
 present, the notification messages will continue until the
 subscription is terminated. If 'replay‑start‑time' exists,
 'stop‑time' must be for a subsequent time. If
 'replay‑start‑time' doesn't exist, 'stop‑time' when established
 must be for a future time.";
 }
}

grouping subscription‑policy‑dynamic {
 description
 "This grouping describes the only information concerning a
 subscription which can be passed over the RPCs defined in this
 model.";
 uses subscription‑policy‑modifiable {
 augment target/stream {

 description
 "Adds additional objects which can be modified by RPC.";
 leaf stream {
 type stream‑ref {
 require‑instance false;
 }
 mandatory true;
 description
 "Indicates the event stream to be considered for
 this subscription.";
 }
 leaf replay‑start‑time {
 if‑feature "replay";
 type yang:date‑and‑time;
 config false;
 description
 "Used to trigger the replay feature for a dynamic
 subscription, with event records being selected needing to
 be at or after the start at the time specified. If
 'replay‑start‑time' is not present, this is not a replay
 subscription and event record push should start
 immediately. It is never valid to specify start times that
 are later than or equal to the current time.";
 }
 }
 }
 uses update‑qos;
}

grouping subscription‑policy {
 description
 "This grouping describes the full set of policy information
 concerning both dynamic and configured subscriptions, with the
 exclusion of both receivers and networking information specific
 to the publisher such as what interface should be used to
 transmit notification messages.";
 uses subscription‑policy‑dynamic;
 leaf transport {
 if‑feature "configured";
 type transport;
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined to all receivers
 of that subscription.";
 }
 leaf encoding {
 when 'not(../transport) or derived‑from(../transport,
 "sn:configurable‑encoding")';

 type encoding;
 description
 "The type of encoding for notification messages. For a
 dynamic subscription, if not included as part of an establish‑
 subscription RPC, the encoding will be populated with the
 encoding used by that RPC. For a configured subscription, if
 not explicitly configured the encoding with be the default
 encoding for an underlying transport.";
 }
 leaf purpose {
 if‑feature "configured";
 type string;
 description
 "Open text allowing a configuring entity to embed the
 originator or other specifics of this subscription.";
 }
}

/*
 * RPCs
 */

rpc establish‑subscription {
 description
 "This RPC allows a subscriber to create (and possibly negotiate)
 a subscription on its own behalf. If successful, the
 subscription remains in effect for the duration of the
 subscriber's association with the publisher, or until the
 subscription is terminated. In case an error occurs, or the
 publisher cannot meet the terms of a subscription, an RPC error
 is returned, the subscription is not created. In that case, the
 RPC reply's 'error‑info' MAY include suggested parameter
 settings that would have a higher likelihood of succeeding in a
 subsequent 'establish‑subscription' request.";
 input {
 uses subscription‑policy‑dynamic;
 leaf encoding {
 type encoding;
 description
 "The type of encoding for the subscribed data. If not
 included as part of the RPC, the encoding MUST be set by the
 publisher to be the encoding used by this RPC.";
 }
 }
 output {
 leaf id {
 type subscription‑id;
 mandatory true;

 description
 "Identifier used for this subscription.";
 }
 leaf replay‑start‑time‑revision {
 if‑feature "replay";
 type yang:date‑and‑time;
 description
 "If a replay has been requested, this represents the
 earliest time covered by the event buffer for the requested
 event stream. The value of this object is the
 'replay‑log‑aged‑time' if it exists. Otherwise it is the
 'replay‑log‑creation‑time'. All buffered event records
 after this time will be replayed to a receiver. This
 object will only be sent if the starting time has been
 revised to be later than the time requested by the
 subscriber.";
 }
 }
}

rc:yang‑data establish‑subscription‑stream‑error‑info {
 container establish‑subscription‑stream‑error‑info {
 description
 "If any 'establish‑subscription' RPC parameters are
 unsupportable against the event stream, a subscription is not
 created and the RPC error response MUST indicate the reason
 why the subscription failed to be created. This yang‑data MAY
 be inserted as structured data within a subscription's RPC
 error response to indicate the failure reason. This yang‑data
 MUST be inserted if hints are to be provided back to the
 subscriber.";
 leaf reason {
 type identityref {
 base establish‑subscription‑error;
 }
 description
 "Indicates the reason why the subscription has failed to
 be created to a targeted event stream.";
 }
 leaf filter‑failure‑hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 }
}

rpc modify‑subscription {
 description
 "This RPC allows a subscriber to modify a dynamic subscription's
 parameters. If successful, the changed subscription
 parameters remain in effect for the duration of the
 subscription, until the subscription is again modified, or until
 the subscription is terminated. In case of an error or an
 inability to meet the modified parameters, the subscription is
 not modified and the original subscription parameters remain in
 effect. In that case, the RPC error MAY include 'error‑info'
 suggested parameter hints that would have a high likelihood of
 succeeding in a subsequent 'modify‑subscription' request. A
 successful 'modify‑subscription' will return a suspended
 subscription to an 'active' state.";
 input {
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription‑policy‑modifiable;
 }
}

rc:yang‑data modify‑subscription‑stream‑error‑info {
 container modify‑subscription‑stream‑error‑info {
 description
 "This yang‑data MAY be provided as part of a subscription's RPC
 error response when there is a failure of a
 'modify‑subscription' RPC which has been made against an event
 stream. This yang‑data MUST be used if hints are to be
 provided back to the subscriber.";
 leaf reason {
 type identityref {
 base modify‑subscription‑error;
 }
 description
 "Information in a 'modify‑subscription' RPC error response
 which indicates the reason why the subscription to an event
 stream has failed to be modified.";
 }
 leaf filter‑failure‑hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }

 }
}

rpc delete‑subscription {
 description
 "This RPC allows a subscriber to delete a subscription that
 was previously created from by that same subscriber using the
 'establish‑subscription' RPC.

 If an error occurs, the server replies with an 'rpc‑error' where
 the 'error‑info' field MAY contain an
 'delete‑subscription‑error‑info' structure.";
 input {
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 'establish‑subscription' from the same origin as this RPC
 can be deleted via this RPC.";
 }
 }
}

rpc kill‑subscription {
 nacm:default‑deny‑all;
 description
 "This RPC allows an operator to delete a dynamic subscription
 without restrictions on the originating subscriber or underlying
 transport session.

 If an error occurs, the server replies with an 'rpc‑error' where
 the 'error‑info' field MAY contain an
 'delete‑subscription‑error‑info' structure.";
 input {
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted. Only
 subscriptions that were created using
 'establish‑subscription' can be deleted via this RPC.";
 }
 }
}

 rc:yang-data delete-subscription-error-info {

 container delete‑subscription‑error‑info {
 description
 "If a 'delete‑subscription' RPC or a 'kill‑subscription' RPC
 fails, the subscription is not deleted and the RPC error
 response MUST indicate the reason for this failure. This
 yang‑data MAY be inserted as structured data within a
 subscription's RPC error response to indicate the failure
 reason.";
 leaf reason {
 type identityref {
 base delete‑subscription‑error;
 }
 mandatory true;
 description
 "Indicates the reason why the subscription has failed to be
 deleted.";
 }
 }
}

/*
 * NOTIFICATIONS
 */

notification replay‑completed {
 sn:subscription‑state‑notification;
 if‑feature "replay";
 description
 "This notification is sent to indicate that all of the replay
 notifications have been sent. It must not be sent for any other
 reason.";
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
}

notification subscription‑completed {
 sn:subscription‑state‑notification;
 if‑feature "configured";
 description
 "This notification is sent to indicate that a subscription has
 finished passing event records, as the 'stop‑time' has been
 reached.";
 leaf id {
 type subscription‑id;

 mandatory true;
 description
 "This references the gracefully completed subscription.";
 }
}

notification subscription‑modified {
 sn:subscription‑state‑notification;
 description
 "This notification indicates that a subscription has been
 modified. Notification messages sent from this point on will
 conform to the modified terms of the subscription. For
 completeness, this subscription state change notification
 includes both modified and non‑modified aspects of a
 subscription.";
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription‑policy {
 refine "target/stream/stream‑filter/within‑subscription" {
 description
 "Filter applied to the subscription. If the
 'stream‑filter‑name' is populated, the filter within the
 subscription came from the 'filters' container. Otherwise it
 is populated in‑line as part of the subscription.";
 }
 }
}

notification subscription‑resumed {
 sn:subscription‑state‑notification;
 description
 "This notification indicates that a subscription that had
 previously been suspended has resumed. Notifications will once
 again be sent. In addition, a 'subscription‑resumed' indicates
 that no modification of parameters has occurred since the last
 time event records have been sent.";
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
}

notification subscription‑started {
 sn:subscription‑state‑notification;
 if‑feature "configured";
 description
 "This notification indicates that a subscription has started and
 notifications are beginning to be sent. This notification shall
 only be sent to receivers of a subscription; it does not
 constitute a general‑purpose notification.";
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription‑policy {
 refine "target/stream/replay‑start‑time" {
 description
 "Indicates the time that a replay using for the streaming of
 buffered event records. This will be populated with the
 most recent of the following: the event time of the previous
 event record sent to a receiver, the
 'replay‑log‑creation‑time', the 'replay‑log‑aged‑time',
 or the most recent publisher boot time.";
 }
 refine "target/stream/stream‑filter/within‑subscription" {
 description
 "Filter applied to the subscription. If the
 'stream‑filter‑name' is populated, the filter within the
 subscription came from the 'filters' container. Otherwise it
 is populated in‑line as part of the subscription.";
 }
 augment "target/stream" {
 description
 "This augmentation adds additional parameters specific to a
 subscription‑started notification.";
 leaf replay‑previous‑event‑time {
 when "../replay‑start‑time";
 if‑feature "replay";
 type yang:date‑and‑time;
 description
 "If there is at least one event in the replay buffer prior
 to 'replay‑start‑time', this gives the time of the event
 generated immediately prior to the 'replay‑start‑time'.

 If a receiver previously received event records for this
 configured subscription, it can compare this time to the
 last event record previously received. If the two are not
 the same (perhaps due to a reboot), then a dynamic replay

 can be initiated to acquire any missing event records.";
 }
 }
 }
}

notification subscription‑suspended {
 sn:subscription‑state‑notification;
 description
 "This notification indicates that a suspension of the
 subscription by the publisher has occurred. No further
 notifications will be sent until the subscription resumes.
 This notification shall only be sent to receivers of a
 subscription; it does not constitute a general‑purpose
 notification.";
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription‑suspended‑reason;
 }
 mandatory true;
 description
 "Identifies the condition which resulted in the suspension.";
 }
}

notification subscription‑terminated {
 sn:subscription‑state‑notification;
 description
 "This notification indicates that a subscription has been
 terminated.";
 leaf id {
 type subscription‑id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription‑terminated‑reason;
 }
 mandatory true;
 description

 "Identifies the condition which resulted in the termination .";
 }
}

/*
 * DATA NODES
 */

container streams {
 config false;
 description
 "This container contains information on the built‑in event
 streams provided by the publisher.";
 list stream {
 key "name";
 description
 "Identifies the built‑in event streams that are supported by
 the publisher.";
 leaf name {
 type string;
 description
 "A handle for a system‑provided event stream made up of a
 sequential set of event records, each of which is
 characterized by its own domain and semantics.";
 }
 leaf description {
 type string;
 mandatory true;
 description
 "A description of the event stream, including such
 information as the type of event records that are available
 within this event stream.";
 }
 leaf replay‑support {
 if‑feature "replay";
 type empty;
 description
 "Indicates that event record replay is available on this
 event stream.";
 }
 leaf replay‑log‑creation‑time {
 when "../replay‑support";
 if‑feature "replay";
 type yang:date‑and‑time;
 mandatory true;
 description
 "The timestamp of the creation of the log used to support the

 replay function on this event stream. This time might be
 earlier than the earliest available information contained in
 the log. This object is updated if the log resets for some
 reason.";
 }
 leaf replay‑log‑aged‑time {
 when "../replay‑support";
 if‑feature "replay";
 type yang:date‑and‑time;
 description
 "The timestamp associated with last event record which has
 been aged out of the log. This timestamp identifies how far
 back into history this replay log extends, if it doesn't
 extend back to the 'replay‑log‑creation‑time'. This object
 MUST be present if replay is supported and any event records
 have been aged out of the log.";
 }
 }
}

container filters {
 description
 "This container contains a list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 list stream‑filter {
 key "name";
 description
 "A list of pre‑configured filters that can be applied to
 subscriptions.";
 leaf name {
 type string;
 description
 "An name to differentiate between filters.";
 }
 uses stream‑filter‑elements;
 }
}

container subscriptions {
 description
 "Contains the list of currently active subscriptions, i.e.
 subscriptions that are currently in effect, used for
 subscription management and monitoring purposes. This includes
 subscriptions that have been setup via RPC primitives as well as
 subscriptions that have been established via configuration.";
 list subscription {
 key "id";

 description

 "The identity and specific parameters of a subscription.
 Subscriptions within this list can be created using a control
 channel or RPC, or be established through configuration.

 If configuration operations or the 'kill‑subscription' RPC are
 used to delete a subscription, a 'subscription‑terminated'
 message is sent to any active or suspended receivers.";
 leaf id {
 type subscription‑id;
 description
 "Identifier of a subscription; unique within a publisher";
 }
 uses subscription‑policy {
 refine "target/stream/stream" {
 description
 "Indicates the event stream to be considered for this
 subscription. If an event stream has been removed,
 and no longer can be referenced by an active subscription,
 send a 'subscription‑terminated' notification with
 'stream‑unavailable' as the reason. If a configured
 subscription refers to a non‑existent event stream, move
 that subscription to the 'invalid' state.";
 }
 refine "transport" {
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined to all
 receivers of that subscription. This object is mandatory
 for subscriptions in the configuration datastore. This
 object is not mandatory for dynamic subscriptions within
 the operational state datastore. The object should not
 be present for dynamic subscriptions.";
 }
 augment "target/stream" {
 description
 "Enables objects to added to a configured stream
 subscription";
 leaf configured‑replay {
 if‑feature "configured";
 if‑feature "replay";
 type empty;
 description
 "The presence of this leaf indicates that replay for the
 configured subscription should start at the earliest time
 in the event log, or at the publisher boot time, which
 ever is later.";
 }

 }
 }
 choice notification‑message‑origin {
 if‑feature "configured";
 description
 "Identifies the egress interface on the publisher from which
 notification messages are to be sent.";
 case interface‑originated {
 description
 "When notification messages to egress a specific,
 designated interface on the publisher.";
 leaf source‑interface {
 if‑feature "interface‑designation";
 type if:interface‑ref;
 description
 "References the interface for notification messages.";
 }
 }
 case address‑originated {
 description
 "When notification messages are to depart from a publisher
 using specific originating address and/or routing context
 information.";
 leaf source‑vrf {
 if‑feature "supports‑vrf";
 type leafref {
 path "/ni:network‑instances/ni:network‑instance/ni:name";
 }
 description
 "VRF from which notification messages should egress a
 publisher.";
 }
 leaf source‑address {
 type inet:ip‑address‑no‑zone;
 description
 "The source address for the notification messages. If a
 source VRF exists, but this object doesn't, a publisher's
 default address for that VRF must be used.";
 }
 }
 }
 leaf configured‑subscription‑state {
 if‑feature "configured";
 type enumeration {
 enum valid {
 value 1;
 description
 "Subscription is supportable with current parameters.";

 }
 enum invalid {
 value 2;
 description
 "The subscription as a whole is unsupportable with its
 current parameters.";
 }
 enum concluded {
 value 3;
 description
 "A subscription is inactive as it has hit a stop time,
 but not yet been removed from configuration.";
 }
 }
 config false;
 description
 "The presence of this leaf indicates that the subscription
 originated from configuration, not through a control channel
 or RPC. The value indicates the system established state
 of the subscription.";
 }
 container receivers {
 description
 "Set of receivers in a subscription.";
 list receiver {
 key "name";
 min‑elements 1;
 description
 "A host intended as a recipient for the notification
 messages of a subscription. For configured subscriptions,
 transport specific network parameters (or a leafref to
 those parameters) may augmentated to a specific receiver
 within this list.";
 leaf name {
 type string;
 description
 "Identifies a unique receiver for a subscription.";
 }
 leaf sent‑event‑records {
 type yang:zero‑based‑counter64;
 config false;
 description
 "The number of event records sent to the receiver. The
 count is initialized when a dynamic subscription is
 established, or when a configured receiver
 transitions to the valid state.";
 }
 leaf excluded‑event‑records {

 type yang:zero‑based‑counter64;
 config false;
 description
 "The number of event records explicitly removed either
 via an event stream filter or an access control filter so
 that they are not passed to a receiver. This count is
 set to zero each time 'sent‑event‑records' is
 initialized.";
 }
 leaf state {
 type enumeration {
 enum active {
 value 1;
 description
 "Receiver is currently being sent any applicable
 notification messages for the subscription.";
 }
 enum suspended {
 value 2;
 description
 "Receiver state is 'suspended', so the publisher
 is currently unable to provide notification messages
 for the subscription.";
 }
 enum connecting {
 value 3;
 if‑feature "configured";
 description
 "A subscription has been configured, but a
 'subscription‑started' subscription state change
 notification needs to be successfully received before
 notification messages are sent.

 If the 'reset' action is invoked for a receiver of an
 active configured subscription, the state must be
 moved to 'connecting'.";
 }
 enum disconnected {
 value 4;
 if‑feature "configured";
 description
 "A subscription has failed in sending a subscription
 started state change to the receiver.
 Additional attempts at connection attempts are not
 currently being made.";
 }
 }
 config false;

 mandatory true;
 description
 "Specifies the state of a subscription from the
 perspective of a particular receiver. With this info it
 is possible to determine whether a subscriber is
 currently generating notification messages intended for
 that receiver.";
 }
 action reset {
 if‑feature "configured";
 description
 "Allows the reset of this configured subscription
 receiver to the 'connecting' state. This enables the
 connection process to be re‑initiated.";
 output {
 leaf time {
 type yang:date‑and‑time;
 mandatory true;
 description
 "Time a publisher returned the receiver to a
 'connecting' state.";
 }
 }
 }
 }
 }
 }
 }
}
<CODE ENDS>

5. Considerations

5.1. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

Name: ietf‑subscribed‑notifications
Namespace: urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications
Prefix: sn

 Reference: draft-ietf-netconf-ietf-subscribed-notifications-11.txt
 (RFC form)

5.2. Implementation Considerations

 To support deployments including both configured and dynamic
 subscriptions, it is recommended to split the subscription "id"
 domain into static and dynamic halves. That way it eliminates the
 possibility of collisions if the configured subscriptions attempt to
 set a subscription-id which might have already been dynamically
 allocated. A best practice is to use lower half the "id" object's
 integer space when that "id" is assigned by an external entity (such
 as with a configured subscription). This leaves the upper half of
 subscription integer space available to be dynamically assigned by
 the publisher.

 If a subscription is unable to marshal a series of filtered event
 records into transmittable notification messages, the receiver should
 be suspended with the reason "unsupportable-volume".

 For configured subscriptions, operations are against the set of
 receivers using the subscription "id" as a handle for that set. But
 for streaming updates, subscription state change notifications are
 local to a receiver. In this specification it is the case that
 receivers get no information from the publisher about the existence
 of other receivers. But if a network operator wants to let the
 receivers correlate results, it is useful to use the subscription
 "id" across the receivers to allow that correlation.

 For configured replay subscriptions, the receiver is protected from
 duplicated events being pushed after a publisher is rebooted.
 However it is possible that a receiver might want to acquire event
 records which failed to be delivered just prior to the reboot.
 Delivering these event records be accomplished by leveraging the
 "eventTime" from the last event record received prior to the receipt
 of a "subscription-started" subscription state change notification.
 With this "eventTime" and the "replay-start-time" from the
 "subscription-started" notification, an independent dynamic
 subscription can be established which retrieves any event records
 which may have been generated but not sent to the receiver.

5.3. Transport Requirements

 This section provides requirements for any subscribed notification
 transport supporting the solution presented in this document.

 The transport selected by the subscriber to reach the publisher MUST
 be able to support multiple "establish-subscription" requests made
 within the same transport session.

 For both configured and dynamic subscriptions the publisher MUST
 authenticate a receiver via some transport level mechanism before
 sending any event records for which they are authorized to see. In
 addition, the receiver MUST authenticate the publisher at the
 transport level. The result is mutual authentication between the
 two.

 A secure transport is highly recommended and the publisher MUST
 ensure that the receiver has sufficient authorization to perform the
 function they are requesting against the specific subset of content
 involved.

 A specific transport specification built upon this document may or
 may not choose to require the use of the same logical channel for the
 RPCs and the event records. However the event records and the
 subscription state change notifications MUST be sent on the same
 transport session to ensure the properly ordered delivery.

 Additional transport requirements will be dictated by the choice of
 transport used with a subscription. For an example of such
 requirements with NETCONF transport, see
 [I-D.draft-ietf-netconf-netconf-event-notifications].

5.4. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management transports
 such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC5246].

 The NETCONF Access Control Model (NACM) [RFC8341] provides the means
 to restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF operations
 and content.

 One subscription "id" can be used for two or more receivers of the
 same configured subscription. But due to the possibility of
 different access control permissions per receiver, it cannot be
 assumed that each receiver is getting identical updates.

 With configured subscriptions, one or more publishers could be used
 to overwhelm a receiver. Notification messages SHOULD NOT be sent to
 any receiver which does not support this specification. Receivers
 that do not want notification messages need only terminate or refuse
 any transport sessions from the publisher.

 When a receiver of a configured subscription gets a new
 "subscription-started" message for a known subscription where it is
 already consuming events, the receiver SHOULD retrieve any event
 records generated since the last event record was received. This can
 be accomplish by establishing a separate dynamic replay subscription
 with the same filtering criteria with the publisher, assuming the
 publisher supports the "replay" feature.

 For dynamic subscriptions, implementations need to protect against
 malicious or buggy subscribers which may send a large number
 "establish-subscription" requests, thereby using up system resources.
 To cover this possibility operators SHOULD monitor for such cases
 and, if discovered, take remedial action to limit the resources used,
 such as suspending or terminating a subset of the subscriptions or,
 if the underlying transport is session based, terminate the
 underlying transport session.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 where there is a specific sensitivity/vulnerability:

 Container: "/filters"

 o "stream-subtree-filter": updating a filter could increase the
 computational complexity of all referencing subscriptions.

 o "stream-xpath-filter": updating a filter could increase the
 computational complexity of all referencing subscriptions.

 Container: "/subscriptions"

 The following considerations are only relevant for configuration
 operations made upon configured subscriptions:

 o "configured-replay": can be used to send a large number of event
 records to a receiver.

 o "dependency": can be used to force important traffic to be queued
 behind less important updates.

 o "dscp": if unvalidated, can result in the sending of traffic with
 a higher priority marking than warranted.

 o "id": can overwrite an existing subscription, perhaps one
 configured by another entity.

 o "name": adding a new key entry can be used to attempt to send
 traffic to an unwilling receiver.

 o "replay-start-time": can be used to push very large logs, wasting
 resources.

 o "source-address": the configured address might not be able to
 reach a desired receiver.

 o "source-interface": the configured interface might not be able to
 reach a desired receiver.

 o "source-vrf": can place a subscription into a virtual network
 where receivers are not entitled to view the subscribed content.

 o "stop-time": could be used to terminate content at an inopportune
 time.

 o "stream": could set a subscription to an event stream containing
 no content permitted for the targeted receivers.

 o "stream-filter-name": could be set to a filter which is irrelevant
 to the event stream.

 o "stream-subtree-filter": a complex filter can increase the
 computational resources for this subscription.

 o "stream-xpath-filter": a complex filter can increase the
 computational resources for this subscription.

 o "weighting": placing a large weight can overwhelm the dequeuing of
 other subscriptions.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Container: "/streams"

 o "name": if access control is not properly configured, can expose
 system internals to those who should have no access to this
 information.

 o "replay-support": if access control is not properly configured,
 can expose logs to those who should have no access.

 Container: "/subscriptions"

 o "excluded-event-records": leaf can provide information about
 filtered event records. A network operator should have
 permissions to know about such filtering.

 o "subscription": different operational teams might have a desire to
 set varying subsets of subscriptions. Access control should be
 designed to permit read access to just the allowed set.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 RPC: all

 o If a malicious or buggy subscriber sends an unexpectedly large
 number of RPCs, the result might be an excessive use of system
 resources on the publisher just to determine that these
 subscriptions should be declined. In such a situation,
 subscription interactions MAY be terminated by terminating the
 transport session.

 RPC: "delete-subscription"

 o No special considerations.

 RPC: "establish-subscription"

 o Subscriptions could overload a publisher's resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request or otherwise reject the request.

 RPC: "kill-subscription"

 o The "kill-subscription" RPC MUST be secured so that only
 connections with administrative rights are able to invoke this
 RPC.

 RPC: "modify-subscription"

 o Subscriptions could overload a publisher's resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request or otherwise reject the request.

6. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Andy Bierman, Tim Jenkins, Martin Bjorklund, Kent Watsen,
 Balazs Lengyel, Robert Wilton, Sharon Chisholm, Hector Trevino, Susan
 Hares, Michael Scharf, and Guangying Zheng.

7. References

7.1. Normative References

 [I-D.draft-ietf-rtgwg-ni-model]

 Berger, L., Hopps, C., and A. Lindem, "YANG Network
 Instances", draft-ietf-rtgwg-ni-model-12 (work in
 progress), March 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474]
 Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [XPATH]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

7.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]

 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Nilsen-Nygaard, E., and A. Tripathy, "NETCONF support for
 event notifications", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-netconf-event-notifications/>.

 [I-D.draft-ietf-netconf-restconf-notif]

 Voit, Eric., Clemm, Alexander., Tripathy, A., Nilsen-
 Nygaard, E., and Alberto. Gonzalez Prieto, "Restconf and
 HTTP transport for event notifications", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-restconf-notif/>.

 [I-D.ietf-netconf-yang-push]

 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC7540]
 Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7923]
 Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8071]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Example Configured Transport Augmentation

 This appendix provides a non-normative example of how the YANG model
 defined in Section 4 may be enhanced to incorporate the configuration
 parameters needed to support the transport connectivity process. In
 this example, connectivity via an imaginary transport type of "foo"
 is explored. For more on the overall need, see Section 2.5.7.

 The YANG model defined in this section contains two main elements.
 First is a transport identity "foo". This transport identity allows
 a configuration agent to define "foo" as the selected type of
 transport for a subscription. Second is a YANG case augmentation
 "foo" which is made to the "/subscriptions/subscription/receivers/
 receiver" node of Section 4. Within this augmentation are the
 transport configuration parameters "address" and "port" which are
 necessary to make the connect to the receiver.

module example‑foo‑subscribed‑notifications {
 yang‑version 1.1;
 namespace
 "urn:example:foo‑subscribed‑notifications";

 prefix fsn;

import ietf‑subscribed‑notifications {
 prefix sn;
}
import ietf‑inet‑types {
 prefix inet;
}

 description

 "Defines 'foo' as a supported type of configured transport for
 subscribed event notifications.";

 identity foo {
 base sn:transport;
 description
 "Transport type 'foo' is available for use as a configured
 subscription transport protocol for subscribed notifications.";
 }

 augment
 "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 when 'derived‑from(../../../transport, "fsn:foo")';
 description
 "This augmentation makes 'foo' specific transport parameters
 available for a receiver.";

 leaf address {
 type inet:host;
 mandatory true;
 description
 "Specifies the address to use for messages destined to a
 receiver.";
 }
 leaf port {
 type inet:port‑number;
 mandatory true;
 description
 "Specifies the port number to use for messages destined to a
 receiver.";
 }
 }
}

 Figure 21: Example Transport Augmentation for the fictitious protocol

 foo

 This example YANG model for transport "foo" will not be seen in a
 real world deployment. For a real world deployment supporting an
 actual transport technology, a similar YANG model must be defined.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v20 - v21

 o Editorial change in Section 1.3 requested by Qin's Shepherd review
 of NETCONF-Notif and RESTCONF-Notif. Basically extra text was
 added further describing that dynamic subscriptions can have state
 change notifications.

 v18 - v20

 o XPath-stream-filter YANG object definition updated based on NETMOD
 discussions.

 v17 - v18

 o Transport optional in YANG model.

 o Modify subscription must come from the originator of the
 subscription. (Text got dropped somewhere previously.)

 o Title change.

 v16 - v17

 o YANG renaming: Subscription identifier renamed to id. Counters
 renamed. Filters id made into name.

 o Text tweaks.

 v15 - v16

 o Mandatory empty case "transport" removed.

 o Appendix case turned from "netconf" to "foo".

 v14 - v15

 o Text tweaks.

 o Mandatory empty case "transport" added for transport parameters.
 This includes a new section and an appendix explaining it.

 v13 - v14

 o Removed the 'address' leaf.

 o Replay is now of type 'empty' for configured.

 v12 - v13

 o Tweaks from Kent's comments

 o Referenced in YANG model updated per Tom Petch's comments

 o Added leaf replay-previous-event-time

 o Renamed the event counters, downshifted the subscription states

 v11 - v12

 o Tweaks from Kent's, Tim's, and Martin's comments

 o Clarified dscp text, and made its own feature

 o YANG model tweaks alphabetizing, features.

 v10 - v11

 o access control filtering of events in streams included to match
 RFC5277 behavior

 o security considerations updated based on YANG template.

 o dependency QoS made non-normative on HTTP2 QoS

 o tree diagrams referenced for each figure using them

 o reference numbers placed into state machine figures

 o broke configured replay into its own section

 o many tweaks updates based on LC and YANG doctor reviews

 o trees and YANG model reconciled were deltas existed

 o new feature for interface originated.

 o dscp removed from the qos feature

 o YANG model updated in a way which collapses groups only used once
 so that they are part of the 'subscriptions' container.

 o alternative encodings only allowed for transports which support
 them.

 v09 - v10

 o Typos and tweaks

 v08 - v09

 o NMDA model supported. Non NMDA version at https://github.com/
 netconf-wg/rfc5277bis/

 o Error mechanism revamped to match to embedded implementations.

 o Explicitly identified error codes relevant to each RPC/
 Notification

 v07 - v08

 o Split YANG trees to separate document subsections.

 o Clarified configured state machine based on Balazs comments, and
 moved it into the configured subscription subsections.

 o Normative reference to Network Instance model for VRF

 o One transport for all receivers of configured subscriptions.

 o QoS section moved in from yang-push

 v06 - v07

 o Clarification on state machine for configured subscriptions.

 v05 - v06

 o Made changes proposed by Martin, Kent, and others on the list.
 Most significant of these are stream returned to string (with the
 SYSLOG identity removed), intro section on 5277 relationship, an
 identity set moved to an enumeration, clean up of definitions/
 terminology, state machine proposed for configured subscriptions
 with a clean-up of subscription state options.

 o JSON and XML become features. Also Xpath and subtree filtering
 become features

 o Terminology updates with event records, and refinement of filters
 to just event stream filters.

 o Encoding refined in establish-subscription so it takes the RPC's
 encoding as the default.

 o Namespaces in examples fixed.

 v04 - v05

 o Returned to the explicit filter subtyping of v00

 o stream object changed to 'name' from 'stream'

 o Cleaned up examples

 o Clarified that JSON support needs notification-messages draft.

 v03 - v04

 o Moved back to the use of RFC5277 one-way notifications and
 encodings.

 v03 - v04

 o Replay updated

 v02 - v03

 o RPCs and Notification support is identified by the Notification
 2.0 capability.

 o Updates to filtering identities and text

 o New error type for unsupportable volume of updates

 o Text tweaks.

 v01 - v02

 o Subscription status moved under receiver.

 v00 - v01

 o Security considerations updated

 o Intro rewrite, as well as scattered text changes

 o Added Appendix A, to help match this to related drafts in progress

 o Updated filtering definitions, and filter types in yang file, and
 moved to identities for filter types

 o Added Syslog as an event stream

 o HTTP2 moved in from YANG-Push as a transport option

 o Replay made an optional feature for events. Won't apply to
 datastores

 o Enabled notification timestamp to have different formats.

 o Two error codes added.

 v01 5277bis - v00 subscribed notifications

 o Kill subscription RPC added.

 o Renamed from 5277bis to Subscribed Notifications.

 o Changed the notification capabilities version from 1.1 to 2.0.

 o Extracted create-subscription and other elements of RFC5277.

 o Error conditions added, and made specific in return codes.

 o Simplified yang model structure for removal of 'basic' grouping.

 o Added a grouping for items which cannot be statically configured.

 o Operational counters per receiver.

 o Subscription-id and filter-id renamed to identifier

 o Section for replay added. Replay now cannot be configured.

 o Control plane notification renamed to subscription state change
 notification

 o Source address: Source-vrf changed to string, default address
 option added

 o In yang model: 'info' changed to 'policy'

 o Scattered text clarifications

 v00 - v01 of 5277bis

 o YANG Model changes. New groupings for subscription info to allow
 restriction of what is changeable via RPC. Removed notifications
 for adding and removing receivers of configured subscriptions.

 o Expanded/renamed definitions from event server to publisher, and
 client to subscriber as applicable. Updated the definitions to
 include and expand on RFC 5277.

 o Removal of redundancy with other drafts

 o Many other clean-ups of wording and terminology

Authors' Addresses

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Alexander Clemm
Huawei

 Email: ludwig@clemm.org

Alberto Gonzalez Prieto
Microsoft

 Email: alberto.gonzalez@microsoft.com

Einar Nilsen‑Nygaard
Cisco Systems

 Email: einarnn@cisco.com

Ambika Prasad Tripathy
Cisco Systems

 Email: ambtripa@cisco.com

draft-ietf-netconf-tls-client-server-08 - YANG Groupings for TLS Clients and TLS

Index
Back 5
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

G. Wu

Cisco Systems

L. Xia

Huawei

October 22, 2018

YANG Groupings for TLS Clients and TLS Servers

draft-ietf-netconf-tls-client-server-08

Abstract

 This document defines three YANG modules: the first defines groupings
 for a generic TLS client, the second defines groupings for a generic
 TLS server, and the third defines common identities and groupings
 used by both the client and the server. It is intended that these
 groupings will be used by applications using the TLS protocol.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-trust-anchors

 o I-D.ietf-netconf-keystore

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

o "YYYY" ‑‑> the assigned RFC value for I‑D.ietf‑netconf‑trust‑
 anchors

 o "ZZZZ" --> the assigned RFC value for I-D.ietf-netconf-keystore

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology

	3. The TLS Client Model
	 3.1. Tree Diagram

	 3.2. Example Usage

	 3.3. YANG Module

	4. The TLS Server Model
	 4.1. Tree Diagram

	 4.2. Example Usage

	 4.3. YANG Module

	5. The TLS Common Model
	 5.1. Tree Diagram

	 5.2. Example Usage

	 5.3. YANG Module

	6. Security Considerations

	7. IANA Considerations
	 7.1. The IETF XML Registry

	 7.2. The YANG Module Names Registry

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. Change Log
	 A.1. 00 to 01

	 A.2. 01 to 02

	 A.3. 02 to 03

	 A.4. 03 to 04

	 A.5. 04 to 05

	 A.6. 05 to 06

	 A.7. 06 to 07

	 A.8. 07 to 08

	Acknowledgements

	Authors' Addresses

1. Introduction

 This document defines three YANG 1.1 [RFC7950] modules: the first
 defines a grouping for a generic TLS client, the second defines a
 grouping for a generic TLS server, and the third defines identities
 and groupings common to both the client and the server (TLS is
 defined in [RFC5246]). It is intended that these groupings will be
 used by applications using the TLS protocol. For instance, these
 groupings could be used to help define the data model for an HTTPS
 [RFC2818] server or a NETCONF over TLS [RFC7589] based server.

 The client and server YANG modules in this document each define one
 grouping, which is focused on just TLS-specific configuration, and
 specifically avoids any transport-level configuration, such as what
 ports to listen-on or connect-to. This affords applications the
 opportunity to define their own strategy for how the underlying TCP
 connection is established. For instance, applications supporting
 NETCONF Call Home [RFC8071] could use the "ssh-server-grouping"
 grouping for the TLS parts it provides, while adding data nodes for
 the TCP-level call-home configuration.

 The modules defined in this document uses groupings defined in
 [I-D.ietf-netconf-keystore] enabling keys to be either locally
 defined or a reference to globally configured values.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The TLS Client Model

3.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-tls-
 client" module that does not have groupings expanded.

 module: ietf-tls-client

grouping server‑auth‑grouping
 +‑‑ server‑auth
 +‑‑ pinned‑ca‑certs? ta:pinned‑certificates‑ref
 | {ta:x509‑certificates}?
 +‑‑ pinned‑server‑certs? ta:pinned‑certificates‑ref
 {ta:x509‑certificates}?
grouping tls‑client‑grouping
 +‑‑‑u client‑identity‑grouping
 +‑‑‑u server‑auth‑grouping
 +‑‑‑u hello‑params‑grouping
grouping client‑identity‑grouping
 +‑‑ client‑identity
 +‑‑ (auth‑type)?
 +‑‑:(certificate)
 +‑‑ certificate
 +‑‑‑u client‑identity‑grouping
grouping hello‑params‑grouping
 +‑‑ hello‑params {tls‑client‑hello‑params‑config}?
 +‑‑‑u hello‑params‑grouping

3.2. Example Usage

 This section presents two examples showing the tls-client-grouping
 populated with some data. These examples are effectively the same
 except the first configures the client identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of
 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the client identity using a local
 key:

 [Note: '\' line wrapping for formatting only]

 <tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!‑‑ how this client will authenticate itself to the server ‑‑>
 <client‑identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑t\
ypes">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </client‑identity>

 <!‑‑ which certificates will this client trust ‑‑>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</pinned‑ca‑c\
erts>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</pinned‑ser\
ver‑certs>
 </server‑auth>

 </tls-client>

 The following example configures the client identity using a key from
 the keystore:

 [Note: '\' line wrapping for formatting only]

 <tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!‑‑ how this client will authenticate itself to the server ‑‑>
 <client‑identity>
 <certificate>
 <reference>ex‑rsa‑cert</reference>
 </certificate>
 </client‑identity>

 <!‑‑ which certificates will this client trust ‑‑>
 <server‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑server‑ca‑certs</pinned‑ca‑c\
erts>
 <pinned‑server‑certs>explicitly‑trusted‑server‑certs</pinned‑ser\
ver‑certs>
 </server‑auth>

 </tls-client>

3.3. YANG Module

 This YANG module has normative references to
 [I-D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore].

<CODE BEGINS> file "ietf‑tls‑client@2018‑10‑22.yang"
module ietf‑tls‑client {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑tls‑client";
 prefix "tlsc";

 import ietf‑tls‑common {
 prefix tlscmn;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 import ietf‑trust‑anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf-keystore {

 prefix ks;

 reference
 "RFC ZZZZ: YANG Data Model for a 'Keystore' Mechanism";
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

description
 "This module defines a reusable grouping for a TLS client that
 can be used as a basis for specific TLS client instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
}

 // features

feature tls‑client‑hello‑params‑config {
 description
 "TLS hello message parameters are configurable on a TLS
 client.";

 }

 // groupings

 grouping tls‑client‑grouping {
 description
 "A reusable grouping for configuring a TLS client without
 any consideration for how an underlying TCP session is
 established.";
 uses client‑identity‑grouping;
 uses server‑auth‑grouping;
 uses hello‑params‑grouping;
 }

 grouping client‑identity‑grouping {
 description
 "A reusable grouping for configuring a TLS client identity.";
 container client‑identity {
 description
 "The credentials used by the client to authenticate to
 the TLS server.";

 choice auth‑type {
 description
 "The authentication type.";
 container certificate {
 uses ks:local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping;
 description
 "A locally‑defined or referenced certificate
 to be used for client authentication.";
 reference
 "RFC ZZZZ: YANG Data Model for a 'Keystore' Mechanism";
 }
 }
 } // end client‑identity
 } // end client‑identity‑grouping

 grouping server‑auth‑grouping {
 description
 "A reusable grouping for configuring TLS server
 authentication.";
 container server‑auth {
 must 'pinned‑ca‑certs or pinned‑server‑certs';
 description
 "Trusted server identities.";
 leaf pinned‑ca‑certs {
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;

 description
 "A reference to a list of certificate authority (CA)
 certificates used by the TLS client to authenticate
 TLS server certificates. A server certificate is
 authenticated if it has a valid chain of trust to
 a configured pinned CA certificate.";
 }
 leaf pinned‑server‑certs {
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of server certificates used by
 the TLS client to authenticate TLS server certificates.
 A server certificate is authenticated if it is an
 exact match to a configured pinned server certificate.";
 }
 }
 } // end server‑auth‑grouping

 grouping hello‑params‑grouping {
 description
 "A reusable grouping for configuring a TLS transport
 parameters.";
 container hello‑params {
 if‑feature tls‑client‑hello‑params‑config;
 uses tlscmn:hello‑params‑grouping;
 description
 "Configurable parameters for the TLS hello message.";
 }
 } // end transport‑params‑grouping

}
<CODE ENDS>

4. The TLS Server Model

4.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-tls-
 server" module that does not have groupings expanded.

 module: ietf-tls-server

grouping hello‑params‑grouping
 +‑‑ hello‑params {tls‑server‑hello‑params‑config}?
 +‑‑‑u hello‑params‑grouping
grouping server‑identity‑grouping
 +‑‑ server‑identity
 +‑‑‑u server‑identity‑grouping
grouping tls‑server‑grouping
 +‑‑‑u server‑identity‑grouping
 +‑‑‑u client‑auth‑grouping
 +‑‑‑u hello‑params‑grouping
grouping client‑auth‑grouping
 +‑‑ client‑auth
 +‑‑ pinned‑ca‑certs? ta:pinned‑certificates‑ref
 | {ta:x509‑certificates}?
 +‑‑ pinned‑client‑certs? ta:pinned‑certificates‑ref
 {ta:x509‑certificates}?

4.2. Example Usage

 This section presents two examples showing the tls-server-grouping
 populated with some data. These examples are effectively the same
 except the first configures the server identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of
 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the server identity using a local
 key:

 [Note: '\' line wrapping for formatting only]

 <tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!‑‑ how this server will authenticate itself to the client ‑‑>
 <server‑identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf‑crypto‑typ\
es">ct:rsa2048</algorithm>
 <private‑key>base64encodedvalue==</private‑key>
 <public‑key>base64encodedvalue==</public‑key>
 <cert>base64encodedvalue==</cert>
 </server‑identity>

 <!‑‑ which certificates will this server trust ‑‑>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinned‑ca‑c\
erts>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinned‑cli\
ent‑certs>
 </client‑auth>

 </tls-server>

 The following example configures the server identity using a key from
 the keystore:

 [Note: '\' line wrapping for formatting only]

 <tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!‑‑ how this server will authenticate itself to the client ‑‑>
 <server‑identity>
 <reference>ex‑rsa‑cert</reference>
 </server‑identity>

 <!‑‑ which certificates will this server trust ‑‑>
 <client‑auth>
 <pinned‑ca‑certs>explicitly‑trusted‑client‑ca‑certs</pinned‑ca‑c\
erts>
 <pinned‑client‑certs>explicitly‑trusted‑client‑certs</pinned‑cli\
ent‑certs>
 </client‑auth>

 </tls-server>

4.3. YANG Module

 This YANG module has a normative references to [RFC5246],
 [I-D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore].

<CODE BEGINS> file "ietf‑tls‑server@2018‑10‑22.yang"
module ietf‑tls‑server {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑tls‑server";
 prefix "tlss";

 import ietf‑tls‑common {
 prefix tlscmn;
 revision‑date 2018‑10‑22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 import ietf‑trust‑anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf‑keystore {
 prefix ks;
 reference
 "RFC ZZZZ: YANG Data Model for a 'Keystore' Mechanism";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

 "This module defines a reusable grouping for a TLS server that
 can be used as a basis for specific TLS server instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
}

 // features

feature tls‑server‑hello‑params‑config {
 description
 "TLS hello message parameters are configurable on a TLS
 server.";
}

 // groupings

grouping tls‑server‑grouping {
 description
 "A reusable grouping for configuring a TLS server without
 any consideration for how underlying TCP sessions are
 established.";
 uses server‑identity‑grouping;
 uses client‑auth‑grouping;
 uses hello‑params‑grouping;
}

grouping server‑identity‑grouping {
 description
 "A reusable grouping for configuring a TLS server identity.";
 container server‑identity {
 description
 "A locally‑defined or referenced end‑entity certificate,
 including any configured intermediate certificates, the

 TLS server will present when establishing a TLS connection
 in its Certificate message, as defined in Section 7.4.2
 in RFC 5246.";
 reference
 "RFC 5246:
 The Transport Layer Security (TLS) Protocol Version 1.2
 RFC ZZZZ:
 YANG Data Model for a 'Keystore' Mechanism";
 uses ks:local‑or‑keystore‑end‑entity‑cert‑with‑key‑grouping;
 }
} // end server‑identity‑grouping

grouping client‑auth‑grouping {
 description
 "A reusable grouping for configuring a TLS client
 authentication.";
 container client‑auth {
 description
 "A reference to a list of pinned certificate authority (CA)
 certificates and a reference to a list of pinned client
 certificates.";
 leaf pinned‑ca‑certs {
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the TLS server to authenticate
 TLS client certificates. A client certificate is
 authenticated if it has a valid chain of trust to
 a configured pinned CA certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 leaf pinned‑client‑certs {
 if‑feature "ta:x509‑certificates";
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of client certificates used by
 the TLS server to authenticate TLS client certificates.
 A clients certificate is authenticated if it is an
 exact match to a configured pinned client certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 }
} // end client‑auth‑grouping

 grouping hello-params-grouping {

description
 "A reusable grouping for configuring a TLS transport
 parameters.";
container hello‑params {
 if‑feature tls‑server‑hello‑params‑config;
 uses tlscmn:hello‑params‑grouping;
 description
 "Configurable parameters for the TLS hello message.";
}

 } // end tls-server-grouping

}
<CODE ENDS>

5. The TLS Common Model

 The TLS common model presented in this section contains identities
 and groupings common to both TLS clients and TLS servers. The hello-
 params-grouping can be used to configure the list of TLS algorithms
 permitted by the TLS client or TLS server. The lists of algorithms
 are ordered such that, if multiple algorithms are permitted by the
 client, the algorithm that appears first in its list that is also
 permitted by the server is used for the TLS transport layer
 connection. The ability to restrict the the algorithms allowed is
 provided in this grouping for TLS clients and TLS servers that are
 capable of doing so and may serve to make TLS clients and TLS servers
 compliant with local security policies. This model supports both
 TLS1.2 [RFC5246] and TLS 1.3 [RFC8446].

 TLS 1.2 and TLS 1.3 have different ways defining their own supported
 cryptographic algorithms, see TLS and DTLS IANA registries page
 (https://www.iana.org/assignments/tls-parameters/tls-
 parameters.xhtml):

 o TLS 1.2 defines four categories of registries for cryptographic
 algorithms: TLS Cipher Suites, TLS SignatureAlgorithm, TLS
 HashAlgorithm, TLS Supported Groups. TLS Cipher Suites plays the
 role of combining all of them into one set, as each value of the
 set represents a unique and feasible combination of all the
 cryptographic algorithms, and thus the other three registry
 categories do not need to be considered here. In this document,
 the TLS common model only chooses those TLS1.2 algorithms in TLS
 Cipher Suites which are marked as recommended:
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
 TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,

 TLS_DHE_PSK_WITH_AES_256_GCM_SHA384, and so on. All chosen
 algorithms are enumerated in Table 1-1 below;

 o TLS 1.3 defines its supported algorithms differently. Firstly, it
 defines three categories of registries for cryptographic
 algorithms: TLS Cipher Suites, TLS SignatureScheme, TLS Supported
 Groups. Secondly, all three of these categories are useful, since
 they represent different parts of all the supported algorithms
 respectively. Thus, all of these registries categories are
 considered here. In this draft, the TLS common model chooses only
 those TLS1.3 algorithms specified in B.4, 4.2.3, 4.2.7 of
 [RFC8446].

 Thus, in order to support both TLS1.2 and TLS1.3, the cipher-suites
 part of the hello-params-grouping should include three parameters for
 configuring its permitted TLS algorithms, which are: TLS Cipher
 Suites, TLS SignatureScheme, TLS Supported Groups. Note that TLS1.2
 only uses TLS Cipher Suites.

 [I-D.ietf-netconf-crypto-types] defines six categories of
 cryptographic algorithms (hash-algorithm, symmetric-key-encryption-
 algorithm, mac-algorithm, asymmetric-key-encryption-algorithm,
 signature-algorithm, key-negotiation-algorithm) and lists several
 widely accepted algorithms for each of them. The TLS client and
 server models use one or more of these algorithms. The following
 tables are provided, in part to define the subset of algorithms
 defined in the crypto-types model used by TLS, and in part to ensure
 compatibility of configured TLS cryptographic parameters for
 configuring its permitted TLS algorithms:

+‑‑‑+‑‑‑‑‑‑‑‑‑+
| ciper‑suites in hello‑params‑grouping | HASH |
+‑‑‑+‑‑‑‑‑‑‑‑‑+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	sha‑256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	sha‑384
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	sha‑256
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	sha‑384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	sha‑256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	sha‑384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	sha‑256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	sha‑384
TLS_DHE_RSA_WITH_AES_128_CCM	sha‑256
TLS_DHE_RSA_WITH_AES_256_CCM	sha‑256
TLS_DHE_PSK_WITH_AES_128_CCM	sha‑256
TLS_DHE_PSK_WITH_AES_256_CCM	sha‑256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	sha‑256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	sha‑256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	sha‑256
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	sha‑256
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	sha‑256
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	sha‑256
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	sha‑384
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	sha‑256
+‑‑‑+‑‑‑‑‑‑‑‑‑+

 Table 1-1 TLS 1.2 Compatibility Matrix Part 1: ciper-suites mapping

 to hash-algorithm

+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ciper‑suites in hello‑params‑grouping | symmetric |
| | |
+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	enc‑aes‑128‑gcm
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	enc‑aes‑256‑gcm
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	enc‑aes‑128‑gcm
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	enc‑aes‑256‑gcm
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	enc‑aes‑128‑gcm
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	enc‑aes‑256‑gcm
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	enc‑aes‑128‑gcm
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	enc‑aes‑256‑gcm
TLS_DHE_RSA_WITH_AES_128_CCM	enc‑aes‑128‑ccm
TLS_DHE_RSA_WITH_AES_256_CCM	enc‑aes‑256‑ccm
TLS_DHE_PSK_WITH_AES_128_CCM	enc‑aes‑128‑ccm
TLS_DHE_PSK_WITH_AES_256_CCM	enc‑aes‑256‑ccm
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	enc‑chacha20‑poly1305
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	enc‑chacha20‑poly1305
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	enc‑chacha20‑poly1305
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	enc‑chacha20‑poly1305
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	enc‑chacha20‑poly1305
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	enc‑aes‑128‑gcm
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	enc‑aes‑256‑gcm
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	enc‑aes‑128‑ccm
+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1-2 TLS 1.2 Compatibility Matrix Part 2: ciper-suites mapping

 to symmetric-key-encryption-algorithm

+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ciper‑suites in hello‑params‑grouping | MAC |
| | |
+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	mac‑aes‑128‑gcm
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	mac‑aes‑256‑gcm
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	mac‑aes‑128‑gcm
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	mac‑aes‑256‑gcm
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	mac‑aes‑128‑gcm
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	mac‑aes‑256‑gcm
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	mac‑aes‑128‑gcm
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	mac‑aes‑256‑gcm
TLS_DHE_RSA_WITH_AES_128_CCM	mac‑aes‑128‑ccm
TLS_DHE_RSA_WITH_AES_256_CCM	mac‑aes‑256‑ccm
TLS_DHE_PSK_WITH_AES_128_CCM	mac‑aes‑128‑ccm
TLS_DHE_PSK_WITH_AES_256_CCM	mac‑aes‑256‑ccm
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	mac‑chacha20‑poly1305
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	mac‑chacha20‑poly1305
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	mac‑chacha20‑poly1305
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	mac‑chacha20‑poly1305
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	mac‑chacha20‑poly1305
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	mac‑aes‑128‑gcm
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	mac‑aes‑256‑gcm
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	mac‑aes‑128‑ccm
+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1-3 TLS 1.2 Compatibility Matrix Part 3: ciper-suites mapping

 to MAC-algorithm

+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|ciper‑suites in hello‑params‑grouping | signature |
+‑‑‑ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	rsa‑pkcs1‑sha256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	rsa‑pkcs1‑sha384
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	N/A
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	N/A
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	ecdsa‑secp256r1‑sha256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ecdsa‑secp384r1‑sha384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	rsa‑pkcs1‑sha256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	rsa‑pkcs1‑sha384
TLS_DHE_RSA_WITH_AES_128_CCM	rsa‑pkcs1‑sha256
TLS_DHE_RSA_WITH_AES_256_CCM	rsa‑pkcs1‑sha256
TLS_DHE_PSK_WITH_AES_128_CCM	N/A
TLS_DHE_PSK_WITH_AES_256_CCM	N/A
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	rsa‑pkcs1‑sha256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	ecdsa‑secp256r1‑sha256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	rsa‑pkcs1‑sha256
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	N/A
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	N/A
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	N/A
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	N/A
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	N/A
+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1-4 TLS 1.2 Compatibility Matrix Part 4: ciper-suites mapping

 to signature-algorithm

+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|ciper‑suites in hello‑params‑grouping | key‑negotiation |
+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	dhe‑ffdhe2048, ...
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	dhe‑ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	psk‑dhe‑ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	psk‑dhe‑ffdhe2048, ...
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	ecdhe‑secp256r1, ...
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ecdhe‑secp256r1, ...
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	ecdhe‑secp256r1, ...
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	ecdhe‑secp256r1, ...
TLS_DHE_RSA_WITH_AES_128_CCM	dhe‑ffdhe2048, ...
TLS_DHE_RSA_WITH_AES_256_CCM	dhe‑ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_128_CCM	psk‑dhe‑ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_256_CCM	psk‑dhe‑ffdhe2048, ...
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	ecdhe‑secp256r1, ...
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	ecdhe‑secp256r1, ...
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	dhe‑ffdhe2048, ...
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	psk‑ecdhe‑secp256r1,...
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	psk‑dhe‑ffdhe2048, ...
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	psk‑ecdhe‑secp256r1,...
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	psk‑ecdhe‑secp256r1,...
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	psk‑ecdhe‑secp256r1,...
+‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1-5 TLS 1.2 Compatibility Matrix Part 5: ciper-suites mapping

 to key-negotiation-algorithm

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
| ciper‑suites in hello | HASH |
| ‑params‑grouping | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+
TLS_AES_128_GCM_SHA256	sha‑256
TLS_AES_256_GCM_SHA384	sha‑384
TLS_CHACHA20_POLY1305_SHA256	sha‑256
TLS_AES_128_CCM_SHA256	sha‑256
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+

 Table 2-1 TLS 1.3 Compatibility Matrix Part 1: ciper-suites mapping

 to hash-algorithm

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ciper‑suites in hello | symmetric |
| ‑params‑grouping | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
TLS_AES_128_GCM_SHA256	enc‑aes‑128‑gcm
TLS_AES_256_GCM_SHA384	enc‑aes‑128‑gcm
TLS_CHACHA20_POLY1305_SHA256	enc‑chacha20‑poly1305
TLS_AES_128_CCM_SHA256	enc‑aes‑128‑ccm
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2-2 TLS 1.3 Compatibility Matrix Part 2: ciper-suites mapping

 to symmetric-key--encryption-algorithm

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| ciper‑suites in hello | symmetric |
| ‑params‑grouping | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
TLS_AES_128_GCM_SHA256	mac‑aes‑128‑gcm
TLS_AES_256_GCM_SHA384	mac‑aes‑128‑gcm
TLS_CHACHA20_POLY1305_SHA256	mac‑chacha20‑poly1305
TLS_AES_128_CCM_SHA256	mac‑aes‑128‑ccm
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2-3 TLS 1.3 Compatibility Matrix Part 3: ciper-suites mapping

 to MAC-algorithm

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|signatureScheme in hello | signature |
| ‑params‑grouping | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
rsa‑pkcs1‑sha256	rsa‑pkcs1‑sha256
rsa‑pkcs1‑sha384	rsa‑pkcs1‑sha384
rsa‑pkcs1‑sha512	rsa‑pkcs1‑sha512
rsa‑pss‑rsae‑sha256	rsa‑pss‑rsae‑sha256
rsa‑pss‑rsae‑sha384	rsa‑pss‑rsae‑sha384
rsa‑pss‑rsae‑sha512	rsa‑pss‑rsae‑sha512
rsa‑pss‑pss‑sha256	rsa‑pss‑pss‑sha256
rsa‑pss‑pss‑sha384	rsa‑pss‑pss‑sha384
rsa‑pss‑pss‑sha512	rsa‑pss‑pss‑sha512
ecdsa‑secp256r1‑sha256	ecdsa‑secp256r1‑sha256
ecdsa‑secp384r1‑sha384	ecdsa‑secp384r1‑sha384
ecdsa‑secp521r1‑sha512	ecdsa‑secp521r1‑sha512
ed25519	ed25519
ed448	ed448
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2-4 TLS 1.3 Compatibility Matrix Part 4: SignatureScheme

 mapping to signature-algorithm

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
|supported Groups in hello | key‑negotiation |
| ‑params‑grouping | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
dhe‑ffdhe2048	dhe‑ffdhe2048
dhe‑ffdhe3072	dhe‑ffdhe3072
dhe‑ffdhe4096	dhe‑ffdhe4096
dhe‑ffdhe6144	dhe‑ffdhe6144
dhe‑ffdhe8192	dhe‑ffdhe8192
psk‑dhe‑ffdhe2048	psk‑dhe‑ffdhe2048
psk‑dhe‑ffdhe3072	psk‑dhe‑ffdhe3072
psk‑dhe‑ffdhe4096	psk‑dhe‑ffdhe4096
psk‑dhe‑ffdhe6144	psk‑dhe‑ffdhe6144
psk‑dhe‑ffdhe8192	psk‑dhe‑ffdhe8192
ecdhe‑secp256r1	ecdhe‑secp256r1
ecdhe‑secp384r1	ecdhe‑secp384r1
ecdhe‑secp521r1	ecdhe‑secp521r1
ecdhe‑x25519	ecdhe‑x25519
ecdhe‑x448	ecdhe‑x448
psk‑ecdhe‑secp256r1	psk‑ecdhe‑secp256r1
psk‑ecdhe‑secp384r1	psk‑ecdhe‑secp384r1
psk‑ecdhe‑secp521r1	psk‑ecdhe‑secp521r1
psk‑ecdhe‑x25519	psk‑ecdhe‑x25519
psk‑ecdhe‑x448	psk‑ecdhe‑x448
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2-5 TLS 1.3 Compatibility Matrix Part 5: Supported Groups

 mapping to key-negotiation-algorithm

 Note that in Table 1-5:

 o dhe-ffdhe2048, ... is the abbreviation of dhe-ffdhe2048, dhe-
 ffdhe3072, dhe-ffdhe4096, dhe-ffdhe6144, dhe-ffdhe8192;

 o psk-dhe-ffdhe2048, ... is the abbreviation of psk-dhe-ffdhe2048,
 psk-dhe-ffdhe3072, psk-dhe-ffdhe4096, psk-dhe-ffdhe6144, psk-dhe-
 ffdhe8192;

 o ecdhe-secp256r1, ... is the abbreviation of ecdhe-secp256r1,
 ecdhe-secp384r1, ecdhe-secp521r1, ecdhe-x25519, ecdhe-x448;

 o psk-ecdhe-secp256r1, ... is the abbreviation of psk-ecdhe-
 secp256r1, psk-ecdhe-secp384r1, psk-ecdhe-secp521r1, psk-ecdhe-
 x25519, psk-ecdhe-x448.

 Features are defined for algorithms that are OPTIONAL or are not
 widely supported by popular implementations. Note that the list of
 algorithms is not exhaustive.

5.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-tls-common" module.

 module: ietf-tls-common

grouping hello‑params‑grouping
 +‑‑ tls‑versions
 | +‑‑ tls‑version* identityref
 +‑‑ cipher‑suites
 +‑‑ cipher‑suite* identityref

5.2. Example Usage

 This section shows how it would appear if the transport-params-
 grouping were populated with some data.

<hello‑params
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑tls‑common"
 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf‑tls‑common">
 <tls‑versions>
 <tls‑version>tlscmn:tls‑1.1</tls‑version>
 <tls‑version>tlscmn:tls‑1.2</tls‑version>
 </tls‑versions>
 <cipher‑suites>
 <cipher‑suite>tlscmn:dhe‑rsa‑with‑aes‑128‑cbc‑sha</cipher‑suite>
 <cipher‑suite>tlscmn:rsa‑with‑aes‑128‑cbc‑sha</cipher‑suite>
 <cipher‑suite>tlscmn:rsa‑with‑3des‑ede‑cbc‑sha</cipher‑suite>
 </cipher‑suites>
</hello‑params>

5.3. YANG Module

 This YANG module has a normative references to [RFC2246], [RFC4346],
 [RFC5246], [RFC5288], [RFC5289], and [RFC8422].

 This YANG module has a informative references to [RFC2246],
 [RFC4346], and [RFC5246].

<CODE BEGINS> file "ietf‑tls‑common@2018‑10‑22.yang"
module ietf‑tls‑common {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑tls‑common";
 prefix "tlscmn";

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

 "This module defines a common features, identities, and groupings
 for Transport Layer Security (TLS).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
}

 // features

feature tls‑1_0 {
 description
 "TLS Protocol Version 1.0 is supported.";
 reference
 "RFC 2246: The TLS Protocol Version 1.0";
}

 feature tls-1_1 {

 description

 "TLS Protocol Version 1.1 is supported.";
 reference
 "RFC 4346: The Transport Layer Security (TLS) Protocol
 Version 1.1";
}

feature tls‑1_2 {
 description
 "TLS Protocol Version 1.2 is supported.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

feature tls‑ecc {
 description
 "Elliptic Curve Cryptography (ECC) is supported for TLS.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
}

feature tls‑dhe {
 description
 "Ephemeral Diffie‑Hellman key exchange is supported for TLS.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

feature tls‑3des {
 description
 "The Triple‑DES block cipher is supported for TLS.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

feature tls‑gcm {
 description
 "The Galois/Counter Mode authenticated encryption mode is
 supported for TLS.";
 reference
 "RFC 5288: AES Galois Counter Mode (GCM) Cipher Suites for
 TLS";
}

 feature tls-sha2 {

 description
 "The SHA2 family of cryptographic hash functions is supported
 for TLS.";
 reference
 "FIPS PUB 180‑4: Secure Hash Standard (SHS)";
}

 // identities

identity tls‑version‑base {
 description
 "Base identity used to identify TLS protocol versions.";
}

identity tls‑1.0 {
 base tls‑version‑base;
 if‑feature tls‑1_0;
 description
 "TLS Protocol Version 1.0.";
 reference
 "RFC 2246: The TLS Protocol Version 1.0";
}

identity tls‑1.1 {
 base tls‑version‑base;
 if‑feature tls‑1_1;
 description
 "TLS Protocol Version 1.1.";
 reference
 "RFC 4346: The Transport Layer Security (TLS) Protocol
 Version 1.1";
}

identity tls‑1.2 {
 base tls‑version‑base;
 if‑feature tls‑1_2;
 description
 "TLS Protocol Version 1.2.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity cipher‑suite‑base {
 description
 "Base identity used to identify TLS cipher suites.";
}

identity rsa‑with‑aes‑128‑cbc‑sha {
 base cipher‑suite‑base;
 description
 "Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity rsa‑with‑aes‑256‑cbc‑sha {
 base cipher‑suite‑base;
 description
 "Cipher suite TLS_RSA_WITH_AES_256_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity rsa‑with‑aes‑128‑cbc‑sha256 {
 base cipher‑suite‑base;
 if‑feature tls‑sha2;
 description
 "Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity rsa‑with‑aes‑256‑cbc‑sha256 {
 base cipher‑suite‑base;
 if‑feature tls‑sha2;
 description
 "Cipher suite TLS_RSA_WITH_AES_256_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity dhe‑rsa‑with‑aes‑128‑cbc‑sha {
 base cipher‑suite‑base;
 if‑feature tls‑dhe;
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_128_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity dhe‑rsa‑with‑aes‑256‑cbc‑sha {
 base cipher‑suite‑base;
 if‑feature tls‑dhe;
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_256_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity dhe‑rsa‑with‑aes‑128‑cbc‑sha256 {
 base cipher‑suite‑base;
 if‑feature "tls‑dhe and tls‑sha2";
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity dhe‑rsa‑with‑aes‑256‑cbc‑sha256 {
 base cipher‑suite‑base;
 if‑feature "tls‑dhe and tls‑sha2";
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_256_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity ecdhe‑ecdsa‑with‑aes‑128‑cbc‑sha256 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity ecdhe‑ecdsa‑with‑aes‑256‑cbc‑sha384 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";

 }

identity ecdhe‑rsa‑with‑aes‑128‑cbc‑sha256 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity ecdhe‑rsa‑with‑aes‑256‑cbc‑sha384 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity ecdhe‑ecdsa‑with‑aes‑128‑gcm‑sha256 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑gcm and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity ecdhe‑ecdsa‑with‑aes‑256‑gcm‑sha384 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑gcm and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity ecdhe‑rsa‑with‑aes‑128‑gcm‑sha256 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑gcm and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.";
 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity ecdhe‑rsa‑with‑aes‑256‑gcm‑sha384 {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑gcm and tls‑sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA‑256/384 and AES Galois Counter Mode (GCM)";
}

identity rsa‑with‑3des‑ede‑cbc‑sha {
 base cipher‑suite‑base;
 if‑feature tls‑3des;
 description
 "Cipher suite TLS_RSA_WITH_3DES_EDE_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
}

identity ecdhe‑rsa‑with‑3des‑ede‑cbc‑sha {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc and tls‑3des";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
}

identity ecdhe‑rsa‑with‑aes‑128‑cbc‑sha {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
}

identity ecdhe‑rsa‑with‑aes‑256‑cbc‑sha {
 base cipher‑suite‑base;
 if‑feature "tls‑ecc";
 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
}

 // groupings

grouping hello‑params‑grouping {
 description
 "A reusable grouping for TLS hello message parameters.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";

 container tls‑versions {
 description
 "Parameters regarding TLS versions.";
 leaf‑list tls‑version {
 type identityref {
 base tls‑version‑base;
 }
 description
 "Acceptable TLS protocol versions.

 If this leaf‑list is not configured (has zero elements)
 the acceptable TLS protocol versions are implementation‑
 defined.";
 }
 }
 container cipher‑suites {
 description
 "Parameters regarding cipher suites.";
 leaf‑list cipher‑suite {
 type identityref {
 base cipher‑suite‑base;
 }
 ordered‑by user;
 description
 "Acceptable cipher suites in order of descending
 preference. The configured host key algorithms should
 be compatible with the algorithm used by the configured
 private key. Please see Section 5 of RFC XXXX for
 valid combinations.

 If this leaf-list is not configured (has zero elements)
 the acceptable cipher suites are implementation-
 defined.";

 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }
}

 } // end hello-params-grouping

}
<CODE ENDS>

6. Security Considerations

 The YANG modules defined in this document are designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 Since the modules defined in this document only define groupings,
 these considerations are primarily for the designers of other modules
 that use these groupings.

 There are a number of data nodes defined in the YANG modules that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree of all the groupings defined in this draft

 is sensitive to write operations. For instance, the addition
 or removal of references to keys, certificates, trusted
 anchors, etc., can dramatically alter the implemented security
 policy. However, no NACM annotations are applied as the data
 SHOULD be editable by users other than a designated 'recovery
 session'.

 Some of the readable data nodes in the YANG modules may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 NONE

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers three URIs in the "ns" subregistry of the
 IETF XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑tls‑client
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑tls‑server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑tls‑common
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

7.2. The YANG Module Names Registry

 This document registers three YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

name: ietf‑tls‑client
namespace: urn:ietf:params:xml:ns:yang:ietf‑tls‑client
prefix: tlsc
reference: RFC XXXX

name: ietf‑tls‑server
namespace: urn:ietf:params:xml:ns:yang:ietf‑tls‑server
prefix: tlss
reference: RFC XXXX

name: ietf‑tls‑common
namespace: urn:ietf:params:xml:ns:yang:ietf‑tls‑common
prefix: tlscmn
reference: RFC XXXX

8. References

8.1. Normative References

 [I-D.ietf-netconf-crypto-types]

 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [I-D.ietf-netconf-keystore]

 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-trust-anchors]

 Watsen, K., "YANG Data Model for Global Trust Anchors",
 draft-ietf-netconf-trust-anchors-01 (work in progress),
 September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5288]
 Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 DOI 10.17487/RFC5288, August 2008,
 <https://www.rfc-editor.org/info/rfc5288>.

 [RFC5289]
 Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 DOI 10.17487/RFC5289, August 2008,
 <https://www.rfc-editor.org/info/rfc5289>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7589]
 Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <https://www.rfc-editor.org/info/rfc7589>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8422]
 Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

8.2. Informative References

 [RFC2246]
 Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, DOI 10.17487/RFC2246, January 1999,
 <https://www.rfc-editor.org/info/rfc2246>.

 [RFC2818]
 Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Change Log

A.1. 00 to 01

 o Noted that '0.0.0.0' and '::' might have special meanings.

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Removed the groupings containing transport-level configuration.
 Now modules contain only the transport-independent groupings.

 o Filled in previously incomplete 'ietf-tls-client' module.

 o Added cipher suites for various algorithms into new 'ietf-tls-
 common' module.

A.3. 02 to 03

 o Added a 'must' statement to container 'server-auth' asserting that
 at least one of the various auth mechanisms must be specified.

 o Fixed description statement for leaf 'trusted-ca-certs'.

A.4. 03 to 04

 o Updated title to "YANG Groupings for TLS Clients and TLS Servers"

 o Updated leafref paths to point to new keystore path

 o Changed the YANG prefix for ietf-tls-common from 'tlscom' to
 'tlscmn'.

 o Added TLS protocol verions 1.0 and 1.1.

 o Made author lists consistent

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated YANG to use typedefs around leafrefs to common keystore
 paths

 o Now inlines key and certificates (no longer a leafref to keystore)

A.5. 04 to 05

 o Merged changes from co-author.

A.6. 05 to 06

 o Updated to use trust anchors from trust-anchors draft (was
 keystore draft)

 o Now Uses new keystore grouping enabling asymmetric key to be
 either locally defined or a reference to the keystore.

A.7. 06 to 07

 o factored the tls-[client|server]-groupings into more reusable
 groupings.

 o added if-feature statements for the new "x509-certificates"
 feature defined in draft-ietf-netconf-trust-anchors.

A.8. 07 to 08

 o Added a number of compatibility matricies to Section 5 (thanks
 Frank!)

 o Claified that any configured "cipher-suite" values need to be
 compatible with the configured private key.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, and Bert Wijnen.

Authors' Addresses

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

Gary Wu
Cisco Systems

 EMail: garywu@cisco.com

Liang Xia
Huawei

 EMail: frank.xialiang@huawei.com

draft-ietf-netconf-trust-anchors-02 - YANG Data Model for Global Trust Anchors

Index
Back 5
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

K. Watsen

Juniper Networks

October 22, 2018

YANG Data Model for Global Trust Anchors

draft-ietf-netconf-trust-anchors-02

Abstract

 This document defines a YANG 1.1 data model for configuring global
 sets of X.509 certificates and SSH host-keys that can be referenced
 by other data models for trust. While the SSH host-keys are uniquely
 for the SSH protocol, the X.509 certificates may have multiple uses,
 including authenticating protocol peers and verifying signatures.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

o "YYYY" ‑‑> the assigned RFC value for draft‑ietf‑netconf‑crypto‑
 types

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Tree Diagram Notation

	2. The Trust Anchors Model
	 2.1. Tree Diagram

	 2.2. Example Usage

	 2.3. YANG Module

	3. Security Considerations

	4. IANA Considerations
	 4.1. The IETF XML Registry

	 4.2. The YANG Module Names Registry

	5. References
	 5.1. Normative References

	 5.2. Informative References

	Appendix A. Change Log
	 A.1. 00 to 01

	 A.2. 01 to 02

	Acknowledgements

	Author's Address

1. Introduction

 This document defines a YANG 1.1 [RFC7950] data model for configuring
 global sets of X.509 certificates and SSH host-keys that can be
 referenced by other data models for trust. While the SSH host-keys
 are uniquely for the SSH protocol, the X.509 certificates may be used
 for multiple uses, including authenticating protocol peers and
 verifying signatures.

 This document in compliant with Network Management Datastore
 Architecture (NMDA) [RFC8342]. For instance, to support trust
 anchors installed during manufacturing, it is expected that such data
 may appear only in <operational>.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Tree Diagram Notation

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. The Trust Anchors Model

2.1. Tree Diagram

 The following tree diagram provides an overview of the "ietf-trust-
 anchors" module.

module: ietf‑trust‑anchors
 +‑‑rw trust‑anchors
 +‑‑rw pinned‑certificates* [name] {x509‑certificates}?
 | +‑‑rw name string
 | +‑‑rw description? string
 | +‑‑rw pinned‑certificate* [name]
 | +‑‑rw name string
 | +‑‑rw cert trust‑anchor‑cert‑cms
 | +‑‑‑n certificate‑expiration
 | +‑‑ expiration‑date yang:date‑and‑time
 +‑‑rw pinned‑host‑keys* [name] {ssh‑host‑keys}?
 +‑‑rw name string
 +‑‑rw description? string
 +‑‑rw pinned‑host‑key* [name]
 +‑‑rw name string
 +‑‑rw host‑key ct:ssh‑host‑key

2.2. Example Usage

 The following example illustrates trust anchors in <operational> as
 described by Section 5.3 in [RFC8342]. This datastore view
 illustrates data set by the manufacturing process alongside
 conventional configuration. This trust anchors instance has six sets
 of pinned certificates and one set of pinned host keys.

 <trust-anchors

 xmlns="urn:ietf:params:xml:ns:yang:ietf-trust-anchors"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">

<!‑‑ Manufacturer's trusted root CA certs ‑‑>
<pinned‑certificates or:origin="or:system">
 <name>manufacturers‑root‑ca‑certs</name>
 <description>
 Certificates built into the device for authenticating
 manufacturer‑signed objects, such as TLS server certificates,
 vouchers, etc. Note, though listed here, these are not
 configurable; any attempt to do so will be denied.
 </description>
 <pinned‑certificate>
 <name>Manufacturer Root CA cert 1</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
 <pinned‑certificate>
 <name>Manufacturer Root CA cert 2</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
</pinned‑certificates>

<!‑‑ specific end‑entity certs for authenticating servers ‑‑>
<pinned‑certificates or:origin="or:intended">
 <name>explicitly‑trusted‑server‑certs</name>
 <description>
 Specific server authentication certificates for explicitly
 trusted servers. These are needed for server certificates
 that are not signed by a pinned CA.
 </description>
 <pinned‑certificate>
 <name>Fred Flintstone</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
</pinned‑certificates>

<!‑‑ trusted CA certs for authenticating servers ‑‑>
<pinned‑certificates or:origin="or:intended">
 <name>explicitly‑trusted‑server‑ca‑certs</name>
 <description>
 Trust anchors (i.e. CA certs) that are used to authenticate
 server connections. Servers are authenticated if their
 certificate has a chain of trust to one of these CA
 certificates.
 </description>
 <pinned‑certificate>
 <name>ca.example.com</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
</pinned‑certificates>

<!‑‑ specific end‑entity certs for authenticating clients ‑‑>
<pinned‑certificates or:origin="or:intended">
 <name>explicitly‑trusted‑client‑certs</name>
 <description>
 Specific client authentication certificates for explicitly
 trusted clients. These are needed for client certificates
 that are not signed by a pinned CA.
 </description>
 <pinned‑certificate>
 <name>George Jetson</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
</pinned‑certificates>

<!‑‑ trusted CA certs for authenticating clients ‑‑>
<pinned‑certificates or:origin="or:intended">
 <name>explicitly‑trusted‑client‑ca‑certs</name>
 <description>
 Trust anchors (i.e. CA certs) that are used to authenticate

 client connections. Clients are authenticated if their
 certificate has a chain of trust to one of these CA
 certificates.
 </description>
 <pinned‑certificate>
 <name>ca.example.com</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
</pinned‑certificates>

<!‑‑ trusted CA certs for random HTTPS servers on Internet ‑‑>
<pinned‑certificates or:origin="or:system">
 <name>common‑ca‑certs</name>
 <description>
 Trusted certificates to authenticate common HTTPS servers.
 These certificates are similar to those that might be
 shipped with a web browser.
 </description>
 <pinned‑certificate>
 <name>ex‑certificate‑authority</name>
 <cert>base64encodedvalue==</cert>
 </pinned‑certificate>
</pinned‑certificates>

<!‑‑ specific SSH host keys for authenticating clients ‑‑>
<pinned‑host‑keys or:origin="or:intended">
 <name>explicitly‑trusted‑ssh‑host‑keys</name>
 <description>
 Trusted SSH host keys used to authenticate SSH servers.
 These host keys would be analogous to those stored in
 a known_hosts file in OpenSSH.
 </description>
 <pinned‑host‑key>
 <name>corp‑fw1</name>
 <host‑key>base64encodedvalue==</host‑key>
 </pinned‑host‑key>
</pinned‑host‑keys>

 </trust-anchors>

 The following example illustrates the "certificate-expiration"
 notification in use with the NETCONF protocol.

 [Note: '\' line wrapping for formatting only]

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018‑05‑25T00:01:00Z</eventTime>
 <trust‑anchors
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑trust‑anchors">
 <pinned‑certificates>
 <name>explicitly‑trusted‑client‑certs</name>
 <pinned‑certificate>
 <name>George Jetson</name>
 <certificate‑expiration>
 <expiration‑date>2018‑08‑05T14:18:53‑05:00</expiration‑dat\
e>
 </certificate‑expiration>
 </pinned‑certificate>
 </pinned‑certificates>
 </trust‑anchors>
</notification>

2.3. YANG Module

 This YANG module imports modules from [RFC8341] and
 [I-D.ietf-netconf-crypto-types].

 <CODE BEGINS> file "ietf‑trust‑anchors@2018‑10‑22.yang"
module ietf‑trust‑anchors {
 yang‑version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf‑trust‑anchors";
 prefix "ta";

 import ietf‑netconf‑acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 import ietf‑crypto‑types {
 prefix ct;
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

description
 "This module defines a data model for configuring global
 trust anchors used by other data models. The data model
 enables the configuration of sets of trust anchors.
 This data model supports configuring trust anchors for
 both X.509 certificates and SSH host keys.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

revision "2018‑10‑22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Data Model for Global Trust Anchors";
}

/**/
/* Typedefs for leafrefs to commonly referenced objects */
/**/

feature x509‑certificates {
 description
 "The 'x509‑certificates' feature indicates that the server
 implements the /trust‑anchors/pinned‑certificates subtree.";
}

 feature ssh-host-keys {

 description
 "The 'ssh‑host‑keys' feature indicates that the server
 implements the /trust‑anchors/pinned‑host‑keys subtree.";
}

/**/
/* Typedefs for leafrefs to commonly referenced objects */
/**/

typedef pinned‑certificates‑ref {
 type leafref {
 path "/ta:trust‑anchors/ta:pinned‑certificates/ta:name";
 require‑instance false;
 }
 description
 "This typedef enables importing modules to easily define a
 leafref to a 'pinned‑certificates' object. The require
 instance attribute is false to enable the referencing of
 pinned certificates that exist only in <operational>.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
}

typedef pinned‑host‑keys‑ref {
 type leafref {
 path "/ta:trust‑anchors/ta:pinned‑host‑keys/ta:name";
 require‑instance false;
 }
 description
 "This typedef enables importing modules to easily define a
 leafref to a 'pinned‑host‑keys' object. The require
 instance attribute is false to enable the referencing of
 pinned host keys that exist only in <operational>.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
}

/*********************************/
/* Protocol accessible nodes */
/*********************************/

 container trust-anchors {

 nacm:default-deny-write;

 description

 "Contains sets of X.509 certificates and SSH host keys.";

 list pinned‑certificates {
 if‑feature "x509‑certificates";
 key name;
 description
 "A list of pinned certificates. These certificates can be
 used by a server to authenticate clients, or by a client
 to authenticate servers. Each list of pinned certificates
 SHOULD be specific to a purpose, as the list as a whole
 may be referenced by other modules. For instance, a
 RESTCONF server's configuration might use a specific list
 of pinned certificates for when authenticating RESTCONF
 client connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for this list of pinned certificates.";
 }
 leaf description {
 type string;
 description
 "An arbitrary description for this list of pinned
 certificates.";
 }
 list pinned‑certificate {
 key name;
 description
 "A pinned certificate.";
 leaf name {
 type string;
 description
 "An arbitrary name for this pinned certificate. The
 name must be unique across all lists of pinned
 certificates (not just this list) so that leafrefs
 from another module can resolve to unique values.";
 }
 uses ct:trust‑anchor‑cert‑grouping {
 refine cert {
 mandatory true;
 }
 }
 }
 }

 list pinned‑host‑keys {
 if‑feature "ssh‑host‑keys";
 key name;
 description
 "A list of pinned host keys. These pinned host‑keys can

 be used by clients to authenticate SSH servers. Each
 list of pinned host keys SHOULD be specific to a purpose,
 so the list as a whole may be referenced by other modules.
 For instance, a NETCONF client's configuration might
 point to a specific list of pinned host keys for when
 authenticating specific SSH servers.";
 leaf name {
 type string;
 description
 "An arbitrary name for this list of pinned SSH
 host keys.";
 }
 leaf description {
 type string;
 description
 "An arbitrary description for this list of pinned SSH
 host keys.";
 }
 list pinned‑host‑key {
 key name;
 description
 "A pinned host key.";
 leaf name {
 type string;
 description
 "An arbitrary name for this pinned host‑key. Must be
 unique across all lists of pinned host‑keys (not just
 this list) so that a leafref to it from another module
 can resolve to unique values.";
 }
 leaf host‑key {
 type ct:ssh‑host‑key;
 mandatory true;
 description
 "The binary public key data for this pinned host key.";
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }
 }
 }
}

 }

 <CODE ENDS>

3. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree defined by this module is sensitive to

 write operations. For instance, the addition or removal of any
 trust anchor may dramatically alter the implemented security
 policy. For this reason, the NACM extension "default-deny-
 write" has been set for the entire data tree.

 None of the readable data nodes in this YANG module are considered
 sensitive or vulnerable in network environments.

 This module does not define any RPCs, actions, or notifications, and
 thus the security consideration for such is not provided here.

4. IANA Considerations

4.1. The IETF XML Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registration is requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑trust‑anchors
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

4.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

name: ietf‑trust‑anchors
namespace: urn:ietf:params:xml:ns:yang:ietf‑trust‑anchors
prefix: ta
reference: RFC XXXX

5. References

5.1. Normative References

 [I-D.ietf-netconf-crypto-types]

 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

5.2. Informative References

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Change Log

A.1. 00 to 01

 o Added features "x509-certificates" and "ssh-host-keys".

 o Added nacm:default-deny-write to "trust-anchors" container.

A.2. 01 to 02

 o Switched "list pinned-certificate" to use the "trust-anchor-cert-
 grouping" from crypto-types. Effectively the same definition as
 before.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Martin Bjorklund,
 Balazs Kovacs, Eric Voit, and Liang Xia.

Author's Address

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

draft-ietf-netconf-udp-pub-channel-04 - UDP based Publication Channel for Stream

Index
Back 5
Prev
Next
Forward 5

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: April 22, 2019

G. Zheng

T. Zhou

A. Clemm

Huawei

October 19, 2018

UDP based Publication Channel for Streaming Telemetry

draft-ietf-netconf-udp-pub-channel-04

Abstract

 This document describes a UDP-based publication channel for streaming
 telemetry use to collect data from devices. A new shim header is
 proposed to facilitate the distributed data collection mechanism
 which directly pushes data from line cards to the collector. Because
 of the lightweight UDP encapsulation, higher frequency and better
 transit performance can be achieved.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminologies

	3. Solution Overview

	4. Transport Mechanisms
	 4.1. Dynamic Subscription

	 4.2. Configured Subscription

	5. UDP Transport for Publication Channel
	 5.1. Design Overview

	 5.2. Data Format of the UPC Message Header

	 5.3. Options
	 5.3.1. Reliability Option

	 5.3.2. Fragmentation Option

	 5.4. Data Encoding

	6. Using DTLS to Secure UPC
	 6.1. Transport

	 6.2. Port Assignment

	 6.3. DTLS Session Initiation

	 6.4. Sending Data

	 6.5. Closure

	7. Congestion Control

	8. A YANG Data Model for Management of UPC

	9. YANG Module

	10. IANA Considerations

	11. Security Considerations

	12. Acknowledgements

	13. References
	 13.1. Normative References

	 13.2. Informative References

	 13.3. URIs

	Appendix A. Change Log

	Authors' Addresses

1. Introduction

 Streaming telemetry refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics. Devices generate telemetry data and push that data to a
 collector for further analysis. By streaming the data, much better
 performance, finer-grained sampling, monitoring accuracy, and
 bandwidth utilization can be achieved than with polling-based
 alternatives.

 Sub-Notif [I-D.ietf-netconf-subscribed-notifications] defines a
 mechanism that allows a collector to subscribe to updates of YANG-
 defined data that is maintained in a YANG [RFC7950] datastore. The
 mechanism separates the management and control of subscriptions from
 the transport that is used to actually stream and deliver the data.
 Two transports, NETCONF transport
 [I-D.ietf-netconf-netconf-event-notifications] and HTTP transport
 [I-D.ietf-netconf-restconf-notif], have been defined so far for the
 notification messages.

 While powerful in its features and general in its architecture, in
 its current form the mechanism needs to be extended to stream
 telemetry data at high velocity from devices that feature a
 distributed architecture. The transports that have been defined so
 far, NETCONF and HTTP, are ultimately based on TCP and lack the
 efficiency needed to stream data continuously at high velocity. A
 lighter-weight, more efficient transport, e.g. a transport based on
 UDP is needed.

 o Firstly, data collector will suffer a lot of TCP connections from,
 for example, many line cards equipped on different devices.

 o Secondly, as no connection state needs to be maintained, UDP
 encapsulation can be easily implemented by hardware which will
 further improve the performance.

 o Thirdly, because of the lightweight UDP encapsulation, higher
 frequency and better transit performance can be achieved, which is
 important for streaming telemetry.

 This document specifies a higher-performance transport option for
 Sub-Notif that leverages UDP. Specifically, it facilitates the
 distributed data collection mechanism described in
 [I-D.zhou-netconf-multi-stream-originators]. In the case of data
 originating from multiple line cards, the centralized design requires
 data to be internally forwarded from those line cards to the push
 server, presumably on a main board, which then combines the
 individual data items into a single consolidated stream. The
 centralized data collection mechanism can result in a performance
 bottleneck, especially when large amounts of data are involved. What
 is needed instead is the support for a distributed mechanism that
 allows to directly push multiple individual substreams, e.g. one from
 each line card, without needing to first pass them through an
 additional processing stage for internal consolidation, but still
 allowing those substreams to be managed and controlled via a single
 subscription. The proposed UDP based Publication Channel (UPC)
 natively supports the distributed data collection mechanism.

 The transport described in this document can be used for transmitting
 notification messages over both IPv4 and IPv6 [RFC8200].

 While this document will focus on the data publication channel, the
 subscription can be used in conjunction with the mechanism proposed
 in [I-D.ietf-netconf-subscribed-notifications] with extensions
 [I-D.zhou-netconf-multi-stream-originators].

2. Terminologies

 Streaming Telemetry: refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics.

 Component Subscription: A subscription that defines the data from
 each individual telemetry source which is managed and controlled by a
 single Subscription Server.

 Component Subscription Server: An agent that streams telemetry data
 per the terms of a component subscription.

3. Solution Overview

 The typical distributed data collection solution is shown in Fig. 1.
 Both the Collector and the Publisher can be distributed. The
 Collector includes the Subscriber and a set of Receivers. And the
 Publisher includes a Subscription Server and a set of Component
 Subscription Servers. The Subscriber cannot see the Component
 Subscription Servers directly, so it will send the Global
 Subscription information to the Subscription Server (e.g., main
 board) via the Subscription Channel. When receiving a Global
 Subscription, the Subscription Server decomposes the subscription
 request into multiple Component Subscriptions, each involving data
 from a separate internal telemetry source, for example a line card.
 The Component Subscriptions are distributed to the Component
 Subscription Server. Subsequently, each data originator generates
 its own stream of telemetry data, collecting and encapsulating the
 packets per the Component Subscription and streaming them to the
 designated Receivers. This distributed data collection mechanism may
 form multiple Publication Channels to the Receivers. The Receiver is
 able to assemble many pieces of data associated with one Global
 Subscription.

 The Publication Channel supports the reliable data streaming, for
 example for some alarm events. The Collector has the option of
 deducing the packet loss and the disorder based on the information
 carried by the notification data. And the Collector may decide the
 behavior to request retransmission.

 The rest of the draft describes the UDP based Publication Channel
 (UPC).

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Collector |
 | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ |
 | | Subscriber | | Receivers | |
 | +‑‑‑‑+‑‑‑‑‑‑‑+ +‑‑^‑‑‑‑^‑‑‑+ |
 | | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
Subscription | | | Publication
Channel | | | Channel
 | +‑‑‑‑‑‑‑‑‑+ |
 | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | | | |
 | +‑‑‑‑v‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑+‑‑‑‑‑‑‑+ |
 | | Subscription | | Component | |
 | | Server | | Subscription | |
 | | | | Servers | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | |
 | Publisher |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Fig. 1 Distributed Data Collection

4. Transport Mechanisms

 For a complete pub-sub mechanism, this section will describe how the
 UPC is used to interact with the Subscription Channel relying on
 NETCONF or RESTCONF.

4.1. Dynamic Subscription

 Dynamic subscriptions for Sub-Notif are configured and managed via
 signaling messages transported over NETCONF [RFC6241] or RESTCONF
 [RFC8040]. The Sub-Notif defined RPCs which are sent and responded
 via the Subscription Channel (a), between the Subscriber and the
 Subscription Server of the Publisher. In this case, only one
 Receiver is associated with the Subscriber. In the Publisher, there
 may be multiple data originators. Notification messages are pushed
 on separate channels (b), from different data originators to the
 Receiver.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Collector		Publisher
(a) (b)		(a) (b)
+‑‑+‑‑‑‑‑‑+‑‑‑‑+ +‑‑+‑‑‑‑‑‑‑+‑‑‑+		
	RPC:establish‑subscription	
+‑‑>		
	RPC Reply: OK	
<‑‑+		
	UPC:notifications	
<‑‑‑+		
	RPC:modify‑subscription	
+‑‑>		
	RPC Reply: OK	
<‑‑+		
	UPC:notifications	
<‑‑‑+		
	RPC:delete‑subscription	
+‑‑>		
	RPC Reply: OK	
<‑‑+		
 + + + +

 Fig. 2 Call Flow For Dynamic Subscription

 In the case of dynamic subscription, the Receiver and the Subscriber
 SHOULD be colocated. So UPC can use the source IP address of the
 Subscription Channel as it's destination IP address. The Receiver
 MUST support listening messages at the IANA-assigned PORT-X or PORT-
 Y, but MAY be configured to listen at a different port.

 For dynamic subscription, the Publication Channels MUST share fate
 with the subscription session. In other words, when the delete-
 subscription is received or the subscription session is broken, all
 the associated Publication Channels MUST be closed.

4.2. Configured Subscription

 For a Configured Subscription, there is no guarantee that the
 Subscriber is currently in place with the associated Receiver(s). As
 defined in Sub-Notif, the subscription configuration contains the
 location information of all the receivers, including the IP address
 and the port number. So that the data originator can actively send
 generated messages to the corresponding Receivers via the UPC.

 The first message MUST be a separate subscription-started
 notification to indicate the Receiver that the pushing is started.
 Then, the notifications can be sent immediately without any wait.

 All the subscription state notifications, as defined in
 [I-D.ietf-netconf-subscribed-notifications], MUST be encapsulated to
 be separated notification messages.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Collector		Publisher
(a) (b)		(a) (b)
+‑‑+‑‑‑‑‑‑+‑‑‑‑+ +‑‑+‑‑‑‑‑‑‑+‑‑‑+		
	Capability Exchange	
<‑‑>		
	Edit config(create)	
+‑‑>		
	RPC Reply: OK	
<‑‑+		
	UPC:subscription started	
<‑‑‑+		
	UPC:notifications	
<‑‑‑+		
	Edit config(delete)	
+‑‑>		
	RPC Reply: OK	
<‑‑+		
	UPC:subscription terminated	
<‑‑‑+		
 + + + +

 Fig. 3 Call Flow For Configured Subscription

5. UDP Transport for Publication Channel

5.1. Design Overview

 As specified in Sub-Notif, the telemetry data is encapsulated in the
 NETCONF/RESTCONF notification message, which is then encapsulated and
 carried in the transport protocols, e.g. TLS, HTTP2. The following
 figure shows the overview of the typical UPC message structure.

 o The Message Header contains information that can facilitate the
 message transmission before de-serializing the notification
 message.

 o Notification Message is the encoded content that the publication
 channel transports. The common encoding method includes GPB [1],
 CBOR [RFC7049], JSON, and XML.
 [I-D.ietf-netconf-notification-messages] describes the structure

 of the Notification Message for both single notification and
 multiple bundled notifications.

+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| UDP | | Message | | Notification |
| | | Header | | Message |
+‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Fig. 4 UDP Publication Message Overview

5.2. Data Format of the UPC Message Header

 The UPC Message Header contains information that can facilitate the
 message transmission before de-serializing the notification message.
 The data format is shown as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Vers. | Flag | ET | Length |
+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Message‑Generator‑ID |
+‑‑‑+
| Message ID |
+‑‑‑+
~ Options ~
+‑‑‑+

 Fig. 3 UPC Message Header Format

 The Message Header contains the following field:

 o Vers.: represents the PDU (Protocol Data Unit) encoding version.
 The initial version value is 0.

 o Flag: is a bitmap indicating what features this packet has and the
 corresponding options attached. Each bit associates to one
 feature and one option data. When the bit is set to 1, the
 associated feature is enabled and the option data is attached.
 The sequence of the presence of the options follows the bit order
 of the bitmap. In this document, the flag is specified as
 follows:

 * bit 0, the reliability flag;

 * bit 1, the fragmentation flag;

 * other bits are reserved.

 o ET: is a 4 bits identifier to indicate the encoding type used for
 the Notification Message. 16 types of encoding can be expressed:

 * 0: GPB;

 * 1: CBOR;

 * 2: JSON;

 * 3: XML;

 * others are reserved.

 o Length: is the total length of the message, measured in octets,
 including message header.

 o Message-Generator-ID: is a 32-bit identifier of the process which
 created the notification message. This allows disambiguation of
 an information source, such as the identification of different
 line cards sending the notification messages. The source IP
 address of the UDP datagrams SHOULD NOT be interpreted as the
 identifier for the host that originated the UPC message. The
 entity sending the UPC message could be merely a relay.

 o The Message ID is generated continuously by the message generator.
 Different subscribers share the same notification ID sequence.

 o Options: is a variable-length field. The details of the Options
 will be described in the respective sections below.

5.3. Options

 The order of packing the data fields in the Options field follows the
 bit order of the Flag field.

5.3.1. Reliability Option

 The UDP based publication transport described in this document
 provides two streaming modes, the reliable mode an the unreliable
 mode, for different SLA (Service Level Agreement) and telemetry
 requirements.

 In the unreliable streaming mode, the line card pushes the
 encapsulated data to the data collector without any sequence
 information. So the subscriber does not know whether the data is
 correctly received or not. Hence no retransmission happens.

 The reliable streaming mode provides sequence information in the UDP
 packet, based on which the subscriber can deduce the packet loss and
 disorder. Then the subscriber can decide whether to request the
 retransmission of the lost packets.

 In most case, the unreliable streaming mode is preferred. Because
 the reliable streaming mode will cost more network bandwidth and
 precious device resource. Different from the unreliable streaming
 mode, the line card cannot remove the sent reliable notifications
 immediately, but to keep them in the memory for a while. Reliable
 notifications may be pushed multiple times, which will increase the
 traffic. When choosing the reliable streaming mode or the unreliable
 streaming mode, the operate need to consider the reliable requirement
 together with the resource usage.

 When the reliability flag bit is set to 1 in the Flag field, the
 following option data will be attached

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑‑‑+
| Previous Message ID |
+‑‑‑+

 Fig. 4 Reliability Option Format

 Current Message ID and Previous Message ID will be added in the
 packets.

 For example, there are two subscriber A and B,

 o Message IDs for the generator are : [1, 2, 3, 4, 5, 6, 7, 8, 9],
 in which Subscriber A subscribes [1,2,3,6,7] and Subscriber B
 subscribes [1,2,4,5,7,8,9].

 o Subscriber A will receive [Previous Message ID, Current Message
 ID] like: [0,1][1,2][2,3][3,6][6,7].

 o Subscriber B will receive [Previous Message ID, Current Message
 ID] like: [0,1][1,2][2,4][4,5][5,7][7,8][8,9].

5.3.2. Fragmentation Option

 UDP palyload has a theoretical length limitation to 65535. Other
 encapsulation headers will make the actual payload even shorter.
 Binary encodings like GPB and CBOR can make the message compact. So
 that the message can be encapsulated within one UDP packet, hence
 fragmentation will not easily happen. However, text encodings like
 JSON and XML can easily make the message exceed the UDP length
 limitation.

 The Fragmentation Option can help not Application layer can split the
 YANG tree into several leaves. Or table into several rows. But the
 leaf or the row cannot be split any further. Now we consider a very
 long path. Since the GPB and CBOR are so compact, it's easy to fit
 into a UDP packet. But for JSON or XML, it is possible that even one
 leaf will exceed the UDP boundary.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑‑‑+‑+
| Fragment Number |L|
+‑‑‑+‑+

 Fig. 5 Fragmentation Option Format

 The Fragmentation Option is available in the message header when the
 fragmentation flag is set to 1. The option contains:

 Fragment Number: indicates the sequence number of the current
 fragment.

 L: is a flag to indicate whether the current fragment is the last
 one. When 0 is set, current fragment is not the last one, hence more
 fragments are expected. When 1 is set, current fragment is the last
 one.

5.4. Data Encoding

 Subscribed data can be encoded in GPB, CBOR, XML or JSON format. It
 is conceivable that additional encodings may be supported as options
 in the future. This can be accomplished by augmenting the
 subscription data model with additional identity statements used to
 refer to requested encodings.

 Implementation may support different encoding method per
 subscription. When bundled notifications is supported between the
 publisher and the receiver, only subscribed notifications with the
 same encoding can be bundled as one message.

6. Using DTLS to Secure UPC

 The Datagram Transport Layer Security (DTLS) protocol [RFC6347] is
 designed to meet the requirements of applications that need secure
 datagram transport.

 DTLS can be used as a secure transport to counter all the primary
 threats to UDP based Publication Channel:

 o Confidentiality to counter disclosure of the message contents.

 o Integrity checking to counter modifications to a message on a hop-
 by-hop basis.

 o Server or mutual authentication to counter masquerade.

 In addition, DTLS also provides:

 o A cookie exchange mechanism during handshake to counter Denial of
 Service attacks.

 o A sequence number in the header to counter replay attacks.

6.1. Transport

 As shown in Figure 6, the DTLS is layered next to the UDP transport
 is to provide reusable security and authentication functions over
 UDP. No DTLS extension is required to enable UPC messages over DTLS.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| UPC Message |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| DTLS |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| UDP |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| IP |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Fig. 6: Protocol Stack for DTLS secured UPC

 The application implementer will map a unique combination of the
 remote address, remote port number, local address, and local port
 number to a session.

 Each UPC message is delivered by the DTLS record protocol, which
 assigns a sequence number to each DTLS record. Although the DTLS
 implementer may adopt a queue mechanism to resolve reordering, it may
 not assure that all the messages are delivered in order when mapping
 on the UDP transport.

 Since UDP is an unreliable transport, with DTLS, an originator or
 relay may not realize that a collector has gone down or lost its DTLS
 connection state, so messages may be lost.

 The DTLS record has its own sequence number, the encryption and
 decryption will done by DTLS layer, UPC Message layer will not
 concern this.

6.2. Port Assignment

 The Publisher is always a DTLS client, and the Receiver is always a
 DTLS server. The Receivers MUST support accepting UPC Messages on
 the UDP port PORT-Y, but MAY be configurable to listen on a different
 port. The Publisher MUST support sending UPC messages to the UDP
 port PORT-Y, but MAY be configurable to send messages to a different
 port. The Publisher MAY use any source UDP port for transmitting
 messages.

6.3. DTLS Session Initiation

 The Publisher initiates a DTLS connection by sending a DTLS Client
 Hello to the Receiver. Implementations MUST support the denial of
 service countermeasures defined by DTLS. When these countermeasures
 are used, the Receiver responds with a DTLS Hello Verify Request
 containing a cookie. The Publisher responds with a DTLS Client Hello
 containing the received cookie, which initiates the DTLS handshake.
 The Publisher MUST NOT send any UPC messages before the DTLS
 handshake has successfully completed.

 Implementations MUST support DTLS 1.0 [RFC4347] and MUST support the
 mandatory to implement cipher suite, which is
 TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246] as specified in DTLS 1.0. If
 additional cipher suites are supported, then implementations MUST NOT
 negotiate a cipher suite that employs NULL integrity or
 authentication algorithms.

 Where privacy is REQUIRED, then implementations must either negotiate
 a cipher suite that employs a non-NULL encryption algorithm or else
 achieve privacy by other means, such as a physically secured network.

6.4. Sending Data

 All UPC messages MUST be sent as DTLS "application_data". It is
 possible that multiple UPC messages be contained in one DTLS record,
 or that a publication message be transferred in multiple DTLS
 records. The application data is defined with the following ABNF
 [RFC5234] expression:

 APPLICATION-DATA = 1*UPC-FRAME

 UPC-FRAME = MSG-LEN SP UPC-MSG

 MSG-LEN = NONZERO-DIGIT *DIGIT

 SP = %d32

 NONZERO-DIGIT = %d49-57

 DIGIT = %d48 / NONZERO-DIGIT

 UPC-MSG is defined in section 5.2.

6.5. Closure

 A Publisher MUST close the associated DTLS connection if the
 connection is not expected to deliver any UPC Messages later. It
 MUST send a DTLS close_notify alert before closing the connection. A
 Publisher (DTLS client) MAY choose to not wait for the Receiver's
 close_notify alert and simply close the DTLS connection. Once the
 Receiver gets a close_notify from the Publisher, it MUST reply with a
 close_notify.

 When no data is received from a DTLS connection for a long time
 (where the application decides what "long" means), Receiver MAY close
 the connection. The Receiver (DTLS server) MUST attempt to initiate
 an exchange of close_notify alerts with the Publisher before closing
 the connection. Receivers that are unprepared to receive any more
 data MAY close the connection after sending the close_notify alert.

 Although closure alerts are a component of TLS and so of DTLS, they,
 like all alerts, are not retransmitted by DTLS and so may be lost
 over an unreliable network.

7. Congestion Control

 Congestion control mechanisms that respond to congestion by reducing
 traffic rates and establish a degree of fairness between flows that
 share the same path are vital to the stable operation of the Internet
 [RFC2914]. While efficient, UDP has no build-in congestion control
 mechanism. Because streaming telemetry can generate unlimited
 amounts of data, transferring this data over UDP is generally
 problematic. It is not recommended to use the UDP based publication
 channel over congestion-sensitive network paths. The only
 environments where the UDP based publication channel MAY be used are
 managed networks. The deployments require the network path has been
 explicitly provisioned for the UDP based publication channel through
 traffic engineering mechanisms, such as rate limiting or capacity
 reservations.

8. A YANG Data Model for Management of UPC

 The YANG model defined in Section 9 has two leafs augmented into one
 place of Sub-Notif [I-D.ietf-netconf-subscribed-notifications], plus
 one identities.

module: ietf‑upc‑subscribed‑notifications
 augment /sn:subscriptions/sn:subscription/sn:receivers/sn:receiver:
 +‑‑rw address? inet:ip‑address
 +‑‑rw port? inet:port‑number

9. YANG Module

<CODE BEGINS> file "ietf‑upc‑subscribed‑notifications@2018‑10‑19.yang"
module ietf‑upc‑subscribed‑notifications {
 yang‑version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf‑upc‑subscribed‑notifications";
 prefix upcsn;
 import ietf‑subscribed‑notifications {
 prefix sn;
 }
 import ietf‑inet‑types {
 prefix inet;
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Guangying Zheng
 <mailto:zhengguangying@huawei.com>

 Editor: Tianran Zhou
 <mailto:zhoutianran@huawei.com>

 Editor: Alexander Clemm
 <mailto:alexander.clemm@huawei.com>";

 description

 "Defines UDP Publish Channel as a supported transport for subscribed
 event notifications.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision 2018‑10‑19 {
 description
 "Initial version";
 reference
 "RFC XXXX: UDP based Publication Channel for Streaming Telemetry";
 }

 identity upc {
 base sn:transport;
 description
 "UPC is used as transport for notification messages and state
 change notifications.";
 }

 grouping target‑receiver {
 description
 "Provides a reusable description of a UPC target receiver.";
 leaf address {
 type inet:ip‑address;
 description
 "Ip address of target upc receiver, which can be IPv4 address or
 IPV6 address.";
 }
 leaf port {
 type inet:port‑number;
 description
 "Port number of target UPC receiver, if not specify, system
 should use default port number.";
 }
 }

 augment "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 description
 "This augmentation allows UPC specific parameters to be
 exposed for a subscription.";
 uses target‑receiver;
 }
}

<CODE ENDS>

10. IANA Considerations

 This RFC requests that IANA assigns three UDP port numbers in the
 "Registered Port Numbers" range with the service names "upc" and
 "upc-dtls". These ports will be the default ports for the UDP based
 Publication Channel for NETCONF and RESTCONF. Below is the
 registration template following the rules in [RFC6335].

 Service Name: upc

 Transport Protocol(s): UDP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: UDP based Publication Channel

 Reference: RFC XXXX

 Port Number: PORT-X

 Service Name: upc-dtls

 Transport Protocol(s): UDP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: UDP based Publication Channel (DTLS)

 Reference: RFC XXXX

 Port Number: PORT-Y

 IANA is requested to assign a new URI from the IETF XML Registry
 [RFC3688]. The following URI is suggested:

URI: urn:ietf:params:xml:ns:yang:ietf‑upc‑subscribed‑notifications
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document also requests a new YANG module name in the YANG Module
 Names registry [RFC7950] with the following suggestion:

name: ietf‑upc‑subscribed‑notifications
namespace: urn:ietf:params:xml:ns:yang:ietf‑upc‑subscribed‑notifications
prefix: upcsn
reference: RFC XXXX

11. Security Considerations

 TBD

12. Acknowledgements

 The authors of this documents would like to thank Eric Voit, Tim
 Jenkins, and Huiyang Yang for the initial comments.

13. References

13.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2914]
 Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, DOI 10.17487/RFC2914, September 2000,
 <https://www.rfc-editor.org/info/rfc2914>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <https://www.rfc-editor.org/info/rfc4347>.

 [RFC5234]
 Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7049]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8200]
 Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

13.2. Informative References

 [I-D.ietf-netconf-netconf-event-notifications]

 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "NETCONF Support for Event Notifications",
 draft-ietf-netconf-netconf-event-notifications-13 (work in
 progress), October 2018.

 [I-D.ietf-netconf-notification-messages]

 Voit, E., Birkholz, H., Bierman, A., Clemm, A., and T.
 Jenkins, "Notification Message Headers and Bundles",
 draft-ietf-netconf-notification-messages-04 (work in
 progress), August 2018.

 [I-D.ietf-netconf-restconf-notif]

 Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and
 A. Bierman, "RESTCONF Transport for Event Notifications",
 draft-ietf-netconf-restconf-notif-08 (work in progress),
 October 2018.

 [I-D.ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Customized Subscriptions to a Publisher's
 Event Streams", draft-ietf-netconf-subscribed-
 notifications-17 (work in progress), September 2018.

 [I-D.zhou-netconf-multi-stream-originators]

 Zhou, T., Zheng, G., Voit, E., Clemm, A., and A. Bierman,
 "Subscription to Multiple Stream Originators", draft-zhou-
 netconf-multi-stream-originators-03 (work in progress),
 October 2018.

13.3. URIs

 [1] https://developers.google.com/protocol-buffers/

Appendix A. Change Log

 (To be removed by RFC editor prior to publication)

 A.1. draft-ietf-zheng-udp-pub-channel-00 to v00

 o Modified the message header format.

 o Added a section on the Authentication Option.

 o Cleaned up the text and removed unnecessary TBDs.

 A.2. v01

 o Removed the detailed description on distributed data collection
 mechanism from this document. Mainly focused on the description
 of a UDP based publication channel for telemetry use.

 o Modified the message header format.

 A.2. v02

 o Add the section on the transport mechanism.

 o Modified the fixed message header format.

 o Add the fragmentation option for the message header.

 A.2. v03

 o Clarify term through the document.

 o Add a section on DTLS support.

 A.2. v04

 o Add a section on UPC subscription model.

Authors' Addresses

Guangying Zheng
Huawei
101 Yu‑Hua‑Tai Software Road
Nanjing, Jiangsu
China

 Email: zhengguangying@huawei.com

Tianran Zhou
Huawei
156 Beiqing Rd., Haidian District
Beijing
China

 Email: zhoutianran@huawei.com

Alexander Clemm
Huawei
2330 Central Expressway
Santa Clara, California
USA

 Email: alexander.clemm@huawei.com

draft-ietf-netconf-yang-push-20 - Subscription to YANG Datastores

Index
Back 5
Prev
Next
Forward 5

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: April 25, 2019

A. Clemm

Huawei

E. Voit

Cisco Systems

A. Gonzalez Prieto

VMware

A. Tripathy

E. Nilsen-Nygaard

Cisco Systems

A. Bierman

YumaWorks

B. Lengyel

Ericsson

October 22, 2018

Subscription to YANG Datastores

draft-ietf-netconf-yang-push-20

Abstract

 Via the mechanism described in this document, subscriber applications
 may request a continuous, customized stream of updates from a YANG
 datastore. Providing such visibility into updates enables new
 capabilities based on the remote mirroring and monitoring of
 configuration and operational state.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Definitions and Acronyms

	3. Solution Overview
	 3.1. Subscription Model

	 3.2. Negotiation of Subscription Policies

	 3.3. On-Change Considerations

	 3.4. Reliability Considerations

	 3.5. Data Encodings

	 3.6. Defining the Selection with a Datastore

	 3.7. Streaming Updates

	 3.8. Subscription Management

	 3.9. Receiver Authorization

	 3.10. On-Change Notifiable Datastore Nodes

	 3.11. Other Considerations

	4. A YANG Data Model for Management of Datastore Push Subscriptions
	 4.1. Overview

	 4.2. Subscription Configuration

	 4.3. YANG Notifications

	 4.4. YANG RPCs

	5. YANG Module

	6. IANA Considerations

	7. Security Considerations

	8. Acknowledgments

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Appendix A: Subscription Errors
	 A.1. RPC Failures

	 A.2. Notifications of Failure

	Appendix B. Changes Between Revisions

	Authors' Addresses

1. Introduction

 Traditional approaches to providing visibility into managed entities
 from remote have been built on polling. With polling, data is
 periodically requested and retrieved by a client from a server to
 stay up-to-date. However, there are issues associated with polling-
 based management:

 o Polling incurs significant latency. This latency prohibits many
 application types.

 o Polling cycles may be missed, requests may be delayed or get lost,
 often when the network is under stress and the need for the data
 is the greatest.

 o Polling requests may undergo slight fluctuations, resulting in
 intervals of different lengths. The resulting data is difficult
 to calibrate and compare.

 o For applications that monitor for changes, many remote polling
 cycles place unwanted and ultimately wasteful load on the network,
 devices, and applications, particularly when changes occur only
 infrequently.

 A more effective alternative to polling is for an application to
 receive automatic and continuous updates from a targeted subset of a
 datastore. Accordingly, there is a need for a service that allows
 applications to subscribe to updates from a datastore and that
 enables the server (also referred to as publisher) to push and in
 effect stream those updates. The requirements for such a service
 have been documented in [RFC7923].

 This document defines a corresponding solution that is built on top
 of "Custom Subscription to Event Streams"
 [I-D.draft-ietf-netconf-subscribed-notifications]. Supplementing
 that work are YANG data model augmentations, extended RPCs, and new
 datastore specific update notifications. Transport options for
 [I-D.draft-ietf-netconf-subscribed-notifications] will work
 seamlessly with this solution.

2. Definitions and Acronyms

 This document uses the terminology defined in [RFC7950], [RFC8341],
 [RFC8342], and [I-D.draft-ietf-netconf-subscribed-notifications]. In
 addition, the following terms are introduced:

 o Datastore node: A node in the instantiated YANG data tree
 associated with a datastore. In this document, datastore nodes
 are often also simply referred to as "objects"

 o Datastore node update: A data item containing the current value of
 a datastore node at the time the datastore node update was
 created, as well as the path to the datastore node.

 o Datastore subscription: A subscription to a stream of datastore
 node updates.

 o Datastore subtree: A datastore node and all its descendant
 datastore nodes

 o On-change subscription: A datastore subscription with updates that
 are triggered when changes in subscribed datastore nodes are
 detected.

 o Periodic subscription: A datastore subscription with updates that
 are triggered periodically according to some time interval.

 o Selection filter: Evaluation and/or selection criteria, which may
 be applied against a targeted set of objects.

 o Update record: A representation of one or more datastore node
 updates. In addition, an update record may contain which type of
 update led to the datastore node update (e.g., whether the
 datastore node was added, changed, deleted). Also included in the
 update record may be other metadata, such as a subscription id of
 the subscription as part of which the update record was generated.
 In this document, update records are often also simply referred to
 as "updates".

 o Update trigger: A mechanism that determines when an update record
 needs to be generated.

 o YANG-Push: The subscription and push mechanism for datastore
 updates that is specified in this document.

3. Solution Overview

 This document specifies a solution that provides a subscription
 service for updates from a datastore. This solution supports dynamic
 as well as configured subscriptions to updates of datastore nodes.
 Subscriptions specify when notification messages (also referred to as
 "push updates") should be sent and what data to include in update
 records. Datastore node updates are subsequently pushed from the
 publisher to the receiver per the terms of the subscription.

3.1. Subscription Model

 YANG-push subscriptions are defined using a YANG data model. This
 model enhances the subscription model defined in
 [I-D.draft-ietf-netconf-subscribed-notifications] with capabilities
 that allow subscribers to subscribe to datastore node updates,
 specifically to specify the update triggers defining when to generate
 update records as well as what to include in an update record. Key
 enhancements include:

 o Specification of selection filters which identify targeted YANG
 datastore nodes and/or datastore subtrees for which updates are to
 be pushed.

 o Specification of update policies contain conditions which trigger
 the generation and pushing of new update records. There are two
 types of subscriptions, distinguished by how updates are
 triggered: periodic and on-change.

 * For periodic subscriptions, the update trigger is specified by
 two parameters that define when updates are to be pushed.
 These parameters are the period interval with which to report
 updates, and an "anchor time", i.e. a reference point in time
 that can be used to calculate at which points in time periodic
 updates need to be assembled and sent.

 * For on-change subscriptions, an update trigger occurs whenever
 a change in the subscribed information is detected. Included
 are additional parameters that include:

 + Dampening period: In an on-change subscription, detected
 object changes should be sent as quickly as possible.
 However it may be undesirable to send a rapid series of
 object changes. Such behavior has the potential to exhaust
 resources in the publisher or receiver. In order to protect

 against that, a dampening period MAY be used to specify the
 interval which has to pass before successive update records
 for the same subscription are generated for a receiver. The
 dampening period collectively applies to the set of all
 datastore nodes selected by a single subscription. This
 means that when there is a change to one or more subscribed
 objects, an update record containing those objects is
 created immediately (when no dampening period is in effect)
 or at the end of a dampening period (when a dampening period
 is in fact in effect). If multiple changes to a single
 object occur during a dampening period, only the value that
 is in effect at the time when the update record is created
 is included. The dampening period goes into effect every
 time an update record completes assembly.

 + Change type: This parameter can be used to reduce the types
 of datastore changes for which updates are sent (e.g., you
 might only send an update when an object is created or
 deleted, but not when an object value changes).

 + Sync on start: defines whether or not a complete push-update
 of all subscribed data will be sent at the beginning of a
 subscription. Such early synchronization establishes the
 frame of reference for subsequent updates.

 o An encoding (using anydata) for the contents of periodic and on-
 change push updates.

3.2. Negotiation of Subscription Policies

 A dynamic subscription request SHOULD be declined if a publisher's
 assessment is that it may be unable to provide update records meeting
 the terms of an "establish-subscription" or "modify-subscription" RPC
 request. In this case, a subscriber may quickly follow up with a new
 RPC request using different parameters.

 Random guessing of different parameters by a subscriber is to be
 discouraged. Therefore, in order to minimize the number of
 subscription iterations between subscriber and publisher, a dynamic
 subscription supports a simple negotiation between subscribers and
 publishers for subscription parameters. This negotiation is in the
 form of supplemental information which should be inserted within
 error responses to a failed RPC request. This returned error
 response information, when considered, should increase the likelihood
 of success for subsequent RPC requests. Such hints include suggested
 periodic time intervals, acceptable dampening periods, and size
 estimates for the number or objects which would be returned from a
 proposed selection filter. However, there are no guarantees that
 subsequent requests which consider these hints will be accepted.

3.3. On-Change Considerations

 On-change subscriptions allow receivers to receive updates whenever
 changes to targeted objects occur. As such, on-change subscriptions
 are particularly effective for data that changes infrequently, yet
 for which applications need to be quickly notified whenever a change
 does occur with minimal delay.

 On-change subscriptions tend to be more difficult to implement than
 periodic subscriptions. Accordingly, on-change subscriptions may not
 be supported by all implementations or for every object.

 Whether or not to accept or reject on-change subscription requests
 when the scope of the subscription contains objects for which on-
 change is not supported is up to the publisher implementation. A
 publisher MAY accept an on-change subscription even when the scope of
 the subscription contains objects for which on-change is not
 supported. In that case, updates are sent only for those objects
 within the scope that do support on-change updates, whereas other
 objects are excluded from update records, even if their values
 change. In order for a subscriber to determine whether objects
 support on-change subscriptions, objects are marked accordingly on a
 publisher. Accordingly, when subscribing, it is the responsibility
 of the subscriber to ensure it is aware of which objects support on-
 change and which do not. For more on how objects are so marked, see
 Section 3.10.

 Alternatively, a publisher MAY decide to simply reject an on-change
 subscription in case the scope of the subscription contains objects
 for which on-change is not supported. In case of a configured
 subscription, the publisher MAY suspend the subscription.

 To avoid flooding receivers with repeated updates for subscriptions
 containing fast-changing objects, or objects with oscillating values,
 an on-change subscription allows for the definition of a dampening
 period. Once an update record for a given object is generated, no
 other updates for this particular subscription will be created until
 the end of the dampening period. Values sent at the end of the
 dampening period are the values that are current at the end of the
 dampening period of all changed objects. Changed objects include
 those which were deleted or newly created during that dampening
 period. If an object has returned to its original value (or even has
 been created and then deleted) during the dampening-period, that
 value (and not the interim change) will still be sent. This will
 indicate churn is occurring on that object.

 On-change subscriptions can be refined to let users subscribe only to
 certain types of changes. For example, a subscriber might only want
 object creations and deletions, but not modifications of object
 values.

 Putting it all together, following is the conceptual process for
 creating an update record as part of an on-change subscription:

 1. Just before a change, or at the start of a dampening period,
 evaluate any filtering and any access control rules to ensure
 receiver is authorized to view all subscribed datastore nodes
 (filtering out any nodes for which this is not the case). The
 result is a set "A" of datastore nodes and subtrees.

 2. Just after a change, or at the end of a dampening period,
 evaluate any filtering and any (possibly new) access control
 rules. The result is a set "B" of datastore nodes and subtrees.

 3. Construct an update record, which takes the form of YANG patch
 record [RFC8072] for going from A to B.

 4. If there were any changes made between A and B which canceled
 each other out, insert into the YANG patch record the last change
 made, even if the new value is no different from the original
 value (since changes that were made in the interim were canceled
 out). In case the changes involve creating a new datastore node,
 then deleting it, the YANG patch record will indicate deletion of
 the datastore node. Similarly, in case the changes involve
 deleting a new datastore node, then recreating it, the YANG patch
 record will indicate creation of the datastore node.

 5. If the resulting patch record is non-empty, send it to the
 receiver.

 Note: In cases where a subscriber wants to have separate dampening
 periods for different objects, the subscriber has the option to
 create multiple subscriptions with different selection filters.

3.4. Reliability Considerations

 A subscription to updates from a datastore is intended to obviate the
 need for polling. However, in order to do so, it is critical that
 subscribers can rely on the subscription and have confidence that
 they will indeed receive the subscribed updates without having to
 worry about updates being silently dropped. In other words, a
 subscription constitutes a promise on the side of the publisher to
 provide the receivers with updates per the terms of the subscription.
 Now, there are many reasons why a publisher may at some point no
 longer be able to fulfill the terms of the subscription, even if the
 subscription had been entered into with good faith. For example, the
 volume of datastore nodes may be larger than anticipated, the
 interval may prove too short to send full updates in rapid
 succession, or an internal problem may prevent objects from being
 collected. For this reason, the solution that is defined in this
 document mandates that a publisher notifies receivers immediately and
 reliably whenever it encounters a situation in which it is unable to
 keep the terms of the subscription, and provides the publisher with
 the option to suspend the subscription in such a case. This includes
 indicating the fact that an update is incomplete as part of a push-
 update or push-change-update notification, as well as emitting a
 subscription-suspended notification as applicable. This is described
 further in Section 3.11.1.

 A publisher SHOULD reject a request for a subscription if it is
 unlikely that the publisher will be able to fulfill the terms of that
 subscription request. In such cases, it is preferable to have a
 subscriber request a less resource intensive subscription than to
 deal with frequently degraded behavior.

3.5. Data Encodings

3.5.1. Periodic Subscriptions

 In a periodic subscription, the data included as part of an update
 record corresponds to data that could have been read using a
 retrieval operation.

3.5.2. On-Change Subscriptions

 In an on-change subscription, update records need to indicate not
 only values of changed datastore nodes but also the types of changes
 that occurred since the last update. Therefore, encoding rules for
 data in on-change updates will generally follow YANG-patch operation
 as specified in [RFC8072]. The YANG-patch will describe what needs
 to be applied to the earlier state reported by the preceding update,
 to result in the now-current state. Note that contrary to [RFC8072],
 objects encapsulated are not restricted to only configuration
 objects.

 A publisher indicates the type of change to a datastore node using
 the different YANG patch operations: the "create" operation is used
 for newly created objects (except entries in a user-ordered list),
 the "delete" operation is used for deleted objects (including in
 user-ordered lists), the "replace" operation is used when only the
 object value changes, the "insert" operation is used when a new entry
 is inserted in a list, and the "move" operation is used when an
 existing entry in a user-ordered list is moved.

 However, a patch must be able to do more than just describe the delta
 from the previous state to the current state. As per Section 3.3, it
 must also be able to identify whether transient changes have occurred
 on an object during a dampening period. To support this, it is valid
 to encode a YANG patch operation so that its application would result
 in no change between the previous and current state. This indicates
 that some churn has occurred on the object. An example of this would
 be a patch that indicates a "create" operation for a datastore node
 where the receiver believes one already exists, or a "replace"
 operation which replaces a previous value with the same value. Note
 that this means that the "create" and "delete" errors described in
 [RFC8072] section 2.5 are not errors, and are valid operations with
 YANG-Push.

3.6. Defining the Selection with a Datastore

 A subscription must specify both the selection filters and the
 datastore against which these selection filters will be applied.
 This information is used to choose and subsequently push data from
 the publisher's datastore to the receivers.

 Only a single selection filter can be applied to a subscription at a
 time. An RPC request proposing a new selection filter replaces any
 existing filter. The following selection filter types are included
 in the yang-push data model, and may be applied against a datastore:

 o subtree: A subtree selection filter identifies one or more
 datastore subtrees. When specified, update records will only come
 from the datastore nodes of selected datastore subtree(s). The
 syntax and semantics correspond to that specified for [RFC6241]
 section 6.

 o xpath: An "xpath" selection filter is an XPath expression that
 returns a node set. When specified, updates will only come from
 the selected datastore nodes.

 These filters are intended to be used as selectors that define which
 objects are within the scope of a subscription. A publisher MUST
 support at least one type of selection filter.

 XPath itself provides powerful filtering constructs and care must be
 used in filter definition. Consider an XPath filter which only
 passes a datastore node when an interface is up. It is up to the
 receiver to understand implications of the presence or absence of
 objects in each update.

 When the set of selection filtering criteria is applied for a
 periodic subscription, then they are applied whenever a periodic
 update record is constructed, and only datastore nodes that pass the
 filter and to which a receiver has access are provided to that
 receiver. If the same filtering criteria is applied to an on-change
 subscription, only the subset of those datastore nodes supporting on-
 change is provided. A datastore node which doesn't support on-change
 is never sent as part of an on-change subscription's "push-update" or
 "push-change-update" (see Section 3.7).

3.7. Streaming Updates

 Contrary to traditional data retrieval requests, datastore
 subscription enables an unbounded series of update records to be
 streamed over time. Two generic YANG notifications for update
 records have been defined for this: "push-update" and "push-change-
 update".

 A "push-update" notification defines a complete, filtered update of
 the datastore per the terms of a subscription. This type of YANG
 notification is used for continuous updates of periodic
 subscriptions. A "push-update" notification can also be used for the
 on-change subscriptions in two cases. First, it MUST be used as the
 initial "push-update" if there is a need to synchronize the receiver
 at the start of a new subscription. It also MAY be sent if the
 publisher later chooses to resync an on-change subscription. The
 "push-update" update record contains an instantiated datastore
 subtree with all of the subscribed contents. The content of the
 update record is equivalent to the contents that would be obtained
 had the same data been explicitly retrieved using a datastore
 retrieval operation using the same transport with the same filters
 applied.

 A "push-change-update" notification is the most common type of update
 for on-change subscriptions. The update record in this case contains
 the set of changes that datastore nodes have undergone since the last
 notification message. In other words, this indicates which datastore
 nodes have been created, deleted, or have had changes to their
 values. In cases where multiple changes have occurred over the
 course of a dampening period and the object has not been deleted, the
 object's most current value is reported. (In other words, for each
 object, only one change is reported, not its entire history. Doing
 so would defeat the purpose of the dampening period.)

 "Push-update" and "push-change-update" are encoded and placed within
 notification messages, and ultimately queued for egress over the
 specified transport.

 The following is an example of a notification message for a
 subscription tracking the operational status of a single Ethernet
 interface (per [RFC8343]). This notification message is encoded XML
 over NETCONF as per
 [I-D.draft-ietf-netconf-netconf-event-notifications].

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2017‑10‑25T08:00:11.22Z</eventTime>
 <push‑update xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <id>1011</id>
 <datastore‑contents>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf‑interfaces">
 <interface>
 <name>eth0</name>
 <oper‑status>up</oper‑status>
 </interface>
 </interfaces>
 </datastore‑contents>
 </push‑update>
</notification>

 Figure 1: Push example

 The following is an example of an on-change notification message for
 the same subscription.

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2017‑10‑25T08:22:33.44Z</eventTime>
 <push‑change‑update xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <id>89</id>
 <datastore‑changes>
 <yang‑patch>
 <patch‑id>0</patch‑id>
 <edit>
 <edit‑id>edit1</edit‑id>
 <operation>replace</operation>
 <target>/ietf‑interfaces:interfaces</target>
 <value>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf‑interfaces">
 <interface>
 <name>eth0</name>
 <oper‑status>down</oper‑status>
 </interface>
 </interfaces>
 </value>
 </edit>
 </yang‑patch>
 </datastore‑changes>
 </push‑change‑update>
</notification>

 Figure 2: Push example for on change

 Of note in the above example is the 'patch-id' with a value of '0'.
 Per [RFC8072], the 'patch-id' is an arbitrary string. With YANG
 Push, the publisher SHOULD put into the 'patch-id' a counter starting
 at '0' which increments with every 'push-change-update' generated for
 a subscription. If used as a counter, this counter MUST be reset to
 '0' anytime a resynchronization occurs (i.e., with the sending of a
 'push-update'). Also if used as a counter, the counter MUST be reset
 to '0' after passing a maximum value of '4294967295' (i.e. maximum
 value that can be represented using uint32 data type). Such a
 mechanism allows easy identification of lost or out-of-sequence
 update records.

3.8. Subscription Management

 The RPCs defined within
 [I-D.draft-ietf-netconf-subscribed-notifications] have been enhanced
 to support datastore subscription negotiation. Also, new error codes
 have been added that are able to indicate why a datastore
 subscription attempt has failed, along with new yang-data that MAY be
 used to include details on input parameters that might result in a
 successful subsequent RPC invocation.

 The establishment or modification of a datastore subscription can be
 rejected for multiple reasons. This includes a too large subtree
 request, or the inability of the publisher to push update records as
 frequently as requested. In such cases, no subscription is
 established. Instead, the subscription-result with the failure
 reason is returned as part of the RPC response. As part of this
 response, a set of alternative subscription parameters MAY be
 returned that would likely have resulted in acceptance of the
 subscription request. The subscriber may consider these as part of
 future subscription attempts.

 In the case of a rejected request for an establishment of a datastore
 subscription, if there are hints, the hints SHOULD be transported
 within a yang-data "establish-subscription-datastore-error-info"
 container inserted into the RPC error response, in lieu of the
 "establish-subscription-stream-error-info" that is inserted in case
 of a stream subscription.

 Below is a tree diagram for "establish-subscription-datastore-error-
 info". All tree diagrams used in this document follow the notation
 defined in [RFC8340]

yang‑data establish‑subscription‑datastore‑error‑info
 +‑‑ro establish‑subscription‑datastore‑error‑info
 +‑‑ro reason? identityref
 +‑‑ro period‑hint? yang:timeticks
 +‑‑ro filter‑failure‑hint? string
 +‑‑ro object‑count‑estimate? uint32
 +‑‑ro object‑count‑limit? uint32
 +‑‑ro kilobytes‑estimate? uint32
 +‑‑ro kilobytes‑limit? uint32

 Figure 3: Tree diagram for establish-subscription-datastore-error-

 info

 Similarly, in the case of a rejected request for modification of a
 datastore subscription, if there are hints, the hints SHOULD be
 transported within a yang-data "modify-subscription-datastore-error-
 info" container inserted into the RPC error response, in lieu of the
 "modify-subscription-stream-error-info" that is inserted in case of a
 stream subscription.

 Below is a tree diagram for "modify-subscription-datastore-error-
 info".

yang‑data modify‑subscription‑datastore‑error‑info
 +‑‑ro modify‑subscription‑datasore‑error‑info
 +‑‑ro reason? identityref
 +‑‑ro period‑hint? yang:timeticks
 +‑‑ro filter‑failure‑hint? string
 +‑‑ro object‑count‑estimate? uint32
 +‑‑ro object‑count‑limit? uint32
 +‑‑ro kilobytes‑estimate? uint32
 +‑‑ro kilobytes‑limit? uint32

 Figure 4: Tree diagram for modify-subscription-datastore-error-info

3.9. Receiver Authorization

 A receiver of subscription data MUST only be sent updates for which
 it has proper authorization. A publisher MUST ensure that no non-
 authorized data is included in push updates. To do so, it needs to
 apply all corresponding checks applicable at the time of a specific
 pushed update and if necessary silently remove any non-authorized
 data from datastore subtrees. This enables YANG data pushed based on
 subscriptions to be authorized equivalently to a regular data
 retrieval (get) operation.

 Each "push-update" and "push-change-update" MUST have access control
 applied, as is depicted in the following diagram. This includes
 validating that read access is permitted for any new objects selected
 since the last notification message was sent to a particular
 receiver. To accomplish this, implementations SHOULD support the
 conceptual authorization model of [RFC8341], specifically section
 3.2.4.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 push‑update or ‑‑> | datastore node | yes | add datastore node |
push‑change‑update | access allowed? | ‑‑‑> | to update record |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 5: Updated [RFC8341] access control for push updates

 A publisher MUST allow for the possibility that a subscription's
 selection filter references non-existent data or data that a receiver
 is not allowed to access. Such support permits a receiver the
 ability to monitor the entire lifecyle of some datastore tree without
 needing to explicitly enumerate every individual datastore node. If,
 after access control has been applied, there are no objects remaining
 in an update record, then (in case of a periodic subscription) only a
 single empty "push-update" notification MUST be sent. Empty "push-
 change-update" messages (in case of an on-change subscription) MUST
 NOT be sent. This is required to ensure that clients cannot
 surreptitiously monitor objects that they do not have access to via
 carefully crafted selection filters. By the same token, changes to
 objects that are filtered MUST NOT affect any dampening intervals.

 A publisher MAY choose to reject an establish-subscription request
 which selects non-existent data or data that a receiver is not
 allowed to access. As reason, the error identity "unchanging-
 selection" SHOULD be returned. In addition, a publisher MAY choose
 to terminate a dynamic subscription or suspend a configured receiver
 when the authorization privileges of a receiver change, or the access
 controls for subscribed objects change. In that case, the publisher
 SHOULD include the error identity "unchanging-selection" as reason
 when sending the "subscription-terminated" respectively
 "subscription-suspended" notification. Such a capability enables the
 publisher to avoid having to support continuous and total filtering
 of a subscription's content for every update record. It also reduces
 the possibility of leakage of access-controlled objects.

 If read access into previously accessible nodes has been lost due to
 a receiver permissions change, this SHOULD be reported as a patch
 "delete" operation for on-change subscriptions. If not capable of
 handling such receiver permission changes with such a "delete",
 publisher implementations MUST force dynamic subscription re-
 establishment or configured subscription re-initialization so that
 appropriate filtering is installed.

3.10. On-Change Notifiable Datastore Nodes

 In some cases, a publisher supporting on-change notifications may not
 be able to push on-change updates for some object types. Reasons for
 this might be that the value of the datastore node changes frequently
 (e.g., [RFC8343]'s in-octets counter), that small object changes are
 frequent and meaningless (e.g., a temperature gauge changing 0.1
 degrees), or that the implementation is not capable of on-change
 notification for a particular object.

 In those cases, it will be important for client applications to have
 a way to identify for which objects on-change notifications are
 supported and for which ones they are not supported. Otherwise
 client applications will have no way of knowing whether they can
 indeed rely on their on-change subscription to provide them with the
 change updates that they are interested in. In other words, if
 implementations do not provide a solution and do not support
 comprehensive on-change notifiability, clients of those
 implementations will have no way of knowing what their on-change
 subscription actually covers.

 Implementations are therefore strongly advised to provide a solution
 to this problem. It is expected that such a solution will be
 standardized at some point in the future. In the meantime and until
 this occurs, implementations SHOULD provide their own solution.

3.11. Other Considerations

3.11.1. Robustness and reliability

 Particularly in the case of on-change updates, it is important that
 these updates do not get lost. In case the loss of an update is
 unavoidable, it is critical that the receiver is notified
 accordingly.

 Update records for a single subscription MUST NOT be resequenced
 prior to transport.

 It is conceivable that under certain circumstances, a publisher will
 recognize that it is unable to include within an update record the
 full set of objects desired per the terms of a subscription. In this
 case, the publisher MUST act as follows.

 o The publisher MUST set the "incomplete-update" flag on any update
 record which is known to be missing information.

 o The publisher MAY choose to suspend the subscription as per
 [I-D.draft-ietf-netconf-subscribed-notifications]. If the
 publisher does not create an update record at all, it MUST suspend
 the subscription.

 o When resuming an on-change subscription, the publisher SHOULD
 generate a complete patch from the previous update record. If
 this is not possible and the "sync-on-start" option is true for
 the subscription, then the full datastore contents MAY be sent via
 a "push-update" instead (effectively replacing the previous
 contents). If neither of these are possible, then an "incomplete-
 update" flag MUST be included on the next "push-change-update".

 Note: It is perfectly acceptable to have a series of "push-change-
 update" notifications (and even "push update" notifications) serially
 queued at the transport layer awaiting transmission. It is not
 required for the publisher to merge pending update records sent at
 the same time.

3.11.2. Publisher capacity

 It is far preferable to decline a subscription request than to accept
 such a request when it cannot be met.

 Whether or not a subscription can be supported will be determined by
 a combination of several factors such as the subscription update
 trigger (on-change or periodic), the period in which to report
 changes (one second periods will consume more resources than one hour
 periods), the amount of data in the datastore subtree that is being
 subscribed to, and the number and combination of other subscriptions
 that are concurrently being serviced.

4. A YANG Data Model for Management of Datastore Push Subscriptions

4.1. Overview

 The YANG data model for datastore push subscriptions is depicted in
 the following figure. The tree diagram follows the notation defined
 in [RFC8340]. New schema objects defined here (i.e., beyond those
 from [I-D.draft-ietf-netconf-subscribed-notifications]) are
 identified with "yp". For the reader's convenience, in order to
 compact the tree representation, some nodes that are defined in ietf-
 subscribed-notifications and that are not essential to the
 understanding of the data model defined here have been removed. This
 is indicated by "..." in the diagram where applicable.

module: ietf‑subscribed‑notifications
 ...
 +‑‑rw filters
 | ...
 | +‑‑rw yp:selection‑filter* [filter‑id]
 | +‑‑rw yp:filter‑id string
 | +‑‑rw (yp:filter‑spec)?
 | +‑‑:(yp:datastore‑subtree‑filter)
 | | +‑‑rw yp:datastore‑subtree‑filter? <anydata>
 | | {sn:subtree}?
 | +‑‑:(yp:datastore‑xpath‑filter)
 | +‑‑rw yp:datastore‑xpath‑filter? yang:xpath1.0
 | {sn:xpath}?
 +‑‑rw subscriptions
 +‑‑rw subscription* [id]
 | ...
 +‑‑rw (target)
 | +‑‑:(stream)
 | | ...
 | +‑‑:(yp:datastore)
 | +‑‑rw yp:datastore identityref

 | +‑‑rw (yp:selection‑filter)?
 | +‑‑:(yp:by‑reference)
 | | +‑‑rw yp:selection‑filter‑ref
 | | selection‑filter‑ref
 | +‑‑:(yp:within‑subscription)
 | +‑‑rw (yp:filter‑spec)?
 | +‑‑:(yp:datastore‑subtree‑filter)
 | | +‑‑rw yp:datastore‑subtree‑filter?
 | | <anydata> {sn:subtree}?
 | +‑‑:(yp:datastore‑xpath‑filter)
 | +‑‑rw yp:datastore‑xpath‑filter?
 | yang:xpath1.0 {sn:xpath}?
 | ...
 +‑‑rw (yp:update‑trigger)
 +‑‑:(yp:periodic)
 | +‑‑rw yp:periodic!
 | +‑‑rw yp:period yang:timeticks
 | +‑‑rw yp:anchor‑time? yang:date‑and‑time
 +‑‑:(yp:on‑change) {on‑change}?
 +‑‑rw yp:on‑change!
 +‑‑rw yp:dampening‑period? yang:timeticks
 +‑‑rw yp:sync‑on‑start? boolean
 +‑‑rw yp:excluded‑change* change‑type

 rpcs:
 +‑‑‑x establish‑subscription
 | +‑‑‑w input
 | | ...
 | | +‑‑‑w (target)
 | | | +‑‑:(stream)
 | | | | ...
 | | | +‑‑:(yp:datastore)
 | | | +‑‑‑w yp:datastore identityref
 | | | +‑‑‑w (yp:selection‑filter)?
 | | | +‑‑:(yp:by‑reference)
 | | | | +‑‑‑w yp:selection‑filter‑ref
 | | | | selection‑filter‑ref
 | | | +‑‑:(yp:within‑subscription)
 | | | +‑‑‑w (yp:filter‑spec)?
 | | | +‑‑:(yp:datastore‑subtree‑filter)
 | | | | +‑‑‑w yp:datastore‑subtree‑filter?
 | | | | <anydata> {sn:subtree}?
 | | | +‑‑:(yp:datastore‑xpath‑filter)
 | | | +‑‑‑w yp:datastore‑xpath‑filter?
 | | | yang:xpath1.0 {sn:xpath}?
 | | | ...
 | | +‑‑‑w (yp:update‑trigger)
 | | +‑‑:(yp:periodic)

 | | | +‑‑‑w yp:periodic!
 | | | +‑‑‑w yp:period yang:timeticks
 | | | +‑‑‑w yp:anchor‑time? yang:date‑and‑time
 | | +‑‑:(yp:on‑change) {on‑change}?
 | | +‑‑‑w yp:on‑change!
 | | +‑‑‑w yp:dampening‑period? yang:timeticks
 | | +‑‑‑w yp:sync‑on‑start? boolean
 | | +‑‑‑w yp:excluded‑change* change‑type
 | +‑‑ro output
 | +‑‑ro id subscription‑id
 | +‑‑ro replay‑start‑time‑revision? yang:date‑and‑time
 | {replay}?
 +‑‑‑x modify‑subscription
 | +‑‑‑w input
 | ...
 | +‑‑‑w (target)
 | | ...
 | | +‑‑:(yp:datastore)
 | | +‑‑‑w (yp:selection‑filter)?
 | | +‑‑:(yp:by‑reference)
 | | | +‑‑‑w yp:selection‑filter‑ref
 | | | selection‑filter‑ref
 | | +‑‑:(yp:within‑subscription)
 | | +‑‑‑w (yp:filter‑spec)?
 | | +‑‑:(yp:datastore‑subtree‑filter)
 | | | +‑‑‑w yp:datastore‑subtree‑filter?
 | | | <anydata> {sn:subtree}?
 | | +‑‑:(yp:datastore‑xpath‑filter)
 | | +‑‑‑w yp:datastore‑xpath‑filter?
 | | yang:xpath1.0 {sn:xpath}?
 | | ...
 | +‑‑‑w (yp:update‑trigger)
 | +‑‑:(yp:periodic)
 | | +‑‑‑w yp:periodic!
 | | +‑‑‑w yp:period yang:timeticks
 | | +‑‑‑w yp:anchor‑time? yang:date‑and‑time
 | +‑‑:(yp:on‑change) {on‑change}?
 | +‑‑‑w yp:on‑change!
 | +‑‑‑w yp:dampening‑period? yang:timeticks
 +‑‑‑x delete‑subscription
 | ...
 +‑‑‑x kill‑subscription
 ...

 yang-data (for placement into rpc error responses)

 ...

 notifications:

+‑‑‑n replay‑completed {replay}?
| ...
+‑‑‑n subscription‑completed
| ...
+‑‑‑n subscription‑started {configured}?
| | ...
| +‑‑ro (target)
| | ...
| | +‑‑:(yp:datastore)
| | +‑‑ro yp:datastore identityref
| | +‑‑ro (yp:selection‑filter)?
| | +‑‑:(yp:by‑reference)
| | | +‑‑ro yp:selection‑filter‑ref
| | | selection‑filter‑ref
| | +‑‑:(yp:within‑subscription)
| | +‑‑ro (yp:filter‑spec)?
| | +‑‑:(yp:datastore‑subtree‑filter)
| | | +‑‑ro yp:datastore‑subtree‑filter?
| | | <anydata> {sn:subtree}?
| | +‑‑:(yp:datastore‑xpath‑filter)
| | +‑‑ro yp:datastore‑xpath‑filter?
| | yang:xpath1.0 {sn:xpath}?
| ...
| +‑‑ro (yp:update‑trigger)
| +‑‑:(yp:periodic)
| | +‑‑ro yp:periodic!
| | +‑‑ro yp:period yang:timeticks
| | +‑‑ro yp:anchor‑time? yang:date‑and‑time
| +‑‑:(yp:on‑change) {on‑change}?
| +‑‑ro yp:on‑change!
| +‑‑ro yp:dampening‑period? yang:timeticks
| +‑‑ro yp:sync‑on‑start? boolean
| +‑‑ro yp:excluded‑change* change‑type
+‑‑‑n subscription‑resumed
| ...
+‑‑‑n subscription‑modified
| ...
| +‑‑ro (target)
| | | ...
| | +‑‑:(yp:datastore)
| | +‑‑ro yp:datastore identityref
| | +‑‑ro (yp:selection‑filter)?
| | +‑‑:(yp:by‑reference)
| | | +‑‑ro yp:selection‑filter‑ref
| | | selection‑filter‑ref
| | +‑‑:(yp:within‑subscription)
| | +‑‑ro (yp:filter‑spec)?
| | +‑‑:(yp:datastore‑subtree‑filter)

| | | +‑‑ro yp:datastore‑subtree‑filter?
| | | <anydata> {sn:subtree}?
| | +‑‑:(yp:datastore‑xpath‑filter)
| | +‑‑ro yp:datastore‑xpath‑filter?
| | yang:xpath1.0 {sn:xpath}?
| ...
| +‑‑ro (yp:update‑trigger)?
| +‑‑:(yp:periodic)
| | +‑‑ro yp:periodic!
| | +‑‑ro yp:period yang:timeticks
| | +‑‑ro yp:anchor‑time? yang:date‑and‑time
| +‑‑:(yp:on‑change) {on‑change}?
| +‑‑ro yp:on‑change!
| +‑‑ro yp:dampening‑period? yang:timeticks
| +‑‑ro yp:sync‑on‑start? boolean
| +‑‑ro yp:excluded‑change* change‑type
+‑‑‑n subscription‑terminated
| ...
+‑‑‑n subscription‑suspended
 ...

 module: ietf-yang-push

rpcs:
 +‑‑‑x resync‑subscription {on‑change}?
 +‑‑‑w input
 +‑‑‑w id sn:subscription‑id

yang‑data: (for placement into rpc error responses)
 +‑‑ resync‑subscription‑error
 | +‑‑ro reason? identityref
 | +‑‑ro period‑hint? timeticks
 | +‑‑ro filter‑failure‑hint? string
 | +‑‑ro object‑count‑estimate? uint32
 | +‑‑ro object‑count‑limit? uint32
 | +‑‑ro kilobytes‑estimate? uint32
 | +‑‑ro kilobytes‑limit? uint32
 +‑‑ establish‑subscription‑error‑datastore
 | +‑‑ro reason? identityref
 | +‑‑ro period‑hint? timeticks
 | +‑‑ro filter‑failure‑hint? string
 | +‑‑ro object‑count‑estimate? uint32
 | +‑‑ro object‑count‑limit? uint32
 | +‑‑ro kilobytes‑estimate? uint32
 | +‑‑ro kilobytes‑limit? uint32
 +‑‑ modify‑subscription‑error‑datastore
 +‑‑ro reason? identityref
 +‑‑ro period‑hint? timeticks

 +‑‑ro filter‑failure‑hint? string
 +‑‑ro object‑count‑estimate? uint32
 +‑‑ro object‑count‑limit? uint32
 +‑‑ro kilobytes‑estimate? uint32
 +‑‑ro kilobytes‑limit? uint32

notifications:
 +‑‑‑n push‑update
 | +‑‑ro id? sn:subscription‑id
 | +‑‑ro datastore‑contents? <anydata>
 | +‑‑ro incomplete‑update? empty
 +‑‑‑n push‑change‑update {on‑change}?
 +‑‑ro id? sn:subscription‑id
 +‑‑ro datastore‑changes?
 | +‑‑ro yang‑patch
 | +‑‑ro patch‑id string
 | +‑‑ro ypatch:comment? string
 | +‑‑ro ypatch:edit* [edit‑id]
 | +‑‑ro ypatch:edit‑id string
 | +‑‑ro ypatch:operation enumeration
 | +‑‑ro ypatch:target target‑resource‑offset
 | +‑‑ro ypatch:point? target‑resource‑offset
 | +‑‑ro ypatch:where? enumeration
 | +‑‑ro ypatch:value?
 +‑‑ro incomplete‑update? empty

 Figure 6: Model structure

 Selected components of the model are summarized below.

4.2. Subscription Configuration

 Both configured and dynamic subscriptions are represented within the
 list "subscription". New parameters extending the basic subscription
 data model in [I-D.draft-ietf-netconf-subscribed-notifications]
 include:

 o The targeted datastore from which the selection is being made.
 The potential datastores include those from [RFC8341]. A platform
 may also choose to support a custom datastore.

 o A selection filter identifying yang nodes of interest within a
 datastore. Filter contents are specified via a reference to an
 existing filter, or via an in-line definition for only that
 subscription. Referenced filters allows an implementation to
 avoid evaluating filter acceptability during a dynamic

 subscription request. The case statement differentiates the
 options.

 o For periodic subscriptions, triggered updates will occur at the
 boundaries of a specified time interval. These boundaries can be
 calculated from the periodic parameters:

 * a "period" which defines the duration between push updates.

 * an "anchor-time"; update intervals fall on the points in time
 that are a multiple of a "period" from an "anchor-time". If
 "anchor-time" is not provided, then the "anchor-time" MUST be
 set with the creation time of the initial update record.

 o For on-change subscriptions, assuming any dampening period has
 completed, triggering occurs whenever a change in the subscribed
 information is detected. On-change subscriptions have more
 complex semantics that is guided by its own set of parameters:

 * a "dampening-period" specifies the interval that must pass
 before a successive update for the subscription is sent. If no
 dampening period is in effect, the update is sent immediately.
 If a subsequent change is detected, another update is only sent
 once the dampening period has passed for this subscription.

 * an "excluded-change" parameter which allows restriction of the
 types of changes for which updates should be sent (e.g., only
 add to an update record on object creation).

 * a "sync-on-start" specifies whether a complete update with all
 the subscribed data is to be sent at the beginning of a
 subscription.

4.3. YANG Notifications

4.3.1. State Change Notifications

 Subscription state notifications and mechanism are reused from
 [I-D.draft-ietf-netconf-subscribed-notifications]. Notifications
 "subscription-started" and "subscription-modified" have been
 augmented to include the datastore specific objects.

4.3.2. Notifications for Subscribed Content

 Along with the subscribed content, there are other objects which
 might be part of a "push-update" or "push-change-update"
 notification.

 An "id" (that identifies the subscription) MUST be transported along
 with the subscribed contents. This allows a receiver to
 differentiate which subscription resulted in a particular update
 record.

 A "time-of-update" which represents the time an update record
 snapshot was generated. A receiver MAY assume that at this point in
 time a publisher's objects have the values that were pushed.

 An "incomplete-update" leaf. This leaf indicates that not all
 changes which have occurred since the last update are actually
 included with this update. In other words, the publisher has failed
 to fulfill its full subscription obligations. (For example a
 datastore was unable to provide the full set of datastore nodes to a
 publisher process.) To facilitate re-synchronization of on-change
 subscriptions, a publisher MAY subsequently send a "push-update"
 containing a full selection snapshot of subscribed data.

4.4. YANG RPCs

 YANG-Push subscriptions are established, modified, and deleted using
 RPCs augmented from
 [I-D.draft-ietf-netconf-subscribed-notifications].

4.4.1. Establish-subscription RPC

 The subscriber sends an establish-subscription RPC with the
 parameters in section 3.1. An example might look like:

<netconf:rpc message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <yp:datastore xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore‑xpath‑filter
 xmlns:ex="http://example.com/sample‑data/1.0">
 /ex:foo
 </yp:datastore‑xpath‑filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </establish‑subscription>
</netconf:rpc>

 Figure 7: Establish-subscription RPC

 A positive response includes the "id" of the accepted subscription.
 In that case a publisher may respond:

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <id
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 52
 </id>
</rpc‑reply>

 Figure 8: Establish-subscription positive RPC response

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, no capacity to
 serve the subscription at the publisher, or the inability of the
 publisher to select datastore content at the requested cadence.

 If a request is rejected because the publisher is not able to serve
 it, the publisher SHOULD include in the returned error hints which
 help a subscriber understand subscription parameters might have been
 accepted for the request. These hints would be included within the
 yang-data structure "establish-subscription-error-datastore".
 However even with these hints, there are no guarantee that subsequent
 requests will in fact be accepted.

 The specific parameters to be returned as part of the RPC error
 response depend on the specific transport that is used to manage the
 subscription. For example, in the case of NETCONF
 [I-D.draft-ietf-netconf-netconf-event-notifications], when a
 subscription request is rejected, the NETCONF RPC reply would be
 expected to include an "rpc-error" element with the following
 elements:

 o "error-type" of "application".

 o "error-tag" of "operation-failed".

 o Optionally, an "error-severity" of "error".

 o Optionally, an "error-app-tag" with the value being a string that
 corresponds to an identity associated with the error, i.e. an
 identity with a base of "establish-subscription-error".

 o Optionally, "error-info" containing XML-encoded data with hints
 for parameter settings that might result in future RPC success per
 yang-data definition "establish-subscription-error-datastore".

 For example, for the following request:

<netconf:rpc message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore‑xpath‑filter
 xmlns:ex="http://example.com/sample‑data/1.0">
 /ex:foo
 </yp:datastore‑xpath‑filter>
 <yp:on‑change>
 <yp:dampening‑period>100</yp:dampening‑period>
 </yp:on‑change>
 </establish‑subscription>
</netconf:rpc>

 Figure 9: Establish-subscription request example 2

 a publisher that cannot serve on-change updates but periodic updates
 might return the following:

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>operation‑failed</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑path>/yp:periodic/yp:period</error‑path>
 <error‑info>
 <yp:establish‑subscription‑error‑datastore>
 <yp:reason>yp:on‑change‑unsupported</yp:reason>
 </yp:establish‑subscription‑error‑datastore>
 </error‑info>
 </rpc‑error>
</rpc‑reply>

 Figure 10: Establish-subscription error response example 2

4.4.2. Modify-subscription RPC

 The subscriber MAY invoke the "modify-subscription" RPC for a
 subscription it previously established. The subscriber will include
 newly desired values in the "modify-subscription" RPC. Parameters
 not included MUST remain unmodified. Below is an example where a
 subscriber attempts to modify the period and datastore XPath filter
 of a subscription.

<netconf:rpc message‑id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf‑yang‑push">
 <id>1011</id>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf‑datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore‑xpath‑filter
 xmlns:ex="http://example.com/sample‑data/1.0">
 /ex:bar
 </yp:datastore‑xpath‑filter>
 <yp:periodic>
 <yp:period>250</yp:period>
 </yp:periodic>
 </modify‑subscription>
</netconf:rpc>

 Figure 11: Modify subscription request

 The publisher MUST respond to the subscription modification request.
 If the request is rejected, the existing subscription is left
 unchanged, and the publisher MUST send an RPC error response. This
 response might have hints encapsulated within the yang-data structure
 "modify-subscription-error-datastore". A subscription MAY be
 modified multiple times.

 The specific parameters to be returned in as part of the RPC error
 response depend on the specific transport that is used to manage the
 subscription. In the case of NETCONF
 [I-D.draft-ietf-netconf-netconf-event-notifications], when a
 subscription request is rejected, the NETCONF RPC reply MUST include
 an "rpc-error" element with the following elements:

 o "error-type" of "application".

 o "error-tag" of "operation-failed".

 o Optionally, an "error-severity" of "error" (this MAY but does not
 have to be included).

 o Optionally, an "error-app-tag" with the value being a string that
 corresponds to an identity associated with the error, i.e. an
 identity with a base of "modify-subscription-error".

 o "error-path" pointing to the object or parameter that caused the
 rejection.

 o Optionally, "error-info" containing XML-encoded data with hints
 for parameter settings that might result in future RPC success per
 yang-data definition "modify-subscription-error-datastore".

 A configured subscription cannot be modified using "modify-
 subscription" RPC. Instead, the configuration needs to be edited as
 needed.

4.4.3. Delete-subscription RPC

 To stop receiving updates from a subscription and effectively delete
 a subscription that had previously been established using an
 "establish-subscription" RPC, a subscriber can send a "delete-
 subscription" RPC, which takes as only input the subscription's "id".
 This RPC is unmodified from
 [I-D.draft-ietf-netconf-subscribed-notifications].

4.4.4. Resync-subscription RPC

 This RPC is supported only for on-change subscriptions previously
 established using an "establish-subscription" RPC. For example:

<netconf:rpc message‑id="103"
xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <resync‑subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑push"
 xmlns:sn="urn:ietf:params:xml:ns:yang:ietf‑subscribed‑notifications">
 <id>1011</id>
 </resync‑subscription>
</netconf:rpc>

 Resync subscription

 On receipt, a publisher must either accept the request and quickly
 follow with a "push-update", or send an appropriate error within an
 rpc error response. Within an error response, the publisher MAY
 include supplemental information about the reasons within the yang-
 data structure "resync-subscription-error".

4.4.5. YANG Module Synchronization

 To make subscription requests, the subscriber needs to know the YANG
 datastore schemas used by the publisher, which are available via the
 YANG Library module, ietf-yang-library.yang from [RFC7895]. The
 receiver is expected to know the YANG library information before
 starting a subscription.

 The set of modules, revisions, features, and deviations can change at
 run-time (if supported by the publisher implementation). For this
 purpose, the YANG library provides a simple "yang-library-change"
 notification that informs the subscriber that the library has
 changed. In this case, a subscription may need to be updated to take
 the updates into account. The receiver may also need to be informed
 of module changes in order to process updates regarding datastore
 nodes from changed modules correctly.

5. YANG Module

<CODE BEGINS> file "ietf‑yang‑push@2018‑10‑22.yang"
module ietf‑yang‑push {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑yang‑push";
 prefix yp;

 import ietf-yang-types {

 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
}
import ietf‑subscribed‑notifications {
 prefix sn;
 reference
 "draft‑ietf‑netconf‑subscribed‑notifications:
 Customized Subscriptions to a Publisher's Event Streams

 NOTE TO RFC Editor: Please replace above reference to
 draft‑ietf‑netconf‑subscribed‑notifications with RFC number
 when published (i.e. RFC xxxx).";
}
import ietf‑datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
}
import ietf‑restconf {
 prefix rc;
 reference
 "RFC 8040: RESTCONF Protocol";
}

import ietf‑yang‑patch {
 prefix ypatch;
 reference
 "RFC 8072: YANG Patch";
}
organization "IETF";
contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:agonzalezpri@vmware.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>

 Editor: Einar Nilsen‑Nygaard

 <mailto:einarnn@cisco.com>

Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description

 "This module contains YANG specifications for YANG push.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license‑info).

This version of this YANG module is part of
draft‑ietf‑netconf‑yang‑push‑20; see the RFC itself for full
legal notices.

 NOTE TO RFC EDITOR: Please replace above reference to
 draft-ietf-netconf-yang-push-20 with RFC number when published
 (i.e. RFC xxxx).";

 revision 2018‑10‑22 {
 description
 "Initial revision.
 NOTE TO RFC EDITOR:
 (1)Please replace the above revision date to
 the date of RFC publication when published.
 (2) Please replace the date in the file name
 (ietf‑yang‑push@2018‑10‑22.yang) to the date of RFC
 publication.
 (3) Please replace the following reference to
 draft‑ietf‑netconf‑yang‑push‑20 with RFC number when
 published (i.e. RFC xxxx).";
 reference
 "draft‑ietf‑netconf‑yang‑push‑20";
 }

/*
 * FEATURES
 */

 feature on‑change {
 description
 "This feature indicates that on‑change triggered
 subscriptions are supported.";
 }

/*
 * IDENTITIES
 */

 /* Error type identities for datastore subscription */

 identity resync‑subscription‑error {
 description
 "Problem found while attempting to fulfill an
 'resync‑subscription' RPC request. ";
 }

 identity cant‑exclude {
 base sn:establish‑subscription‑error;
 description
 "Unable to remove the set of 'excluded‑changes'. This means
 the publisher is unable to restrict 'push‑change‑update's to
 just the change types requested for this subscription.";
 }

 identity datastore‑not‑subscribable {
 base sn:establish‑subscription‑error;
 base sn:subscription‑terminated‑reason;
 description
 "This is not a subscribable datastore.";
 }

 identity no‑such‑subscription‑resync {
 base resync‑subscription‑error;
 description
 "Referenced subscription doesn't exist. This may be as a
 result of a non‑existent subscription ID, an ID which
 belongs to another subscriber, or an ID for configured
 subscription.";
 }

 identity on‑change‑unsupported {
 base sn:establish‑subscription‑error;
 description
 "On‑change is not supported for any objects which are
 selectable by this filter.";
 }

 identity on‑change‑sync‑unsupported {
 base sn:establish‑subscription‑error;
 description
 "Neither sync on start nor resynchronization are supported
 for this subscription. This error will be used for two
 reasons. First if an 'establish‑subscription' RPC includes
 'sync‑on‑start', yet the publisher can't support sending a
 'push‑update' for this subscription for reasons other than
 'on‑change‑unsupported' or 'sync‑too‑big'. And second,
 if the 'resync‑subscription' RPC is invoked either for an
 existing periodic subscription, or for an on‑change
 subscription which can't support resynchronization.";
 }

 identity period‑unsupported {
 base sn:establish‑subscription‑error;
 base sn:modify‑subscription‑error;
 base sn:subscription‑suspended‑reason;
 description
 "Requested time period or dampening‑period is too short. This
 can be for both periodic and on‑change subscriptions (with or
 without dampening.) Hints suggesting alternative periods may
 be returned as supplemental information.";
 }

 identity update‑too‑big {
 base sn:establish‑subscription‑error;
 base sn:modify‑subscription‑error;
 base sn:subscription‑suspended‑reason;
 description
 "Periodic or on‑change push update datatrees exceed a maximum
 size limit. Hints on estimated size of what was too big may
 be returned as supplemental information.";
 }

 identity sync‑too‑big {
 base sn:establish‑subscription‑error;
 base sn:modify‑subscription‑error;
 base resync‑subscription‑error;
 base sn:subscription‑suspended‑reason;
 description
 "Sync‑on‑start or resynchronization datatree exceeds a
 maximum size limit. Hints on estimated size of what was too
 big may be returned as supplemental information.";
 }

 identity unchanging-selection {

 base sn:establish-subscription-error;

 base sn:modify‑subscription‑error;
 base sn:subscription‑terminated‑reason;
 description
 "Selection filter is unlikely to ever select datatree nodes.
 This means that based on the subscriber's current access
 rights, the publisher recognizes that the selection filter is
 unlikely to ever select datatree nodes which change. Examples
 for this might be that node or subtree doesn't exist, read
 access is not permitted for a receiver, or static objects
 that only change at reboot have been chosen.";
}

/*
 * TYPE DEFINITIONS
 */

typedef change‑type {
 type enumeration {
 enum "create" {
 description
 "A change that refers to the creation of a new datastore
 node.";
 }
 enum "delete" {
 description
 "A change that refers to the deletion of a datastore
 node.";
 }
 enum "insert" {
 description
 "A change that refers to the insertion of a new
 user‑ordered datastore node.";
 }
 enum "move" {
 description
 "A change that refers to a reordering of the target
 datastore node";
 }
 enum "replace" {
 description
 "A change that refers to a replacement of the target
 datastore node's value.";
 }
 }
 description
 "Specifies different types of datastore changes.";
 reference
 "RFC 8072 section 2.5, with a delta that it is valid for a

 receiver to process an update record which performs a create
 operation on a datastore node the receiver believes exists,
 or to process a delete on a datastore node the receiver
 believes is missing.";
}

typedef selection‑filter‑ref {
 type leafref {
 path "/sn:filters/yp:selection‑filter/yp:filter‑id";
 }
 description
 "This type is used to reference a selection filter.";
}

/*
 * GROUP DEFINITIONS
 */

grouping datastore‑criteria {
 description
 "A grouping to define criteria for which selected objects
 from a targeted datastore should be included in push
 updates.";
 leaf datastore {
 type identityref {
 base ds:datastore;
 }
 mandatory true;
 description
 "Datastore from which to retrieve data.";
 }
 uses selection‑filter‑objects;
}

grouping selection‑filter‑types {
 description
 "This grouping defines the types of selectors for objects
 from a datastore.";
 choice filter‑spec {
 description
 "The content filter specification for this request.";
 anydata datastore‑subtree‑filter {
 if‑feature "sn:subtree";
 description
 "This parameter identifies the portions of the
 target datastore to retrieve.";
 reference
 "RFC 6241: Network Configuration Protocol, Section 6.";

 }
 leaf datastore‑xpath‑filter {
 if‑feature "sn:xpath";
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression identifying
 the portions of the target datastore to retrieve.

 If the expression returns a node‑set, all nodes in the
 node‑set are selected by the filter. Otherwise, if the
 expression does not return a node‑set, the filter
 doesn't select any nodes.

 The expression is evaluated in the following XPath
 context:

 o The set of namespace declarations are those in scope
 on the 'datastore‑xpath‑filter' leaf element.

 o The set of variable bindings is empty.

 o The function library is the core function library, and
 the XPath functions defined in section 10 in RFC 7950.

 o The context node is the root node of the target
 datastore.";
 }
 }
 }

 grouping selection‑filter‑objects {
 description
 "This grouping defines a selector for objects from a
 datastore.";
 choice selection‑filter {
 description
 "The source of the selection filter applied to the
 subscription. This will come either referenced from a
 global list, or be provided within the subscription
 itself.";
 case by‑reference {
 description
 "Incorporate a filter that has been configured
 separately.";
 leaf selection‑filter‑ref {
 type selection‑filter‑ref;
 mandatory true;
 description

 "References an existing selection filter which is to be
 applied to the subscription.";
 }
 }
 case within‑subscription {
 description
 "Local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses selection‑filter‑types;
 }
 }
 }

 grouping update‑policy‑modifiable {
 description
 "This grouping describes the datastore specific subscription
 conditions that can be changed during the lifetime of the
 subscription.";
 choice update‑trigger {
 when "../sn:target/yp:datastore";
 mandatory true;
 description
 "Defines necessary conditions for sending an event record to
 the subscriber.";
 case periodic {
 container periodic {
 presence "indicates a periodic subscription";
 description
 "The publisher is requested to notify periodically the
 current values of the datastore as defined by the
 selection filter.";
 leaf period {
 type yang:timeticks;
 mandatory true;
 description
 "Duration of time which should occur between periodic
 push updates, in one hundredths of a second.";
 }
 leaf anchor‑time {
 type yang:date‑and‑time;
 description
 "Designates a timestamp before or after which a
 series of periodic push updates are determined. The
 next update will take place at a whole multiple
 interval from the anchor time. For example, for an
 anchor time is set for the top of a particular
 minute and a period interval of a minute, updates
 will be sent at the top of every minute this

 subscription is active.";
 }
 }
 }
 case on‑change {
 if‑feature "on‑change";
 container on‑change {
 presence "indicates an on‑change subscription";
 description
 "The publisher is requested to notify changes in
 values in the datastore subset as defined by a
 selection filter.";
 leaf dampening‑period {
 type yang:timeticks;
 default 0;
 description
 "Specifies the minimum interval between the assembly
 of successive update records for a single receiver
 of a subscription. Whenever subscribed objects
 change, and a dampening period interval (which may
 be zero) has elapsed since the previous update
 record creation for a receiver, then any subscribed
 objects and properties which have changed since the
 previous update record will have their current
 values marshalled and placed into a new update
 6 record.";
 }
 }
 }
 }
 }

 grouping update‑policy {
 description
 "This grouping describes the datastore specific subscription
 conditions of a subscription.";
 uses update‑policy‑modifiable {
 augment "update‑trigger/on‑change/on‑change" {
 description
 "Includes objects not modifiable once subscription is
 established.";
 leaf sync‑on‑start {
 type boolean;
 default "true";
 description
 "When this object is set to false, it restricts an
 on‑change subscription from sending push‑update
 notifications. When false, pushing a full selection

 per the terms of the selection filter MUST NOT be done
 for this subscription. Only updates about changes,
 i.e. only push‑change‑update notifications are sent.
 When true (default behavior), in order to facilitate a
 receiver's synchronization, a full update is sent when
 the subscription starts using a push‑update
 notification. After that, push‑change‑update
 notifications are exclusively sent unless the
 publisher chooses to resync the subscription via a new
 push‑update notification.";
 }
 leaf‑list excluded‑change {
 type change‑type;
 description
 "Use to restrict which changes trigger an update.
 For example, if modify is excluded, only creation and
 deletion of objects is reported.";
 }
 }
 }
 }

 grouping hints {
 description
 "Parameters associated with some error for a subscription
 made upon a datastore.";
 leaf period‑hint {
 type yang:timeticks;
 description
 "Returned when the requested time period is too short. This
 hint can assert a viable period for either a periodic push
 cadence or an on‑change dampening interval.";
 }
 leaf filter‑failure‑hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 leaf object‑count‑estimate {
 type uint32;
 description
 "If there are too many objects which could potentially be
 returned by the selection filter, this identifies the
 estimate of the number of objects which the filter would
 potentially pass.";
 }
 leaf object‑count‑limit {

 type uint32;
 description
 "If there are too many objects which could be returned by
 the selection filter, this identifies the upper limit of
 the publisher's ability to service for this subscription.";
 }
 leaf kilobytes‑estimate {
 type uint32;
 description
 "If the returned information could be beyond the capacity
 of the publisher, this would identify the data size which
 could result from this selection filter.";
 }
 leaf kilobytes‑limit {
 type uint32;
 description
 "If the returned information would be beyond the capacity
 of the publisher, this identifies the upper limit of the
 publisher's ability to service for this subscription.";
 }
 }

 /*
 * RPCs
 */

 rpc resync‑subscription {
 if‑feature "on‑change";
 description
 "This RPC allows a subscriber of an active on‑change
 subscription to request a full push of objects.
 A successful invocation results in a push‑update of all
 datastore nodes that the subscriber is permitted to access.
 This RPC can only be invoked on the same session on which the
 subscription is currently active. In case of an error, a
 resync‑subscription‑error is sent as part of an error
 response.";
 input {
 leaf id {
 type sn:subscription‑id;
 mandatory true;
 description
 "Identifier of the subscription that is to be resynced.";
 }
 }
 }

 rc:yang‑data resync‑subscription‑error {
 container resync‑subscription‑error {
 description
 "If a 'resync‑subscription' RPC fails, the subscription is
 not resynced and the RPC error response MUST indicate the
 reason for this failure. This yang‑data MAY be inserted as
 structured data within a subscription's RPC error response
 to indicate the failure reason.";
 leaf reason {
 type identityref {
 base resync‑subscription‑error;
 }
 mandatory true;
 description
 "Indicates the reason why the publisher has declined a
 request for subscription resynchronization.";
 }
 uses hints;
 }
 }

 augment "/sn:establish‑subscription/sn:input" {
 when "sn:target/yp:datastore";
 description
 "This augmentation adds additional subscription parameters
 that apply specifically to datastore updates to RPC input.";
 uses update‑policy;
 }

 augment "/sn:establish‑subscription/sn:input/sn:target" {
 description
 "This augmentation adds the datastore as a valid target
 for the subscription to RPC input.";
 case datastore {
 description
 "Information specifying the parameters of an request for a
 datastore subscription.";
 uses datastore‑criteria;
 }
 }

 rc:yang‑data establish‑subscription‑datastore‑error‑info {
 container establish‑subscription‑datastore‑error‑info {
 description
 "If any 'establish‑subscription' RPC parameters are
 unsupportable against the datastore, a subscription is not
 created and the RPC error response MUST indicate the reason
 why the subscription failed to be created. This yang‑data

 MAY be inserted as structured data within a subscription's
 RPC error response to indicate the failure reason. This
 yang‑data MUST be inserted if hints are to be provided back
 to the subscriber.";
 leaf reason {
 type identityref {
 base sn:establish‑subscription‑error;
 }
 description
 "Indicates the reason why the subscription has failed to
 be created to a targeted datastore.";
 }
 uses hints;
 }
 }

 augment "/sn:modify‑subscription/sn:input" {
 when "sn:target/yp:datastore";
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses update‑policy‑modifiable;
 }

 augment "/sn:modify‑subscription/sn:input/sn:target" {
 description
 "This augmentation adds the datastore as a valid target
 for the subscription to RPC input.";
 case datastore {
 description
 "Information specifying the parameters of an request for a
 datastore subscription.";
 uses selection‑filter‑objects;
 }
 }

 rc:yang‑data modify‑subscription‑datastore‑error‑info {
 container modify‑subscription‑datastore‑error‑info {
 description
 "This yang‑data MAY be provided as part of a subscription's
 RPC error response when there is a failure of a
 'modify‑subscription' RPC which has been made against a
 datastore. This yang‑data MUST be used if hints are to be
 provides back to the subscriber.";
 leaf reason {
 type identityref {
 base sn:modify‑subscription‑error;
 }

 description
 "Indicates the reason why the subscription has failed to
 be modified.";
 }
 uses hints;
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification push‑update {
 description
 "This notification contains a push update, containing data
 subscribed to via a subscription. This notification is sent
 for periodic updates, for a periodic subscription. It can
 also be used for synchronization updates of an on‑change
 subscription. This notification shall only be sent to
 receivers of a subscription. It does not constitute a
 general‑purpose notification that would be subscribable as
 part of the NETCONF event stream by any receiver.";
 leaf id {
 type sn:subscription‑id;
 description
 "This references the subscription which drove the
 notification to be sent.";
 }
 anydata datastore‑contents {
 description
 "This contains the updated data. It constitutes a snapshot
 at the time‑of‑update of the set of data that has been
 subscribed to. The snapshot corresponds to the same
 snapshot that would be returned in a corresponding get
 operation with the same selection filter parameters
 applied.";
 }
 leaf incomplete‑update {
 type empty;
 description
 "This is a flag which indicates that not all datastore
 nodes subscribed to are included with this update. In
 other words, the publisher has failed to fulfill its full
 subscription obligations, and despite its best efforts is
 providing an incomplete set of objects.";
 }
 }

 notification push‑change‑update {
 if‑feature "on‑change";
 description
 "This notification contains an on‑change push update. This
 notification shall only be sent to the receivers of a
 subscription; it does not constitute a general‑purpose
 notification.";
 leaf id {
 type sn:subscription‑id;
 description
 "This references the subscription which drove the
 notification to be sent.";
 }
 container datastore‑changes {
 description
 "This contains the set of datastore changes of the
 target datastore starting at the time of the
 previous update, per the terms of the subscription.
 The datastore changes are encoded per RFC 8027
 (YANG Patch).";
 uses ypatch:yang‑patch;
 }
 leaf incomplete‑update {
 type empty;
 description
 "The presence of this object indicates not all changes which
 have occurred since the last update are included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations, for example in
 cases where it was not able to keep up with a change
 burst.";
 }
 }

 augment "/sn:subscription‑started" {
 description
 "This augmentation adds datastore‑specific objects to
 the notification that a subscription has started.";
 uses update‑policy;
 }

 augment "/sn:subscription‑started/sn:target" {
 description
 "This augmentation allows the datastore to be included as
 part of the notification that a subscription has started.";
 case datastore {
 uses datastore‑criteria {
 refine "selection‑filter/within‑subscription" {

 description
 "Specifies the selection filter and where it
 originated from. If the 'selection‑filter‑ref' is
 populated, the filter within the subscription came
 from the 'filters' container. Otherwise it is
 populated in‑line as part of the subscription itself.";
 }
 }
 }
 }

 augment "/sn:subscription‑modified" {
 description
 "This augmentation adds datastore‑specific objects to
 the notification that a subscription has been modified.";
 uses update‑policy;
 }

 augment "/sn:subscription‑modified/sn:target" {
 description
 "This augmentation allows the datastore to be included as
 part of the notification that a subscription has been
 modified.";
 case datastore {
 uses datastore‑criteria {
 refine "selection‑filter/within‑subscription" {
 description
 "Specifies where the selection filter, and where it
 came from within the subscription and then populated
 within this notification. If the
 'selection‑filter‑ref' is populated, the filter within
 the subscription came from the 'filters' container.
 Otherwise it is populated in‑line as part of the
 subscription itself.";
 }
 }
 }
 }

 /*
 * DATA NODES
 */

 augment "/sn:filters" {
 description
 "This augmentation allows the datastore to be included as part
 of the selection filtering criteria for a subscription.";
 list selection‑filter {

 key "filter‑id";
 description
 "A list of pre‑configured filters that can be applied
 to datastore subscriptions.";
 leaf filter‑id {
 type string;
 description
 "An identifier to differentiate between selection
 filters.";
 }
 uses selection‑filter‑types;
 }
 }

 augment "/sn:subscriptions/sn:subscription" {
 when "sn:target/yp:datastore";
 description
 "This augmentation adds many datastore specific objects to a
 subscription.";
 uses update‑policy;
 }
 augment "/sn:subscriptions/sn:subscription/sn:target" {
 description
 "This augmentation allows the datastore to be included as
 part of the selection filtering criteria for a subscription.";
 case datastore {
 uses datastore‑criteria;
 }
 }
}

 <CODE ENDS>

6. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑yang‑push
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

Name: ietf‑yang‑push
Namespace: urn:ietf:params:xml:ns:yang:ietf‑yang‑push

Prefix: yp
Reference: draft‑ietf‑netconf‑yang‑push‑20.txt (RFC form)

7. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability. (It should be noted that the
 YANG module augments the YANG module from
 [I-D.draft-ietf-netconf-subscribed-notifications]. All security
 considerations that are listed there are relevant also for datastore
 subscriptions. In the following, we focus on the data nodes that are
 newly introduced here.)

 o Subtree "selection-filter" under container "filters": This subtree
 allows to specify which objects or subtrees to include in a
 datastore subscription. An attacker could attempt to modify the
 filter. For example, the filter might be modified to result in
 very few objects being filtered in order to attempt to overwhelm
 the receiver. Alternatively, the filter might be modified to
 result in certain objects to be excluded from updates, in order to
 have certain changes go unnoticed.

 o Subtree "datastore" in choice "target" in list "subscription":
 Analogous to "selection filter", an attacker might attempt to
 modify the objects being filtered in order to overwhelm a receiver
 with a larger volume of object updates than expected, or to have
 certain changes go unnoticed.

 o Choice "update-trigger" in list "subscription": By modifying the
 update trigger, an attacker might alter the updates that are being

 sent in order to confuse a receiver, to withhold certain updates
 to be sent to the receiver, and/or to overwhelm a receiver. For
 example, an attacker might modify the period with which updates
 are reported for a periodic subscription, or it might modify the
 dampening period for an on-change subscription, resulting in
 greater delay of successive updates (potentially affecting
 responsiveness of applications that depend on the updates) or in a
 high volume of updates (to exhaust receiver resources).

 o RPC "resync-subscription": This RPC allows a subscriber of an on-
 change subscription to request a full push of objects in the
 subscription's scope. This can result in a large volume of data.
 An attacker could attempt to use this RPC to exhaust resources on
 the server to generate the data, and attempt to overwhelm a
 receiver with the resulting data volume.

8. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Tim Jenkins, Martin Bjorklund, Kent Watsen, Susan Hares,
 Yang Geng, Peipei Guo, Michael Scharf, Guangying Zheng, Tom Petch,
 Henk Birkholz, Reshad Rahman, Qin Wu, Rohit Ranade, and Rob Wilton.

9. References

9.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Custom Subscription to Event
 Streams", draft-ietf-netconf-subscribed-notifications-13
 (work in progress), August 2018.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6470]
 Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7895]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8072]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", RFC 8072, DOI 10.17487/RFC8072, February
 2017, <https://www.rfc-editor.org/info/rfc8072>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

9.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]

 Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "NETCONF Support for Event
 Notifications", August 2018.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7923]
 Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8343]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

Appendix A. Appendix A: Subscription Errors

A.1. RPC Failures

 Rejection of an RPC for any reason is indicated by via RPC error
 response from the publisher. Valid RPC errors returned include both
 existing transport layer RPC error codes, such as those seen with
 NETCONF in [RFC6241], as well as subscription specific errors such as
 those defined within the YANG model. As a result, how subscription
 errors are encoded within an RPC error response is transport
 dependent.

 References to specific identities within the either the subscribed-
 notifications YANG model or the yang-push YANG model may be returned
 as part of the error responses resulting from failed attempts at
 datastore subscription. Following are valid errors per RPC (note:
 throughout this section the prefix 'sn' indicates an item imported
 from the subscribed-notifications.yang model):

establish‑subscription modify‑subscription
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 cant‑exclude sn:filter‑unsupported
 datastore‑not‑subscribable sn:insufficient‑resources
 sn:dscp‑unavailable sn:no‑such‑subscription
 sn:filter‑unsupported period‑unsupported
 sn:insufficient‑resources update‑too‑big
 on‑change‑unsupported sync‑too‑big
 on‑change‑sync‑unsupported unchanging‑selection
 period‑unsupported
 update‑too‑big resync‑subscription
 sync‑too‑big ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 unchanging‑selection no‑such‑subscription‑resync
 sync‑too‑big

delete‑subscription kill‑subscription
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 sn:no‑such‑subscription sn:no‑such‑subscription

 There is one final set of transport independent RPC error elements
 included in the YANG model. These are the following four yang-data
 structures for failed datastore subscriptions:

 1. yang-data establish-subscription-error-datastore

 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "establish-subscription" RPC response. This
 MUST be sent if hints are included.

 2. yang-data modify-subscription-error-datastore

 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "modifiy-subscription" RPC response. This
 MUST be sent if hints are included.

 3. yang-data sn:delete-subscription-error

 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "delete-subscription" or "kill-subscription"
 RPC response.

 4. yang-data resync-subscription-error

 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "resync-subscription" RPC response.

A.2. Notifications of Failure

 A subscription may be unexpectedly terminated or suspended
 independent of any RPC or configuration operation. In such cases,
 indications of such a failure MUST be provided. To accomplish this,
 the following types of error identities may be returned within the
 corresponding subscription state change notification:

subscription‑terminated subscription‑suspended
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 datastore‑not‑subscribable sn:insufficient‑resources
 sn:filter‑unavailable period‑unsupported
 sn:no‑such‑subscription update‑too‑big
 sn:suspension‑timeout synchronization‑size
 unchanging‑selection

Appendix B. Changes Between Revisions

 (To be removed by RFC editor prior to publication)

 v19 - v20

 o Minor updates per WGLC comments.

 v18 - v19

 o Minor updates per WGLC comments.

 v17 - v18

 o Minor updates per WGLC comments.

 v16 - v17

 o Minor updates to YANG module, incorporating comments from Tom
 Petch.

 o Updated references.

 v15 - v16

 o Updated security considerations.

 o Updated references.

 o Addressed comments from last call review, specifically comments
 received from Martin Bjorklund.

 v14 - v15

 o Minor text fixes. Includes a fix to on-change update calculation
 to cover churn when an object changes to and from a value during a
 dampening period.

 v13 - v14

 o Minor text fixes.

 v12 - v13

 o Hint negotiation models now show error examples.

 o yang-data structures for rpc errors.

 v11 - v12

 o Included Martin's review clarifications.

 o QoS moved to subscribed-notifications

 o time-of-update removed as it is redundant with RFC5277's
 eventTime, and other times from notification-messages.

 o Error model moved to match existing implementations

 o On-change notifiable removed, how to do this is implementation
 specific.

 o NMDA model supported. Non NMDA version at https://github.com/
 netconf-wg/yang-push/

 v10 - v11

 o Promise model reference added.

 o Error added for no-such-datastore

 o Inherited changes from subscribed notifications (such as optional
 feature definitions).

 o scrubbed the examples for proper encodings

 v09 - v10

 o Returned to the explicit filter subtyping of v00-v05

 o identityref to ds:datastore made explicit

 o Returned ability to modify a selection filter via RPC.

 v08 - v09

 o Minor tweaks cleaning up text, removing appendicies, and making
 reference to revised-datastores.

 o Subscription-id (now:id) optional in push updates, except when
 encoded in RFC5277, Section 4 one-way notification.

 o Finished adding the text descibing the resync subscription RPC.

 o Removed relationships to other drafts and future technology
 appendicies as this work is being explored elsewhere.

 o Deferred the multi-line card issue to new drafts

 o Simplified the NACM interactions.

 v07 - v08

 o Updated YANG models with minor tweaks to accommodate changes of
 ietf-subscribed-notifications.

 v06 - v07

 o Clarifying text tweaks.

 o Clarification that filters act as selectors for subscribed
 datastore nodes; support for value filters not included but
 possible as a future extension

 o Filters don't have to be matched to existing YANG objects

 v05 - v06

 o Security considerations updated.

 o Base YANG model in [subscribe] updated as part of move to
 identities, YANG augmentations in this doc matched up

 o Terms refined and text updates throughout

 o Appendix talking about relationship to other drafts added.

 o Datastore replaces stream

 o Definitions of filters improved

 v04 to v05

 o Referenced based subscription document changed to Subscribed
 Notifications from 5277bis.

 o Getting operational data from filters

 o Extension notifiable-on-change added

 o New appendix on potential futures. Moved text into there from
 several drafts.

 o Subscription configuration section now just includes changed
 parameters from Subscribed Notifications

 o Subscription monitoring moved into Subscribed Notifications

 o New error and hint mechanisms included in text and in the yang
 model.

 o Updated examples based on the error definitions

 o Groupings updated for consistency

 o Text updates throughout

 v03 to v04

 o Updates-not-sent flag added

 o Not notifiable extension added

 o Dampening period is for whole subscription, not single objects

 o Moved start/stop into rfc5277bis

 o Client and Server changed to subscriber, publisher, and receiver

 o Anchor time for periodic

 o Message format for synchronization (i.e. sync-on-start)

 o Material moved into 5277bis

 o QoS parameters supported, by not allowed to be modified by RPC

 o Text updates throughout

Authors' Addresses

Alexander Clemm
Huawei

 Email: ludwig@clemm.org

Eric Voit
Cisco Systems

 Email: evoit@cisco.com

Alberto Gonzalez Prieto
VMware

 Email: agonzalezpri@vmware.com

Ambika Prasad Tripathy
Cisco Systems

 Email: ambtripa@cisco.com

Einar Nilsen‑Nygaard
Cisco Systems

 Email: einarnn@cisco.com

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

Balazs Lengyel
Ericsson

 Email: balazs.lengyel@ericsson.com

draft-ietf-netconf-zerotouch-28 - Secure Zero Touch Provisioning (SZTP)

Index
Back 5
Prev
Next
Forward 5

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: July 15, 2019

K. Watsen

Juniper Networks

M. Abrahamsson

T-Systems

I. Farrer

Deutsche Telekom AG

January 11, 2019

Secure Zero Touch Provisioning (SZTP)

draft-ietf-netconf-zerotouch-28

Abstract

 This draft presents a technique to securely provision a networking
 device when it is booting in a factory-default state. Variations in
 the solution enables it to be used on both public and private
 networks. The provisioning steps are able to update the boot image,
 commit an initial configuration, and execute arbitrary scripts to
 address auxiliary needs. The updated device is subsequently able to
 establish secure connections with other systems. For instance, a
 device may establish NETCONF (RFC 6241) and/or RESTCONF (RFC 8040)
 connections with deployment-specific network management systems.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in the IANA Considerations section contains placeholder
 values for DHCP options pending IANA assignment. Please apply the
 following replacements:

 o "TBD1" --> the assigned value for id-ct-sztpConveyedInfoXML

 o "TBD2" --> the assigned value for id-ct-sztpConveyedInfoJSON

 o "TBD_IANA_URL" --> the assigned URL for the IANA registry

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned numerical RFC value for this draft

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2019-01-11" --> the publication date of this draft

 The following one Appendix section is to be removed prior to
 publication:

 o Appendix D. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 15, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Use Cases

	 1.2. Terminology

	 1.3. Requirements Language

	 1.4. Tree Diagrams

	2. Types of Conveyed Information
	 2.1. Redirect Information

	 2.2. Onboarding Information

	3. Artifacts
	 3.1. Conveyed Information

	 3.2. Owner Certificate

	 3.3. Ownership Voucher

	 3.4. Artifact Encryption

	 3.5. Artifact Groupings

	4. Sources of Bootstrapping Data
	 4.1. Removable Storage

	 4.2. DNS Server

	 4.3. DHCP Server

	 4.4. Bootstrap Server

	5. Device Details
	 5.1. Initial State

	 5.2. Boot Sequence

	 5.3. Processing a Source of Bootstrapping Data

	 5.4. Validating Signed Data

	 5.5. Processing Redirect Information

	 5.6. Processing Onboarding Information

	6. The Conveyed Information Data Model
	 6.1. Data Model Overview

	 6.2. Example Usage

	 6.3. YANG Module

	7. The SZTP Bootstrap Server API
	 7.1. API Overview

	 7.2. Example Usage

	 7.3. YANG Module

	8. DHCP Options
	 8.1. DHCPv4 SZTP Redirect Option

	 8.2. DHCPv6 SZTP Redirect Option

	 8.3. Common Field Encoding

	9. Security Considerations
	 9.1. Clock Sensitivity

	 9.2. Use of IDevID Certificates

	 9.3. Immutable Storage for Trust Anchors

	 9.4. Secure Storage for Long-lived Private Keys

	 9.5. Blindly Authenticating a Bootstrap Server

	 9.6. Disclosing Information to Untrusted Servers

	 9.7. Sequencing Sources of Bootstrapping Data

	 9.8. Safety of Private Keys used for Trust

	 9.9. Increased Reliance on Manufacturers

	 9.10. Concerns with Trusted Bootstrap Servers

	 9.11. Validity Period for Conveyed Information

	 9.12. Cascading Trust via Redirects

	 9.13. Possible Reuse of Private Keys

	 9.14. Non-Issue with Encrypting Signed Artifacts

	 9.15. The "ietf-sztp-conveyed-info" YANG Module

	 9.16. The "ietf-sztp-bootstrap-server" YANG Module

	10. IANA Considerations
	 10.1. The IETF XML Registry

	 10.2. The YANG Module Names Registry

	 10.3. The SMI Security for S/MIME CMS Content Type Registry

	 10.4. The BOOTP Manufacturer Extensions and DHCP Options Registry

	 10.5. The Dynamic Host Configuration Protocol for IPv
	 (DHCPv6) Registry

	 10.6. The Service Name and Transport Protocol Port Number Registry

	 10.7. The DNS Underscore Global Scoped Entry Registry

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Example Device Data Model
	 A.1. Data Model Overview

	 A.2. Example Usage

	 A.3. YANG Module

	Appendix B. Promoting a Connection from Untrusted to Trusted

	Appendix C. Workflow Overview
	 C.1. Enrollment and Ordering Devices

	 C.2. Owner Stages the Network for Bootstrap

	 C.3. Device Powers On

	Appendix D. Change Log
	 D.1. ID to 00

	 D.2. 00 to 01

	 D.3. 01 to 02

	 D.4. 02 to 03

	 D.5. 03 to 04

	 D.6. 04 to 05

	 D.7. 05 to 06

	 D.8. 06 to 07

	 D.9. 07 to 08

	 D.10. 08 to 09

	 D.11. 09 to 10

	 D.12. 10 to 11

	 D.13. 11 to 12

	 D.14. 12 to 13

	 D.15. 13 to 14

	 D.16. 14 to 15

	 D.17. 15 to 16

	 D.18. 16 to 17

	 D.19. 17 to 18

	 D.20. 18 to 19

	 D.21. 19 to 20

	 D.22. 20 to 21

	 D.23. 21 to 22

	 D.24. 22 to 23

	 D.25. 23 to 24

	 D.26. 24 to 25

	 D.27. 25 to 26

	 D.28. 26 to 27

	 D.29. 27 to 28

	Acknowledgements

	Authors' Addresses

1. Introduction

 A fundamental business requirement for any network operator is to
 reduce costs where possible. For network operators, deploying
 devices to many locations can be a significant cost, as sending
 trained specialists to each site for installations is both cost
 prohibitive and does not scale.

 This document defines Secure Zero Touch Provisioning (SZTP), a
 bootstrapping strategy enabling devices to securely obtain
 bootstrapping data with no installer action beyond physical placement
 and connecting network and power cables. As such, SZTP enables non-
 technical personnel to bring up devices in remote locations without
 the need for any operator input.

 The SZTP solution includes updating the boot image, committing an
 initial configuration, and executing arbitrary scripts to address
 auxiliary needs. The updated device is subsequently able to
 establish secure connections with other systems. For instance, a
 devices may establish NETCONF [RFC8040] and/or RESTCONF [RFC6241]
 connections with deployment-specific network management systems.

 This document primarily regards physical devices, where the setting
 of the device's initial state, described in Section 5.1, occurs
 during the device's manufacturing process. The SZTP solution may be
 extended to support virtual machines or other such logical
 constructs, but details for how this can be accomplished is left for
 future work.

1.1. Use Cases

 o Device connecting to a remotely administered network

 This use-case involves scenarios, such as a remote branch
 office or convenience store, whereby a device connects as an
 access gateway to an ISP's network. Assuming it is not
 possible to customize the ISP's network to provide any
 bootstrapping support, and with no other nearby device to
 leverage, the device has no recourse but to reach out to an
 Internet-based bootstrap server to bootstrap from.

 o Device connecting to a locally administered network

 This use-case covers all other scenarios and differs only in
 that the device may additionally leverage nearby devices, which
 may direct it to use a local service to bootstrap from. If no
 such information is available, or the device is unable to use
 the information provided, it can then reach out to the network
 just as it would for the remotely administered network use-
 case.

 Conceptual workflows for how SZTP might be deployed are provided in
 Appendix C.

1.2. Terminology

 This document uses the following terms (sorted by name):

Artifact: The term "artifact" is used throughout to represent any of
 the three artifacts defined in Section 3 (conveyed information,
 ownership voucher, and owner certificate). These artifacts
 collectively provide all the bootstrapping data a device may use.

Bootstrapping Data: The term "bootstrapping data" is used throughout
 this document to refer to the collection of data that a device
 may obtain during the bootstrapping process. Specifically, it
 refers to the three artifacts conveyed information, owner
 certificate, and ownership voucher, as described in Section 3.

Bootstrap Server: The term "bootstrap server" is used within this
 document to mean any RESTCONF server implementing the YANG module
 defined in Section 7.3.

Conveyed Information: The term "conveyed information" is used herein
 to refer either redirect information or onboarding information.
 Conveyed information is one of the three bootstrapping artifacts
 described in Section 3.

Device: The term "device" is used throughout this document to refer
 to a network element that needs to be bootstrapped. See
 Section 5 for more information about devices.

Manufacturer: The term "manufacturer" is used herein to refer to the
 manufacturer of a device or a delegate of the manufacturer.

Network Management System (NMS): The acronym "NMS" is used
 throughout this document to refer to the deployment‑specific
 management system that the bootstrapping process is responsible
 for introducing devices to. From a device's perspective, when

 the bootstrapping process has completed, the NMS is a NETCONF or
 RESTCONF client.

Onboarding Information: The term "onboarding information" is used
 herein to refer to one of the two types of "conveyed information"
 defined in this document, the other being "redirect information".
 Onboarding information is formally defined by the "onboarding‑
 information" YANG‑data structure in Section 6.3.

Onboarding Server: The term "onboarding server" is used herein to
 refer to a bootstrap server that only returns onboarding
 information.

Owner: The term "owner" is used throughout this document to refer to
 the person or organization that purchased or otherwise owns a
 device.

Owner Certificate: The term "owner certificate" is used in this
 document to represent an X.509 certificate that binds an owner
 identity to a public key, which a device can use to validate a
 signature over the conveyed information artifact. The owner
 certificate may be communicated along with its chain of
 intermediate certificates leading up to a known trust anchor.
 The owner certificate is one of the three bootstrapping artifacts
 described in Section 3.

Ownership Voucher: The term "ownership voucher" is used in this
 document to represent the voucher artifact defined in [RFC8366].
 The ownership voucher is used to assign a device to an owner.
 The ownership voucher is one of the three bootstrapping artifacts
 described in Section 3.

Redirect Information: The term "redirect information" is used herein
 to refer to one of the two types of "conveyed information"
 defined in this document, the other being "onboarding
 information". Redirect information is formally defined by the
 "redirect‑information" YANG‑data structure in Section 6.3.

Redirect Server: The term "redirect server" is used to refer to a
 bootstrap server that only returns redirect information. A
 redirect server is particularly useful when hosted by a
 manufacturer, as a well‑known (e.g., Internet‑based) resource to
 redirect devices to deployment‑specific bootstrap servers.

Signed Data: The term "signed data" is used throughout to mean
 conveyed information that has been signed, specifically by a
 private key possessed by a device's owner.

Unsigned Data: The term "unsigned data" is used throughout to mean
 conveyed information that has not been signed.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.4. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Types of Conveyed Information

 This document defines two types of conveyed information that devices
 can access during the bootstrapping process. These conveyed
 information types are described in this section. Examples are
 provided in Section 6.2

2.1. Redirect Information

 Redirect information redirects a device to another bootstrap server.
 Redirect information encodes a list of bootstrap servers, each
 specifying the bootstrap server's hostname (or IP address), an
 optional port, and an optional trust anchor certificate that the
 device can use to authenticate the bootstrap server with.

 Redirect information is YANG modeled data formally defined by the
 "redirect-information" container in the YANG module presented in
 Section 6.3. This container has the tree diagram shown below.

+‑‑:(redirect‑information)
 +‑‑ redirect‑information
 +‑‑ bootstrap‑server* [address]
 +‑‑ address inet:host
 +‑‑ port? inet:port‑number
 +‑‑ trust‑anchor? cms

 Redirect information may be trusted or untrusted. The redirect
 information is trusted whenever it is obtained via a secure
 connection to a trusted bootstrap server, or whenever it is signed by
 the device's owner. In all other cases, the redirect information is
 untrusted.

 Trusted redirect information is useful for enabling a device to
 establish a secure connection to a specified bootstrap server, which
 is possible when the redirect information includes the bootstrap
 server's trust anchor certificate.

 Untrusted redirect information is useful for directing a device to a
 bootstrap server where signed data has been staged for it to obtain.
 Note that, when the redirect information is untrusted, devices
 discard any potentially included trust anchor certificates.

 How devices process redirect information is described in Section 5.5.

2.2. Onboarding Information

 Onboarding information provides data necessary for a device to
 bootstrap itself and establish secure connections with other systems.
 As defined in this document, onboarding information can specify
 details about the boot image a device must be running, specify an
 initial configuration the device must commit, and specify scripts
 that the device must successfully execute.

 Onboarding information is YANG modeled data formally defined by the
 "onboarding-information" container in the YANG module presented in
 Section 6.3. This container has the tree diagram shown below.

+‑‑:(onboarding‑information)
 +‑‑ onboarding‑information
 +‑‑ boot‑image
 | +‑‑ os‑name? string
 | +‑‑ os‑version? string
 | +‑‑ download‑uri* inet:uri
 | +‑‑ image‑verification* [hash‑algorithm]
 | +‑‑ hash‑algorithm identityref
 | +‑‑ hash‑value yang:hex‑string
 +‑‑ configuration‑handling? enumeration
 +‑‑ pre‑configuration‑script? script
 +‑‑ configuration? binary
 +‑‑ post‑configuration‑script? script

 Onboarding information must be trusted for it to be of any use to a
 device. There is no option for a device to process untrusted
 onboarding information.

 Onboarding information is trusted whenever it is obtained via a
 secure connection to a trusted bootstrap server, or whenever it is
 signed by the device's owner. In all other cases, the onboarding
 information is untrusted.

 How devices process onboarding information is described in
 Section 5.6.

3. Artifacts

 This document defines three artifacts that can be made available to
 devices while they are bootstrapping. Each source of bootstrapping
 data specifies how it provides the artifacts defined in this section
 (see Section 4).

3.1. Conveyed Information

 The conveyed information artifact encodes the essential bootstrapping
 data for the device. This artifact is used to encode the redirect
 information and onboarding information types discussed in Section 2.

 The conveyed information artifact is a CMS structure, as described in
 [RFC5652], encoded using ASN.1 distinguished encoding rules (DER), as
 specified in ITU-T X.690 [ITU.X690.2015]. The CMS structure MUST
 contain content conforming to the YANG module specified in
 Section 6.3.

 The conveyed information CMS structure may encode signed or unsigned
 bootstrapping data. When the bootstrapping data is signed, it may
 also be encrypted but, from a terminology perspective, it is still
 "signed data" Section 1.2.

 When the conveyed information artifact is unsigned, as it might be
 when communicated over trusted channels, the CMS structure's top-most
 content type MUST be one of the OIDs described in Section 10.3 (i.e.,
 id-ct-sztpConveyedInfoXML or id-ct-sztpConveyedInfoJSON), or the OID
 id-data (1.2.840.113549.1.7.1). When the OID id-data is used, the
 encoding (JSON, XML, etc.) SHOULD be communicated externally. In
 either case, the associated content is an octet string containing
 "conveyed-information" data in the expected encoding.

 When the conveyed information artifact is unsigned and encrypted, as
 it might be when communicated over trusted channels but, for some
 reason, the operator wants to ensure that only the device is able to
 see the contents, the CMS structure's top-most content type MUST be
 the OID id-envelopedData (1.2.840.113549.1.7.3). Furthermore, the
 encryptedContentInfo's content type MUST be one of the OIDs described
 in Section 10.3 (i.e., id-ct-sztpConveyedInfoXML or id-ct-
 sztpConveyedInfoJSON), or the OID id-data (1.2.840.113549.1.7.1).
 When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
 be communicated externally. In either case, the associated content
 is an octet string containing "conveyed-information" data in the
 expected encoding.

 When the conveyed information artifact is signed, as it might be when
 communicated over untrusted channels, the CMS structure's top-most
 content type MUST be the OID id-signedData (1.2.840.113549.1.7.2).
 Furthermore, the inner eContentType MUST be one of the OIDs described
 in Section 10.3 (i.e., id-ct-sztpConveyedInfoXML or id-ct-
 sztpConveyedInfoJSON), or the OID id-data (1.2.840.113549.1.7.1).
 When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
 be communicated externally. In either case, the associated content
 or eContent is an octet string containing "conveyed-information" data
 in the expected encoding.

 When the conveyed information artifact is signed and encrypted, as it
 might be when communicated over untrusted channels and privacy is
 important, the CMS structure's top-most content type MUST be the OID
 id-envelopedData (1.2.840.113549.1.7.3). Furthermore, the
 encryptedContentInfo's content type MUST be the OID id-signedData
 (1.2.840.113549.1.7.2), whose eContentType MUST be one of the OIDs
 described in Section 10.3 (i.e., id-ct-sztpConveyedInfoXML or id-ct-
 sztpConveyedInfoJSON), or the OID id-data (1.2.840.113549.1.7.1).
 When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
 be communicated externally. In either case, the associated content
 or eContent is an octet string containing "conveyed-information" data
 in the expected encoding.

3.2. Owner Certificate

 The owner certificate artifact is an X.509 certificate [RFC5280] that
 is used to identify an "owner" (e.g., an organization). The owner
 certificate can be signed by any certificate authority (CA). The
 owner certificate either MUST have no Key Usage specified or the Key
 Usage MUST at least set the "digitalSignature" bit. The values for
 the owner certificate's "subject" and/or "subjectAltName" are not
 constrained by this document.

 The owner certificate is used by a device to verify the signature
 over the conveyed information artifact (Section 3.1) that the device
 should have also received, as described in Section 3.5. In
 particular, the device verifies the signature using the public key in
 the owner certificate over the content contained within the conveyed
 information artifact.

 The owner certificate artifact is formally a CMS structure, as
 specified by [RFC5652], encoded using ASN.1 distinguished encoding
 rules (DER), as specified in ITU-T X.690 [ITU.X690.2015].

 The owner certificate CMS structure MUST contain the owner
 certificate itself, as well as all intermediate certificates leading
 to the "pinned-domain-cert" certificate specified in the ownership
 voucher. The owner certificate artifact MAY optionally include the
 "pinned-domain-cert" as well.

 In order to support devices deployed on private networks, the owner
 certificate CMS structure MAY also contain suitably fresh, as
 determined by local policy, revocation objects (e.g., CRLs). Having
 these revocation objects stapled to the owner certificate may obviate
 the need for the device to have to download them dynamically using
 the CRL distribution point or an OCSP responder specified in the
 associated certificates.

 When unencrypted, the owner certificate artifact's CMS structure's
 top-most content type MUST be the OID id-signedData
 (1.2.840.113549.1.7.2). The inner SignedData structure is the
 degenerate form, whereby there are no signers, that is commonly used
 to disseminate certificates and revocation objects.

 When encrypted, the owner certificate artifact's CMS structure's top-
 most content type MUST be the OID id-envelopedData
 (1.2.840.113549.1.7.3), and the encryptedContentInfo's content type
 MUST be the OID id-signedData (1.2.840.113549.1.7.2), whereby the
 inner SignedData structure is the degenerate form that has no signers
 commonly used to disseminate certificates and revocation objects.

3.3. Ownership Voucher

 The ownership voucher artifact is used to securely identify a
 device's owner, as it is known to the manufacturer. The ownership
 voucher is signed by the device's manufacturer.

 The ownership voucher is used to verify the owner certificate
 (Section 3.2) that the device should have also received, as described
 in Section 3.5. In particular, the device verifies that the owner
 certificate has a chain of trust leading to the trusted certificate
 included in the ownership voucher ("pinned-domain-cert"). Note that
 this relationship holds even when the owner certificate is a self-
 signed certificate, and hence also the pinned-domain-cert.

 When unencrypted, the ownership voucher artifact is as defined in
 [RFC8366]. As described, it is a CMS structure whose top-most
 content type MUST be the OID id-signedData (1.2.840.113549.1.7.2),
 whose eContentType MUST be OID id-ct-animaJSONVoucher
 (1.2.840.113549.1.9.16.1), or the OID id-data (1.2.840.113549.1.7.1).
 When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
 be communicated externally. In either case, the associated content
 is an octet string containing ietf-voucher data in the expected
 encoding.

 When encrypted, the ownership voucher artifact's CMS structure's top-
 most content type MUST be the OID id-envelopedData
 (1.2.840.113549.1.7.3), and the encryptedContentInfo's content type
 MUST be the OID id-signedData (1.2.840.113549.1.7.2), whose
 eContentType MUST be OID id-ct-animaJSONVoucher
 (1.2.840.113549.1.9.16.1), or the OID id-data (1.2.840.113549.1.7.1).
 When the OID id-data is used, the encoding (JSON, XML, etc.) SHOULD
 be communicated externally. In either case, the associated content
 is an octet string containing ietf-voucher data in the expected
 encoding.

3.4. Artifact Encryption

 Each of the three artifacts MAY be individually encrypted.
 Encryption may be important in some environments where the content is
 considered sensitive.

 Each of the three artifacts are encrypted in the same way, by the
 unencrypted form being encapsulated inside a CMS EnvelopedData type.

 As a consequence, both the conveyed information and ownership voucher
 artifacts are signed and then encrypted, never encrypted and then
 signed.

 This sequencing has the advantage of shrouding the signer's
 certificate, and ensuring that the owner knows the content being
 signed. This sequencing further enables the owner to inspect an
 unencrypted voucher obtained from a manufacturer and then encrypt the
 voucher later themselves, perhaps while also stapling in current
 revocation objects, when ready to place the artifact in an unsafe
 location.

 When encrypted, the CMS MUST be encrypted using a secure device
 identity certificate for the device. This certificate MAY be the
 same as the TLS-level client certificate the device uses when
 connecting to bootstrap servers. The owner must possess the device's
 identity certificate at the time of encrypting the data. How the
 owner comes to posses the device's identity certificate for this
 purpose is outside the scope of this document.

3.5. Artifact Groupings

 The previous sections discussed the bootstrapping artifacts, but only
 certain groupings of these artifacts make sense to return in the
 various bootstrapping situations described in this document. These
 groupings are:

Unsigned Data: This artifact grouping is useful for cases when
 transport level security can be used to convey trust (e.g.,
 HTTPS), or when the conveyed information can be processed in a
 provisional manner (i.e. unsigned redirect information).

Signed Data, without revocations: This artifact grouping is
 useful when signed data is needed (i.e., because the data is
 obtained from an untrusted source and it cannot be processed
 provisionally) and either revocations are not needed or the
 revocations can be obtained dynamically.

Signed Data, with revocations: This artifact grouping is useful
 when signed data is needed (i.e., because the data is obtained
 from an untrusted source and it cannot be processed
 provisionally), and revocations are needed, and the revocations
 cannot be obtained dynamically.

 The presence of each artifact, and any distinguishing
 characteristics, are identified for each artifact grouping in the
 table below ("yes/no" regards if the artifact is present in the
 artifact grouping):

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Artifact | Conveyed | Ownership | Owner |
| Grouping | Information | Voucher | Certificate |
+=====================+===============+==============+==============+
| Unsigned Data | Yes, no sig | No | No |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Signed Data, | Yes, with sig | Yes, without | Yes, without |
| without revocations | | revocations | revocations |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Signed Data, | Yes, with sig | Yes, with | Yes, with |
| with revocations | | revocations | revocations |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

4. Sources of Bootstrapping Data

 This section defines some sources for bootstrapping data that a
 device can access. The list of sources defined here is not meant to
 be exhaustive. It is left to future documents to define additional
 sources for obtaining bootstrapping data.

 For each source of bootstrapping data defined in this section,
 details are given for how the three artifacts listed in Section 3 are
 provided.

4.1. Removable Storage

 A directly attached removable storage device (e.g., a USB flash
 drive) MAY be used as a source of SZTP bootstrapping data.

 Use of a removable storage device is compelling, as it does not
 require any external infrastructure to work. It is notable that the
 raw boot image file can also be located on the removable storage
 device, enabling a removable storage device to be a fully self-
 standing bootstrapping solution.

 To use a removable storage device as a source of bootstrapping data,
 a device need only detect if the removable storage device is plugged
 in and mount its filesystem.

 A removable storage device is an untrusted source of bootstrapping
 data. This means that the information stored on the removable
 storage device either MUST be signed or MUST be information that can
 be processed provisionally (e.g., unsigned redirect information).

 From an artifact perspective, since a removable storage device
 presents itself as a filesystem, the bootstrapping artifacts need to
 be presented as files. The three artifacts defined in Section 3 are
 mapped to files below.

 Artifact to File Mapping:

Conveyed Information: Mapped to a file containing the binary
 artifact described in Section 3.1 (e.g., conveyed‑
 information.cms).

Owner Certificate: Mapped to a file containing the binary
 artifact described in Section 3.2 (e.g., owner‑
 certificate.cms).

Ownership Voucher: Mapped to a file containing the binary
 artifact described in Section 3.3 (e.g., ownership‑voucher.cms
 or ownership‑voucher.vcj).

 The format of the removable storage device's filesystem and the
 naming of the files are outside the scope of this document. However,
 in order to facilitate interoperability, it is RECOMMENDED devices
 support open and/or standards based filesystems. It is also
 RECOMMENDED that devices assume a file naming convention that enables
 more than one instance of bootstrapping data (i.e., for different
 devices) to exist on a removable storage device. The file naming
 convention SHOULD additionally be unique to the manufacturer, in
 order to enable bootstrapping data from multiple manufacturers to
 exist on a removable storage device.

4.2. DNS Server

 A DNS server MAY be used as a source of SZTP bootstrapping data.

 Using a DNS server may be a compelling option for deployments having
 existing DNS infrastructure, as it enables a touchless bootstrapping
 option that does not entail utilizing an Internet based resource
 hosted by a 3rd-party.

 DNS is an untrusted source of bootstrapping data. Even if DNSSEC
 [RFC6698] is used to authenticate the various DNS resource records
 (e.g., A, AAAA, CERT, TXT, and TLSA), the device cannot be sure that
 the domain returned to it from e.g., a DHCP server, belongs to its
 rightful owner. This means that the information stored in the DNS
 records either MUST be signed (per this document, not DNSSEC), or
 MUST be information that can be processed provisionally (e.g.,
 unsigned redirect information).

4.2.1. DNS Queries

 Devices claiming to support DNS as a source of bootstrapping data
 MUST first query for device-specific DNS records and, only if doing
 so does not result in a successful bootstrap, then MUST query for
 device-independent DNS records.

 For each of the device-specific and device-independent queries,
 devices MUST first query using multicast DNS [RFC6762] and, only if
 doing so does not result in a successful bootstrap, then MUST query
 again using unicast DNS [RFC1035] [RFC7766], assuming the address of
 a DNS server is known, such as it may using techniques similar to
 those described in Section 11 of [RFC6763], which is referenced a few
 times in this document, even though this document does not itself use
 DNS-SD (RFC 6763 is identified herein as an Informative reference).

 When querying for device-specific DNS records, devices MUST query for
 TXT records [RFC1035] under "<serial-number>._sztp", where <serial-
 number> is the device's serial number (the same value as in the
 device's secure device identity certificate), and "_sztp" is the
 globally scoped DNS attribute registered by this document in
 Section 10.7.

 Example device-specific DNS record queries:

TXT in <serial‑number>._sztp.local. (multicast)
TXT in <serial‑number>._sztp.<domain>. (unicast)

 When querying for device-independent DNS records, devices MUST query
 for SRV records [RFC2782] under "_sztp._tcp", where "_sztp" is the
 service name registered by this document in Section 10.6, and "_tcp"
 is the globally scoped DNS attribute registered by
 [I-D.ietf-dnsop-attrleaf].

 Note that a device-independent response is anyway only able to encode
 unsigned data, since signed data necessitates the use of a device-
 specific ownership voucher. Use of SRV records leverages existing
 DNS standards. A response containing multiple SRV records is
 comparable to an unsigned redirect information's list of bootstrap
 servers.

 Example device-independent DNS record queries:

SRV in _sztp._tcp.local. (multicast)
SRV in _sztp._tcp.<domain>. (unicast)

4.2.2. DNS Response for Device-Specific Queries

 For device-specific queries, the three bootstrapping artifacts
 defined in Section 3 are encoded into the TXT records using key/value
 pairs, similar to the technique described in Section 6.3 of
 [RFC6763].

 Artifact to TXT Record Mapping:

Conveyed Information: Mapped to a TXT record having the key "ci"
 and the value being the binary artifact described in
 Section 3.1.

Owner Certificate: Mapped to a TXT record having the key "oc" and
 the value being the binary artifact described in Section 3.2.

Ownership Voucher: Mapped to a TXT record having the key "ov" and
 the value being the binary artifact described in Section 3.3.

 Devices MUST ignore any other keys that may be returned.

 Note that, despite the name, TXT records can and SHOULD (per
 Section 6.5 of [RFC6763]) encode binary data.

 Following is an example of a device-specific response, as it might be
 presented by a user-agent, containing signed data. This example
 assumes that the device's serial number is "<serial-number>", the
 domain is "example.com", and that "<binary data>" represents the
 binary artifact:

 <serial-number>._sztp.example.com. 3600 IN TXT "ci=<binary data>"
 <serial-number>._sztp.example.com. 3600 IN TXT "oc=<binary data>"
 <serial-number>._sztp.example.com. 3600 IN TXT "ov=<binary data>"

 Note that, in the case that "ci" encodes unsigned data, the "oc" and
 "ov" keys would not be present in the response.

4.2.3. DNS Response for Device-Independent Queries

 For device-independent queries, the three bootstrapping artifacts
 defined in Section 3 are encoded into the SVR records as follows.

 Artifact to SRV Record Mapping:

Conveyed Information: This artifact is not supported directly.
 Instead, the essence of unsigned redirect information is mapped
 to SVR records per [RFC2782].

Owner Certificate: Not supported. Device‑independent responses
 are never encode signed data, and hence there is no need for an
 owner certificate artifact.

Ownership Voucher: Not supported. Device‑independent responses
 are never encode signed data, and hence there is no need for an
 ownership voucher artifact.

 Following is an example of a device-independent response, as it might
 be presented by a user-agent, containing (effectively) unsigned
 redirect information to four bootstrap servers. This example assumes
 that the domain is "example.com" and that there are four bootstrap
 servers "sztp[1-4]":

 _sztp._tcp.example.com. 1800 IN SRV 0 0 443 sztp1.example.com.
 _sztp._tcp.example.com. 1800 IN SRV 1 0 443 sztp2.example.com.
 _sztp._tcp.example.com. 1800 IN SRV 2 0 443 sztp3.example.com.
 _sztp._tcp.example.com. 1800 IN SRV 2 0 443 sztp4.example.com.

 Note that, in this example, "sztp3" and "sztp4" have equal priority,
 and hence effectively represent a clustered pair of bootstrap
 servers. While "sztp1" and "sztp2" only have a single SRV record
 each, it may be that the record points to a load-balancer fronting a
 cluster of bootstrap servers.

 While this document does not use DNS-SD [RFC6763], per Section 12.2
 of that RFC, mDNS responses SHOULD also include all address records
 (type "A" and "AAAA") named in the SRV rdata.

4.2.4. Size of Signed Data

 The signed data artifacts are large by DNS conventions. In the
 smallest-footprint scenario, they are each a few kilobytes in size.
 However, onboarding information can easily be several kilobytes in
 size, and has the potential to be many kilobytes in size.

 All resource records, including TXT records, have an upper size limit
 of 65535 bytes, since "RDLENGTH" is a 16-bit field (Section 3.2.1 in
 [RFC1035]). If it is ever desired to encode onboarding information
 that exceeds this limit, the DNS records returned should instead
 encode redirect information, to direct the device to a bootstrap
 server from which the onboarding information can be obtained.

 Given the expected size of the TXT records, it is unlikely that
 signed data will fit into a UDP-based DNS packet, even with the
 EDNS(0) Extensions [RFC6891] enabled. Depending on content, signed
 data may also not fit into a multicast DNS packet, which bounds the
 size to 9000 bytes, per Section 17 in [RFC6762]. Thus it is expected
 that DNS Transport over TCP [RFC7766] will be required in order to
 return signed data.

4.3. DHCP Server

 A DHCP server MAY be used as a source of SZTP bootstrapping data.

 Using a DHCP server may be a compelling option for deployments having
 existing DHCP infrastructure, as it enables a touchless bootstrapping
 option that does not entail utilizing an Internet based resource
 hosted by a 3rd-party.

 A DHCP server is an untrusted source of bootstrapping data. Thus the
 information stored on the DHCP server either MUST be signed, or it
 MUST be information that can be processed provisionally (e.g.,
 unsigned redirect information).

 However, unlike other sources of bootstrapping data described in this
 document, the DHCP protocol (especially DHCP for IPv4) is very
 limited in the amount of data that can be conveyed, to the extent
 that signed data cannot be communicated. This means that only
 unsigned redirect information can be conveyed via DHCP.

 Since the redirect information is unsigned, it SHOULD NOT include the
 optional trust anchor certificate, as it takes up space in the DHCP
 message, and the device would have to discard it anyway. For this
 reason, the DHCP options defined in Section 8 do not enable the trust
 anchor certificate to be encoded.

 From an artifact perspective, the three artifacts defined in
 Section 3 are mapped to the DHCP fields specified in Section 8 as
 follows.

 Artifact to DHCP Option Fields Mapping:

Conveyed Information: This artifact is not supported directly.
 Instead, the essence of unsigned redirect information is mapped
 to the DHCP options described in Section 8.

Owner Certificate: Not supported. There is not enough space in
 the DHCP packet to hold an owner certificate artifact.

Ownership Voucher: Not supported. There is not enough space in
 the DHCP packet to hold an ownership voucher artifact.

4.4. Bootstrap Server

 A bootstrap server MAY be used as a source of SZTP bootstrapping
 data. A bootstrap server is defined as a RESTCONF [RFC8040] server
 implementing the YANG module provided in Section 7.

 Using a bootstrap server as a source of bootstrapping data is a
 compelling option as it MAY use transport-level security, obviating
 the need for signed data, which may be easier to deploy in some
 situations.

 Unlike any other source of bootstrapping data described in this
 document, a bootstrap server is not only a source of data, but it can
 also receive data from devices using the YANG-defined "report-
 progress" RPC defined in the YANG module (Section 7.3). The "report-
 progress" RPC enables visibility into the bootstrapping process
 (e.g., warnings and errors), and provides potentially useful
 information upon completion (e.g., the device's SSH host-keys).

 A bootstrap server may be a trusted or an untrusted source of
 bootstrapping data, depending on if the device learned about the
 bootstrap server's trust anchor from a trusted source. When a
 bootstrap server is trusted, the conveyed information returned from
 it MAY be signed. When the bootstrap server is untrusted, the
 conveyed information either MUST be signed or MUST be information
 that can be processed provisionally (e.g., unsigned redirect
 information).

 From an artifact perspective, since a bootstrap server presents data
 conforming to a YANG data model, the bootstrapping artifacts need to
 be mapped to YANG nodes. The three artifacts defined in Section 3
 are mapped to "output" nodes of the "get-bootstrapping-data" RPC
 defined in Section 7.3 below.

 Artifact to Bootstrap Server Mapping:

Conveyed Information: Mapped to the "conveyed‑information" leaf
 in the output of the "get‑bootstrapping‑data" RPC.

Owner Certificate: Mapped to the "owner‑certificate" leaf in the
 output of the "get‑bootstrapping‑data" RPC.

Ownership Voucher: Mapped to the "ownership‑voucher" leaf in the
 output of the "get‑bootstrapping‑data" RPC.

 SZTP bootstrap servers have only two endpoints, one for the "get-
 bootstrapping-data" RPC and one for the "report-progress" RPC. These
 RPCs use the authenticated RESTCONF username to isolate the execution
 of the RPC from other devices.

5. Device Details

 Devices supporting the bootstrapping strategy described in this
 document MUST have the preconfigured state and bootstrapping logic
 described in the following sections.

5.1. Initial State

+‑‑‑+
| <device> |
| |
| +‑‑‑+ |
	<read/write storage>	
	1. flag to enable SZTP bootstrapping set to "true"	
+‑‑‑+		
+‑‑‑+		
	<read‑only storage>	
	2. TLS client cert & related intermediate certificates	
	3. list of trusted well‑known bootstrap servers	
	4. list of trust anchor certs for bootstrap servers	
	5. list of trust anchor certs for ownership vouchers	
+‑‑‑+		
+‑‑‑+		
	<secure storage>	
	6. private key for TLS client certificate	
	7. private key for decrypting SZTP artifacts	
+‑‑‑+		
+‑‑‑+

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. Devices MUST have a configurable variable that is used to enable/
 disable SZTP bootstrapping. This variable MUST be enabled by
 default in order for SZTP bootstrapping to run when the device
 first powers on. Because it is a goal that the configuration
 installed by the bootstrapping process disables SZTP
 bootstrapping, and because the configuration may be merged into
 the existing configuration, using a configuration node that
 relies on presence is NOT RECOMMENDED, as it cannot be removed by
 the merging process.

 2. Devices that support loading bootstrapping data from bootstrap
 servers (see Section 4.4) SHOULD possess a TLS-level client
 certificate and any intermediate certificates leading to the
 certificate's well-known trust-anchor. The well-known trust
 anchor certificate may be an intermediate certificate or a self-
 signed root certificate. To support devices not having a client
 certificate, devices MAY, alternatively or in addition to,
 identify and authenticate themselves to the bootstrap server
 using an HTTP authentication scheme, as allowed by Section 2.5 in
 [RFC8040]; however, this document does not define a mechanism for
 operator input enabling, for example, the entering of a password.

 3. Devices that support loading bootstrapping data from well-known
 bootstrap servers MUST possess a list of the well-known bootstrap
 servers. Consistent with redirect information (Section 2.1, each
 bootstrap server can be identified by its hostname or IP address,
 and an optional port.

 4. Devices that support loading bootstrapping data from well-known
 bootstrap servers MUST also possess a list of trust anchor
 certificates that can be used to authenticate the well-known
 bootstrap servers. For each trust anchor certificate, if it is
 not itself a self-signed root certificate, the device SHOULD also
 possess the chain of intermediate certificates leading up to and
 including the self-signed root certificate.

 5. Devices that support loading signed data (see Section 1.2) MUST
 possess the trust anchor certificates for validating ownership
 vouchers. For each trust anchor certificate, if it is not itself
 a self-signed root certificate, the device SHOULD also possess
 the chain of intermediate certificates leading up to and
 including the self-signed root certificate.

 6. Devices that support using a TLS-level client certificate to
 identify and authenticate themselves to a bootstrap server MUST
 possess the private key that corresponds to the public key
 encoded in the TLS-level client certificate. This private key
 SHOULD be securely stored, ideally in a cryptographic processor,
 such as a trusted platform module (TPM) chip.

 7. Devices that support decrypting SZTP artifacts MUST posses the
 private key that corresponds to the public key encoded in the
 secure device identity certificate used when encrypting the
 artifacts. This private key SHOULD be securely stored, ideally
 in a cryptographic processor, such as a trusted platform module
 (TPM) chip. This private key MAY be the same as the one
 associated to the TLS-level client certificate used when
 connecting to bootstrap servers.

 A YANG module representing this data is provided in Appendix A.

5.2. Boot Sequence

 A device claiming to support the bootstrapping strategy defined in
 this document MUST support the boot sequence described in this
 section.

 Power On
 |
 v No
1. SZTP bootstrapping configured ‑‑‑‑‑‑> Boot normally
 |
 | Yes
 v
2. For each supported source of bootstrapping data,
 try to load bootstrapping data from the source
 |
 |
 v Yes
3. Able to bootstrap from any source? ‑‑‑‑‑> Run with new config
 |
 | No
 v
4. Loop back to Step 1.

 Note: At any time, the device MAY be configured via an alternate

 provisioning mechanism (e.g., CLI).

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. When the device powers on, it first checks to see if SZTP
 bootstrapping is configured, as is expected to be the case for
 the device's preconfigured initial state. If SZTP bootstrapping
 is not configured, then the device boots normally.

 2. The device iterates over its list of sources for bootstrapping
 data (Section 4). Details for how to processes a source of
 bootstrapping data are provided in Section 5.3.

 3. If the device is able to bootstrap itself from any of the sources
 of bootstrapping data, it runs with the new bootstrapped
 configuration.

 4. Otherwise the device MUST loop back through the list of
 bootstrapping sources again.

 This document does not limit the simultaneous use of alternate
 provisioning mechanisms. Such mechanisms may include, for instance,
 a command line interface (CLI), a web-based user interface, or even
 another bootstrapping protocol. Regardless how it is configured, the
 configuration SHOULD unset the flag enabling SZTP bootstrapping
 discussed in Section 5.1.

5.3. Processing a Source of Bootstrapping Data

 This section describes a recursive algorithm that devices can use to,
 ultimately, obtain onboarding information. The algorithm is
 recursive because sources of bootstrapping data may return redirect
 information, which causes the algorithm to run again, for the newly
 discovered sources of bootstrapping data. An expression that
 captures all possible successful sequences of bootstrapping data is:
 zero or more redirect information responses, followed by one
 onboarding information response.

 An important aspect of the algorithm is knowing when data needs to be
 signed or not. The following figure provides a summary of options:

 Untrusted Source Trusted Source
Kind of Bootstrapping Data Can Provide? Can Provide?

Unsigned Redirect Info : Yes+ Yes
Signed Redirect Info : Yes Yes*
Unsigned Onboarding Info : No Yes
Signed Onboarding Info : Yes Yes*

The '+' above denotes that the source redirected to MUST
return signed data, or more unsigned redirect information.

 The '*' above denotes that, while possible, it is generally
 unnecessary for a trusted source to return signed data.

 The recursive algorithm uses a conceptual global-scoped variable
 called "trust-state". The trust-state variable is initialized to
 FALSE. The ultimate goal of this algorithm is for the device to
 process onboarding information (Section 2.2) while the trust-state
 variable is TRUE.

 If the source of bootstrapping data (Section 4) is a bootstrap server
 (Section 4.4), and the device is able to authenticate the bootstrap
 server using X.509 certificate path validation ([RFC6125], Section 6)
 to one of the device's preconfigured trust anchors, or to a trust
 anchor that it learned from a previous step, then the device MUST set
 trust-state to TRUE.

 When establishing a connection to a bootstrap server, whether trusted
 or untrusted, the device MUST identify and authenticate itself to the
 bootstrap server using a TLS-level client certificate and/or an HTTP
 authentication scheme, per Section 2.5 in [RFC8040]. If both
 authentication mechanisms are used, they MUST both identify the same
 serial number.

 When sending a client certificate, the device MUST also send all of
 the intermediate certificates leading up to, and optionally
 including, the client certificate's well-known trust anchor
 certificate.

 For any source of bootstrapping data (e.g., Section 4), if any
 artifact obtained is encrypted, the device MUST first decrypt it
 using the private key associated with the device certificate used to
 encrypt the artifact.

 If the conveyed information artifact is signed, and the device is
 able to validate the signed data using the algorithm described in
 Section 5.4, then the device MUST set trust-state to TRUE; otherwise,
 if the device is unable to validate the signed data, the device MUST
 set trust-state to FALSE. Note, this is worded to cover the special
 case when signed data is returned even from a trusted source of
 bootstrapping data.

 If the conveyed information artifact contains redirect information,
 the device MUST, within limits of how many recursive loops the device
 allows, process the redirect information as described in Section 5.5.
 Implementations MUST limit the maximum number of recursive redirects
 allowed; the maximum number of recursive redirects allowed SHOULD be
 no more than ten. This is the recursion step, it will cause the
 device to reenter this algorithm, but this time the data source will
 definitely be a bootstrap server, as redirect information is only
 able to redirect devices to bootstrap servers.

 If the conveyed information artifact contains onboarding information,
 and trust-state is FALSE, the device MUST exit the recursive
 algorithm (as this is not allowed, see the figure above), returning
 to the bootstrapping sequence described in Section 5.2. Otherwise,
 the device MUST attempt to process the onboarding information as
 described in Section 5.6. Whether the processing of the onboarding
 information succeeds or fails, the device MUST exit the recursive
 algorithm, returning to the bootstrapping sequence described in
 Section 5.2, the only difference being in how it responds to the
 "Able to bootstrap from any source?" conditional described in the
 figure in the section.

5.4. Validating Signed Data

 Whenever a device is presented signed data, it MUST validate the
 signed data as described in this section. This includes the case
 where the signed data is provided by a trusted source.

 Whenever there is signed data, the device MUST also be provided an
 ownership voucher and an owner certificate. How all the needed
 artifacts are provided for each source of bootstrapping data is
 described in Section 4.

 In order to validate signed data, the device MUST first authenticate
 the ownership voucher by validating its signature to one of its
 preconfigured trust anchors (see Section 5.1), which may entail using
 additional intermediate certificates attached to the ownership
 voucher. If the device has an accurate clock, it MUST verify that
 the ownership voucher was created in the past (i.e., "created-on" <
 now) and, if the "expires-on" leaf is present, the device MUST verify
 that the ownership voucher has not yet expired (i.e., now < "expires-
 on"). The device MUST verify that the ownership voucher's
 "assertion" value is acceptable (e.g., some devices may only accept
 the assertion value "verified"). The device MUST verify that the
 ownership voucher specifies the device's serial number in the
 "serial-number" leaf. If the "idevid-issuer" leaf is present, the
 device MUST verify that the value is set correctly. If the
 authentication of the ownership voucher is successful, the device
 extracts the "pinned-domain-cert" node, an X.509 certificate, that is
 needed to verify the owner certificate in the next step.

 The device MUST next authenticate the owner certificate by performing
 X.509 certificate path verification to the trusted certificate
 extracted from the ownership voucher's "pinned-domain-cert" node.
 This verification may entail using additional intermediate
 certificates attached to the owner certificate artifact. If the
 ownership voucher's "domain-cert-revocation-checks" node's value is
 set to "true", the device MUST verify the revocation status of the
 certificate chain used to sign the owner certificate and, if
 suitably-fresh revocation status is unattainable or if it is
 determined that a certificate has been revoked, the device MUST NOT
 validate the owner certificate.

 Finally, the device MUST verify that the conveyed information
 artifact was signed by the validated owner certificate.

 If any of these steps fail, the device MUST invalidate the signed
 data and not perform any subsequent steps.

5.5. Processing Redirect Information

 In order to process redirect information (Section 2.1), the device
 MUST follow the steps presented in this section.

 Processing redirect information is straightforward; the device
 sequentially steps through the list of provided bootstrap servers
 until it can find one it can bootstrap from.

 If a hostname is provided, and the hostname's DNS resolution is to
 more than one IP address, the device MUST attempt to connect to all
 of the DNS resolved addresses at least once, before moving on to the
 next bootstrap server. If the device is able to obtain bootstrapping
 data from any of the DNS resolved addresses, it MUST immediately
 process that data, without attempting to connect to any of the other
 DNS resolved addresses.

 If the redirect information is trusted (e.g., trust-state is TRUE),
 and the bootstrap server entry contains a trust anchor certificate,
 then the device MUST authenticate the specified bootstrap server's
 TLS server certificate using X.509 certificate path validation
 ([RFC6125], Section 6) to the specified trust anchor. If the
 bootstrap server entry does not contain a trust anchor certificate
 device, the device MUST establish a provisional connection to the
 bootstrap server (i.e., by blindly accepting its server certificate),
 and set trust-state to FALSE.

 If the redirect information is untrusted (e.g., trust-state is
 FALSE), the device MUST discard any trust anchors provided by the
 redirect information and establish a provisional connection to the
 bootstrap server (i.e., by blindly accepting its TLS server
 certificate).

5.6. Processing Onboarding Information

 In order to process onboarding information (Section 2.2), the device
 MUST follow the steps presented in this section.

 When processing onboarding information, the device MUST first process
 the boot image information (if any), then execute the pre-
 configuration script (if any), then commit the initial configuration
 (if any), and then execute the post-configuration script (if any), in
 that order.

 When the onboarding information is obtained from a trusted bootstrap
 server, the device MUST send the "bootstrap-initiated" progress
 report, and send either a terminating "boot-image-installed-
 rebooting", "bootstrap-complete", or error specific progress report.
 If the bootstrap server's "get-bootstrapping-data" RPC-reply's
 "reporting-level" node is set to "verbose", the device MUST
 additionally send all appropriate non-terminating progress reports
 (e.g., initiated, warning, complete, etc.). Regardless of the
 reporting-level indicated by the bootstrap server, the device MAY
 send progress reports beyond the mandatory ones specified for the
 given reporting level.

 When the onboarding information is obtained from an untrusted
 bootstrap server, the device MUST NOT send any progress reports to
 the bootstrap server, even though the onboarding information was,
 necessarily, signed and authenticated. Please be aware that
 bootstrap servers are recommended to promote untrusted connections to
 trusted connections, in the last paragraph of Section 9.6, so as to,
 in part, be able to collect progress reports from devices.

 If the device encounters an error at any step, it MUST stop
 processing the onboarding information and return to the bootstrapping
 sequence described in Section 5.2. In the context of a recursive
 algorithm, the device MUST return to the enclosing loop, not back to
 the very beginning. Some state MAY be retained from the
 bootstrapping process (e.g., updated boot image, logs, remnants from
 a script, etc.). However, the retained state MUST NOT be active in
 any way (e.g., no new configuration or running of software), and MUST
 NOT hinder the ability for the device to continue the bootstrapping
 sequence (i.e., process onboarding information from another bootstrap
 server).

 At this point, the specific ordered sequence of actions the device
 MUST perform is described.

 If the onboarding information is obtained from a trusted bootstrap
 server, the device MUST send a "bootstrap-initiated" progress report.
 It is an error if the device does not receive back the "204 No
 Content" HTTP status line. If an error occurs, the device MUST try
 to send a "bootstrap-error" progress report before exiting.

 The device MUST parse the provided onboarding information document,
 to extract values used in subsequent steps. Whether using a stream-
 based parser or not, if there is an error when parsing the onboarding
 information, and the device is connected to a trusted bootstrap
 server, the device MUST try to send a "parsing-error" progress report
 before exiting.

 If boot image criteria are specified, the device MUST first determine
 if the boot image it is running satisfies the specified boot image
 criteria. If the device is already running the specified boot image,
 then it skips the remainder of this step. If the device is not
 running the specified boot image, then it MUST download, verify, and
 install, in that order, the specified boot image, and then reboot.
 If connected to a trusted bootstrap server, the device MAY try to
 send a "boot-image-mismatch" progress report. To download the boot
 image, the device MUST only use the URIs supplied by the onboarding
 information. To verify the boot image, the device MUST either use
 one of the verification fingerprints supplied by the onboarding
 information, or use a cryptographic signature embedded into the boot
 image itself using a mechanism not described by this document.
 Before rebooting, if connected to a trusted bootstrap server, the
 device MUST try to send a "boot-image-installed-rebooting" progress
 report. Upon rebooting, the bootstrapping process runs again, which
 will eventually come to this step again, but then the device will be
 running the specified boot image, and thus will move to processing
 the next step. If an error occurs at any step while the device is
 connected to a trusted bootstrap server (i.e., before the reboot),
 the device MUST try to send a "boot-image-error" progress report
 before exiting.

 If a pre-configuration script has been specified, the device MUST
 execute the script, capture any output emitted from the script, and
 check if the script had any warnings or errors. If an error occurs
 while the device is connected to a trusted bootstrap server, the
 device MUST try to send a "pre-script-error" progress report before
 exiting.

 If an initial configuration has been specified, the device MUST
 atomically commit the provided initial configuration, using the
 approach specified by the "configuration-handling" leaf. If an error
 occurs while the device is connected to a trusted bootstrap server,
 the device MUST try to send a "config-error" progress report before
 exiting.

 If a post-configuration script has been specified, the device MUST
 execute the script, capture any output emitted from the script, and
 check if the script had any warnings or errors. If an error occurs
 while the device is connected to a trusted bootstrap server, the
 device MUST try to send a "post-script-error" progress report before
 exiting.

 If the onboarding information was obtained from a trusted bootstrap
 server, and the result of the bootstrapping process did not disable
 the "flag to enable SZTP bootstrapping" described in Section 5.1, the
 device SHOULD send an "bootstrap-warning" progress report.

 If the onboarding information was obtained from a trusted bootstrap
 server, the device MUST send a "bootstrap-complete" progress report.
 It is an error if the device does not receive back the "204 No
 Content" HTTP status line. If an error occurs, the device MUST try
 to send a "bootstrap-error" progress report before exiting.

 At this point, the device has completely processed the bootstrapping
 data.

 The device is now running its initial configuration. Notably, if
 NETCONF Call Home or RESTCONF Call Home [RFC8071] is configured, the
 device initiates trying to establish the call home connections at
 this time.

 Implementation Notes:

 Implementations may vary in how to ensure no unwanted state is
 retained when an error occurs.

 Following are some guidelines for if the implementation chooses to
 undo previous steps:

 * When an error occurs, the device must rollback the current step
 and any previous steps.

 * Most steps are atomic. For example, the processing of a
 configuration is specified above as atomic, and the processing
 of scripts is similarly specified as atomic in the "ietf-sztp-
 conveyed-info" YANG module.

 * In case the error occurs after the initial configuration was
 committed, the device must restore the configuration to the
 configuration that existed prior to the configuration being
 committed.

 * In case the error occurs after a script had executed
 successfully, it may be helpful for the implementation to
 define scripts as being able to take a conceptual input
 parameter indicating that the script should remove its
 previously set state.

6. The Conveyed Information Data Model

 This section defines a YANG 1.1 [RFC7950] module that is used to
 define the data model for the conveyed information artifact described
 in Section 3.1. This data model uses the "yang-data" extension
 statement defined in [RFC8040]. Examples illustrating this data
 model are provided in Section 6.2.

6.1. Data Model Overview

 The following tree diagram provides an overview of the data model for
 the conveyed information artifact.

 module: ietf-sztp-conveyed-info

yang‑data conveyed‑information:
 +‑‑ (information‑type)
 +‑‑:(redirect‑information)
 | +‑‑ redirect‑information
 | +‑‑ bootstrap‑server* [address]
 | +‑‑ address inet:host
 | +‑‑ port? inet:port‑number
 | +‑‑ trust‑anchor? cms
 +‑‑:(onboarding‑information)
 +‑‑ onboarding‑information
 +‑‑ boot‑image
 | +‑‑ os‑name? string
 | +‑‑ os‑version? string
 | +‑‑ download‑uri* inet:uri
 | +‑‑ image‑verification* [hash‑algorithm]
 | +‑‑ hash‑algorithm identityref
 | +‑‑ hash‑value yang:hex‑string
 +‑‑ configuration‑handling? enumeration
 +‑‑ pre‑configuration‑script? script
 +‑‑ configuration? binary
 +‑‑ post‑configuration‑script? script

6.2. Example Usage

The following example illustrates how redirect information
(Section 2.1) can be encoded using JSON.

{
 "ietf‑sztp‑conveyed‑info:redirect‑information" : {
 "bootstrap‑server" : [
 {
 "address" : "sztp1.example.com",
 "port" : 8443,
 "trust‑anchor" : "base64encodedvalue=="
 },
 {
 "address" : "sztp2.example.com",
 "port" : 8443,
 "trust‑anchor" : "base64encodedvalue=="
 },
 {
 "address" : "sztp3.example.com",
 "port" : 8443,
 "trust‑anchor" : "base64encodedvalue=="
 }
]
 }
}

 The following example illustrates how onboarding information
 (Section 2.2) can be encoded using JSON.

 [Note: '\' line wrapping for formatting only]

{
 "ietf‑sztp‑conveyed‑info:onboarding‑information" : {
 "boot‑image" : {
 "os‑name" : "VendorOS",
 "os‑version" : "17.2R1.6",
 "download‑uri" : ["http://some/path/to/raw/file"],
 "image‑verification" : [
 {
 "hash‑algorithm" : "ietf‑sztp‑conveyed‑info:sha‑256",
 "hash‑value" : "ba:ec:cf:a5:67:82:b4:10:77:c6:67:a6:22:ab:\
7d:50:04:a7:8b:8f:0e:db:02:8b:f4:75:55:fb:c1:13:b2:33"
 }
]
 },
 "configuration‑handling" : "merge",
 "pre‑configuration‑script" : "base64encodedvalue==",
 "configuration" : "base64encodedvalue==",
 "post‑configuration‑script" : "base64encodedvalue=="
 }
}

6.3. YANG Module

 The conveyed information data model is defined by the YANG module
 presented in this section.

 This module uses data types defined in [RFC5280], [RFC5652],
 [RFC6234], and [RFC6991], an extension statement from [RFC8040], and
 an encoding defined in [ITU.X690.2015].

<CODE BEGINS> file "ietf‑sztp‑conveyed‑info@2019‑01‑11.yang"
module ietf‑sztp‑conveyed‑info {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑sztp‑conveyed‑info";
 prefix sztp‑info;

 import ietf‑yang‑types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }
 import ietf‑inet‑types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types";
 }
 import ietf‑restconf {
 prefix rc;
 reference "RFC 8040: RESTCONF Protocol";
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: http://tools.ietf.org/wg/netconf
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kwatsen@juniper.net>";

description
 "This module defines the data model for the Conveyed
 Information artifact defined in RFC XXXX: Secure Zero Touch
 Provisioning (SZTP).

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119,
 RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents (http://trustee.ietf.org/license‑info)

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

revision 2019‑01‑11 {
 description
 "Initial version";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
}

 // identities

identity hash‑algorithm {
 description
 "A base identity for hash algorithm verification";
}

identity sha‑256 {
 base "hash‑algorithm";
 description "The SHA‑256 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
}

 // typedefs

typedef cms {
 type binary;
 description
 "A ContentInfo structure, as specified in RFC 5652,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU‑T X.690.";
 reference
 "RFC 5652:
 Cryptographic Message Syntax (CMS)
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";

 }

 // yang-data

rc:yang‑data "conveyed‑information" {
 choice information‑type {
 mandatory true;
 description
 "This choice statement ensures the response contains
 redirect‑information or onboarding‑information.";
 container redirect‑information {
 description
 "Redirect information is described in Section 2.1 in
 RFC XXXX. Its purpose is to redirect a device to
 another bootstrap server.";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
 list bootstrap‑server {
 key "address";
 min‑elements 1;
 description
 "A bootstrap server entry.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the bootstrap server the
 device should redirect to.";
 }
 leaf port {
 type inet:port‑number;
 default "443";
 description
 "The port number the bootstrap server listens on. If no
 port is specified, the IANA‑assigned port for 'https'
 (443) is used.";
 }
 leaf trust‑anchor {
 type cms;
 description
 "A CMS structure that MUST contain the chain of
 X.509 certificates needed to authenticate the TLS
 certificate presented by this bootstrap server.

 The CMS MUST only contain a single chain of
 certificates. The bootstrap server MUST only
 authenticate to last intermediate CA certificate
 listed in the chain.

 In all cases, the chain MUST include a self‑signed
 root certificate. In the case where the root
 certificate is itself the issuer of the bootstrap
 server's TLS certificate, only one certificate
 is present.

 If needed by the device, this CMS structure MAY
 also contain suitably fresh revocation objects
 with which the device can verify the revocation
 status of the certificates.

 This CMS encodes the degenerate form of the SignedData
 structure that is commonly used to disseminate X.509
 certificates and revocation objects (RFC 5280).";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.";
 }
 }
 }
 container onboarding‑information {
 description
 "Onboarding information is described in Section 2.2 in
 RFC XXXX. Its purpose is to provide the device everything
 it needs to bootstrap itself.";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
 container boot‑image {
 description
 "Specifies criteria for the boot image the device MUST
 be running, as well as information enabling the device
 to install the required boot image.";
 leaf os‑name {
 type string;
 description
 "The name of the operating system software the device
 MUST be running in order to not require a software
 image upgrade (ex. VendorOS).";
 }
 leaf os‑version {
 type string;
 description
 "The version of the operating system software the
 device MUST be running in order to not require a
 software image upgrade (ex. 17.3R2.1).";
 }
 leaf‑list download‑uri {

 type inet:uri;
 ordered‑by user;
 description
 "An ordered list of URIs to where the same boot image
 file may be obtained. How the URI schemes (http, ftp,
 etc.) a device supports are known is vendor specific.
 If a secure scheme (e.g., https) is provided, a device
 MAY establish an untrusted connection to the remote
 server, by blindly accepting the server's end‑entity
 certificate, to obtain the boot image.";
 }
 list image‑verification {
 must '../download‑uri' {
 description
 "Download URIs must be provided if an image is to
 be verified.";
 }
 key hash‑algorithm;
 description
 "A list of hash values that a device can use to verify
 boot image files with.";
 leaf hash‑algorithm {
 type identityref {
 base "hash‑algorithm";
 }
 description
 "Identifies the hash algorithm used.";
 }
 leaf hash‑value {
 type yang:hex‑string;
 mandatory true;
 description
 "The hex‑encoded value of the specified hash
 algorithm over the contents of the boot image
 file.";
 }
 }
 }
 leaf configuration‑handling {
 type enumeration {
 enum "merge" {
 description
 "Merge configuration into the running datastore.";
 }
 enum "replace" {
 description
 "Replace the existing running datastore with the
 passed configuration.";

 }
 }
 must '../configuration';
 description
 "This enumeration indicates how the server should process
 the provided configuration.";
 }
 leaf pre‑configuration‑script {
 type script;
 description
 "A script that, when present, is executed before the
 configuration has been processed.";
 }
 leaf configuration {
 type binary;
 must '../configuration‑handling';
 description
 "Any configuration known to the device. The use of
 the 'binary' type enables e.g., XML‑content to be
 embedded into a JSON document. The exact encoding
 of the content, as with the scripts, is vendor
 specific.";
 }
 leaf post‑configuration‑script {
 type script;
 description
 "A script that, when present, is executed after the
 configuration has been processed.";
 }
 }
 }
}

typedef script {
 type binary;
 description
 "A device specific script that enables the execution of
 commands to perform actions not possible thru configuration
 alone.

 No attempt is made to standardize the contents, running
 context, or programming language of the script, other than
 that it can indicate if any warnings or errors occurred and
 can emit output. The contents of the script are considered
 specific to the vendor, product line, and/or model of the
 device.

 If the script execution indicates that an warning occurred,

 then the device MUST assume that the script had a soft error
 that the script believes will not affect manageability.

 If the script execution indicates that an error occurred,
 the device MUST assume the script had a hard error that the
 script believes will affect manageability. In this case,
 the script is required to gracefully exit, removing any
 state that might hinder the device's ability to continue
 the bootstrapping sequence (e.g., process onboarding
 information obtained from another bootstrap server).";
 }
}
<CODE ENDS>

7. The SZTP Bootstrap Server API

 This section defines the API for bootstrap servers. The API is
 defined as that produced by a RESTCONF [RFC8040] server that supports
 the YANG 1.1 [RFC7950] module defined in this section.

7.1. API Overview

 The following tree diagram provides an overview for the bootstrap
 server RESTCONF API.

 module: ietf-sztp-bootstrap-server

rpcs:
 +‑‑‑x get‑bootstrapping‑data
 | +‑‑‑w input
 | | +‑‑‑w signed‑data‑preferred? empty
 | | +‑‑‑w hw‑model? string
 | | +‑‑‑w os‑name? string
 | | +‑‑‑w os‑version? string
 | | +‑‑‑w nonce? binary
 | +‑‑ro output
 | +‑‑ro reporting‑level? enumeration {onboarding‑server}?
 | +‑‑ro conveyed‑information cms
 | +‑‑ro owner‑certificate? cms
 | +‑‑ro ownership‑voucher? cms
 +‑‑‑x report‑progress {onboarding‑server}?
 +‑‑‑w input
 +‑‑‑w progress‑type enumeration
 +‑‑‑w message? string
 +‑‑‑w ssh‑host‑keys
 | +‑‑‑w ssh‑host‑key* []
 | +‑‑‑w algorithm string
 | +‑‑‑w key‑data binary
 +‑‑‑w trust‑anchor‑certs
 +‑‑‑w trust‑anchor‑cert* cms

7.2. Example Usage

 This section presents three examples illustrating the bootstrap
 server's API. Two examples are provided for the "get-bootstrapping-
 data" RPC (once to an untrusted bootstrap server, and again to a
 trusted bootstrap server), and one example for the "report-progress"
 RPC.

 The following example illustrates a device using the API to fetch its
 bootstrapping data from a untrusted bootstrap server. In this
 example, the device sends the "signed-data-preferred" input parameter
 and receives signed data in the response.

 REQUEST

 [Note: '\' line wrapping for formatting only]

POST /restconf/operations/ietf‑sztp‑bootstrap‑server:get‑bootstrappi\
ng‑data HTTP/1.1
HOST: example.com
Content‑Type: application/yang.data+xml

<input
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑sztp‑bootstrap‑server">
 <signed‑data‑preferred/>
</input>

 RESPONSE

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2015 17:02:40 GMT
Server: example‑server
Content‑Type: application/yang.data+xml

 <output

 xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
 <conveyed-information>base64encodedvalue==</conveyed-information>
 <owner-certificate>base64encodedvalue==</owner-certificate>
 <ownership-voucher>base64encodedvalue==</ownership-voucher>
 </output>

 The following example illustrates a device using the API to fetch its
 bootstrapping data from a trusted bootstrap server. In this example,
 the device sends addition input parameters to the bootstrap server,
 which it may use when formulating its response to the device.
 REQUEST

 [Note: '\' line wrapping for formatting only]

POST /restconf/operations/ietf‑sztp‑bootstrap‑server:get‑bootstrappi\
ng‑data HTTP/1.1
HOST: example.com
Content‑Type: application/yang.data+xml

<input
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑sztp‑bootstrap‑server">
 <hw‑model>model‑x</hw‑model>
 <os‑name>vendor‑os</os‑name>
 <os‑version>17.3R2.1</os‑version>
 <nonce>extralongbase64encodedvalue=</nonce>
</input>

 RESPONSE

HTTP/1.1 200 OK
Date: Sat, 31 Oct 2015 17:02:40 GMT
Server: example‑server
Content‑Type: application/yang.data+xml

 <output

 xmlns="urn:ietf:params:xml:ns:yang:ietf-sztp-bootstrap-server">
 <reporting-level>verbose</reporting-level>
 <conveyed-information>base64encodedvalue==</conveyed-information>
 </output>

 The following example illustrates a device using the API to post a
 progress report to a bootstrap server. Illustrated below is the
 "bootstrap-complete" message, but the device may send other progress
 reports to the server while bootstrapping. In this example, the
 device is sending both its SSH host keys and a TLS server
 certificate, which the bootstrap server may, for example, pass to an
 NMS, as discussed in Appendix C.3.

 REQUEST

 [Note: '\' line wrapping for formatting only]

POST /restconf/operations/ietf‑sztp‑bootstrap‑server:report‑progress\
 HTTP/1.1
HOST: example.com
Content‑Type: application/yang.data+xml

<input
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑sztp‑bootstrap‑server">
 <progress‑type>bootstrap‑complete</progress‑type>
 <message>example message</message>
 <ssh‑host‑keys>
 <ssh‑host‑key>
 <algorithm>ssh‑rsa</algorithm>
 <key‑data>base64encodedvalue==</key‑data>
 </ssh‑host‑key>
 <ssh‑host‑key>
 <algorithm>rsa‑sha2‑256</algorithm>
 <key‑data>base64encodedvalue==</key‑data>
 </ssh‑host‑key>
 </ssh‑host‑keys>
 <trust‑anchor‑certs>
 <trust‑anchor‑cert>base64encodedvalue==</trust‑anchor‑cert>
 </trust‑anchor‑certs>
</input>

 RESPONSE

HTTP/1.1 204 No Content
Date: Sat, 31 Oct 2015 17:02:40 GMT
Server: example‑server

7.3. YANG Module

 The bootstrap server's device-facing API is normatively defined by
 the YANG module defined in this section.

 This module uses data types defined in [RFC4253], [RFC5652],
 [RFC5280], [RFC6960], and [RFC8366], uses an encoding defined in
 [ITU.X690.2015], and makes a reference to [RFC4250] and [RFC6187].

<CODE BEGINS> file "ietf‑sztp‑bootstrap‑server@2019‑01‑11.yang"
module ietf‑sztp‑bootstrap‑server {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑sztp‑bootstrap‑server";
 prefix sztp‑svr;

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kwatsen@juniper.net>";

 description

 "This module defines an interface for bootstrap servers, as
 defined by RFC XXXX: Secure Zero Touch Provisioning (SZTP).

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119,
RFC 8174) when, and only when, they appear in all
capitals, as shown here.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents (http://trustee.ietf.org/license‑info)

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

revision 2019‑01‑11 {
 description
 "Initial version";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
}

// features
feature redirect‑server {
 description
 "The server supports being a 'redirect server'.";
}

feature onboarding‑server {
 description
 "The server supports being an 'onboarding server'.";
}

 // typedefs

typedef cms {
 type binary;
 description
 "A CMS structure, as specified in RFC 5652, encoded using
 ASN.1 distinguished encoding rules (DER), as specified in
 ITU‑T X.690.";
 reference
 "RFC 5652:
 Cryptographic Message Syntax (CMS)
 ITU‑T X.690:
 Information technology ‑ ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
}

 // RPCs

 rpc get‑bootstrapping‑data {
 description
 "This RPC enables a device, as identified by the RESTCONF
 username, to obtain bootstrapping data that has been made
 available for it.";
 input {
 leaf signed‑data‑preferred {
 type empty;
 description
 "This optional input parameter enables a device to
 communicate to the bootstrap server that it prefers
 to receive signed data. Devices SHOULD always send
 this parameter when the bootstrap server is untrusted.
 Upon receiving this input parameter, the bootstrap
 server MUST return either signed data, or unsigned
 redirect information; the bootstrap server MUST NOT
 return unsigned onboarding information.";
 }
 leaf hw‑model {
 type string;
 description
 "This optional input parameter enables a device to
 communicate to the bootstrap server its vendor specific
 hardware model number. This parameter may be needed,
 for instance, when a device's IDevID certificate does
 not include the 'hardwareModelName' value in its
 subjectAltName field, as is allowed by 802.1AR‑2009.";
 reference

 "IEEE 802.1AR‑2009: IEEE Standard for Local and
 metropolitan area networks ‑ Secure Device Identity";
 }
 leaf os‑name {
 type string;
 description
 "This optional input parameter enables a device to
 communicate to the bootstrap server the name of its
 operating system. This parameter may be useful if
 the device, as identified by its serial number, can
 run more than one type of operating system (e.g.,
 on a white‑box system.";
 }
 leaf os‑version {
 type string;
 description
 "This optional input parameter enables a device to
 communicate to the bootstrap server the version of its
 operating system. This parameter may be used by a
 bootstrap server to return an operating system specific
 response to the device, thus negating the need for a
 potentially expensive boot‑image update.";
 }
 leaf nonce {
 type binary {
 length "16..32";
 }
 description
 "This optional input parameter enables a device to
 communicate to the bootstrap server a nonce value.
 This may be especially useful for devices lacking
 an accurate clock, as then the bootstrap server
 can dynamically obtain from the manufacturer a
 voucher with the nonce value in it, as described
 in RFC 8366.";
 reference
 "RFC 8366:
 A Voucher Artifact for Bootstrapping Protocols";
 }
 }
 output {
 leaf reporting‑level {
 if‑feature onboarding‑server;
 type enumeration {
 enum standard {
 description
 "Send just the progress reports required by RFC XXXX.";
 reference

 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
 }
 enum verbose {
 description
 "Send additional progress reports that might help
 troubleshooting an SZTP bootstrapping issue.";
 }
 }
 default standard;
 description
 "Specifies the reporting level for progress reports the
 bootstrap server would like to receive when processing
 onboarding information. Progress reports are not sent
 when processing redirect information, or when the
 bootstrap server is untrusted (e.g., device sent the
 '<signed‑data‑preferred>' input parameter).";
 }
 leaf conveyed‑information {
 type cms;
 mandatory true;
 description
 "An SZTP conveyed information artifact, as described in
 Section 3.1 of RFC XXXX.";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
 }
 leaf owner‑certificate {
 type cms;
 must '../ownership‑voucher' {
 description
 "An ownership voucher must be present whenever an owner
 certificate is presented.";
 }
 description
 "An owner certificate artifact, as described in Section
 3.2 of RFC XXXX. This leaf is optional because it is
 only needed when the conveyed information artifact is
 signed.";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
 }
 leaf ownership‑voucher {
 type cms;
 must '../owner‑certificate' {
 description
 "An owner certificate must be present whenever an
 ownership voucher is presented.";
 }

 description
 "An ownership voucher artifact, as described by Section
 3.3 of RFC XXXX. This leaf is optional because it is
 only needed when the conveyed information artifact is
 signed.";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
 }
 }
 }

 rpc report‑progress {
 if‑feature onboarding‑server;
 description
 "This RPC enables a device, as identified by the RESTCONF
 username, to report its bootstrapping progress to the
 bootstrap server. This RPC is expected to be used when
 the device obtains onboarding‑information from a trusted
 bootstap server.";
 input {
 leaf progress‑type {
 type enumeration {
 enum "bootstrap‑initiated" {
 description
 "Indicates that the device just used the
 'get‑bootstrapping‑data' RPC. The 'message' node
 below MAY contain any additional information that
 the manufacturer thinks might be useful.";
 }
 enum "parsing‑initiated" {
 description
 "Indicates that the device is about to start parsing
 the onboarding information. This progress type is
 only for when parsing is implemented as a distinct
 step.";
 }
 enum "parsing‑warning" {
 description
 "Indicates that the device had a non‑fatal error when
 parsing the response from the bootstrap server. The
 'message' node below SHOULD indicate the specific
 warning that occurred.";
 }
 enum "parsing‑error" {
 description
 "Indicates that the device encountered a fatal error
 when parsing the response from the bootstrap server.
 For instance, this could be due to malformed encoding,

 the device expecting signed data when only unsigned
 data is provided, the ownership voucher not listing
 the device's serial number, or because the signature
 didn't match. The 'message' node below SHOULD
 indicate the specific error. This progress type
 also indicates that the device has abandoned trying
 to bootstrap off this bootstrap server.";
 }
 enum "parsing‑complete" {
 description
 "Indicates that the device successfully completed
 parsing the onboarding information. This progress
 type is only for when parsing is implemented as a
 distinct step.";
 }
 enum "boot‑image‑initiated" {
 description
 "Indicates that the device is about to start
 processing the boot‑image information.";
 }
 enum "boot‑image‑warning" {
 description
 "Indicates that the device encountered a non‑fatal
 error condition when trying to install a boot‑image.
 A possible reason might include a need to reformat a
 partition causing loss of data. The 'message' node
 below SHOULD indicate any warning messages that were
 generated.";
 }
 enum "boot‑image‑error" {
 description
 "Indicates that the device encountered an error when
 trying to install a boot‑image, which could be for
 reasons such as a file server being unreachable,
 file not found, signature mismatch, etc. The
 'message' node SHOULD indicate the specific error
 that occurred. This progress type also indicates
 that the device has abandoned trying to bootstrap
 off this bootstrap server.";
 }
 enum "boot‑image‑mismatch" {
 description
 "Indicates that the device that has determined that
 it is not running the correct boot image. This
 message SHOULD precipitate trying to download
 a boot image.";
 }
 enum "boot‑image‑installed‑rebooting" {

 description
 "Indicates that the device successfully installed
 a new boot image and is about to reboot. After
 sending this progress type, the device is not
 expected to access the bootstrap server again
 for this bootstrapping attempt.";
 }
 enum "boot‑image‑complete" {
 description
 "Indicates that the device believes that it is
 running the correct boot‑image.";
 }
 enum "pre‑script‑initiated" {
 description
 "Indicates that the device is about to execute the
 'pre‑configuration‑script'.";
 }
 enum "pre‑script‑warning" {
 description
 "Indicates that the device obtained a warning from the
 'pre‑configuration‑script' when it was executed. The
 'message' node below SHOULD capture any output the
 script produces.";
 }
 enum "pre‑script‑error" {
 description
 "Indicates that the device obtained an error from the
 'pre‑configuration‑script' when it was executed. The
 'message' node below SHOULD capture any output the
 script produces. This progress type also indicates
 that the device has abandoned trying to bootstrap
 off this bootstrap server.";
 }
 enum "pre‑script‑complete" {
 description
 "Indicates that the device successfully executed the
 'pre‑configuration‑script'.";
 }
 enum "config‑initiated" {
 description
 "Indicates that the device is about to commit the
 initial configuration.";
 }
 enum "config‑warning" {
 description
 "Indicates that the device obtained warning messages
 when it committed the initial configuration. The
 'message' node below SHOULD indicate any warning

 messages that were generated.";
 }
 enum "config‑error" {
 description
 "Indicates that the device obtained error messages
 when it committed the initial configuration. The
 'message' node below SHOULD indicate the error
 messages that were generated. This progress type
 also indicates that the device has abandoned trying
 to bootstrap off this bootstrap server.";
 }
 enum "config‑complete" {
 description
 "Indicates that the device successfully committed
 the initial configuration.";
 }
 enum "post‑script‑initiated" {
 description
 "Indicates that the device is about to execute the
 'post‑configuration‑script'.";
 }
 enum "post‑script‑warning" {
 description
 "Indicates that the device obtained a warning from the
 'post‑configuration‑script' when it was executed. The
 'message' node below SHOULD capture any output the
 script produces.";
 }
 enum "post‑script‑error" {
 description
 "Indicates that the device obtained an error from the
 'post‑configuration‑script' when it was executed. The
 'message' node below SHOULD capture any output the
 script produces. This progress type also indicates
 that the device has abandoned trying to bootstrap
 off this bootstrap server.";
 }
 enum "post‑script‑complete" {
 description
 "Indicates that the device successfully executed the
 'post‑configuration‑script'.";
 }
 enum "bootstrap‑warning" {
 description
 "Indicates that a warning condition occurred for which
 there no other 'progress‑type' enumeration is deemed
 suitable. The 'message' node below SHOULD describe
 the warning.";

 }
 enum "bootstrap‑error" {
 description
 "Indicates that an error condition occurred for which
 there no other 'progress‑type' enumeration is deemed
 suitable. The 'message' node below SHOULD describe
 the error. This progress type also indicates that
 the device has abandoned trying to bootstrap off
 this bootstrap server.";
 }
 enum "bootstrap‑complete" {
 description
 "Indicates that the device successfully processed
 all 'onboarding‑information' provided, and that it
 is ready to be managed. The 'message' node below
 MAY contain any additional information that the
 manufacturer thinks might be useful. After sending
 this progress type, the device is not expected to
 access the bootstrap server again.";
 }
 enum "informational" {
 description
 "Indicates any additional information not captured
 by any of the other progress types. For instance,
 a message indicating that the device is about to
 reboot after having installed a boot‑image could
 be provided. The 'message' node below SHOULD
 contain information that the manufacturer thinks
 might be useful.";
 }
 }
 mandatory true;
 description
 "The type of progress report provided.";
 }
 leaf message {
 type string;
 description
 "An optional arbitrary value.";
 }
 container ssh‑host‑keys {
 when "../progress‑type = 'bootstrap‑complete'" {
 description
 "SSH host keys are only sent when the progress type
 is 'bootstrap‑complete'.";
 }
 description
 "A list of SSH host keys an NMS may use to authenticate

 subsequent SSH‑based connections to this device (e.g.,
 netconf‑ssh, netconf‑ch‑ssh).";
 list ssh‑host‑key {
 description
 "An SSH host key an NMS may use to authenticate
 subsequent SSH‑based connections to this device
 (e.g., netconf‑ssh, netconf‑ch‑ssh).";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer
 Protocol";
 leaf algorithm {
 type string;
 mandatory true;
 description
 "The public key algorithm name for this SSH key.

 Valid values are listed in the 'Public Key Algorithm
 Names' subregistry of the 'Secure Shell (SSH) Protocol
 Parameters' registry maintained by IANA.";
 reference
 "RFC 4250: The Secure Shell (SSH) Protocol Assigned
 Numbers
 IANA URL: https://www.iana.org/assignments/ssh‑param\\
 eters/ssh‑parameters.xhtml#ssh‑parameters‑19
 ('\\' added for formatting reasons)";
 }
 leaf key‑data {
 type binary;
 mandatory true;
 description
 "The binary public key data for this SSH key, as
 specified by RFC 4253, Section 6.6, i.e.:

 string certificate or public key format
 identifier
 byte[n] key/certificate data.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer
 Protocol";
 }
 }
 }
 container trust‑anchor‑certs {
 when "../progress‑type = 'bootstrap‑complete'" {
 description
 "Trust anchors are only sent when the progress type
 is 'bootstrap‑complete'.";
 }

 description
 "A list of trust anchor certificates an NMS may use to
 authenticate subsequent certificate‑based connections
 to this device (e.g., restconf‑tls, netconf‑tls, or
 even netconf‑ssh with X.509 support from RFC 6187).
 In practice, trust anchors for IDevID certificates do
 not need to be conveyed using this mechanism.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication.";
 leaf‑list trust‑anchor‑cert {
 type cms;
 description
 "A CMS structure whose top‑most content type MUST be the
 signed‑data content type, as described by Section 5 in
 RFC 5652.

 The CMS MUST contain the chain of X.509 certificates
 needed to authenticate the certificate presented by
 the device.

 The CMS MUST contain only a single chain of
 certificates. The last certificate in the chain
 MUST be the issuer for the device's end‑entity
 certificate.

 In all cases, the chain MUST include a self‑signed
 root certificate. In the case where the root
 certificate is itself the issuer of the device's
 end‑entity certificate, only one certificate is
 present.

 This CMS encodes the degenerate form of the SignedData
 structure that is commonly used to disseminate X.509
 certificates and revocation objects (RFC 5280).";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile.
 RFC 5652:
 Cryptographic Message Syntax (CMS)";
 }
 }
 }
 }
}
<CODE ENDS>

8. DHCP Options

 This section defines two DHCP options, one for DHCPv4 and one for
 DHCPv6. These two options are semantically the same, though
 syntactically different.

8.1. DHCPv4 SZTP Redirect Option

 The DHCPv4 SZTP Redirect Option is used to provision the client with
 one or more URIs for bootstrap servers that can be contacted to
 attempt further configuration.

 DHCPv4 SZTP Redirect Option

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+
| option‑code (143) | option‑length |
+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+
. .
. bootstrap‑server‑list (variable length) .
. .
+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+‑‑+

* option‑code: OPTION_V4_SZTP_REDIRECT (143)
* option‑length: The option length in octets.
* bootstrap‑server‑list: A list of servers for the
 client to attempt contacting, in order to obtain
 further bootstrapping data, in the format shown
 in Section 8.3.

 DHCPv4 Client Behavior

 Clients MAY request the OPTION_V4_SZTP_REDIRECT by including its
 option code in the Parameter Request List (55) in DHCP request
 messages.

 On receipt of a DHCPv4 Reply message which contains the
 OPTION_V4_SZTP_REDIRECT, the client processes the response according
 to Section 5.5, with the understanding that the "address" and "port"
 values are encoded in the URIs.

 Any invalid URI entries received in the uri-data field are ignored by
 the client. If OPTION_V4_SZTP_REDIRECT does not contain at least one
 valid URI entry in the uri-data field, then the client MUST discard
 the option.

 As the list of URIs may exceed the maximum allowed length of a single
 DHCPv4 option (255 octets), the client MUST implement [RFC3396],
 allowing the URI list to be split across a number of
 OPTION_V4_SZTP_REDIRECT option instances.

 DHCPv4 Server Behavior

 The DHCPv4 server MAY include a single instance of Option
 OPTION_V4_SZTP_REDIRECT in DHCP messages it sends. Servers MUST NOT
 send more than one instance of the OPTION_V4_SZTP_REDIRECT option.

 The server's DHCP message MUST contain only a single instance of the
 OPTION_V4_SZTP_REDIRECT's 'bootstrap-server-list' field. However,
 the list of URIs in this field may exceed the maximum allowed length
 of a single DHCPv4 option (per [RFC3396]).

 If the length of 'bootstrap-server-list' is small enough to fit into
 a single instance of OPTION_V4_SZTP_REDIRECT, the server MUST NOT
 send more than one instance of this option.

 If the length of the 'bootstrap-server-list' field is too large to
 fit into a single option, then OPTION_V4_SZTP_REDIRECT MUST be split
 into multiple instances of the option according to the process
 described in [RFC3396].

8.2. DHCPv6 SZTP Redirect Option

 The DHCPv6 SZTP Redirect Option is used to provision the client with
 one or more URIs for bootstrap servers that can be contacted to
 attempt further configuration.

 DHCPv6 SZTP Redirect Option

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| option‑code (136) | option‑length |
+‑+
. bootstrap‑server‑list (variable length) .
+‑+

* option‑code: OPTION_V6_SZTP_REDIRECT (136)
* option‑length: The option length in octets.
* bootstrap‑server‑list: A list of servers for the client to
 attempt contacting, in order to obtain further bootstrapping
 data, in the format shown in Section 8.3.

 DHCPv6 Client Behavior

 Clients MAY request the OPTION_V6_SZTP_REDIRECT option, as defined in
 [RFC8415], Sections 18.2.1, 18.2.2, 18.2.4, 18.2.5, 18.2.6, and 21.7.
 As a convenience to the reader, we mention here that the client
 includes requested option codes in the Option Request Option.

 On receipt of a DHCPv6 Reply message which contains the
 OPTION_V6_SZTP_REDIRECT, the client processes the response according
 to Section 5.5, with the understanding that the "address" and "port"
 values are encoded in the URIs.

 Any invalid URI entries received in the uri-data field are ignored by
 the client. If OPTION_V6_SZTP_REDIRECT does not contain at least one
 valid URI entry in the uri-data field, then the client MUST discard
 the option.

 DHCPv6 Server Behavior

 Section 18.3 of [RFC8415] governs server operation in regard to
 option assignment. As a convenience to the reader, we mention here
 that the server will send a particular option code only if configured
 with specific values for that option code and if the client requested
 it.

 Option OPTION_V6_SZTP_REDIRECT is a singleton. Servers MUST NOT send
 more than one instance of the OPTION_V6_SZTP_REDIRECT option.

8.3. Common Field Encoding

 Both of the DHCPv4 and DHCPv6 options defined in this section encode
 a list of bootstrap server URIs. The "URI" structure is a DHCP
 option that can contain multiple URIs (see [RFC7227], Section 5.7).
 Each URI entry in the bootstrap-server-list is structured as follows:

+‑...‑+‑+‑+‑+‑+‑+‑+
| uri‑length | URI |
+‑...‑+‑+‑+‑+‑+‑+‑+

 * uri-length: 2 octets long, specifies the length of the URI data.
 * URI: URI of SZTP bootstrap server.

 The URI of the SZTP bootstrap server MUST use the "https" URI scheme
 defined in Section 2.7.2 of [RFC7230], and MUST be in form
 "https://<ip-address-or-hostname>[:<port>]".

9. Security Considerations

9.1. Clock Sensitivity

 The solution in this document relies on TLS certificates, owner
 certificates, and ownership vouchers, all of which require an
 accurate clock in order to be processed correctly (e.g., to test
 validity dates and revocation status). Implementations SHOULD ensure
 devices have an accurate clock when shipped from manufacturing
 facilities, and take steps to prevent clock tampering.

 If it is not possible to ensure clock accuracy, it is RECOMMENDED
 that implementations disable the aspects of the solution having clock
 sensitivity. In particular, such implementations should assume that
 TLS certificates, ownership vouchers, and owner certificates never
 expire and are not revokable. From an ownership voucher perspective,
 manufacturers SHOULD issue a single ownership voucher for the
 lifetime of such devices.

 Implementations SHOULD NOT rely on NTP for time, as NTP is not a
 secure protocol at this time. Note, there is an IETF work-in-
 progress to secure NTP [I-D.ietf-ntp-using-nts-for-ntp].

9.2. Use of IDevID Certificates

 IDevID certificates, as defined in [Std-802.1AR-2018], are
 RECOMMENDED, both for the TLS-level client certificate used by
 devices when connecting to a bootstrap server, as well as for the
 device identity certificate used by owners when encrypting the SZTP
 bootstrapping data artifacts.

9.3. Immutable Storage for Trust Anchors

 Devices MUST ensure that all their trust anchor certificates,
 including those for connecting to bootstrap servers and verifying
 ownership vouchers, are protected from external modification.

 It may be necessary to update these certificates over time (e.g., the
 manufacturer wants to delegate trust to a new CA). It is therefore
 expected that devices MAY update these trust anchors when needed
 through a verifiable process, such as a software upgrade using signed
 software images.

9.4. Secure Storage for Long-lived Private Keys

 Manufacturer-generated device identifiers may have very long
 lifetimes. For instance, [Std-802.1AR-2018] recommends using the
 "notAfter" value 99991231235959Z in IDevID certificates. Given the
 long-lived nature of these private keys, it is paramount that they
 are stored so as to resist discovery, such as in a secure
 cryptographic processor, such as a trusted platform module (TPM)
 chip.

9.5. Blindly Authenticating a Bootstrap Server

 This document allows a device to blindly authenticate a bootstrap
 server's TLS certificate. It does so to allow for cases where the
 redirect information may be obtained in an unsecured manner, which is
 desirable to support in some cases.

 To compensate for this, this document requires that devices, when
 connected to an untrusted bootstrap server, assert that data
 downloaded from the server is signed.

9.6. Disclosing Information to Untrusted Servers

 This document allows devices to establish connections to untrusted
 bootstrap servers. However, since the bootstrap server is untrusted,
 it may be under the control of an adversary, and therefore devices
 SHOULD be cautious about the data they send to the bootstrap server
 in such cases.

 Devices send different data to bootstrap servers at each of the
 protocol layers TCP, TLS, HTTP, and RESTCONF.

 At the TCP protocol layer, devices may relay their IP address,
 subject to network translations. Disclosure of this information is
 not considered a security risk.

 At the TLS protocol layer, devices may use a client certificate to
 identify and authenticate themselves to untrusted bootstrap servers.
 At a minimum, the client certificate must disclose the device's
 serial number, and may disclose additional information such as the
 device's manufacturer, hardware model, public key, etc. Knowledge of
 this information may provide an adversary with details needed to
 launch an attack. It is RECOMMENDED that secrecy of the network
 constituency is not relied on for security.

 At the HTTP protocol layer, devices may use an HTTP authentication
 scheme to identify and authenticate themselves to untrusted bootstrap
 servers. At a minimum, the authentication scheme must disclose the
 device's serial number and, concerningly, may, depending on the
 authentication mechanism used, reveal a secret that is only supposed
 to be known to the device (e.g., a password). Devices SHOULD NOT use
 an HTTP authentication scheme (e.g., HTTP Basic) with an untrusted
 bootstrap server that reveals a secret that is only supposed to be
 known to the device.

 At the RESTCONF protocol layer, devices use the "get-bootstrapping-
 data" RPC, but not the "report-progress" RPC, when connected to an
 untrusted bootstrap server. The "get-bootstrapping-data" RPC allows
 additional input parameters to be passed to the bootstrap server
 (e.g., "os-name", "os-version", "hw-model"). It is RECOMMENDED that
 devices only pass the "signed-data-preferred" input parameter to an
 untrusted bootstrap server. While it is okay for a bootstrap server
 to immediately return signed onboarding information, it is
 RECOMMENDED that bootstrap servers instead promote the untrusted
 connection to a trusted connection, as described in Appendix B, thus
 enabling the device to use the "report-progress" RPC while processing
 the onboarding information.

9.7. Sequencing Sources of Bootstrapping Data

 For devices supporting more than one source for bootstrapping data,
 no particular sequencing order has to be observed for security
 reasons, as the solution for each source is considered equally
 secure. However, from a privacy perspective, it is RECOMMENDED that
 devices access local sources before accessing remote sources.

9.8. Safety of Private Keys used for Trust

 The solution presented in this document enables bootstrapping data to
 be trusted in two ways, either through transport level security or
 through the signing of artifacts.

 When transport level security (i.e., a trusted bootstrap server) is
 used, the private key for the end-entity certificate must be online
 in order to establish the TLS connection.

 When artifacts are signed, the signing key is required to be online
 only when the bootstrap server is returning a dynamically generated
 signed-data response. For instance, a bootstrap server, upon
 receiving the "signed-data-preferred" input parameter to the "get-
 bootstrapping-data" RPC, may dynamically generate a response that is
 signed.

 Bootstrap server administrators are RECOMMENDED to follow best
 practice to protect the private key used for any online operation.
 For instance, use of a hardware security module (HSM) is RECOMMENDED.
 If an HSM is not used, frequent private key refreshes are
 RECOMMENDED, assuming all bootstrapping devices have an accurate
 clock (see Section 9.1).

 For best security, it is RECOMMENDED that owners only provide
 bootstrapping data that has been signed, using a protected private
 key, and encrypted, using the device's public key from its secure
 device identity certificate.

9.9. Increased Reliance on Manufacturers

 The SZTP bootstrapping protocol presented in this document shifts
 some control of initial configuration away from the rightful owner of
 the device and towards the manufacturer and its delegates.

 The manufacturer maintains the list of well-known bootstrap servers
 its devices will trust. By design, if no bootstrapping data is found
 via other methods first, the device will try to reach out to the
 well-known bootstrap servers. There is no mechanism to prevent this
 from occurring other than by using an external firewall to block such
 connections. Concerns related to trusted bootstrap servers are
 discussed in Section 9.10.

 Similarly, the manufacturer maintains the list of voucher signing
 authorities its devices will trust. The voucher signing authorities
 issue the vouchers that enable a device to trust an owner's domain
 certificate. It is vital that manufacturers ensure the integrity of
 these voucher signing authorities, so as to avoid incorrect
 assignments.

 Operators should be aware that this system assumes that they trust
 all the pre-configured bootstrap servers and voucher signing
 authorities designated by the manufacturers. While operators may use
 points in the network to block access to the well-known bootstrap
 servers, operators cannot prevent voucher signing authorities from
 generating vouchers for their devices.

9.10. Concerns with Trusted Bootstrap Servers

 Trusted bootstrap servers, whether well-known or discovered, have the
 potential to cause problems, such as the following.

 o A trusted bootstrap server that has been compromised may be
 modified to return unsigned data of any sort. For instance, a
 bootstrap server that is only suppose to return redirect
 information might be modified to return onboarding information.
 Similarly, a bootstrap server that is only supposed to return
 signed data, may be modified to return unsigned data. In both
 cases, the device will accept the response, unaware that it wasn't
 supposed to be any different. It is RECOMMENDED that maintainers
 of trusted bootstrap servers ensure that their systems are not
 easily compromised and, in case of compromise, have mechanisms in

 place to detect and remediate the compromise as expediently as
 possible.

 o A trusted bootstrap server hosting either unsigned, or signed but
 not encrypted, data may disclose information to unwanted parties
 (e.g., an administrator of the bootstrap server). This is a
 privacy issue only, but could reveal information that might be
 used in a subsequent attack. Disclosure of redirect information
 has limited exposure (it is just a list of bootstrap servers),
 whereas disclosure of onboarding information could be highly
 revealing (e.g., network topology, firewall policies, etc.). It
 is RECOMMENDED that operators encrypt the bootstrapping data when
 its contents are considered sensitive, even to the point of hiding
 it from the administrators of the bootstrap server, which may be
 maintained by a 3rd-party.

9.11. Validity Period for Conveyed Information

 The conveyed information artifact does not specify a validity period.
 For instance, neither redirect information nor onboarding information
 enable "not-before" or "not-after" values to be specified, and
 neither artifact alone can be revoked.

 For unsigned data provided by an untrusted source of bootstrapping
 data, it is not meaningful to discuss its validity period when the
 information itself has no authenticity and may have come from
 anywhere.

 For unsigned data provided by a trusted source of bootstrapping data
 (i.e., a bootstrap server), the availability of the data is the only
 measure of it being current. Since the untrusted data comes from a
 trusted source, its current availability is meaningful and, since
 bootstrap servers use TLS, the contents of the exchange cannot be
 modified or replayed.

 For signed data, whether provided by an untrusted or trusted source
 of bootstrapping data, the validity is constrained by the validity of
 the both the ownership voucher and owner certificate used to
 authenticate it.

 The ownership voucher's validity is primarily constrained by the
 ownership voucher's "created-on" and "expires-on" nodes. While
 [RFC8366] recommends short-lived vouchers (see Section 6.1), the
 "expires-on" node may be set to any point in the future, or omitted
 altogether to indicate that the voucher never expires. The ownership
 voucher's validity is secondarily constrained by the manufacturer's
 PKI used to sign the voucher; whilst an ownership voucher cannot be
 revoked directly, the PKI used to sign it may be.

 The owner certificate's validity is primarily constrained by the
 X.509's validity field, the "notBefore" and "notAfter" values, as
 specified by the certificate authority that signed it. The owner
 certificate's validity is secondarily constrained by the validity of
 the PKI used to sign the voucher. Owner certificates may be revoked
 directly.

 For owners that wish to have maximum flexibility in their ability to
 specify and constrain the validity of signed data, it is RECOMMENDED
 that a unique owner certificate is created for each signed artifact.
 Not only does this enable a validity period to be specified, for each
 artifact, but it also enables to the validity of each artifact to be
 revoked.

9.12. Cascading Trust via Redirects

 Redirect Information (Section 2.1), by design, instructs a
 bootstrapping device to initiate a HTTPS connection to the specified
 bootstrap servers.

 When the redirect information is trusted, the redirect information
 can encode a trust anchor certificate used by the device to
 authenticate the TLS end-entity certificate presented by each
 bootstrap server.

 As a result, any compromise in an interaction providing redirect
 information may result in compromise of all subsequent interactions.

9.13. Possible Reuse of Private Keys

 This document describes two uses for secure device identity
 certificates.

 The primary use is for when the device authenticates itself to a
 bootstrap server, using its private key for TLS-level client-
 certificate based authentication.

 A secondary use is for when the device needs to decrypt provided
 bootstrapping artifacts, using its private key to decrypt the data
 or, more precisely, per Section 6 in [RFC5652], decrypt a symmetric
 key used to decrypt the data.

 This document, in Section 3.4 allows for the possibility that the
 same secure device identity certificate is used for both uses, as
 [Std-802.1AR-2018] states that a DevID certificate MAY have the
 "keyEncipherment" KeyUsage bit, in addition to the "digitalSignature"
 KeyUsage bit, set.

 While it is understood that it is generally frowned upon to reuse
 private keys, this document views such reuse acceptable as there are
 not any known ways to cause a signature made in one context to be
 (mis)interpreted as valid in the other context.

9.14. Non-Issue with Encrypting Signed Artifacts

 This document specifies the encryption of signed objects, as opposed
 to the signing of encrypted objects, as might be expected given well-
 publicized oracle attacks (e.g., the padding oracle attack).

 This document does not view such attacks as feasible in the context
 of the solution because the decrypted text never leaves the device.

9.15. The "ietf-sztp-conveyed-info" YANG Module

 The ietf-sztp-conveyed-info module defined in this document defines a
 data structure that is always wrapped by a CMS structure. When
 accessed by a secure mechanism (e.g., protected by TLS), then the CMS
 structure may be unsigned. However, when accessed by an insecure
 mechanism (e.g., removable storage device), then the CMS structure
 must be signed, in order for the device to trust it.

 Implementations should be aware that signed bootstrapping data only
 protects the data from modification, and that the contents are still
 visible to others. This doesn't affect security so much as privacy.
 That the contents may be read by unintended parties when accessed by
 insecure mechanisms is considered next.

 The ietf-sztp-conveyed-info module defines a top-level "choice"
 statement that declares the contents are either "redirect-
 information" or "onboarding-information". Each of these two cases
 are now considered.

 When the content of the CMS structure is redirect-information, an
 observer can learn about the bootstrap servers the device is being
 directed to, their IP addresses or hostnames, ports, and trust anchor
 certificates. Knowledge of this information could provide an
 observer some insight into a network's inner structure.

 When the content of the CMS structure is onboarding information, an
 observer could learn considerable information about how the device is
 to be provisioned. This information includes the operating system
 version, initial configuration, and script contents. This
 information should be considered sensitive and precautions should be
 taken to protect it (e.g., encrypt the artifact using the device's
 public key).

9.16. The "ietf-sztp-bootstrap-server" YANG Module

 The ietf-sztp-bootstrap-server module defined in this document
 specifies an API for a RESTCONF [RFC8040]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF Access Control Model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a preconfigured subset of
 all available protocol operations and content.

 This module presents no data nodes (only RPCs). There is no need to
 discuss the sensitivity of data nodes.

 This module defines two RPC operations that may be considered
 sensitive in some network environments. These are the operations and
 their sensitivity/vulnerability:

get‑bootstrapping‑data: This RPC is used by devices to obtain their
 bootstrapping data. By design, each device, as identified by its
 authentication credentials (e.g. client certificate), can only
 obtain its own data. NACM is not needed to further constrain
 access to this RPC.

report‑progress: This RPC is used by devices to report their
 bootstrapping progress. By design, each device, as identified by
 its authentication credentials (e.g. client certificate), can
 only report data for itself. NACM is not needed to further
 constrain access to this RPC.

10. IANA Considerations

10.1. The IETF XML Registry

 This document registers two URIs in the "ns" subregistry of the IETF
 XML Registry [RFC3688] maintained at
 https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns.
 Following the format in [RFC3688], the following registrations are
 requested:

URI: urn:ietf:params:xml:ns:yang:ietf‑sztp‑conveyed‑info
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑sztp‑bootstrap‑server
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

10.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020] maintained at https://www.iana.org/assignments/
 yang-parameters/yang-parameters.xhtml. Following the format defined
 in [RFC6020], the below registrations are requested:

name: ietf‑sztp‑conveyed‑info
namespace: urn:ietf:params:xml:ns:yang:ietf‑sztp‑conveyed‑info
prefix: sztp‑info
reference: RFC XXXX

name: ietf‑sztp‑bootstrap‑server
namespace: urn:ietf:params:xml:ns:yang:ietf‑sztp‑bootstrap‑server
prefix: sztp‑svr
reference: RFC XXXX

10.3. The SMI Security for S/MIME CMS Content Type Registry

 This document registers two SMI security codes in the "SMI Security
 for S/MIME CMS Content Type" registry (1.2.840.113549.1.9.16.1)
 maintained at https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#security-smime-1. Following the format used in
 Section 3.4 of [RFC7107], the below registrations are requested:

Decimal Description References
‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
TBD1 id‑ct‑sztpConveyedInfoXML [RFCXXXX]
TBD2 id‑ct‑sztpConveyedInfoJSON [RFCXXXX]

 id-ct-sztpConveyedInfoXML indicates that the "conveyed-information"
 is encoded using XML. id-ct-sztpConveyedInfoJSON indicates that the
 "conveyed-information" is encoded using JSON.

10.4. The BOOTP Manufacturer Extensions and DHCP Options Registry

 This document registers one DHCP code point in the "BOOTP
 Manufacturer Extensions and DHCP Options" registry maintained at
 http://www.iana.org/assignments/bootp-dhcp-parameters. Following the
 format used by other registrations, the below registration is
 requested:

Tag: 143
Name: OPTION_V4_SZTP_REDIRECT
Data Length: N
Meaning: This option provides a list of URIs
 for SZTP bootstrap servers
Reference: [RFCXXXX]

 Note: this request is to make permanent a previously registered early
 code point allocation.

10.5. The Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
 Registry

 This document registers one DHCP code point in "Option Codes"
 subregistry of the "Dynamic Host Configuration Protocol for IPv6
 (DHCPv6)" registry maintained at http://www.iana.org/assignments/
 dhcpv6-parameters. Following the format used by other registrations,
 the below registration is requested:

Value: 136
Description: OPTION_V6_SZTP_REDIRECT
Client ORO: Yes
Singleton Option: Yes
Reference: [RFCXXXX]

 Note: this request is to make permanent a previously registered early
 code point allocation.

10.6. The Service Name and Transport Protocol Port Number Registry

 This document registers one service name in the Service Name and
 Transport Protocol Port Number Registry [RFC6335] maintained at
 https://www.iana.org/assignments/service-names-port-numbers/service-
 names-port-numbers.xhtml. Following the format defined in
 Section 8.1.1 of [RFC6335], the below registration is requested:

Service Name: sztp
Transport Protocol(s): TCP
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Description: This service name is used to construct the
 SRV service label "_sztp" for discovering
 SZTP bootstrap servers.
Reference: [RFCXXXX]
Port Number: N/A
Service Code: N/A
Known Unauthorized Uses: N/A
Assignment Notes: This protocol uses HTTPS as a substrate.

10.7. The DNS Underscore Global Scoped Entry Registry

 This document registers one service name in the DNS Underscore Global
 Scoped Entry Registry [I-D.ietf-dnsop-attrleaf] maintained at
 TBD_IANA_URL. Following the format defined in Section 4.3 of
 [I-D.ietf-dnsop-attrleaf], the below registration is requested:

RR Type: TXT
_NODE NAME: _sztp
Reference: [RFCXXXX]

11. References

11.1. Normative References

 [I-D.ietf-dnsop-attrleaf]

 Crocker, D., "DNS Scoped Data Through "Underscore" Naming
 of Attribute Leaves", draft-ietf-dnsop-attrleaf-16 (work
 in progress), November 2018.

 [ITU.X690.2015]

 International Telecommunication Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, ISO/IEC 8825-1, August 2015,
 <https://www.itu.int/rec/T-REC-X.690/>.

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2782]
 Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC3396]
 Lemon, T. and S. Cheshire, "Encoding Long Options in the
 Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
 DOI 10.17487/RFC3396, November 2002,
 <https://www.rfc-editor.org/info/rfc3396>.

 [RFC4253]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652]
 Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6762]
 Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7227]
 Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
 S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
 BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
 <https://www.rfc-editor.org/info/rfc7227>.

 [RFC7230]
 Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8366]
 Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8415]
 Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A.,
 Richardson, M., Jiang, S., Lemon, T., and T. Winters,
 "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)",
 RFC 8415, DOI 10.17487/RFC8415, November 2018,
 <https://www.rfc-editor.org/info/rfc8415>.

 [Std-802.1AR-2018]

 IEEE SA-Standards Board, "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity", June
 2018, <http://standards.ieee.org/findstds/
 standard/802.1AR-2018.html>.

11.2. Informative References

 [I-D.ietf-netconf-crypto-types]

 Watsen, K. and H. Wang, "Common YANG Data Types for
 Cryptography", draft-ietf-netconf-crypto-types-02 (work in
 progress), October 2018.

 [I-D.ietf-netconf-trust-anchors]

 Watsen, K., "YANG Data Model for Global Trust Anchors",
 draft-ietf-netconf-trust-anchors-02 (work in progress),
 October 2018.

 [I-D.ietf-ntp-using-nts-for-ntp]

 Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", draft-ietf-ntp-using-nts-for-ntp-15 (work in
 progress), December 2018.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4250]
 Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250,
 DOI 10.17487/RFC4250, January 2006,
 <https://www.rfc-editor.org/info/rfc4250>.

 [RFC6187]
 Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <https://www.rfc-editor.org/info/rfc6187>.

 [RFC6234]
 Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6698]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC6763]
 Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC6891]
 Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <https://www.rfc-editor.org/info/rfc6891>.

 [RFC6960]
 Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC7107]
 Housley, R., "Object Identifier Registry for the S/MIME
 Mail Security Working Group", RFC 7107,
 DOI 10.17487/RFC7107, January 2014,
 <https://www.rfc-editor.org/info/rfc7107>.

 [RFC7766]
 Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
 D. Wessels, "DNS Transport over TCP - Implementation
 Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,
 <https://www.rfc-editor.org/info/rfc7766>.

 [RFC8071]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340]
 Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Example Device Data Model

 This section defines a non-normative data model that enables the
 configuration of SZTP bootstrapping and discovery of what parameters
 are used by a device's bootstrapping logic.

A.1. Data Model Overview

 The following tree diagram provides an overview for the SZTP device
 data model.

module: example‑device‑data‑model
 +‑‑rw sztp
 +‑‑rw enabled? boolean
 +‑‑ro idevid‑certificate? ct:end‑entity‑cert‑cms
 | {bootstrap‑servers}?
 +‑‑ro bootstrap‑servers {bootstrap‑servers}?
 | +‑‑ro bootstrap‑server* [address]
 | +‑‑ro address inet:host
 | +‑‑ro port? inet:port‑number
 +‑‑ro bootstrap‑server‑trust‑anchors {bootstrap‑servers}?
 | +‑‑ro reference* ta:pinned‑certificates‑ref
 +‑‑ro voucher‑trust‑anchors {signed‑data}?
 +‑‑ro reference* ta:pinned‑certificates‑ref

 In the above diagram, notice that there is only one configurable node
 "enabled". The expectation is that this node would be set to "true"
 in device's factory default configuration and that it would either be
 set to "false" or deleted when the SZTP bootstrapping is longer
 needed.

A.2. Example Usage

 Following is an instance example for this data model.

<sztp xmlns="https://example.com/sztp‑device‑data‑model">
 <enabled>true</enabled>
 <idevid‑certificate>base64encodedvalue==</idevid‑certificate>
 <bootstrap‑servers>
 <bootstrap‑server>
 <address>sztp1.example.com</address>
 <port>8443</port>
 </bootstrap‑server>
 <bootstrap‑server>
 <address>sztp2.example.com</address>
 <port>8443</port>
 </bootstrap‑server>
 <bootstrap‑server>
 <address>sztp3.example.com</address>
 <port>8443</port>
 </bootstrap‑server>
 </bootstrap‑servers>
 <bootstrap‑server‑trust‑anchors>
 <reference>manufacturers‑root‑ca‑certs</reference>
 </bootstrap‑server‑trust‑anchors>
 <voucher‑trust‑anchors>
 <reference>manufacturers‑root‑ca‑certs</reference>
 </voucher‑trust‑anchors>
</sztp>

A.3. YANG Module

 The device model is defined by the YANG module defined in this
 section.

 This module uses data types defined in [RFC6991],
 [I-D.ietf-netconf-crypto-types], and
 [I-D.ietf-netconf-trust-anchors].

module example‑device‑data‑model {
 yang‑version 1.1;
 namespace "https://example.com/sztp‑device‑data‑model";
 prefix sztp‑ddm;

 import ietf‑inet‑types {
 prefix inet;
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf‑crypto‑types {
 prefix ct;
 revision‑date 2018‑06‑04;
 description

 "This revision is defined in the ‑00 version of
 draft‑ietf‑netconf‑crypto‑types";
 reference
 "draft‑ietf‑netconf‑crypto‑types:
 Common YANG Data Types for Cryptography";
 }

 import ietf‑trust‑anchors {
 prefix ta;
 revision‑date 2018‑06‑04;
 description
 "This revision is defined in ‑00 version of
 draft‑ietf‑netconf‑trust‑anchors.";
 reference
 "draft‑ietf‑netconf‑trust‑anchors:
 YANG Data Model for Global Trust Anchors";
 }

 organization

 "Example Corporation";

 contact

 "Author: Bootstrap Admin <mailto:admin@example.com>";

description
 "This module defines a data model to enable SZTP
 bootstrapping and discover what parameters are used.
 This module assumes the use of an IDevID certificate,
 as opposed to any other client certificate, or the
 use of an HTTP‑based client authentication scheme.";

revision 2019‑01‑11 {
 description
 "Initial version";
 reference
 "RFC XXXX: Secure Zero Touch Provisioning (SZTP)";
}

 // features

feature bootstrap‑servers {
 description
 "The device supports bootstrapping off bootstrap servers.";
}

feature signed‑data {
 description
 "The device supports bootstrapping off signed data.";

 }

 // protocol accessible nodes

 container sztp {
 description
 "Top‑level container for SZTP data model.";
 leaf enabled {
 type boolean;
 default false;
 description
 "The 'enabled' leaf controls if SZTP bootstrapping is
 enabled or disabled. The default is 'false' so that, when
 not enabled, which is most of the time, no configuration
 is needed.";
 }
 leaf idevid‑certificate {
 if‑feature bootstrap‑servers;
 type ct:end‑entity‑cert‑cms;
 config false;
 description
 "This CMS structure contains the IEEE 802.1AR‑2009
 IDevID certificate itself, and all intermediate
 certificates leading up to, and optionally including,
 the manufacturer's well‑known trust anchor certificate
 for IDevID certificates. The well‑known trust anchor
 does not have to be a self‑signed certificate.";
 reference
 "IEEE 802.1AR‑2009:
 IEEE Standard for Local and metropolitan area
 networks ‑ Secure Device Identity.";
 }
 container bootstrap‑servers {
 if‑feature bootstrap‑servers;
 config false;
 description
 "List of bootstrap servers this device will attempt
 to reach out to when bootstrapping.";
 list bootstrap‑server {
 key "address";
 description
 "A bootstrap server entry.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the bootstrap server the
 device should redirect to.";

 }
 leaf port {
 type inet:port‑number;
 default "443";
 description
 "The port number the bootstrap server listens on. If no
 port is specified, the IANA‑assigned port for 'https'
 (443) is used.";
 }
 }
 }
 container bootstrap‑server‑trust‑anchors {
 if‑feature bootstrap‑servers;
 config false;
 description "Container for a list of trust anchor references.";
 leaf‑list reference {
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of pinned certificate authority (CA)
 certificates that the device uses to validate bootstrap
 servers with.";
 }
 }
 container voucher‑trust‑anchors {
 if‑feature signed‑data;
 config false;
 description "Container for a list of trust anchor references.";
 leaf‑list reference {
 type ta:pinned‑certificates‑ref;
 description
 "A reference to a list of pinned certificate authority (CA)
 certificates that the device uses to validate ownership
 vouchers with.";
 }
 }
 }
}

Appendix B. Promoting a Connection from Untrusted to Trusted

 The following diagram illustrates a sequence of bootstrapping
 activities that promote an untrusted connection to a bootstrap server
 to a trusted connection to the same bootstrap server. This enables a
 device to limit the amount of information it might disclose to an
 adversary hosting an untrusted bootstrap server.

 +‑‑‑‑‑‑‑‑‑‑+
 |Deployment|
 | Specific |
+‑‑‑‑‑‑+ |Bootstrap |
|Device| | Server |
+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
 | |
 | 1. "HTTPS" Request ("signed‑data‑preferred", nonce) |
 |‑‑‑>|
 | 2. "HTTPS" Response (signed redirect information) |
 |<‑‑‑|
 | |
 | |
 | 3. HTTPS Request (os‑name=xyz, os‑version=123, etc.) |
 |‑‑‑>|
 | 4. HTTPS Response (unsigned onboarding information |
 |<‑‑‑|
 | |

 The interactions in the above diagram are described below.

 1. The device initiates an untrusted connection to a bootstrap
 server, as is indicated by putting "HTTPS" in double quotes
 above. It is still an HTTPS connection, but the device is unable
 to authenticate the bootstrap server's TLS certificate. Because
 the device is unable to trust the bootstrap server, it sends the
 "signed-data-preferred" input parameter, and optionally also the
 "nonce" input parameter, in the "get-bootstrapping-data" RPC.
 The "signed-data-preferred" parameter informs the bootstrap
 server that the device does not trust it and may be holding back
 some additional input parameters from the server (e.g., other
 input parameters, progress reports, etc.). The "nonce" input
 parameter enables the bootstrap server to dynamically obtain an
 ownership voucher from a MASA, which may be important for devices
 that do not have a reliable clock.

 2. The bootstrap server, seeing the "signed-data-preferred" input
 parameter, knows that it can either send unsigned redirect
 information or signed data of any type. But, in this case, the
 bootstrap server has the ability to sign data and chooses to
 respond with signed redirect information, not signed onboarding
 information as might be expected, securely redirecting the device
 back to it again. Not displayed but, if the "nonce" input
 parameter was passed, the bootstrap server could dynamically
 connect to a download a voucher from the MASA having the nonce
 value in it. Details regarding a protocol enabling this
 integration is outside the scope of this document.

 3. Upon validating the signed redirect information, the device
 establishes a secure connection to the bootstrap server.
 Unbeknownst to the device, it is the same bootstrap server it was
 connected to previously but, because the device is able to
 authenticate the bootstrap server this time, it sends its normal
 "get-bootstrapping-data" request (i.e., with additional input
 parameters) as well as its progress reports (not depicted).

 4. This time, because the "signed-data-preferred" parameter was not
 passed, having access to all of the device's input parameters,
 the bootstrap server returns, in this example, unsigned
 onboarding information to the device. Note also that, because
 the bootstrap server is now trusted, the device will send
 progress reports to the server.

Appendix C. Workflow Overview

 The solution presented in this document is conceptualized to be
 composed of the non-normative workflows described in this section.
 Implementation details are expected to vary. Each diagram is
 followed by a detailed description of the steps presented in the
 diagram, with further explanation on how implementations may vary.

C.1. Enrollment and Ordering Devices

 The following diagram illustrates key interactions that may occur
 from when a prospective owner enrolls in a manufacturer's SZTP
 program to when the manufacturer ships devices for an order placed by
 the prospective owner.

 +‑‑‑‑‑‑‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑‑‑‑+ |Prospective| +‑‑‑+
|Manufacturer| | Owner | |NMS|
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
 | | |
 | | |
 | 1. initiate enrollment | |
 #<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| |
 # | |
 # | |
 # IDevID trust anchor | |
 #‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑># set IDevID trust anchor |
 # #‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 # | |
 # bootstrap server | |
 # account credentials | |
 #‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑># set credentials |
 | #‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | |
 | | |
 | 2. set owner certificate trust anchor |
 |<‑‑|
 | | |
 | | |
 | 3. place device order | |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑# model devices |
 | #‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | |
 | 4. ship devices and send | |
 | device identifiers and | |
 | ownership vouchers | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑># set device identifiers |
 | # and ownership vouchers |
 | #‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | | |

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. A prospective owner of a manufacturer's devices initiates an
 enrollment process with the manufacturer. This process includes
 the following:

 * Regardless how the prospective owner intends to bootstrap
 their devices, they will always obtain from the manufacturer
 the trust anchor certificate for the IDevID certificates.
 This certificate will is installed on the prospective owner's

 NMS so that the NMS can authenticate the IDevID certificates
 when they are presented to subsequent steps.

 * If the manufacturer hosts an Internet based bootstrap server
 (e.g., a redirect server) such as described in Section 4.4,
 then credentials necessary to configure the bootstrap server
 would be provided to the prospective owner. If the bootstrap
 server is configurable through an API (outside the scope of
 this document), then the credentials might be installed on the
 prospective owner's NMS so that the NMS can subsequently
 configure the manufacturer-hosted bootstrap server directly.

 2. If the manufacturer's devices are able to validate signed data
 (Section 5.4), and assuming that the prospective owner's NMS is
 able to prepare and sign the bootstrapping data itself, the
 prospective owner's NMS might set a trust anchor certificate onto
 the manufacturer's bootstrap server, using the credentials
 provided in the previous step. This certificate is the trust
 anchor certificate that the prospective owner would like the
 manufacturer to place into the ownership vouchers it generates,
 thereby enabling devices to trust the owner's owner certificate.
 How this trust anchor certificate is used to enable devices to
 validate signed bootstrapping data is described in Section 5.4.

 3. Some time later, the prospective owner places an order with the
 manufacturer, perhaps with a special flag checked for SZTP
 handling. At this time, or perhaps before placing the order, the
 owner may model the devices in their NMS, creating virtual
 objects for the devices with no real-world device associations.
 For instance the model can be used to simulate the device's
 location in the network and the configuration it should have when
 fully operational.

 4. When the manufacturer fulfills the order, shipping the devices to
 their intended locations, they may notify the owner of the
 devices' serial numbers and shipping destinations, which the
 owner may use to stage the network for when the devices power on.
 Additionally, the manufacturer may send one or more ownership
 vouchers, cryptographically assigning ownership of those devices
 to the owner. The owner may set this information on their NMS,
 perhaps binding specific modeled devices to the serial numbers
 and ownership vouchers.

C.2. Owner Stages the Network for Bootstrap

 The following diagram illustrates how an owner might stage the
 network for bootstrapping devices.

 +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 |Deployment| |Manufacturer| +‑‑‑‑‑‑+ +‑‑‑‑‑‑+
 | Specific | | Hosted | | Local| | Local| +‑‑‑‑‑‑‑‑‑+
 +‑‑‑+ |Bootstrap | | Bootstrap | | DNS | | DHCP | |Removable|
 |NMS| | Server | | Server | |Server| |Server| | Storage |
 +‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑+
 | | | | | |
1. | | | | | |
activate| | | | | |
modeled | | | | | |
device | | | | | |
‑‑‑‑‑‑‑>| | | | | |
 | 2. (optional) | | | | |
 | configure | | | |
 | bootstrap | | | |
 | server | | | |
 |‑‑‑‑‑‑‑>| | | | |
 | | | | | |
 | 3. (optional) configure | | |
 | bootstrap server | | | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | | |
 | | | | | |
 | | | | | |
 | 4. (optional) configure DNS server| | |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| | |
 | | | | | |
 | | | | | |
 | 5. (optional) configure DHCP server | |
 |‑‑‑>| |
 | | | | | |
 | | | | | |
 | 6. (optional) store bootstrapping artifacts on media |
 |‑‑‑>|
 | | | | | |
 | | | | | |

 Each numbered item below corresponds to a numbered item in the
 diagram above.

 1. Having previously modeled the devices, including setting their
 fully operational configurations and associating device serial
 numbers and (optionally) ownership vouchers, the owner might
 "activate" one or more modeled devices. That is, the owner tells
 the NMS to perform the steps necessary to prepare for when the
 real-world devices power up and initiate the bootstrapping
 process. Note that, in some deployments, this step might be
 combined with the last step from the previous workflow. Here it
 is depicted that an NMS performs the steps, but they may be
 performed manually or through some other mechanism.

 2. If it is desired to use a deployment-specific bootstrap server,
 it must be configured to provide the bootstrapping data for the
 specific devices. Configuring the bootstrap server may occur via
 a programmatic API not defined by this document. Illustrated
 here as an external component, the bootstrap server may be
 implemented as an internal component of the NMS itself.

 3. If it is desired to use a manufacturer hosted bootstrap server,
 it must be configured to provide the bootstrapping data for the
 specific devices. The configuration must be either redirect or
 onboarding information. That is, either the manufacturer hosted
 bootstrap server will redirect the device to another bootstrap
 server, or provide the device with the onboarding information
 itself. The types of bootstrapping data the manufacturer hosted
 bootstrap server supports may vary by implementation; some
 implementations may only support redirect information, or only
 support onboarding information, or support both redirect and
 onboarding information. Configuring the bootstrap server may
 occur via a programmatic API not defined by this document.

 4. If it is desired to use a DNS server to supply bootstrapping
 data, a DNS server needs to be configured. If multicast DNS-SD
 is desired, then the DNS server must reside on the local network,
 otherwise the DNS server may reside on a remote network. Please
 see Section 4.2 for more information about how to configure DNS
 servers. Configuring the DNS server may occur via a programmatic
 API not defined by this document.

 5. If it is desired to use a DHCP server to supply bootstrapping
 data, a DHCP server needs to be configured. The DHCP server may
 be accessed directly or via a DHCP relay. Please see Section 4.3
 for more information about how to configure DHCP servers.
 Configuring the DHCP server may occur via a programmatic API not
 defined by this document.

 6. If it is desired to use a removable storage device (e.g., USB
 flash drive) to supply bootstrapping data, the data would need to
 be placed onto it. Please see Section 4.1 for more information
 about how to configure a removable storage device.

C.3. Device Powers On

 The following diagram illustrates the sequence of activities that
 occur when a device powers on.

 +‑‑‑‑‑‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑‑‑+ |Deployment|
 | Source of | | Specific |
+‑‑‑‑‑‑+ | Bootstrap | |Bootstrap | +‑‑‑+
|Device| | Data | | Server | |NMS|
+‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
1. if SZTP bootstrap service		
is not enabled, then exit.		
2. for each source supported, check		
for bootstrapping data.		
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>		
3. if onboarding information found,		
initialize self and, only if		
source is a trusted bootstrap		
server, send progress reports.		
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>#		
# webhook		
#‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>		
4. else if redirect‑information found, for each		
bootstrap server specified, check for data.		
‑+‑‑‑>		
	if more redirect‑information is found, recurse	
	(not depicted), else if onboarding information	
	found, initialize self and post progress reports	
+‑‑‑>#		
# webhook		
#‑‑‑‑‑‑‑‑>		
5. retry sources and/or wait for manual provisioning.		

 The interactions in the above diagram are described below.

 1. Upon power being applied, the device checks to see if SZTP
 bootstrapping is configured, such as must be the case when
 running its "factory default" configuration. If SZTP
 bootstrapping is not configured, then the bootstrapping logic
 exits and none of the following interactions occur.

 2. For each source of bootstrapping data the device supports,
 preferably in order of closeness to the device (e.g., removable
 storage before Internet based servers), the device checks to see
 if there is any bootstrapping data for it there.

 3. If onboarding information is found, the device initializes itself
 accordingly (e.g., installing a boot-image and committing an
 initial configuration). If the source is a bootstrap server, and
 the bootstrap server can be trusted (i.e., TLS-level
 authentication), the device also sends progress reports to the
 bootstrap server.

 * The contents of the initial configuration should configure an
 administrator account on the device (e.g., username, SSH
 public key, etc.), and should configure the device either to
 listen for NETCONF or RESTCONF connections or to initiate call
 home connections [RFC8071], and should disable the SZTP
 bootstrapping service (e.g., the "enabled" leaf in data model
 presented in Appendix A).

 * If the bootstrap server supports forwarding device progress
 reports to external systems (e.g., via a webhook), a
 "bootstrap-complete" progress report (Section 7.3) informs the
 external system to know when it can, for instance, initiate a
 connection to the device. To support this scenario further,
 the "bootstrap-complete" progress report may also relay the
 device's SSH host keys and/or TLS certificates, with which the
 external system can use to authenticate subsequent connections
 to the device.

 If the device successfully completes the bootstrapping process,
 it exits the bootstrapping logic without considering any
 additional sources of bootstrapping data.

 4. Otherwise, if redirect information is found, the device iterates
 through the list of specified bootstrap servers, checking to see
 if the bootstrap server has bootstrapping data for the device.
 If the bootstrap server returns more redirect information, then
 the device processes it recursively. Otherwise, if the bootstrap
 server returns onboarding information, the device processes it
 following the description provided in (3) above.

 5. After having tried all supported sources of bootstrapping data,
 the device may retry again all the sources and/or provide
 manageability interfaces for manual configuration (e.g., CLI,
 HTTP, NETCONF, etc.). If manual configuration is allowed, and
 such configuration is provided, the configuration should also
 disable the SZTP bootstrapping service, as the need for
 bootstrapping would no longer be present.

Appendix D. Change Log

D.1. ID to 00

 o Major structural update; the essence is the same. Most every
 section was rewritten to some degree.

 o Added a Use Cases section

 o Added diagrams for "Actors and Roles" and "NMS Precondition"
 sections, and greatly improved the "Device Boot Sequence" diagram

 o Removed support for physical presence or any ability for
 configlets to not be signed.

 o Defined the Conveyed Information DHCP option

 o Added an ability for devices to also download images from
 configuration servers

 o Added an ability for configlets to be encrypted

 o Now configuration servers only have to support HTTP/S - no other
 schemes possible

D.2. 00 to 01

 o Added boot-image and validate-owner annotations to the "Actors and
 Roles" diagram.

 o Fixed 2nd paragraph in section 7.1 to reflect current use of
 anyxml.

 o Added encrypted and signed-encrypted examples

 o Replaced YANG module with XSD schema

 o Added IANA request for the Conveyed Information DHCP Option

 o Added IANA request for media types for boot-image and
 configuration

D.3. 01 to 02

 o Replaced the need for a configuration signer with the ability for
 each NMS to be able to sign its own configurations, using
 manufacturer signed ownership vouchers and owner certificates.

 o Renamed configuration server to bootstrap server, a more
 representative name given the information devices download from
 it.

 o Replaced the concept of a configlet by defining a southbound
 interface for the bootstrap server using YANG.

 o Removed the IANA request for the boot-image and configuration
 media types

D.4. 02 to 03

 o Minor update, mostly just to add an Editor's Note to show how this
 draft might integrate with the draft-pritikin-anima-bootstrapping-
 keyinfra.

D.5. 03 to 04

 o Major update formally introducing unsigned data and support for
 Internet-based redirect servers.

 o Added many terms to Terminology section.

 o Added all new "Guiding Principles" section.

 o Added all new "Sources for Bootstrapping Data" section.

 o Rewrote the "Interactions" section and renamed it "Workflow
 Overview".

D.6. 04 to 05

 o Semi-major update, refactoring the document into more logical
 parts

 o Created new section for information types

 o Added support for DNS servers

 o Now allows provisional TLS connections

 o Bootstrapping data now supports scripts

 o Device Details section overhauled

 o Security Considerations expanded

 o Filled in enumerations for notification types

D.7. 05 to 06

 o Minor update

 o Added many Normative and Informative references.

 o Added new section Other Considerations.

D.8. 06 to 07

 o Minor update

 o Added an Editorial Note section for RFC Editor.

 o Updated the IANA Considerations section.

D.9. 07 to 08

 o Minor update

 o Updated to reflect review from Michael Richardson.

D.10. 08 to 09

 o Added in missing "Signature" artifact example.

 o Added recommendation for manufacturers to use interoperable
 formats and file naming conventions for removable storage devices.

 o Added configuration-handling leaf to guide if config should be
 merged, replaced, or processed like an edit-config/yang-patch
 document.

 o Added a pre-configuration script, in addition to the post-
 configuration script from -05 (issue #15).

D.11. 09 to 10

 o Factored ownership voucher and voucher revocation to a separate
 document: draft-kwatsen-netconf-voucher. (issue #11)

 o Removed <configuration-handling> options "edit-config" and "yang-
 patch". (issue #12)

 o Defined how a signature over signed-data returned from a bootstrap
 server is processed. (issue #13)

 o Added recommendation for removable storage devices to use open/
 standard file systems when possible. (issue #14)

 o Replaced notifications "script-[warning/error]" with "[pre/post]-
 script-[warning/error]". (goes with issue #15)

 o switched owner-certificate to be encoded using the PKCS #7 format.
 (issue #16)

 o Replaced md5/sha1 with sha256 inside a choice statement, for
 future extensibility. (issue #17)

 o A ton of editorial changes, as I went thru the entire draft with a
 fine-toothed comb.

D.12. 10 to 11

 o fixed yang validation issues found by IETFYANGPageCompilation.
 note: these issues were NOT found by pyang --ietf or by the
 submission-time validator...

 o fixed a typo in the yang module, someone the config false
 statement was removed.

D.13. 11 to 12

 o fixed typo that prevented Appendix B from loading the examples
 correctly.

 o fixed more yang validation issues found by
 IETFYANGPageCompilation. note: again, these issues were NOT found
 by pyang --ietf or by the submission-time validator...

 o updated a few of the notification enumerations to be more
 consistent with the other enumerations (following the warning/
 error pattern).

 o updated the information-type artifact to state how it is encoded,
 matching the language that was in Appendix B.

D.14. 12 to 13

 o defined a standalone artifact to encode the old information-type
 into a PKCS #7 structure.

 o standalone information artifact hardcodes JSON encoding (to match
 the voucher draft).

 o combined the information and signature PKCS #7 structures into a
 single PKCS #7 structure.

 o moved the certificate-revocations into the owner-certificate's
 PKCS #7 structure.

 o eliminated support for voucher-revocations, to reflect the
 voucher-draft's switch from revocations to renewals.

D.15. 13 to 14

 o Renamed "bootstrap information" to "onboarding information".

 o Rewrote DHCP sections to address the packet-size limitation issue,
 as discussed in Chicago.

 o Added Ian as an author for his text-contributions to the DHCP
 sections.

 o Removed the Guiding Principles section.

D.16. 14 to 15

 o Renamed action "notification" to "update-progress" and, likewise
 "notification-type" to "update-type".

 o Updated examples to use "base64encodedvalue==" for binary values.

 o Greatly simplified the "Artifact Groupings" section, and moved it
 as a subsection to the "Artifacts" section.

 o Moved the "Workflow Overview" section to the Appendix.

 o Renamed "bootstrap information" to "update information".

 o Removed "Other Considerations" section.

 o Tons of editorial updates.

D.17. 15 to 16

 o tweaked language to refer to "initial state" rather than "factory
 default configuration", so as accommodate white-box scenarios.

 o added a paragraph to Intro regarding how the solution primarily
 regards physical machines, but could be extended to VMs by a
 future document.

 o added a pointer to the Workflow Overview section (recently moved
 to the Appendix) to the Intro.

 o added a note that, in order to simplify the verification process,
 the "Conveyed Information" PKCS #7 structure MUST also contain the
 signing X.509 certificate.

 o noted that the owner certificate's must either have no Key Usage
 or the Key Usage must set the "digitalSignature" bit.

 o noted that the owner certificate's subject and subjectAltName
 values are not constrained.

 o moved/consolidated some text from the Artifacts section down to
 the Device Details section.

 o tightened up some ambiguous language, for instance, by referring
 to specific leaf names in the Voucher artifact.

 o reverted a previously overzealous s/unique-id/serial-number/
 change.

 o modified language for when ZTP runs from when factory-default
 config is running to when ZTP is configured, which the factory-
 defaults should set .

D.18. 16 to 17

 o Added an example for how to promote an untrusted connection to a
 trusted connection.

 o Added a "query parameters" section defining some parameters
 enabling scenarios raised in last call.

 o Added a "Disclosing Information to Untrusted Servers" section to
 the Security Considerations.

D.19. 17 to 18

 o Added Security Considerations for each YANG module.

 o Reverted back to the device always sending its DevID cert.

 o Moved data tree to "get-bootstrapping-data" RPC.

 o Moved the "update-progress" action to a "report-progress" RPC.

 o Added an "signed-data-preferred" parameter to "get-bootstrapping-
 data" RPC.

 o Added the "ietf-zerotouch-device" module.

 o Lots of small updates.

D.20. 18 to 19

 o Fixed "must" expressions, by converting "choice" to a "list" of
 "image-verification", each of which now points to a base identity
 called "hash-algorithm". There's just one algorithm currently
 defined (sha-256). Wish there was a standard crypto module that
 could identify such identities.

D.21. 19 to 20

 o Now references I-D.ietf-netmod-yang-tree-diagrams.

 o Fixed tree-diagrams in Section 2 to always reflect current YANG
 (now they are now dynamically generated).

 o The "redirect-information" container's "trust-anchor" is now a CMS
 structure that can contain a chain of certificates, rather than a
 single certificate.

 o The "onboarding-information" container's support for image
 verification reworked to be extensible.

 o Added a reference to the "Device Details" section to the new
 example-device-data-model module.

 o Clarified that the device must always pass its IDevID certificate,
 even for untrusted bootstrap servers.

 o Fixed the description statement for the "script" typedef to refer
 to the [pre/post]-script-[warning/error] enums, rather than the
 legacy script-[warning/error] enums.

 o For the get-bootstrapping-data RPC's input, removed the "remote-
 id" and "circuit-id" fields, and added a "hw-model" field.

 o Improved DHCP error handling text.

 o Added MUST requirement for DHCPv6 client and server implementing
 [RFC3396] to handle URI lists longer than 255 octets.

 o Changed the "configuration" value in onboarding-information to be
 type "binary" instead of "anydata".

 o Moved everything from PKCS#7 to CMS (this shows up as a big
 change).

 o Added the early code point allocation assignments for the DHCP
 Options in the IANA Considerations section, and updated the RFC
 Editor note accordingly.

 o Added RFC Editor request to replace the assigned values for the
 CMS content types.

 o Relaxed auth requirements from device needing to always send
 IDevID cert to device needing to always send authentication
 credentials, as this better matches what RFC 8040 Section 2.5
 says.

 o Moved normative module "ietf-zerotouch-device" to non-normative
 module "example-device-data-model".

 o Updated Title, Abstract, and Introduction per discussion on list.

D.22. 20 to 21

 o Now any of the three artifact can be encrypted.

 o Fixed some line-too-long issues.

D.23. 21 to 22

 o Removed specifics around how scripts indicate warnings or errors
 and how scripts emit output.

 o Moved the SZTP Device Data Model section to the Appendix.

 o Modified the YANG module in the SZTP Device Data Model section to
 reflect the latest trust-anchors and keystore drafts.

 o Modified types in other YANG modules to more closely emulate what
 is in draft-ietf-netconf-crypto-types.

D.24. 22 to 23

 o Rewrote section 5.6 (processing onboboarding information) to be
 clearer about error handling and retained state. Specifically:

 * Clarified that a script, upon having an error, must gracefully
 exit, cleaning up any state that might hinder subsequent
 executions.

 * Added ability for scripts to be executed again with a flag
 enabling them to clean up state from a previous execution.

 * Clarified that the conifguration commit is atomic.

 * Clarified that any error encountered after committing the
 configuration (e.g., in the "post-configuration-script") must
 rollback the configuration to the previous configuration.

 * Clarified that failure to successfully deliver the "bootstrap-
 initiated" and "bootstrap-complete" progress types must be
 treated as an error.

 * Clarified that "return to bootstrapping sequence" is to be
 interpreted in the recursive context. Meaning that the device
 rolls-back one loop, rather than start over from scratch.

 o Changed how a device verifies a boot-image from just "MUST match
 one of the supplied fingerprints" to also allow for the
 verification to use an cryptographic signature embedded into the
 image itself.

 o Added more "progress-type" enums for visibility reasons, enabling
 more strongly-typed debug information to be sent to the bootstrap
 server.

 o Added Security Considerations based on early SecDir review.

 o Added recommendation for device to send warning if the initial
 config does not disable the bootstrapping process.

D.25. 23 to 24

 o Follow-ups from SecDir and Shepherd.

 o Added "boot-image-complete" enumeration.

D.26. 24 to 25

 o Removed remaining old "bootstrapping information" term usage.

 o Fixed DHCP Option length definition.

 o Added reference to RFC 6187.

D.27. 25 to 26

 o Updated URI structure text (sec 8.3) and added norm. ref to
 RFC7230 reflecting Alexey Melnikov's comment.

 o Added IANA registration for the 'zerotouch' service, per IESG
 review from Adam Roach.

 o Clarified device's looping behavior and support for alternative
 provisioning mechanisms, per IESG review from Mirja Kuehlewind.

 o Updated "ietf-sztp-bootstrap-server:ssh-host-key" from leaf-list
 to list, per IESG review from Benjamin Kaduk.

 o Added option size text to DHCPv4 option size to address Suresh
 Krishnan's IESG review discuss point.

 o Updated RFC3315 to RFC8415 and associated section references.

 o Revamped the DNS Server section, after digging into Alexey
 Melnikov comment.

 o Fixed IETF terminology template section in both YANG modules.

D.28. 26 to 27

 o Added Security Consideration for cascading trust via redirects.

 o Modified the get-bootstrapping-data RPC's "nonce" input parameter
 to being a minimum of 16-bytes (used to be 8-bytes).

 o Added Security Consideration regarding possible reuse of device's
 private key.

 o Added Security Consideration regarding use of sign-then-encrypt.

 o Renamed "Zero Touch"/"zerotouch" throughout. Now uses "SZTP" when
 referring to the draft/solution, and "conveyed" when referring to
 the bootstrapping artifact.

 o Added missing text for "encrypted unsigned conveyed information"
 case.

 o Renamed "untrusted-connection" input paramter to "signed-data-
 preferred"

 o Switch yd:yang-data back to rc:yang-data

 o Added a couple features to the bootstrap-server module.

D.29. 27 to 28

 o Modified DNS section to no longer reference DNS-SD (now just plain
 TXT and SRV lookups, via multicast or unicast.

 o Registers "_sztp" in the DNS Underscore Global Scoped Entry
 Registry.

 o Updated 802.1AR reference to current spec version.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Michael Behringer,
 Dean Bogdanovic, Martin Bjorklund, Joe Clarke, Dave Crocker, Toerless
 Eckert, Stephen Farrell, Stephen Hanna, Wes Hardaker, David
 Harrington, Mirja Kuehlewind, Radek Krejci, Suresh Krishnan, Benjamin
 Kaduk, David Mandelberg, Alexey Melnikov, Russ Mundy, Reinaldo Penno,
 Randy Presuhn, Max Pritikin, Michael Richardson, Adam Roach, Phil
 Shafer, Juergen Schoenwaelder.

 Special thanks goes to Steve Hanna, Russ Mundy, and Wes Hardaker for
 brainstorming the original solution during the IETF 87 meeting in
 Berlin.

Authors' Addresses

Kent Watsen
Juniper Networks

 EMail: kwatsen@juniper.net

Mikael Abrahamsson
T‑Systems

 EMail: mikael.abrahamsson@t-systems.se

Ian Farrer
Deutsche Telekom AG

 EMail: ian.farrer@telekom.de

4741 - NETCONF Configuration Protocol

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4741

Category: Standards Track

R. Enns, Ed.

Juniper Networks

December 2006

NETCONF Configuration Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 The Network Configuration Protocol (NETCONF) defined in this document
 provides mechanisms to install, manipulate, and delete the
 configuration of network devices. It uses an Extensible Markup
 Language (XML)-based data encoding for the configuration data as well
 as the protocol messages. The NETCONF protocol operations are
 realized on top of a simple Remote Procedure Call (RPC) layer.

Table of Contents

	1. Introduction
	 1.1. Protocol Overview

	 1.2. Capabilities

	 1.3. Separation of Configuration and State Data

	2. Transport Protocol Requirements
	 2.1. Connection-Oriented Operation

	 2.2. Authentication, Integrity, and Confidentiality

	 2.3. Authentication

	 2.4. Mandatory Transport Protocol

	3. XML Considerations
	 3.1. Namespace

	 3.2. No Document Type Declarations

	4. RPC Model
	 4.1. <rpc> Element

	 4.2. <rpc-reply> Element

	 4.3. <rpc-error> Element

	 4.4. <ok> Element

	 4.5. Pipelining

	5. Configuration Model
	 5.1. Configuration Datastores

	 5.2. Data Modeling

	6. Subtree Filtering
	 6.1. Overview

	 6.2. Subtree Filter Components
	 6.2.1. Namespace Selection

	 6.2.2. Attribute Match Expressions

	 6.2.3. Containment Nodes

	 6.2.4. Selection Nodes

	 6.2.5. Content Match Nodes

	 6.3. Subtree Filter Processing

	 6.4. Subtree Filtering Examples
	 6.4.1. No Filter

	 6.4.2. Empty Filter

	 6.4.3. Select the Entire <users> Subtree

	 6.4.4. Select All <name> Elements within the <users> Subtree

	 6.4.5. One Specific <user> Entry

	 6.4.6. Specific Elements from a Specific <user> Entry

	 6.4.7. Multiple Subtrees

	 6.4.8. Elements with Attribute Naming

	7. Protocol Operations
	 7.1. <get-config>

	 7.2. <edit-config>

	 7.3. <copy-config>

	 7.4. <delete-config>

	 7.5. <lock>

	 7.6. <unlock>

	 7.7. <get>

	 7.8. <close-session>

	 7.9. <kill-session>

	8. Capabilities
	 8.1. Capabilities Exchange

	 8.2. Writable-Running Capability
	 8.2.1. Description

	 8.2.2. Dependencies

	 8.2.3. Capability Identifier

	 8.2.4. New Operations

	 8.2.5. Modifications to Existing Operations

	 8.3. Candidate Configuration Capability
	 8.3.1. Description

	 8.3.2. Dependencies

	 8.3.3. Capability Identifier

	 8.3.4. New Operations

	 8.3.5. Modifications to Existing Operations

	 8.4. Confirmed Commit Capability
	 8.4.1. Description

	 8.4.2. Dependencies

	 8.4.3. Capability Identifier

	 8.4.4. New Operations

	 8.4.5. Modifications to Existing Operations

	 8.5. Rollback on Error Capability
	 8.5.1. Description

	 8.5.2. Dependencies

	 8.5.3. Capability Identifier

	 8.5.4. New Operations

	 8.5.5. Modifications to Existing Operations

	 8.6. Validate Capability
	 8.6.1. Description

	 8.6.2. Dependencies

	 8.6.3. Capability Identifier

	 8.6.4. New Operations

	 8.7. Distinct Startup Capability
	 8.7.1. Description

	 8.7.2. Dependencies

	 8.7.3. Capability Identifier

	 8.7.4. New Operations

	 8.7.5. Modifications to Existing Operations

	 8.8. URL Capability
	 8.8.1. Description

	 8.8.2. Dependencies

	 8.8.3. Capability Identifier

	 8.8.4. New Operations

	 8.8.5. Modifications to Existing Operations

	 8.9. XPath Capability
	 8.9.1. Description

	 8.9.2. Dependencies

	 8.9.3. Capability Identifier

	 8.9.4. New Operations

	 8.9.5. Modifications to Existing Operations

	9. Security Considerations

	10. IANA Considerations
	 10.1. NETCONF XML Namespace

	 10.2. NETCONF XML Schema

	 10.3. NETCONF Capability URNs

	11. Authors and Acknowledgements

	12. References
	 12.1. Normative References

	 12.2. Informative References

	Appendix A. NETCONF Error List

	Appendix B. XML Schema for NETCONF RPC and Protocol Operations

	Appendix C. Capability Template
	 C.1. capability-name (template)
	 C.1.1. Overview

	 C.1.2. Dependencies

	 C.1.3. Capability Identifier

	 C.1.4. New Operations

	 C.1.5. Modifications to Existing Operations

	 C.1.6. Interactions with Other Capabilities

	Appendix D. Configuring Multiple Devices with NETCONF
	 D.1. Operations on Individual Devices
	 D.1.1. Acquiring the Configuration Lock

	 D.1.2. Loading the Update

	 D.1.3. Validating the Incoming Configuration

	 D.1.4. Checkpointing the Running Configuration

	 D.1.5. Changing the Running Configuration

	 D.1.6. Testing the New Configuration

	 D.1.7. Making the Change Permanent

	 D.1.8. Releasing the Configuration Lock

	 D.2. Operations on Multiple Devices

	Appendix E. Deferred Features

1. Introduction

 The NETCONF protocol defines a simple mechanism through which a
 network device can be managed, configuration data information can be
 retrieved, and new configuration data can be uploaded and
 manipulated. The protocol allows the device to expose a full, formal
 application programming interface (API). Applications can use this
 straightforward API to send and receive full and partial
 configuration data sets.

 The NETCONF protocol uses a remote procedure call (RPC) paradigm. A
 client encodes an RPC in XML [1] and sends it to a server using a
 secure, connection-oriented session. The server responds with a
 reply encoded in XML. The contents of both the request and the
 response are fully described in XML DTDs or XML schemas, or both,
 allowing both parties to recognize the syntax constraints imposed on
 the exchange.

 A key aspect of NETCONF is that it allows the functionality of the
 management protocol to closely mirror the native functionality of the
 device. This reduces implementation costs and allows timely access
 to new features. In addition, applications can access both the
 syntactic and semantic content of the device's native user interface.

 NETCONF allows a client to discover the set of protocol extensions
 supported by a server. These "capabilities" permit the client to
 adjust its behavior to take advantage of the features exposed by the
 device. The capability definitions can be easily extended in a
 noncentralized manner. Standard and non-standard capabilities can be
 defined with semantic and syntactic rigor. Capabilities are
 discussed in Section 8.

 The NETCONF protocol is a building block in a system of automated
 configuration. XML is the lingua franca of interchange, providing a
 flexible but fully specified encoding mechanism for hierarchical
 content. NETCONF can be used in concert with XML-based
 transformation technologies, such as XSLT [8], to provide a system
 for automated generation of full and partial configurations. The
 system can query one or more databases for data about networking
 topologies, links, policies, customers, and services. This data can
 be transformed using one or more XSLT scripts from a task-oriented,
 vendor-independent data schema into a form that is specific to the
 vendor, product, operating system, and software release. The
 resulting data can be passed to the device using the NETCONF
 protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

1.1. Protocol Overview

 NETCONF uses a simple RPC-based mechanism to facilitate communication
 between a client and a server. The client can be a script or
 application typically running as part of a network manager. The
 server is typically a network device. The terms "device" and
 "server" are used interchangeably in this document, as are "client"
 and "application".

 A NETCONF session is the logical connection between a network
 administrator or network configuration application and a network
 device. A device MUST support at least one NETCONF session and
 SHOULD support multiple sessions. Global configuration attributes
 can be changed during any authorized session, and the effects are
 visible in all sessions. Session-specific attributes affect only the
 session in which they are changed.

 NETCONF can be conceptually partitioned into four layers:

 Layer Example
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(4) | Content | | Configuration data |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(3) | Operations | | <get‑config>, <edit‑config> |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(2) | RPC | | <rpc>, <rpc‑reply> |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(1) | Transport | | BEEP, SSH, SSL, console |
 | Protocol | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 1. The transport protocol layer provides a communication path
 between the client and server. NETCONF can be layered over any
 transport protocol that provides a set of basic requirements.
 Section 2 discusses these requirements.

 2. The RPC layer provides a simple, transport-independent framing
 mechanism for encoding RPCs. Section 4 documents this protocol.

 3. The operations layer defines a set of base operations invoked as
 RPC methods with XML-encoded parameters. Section 7 details the
 list of base operations.

 4. The content layer is outside the scope of this document. Given
 the current proprietary nature of the configuration data being
 manipulated, the specification of this content depends on the
 NETCONF implementation. It is expected that a separate effort to
 specify a standard data definition language and standard content
 will be undertaken.

1.2. Capabilities

 A NETCONF capability is a set of functionality that supplements the
 base NETCONF specification. The capability is identified by a
 uniform resource identifier (URI). These URIs should follow the
 guidelines as described in Section 8.

 Capabilities augment the base operations of the device, describing
 both additional operations and the content allowed inside operations.
 The client can discover the server's capabilities and use any
 additional operations, parameters, and content defined by those
 capabilities.

 The capability definition may name one or more dependent
 capabilities. To support a capability, the server MUST support any
 capabilities upon which it depends.

 Section 8 defines the capabilities exchange that allows the client to
 discover the server's capabilities. Section 8 also lists the set of
 capabilities defined in this document.

 Additional capabilities can be defined at any time in external
 documents, allowing the set of capabilities to expand over time.
 Standards bodies may define standardized capabilities, and
 implementations may define proprietary ones. A capability URI MUST
 sufficiently distinguish the naming authority to avoid naming
 collisions.

1.3. Separation of Configuration and State Data

 The information that can be retrieved from a running system is
 separated into two classes, configuration data and state data.
 Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. State data is the additional data on a system that is not
 configuration data such as read-only status information and collected
 statistics. When a device is performing configuration operations, a
 number of problems would arise if state data were included:

 o Comparisons of configuration data sets would be dominated by
 irrelevant entries such as different statistics.

 o Incoming data could contain nonsensical requests, such as attempts
 to write read-only data.

 o The data sets would be large.

 o Archived data could contain values for read-only data items,
 complicating the processing required to restore archived data.

 To account for these issues, the NETCONF protocol recognizes the
 difference between configuration data and state data and provides
 operations for each. The <get-config> operation retrieves
 configuration data only, while the <get> operation retrieves
 configuration and state data.

 Note that the NETCONF protocol is focused on the information required
 to get the device into its desired running state. The inclusion of
 other important, persistent data is implementation specific. For
 example, user files and databases are not treated as configuration
 data by the NETCONF protocol.

 If a local database of user authentication data is stored on the
 device, whether it is included in configuration data is an
 implementation-dependent matter.

2. Transport Protocol Requirements

 NETCONF uses an RPC-based communication paradigm. A client sends a
 series of one or more RPC request operations, which cause the server
 to respond with a corresponding series of RPC replies.

 The NETCONF protocol can be layered on any transport protocol that
 provides the required set of functionality. It is not bound to any
 particular transport protocol, but allows a mapping to define how it
 can be implemented over any specific protocol.

 The transport protocol MUST provide a mechanism to indicate the
 session type (client or server) to the NETCONF protocol layer.

 This section details the characteristics that NETCONF requires from
 the underlying transport protocol.

2.1. Connection-Oriented Operation

 NETCONF is connection-oriented, requiring a persistent connection
 between peers. This connection must provide reliable, sequenced data
 delivery.

 NETCONF connections are long-lived, persisting between protocol
 operations. This allows the client to make changes to the state of
 the connection that will persist for the lifetime of the connection.
 For example, authentication information specified for a connection
 remains in effect until the connection is closed.

 In addition, resources requested from the server for a particular
 connection MUST be automatically released when the connection closes,
 making failure recovery simpler and more robust. For example, when a
 lock is acquired by a client, the lock persists until either it is
 explicitly released or the server determines that the connection has
 been terminated. If a connection is terminated while the client
 holds a lock, the server can perform any appropriate recovery. The
 lock operation is further discussed in Section 7.5.

2.2. Authentication, Integrity, and Confidentiality

 NETCONF connections must provide authentication, data integrity, and
 confidentiality. NETCONF depends on the transport protocol for this
 capability. A NETCONF peer assumes that appropriate levels of
 security and confidentiality are provided independently of this
 document. For example, connections may be encrypted in TLS [9] or
 SSH [10], depending on the underlying protocol.

2.3. Authentication

 NETCONF connections must be authenticated. The transport protocol is
 responsible for authentication. The peer assumes that the
 connection's authentication information has been validated by the
 underlying protocol using sufficiently trustworthy mechanisms and
 that the peer's identity has been sufficiently proven.

 One goal of NETCONF is to provide a programmatic interface to the
 device that closely follows the functionality of the device's native
 interface. Therefore, it is expected that the underlying protocol
 uses existing authentication mechanisms defined by the device. For
 example, a device that supports RADIUS [11] should allow the use of
 RADIUS to authenticate NETCONF sessions.

 The authentication process should result in an identity whose
 permissions are known to the device. These permissions MUST be
 enforced during the remainder of the NETCONF session.

2.4. Mandatory Transport Protocol

 A NETCONF implementation MUST support the SSH transport protocol
 mapping [4].

3. XML Considerations

 XML serves as the encoding format for NETCONF, allowing complex
 hierarchical data to be expressed in a text format that can be read,
 saved, and manipulated with both traditional text tools and tools
 specific to XML.

 This section discusses a small number of XML-related considerations
 pertaining to NETCONF.

3.1. Namespace

 All NETCONF protocol elements are defined in the following namespace:

 urn:ietf:params:xml:ns:netconf:base:1.0

 NETCONF capability names MUST be URIs [5]. NETCONF capabilities are
 discussed in Section 8.

3.2. No Document Type Declarations

 Document type declarations MUST NOT appear in NETCONF content.

4. RPC Model

 The NETCONF protocol uses an RPC-based communication model. NETCONF
 peers use <rpc> and <rpc-reply> elements to provide transport
 protocol-independent framing of NETCONF requests and responses.

4.1. <rpc> Element

 The <rpc> element is used to enclose a NETCONF request sent from the
 client to the server.

 The <rpc> element has a mandatory attribute "message-id", which is an
 arbitrary string chosen by the sender of the RPC that will commonly
 encode a monotonically increasing integer. The receiver of the RPC
 does not decode or interpret this string but simply saves it to be
 used as a "message-id" attribute in any resulting <rpc-reply>
 message. For example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <some‑method>
 <!‑‑ method parameters here... ‑‑>
 </some‑method>
</rpc>

 If additional attributes are present in an <rpc> element, a NETCONF
 peer MUST return them unmodified in the <rpc-reply> element.

 The name and parameters of an RPC are encoded as the contents of the
 <rpc> element. The name of the RPC is an element directly inside the
 <rpc> element, and any parameters are encoded inside this element.

 The following example invokes a method called <my-own-method>, which
 has two parameters, <my-first-parameter>, with a value of "14", and
 <another-parameter>, with a value of "fred":

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <my‑own‑method xmlns="http://example.net/me/my‑own/1.0">
 <my‑first‑parameter>14</my‑first‑parameter>
 <another‑parameter>fred</another‑parameter>
 </my‑own‑method>
</rpc>

 The following example invokes a <rock-the-house> method with a
 <zip-code> parameter of "27606-0100":

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rock‑the‑house xmlns="http://example.net/rock/1.0">
 <zip‑code>27606‑0100</zip‑code>
 </rock‑the‑house>
</rpc>

 The following example invokes the NETCONF <get> method with no
 parameters:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
</rpc>

4.2. <rpc-reply> Element

 The <rpc-reply> message is sent in response to an <rpc> operation.

 The <rpc-reply> element has a mandatory attribute "message-id", which
 is equal to the "message-id" attribute of the <rpc> for which this is
 a response.

 A NETCONF peer MUST also return any additional attributes included in
 the <rpc> element unmodified in the <rpc-reply> element.

 The response name and response data are encoded as the contents of
 the <rpc-reply> element. The name of the reply is an element
 directly inside the <rpc-reply> element, and any data is encoded
 inside this element.

 For example:

 The following <rpc> element invokes the NETCONF <get> method and
 includes an additional attribute called "user-id". Note that the
 "user-id" attribute is not in the NETCONF namespace. The returned
 <rpc-reply> element returns the "user-id" attribute, as well as the
 requested content.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0"
 ex:user‑id="fred">
 <get/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0"
 ex:user‑id="fred">
 <data>
 <!‑‑ contents here... ‑‑>
 </data>
</rpc‑reply>

4.3. <rpc-error> Element

 The <rpc-error> element is sent in <rpc-reply> messages if an error
 occurs during the processing of an <rpc> request.

 If a server encounters multiple errors during the processing of an
 <rpc> request, the <rpc-reply> MAY contain multiple <rpc-error>
 elements. However, a server is not required to detect or report more
 than one <rpc-error> element, if a request contains multiple errors.
 A server is not required to check for particular error conditions in
 a specific sequence. A server MUST return an <rpc-error> element if
 any error conditions occur during processing and SHOULD return an
 <rpc-error> element if any warning conditions occur during
 processing.

 A server MUST NOT return application-level- or data-model-specific
 error information in an <rpc-error> element for which the client does
 not have sufficient access rights.

 The <rpc-error> element includes the following information:

 error-type: Defines the conceptual layer that the error occurred.

 Enumeration. One of:

 * transport

 * rpc

 * protocol

 * application

 error-tag: Contains a string identifying the error condition. See

 Appendix A for allowed values.

 error-severity: Contains a string identifying the error severity, as

 determined by the device. One of:

 * error

 * warning

 error-app-tag: Contains a string identifying the data-model-specific

 or implementation-specific error condition, if one exists. This
 element will not be present if no appropriate application error
 tag can be associated with a particular error condition.

 error-path: Contains the absolute XPath [2] expression identifying

 the element path to the node that is associated with the error
 being reported in a particular rpc-error element. This element
 will not be present if no appropriate payload element can be
 associated with a particular error condition, or if the
 'bad-element' QString returned in the 'error-info' container is
 sufficient to identify the node associated with the error. When
 the XPath expression is interpreted, the set of namespace
 declarations are those in scope on the rpc-error element,
 including the default namespace.

 error-message: Contains a string suitable for human display that

 describes the error condition. This element will not be present
 if no appropriate message is provided for a particular error
 condition. This element SHOULD include an xml:lang attribute as
 defined in [1] and discussed in [12].

 error-info: Contains protocol- or data-model-specific error content.

 This element will not be present if no such error content is
 provided for a particular error condition. The list in Appendix A
 defines any mandatory error-info content for each error. After
 any protocol-mandated content, a data model definition may mandate
 that certain application-layer error information be included in
 the error-info container. An implementation may include
 additional elements to provide extended and/or implementation-
 specific debugging information.

 Appendix A enumerates the standard NETCONF errors.

 Example:

 An error is returned if an <rpc> element is received without a
 message-id attribute. Note that only in this case is it
 acceptable for the NETCONF peer to omit the message-id attribute
 in the <rpc-reply> element.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 </get‑config>
</rpc>

<rpc‑reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>rpc</error‑type>
 <error‑tag>missing‑attribute</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑info>
 <bad‑attribute>message‑id</bad‑attribute>
 <bad‑element>rpc</bad‑element>
 </error‑info>
 </rpc‑error>
</rpc‑reply>

 The following <rpc-reply> illustrates the case of returning
 multiple <rpc-error> elements.

 Note that the data models used in the examples in this section use
 the <name> element to distinguish between multiple instances of
 the <interface> element.

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>invalid‑value</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑message xml:lang="en">
 MTU value 25000 is not within range 256..9192
 </error‑message>
 <error‑info>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>25000</mtu>
 </interface>
 </top>
 </error‑info>
 </rpc‑error>
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>invalid‑value</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑message xml:lang="en">
 Invalid IP address for interface Ethernet1/0
 </error‑message>
 <error‑info>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="replace">
 <name>Ethernet1/0</name>
 <address>
 <name>1.4</name>
 <prefix‑length>24</prefix‑length>
 </address>
 </interface>
 </top>
 </error‑info>
 </rpc‑error>
</rpc‑reply>

4.4. <ok> Element

 The <ok> element is sent in <rpc-reply> messages if no errors or
 warnings occurred during the processing of an <rpc> request. For
 example:

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

4.5. Pipelining

 NETCONF <rpc> requests MUST be processed serially by the managed
 device. Additional <rpc> requests MAY be sent before previous ones
 have been completed. The managed device MUST send responses only in
 the order the requests were received.

5. Configuration Model

 NETCONF provides an initial set of operations and a number of
 capabilities that can be used to extend the base. NETCONF peers
 exchange device capabilities when the session is initiated as
 described in Section 8.1.

5.1. Configuration Datastores

 NETCONF defines the existence of one or more configuration datastores
 and allows configuration operations on them. A configuration
 datastore is defined as the complete set of configuration data that
 is required to get a device from its initial default state into a
 desired operational state. The configuration datastore does not
 include state data or executive commands.

 Only the <running> configuration datastore is present in the base
 model. Additional configuration datastores may be defined by
 capabilities. Such configuration datastores are available only on
 devices that advertise the capabilities.

 o Running: The complete configuration currently active on the
 network device. Only one configuration datastore of this type
 exists on the device, and it is always present. NETCONF protocol
 operations refer to this datastore using the <running> element.

 The capabilities in Sections 8.3 and 8.7 define the <candidate> and
 <startup> configuration datastores, respectively.

5.2. Data Modeling

 Data modeling and content issues are outside the scope of the NETCONF
 protocol. An assumption is made that the device's data model is
 well-known to the application and that both parties are aware of
 issues such as the layout, containment, keying, lookup, replacement,
 and management of the data, as well as any other constraints imposed
 by the data model.

 NETCONF carries configuration data inside the <config> element that
 is specific to device's data model. The protocol treats the contents
 of that element as opaque data. The device uses capabilities to
 announce the set of data models that the device implements. The
 capability definition details the operation and constraints imposed
 by data model.

 Devices and managers may support multiple data models, including both
 standard and proprietary data models.

6. Subtree Filtering

6.1. Overview

 XML subtree filtering is a mechanism that allows an application to
 select particular XML subtrees to include in the <rpc-reply> for a
 <get> or <get-config> operation. A small set of filters for
 inclusion, simple content exact-match, and selection is provided,
 which allows some useful, but also very limited, selection
 mechanisms. The agent does not need to utilize any data-model-
 specific semantics during processing, allowing for simple and
 centralized implementation strategies.

 Conceptually, a subtree filter is comprised of zero or more element
 subtrees, which represent the filter selection criteria. At each
 containment level within a subtree, the set of sibling nodes is
 logically processed by the server to determine if its subtree and
 path of elements to the root are included in the filter output.

 All elements present in a particular subtree within a filter must
 match associated nodes present in the server's conceptual data model.
 XML namespaces may be specified (via 'xmlns' declarations) within the
 filter data model. If they are, the declared namespace must first
 exactly match a namespace supported by the server. Note that prefix
 values for qualified namespaces are not relevant when comparing
 filter elements to elements in the underlying data model. Only data
 associated with a specified namespace will be included in the filter
 output.

 Each node specified in a subtree filter represents an inclusive
 filter. Only associated nodes in underlying data model(s) within the
 specified configuration datastore on the server are selected by the
 filter. A node must exactly match the namespace and hierarchy of
 elements given in the filter data, except that the filter absolute
 path name is adjusted to start from the layer below <filter>.

 Response messages contain only the subtrees selected by the filter.
 Any selection criteria that were present in the request, within a
 particular selected subtree, are also included in the response. Note
 that some elements expressed in the filter as leaf nodes will be
 expanded (i.e., subtrees included) in the filter output. Specific
 data instances are not duplicated in the response in the event that
 the request contains multiple filter subtree expressions that select
 the same data.

6.2. Subtree Filter Components

 A subtree filter is comprised of XML elements and their XML
 attributes. There are five types of components that may be present
 in a subtree filter:

 o Namespace Selection

 o Attribute Match Expressions

 o Containment Nodes

 o Selection Nodes

 o Content Match Nodes

6.2.1. Namespace Selection

 If namespaces are used, then the filter output will only include
 elements from the specified namespace. A namespace is considered to
 match (for filter purposes) if the content of the 'xmlns' attributes
 are the same in the filter and the underlying data model. Note that
 namespace selection cannot be used by itself. At least one element
 must be specified in the filter any elements to be included in the
 filter output.

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config"/>
</filter>

 In this example, the <top> element is a selection node, and only this
 node and any child nodes (from the underlying data model) in the
 'http://example.com/schema/1.2/config' namespace will be included in
 the filter output.

6.2.2. Attribute Match Expressions

 An attribute that appears in a subtree filter is part of an
 "attribute match expression". Any number of (unqualified or
 qualified) XML attributes may be present in any type of filter node.
 In addition to the selection criteria normally applicable to that
 node, the selected data must have matching values for every attribute
 specified in the node. If an element is not defined to include a
 specified attribute, then it is not selected in the filter output.

 Example:

<filter type="subtree">
 <t:top xmlns:t="http://example.com/schema/1.2/config">
 <t:interfaces>
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </t:top>
</filter>

 In this example, the <top>, <interfaces>, and <interface> elements
 are containment nodes, and 'ifName' is an attribute match expression.
 Only 'interface' nodes in the 'http://example.com/schema/1.2/config'
 namespace that have an 'ifName' attribute with the value 'eth0' and
 occur within 'interfaces' nodes within 'top' nodes will be included
 in the filter output.

6.2.3. Containment Nodes

 Nodes that contain child elements within a subtree filter are called
 "containment nodes". Each child element can be any type of node,
 including another containment node. For each containment node
 specified in a subtree filter, all data model instances that exactly
 match the specified namespaces, element hierarchy, and any attribute
 match expressions are included in the filter output.

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
</filter>

 In this example, the <top> element is a containment node.

6.2.4. Selection Nodes

 An empty leaf node within a filter is called a "selection node", and
 it represents an "explicit selection" filter on the underlying data
 model. Presence of any selection nodes within a set of sibling nodes
 will cause the filter to select the specified subtree(s) and suppress
 automatic selection of the entire set of sibling nodes in the
 underlying data model. For filtering purposes, an empty leaf node
 can be declared either with an empty tag (e.g., <foo/>) or with
 explicit start and end tags (e.g., <foo> </foo>). Any whitespace
 characters are ignored in this form.

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
</filter>

 In this example, the <top> element is a containment node, and the
 <users> element is a selection node. Only 'users' nodes in the
 'http://example.com/schema/1.2/config' namespace that occur within a
 'top' element that is the root of the configuration datastore will be
 included in the filter output.

6.2.5. Content Match Nodes

 A leaf node that contains simple content is called a "content match
 node". It is used to select some or all of its sibling nodes for
 filter output, and it represents an exact-match filter on the leaf
 node element content. The following constraints apply to content
 match nodes:

 o A content match node must not contain nested elements (i.e., must
 resolve to a simpleType in the XML Schema Definition (XSD)).

 o Multiple content match nodes (i.e., sibling nodes) are logically
 combined in an "AND" expression.

 o Filtering of mixed content is not supported.

 o Filtering of list content is not supported.

 o Filtering of whitespace-only content is not supported.

 o A content match node must contain non-whitespace characters. An
 empty element (e.g., <foo></foo>) will be interpreted as a
 selection node (e.g., <foo/>).

 o Leading and trailing whitespace characters are ignored, but any
 whitespace characters within a block of text characters are not
 ignored or modified.

 If all specified sibling content match nodes in a subtree filter
 expression are 'true', then the filter output nodes are selected in
 the following manner:

 o Each content match node in the sibling set is included in the
 filter output.

 o If any containment nodes are present in the sibling set, then they
 are processed further and included if any nested filter criteria
 are also met.

 o If any selection nodes are present in the sibling set, then all of
 them are included in the filter output.

 o Otherwise (i.e., there are no selection or containment nodes in
 the filter sibling set), all the nodes defined at this level in
 the underlying data model (and their subtrees, if any) are
 returned in the filter output.

 If any of the sibling content match node tests are 'false', then no
 further filter processing is performed on that sibling set, and none
 of the sibling subtrees are selected by the filter, including the
 content match node(s).

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
</filter>

 In this example, the <users> and <user> nodes are both containment
 nodes, and <name> is a content match node. Since no sibling nodes of
 <name> are specified (and therefore no containment or selection
 nodes), all of the sibling nodes of <name> are returned in the filter
 output. Only 'user' nodes in the
 'http://example.com/schema/1.2/config' namespace that match the
 element hierarchy and for which the <name> element is equal to 'fred'
 will be included in the filter output.

6.3. Subtree Filter Processing

 The filter output (the set of selected nodes) is initially empty.

 Each subtree filter can contain one or more data model fragments,
 which represent portions of the data model that should be selected
 (with all child nodes) in the filter output.

 Each subtree data fragment is compared by the server to the internal
 data models supported by the server. If the entire subtree data-
 fragment filter (starting from the root to the innermost element
 specified in the filter) exactly matches a corresponding portion of
 the supported data model, then that node and all its children are
 included in the result data.

 The server processes all nodes with the same parent node (sibling
 set) together, starting from the root to the leaf nodes. The root
 elements in the filter are considered in the same sibling set
 (assuming they are in the same namespace), even though they do not
 have a common parent.

 For each sibling set, the server determines which nodes are included
 (or potentially included) in the filter output, and which sibling
 subtrees are excluded (pruned) from the filter output. The server
 first determines which types of nodes are present in the sibling set
 and processes the nodes according to the rules for their type. If
 any nodes in the sibling set are selected, then the process is
 recursively applied to the sibling sets of each selected node. The
 algorithm continues until all sibling sets in all subtrees specified
 in the filter have been processed.

6.4. Subtree Filtering Examples

6.4.1. No Filter

 Leaving out the filter on the get operation returns the entire data
 model.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <!‑‑ ... entire set of data returned ... ‑‑>
 </data>
</rpc‑reply>

6.4.2. Empty Filter

 An empty filter will select nothing because no content match or
 selection nodes are present. This is not an error. The filter type
 attribute used in these examples is discussed further in Section 7.1.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 </filter>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 </data>
</rpc‑reply>

6.4.3. Select the Entire <users> Subtree

 The filter in this example contains one selection node (<users>), so
 just that subtree is selected by the filter. This example represents
 the fully-populated <users> data model in most of the filter examples
 that follow. In a real data model, the <company-info> would not
 likely be returned with the list of users for a particular host or
 network.

 NOTE: The filtering and configuration examples used in this document
 appear in the namespace "http://example.com/schema/1.2/config". The
 root element of this namespace is <top>. The <top> element and its
 descendents represent an example configuration data model only.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">

 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full‑name>Charlie Root</full‑name>
 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full‑name>Fred Flintstone</full‑name>
 <company‑info>
 <dept>2</dept>
 <id>2</id>
 </company‑info>
 </user>
 <user>
 <name>barney</name>
 <type>admin</type>
 <full‑name>Barney Rubble</full‑name>
 <company‑info>
 <dept>2</dept>
 <id>3</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

 The following filter request would have produced the same result, but
 only because the container <users> defines one child element
 (<user>).

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user/>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

6.4.4. Select All <name> Elements within the <users> Subtree

 This filter contains two containment nodes (<users>, <user>) and one
 selector node (<name>). All instances of the <name> element in the
 same sibling set are selected in the filter output. The manager may
 need to know that <name> is used as an instance identifier in this
 particular data structure, but the server does not need to know that
 meta-data in order to process the request.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name/>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>

 <user>
 <name>root</name>
 </user>
 <user>
 <name>fred</name>
 </user>
 <user>
 <name>barney</name>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.5. One Specific <user> Entry

 This filter contains two containment nodes (<users>, <user>) and one
 content match node (<name>). All instances of the sibling set
 containing <name> for which the value of <name> equals "fred" are
 selected in the filter output.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full‑name>Fred Flintstone</full‑name>

 <company‑info>
 <dept>2</dept>
 <id>2</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.6. Specific Elements from a Specific <user> Entry

 This filter contains two containment nodes (<users>, <user>), one
 content match node (<name>), and two selector nodes (<type>,
 <full-name>). All instances of the <type> and <full-name> elements
 in the same sibling set containing <name> for which the value of
 <name> equals "fred" are selected in the filter output. The
 <company-info> element is not included because the sibling set
 contains selection nodes.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type/>
 <full‑name/>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>

 <full‑name>Fred Flintstone</full‑name>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.7. Multiple Subtrees

 This filter contains three subtrees (name=root, fred, barney).

 The "root" subtree filter contains two containment nodes (<users>,
 <user>), one content match node (<name>), and one selector node
 (<company-info>). The subtree selection criteria is met, and just
 the company-info subtree for "root" is selected in the filter output.

 The "fred" subtree filter contains three containment nodes (<users>,
 <user>, <company-info>), one content match node (<name>), and one
 selector node (<id>). The subtree selection criteria is met, and
 just the <id> element within the company-info subtree for "fred" is
 selected in the filter output.

 The "barney" subtree filter contains three containment nodes
 (<users>, <user>, <company-info>), two content match nodes (<name>,
 <type>), and one selector node (<dept>). The subtree selection
 criteria is not met because user "barney" is not a "superuser", and
 the entire subtree for "barney" (including its parent <user> entry)
 is excluded from the filter output.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <company‑info/>
 </user>
 <user>
 <name>fred</name>
 <company‑info>
 <id/>
 </company‑info>
 </user>

 <user>
 <name>barney</name>
 <type>superuser</type>
 <company‑info>
 <dept/>
 </company‑info>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>
 <user>
 <name>fred</name>
 <company‑info>
 <id>2</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.8. Elements with Attribute Naming

 In this example, the filter contains one containment node
 (<interfaces>), one attribute match expression (ifName), and one
 selector node (<interface>). All instances of the <interface>
 subtree that have an ifName attribute equal to "eth0" are selected in
 the filter output. The filter data elements and attributes must be
 qualified because the ifName attribute will not be considered part of
 the 'schema/1.2' namespace if it is unqualified.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <t:top xmlns:t="http://example.com/schema/1.2/stats">
 <t:interfaces>
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </t:top>
 </filter>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <t:top xmlns:t="http://example.com/schema/1.2/stats">
 <t:interfaces>
 <t:interface t:ifName="eth0">
 <t:ifInOctets>45621</t:ifInOctets>
 <t:ifOutOctets>774344</t:ifOutOctets>
 </t:interface>
 </t:interfaces>
 </t:top>
 </data>
</rpc‑reply>

 If ifName were a child node instead of an attribute, then the
 following request would produce similar results.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/stats">
 <interfaces>
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </top>
 </filter>
 </get>
</rpc>

7. Protocol Operations

 The NETCONF protocol provides a small set of low-level operations to
 manage device configurations and retrieve device state information.
 The base protocol provides operations to retrieve, configure, copy,
 and delete configuration datastores. Additional operations are
 provided, based on the capabilities advertised by the device.

 The base protocol includes the following protocol operations:

 o get

 o get-config

 o edit-config

 o copy-config

 o delete-config

 o lock

 o unlock

 o close-session

 o kill-session

 A protocol operation may fail for various reasons, including
 "operation not supported". An initiator should not assume that any
 operation will always succeed. The return values in any RPC reply
 should be checked for error responses.

 The syntax and XML encoding of the protocol operations are formally
 defined in the XML schema in Appendix B. The following sections
 describe the semantics of each protocol operation.

7.1. <get-config>

 Description:

 Retrieve all or part of a specified configuration.

 Parameters:

 source:

 Name of the configuration datastore being queried, such as
 <running/>.

 filter:

 The filter element identifies the portions of the device
 configuration to retrieve. If this element is unspecified, the
 entire configuration is returned.

 The filter element may optionally contain a "type" attribute.
 This attribute indicates the type of filtering syntax used
 within the filter element. The default filtering mechanism in
 NETCONF is referred to as subtree filtering and is described in
 Section 6. The value "subtree" explicitly identifies this type
 of filtering.

If the NETCONF peer supports the :xpath capability
(Section 8.9), the value "xpath" may be used to indicate that
the select attribute on the filter element contains an XPath
expression.

 Positive Response:

 If the device can satisfy the request, the server sends an
 <rpc-reply> element containing a <data> element with the results
 of the query.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example: To retrieve the entire <users> subtree:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>

 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full‑name>Charlie Root</full‑name>
 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>
 <!‑‑ additional <user> elements appear here... ‑‑>
 </users>
 </top>
 </data>
</rpc‑reply>

 If the configuration is available in multiple formats, such as XML
 and text, an XML namespace can be used to specify which format is
 desired. In the following example, the client uses a specific
 element (<config-text>) in a specific namespace to indicate to the
 server the desire to receive the configuration in an alternative
 format. The server may support any number of distinct formats or
 views into the configuration data, with the client using the <filter>
 parameter to select between them.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <!‑‑ request a text version of the configuration ‑‑>
 <config‑text xmlns="http://example.com/text/1.2/config"/>
 </filter>
 </get‑config>
</rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <data>
 <config‑text xmlns="http://example.com/text/1.2/config">
 <!‑‑ configuration text... ‑‑>
 </config‑text>
 </data>
</rpc‑reply>

 Section 6 contains additional examples of subtree filtering.

7.2. <edit-config>

 Description:

 The <edit-config> operation loads all or part of a specified
 configuration to the specified target configuration. This
 operation allows the new configuration to be expressed in several
 ways, such as using a local file, a remote file, or inline. If
 the target configuration does not exist, it will be created. If a
 NETCONF peer supports the :url capability (Section 8.8), the <url>
 element can appear instead of the <config> parameter and should
 identify a local configuration file.

 The device analyzes the source and target configurations and
 performs the requested changes. The target configuration is not
 necessarily replaced, as with the <copy-config> message. Instead,
 the target configuration is changed in accordance with the
 source's data and requested operations.

 Attributes:

 operation:

 Elements in the <config> subtree may contain an "operation"
 attribute. The attribute identifies the point in the
 configuration to perform the operation and MAY appear on
 multiple elements throughout the <config> subtree.

 If the operation attribute is not specified, the configuration
 is merged into the configuration datastore.

 The operation attribute has one of the following values:

 merge: The configuration data identified by the element

 containing this attribute is merged with the configuration
 at the corresponding level in the configuration datastore
 identified by the target parameter. This is the default
 behavior.

 replace: The configuration data identified by the element

 containing this attribute replaces any related configuration
 in the configuration datastore identified by the target
 parameter. Unlike a <copy-config> operation, which replaces
 the entire target configuration, only the configuration
 actually present in the config parameter is affected.

 create: The configuration data identified by the element

 containing this attribute is added to the configuration if
 and only if the configuration data does not already exist on
 the device. If the configuration data exists, an
 <rpc-error> element is returned with an <error-tag> value of
 data-exists.

 delete: The configuration data identified by the element

 containing this attribute is deleted in the configuration
 datastore identified by the target parameter.

 Parameters:

 target:

 Name of the configuration datastore being edited, such as
 <running/> or <candidate/>.

 default-operation:

 Selects the default operation (as described in the "operation"
 attribute) for this <edit-config> request. The default value
 for the default-operation parameter is "merge".

 The default-operation parameter is optional, but if provided,
 it must have one of the following values:

 merge: The configuration data in the <config> parameter is

 merged with the configuration at the corresponding level in
 the target datastore. This is the default behavior.

 replace: The configuration data in the <config> parameter

 completely replaces the configuration in the target
 datastore. This is useful for loading previously saved
 configuration data.

 none: The target datastore is unaffected by the configuration

 in the <config> parameter, unless and until the incoming
 configuration data uses the "operation" attribute to request
 a different operation. If the configuration in the <config>
 parameter contains data for which there is not a
 corresponding level in the target datastore, an <rpc-error>
 is returned with an <error-tag> value of data-missing.
 Using "none" allows operations like "delete" to avoid
 unintentionally creating the parent hierarchy of the element
 to be deleted.

 test-option:

 The test-option element may be specified only if the device
 advertises the :validate capability (Section 8.6).

 The test-option element has one of the following values:

 test-then-set: Perform a validation test before attempting to

 set. If validation errors occur, do not perform the
 <edit-config> operation. This is the default test-option.

 set: Perform a set without a validation test first.

 error-option:

 The error-option element has one of the following values:

 stop-on-error: Abort the edit-config operation on first error.

 This is the default error-option.

 continue-on-error: Continue to process configuration data on

 error; error is recorded, and negative response is generated
 if any errors occur.

 rollback-on-error: If an error condition occurs such that an

 error severity <rpc-error> element is generated, the server
 will stop processing the edit-config operation and restore
 the specified configuration to its complete state at the
 start of this edit-config operation. This option requires
 the server to support the :rollback-on-error capability
 described in Section 8.5.

 config:

 A hierarchy of configuration data as defined by one of the
 device's data models. The contents MUST be placed in an
 appropriate namespace, to allow the device to detect the
 appropriate data model, and the contents MUST follow the
 constraints of that data model, as defined by its capability
 definition. Capabilities are discussed in Section 8.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent containing an <ok> element.

 Negative Response:

 An <rpc-error> response is sent if the request cannot be completed
 for any reason.

 Example:

 The <edit-config> examples in this section utilize a simple data
 model, in which multiple instances of the 'interface' element may
 be present, and an instance is distinguished by the 'name' element
 within each 'interface' element.

 Set the MTU to 1500 on an interface named "Ethernet0/0" in the
 running configuration:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Add an interface named "Ethernet0/0" to the running configuration,
 replacing any previous interface with that name:

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>

 <target>
 <running/>
 </target>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="replace">
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 <address>
 <name>192.0.2.4</name>
 <prefix‑length>24</prefix‑length>
 </address>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Delete the configuration for an interface named "Ethernet0/0" from
 the running configuration:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="delete">
 <name>Ethernet0/0</name>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Delete interface 192.0.2.4 from an OSPF area (other interfaces
 configured in the same area are unaffected):

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <protocols>
 <ospf>
 <area>
 <name>0.0.0.0</name>
 <interfaces>
 <interface xc:operation="delete">
 <name>192.0.2.4</name>
 </interface>
 </interfaces>
 </area>
 </ospf>
 </protocols>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.3. <copy-config>

 Description:

 Create or replace an entire configuration datastore with the
 contents of another complete configuration datastore. If the
 target datastore exists, it is overwritten. Otherwise, a new one
 is created, if allowed.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear as the <source> or <target> parameter.

 Even if it advertises the :writable-running capability, a device
 may choose not to support the <running/> configuration datastore
 as the <target> parameter of a <copy-config> operation. A device
 may choose not to support remote-to-remote copy operations, where
 both the <source> and <target> parameters use the <url> element.

 If the source and target parameters identify the same URL or
 configuration datastore, an error MUST be returned with an error-
 tag containing invalid-value.

 Parameters:

 target:

 Name of the configuration datastore to use as the destination
 of the copy operation.

 source:

 Name of the configuration datastore to use as the source of the
 copy operation or the <config> element containing the
 configuration subtree to copy.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <running/>
 </target>
 <source>
 <url>https://user@example.com:passphrase/cfg/new.txt</url>
 </source>
 </copy‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.4. <delete-config>

 Description:

 Delete a configuration datastore. The <running> configuration
 datastore cannot be deleted.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear as the <target> parameter.

 Parameters:

 target:

 Name of the configuration datastore to delete.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete‑config>
 <target>
 <startup/>
 </target>
 </delete‑config>
</rpc>

 <rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.5. <lock>

 Description:

 The lock operation allows the client to lock the configuration
 system of a device. Such locks are intended to be short-lived and
 allow a client to make a change without fear of interaction with
 other NETCONF clients, non-NETCONF clients (e.g., SNMP and command
 line interface (CLI) scripts), and human users.

 An attempt to lock the configuration MUST fail if an existing
 session or other entity holds a lock on any portion of the lock
 target.

 When the lock is acquired, the server MUST prevent any changes to
 the locked resource other than those requested by this session.
 SNMP and CLI requests to modify the resource MUST fail with an
 appropriate error.

 The duration of the lock is defined as beginning when the lock is
 acquired and lasting until either the lock is released or the
 NETCONF session closes. The session closure may be explicitly
 performed by the client, or implicitly performed by the server
 based on criteria such as failure of the underlying transport, or
 simple inactivity timeout. This criteria is dependent on the
 implementation and the underlying transport.

 The lock operation takes a mandatory parameter, target. The
 target parameter names the configuration that will be locked.
 When a lock is active, using the <edit-config> operation on the
 locked configuration and using the locked configuration as a
 target of the <copy-config> operation will be disallowed by any
 other NETCONF session. Additionally, the system will ensure that
 these locked configuration resources will not be modified by other
 non-NETCONF management operations such as SNMP and CLI. The
 <kill-session> message (at the RPC layer) can be used to force the
 release of a lock owned by another NETCONF session. It is beyond
 the scope of this document to define how to break locks held by
 other entities.

 A lock MUST not be granted if either of the following conditions
 is true:

 * A lock is already held by any NETCONF session or another
 entity.

 * The target configuration is <candidate>, it has already been
 modified, and these changes have not been committed or rolled
 back.

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

 A lock will be released by the system if the session holding the
 lock is terminated for any reason.

 Parameters:

 target:

 Name of the configuration datastore to lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 If the lock is already held, the <error-tag> element will be
 'lock-denied' and the <error-info> element will include the
 <session-id> of the lock owner. If the lock is held by a non-
 NETCONF entity, a <session-id> of 0 (zero) is included. Note that
 any other entity performing a lock on even a partial piece of a
 target will prevent a NETCONF lock (which is global) from being
 obtained on that target.

 Example:

 The following example shows a successful acquisition of a lock.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/> <!‑‑ lock succeeded ‑‑>
</rpc‑reply>

 Example:

 The following example shows a failed attempt to acquire a lock
 when the lock is already in use.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error> <!‑‑ lock failed ‑‑>
 <error‑type>protocol</error‑type>
 <error‑tag>lock‑denied</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑message>
 Lock failed, lock is already held
 </error‑message>
 <error‑info>
 <session‑id>454</session‑id>
 <!‑‑ lock is held by NETCONF session 454 ‑‑>
 </error‑info>
 </rpc‑error>
</rpc‑reply>

7.6. <unlock>

 Description:

 The unlock operation is used to release a configuration lock,
 previously obtained with the <lock> operation.

 An unlock operation will not succeed if any of the following
 conditions are true:

 * the specified lock is not currently active

 * the session issuing the <unlock> operation is not the same
 session that obtained the lock

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

 Parameters:

 target:

 Name of the configuration datastore to unlock.

 A NETCONF client is not permitted to unlock a configuration
 datastore that it did not lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.7. <get>

 Description:

 Retrieve running configuration and device state information.

 Parameters:

 filter:

 This parameter specifies the portion of the system
 configuration and state data to retrieve. If this parameter is
 empty, all the device configuration and state information is
 returned.

 The filter element may optionally contain a 'type' attribute.
 This attribute indicates the type of filtering syntax used
 within the filter element. The default filtering mechanism in
 NETCONF is referred to as subtree filtering and is described in
 Section 6. The value 'subtree' explicitly identifies this type
 of filtering.

If the NETCONF peer supports the :xpath capability
(Section 8.9), the value "xpath" may be used to indicate that
the select attribute of the filter element contains an XPath
expression.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent. The <data> section contains the appropriate subset.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/stats">
 <interfaces>
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </top>
 </filter>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/stats">
 <interfaces>
 <interface>
 <ifName>eth0</ifName>
 <ifInOctets>45621</ifInOctets>
 <ifOutOctets>774344</ifOutOctets>
 </interface>
 </interfaces>
 </top>
 </data>
</rpc‑reply>

7.8. <close-session>

 Description:

 Request graceful termination of a NETCONF session.

 When a NETCONF server receives a <close-session> request, it will
 gracefully close the session. The server will release any locks
 and resources associated with the session and gracefully close any
 associated connections. Any NETCONF requests received after a
 <close-session> request will be ignored.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close‑session/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.9. <kill-session>

 Description:

 Force the termination of a NETCONF session.

 When a NETCONF entity receives a <kill-session> request for an
 open session, it will abort any operations currently in process,
 release any locks and resources associated with the session, and
 close any associated connections.

 If a NETCONF server receives a <kill-session> request while
 processing a confirmed commit (Section 8.4), it must restore the
 configuration to its state before the confirmed commit was issued.

 Otherwise, the <kill-session> operation does not roll back
 configuration or other device state modifications made by the
 entity holding the lock.

 Parameters:

 session-id:

 Session identifier of the NETCONF session to be terminated. If
 this value is equal to the current session ID, an
 'invalid-value' error is returned.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <kill‑session>
 <session‑id>4</session‑id>
 </kill‑session>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8. Capabilities

 This section defines a set of capabilities that a client or a server
 MAY implement. Each peer advertises its capabilities by sending them
 during an initial capabilities exchange. Each peer needs to
 understand only those capabilities that it might use and MUST ignore
 any capability received from the other peer that it does not require
 or does not understand.

 Additional capabilities can be defined using the template in
 Appendix C. Future capability definitions may be published as
 standards by standards bodies or published as proprietary extensions.

 A NETCONF capability is identified with a URI. The base capabilities
 are defined using URNs following the method described in RFC 3553
 [6]. Capabilities defined in this document have the following
 format:

 urn:ietf:params:netconf:capability:{name}:1.0

 where {name} is the name of the capability. Capabilities are often
 referenced in discussions and email using the shorthand :{name}. For
 example, the foo capability would have the formal name
 "urn:ietf:params:netconf:capability:foo:1.0" and be called ":foo".
 The shorthand form MUST NOT be used inside the protocol.

8.1. Capabilities Exchange

 Capabilities are advertised in messages sent by each peer during
 session establishment. When the NETCONF session is opened, each peer
 (both client and server) MUST send a <hello> element containing a
 list of that peer's capabilities. Each peer MUST send at least the
 base NETCONF capability, "urn:ietf:params:netconf:base:1.0".

 A server sending the <hello> element MUST include a <session-id>
 element containing the session ID for this NETCONF session. A client
 sending the <hello> element MUST NOT include a <session-id> element.

 A server receiving a <session-id> element MUST NOT continue the
 NETCONF session. Similarly, a client that does not receive a
 <session-id> element in the server's <hello> message MUST NOT
 continue the NETCONF session. In both cases, the underlying
 transport should be closed.

 In the following example, a server advertises the base NETCONF
 capability, one NETCONF capability defined in the base NETCONF
 document, and one implementation-specific capability.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:startup:1.0
 </capability>
 <capability>
 http://example.net/router/2.3/myfeature
 </capability>
 </capabilities>
 <session‑id>4</session‑id>
</hello>

 Each peer sends its <hello> element simultaneously as soon as the
 connection is open. A peer MUST NOT wait to receive the capability
 set from the other side before sending its own set.

8.2. Writable-Running Capability

8.2.1. Description

 The :writable-running capability indicates that the device supports
 direct writes to the <running> configuration datastore. In other
 words, the device supports edit-config and copy-config operations
 where the <running> configuration is the target.

8.2.2. Dependencies

 None.

8.2.3. Capability Identifier

 The :writable-running capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:writable-running:1.0

8.2.4. New Operations

 None.

8.2.5. Modifications to Existing Operations

8.2.5.1. <edit-config>

 The :writable-running capability modifies the <edit-config> operation
 to accept the <running> element as a <target>.

8.2.5.2. <copy-config>

 The :writable-running capability modifies the <copy-config> operation
 to accept the <running> element as a <target>.

8.3. Candidate Configuration Capability

8.3.1. Description

 The candidate configuration capability, :candidate, indicates that
 the device supports a candidate configuration datastore, which is
 used to hold configuration data that can be manipulated without
 impacting the device's current configuration. The candidate
 configuration is a full configuration data set that serves as a work
 place for creating and manipulating configuration data. Additions,
 deletions, and changes may be made to this data to construct the
 desired configuration data. A <commit> operation may be performed at
 any time that causes the device's running configuration to be set to
 the value of the candidate configuration.

 The <commit> operation effectively sets the running configuration to
 the current contents of the candidate configuration. While it could
 be modeled as a simple copy, it is done as a distinct operation for a
 number of reasons. In keeping high-level concepts as first class
 operations, we allow developers to see more clearly both what the
 client is requesting and what the server must perform. This keeps
 the intentions more obvious, the special cases less complex, and the
 interactions between operations more straightforward. For example,
 the :confirmed-commit capability (Section 8.4) would make no sense as
 a "copy confirmed" operation.

 The candidate configuration may be shared among multiple sessions.
 Unless a client has specific information that the candidate
 configuration is not shared, it must assume that other sessions may
 be able to modify the candidate configuration at the same time. It
 is therefore prudent for a client to lock the candidate configuration
 before modifying it.

 The client can discard any uncommitted changes to the candidate
 configuration by executing the <discard-changes> operation. This
 operation reverts the contents of the candidate configuration to the
 contents of the running configuration.

8.3.2. Dependencies

 None.

8.3.3. Capability Identifier

 The :candidate capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:candidate:1.0

8.3.4. New Operations

8.3.4.1. <commit>

 Description:

 When a candidate configuration's content is complete, the
 configuration data can be committed, publishing the data set to
 the rest of the device and requesting the device to conform to
 the behavior described in the new configuration.

 To commit the candidate configuration as the device's new
 current configuration, use the <commit> operation.

 The <commit> operation instructs the device to implement the
 configuration data contained in the candidate configuration.
 If the device is unable to commit all of the changes in the
 candidate configuration datastore, then the running
 configuration MUST remain unchanged. If the device does
 succeed in committing, the running configuration MUST be
 updated with the contents of the candidate configuration.

 If the system does not have the :candidate capability, the
 <commit> operation is not available.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.3.4.2. <discard-changes>

 If the client decides that the candidate configuration should not be
 committed, the <discard-changes> operation can be used to revert the
 candidate configuration to the current running configuration.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <discard‑changes/>
</rpc>

 This operation discards any uncommitted changes by resetting the
 candidate configuration with the content of the running
 configuration.

8.3.5. Modifications to Existing Operations

8.3.5.1. <get-config>, <edit-config>, <copy-config>, and <validate>

 The candidate configuration can be used as a source or target of any
 <get-config>, <edit-config>, <copy-config>, or <validate> operation
 as a <source> or <target> parameter. The <candidate> element is used
 to indicate the candidate configuration:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config> <!‑‑ any NETCONF operation ‑‑>
 <source>
 <candidate/>
 </source>
 </get‑config>
</rpc>

8.3.5.2. <lock> and <unlock>

 The candidate configuration can be locked using the <lock> operation
 with the <candidate> element as the <target> parameter:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
</rpc>

 Similarly, the candidate configuration is unlocked using the
 <candidate> element as the <target> parameter:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
</rpc>

 When a client fails with outstanding changes to the candidate
 configuration, recovery can be difficult. To facilitate easy
 recovery, any outstanding changes are discarded when the lock is
 released, whether explicitly with the <unlock> operation or
 implicitly from session failure.

8.4. Confirmed Commit Capability

8.4.1. Description

 The :confirmed-commit capability indicates that the server will
 support the <confirmed> and <confirm-timeout> parameters for the
 <commit> protocol operation. See Section 8.3 for further details on
 the <commit> operation.

 A confirmed commit operation MUST be reverted if a follow-up commit
 (called the "confirming commit") is not issued within 600 seconds (10
 minutes). The timeout period can be adjusted with the
 <confirm-timeout> element. The confirming commit can itself include
 a <confirmed> parameter.

 If the session issuing the confirmed commit is terminated for any
 reason before the confirm timeout expires, the server MUST restore
 the configuration to its state before the confirmed commit was
 issued.

 If the device reboots for any reason before the confirm timeout
 expires, the server MUST restore the configuration to its state
 before the confirmed commit was issued.

 If a confirming commit is not issued, the device will revert its
 configuration to the state prior to the issuance of the confirmed
 commit. Note that any commit operation, including a commit which
 introduces additional changes to the configuration, will serve as a
 confirming commit. Thus to cancel a confirmed commit and revert
 changes without waiting for the confirm timeout to expire, the
 manager can explicitly restore the configuration to its state before
 the confirmed commit was issued.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, the lock is obtained before the edit-config
 operation is started). Therefore, it is strongly suggested that in
 order to use this feature with shared configuration databases,
 configuration locking should also be used.

8.4.2. Dependencies

 The :confirmed-commit capability is only relevant if the :candidate
 capability is also supported.

8.4.3. Capability Identifier

 The :confirmed-commit capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:confirmed-commit:1.0

8.4.4. New Operations

 None.

8.4.5. Modifications to Existing Operations

8.4.5.1. <commit>

 The :confirmed-commit capability allows 2 additional parameters to
 the <commit> operation.

 Parameters:

 confirmed:

 Perform a confirmed commit operation.

 confirm-timeout:

 Timeout period for confirmed commit, in seconds. If
 unspecified, the confirm timeout defaults to 600 seconds.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm‑timeout>120</confirm‑timeout>
 </commit>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.5. Rollback on Error Capability

8.5.1. Description

 This capability indicates that the server will support the
 'rollback-on-error' value in the <error-option> parameter to the
 <edit-config> operation.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, the lock is obtained before the edit-config
 operation is started). Therefore, it is strongly suggested that in
 order to use this feature with shared configuration databases,
 configuration locking also be used.

8.5.2. Dependencies

 None

8.5.3. Capability Identifier

 The :rollback-on-error capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:rollback-on-error:1.0

8.5.4. New Operations

 None.

8.5.5. Modifications to Existing Operations

8.5.5.1. <edit-config>

 The :rollback-on-error capability allows the 'rollback-on-error'
 value to the <error-option> parameter on the <edit-config> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <error‑option>rollback‑on‑error</error‑option>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">

 <interface>
 <name>Ethernet0/0</name>
 <mtu>100000</mtu>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.6. Validate Capability

8.6.1. Description

 Validation consists of checking a candidate configuration for
 syntactical and semantic errors before applying the configuration to
 the device.

 If this capability is advertised, the device supports the <validate>
 protocol operation and checks at least for syntax errors. In
 addition, this capability supports the test-option parameter to the
 <edit-config> operation and, when it is provided, checks at least for
 syntax errors.

8.6.2. Dependencies

 None.

8.6.3. Capability Identifier

 The :validate capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:validate:1.0

8.6.4. New Operations

8.6.4.1. <validate>

 Description:

 This protocol operation validates the contents of the specified
 configuration.

 Parameters:

 source:

 Name of the configuration datastore being validated, such as
 <candidate> or the <config> element containing the
 configuration subtree to validate.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 A validate operation can fail for any of the following reasons:

 + Syntax errors

 + Missing parameters

 + References to undefined configuration data

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.7. Distinct Startup Capability

8.7.1. Description

 The device supports separate running and startup configuration
 datastores. Operations that affect the running configuration will
 not be automatically copied to the startup configuration. An
 explicit <copy-config> operation from the <running> to the <startup>
 must be invoked to update the startup configuration to the current
 contents of the running configuration. NETCONF protocol operations
 refer to the startup datastore using the <startup> element.

8.7.2. Dependencies

 None.

8.7.3. Capability Identifier

 The :startup capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:startup:1.0

8.7.4. New Operations

 None.

8.7.5. Modifications to Existing Operations

8.7.5.1. General

 The :startup capability adds the <startup/> configuration datastore
 to arguments of several NETCONF operations. The server MUST support
 the following additional values:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Operation | Parameters | Notes |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
<get‑config>	<source>	
<copy‑config>	<source> <target>	
<lock>	<target>	
<unlock>	<target>	
<validate>	<source>	If :validate is
		advertised
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 To save the startup configuration, use the copy-config operation to
 copy the <running> configuration datastore to the <startup>
 configuration datastore.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 </copy‑config>
</rpc>

8.8. URL Capability

8.8.1. Description

 The NETCONF peer has the ability to accept the <url> element in
 <source> and <target> parameters. The capability is further
 identified by URL arguments indicating the URL schemes supported.

8.8.2. Dependencies

 None.

8.8.3. Capability Identifier

 The :url capability is identified by the following capability string:

 urn:ietf:params:netconf:capability:url:1.0?scheme={name,...}

 The :url capability URI MUST contain a "scheme" argument assigned a
 comma-separated list of scheme names indicating which schemes the
 NETCONF peer supports. For example:

 urn:ietf:params:netconf:capability:url:1.0?scheme=http,ftp,file

8.8.4. New Operations

 None.

8.8.5. Modifications to Existing Operations

8.8.5.1. <edit-config>

 The :url capability modifies the <edit-config> operation to accept
 the <url> element as an alternative to the <config> parameter. If
 the <url> element is specified, then it should identify a local
 configuration file.

8.8.5.2. <copy-config>

 The :url capability modifies the <copy-config> operation to accept
 the <url> element as the value of the <source> and the <target>
 parameters.

8.8.5.3. <delete-config>

 The :url capability modifies the <delete-config> operation to accept
 the <url> element as the value of the <target> parameters. If this
 parameter contains a URL, then it should identify a local
 configuration file.

8.8.5.4. <validate>

 The :url capability modifies the <validate> operation to accept the
 <url> element as the value of the <source> parameter.

8.9. XPath Capability

8.9.1. Description

 The XPath capability indicates that the NETCONF peer supports the use
 of XPath expressions in the <filter> element. XPath is described in
 [2].

 The XPath expression must return a node-set.

 The XPath expression is evaluated in a context where the context node
 is the root node, and the set of namespace declarations are those in
 scope on the filter element, including the default namespace.

8.9.2. Dependencies

 None.

8.9.3. Capability Identifier

 The :xpath capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:xpath:1.0

8.9.4. New Operations

 None.

8.9.5. Modifications to Existing Operations

8.9.5.1. <get-config> and <get>

 The :xpath capability modifies the <get> and <get-config> operations
 to accept the value "xpath" in the type attribute of the filter
 element. When the type attribute is set to "xpath", a select
 attribute MUST be present on the filter element. The select
 attribute will be treated as an XPath expression and used to filter
 the returned data. The filter element itself MUST be empty in this
 case.

 For example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>

 </source>
 <!‑‑ get the user named fred ‑‑>
 <filter type="xpath" select="top/users/user[name='fred']"/>
 </get‑config>
</rpc>

9. Security Considerations

 This document does not specify an authorization scheme, as such a
 scheme should be tied to a meta-data model or a data model.
 Implementors SHOULD provide a comprehensive authorization scheme with
 NETCONF.

 Authorization of individual users via the NETCONF server may or may
 not map 1:1 to other interfaces. First, the data models may be
 incompatible. Second, it may be desirable to authorize based on
 mechanisms available in the transport protocol layer (TELNET, SSH,
 etc).

 In addition, operations on configurations may have unintended
 consequences if those operations are also not guarded by the global
 lock on the files or objects being operated upon. For instance, a
 partially complete access list could be committed from a candidate
 configuration unbeknownst to the owner of the lock of the candidate
 configuration, leading to either an insecure or inaccessible device
 if the lock on the candidate configuration does not also apply to the
 <copy-config> operation when applied to it.

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic eavesdropping attacks. Configuration
 information often contains passwords, user names, service
 descriptions, and topological information, all of which are
 sensitive. Because of this, this protocol should be implemented
 carefully with adequate attention to all manner of attack one might
 expect to experience with other management interfaces.

 The protocol, therefore, must minimally support options for both
 confidentiality and authentication. It is anticipated that the
 underlying protocol (SSH, BEEP, etc) will provide for both
 confidentiality and authentication, as is required. It is further
 expected that the identity of each end of a NETCONF session will be
 available to the other in order to determine authorization for any
 given request. One could also easily envision additional
 information, such as transport and encryption methods, being made
 available for purposes of authorization. NETCONF itself provide no
 means to re-authenticate, much less authenticate. All such actions
 occur at lower layers.

 Different environments may well allow different rights prior to and
 then after authentication. Thus, an authorization model is not
 specified in this document. When an operation is not properly
 authorized, a simple "access denied" is sufficient. Note that
 authorization information may be exchanged in the form of
 configuration information, which is all the more reason to ensure the
 security of the connection.

 That having been said, it is important to recognize that some
 operations are clearly more sensitive by nature than others. For
 instance, <copy-config> to the startup or running configurations is
 clearly not a normal provisioning operation, whereas <edit-config>
 is. Such global operations MUST disallow the changing of information
 that an individual does not have authorization to perform. For
 example, if a user A is not allowed to configure an IP address on an
 interface but user B has configured an IP address on an interface in
 the <candidate> configuration, user A must not be allowed to commit
 the <candidate> configuration.

 Similarly, just because someone says "go write a configuration
 through the URL capability at a particular place", this does not mean
 that an element should do it without proper authorization.

 The <lock> operation will demonstrate that NETCONF is intended for
 use by systems that have at least some trust of the administrator.
 As specified in this document, it is possible to lock portions of a
 configuration that a principal might not otherwise have access to.
 After all, the entire configuration is locked. To mitigate this
 problem, there are two approaches. It is possible to kill another
 NETCONF session programmatically from within NETCONF if one knows the
 session identifier of the offending session. The other possible way
 to break a lock is to provide an function within the device's native
 user interface. These two mechanisms suffer from a race condition
 that may be ameliorated by removing the offending user from an AAA
 server. However, such a solution is not useful in all deployment
 scenarios, such as those where SSH public/private key pairs are used.

10. IANA Considerations

10.1. NETCONF XML Namespace

 This document registers a URI for the NETCONF XML namespace in the
 IETF XML registry [7].

 Following the format in RFC 3688, IANA has made the following
 registration.

 URI: urn:ietf:params:xml:ns:netconf:base:1.0

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

10.2. NETCONF XML Schema

 This document registers a URI for the NETCONF XML schema in the IETF
 XML registry [7].

 Following the format in RFC 3688, IANA has made the following
 registration.

 URI: urn:ietf:params:xml:schema:netconf

 Registrant Contact: The IESG.

 XML: Appendix B of this document.

10.3. NETCONF Capability URNs

 This document creates a registry that allocates NETCONF capability
 identifiers. Additions to the registry require IETF Standards
 Action.

 The initial content of the registry contains the capability URNs
 defined in Section 8.

 Following the guidelines in RFC 3553 [6], IANA assigned a NETCONF
 sub-namespace as follows:

 Registry name: netconf

 Specification: Section 8 of this document.

 Repository: The following table.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Index | Capability Identifier |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
:writable‑running	urn:ietf:params:netconf:capability:writable‑
	running:1.0
:candidate	urn:ietf:params:netconf:capability:candidate
	:1.0
:confirmed‑commit	urn:ietf:params:netconf:capability:confirmed
	‑commit:1.0
:rollback‑on‑error	urn:ietf:params:netconf:capability:rollback‑
	on‑error:1.0
:validate	urn:ietf:params:netconf:capability:validate:
	1.0
:startup	urn:ietf:params:netconf:capability:startup:1
	.0
:url	urn:ietf:params:netconf:capability:url:1.0
:xpath	urn:ietf:params:netconf:capability:xpath:1.0
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Index value: The capability name.

11. Authors and Acknowledgements

 This document was written by:

 Andy Bierman

 Ken Crozier, Cisco Systems

 Rob Enns, Juniper Networks

 Ted Goddard, IceSoft

 Eliot Lear, Cisco Systems

 Phil Shafer, Juniper Networks

 Steve Waldbusser

 Margaret Wasserman, ThingMagic

 The authors would like to acknowledge the members of the NETCONF
 working group. In particular, we would like to thank Wes Hardaker
 for his persistance and patience in assisting us with security
 considerations. We would also like to thank Randy Presuhn, Sharon
 Chisholm, Juergen Schoenwalder, Glenn Waters, David Perkins, Weijing
 Chen, Simon Leinen, Keith Allen, and Dave Harrington for all of their
 valuable advice.

12. References

12.1. Normative References

 [1]
 Sperberg-McQueen, C., Paoli, J., Maler, E., and T. Bray,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", World
 Wide Web Consortium, http://www.w3.org/TR/2000/REC-xml-20001006,
 October 2000.

 [2]
 Clark, J. and S. DeRose, "XML Path Language (XPath) Version
 1.0", World Wide Web Consortium Recommendation,
 http://www.w3.org/TR/1999/REC-xpath-19991116, November 1999.

 [3]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4]
 Wasserman, M. and T. Goddard, "Using the NETCONF Configuration
 Protocol over Secure SHell (SSH)", RFC 4742, December 2006.

 [5]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [6]
 Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An IETF
 URN Sub-namespace for Registered Protocol Parameters", BCP 73,
 RFC 3553, June 2003.

 [7]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

12.2. Informative References

 [8]
 Clark, J., "XSL Transformations (XSLT) Version 1.0", World Wide
 Web Consortium Recommendation, http://www.w3.org/TR/1999/REC-
 xslt-19991116, November 1999.

 [9]
 Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.1", RFC 4346, April 2006.

 [10]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH) Protocol
 Architecture", RFC 4251, January 2006.

 [11]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865,
 June 2000.

 [12]
 Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines for the
 Use of Extensible Markup Language (XML) within IETF Protocols",
 BCP 70, RFC 3470, January 2003.

Appendix A. NETCONF Error List

Tag: in‑use
Error‑type: protocol, application
Severity: error
Error‑info: none
Description: The request requires a resource that already in use.

Tag: invalid‑value
Error‑type: protocol, application
Severity: error
Error‑info: none
Description: The request specifies an unacceptable value for one
 or more parameters.

Tag: too‑big
Error‑type: transport, rpc, protocol, application
Severity: error
Error‑info: none
Description: The request or response (that would be generated) is too
 large for the implementation to handle.

Tag: missing‑attribute
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑attribute> : name of the missing attribute
 <bad‑element> : name of the element that should
 contain the missing attribute
Description: An expected attribute is missing.

Tag: bad‑attribute
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑attribute> : name of the attribute w/ bad value
 <bad‑element> : name of the element that contains
 the attribute with the bad value
Description: An attribute value is not correct; e.g., wrong type,
 out of range, pattern mismatch.

Tag: unknown‑attribute
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑attribute> : name of the unexpected attribute
 <bad‑element> : name of the element that contains
 the unexpected attribute
Description: An unexpected attribute is present.

Tag: missing‑element
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑element> : name of the missing element
Description: An expected element is missing.

Tag: bad‑element
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑element> : name of the element w/ bad value
Description: An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch.

Tag: unknown‑element
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑element> : name of the unexpected element
Description: An unexpected element is present.

Tag: unknown‑namespace
Error‑type: rpc, protocol, application
Severity: error
Error‑info: <bad‑element> : name of the element that contains
 the unexpected namespace
 <bad‑namespace> : name of the unexpected namespace
Description: An unexpected namespace is present.

Tag: access‑denied
Error‑type: rpc, protocol, application
Severity: error
Error‑info: none
Description: Access to the requested RPC, protocol operation,
 or data model is denied because authorization failed.

Tag: lock‑denied
Error‑type: protocol
Severity: error
Error‑info: <session‑id> : session ID of session holding the
 requested lock, or zero to indicate a non‑NETCONF
 entity holds the lock
Description: Access to the requested lock is denied because the
 lock is currently held by another entity.

Tag: resource‑denied
Error‑type: transport, rpc, protocol, application
Severity: error
Error‑info: none
Description: Request could not be completed because of insufficient
 resources.

Tag: rollback‑failed
Error‑type: protocol, application
Severity: error
Error‑info: none
Description: Request to rollback some configuration change (via
 rollback‑on‑error or discard‑changes operations) was
 not completed for some reason.

Tag: data‑exists
Error‑type: application
Severity: error
Error‑info: none
Description: Request could not be completed because the relevant
 data model content already exists. For example,
 a 'create' operation was attempted on data that
 already exists.

Tag: data‑missing
Error‑type: application
Severity: error
Error‑info: none
Description: Request could not be completed because the relevant
 data model content does not exist. For example,
 a 'replace' or 'delete' operation was attempted on
 data that does not exist.

Tag: operation‑not‑supported
Error‑type: rpc, protocol, application
Severity: error
Error‑info: none
Description: Request could not be completed because the requested
 operation is not supported by this implementation.

Tag: operation‑failed
Error‑type: rpc, protocol, application
Severity: error
Error‑info: none
Description: Request could not be completed because the requested
 operation failed for some reason not covered by
 any other error condition.

Tag: partial‑operation
Error‑type: application
Severity: error
Error‑info: <ok‑element> : identifies an element in the data model
 for which the requested operation has been completed
 for that node and all its child nodes. This element
 can appear zero or more times in the <error‑info>
 container.

 <err‑element> : identifies an element in the data model
 for which the requested operation has failed for that
 node and all its child nodes. This element
 can appear zero or more times in the <error‑info>
 container.

 <noop‑element> : identifies an element in the data model
 for which the requested operation was not attempted for
 that node and all its child nodes. This element
 can appear zero or more times in the <error‑info>
 container.
Description: Some part of the requested operation failed or was
 not attempted for some reason. Full cleanup has
 not been performed (e.g., rollback not supported)
 by the server. The error‑info container is used
 to identify which portions of the application
 data model content for which the requested operation
 has succeeded (<ok‑element>), failed (<bad‑element>),
 or not been attempted (<noop‑element>).

Appendix B. XML Schema for NETCONF RPC and Protocol Operations

 BEGIN

<?xml version="1.0" encoding="UTF‑8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:base:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en">
 <!‑‑
 import standard XML definitions
 ‑‑>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 This import accesses the xml: attribute groups for the
 xml:lang as declared on the error‑message element.
 </xs:documentation>
 </xs:annotation>
 </xs:import>
 <!‑‑
 message‑id attribute
 ‑‑>
 <xs:simpleType name="messageIdType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="4095"/>
 </xs:restriction>
 </xs:simpleType>
 <!‑‑
 Types used for session‑id
 ‑‑>
 <xs:simpleType name="SessionId">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SessionIdOrZero">
 <xs:restriction base="xs:unsignedInt"/>
 </xs:simpleType>
 <!‑‑
 <rpc> element
 ‑‑>
 <xs:complexType name="rpcType">
 <xs:sequence>
 <xs:element ref="rpcOperation"/>

 </xs:sequence>
 <xs:attribute name="message‑id" type="messageIdType"
 use="required"/>
 <!‑‑
 Arbitrary attributes can be supplied with <rpc> element.
 ‑‑>
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
 <xs:element name="rpc" type="rpcType"/>
 <!‑‑
 data types and elements used to construct rpc‑errors
 ‑‑>
 <xs:simpleType name="ErrorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="transport"/>
 <xs:enumeration value="rpc"/>
 <xs:enumeration value="protocol"/>
 <xs:enumeration value="application"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorTag">
 <xs:restriction base="xs:string">
 <xs:enumeration value="in‑use"/>
 <xs:enumeration value="invalid‑value"/>
 <xs:enumeration value="too‑big"/>
 <xs:enumeration value="missing‑attribute"/>
 <xs:enumeration value="bad‑attribute"/>
 <xs:enumeration value="unknown‑attribute"/>
 <xs:enumeration value="missing‑element"/>
 <xs:enumeration value="bad‑element"/>
 <xs:enumeration value="unknown‑element"/>
 <xs:enumeration value="unknown‑namespace"/>
 <xs:enumeration value="access‑denied"/>
 <xs:enumeration value="lock‑denied"/>
 <xs:enumeration value="resource‑denied"/>
 <xs:enumeration value="rollback‑failed"/>
 <xs:enumeration value="data‑exists"/>
 <xs:enumeration value="data‑missing"/>
 <xs:enumeration value="operation‑not‑supported"/>
 <xs:enumeration value="operation‑failed"/>
 <xs:enumeration value="partial‑operation"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorSeverity">
 <xs:restriction base="xs:string">
 <xs:enumeration value="error"/>
 <xs:enumeration value="warning"/>
 </xs:restriction>

 </xs:simpleType>
 <xs:complexType name="errorInfoType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="session‑id" type="SessionIdOrZero"/>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:sequence>
 <xs:element name="bad‑attribute" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="bad‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="ok‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="err‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="noop‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="bad‑namespace" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:sequence>
 </xs:choice>
 <!‑‑ elements from any other namespace are also allowed
 to follow the NETCONF elements ‑‑>
 <xs:any namespace="##other"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="rpcErrorType">
 <xs:sequence>
 <xs:element name="error‑type" type="ErrorType"/>
 <xs:element name="error‑tag" type="ErrorTag"/>
 <xs:element name="error‑severity" type="ErrorSeverity"/>
 <xs:element name="error‑app‑tag" type="xs:string"
 minOccurs="0"/>
 <xs:element name="error‑path" type="xs:string" minOccurs="0"/>
 <xs:element name="error‑message" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="error‑info" type="errorInfoType"
 minOccurs="0"/>
 </xs:sequence>

 </xs:complexType>
 <!‑‑
 <rpc‑reply> element
 ‑‑>
 <xs:complexType name="rpcReplyType">
 <xs:choice>
 <xs:element name="ok"/>
 <xs:group ref="rpcResponse"/>
 </xs:choice>
 <xs:attribute name="message‑id" type="messageIdType"
 use="optional"/>
 <!‑‑
 Any attributes supplied with <rpc> element must be returned
 on <rpc‑reply>.
 ‑‑>
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
 <xs:group name="rpcResponse">
 <xs:sequence>
 <xs:element name="rpc‑error" type="rpcErrorType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="data" type="dataInlineType" minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <xs:element name="rpc‑reply" type="rpcReplyType"/>
 <!‑‑
 Type for <test‑option> parameter to <edit‑config>
 ‑‑>
 <xs:simpleType name="testOptionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="test‑then‑set"/>
 <xs:enumeration value="set"/>
 </xs:restriction>
 </xs:simpleType>
 <!‑‑
 Type for <error‑option> parameter to <edit‑config>
 ‑‑>
 <xs:simpleType name="errorOptionType">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation>
 Use of the rollback‑on‑error value requires
 the :rollback‑on‑error capability.
 </xs:documentation>
 </xs:annotation>
 <xs:enumeration value="stop‑on‑error"/>
 <xs:enumeration value="continue‑on‑error"/>
 <xs:enumeration value="rollback‑on‑error"/>

 </xs:restriction>
 </xs:simpleType>
 <!‑‑
 rpcOperationType: used as a base type for all
 NETCONF operations
 ‑‑>
 <xs:complexType name="rpcOperationType"/>
 <xs:element name="rpcOperation"
 type="rpcOperationType" abstract="true"/>
 <!‑‑
 Type for <config> element
 ‑‑>
 <xs:complexType name="configInlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 <!‑‑
 Type for <data> element
 ‑‑>
 <xs:complexType name="dataInlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 <!‑‑
 Type for <filter> element
 ‑‑>
 <xs:simpleType name="FilterType">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation>
 Use of the xpath value requires the :xpath capability.
 </xs:documentation>
 </xs:annotation>
 <xs:enumeration value="subtree"/>
 <xs:enumeration value="xpath"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="filterInlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="type"
 type="FilterType" default="subtree"/>
 <!‑‑ if type="xpath", the xpath expression
 appears in the select element ‑‑>
 <xs:attribute name="select"/>
 </xs:extension>

 </xs:complexContent>
 </xs:complexType>
 <!‑‑
 configuration datastore names
 ‑‑>
 <xs:annotation>
 <xs:documentation>
 The startup datastore can be used only if the :startup
 capability is advertised. The candidate datastore can
 be used only if the :candidate datastore is advertised.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType name="configNameType"/>
 <xs:element name="config‑name"
 type="configNameType" abstract="true"/>
 <xs:element name="startup" type="configNameType"
 substitutionGroup="config‑name"/>
 <xs:element name="candidate" type="configNameType"
 substitutionGroup="config‑name"/>
 <xs:element name="running" type="configNameType"
 substitutionGroup="config‑name"/>
 <!‑‑
 operation attribute used in <edit‑config>
 ‑‑>
 <xs:simpleType name="editOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="delete"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:attribute name="operation"
 type="editOperationType" default="merge"/>
 <!‑‑
 <default‑operation> element
 ‑‑>
 <xs:simpleType name="defaultOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 <!‑‑
 <url> element
 ‑‑>
 <xs:complexType name="configURIType">

 <xs:annotation>
 <xs:documentation>
 Use of the url element requires the :url capability.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="xs:anyURI"/>
 </xs:simpleContent>
 </xs:complexType>
 <!‑‑
 Type for <source> element (except <get‑config>)
 ‑‑>
 <xs:complexType name="rpcOperationSourceType">
 <xs:choice>
 <xs:element name="config" type="configInlineType"/>
 <xs:element ref="config‑name"/>
 <xs:element name="url" type="configURIType"/>
 </xs:choice>
 </xs:complexType>
 <!‑‑
 Type for <source> element in <get‑config>
 ‑‑>
 <xs:complexType name="getConfigSourceType">
 <xs:choice>
 <xs:element ref="config‑name"/>
 <xs:element name="url" type="configURIType"/>
 </xs:choice>
 </xs:complexType>
 <!‑‑
 Type for <target> element
 ‑‑>
 <xs:complexType name="rpcOperationTargetType">
 <xs:choice>
 <xs:element ref="config‑name"/>
 <xs:element name="url" type="configURIType"/>
 </xs:choice>
 </xs:complexType>
 <!‑‑
 <get‑config> operation
 ‑‑>
 <xs:complexType name="getConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="source"
 type="getConfigSourceType"/>
 <xs:element name="filter"
 type="filterInlineType" minOccurs="0"/>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="get‑config" type="getConfigType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <edit‑config> operation
 ‑‑>
 <xs:complexType name="editConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 Use of the test‑option element requires the
 :validate capability. Use of the url element
 requires the :url capability.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="target"
 type="rpcOperationTargetType"/>
 <xs:element name="default‑operation"
 type="defaultOperationType"
 minOccurs="0"/>
 <xs:element name="test‑option"
 type="testOptionType"
 minOccurs="0"/>
 <xs:element name="error‑option"
 type="errorOptionType"
 minOccurs="0"/>
 <xs:choice>
 <xs:element name="config"
 type="configInlineType"/>
 <xs:element name="url"
 type="configURIType"/>
 </xs:choice>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="edit‑config" type="editConfigType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <copy‑config> operation
 ‑‑>
 <xs:complexType name="copyConfigType">
 <xs:complexContent>

 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target" type="rpcOperationTargetType"/>
 <xs:element name="source" type="rpcOperationSourceType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="copy‑config" type="copyConfigType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <delete‑config> operation
 ‑‑>
 <xs:complexType name="deleteConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target" type="rpcOperationTargetType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="delete‑config" type="deleteConfigType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <get> operation
 ‑‑>
 <xs:complexType name="getType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="filter"
 type="filterInlineType" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="get" type="getType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <lock> operation
 ‑‑>
 <xs:complexType name="lockType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target"
 type="rpcOperationTargetType"/>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="lock" type="lockType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <unlock> operation
 ‑‑>
 <xs:complexType name="unlockType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target" type="rpcOperationTargetType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="unlock" type="unlockType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <validate> operation
 ‑‑>
 <xs:complexType name="validateType">
 <xs:annotation>
 <xs:documentation>
 The validate operation requires the :validate capability.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="source" type="rpcOperationSourceType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="validate" type="validateType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <commit> operation
 ‑‑>
 <xs:simpleType name="confirmTimeoutType">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="commitType">

 <xs:annotation>
 <xs:documentation>
 The commit operation requires the :candidate capability.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 Use of the confirmed and confirm‑timeout elements
 requires the :confirmed‑commit capability.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="confirmed" minOccurs="0"/>
 <xs:element name="confirm‑timeout"
 type="confirmTimeoutType"
 minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="commit" type="commitType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <discard‑changes> operation
 ‑‑>
 <xs:complexType name="discardChangesType">
 <xs:annotation>
 <xs:documentation>
 The discard‑changes operation requires the
 :candidate capability.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="rpcOperationType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="discard‑changes"
 type="discardChangesType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <close‑session> operation
 ‑‑>
 <xs:complexType name="closeSessionType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType"/>
 </xs:complexContent>

 </xs:complexType>
 <xs:element name="close‑session" type="closeSessionType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <kill‑session> operation
 ‑‑>
 <xs:complexType name="killSessionType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="session‑id"
 type="SessionId" minOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="kill‑session" type="killSessionType"
 substitutionGroup="rpcOperation"/>
 <!‑‑
 <hello> element
 ‑‑>
 <xs:element name="hello">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="capabilities">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="capability" type="xs:anyURI"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="session‑id"
 type="SessionId" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

 END

Appendix C. Capability Template

C.1. capability-name (template)

C.1.1. Overview

C.1.2. Dependencies

C.1.3. Capability Identifier

 The {name} capability is identified by the following capability
 string:

 {capability uri}

C.1.4. New Operations

C.1.4.1. <op-name>

C.1.5. Modifications to Existing Operations

C.1.5.1. <op-name>

 If existing operations are not modified by this capability, this
 section may be omitted.

C.1.6. Interactions with Other Capabilities

 If this capability does not interact with other capabilities, this
 section may be omitted.

Appendix D. Configuring Multiple Devices with NETCONF

D.1. Operations on Individual Devices

 Consider the work involved in performing a configuration update
 against a single individual device. In making a change to the
 configuration, the application needs to build trust that its change
 has been made correctly and that it has not impacted the operation of
 the device. The application (and the application user) should feel
 confident that their change has not damaged the network.

 Protecting each individual device consists of a number of steps:

 o Acquiring the configuration lock.

 o Loading the update.

 o Validating the incoming configuration.

 o Checkpointing the running configuration.

 o Changing the running configuration.

 o Testing the new configuration.

 o Making the change permanent (if desired).

 o Releasing the configuration lock.

 Let's look at the details of each step.

D.1.1. Acquiring the Configuration Lock

 A lock should be acquired to prevent simultaneous updates from
 multiple sources. If multiple sources are affecting the device, the
 application is hampered in both testing of its change to the
 configuration and in recovery should the update fail. Acquiring a
 short-lived lock is a simple defense to prevent other parties from
 introducing unrelated changes.

 The lock can be acquired using the <lock> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>

 </lock>
</rpc>

D.1.2. Loading the Update

 The configuration can be loaded onto the device without impacting the
 running system. If the :url capability is supported and lists "file"
 as a supported scheme, incoming changes can be placed in a local
 file.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <url>file://incoming.conf</url>
 </target>
 <source>
 <config>
 <!‑‑ place incoming configuration here ‑‑>
 </config>
 </source>
 </copy‑config>
</rpc>

 If the :candidate capability is supported, the candidate
 configuration can be used.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <candidate/>
 </target>
 <config>
 <!‑‑ place incoming configuration here ‑‑>
 </config>
 </edit‑config>
</rpc>

 If the update fails, the user file can be deleted using the
 <delete-config> operation, or the candidate configuration can be
 reverted using the <discard-changes> operation.

D.1.3. Validating the Incoming Configuration

 Before the incoming configuration is applied, validating it is often
 useful. Validation allows the application to gain confidence that
 the change will succeed and simplifies recovery if it does not.

 If the device supports the :url capability and lists "file" as a
 supported scheme, use the <validate> operation with the <source>
 parameter set to the proper user file:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <url>file://incoming.conf</url>
 </source>
 </validate>
</rpc>

 If the device supports the :candidate capability, some validation
 will be performed as part of loading the incoming configuration into
 the candidate. For full validation, either pass the <validate>
 parameter during the <edit-config> step given above, or use the
 <validate> operation with the <source> parameter set to <candidate>.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
</rpc>

D.1.4. Checkpointing the Running Configuration

 The running configuration can be saved into a local file as a
 checkpoint before loading the new configuration. If the update
 fails, the configuration can be restored by reloading the checkpoint
 file.

 The checkpoint file can be created using the <copy-config> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <url>file://checkpoint.conf</url>

 </target>
 <source>
 <running/>
 </source>
 </copy‑config>
</rpc>

 To restore the checkpoint file, reverse the source and target
 parameters.

D.1.5. Changing the Running Configuration

 When the incoming configuration has been safely loaded onto the
 device and validated, it is ready to impact the running system.

 If the device supports the :url capability and lists "file" as a
 supported scheme, use the <edit-config> operation to merge the
 incoming configuration into the running configuration.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <config>
 <url>file://incoming.conf</url>
 </config>
 </edit‑config>
</rpc>

 If the device supports the :candidate capability, use the <commit>
 operation to set the running configuration to the candidate
 configuration. Use the <confirmed> parameter to allow automatic
 reversion to the original configuration if connectivity to the device
 fails.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm‑timeout>120</confirm‑timeout>
 </commit>
</rpc>

D.1.6. Testing the New Configuration

 Now that the incoming configuration has been integrated into the
 running configuration, the application needs to gain trust that the
 change has affected the device in the way intended without affecting
 it negatively.

 To gain this confidence, the application can run tests of the
 operational state of the device. The nature of the test is dependent
 on the nature of the change and is outside the scope of this
 document. Such tests may include reachability from the system
 running the application (using ping), changes in reachability to the
 rest of the network (by comparing the device's routing table), or
 inspection of the particular change (looking for operational evidence
 of the BGP peer that was just added).

D.1.7. Making the Change Permanent

 When the configuration change is in place and the application has
 sufficient faith in the proper function of this change, the
 application should make the change permanent.

 If the device supports the :startup capability, the current
 configuration can be saved to the startup configuration by using the
 startup configuration as the target of the <copy-config> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <startup/>
 </target>
 <source>
 <running/>
 </source>
 </copy‑config>
</rpc>

 If the device supports the :candidate capability and a confirmed
 commit was requested, the confirming commit must be sent before the
 timeout expires.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
</rpc>

D.1.8. Releasing the Configuration Lock

 When the configuration update is complete, the lock must be released,
 allowing other applications access to the configuration.

 Use the <unlock> operation to release the configuration lock.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
</rpc>

D.2. Operations on Multiple Devices

 When a configuration change requires updates across a number of
 devices, care should be taken to provide the required transaction
 semantics. The NETCONF protocol contains sufficient primitives upon
 which transaction-oriented operations can be built. Providing
 complete transactional semantics across multiple devices is
 prohibitively expensive, but the size and number of windows for
 failure scenarios can be reduced.

 There are two classes of multi-device operations. The first class
 allows the operation to fail on individual devices without requiring
 all devices to revert to their original state. The operation can be
 retried at a later time, or its failure simply reported to the user.
 An example of this class might be adding an NTP server. For this
 class of operations, failure avoidance and recovery are focused on
 the individual device. This means recovery of the device, reporting
 the failure, and perhaps scheduling another attempt.

 The second class is more interesting, requiring that the operation
 should complete on all devices or be fully reversed. The network
 should either be transformed into a new state or be reset to its
 original state. For example, a change to a VPN may require updates
 to a number of devices. Another example of this might be adding a
 class-of-service definition. Leaving the network in a state where
 only a portion of the devices have been updated with the new
 definition will lead to future failures when the definition is
 referenced.

 To give transactional semantics, the same steps used in single device
 operations listed above are used, but are performed in parallel
 across all devices. Configuration locks should be acquired on all
 target devices and kept until all devices are updated and the changes
 made permanent. Configuration changes should be uploaded and
 validation performed across all devices. Checkpoints should be made
 on each device. Then the running configuration can be changed,
 tested, and made permanent. If any of these steps fail, the previous
 configurations can be restored on any devices upon which they were
 changed. After the changes have been completely implemented or
 completely discarded, the locks on each device can be released.

Appendix E. Deferred Features

 The following features have been deferred until a future revision of
 this document.

 o Granular locking of configuration objects.

 o Named configuration files/datastores.

 o Support for multiple NETCONF channels.

 o Asynchronous notifications.

 o Explicit protocol support for rollback of configuration changes to
 prior versions.

Editor's Address

Rob Enns
Juniper Networks
1194 North Mathilda Ave
Sunnyvale, CA 94089
US

 EMail: rpe@juniper.net

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

4742 - Using the NETCONF Configuration Protocol over Secure SHell (SSH)

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4742

Category: Standards Track

M. Wasserman

ThingMagic

T. Goddard

ICEsoft Technologies, Inc.

December 2006

Using the NETCONF Configuration Protocol over Secure SHell (SSH)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 This document describes a method for invoking and running the Network
 Configuration Protocol (NETCONF) within a Secure Shell (SSH) session
 as an SSH subsystem.

Table of Contents

	1. Introduction

	2. Requirements Terminology

	3. Starting NETCONF over SSH
	 3.1. Capabilities Exchange

	4. Using NETCONF over SSH

	5. Exiting the NETCONF Subsystem

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

1. Introduction

 The NETCONF protocol [RFC4721] is an XML-based protocol used to
 manage the configuration of networking equipment. NETCONF is defined
 to be session-layer and transport independent, allowing mappings to
 be defined for multiple session-layer or transport protocols. This
 document defines how NETCONF can be used within a Secure Shell (SSH)
 session, using the SSH connection protocol [RFC4254] over the SSH
 transport protocol [RFC4253]. This mapping will allow NETCONF to be
 executed from a secure shell session by a user or application.

 Throughout this document, the terms "client" and "server" are used to
 refer to the two ends of the SSH transport connection. The client
 actively opens the SSH connection, and the server passively listens
 for the incoming SSH connection. The terms "manager" and "agent" are
 used to refer to the two ends of the NETCONF protocol session. The
 manager issues NETCONF remote procedure call (RPC) commands, and the
 agent replies to those commands. When NETCONF is run over SSH using
 the mapping defined in this document, the client is always the
 manager, and the server is always the agent.

2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Starting NETCONF over SSH

 To run NETCONF over SSH, the client will first establish an SSH
 transport connection using the SSH transport protocol, and the client
 and server will exchange keys for message integrity and encryption.
 The client will then invoke the "ssh-userauth" service to
 authenticate the user, as described in the SSH authentication
 protocol [RFC4252]. Once the user has been successfully
 authenticated, the client will invoke the "ssh-connection" service,
 also known as the SSH connection protocol.

 After the ssh-connection service is established, the client will open
 a channel of type "session", which will result in an SSH session.

 Once the SSH session has been established, the user (or application)
 will invoke NETCONF as an SSH subsystem called "netconf". Subsystem
 support is a feature of SSH version 2 (SSHv2) and is not included in
 SSHv1. Running NETCONF as an SSH subsystem avoids the need for the
 script to recognize shell prompts or skip over extraneous
 information, such as a system message that is sent at shell start-up.
 However, even when a subsystem is used, some extraneous messages may
 be printed by the user's start-up scripts. Implementations MUST skip
 over these messages by searching for an 'xml' start directive, which
 MUST be followed by a <hello> element in the 'NETCONF' namespace.

 In order to allow NETCONF traffic to be easily identified and
 filtered by firewalls and other network devices, NETCONF servers MUST
 default to providing access to the "netconf" SSH subsystem only when
 the SSH session is established using the IANA-assigned TCP port
 <830>. Servers SHOULD be configurable to allow access to the netconf
 SSH subsystem over other ports.

 A user (or application) could use the following command line to
 invoke NETCONF as an SSH subsystem on the IANA-assigned port:

 [user@client]$ ssh -s server.example.org -p <830> netconf

 Note that the -s option causes the command ("netconf") to be invoked
 as an SSH subsystem.

3.1. Capabilities Exchange

 The server MUST indicate its capabilities by sending an XML document
 containing a <hello> element as soon as the NETCONF session is
 established. The user (or application) can parse this message to
 determine which NETCONF capabilities are supported by the server.

 The client must also send an XML document containing a <hello>
 element to indicate the client's capabilities to the server. The
 document containing the <hello> element MUST be the first XML
 document that the client sends after the NETCONF session is
 established.

 The following example shows a capability exchange. Messages sent by
 the client are marked with "C:", and messages sent by the server are
 marked with "S:".

S: <?xml version="1.0" encoding="UTF‑8"?>
S: <hello>
S: <capabilities>
S: <capability>
S: urn:ietf:params:xml:ns:netconf:base:1.0
S: </capability>
S: <capability>
S: urn:ietf:params:ns:netconf:capability:startup:1.0
S: </capability>
S: </capabilities>
S: <session‑id>4<session‑id>
S: </hello>
S:]]>]]>

C: <?xml version="1.0" encoding="UTF‑8"?>
C: <hello>
C: <capabilities>
C: <capability>
C: urn:ietf:params:xml:ns:netconf:base:1.0
C: </capability>
C: </capabilities>
C: </hello>
C:]]>]]>

 Although the example shows the server sending a <hello> message
 followed by the client's message, both sides will send the message as
 soon as the NETCONF subsystem is initialized, perhaps simultaneously.

 As the previous example illustrates, a special character sequence,
]]>]]>, MUST be sent by both the client and the server after each XML
 document in the NETCONF exchange. This character sequence cannot
 legally appear in an XML document, so it can be unambiguously used to
 identify the end of the current document, allowing resynchronization
 of the NETCONF exchange in the event of an XML syntax or parsing
 error.

4. Using NETCONF over SSH

 A NETCONF over SSH session consists of the manager and agent
 exchanging complete XML documents. Once the session has been
 established and capabilities have been exchanged, the manager will
 send complete XML documents containing <rpc> elements to the server,
 and the agent will respond with complete XML documents containing
 <rpc-reply> elements.

 To continue the example given above, an NETCONF over SSH session to
 retrieve a set of configuration information might look like this:

C: <?xml version="1.0" encoding="UTF‑8"?>
C: <rpc message‑id="105"
C: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <get‑config>
C: <source><running/></source>
C: <config xmlns="http://example.com/schema/1.2/config">
C: <users/>
C: </config>
C: </get‑config>
C: </rpc>
C:]]>]]>

S: <?xml version="1.0" encoding="UTF‑8"?>
S: <rpc‑reply message‑id="105"
S: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <config xmlns="http://example.com/schema/1.2/config">
S: <users>
S: <user><name>root</name><type>superuser</type></user>
S: <user><name>fred</name><type>admin</type></user>
S: <user><name>barney</name><type>admin</type></user>
S: </users>
S: </config>
S: </rpc‑reply>
S:]]>]]>

5. Exiting the NETCONF Subsystem

 Exiting NETCONF is accomplished using the <close-session> operation.
 An agent will process RPC messages from the manager in the order in
 which they are received. When the agent processes a <close-session>
 command, the agent shall respond and close the SSH session channel.
 The agent MUST NOT process any RPC commands received on the current
 session after the <close-session> command.

 To continue the example used in previous sections, an existing
 NETCONF subsystem session could be closed as follows:

C: <?xml version="1.0" encoding="UTF‑8"?>
C: <rpc message‑id="106"
C: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <close‑session/>
C: </rpc>
C:]]>]]>

S: <?xml version="1.0" encoding="UTF‑8"?>
S: <rpc‑reply id="106"
S: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <ok/>
S: </rpc‑reply>
S:]]>]]>

6. Security Considerations

 NETCONF is used to access configuration and state information and to
 modify configuration information, so the ability to access this
 protocol should be limited to users and systems that are authorized
 to view the agent's configuration and state or to modify the agent's
 configuration.

 The identity of the server MUST be verified and authenticated by the
 client according to local policy before password-based authentication
 data or any configuration or state data is sent to or received from
 the server. The identity of the client MUST also be verified and
 authenticated by the server according to local policy to ensure that
 the incoming client request is legitimate before any configuration or
 state data is sent to or received from the client. Neither side
 should establish a NETCONF over SSH connection with an unknown,
 unexpected, or incorrect identity on the opposite side.

 Configuration or state data may include sensitive information, such
 as usernames or security keys. So, NETCONF should only be used over
 communications channels that provide strong encryption for data
 privacy. This document defines a NETCONF over SSH mapping that
 provides for support of strong encryption and authentication.

 This document requires that servers default to allowing access to the
 "netconf" SSH subsystem only when using a specific TCP port assigned
 by IANA for this purpose. This will allow NETCONF over SSH traffic
 to be easily identified and filtered by firewalls and other network
 nodes. However, it will also allow NETCONF over SSH traffic to be
 more easily identified by attackers.

 This document also recommends that servers be configurable to allow
 access to the "netconf" SSH subsystem over other ports. Use of that
 configuration option without corresponding changes to firewall or
 network device configuration may unintentionally result in the
 ability for nodes outside the firewall or other administrative
 boundary to gain access to "netconf" SSH subsystem.

7. IANA Considerations

 IANA assigned a TCP port number that is the default port for NETCONF
 over SSH sessions as defined in this document.

 IANA assigned port <830> for this purpose.

 IANA is also requested to assign "netconf" as an SSH Service Name as
 defined in [RFC4250], as follows:

Service Name Reference
‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
netconf RFC 4742

8. Acknowledgements

 This document was written using the xml2rfc tool described in RFC
 2629 [RFC2629].

 Extensive input was received from the other members of the NETCONF
 design team, including: Andy Bierman, Weijing Chen, Rob Enns, Wes
 Hardaker, David Harrington, Eliot Lear, Simon Leinen, Phil Shafer,
 Juergen Schoenwaelder, and Steve Waldbusser. The following people
 have also reviewed this document and provided valuable input: Olafur
 Gudmundsson, Sam Hartman, Scott Hollenbeck, Bill Sommerfeld, and Bert
 Wijnen.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4250]
 Lehtinen, S. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250, January 2006.

 [RFC4252]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

 [RFC4253]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4254]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [RFC4721]
 Enns, R., Ed., "NETCONF Configuration Protocol", RFC 4721,
 December 2006.

9.2. Informative References

 [RFC2629]
 Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

Authors' Addresses

Margaret Wasserman
ThingMagic
One Broadway, 5th Floor
Cambridge, MA 02142
USA

Phone: +1 781 405‑7464
EMail: margaret@thingmagic.com
URI: http://www.thingmagic.com

Ted Goddard
ICEsoft Technologies, Inc.
Suite 300, 1717 10th St. NW
Calgary, AB T2M 4S2
Canada

Phone: +1 403 663‑3322
EMail: ted.goddard@icesoft.com
URI: http://www.icesoft.com

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

4743 - Using NETCONF over the Simple Object Access Protocol (SOAP)

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4743

Category: Standards Track

T. Goddard

ICEsoft Technologies Inc.

December 2006

Using NETCONF over the Simple Object Access Protocol (SOAP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 The Network Configuration Protocol (NETCONF) is applicable to a wide
 range of devices in a variety of environments. Web Services is one
 such environment and is presently characterized by the use of the
 Simple Object Access Protocol (SOAP). NETCONF finds many benefits in
 this environment: from the reuse of existing standards, to ease of
 software development, to integration with deployed systems. Herein,
 we describe SOAP over HTTP and SOAP over Blocks Exchange Extensible
 Protocol (BEEP) bindings for NETCONF.

Table of Contents

	1. Introduction

	2. SOAP Background for NETCONF
	 2.1. Use and Storage of WSDL and XSD

	 2.2. SOAP over HTTP

	 2.3. HTTP Drawbacks

	 2.4. BCP56: On the Use of HTTP as a Substrate

	 2.5. Important HTTP 1.1 Features

	 2.6. SOAP over BEEP

	 2.7. SOAP Implementation Considerations
	 2.7.1. SOAP Feature Exploitation

	 2.7.2. SOAP Headers

	 2.7.3. SOAP Faults

	3. A SOAP Service for NETCONF
	 3.1. Fundamental Use Case

	 3.2. NETCONF Session Establishment

	 3.3. NETCONF Capabilities Exchange

	 3.4. NETCONF Session Usage

	 3.5. NETCONF Session Teardown

	 3.6. A NETCONF over SOAP Example

	 3.7. NETCONF SOAP WSDL

	 3.8. Sample Service Definition WSDL

	4. Security Considerations
	 4.1. Integrity, Privacy, and Authentication

	 4.2. Vulnerabilities

	 4.3. Environmental Specifics

	5. IANA Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

1. Introduction

 Given the use of Extensible Markup Language (XML) [2] and the remote
 procedure call characteristics, it is natural to consider a binding
 of the NETCONF [1] operations to a SOAP [3] application protocol.
 This document proposes a binding of this form.

 In general, SOAP is a natural messaging scheme for NETCONF,
 essentially because of the remote procedure call character of both.
 However, care must be taken with SOAP over HTTP as it is inherently
 synchronous and client-driven. SOAP over BEEP [11] is technically
 superior, but is not as widely adopted.

 Four basic topics are presented: SOAP specifics of interest to
 NETCONF, specifics on implementing NETCONF as a SOAP-based web
 service, security considerations, and functional Web Services
 Description Language (WSDL) definitions. In some sense, the most
 important part of the document is the brief WSDL document presented
 in Section 3.7. With the right tools, the WSDL combined with the
 base NETCONF XML Schemas provides machine-readable descriptions
 sufficient for the development of software applications using
 NETCONF.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [8].

2. SOAP Background for NETCONF

 Why introduce SOAP as yet another wrapper around what is already a
 remote procedure call message? There are, in fact, both technical
 and practical reasons. The technical reasons are perhaps less
 compelling, but let's examine them first.

 The use of SOAP does offer a few technical advantages. SOAP is
 fundamentally an XML messaging scheme (which is capable of supporting
 remote procedure call), and it defines a simple message format
 composed of a "header" and a "body" contained within an "envelope".
 The "header" contains meta-information relating to the message and
 can be used to indicate such things as store-and-forward behaviour or
 transactional characteristics. In addition, SOAP specifies an
 optional encoding for the "body" of the message. However, this
 encoding is not applicable to NETCONF as one of the goals is to have
 highly readable XML, and SOAP-encoding is optimized instead for ease
 of automated de-serialization. These benefits of the SOAP message
 structure are simple, but worthwhile because they are already
 standardized.

 It is the practical reasons that truly make SOAP an interesting
 choice for device management. It is not difficult to invent a
 mechanism for exchanging XML messages over TCP, but what is difficult
 is getting that mechanism supported in a wide variety of tools and
 operating systems and having that mechanism understood by a great
 many developers. SOAP over HTTP (with WSDL) is seeing good success
 at this, and this means that a device management protocol making use
 of these technologies has advantages in being implemented and
 adopted. Admittedly, there are interoperability problems with SOAP
 and WSDL, but such problems have wide attention and can be expected
 to be resolved.

2.1. Use and Storage of WSDL and XSD

 One of the advantages of using machine-readable formats (such as Web
 Services Description Language (WSDL) [16] and XML Schemas [4]) is
 that they can be used automatically in the software development
 process. With appropriate tools, WSDL and XSD can be used to
 generate classes that act as remote interfaces or
 application-specific data structures. Other uses, such as document
 generation and service location, are also common. A great innovation
 found with many XML-based definition languages is the use of
 hyperlinks for referring to documents containing supporting
 definitions.

 <import namespace="urn:ietf:params:xml:ns:netconf:base:1.0"

 location="http://www.iana.org/assignments/xml-registry/
 schema/netconf.xsd" />

 For instance, in WSDL, the above import statement imports the
 definitions of XML types and elements from the base NETCONF schema.
 Ideally, the file containing that schema is hosted on a web server
 under the authority of the standards body that defined the schema.
 In this way, dependent standards can be built up over time, and all
 are accessible to automated software tools that ensure adherence to
 the standards. The IANA-maintained registry for this purpose is
 described in "The IETF XML Registry" [13].

 Note that WSDL declarations for SOAP over BEEP bindings are not yet
 standardized.

2.2. SOAP over HTTP

 Although SOAP focuses on messages and can be bound to different
 underlying protocols such as HTTP, SMTP, or BEEP, most existing SOAP
 implementations support only HTTP or HTTP/TLS.

 There are a number of advantages to considering SOAP over protocols
 other than HTTP, as HTTP assigns the very distinct client and server
 roles by connection initiation. This causes difficulties in
 supporting asynchronous notification and can be relieved in many ways
 by replacing HTTP with BEEP.

2.3. HTTP Drawbacks

 HTTP is not the ideal transport for messaging, but it is adequate for
 the most basic interpretation of "remote procedure call". HTTP is
 based on a communication pattern whereby the client (which initiates
 the TCP connection) makes a "request" to the server. The server
 returns a "response", and this process is continued (possibly over a
 persistent connection, as described below). This matches the basic
 idea of a remote procedure call where the caller invokes a procedure
 on a remote server and waits for the return value.

 Potential criticisms of HTTP could include the following:

 o Server-initiated data flow is awkward to provide.

 o Headers are verbose and text-based

 o Idle connections may be closed by intermediate proxies

 o Data encapsulation must adhere to Multipurpose Internet Mail
 Extensions (MIME) [15].

 o Bulk transfer relies on stream-based ordering.

 In many ways, these criticisms are directed at particular compromises
 in the design of HTTP. As such, they are important to consider, but
 it is not clear that they result in fatal drawbacks for a device
 management protocol.

2.4. BCP56: On the Use of HTTP as a Substrate

 Best Current Practice 56 [6] presents a number of important
 considerations on the use of HTTP in application protocols. In
 particular, it raises the following concerns:

 o HTTP may be more complex than is necessary for the application.

 o The use of HTTP may mask the application from some firewalls.

 o A substantially new service should not reuse port 80 as assigned
 to HTTP.

 o HTTP caching may mask connection state.

 Fundamentally, these concerns lie directly with common usage of SOAP
 over HTTP, rather than the application of SOAP over HTTP to NETCONF.
 As BCP 56 indicates, it is debatable whether HTTP is an appropriate
 protocol for SOAP at all, and it is likely that BEEP would be a
 superior protocol for most SOAP applications. Unfortunately, SOAP
 over HTTP is in common use and must be supported if the practical
 benefits of SOAP are to be realized. Note that the verbose nature of
 SOAP actually makes it more readily processed by firewalls, albeit
 firewalls designed to process SOAP messages.

 HTTP caches SHOULD NOT be inserted between NETCONF managers and
 agents as NETCONF session state is tied to the state of the
 underlying transport connection. Three defensive actions can be
 taken:

 o Caching MUST be prohibited through the use of HTTP headers Cache-
 Control and Pragma: no-cache.

 o HTTP proxies SHOULD NOT be deployed within the management network.

 o Use HTTPS.

 It is also possible to respond to the concern on the reuse of port
 80. Any NETCONF SOAP service MUST always be supported over the new
 standard port for NETCONF over SOAP, and all conforming
 implementations MUST default to attempting connections over this new
 standard port for NETCONF. A standard port for NETCONF over SOAP
 (over HTTP) has been assigned in the IANA considerations of this
 document.

2.5. Important HTTP 1.1 Features

 HTTP 1.1 [5] includes two important features that provide for
 relatively efficient transport of SOAP messages. These features are
 "persistent connections" and "chunked transfer-coding".

 Persistent connections allow a single TCP connection to be used
 across multiple HTTP requests. This permits multiple SOAP request/
 response message pairs to be exchanged without the overhead of
 creating a new TCP connection for each request. Given that a single
 stream is used for both requests and responses, it is clear that some
 form of framing is necessary. For messages whose length is known in
 advance, this is handled by the HTTP header "Content-length". For
 messages of dynamic length, "Chunking" is required.

 HTTP "Chunking" or "chunked transfer-coding" allows the sender to
 send an indefinite amount of binary data. This is accomplished by
 informing the receiver of the size of each "chunk" (substring of the
 data) before the chunk is transmitted. The last chunk is indicated
 by a chunk of zero length. Chunking can be effectively used to
 transfer a large XML document where the document is generated on-line
 from a non-XML form in memory.

 In terms of its application to SOAP message exchanges, persistent
 connections are clearly important for performance reasons and are
 particularly important when the persistence of authenticated
 connections is at stake. When one considers that messages of dynamic
 length are the rule rather than the exception for SOAP messages, it
 is also clear that Chunking is very useful. In some cases, it is
 possible to buffer a SOAP response and determine its length before
 sending, but the storage requirements for this are prohibitive for
 many devices. Together, these two features provide a good foundation
 for device management using SOAP over HTTP. HTTP chunking and
 persistent connections [5] SHOULD be used.

2.6. SOAP over BEEP

 Although not widely adopted by the Web Services community, BEEP is an
 excellent substrate for SOAP [12]. In particular, it provides for
 request/response message exchanges initiated by either BEEP peer and
 allows the number of response messages to be arbitrary (including
 zero). The BEEP profile for SOAP simply makes use of a single BEEP
 channel for exchanging SOAP messages and benefits from BEEP's
 inherent strengths for message exchange over a single transport
 connection.

2.7. SOAP Implementation Considerations

 It is not the goal of this document to cover the SOAP [3]
 specification in detail. Instead, we provide a few comments that may
 be of interest to an implementor of NETCONF over SOAP.

2.7.1. SOAP Feature Exploitation

 NETCONF over SOAP does not make extensive use of SOAP features. For
 instance, NETCONF operations are not broken into SOAP message parts,
 and the SOAP header is not used to convey <rpc> metadata. This is a
 deliberate design decision as it allows the implementor to provide
 NETCONF over multiple substrates easily while handling the messages
 over those different substrates in a common way.

2.7.2. SOAP Headers

 Implementers of NETCONF over SOAP should be aware of the following
 characteristic of SOAP headers: a SOAP header may have the attribute
 "mustUnderstand", and, if it does, the recipient must either process
 the header block or not process the SOAP message at all, and instead
 generate a fault. A "mustUnderstand" header must not be silently
 discarded.

 In general, however, SOAP headers are intended for application-
 specific uses. The NETCONF SOAP binding does not make use of SOAP
 headers.

2.7.3. SOAP Faults

 A SOAP Fault is returned in the event of a NETCONF <rpc-error>. It
 is constructed essentially as a wrapper for the <rpc-error>, but it
 allows SOAP processors to propagate the <rpc-error> to application
 code using a language-appropriate exception mechanism.

 A SOAP Fault is constructed from an <rpc-error> as follows: the SOAP
 Fault Code Value is "Receiver" in the SOAP envelope namespace, the
 SOAP Fault Reason Text is the contents of the NETCONF <rpc-error>
 "error-tag", and the SOAP Fault detail is the original <rpc-error>
 structure.

 For instance, given the following <rpc-error>,

<rpc‑error xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <error‑type>rpc</error‑type>
 <error‑tag>MISSING_ATTRIBUTE</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑info>
 <bad‑attribute>message‑id</bad‑attribute>
 <bad‑element>rpc</bad‑element>
 </error‑info>
</rpc‑error>

 the associated SOAP Fault message is

<soapenv:Envelope
 xmlns:soapenv=
 "http://www.w3.org/2003/05/soap‑envelope"
 xmlns:xml="http://www.w3.org/XML/1998/namespace">
 <soapenv:Body>
 <soapenv:Fault>
 <soapenv:Code>
 <soapenv:Value>env:Receiver</soapenv:Value>
 </soapenv:Code>
 <soapenv:Reason>
 <soapenv:Text
 xml:lang="en">MISSING_ATTRIBUTE</soapenv:Text>
 </soapenv:Reason>
 <detail>
 <rpc‑error xmlns=
 "urn:ietf:params:xml:ns:netconf:base:1.0">
 <error‑type>rpc</error‑type>
 <error‑tag>MISSING_ATTRIBUTE</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑info>
 <bad‑attribute>message‑id</bad‑attribute>

 <bad‑element>rpc</bad‑element>
 </error‑info>
 </rpc‑error>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

3. A SOAP Service for NETCONF

3.1. Fundamental Use Case

 The fundamental use case for NETCONF over SOAP is that of a
 management console ("manager" role) managing one or more devices
 running NETCONF agents ("agent" role). The manager initiates an HTTP
 or BEEP connection to an agent and drives the NETCONF session via a
 sequence of SOAP messages. When the manager closes the connection,
 the NETCONF session is also closed.

3.2. NETCONF Session Establishment

 A NETCONF over SOAP session is established by the initial message
 exchange on the underlying substrate. For HTTP, a NETCONF session is
 established once a SOAP message is POSTed to the NETCONF web
 application URI. For BEEP, a NETCONF session is established once the
 BEEP profile for SOAP handshake establishes the SOAP channel.

3.3. NETCONF Capabilities Exchange

 Capabilities exchange and session ID establishment are performed
 through the exchange of <hello> messages. In the case of SOAP over
 HTTP, the HTTP client MUST send the first <hello> message. The case
 of SOAP over BEEP imposes no ordering constraints. For instance, the
 following example shows the exchange of <hello> messages and
 establishes a session ID value of 4. Observe that the management
 client initiates the exchange and the server agent assigns the
 session ID.

C: POST /netconf HTTP/1.1
C: Host: netconfdevice
C: Content‑Type: text/xml; charset=utf‑8
C: Accept: application/soap+xml, text/*
C: Cache‑Control: no‑cache
C: Pragma: no‑cache
C: Content‑Length: 376
C:
C: <?xml version="1.0" encoding="UTF‑8"?>
C: <soapenv:Envelope
C: xmlns:soapenv="http://www.w3.org/2003/05/soap‑envelope">
C: <soapenv:Body>
C: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <capabilities>
C: <capability>
C: urn:ietf:params:netconf:base:1.0
C: </capability>
C: </capabilities>
C: </hello>
C: </soapenv:Body>
C: </soapenv:Envelope>
S: HTTP/1.1 200 OK
S: Content‑Type: application/soap+xml; charset=utf‑8
S: Content‑Length: 600
S:
S: <?xml version="1.0" encoding="UTF‑8"?>
S: <soapenv:Envelope
S: xmlns:soapenv="http://www.w3.org/2003/05/soap‑envelope">
S: <soapenv:Body>
S: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <capabilities>
S: <capability>
S: urn:ietf:params:netconf:base:1.0
S: </capability>
S: <capability>
S: urn:ietf:params:netconf:capability:startup:1.0
S: </capability>
S: <capability>
S: http:/example.net/router/2.3/myfeature
S: </capability>
S: </capabilities>
S: <session‑id>4</session‑id>
S: </hello>
S: </soapenv:Body>
S: </soapenv:Envelope>

3.4. NETCONF Session Usage

 NETCONF sessions are persistent for both performance and semantic
 reasons. NETCONF session state contains the following:

 1. Authentication Information

 2. Capability Information

 3. Locks

 4. Pending Operations

 5. Operation Sequence Numbers

 Authentication must be maintained throughout a session due to the
 fact that it is expensive to establish. Capability Information is
 maintained so that appropriate operations can be applied during a
 session. Locks are released upon termination of a session as this
 makes the protocol more robust. Pending operations come and go from
 existence during the normal course of remote procedure call (RPC)
 operations. Operation sequence numbers provide the small but
 necessary state information to refer to operations during the
 session.

 In the case of SOAP over HTTP, a NETCONF session is supported by an
 HTTP connection with an authenticated user. For SOAP over BEEP, a
 NETCONF session is supported by a BEEP channel operating according to
 the BEEP profile for SOAP [12].

3.5. NETCONF Session Teardown

 To allow automated cleanup, NETCONF over SOAP session teardown takes
 place when the underlying connection (in the case of HTTP) or channel
 (in the case of BEEP) is closed. Note that the root cause of such
 teardown may be the closure of the TCP connection under either HTTP
 or BEEP as the case may be. NETCONF managers and agents must be
 capable of programatically closing the transport connections
 associated with NETCONF sessions, such as in response to a
 <close-session> operation; thus, the HTTP or BEEP substrate
 implementation must expose this appropriately.

3.6. A NETCONF over SOAP Example

 Since the proposed WSDL (in Section 3.7) uses document/literal
 encoding, the use of a SOAP header and body has little impact on the
 representation of a NETCONF operation. This example shows HTTP/1.1
 for simplicity. An example for BEEP would be similar.

C: POST /netconf HTTP/1.1
C: Host: netconfdevice
C: Content‑Type: text/xml; charset=utf‑8
C: Accept: application/soap+xml, text/*
C: Cache‑Control: no‑cache
C: Pragma: no‑cache
C: Content‑Length: 465
C:
C: <?xml version="1.0" encoding="UTF‑8"?>
C: <soapenv:Envelope
C: xmlns:soapenv="http://www.w3.org/2003/05/soap‑envelope">
C: <soapenv:Body>
C: <rpc message‑id="101"
C: xmlns="xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <get‑config>
C: <filter type="subtree">
C: <top xmlns="http://example.com/schema/1.2/config">
C: <users/>
C: </top>
C: </filter>
C: </get‑config>
C: </rpc>
C: </soapenv:Body>
C: </soapenv:Envelope>

 The HTTP/1.1 response is also straightforward:

S: HTTP/1.1 200 OK
S: Content‑Type: application/soap+xml; charset=utf‑8
S: Content‑Length: 917
S:
S: <?xml version="1.0" encoding="UTF‑8"?>
S: <soapenv:Envelope
S: xmlns:soapenv="http://www.w3.org/2003/05/soap‑envelope">
S: <soapenv:Body>
S: <rpc‑reply message‑id="101"
S: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <data>
S: <top xmlns="http://example.com/schema/1.2/config">
S: <users>
S: <user>
S: <name>root</name>
S: <type>superuser</type>
S: <full‑name>Charlie Root</full‑name>
S: <dept>1</dept>
S: <id>1</id>
S: </company‑info>
S: </user>

S: <user>
S: <name>fred</name>
S: <type>admin</type>
S: <full‑name>Fred Flintstone</full‑name>
S: <dept>2</dept>
S: <id>2</id>
S: </company‑info>
S: </user>
S: </users>
S: </top>
S: </data>
S: </rpc‑reply>
S: </soapenv:Body>
S: </soapenv:Envelope>

3.7. NETCONF SOAP WSDL

<?xml version="1.0" encoding="UTF‑8"?>
<definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="urn:ietf:params:xml:ns:netconf:soap:1.0"
 xmlns:netb="urn:ietf:params:xml:ns:netconf:base:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:soap:1.0"
 name="netconf‑soap_1.0.wsdl">

 <import namespace="urn:ietf:params:xml:ns:netconf:base:1.0"

 location="http://www.iana.org/assignments/xml-registry/
 schema/netconf.xsd" />

<message name="helloRequest">
 <part name="in" element="netb:hello"/>
</message>
<message name="helloResponse">
 <part name="out" element="netb:hello"/>
</message>

<message name="rpcRequest">
 <part name="in" element="netb:rpc"/>
</message>
<message name="rpcResponse">
 <part name="out" element="netb:rpc‑reply"/>
</message>

<portType name="netconfPortType">
 <operation name="rpc">
 <input message="tns:rpcRequest"/>
 <output message="tns:rpcResponse"/>

 </operation>
 <operation name="hello">
 <input message="tns:helloRequest"/>
 <output message="tns:helloResponse"/>
 </operation>
</portType>

<binding name="netconfBinding" type="tns:netconfPortType">
 <SOAP:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="hello">
 <SOAP:operation/>
 <input>
 <SOAP:body use="literal"
 namespace="urn:ietf:params:xml:ns:netconf:soap:1.0"/>
 </input>
 <output>
 <SOAP:body use="literal"
 namespace="urn:ietf:params:xml:ns:netconf:soap:1.0"/>
 </output>
 </operation>
 <operation name="rpc">
 <SOAP:operation/>
 <input>
 <SOAP:body use="literal"
 namespace="urn:ietf:params:xml:ns:netconf:base:1.0"/>
 </input>
 <output>
 <SOAP:body use="literal"
 namespace="urn:ietf:params:xml:ns:netconf:base:1.0"/>
 </output>
 </operation>
</binding>

 </definitions>

3.8. Sample Service Definition WSDL

 The following WSDL document assumes a local location for the NETCONF
 over SOAP WSDL definitions. A typical deployment of a device
 manageable via NETCONF over SOAP would provide a service definition
 similar to the following to identify the address of the device.

<?xml version="1.0" encoding="UTF‑8"?>
<definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:nets="urn:ietf:params:xml:ns:netconf:soap:1.0"

 targetNamespace="urn:myNetconfService"
 name="myNetconfService.wsdl">

 <import namespace="urn:ietf:params:xml:ns:netconf:soap:1.0"

 location="http://localhost:8080/netconf/
 schema/netconf-soap_1.0.wsdl"/>

<service name="netconf">
 <port name="netconfPort" binding="nets:netconfBinding">
 <SOAP:address location="http://localhost:8080/netconf"/>
 </port>
</service>

 </definitions>

4. Security Considerations

 NETCONF is used to access and modify configuration information, so
 the ability to access this protocol should be limited to users and
 systems that are authorized to view or modify the agent's
 configuration data.

 Because configuration information is sent in both directions, it is
 not sufficient for just the client or user to be authenticated with
 the server. The identity of the server should also be authenticated
 with the client.

 Configuration data may include sensitive information, such as user
 names or security keys. So, NETCONF should only be used over
 communications channels that provide strong encryption for data
 privacy.

 If the NETCONF server provides remote access through insecure
 protocols, such as HTTP, care should be taken to prevent execution of
 the NETCONF program when strong user authentication or data privacy
 is not available.

 The IANA assigned port SHOULD be used, as this provides a means for
 efficient firewall filtering during possible denial-of-service
 attacks.

4.1. Integrity, Privacy, and Authentication

 The NETCONF SOAP binding relies on an underlying secure transport for
 integrity and privacy. Such transports are expected to include TLS
 [9] (which, when combined with HTTP, is referred to as HTTPS) and
 IPsec. There are a number of options for authentication (some of
 which are deployment-specific):

 o within the transport (such as with TLS client certificates)

 o within HTTP (such as Digest Access Authentication [7])

 o within SOAP (such as a digital signature in the header [17])

 HTTP, BEEP, and SOAP level authentication can be integrated with
 Remote Authentication Dial-In User Service (RADIUS) [10] to support
 remote authentication databases.

 At a miniumum, all conforming NETCONF over SOAP implementations MUST
 support TLS. Specifically, NETCONF over SOAP over HTTP MUST support
 NETCONF over SOAP over HTTPS, and NETCONF over SOAP over BEEP MUST
 support NETCONF over SOAP over BEEP over TLS.

4.2. Vulnerabilities

 The above protocols may have various vulnerabilities, and these may
 be inherited by NETCONF over SOAP.

 NETCONF itself may have vulnerabilities because an authorization
 model is not currently specified.

 It is important that device capabilities and authorization remain
 constant for the duration of any outstanding NETCONF session. In the
 case of NETCONF, it is important to consider that device management
 may be taking place over multiple substrates (in addition to SOAP),
 and it is important that the different substrates have a common
 authentication model.

4.3. Environmental Specifics

 Some deployments of NETCONF over SOAP may choose to use transports
 without encryption. This presents vulnerabilities but may be
 selected for deployments involving closed networks or debugging
 scenarios.

 A device managed by NETCONF may interact (over protocols besides
 NETCONF) with devices managed by other protocols, all of differing
 security. Each point of entry brings with it a potential
 vulnerability.

5. IANA Considerations

 IANA assigned TCP port (833) for NETCONF over SOAP over BEEP, and TCP
 port (832) for NETCONF over SOAP over HTTPS.

 IANA will allow for the assignment of an XML namespace within the
 NETCONF namespace "urn:ietf:params:xml:ns:netconf" for the NETCONF
 over SOAP WSDL definitions. Following the policies outlined in RFC
 2434 [14], assigned values in this subordinate namespace are
 requested to be allocated according to the "Specification Required"
 policy.

 URI: urn:ietf:params:xml:ns:netconf:soap

6. References

6.1. Normative References

 [1]
 Enns, R., Ed., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [2]
 Bray, T., Paoli, J., Sperberg-McQueen, C., and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C
 REC REC-xml-20001006, October 2000,
 <http://www.w3.org/TR/2000/REC-xml-20001006>.

 [3]
 Gudgin, M., Hadley, M., Moreau, JJ., and H. Nielsen, "SOAP
 Version 1.2 Part 1: Messaging Framework", W3C
 Recommendation REC-soap12-part1-20030624, June 2002,
 <http://www.w3.org/TR/soap12-part1/>.

 [4]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, "XML
 Schema Part 1: Structures", W3C Recommendation REC-xmlschema-
 1-20010502, May 2001,
 <http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/>.

 [5]
 Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [6]
 Moore, K., "On the use of HTTP as a Substrate", RFC 3205,
 February 2002.

 [7]
 Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
 Luotonen, A., Sink, E., and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [8]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [9]
 Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.1", RFC 4346, April 2006.

 [10]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865,
 June 2000.

 [11]
 Rose, M., "The Blocks Extensible Exchange Protocol Core",
 RFC 3080, March 2001.

 [12]
 O'Tuathail, E. and M. Rose, "Using the Simple Object Access
 Protocol (SOAP) in Blocks Extensible Exchange Protocol (BEEP)",
 RFC 4227, January 2006.

 [13]
 Mealling, M., "The IETF XML Registry", RFC 3688, January 2004.

 [14]
 Alvestrand, H. and T. Narten, "Guidelines for Writing an IANA
 Considerations Section in RFCs", RFC 2434, October 1998.

6.2. Informative References

 [15]
 Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [16]
 Christensen, E., Curbera, F., Meredith, G., and S. Weerawarana,
 "Web Services Description Language (WSDL) 1.1", W3C Note NOTE-
 wsdl-20010315, March 2001,
 <http://www.w3.org/TR/2001/NOTE-wsdl-20010315>.

 [17]
 Brown, A., Fox, B., Hada, S., LaMacchia, B., and H. Maruyama,
 "SOAP Security Extensions: Digital Signature", W3C Note NOTE-
 SOAP-dsig-20010206, Feb 2001,
 <http://www.w3.org/TR/SOAP-dsig/>.

Author's Address

Ted Goddard
ICEsoft Technologies Inc.
Suite 300, 1717 10th St. NW
Calgary, AB T2M 4S2
Canada

Phone: (403) 663‑3322
EMail: ted.goddard@icesoft.com
URI: http://www.icesoft.com

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

4744 - Using the NETCONF Protocol over the Blocks Extensible Exchange Protocol (

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4744

Category: Standards Track

E. Lear

Cisco Systems

K. Crozier

December 2006

Using the NETCONF Protocol over the Blocks Extensible Exchange Protocol (BEEP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 This document specifies an application protocol mapping for the
 Network Configuration Protocol (NETCONF) over the Blocks Extensible
 Exchange Protocol (BEEP).

Table of Contents

	1. Introduction
	 1.1. Why BEEP?

	2. BEEP Transport Mapping
	 2.1. NETCONF Session Establishment

	 2.2. Starting a Channel for NETCONF

	 2.3. NETCONF Session Usage

	 2.4. NETCONF Session Teardown

	 2.5. BEEP Profile for NETCONF

	3. Security Considerations

	4. IANA Considerations

	5. Acknowledgments

	6. References
	 6.1. Normative References

	 6.2. Informative References

1. Introduction

 The NETCONF protocol [1] defines a simple mechanism through which a
 network device can be managed. NETCONF is designed to be usable over
 a variety of application protocols. This document specifies an
 application protocol mapping for NETCONF over the Blocks Extensible
 Exchange Protocol (BEEP) [7].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

1.1. Why BEEP?

 Use of BEEP is natural as an application protocol for transport of
 XML. As a peer-to-peer protocol, BEEP provides an easy way to
 implement NETCONF, no matter which side of the connection was the
 initiator. This "bidirectionality" allows for either manager or
 agent to initiate a connection. This is particularly important to
 support large numbers of intermittently connected devices, as well as
 those devices that must reverse the management connection in the face
 of firewalls and network address translators (NATs).

 BEEP makes use of the Simple Authentication and Security Layer (SASL)
 [3]. The SASL profile used by BEEP allows for a simple and direct
 mapping to the existing security model for command line interface
 (CLI), while Transport Layer Security (TLS) [4] provides a strong,
 well-tested encryption mechanism with either server or server and
 client-side authentication.

2. BEEP Transport Mapping

 All NETCONF over BEEP implementations MUST implement the profile and
 functional mapping between NETCONF and BEEP as described below.

 For purposes of this document, a manager is a NETCONF client, and an
 agent is a NETCONF server. Use of client/server language in BEEP is
 avoided because of the common notion that in networking clients
 connect to servers.

2.1. NETCONF Session Establishment

 Managers may be either BEEP listeners or initiators. Similarly,
 agents may be either listeners or initiators. To establish a
 connection, the initiator connects to the listener on TCP port 831.
 Thus, the initial exchange takes place without regard to whether a
 manager or the agent is the initiator. After the transport
 connection is established, as greetings are exchanged, they SHOULD
 each announce their support for TLS and optionally SASL. Once BEEP
 greeting messages are exchanged, if TLS is to be used and available
 by both parties, the listener STARTs a channel with the TLS profile.

 Once TLS has been started, a new BEEP greeting message is sent by
 both initiator and listener, as required by the BEEP RFC.

 After all BEEP greeting messages are exchanged in order for roles to
 be clear, the agent MUST advertise the NETCONF profile. The manager
 MUST NOT advertise the NETCONF profile. If the agent side of the
 communication (either initiator or listener) receives a BEEP
 <greeting> element that contains the NETCONF profile, it MUST close
 the connection. Similarly, if neither side issues a NETCONF profile
 it is equally an error, and the listener MUST close the connection.

 At this point, if SASL is desired, the initiator starts a BEEP
 channel to perform a SASL exchange to authenticate itself. Upon
 completion of authentication the channel is closed. That is, the
 channel is exclusively used to authenticate.

 Examples of both TLS and SASL profiles can be found in [7].

 It is anticipated that the SASL PLAIN mechanism will be heavily used
 in conjunction with TLS [5]. In such cases, in accordance with RFC
 2595 the PLAIN mechanism MUST NOT be advertised in the first BEEP
 <greeting>, but only in the one following a successful TLS
 negotiation. This applies only if TLS and SASL PLAIN mechanisms are
 both to be used. To avoid risk of eavesdropping, the SASL PLAIN
 mechanism MUST NOT be used over unencrypted channels. More specifics
 about the use of SASL and TLS are mentioned in Security
 Considerations below.

 Once authentication has occurred, there is no need to distinguish
 between initiator and listener. We now distinguish between manager
 and agent, and it is assumed that each knows its role in the
 conversation.

2.2. Starting a Channel for NETCONF

 The manager now establishes a new channel and specifies the single
 NETCONF profile. For example:

 (M = Manager; A = Agent)

M: MSG 0 1 . 10 48 118
M: Content‑type: application/beep+xml
M:
M: <start number="1">
M: <profile uri="http://iana.org/beep/netconf" />
M: </start>
M: END
A: RPY 0 1 . 38 87
A: Content‑Type: application/beep+xml
A:
A: <profile uri="http://iana.org/beep/netconf" />
A: END

 At this point, we are ready to proceed on BEEP channel 1 with NETCONF
 operations.

 NETCONF messages are transmitted with a Content-type header set to
 "text/xml".

 Next the manager and the agent exchange NETCONF <hello> elements on
 the new channel so that each side learns the other's capabilities.
 This occurs through a MSG. Each side will then respond positively.
 The following example is adapted from [1] Section 8.1:

A: MSG 1 0 . 0 457
A: Content‑type: application/beep+xml
A:
A: <?xml version='1.0' encoding="UTF‑8"?>
A: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
A: <capabilities>
A: <capability>
A: urn:ietf:params:netconf:base:1.0
A: </capability>
A: <capability>
A: urn:ietf:params:netconf:capability:startup:1.0
A: </capability>
A: <capability>
A: http://example.net/router/2.3/core#myfeature
A: </capability>
A: </capabilities>

A: <session‑id>4</session‑id>
A: </hello>
A: END

M: RPY 1 0 . 0 0
M: END

 Future NETCONF capabilities may require additional BEEP channels.
 When such capabilities are defined, a BEEP mapping must be defined as
 well.

 At this point, the NETCONF session is established, and capabilities
 have been exchanged.

2.3. NETCONF Session Usage

 Nearly all NETCONF operations are executed through the <rpc> element.
 To issue a remote procedure call (RPC), the manager transmits on the
 operational channel a BEEP MSG containing the RPC and its arguments.
 In accordance with the BEEP standard, RPC requests may be split
 across multiple BEEP frames.

 Once received and processed, the agent responds with BEEP RPY
 messages on the same channel with the response to the RPC. In
 accordance with the BEEP standard, responses may be split across
 multiple BEEP frames.

2.4. NETCONF Session Teardown

 Upon receipt of <close-session> from the manager, once the agent has
 completed all RPCs, it will close BEEP channel 0. When an agent
 needs to initiate a close, it will do so by closing BEEP channel 0.
 Although not required to do so, the agent should allow for a
 reasonable period for a manager to release an existing lock prior to
 initiating a close. Once the agent has closed channel 0, all locks
 are released, and each side follows teardown procedures as specified
 in [8]. Having received a BEEP close or having sent <close-session>,
 a manager MUST NOT send further requests. If there are additional
 activities due to expanded capabilities, they MUST cease in an
 orderly manner and should be properly described in the capability
 mapping.

2.5. BEEP Profile for NETCONF

 Profile Identification: http://iana.org/beep/netconf

 Messages exchanged during Channel Creation: not applicable

 Messages starting one-to-one exchanges: "hello", "rpc", "rpc-reply"

 Messages in positive replies: "rpc-reply"

 Messages in negative replies: "rpc-reply"

 Messages in one-to-many exchanges: none

 Message syntax: [1]

 Message semantics: [1]

 Contact Information: See the "Author's Address" section of this memo.

3. Security Considerations

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic so-called "person-in-the-middle" attacks.
 Configuration information often times contains passwords, user names,
 service descriptions, and topological information, all of which are
 sensitive. A NETCONF application protocol, therefore, must minimally
 support options for both confidentiality and authentication.

 The BEEP mapping described in this document addresses both
 confidentiality and authentication in a flexible manner through the
 use of TLS and SASL profiles. Confidentiality is provided via the
 TLS profile and is used as discussed above. In addition, the server
 certificate shall serve as the server's authentication to the client.
 The client MUST be prepared to recognize and validate a server
 certificate and SHOULD by default reject invalid certificates.

 In order to validate a certificate, the client must be able to access
 a trust anchor. While such validation methods are beyond the scope
 of this document, they will depend on the type of device and
 circumstance. Both the implementor and the administrator are
 cautioned to be aware of any circular dependencies that various
 methods may introduce. For instance, Online Certificate Status
 Protocol (OCSP) servers may not be available in a network cold-start
 scenario and would be ill-advised for core routers to depend on to
 receive configuration at boot.

 For client-side authentication, there are several options. The
 client MAY provide a certificate during the initiation phase of TLS,
 in which case the subject of that certificate shall be considered
 principle for authentication purposes. Once again, server
 implementors should be aware of any interdependencies that could be
 created through protocols used to validate trust anchors.

 TLS endpoints may be authorized based on subject name or certificate
 authority (CA), depending on circumstances. For instance, it would
 be unwise for a core Internet router to allow a netconf agent
 connection simply based on a valid certificate signed by a common CA,
 but not unreasonable to allow a connection from an agent with a
 particular distinguished name. On the other hand, it might be
 desirable for enterprises to trust certificates signed by CAs of
 their network operations team.

 In the case where the client has not authenticated through TLS, the
 server SHOULD advertise one or more SASL profiles, from which the
 client will choose. In the singular case where TLS is established,
 the minimum profile MAY be PLAIN. Otherwise, implementations MUST
 support the DIGEST-MD5 profile as described in [6], and they MAY
 support other profiles such as the One-Time Password (OTP) mechanism
 [10].

 Different environments may well allow different rights prior to and
 then after authentication. An authorization model is not specified
 in this document. When an operation is not properly authorized, then
 a simple rpc-error containing "permission denied" is sufficient.
 Note that authorization information may be exchanged in the form of
 configuration information, which is all the more reason to ensure the
 security of the connection.

4. IANA Considerations

 IANA assigned TCP port (831) for NETCONF over BEEP.

5. Acknowledgments

 This work is the product of the NETCONF IETF working group, and many
 people have contributed to the NETCONF discussion. Most notably, Rob
 Ens, Phil Schafer, Andy Bierman, Wes Hardiger, Ted Goddard, and
 Margaret Wasserman all contributed in some fashion to this work,
 which was originally to be found in the NETCONF base protocol
 specification. Thanks also to Weijing Chen, Keith Allen, Juergen
 Schoenwaelder, Marshall Rose, and Eamon O'Tuathail for their very
 constructive participation. The authors would also like to thank
 Elwyn Davies for his constructive review.

6. References

6.1. Normative References

 [1]
 Enns, R., Ed., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [2]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3]
 Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [4]
 Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.1", RFC 4346, April 2006.

 [5]
 Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
 June 1999.

 [6]
 Leach, P. and C. Newman, "Using Digest Authentication as a SASL
 Mechanism", RFC 2831, May 2000.

 [7]
 Rose, M., "The Blocks Extensible Exchange Protocol Core",
 RFC 3080, March 2001.

 [8]
 Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081,
 March 2001.

6.2. Informative References

 [9]
 Sperberg-McQueen, C., Paoli, J., Maler, E., and T. Bray,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", World
 Wide Web Consortium, First Edition,
 http://www.w3.org/TR/2000/REC-xml-20001006, October 2000.

 [10]
 Newman, C., "The One-Time-Password SASL Mechanism", RFC 2444,
 October 1998.

Authors' Addresses

Eliot Lear
Cisco Systems
Glatt‑com
CH‑8301 Glattzentrum, Zurich
CH

 EMail: lear@cisco.com

 Ken Crozier

 EMail: ken.crozier@gmail.com

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

5277 - NETCONF Event Notifications

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5277

Category: Standards Track

S. Chisholm

Nortel

H. Trevino

Cisco

July 2008

NETCONF Event Notifications

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document defines mechanisms that provide an asynchronous message
 notification delivery service for the Network Configuration protocol
 (NETCONF). This is an optional capability built on top of the base
 NETCONF definition. This document defines the capabilities and
 operations necessary to support this service.

Table of Contents

	1. Introduction
	 1.1. Definition of Terms

	 1.2. Motivation

	 1.3. Event Notifications in NETCONF

	2. Notification-Related Operations
	 2.1. Subscribing to Receive Event Notifications
	 2.1.1. <create-subscription>

	 2.2. Sending Event Notifications
	 2.2.1. <notification>

	 2.3. Terminating the Subscription

	3. Supporting Concepts
	 3.1. Capabilities Exchange
	 3.1.1. Capability Identifier

	 3.1.2. Capability Example

	 3.2. Event Streams
	 3.2.1. Event Stream Definition

	 3.2.2. Event Stream Content Format

	 3.2.3. Default Event Stream

	 3.2.4. Event Stream Sources

	 3.2.5. Event Stream Discovery

	 3.3. Notification Replay
	 3.3.1. Overview

	 3.3.2. Creating a Subscription with Replay

	 3.4. Notification Management Schema

	 3.5. Subscriptions Data

	 3.6. Filter Mechanics
	 3.6.1. Filtering

	 3.7. Message Flow

	4. XML Schema for Event Notifications

	5. Filtering Examples
	 5.1. Subtree Filtering

	 5.2. XPATH Filters

	6. Interleave Capability
	 6.1. Description

	 6.2. Dependencies

	 6.3. Capability Identifier

	 6.4. New Operations

	 6.5. Modifications to Existing Operations

	7. Security Considerations

	8. IANA Considerations

	9. Acknowledgements

	10. Normative References

1. Introduction

 [NETCONF] can be conceptually partitioned into four layers:

 Layer Example
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
| Content | | Configuration data |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
 | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
| Operations | |<get‑config>, <edit‑config>, <notification>|
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
| RPC | | <rpc>, <rpc‑reply> | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
| Transport | | BEEP, SSH, SSL, console |
| Protocol | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+

 Figure 1

 This document defines mechanisms that provide an asynchronous message
 notification delivery service for the [NETCONF] protocol. This is an
 optional capability built on top of the base NETCONF definition.
 This memo defines the capabilities and operations necessary to
 support this service.

1.1. Definition of Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Element: An [XML] Element.

Subscription: An agreement and method to receive event notifications
 over a NETCONF session. A concept related to the delivery of
 notifications (if there are any to send) involving destination and
 selection of notifications. It is bound to the lifetime of a
 session.

Operation: This term is used to refer to NETCONF protocol operations
 [NETCONF]. Within this document, operation refers to NETCONF
 protocol operations defined in support of NETCONF notifications.

Event: An event is something that happens that may be of interest ‑
 a configuration change, a fault, a change in status, crossing a
 threshold, or an external input to the system, for example.
 Often, this results in an asynchronous message, sometimes referred
 to as a notification or event notification, being sent to
 interested parties to notify them that this event has occurred.

Replay: The ability to send/re‑send previously logged notifications
 upon request. These notifications are sent asynchronously. This
 feature is implemented by the NETCONF server and invoked by the
 NETCONF client.

Stream: An event stream is a set of event notifications matching
 some forwarding criteria and available to NETCONF clients for
 subscription.

Filter: A parameter that indicates which subset of all possible
 events are of interest. A filter is defined as one or more filter
 elements [NETCONF], each of which identifies a portion of the
 overall filter.

1.2. Motivation

 The motivation for this work is to enable the sending of asynchronous
 messages that are consistent with the data model (content) and
 security model used within a NETCONF implementation.

 The scope of the work aims at meeting the following operational
 needs:

 o Initial release should ensure it supports notifications in support
 of configuration operations.

 o It should be possible to use the same data model for notifications
 as for configuration operations.

 o The solution should support a reasonable message size limit (i.e.,
 not too short).

 o The notifications should be carried over a connection-oriented
 delivery mechanism.

 o A subscription mechanism for notifications should be provided.
 This takes into account that a NETCONF server does not send
 notifications before being asked to do so, and that it is the
 NETCONF client who initiates the flow of notifications.

 o A filtering mechanism for sending notifications should be put in
 place within the NETCONF server.

 o The information contained in a notification should be sufficient
 so that it can be analyzed independent of the transport mechanism.
 In other words, the data content fully describes a notification;
 protocol information is not needed to understand a notification.

 o The server should have the capability to replay locally logged
 notifications.

1.3. Event Notifications in NETCONF

 This memo defines a mechanism whereby the NETCONF client indicates
 interest in receiving event notifications from a NETCONF server by
 creating a subscription to receive event notifications. The NETCONF
 server replies to indicate whether the subscription request was
 successful and, if it was successful, begins sending the event
 notifications to the NETCONF client as the events occur within the
 system. These event notifications will continue to be sent until
 either the NETCONF session is terminated or the subscription
 terminates for some other reason. The event notification
 subscription allows a number of options to enable the NETCONF client
 to specify which events are of interest. These are specified when
 the subscription is created. Note that a subscription cannot be
 modified once created.

 The NETCONF server MUST accept and process the <close-session>
 operation, even while the notification subscription is active. The
 NETCONF server MAY accept and process other commands; otherwise, they
 will be rejected and the server MUST send a 'resource-denied' error.
 A NETCONF server advertises support of the ability to process other
 commands via the :interleave capability.

2. Notification-Related Operations

2.1. Subscribing to Receive Event Notifications

 The event notification subscription is initiated by the NETCONF
 client and responded to by the NETCONF server. A subscription is
 bound to a single stream for the lifetime of the subscription. When
 the event notification subscription is created, the events of
 interest are specified.

 Content for an event notification subscription can be selected by
 applying user-specified filters.

2.1.1. <create-subscription>

 Description:

 This operation initiates an event notification subscription that
 will send asynchronous event notifications to the initiator of the
 command until the subscription terminates.

 Parameters:

 Stream:

 An optional parameter, <stream>, that indicates which stream of
 events is of interest. If not present, events in the default
 NETCONF stream will be sent.

 Filter:

 An optional parameter, <filter>, that indicates which subset of
 all possible events is of interest. The format of this
 parameter is the same as that of the filter parameter in the
 NETCONF protocol operations. If not present, all events not
 precluded by other parameters will be sent. See section 3.6
 for more information on filters.

 Start Time:

 A parameter, <startTime>, used to trigger the replay feature
 and indicate that the replay should start at the time
 specified. If <startTime> is not present, this is not a replay
 subscription. It is not valid to specify start times that are
 later than the current time. If the <startTime> specified is
 earlier than the log can support, the replay will begin with
 the earliest available notification. This parameter is of type
 dateTime and compliant to [RFC3339]. Implementations must
 support time zones.

 Stop Time:

 An optional parameter, <stopTime>, used with the optional
 replay feature to indicate the newest notifications of
 interest. If <stopTime> is not present, the notifications will
 continue until the subscription is terminated. Must be used
 with and be later than <startTime>. Values of <stopTime> in
 the future are valid. This parameter is of type dateTime and
 compliant to [RFC3339]. Implementations must support time
 zones.

 Positive Response:

 If the NETCONF server can satisfy the request, the server sends an
 <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason. Subscription requests
 will fail if a filter with invalid syntax is provided or if the
 name of a non-existent stream is provided.

 If a <stopTime> is specified in a request without having specified
 a <startTime>, the following error is returned:

 Tag: missing-element

 Error-type: protocol

 Severity: error

 Error-info: <bad-element>: startTime

 Description: An expected element is missing.

 If the optional replay feature is requested but it is not
 supported by the NETCONF server, the following error is returned:

 Tag: operation-failed

 Error-type: protocol

 Severity: error

 Error-info: none

 Description: Request could not be completed because the
 requested operation failed for some reason not covered by any
 other error condition.

 If a <stopTime> is requested that is earlier than the specified
 <startTime>, the following error is returned:

 Tag: bad-element

 Error-type: protocol

 Severity: error

 Error-info: <bad-element>: stopTime

 Description: An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch.

 If a <startTime> is requested that is later than the current time,
 the following error is returned:

 Tag: bad-element

 Error-type: protocol

 Severity: error

 Error-info: <bad-element>: startTime

 Description: An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch.

2.1.1.1. Usage Example

 The following demonstrates creating a simple subscription. More
 complex examples can be found in section 5.

<netconf:rpc message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create‑subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 </create‑subscription>
</netconf:rpc>

2.2. Sending Event Notifications

 Once the subscription has been set up, the NETCONF server sends the
 event notifications asynchronously over the connection.

2.2.1. <notification>

 Description:

 An event notification is sent to the client who initiated a
 <create-subscription> command asynchronously when an event of
 interest (i.e., meeting the specified filtering criteria) has
 occurred. An event notification is a complete and well-formed XML
 document. Note that <notification> is not a Remote Procedure Call
 (RPC) method but rather the top-level element identifying the one-
 way message as a notification.

 Parameters:

 eventTime

 The time the event was generated by the event source. This
 parameter is of type dateTime and compliant to [RFC3339].
 Implementations must support time zones.

 Also contains notification-specific tagged content, if any. With
 the exception of <eventTime>, the content of the notification is
 beyond the scope of this document.

 Response:

 No response. Not applicable.

2.3. Terminating the Subscription

 Closing of the event notification subscription can be done by using
 the <close-session> operation from the subscriptions session or
 terminating the NETCONF session (<kill-session>) or the underlying
 transport session from another session. If a stop time is provided
 when the subscription is created, the subscription will terminate
 after the stop time is reached. In this case, the NETCONF session
 will still be an active session.

3. Supporting Concepts

3.1. Capabilities Exchange

 The ability to process and send event notifications is advertised
 during the capability exchange between the NETCONF client and server.

3.1.1. Capability Identifier

 "urn:ietf:params:netconf:capability:notification:1.0"

3.1.2. Capability Example

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:startup:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.0
 </capability>
 </capabilities>
 <session‑id>4</session‑id>
</hello>

3.2. Event Streams

 An event stream is defined as a set of event notifications matching
 some forwarding criteria.

 Figure 2 illustrates the notification flow and concepts identified in
 this document. It does not mandate and/or preclude an
 implementation. The following is observed from the diagram below:
 System components (c1..cn) generate event notifications that are
 passed to a central component for classification and distribution.
 The central component inspects each event notification and matches
 the event notification against the set of stream definitions. When a
 match occurs, the event notification is considered to be a member of
 that event stream (stream 1..stream n). An event notification may be
 part of multiple event streams.

 At some point after the NETCONF server receives the internal event
 from a stream, it is converted to an appropriate XML encoding by the
 server, and a <notification> element is ready to send to all NETCONF
 sessions subscribed to that stream.

 After generation of the <notification> element, access control is
 applied by the server. If a session does not have permission to
 receive the <notification>, then it is discarded for that session,
 and processing of the internal event is completed for that session.

 When a NETCONF client subscribes to a given event stream, user-
 defined filter elements, if applicable, are applied to the event
 stream and matching event notifications are forwarded to the NETCONF
 server for distribution to subscribed NETCONF clients. A filter is
 transferred from the client to the server during the <create-
 subscription> operation and applied against each <notification>
 element generated by the stream. For more information on filtering,
 see Section 3.6.

 A notification-logging service may also be available, in which case,
 the central component logs notifications. The NETCONF server may
 later retrieve logged notifications via the optional replay feature.
 For more information on replay, see section 3.3.

+‑‑‑‑+
| c1 |‑‑‑‑+ available streams
+‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑+
+‑‑‑‑+ | |central |‑> stream 1
| c2 | +‑‑‑>|event |‑> stream 2 filter +‑‑‑‑‑‑‑+
+‑‑‑‑+ | |processor|‑> NETCONF stream ‑‑‑‑‑>|NETCONF|
 ... | | |‑> stream n |server |
System | +‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑+
Components| | /\
 ... | | ||
+‑‑‑‑+ | | (‑‑‑‑‑‑‑‑‑‑‑‑) ||
| cn |‑‑‑‑+ | (notification) ||
+‑‑‑‑+ +‑‑‑‑‑> (logging) ||
 (service) ||
 (‑‑‑‑‑‑‑‑‑‑‑‑) ||
 ||
 ||
 \/
 +‑‑‑‑‑‑‑+
 |NETCONF|
 |client |
 +‑‑‑‑‑‑‑+

 Figure 2

3.2.1. Event Stream Definition

 Event streams are predefined on the managed device. The
 configuration of event streams is outside the scope of this document.
 However, it is envisioned that event streams are either pre-
 established by the vendor (pre-configured), user configurable (e.g.,
 part of the device's configuration), or both. Device vendors may
 allow event stream configuration via the NETCONF protocol (i.e.,
 <edit-config> operation).

3.2.2. Event Stream Content Format

 The contents of all event streams made available to a NETCONF client
 (i.e., the notification sent by the NETCONF server) MUST be encoded
 in XML.

3.2.3. Default Event Stream

 A NETCONF server implementation supporting the notification
 capability MUST support the "NETCONF" notification event stream.
 This stream contains all NETCONF XML event notifications supported by
 the NETCONF server. The exact string "NETCONF" is used during the
 advertisement of stream support during the <get> operation on
 <streams> and during the <create-subscription> operation. Definition
 of the event notifications and their contents, beyond the inclusion
 of <eventTime>, for this event stream is outside the scope of this
 document.

3.2.4. Event Stream Sources

 With the exception of the default event stream (NETCONF),
 specification of additional event stream sources (e.g., Simple
 Network Management Protocol (SNMP), syslog) is outside the scope of
 this document. NETCONF server implementations may leverage any
 desired event stream source in the creation of supported event
 streams.

3.2.5. Event Stream Discovery

 A NETCONF client retrieves the list of supported event streams from a
 NETCONF server using the <get> operation.

3.2.5.1. Name Retrieval Using <get> Operation

 The list of available event streams is retrieved by requesting the
 <streams> subtree via a <get> operation. Available event streams for
 the requesting session are returned in the reply containing the
 <name> and <description> elements, where the <name> element is
 mandatory, and its value is unique within the scope of a NETCONF
 server. An empty reply is returned if there are no available event
 streams, due to user-specified filters on the <get> operation.

 Additional information available about a stream includes whether
 notification replay is available and, if so, the timestamp of the
 earliest possible notification to replay.

 The following example shows retrieving the list of available event
 stream list using the <get> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
 <streams/>
 </netconf>
 </filter>
 </get>
</rpc>

 The NETCONF server returns a list of event streams available for
 subscription: NETCONF, SNMP, and syslog-critical in this example.

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
 <streams>
 <stream>
 <name>NETCONF</name>
 <description>default NETCONF event stream
 </description>
 <replaySupport>true</replaySupport>
 <replayLogCreationTime>
 2007‑07‑08T00:00:00Z
 </replayLogCreationTime>
 </stream>
 <stream>
 <name>SNMP</name>
 <description>SNMP notifications</description>
 <replaySupport>false</replaySupport>
 </stream>
 <stream>
 <name>syslog‑critical</name>
 <description>Critical and higher severity
 </description>
 <replaySupport>true</replaySupport>
 <replayLogCreationTime>
 2007‑07‑01T00:00:00Z
 </replayLogCreationTime>
 </stream>
 </streams>
 </netconf>
 </data>
</rpc‑reply>

3.2.5.2. Event Stream Subscription

 A NETCONF client may request from the NETCONF server the list of
 event streams available to this session and then issue a <create-
 subscription> request with the desired event stream name. Omitting
 the event stream name from the <create-subscription> request results
 in subscription to the default NETCONF event stream.

3.2.5.2.1. Filtering Event Stream Contents

 The set of event notifications delivered in an event stream may be
 further refined by applying a user-specified filter supplied at
 subscription creation time (<create-subscription>). This is a
 transient filter associated with the event notification subscription
 and does not modify the event stream configuration. The filter
 element is applied against the contents of the <notification> wrapper
 and not the wrapper itself. See section 5 for examples. Either
 subtree or XPATH filtering can be used.

 XPATH support for the Notification capability is advertised as part
 of the normal XPATH capability advertisement. If XPATH support is
 advertised via the XPATH capability, then XPATH is supported for
 notification filtering. If this capability is not advertised, XPATH
 is not supported for notification filtering.

3.3. Notification Replay

3.3.1. Overview

 Replay is the ability to create an event subscription that will
 resend recently generated notifications, or in some cases send them
 for the first time to a particular NETCONF client. These
 notifications are sent the same way as normal notifications.

 A replay of notifications is specified by including the optional
 <startTime> parameter to the subscription command, which indicates
 the start time of the replay. The end time is specified using the
 optional <stopTime> parameter. If not present, notifications will
 continue to be sent until the subscription is terminated.

 A notification stream that supports replay is not expected to have an
 unlimited supply of saved notifications available to accommodate any
 replay request. Clients can query <replayLogCreationTime> and
 <replayLogAgedTime> to learn about the availability of notifications
 for replay.

 The actual number of stored notifications available for retrieval at
 any given time is a NETCONF server implementation-specific matter.
 Control parameters for this aspect of the feature are outside the
 scope of this document.

 Replay is dependent on a notification stream supporting some form of
 notification logging, although it puts no restrictions on the size or
 form of the log, or where it resides within the device. Whether or
 not a stream supports replay can be discovered by doing a <get>
 operation on the <streams> element of the Notification Management
 Schema and looking at the value of the <replaySupport> object. This
 schema also provides the <replayLogCreationTime> element to indicate
 the earliest available logged notification.

3.3.2. Creating a Subscription with Replay

 This feature uses optional parameters to the <create-subscription>
 command called <startTime> and <stopTime>. <startTime> identifies the
 earliest date and time of interest for event notifications being
 replayed and also indicates that a subscription will be providing
 replay of notifications. Events generated before this time are not
 matched. <stopTime> specifies the latest date and time of interest
 for event notifications being replayed. If it is not present, then
 notifications will continue to be sent until the subscription is
 terminated.

 Note that <startTime> and <stopTime> are associated with the time an
 event was generated by the event source.

 A <replayComplete> notification is sent to indicate that all of the
 replay notifications have been sent and must not be sent for any
 other reason. If this subscription has a stop time, then this
 session becomes a normal NETCONF session again. The NETCONF server
 will then accept <rpc> operations even if the server did not
 previously accept such operations due to lack of interleave support.
 In the case of a subscription without a stop time, after the
 <replayComplete> notification has been sent, it can be expected that
 any notifications generated since the start of the subscription
 creation will be sent, followed by notifications as they arise
 naturally within the system.

 The <replayComplete> and <notificationComplete> notifications cannot
 be filtered out. They will always be sent on a replay subscription
 that specified a <startTime> and <stopTime>, respectively.

3.4. Notification Management Schema

 This Schema is used to learn about the event streams supported on the
 system. It also contains the definition of the <replayComplete> and
 <notificationComplete> notifications, which are sent to indicate that
 an event replay has sent all applicable notifications and that the
 subscription has terminated, respectively.

<?xml version="1.0" encoding="UTF‑8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ncEvent="urn:ietf:params:xml:ns:netconf:notification:1.0"
 xmlns:manageEvent="urn:ietf:params:xml:ns:netmod:notification"
 targetNamespace="urn:ietf:params:xml:ns:netmod:notification"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en" version="1.0">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 A schema that can be used to learn about current
 event streams. It also contains the replayComplete
 and notificationComplete notification.
 </xs:documentation>
 </xs:annotation>

<xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
<xs:import namespace="urn:ietf:params:xml:ns:netconf:base:1.0"
 schemaLocation="netconf.xsd"/>
<xs:import namespace=
 "urn:ietf:params:xml:ns:netconf:notification:1.0"
 schemaLocation="notification.xsd"/>

 <xs:element name="netconf" type="manageEvent:Netconf"/>

<xs:complexType name="Netconf">
 <xs:sequence>
 <xs:element name="streams" >
 <xs:annotation>
 <xs:documentation>
 The list of event streams supported by the
 system. When a query is issued, the returned
 set of streams is determined based on user
 privileges.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="stream">
 <xs:annotation>
 <xs:documentation>
 Stream name, description, and other information.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>

 <xs:element name="name"
 type="ncEvent:streamNameType">
 <xs:annotation>
 <xs:documentation>
 The name of the event stream. If this is
 the default NETCONF stream, this must have
 the value "NETCONF".
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="description"
 type="xs:string">
 <xs:annotation>
 <xs:documentation>
 A description of the event stream, including
 such information as the type of events that
 are sent over this stream.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="replaySupport"
 type="xs:boolean">
 <xs:annotation>
 <xs:documentation>
 An indication of whether or not event replay
 is available on this stream.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="replayLogCreationTime"
 type="xs:dateTime" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 The timestamp of the creation of the log
 used to support the replay function on
 this stream.
 Note that this might be earlier then
 the earliest available
 notification in the log. This object
 is updated if the log resets
 for some reason. This
 object MUST be present if replay is
 supported.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="replayLogAgedTime"
 type="xs:dateTime" minOccurs="0">

 <xs:annotation>
 <xs:documentation>
 The timestamp of the last notification
 aged out of the log. This
 object MUST be present if replay is
 supported and any notifications
 have been aged out of the log.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ReplayCompleteNotificationType">
 <xs:complexContent>
 <xs:extension base="ncEvent:NotificationContentType"/>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="replayComplete"
 type="manageEvent:ReplayCompleteNotificationType"
 substitutionGroup="ncEvent:notificationContent">
 <xs:annotation>
 <xs:documentation>
 This notification is sent to signal the end of a replay
 portion of a subscription.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:complexType name="NotificationCompleteNotificationType">
 <xs:complexContent>
 <xs:extension base="ncEvent:NotificationContentType"/>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="notificationComplete"
 type="manageEvent:NotificationCompleteNotificationType"
 substitutionGroup="ncEvent:notificationContent">
 <xs:annotation>
 <xs:documentation>
 This notification is sent to signal the end of a

 notification subscription. It is sent in the case
 that stopTime was specified during the creation of
 the subscription.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:schema>

3.5. Subscriptions Data

 Subscriptions are non-persistent state information, and their
 lifetime is defined by their session or by the <stopTime> parameter.

3.6. Filter Mechanics

 If a filter element is specified to look for data of a particular
 value, and the data item is not present within a particular event
 notification for its value to be checked against, the notification
 will be filtered out. For example, if one were to check for
 'severity=critical' in a configuration event notification where this
 field was not supported, then the notification would be filtered out.

 For subtree filtering, a non-empty node set means that the filter
 matches. For XPath filtering, the mechanisms defined in [XPATH]
 should be used to convert the returned value to boolean.

3.6.1. Filtering

 Filtering is explicitly stated when the event notification
 subscription is created. This is specified via the 'filter'
 parameter. A Filter only exists as a parameter to the subscription.

3.7. Message Flow

 The following figure depicts message flow between a NETCONF client
 (C) and NETCONF server (S) in order to create a subscription and
 begin the flow of notifications. This subscription specifies a
 <startTime>, so the server starts by replaying logged notifications.
 It is possible that many rpc/rpc-reply sequences occur before the
 subscription is created, but this is not depicted in the figure.

C S
| |
| capability exchange |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
| |
| <create‑subscription> | (startTime)
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| <rpc‑reply> |
| |
| <notification> |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| |
| <notification> |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| <notification> | (replayComplete)
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| |
| |
| |
| <notification> |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| |
| |
| <notification> |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| |
| |

 Figure 3

 The following figure depicts message flow between a NETCONF client
 (C) and NETCONF server (S) in order to create a subscription and
 begin the flow of notifications. This subscription specified a
 <startTime> and <stopTime> so it starts by replaying logged
 notifications and then returns to be a normal command-response
 NETCONF session after the <replayComplete> and <notificationComplete>
 notifications are sent and it is available to process <rpc> requests.
 It is possible that many rpc/rpc-reply sequences occur before the
 subscription is created, but this is not depicted in the figure.

C S
| |
| capability exchange |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
| |
| <create‑subscription> | (startTime,
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| stopTime)
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| <rpc‑reply> |
| |
| <notification> |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| |
| <notification> |
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| <notification> | (replayComplete)
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| <notification> |(notificationComplete)
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| |
| |
| |
| <rpc> |
|‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
|<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
| <rpc‑reply> |
| |

 Figure 4

4. XML Schema for Event Notifications

 The following [XMLSchema] defines NETCONF Event Notifications.

<?xml version="1.0" encoding="UTF‑8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0"
 targetNamespace=
 "urn:ietf:params:xml:ns:netconf:notification:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en">

 <!‑‑ import standard XML definitions ‑‑>

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 This import accesses the xml: attribute groups for the
 xml:lang as declared on the error‑message element.
 </xs:documentation>
 </xs:annotation>
 </xs:import>

 <!‑‑ import base netconf definitions ‑‑>
 <xs:import namespace="urn:ietf:params:xml:ns:netconf:base:1.0"
 schemaLocation="netconf.xsd"/>

<!‑‑ ************** Symmetrical Operations ********************‑‑>

 <!‑‑ <create‑subscription> operation ‑‑>

 <xs:complexType name="createSubscriptionType">
 <xs:complexContent>
 <xs:extension base="netconf:rpcOperationType">
 <xs:sequence>
 <xs:element name="stream"
 type="streamNameType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 An optional parameter that indicates
 which stream of events is of interest.
 If not present, then events in the
 default NETCONF stream will be sent.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="filter"
 type="netconf:filterInlineType"
 minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 An optional parameter that indicates
 which subset of all possible events
 is of interest. The format of this
 parameter is the same as that of the
 filter parameter in the NETCONF
 protocol operations. If not
 present, all events not precluded
 by other parameters will be sent.

 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="startTime" type="xs:dateTime"
 minOccurs="0" >
 <xs:annotation>
 <xs:documentation>
 A parameter used to trigger the replay
 feature indicating that the replay
 should start at the time specified. If
 start time is not present, this is not a
 replay subscription.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="stopTime" type="xs:dateTime"
 minOccurs="0" >
 <xs:annotation>
 <xs:documentation>
 An optional parameter used with the
 optional replay feature to indicate the
 newest notifications of interest. If
 stop time is not present, the
 notifications will continue until the
 subscription is terminated. Must be
 used with startTime.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="streamNameType">
 <xs:annotation>
 <xs:documentation>
 The name of an event stream.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 <xs:element name="create‑subscription"
 type="createSubscriptionType"
 substitutionGroup="netconf:rpcOperation">
 <xs:annotation>
 <xs:documentation>
 The command to create a notification subscription. It
 takes as argument the name of the notification stream
 and filter. Both of those options
 limit the content of the subscription. In addition,
 there are two time‑related parameters, startTime and
 stopTime, which can be used to select the time interval
 of interest to the notification replay feature.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

<!‑‑ ************** One‑way Operations ******************‑‑>

 <!‑‑ <Notification> operation ‑‑>
 <xs:complexType name="NotificationContentType"/>

 <xs:element name="notificationContent"

 type="NotificationContentType" abstract="true"/>

<xs:complexType name="NotificationType">
 <xs:sequence>
 <xs:element name="eventTime" type="xs:dateTime">
 <xs:annotation>
 <xs:documentation>
 The time the event was generated by the event source.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="notificationContent"/>
 </xs:sequence>
</xs:complexType>

 <xs:element name="notification" type="NotificationType"/>
 </xs:schema>

5. Filtering Examples

 The following section provides examples to illustrate the various
 methods of filtering content on an event notification subscription.

 In order to illustrate the use of filter expressions, it is necessary
 to assume some of the event notification content. The examples below
 assume that the event notification schema definition has an <event>
 element at the top level consisting of the event class (e.g., fault,
 state, config), reporting entity, and either severity or operational
 state.

 Examples in this section are generated from the following fictional
 Schema.

<?xml version="1.0" encoding="UTF‑8"?>
<xs:schema targetNamespace="http://example.com/event/1.0"
 xmlns="http://example.com/event/1.0"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ncEvent="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <xs:import namespace=

 "urn:ietf:params:xml:ns:netconf:notification:1.0"
 schemaLocation="notification.xsd"/>

<xs:complexType name="eventType">
 <xs:complexContent>
 <xs:extension base="ncEvent:NotificationContentType">
 <xs:sequence>
 <xs:element name="eventClass" />
 <xs:element name="reportingEntity">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"
 processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:choice>
 <xs:element name="severity"/>
 <xs:element name="operState"/>
 </xs:choice>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

 <xs:element name="event"

 type="eventType"
 substitutionGroup="ncEvent:notificationContent"/>

 </xs:schema>

 The above fictional notification definition could result in the
 following sample notification list, which is used in the examples in
 this section.

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑07‑08T00:01:00Z</eventTime>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <reportingEntity>
 <card>Ethernet0</card>
 </reportingEntity>
 <severity>major</severity>
 </event>
</notification>

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑07‑08T00:02:00Z</eventTime>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <reportingEntity>
 <card>Ethernet2</card>
 </reportingEntity>
 <severity>critical</severity>
 </event>
</notification>

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑07‑08T00:04:00Z</eventTime>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <reportingEntity>
 <card>ATM1</card>
 </reportingEntity>
 <severity>minor</severity>
 </event>
</notification>

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007‑07‑08T00:10:00Z</eventTime>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>state</eventClass>
 <reportingEntity>
 <card>Ethernet0</card>
 </reportingEntity>
 <operState>enabled</operState>
 </event>
</notification>

5.1. Subtree Filtering

 XML subtree filtering is not well-suited for creating elaborate
 filter definitions given that it only supports equality comparisons
 and application of the logical OR operators (e.g., in an event
 subtree, give me all event notifications that have severity=critical,
 severity=major, or severity=minor). Nevertheless, it may be used for
 defining simple event notification forwarding filters as shown below.

 The following example illustrates how to select fault events which
 have severities of critical, major, or minor. The filtering criteria
 evaluation is as follows:

 ((fault & severity=critical) | (fault & severity=major) | (fault &
 severity=minor))

<netconf:rpc netconf:message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create‑subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter netconf:type="subtree">
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <severity>critical</severity>
 </event>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <severity>major</severity>
 </event>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <severity>minor</severity>
 </event>
 </filter>
 </create‑subscription>
</netconf:rpc>

 The following example illustrates how to select state or config
 EventClasses or fault events that are related to card Ethernet0. The
 filtering criteria evaluation is as follows:

 (state | config | (fault & (card=Ethernet0)))

<netconf:rpc netconf:message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create‑subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter netconf:type="subtree">
 <event xmlns="http://example.com/event/1.0">
 <eventClass>state</eventClass>
 </event>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>config</eventClass>
 </event>
 <event xmlns="http://example.com/event/1.0">
 <eventClass>fault</eventClass>
 <reportingEntity>
 <card>Ethernet0</card>
 </reportingEntity>
 </event>
 </filter>
 </create‑subscription>
</netconf:rpc>

5.2. XPATH Filters

 The following [XPATH] example illustrates how to select fault
 EventClass notifications that have severities of critical, major, or
 minor. The filtering criteria evaluation is as follows:

 ((fault) & ((severity=critical) | (severity=major) | (severity =
 minor)))

<netconf:rpc netconf:message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create‑subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/event/1.0"
 select="/ex:event[ex:eventClass='fault' and
 (ex:severity='minor' or ex:severity='major'
 or ex:severity='critical')]"/>
 </create‑subscription>
</netconf:rpc>

 The following example illustrates how to select state and config
 EventClasses or fault events of any severity that come from card
 Ethernet0. The filtering criteria evaluation is as follows:

 (state | config | (fault & card=Ethernet0))

<netconf:rpc message‑id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create‑subscription
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/event/1.0"
 select="/ex:event[
 (ex:eventClass='state' or ex:eventClass='config') or
 ((ex:eventClass='fault' and ex:card='Ethernet0'))]"/>
 </create‑subscription>
</netconf:rpc>

6. Interleave Capability

6.1. Description

 The :interleave capability indicates that the NETCONF peer supports
 the ability to interleave other NETCONF operations within a
 notification subscription. This means the NETCONF server MUST
 receive, process, and respond to NETCONF requests on a session with
 an active notification subscription. This capability helps
 scalability by reducing the total number of NETCONF sessions required
 by a given operator or management application.

6.2. Dependencies

 This capability is dependent on the notification capability being
 supported.

6.3. Capability Identifier

 The :interleave capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:interleave:1.0

6.4. New Operations

 None.

6.5. Modifications to Existing Operations

 When a <create-subscription> is sent while another subscription is
 active on that session, the following error will be returned:

 Tag: operation-failed

 Error-type: protocol

 Severity: error

 Error-info: none

 Description: Request could not be completed because the requested
 operation failed for some reason not covered by any other error
 condition.

7. Security Considerations

 The security considerations from the base [NETCONF] document also
 apply to the Notification capability.

 The access control framework and the choice of transport will have a
 major impact on the security of the solution.

 The <notification> elements are never sent before the transport layer
 and the NETCONF layer, including capabilities exchange, have been
 established and the manager has been identified and authenticated.

 It is recommended that care be taken to secure execution:

 o <create-subscription> invocation

 o <get> on read-only data models

 o <notification> content

 Secure execution means ensuring that a secure transport is used as
 well as ensuring that the user has sufficient authorization to
 perform the function they are requesting against the specific subset
 of NETCONF content involved. When a <get> is received that refers to
 the content defined in this memo, clients should only be able to view
 the content for which they have sufficient privileges. A create
 <create-subscription> operation can be considered like a deferred
 <get>, and the content that different users can access may vary.
 This different access is reflected in the <notification> that
 different users are able to subscribe to.

 One potential security issue is the transport of data from non-
 NETCONF streams, such as syslog and SNMP. This data may be more
 vulnerable (or less vulnerable) when being transported over NETCONF
 than when being transported using the protocol normally used for
 transporting it, depending on the security credentials of the two
 subsystems. The NETCONF server is responsible for applying access
 control to stream content.

 The contents of notifications, as well as the names of event streams,
 may contain sensitive information and care should be taken to ensure
 that they are viewed only by authorized users. The NETCONF server
 MUST NOT include any content in a notification that the user is not
 authorized to view.

 If a subscription is created with a <stopTime>, the NETCONF session
 will return to being a normal command-response NETCONF session when
 the replay is completed. It is the responsibility of the NETCONF
 client to close this session when it is no longer of use.

 If a malicious or buggy NETCONF client sends a number of <create-
 subscription> requests, then these subscriptions accumulate and may
 use up system resources. In such a situation, subscriptions can be
 terminated by terminating the suspect underlying NETCONF sessions
 using the <kill-session> operation.

8. IANA Considerations

 This document registers three URIs for the NETCONF XML namespace in
 the IETF XML registry [RFC3688].

 Following the format in RFC 3688, IANA has made the following
 registration. Note that the capability URNs are also compliant to
 section 10.3 of [NETCONF].

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Index | Capability Identifier |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
:notification	urn:ietf:params:netconf:capability:
	notification:1.0
:interleave	urn:ietf:params:netconf:capability:
	interleave:1.0
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 URI: urn:ietf:params:xml:ns:netmod:notification

 URI: urn:ietf:params:xml:ns:netconf:notification:1.0

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 In addition, IANA registered the XML Schema defined in Section 4.

9. Acknowledgements

 Thanks to Gilbert Gagnon, Greg Wilbur, and Kim Curran for providing
 their input into the early work on this document. In addition, the
 editors would like to acknowledge input at the Vancouver editing
 session from the following people: Orly Nicklass, James Balestriere,
 Yoshifumi Atarashi, Glenn Waters, Alexander Clemm, Dave Harrington,
 Dave Partain, Ray Atarashi, David Perkins, and the following
 additional people from the Montreal editing session: Balazs Lengyel,
 Phil Shafer, Rob Enns, Andy Bierman, Dan Romascanu, Bert Wijnen,
 Simon Leinen, Juergen Schoenwaelder, Hideki Okita, Vincent Cridlig,
 Martin Bjorklund, Olivier Festor, Radu State, Brian Trammell, and
 William Chow. We would also like to thank Li Yan for his numerous
 reviews, as well as Suresh Krishnan for his gen-art review of the
 document.

10. Normative References

 [NETCONF]
 Enns, R., Ed., "NETCONF Configuration Protocol",
 RFC 4741, December 2006.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339]
 Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [XML]
 World Wide Web Consortium, "Extensible Markup Language
 (XML) 1.0", W3C XML, February 1998,
 <http://www.w3.org/TR/1998/REC-xml-19980210>.

 [XMLSchema]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures Second Edition", W3C http
 ://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
 structures.html, October 2004.

 [XPATH]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0",
 W3C http://www.w3.org/TR/1999/REC-xpath-19991116,
 November 1999.

Authors' Addresses

Sharon Chisholm
Nortel
3500 Carling Ave
Nepean, Ontario K2H 8E9
Canada

 EMail: schishol@nortel.com

Hector Trevino
Cisco
Suite 400
9155 E. Nichols Ave
Englewood, CO 80112
USA

 EMail: htrevino@cisco.com

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

5539 - NETCONF over Transport Layer Security (TLS)

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5539

Category: Standards Track

M. Badra

CNRS/LIMOS Laboratory

May 2009

NETCONF over Transport Layer Security (TLS)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Abstract

 The Network Configuration Protocol (NETCONF) provides mechanisms to
 install, manipulate, and delete the configuration of network devices.
 This document describes how to use the Transport Layer Security (TLS)
 protocol to secure NETCONF exchanges.

Table of Contents

	1. Introduction
	 1.1. Conventions Used in This Document

	2. NETCONF over TLS
	 2.1. Connection Initiation

	 2.2. Connection Closure

	3. Endpoint Authentication and Identification
	 3.1. Server Identity

	 3.2. Client Identity

	4. Security Considerations

	5. IANA Considerations

	6. Acknowledgements

	7. Contributor's Address

	8. References
	 8.1. Normative References

	 8.2. Informative References

1. Introduction

 The NETCONF protocol [RFC4741] defines a mechanism through which a
 network device can be managed. NETCONF is connection-oriented,
 requiring a persistent connection between peers. This connection
 must provide integrity, confidentiality, peer authentication, and
 reliable, sequenced data delivery.

 This document defines "NETCONF over TLS", which includes support for
 certificate-based mutual authentication and key derivation, utilizing
 the protected ciphersuite negotiation, mutual authentication, and key
 management capabilities of the TLS (Transport Layer Security)
 protocol, described in [RFC5246].

 Throughout this document, the terms "client" and "server" are used to
 refer to the two ends of the TLS connection. The client actively
 opens the TLS connection, and the server passively listens for the
 incoming TLS connection. The terms "manager" and "agent" are used to
 refer to the two ends of the NETCONF protocol session. The manager
 issues NETCONF remote procedure call (RPC) commands, and the agent
 replies to those commands. When NETCONF is run over TLS using the
 mapping defined in this document, the client is always the manager,
 and the server is always the agent.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. NETCONF over TLS

 Since TLS is application-protocol-independent, NETCONF can operate on
 top of the TLS protocol transparently. This document defines how
 NETCONF can be used within a TLS session.

2.1. Connection Initiation

 The peer acting as the NETCONF manager MUST also act as the TLS
 client. It MUST connect to the server that passively listens for the
 incoming TLS connection on the TCP port 6513. It MUST therefore send
 the TLS ClientHello message to begin the TLS handshake. Once the TLS
 handshake has finished, the client and the server MAY begin to
 exchange NETCONF data. In particular, the client will send complete
 XML documents to the server containing <rpc> elements, and the server
 will respond with complete XML documents containing <rpc-reply>
 elements. The client MAY indicate interest in receiving event
 notifications from a server by creating a subscription to receive
 event notifications [RFC5277]. In this case, the server replies to
 indicate whether the subscription request was successful and, if it
 was successful, the server begins sending the event notifications to
 the client as the events occur within the system.

 All NETCONF messages MUST be sent as TLS "application data". It is
 possible that multiple NETCONF messages be contained in one TLS
 record, or that a NETCONF message be transferred in multiple TLS
 records.

 This document uses the same delimiter sequence ("]]>]]>") defined in
 [RFC4742], which MUST be sent by both the client and the server after
 each XML document in the NETCONF exchange. Since this character
 sequence can legally appear in plain XML in attribute values,
 comments, and processing instructions, implementations of this
 document MUST ensure that this character sequence is never part of a
 NETCONF message.

 Implementation of the protocol specified in this document MAY
 implement any TLS cipher suite that provides certificate-based mutual
 authentication [RFC5246]. The server MUST support certificate-based
 client authentication.

 Implementations MUST support TLS 1.2 [RFC5246] and are REQUIRED to
 support the mandatory-to-implement cipher suite, which is
 TLS_RSA_WITH_AES_128_CBC_SHA. This document is assumed to apply to
 future versions of TLS; in which case, the mandatory-to-implement
 cipher suite for the implemented version MUST be supported.

2.2. Connection Closure

 A TLS client (NETCONF manager) MUST close the associated TLS
 connection if the connection is not expected to issue any NETCONF RPC
 commands later. It MUST send a TLS close_notify alert before closing
 the connection. The TLS client MAY choose to not wait for the TLS
 server (NETCONF agent) close_notify alert and simply close the
 connection, thus generating an incomplete close on the TLS server
 side. Once the TLS server gets a close_notify from the TLS client,
 it MUST reply with a close_notify unless it becomes aware that the
 connection has already been closed by the TLS client (e.g., the
 closure was indicated by TCP).

 When no data is received from a connection for a long time (where the
 application decides what "long" means), a NETCONF peer MAY close the
 connection. The NETCONF peer MUST attempt to initiate an exchange of
 close_notify alerts with the other NETCONF peer before closing the
 connection. The close_notify's sender that is unprepared to receive
 any more data MAY close the connection after sending the close_notify
 alert, thus generating an incomplete close on the close_notify's
 receiver side.

3. Endpoint Authentication and Identification

3.1. Server Identity

 During the TLS negotiation, the client MUST carefully examine the
 certificate presented by the server to determine if it meets the
 client's expectations. Particularly, the client MUST check its
 understanding of the server hostname against the server's identity as
 presented in the server Certificate message, in order to prevent man-
 in-the-middle attacks.

 Matching is performed according to the rules below (following the
 example of [RFC4642]):

 o The client MUST use the server hostname it used to open the
 connection (or the hostname specified in the TLS "server_name"
 extension [RFC5246]) as the value to compare against the server
 name as expressed in the server certificate. The client MUST NOT
 use any form of the server hostname derived from an insecure
 remote source (e.g., insecure DNS lookup). CNAME canonicalization
 is not done.

 o If a subjectAltName extension of type dNSName is present in the
 certificate, it MUST be used as the source of the server's
 identity.

 o Matching is case-insensitive.

 o A "*" wildcard character MAY be used as the leftmost name
 component in the certificate. For example, *.example.com would
 match a.example.com, foo.example.com, etc., but would not match
 example.com.

 o If the certificate contains multiple names (e.g., more than one
 dNSName field), then a match with any one of the fields is
 considered acceptable.

 If the match fails, the client MUST either ask for explicit user
 confirmation or terminate the connection and indicate the server's
 identity is suspect.

 Additionally, clients MUST verify the binding between the identity of
 the servers to which they connect and the public keys presented by
 those servers. Clients SHOULD implement the algorithm in Section 6
 of [RFC5280] for general certificate validation, but MAY supplement
 that algorithm with other validation methods that achieve equivalent
 levels of verification (such as comparing the server certificate
 against a local store of already-verified certificates and identity
 bindings).

 If the client has external information as to the expected identity of
 the server, the hostname check MAY be omitted.

3.2. Client Identity

 The server MUST verify the identity of the client with certificate-
 based authentication according to local policy to ensure that the
 incoming client request is legitimate before any configuration or
 state data is sent to or received from the client.

4. Security Considerations

 The security considerations described throughout [RFC5246] and
 [RFC4741] apply here as well.

 This document in its current version does not support third-party
 authentication (e.g., backend Authentication, Authorization, and
 Accounting (AAA) servers) due to the fact that TLS does not specify
 this way of authentication and that NETCONF depends on the transport
 protocol for the authentication service. If third-party
 authentication is needed, BEEP or SSH transport can be used.

 An attacker might be able to inject arbitrary NETCONF messages via
 some application that does not carefully check exchanged messages or
 deliberately insert the delimiter sequence in a NETCONF message to
 create a DoS attack. Hence, applications and NETCONF APIs MUST
 ensure that the delimiter sequence defined in Section 2.1 never
 appears in NETCONF messages; otherwise, those messages can be
 dropped, garbled, or misinterpreted. If the delimiter sequence is
 found in a NETCONF message by the sender side, a robust
 implementation of this document should warn the user that illegal
 characters have been discovered. If the delimiter sequence is found
 in a NETCONF message by the receiver side (including any XML
 attribute values, XML comments, or processing instructions), a robust
 implementation of this document must silently discard the message
 without further processing and then stop the NETCONF session.

 Finally, this document does not introduce any new security
 considerations compared to [RFC4742].

5. IANA Considerations

 IANA has assigned a TCP port number (6513) in the "Registered Port
 Numbers" range with the name "netconf-tls". This port will be the
 default port for NETCONF over TLS, as defined in this document.

Registration Contact: Mohamad Badra, badra@isima.fr.
Transport Protocol: TCP.
Port Number: 6513
Broadcast, Multicast or Anycast: No.
Port Name: netconf‑tls.
Service Name: netconf.
Reference: RFC 5539

6. Acknowledgements

 A significant amount of the text in Section 3 was lifted from
 [RFC4642].

 The author would like to acknowledge David Harrington, Miao Fuyou,
 Eric Rescorla, Juergen Schoenwaelder, Simon Josefsson, Olivier
 Coupelon, Alfred Hoenes, and the NETCONF mailing list members for
 their comments on the document. The author also appreciates Bert
 Wijnen, Mehmet Ersue, and Dan Romascanu for their efforts on issues
 resolving discussion; and Charlie Kaufman, Pasi Eronen, and Tim Polk
 for the thorough review of this document.

7. Contributor's Address

Ibrahim Hajjeh
Ineovation
France

 EMail: ibrahim.hajjeh@ineovation.fr

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4741]
 Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4742]
 Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

8.2. Informative References

 [RFC4642]
 Murchison, K., Vinocur, J., and C. Newman, "Using
 Transport Layer Security (TLS) with Network News Transfer
 Protocol (NNTP)", RFC 4642, October 2006.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

Author's Address

Mohamad Badra
CNRS/LIMOS Laboratory
Campus de cezeaux, Bat. ISIMA
Aubiere 63170
France

 EMail: badra@isima.fr

5717 - Partial Lock Remote Procedure Call (RPC) for NETCONF

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5717

Category: Standards Track

B. Lengyel

Ericsson

M. Bjorklund

Tail-f Systems

December 2009

Partial Lock Remote Procedure Call (RPC) for NETCONF

Abstract

 The Network Configuration protocol (NETCONF) defines the lock and
 unlock Remote Procedure Calls (RPCs), used to lock entire
 configuration datastores. In some situations, a way to lock only
 parts of a configuration datastore is required. This document
 defines a capability-based extension to the NETCONF protocol for
 locking portions of a configuration datastore.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Definition of Terms

	2. Partial Locking Capability
	 2.1. Overview
	 2.1.1. Usage Scenarios

	 2.2. Dependencies

	 2.3. Capability Identifier

	 2.4. New Operations
	 2.4.1. <partial-lock>

	 2.4.2. <partial-unlock>

	 2.5. Modifications to Existing Operations

	 2.6. Interactions with Other Capabilities
	 2.6.1. Candidate Configuration Capability

	 2.6.2. Confirmed Commit Capability

	 2.6.3. Distinct Startup Capability

	3. Security Considerations

	4. IANA Considerations

	5. Acknowledgements

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. XML Schema for Partial Locking (Normative)

	Appendix B. YANG Module for Partial Locking (Non-Normative)

	Appendix C. Usage Example - Reserving Nodes for Future Editing (Non-Normative)

1. Introduction

 The [NETCONF] protocol describes the lock and unlock operations that
 operate on entire configuration datastores. Often, multiple
 management sessions need to be able to modify the configuration of a
 managed device in parallel. In these cases, locking only parts of a
 configuration datastore is needed. This document defines a
 capability-based extension to the NETCONF protocol to support partial
 locking of the NETCONF running datastore using a mechanism based on
 the existing XPath filtering mechanisms.

1.1. Definition of Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

 Additionally, the following terms are defined:

 o Instance Identifier: an XPath expression identifying a specific
 node in the conceptual XML datastore. It contains an absolute
 path expression in abbreviated syntax, where predicates are used
 only to specify values for nodes defined as keys to distinguish
 multiple instances.

 o Scope of the lock: initially, the set of nodes returned by the
 XPath expressions in a successful partial-lock operation. The set
 might be modified if some of the nodes are deleted by the session
 owning the lock.

 o Protected area: the set of nodes that are protected from
 modification by the lock. This set consists of nodes in the scope
 of the lock and nodes in subtrees under them.

2. Partial Locking Capability

2.1. Overview

 The :partial-lock capability indicates that the device supports the
 locking of its configuration with a more limited scope than a
 complete configuration datastore. The scope to be locked is
 specified by using restricted or full XPath expressions. Partial
 locking only affects configuration data and only the running
 datastore. The candidate or the start-up datastore are not affected.
 The system MUST ensure that configuration resources covered by the
 lock are not modified by other NETCONF or non-NETCONF management
 operations such as Simple Network Management Protocol (SNMP) and the
 Command Line Interface (CLI).

 The duration of the partial lock begins when the partial lock is
 granted and lasts until (1) either the corresponding <partial-unlock>
 operation succeeds or (2) the NETCONF session terminates.

 A NETCONF session MAY have multiple parts of the running datastore
 locked using partial lock operations.

 The <partial-lock> operation returns a lock-id to identify each
 successfully acquired lock. The lock-id is unique at any given time
 for a NETCONF server for all partial-locks granted to any NETCONF or
 non-NETCONF sessions.

2.1.1. Usage Scenarios

 In the following, we describe a few scenarios for partial locking.
 Besides the two described here, there are many other usage scenarios
 possible.

2.1.1.1. Multiple Managers Handling the Writable Running Datastore with
 Overlapping Sections

 Multiple managers are handling the same NETCONF agent simultaneously.
 The agent is handled via the writable running datastore. Each
 manager has his or her own task, which might involve the modification
 of overlapping sections of the datastore.

 After collecting and analyzing input and preparing the NETCONF
 operations off-line, the manager locks the areas that are important
 for his task using one single <partial-lock> operation. The manager
 executes a number of <edit-config> operations to modify the
 configuration, then releases the partial-lock. The lock should be
 held for the shortest possible time (e.g., seconds rather than
 minutes). The manager should collect all human input before locking
 anything. As each manager locks only a part of the data model,
 usually multiple operators can execute the <edit-config> operations
 simultaneously.

2.1.1.2. Multiple Managers Handling the Writable Running Datastore,
 Distinct Management Areas

 Multiple managers are handling the same NETCONF agent simultaneously.
 The agent is handled via the writable running datastore. The agent's
 data model contains a number of well-defined separate areas that can
 be configured without impacting other areas. An example can be a
 server with multiple applications running on it, or a number of
 network elements with a common NETCONF agent for management.

 Each manager has his or her own task, which does not involve the
 modification of overlapping sections of the datastore.

 The manager locks his area with a <partial-lock> operation, uses a
 number of <edit-config> commands to modify it, and later releases the
 lock. As each manager has his functional area assigned to him, and
 he locks only that area, multiple managers can edit the configuration
 simultaneously. Locks can be held for extended periods (e.g.,
 minutes, hours), as this will not hinder other managers.

 This scenario assumes that the global lock operation from [NETCONF]
 is not used.

2.2. Dependencies

 The device MUST support restricted XPath expressions in the select
 element, as described in Section 2.4.1. Optionally, if the :xpath
 capability is also supported (as defined in [NETCONF], Section 8.9.
 "XPath Capability"), the device MUST also support using any XPath 1.0
 expression in the select element.

2.3. Capability Identifier

 urn:ietf:params:netconf:capability:partial-lock:1.0

2.4. New Operations

2.4.1. <partial-lock>

 The <partial-lock> operation allows the client to lock a portion of
 the running datastore. The portion to lock is specified with XPath
 expressions in the "select" elements in the <partial-lock> operation.
 Each XPath expression MUST return a node set.

 When a NETCONF session holds a lock on a node, no other session or
 non-NETCONF mechanism of the system can change that node or any node
 in the hierarchy of nodes beneath it.

 Locking a node protects the node itself and the complete subtree
 under the node from modification by others. The set of locked nodes
 is called the scope of the lock, while all the locked nodes and the
 nodes in the subtrees under them make up the protected area.

 The XPath expressions are evaluated only once: at lock time.
 Thereafter, the scope of the lock is maintained as a set of nodes,
 i.e., the returned nodeset, and not by the XPath expression. If the
 configuration data is later altered in a way that would make the
 original XPath expressions evaluate to a different set of nodes, this
 does not affect the scope of the partial lock.

 Let's say the agent's data model includes a list of interface nodes.
 If the XPath expression in the partial-lock operation covers all
 interface nodes at locking, the scope of the lock will be maintained
 as the list of interface nodes at the time when the lock was granted.
 If someone later creates a new interface, this new interface will not
 be included in the locked-nodes list created previously so the new
 interface will not be locked.

 A <partial-lock> operation MUST be handled atomically by the NETCONF
 server. The server either locks all requested parts of the datastore
 or none. If during the <partial-lock> operation one of the requested
 parts cannot be locked, the server MUST unlock all parts that have
 already been locked during that operation.

 If a node in the scope of the lock is deleted by the session owning
 the lock, it is removed from the scope of the lock, so any other
 session or non-NETCONF mechanism can recreate it. If all nodes in
 the scope of the lock are deleted, the lock will still be present.
 However, its scope will become empty (since the lock will not cover
 any nodes).

 A NETCONF server that supports partial locking MUST be able to grant
 multiple simultaneous partial locks to a single NETCONF session. If
 the protected area of the individual locks overlap, nodes in the
 common area MUST be protected until all of the overlapping locks are
 released.

 A <partial-lock> operation MUST fail if:

 o Any NETCONF session (including the current session) owns the
 global lock on the running datastore.

 o Any part of the area to be protected is already locked (or
 protected by partial locking) by another management session,
 including other NETCONF sessions using <partial-lock> or any other
 non-NETCONF management method.

 o The requesting user is not successfully authenticated.

 o The NETCONF server implements access control and the locking user
 does not have sufficient access rights. The exact handling of
 access rights is outside the scope of this document, but it is
 assumed that there is an access control system that MAY deny or
 allow the <partial-lock> operation.

 The <partial-lock> operation is designed for simplicity, so when a
 partial lock is executed, you get what you asked for: a set of nodes
 that are locked for writing.

 As a consequence, users must observe the following:

 o Locking does not affect read operations.

 o If part of the running datastore is locked, this has no effect on
 any unlocked parts of the datastore. If this is a problem (e.g.,
 changes depend on data values or nodes outside the protected part
 of the datastore), these nodes SHOULD be included in the protected
 area of the lock.

 o Configuration data can be edited both inside and outside the
 protected area of a lock. It is the responsibility of the NETCONF
 client application to lock all relevant parts of the datastore
 that are crucial for a specific management action.

 Note: The <partial-lock> operation does not modify the global <lock>
 operation defined in the base NETCONF protocol [NETCONF]. If part of
 the running datastore is already locked by <partial-lock>, then a
 global lock for the running datastore MUST fail even if the global
 lock is requested by the NETCONF session that owns the partial lock.

2.4.1.1. Parameters, Results, Examples

 Parameters:

select: One or more 'select' elements, each containing an XPath
 expression. The XPath expression is evaluated in a context
 where the context node is the root of the server's
 conceptual data model, and the set of namespace declarations
 are those in scope on the select element.

 The nodes returned from the select expressions are reported in the

 rpc-reply message.

 Each select expression MUST return a node set, and at least one of

 the node sets MUST be non-empty.

 If the device supports the :xpath capability, any valid XPath 1.0

 expression can be used. If the device does not support the
 :xpath capability, the XPath expression MUST be limited to an
 Instance Identifier expression. An Instance Identifier is an
 absolute path expression in abbreviated syntax, where predicates
 are used only to specify values for nodes defined as keys to
 distinguish multiple instances.

 Example: Lock virtual router 1 and interface eth1

<nc:rpc
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 message‑id="135">
 <partial‑lock>
 <select xmlns:rte="http://example.com/ns/route">
 /rte:routing/rte:virtualRouter[rte:routerName='router1']
 </select>
 <select xmlns:if="http://example.com/ns/interface">
 /if:interfaces/if:interface[if:id='eth1']
 </select>
 </partial‑lock>
</nc:rpc>

<nc:rpc‑reply
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 message‑id="135">
 <lock‑id>127</lock‑id>
 <locked‑node xmlns:rte="http://example.com/ns/route">
 /rte:routing/rte:virtualRouter[rte:routerName='router1']
 </locked‑node>
 <locked‑node xmlns:if="http://example.com/ns/interface">
 /if:interfaces/if:interface[if:id='eth1']
 </locked‑node>
</nc:rpc‑reply>

 Note: The XML Schema in [NETCONF] has a known bug that requires the
 <data> XML element in a <rpc-reply>. This means that the above
 examples will not validate using the XML Schema found in [NETCONF].

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is sent
 with a <lock-id> element (lock identifier) in the <rpc-reply>
 element. A list of locked nodes is also returned in Instance
 Identifier format.

 Negative Response:

 If any select expression is an invalid XPath expression, the <error-
 tag> is 'invalid-value'.

 If any select expression returns something other than a node set, the
 <error-tag> is 'invalid-value', and the <error-app-tag> is 'not-a-
 node-set'.

 If all the select expressions return an empty node set, the <error-
 tag> is 'operation-failed', and the <error-app-tag> is 'no-matches'.

 If the :xpath capability is not supported and the XPath expression is
 not an Instance Identifier, the <error-tag> is 'invalid-value', the
 <error-app-tag> is 'invalid-lock-specification'.

 If access control denies the partial lock, the <error-tag> is
 'access-denied'. Access control SHOULD be checked before checking
 for conflicting locks to avoid giving out information about other
 sessions to an unauthorized client.

 If a lock is already held by another session on any node within the
 subtrees to be locked, the <error-tag> element is 'lock-denied' and
 the <error-info> element includes the <session-id> of the lock owner.
 If the lock is held by a non-NETCONF session, a <session-id> of 0
 (zero) SHOULD be included. The same error response is returned if
 the requesting session already holds the (global) lock for the
 running datastore.

 If needed, the returned session-id may be used to <kill-session> the
 NETCONF session holding the lock.

2.4.1.2. Deadlock Avoidance

 As with most locking systems, it is possible that two management
 sessions trying to lock different parts of the configuration could
 become deadlocked. To avoid this situation, clients SHOULD lock
 everything they need in one operation. If locking fails, the client
 MUST back-off, release any previously acquired locks, and SHOULD
 retry the procedure after waiting some randomized time interval.

2.4.2. <partial-unlock>

 The operation unlocks the parts of the running datastore that were
 previously locked using <partial-lock> during the same session. The
 operation unlocks the parts that are covered by the lock identified
 by the lock-id parameter. In case of multiple potentially
 overlapping locks, only the lock identified by the lock-id is
 removed.

 Parameters:

lock‑id: Identity of the lock to be unlocked. This lock‑id MUST
 have been received as a response to a lock request by the
 manager during the current session, and MUST NOT have been
 sent in a previous unlock request.

 Example: Unlock a previously created lock

<nc:rpc xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 message‑id="136">
 <partial‑unlock>
 <lock‑id>127</lock‑id>
 </partial‑unlock>
</nc:rpc>

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is sent
 that contains an <ok> element. A positive response MUST be sent even
 if all of the locked parts of the datastore have already been
 deleted.

 Negative Response:

 If the <lock-id> parameter does not identify a lock that is owned by
 the session, an 'invalid-value' error is returned.

2.5. Modifications to Existing Operations

 A successful partial lock will cause a subsequent operation to fail
 if that operation attempts to modify nodes in the protected area of
 the lock and is executed in a NETCONF session other than the session
 that has been granted the lock. The <error-tag> 'in-use' and the
 <error-app-tag> 'locked' is returned. All operations that modify the
 running datastore are affected, including: <edit-config>, <copy-
 config>, <delete-config>, <commit>, and <discard-changes>. If
 partial lock prevents <edit-config> from modifying some data, but the
 operation includes the continue-on-error option, modification of
 other parts of the datastore, which are not protected by partial
 locking, might still succeed.

 If the datastore contains nodes locked by partial lock, this will
 cause the (global) <lock> operation to fail. The <error-tag> element
 'lock-denied' and an <error-info> element including the <session-id>
 of the lock owner will be returned. If the lock is held by a non-
 NETCONF session, a <session-id> of 0 (zero) is returned.

 All of these operations are affected only if they are targeting the
 running datastore.

2.6. Interactions with Other Capabilities

2.6.1. Candidate Configuration Capability

 The candidate datastore cannot be locked using the <partial-lock>
 operation.

2.6.2. Confirmed Commit Capability

 If:

 o a partial lock is requested for the running datastore, and

 o the NETCONF server implements the :confirmed-commit capability,
 and

 o there was a recent confirmed <commit> operation where the
 confirming <commit> operation has not been received

 then the lock MUST be denied, because if the confirmation does not
 arrive, the running datastore MUST be rolled back to its state before
 the commit. The NETCONF server might therefore need to modify the
 configuration.

 In this case, the <error-tag> 'in-use' and the <error-app-tag>
 'outstanding-confirmed-commit' is returned.

2.6.3. Distinct Startup Capability

 The startup datastore cannot be locked using the <partial-lock>
 operation.

3. Security Considerations

 The same considerations are relevant as for the base NETCONF protocol
 [NETCONF]. <partial-lock> and <partial-unlock> RPCs MUST only be
 allowed for an authenticated user. <partial-lock> and <partial-
 unlock> RPCs SHOULD only be allowed for an authorized user. However,
 as NETCONF access control is not standardized and not a mandatory
 part of a NETCONF implementation, it is strongly recommended, but
 OPTIONAL (although nearly all implementations include some kind of
 access control).

 A lock (either a partial lock or a global lock) might prevent other
 users from configuring the system. The following mechanisms are in
 place to prevent the misuse of this possibility:

 A user, that is not successfully authenticated, MUST NOT be
 granted a partial lock.

 Only an authorized user SHOULD be able to request a partial lock.

 The partial lock is automatically released when a session is
 terminated regardless of how the session ends.

 The <kill-session> operation makes it possible to terminate other
 users' sessions.

 The NETCONF server MAY log partial lock requests in an audit
 trail.

 A lock that is hung for some reason (e.g., a broken TCP connection
 that the server has not yet recognized) can be released using another
 NETCONF session by explicitly killing the session owning that lock
 using the <kill-session> operation.

 Partial locking is not an authorization mechanism; it SHOULD NOT be
 used to provide security or access control. Partial locking SHOULD
 only be used as a mechanism for providing consistency when multiple
 managers are trying to configure the node. It is vital that users
 easily understand the exact scope of a lock. This is why the scope
 is determined when granting a lock and is not modified thereafter.

4. IANA Considerations

 This document registers one capability identifier URN from the
 "Network Configuration Protocol (NETCONF) Capability URNs" registry,
 and one URI for the NETCONF XML namespace in the "IETF XML registry"
 [RFC3688]. Note that the capability URN is compliant to [NETCONF],
 Section 10.3.

Index Capability Identifier
‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑
:partial‑lock urn:ietf:params:netconf:capability:partial‑lock:1.0

 URI: urn:ietf:params:xml:ns:netconf:partial-lock:1.0

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

5. Acknowledgements

 Thanks to Andy Bierman, Sharon Chisholm, Phil Shafer, David
 Harrington, Mehmet Ersue, Wes Hardaker, Juergen Schoenwaelder, Washam
 Fan, and many other members of the NETCONF WG for providing important
 input to this document.

6. References

6.1. Normative References

 [NETCONF]
 Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

6.2. Informative References

 [YANG]
 Bjorklund, M., "YANG - A data modeling language for
 NETCONF", Work in Progress, December 2009.

Appendix A. XML Schema for Partial Locking (Normative)

 The following XML Schema defines the <partial-lock> and <partial-
 unlock> operations:

 <CODE BEGINS>

<?xml version="1.0" encoding="UTF‑8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:documentation>
 Schema defining the partial‑lock and unlock operations.
 organization "IETF NETCONF Working Group"

 contact
 Netconf Working Group
 Mailing list: netconf@ietf.org
 Web: http://www.ietf.org/html.charters/netconf‑charter.html

 Balazs Lengyel
 balazs.lengyel@ericsson.com

 revision 2009‑10‑19
 description Initial version, published as RFC 5717.
 </xs:documentation>
 </xs:annotation>

 <xs:import namespace="urn:ietf:params:xml:ns:netconf:base:1.0"

 schemaLocation="urn:ietf:params:xml:ns:netconf:base:1.0"/>

 <xs:simpleType name="lock‑id‑type">
 <xs:annotation>
 <xs:documentation>
 A number identifying a specific
 partial‑lock granted to a session.
 It is allocated by the system, and SHOULD
 be used in the unlock operation.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt"/>
 </xs:simpleType>

 <xs:complexType name="partialLockType">
 <xs:annotation>
 <xs:documentation>
 A NETCONF operation that locks parts of
 the running datastore.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="nc:rpcOperationType">
 <xs:sequence>
 <xs:element name="select" type="xs:string"
 maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 XPath expression that specifies the scope
 of the lock. An Instance Identifier
 expression must be used unless the :xpath
 capability is supported in which case any
 XPath 1.0 expression is allowed.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="partialUnLockType">
 <xs:annotation>
 <xs:documentation>
 A NETCONF operation that releases a previously acquired
 partial‑lock.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="nc:rpcOperationType">
 <xs:sequence>
 <xs:element name="lock‑id" type="lock‑id‑type">
 <xs:annotation>
 <xs:documentation>
 Identifies the lock to be released. MUST
 be the value received in the response to
 the partial‑lock operation.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:extension>

 </xs:complexContent>
 </xs:complexType>

 <!‑‑ <partial‑lock> operation ‑‑>
 <xs:element name="partial‑lock" type="partialLockType"
 substitutionGroup="nc:rpcOperation"/>

 <!‑‑ <partial‑unlock> operation ‑‑>
 <xs:element name="partial‑unlock" type="partialUnLockType"
 substitutionGroup="nc:rpcOperation"/>

 <!‑‑ reply to <partial‑lock> ‑‑>

 <xs:complexType name="contentPartInPartialLockReplyType">
 <xs:annotation>
 <xs:documentation>
 The content of the reply to a successful
 partial‑lock request MUST conform to this complex type.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="lock‑id" type="lock‑id‑type">
 <xs:annotation>
 <xs:documentation>
 Identifies the lock to be released. Must be the value
 received in the response to a partial‑lock operation.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="locked‑node" type="xs:string"
 maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 List of locked nodes in the running datastore.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 <CODE ENDS>

Appendix B. YANG Module for Partial Locking (Non-Normative)

 The following YANG module defines the <partial-lock> and <partial-
 unlock> operations. The YANG language is defined in [YANG].

 <CODE BEGINS>

module ietf-netconf-partial-lock {

namespace urn:ietf:params:xml:ns:netconf:partial‑lock:1.0;
prefix pl;

 organization "IETF Network Configuration (netconf) Working Group";

 contact
 "Netconf Working Group
 Mailing list: netconf@ietf.org
 Web: http://www.ietf.org/html.charters/netconf‑charter.html

 Balazs Lengyel
 Ericsson
 balazs.lengyel@ericsson.com";

 description
 "This YANG module defines the <partial‑lock> and
 <partial‑unlock> operations.";

 revision 2009‑10‑19 {
 description
 "Initial version, published as RFC 5717.";
 }

 typedef lock‑id‑type {
 type uint32;
 description
 "A number identifying a specific partial‑lock granted to a session.
 It is allocated by the system, and SHOULD be used in the
 partial‑unlock operation.";
 }

 rpc partial‑lock {
 description
 "A NETCONF operation that locks parts of the running datastore.";
 input {
 leaf‑list select {
 type string;
 min‑elements 1;
 description

 "XPath expression that specifies the scope of the lock.
 An Instance Identifier expression MUST be used unless the
 :xpath capability is supported, in which case any XPath 1.0
 expression is allowed.";
 }
 }
 output {
 leaf lock‑id {
 type lock‑id‑type;
 description
 "Identifies the lock, if granted. The lock‑id SHOULD be
 used in the partial‑unlock rpc.";
 }
 leaf‑list locked‑node {
 type instance‑identifier;
 min‑elements 1;
 description
 "List of locked nodes in the running datastore";
 }
 }
 }

 rpc partial‑unlock {
 description
 "A NETCONF operation that releases a previously acquired
 partial‑lock.";
 input {
 leaf lock‑id {
 type lock‑id‑type;
 description
 "Identifies the lock to be released. MUST be the value
 received in the response to a partial‑lock operation.";
 }
 }
 }
}

 <CODE ENDS>

Appendix C. Usage Example - Reserving Nodes for Future Editing
 (Non-Normative)

 Partial lock cannot be used to lock non-existent nodes, which would
 effectively attempt to reserve them for future use. To guarantee
 that a node cannot be created by some other session, the parent node
 should be locked, the top-level node of the new subtree created, and
 then locked with another <partial-lock> operation. After this, the
 lock on the parent node should be removed.

 In this section, an example illustrating the above is given.

 We want to create <user> Joe under <users>, and start editing it.
 Editing might take a number of minutes. We want to immediately lock
 Joe so no one will touch it before we are finished with the editing.

 We also want to minimize locking other parts of the running datastore
 as multiple managers might be adding users near simultaneously.

 First, we check what users are already defined.

 Step 1 - Read existing users

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/users">
 <users/>
 </top>
 </filter>
 </get‑config>
</rpc>

 The NETCONF server sends the following reply.

 Step 2 - Receiving existing data

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/users">
 <users>
 <user>
 <name>fred</name>
 <phone>8327</phone>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

 We want to add the new user Joe and immediately lock him using
 partial locking. The way to do this, is to first lock all <user>
 nodes by locking the <users> node.

 Note that if we would lock all the <user> nodes using the select
 expression '/usr:top/usr:users/usr:user'; this would not lock the new
 user Joe, which we will create after locking. So we rather have to
 lock the <users> node.

 Step 3 - Lock users

<nc:rpc
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 message‑id="102">
 <partial‑lock>
 <select xmlns:usr="http://example.com/users">
 /usr:top/usr:users
 </select>
 </partial‑lock>
</nc:rpc>

 The NETCONF server grants the partial lock. The scope of the lock
 includes only the <users> node. The lock protects the <users> node
 and all <user> nodes below it from modification (by other sessions).
 Step 4 - Receive lock

<nc:rpc‑reply
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 message‑id="102">
 <lock‑id>1</lock‑id>
 <locked‑node xmlns:usr="http://example.com/users">
 /usr:top/usr:users
 </locked‑node>
</nc:rpc‑reply>

 Next we create user Joe. Joe is protected by the lock received
 above, as it is under the subtree rooted at the <users> node.

 Step 5 - Create user Joe

<rpc message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <config>
 <top xmlns:usr="http://example.com/users">
 <users>
 <user>
 <name>Joe</name>
 </user>
 </users>
 </top>
 </config>
 </edit‑config>
</rpc>

 We receive a positive reply to the <edit-config> (not shown). Next
 we request a lock, that locks only <user> Joe, and release the lock
 on the <users> node. This will allow other managers to create
 additional new users.

 Step 6 - Lock user Joe

<nc:rpc
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 message‑id="104">
 <partial‑lock>
 <select xmlns:usr="http://example.com/users">
 /usr:top/usr:users/user[usr:name="Joe"]"
 </select>
 </partial‑lock>
</nc:rpc>

 The NETCONF server grants the partial lock. The scope of this second
 lock includes only the <user> node with name Joe. The lock protects
 all data below this particular <user> node.

 Step 7 - Receive lock

<nc:rpc‑reply
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 message‑id="104">
 <lock‑id>2</lock‑id>
 <locked‑node xmlns:usr="http://example.com/users">
 /usr:top/usr:users/user[usr:name="Joe"]"
 </locked‑node>
</nc:rpc‑reply>

 The scope of the second lock is the <user> node Joe. It protects
 this <user> node and any data below it (e.g., phone number). At this
 point of time, these nodes are protected both by the first and second
 lock. Next, we unlock the other <user>s and the <users> node, to
 allow other managers to work on them. We still keep the second lock,
 so the <user> node Joe and the subtree below is still protected.

 Step 8 - Release lock on <users>

<nc:rpc xmlns="urn:ietf:params:xml:ns:netconf:partial‑lock:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 message‑id="105">
 <partial‑unlock>
 <lock‑id>1</lock‑id>
 </partial‑unlock>
</nc:rpc>

Authors' Addresses

Balazs Lengyel
Ericsson

 EMail: balazs.lengyel@ericsson.com

Martin Bjorklund
Tail‑f Systems

 EMail: mbj@tail-f.com

6022 - YANG Module for NETCONF Monitoring

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6022

Category: Standards Track

ISSN: 2070-1721

M. Scott

Ericsson

M. Bjorklund

Tail-f Systems

October 2010

YANG Module for NETCONF Monitoring

Abstract

 This document defines a Network Configuration Protocol (NETCONF) data
 model to be used to monitor the NETCONF protocol. The monitoring
 data model includes information about NETCONF datastores, sessions,
 locks, and statistics. This data facilitates the management of a
 NETCONF server. This document also defines methods for NETCONF
 clients to discover data models supported by a NETCONF server and
 defines a new NETCONF <get-schema> operation to retrieve them.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6022.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Definition of Terms

	2. Data Model to Monitor NETCONF
	 2.1. The /netconf-state Subtree
	 2.1.1. The /netconf-state/capabilities Subtree

	 2.1.2. The /netconf-state/datastores Subtree

	 2.1.3. The /netconf-state/schemas Subtree

	 2.1.4. The /netconf-state/sessions Subtree

	 2.1.5. The /netconf-state/statistics Subtree

	3. Schema Specific Operations
	 3.1. The <get-schema> Operation

	4. Examples
	 4.1. Retrieving Schema List via <get> Operation

	 4.2. Retrieving Schema Instances

	5. NETCONF Monitoring Data Model

	6. Security Considerations

	7. Acknowledgements

	8. IANA Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

1. Introduction

 This document defines a YANG [RFC6020] model to be used to monitor
 the NETCONF protocol. It provides information about NETCONF sessions
 and supported schema as defined in [RFC4741].

 Considerations such as different schema formats, feature optionality,
 and access controls can all impact the applicability and level of
 detail the NETCONF server sends to a client during session setup.
 The methods defined in this document address the need for further
 means to query and retrieve schema and NETCONF state information from
 a NETCONF server. These are provided to complement existing base
 NETCONF capabilities and operations and in no way affect existing
 behaviour.

 A new <get-schema> operation is also defined to support explicit
 schema retrieval via NETCONF.

1.1. Definition of Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119].

2. Data Model to Monitor NETCONF

 The NETCONF monitoring data model defined in this document provides
 operational information on the NETCONF server. This includes details
 specific to the NETCONF protocol (e.g., protocol-specific counters
 such as 'in-sessions') as well as data related to schema retrieval
 (e.g., schema list).

 A server that implements the data model defined in this document
 ("urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring") MUST
 advertise the capability URI as described in [RFC6020].

 This section presents an overview of the monitoring data model. For
 detailed descriptions, refer to the normative YANG module provided in
 this document (see Section 5).

2.1. The /netconf-state Subtree

 The netconf-state container is the root of the monitoring data model.

netconf‑state
 /capabilities
 /datastores
 /schemas
 /sessions
 /statistics

 capabilities

 List of NETCONF capabilities supported by the server.

 datastores

 List of NETCONF configuration datastores (e.g., running, startup,
 candidate) supported on this device and related information.

 schemas

 List of schemas supported on the server. Includes all the
 information required to identify the schemas and to support their
 retrieval.

 sessions

 List of all active NETCONF sessions on the device. Includes per-
 session counters for all NETCONF sessions.

 statistics

 Includes global counters for the NETCONF server.

2.1.1. The /netconf-state/capabilities Subtree

 The /netconf-state/capabilities subtree contains the capabilities
 supported by the NETCONF server. The list MUST include all
 capabilities exchanged during session setup still applicable at the
 time of the request.

2.1.2. The /netconf-state/datastores Subtree

 The /netconf-state/datastores subtree contains the list of available
 datastores for the NETCONF server and includes information on their
 lock state.

datastore
 /name
 /locks

 name (leaf, netconf-datastore-type)

 Enumeration of supported datastores; candidate, running, startup.

 locks (grouping, lock-info)

 List of locks for the datastore. Information is provided for both
 global and partial locks [RFC5717]. For partial locks, the list
 of locked nodes and the select expressions originally used to
 request the lock are returned.

2.1.3. The /netconf-state/schemas Subtree

 The list of supported schema for the NETCONF server.

schema
 /identifier (key)
 /version (key)
 /format (key)
 /namespace
 /location

 The elements identifier, version, and format are used as a key in the
 schema list. These are used in the <get-schema> operation.

 identifier (string)

 Identifier for the schema list entry. The identifier is used in
 the <get-schema> operation and may be used for other means such as
 file retrieval.

 version (string)

 Version of the schema supported. Multiple versions MAY be
 supported simultaneously by a NETCONF server. Each version MUST
 be reported individually in the schema list, i.e., with same
 identifier, possibly different location, but different version.

 For YANG data models, version is the value of the most recent YANG
 'revision' statement in the module or submodule, or the empty
 string if no 'revision' statement is present.

 format (identifyref, schema-format)

 The data modeling language the schema is written in. The data
 modeling language is represented as a YANG identity. This
 document defines the identities "xsd", "yang", "yin", "rng", and
 "rnc" (see Section 5).

 namespace (inet:uri)

 The Extensible Markup Language (XML) namespace [XML-NAMES] defined
 by the schema.

 location (union: enum, inet:uri)

 One or more locations from which this specific schema can be
 retrieved. The list SHOULD contain at least one entry per schema.

2.1.4. The /netconf-state/sessions Subtree

 Includes session-specific data for NETCONF management sessions. The
 session list MUST include all currently active NETCONF sessions.

session
 /session‑id (key)
 /transport
 /username
 /source‑host
 /login‑time
 /in‑rpcs
 /in‑bad‑rpcs
 /out‑rpc‑errors
 /out‑notifications

 session-id (uint32, 1..max)

 Unique identifier for the session. This value is the NETCONF
 session identifier, as defined in [RFC4741].

 transport (identityref, transport)

 Identifies the transport for each session. The transport is
 represented as a YANG identity. This document defines the
 identities "netconf-ssh", "netconf-soap-over-beep", "netconf-soap-
 over-https", "netconf-beep", and "netconf-tls" (see Section 5).

 username (string)

 The username is the client identity that was authenticated by the
 NETCONF transport protocol. The algorithm used to derive the
 username is NETCONF transport protocol specific and in addition
 specific to the authentication mechanism used by the NETCONF
 transport protocol.

 source-host (inet:host)

 Host identifier (IP address or name) of the NETCONF client.

 login-time (yang:date-and-time)

 Time at the server at which the session was established.

 in-rpcs (yang:zero-based-counter32)

 Number of correct <rpc> messages received.

 in-bad-rpcs (yang:zero-based-counter32)

 Number of messages received when an <rpc> message was expected,
 that were not correct <rpc> messages. This includes XML parse
 errors and errors on the rpc layer.

 out-rpc-errors (yang:zero-based-counter32)

 Number of <rpc-reply> messages sent that contained an <rpc-error>
 element.

 out-notifications (yang:zero-based-counter32)

 Number of <notification> messages sent.

2.1.5. The /netconf-state/statistics Subtree

 Statistical data pertaining to the NETCONF server.

statistics
 /netconf‑start‑time
 /in‑bad‑hellos
 /in‑sessions
 /dropped‑sessions
 /in‑rpcs
 /in‑bad‑rpcs
 /out‑rpc‑errors
 /out‑notifications

 statistics:

 Contains management-session-related performance data for the
 NETCONF server.

 netconf-start-time (yang:date-and-time)

 Date and time at which the management subsystem was started.

 in-bad-hellos (yang:zero-based-counter32)

 Number of sessions silently dropped because an invalid <hello>
 message was received.

 in-sessions (yang:zero-based-counter32)

 Number of sessions started.

 dropped-sessions (yang:zero-based-counter32)

 Number of sessions that were abnormally terminated, e.g., due to
 idle timeout or transport close.

 in-rpcs (yang:zero-based-counter32)

 Number of correct <rpc> messages received.

 in-bad-rpcs (yang:zero-based-counter32)

 Number of messages received when an <rpc> message was expected,
 which were not correct <rpc> messages.

 out-rpc-errors (yang:zero-based-counter32)

 Number of <rpc-reply> messages sent that contained an <rpc-error>
 element.

 out-notifications (yang:zero-based-counter32)

 Number of <notification> messages sent.

3. Schema Specific Operations

3.1. The <get-schema> Operation

 Description:

 This operation is used to retrieve a schema from the NETCONF
 server.

 Parameters:

identifier (string):
 Identifier for the schema list entry.
 Mandatory parameter.

version (string):
 Version of the schema requested.
 Optional parameter.

format (identityref, schema‑format):
 The data modeling language of the schema.
 Default value is 'yang' when not specified.
 Optional parameter.

 Positive Response:

 The NETCONF server returns the requested schema.

 Negative Response:

 If the requested schema does not exist, the <error-tag> is
 'invalid-value'.

 If more than one schema matches the requested parameters, the
 <error-tag> is 'operation-failed', and <error-app-tag> is
 'data-not-unique'.

4. Examples

4.1. Retrieving Schema List via <get> Operation

 A NETCONF client retrieves the list of supported schema from a
 NETCONF server by retrieving the /netconf-state/schemas subtree via a
 <get> operation.

 Available schema for the requesting session are returned in the reply
 containing the <identifier>, <version>, <format>, and <location>
 elements.

 The response data can be used to determine the available schema and
 their versions. The schema itself (i.e., schema content) is not
 returned in the response. The optional <location> element contains a
 URI, which can be used to retrieve the schema by another protocol
 such as ftp [RFC0959] or http(s) [RFC2616] [RFC2818], or the special
 value 'NETCONF', which means that the schema can be retrieved from
 the device via the <get-schema> operation.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf‑state xmlns=
 "urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 <schemas/>
 </netconf‑state>
 </filter>
 </get>
</rpc>

 The NETCONF server returns a list of schema available for
 retrieval.

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <netconf‑state
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 <schemas>
 <schema>
 <identifier>foo</identifier>
 <version>1.0</version>
 <format>xsd</format>
 <namespace>http://example.com/foo</namespace>
 <location>ftp://ftp.example.com/schemas/foo_1.0.xsd</location>
 <location>http://www.example.com/schema/foo_1.0.xsd</location>
 <location>NETCONF</location>
 </schema>
 <schema>
 <identifier>foo</identifier>
 <version>1.1</version>
 <format>xsd</format>
 <namespace>http://example.com/foo</namespace>
 <location>ftp://ftp.example.com/schemas/foo_1.1.xsd</location>
 <location>http://www.example.com/schema/foo_1.1.xsd</location>
 <location>NETCONF</location>
 </schema>
 <schema>
 <identifier>bar</identifier>
 <version>2008‑06‑01</version>
 <format>yang</format>
 <namespace>http://example.com/bar</namespace>
 <location>
 http://example.com/schema/bar@2008‑06‑01.yang
 </location>
 <location>NETCONF</location>
 </schema>
 <schema>
 <identifier>bar‑types</identifier>
 <version>2008‑06‑01</version>
 <format>yang</format>
 <namespace>http://example.com/bar</namespace>
 <location>
 http://example.com/schema/bar‑types@2008‑06‑01.yang
 </location>
 <location>NETCONF</location>
 </schema>
 </schemas>
 </netconf‑state>
 </data>
</rpc‑reply>

4.2. Retrieving Schema Instances

 Given the reply in the previous section, the following examples
 illustrate the retrieval of 'foo', 'bar', and 'bar-types' schema at
 multiple locations, with multiple formats, and in multiple locations.

 1. foo, version 1.0 in xsd format:

 a. Via FTP using location
 ftp://ftp.example.com/schemas/foo_1.0.xsd

 b. Via HTTP using location
 http://www.example.com/schema/foo_1.0.xsd

 c. Via <get-schema> using identifier, version, and

 format parameters.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑schema
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 <identifier>foo</identifier>
 <version>1.0</version>
 <format>xsd</format>
 </get‑schema>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!‑‑ foo 1.0 xsd schema contents here ‑‑>
 </xs:schema>
 </data>
</rpc‑reply>

 2. bar, version 2008-06-01 in YANG format:

 a. Via HTTP using location
 http://example.com/schema/bar@2008-06-01.yang

 b. Via <get-schema> using identifier and version

 parameters:

<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑schema
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 <identifer>bar</identifer>
 <version>2008‑06‑01</version>
 </get‑schema>
</rpc>

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 module bar {
 //default format (yang) returned
 //bar version 2008‑06‑01 yang module
 //contents here ...
 }
 </data>
</rpc‑reply>

 3. bar-types, version 2008-06-01 in default YANG format:

 a. Via <get-schema> using identifer parameter:

<rpc message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑schema
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 <identifer>bar‑types</identifer>
 </get‑schema>
</rpc>

<rpc‑reply message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring">
 module bar‑types {
 //default format (yang) returned
 //latest revision returned
 //is version 2008‑06‑01 yang module
 //contents here ...
 }
 </data>
</rpc‑reply>

5. NETCONF Monitoring Data Model

 The data model described in this memo is defined in the following
 YANG module.

 This YANG module imports typedefs from [RFC6021] and references
 [RFC4741], [RFC4742], [RFC4743], [RFC4744], [RFC5539], [xmlschema-1],
 [RFC6020], [ISO/IEC19757-2:2008], and [RFC5717].

<CODE BEGINS> file "ietf-netconf-monitoring@2010-10-04.yang"

module ietf-netconf-monitoring {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring";
 prefix "ncm";

import ietf‑yang‑types { prefix yang; }
import ietf‑inet‑types { prefix inet; }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue

 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Bert Wijnen

 <mailto:bertietf@bwijnen.net>

 Editor: Mark Scott
 <mailto:mark.scott@ericsson.com>

 Editor: Martin Bjorklund
 <mailto:mbj@tail‑f.com>";

description
 "NETCONF Monitoring Module.
 All elements in this module are read‑only.

 Copyright (c) 2010 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD

 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 6022; see
 the RFC itself for full legal notices.";

revision 2010‑10‑04 {
 description
 "Initial revision.";
 reference
 "RFC 6022: YANG Module for NETCONF Monitoring";
}

typedef netconf‑datastore‑type {
 type enumeration {
 enum running;
 enum candidate;
 enum startup;
 }
 description
 "Enumeration of possible NETCONF datastore types.";
 reference
 "RFC 4741: NETCONF Configuration Protocol";
}

identity transport {
 description
 "Base identity for NETCONF transport types.";
}

identity netconf‑ssh {
 base transport;
 description
 "NETCONF over Secure Shell (SSH).";
 reference
 "RFC 4742: Using the NETCONF Configuration Protocol
 over Secure SHell (SSH)";
}

identity netconf‑soap‑over‑beep {
 base transport;
 description
 "NETCONF over Simple Object Access Protocol (SOAP) over
 Blocks Extensible Exchange Protocol (BEEP).";

 reference
 "RFC 4743: Using NETCONF over the Simple Object
 Access Protocol (SOAP)";
}

identity netconf‑soap‑over‑https {
 base transport;
 description
 "NETCONF over Simple Object Access Protocol (SOAP)
 over Hypertext Transfer Protocol Secure (HTTPS).";
 reference
 "RFC 4743: Using NETCONF over the Simple Object
 Access Protocol (SOAP)";
}

identity netconf‑beep {
 base transport;
 description
 "NETCONF over Blocks Extensible Exchange Protocol (BEEP).";
 reference
 "RFC 4744: Using the NETCONF Protocol over the
 Blocks Extensible Exchange Protocol (BEEP)";
}

identity netconf‑tls {
 base transport;
 description
 "NETCONF over Transport Layer Security (TLS).";
 reference
 "RFC 5539: NETCONF over Transport Layer Security (TLS)";
}

identity schema‑format {
 description
 "Base identity for data model schema languages.";
}

identity xsd {
 base schema‑format;
 description
 "W3C XML Schema Definition.";
 reference
 "W3C REC REC‑xmlschema‑1‑20041028:
 XML Schema Part 1: Structures";
}

identity yang {
 base schema‑format;
 description
 "The YANG data modeling language for NETCONF.";
 reference
 "RFC 6020: YANG ‑ A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)";
}

identity yin {
 base schema‑format;
 description
 "The YIN syntax for YANG.";
 reference
 "RFC 6020: YANG ‑ A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)";
}

identity rng {
 base schema‑format;
 description
 "Regular Language for XML Next Generation (RELAX NG).";
 reference
 "ISO/IEC 19757‑2:2008: RELAX NG";
}

identity rnc {
 base schema‑format;
 description
 "Relax NG Compact Syntax";
 reference
 "ISO/IEC 19757‑2:2008: RELAX NG";
}

grouping common‑counters {
 description
 "Counters that exist both per session, and also globally,
 accumulated from all sessions.";

 leaf in‑rpcs {
 type yang:zero‑based‑counter32;
 description
 "Number of correct <rpc> messages received.";
 }
 leaf in‑bad‑rpcs {
 type yang:zero‑based‑counter32;

 description
 "Number of messages received when an <rpc> message was expected,
 that were not correct <rpc> messages. This includes XML parse
 errors and errors on the rpc layer.";
 }
 leaf out‑rpc‑errors {
 type yang:zero‑based‑counter32;
 description
 "Number of <rpc‑reply> messages sent that contained an
 <rpc‑error> element.";
 }
 leaf out‑notifications {
 type yang:zero‑based‑counter32;
 description
 "Number of <notification> messages sent.";
 }
}

container netconf‑state {
 config false;
 description
 "The netconf‑state container is the root of the monitoring
 data model.";

 container capabilities {
 description
 "Contains the list of NETCONF capabilities supported by the
 server.";

 leaf‑list capability {
 type inet:uri;
 description
 "List of NETCONF capabilities supported by the server.";
 }
 }

 container datastores {
 description
 "Contains the list of NETCONF configuration datastores.";

 list datastore {
 key name;
 description
 "List of NETCONF configuration datastores supported by
 the NETCONF server and related information.";

 leaf name {

 type netconf-datastore-type;

 description
 "Name of the datastore associated with this list entry.";
}
container locks {
 presence
 "This container is present only if the datastore
 is locked.";
 description
 "The NETCONF <lock> and <partial‑lock> operations allow
 a client to lock specific resources in a datastore. The
 NETCONF server will prevent changes to the locked
 resources by all sessions except the one that acquired
 the lock(s).

 Monitoring information is provided for each datastore
 entry including details such as the session that acquired
 the lock, the type of lock (global or partial) and the
 list of locked resources. Multiple locks per datastore
 are supported.";

 grouping lock‑info {
 description
 "Lock related parameters, common to both global and
 partial locks.";

 leaf locked‑by‑session {
 type uint32;
 mandatory true;
 description
 "The session ID of the session that has locked
 this resource. Both a global lock and a partial
 lock MUST contain the NETCONF session‑id.

 If the lock is held by a session that is not managed
 by the NETCONF server (e.g., a CLI session), a session
 id of 0 (zero) is reported.";
 reference
 "RFC 4741: NETCONF Configuration Protocol";
 }
 leaf locked‑time {
 type yang:date‑and‑time;
 mandatory true;
 description
 "The date and time of when the resource was
 locked.";
 }
 }

 choice lock‑type {
 description
 "Indicates if a global lock or a set of partial locks
 are set.";

 container global‑lock {
 description
 "Present if the global lock is set.";
 uses lock‑info;
 }

 list partial‑lock {
 key lock‑id;
 description
 "List of partial locks.";
 reference
 "RFC 5717: Partial Lock Remote Procedure Call (RPC) for
 NETCONF";

 leaf lock‑id {
 type uint32;
 description
 "This is the lock id returned in the <partial‑lock>
 response.";
 }
 uses lock‑info;
 leaf‑list select {
 type yang:xpath1.0;
 min‑elements 1;
 description
 "The xpath expression that was used to request
 the lock. The select expression indicates the
 original intended scope of the lock.";
 }
 leaf‑list locked‑node {
 type instance‑identifier;
 description
 "The list of instance‑identifiers (i.e., the
 locked nodes).

 The scope of the partial lock is defined by the list
 of locked nodes.";
 }
 }
 }
 }
 }
}

container schemas {
 description
 "Contains the list of data model schemas supported by the
 server.";

 list schema {

 key "identifier version format";

 description

 "List of data model schemas supported by the server.";

 leaf identifier {
 type string;
 description
 "Identifier to uniquely reference the schema. The
 identifier is used in the <get‑schema> operation and may
 be used for other purposes such as file retrieval.

 For modeling languages that support or require a data
 model name (e.g., YANG module name) the identifier MUST
 match that name. For YANG data models, the identifier is
 the name of the module or submodule. In other cases, an
 identifier such as a filename MAY be used instead.";
 }
 leaf version {
 type string;
 description
 "Version of the schema supported. Multiple versions MAY be
 supported simultaneously by a NETCONF server. Each
 version MUST be reported individually in the schema list,
 i.e., with same identifier, possibly different location,
 but different version.

 For YANG data models, version is the value of the most
 recent YANG 'revision' statement in the module or
 submodule, or the empty string if no 'revision' statement
 is present.";
 }
 leaf format {
 type identityref {
 base schema‑format;
 }
 description
 "The data modeling language the schema is written
 in (currently xsd, yang, yin, rng, or rnc).

 For YANG data models, 'yang' format MUST be supported and
 'yin' format MAY also be provided.";
 }
 leaf namespace {
 type inet:uri;
 mandatory true;
 description
 "The XML namespace defined by the data model.

 For YANG data models, this is the module's namespace.
 If the list entry describes a submodule, this field
 contains the namespace of the module to which the
 submodule belongs.";
 }
 leaf‑list location {
 type union {
 type enumeration {
 enum "NETCONF";
 }
 type inet:uri;
 }
 description
 "One or more locations from which the schema can be
 retrieved. This list SHOULD contain at least one
 entry per schema.

 A schema entry may be located on a remote file system
 (e.g., reference to file system for ftp retrieval) or
 retrieved directly from a server supporting the
 <get‑schema> operation (denoted by the value 'NETCONF').";
 }
 }
 }

 container sessions {
 description
 "The sessions container includes session‑specific data for
 NETCONF management sessions. The session list MUST include
 all currently active NETCONF sessions.";

 list session {
 key session‑id;
 description
 "All NETCONF sessions managed by the NETCONF server
 MUST be reported in this list.";

 leaf session‑id {
 type uint32 {
 range "1..max";
 }
 description
 "Unique identifier for the session. This value is the
 NETCONF session identifier, as defined in RFC 4741.";
 reference
 "RFC 4741: NETCONF Configuration Protocol";
 }
 leaf transport {
 type identityref {
 base transport;
 }
 mandatory true;
 description
 "Identifies the transport for each session, e.g.,
 'netconf‑ssh', 'netconf‑soap', etc.";
 }
 leaf username {
 type string;
 mandatory true;
 description
 "The username is the client identity that was authenticated
 by the NETCONF transport protocol. The algorithm used to
 derive the username is NETCONF transport protocol specific
 and in addition specific to the authentication mechanism
 used by the NETCONF transport protocol.";
 }
 leaf source‑host {
 type inet:host;
 description
 "Host identifier of the NETCONF client. The value
 returned is implementation specific (e.g., hostname,
 IPv4 address, IPv6 address)";
 }

 leaf login‑time {
 type yang:date‑and‑time;
 mandatory true;
 description
 "Time at the server at which the session was established.";
 }
 uses common‑counters {
 description
 "Per‑session counters. Zero based with following reset
 behaviour:
 ‑ at start of a session
 ‑ when max value is reached";
 }
 }
 }

 container statistics {
 description
 "Statistical data pertaining to the NETCONF server.";

 leaf netconf‑start‑time {
 type yang:date‑and‑time;
 description
 "Date and time at which the management subsystem was
 started.";
 }
 leaf in‑bad‑hellos {
 type yang:zero‑based‑counter32;
 description
 "Number of sessions silently dropped because an
 invalid <hello> message was received. This includes <hello>
 messages with a 'session‑id' attribute, bad namespace, and
 bad capability declarations.";
 }
 leaf in‑sessions {
 type yang:zero‑based‑counter32;
 description
 "Number of sessions started. This counter is incremented
 when a <hello> message with a <session‑id> is sent.

 'in‑sessions' ‑ 'in‑bad‑hellos' =
 'number of correctly started netconf sessions'";
 }
 leaf dropped‑sessions {
 type yang:zero‑based‑counter32;

 description
 "Number of sessions that were abnormally terminated, e.g.,
 due to idle timeout or transport close. This counter is not
 incremented when a session is properly closed by a
 <close‑session> operation, or killed by a <kill‑session>
 operation.";
 }
 uses common‑counters {
 description
 "Global counters, accumulated from all sessions.
 Zero based with following reset behaviour:
 ‑ re‑initialization of NETCONF server
 ‑ when max value is reached";
 }
 }
}

rpc get‑schema {
 description
 "This operation is used to retrieve a schema from the
 NETCONF server.

 Positive Response:

 The NETCONF server returns the requested schema.

 Negative Response:

 If requested schema does not exist, the <error-tag> is
 'invalid-value'.

 If more than one schema matches the requested parameters, the
 <error-tag> is 'operation-failed', and <error-app-tag> is
 'data-not-unique'.";

 input {
 leaf identifier {
 type string;
 mandatory true;
 description
 "Identifier for the schema list entry.";
 }
 leaf version {
 type string;
 description
 "Version of the schema requested. If this parameter is not
 present, and more than one version of the schema exists on
 the server, a 'data‑not‑unique' error is returned, as
 described above.";
 }

 leaf format {
 type identityref {
 base schema‑format;
 }
 description
 "The data modeling language of the schema. If this
 parameter is not present, and more than one formats of
 the schema exists on the server, a 'data‑not‑unique' error
 is returned, as described above.";
 }
 }
 output {
 anyxml data {
 description
 "Contains the schema content.";
 }
 }
 }
}

<CODE ENDS>

6. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC4741]. The lowest NETCONF layer is the
 secure transport layer and the mandatory to implement secure
 transport is SSH [RFC4742].

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes.

 These are the containers, list nodes, and data nodes with their
 specific sensitivity/vulnerability:

/netconf‑state/sessions/session/username: Contains identity
 information that could be used in an attempt to authenticate with
 the server.

 This username is only meant for monitoring, and SHOULD NOT be used
 for other purposes, such as access control, without a detailed
 discussion of the limitations of this reported username. For
 example, it is possible that server A and server B might report
 the same username, but these might be for different persons.

7. Acknowledgements

 The authors would like to thank Andy Bierman, Mehmet Ersue, Washam
 Fan, David Harrington, Balazs Lengyel, Hideki Okita, Juergen
 Schoenwaelder, Bert Wijnen, and many other members of the NETCONF WG
 for providing important input to this document. The authors would
 also like to specifically acknowledge Sharon Chisholm's work on
 "NETCONF Monitoring Schema" [NETCONF] and contribution to this
 document.

8. IANA Considerations

 This document registers one URI in "The IETF XML Registry".
 Following the format in [RFC3688], the following has been registered.

URI: urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

 This document registers one module in the "YANG Module Names"
 registry. Following the format in [RFC6020], the following has been
 registered.

name: ietf‑netconf‑monitoring
namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑monitoring
prefix: ncm
reference: RFC 6022

9. References

9.1. Normative References

 [ISO/IEC19757-2:2008]

 ISO/IEC, "Document Schema Definition Language (DSDL) --
 Part 2: Regular-grammar-based validation -- RELAX NG",
 December 2008, <http://www.iso.org/iso/
 catalogue_detail.htm?csnumber=37605>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4741]
 Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4742]
 Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC4743]
 Goddard, T., "Using NETCONF over the Simple Object Access
 Protocol (SOAP)", RFC 4743, December 2006.

 [RFC4744]
 Lear, E. and K. Crozier, "Using the NETCONF Protocol over
 the Blocks Extensible Exchange Protocol (BEEP)", RFC 4744,
 December 2006.

 [RFC5539]
 Badra, M., "NETCONF over Transport Layer Security (TLS)",
 RFC 5539, May 2009.

 [RFC5717]
 Lengyel, B. and M. Bjorklund, "Partial Lock Remote
 Procedure Call (RPC) for NETCONF", RFC 5717,
 December 2009.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)",
 October 2010.

 [RFC6021]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 October 2010.

 [XML-NAMES]

 Hollander, D., Tobin, R., Thompson, H., Bray, T., and A.
 Layman, "Namespaces in XML 1.0 (Third Edition)", World
 Wide Web Consortium Recommendation REC-xml-names-20091208,
 December 2009,
 <http://www.w3.org/TR/2009/REC-xml-names-20091208>.

 [xmlschema-1]

 Biron, Paul V. and Ashok. Malhotra, "XML Schema Part 1:
 Structures Second Edition W3C Recommendation 28 October
 2004", October 2004, <http://www.w3.org/TR/xmlschema-1>.

9.2. Informative References

 [NETCONF]
 Chisholm, S. and H. Trevino, "NETCONF
 Monitoring Schema", Work in Progress, February 2007.

 [RFC0959]
 Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

 [RFC2616]
 Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2818]
 Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

Authors' Addresses

Mark Scott
Ericsson
3500 Carling Ave
Nepean, Ontario K2H 8E9
Canada

 EMail: mark.scott@ericsson.com

Martin Bjorklund
Tail‑f Systems
Klara Norra Kyrkogata 31
SE‑111 22 Stockholm,
Sweden

 EMail: mbj@tail-f.com

6241 - Network Configuration Protocol (NETCONF)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6241

Obsoletes: 4741

Category: Standards Track

ISSN: 2070-1721

R. Enns, Ed.

Juniper Networks

M. Bjorklund, Ed.

Tail-f Systems

J. Schoenwaelder, Ed.

Jacobs University

A. Bierman, Ed.

Brocade

June 2011

Network Configuration Protocol (NETCONF)

Abstract

 The Network Configuration Protocol (NETCONF) defined in this document
 provides mechanisms to install, manipulate, and delete the
 configuration of network devices. It uses an Extensible Markup
 Language (XML)-based data encoding for the configuration data as well
 as the protocol messages. The NETCONF protocol operations are
 realized as remote procedure calls (RPCs). This document obsoletes
 RFC 4741.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6241.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Protocol Overview

	 1.3. Capabilities

	 1.4. Separation of Configuration and State Data

	2. Transport Protocol Requirements
	 2.1. Connection-Oriented Operation

	 2.2. Authentication, Integrity, and Confidentiality

	 2.3. Mandatory Transport Protocol

	3. XML Considerations
	 3.1. Namespace

	 3.2. Document Type Declarations

	4. RPC Model
	 4.1. <rpc> Element

	 4.2. <rpc-reply> Element

	 4.3. <rpc-error> Element

	 4.4. <ok> Element

	 4.5. Pipelining

	5. Configuration Model
	 5.1. Configuration Datastores

	 5.2. Data Modeling

	6. Subtree Filtering
	 6.1. Overview

	 6.2. Subtree Filter Components
	 6.2.1. Namespace Selection

	 6.2.2. Attribute Match Expressions

	 6.2.3. Containment Nodes

	 6.2.4. Selection Nodes

	 6.2.5. Content Match Nodes

	 6.3. Subtree Filter Processing

	 6.4. Subtree Filtering Examples
	 6.4.1. No Filter

	 6.4.2. Empty Filter

	 6.4.3. Select the Entire <users> Subtree

	 6.4.4. Select All <name> Elements within the <users> Subtree

	 6.4.5. One Specific <user> Entry

	 6.4.6. Specific Elements from a Specific <user> Entry

	 6.4.7. Multiple Subtrees

	 6.4.8. Elements with Attribute Naming

	7. Protocol Operations
	 7.1. <get-config>

	 7.2. <edit-config>

	 7.3. <copy-config>

	 7.4. <delete-config>

	 7.5. <lock>

	 7.6. <unlock>

	 7.7. <get>

	 7.8. <close-session>

	 7.9. <kill-session>

	8. Capabilities
	 8.1. Capabilities Exchange

	 8.2. Writable-Running Capability
	 8.2.1. Description

	 8.2.2. Dependencies

	 8.2.3. Capability Identifier

	 8.2.4. New Operations

	 8.2.5. Modifications to Existing Operations

	 8.3. Candidate Configuration Capability
	 8.3.1. Description

	 8.3.2. Dependencies

	 8.3.3. Capability Identifier

	 8.3.4. New Operations

	 8.3.5. Modifications to Existing Operations

	 8.4. Confirmed Commit Capability
	 8.4.1. Description

	 8.4.2. Dependencies

	 8.4.3. Capability Identifier

	 8.4.4. New Operations

	 8.4.5. Modifications to Existing Operations

	 8.5. Rollback-on-Error Capability
	 8.5.1. Description

	 8.5.2. Dependencies

	 8.5.3. Capability Identifier

	 8.5.4. New Operations

	 8.5.5. Modifications to Existing Operations

	 8.6. Validate Capability
	 8.6.1. Description

	 8.6.2. Dependencies

	 8.6.3. Capability Identifier

	 8.6.4. New Operations

	 8.6.5. Modifications to Existing Operations

	 8.7. Distinct Startup Capability
	 8.7.1. Description

	 8.7.2. Dependencies

	 8.7.3. Capability Identifier

	 8.7.4. New Operations

	 8.7.5. Modifications to Existing Operations

	 8.8. URL Capability
	 8.8.1. Description

	 8.8.2. Dependencies

	 8.8.3. Capability Identifier

	 8.8.4. New Operations

	 8.8.5. Modifications to Existing Operations

	 8.9. XPath Capability
	 8.9.1. Description

	 8.9.2. Dependencies

	 8.9.3. Capability Identifier

	 8.9.4. New Operations

	 8.9.5. Modifications to Existing Operations

	9. Security Considerations

	10. IANA Considerations
	 10.1. NETCONF XML Namespace

	 10.2. NETCONF XML Schema

	 10.3. NETCONF YANG Module

	 10.4. NETCONF Capability URNs

	11. Contributors

	12. Acknowledgements

	13. References
	 13.1. Normative References

	 13.2. Informative References

	Appendix A. NETCONF Error List

	Appendix B. XML Schema for NETCONF Messages Layer

	Appendix C. YANG Module for NETCONF Protocol Operations

	Appendix D. Capability Template
	 D.1. capability-name (template)
	 D.1.1. Overview

	 D.1.2. Dependencies

	 D.1.3. Capability Identifier

	 D.1.4. New Operations

	 D.1.5. Modifications to Existing Operations

	 D.1.6. Interactions with Other Capabilities

	Appendix E. Configuring Multiple Devices with NETCONF
	 E.1. Operations on Individual Devices
	 E.1.1. Acquiring the Configuration Lock

	 E.1.2. Checkpointing the Running Configuration

	 E.1.3. Loading and Validating the Incoming Configuration

	 E.1.4. Changing the Running Configuration

	 E.1.5. Testing the New Configuration

	 E.1.6. Making the Change Permanent

	 E.1.7. Releasing the Configuration Lock

	 E.2. Operations on Multiple Devices

	Appendix F. Changes from RFC 4741

1. Introduction

 The NETCONF protocol defines a simple mechanism through which a
 network device can be managed, configuration data information can be
 retrieved, and new configuration data can be uploaded and
 manipulated. The protocol allows the device to expose a full, formal
 application programming interface (API). Applications can use this
 straightforward API to send and receive full and partial
 configuration data sets.

 The NETCONF protocol uses a remote procedure call (RPC) paradigm. A
 client encodes an RPC in XML [W3C.REC-xml-20001006] and sends it to a
 server using a secure, connection-oriented session. The server
 responds with a reply encoded in XML. The contents of both the
 request and the response are fully described in XML DTDs or XML
 schemas, or both, allowing both parties to recognize the syntax
 constraints imposed on the exchange.

 A key aspect of NETCONF is that it allows the functionality of the
 management protocol to closely mirror the native functionality of the
 device. This reduces implementation costs and allows timely access
 to new features. In addition, applications can access both the
 syntactic and semantic content of the device's native user interface.

 NETCONF allows a client to discover the set of protocol extensions
 supported by a server. These "capabilities" permit the client to
 adjust its behavior to take advantage of the features exposed by the
 device. The capability definitions can be easily extended in a
 noncentralized manner. Standard and non-standard capabilities can be
 defined with semantic and syntactic rigor. Capabilities are
 discussed in Section 8.

 The NETCONF protocol is a building block in a system of automated
 configuration. XML is the lingua franca of interchange, providing a
 flexible but fully specified encoding mechanism for hierarchical
 content. NETCONF can be used in concert with XML-based
 transformation technologies, such as XSLT [W3C.REC-xslt-19991116], to
 provide a system for automated generation of full and partial
 configurations. The system can query one or more databases for data
 about networking topologies, links, policies, customers, and
 services. This data can be transformed using one or more XSLT
 scripts from a task-oriented, vendor-independent data schema into a
 form that is specific to the vendor, product, operating system, and
 software release. The resulting data can be passed to the device
 using the NETCONF protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.1. Terminology

 o candidate configuration datastore: A configuration datastore that
 can be manipulated without impacting the device's current
 configuration and that can be committed to the running
 configuration datastore. Not all devices support a candidate
 configuration datastore.

 o capability: A functionality that supplements the base NETCONF
 specification.

 o client: Invokes protocol operations on a server. In addition, a
 client can subscribe to receive notifications from a server.

 o configuration data: The set of writable data that is required to
 transform a system from its initial default state into its current
 state.

 o datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof.

 o configuration datastore: The datastore holding the complete set of
 configuration data that is required to get a device from its
 initial default state into a desired operational state.

 o message: A protocol element sent over a session. Messages are
 well-formed XML documents.

 o notification: A server-initiated message indicating that a certain
 event has been recognized by the server.

 o protocol operation: A specific remote procedure call, as used
 within the NETCONF protocol.

 o remote procedure call (RPC): Realized by exchanging <rpc> and
 <rpc-reply> messages.

 o running configuration datastore: A configuration datastore holding
 the complete configuration currently active on the device. The
 running configuration datastore always exists.

 o server: Executes protocol operations invoked by a client. In
 addition, a server can send notifications to a client.

 o session: Client and server exchange messages using a secure,
 connection-oriented session.

 o startup configuration datastore: The configuration datastore
 holding the configuration loaded by the device when it boots.
 Only present on devices that separate the startup configuration
 datastore from the running configuration datastore.

 o state data: The additional data on a system that is not
 configuration data such as read-only status information and
 collected statistics.

 o user: The authenticated identity of the client. The authenticated
 identity of a client is commonly referred to as the NETCONF
 username.

1.2. Protocol Overview

 NETCONF uses a simple RPC-based mechanism to facilitate communication
 between a client and a server. The client can be a script or
 application typically running as part of a network manager. The
 server is typically a network device. The terms "device" and
 "server" are used interchangeably in this document, as are "client"
 and "application".

 A NETCONF session is the logical connection between a network
 administrator or network configuration application and a network
 device. A device MUST support at least one NETCONF session and
 SHOULD support multiple sessions. Global configuration attributes
 can be changed during any authorized session, and the effects are
 visible in all sessions. Session-specific attributes affect only the
 session in which they are changed.

 NETCONF can be conceptually partitioned into four layers as shown in
 Figure 1.

 Layer Example
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(4) | Content | | Configuration | | Notification |
 | | | data | | data |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
(3) | Operations | | <edit‑config> | |
 | | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
(2) | Messages | | <rpc>, | | <notification> |
 | | | <rpc‑reply> | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+
(1) | Secure | | SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ... |
 | Transport | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑+

 Figure 1: NETCONF Protocol Layers

 (1) The Secure Transport layer provides a communication path between

 the client and server. NETCONF can be layered over any
 transport protocol that provides a set of basic requirements.
 Section 2 discusses these requirements.

 (2) The Messages layer provides a simple, transport-independent

 framing mechanism for encoding RPCs and notifications.
 Section 4 documents the RPC messages, and [RFC5717] documents
 notifications.

 (3) The Operations layer defines a set of base protocol operations

 invoked as RPC methods with XML-encoded parameters. Section 7
 details the list of base protocol operations.

 (4) The Content layer is outside the scope of this document. It is

 expected that separate efforts to standardize NETCONF data
 models will be undertaken.

 The YANG data modeling language [RFC6020] has been developed for
 specifying NETCONF data models and protocol operations, covering the
 Operations and the Content layers of Figure 1.

1.3. Capabilities

 A NETCONF capability is a set of functionality that supplements the
 base NETCONF specification. The capability is identified by a
 uniform resource identifier (URI) [RFC3986].

 Capabilities augment the base operations of the device, describing
 both additional operations and the content allowed inside operations.
 The client can discover the server's capabilities and use any
 additional operations, parameters, and content defined by those
 capabilities.

 The capability definition might name one or more dependent
 capabilities. To support a capability, the server MUST support any
 capabilities upon which it depends.

 Section 8 defines the capabilities exchange that allows the client to
 discover the server's capabilities. Section 8 also lists the set of
 capabilities defined in this document.

 Additional capabilities can be defined at any time in external
 documents, allowing the set of capabilities to expand over time.
 Standards bodies can define standardized capabilities, and
 implementations can define proprietary ones. A capability URI MUST
 sufficiently distinguish the naming authority to avoid naming
 collisions.

1.4. Separation of Configuration and State Data

 The information that can be retrieved from a running system is
 separated into two classes, configuration data and state data.
 Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. State data is the additional data on a system that is not
 configuration data such as read-only status information and collected
 statistics. When a device is performing configuration operations, a
 number of problems would arise if state data were included:

 o Comparisons of configuration data sets would be dominated by
 irrelevant entries such as different statistics.

 o Incoming data could contain nonsensical requests, such as attempts
 to write read-only data.

 o The data sets would be large.

 o Archived data could contain values for read-only data items,
 complicating the processing required to restore archived data.

 To account for these issues, the NETCONF protocol recognizes the
 difference between configuration data and state data and provides
 operations for each. The <get-config> operation retrieves
 configuration data only, while the <get> operation retrieves
 configuration and state data.

 Note that the NETCONF protocol is focused on the information required
 to get the device into its desired running state. The inclusion of
 other important, persistent data is implementation specific. For
 example, user files and databases are not treated as configuration
 data by the NETCONF protocol.

 For example, if a local database of user authentication data is
 stored on the device, it is an implementation-dependent matter
 whether it is included in configuration data.

2. Transport Protocol Requirements

 NETCONF uses an RPC-based communication paradigm. A client sends a
 series of one or more RPC request messages, which cause the server to
 respond with a corresponding series of RPC reply messages.

 The NETCONF protocol can be layered on any transport protocol that
 provides the required set of functionality. It is not bound to any
 particular transport protocol, but allows a mapping to define how it
 can be implemented over any specific protocol.

 The transport protocol MUST provide a mechanism to indicate the
 session type (client or server) to the NETCONF protocol layer.

 This section details the characteristics that NETCONF requires from
 the underlying transport protocol.

2.1. Connection-Oriented Operation

 NETCONF is connection-oriented, requiring a persistent connection
 between peers. This connection MUST provide reliable, sequenced data
 delivery. NETCONF connections are long-lived, persisting between
 protocol operations.

 In addition, resources requested from the server for a particular
 connection MUST be automatically released when the connection closes,
 making failure recovery simpler and more robust. For example, when a
 lock is acquired by a client, the lock persists until either it is
 explicitly released or the server determines that the connection has
 been terminated. If a connection is terminated while the client
 holds a lock, the server can perform any appropriate recovery. The
 <lock> operation is further discussed in Section 7.5.

2.2. Authentication, Integrity, and Confidentiality

 NETCONF connections MUST provide authentication, data integrity,
 confidentiality, and replay protection. NETCONF depends on the
 transport protocol for this capability. A NETCONF peer assumes that
 appropriate levels of security and confidentiality are provided
 independently of this document. For example, connections could be
 encrypted using Transport Layer Security (TLS) [RFC5246] or Secure
 Shell (SSH) [RFC4251], depending on the underlying protocol.

 NETCONF connections MUST be authenticated. The transport protocol is
 responsible for authentication of the server to the client and
 authentication of the client to the server. A NETCONF peer assumes
 that the connection's authentication information has been validated
 by the underlying transport protocol using sufficiently trustworthy
 mechanisms and that the peer's identity has been sufficiently proven.

 One goal of NETCONF is to provide a programmatic interface to the
 device that closely follows the functionality of the device's native
 interface. Therefore, it is expected that the underlying protocol
 uses existing authentication mechanisms available on the device. For
 example, a NETCONF server on a device that supports RADIUS [RFC2865]
 might allow the use of RADIUS to authenticate NETCONF sessions.

 The authentication process MUST result in an authenticated client
 identity whose permissions are known to the server. The
 authenticated identity of a client is commonly referred to as the
 NETCONF username. The username is a string of characters that match
 the "Char" production from Section 2.2 of [W3C.REC-xml-20001006].
 The algorithm used to derive the username is transport protocol
 specific and in addition specific to the authentication mechanism
 used by the transport protocol. The transport protocol MUST provide
 a username to be used by the other NETCONF layers.

 The access permissions of a given client, identified by its NETCONF
 username, are part of the configuration of the NETCONF server. These
 permissions MUST be enforced during the remainder of the NETCONF
 session. The details of how access control is configured is outside
 the scope of this document.

2.3. Mandatory Transport Protocol

 A NETCONF implementation MUST support the SSH transport protocol
 mapping [RFC6242].

3. XML Considerations

 XML serves as the encoding format for NETCONF, allowing complex
 hierarchical data to be expressed in a text format that can be read,
 saved, and manipulated with both traditional text tools and tools
 specific to XML.

 All NETCONF messages MUST be well-formed XML, encoded in UTF-8
 [RFC3629]. If a peer receives an <rpc> message that is not well-
 formed XML or not encoded in UTF-8, it SHOULD reply with a
 "malformed-message" error. If a reply cannot be sent for any reason,
 the server MUST terminate the session.

 A NETCONF message MAY begin with an XML declaration (see Section 2.8
 of [W3C.REC-xml-20001006]).

 This section discusses a small number of XML-related considerations
 pertaining to NETCONF.

3.1. Namespace

 All NETCONF protocol elements are defined in the following namespace:

 urn:ietf:params:xml:ns:netconf:base:1.0

 NETCONF capability names MUST be URIs [RFC3986]. NETCONF
 capabilities are discussed in Section 8.

3.2. Document Type Declarations

 Document type declarations (see Section 2.8 of
 [W3C.REC-xml-20001006]) MUST NOT appear in NETCONF content.

4. RPC Model

 The NETCONF protocol uses an RPC-based communication model. NETCONF
 peers use <rpc> and <rpc-reply> elements to provide transport-
 protocol-independent framing of NETCONF requests and responses.

 The syntax and XML encoding of the Messages-layer RPCs are formally
 defined in the XML schema in Appendix B.

4.1. <rpc> Element

 The <rpc> element is used to enclose a NETCONF request sent from the
 client to the server.

 The <rpc> element has a mandatory attribute "message-id", which is a
 string chosen by the sender of the RPC that will commonly encode a
 monotonically increasing integer. The receiver of the RPC does not
 decode or interpret this string but simply saves it to be used as a
 "message-id" attribute in any resulting <rpc-reply> message. The
 sender MUST ensure that the "message-id" value is normalized
 according to the XML attribute value normalization rules defined in
 [W3C.REC-xml-20001006] if the sender wants the string to be returned
 unmodified. For example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <some‑method>
 <!‑‑ method parameters here... ‑‑>
 </some‑method>
</rpc>

 If additional attributes are present in an <rpc> element, a NETCONF
 peer MUST return them unmodified in the <rpc-reply> element. This
 includes any "xmlns" attributes.

 The name and parameters of an RPC are encoded as the contents of the
 <rpc> element. The name of the RPC is an element directly inside the
 <rpc> element, and any parameters are encoded inside this element.

 The following example invokes a method called <my-own-method>, which
 has two parameters, <my-first-parameter>, with a value of "14", and
 <another-parameter>, with a value of "fred":

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <my‑own‑method xmlns="http://example.net/me/my‑own/1.0">
 <my‑first‑parameter>14</my‑first‑parameter>
 <another‑parameter>fred</another‑parameter>
 </my‑own‑method>
</rpc>

 The following example invokes a <rock-the-house> method with a
 <zip-code> parameter of "27606-0100":

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rock‑the‑house xmlns="http://example.net/rock/1.0">
 <zip‑code>27606‑0100</zip‑code>
 </rock‑the‑house>
</rpc>

 The following example invokes the NETCONF <get> method with no
 parameters:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
</rpc>

4.2. <rpc-reply> Element

 The <rpc-reply> message is sent in response to an <rpc> message.

 The <rpc-reply> element has a mandatory attribute "message-id", which
 is equal to the "message-id" attribute of the <rpc> for which this is
 a response.

 A NETCONF server MUST also return any additional attributes included
 in the <rpc> element unmodified in the <rpc-reply> element.

 The response data is encoded as one or more child elements to the
 <rpc-reply> element.

 For example:

 The following <rpc> element invokes the NETCONF <get> method and
 includes an additional attribute called "user-id". Note that the
 "user-id" attribute is not in the NETCONF namespace. The returned
 <rpc-reply> element returns the "user-id" attribute, as well as the
 requested content.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0"
 ex:user‑id="fred">
 <get/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0"
 ex:user‑id="fred">
 <data>
 <!‑‑ contents here... ‑‑>
 </data>
</rpc‑reply>

4.3. <rpc-error> Element

 The <rpc-error> element is sent in <rpc-reply> messages if an error
 occurs during the processing of an <rpc> request.

 If a server encounters multiple errors during the processing of an
 <rpc> request, the <rpc-reply> MAY contain multiple <rpc-error>
 elements. However, a server is not required to detect or report more
 than one <rpc-error> element, if a request contains multiple errors.
 A server is not required to check for particular error conditions in
 a specific sequence. A server MUST return an <rpc-error> element if
 any error conditions occur during processing.

 A server MUST NOT return application-level- or data-model-specific
 error information in an <rpc-error> element for which the client does
 not have sufficient access rights.

 The <rpc-error> element includes the following information:

error‑type: Defines the conceptual layer that the error occurred.
 Enumeration. One of:

 * transport (layer: Secure Transport)

 * rpc (layer: Messages)

 * protocol (layer: Operations)

 * application (layer: Content)

error‑tag: Contains a string identifying the error condition. See
 Appendix A for allowed values.

error‑severity: Contains a string identifying the error severity, as
 determined by the device. One of:

 * error

 * warning

 Note that there are no <error-tag> values defined in this document
 that utilize the "warning" enumeration. This is reserved for
 future use.

error‑app‑tag: Contains a string identifying the data‑model‑specific
 or implementation‑specific error condition, if one exists. This
 element will not be present if no appropriate application error‑
 tag can be associated with a particular error condition. If a

 data-model-specific and an implementation-specific error-app-tag
 both exist, then the data-model-specific value MUST be used by the
 server.

error‑path: Contains the absolute XPath [W3C.REC‑xpath‑19991116]
 expression identifying the element path to the node that is
 associated with the error being reported in a particular
 <rpc‑error> element. This element will not be present if no
 appropriate payload element or datastore node can be associated
 with a particular error condition.

 The XPath expression is interpreted in the following context:

 * The set of namespace declarations are those in scope on the
 <rpc-error> element.

 * The set of variable bindings is empty.

 * The function library is the core function library.

 The context node depends on the node associated with the error
 being reported:

 * If a payload element can be associated with the error, the
 context node is the rpc request's document node (i.e., the
 <rpc> element).

 * Otherwise, the context node is the root of all data models,
 i.e., the node that has the top-level nodes from all data
 models as children.

error‑message: Contains a string suitable for human display that
 describes the error condition. This element will not be present
 if no appropriate message is provided for a particular error
 condition. This element SHOULD include an "xml:lang" attribute as
 defined in [W3C.REC‑xml‑20001006] and discussed in [RFC3470].

error‑info: Contains protocol‑ or data‑model‑specific error content.
 This element will not be present if no such error content is
 provided for a particular error condition. The list in Appendix A
 defines any mandatory error‑info content for each error. After
 any protocol‑mandated content, a data model definition MAY mandate
 that certain application‑layer error information be included in
 the error‑info container. An implementation MAY include
 additional elements to provide extended and/or implementation‑
 specific debugging information.

 Appendix A enumerates the standard NETCONF errors.

Example: An error is returned if an <rpc> element is received
 without a "message‑id" attribute. Note that only in this case is
 it acceptable for the NETCONF peer to omit the "message‑id"
 attribute in the <rpc‑reply> element.

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 </get‑config>
 </rpc>

 <rpc‑reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>rpc</error‑type>
 <error‑tag>missing‑attribute</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑info>
 <bad‑attribute>message‑id</bad‑attribute>
 <bad‑element>rpc</bad‑element>
 </error‑info>
 </rpc‑error>
 </rpc‑reply>

 The following <rpc-reply> illustrates the case of returning multiple
 <rpc-error> elements.

 Note that the data models used in the examples in this section use
 the <name> element to distinguish between multiple instances of the
 <interface> element.

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error>
 <error‑type>application</error‑type>
 <error‑tag>invalid‑value</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑path xmlns:t="http://example.com/schema/1.2/config">
 /t:top/t:interface[t:name="Ethernet0/0"]/t:mtu
 </error‑path>
 <error‑message xml:lang="en">
 MTU value 25000 is not within range 256..9192
 </error‑message>
 </rpc‑error>
 <rpc‑error>
 <error‑type>application</error‑type>

 <error‑tag>invalid‑value</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑path xmlns:t="http://example.com/schema/1.2/config">
 /t:top/t:interface[t:name="Ethernet1/0"]/t:address/t:name
 </error‑path>
 <error‑message xml:lang="en">
 Invalid IP address for interface Ethernet1/0
 </error‑message>
 </rpc‑error>
</rpc‑reply>

4.4. <ok> Element

 The <ok> element is sent in <rpc-reply> messages if no errors or
 warnings occurred during the processing of an <rpc> request, and no
 data was returned from the operation. For example:

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

4.5. Pipelining

 NETCONF <rpc> requests MUST be processed serially by the managed
 device. Additional <rpc> requests MAY be sent before previous ones
 have been completed. The managed device MUST send responses only in
 the order the requests were received.

5. Configuration Model

 NETCONF provides an initial set of operations and a number of
 capabilities that can be used to extend the base. NETCONF peers
 exchange device capabilities when the session is initiated as
 described in Section 8.1.

5.1. Configuration Datastores

 NETCONF defines the existence of one or more configuration datastores
 and allows configuration operations on them. A configuration
 datastore is defined as the complete set of configuration data that
 is required to get a device from its initial default state into a
 desired operational state. The configuration datastore does not
 include state data or executive commands.

 The running configuration datastore holds the complete configuration
 currently active on the network device. Only one configuration
 datastore of this type exists on the device, and it is always
 present. NETCONF protocol operations refer to this datastore using
 the <running> element.

 Only the <running> configuration datastore is present in the base
 model. Additional configuration datastores MAY be defined by
 capabilities. Such configuration datastores are available only on
 devices that advertise the capabilities.

 The capabilities in Sections 8.3 and 8.7 define the <candidate> and
 <startup> configuration datastores, respectively.

5.2. Data Modeling

 Data modeling and content issues are outside the scope of the NETCONF
 protocol. An assumption is made that the device's data model is
 well-known to the application and that both parties are aware of
 issues such as the layout, containment, keying, lookup, replacement,
 and management of the data, as well as any other constraints imposed
 by the data model.

 NETCONF carries configuration data inside the <config> element that
 is specific to the device's data model. The protocol treats the
 contents of that element as opaque data. The device uses
 capabilities to announce the set of data models that the device
 implements. The capability definition details the operation and
 constraints imposed by data model.

 Devices and managers can support multiple data models, including both
 standard and proprietary data models.

6. Subtree Filtering

6.1. Overview

 XML subtree filtering is a mechanism that allows an application to
 select particular XML subtrees to include in the <rpc-reply> for a
 <get> or <get-config> operation. A small set of filters for
 inclusion, simple content exact-match, and selection is provided,
 which allows some useful, but also very limited, selection
 mechanisms. The server does not need to utilize any data-model-
 specific semantics during processing, allowing for simple and
 centralized implementation strategies.

 Conceptually, a subtree filter is comprised of zero or more element
 subtrees, which represent the filter selection criteria. At each
 containment level within a subtree, the set of sibling nodes is
 logically processed by the server to determine if its subtree and
 path of elements to the root are included in the filter output.

 Each node specified in a subtree filter represents an inclusive
 filter. Only associated nodes in underlying data model(s) within the
 specified datastore on the server are selected by the filter. A node
 is selected if it matches the selection criteria and hierarchy of
 elements given in the filter data, except that the filter absolute
 path name is adjusted to start from the layer below <filter>.

 Response messages contain only the subtrees selected by the filter.
 Any selection criteria that were present in the request, within a
 particular selected subtree, are also included in the response. Note
 that some elements expressed in the filter as leaf nodes will be
 expanded (i.e., subtrees included) in the filter output. Specific
 data instances are not duplicated in the response in the event that
 the request contains multiple filter subtree expressions that select
 the same data.

6.2. Subtree Filter Components

 A subtree filter is comprised of XML elements and their XML
 attributes. There are five types of components that can be present
 in a subtree filter:

 o Namespace Selection

 o Attribute Match Expressions

 o Containment Nodes

 o Selection Nodes

 o Content Match Nodes

6.2.1. Namespace Selection

 A namespace is considered to match (for filter purposes) if the XML
 namespace associated with a particular node within the <filter>
 element is the same as in the underlying data model. Note that
 namespace selection cannot be used by itself. At least one element
 MUST be specified in the filter if any elements are to be included in
 the filter output.

 An XML namespace wildcard mechanism is defined for subtree filtering.
 If an element within the <filter> element is not qualified by a
 namespace (e.g., xmlns=""), then the server MUST evaluate all the XML
 namespaces it supports, when processing that subtree filter node.
 This wildcard mechanism is not applicable to XML attributes.

 Note that prefix values for qualified namespaces are not relevant
 when comparing filter elements to elements in the underlying data
 model.

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config"/>
</filter>

 In this example, the <top> element is a selection node, and only this
 node in the "http://example.com/schema/1.2/config" namespace and any
 child nodes (from the underlying data model) will be included in the
 filter output.

6.2.2. Attribute Match Expressions

 An attribute that appears in a subtree filter is part of an
 "attribute match expression". Any number of (unqualified or
 qualified) XML attributes MAY be present in any type of filter node.
 In addition to the selection criteria normally applicable to that
 node, the selected data MUST have matching values for every attribute
 specified in the node. If an element is not defined to include a
 specified attribute, then it is not selected in the filter output.

 Example:

<filter type="subtree">
 <t:top xmlns:t="http://example.com/schema/1.2/config">
 <t:interfaces>
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </t:top>
</filter>

 In this example, the <top> and <interfaces> elements are containment
 nodes, the <interface> element is a selection node, and "ifName" is
 an attribute match expression. Only "interface" nodes in the
 "http://example.com/schema/1.2/config" namespace that have an
 "ifName" attribute with the value "eth0" and occur within
 "interfaces" nodes within "top" nodes will be included in the filter
 output.

6.2.3. Containment Nodes

 Nodes that contain child elements within a subtree filter are called
 "containment nodes". Each child element can be any type of node,
 including another containment node. For each containment node
 specified in a subtree filter, all data model instances that exactly
 match the specified namespaces, element hierarchy, and any attribute
 match expressions are included in the filter output.

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
</filter>

 In this example, the <top> element is a containment node.

6.2.4. Selection Nodes

 An empty leaf node within a filter is called a "selection node", and
 it represents an "explicit selection" filter on the underlying data
 model. Presence of any selection nodes within a set of sibling nodes
 will cause the filter to select the specified subtree(s) and suppress
 automatic selection of the entire set of sibling nodes in the
 underlying data model. For filtering purposes, an empty leaf node
 can be declared either with an empty tag (e.g., <foo/>) or with
 explicit start and end tags (e.g., <foo> </foo>). Any whitespace
 characters are ignored in this form.

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
</filter>

 In this example, the <top> element is a containment node, and the
 <users> element is a selection node. Only "users" nodes in the
 "http://example.com/schema/1.2/config" namespace that occur within a
 <top> element that is the root of the configuration datastore will be
 included in the filter output.

6.2.5. Content Match Nodes

 A leaf node that contains simple content is called a "content match
 node". It is used to select some or all of its sibling nodes for
 filter output, and it represents an exact-match filter on the leaf
 node element content. The following constraints apply to content
 match nodes:

 o A content match node MUST NOT contain nested elements.

 o Multiple content match nodes (i.e., sibling nodes) are logically
 combined in an "AND" expression.

 o Filtering of mixed content is not supported.

 o Filtering of list content is not supported.

 o Filtering of whitespace-only content is not supported.

 o A content match node MUST contain non-whitespace characters. An
 empty element (e.g., <foo></foo>) will be interpreted as a
 selection node (e.g., <foo/>).

 o Leading and trailing whitespace characters are ignored, but any
 whitespace characters within a block of text characters are not
 ignored or modified.

 If all specified sibling content match nodes in a subtree filter
 expression are "true", then the filter output nodes are selected in
 the following manner:

 o Each content match node in the sibling set is included in the
 filter output.

 o If any containment nodes are present in the sibling set, then they
 are processed further and included if any nested filter criteria
 are also met.

 o If any selection nodes are present in the sibling set, then all of
 them are included in the filter output.

 o If any sibling nodes of the selection node are instance identifier
 components for a conceptual data structure (e.g., list key leaf),
 then they MAY also be included in the filter output.

 o Otherwise (i.e., there are no selection or containment nodes in
 the filter sibling set), all the nodes defined at this level in
 the underlying data model (and their subtrees, if any) are
 returned in the filter output.

 If any of the sibling content match node tests are "false", then no
 further filter processing is performed on that sibling set, and none
 of the sibling subtrees are selected by the filter, including the
 content match node(s).

 Example:

<filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
</filter>

 In this example, the <users> and <user> nodes are both containment
 nodes, and <name> is a content match node. Since no sibling nodes of
 <name> are specified (and therefore no containment or selection
 nodes), all of the sibling nodes of <name> are returned in the filter
 output. Only "user" nodes in the
 "http://example.com/schema/1.2/config" namespace that match the
 element hierarchy and for which the <name> element is equal to "fred"
 will be included in the filter output.

6.3. Subtree Filter Processing

 The filter output (the set of selected nodes) is initially empty.

 Each subtree filter can contain one or more data model fragments,
 which represent portions of the data model that will be selected
 (with all child nodes) in the filter output.

 Each subtree data fragment is compared by the server to the internal
 data models supported by the server. If the entire subtree data-
 fragment filter (starting from the root to the innermost element
 specified in the filter) exactly matches a corresponding portion of
 the supported data model, then that node and all its children are
 included in the result data.

 The server processes all nodes with the same parent node (sibling
 set) together, starting from the root to the leaf nodes. The root
 elements in the filter are considered in the same sibling set
 (assuming they are in the same namespace), even though they do not
 have a common parent.

 For each sibling set, the server determines which nodes are included
 (or potentially included) in the filter output, and which sibling
 subtrees are excluded (pruned) from the filter output. The server
 first determines which types of nodes are present in the sibling set
 and processes the nodes according to the rules for their type. If
 any nodes in the sibling set are selected, then the process is
 recursively applied to the sibling sets of each selected node. The
 algorithm continues until all sibling sets in all subtrees specified
 in the filter have been processed.

6.4. Subtree Filtering Examples

6.4.1. No Filter

 Leaving out the filter on the <get> operation returns the entire data
 model.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <!‑‑ ... entire set of data returned ... ‑‑>
 </data>
</rpc‑reply>

6.4.2. Empty Filter

 An empty filter will select nothing because no content match or
 selection nodes are present. This is not an error. The <filter>
 element's "type" attribute used in these examples is discussed
 further in Section 7.1.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 </filter>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 </data>
</rpc‑reply>

6.4.3. Select the Entire <users> Subtree

 The filter in this example contains one selection node (<users>), so
 just that subtree is selected by the filter. This example represents
 the fully populated <users> data model in most of the filter examples
 that follow. In a real data model, the <company-info> would not
 likely be returned with the list of users for a particular host or
 network.

 NOTE: The filtering and configuration examples used in this document
 appear in the namespace "http://example.com/schema/1.2/config". The
 root element of this namespace is <top>. The <top> element and its
 descendents represent an example configuration data model only.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full‑name>Charlie Root</full‑name>
 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>

 <user>
 <name>fred</name>
 <type>admin</type>
 <full‑name>Fred Flintstone</full‑name>
 <company‑info>
 <dept>2</dept>
 <id>2</id>
 </company‑info>
 </user>
 <user>
 <name>barney</name>
 <type>admin</type>
 <full‑name>Barney Rubble</full‑name>
 <company‑info>
 <dept>2</dept>
 <id>3</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

 The following filter request would have produced the same result, but
 only because the container <users> defines one child element
 (<user>).

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user/>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

6.4.4. Select All <name> Elements within the <users> Subtree

 This filter contains two containment nodes (<users>, <user>) and one
 selection node (<name>). All instances of the <name> element in the
 same sibling set are selected in the filter output. The client might
 need to know that <name> is used as an instance identifier in this
 particular data structure, but the server does not need to know that
 meta-data in order to process the request.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name/>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 </user>
 <user>
 <name>fred</name>
 </user>
 <user>
 <name>barney</name>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.5. One Specific <user> Entry

 This filter contains two containment nodes (<users>, <user>) and one
 content match node (<name>). All instances of the sibling set
 containing <name> for which the value of <name> equals "fred" are
 selected in the filter output.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full‑name>Fred Flintstone</full‑name>
 <company‑info>
 <dept>2</dept>
 <id>2</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.6. Specific Elements from a Specific <user> Entry

 This filter contains two containment nodes (<users>, <user>), one
 content match node (<name>), and two selection nodes (<type>,
 <full-name>). All instances of the <type> and <full-name> elements
 in the same sibling set containing <name> for which the value of
 <name> equals "fred" are selected in the filter output. The
 <company-info> element is not included because the sibling set
 contains selection nodes.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type/>
 <full‑name/>
 </user>
 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full‑name>Fred Flintstone</full‑name>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.7. Multiple Subtrees

 This filter contains three subtrees (name=root, fred, barney).

 The "root" subtree filter contains two containment nodes (<users>,
 <user>), one content match node (<name>), and one selection node
 (<company-info>). The subtree selection criteria are met, and just
 the company-info subtree for "root" is selected in the filter output.

 The "fred" subtree filter contains three containment nodes (<users>,
 <user>, <company-info>), one content match node (<name>), and one
 selection node (<id>). The subtree selection criteria are met, and
 just the <id> element within the company-info subtree for "fred" is
 selected in the filter output.

 The "barney" subtree filter contains three containment nodes
 (<users>, <user>, <company-info>), two content match nodes (<name>,
 <type>), and one selection node (<dept>). The subtree selection
 criteria are not met because user "barney" is not a "superuser", and
 the entire subtree for "barney" (including its parent <user> entry)
 is excluded from the filter output.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <company‑info/>
 </user>
 <user>
 <name>fred</name>
 <company‑info>
 <id/>
 </company‑info>
 </user>
 <user>
 <name>barney</name>
 <type>superuser</type>
 <company‑info>
 <dept/>
 </company‑info>
 </user>

 </users>
 </top>
 </filter>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>
 <user>
 <name>fred</name>
 <company‑info>
 <id>2</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

6.4.8. Elements with Attribute Naming

 In this example, the filter contains one containment node
 (<interfaces>), one attribute match expression ("ifName"), and one
 selection node (<interface>). All instances of the <interface>
 subtree that have an "ifName" attribute equal to "eth0" are selected
 in the filter output. The filter data elements and attributes are
 qualified because the "ifName" attribute will not be considered part
 of the "schema/1.2" namespace if it is unqualified.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <t:top xmlns:t="http://example.com/schema/1.2/stats">
 <t:interfaces>
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </t:top>
 </filter>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <t:top xmlns:t="http://example.com/schema/1.2/stats">
 <t:interfaces>
 <t:interface t:ifName="eth0">
 <t:ifInOctets>45621</t:ifInOctets>
 <t:ifOutOctets>774344</t:ifOutOctets>
 </t:interface>
 </t:interfaces>
 </t:top>
 </data>
</rpc‑reply>

 If "ifName" were a child node instead of an attribute, then the
 following request would produce similar results.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/stats">
 <interfaces>
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </top>
 </filter>
 </get>
</rpc>

7. Protocol Operations

 The NETCONF protocol provides a small set of low-level operations to
 manage device configurations and retrieve device state information.
 The base protocol provides operations to retrieve, configure, copy,
 and delete configuration datastores. Additional operations are
 provided, based on the capabilities advertised by the device.

 The base protocol includes the following protocol operations:

 o get

 o get-config

 o edit-config

 o copy-config

 o delete-config

 o lock

 o unlock

 o close-session

 o kill-session

 A protocol operation can fail for various reasons, including
 "operation not supported". An initiator SHOULD NOT assume that any
 operation will always succeed. The return values in any RPC reply
 SHOULD be checked for error responses.

 The syntax and XML encoding of the protocol operations are formally
 defined in the YANG module in Appendix C. The following sections
 describe the semantics of each protocol operation.

7.1. <get-config>

Description: Retrieve all or part of a specified configuration
 datastore.

 Parameters:

source: Name of the configuration datastore being queried, such
 as <running/>.

filter: This parameter identifies the portions of the device
 configuration datastore to retrieve. If this parameter is not
 present, the entire configuration is returned.

 The <filter> element MAY optionally contain a "type" attribute.
 This attribute indicates the type of filtering syntax used
 within the <filter> element. The default filtering mechanism
 in NETCONF is referred to as subtree filtering and is described
 in Section 6. The value "subtree" explicitly identifies this
 type of filtering.

 If the NETCONF peer supports the :xpath capability
 (Section 8.9), the value "xpath" MAY be used to indicate that
 the "select" attribute on the <filter> element contains an
 XPath expression.

Positive Response: If the device can satisfy the request, the server
 sends an <rpc‑reply> element containing a <data> element with the
 results of the query.

Negative Response: An <rpc‑error> element is included in the
 <rpc‑reply> if the request cannot be completed for any reason.

Example: To retrieve the entire <users> subtree:

 <rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get‑config>
 </rpc>

 <rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full‑name>Charlie Root</full‑name>

 <company‑info>
 <dept>1</dept>
 <id>1</id>
 </company‑info>
 </user>
 <!‑‑ additional <user> elements appear here... ‑‑>
 </users>
 </top>
 </data>
 </rpc‑reply>

 Section 6 contains additional examples of subtree filtering.

7.2. <edit-config>

 Description:

 The <edit-config> operation loads all or part of a specified
 configuration to the specified target configuration datastore.
 This operation allows the new configuration to be expressed in
 several ways, such as using a local file, a remote file, or
 inline. If the target configuration datastore does not exist, it
 will be created.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear instead of the <config> parameter.

 The device analyzes the source and target configurations and
 performs the requested changes. The target configuration is not
 necessarily replaced, as with the <copy-config> message. Instead,
 the target configuration is changed in accordance with the
 source's data and requested operations.

 If the <edit-config> operation contains multiple sub-operations
 that apply to the same conceptual node in the underlying data
 model, then the result of the operation is undefined (i.e.,
 outside the scope of the NETCONF protocol).

 Attributes:

operation: Elements in the <config> subtree MAY contain an
 "operation" attribute, which belongs to the NETCONF namespace
 defined in Section 3.1. The attribute identifies the point in
 the configuration to perform the operation and MAY appear on
 multiple elements throughout the <config> subtree.

 If the "operation" attribute is not specified, the
 configuration is merged into the configuration datastore.

 The "operation" attribute has one of the following values:

merge: The configuration data identified by the element
 containing this attribute is merged with the configuration
 at the corresponding level in the configuration datastore
 identified by the <target> parameter. This is the default
 behavior.

replace: The configuration data identified by the element
 containing this attribute replaces any related configuration
 in the configuration datastore identified by the <target>
 parameter. If no such configuration data exists in the
 configuration datastore, it is created. Unlike a
 <copy‑config> operation, which replaces the entire target
 configuration, only the configuration actually present in
 the <config> parameter is affected.

create: The configuration data identified by the element
 containing this attribute is added to the configuration if
 and only if the configuration data does not already exist in
 the configuration datastore. If the configuration data
 exists, an <rpc‑error> element is returned with an
 <error‑tag> value of "data‑exists".

delete: The configuration data identified by the element
 containing this attribute is deleted from the configuration
 if and only if the configuration data currently exists in
 the configuration datastore. If the configuration data does
 not exist, an <rpc‑error> element is returned with an
 <error‑tag> value of "data‑missing".

remove: The configuration data identified by the element
 containing this attribute is deleted from the configuration
 if the configuration data currently exists in the
 configuration datastore. If the configuration data does not
 exist, the "remove" operation is silently ignored by the
 server.

 Parameters:

target: Name of the configuration datastore being edited, such as
 <running/> or <candidate/>.

default‑operation: Selects the default operation (as described in
 the "operation" attribute) for this <edit‑config> request. The
 default value for the <default‑operation> parameter is "merge".

 The <default-operation> parameter is optional, but if provided,
 it has one of the following values:

 merge: The configuration data in the <config> parameter is
 merged with the configuration at the corresponding level in
 the target datastore. This is the default behavior.

 replace: The configuration data in the <config> parameter
 completely replaces the configuration in the target
 datastore. This is useful for loading previously saved
 configuration data.

 none: The target datastore is unaffected by the configuration
 in the <config> parameter, unless and until the incoming
 configuration data uses the "operation" attribute to request
 a different operation. If the configuration in the <config>
 parameter contains data for which there is not a
 corresponding level in the target datastore, an <rpc‑error>
 is returned with an <error‑tag> value of data‑missing.
 Using "none" allows operations like "delete" to avoid
 unintentionally creating the parent hierarchy of the element
 to be deleted.

test‑option: The <test‑option> element MAY be specified only if
 the device advertises the :validate:1.1 capability
 (Section 8.6).

 The <test-option> element has one of the following values:

 test‑then‑set: Perform a validation test before attempting to
 set. If validation errors occur, do not perform the
 <edit‑config> operation. This is the default test‑option.

 set: Perform a set without a validation test first.

 test‑only: Perform only the validation test, without
 attempting to set.

 error‑option: The <error‑option> element has one of the following
 values:

 stop‑on‑error: Abort the <edit‑config> operation on first
 error. This is the default error‑option.

 continue‑on‑error: Continue to process configuration data on
 error; error is recorded, and negative response is generated
 if any errors occur.

 rollback‑on‑error: If an error condition occurs such that an
 error severity <rpc‑error> element is generated, the server
 will stop processing the <edit‑config> operation and restore
 the specified configuration to its complete state at the
 start of this <edit‑config> operation. This option requires
 the server to support the :rollback‑on‑error capability
 described in Section 8.5.

 config: A hierarchy of configuration data as defined by one of
 the device's data models. The contents MUST be placed in an
 appropriate namespace, to allow the device to detect the
 appropriate data model, and the contents MUST follow the
 constraints of that data model, as defined by its capability
 definition. Capabilities are discussed in Section 8.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent containing an <ok> element.

Negative Response: An <rpc‑error> response is sent if the request
 cannot be completed for any reason.

Example: The <edit‑config> examples in this section utilize a simple
 data model, in which multiple instances of the <interface> element
 can be present, and an instance is distinguished by the <name>
 element within each <interface> element.

 Set the MTU to 1500 on an interface named "Ethernet0/0" in the
 running configuration:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Add an interface named "Ethernet0/0" to the running configuration,
 replacing any previous interface with that name:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="replace">
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 <address>
 <name>192.0.2.4</name>
 <prefix‑length>24</prefix‑length>
 </address>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Delete the configuration for an interface named "Ethernet0/0" from
 the running configuration:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="delete">
 <name>Ethernet0/0</name>

 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Delete interface 192.0.2.4 from an OSPF area (other interfaces
 configured in the same area are unaffected):

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <protocols>
 <ospf>
 <area>
 <name>0.0.0.0</name>
 <interfaces>
 <interface xc:operation="delete">
 <name>192.0.2.4</name>
 </interface>
 </interfaces>
 </area>
 </ospf>
 </protocols>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.3. <copy-config>

Description: Create or replace an entire configuration datastore
 with the contents of another complete configuration datastore. If
 the target datastore exists, it is overwritten. Otherwise, a new
 one is created, if allowed.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear as the <source> or <target> parameter.

 Even if it advertises the :writable-running capability, a device
 MAY choose not to support the <running/> configuration datastore
 as the <target> parameter of a <copy-config> operation. A device
 MAY choose not to support remote-to-remote copy operations, where
 both the <source> and <target> parameters use the <url> element.
 If the <source> and <target> parameters identify the same URL or
 configuration datastore, an error MUST be returned with an error-
 tag containing "invalid-value".

 Parameters:

 target: Name of the configuration datastore to use as the
 destination of the <copy‑config> operation.

 source: Name of the configuration datastore to use as the source
 of the <copy‑config> operation, or the <config> element
 containing the complete configuration to copy.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent that includes an <ok> element.

Negative Response: An <rpc‑error> element is included within the
 <rpc‑reply> if the request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <running/>
 </target>
 <source>
 <url>https://user:password@example.com/cfg/new.txt</url>
 </source>
 </copy‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.4. <delete-config>

Description: Delete a configuration datastore. The <running>
 configuration datastore cannot be deleted.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear as the <target> parameter.

 Parameters:

 target: Name of the configuration datastore to delete.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent that includes an <ok> element.

Negative Response: An <rpc‑error> element is included within the
 <rpc‑reply> if the request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete‑config>
 <target>
 <startup/>
 </target>
 </delete‑config>
</rpc>

 <rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.5. <lock>

Description: The <lock> operation allows the client to lock the
 entire configuration datastore system of a device. Such locks are
 intended to be short‑lived and allow a client to make a change
 without fear of interaction with other NETCONF clients, non‑
 NETCONF clients (e.g., SNMP and command line interface (CLI)
 scripts), and human users.

 An attempt to lock the configuration datastore MUST fail if an
 existing session or other entity holds a lock on any portion of
 the lock target.

 When the lock is acquired, the server MUST prevent any changes to
 the locked resource other than those requested by this session.
 SNMP and CLI requests to modify the resource MUST fail with an
 appropriate error.

 The duration of the lock is defined as beginning when the lock is
 acquired and lasting until either the lock is released or the
 NETCONF session closes. The session closure can be explicitly
 performed by the client, or implicitly performed by the server
 based on criteria such as failure of the underlying transport,
 simple inactivity timeout, or detection of abusive behavior on the
 part of the client. These criteria are dependent on the
 implementation and the underlying transport.

 The <lock> operation takes a mandatory parameter, <target>. The
 <target> parameter names the configuration datastore that will be
 locked. When a lock is active, using the <edit-config> operation
 on the locked configuration datastore and using the locked
 configuration as a target of the <copy-config> operation will be
 disallowed by any other NETCONF session. Additionally, the system
 will ensure that these locked configuration resources will not be
 modified by other non-NETCONF management operations such as SNMP
 and CLI. The <kill-session> operation can be used to force the
 release of a lock owned by another NETCONF session. It is beyond
 the scope of this document to define how to break locks held by
 other entities.

 A lock MUST NOT be granted if any of the following conditions is
 true:

 * A lock is already held by any NETCONF session or another
 entity.

 * The target configuration is <candidate>, it has already been
 modified, and these changes have not been committed or rolled
 back.

 * The target configuration is <running>, and another NETCONF
 session has an ongoing confirmed commit (Section 8.4).

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

 A lock will be released by the system if the session holding the
 lock is terminated for any reason.

 Parameters:

 target: Name of the configuration datastore to lock.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent that contains an <ok> element.

Negative Response: An <rpc‑error> element is included in the
 <rpc‑reply> if the request cannot be completed for any reason.

 If the lock is already held, the <error-tag> element will be
 "lock-denied" and the <error-info> element will include the
 <session-id> of the lock owner. If the lock is held by a non-
 NETCONF entity, a <session-id> of 0 (zero) is included. Note that
 any other entity performing a lock on even a partial piece of a
 target will prevent a NETCONF lock (which is global) from being
 obtained on that target.

Example: The following example shows a successful acquisition of a
 lock.

 <rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/> <!‑‑ lock succeeded ‑‑>
 </rpc‑reply>

Example: The following example shows a failed attempt to acquire a
 lock when the lock is already in use.

 <rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc‑error> <!‑‑ lock failed ‑‑>
 <error‑type>protocol</error‑type>
 <error‑tag>lock‑denied</error‑tag>
 <error‑severity>error</error‑severity>
 <error‑message>
 Lock failed, lock is already held
 </error‑message>
 <error‑info>
 <session‑id>454</session‑id>
 <!‑‑ lock is held by NETCONF session 454 ‑‑>
 </error‑info>
 </rpc‑error>
 </rpc‑reply>

7.6. <unlock>

Description: The <unlock> operation is used to release a
 configuration lock, previously obtained with the <lock> operation.

 An <unlock> operation will not succeed if either of the following
 conditions is true:

 * The specified lock is not currently active.

 * The session issuing the <unlock> operation is not the same
 session that obtained the lock.

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

 Parameters:

target: Name of the configuration datastore to unlock.

 A NETCONF client is not permitted to unlock a configuration
 datastore that it did not lock.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent that contains an <ok> element.

Negative Response: An <rpc‑error> element is included in the
 <rpc‑reply> if the request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.7. <get>

Description: Retrieve running configuration and device state
 information.

 Parameters:

filter: This parameter specifies the portion of the system
 configuration and state data to retrieve. If this parameter is
 not present, all the device configuration and state information
 is returned.

 The <filter> element MAY optionally contain a "type" attribute.
 This attribute indicates the type of filtering syntax used
 within the <filter> element. The default filtering mechanism
 in NETCONF is referred to as subtree filtering and is described
 in Section 6. The value "subtree" explicitly identifies this
 type of filtering.

 If the NETCONF peer supports the :xpath capability
 (Section 8.9), the value "xpath" MAY be used to indicate that
 the "select" attribute of the <filter> element contains an
 XPath expression.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent. The <data> section contains the appropriate
 subset.

Negative Response: An <rpc‑error> element is included in the
 <rpc‑reply> if the request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/stats">
 <interfaces>
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </top>
 </filter>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/stats">
 <interfaces>
 <interface>
 <ifName>eth0</ifName>
 <ifInOctets>45621</ifInOctets>
 <ifOutOctets>774344</ifOutOctets>
 </interface>
 </interfaces>
 </top>
 </data>
</rpc‑reply>

7.8. <close-session>

Description: Request graceful termination of a NETCONF session.

 When a NETCONF server receives a <close-session> request, it will
 gracefully close the session. The server will release any locks
 and resources associated with the session and gracefully close any
 associated connections. Any NETCONF requests received after a
 <close-session> request will be ignored.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent that includes an <ok> element.

Negative Response: An <rpc‑error> element is included in the
 <rpc‑reply> if the request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close‑session/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

7.9. <kill-session>

Description: Force the termination of a NETCONF session.

 When a NETCONF entity receives a <kill-session> request for an
 open session, it will abort any operations currently in process,
 release any locks and resources associated with the session, and
 close any associated connections.

 If a NETCONF server receives a <kill-session> request while
 processing a confirmed commit (Section 8.4), it MUST restore the
 configuration to its state before the confirmed commit was issued.

 Otherwise, the <kill-session> operation does not roll back
 configuration or other device state modifications made by the
 entity holding the lock.

 Parameters:

 session‑id: Session identifier of the NETCONF session to be
 terminated. If this value is equal to the current session ID,
 an "invalid‑value" error is returned.

Positive Response: If the device was able to satisfy the request, an
 <rpc‑reply> is sent that includes an <ok> element.

Negative Response: An <rpc‑error> element is included in the
 <rpc‑reply> if the request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <kill‑session>
 <session‑id>4</session‑id>
 </kill‑session>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8. Capabilities

 This section defines a set of capabilities that a client or a server
 MAY implement. Each peer advertises its capabilities by sending them
 during an initial capabilities exchange. Each peer needs to
 understand only those capabilities that it might use and MUST ignore
 any capability received from the other peer that it does not require
 or does not understand.

 Additional capabilities can be defined using the template in
 Appendix D. Future capability definitions can be published as
 standards by standards bodies or published as proprietary extensions.

 A NETCONF capability is identified with a URI. The base capabilities
 are defined using URNs following the method described in RFC 3553
 [RFC3553]. Capabilities defined in this document have the following
 format:

 urn:ietf:params:netconf:capability:{name}:1.x

 where {name} is the name of the capability. Capabilities are often
 referenced in discussions and email using the shorthand :{name}, or
 :{name}:{version} if the capability exists in multiple versions. For
 example, the foo capability would have the formal name
 "urn:ietf:params:netconf:capability:foo:1.0" and be called ":foo".
 The shorthand form MUST NOT be used inside the protocol.

8.1. Capabilities Exchange

 Capabilities are advertised in messages sent by each peer during
 session establishment. When the NETCONF session is opened, each peer
 (both client and server) MUST send a <hello> element containing a
 list of that peer's capabilities. Each peer MUST send at least the
 base NETCONF capability, "urn:ietf:params:netconf:base:1.1". A peer
 MAY include capabilities for previous NETCONF versions, to indicate
 that it supports multiple protocol versions.

 Both NETCONF peers MUST verify that the other peer has advertised a
 common protocol version. When comparing protocol version capability
 URIs, only the base part is used, in the event any parameters are
 encoded at the end of the URI string. If no protocol version
 capability in common is found, the NETCONF peer MUST NOT continue the
 session. If more than one protocol version URI in common is present,
 then the highest numbered (most recent) protocol version MUST be used
 by both peers.

 A server sending the <hello> element MUST include a <session-id>
 element containing the session ID for this NETCONF session. A client
 sending the <hello> element MUST NOT include a <session-id> element.

 A server receiving a <hello> message with a <session-id> element MUST
 terminate the NETCONF session. Similarly, a client that does not
 receive a <session-id> element in the server's <hello> message MUST
 terminate the NETCONF session (without first sending a
 <close-session>).

 In the following example, a server advertises the base NETCONF
 capability, one NETCONF capability defined in the base NETCONF
 document, and one implementation-specific capability.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:base:1.1
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:startup:1.0
 </capability>
 <capability>
 http://example.net/router/2.3/myfeature
 </capability>
 </capabilities>
 <session‑id>4</session‑id>
</hello>

 Each peer sends its <hello> element simultaneously as soon as the
 connection is open. A peer MUST NOT wait to receive the capability
 set from the other side before sending its own set.

8.2. Writable-Running Capability

8.2.1. Description

 The :writable-running capability indicates that the device supports
 direct writes to the <running> configuration datastore. In other
 words, the device supports <edit-config> and <copy-config> operations
 where the <running> configuration is the target.

8.2.2. Dependencies

 None.

8.2.3. Capability Identifier

 The :writable-running capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:writable-running:1.0

8.2.4. New Operations

 None.

8.2.5. Modifications to Existing Operations

8.2.5.1. <edit-config>

 The :writable-running capability modifies the <edit-config> operation
 to accept the <running> element as a <target>.

8.2.5.2. <copy-config>

 The :writable-running capability modifies the <copy-config> operation
 to accept the <running> element as a <target>.

8.3. Candidate Configuration Capability

8.3.1. Description

 The candidate configuration capability, :candidate, indicates that
 the device supports a candidate configuration datastore, which is
 used to hold configuration data that can be manipulated without
 impacting the device's current configuration. The candidate
 configuration is a full configuration data set that serves as a work
 place for creating and manipulating configuration data. Additions,
 deletions, and changes can be made to this data to construct the
 desired configuration data. A <commit> operation MAY be performed at
 any time that causes the device's running configuration to be set to
 the value of the candidate configuration.

 The <commit> operation effectively sets the running configuration to
 the current contents of the candidate configuration. While it could
 be modeled as a simple copy, it is done as a distinct operation for a
 number of reasons. In keeping high-level concepts as first-class
 operations, we allow developers to see more clearly both what the
 client is requesting and what the server must perform. This keeps
 the intentions more obvious, the special cases less complex, and the
 interactions between operations more straightforward. For example,
 the :confirmed-commit:1.1 capability (Section 8.4) would make no
 sense as a "copy confirmed" operation.

 The candidate configuration can be shared among multiple sessions.
 Unless a client has specific information that the candidate
 configuration is not shared, it MUST assume that other sessions are
 able to modify the candidate configuration at the same time. It is
 therefore prudent for a client to lock the candidate configuration
 before modifying it.

 The client can discard any uncommitted changes to the candidate
 configuration by executing the <discard-changes> operation. This
 operation reverts the contents of the candidate configuration to the
 contents of the running configuration.

8.3.2. Dependencies

 None.

8.3.3. Capability Identifier

 The :candidate capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:candidate:1.0

8.3.4. New Operations

8.3.4.1. <commit>

 Description:

 When the candidate configuration's content is complete, the
 configuration data can be committed, publishing the data set to
 the rest of the device and requesting the device to conform to
 the behavior described in the new configuration.

 To commit the candidate configuration as the device's new
 current configuration, use the <commit> operation.

 The <commit> operation instructs the device to implement the
 configuration data contained in the candidate configuration.
 If the device is unable to commit all of the changes in the
 candidate configuration datastore, then the running
 configuration MUST remain unchanged. If the device does
 succeed in committing, the running configuration MUST be
 updated with the contents of the candidate configuration.

 If the running or candidate configuration is currently locked
 by a different session, the <commit> operation MUST fail with
 an <error-tag> value of "in-use".

 If the system does not have the :candidate capability, the
 <commit> operation is not available.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.3.4.2. <discard-changes>

 If the client decides that the candidate configuration is not to be
 committed, the <discard-changes> operation can be used to revert the
 candidate configuration to the current running configuration.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <discard‑changes/>
</rpc>

 This operation discards any uncommitted changes by resetting the
 candidate configuration with the content of the running
 configuration.

8.3.5. Modifications to Existing Operations

8.3.5.1. <get-config>, <edit-config>, <copy-config>, and <validate>

 The candidate configuration can be used as a source or target of any
 <get-config>, <edit-config>, <copy-config>, or <validate> operation
 as a <source> or <target> parameter. The <candidate> element is used
 to indicate the candidate configuration:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <candidate/>
 </source>
 </get‑config>
</rpc>

8.3.5.2. <lock> and <unlock>

 The candidate configuration can be locked using the <lock> operation
 with the <candidate> element as the <target> parameter:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
</rpc>

 Similarly, the candidate configuration is unlocked using the
 <candidate> element as the <target> parameter:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
</rpc>

 When a client fails with outstanding changes to the candidate
 configuration, recovery can be difficult. To facilitate easy
 recovery, any outstanding changes are discarded when the lock is
 released, whether explicitly with the <unlock> operation or
 implicitly from session failure.

8.4. Confirmed Commit Capability

8.4.1. Description

 The :confirmed-commit:1.1 capability indicates that the server will
 support the <cancel-commit> operation and the <confirmed>,
 <confirm-timeout>, <persist>, and <persist-id> parameters for the
 <commit> operation. See Section 8.3 for further details on the
 <commit> operation.

 A confirmed <commit> operation MUST be reverted if a confirming
 commit is not issued within the timeout period (by default 600
 seconds = 10 minutes). The confirming commit is a <commit> operation
 without the <confirmed> parameter. The timeout period can be
 adjusted with the <confirm-timeout> parameter. If a follow-up
 confirmed <commit> operation is issued before the timer expires, the
 timer is reset to the new value (600 seconds by default). Both the
 confirming commit and a follow-up confirmed <commit> operation MAY
 introduce additional changes to the configuration.

 If the <persist> element is not given in the confirmed commit
 operation, any follow-up commit and the confirming commit MUST be
 issued on the same session that issued the confirmed commit. If the
 <persist> element is given in the confirmed <commit> operation, a
 follow-up commit and the confirming commit can be given on any
 session, and they MUST include a <persist-id> element with a value
 equal to the given value of the <persist> element.

 If the server also advertises the :startup capability, a
 <copy-config> from running to startup is also necessary to save the
 changes to startup.

 If the session issuing the confirmed commit is terminated for any
 reason before the confirm timeout expires, the server MUST restore
 the configuration to its state before the confirmed commit was
 issued, unless the confirmed commit also included a <persist>
 element.

 If the device reboots for any reason before the confirm timeout
 expires, the server MUST restore the configuration to its state
 before the confirmed commit was issued.

 If a confirming commit is not issued, the device will revert its
 configuration to the state prior to the issuance of the confirmed
 commit. To cancel a confirmed commit and revert changes without
 waiting for the confirm timeout to expire, the client can explicitly
 restore the configuration to its state before the confirmed commit
 was issued, by using the <cancel-commit> operation.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, the lock is obtained before the <edit-config>
 operation is started). Therefore, it is strongly suggested that in
 order to use this feature with shared configuration datastores,
 configuration locking SHOULD also be used.

 Version 1.0 of this capability was defined in [RFC4741]. Version 1.1
 is defined in this document, and extends version 1.0 by adding a new
 operation, <cancel-commit>, and two new optional parameters,
 <persist> and <persist-id>. For backwards compatibility with old
 clients, servers conforming to this specification MAY advertise
 version 1.0 in addition to version 1.1.

8.4.2. Dependencies

 The :confirmed-commit:1.1 capability is only relevant if the
 :candidate capability is also supported.

8.4.3. Capability Identifier

 The :confirmed-commit:1.1 capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:confirmed-commit:1.1

8.4.4. New Operations

8.4.4.1. <cancel-commit>

 Description:

 Cancels an ongoing confirmed commit. If the <persist-id>
 parameter is not given, the <cancel-commit> operation MUST be
 issued on the same session that issued the confirmed commit.

 Parameters:

 persist-id:

 Cancels a persistent confirmed commit. The value MUST be
 equal to the value given in the <persist> parameter to the
 <commit> operation. If the value does not match, the
 operation fails with an "invalid-value" error.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 </commit>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <cancel‑commit/>
</rpc>

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.4.5. Modifications to Existing Operations

8.4.5.1. <commit>

 The :confirmed-commit:1.1 capability allows 4 additional parameters
 to the <commit> operation.

 Parameters:

 confirmed:

 Perform a confirmed <commit> operation.

 confirm-timeout:

 Timeout period for confirmed commit, in seconds. If
 unspecified, the confirm timeout defaults to 600 seconds.

 persist:

 Make the confirmed commit survive a session termination, and
 set a token on the ongoing confirmed commit.

 persist-id:

 Used to issue a follow-up confirmed commit or a confirming
 commit from any session, with the token from the previous
 <commit> operation.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm‑timeout>120</confirm‑timeout>
 </commit>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

 Example:

<!‑‑ start a persistent confirmed‑commit ‑‑>
<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <persist>IQ,d4668</persist>
 </commit>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

<!‑‑ confirm the persistent confirmed‑commit,
 possibly from another session ‑‑>
<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <persist‑id>IQ,d4668</persist‑id>
 </commit>
</rpc>

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.5. Rollback-on-Error Capability

8.5.1. Description

 This capability indicates that the server will support the
 "rollback-on-error" value in the <error-option> parameter to the
 <edit-config> operation.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, the lock is obtained before the <edit-config>
 operation is started). Therefore, it is strongly suggested that in
 order to use this feature with shared configuration datastores,
 configuration locking also be used.

8.5.2. Dependencies

 None.

8.5.3. Capability Identifier

 The :rollback-on-error capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:rollback-on-error:1.0

8.5.4. New Operations

 None.

8.5.5. Modifications to Existing Operations

8.5.5.1. <edit-config>

 The :rollback-on-error capability allows the "rollback-on-error"
 value to the <error-option> parameter on the <edit-config> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <error‑option>rollback‑on‑error</error‑option>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>100000</mtu>
 </interface>
 </top>
 </config>
 </edit‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.6. Validate Capability

8.6.1. Description

 Validation consists of checking a complete configuration for
 syntactical and semantic errors before applying the configuration to
 the device.

 If this capability is advertised, the device supports the <validate>
 protocol operation and checks at least for syntax errors. In
 addition, this capability supports the <test-option> parameter to the
 <edit-config> operation and, when it is provided, checks at least for
 syntax errors.

 Version 1.0 of this capability was defined in [RFC4741]. Version 1.1
 is defined in this document, and extends version 1.0 by adding a new
 value, "test-only", to the <test-option> parameter of the
 <edit-config> operation. For backwards compatibility with old
 clients, servers conforming to this specification MAY advertise
 version 1.0 in addition to version 1.1.

8.6.2. Dependencies

 None.

8.6.3. Capability Identifier

 The :validate:1.1 capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:validate:1.1

8.6.4. New Operations

8.6.4.1. <validate>

 Description:

 This protocol operation validates the contents of the specified
 configuration.

 Parameters:

 source:

 Name of the configuration datastore to validate, such as
 <candidate>, or the <config> element containing the complete
 configuration to validate.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 A <validate> operation can fail for a number of reasons, such
 as syntax errors, missing parameters, references to undefined
 configuration data, or any other violations of rules
 established by the underlying data model.

 Example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc‑reply>

8.6.5. Modifications to Existing Operations

8.6.5.1. <edit-config>

 The :validate:1.1 capability modifies the <edit-config> operation to
 accept the <test-option> parameter.

8.7. Distinct Startup Capability

8.7.1. Description

 The device supports separate running and startup configuration
 datastores. The startup configuration is loaded by the device when
 it boots. Operations that affect the running configuration will not
 be automatically copied to the startup configuration. An explicit
 <copy-config> operation from the <running> to the <startup> is used
 to update the startup configuration to the current contents of the
 running configuration. NETCONF protocol operations refer to the
 startup datastore using the <startup> element.

8.7.2. Dependencies

 None.

8.7.3. Capability Identifier

 The :startup capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:startup:1.0

8.7.4. New Operations

 None.

8.7.5. Modifications to Existing Operations

8.7.5.1. General

 The :startup capability adds the <startup/> configuration datastore
 to arguments of several NETCONF operations. The server MUST support
 the following additional values:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Operation | Parameters | Notes |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
<get‑config>	<source>	
<copy‑config>	<source> <target>	
<lock>	<target>	
<unlock>	<target>	
<validate>	<source>	If :validate:1.1
		is advertised
<delete‑config>	<target>	Resets the device
		to its factory
		defaults
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 To save the startup configuration, use the <copy-config> operation to
 copy the <running> configuration datastore to the <startup>
 configuration datastore.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <startup/>
 </target>
 <source>
 <running/>
 </source>
 </copy‑config>
</rpc>

8.8. URL Capability

8.8.1. Description

 The NETCONF peer has the ability to accept the <url> element in
 <source> and <target> parameters. The capability is further
 identified by URL arguments indicating the URL schemes supported.

8.8.2. Dependencies

 None.

8.8.3. Capability Identifier

 The :url capability is identified by the following capability string:

 urn:ietf:params:netconf:capability:url:1.0?scheme={name,...}

 The :url capability URI MUST contain a "scheme" argument assigned a
 comma-separated list of scheme names indicating which schemes the
 NETCONF peer supports. For example:

 urn:ietf:params:netconf:capability:url:1.0?scheme=http,ftp,file

8.8.4. New Operations

 None.

8.8.5. Modifications to Existing Operations

8.8.5.1. <edit-config>

 The :url capability modifies the <edit-config> operation to accept
 the <url> element as an alternative to the <config> parameter.

 The file that the url refers to contains the configuration data
 hierarchy to be modified, encoded in XML under the element <config>
 in the "urn:ietf:params:xml:ns:netconf:base:1.0" namespace.

8.8.5.2. <copy-config>

 The :url capability modifies the <copy-config> operation to accept
 the <url> element as the value of the <source> and the <target>
 parameters.

 The file that the url refers to contains the complete datastore,
 encoded in XML under the element <config> in the
 "urn:ietf:params:xml:ns:netconf:base:1.0" namespace.

8.8.5.3. <delete-config>

 The :url capability modifies the <delete-config> operation to accept
 the <url> element as the value of the <target> parameters.

8.8.5.4. <validate>

 The :url capability modifies the <validate> operation to accept the
 <url> element as the value of the <source> parameter.

8.9. XPath Capability

8.9.1. Description

 The XPath capability indicates that the NETCONF peer supports the use
 of XPath expressions in the <filter> element. XPath is described in
 [W3C.REC-xpath-19991116].

 The data model used in the XPath expression is the same as that used
 in XPath 1.0 [W3C.REC-xpath-19991116], with the same extension for
 root node children as used by XSLT 1.0 ([W3C.REC-xslt-19991116],
 Section 3.1). Specifically, it means that the root node MAY have any
 number of element nodes as its children.

 The XPath expression is evaluated in the following context:

 o The set of namespace declarations are those in scope on the
 <filter> element.

 o The set of variable bindings is defined by the data model. If no
 such variable bindings are defined, the set is empty.

 o The function library is the core function library, plus any
 functions defined by the data model.

 o The context node is the root node.

 The XPath expression MUST return a node set. If it does not return a
 node set, the operation fails with an "invalid-value" error.

 The response message contains the subtrees selected by the filter
 expression. For each such subtree, the path from the data model root
 node down to the subtree, including any elements or attributes
 necessary to uniquely identify the subtree, are included in the
 response message. Specific data instances are not duplicated in the
 response.

8.9.2. Dependencies

 None.

8.9.3. Capability Identifier

 The :xpath capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:xpath:1.0

8.9.4. New Operations

 None.

8.9.5. Modifications to Existing Operations

8.9.5.1. <get-config> and <get>

 The :xpath capability modifies the <get> and <get-config> operations
 to accept the value "xpath" in the "type" attribute of the <filter>
 element. When the "type" attribute is set to "xpath", a "select"
 attribute MUST be present on the <filter> element. The "select"
 attribute will be treated as an XPath expression and used to filter
 the returned data. The <filter> element itself MUST be empty in this
 case.

 The XPath result for the select expression MUST be a node-set. Each
 node in the node-set MUST correspond to a node in the underlying data
 model. In order to properly identify each node, the following
 encoding rules are defined:

 o All ancestor nodes of the result node MUST be encoded first, so
 the <data> element returned in the reply contains only fully
 specified subtrees, according to the underlying data model.

 o If any sibling or ancestor nodes of the result node are needed to
 identify a particular instance within a conceptual data structure,
 then these nodes MUST also be encoded in the response.

 For example:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get‑config>
 <source>
 <running/>
 </source>
 <!‑‑ get the user named fred ‑‑>
 <filter xmlns:t="http://example.com/schema/1.2/config"
 type="xpath"
 select="/t:top/t:users/t:user[t:name='fred']"/>
 </get‑config>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <company‑info>
 <id>2</id>
 </company‑info>
 </user>
 </users>
 </top>
 </data>
</rpc‑reply>

9. Security Considerations

 This section provides security considerations for the base NETCONF
 message layer and the base operations of the NETCONF protocol.
 Security considerations for the NETCONF transports are provided in
 the transport documents, and security considerations for the content
 manipulated by NETCONF can be found in the documents defining data
 models.

 This document does not specify an authorization scheme, as such a
 scheme will likely be tied to a meta-data model or a data model.
 Implementors SHOULD provide a comprehensive authorization scheme with
 NETCONF.

 Authorization of individual users via the NETCONF server may or may
 not map 1:1 to other interfaces. First, the data models might be
 incompatible. Second, it could be desirable to authorize based on
 mechanisms available in the Secure Transport layer (e.g., SSH, Blocks
 Extensible Exchange Protocol (BEEP), etc.).

 In addition, operations on configurations could have unintended
 consequences if those operations are also not guarded by the global
 lock on the files or objects being operated upon. For instance, if
 the running configuration is not locked, a partially complete access
 list could be committed from the candidate configuration unbeknownst
 to the owner of the lock of the candidate configuration, leading to
 either an insecure or inaccessible device.

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic eavesdropping and false data injection
 attacks. Configuration information often contains passwords, user
 names, service descriptions, and topological information, all of
 which are sensitive. Because of this, this protocol SHOULD be
 implemented carefully with adequate attention to all manner of attack
 one might expect to experience with other management interfaces.

 The protocol, therefore, MUST minimally support options for both
 confidentiality and authentication. It is anticipated that the
 underlying protocol (SSH, BEEP, etc.) will provide for both
 confidentiality and authentication, as is required. It is further
 expected that the identity of each end of a NETCONF session will be
 available to the other in order to determine authorization for any
 given request. One could also easily envision additional
 information, such as transport and encryption methods, being made
 available for purposes of authorization. NETCONF itself provides no
 means to re-authenticate, much less authenticate. All such actions
 occur at lower layers.

 Different environments may well allow different rights prior to and
 then after authentication. Thus, an authorization model is not
 specified in this document. When an operation is not properly
 authorized, a simple "access denied" is sufficient. Note that
 authorization information can be exchanged in the form of
 configuration information, which is all the more reason to ensure the
 security of the connection.

 That having been said, it is important to recognize that some
 operations are clearly more sensitive by nature than others. For
 instance, <copy-config> to the startup or running configurations is
 clearly not a normal provisioning operation, whereas <edit-config>
 is. Such global operations MUST disallow the changing of information
 that an individual does not have authorization to perform. For
 example, if user A is not allowed to configure an IP address on an
 interface but user B has configured an IP address on an interface in
 the <candidate> configuration, user A MUST NOT be allowed to commit
 the <candidate> configuration.

 Similarly, just because someone says "go write a configuration
 through the URL capability at a particular place", this does not mean
 that an element will do it without proper authorization.

 The <lock> operation will demonstrate that NETCONF is intended for
 use by systems that have at least some trust of the administrator.
 As specified in this document, it is possible to lock portions of a
 configuration that a principal might not otherwise have access to.
 After all, the entire configuration is locked. To mitigate this
 problem, there are two approaches. It is possible to kill another
 NETCONF session programmatically from within NETCONF if one knows the
 session identifier of the offending session. The other possible way
 to break a lock is to provide a function within the device's native
 user interface. These two mechanisms suffer from a race condition
 that could be ameliorated by removing the offending user from an
 Authentication, Authorization, and Accounting (AAA) server. However,
 such a solution is not useful in all deployment scenarios, such as
 those where SSH public/private key pairs are used.

10. IANA Considerations

10.1. NETCONF XML Namespace

 This document registers a URI for the NETCONF XML namespace in the
 IETF XML registry [RFC3688].

 IANA has updated the following URI to reference this document.

 URI: urn:ietf:params:xml:ns:netconf:base:1.0

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

10.2. NETCONF XML Schema

 This document registers a URI for the NETCONF XML schema in the IETF
 XML registry [RFC3688].

 IANA has updated the following URI to reference this document.

 URI: urn:ietf:params:xml:schema:netconf

 Registrant Contact: The IESG.

 XML: Appendix B of this document.

10.3. NETCONF YANG Module

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

name: ietf‑netconf
namespace: urn:ietf:params:xml:ns:netconf:base:1.0
prefix: nc
reference: RFC 6241

10.4. NETCONF Capability URNs

 IANA has created and now maintains a registry "Network Configuration
 Protocol (NETCONF) Capability URNs" that allocates NETCONF capability
 identifiers. Additions to the registry require IETF Standards
 Action.

 IANA has updated the allocations of the following capabilities to
 reference this document.

Index
 Capability Identifier
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 :writable-running

 urn:ietf:params:netconf:capability:writable-running:1.0

 :candidate

 urn:ietf:params:netconf:capability:candidate:1.0

 :rollback-on-error

 urn:ietf:params:netconf:capability:rollback-on-error:1.0

 :startup

 urn:ietf:params:netconf:capability:startup:1.0

 :url

 urn:ietf:params:netconf:capability:url:1.0

 :xpath

 urn:ietf:params:netconf:capability:xpath:1.0

 IANA has added the following capabilities to the registry:

Index
 Capability Identifier
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

 :base:1.1

 urn:ietf:params:netconf:base:1.1

 :confirmed-commit:1.1

 urn:ietf:params:netconf:capability:confirmed-commit:1.1

 :validate:1.1

 urn:ietf:params:netconf:capability:validate:1.1

11. Contributors

 In addition to the editors, this document was written by:

 Ken Crozier, Cisco Systems

 Ted Goddard, IceSoft

 Eliot Lear, Cisco Systems

 Phil Shafer, Juniper Networks

 Steve Waldbusser

 Margaret Wasserman, Painless Security, LLC

12. Acknowledgements

 The authors would like to acknowledge the members of the NETCONF
 working group. In particular, we would like to thank Wes Hardaker
 for his persistence and patience in assisting us with security
 considerations. We would also like to thank Randy Presuhn, Sharon
 Chisholm, Glenn Waters, David Perkins, Weijing Chen, Simon Leinen,
 Keith Allen, Dave Harrington, Ladislav Lhotka, Tom Petch, and Kent
 Watsen for all of their valuable advice.

13. References

13.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3553]
 Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, June 2003.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC5717]
 Lengyel, B. and M. Bjorklund, "Partial Lock Remote
 Procedure Call (RPC) for NETCONF", RFC 5717,
 December 2009.

 [RFC6020]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021]
 Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Configuration Protocol
 over Secure Shell (SSH)", RFC 6242, June 2011.

 [W3C.REC-xml-20001006]

 Sperberg-McQueen, C., Bray, T., Paoli, J., and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)",
 World Wide Web Consortium REC-xml-20001006, October 2000,
 <http://www.w3.org/TR/2000/REC-xml-20001006>.

 [W3C.REC-xpath-19991116]

 DeRose, S. and J. Clark, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

13.2. Informative References

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3470]
 Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines for
 the Use of Extensible Markup Language (XML)
 within IETF Protocols", BCP 70, RFC 3470, January 2003.

 [RFC4251]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4741]
 Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [W3C.REC-xslt-19991116]

 Clark, J., "XSL Transformations (XSLT) Version 1.0", World
 Wide Web Consortium Recommendation REC-xslt-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xslt-19991116>.

Appendix A. NETCONF Error List

 This section is normative.

 For each error-tag, the valid error-type and error-severity values
 are listed, together with any mandatory error-info, if any.

error‑tag: in‑use
error‑type: protocol, application
error‑severity: error
error‑info: none
Description: The request requires a resource that already is in
 use.

error‑tag: invalid‑value
error‑type: protocol, application
error‑severity: error
error‑info: none
Description: The request specifies an unacceptable value for one
 or more parameters.

error‑tag: too‑big
error‑type: transport, rpc, protocol, application
error‑severity: error
error‑info: none
Description: The request or response (that would be generated) is
 too large for the implementation to handle.

error‑tag: missing‑attribute
error‑type: rpc, protocol, application
error‑severity: error
error‑info: <bad‑attribute> : name of the missing attribute
 <bad‑element> : name of the element that is supposed
 to contain the missing attribute
Description: An expected attribute is missing.

error‑tag: bad‑attribute
error‑type: rpc, protocol, application
error‑severity: error
error‑info: <bad‑attribute> : name of the attribute w/ bad value
 <bad‑element> : name of the element that contains
 the attribute with the bad value
Description: An attribute value is not correct; e.g., wrong type,
 out of range, pattern mismatch.

error‑tag: unknown‑attribute
error‑type: rpc, protocol, application
error‑severity: error
error‑info: <bad‑attribute> : name of the unexpected attribute
 <bad‑element> : name of the element that contains
 the unexpected attribute
Description: An unexpected attribute is present.

error‑tag: missing‑element
error‑type: protocol, application
error‑severity: error
error‑info: <bad‑element> : name of the missing element
Description: An expected element is missing.

error‑tag: bad‑element
error‑type: protocol, application
error‑severity: error
error‑info: <bad‑element> : name of the element w/ bad value
Description: An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch.

error‑tag: unknown‑element
error‑type: protocol, application
error‑severity: error
error‑info: <bad‑element> : name of the unexpected element
Description: An unexpected element is present.

error‑tag: unknown‑namespace
error‑type: protocol, application
error‑severity: error
error‑info: <bad‑element> : name of the element that contains
 the unexpected namespace
 <bad‑namespace> : name of the unexpected namespace
Description: An unexpected namespace is present.

error‑tag: access‑denied
error‑type: protocol, application
error‑severity: error
error‑info: none
Description: Access to the requested protocol operation or
 data model is denied because authorization failed.

error‑tag: lock‑denied
error‑type: protocol
error‑severity: error
error‑info: <session‑id> : session ID of session holding the
 requested lock, or zero to indicate a non‑NETCONF
 entity holds the lock
Description: Access to the requested lock is denied because the
 lock is currently held by another entity.

error‑tag: resource‑denied
error‑type: transport, rpc, protocol, application
error‑severity: error
error‑info: none
Description: Request could not be completed because of
 insufficient resources.

error‑tag: rollback‑failed
error‑type: protocol, application
error‑severity: error
error‑info: none
Description: Request to roll back some configuration change (via
 rollback‑on‑error or <discard‑changes> operations)
 was not completed for some reason.

error‑tag: data‑exists
error‑type: application
error‑severity: error
error‑info: none
Description: Request could not be completed because the relevant
 data model content already exists. For example,
 a "create" operation was attempted on data that
 already exists.

error‑tag: data‑missing
error‑type: application
error‑severity: error
error‑info: none
Description: Request could not be completed because the relevant
 data model content does not exist. For example,
 a "delete" operation was attempted on
 data that does not exist.

error‑tag: operation‑not‑supported
error‑type: protocol, application
error‑severity: error
error‑info: none
Description: Request could not be completed because the requested
 operation is not supported by this implementation.

error‑tag: operation‑failed
error‑type: rpc, protocol, application
error‑severity: error
error‑info: none
Description: Request could not be completed because the requested
 operation failed for some reason not covered by
 any other error condition.

error‑tag: partial‑operation
error‑type: application
error‑severity: error
error‑info: <ok‑element> : identifies an element in the data
 model for which the requested operation has been
 completed for that node and all its child nodes.
 This element can appear zero or more times in the
 <error‑info> container.

 <err‑element> : identifies an element in the data
 model for which the requested operation has failed
 for that node and all its child nodes.
 This element can appear zero or more times in the
 <error‑info> container.

 <noop-element> : identifies an element in the data

 model for which the requested operation was not
 attempted for that node and all its child nodes.
 This element can appear zero or more times in the
 <error-info> container.

Description: This error‑tag is obsolete, and SHOULD NOT be sent
 by servers conforming to this document.

 Some part of the requested operation failed or was
 not attempted for some reason. Full cleanup has
 not been performed (e.g., rollback not supported)
 by the server. The error‑info container is used
 to identify which portions of the application
 data model content for which the requested operation
 has succeeded (<ok‑element>), failed (<bad‑element>),
 or not been attempted (<noop‑element>).

error‑tag: malformed‑message
error‑type: rpc
error‑severity: error
error‑info: none
Description: A message could not be handled because it failed to
 be parsed correctly. For example, the message is not
 well‑formed XML or it uses an invalid character set.

 This error-tag is new in :base:1.1 and MUST NOT be
 sent to old clients.

Appendix B. XML Schema for NETCONF Messages Layer

 This section is normative.

 <CODE BEGINS> file "netconf.xsd"

<?xml version="1.0" encoding="UTF‑8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:base:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en"
 version="1.1">

 <xs:annotation>
 <xs:documentation>
 This schema defines the syntax for the NETCONF Messages layer
 messages 'hello', 'rpc', and 'rpc‑reply'.
 </xs:documentation>
 </xs:annotation>

 <!‑‑
 import standard XML definitions
 ‑‑>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 This import accesses the xml: attribute groups for the
 xml:lang as declared on the error‑message element.
 </xs:documentation>
 </xs:annotation>
 </xs:import>
 <!‑‑
 message‑id attribute
 ‑‑>

 <xs:simpleType name="messageIdType">
 <xs:restriction base="xs:string">
 <xs:maxLength value="4095"/>
 </xs:restriction>
 </xs:simpleType>
 <!‑‑
 Types used for session‑id
 ‑‑>
 <xs:simpleType name="SessionId">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SessionIdOrZero">
 <xs:restriction base="xs:unsignedInt"/>
 </xs:simpleType>
 <!‑‑
 <rpc> element
 ‑‑>
 <xs:complexType name="rpcType">
 <xs:sequence>
 <xs:element ref="rpcOperation"/>
 </xs:sequence>
 <xs:attribute name="message‑id" type="messageIdType"
 use="required"/>
 <!‑‑
 Arbitrary attributes can be supplied with <rpc> element.
 ‑‑>
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
 <xs:element name="rpc" type="rpcType"/>
 <!‑‑
 data types and elements used to construct rpc‑errors
 ‑‑>
 <xs:simpleType name="ErrorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="transport"/>
 <xs:enumeration value="rpc"/>
 <xs:enumeration value="protocol"/>
 <xs:enumeration value="application"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorTag">
 <xs:restriction base="xs:string">
 <xs:enumeration value="in‑use"/>
 <xs:enumeration value="invalid‑value"/>
 <xs:enumeration value="too‑big"/>
 <xs:enumeration value="missing‑attribute"/>

 <xs:enumeration value="bad‑attribute"/>
 <xs:enumeration value="unknown‑attribute"/>
 <xs:enumeration value="missing‑element"/>
 <xs:enumeration value="bad‑element"/>
 <xs:enumeration value="unknown‑element"/>
 <xs:enumeration value="unknown‑namespace"/>
 <xs:enumeration value="access‑denied"/>
 <xs:enumeration value="lock‑denied"/>
 <xs:enumeration value="resource‑denied"/>
 <xs:enumeration value="rollback‑failed"/>
 <xs:enumeration value="data‑exists"/>
 <xs:enumeration value="data‑missing"/>
 <xs:enumeration value="operation‑not‑supported"/>
 <xs:enumeration value="operation‑failed"/>
 <xs:enumeration value="partial‑operation"/>
 <xs:enumeration value="malformed‑message"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorSeverity">
 <xs:restriction base="xs:string">
 <xs:enumeration value="error"/>
 <xs:enumeration value="warning"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="errorInfoType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="session‑id" type="SessionIdOrZero"/>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:sequence>
 <xs:element name="bad‑attribute" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="bad‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="ok‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="err‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="noop‑element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="bad‑namespace" type="xs:string"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:sequence>
 </xs:choice>
 <!‑‑ elements from any other namespace are also allowed
 to follow the NETCONF elements ‑‑>
 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="rpcErrorType">
 <xs:sequence>
 <xs:element name="error‑type" type="ErrorType"/>
 <xs:element name="error‑tag" type="ErrorTag"/>
 <xs:element name="error‑severity" type="ErrorSeverity"/>
 <xs:element name="error‑app‑tag" type="xs:string"
 minOccurs="0"/>
 <xs:element name="error‑path" type="xs:string" minOccurs="0"/>
 <xs:element name="error‑message" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="error‑info" type="errorInfoType"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!‑‑
 operation attribute used in <edit‑config>
 ‑‑>
 <xs:simpleType name="editOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="delete"/>
 <xs:enumeration value="remove"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:attribute name="operation" type="editOperationType"/>
 <!‑‑
 <rpc‑reply> element
 ‑‑>
 <xs:complexType name="rpcReplyType">
 <xs:choice>
 <xs:element name="ok"/>
 <xs:sequence>
 <xs:element ref="rpc‑error"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="rpcResponse"
 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:choice>
 <xs:attribute name="message‑id" type="messageIdType"
 use="optional"/>
 <!‑‑
 Any attributes supplied with <rpc> element must be returned
 on <rpc‑reply>.
 ‑‑>
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
 <xs:element name="rpc‑reply" type="rpcReplyType"/>
 <!‑‑
 <rpc‑error> element
 ‑‑>
 <xs:element name="rpc‑error" type="rpcErrorType"/>
 <!‑‑
 rpcOperationType: used as a base type for all
 NETCONF operations
 ‑‑>
 <xs:complexType name="rpcOperationType"/>
 <xs:element name="rpcOperation" type="rpcOperationType"
 abstract="true"/>
 <!‑‑
 rpcResponseType: used as a base type for all
 NETCONF responses
 ‑‑>
 <xs:complexType name="rpcResponseType"/>
 <xs:element name="rpcResponse" type="rpcResponseType"
 abstract="true"/>
 <!‑‑
 <hello> element
 ‑‑>
 <xs:element name="hello">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="capabilities">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="capability" type="xs:anyURI"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="session‑id" type="SessionId"
 minOccurs="0"/>

 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

 <CODE ENDS>

Appendix C. YANG Module for NETCONF Protocol Operations

 This section is normative.

 The ietf-netconf YANG module imports typedefs from [RFC6021].

 <CODE BEGINS> file "ietf-netconf@2011-06-01.yang"

 module ietf-netconf {

// the namespace for NETCONF XML definitions is unchanged
// from RFC 4741, which this document replaces
namespace "urn:ietf:params:xml:ns:netconf:base:1.0";

 prefix nc;

import ietf‑inet‑types {
 prefix inet;
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 WG Chair: Bert Wijnen

 <bertietf@bwijnen.net>

 WG Chair: Mehmet Ersue

 <mehmet.ersue@nsn.com>

Editor: Martin Bjorklund
 <mbj@tail‑f.com>

Editor: Juergen Schoenwaelder
 <j.schoenwaelder@jacobs‑university.de>

Editor: Andy Bierman
 <andy.bierman@brocade.com>";

 description

 "NETCONF Protocol Data Types and Protocol Operations.

 Copyright (c) 2011 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 6241; see
 the RFC itself for full legal notices.";
revision 2011‑06‑01 {
 description
 "Initial revision";
 reference
 "RFC 6241: Network Configuration Protocol";
}

extension get‑filter‑element‑attributes {
 description
 "If this extension is present within an 'anyxml'
 statement named 'filter', which must be conceptually
 defined within the RPC input section for the <get>
 and <get‑config> protocol operations, then the
 following unqualified XML attribute is supported
 within the <filter> element, within a <get> or
 <get‑config> protocol operation:

 type : optional attribute with allowed
 value strings 'subtree' and 'xpath'.
 If missing, the default value is 'subtree'.

 If the 'xpath' feature is supported, then the
 following unqualified XML attribute is
 also supported:

 select: optional attribute containing a
 string representing an XPath expression.
 The 'type' attribute must be equal to 'xpath'
 if this attribute is present.";
}

// NETCONF capabilities defined as features
feature writable‑running {

 description
 "NETCONF :writable‑running capability;
 If the server advertises the :writable‑running
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference "RFC 6241, Section 8.2";
}

feature candidate {
 description
 "NETCONF :candidate capability;
 If the server advertises the :candidate
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference "RFC 6241, Section 8.3";
}

feature confirmed‑commit {
 if‑feature candidate;
 description
 "NETCONF :confirmed‑commit:1.1 capability;
 If the server advertises the :confirmed‑commit:1.1
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";

 reference "RFC 6241, Section 8.4";
}

feature rollback‑on‑error {
 description
 "NETCONF :rollback‑on‑error capability;
 If the server advertises the :rollback‑on‑error
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference "RFC 6241, Section 8.5";
}

feature validate {
 description
 "NETCONF :validate:1.1 capability;
 If the server advertises the :validate:1.1
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";

 reference "RFC 6241, Section 8.6";
}

feature startup {
 description
 "NETCONF :startup capability;
 If the server advertises the :startup
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference "RFC 6241, Section 8.7";
}

feature url {
 description
 "NETCONF :url capability;
 If the server advertises the :url
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference "RFC 6241, Section 8.8";
}

feature xpath {
 description
 "NETCONF :xpath capability;
 If the server advertises the :xpath
 capability for a session, then this feature must
 also be enabled for that session. Otherwise,
 this feature must not be enabled.";
 reference "RFC 6241, Section 8.9";
}

 // NETCONF Simple Types

typedef session‑id‑type {
 type uint32 {
 range "1..max";
 }
 description
 "NETCONF Session Id";
}

typedef session‑id‑or‑zero‑type {
 type uint32;
 description
 "NETCONF Session Id or Zero to indicate none";
}

typedef error‑tag‑type {
 type enumeration {
 enum in‑use {
 description
 "The request requires a resource that
 already is in use.";
 }
 enum invalid‑value {
 description
 "The request specifies an unacceptable value for one
 or more parameters.";
 }
 enum too‑big {
 description
 "The request or response (that would be generated) is
 too large for the implementation to handle.";
 }
 enum missing‑attribute {
 description
 "An expected attribute is missing.";
 }
 enum bad‑attribute {
 description
 "An attribute value is not correct; e.g., wrong type,
 out of range, pattern mismatch.";
 }
 enum unknown‑attribute {
 description
 "An unexpected attribute is present.";
 }
 enum missing‑element {
 description
 "An expected element is missing.";
 }
 enum bad‑element {
 description
 "An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch.";
 }
 enum unknown‑element {
 description
 "An unexpected element is present.";
 }
 enum unknown‑namespace {
 description
 "An unexpected namespace is present.";
 }
 enum access‑denied {

 description
 "Access to the requested protocol operation or
 data model is denied because authorization failed.";
 }
 enum lock‑denied {
 description
 "Access to the requested lock is denied because the
 lock is currently held by another entity.";
 }
 enum resource‑denied {
 description
 "Request could not be completed because of
 insufficient resources.";
 }
 enum rollback‑failed {
 description
 "Request to roll back some configuration change (via
 rollback‑on‑error or <discard‑changes> operations)
 was not completed for some reason.";

 }
 enum data‑exists {
 description
 "Request could not be completed because the relevant
 data model content already exists. For example,
 a 'create' operation was attempted on data that
 already exists.";
 }
 enum data‑missing {
 description
 "Request could not be completed because the relevant
 data model content does not exist. For example,
 a 'delete' operation was attempted on
 data that does not exist.";
 }
 enum operation‑not‑supported {
 description
 "Request could not be completed because the requested
 operation is not supported by this implementation.";
 }
 enum operation‑failed {
 description
 "Request could not be completed because the requested
 operation failed for some reason not covered by
 any other error condition.";
 }
 enum partial‑operation {
 description

 "This error‑tag is obsolete, and SHOULD NOT be sent
 by servers conforming to this document.";
 }
 enum malformed‑message {
 description
 "A message could not be handled because it failed to
 be parsed correctly. For example, the message is not
 well‑formed XML or it uses an invalid character set.";
 }
 }
 description "NETCONF Error Tag";
 reference "RFC 6241, Appendix A";
}

typedef error‑severity‑type {
 type enumeration {
 enum error {
 description "Error severity";
 }
 enum warning {
 description "Warning severity";
 }
 }
 description "NETCONF Error Severity";
 reference "RFC 6241, Section 4.3";
}

typedef edit‑operation‑type {
 type enumeration {
 enum merge {
 description
 "The configuration data identified by the
 element containing this attribute is merged
 with the configuration at the corresponding
 level in the configuration datastore identified
 by the target parameter.";
 }
 enum replace {
 description
 "The configuration data identified by the element
 containing this attribute replaces any related
 configuration in the configuration datastore
 identified by the target parameter. If no such
 configuration data exists in the configuration
 datastore, it is created. Unlike a
 <copy‑config> operation, which replaces the
 entire target configuration, only the configuration
 actually present in the config parameter is affected.";

 }
 enum create {
 description
 "The configuration data identified by the element
 containing this attribute is added to the
 configuration if and only if the configuration
 data does not already exist in the configuration
 datastore. If the configuration data exists, an
 <rpc‑error> element is returned with an
 <error‑tag> value of 'data‑exists'.";
 }
 enum delete {
 description
 "The configuration data identified by the element
 containing this attribute is deleted from the
 configuration if and only if the configuration
 data currently exists in the configuration
 datastore. If the configuration data does not
 exist, an <rpc‑error> element is returned with
 an <error‑tag> value of 'data‑missing'.";
 }
 enum remove {
 description
 "The configuration data identified by the element
 containing this attribute is deleted from the
 configuration if the configuration
 data currently exists in the configuration
 datastore. If the configuration data does not
 exist, the 'remove' operation is silently ignored
 by the server.";
 }
 }
 default "merge";
 description "NETCONF 'operation' attribute values";
 reference "RFC 6241, Section 7.2";
}

 // NETCONF Standard Protocol Operations

rpc get‑config {
 description
 "Retrieve all or part of a specified configuration.";

 reference "RFC 6241, Section 7.1";

input {
 container source {
 description

 "Particular configuration to retrieve.";

 choice config‑source {
 mandatory true;
 description
 "The configuration to retrieve.";
 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config source.";
 }
 leaf running {
 type empty;
 description
 "The running configuration is the config source.";
 }
 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config source.
 This is optional‑to‑implement on the server because
 not all servers will support filtering for this
 datastore.";
 }
 }
 }

 anyxml filter {
 description
 "Subtree or XPath filter to use.";
 nc:get‑filter‑element‑attributes;
 }
 }

 output {
 anyxml data {
 description
 "Copy of the source datastore subset that matched
 the filter criteria (if any). An empty data container
 indicates that the request did not produce any results.";
 }
 }
}

 rpc edit-config {

 description

 "The <edit-config> operation loads all or part of a specified

 configuration to the specified target configuration.";

 reference "RFC 6241, Section 7.2";

input {
 container target {
 description
 "Particular configuration to edit.";

 choice config‑target {
 mandatory true;
 description
 "The configuration target.";

 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config target.";
 }
 leaf running {
 if‑feature writable‑running;
 type empty;
 description
 "The running configuration is the config source.";
 }
 }
 }

 leaf default‑operation {
 type enumeration {
 enum merge {
 description
 "The default operation is merge.";
 }
 enum replace {
 description
 "The default operation is replace.";
 }
 enum none {
 description
 "There is no default operation.";
 }
 }
 default "merge";
 description
 "The default operation to use.";

 }

leaf test‑option {
 if‑feature validate;
 type enumeration {
 enum test‑then‑set {
 description
 "The server will test and then set if no errors.";
 }
 enum set {
 description
 "The server will set without a test first.";
 }

 enum test‑only {
 description
 "The server will only test and not set, even
 if there are no errors.";
 }
 }
 default "test‑then‑set";
 description
 "The test option to use.";
}

leaf error‑option {
 type enumeration {
 enum stop‑on‑error {
 description
 "The server will stop on errors.";
 }
 enum continue‑on‑error {
 description
 "The server may continue on errors.";
 }
 enum rollback‑on‑error {
 description
 "The server will roll back on errors.
 This value can only be used if the 'rollback‑on‑error'
 feature is supported.";
 }
 }
 default "stop‑on‑error";
 description
 "The error option to use.";
}

 choice edit-content {

 mandatory true;
 description
 "The content for the edit operation.";

 anyxml config {
 description
 "Inline Config content.";
 }
 leaf url {
 if‑feature url;
 type inet:uri;
 description
 "URL‑based config content.";
 }
 }
 }
}

rpc copy‑config {
 description
 "Create or replace an entire configuration datastore with the
 contents of another complete configuration datastore.";

 reference "RFC 6241, Section 7.3";

 input {
 container target {
 description
 "Particular configuration to copy to.";

 choice config‑target {
 mandatory true;
 description
 "The configuration target of the copy operation.";

 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config target.";
 }
 leaf running {
 if‑feature writable‑running;
 type empty;
 description
 "The running configuration is the config target.
 This is optional‑to‑implement on the server.";
 }

 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config target.";
 }
 leaf url {
 if‑feature url;
 type inet:uri;
 description
 "The URL‑based configuration is the config target.";
 }
 }
 }

 container source {
 description
 "Particular configuration to copy from.";

 choice config‑source {
 mandatory true;
 description
 "The configuration source for the copy operation.";

 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config source.";
 }
 leaf running {
 type empty;
 description
 "The running configuration is the config source.";
 }
 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config source.";
 }
 leaf url {
 if‑feature url;
 type inet:uri;
 description
 "The URL‑based configuration is the config source.";
 }
 anyxml config {

 description
 "Inline Config content: <config> element. Represents
 an entire configuration datastore, not
 a subset of the running datastore.";
 }
 }
 }
 }
}

rpc delete‑config {
 description
 "Delete a configuration datastore.";

 reference "RFC 6241, Section 7.4";

 input {
 container target {
 description
 "Particular configuration to delete.";

 choice config‑target {
 mandatory true;
 description
 "The configuration target to delete.";

 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config target.";
 }
 leaf url {
 if‑feature url;
 type inet:uri;
 description
 "The URL‑based configuration is the config target.";
 }
 }
 }
 }
}

rpc lock {
 description
 "The lock operation allows the client to lock the configuration
 system of a device.";

 reference "RFC 6241, Section 7.5";

 input {
 container target {
 description
 "Particular configuration to lock.";

 choice config‑target {
 mandatory true;
 description
 "The configuration target to lock.";

 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config target.";
 }
 leaf running {
 type empty;
 description
 "The running configuration is the config target.";
 }
 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config target.";
 }
 }
 }
 }
}

rpc unlock {
 description
 "The unlock operation is used to release a configuration lock,
 previously obtained with the 'lock' operation.";

 reference "RFC 6241, Section 7.6";

input {
 container target {
 description
 "Particular configuration to unlock.";

 choice config-target {

 mandatory true;

 description

 "The configuration target to unlock.";

 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config target.";
 }
 leaf running {
 type empty;
 description
 "The running configuration is the config target.";
 }
 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config target.";
 }
 }
 }
 }
}

rpc get {
 description
 "Retrieve running configuration and device state information.";

 reference "RFC 6241, Section 7.7";

 input {
 anyxml filter {
 description
 "This parameter specifies the portion of the system
 configuration and state data to retrieve.";
 nc:get‑filter‑element‑attributes;
 }
 }

 output {
 anyxml data {
 description
 "Copy of the running datastore subset and/or state
 data that matched the filter criteria (if any).
 An empty data container indicates that the request did not
 produce any results.";
 }

 }
}

rpc close‑session {
 description
 "Request graceful termination of a NETCONF session.";

 reference "RFC 6241, Section 7.8";
}

rpc kill‑session {
 description
 "Force the termination of a NETCONF session.";

 reference "RFC 6241, Section 7.9";

 input {
 leaf session‑id {
 type session‑id‑type;
 mandatory true;
 description
 "Particular session to kill.";
 }
 }
}

 rpc commit {

 if-feature candidate;

description
 "Commit the candidate configuration as the device's new
 current configuration.";

 reference "RFC 6241, Section 8.3.4.1";

input {
 leaf confirmed {
 if‑feature confirmed‑commit;
 type empty;
 description
 "Requests a confirmed commit.";
 reference "RFC 6241, Section 8.3.4.1";
 }

 leaf confirm‑timeout {
 if‑feature confirmed‑commit;
 type uint32 {
 range "1..max";

 }
 units "seconds";
 default "600"; // 10 minutes
 description
 "The timeout interval for a confirmed commit.";
 reference "RFC 6241, Section 8.3.4.1";
 }

 leaf persist {
 if‑feature confirmed‑commit;
 type string;
 description
 "This parameter is used to make a confirmed commit
 persistent. A persistent confirmed commit is not aborted
 if the NETCONF session terminates. The only way to abort
 a persistent confirmed commit is to let the timer expire,
 or to use the <cancel‑commit> operation.

 The value of this parameter is a token that must be given
 in the 'persist-id' parameter of <commit> or
 <cancel-commit> operations in order to confirm or cancel
 the persistent confirmed commit.

 The token should be a random string.";
 reference "RFC 6241, Section 8.3.4.1";
 }

 leaf persist‑id {
 if‑feature confirmed‑commit;
 type string;
 description
 "This parameter is given in order to commit a persistent
 confirmed commit. The value must be equal to the value
 given in the 'persist' parameter to the <commit> operation.
 If it does not match, the operation fails with an
 'invalid‑value' error.";
 reference "RFC 6241, Section 8.3.4.1";
 }

 }
}

 rpc discard-changes {

 if-feature candidate;

 description
 "Revert the candidate configuration to the current
 running configuration.";

 reference "RFC 6241, Section 8.3.4.2";
}

rpc cancel‑commit {
 if‑feature confirmed‑commit;
 description
 "This operation is used to cancel an ongoing confirmed commit.
 If the confirmed commit is persistent, the parameter
 'persist‑id' must be given, and it must match the value of the
 'persist' parameter.";
 reference "RFC 6241, Section 8.4.4.1";

 input {
 leaf persist‑id {
 type string;
 description
 "This parameter is given in order to cancel a persistent
 confirmed commit. The value must be equal to the value
 given in the 'persist' parameter to the <commit> operation.
 If it does not match, the operation fails with an
 'invalid‑value' error.";
 }
 }
}

 rpc validate {

 if-feature validate;

 description

 "Validates the contents of the specified configuration.";

 reference "RFC 6241, Section 8.6.4.1";

 input {
 container source {
 description
 "Particular configuration to validate.";

 choice config‑source {
 mandatory true;
 description
 "The configuration source to validate.";

 leaf candidate {
 if‑feature candidate;
 type empty;
 description
 "The candidate configuration is the config source.";

 }
 leaf running {
 type empty;
 description
 "The running configuration is the config source.";
 }
 leaf startup {
 if‑feature startup;
 type empty;
 description
 "The startup configuration is the config source.";
 }
 leaf url {
 if‑feature url;
 type inet:uri;
 description
 "The URL‑based configuration is the config source.";
 }
 anyxml config {
 description
 "Inline Config content: <config> element. Represents
 an entire configuration datastore, not
 a subset of the running datastore.";
 }
 }
 }
 }
}

 }

 <CODE ENDS>

Appendix D. Capability Template

 This non-normative section defines a template that can be used to
 define protocol capabilities. Data models written in YANG usually do
 not need to define protocol capabilities since the usage of YANG
 automatically leads to a capability announcing the data model and any
 optional portions of the data model, so called features in YANG
 terminology. The capabilities template is intended to be used in
 cases where the YANG mechanisms are not powerful enough (e.g., for
 handling parameterized features) or a different data modeling
 language is used.

D.1. capability-name (template)

D.1.1. Overview

D.1.2. Dependencies

D.1.3. Capability Identifier

 The {name} capability is identified by the following capability
 string:

 {capability uri}

D.1.4. New Operations

D.1.4.1. <op-name>

D.1.5. Modifications to Existing Operations

D.1.5.1. <op-name>

 If existing operations are not modified by this capability, this
 section may be omitted.

D.1.6. Interactions with Other Capabilities

 If this capability does not interact with other capabilities, this
 section may be omitted.

Appendix E. Configuring Multiple Devices with NETCONF

 This section is non-normative.

E.1. Operations on Individual Devices

 Consider the work involved in performing a configuration update
 against a single individual device. In making a change to the
 configuration, the application needs to build trust that its change
 has been made correctly and that it has not impacted the operation of
 the device. The application (and the application user) should feel
 confident that their change has not damaged the network.

 Protecting each individual device consists of a number of steps:

 o Acquiring the configuration lock.

 o Checkpointing the running configuration.

 o Loading and validating the incoming configuration.

 o Changing the running configuration.

 o Testing the new configuration.

 o Making the change permanent (if desired).

 o Releasing the configuration lock.

 Let's look at the details of each step.

E.1.1. Acquiring the Configuration Lock

 A lock should be acquired to prevent simultaneous updates from
 multiple sources. If multiple sources are affecting the device, the
 application is hampered in both testing of its change to the
 configuration and in recovery if the update fails. Acquiring a
 short-lived lock is a simple defense to prevent other parties from
 introducing unrelated changes.

 The lock can be acquired using the <lock> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
</rpc>

 If the :candidate capability is supported, the candidate
 configuration should be locked.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
</rpc>

E.1.2. Checkpointing the Running Configuration

 The running configuration can be saved into a local file as a
 checkpoint before loading the new configuration. If the update
 fails, the configuration can be restored by reloading the checkpoint
 file.

 The checkpoint file can be created using the <copy-config> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <url>file://checkpoint.conf</url>
 </target>
 <source>
 <running/>
 </source>
 </copy‑config>
</rpc>

 To restore the checkpoint file, reverse the <source> and <target>
 parameters.

E.1.3. Loading and Validating the Incoming Configuration

 If the :candidate capability is supported, the configuration can be
 loaded onto the device without impacting the running system.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <candidate/>
 </target>
 <config>
 <!‑‑ place incoming configuration changes here ‑‑>
 </config>
 </edit‑config>
</rpc>

 If the device supports the :validate:1.1 capability, it will by
 default validate the incoming configuration when it is loaded into
 the candidate. To avoid this validation, pass the <test-option>
 parameter with the value "set". Full validation can be requested
 with the <validate> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
</rpc>

E.1.4. Changing the Running Configuration

 When the incoming configuration has been safely loaded onto the
 device and validated, it is ready to impact the running system.

 If the device supports the :candidate capability, use the <commit>
 operation to set the running configuration to the candidate
 configuration. Use the <confirmed> parameter to allow automatic
 reversion to the original configuration if connectivity to the device
 fails.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm‑timeout>120</confirm‑timeout>
 </commit>
</rpc>

 If the candidate is not supported by the device, the incoming
 configuration change is loaded directly into running.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit‑config>
 <target>
 <running/>
 </target>
 <config>
 <!‑‑ place incoming configuration changes here ‑‑>
 </config>
 </edit‑config>
</rpc>

E.1.5. Testing the New Configuration

 Now that the incoming configuration has been integrated into the
 running configuration, the application needs to gain trust that the
 change has affected the device in the way intended without affecting
 it negatively.

 To gain this confidence, the application can run tests of the
 operational state of the device. The nature of the test is dependent
 on the nature of the change and is outside the scope of this
 document. Such tests may include reachability from the system
 running the application (using ping), changes in reachability to the
 rest of the network (by comparing the device's routing table), or
 inspection of the particular change (looking for operational evidence
 of the BGP peer that was just added).

E.1.6. Making the Change Permanent

 When the configuration change is in place and the application has
 sufficient faith in the proper function of this change, the
 application is expected to make the change permanent.

 If the device supports the :startup capability, the current
 configuration can be saved to the startup configuration by using the
 startup configuration as the target of the <copy-config> operation.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy‑config>
 <target>
 <startup/>
 </target>
 <source>
 <running/>
 </source>
 </copy‑config>
</rpc>

 If the device supports the :candidate capability and a confirmed
 commit was requested, the confirming commit must be sent before the
 timeout expires.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
</rpc>

E.1.7. Releasing the Configuration Lock

 When the configuration update is complete, the lock must be released,
 allowing other applications access to the configuration.

 Use the <unlock> operation to release the configuration lock.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
</rpc>

 If the :candidate capability is supported, the candidate
 configuration should be unlocked.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
</rpc>

E.2. Operations on Multiple Devices

 When a configuration change requires updates across a number of
 devices, care needs to be taken to provide the required transaction
 semantics. The NETCONF protocol contains sufficient primitives upon
 which transaction-oriented operations can be built. Providing
 complete transactional semantics across multiple devices is
 prohibitively expensive, but the size and number of windows for
 failure scenarios can be reduced.

 There are two classes of multi-device operations. The first class
 allows the operation to fail on individual devices without requiring
 all devices to revert to their original state. The operation can be
 retried at a later time, or its failure simply reported to the user.
 An example of this class might be adding an NTP server. For this
 class of operations, failure avoidance and recovery are focused on
 the individual device. This means recovery of the device, reporting
 the failure, and perhaps scheduling another attempt.

 The second class is more interesting, requiring that the operation
 should complete on all devices or be fully reversed. The network
 should either be transformed into a new state or be reset to its
 original state. For example, a change to a VPN may require updates
 to a number of devices. Another example of this might be adding a
 class-of-service definition. Leaving the network in a state where
 only a portion of the devices have been updated with the new
 definition will lead to future failures when the definition is
 referenced.

 To give transactional semantics, the same steps used in single-device
 operations listed above are used, but are performed in parallel
 across all devices. Configuration locks should be acquired on all
 target devices and kept until all devices are updated and the changes
 made permanent. Configuration changes should be uploaded and
 validation performed across all devices. Checkpoints should be made
 on each device. Then the running configuration can be changed,
 tested, and made permanent. If any of these steps fail, the previous
 configurations can be restored on any devices upon which they were
 changed. After the changes have been completely implemented or
 completely discarded, the locks on each device can be released.

Appendix F. Changes from RFC 4741

 This section lists major changes between this document and RFC 4741.

 o Added the "malformed-message" error-tag.

 o Added "remove" enumeration value to the "operation" attribute.

 o Obsoleted the "partial-operation" error-tag enumeration value.

 o Added <persist> and <persist-id> parameters to the <commit>
 operation.

 o Updated the base protocol URI and clarified the <hello> message
 exchange to select and identify the base protocol version in use
 for a particular session.

 o Added a YANG module to model the operations and removed the
 operation layer from the XSD.

 o Clarified lock behavior for the candidate datastore.

 o Clarified the error response server requirements for the "delete"
 enumeration value of the "operation" attribute.

 o Added a namespace wildcarding mechanism for subtree filtering.

 o Added a "test-only" value for the <test-option> parameter to the
 <edit-config> operation.

 o Added a <cancel-commit> operation.

 o Introduced a NETCONF username and a requirement for transport
 protocols to explain how a username is derived.

Authors' Addresses

Rob Enns (editor)
Juniper Networks

 EMail: rob.enns@gmail.com

Martin Bjorklund (editor)
Tail‑f Systems

 EMail: mbj@tail-f.com

Juergen Schoenwaelder (editor)
Jacobs University

 EMail: j.schoenwaelder@jacobs-university.de

Andy Bierman (editor)
Brocade

 EMail: andy.bierman@brocade.com

6242 - Using the NETCONF Protocol over Secure Shell (SSH)

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6242

Obsoletes: 4742

Category: Standards Track

ISSN: 2070-1721

M. Wasserman

Painless Security, LLC

June 2011

Using the NETCONF Protocol over Secure Shell (SSH)

Abstract

 This document describes a method for invoking and running the Network
 Configuration Protocol (NETCONF) within a Secure Shell (SSH) session
 as an SSH subsystem. This document obsoletes RFC 4742.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6242.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Requirements Terminology

	3. Starting NETCONF over SSH
	 3.1. Capabilities Exchange

	4. Using NETCONF over SSH
	 4.1. Framing Protocol

	 4.2. Chunked Framing Mechanism

	 4.3. End-of-Message Framing Mechanism

	5. Exiting the NETCONF Subsystem

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Changes from RFC 4742

1. Introduction

 The NETCONF protocol [RFC6241] is an XML-based protocol used to
 manage the configuration of networking equipment. NETCONF is defined
 to be session-layer and transport independent, allowing mappings to
 be defined for multiple session-layer or transport protocols. This
 document defines how NETCONF can be used within a Secure Shell (SSH)
 session, using the SSH connection protocol [RFC4254] over the SSH
 transport protocol [RFC4253]. This mapping will allow NETCONF to be
 executed from a secure shell session by a user or application.

 Although this document gives specific examples of how NETCONF
 messages are sent over an SSH connection, use of this transport is
 not restricted to the messages shown in the examples below. This
 transport can be used for any NETCONF message.

2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Starting NETCONF over SSH

 To run NETCONF over SSH, the SSH client will first establish an SSH
 transport connection using the SSH transport protocol, and the SSH
 client and SSH server will exchange keys for message integrity and
 encryption. The SSH client will then invoke the "ssh-userauth"
 service to authenticate the user, as described in the SSH
 authentication protocol [RFC4252]. Once the user has been
 successfully authenticated, the SSH client will invoke the
 "ssh-connection" service, also known as the SSH connection protocol.

 The username provided by the SSH implementation will be made
 available to the NETCONF message layer as the NETCONF username
 without modification. If the username does not comply to the NETCONF
 requirements on usernames [RFC6241], i.e., the username is not
 representable in XML, the SSH session MUST be dropped. Any
 transformations applied to the authenticated identity of the SSH
 client made by the SSH server (e.g., via authentication services or
 mappings to system accounts) are outside the scope of this document.

 After the ssh-connection service is established, the SSH client will
 open a channel of type "session", which will result in an SSH
 session.

 Once the SSH session has been established, the NETCONF client will
 invoke NETCONF as an SSH subsystem called "netconf". Subsystem
 support is a feature of SSH version 2 (SSHv2) and is not included in
 SSHv1. Running NETCONF as an SSH subsystem avoids the need for the
 script to recognize shell prompts or skip over extraneous
 information, such as a system message that is sent at shell start-up.

 In order to allow NETCONF traffic to be easily identified and
 filtered by firewalls and other network devices, NETCONF servers MUST
 default to providing access to the "netconf" SSH subsystem only when
 the SSH session is established using the IANA-assigned TCP port 830.
 Servers SHOULD be configurable to allow access to the netconf SSH
 subsystem over other ports.

 A user (or application) could use the following command line to
 invoke NETCONF as an SSH subsystem on the IANA-assigned port:

 [user@client]$ ssh -s server.example.org -p 830 netconf

 Note that the -s option causes the command ("netconf") to be invoked
 as an SSH subsystem.

3.1. Capabilities Exchange

 As specified in [RFC6241], the NETCONF server indicates its
 capabilities by sending an XML document containing a <hello> element
 as soon as the NETCONF session is established. The NETCONF client
 can parse this message to determine which NETCONF capabilities are
 supported by the NETCONF server.

 As [RFC6241] states, the NETCONF client also sends an XML document
 containing a <hello> element to indicate the NETCONF client's
 capabilities to the NETCONF server. The document containing the
 <hello> element is the first XML document that the NETCONF client
 sends after the NETCONF session is established.

 The following example shows a capability exchange. Data sent by the
 NETCONF client are marked with "C:", and data sent by the NETCONF
 server are marked with "S:".

S: <?xml version="1.0" encoding="UTF‑8"?>
S: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <capabilities>
S: <capability>
S: urn:ietf:params:netconf:base:1.1
S: </capability>
S: <capability>
S: urn:ietf:params:ns:netconf:capability:startup:1.0
S: </capability>
S: </capabilities>
S: <session‑id>4</session‑id>
S: </hello>
S:]]>]]>

C: <?xml version="1.0" encoding="UTF‑8"?>
C: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <capabilities>
C: <capability>
C: urn:ietf:params:netconf:base:1.1
C: </capability>
C: </capabilities>
C: </hello>
C:]]>]]>

 Although the example shows the NETCONF server sending a <hello>
 message followed by the NETCONF client's <hello> message, both sides
 will send the message as soon as the NETCONF subsystem is
 initialized, perhaps simultaneously.

4. Using NETCONF over SSH

 A NETCONF over SSH session consists of a NETCONF client and NETCONF
 server exchanging complete XML documents. Once the session has been
 established and capabilities have been exchanged, the NETCONF client
 will send complete XML documents containing <rpc> elements to the
 server, and the NETCONF server will respond with complete XML
 documents containing <rpc-reply> elements.

4.1. Framing Protocol

 The previous version of this document defined the character sequence
 "]]>]]>" as a message separator, under the assumption that it could
 not be found in well-formed XML documents. However, this assumption
 is not correct. It can legally appear in XML attributes, comments,
 and processing instructions. In order to solve this problem, and at
 the same time be compatible with existing implementations, this
 document defines the following framing protocol.

 The <hello> message MUST be followed by the character sequence
]]>]]>. Upon reception of the <hello> message, the receiving peer's
 SSH Transport layer conceptually passes the <hello> message to the
 Messages layer. If the :base:1.1 capability is advertised by both
 peers, the chunked framing mechanism (see Section 4.2) is used for
 the remainder of the NETCONF session. Otherwise, the old end-of-
 message-based mechanism (see Section 4.3) is used.

4.2. Chunked Framing Mechanism

 This mechanism encodes all NETCONF messages with a chunked framing.
 Specifically, the message follows the ABNF [RFC5234] rule Chunked-
 Message:

 Chunked-Message = 1*chunk

 end-of-chunks

chunk = LF HASH chunk‑size LF
 chunk‑data
chunk‑size = 1*DIGIT1 0*DIGIT
chunk‑data = 1*OCTET

end‑of‑chunks = LF HASH HASH LF

DIGIT1 = %x31‑39
DIGIT = %x30‑39
HASH = %x23
LF = %x0A
OCTET = %x00‑FF

 The chunk-size field is a string of decimal digits indicating the
 number of octets in chunk-data. Leading zeros are prohibited, and
 the maximum allowed chunk-size value is 4294967295.

 As an example, the message:

<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close‑session/>
</rpc>

 could be encoded as (using '\n' as a visible representation of the
 LineFeed character):

C: \n#4\n
C: <rpc
C: \n#18\n
C: message‑id="102"\n
C: \n#79\n
C: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">\n
C: <close‑session/>\n
C: </rpc>
C: \n##\n

 Conceptually, the SSH Transport layer encodes messages sent by the
 Messages layer, and decodes messages received on the SSH channel
 before passing them to the Messages layer.

 The examples for the chunked framing mechanism show all LineFeeds,
 even those that are not used as part of the framing mechanism. Note
 that the SSH transport does not interpret the XML content; thus, it
 does not care about any optional XML-specific LineFeeds.

 In the second and third chunks quoted above, each line is terminated
 by a LineFeed. For all the XML lines (except the last one), this
 example treats the LineFeed as part of the chunk-data and so
 contributing to the chunk-size.

 Note that there is no LineFeed character after the <rpc> end tag in
 this message. The LineFeed required by the start of the end-of-
 chunks block immediately follows the last '>' character in the
 message.

 If the chunk-size and the chunk-size value respectively are invalid
 or if an error occurs during the decoding process, the peer MUST
 terminate the NETCONF session by closing the corresponding SSH
 channel. Implementations MUST ensure they are not vulnerable for a
 buffer overrun.

4.3. End-of-Message Framing Mechanism

 This mechanism exists for backwards compatibility with
 implementations of previous versions of this document. It is only
 used when the remote peer does not advertise a base protocol version
 supporting chunked encoding, i.e., a NETCONF implementation only
 supporting :base:1.0.

 When this mechanism is used, the special character sequence]]>]]>,
 MUST be sent by both the NETCONF client and the NETCONF server after
 each message (XML document) in the NETCONF exchange. Conceptually,
 the SSH Transport layer passes any data found in between the]]>]]>
 characters to the Messages layer.

 A NETCONF over SSH session, using the backwards-compatible end-of-
 message framing to retrieve a set of configuration information, might
 look like this:

C: <?xml version="1.0" encoding="UTF‑8"?>
C: <rpc message‑id="105"
C: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
C: <get‑config>
C: <source><running/></source>
C: <config xmlns="http://example.com/schema/1.2/config">
C: <users/>
C: </config>
C: </get‑config>
C: </rpc>
C:]]>]]>

S: <?xml version="1.0" encoding="UTF‑8"?>
S: <rpc‑reply message‑id="105"
S: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
S: <config xmlns="http://example.com/schema/1.2/config">
S: <users>
S: <user><name>root</name><type>superuser</type></user>
S: <user><name>fred</name><type>admin</type></user>
S: <user><name>barney</name><type>admin</type></user>
S: </users>
S: </config>
S: </rpc‑reply>
S:]]>]]>

5. Exiting the NETCONF Subsystem

 Exiting NETCONF is accomplished using the <close-session> operation.
 A NETCONF server will process NETCONF messages from the NETCONF
 client in the order in which they are received. When the NETCONF
 server processes a <close-session> operation, the NETCONF server
 SHALL respond and close the SSH session channel. The NETCONF server
 MUST NOT process any NETCONF messages received after the
 <close-session> operation.

 To continue the example used in Section 4.2, an existing NETCONF
 subsystem session could be closed as follows:

C: \n#140\n
C: <?xml version="1.0" encoding="UTF‑8"?>\n
C: <rpc message‑id="106"\n
C: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">\n
C: <close‑session/>\n
C: </rpc>
C: \n##\n

S: \n#139\n
S: <?xml version="1.0" encoding="UTF‑8"?>\n
S: <rpc‑reply id="106"\n
S: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">\n
S: <ok/>\n
S: </rpc‑reply>
S: \n##\n

6. Security Considerations

 NETCONF is used to access configuration and state information and to
 modify configuration information, so the ability to access this
 protocol should be limited to users and systems that are authorized
 to view the NETCONF server's configuration and state or to modify the
 NETCONF server's configuration.

 The identity of the SSH server MUST be verified and authenticated by
 the SSH client according to local policy before password-based
 authentication data or any configuration or state data is sent to or
 received from the SSH server. The identity of the SSH client MUST
 also be verified and authenticated by the SSH server according to
 local policy to ensure that the incoming SSH client request is
 legitimate before any configuration or state data is sent to or
 received from the SSH client. Neither side should establish a
 NETCONF over SSH connection with an unknown, unexpected, or incorrect
 identity on the opposite side.

 Configuration or state data may include sensitive information, such
 as usernames or security keys. So, NETCONF requires communications
 channels that provide strong encryption for data privacy. This
 document defines a NETCONF over SSH mapping that provides for support
 of strong encryption and authentication.

 This document requires that SSH servers default to allowing access to
 the "netconf" SSH subsystem only when using a specific TCP port
 assigned by IANA for this purpose. This will allow NETCONF over SSH
 traffic to be easily identified and filtered by firewalls and other
 network nodes. However, it will also allow NETCONF over SSH traffic
 to be more easily identified by attackers.

 This document also recommends that SSH servers be configurable to
 allow access to the "netconf" SSH subsystem over other ports. Use of
 that configuration option without corresponding changes to firewall
 or network device configuration may unintentionally result in the
 ability for nodes outside of the firewall or other administrative
 boundaries to gain access to the "netconf" SSH subsystem.

 RFC 4742 assumes that the end-of-message (EOM) sequence,]]>]]>,
 cannot appear in any well-formed XML document, which turned out to be
 mistaken. The EOM sequence can cause operational problems and open
 space for attacks if sent deliberately in RPC messages. It is
 however believed that the associated threat is not very high. This
 document still uses the EOM sequence for the initial <hello> message
 to avoid incompatibility with existing implementations. When both
 peers implement base:1.1 capability, a proper framing protocol
 (chunked framing mechanism; see Section 4.2) is used for the rest of
 the NETCONF session, to avoid injection attacks.

7. IANA Considerations

 Based on the previous version of this document, RFC 4742, IANA
 assigned the TCP port 830 as the default port for NETCONF over SSH
 sessions.

 IANA had also assigned "netconf" as an SSH Subsystem Name, as defined
 in [RFC4250], as follows:

Subsystem Name Reference
‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
netconf RFC 4742

 IANA updated these allocations to refer to this document.

8. Acknowledgements

 Ted Goddard was a co-author on earlier versions of this document.

 This document was written using the xml2rfc tool described in RFC
 2629 [RFC2629].

 Extensive input was received from the other members of the NETCONF
 design team, including: Andy Bierman, Weijing Chen, Rob Enns, Wes
 Hardaker, David Harrington, Eliot Lear, Simon Leinen, Phil Shafer,
 Juergen Schoenwaelder, and Steve Waldbusser. The following people
 have also reviewed this document and provided valuable input: Olafur
 Gudmundsson, Sam Hartman, Scott Hollenbeck, Bill Sommerfeld, Balazs
 Lengyel, Bert Wijnen, Mehmet Ersue, Martin Bjorklund, Lada Lothka,
 Kent Watsen, and Tom Petch.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4250]
 Lehtinen, S. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250, January 2006.

 [RFC4252]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

 [RFC4253]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4254]
 Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [RFC5234]
 Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

9.2. Informative References

 [RFC2629]
 Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

Appendix A. Changes from RFC 4742

 This section lists major changes between this document and RFC 4742.

 o Introduced the new chunked framing mechanism to solve known
 security issues with the EOM framing.

 o Extended text in Security Considerations; added text on EOM
 issues.

 o Added examples to show new chunked encoding properly; highlighted
 the location of new lines.

 o Added text for NETCONF username handling following the
 requirements on usernames in [RFC6241].

 o Changed use of the terms "client/server" and "manager/agent" to
 "SSH client/server" and "NETCONF client/server".

 o Consistently used the term "operation", instead of "command" or
 "message".

 o Integrated errata verified for RFC 4742 as of the date of
 publication of this document. See errata for RFC 4742 at
 http://www.rfc-editor.org.

Author's Address

Margaret Wasserman
Painless Security, LLC
356 Abbott Street
North Andover, MA 01845
USA

Phone: +1 781 405‑7464
EMail: mrw@painless‑security.com
URI: http://www.painless‑security.com

6243 - With-defaults Capability for NETCONF

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6243

Category: Standards Track

ISSN: 2070-1721

A. Bierman

Brocade

B. Lengyel

Ericsson

June 2011

With-defaults Capability for NETCONF

Abstract

 The Network Configuration Protocol (NETCONF) defines ways to read and
 edit configuration data from a NETCONF server. In some cases, part
 of this data may not be set by the NETCONF client, but rather a
 default value known to the server is used instead. In many
 situations the NETCONF client has a priori knowledge about default
 data, so the NETCONF server does not need to save it in a NETCONF
 configuration datastore or send it to the client in a retrieval
 operation reply. In other situations the NETCONF client will need
 this data from the server. Not all server implementations treat this
 default data the same way. This document defines a capability-based
 extension to the NETCONF protocol that allows the NETCONF client to
 identify how defaults are processed by the server, and also defines
 new mechanisms for client control of server processing of default
 data.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6243.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Default-Handling Behavior

	 1.3. Client Controlled Retrieval of Default Data

	2. Default-Handling Basic Modes
	 2.1. 'report-all' Basic Mode
	 2.1.1. 'report-all' Basic Mode Retrieval

	 2.1.2. 'report-all' <with-defaults> Retrieval

	 2.1.3. 'report-all' <edit-config> and <copy-config> Behavior

	 2.2. 'trim' Basic Mode
	 2.2.1. 'trim' Basic Mode Retrieval

	 2.2.2. 'trim' <with-defaults> Retrieval

	 2.2.3. 'trim' <edit-config> and <copy-config> Behavior

	 2.3. 'explicit' Basic Mode
	 2.3.1. 'explicit' Basic Mode Retrieval

	 2.3.2. 'explicit' <with-defaults> Retrieval

	 2.3.3. 'explicit' <edit-config> and <copy-config> Behavior

	3. Retrieval of Default Data
	 3.1. 'report-all' Retrieval Mode

	 3.2. 'trim' Retrieval Mode

	 3.3. 'explicit' Retrieval Mode

	 3.4. 'report-all-tagged' Retrieval Mode

	4. With-defaults Capability
	 4.1. Overview

	 4.2. Dependencies

	 4.3. Capability Identifier

	 4.4. New Operations

	 4.5. Modifications to Existing Operations
	 4.5.1. <get>, <get-config>, and <copy-config> Operations

	 4.5.2. <edit-config> Operation

	 4.5.3. Other Operations

	 4.6. Interactions with Other Capabilities

	5. YANG Module for the <with-defaults> Parameter

	6. XSD for the 'default' Attribute

	7. IANA Considerations

	8. Security Considerations

	9. Acknowledgements

	10. Normative References

	Appendix A. Usage Examples
	 A.1. Example YANG Module

	 A.2. Example Data Set

	 A.3. Protocol Operation Examples
	 A.3.1. <with-defaults> = 'report-all'

	 A.3.2. <with-defaults> = 'report-all-tagged'

	 A.3.3. <with-defaults> = 'trim'

	 A.3.4. <with-defaults> = 'explicit'

1. Introduction

 The NETCONF protocol [RFC6241] defines ways to read configuration and
 state data from a NETCONF server. Part of the configuration data may
 not be set by the NETCONF client, but rather by a default value from
 the data model. In many situations the NETCONF client has a priori
 knowledge about default data, so the NETCONF server does not need to
 send it to the client. A priori knowledge can be obtained, e.g.,
 from a document formally describing the data models supported by the
 NETCONF server.

 It can be important for a client to know exactly how a server
 implementation will handle default data. There are subtle
 differences in some protocol operations where the default-handling
 behavior of the server will affect the outcome of the operation.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Data model schema: A document or set of documents describing the
 data models supported by the NETCONF server.

Management application: A computer program running outside the
 NETCONF server that configures or supervises the NETCONF server.
 A management application can reach the device, e.g., via NETCONF,
 command line interface (CLI), or the Simple Network Management
 Protocol (SNMP).

Schema default data: Data specified in the data model schema as
 default, that is, set or used by the device whenever the NETCONF
 client or other management application/user does not provide a
 specific value for the relevant data node. Schema default data
 may or may not be stored as part of a configuration datastore,
 depending on the basic mode used by a particular server.

Default data: Conceptual data containing a default value. Default
 data is not kept in a datastore. Not all servers use the same
 criteria to decide if a data node is actually instantiated in a
 datastore. If a data node is not present in a datastore, and a
 schema default definition is in use by the server instead, then it
 is considered to be a default data node.

Default value: A default value is a value for a data node instance
 that is conceptually in use by the server, when the data node
 instance does not exist.

Explicitly set data: Data that is set to any value by a NETCONF
 client or other management application by the way of an explicit
 management operation, including any data model schema default
 value. Any value set by the NETCONF server that is not the schema
 defined default value is also considered explicitly set data.

<with‑defaults> retrieval: Refers to a protocol operation that
 includes the <with‑default> parameter to control the handling of
 default data.

:with‑defaults: The shorthand notation for the with‑defaults
 capability identifier.

 The following terms are defined in [RFC6241]:

 o client

 o datastore

 o operation

 o server

 The following term is defined in [RFC6020]:

 o data node

1.2. Default-Handling Behavior

 The default-handling behavior used by a server will impact NETCONF
 protocol operations in two ways:

 1. Data retrieval: A server is normally allowed to exclude data
 nodes that it considers to contain the default value. The actual
 nodes omitted depend on the default-handling behavior used by the
 server.

 2. Create and delete operations: The <edit-config> 'operation'
 attribute can be used to create and/or delete specific data
 nodes. These operations depend on whether or not the target node
 currently exists. The server's default-handling behavior will
 determine whether or not the requested node currently exists in
 the configuration datastore.

1.3. Client Controlled Retrieval of Default Data

 A networking device may have a large number of default values. Often
 the default values are specifically defined with a reasonable value,
 documented and well-known, so that the management user does not need
 to handle them. For these reasons, it is quite common for networking
 devices to suppress the output of parameters having the default
 value.

 However, there are use-cases when a NETCONF client will need the
 default data from the server:

 o The management application often needs a single, definitive, and
 complete set of configuration values that determine how the
 networking device works.

 o Documentation about default values can be unreliable or
 unavailable.

 o Some management applications might not have the capabilities to
 correctly parse and interpret formal data models.

 o Human users might want to understand the received data without
 consultation of the documentation.

 In all these cases, the NETCONF client will need a mechanism to
 retrieve default data from a NETCONF server.

 This document defines a NETCONF protocol capability to identify the
 server's default-handling behavior, an XML
 [W3C.REC-xmlschema-0-20041028] attribute to identify default data,
 and a YANG module extension to the NETCONF protocol that allows the
 NETCONF client to control whether default data is returned by the
 server.

2. Default-Handling Basic Modes

 Not all server implementations treat default data in the same way.
 Instead of forcing a single implementation strategy, this document
 allows a server to advertise a particular style of default-handling,
 and the client can adjust accordingly. Client implementations are
 expected to be powerful enough to support all three of the server
 basic default-handling modes.

 NETCONF servers report default data in different ways. This document
 specifies three standard default-handling basic modes that a server
 implementer may choose from:

 o report-all

 o trim

 o explicit

 A server MUST select one of the three basic modes defined in this
 section for handling default data.

2.1. 'report-all' Basic Mode

 A server that uses the 'report-all' basic mode does not consider any
 data node to be default data, even schema default data.

2.1.1. 'report-all' Basic Mode Retrieval

 When data is retrieved from a server using the 'report-all' basic
 mode, and the <with-defaults> parameter is not present, all data
 nodes MUST be reported.

2.1.2. 'report-all' <with-defaults> Retrieval

 If the 'report-all' basic mode is used by the server, then the server
 MUST support the <with-defaults> parameter with a value equal to
 'report-all', as specified in Section 3.1.

2.1.3. 'report-all' <edit-config> and <copy-config> Behavior

 The server MUST consider every data node to exist, even those
 containing a schema default value. A valid 'create' operation
 attribute for a data node that contains its schema default value MUST
 fail with a 'data-exists' error-tag. A valid 'delete' operation
 attribute for a data node that contains its schema default value MUST
 succeed, even though the data node is immediately replaced by the
 server with the default value.

 A server that uses the 'report-all' basic mode has no concept of a
 default node, so the 'report-all-tagged' <with-defaults> retrieval
 mode is not relevant. There will never be any tagged nodes, since
 there are no nodes that are omitted in a basic-mode retrieval
 operation. If the 'default' attribute is present in any
 configuration data, the server MUST return an <rpc-error> response
 with an 'unknown-attribute' error-tag.

2.2. 'trim' Basic Mode

 A server that uses the 'trim' basic mode MUST consider any data node
 set to its schema default value to be default data.

2.2.1. 'trim' Basic Mode Retrieval

 When data is retrieved from a server using the 'trim' basic mode, and
 the <with-defaults> parameter is not present, data nodes MUST NOT be
 reported if they contain the schema default value. Non-configuration
 data nodes containing the schema default value MUST NOT be reported.

2.2.2. 'trim' <with-defaults> Retrieval

 If the 'trim' basic mode is used by the server, then the server MUST
 support the <with-defaults> parameter with a value equal to 'trim',
 as specified in Section 3.2.

2.2.3. 'trim' <edit-config> and <copy-config> Behavior

 The server MUST consider any data node that does not contain its
 schema default value to exist. A valid 'create' operation attribute
 for a data node that has a schema default value defined MUST succeed.
 A valid 'delete' operation attribute for a missing data node that has
 a schema default value MUST fail. The server MUST return an
 <rpc-error> response with a 'data-missing' error-tag.

 If a client sets a data node to its schema default value, using any
 valid operation, it MUST succeed, although the data node MUST NOT be
 saved in the NETCONF configuration datastore. This has the same
 effect as removing the data node and treating it as default data.

 If the server supports the 'report-all-tagged' value for the
 <with-defaults> parameter, then the 'default' attribute MUST be
 accepted in configuration input, as described in Section 4.5.1 and
 Section 4.5.2.

2.3. 'explicit' Basic Mode

 A server that uses the 'explicit' basic mode MUST consider any data
 node that is not explicitly set data to be default data.

2.3.1. 'explicit' Basic Mode Retrieval

 When data is retrieved from a server using the 'explicit' basic mode,
 and the <with-defaults> parameter is not present, data nodes MUST be
 reported if explicitly set by the client, even if they contain the
 schema default value. Non-configuration data nodes containing the
 schema default value MUST be reported.

2.3.2. 'explicit' <with-defaults> Retrieval

 If the 'explicit' basic mode is used by the server, the server MUST
 support the <with-defaults> parameter with a value equal to
 'explicit', as specified in Section 3.3.

2.3.3. 'explicit' <edit-config> and <copy-config> Behavior

 The server considers any data node that is explicitly set data to
 exist. A valid 'create' operation attribute for a data node that has
 been set by a client to its schema default value MUST fail with a
 'data-exists' error-tag. A valid 'create' operation attribute for a
 data node that has been set by the server to its schema default value
 MUST succeed. A valid 'delete' operation attribute for a data node
 that has been set by a client to its schema default value MUST
 succeed. A valid 'delete' operation attribute for a data node that
 has been set by the server to its schema default value MUST fail with
 a 'data-missing' error-tag.

 If the server supports the 'report-all-tagged' retrieval mode in its
 :with-defaults capability, then the 'default' attribute MUST be
 accepted in configuration input. If all NETCONF <edit-config> or
 <copy-config> parameters are valid, then the server will treat a
 tagged data node (i.e., the 'default' attribute set to 'true' or '1')
 as a request to return that node to default data. If this request is
 valid within the context of the requested NETCONF operation, then the
 data node is removed and returned to its default value. The data
 node within the NETCONF message MUST contain a value in this case,
 which MUST be equal to the schema default value. If not, the server
 MUST return an <rpc-error> response with an 'invalid-value' error-
 tag.

3. Retrieval of Default Data

 This document defines a new parameter, called <with-defaults>, which
 can be added to specific NETCONF operation request messages to
 control how retrieval of default data is treated by the server.

 A server that implements this specification MUST accept the
 <with-defaults> parameter containing the enumeration for any of the
 default-handling modes it supports. The <with-defaults> parameter
 contains one of the four enumerations defined in this section.

3.1. 'report-all' Retrieval Mode

 When data is retrieved with a <with-defaults> parameter equal to
 'report-all', all data nodes MUST be reported, including any data
 nodes considered to be default data by the server.

3.2. 'trim' Retrieval Mode

 When data is retrieved with a <with-defaults> parameter equal to
 'trim', data nodes MUST NOT be reported if they contain the schema
 default value. Non-configuration data nodes containing the schema
 default value MUST NOT be reported.

3.3. 'explicit' Retrieval Mode

 When data is retrieved with a <with-defaults> parameter equal to
 'explicit', a data node that was set by a client to its schema
 default value MUST be reported. A conceptual data node that would be
 set by the server to the schema default value MUST NOT be reported.
 Non-configuration data nodes containing the schema default value MUST
 be reported.

3.4. 'report-all-tagged' Retrieval Mode

 In addition to the basic modes, a special variant of the 'report-all'
 basic mode is available called 'report-all-tagged'. This mode MUST
 be supported on a server if the 'also-supported' parameter in the
 :with-defaults capability contains the 'report-all-tagged' option.
 Refer to Section 4 for encoding details for this capability.

 In this mode the server returns all data nodes, just like the
 'report-all' mode, except a data node that is considered by the
 server to contain default data will include an XML attribute to
 indicate this condition. This is useful for an application to
 determine which nodes are considered to contain default data by the
 server, within a single retrieval operation.

 A server that supports 'report-all-tagged' MUST also accept the
 'default' XML attribute within configuration input to the
 <edit-config> or <copy-config> operations. Refer to Section 6 for
 XML encoding details of the 'default' XML attribute.

4. With-defaults Capability

4.1. Overview

 The :with-defaults capability indicates which default-handling basic
 mode is supported by the server. It may also indicate support for
 additional defaults retrieval modes. These retrieval modes allow a
 NETCONF client to control whether default data is returned by the
 server. The capability affects both configuration and state data
 (while acknowledging that the usage of default values for state data
 is less prevalent). Sending of default data is controlled for each
 individual operation separately.

 A NETCONF server implementing the :with-defaults capability:

 o MUST indicate its basic mode behavior by including the 'basic-
 mode' parameter in the capability URI, as defined in Section 4.3.

 o MUST support the YANG module defined in Section 5 for the default-
 handling mode indicated by the 'basic-mode' parameter.

 o SHOULD support the YANG module in Section 5 for the default-
 handling mode identified by the 'report-all' or 'report-all-
 tagged' enumeration value.

 o If the 'report-all-tagged' default-handling mode is supported,
 then the 'default' attribute MUST be supported.

 o MAY support the YANG module in Section 5 for additional default-
 handling modes.

4.2. Dependencies

 None.

4.3. Capability Identifier

 urn:ietf:params:netconf:capability:with-defaults:1.0

 The identifier MUST have a parameter: "basic-mode". This indicates
 how the server will treat default data, as defined in Section 2. The
 allowed values of this parameter are 'report-all', 'trim', and
 'explicit', as defined in Section 2.

 The identifier MAY have another parameter: "also-supported". This
 parameter indicates which additional enumeration values (besides the
 basic-mode enumeration) the server will accept for the
 <with-defaults> parameter in Section 5. The value of the parameter
 is a comma-separated list of one or more modes that are supported
 besides the mode indicated in the 'basic-mode' parameter. Possible
 modes are 'report-all', 'report-all-tagged', 'trim', and 'explicit',
 as defined in Section 3.

 Note that this protocol capability URI is separate from the YANG
 module capability URI for the YANG module in Section 5. A server
 that implements this module MUST also advertise a YANG module
 capability URI according to the rules specified in [RFC6020].

 Examples:

 urn:ietf:params:netconf:capability:with-defaults:1.0?basic-
 mode=explicit

 urn:ietf:params:netconf:capability:with-defaults:1.0?basic-
 mode=explicit&also-supported=report-all,report-all-tagged

4.4. New Operations

 None.

4.5. Modifications to Existing Operations

4.5.1. <get>, <get-config>, and <copy-config> Operations

 A new <with-defaults> XML element is added to the input for the
 <get>, <get-config>, and <copy-config> operations. If the
 <with-defaults> element is present, it controls the reporting of
 default data. The server MUST return default data in the NETCONF
 <rpc-reply> messages according to the value of this element, if the
 server supports the specified retrieval mode.

 This parameter only controls these specified retrieval operations,
 and does not impact any other operations or the non-volatile storage
 of configuration data.

 The <with-defaults> element is defined in the XML namespace for the
 ietf-netconf-with-defaults.yang module in Section 5, not the XML
 namespace for the <get>, <get-config>, and <copy-config> operations.

 Allowed values of the with-defaults element are taken from the 'with-
 defaults-type' typedef in Section 5. The allowed values for a
 particular server are restricted to the values that the server
 indicates it supports within the :with-defaults capability, in the
 'basic-mode' and 'also-supported' parameters.

 If an unsupported value is used, the NETCONF server MUST return an
 <rpc-error> response with an 'invalid-value' error-tag.

 If the <with-defaults> element is not present, the server MUST follow
 its basic mode behavior as indicated by the :with-defaults capability
 identifier's 'basic-mode' parameter, defined in Section 4.3.

 The <get> and <get-config> operations support a separate filtering
 mechanism, using the <filter> parameter. The defaults filtering is
 conceptually done before the <filter> parameter is processed. For
 example, if the <with-defaults> parameter is equal to 'report-all',
 then the <filter> parameter is conceptually applied to all data nodes
 and all default data.

 The <copy-config> operation is only affected by the <with-defaults>
 parameter if the target of the operation is specified with the <url>
 parameter. If the target is a NETCONF configuration datastore (i.e.,
 running, candidate, or startup), the <with-defaults> parameter has no
 effect. The server MUST use its basic mode when copying data to a
 NETCONF configuration datastore. If the <with-defaults> parameter is
 present in this case, it MUST be silently ignored by the server.

 If the server supports the 'report-all-tagged' mode, then the
 'default' attribute defined in Section 6 also impacts the
 <copy-config> operation. If the 'default' attribute is present and
 set to 'true' or '1', then the server MUST treat the new data node as
 a request to return that node to its default value (i.e., remove it
 from the configuration datastore). The data node within the NETCONF
 message MUST contain a value in this case, which MUST be equal to the
 schema default value. If not, the server MUST return an <rpc-error>
 response with an 'invalid-value' error-tag.

4.5.2. <edit-config> Operation

 The <edit-config> operation has several editing modes. The 'create'
 and 'delete' editing operations are affected by the default-handling
 basic mode. The other enumeration values for the NETCONF operation
 attribute are not affected.

 If the operation attribute contains the value 'create', and the data
 node already exists in the target configuration datastore, then the
 server MUST return an <rpc-error> response with an 'invalid-value'
 error-tag.

 If the client sets a data node to its schema default value, the
 server MUST accept the request if it is valid. The server MUST keep
 or discard the new value based on its default-handling basic mode.
 For the 'trim' basic mode, all schema default values are discarded;
 otherwise, a client-provided schema default value is saved in a
 NETCONF configuration datastore.

 If the server supports the 'report-all-tagged' mode, then the
 'default' attribute defined in Section 6 also impacts the
 <edit-config> operation. If the 'default' attribute is present and
 set to 'true' or '1', then the server MUST treat the new data node as
 a request to return that node to its default value (i.e., remove it
 from the configuration datastore). The data node within the NETCONF
 message MUST contain a value in this case, which MUST be equal to the
 schema default value. If not, the server MUST return an <rpc-error>
 response with an 'invalid-value' error-tag.

 If the 'default' attribute is present, then the effective operation
 for the target data node MUST be 'create', 'merge', or 'replace'. If
 not, then the server MUST return an <rpc-error> response with an
 'invalid-value' error-tag. For example, if 'create' is the effective
 operation, then the create request must be valid on its own (e.g.,
 current data node MUST NOT exist). The procedure for determining the
 effective operation is defined in [RFC6241]. It is derived from the
 'default-operation' parameter and/or any operation attributes that
 are present in the data node or any of its ancestor nodes, within the
 <edit-config> request.

4.5.3. Other Operations

 Other operations that return configuration data SHOULD also handle
 default data according to the rules set in this document, and
 explicitly state this in their documentation. If this is not
 specified in the document defining the respective operation, the
 default-handling rules described herein do not affect these
 operations.

4.6. Interactions with Other Capabilities

 None.

5. YANG Module for the <with-defaults> Parameter

 The following YANG module defines the addition of the with-defaults
 element to the <get>, <get-config>, and <copy-config> operations.
 The YANG language is defined in [RFC6020]. The above operations are
 defined in YANG in [RFC6241]. Every NETCONF server that supports the
 :with-defaults capability MUST implement this YANG module.

 <CODE BEGINS> file="ietf-netconf-with-defaults@2011-06-01.yang"

 module ietf-netconf-with-defaults {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults";

 prefix ncwd;

 import ietf-netconf { prefix nc; }

 organization

 "IETF NETCONF (Network Configuration Protocol) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>

 WG List: <netconf@ietf.org>

 WG Chair: Bert Wijnen

 <bertietf@bwijnen.net>

 WG Chair: Mehmet Ersue

 <mehmet.ersue@nsn.com>

 Editor: Andy Bierman

 <andy.bierman@brocade.com>

 Editor: Balazs Lengyel

 <balazs.lengyel@ericsson.com>";

description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control how default
 values are handled by the server in particular NETCONF
 operations.

 Copyright (c) 2011 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 6243; see
 the RFC itself for full legal notices.";

revision 2011‑06‑01 {
 description
 "Initial version.";
 reference
 "RFC 6243: With‑defaults Capability for NETCONF";
}

typedef with‑defaults‑mode {
 description
 "Possible modes to report default data.";
 reference
 "RFC 6243; Section 3.";
 type enumeration {
 enum report‑all {
 description
 "All default data is reported.";
 reference
 "RFC 6243; Section 3.1";
 }
 enum report‑all‑tagged {
 description
 "All default data is reported.
 Any nodes considered to be default data
 will contain a 'default' XML attribute,
 set to 'true' or '1'.";
 reference
 "RFC 6243; Section 3.4";
 }
 enum trim {
 description
 "Values are not reported if they contain the default.";
 reference
 "RFC 6243; Section 3.2";
 }
 enum explicit {
 description
 "Report values that contain the definition of
 explicitly set data.";
 reference
 "RFC 6243; Section 3.3";
 }
 }
}

grouping with‑defaults‑parameters {
 description
 "Contains the <with‑defaults> parameter for control
 of defaults in NETCONF retrieval operations.";

 leaf with‑defaults {
 description
 "The explicit defaults processing mode requested.";
 reference
 "RFC 6243; Section 4.5.1";

 type with‑defaults‑mode;
 }
}

// extending the get‑config operation
augment /nc:get‑config/nc:input {
 description
 "Adds the <with‑defaults> parameter to the
 input of the NETCONF <get‑config> operation.";
 reference
 "RFC 6243; Section 4.5.1";

 uses with‑defaults‑parameters;
}

// extending the get operation
augment /nc:get/nc:input {
 description
 "Adds the <with‑defaults> parameter to
 the input of the NETCONF <get> operation.";
 reference
 "RFC 6243; Section 4.5.1";

 uses with‑defaults‑parameters;
}

// extending the copy‑config operation
augment /nc:copy‑config/nc:input {
 description
 "Adds the <with‑defaults> parameter to
 the input of the NETCONF <copy‑config> operation.";
 reference
 "RFC 6243; Section 4.5.1";

 uses with‑defaults‑parameters;
}

 }

 <CODE ENDS>

6. XSD for the 'default' Attribute

 The following XML Schema document [W3C.REC-xml-20081126] defines the
 'default' attribute, described within this document. This XSD is
 only relevant if the server supports the 'report-all-tagged' defaults
 retrieval mode.

 The 'default' attribute uses the XSD data type 'boolean'. In
 accordance with Section 3.2.2.1 of XML Schema Part 2: Datatypes, the
 allowable lexical representations for the xs:boolean datatype are the
 strings "0" and "false" for the concept of false and the strings "1"
 and "true" for the concept of true. Implementations MUST support
 both styles of lexical representation.

<CODE BEGINS> file="defaults.xsd"

<?xml version="1.0" encoding="UTF‑8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:default:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:default:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en">

 <xs:annotation>
 <xs:documentation>
 This schema defines the syntax for the 'default' attribute
 described within this document.
 </xs:documentation>
 </xs:annotation>

 <!‑‑
 default attribute
 ‑‑>
 <xs:attribute name="default" type="xs:boolean" default="false">
 <xs:annotation>
 <xs:documentation>
 This attribute indicates whether the data node represented
 by the XML element containing this attribute is considered
 by the server to be default data. If set to 'true' or '1', then
 the data node is default data. If 'false' or '0', then the
 data node is not default data.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

</xs:schema>

<CODE ENDS>

7. IANA Considerations

 This document registers the following capability identifier URN in
 the 'Network Configuration Protocol (NETCONF) Capability URNs'
 registry:

 urn:ietf:params:netconf:capability:with-defaults:1.0

 This document registers two XML namespace URNs in the 'IETF XML
 registry', following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:netconf:default:1.0

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one module name in the 'YANG Module Names'
 registry, defined in [RFC6020] .

 name: ietf-netconf-with-defaults

 prefix: ncwd

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults

 RFC: 6243

8. Security Considerations

 This document defines an extension to existing NETCONF protocol
 operations. It does not introduce any new or increased security
 risks into the management system.

 The 'with-defaults' capability gives clients control over the
 retrieval of default data from a NETCONF datastore. The security
 consideration of [RFC6241] applies to this document as well.

9. Acknowledgements

 Thanks to Martin Bjorklund, Sharon Chisholm, Phil Shafer, Juergen
 Schoenwaelder, Kent Watsen, Washam Fan, and many other members of the
 NETCONF WG for providing important input to this document.

10. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC6020]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [W3C.REC-xmlschema-0-20041028]

 Fallside, D. and P. Walmsley, "XML Schema Part 0: Primer
 Second Edition", World Wide Web Consortium Recommendation
 REC-xmlschema-0-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-0-20041028>.

Appendix A. Usage Examples

A.1. Example YANG Module

 The following YANG module defines an example interfaces table to
 demonstrate how the <with-defaults> parameter behaves for a specific
 data model.

 Note that this is not a real module, and implementation of this
 module is not required for conformance to the :with-defaults
 capability, defined in Section 4. This module is not to be
 registered with IANA, and is not considered to be a code component.
 It is intentionally very terse, and includes few descriptive
 statements.

 module example {

 namespace "http://example.com/ns/interfaces";

 prefix exam;

typedef status‑type {
 description "Interface status";
 type enumeration {
 enum ok;
 enum 'waking up';
 enum 'not feeling so good';
 enum 'better check it out';
 enum 'better call for help';
 }
 default ok;
}

 container interfaces {

 description "Example interfaces group";

 list interface {
 description "Example interface entry";
 key name;

 leaf name {
 description
 "The administrative name of the interface.
 This is an identifier that is only unique
 within the scope of this list, and only
 within a specific server.";
 type string {

 length "1 .. max";
 }
 }

 leaf mtu {
 description
 "The maximum transmission unit (MTU) value assigned to
 this interface.";
 type uint32;
 default 1500;
 }

 leaf status {
 description
 "The current status of this interface.";
 type status‑type;
 config false;
 }
 }
 }
}

A.2. Example Data Set

 The following data element shows the conceptual contents of the
 example server for the protocol operation examples in the next
 section. This includes all the configuration data nodes, non-
 configuration data nodes, and default leafs.

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <mtu>1500</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>

 <mtu>1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
</data>

 In this example, the 'mtu' field for each interface entry is set in
 the following manner:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| name | set by | mtu |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
eth0	client	8192
eth1	server	1500
eth2	client	9000
eth3	client	1500
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

A.3. Protocol Operation Examples

 The following examples show some <get> operations using the 'with-
 defaults' element. The data model used for these examples is defined
 in Appendix A.1.

 The client is retrieving all the data nodes within the 'interfaces'
 object, filtered with the <with-defaults> parameter.

A.3.1. <with-defaults> = 'report-all'

 The behavior of the <with-defaults> parameter handling for the value
 'report-all' is demonstrated in this example.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with‑defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑with‑defaults">
 report‑all
 </with‑defaults>
 </get>
</rpc>

<rpc‑reply message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>

 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <mtu>1500</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu>1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
</rpc‑reply>

A.3.2. <with-defaults> = 'report-all-tagged'

 The behavior of the <with-defaults> parameter handling for the value
 'report-all-tagged' is demonstrated in this example. A 'tagged' data
 node is an element that contains the 'default' XML attribute, set to
 'true' or '1'.

 The actual data nodes tagged by the server depend on the default-
 handling basic mode used by the server. Only the data nodes that are
 considered to be default data will be tagged.

 In this example, the server's basic mode is equal to 'trim', so all
 data nodes that would contain the schema default value are tagged.
 If the server's basic mode is 'explicit', then only data nodes that
 are not explicitly set data are tagged. If the server's basic mode
 is 'report-all', then no data nodes are tagged.

<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>

 <with‑defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑with‑defaults">
 report‑all‑tagged
 </with‑defaults>
 </get>
</rpc>

<rpc‑reply message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:wd="urn:ietf:params:xml:ns:netconf:default:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status wd:default="true">up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <mtu wd:default="true">1500</mtu>
 <status wd:default="true">up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu wd:default="true">1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
</rpc‑reply>

A.3.3. <with-defaults> = 'trim'

 The behavior of the <with-defaults> parameter handling for the value
 'trim' is demonstrated in this example.

<rpc message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with‑defaults

 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑with‑defaults">
 trim
 </with‑defaults>
 </get>
</rpc>

<rpc‑reply message‑id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 </interface>
 <interface>
 <name>eth1</name>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
</rpc‑reply>

A.3.4. <with-defaults> = 'explicit'

 The behavior of the <with-defaults> parameter handling for the value
 'explicit' is demonstrated in this example.

<rpc message‑id="104"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with‑defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑with‑defaults">
 explicit
 </with‑defaults>
 </get>
</rpc>

<rpc‑reply message‑id="104"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <status>up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu>1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
</rpc‑reply>

Authors' Addresses

Andy Bierman
Brocade

 EMail: andy.bierman@brocade.com

Balazs Lengyel
Ericsson
Budapest,
Hungary

 EMail: balazs.lengyel@ericsson.com

6470 - Network Configuration Protocol (NETCONF) Base Notifications

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6470

Category: Standards Track

ISSN: 2070-1721

A. Bierman

Brocade

February 2012

Network Configuration Protocol (NETCONF) Base Notifications

Abstract

 The Network Configuration Protocol (NETCONF) provides mechanisms to
 manipulate configuration datastores. However, client applications
 often need to be aware of common events, such as a change in NETCONF
 server capabilities, that may impact management applications.
 Standard mechanisms are needed to support the monitoring of the base
 system events within the NETCONF server. This document defines a
 YANG module that allows a NETCONF client to receive notifications for
 some common system events.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6470.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. YANG Module for NETCONF Base Notifications
	 2.1. Overview

	 2.2. Definitions

	3. IANA Considerations

	4. Security Considerations

	5. Acknowledgements

	6. Normative References

1. Introduction

 The NETCONF protocol [RFC6241] provides mechanisms to manipulate
 configuration datastores. However, client applications often need to
 be aware of common events, such as a change in NETCONF server
 capabilities, that may impact management applications. Standard
 mechanisms are needed to support the monitoring of the base system
 events within the NETCONF server. This document defines a YANG
 module [RFC6020] that allows a NETCONF client to receive
 notifications for some common system events.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC6241]:

o client
o datastore
o protocol operation
o server

 The following terms are defined in [RFC5277]:

o event
o stream
o subscription

 The following term is defined in [RFC6020]:

 o data node

2. YANG Module for NETCONF Base Notifications

2.1. Overview

 The YANG module defined within this document specifies a small number
 of event notification messages for use within the 'NETCONF' stream,
 and accessible to clients via the subscription mechanism described in
 [RFC5277]. This module imports data types from the 'ietf-netconf'
 module defined in [RFC6241] and 'ietf-inet-types' module defined in
 [RFC6021].

 These notifications pertain to configuration and monitoring portions
 of the managed system, not the entire system. A server MUST report
 events that are directly related to the NETCONF protocol. A server
 MAY report events for non-NETCONF management sessions, using the
 'session-id' value of zero.

 This module defines the following notifications for the 'NETCONF'
 stream to notify a client application that the NETCONF server state
 has changed:

 netconf-config-change:

 Generated when the NETCONF server detects that the <running> or
 <startup> configuration datastore has been changed by a management
 session. The notification summarizes the edits that have been
 detected.

 netconf-capability-change:

 Generated when the NETCONF server detects that the server
 capabilities have changed. Indicates which capabilities have been
 added, deleted, and/or modified. The manner in which a server
 capability is changed is outside the scope of this document.

 netconf-session-start:

 Generated when a NETCONF server detects that a NETCONF session has
 started. A server MAY generate this event for non-NETCONF
 management sessions. Indicates the identity of the user that
 started the session.

 netconf-session-end:

 Generated when a NETCONF server detects that a NETCONF session has
 terminated. A server MAY optionally generate this event for
 non-NETCONF management sessions. Indicates the identity of the
 user that owned the session, and why the session was terminated.

 netconf-confirmed-commit:

 Generated when a NETCONF server detects that a confirmed-commit
 event has occurred. Indicates the event and the current state of
 the confirmed-commit procedure in progress.

2.2. Definitions

 <CODE BEGINS> file="ietf-netconf-notifications@2011-12-09.yang"

 module ietf-netconf-notifications {

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-netconf-notifications";

 prefix ncn;

import ietf‑inet‑types { prefix inet; }
import ietf‑netconf { prefix nc; }

 organization

 "IETF NETCONF (Network Configuration Protocol) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Bert Wijnen

 <mailto:bertietf@bwijnen.net>

 WG Chair: Mehmet Ersue

 <mailto:mehmet.ersue@nsn.com>

 Editor: Andy Bierman
 <mailto:andy@netconfcentral.org>";

description
 "This module defines a YANG data model for use with the
 NETCONF protocol that allows the NETCONF client to
 receive common NETCONF base event notifications.

 Copyright (c) 2012 IETF Trust and the persons identified as
 the document authors. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 6470; see
 the RFC itself for full legal notices.";

 revision "2012‑02‑06" {
 description
 "Initial version.";
 reference
 "RFC 6470: NETCONF Base Notifications";
 }

grouping common‑session‑parms {
 description
 "Common session parameters to identify a
 management session.";

 leaf username {
 type string;
 mandatory true;
 description
 "Name of the user for the session.";
 }

 leaf session‑id {
 type nc:session‑id‑or‑zero‑type;
 mandatory true;
 description
 "Identifier of the session.
 A NETCONF session MUST be identified by a non‑zero value.
 A non‑NETCONF session MAY be identified by the value zero.";
 }

 leaf source‑host {
 type inet:ip‑address;
 description
 "Address of the remote host for the session.";
 }
}

 grouping changed‑by‑parms {
 description
 "Common parameters to identify the source
 of a change event, such as a configuration
 or capability change.";

 container changed‑by {
 description
 "Indicates the source of the change.
 If caused by internal action, then the
 empty leaf 'server' will be present.
 If caused by a management session, then
 the name, remote host address, and session ID
 of the session that made the change will be reported.";
 choice server‑or‑user {
 mandatory true;
 leaf server {
 type empty;
 description
 "If present, the change was caused
 by the server.";
 }

 case by‑user {
 uses common‑session‑parms;
 }
 } // choice server‑or‑user
 } // container changed‑by‑parms
}

notification netconf‑config‑change {
 description
 "Generated when the NETCONF server detects that the
 <running> or <startup> configuration datastore
 has been changed by a management session.
 The notification summarizes the edits that
 have been detected.

 The server MAY choose to also generate this
 notification while loading a datastore during the
 boot process for the device.";

 uses changed-by-parms;

 leaf datastore {
 type enumeration {
 enum running {
 description "The <running> datastore has changed.";
 }
 enum startup {
 description "The <startup> datastore has changed";
 }
 }
 default "running";
 description
 "Indicates which configuration datastore has changed.";
 }

 list edit {
 description
 "An edit record SHOULD be present for each distinct
 edit operation that the server has detected on
 the target datastore. This list MAY be omitted
 if the detailed edit operations are not known.
 The server MAY report entries in this list for
 changes not made by a NETCONF session (e.g., CLI).";

 leaf target {
 type instance‑identifier;
 description
 "Topmost node associated with the configuration change.
 A server SHOULD set this object to the node within
 the datastore that is being altered. A server MAY
 set this object to one of the ancestors of the actual
 node that was changed, or omit this object, if the
 exact node is not known.";
 }

 leaf operation {
 type nc:edit‑operation‑type;
 description
 "Type of edit operation performed.
 A server MUST set this object to the NETCONF edit
 operation performed on the target datastore.";
 }
 } // list edit
} // notification netconf‑config‑change

notification netconf‑capability‑change {
 description
 "Generated when the NETCONF server detects that
 the server capabilities have changed.
 Indicates which capabilities have been added, deleted,
 and/or modified. The manner in which a server
 capability is changed is outside the scope of this
 document.";

 uses changed-by-parms;

 leaf‑list added‑capability {
 type inet:uri;
 description
 "List of capabilities that have just been added.";
 }

 leaf‑list deleted‑capability {
 type inet:uri;
 description
 "List of capabilities that have just been deleted.";
 }

 leaf‑list modified‑capability {
 type inet:uri;
 description
 "List of capabilities that have just been modified.
 A capability is considered to be modified if the
 base URI for the capability has not changed, but
 one or more of the parameters encoded at the end of
 the capability URI have changed.
 The new modified value of the complete URI is returned.";
 }
} // notification netconf‑capability‑change

notification netconf‑session‑start {
 description
 "Generated when a NETCONF server detects that a
 NETCONF session has started. A server MAY generate
 this event for non‑NETCONF management sessions.
 Indicates the identity of the user that started
 the session.";
 uses common‑session‑parms;
} // notification netconf‑session‑start

notification netconf‑session‑end {
 description
 "Generated when a NETCONF server detects that a
 NETCONF session has terminated.
 A server MAY optionally generate this event for
 non‑NETCONF management sessions. Indicates the
 identity of the user that owned the session,
 and why the session was terminated.";

 uses common-session-parms;

 leaf killed‑by {
 when "../termination‑reason = 'killed'";
 type nc:session‑id‑type;
 description
 "The ID of the session that directly caused this session
 to be abnormally terminated. If this session was abnormally
 terminated by a non‑NETCONF session unknown to the server,
 then this leaf will not be present.";
 }

 leaf termination‑reason {
 type enumeration {
 enum "closed" {
 description
 "The session was terminated by the client in normal
 fashion, e.g., by the NETCONF <close‑session>
 protocol operation.";
 }
 enum "killed" {
 description
 "The session was terminated in abnormal
 fashion, e.g., by the NETCONF <kill‑session>
 protocol operation.";
 }
 enum "dropped" {
 description
 "The session was terminated because the transport layer
 connection was unexpectedly closed.";
 }
 enum "timeout" {
 description
 "The session was terminated because of inactivity,
 e.g., waiting for the <hello> message or <rpc>
 messages.";
 }

 enum "bad‑hello" {
 description
 "The client's <hello> message was invalid.";
 }
 enum "other" {
 description
 "The session was terminated for some other reason.";
 }
 }
 mandatory true;
 description
 "Reason the session was terminated.";
 }
} // notification netconf‑session‑end

notification netconf‑confirmed‑commit {
 description
 "Generated when a NETCONF server detects that a
 confirmed‑commit event has occurred. Indicates the event
 and the current state of the confirmed‑commit procedure
 in progress.";
 reference
 "RFC 6241, Section 8.4";

 uses common‑session‑parms {
 when "../confirm‑event != 'timeout'";
 }

 leaf confirm‑event {
 type enumeration {
 enum "start" {
 description
 "The confirmed‑commit procedure has started.";
 }
 enum "cancel" {
 description
 "The confirmed‑commit procedure has been canceled,
 e.g., due to the session being terminated, or an
 explicit <cancel‑commit> operation.";
 }
 enum "timeout" {
 description
 "The confirmed‑commit procedure has been canceled
 due to the confirm‑timeout interval expiring.
 The common session parameters will not be present
 in this sub‑mode.";
 }

 enum "extend" {
 description
 "The confirmed‑commit timeout has been extended,
 e.g., by a new <confirmed‑commit> operation.";
 }
 enum "complete" {
 description
 "The confirmed‑commit procedure has been completed.";
 }
 }
 mandatory true;
 description
 "Indicates the event that caused the notification.";
 }

 leaf timeout {
 when
 "../confirm‑event = 'start' or ../confirm‑event = 'extend'";
 type uint32;
 units "seconds";
 description
 "The configured timeout value if the event type
 is 'start' or 'extend'. This value represents
 the approximate number of seconds from the event
 time when the 'timeout' event might occur.";
 }
} // notification netconf‑confirmed‑commit

 }

 <CODE ENDS>

3. IANA Considerations

 This document registers one XML namespace URN in the 'IETF XML
 registry', following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-notifications

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 This document registers one module name in the 'YANG Module Names'
 registry, defined in [RFC6020].

name: ietf‑netconf‑notifications
prefix: ncn
namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑notifications
RFC: 6470

4. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory-to-implement secure
 transport is SSH, defined in [RFC6242].

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

/netconf‑config‑change:
 Event type itself indicates that the system configuration has
 changed. This event could alert an attacker that specific
 configuration data nodes have been altered.
/netconf‑config‑change/changed‑by:
 Indicates whether the server or a specific user management session
 made the configuration change. Identifies the user name,
 session‑id, and source host address associated with the
 configuration change, if any.
/netconf‑config‑change/datastore:
 Indicates which datastore has been changed. This data can be used
 to determine if the non‑volatile startup configuration data has
 been changed.
/netconf‑config‑change/edit:
 Identifies the specific edit operations and specific datastore
 subtree(s) that have changed. This data could be used to
 determine if specific server vulnerabilities may now be present.

/netconf‑capability‑change:
 Event type itself indicates that the system capabilities have
 changed, and may now be vulnerable to unspecified attacks. An
 attacker will likely need to understand the content represented by
 specific capability URI strings. For example, knowing that a
 packet capture monitoring capability has been added to the system
 might help an attacker identify the device for possible
 unauthorized eavesdropping.
/netconf‑capability‑change/changed‑by:
 Indicates whether the server or a specific user management session
 made the capability change. Identifies the user name, session‑id,
 and source host address associated with the capability change, if
 any.
/netconf‑capability‑change/added‑capability:
 Indicates the specific capability URIs that have been added. This
 data could be used to determine if specific server vulnerabilities
 may now be present.
/netconf‑capability‑change/deleted‑capability:
 Indicates the specific capability URIs that have been deleted.
 This data could be used to determine if specific server
 vulnerabilities may now be present.
/netconf‑capability‑change/modified‑capability:
 Indicates the specific capability URIs that have been modified.
 This data could be used to determine if specific server
 vulnerabilities may now be present.

/netconf‑session‑start:
 Event type itself indicates that a NETCONF or other management
 session may start altering the device configuration and/or state.
 It may be possible for an attacker to alter the configuration by
 somehow taking advantage of another session concurrently editing
 an unlocked datastore.
/netconf‑session‑start/username:
 Indicates the user name associated with the session.
/netconf‑session‑start/source‑host:
 Indicates the source host address associated with the session.

/netconf‑session‑end:
 Event type itself indicates that a NETCONF or other management
 session may be finished altering the device configuration. This
 event could alert an attacker that a datastore may have been
 altered.
/netconf‑session‑end/username:
 Indicates the user name associated with the session.
/netconf‑session‑end/source‑host:
 Indicates the source host address associated with the session.

/netconf‑confirmed‑commit:
 Event type itself indicates that the <running> datastore may have
 changed. This event could alert an attacker that the device
 behavior has changed.
/netconf‑confirmed‑commit/username:
 Indicates the user name associated with the session.
/netconf‑confirmed‑commit/source‑host:
 Indicates the source host address associated with the session.
/netconf‑confirmed‑commit/confirm‑event:
 Indicates the specific confirmed‑commit state change that
 occurred. A value of 'complete' probably indicates that the
 <running> datastore has changed.
/netconf‑confirmed‑commit/timeout:
 Indicates the number of seconds in the future when the <running>
 datastore may change, due to the server reverting to an older
 configuration.

5. Acknowledgements

 Thanks to Martin Bjorklund, Juergen Schoenwaelder, Kent Watsen, and
 many other members of the NETCONF WG for providing important input to
 this document.

6. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6021, October 2010.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, June 2011.

Author's Address

Andy Bierman
Brocade

 EMail: andy@netconfcentral.org

6536 - Network Configuration Protocol (NETCONF) Access Control Model

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6536

Category: Standards Track

ISSN: 2070-1721

A. Bierman

YumaWorks

M. Bjorklund

Tail-f Systems

March 2012

Network Configuration Protocol (NETCONF) Access Control Model

Abstract

 The standardization of network configuration interfaces for use with
 the Network Configuration Protocol (NETCONF) requires a structured
 and secure operating environment that promotes human usability and
 multi-vendor interoperability. There is a need for standard
 mechanisms to restrict NETCONF protocol access for particular users
 to a pre-configured subset of all available NETCONF protocol
 operations and content. This document defines such an access control
 model.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6536.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
		 1.1. Terminology

	2. Access Control Design Objectives
		 2.1. Access Control Points

	 2.2. Simplicity

	 2.3. Procedural Interface

	 2.4. Datastore Access

	 2.5. Users and Groups

	 2.6. Maintenance

	 2.7. Configuration Capabilities

	 2.8. Identifying Security-Sensitive Content

	3. NETCONF Access Control Model (NACM)
		 3.1. Introduction
	 3.1.1. Features

	 3.1.2. External Dependencies

	 3.1.3. Message Processing Model

	 3.2. Datastore Access
	 3.2.1. Access Rights

	 3.2.2. <get> and <get-config> Operations

	 3.2.3. <edit-config> Operation

	 3.2.4. <copy-config> Operation

	 3.2.5. <delete-config> Operation

	 3.2.6. <commit> Operation

	 3.2.7. <discard-changes> Operation

	 3.2.8. <kill-session> Operation

	 3.3. Model Components
	 3.3.1. Users

	 3.3.2. Groups

	 3.3.3. Emergency Recovery Session

	 3.3.4. Global Enforcement Controls
	 3.3.4.1. enable-nacm Switch

	 3.3.4.2. read-default Switch

	 3.3.4.3. write-default Switch

	 3.3.4.4. exec-default Switch

	 3.3.4.5. enable-external-groups Switch

	 3.3.5. Access Control Rules

	 3.4. Access Control Enforcement Procedures
	 3.4.1. Initial Operation

	 3.4.2. Session Establishment

	 3.4.3. "access-denied" Error Handling

	 3.4.4. Incoming RPC Message Validation

	 3.4.5. Data Node Access Validation

	 3.4.6. Outgoing <notification> Authorization

	 3.5. Data Model Definitions
	 3.5.1. Data Organization

	 3.5.2. YANG Module

	 3.6. IANA Considerations

	 3.7. Security Considerations
	 3.7.1. NACM Configuration and Monitoring Considerations

	 3.7.2. General Configuration Issues

	 3.7.3. Data Model Design Considerations

	4. References
		 4.1. Normative References

	 4.2. Informative References

	Appendix A. Usage Examples
	 A.1. <groups> Example

	 A.2. Module Rule Example

	 A.3. Protocol Operation Rule Example

	 A.4. Data Node Rule Example

	 A.5. Notification Rule Example

1. Introduction

 The NETCONF protocol does not provide any standard mechanisms to
 restrict the protocol operations and content that each user is
 authorized to access.

 There is a need for interoperable management of the controlled access
 to administrator-selected portions of the available NETCONF content
 within a particular server.

 This document addresses access control mechanisms for the Operations
 and Content layers of NETCONF, as defined in [RFC6241]. It contains
 three main sections:

 1. Access Control Design Objectives

 2. NETCONF Access Control Model (NACM)

 3. YANG Data Model (ietf-netconf-acm.yang)

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o client

 o datastore

 o protocol operation

 o server

 o session

 o user

 The following terms are defined in [RFC6020] and are not redefined
 here:

 o data node

 o data definition statement

 The following terms are used throughout this document:

access control: A security feature provided by the NETCONF server
 that allows an administrator to restrict access to a subset of all
 NETCONF protocol operations and data, based on various criteria.

access control model (ACM): A conceptual model used to configure and
 monitor the access control procedures desired by the administrator
 to enforce a particular access control policy.

access control rule: The criterion used to determine if a particular
 NETCONF protocol operation will be permitted or denied.

access operation: How a request attempts to access a conceptual
 object. One of "none", "read", "create", "delete", "update", or
 "execute".

recovery session: A special administrative session that is given
 unlimited NETCONF access and is exempt from all access control
 enforcement. The mechanism(s) used by a server to control and
 identify whether or not a session is a recovery session are
 implementation specific and outside the scope of this document.

write access: A shorthand for the "create", "delete", and "update"
 access operations.

2. Access Control Design Objectives

 This section documents the design objectives for the NETCONF Access
 Control Model presented in Section 3.

2.1. Access Control Points

 NETCONF allows new protocol operations to be added at any time, and
 the YANG Data Modeling Language supports this feature. It is not
 possible to design an ACM for NETCONF that only focuses on a static
 set of protocol operations, like some other protocols. Since few
 assumptions can be made about an arbitrary protocol operation, the
 NETCONF architectural server components need to be protected at three
 conceptual control points.

 These access control points, described in Figure 1, are as follows:

protocol operation: Permission to invoke specific protocol
 operations.

datastore: Permission to read and/or alter specific data nodes
 within any datastore.

notification: Permission to receive specific notification event
 types.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 client | protocol | | data node |
 request ‑‑> | operation | ‑‑‑‑‑‑‑‑‑‑‑‑‑> | access |
 | allowed? | datastore | allowed? |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ or state +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 data access

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | notification |
 event ‑‑> | allowed? |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1

2.2. Simplicity

 There is concern that a complicated ACM will not be widely deployed
 because it is too hard to use. It needs to be easy to do simple
 things and possible to do complex things, instead of hard to do
 everything.

 Configuration of the access control system needs to be as simple as
 possible. Simple and common tasks need to be easy to configure and
 require little expertise or domain-specific knowledge. Complex tasks
 are possible using additional mechanisms, which may require
 additional expertise.

 A single set of access control rules ought to be able to control all
 types of NETCONF protocol operation invocation, all datastore access,
 and all notification events.

 Access control ought to be defined with a small and familiar set of
 permissions, while still allowing full control of NETCONF datastore
 access.

2.3. Procedural Interface

 The NETCONF protocol uses a remote procedure call model and an
 extensible set of protocol operations. Access control for any
 possible protocol operation is necessary.

2.4. Datastore Access

 It is necessary to control access to specific nodes and subtrees
 within the NETCONF datastore, regardless of which protocol operation,
 standard or proprietary, was used to access the datastore.

2.5. Users and Groups

 It is necessary that access control rules for a single user or a
 configurable group of users can be configured.

 The ACM needs to support the concept of administrative groups, to
 support the well-established distinction between a root account and
 other types of less-privileged conceptual user accounts. These
 groups need to be configurable by the administrator.

 It is necessary that the user-to-group mapping can be delegated to a
 central server, such as a RADIUS server [RFC2865][RFC5607]. Since
 authentication is performed by the NETCONF transport layer and RADIUS
 performs authentication and service authorization at the same time,
 the underlying NETCONF transport needs to be able to report a set of
 group names associated with the user to the server. It is necessary
 that the administrator can disable the usage of these group names
 within the ACM.

2.6. Maintenance

 It ought to be possible to disable part or all of the access control
 model enforcement procedures without deleting any access control
 rules.

2.7. Configuration Capabilities

 Suitable configuration and monitoring mechanisms are needed to allow
 an administrator to easily manage all aspects of the ACM's behavior.
 A standard data model, suitable for use with the <edit-config>
 protocol operation, needs to be available for this purpose.

 Access control rules to restrict access operations on specific
 subtrees within the configuration datastore need to be supported.

2.8. Identifying Security-Sensitive Content

 One of the most important aspects of the data model documentation,
 and biggest concerns during deployment, is the identification of
 security-sensitive content. This applies to protocol operations in
 NETCONF, not just data and notifications.

 It is mandatory for security-sensitive objects to be documented in
 the Security Considerations section of an RFC. This is nice, but it
 is not good enough, for the following reasons:

 o This documentation-only approach forces administrators to study
 the RFC and determine if there are any potential security risks
 introduced by a new data model.

 o If any security risks are identified, then the administrator must
 study some more RFC text and determine how to mitigate the
 security risk(s).

 o The ACM on each server must be configured to mitigate the security
 risks, e.g., require privileged access to read or write the
 specific data identified in the Security Considerations section.

 o If the ACM is not pre-configured, then there will be a time window
 of vulnerability after the new data model is loaded and before the
 new access control rules for that data model are configured,
 enabled, and debugged.

 Often, the administrator just wants to disable default access to the
 secure content, so no inadvertent or malicious changes can be made to
 the server. This allows the default rules to be more lenient,
 without significantly increasing the security risk.

 A data model designer needs to be able to use machine-readable
 statements to identify NETCONF content, which needs to be protected
 by default. This will allow client and server tools to automatically
 identify data-model-specific security risks, by denying access to
 sensitive data unless the user is explicitly authorized to perform
 the requested access operation.

3. NETCONF Access Control Model (NACM)

3.1. Introduction

 This section provides a high-level overview of the access control
 model structure. It describes the NETCONF protocol message
 processing model and the conceptual access control requirements
 within that model.

3.1.1. Features

 The NACM data model provides the following features:

 o Independent control of remote procedure call (RPC), data, and
 notification access.

 o Simple access control rules configuration data model that is easy
 to use.

 o The concept of an emergency recovery session is supported, but
 configuration of the server for this purpose is beyond the scope
 of this document. An emergency recovery session will bypass all
 access control enforcement, in order to allow it to initialize or
 repair the NACM configuration.

 o A simple and familiar set of datastore permissions is used.

 o Support for YANG security tagging (e.g., "nacm:default-deny-write"
 statement) allows default security modes to automatically exclude
 sensitive data.

 o Separate default access modes for read, write, and execute
 permissions.

 o Access control rules are applied to configurable groups of users.

 o The access control enforcement procedures can be disabled during
 operation, without deleting any access control rules, in order to
 debug operational problems.

 o Access control rules are simple to configure.

 o The number of denied protocol operation requests and denied
 datastore write requests can be monitored by the client.

 o Simple unconstrained YANG instance identifiers are used to
 configure access control rules for specific data nodes.

3.1.2. External Dependencies

 The NETCONF protocol [RFC6241] is used for all management purposes
 within this document.

 The YANG Data Modeling Language [RFC6020] is used to define the
 NETCONF data models specified in this document.

3.1.3. Message Processing Model

 The following diagram shows the conceptual message flow model,
 including the points at which access control is applied during
 NETCONF message processing.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | session |
 | (username) |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
 V |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | message | | message |
 | dispatcher | | generator |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^ ^
 V | |
+===========+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| <rpc> |‑‑‑> | <rpc‑reply> | | <notification> |
| acc. ctl | | generator | | generator |
+===========+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^ ^ ^
 V +‑‑‑‑‑‑+ | |
+‑‑‑‑‑‑‑‑‑‑‑+ | +=============+ +================+
<rpc>			read		<notification>
processor	‑+	data node		access ctl	
		acc. ctl			
+‑‑‑‑‑‑‑‑‑‑‑+ +=============+ +================+
 | | ^ ^
 V +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | |
+===========+ | | |
write			
data node			
acc. ctl	‑‑‑‑‑‑‑‑‑‑‑+		
+===========+ | | | |
 | | | | |
 V V V | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
configuration	‑‑‑>	server
datastore		instrumentation
	<‑‑‑	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2

 The following high-level sequence of conceptual processing steps is
 executed for each received <rpc> message, if access control
 enforcement is enabled:

 o For each active session, access control is applied individually to
 all <rpc> messages (except <close-session>) received by the
 server, unless the session is identified as a recovery session.

 o If the user is authorized to execute the specified protocol
 operation, then processing continues; otherwise, the request is
 rejected with an "access-denied" error.

 o If the configuration datastore or conceptual state data is
 accessed by the protocol operation, then the server checks if the
 client is authorized to access the nodes in the datastore. If the
 user is authorized to perform the requested access operation on
 the requested data, then processing continues.

 The following sequence of conceptual processing steps is executed for
 each generated notification event, if access control enforcement is
 enabled:

 o Server instrumentation generates a notification for a particular
 subscription.

 o The notification access control enforcer checks the notification
 event type, and if it is one that the user is not authorized to
 read, then the notification is dropped for that subscription.

3.2. Datastore Access

 The same access control rules apply to all datastores, for example,
 the candidate configuration datastore or the running configuration
 datastore.

 Only the standard NETCONF datastores (candidate, running, and
 startup) are controlled by NACM. Local or remote files or datastores
 accessed via the <url> parameter are not controlled by NACM.

3.2.1. Access Rights

 A small set of hard-wired datastore access rights is needed to
 control access to all possible NETCONF protocol operations, including
 vendor extensions to the standard protocol operation set.

 The "CRUDX" model can support all NETCONF protocol operations:

 o Create: allows the client to add a new data node instance to a
 datastore.

 o Read: allows the client to read a data node instance from a
 datastore or receive the notification event type.

 o Update: allows the client to update an existing data node instance
 in a datastore.

 o Delete: allows the client to delete a data node instance from a
 datastore.

 o eXec: allows the client to execute the protocol operation.

3.2.2. <get> and <get-config> Operations

 Data nodes to which the client does not have read access are silently
 omitted from the <rpc-reply> message. This is done to allow NETCONF
 filters for <get> and <get-config> to function properly, instead of
 causing an "access-denied" error because the filter criteria would
 otherwise include unauthorized read access to some data nodes. For
 NETCONF filtering purposes, the selection criteria is applied to the
 subset of nodes that the user is authorized to read, not the entire
 datastore.

3.2.3. <edit-config> Operation

 The NACM access rights are not directly coupled to the <edit-config>
 "operation" attribute, although they are similar. Instead, a NACM
 access right applies to all protocol operations that would result in
 a particular access operation to the target datastore. This section
 describes how these access rights apply to the specific access
 operations supported by the <edit-config> protocol operation.

 If the effective access operation is "none" (i.e., default-
 operation="none") for a particular data node, then no access control
 is applied to that data node. This is required to allow access to a
 subtree within a larger data structure. For example, a user may be
 authorized to create a new "/interfaces/interface" list entry but not
 be authorized to create or delete its parent container
 ("/interfaces"). If the "/interfaces" container already exists in
 the target datastore, then the effective operation will be "none" for
 the "/interfaces" node if an "/interfaces/interface" list entry is
 edited.

 If the protocol operation would result in the creation of a datastore
 node and the user does not have "create" access permission for that
 node, the protocol operation is rejected with an "access-denied"
 error.

 If the protocol operation would result in the deletion of a datastore
 node and the user does not have "delete" access permission for that
 node, the protocol operation is rejected with an "access-denied"
 error.

 If the protocol operation would result in the modification of a
 datastore node and the user does not have "update" access permission
 for that node, the protocol operation is rejected with an "access-
 denied" error.

 A "merge" or "replace" <edit-config> operation may include data nodes
 that do not alter portions of the existing datastore. For example, a
 container or list node may be present for naming purposes but does
 not actually alter the corresponding datastore node. These unaltered
 data nodes are ignored by the server and do not require any access
 rights by the client.

 A "merge" <edit-config> operation may include data nodes but not
 include particular child data nodes that are present in the
 datastore. These missing data nodes within the scope of a "merge"
 <edit-config> operation are ignored by the server and do not require
 any access rights by the client.

 The contents of specific restricted datastore nodes MUST NOT be
 exposed in any <rpc-error> elements within the reply.

3.2.4. <copy-config> Operation

 Access control for the <copy-config> protocol operation requires
 special consideration because the administrator may be replacing the
 entire target datastore.

 If the source of the <copy-config> protocol operation is the running
 configuration datastore and the target is the startup configuration
 datastore, the client is only required to have permission to execute
 the <copy-config> protocol operation.

 Otherwise:

 o If the source of the <copy-config> operation is a datastore, then
 data nodes to which the client does not have read access are
 silently omitted.

 o If the target of the <copy-config> operation is a datastore, the
 client needs access to the modified nodes, specifically:

 * If the protocol operation would result in the creation of a
 datastore node and the user does not have "create" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

 * If the protocol operation would result in the deletion of a
 datastore node and the user does not have "delete" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

 * If the protocol operation would result in the modification of a
 datastore node and the user does not have "update" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

3.2.5. <delete-config> Operation

 Access to the <delete-config> protocol operation is denied by
 default. The "exec-default" leaf does not apply to this protocol
 operation. Access control rules must be explicitly configured to
 allow invocation by a non-recovery session.

3.2.6. <commit> Operation

 The server MUST determine the exact nodes in the running
 configuration datastore that are actually different and only check
 "create", "update", and "delete" access permissions for this set of
 nodes, which could be empty.

 For example, if a session can read the entire datastore but only
 change one leaf, that session needs to be able to edit and commit
 that one leaf.

3.2.7. <discard-changes> Operation

 The client is only required to have permission to execute the
 <discard-changes> protocol operation. No datastore permissions are
 needed.

3.2.8. <kill-session> Operation

 The <kill-session> operation does not directly alter a datastore.
 However, it allows one session to disrupt another session that is
 editing a datastore.

 Access to the <kill-session> protocol operation is denied by default.
 The "exec-default" leaf does not apply to this protocol operation.
 Access control rules must be explicitly configured to allow
 invocation by a non-recovery session.

3.3. Model Components

 This section defines the conceptual components related to the access
 control model.

3.3.1. Users

 A "user" is the conceptual entity that is associated with the access
 permissions granted to a particular session. A user is identified by
 a string that is unique within the server.

 As described in [RFC6241], the username string is derived from the
 transport layer during session establishment. If the transport layer
 cannot authenticate the user, the session is terminated.

3.3.2. Groups

 Access to a specific NETCONF protocol operation is granted to a
 session, associated with a group, not a user.

 A group is identified by its name. All group names are unique within
 the server.

 A group member is identified by a username string.

 The same user can be a member of multiple groups.

3.3.3. Emergency Recovery Session

 The server MAY support a recovery session mechanism, which will
 bypass all access control enforcement. This is useful for
 restricting initial access and repairing a broken access control
 configuration.

3.3.4. Global Enforcement Controls

 There are five global controls that are used to help control how
 access control is enforced.

3.3.4.1. enable-nacm Switch

 A global "enable-nacm" on/off switch is provided to enable or disable
 all access control enforcement. When this global switch is set to
 "true", then all requests are checked against the access control
 rules and only permitted if configured to allow the specific access
 request. When this global switch is set to "false", then all access
 requested are permitted.

3.3.4.2. read-default Switch

 An on/off "read-default" switch is provided to enable or disable
 default access to receive data in replies and notifications. When
 the "enable-nacm" global switch is set to "true", then this global
 switch is relevant if no matching access control rule is found to
 explicitly permit or deny read access to the requested NETCONF
 datastore data or notification event type.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF datastore read or notification
 event requested, then access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF datastore read or notification
 event requested, then access is denied.

3.3.4.3. write-default Switch

 An on/off "write-default" switch is provided to enable or disable
 default access to alter configuration data. When the "enable-nacm"
 global switch is set to "true", then this global switch is relevant
 if no matching access control rule is found to explicitly permit or
 deny write access to the requested NETCONF datastore data.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF datastore write requested, then
 access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF datastore write requested, then
 access is denied.

3.3.4.4. exec-default Switch

 An on/off "exec-default" switch is provided to enable or disable
 default access to execute protocol operations. When the "enable-
 nacm" global switch is set to "true", then this global switch is
 relevant if no matching access control rule is found to explicitly
 permit or deny access to the requested NETCONF protocol operation.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF protocol operation requested,
 then access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF protocol operation requested,
 then access is denied.

3.3.4.5. enable-external-groups Switch

 When this global switch is set to "true", the group names reported by
 the NETCONF transport layer for a session are used together with the
 locally configured group names to determine the access control rules
 for the session.

 When this switch is set to "false", the group names reported by the
 NETCONF transport layer are ignored by NACM.

3.3.5. Access Control Rules

 There are four types of rules available in NACM:

module rule: controls access for definitions in a specific YANG
 module, identified by its name.

protocol operation rule: controls access for a specific protocol
 operation, identified by its YANG module and name.

data node rule: controls access for a specific data node, identified
 by its path location within the conceptual XML document for the
 data node.

notification rule: controls access for a specific notification event
 type, identified by its YANG module and name.

3.4. Access Control Enforcement Procedures

There are seven separate phases that need to be addressed, four of
which are related to the NETCONF message processing model
(Section 3.1.3). In addition, the initial startup mode for a NETCONF
server, session establishment, and "access‑denied" error‑handling
procedures also need to be considered.

 The server MUST use the access control rules in effect at the time it
 starts processing the message. The same access control rules MUST
 stay in effect for the processing of the entire message.

3.4.1. Initial Operation

 Upon the very first startup of the NETCONF server, the access control
 configuration will probably not be present. If it isn't, a server
 MUST NOT allow any write access to any session role except a recovery
 session.

 Access rules are enforced any time a request is initiated from a user
 session. Access control is not enforced for server-initiated access
 requests, such as the initial load of the running datastore, during
 bootup.

3.4.2. Session Establishment

 The access control model applies specifically to the well-formed XML
 content transferred between a client and a server after session
 establishment has been completed and after the <hello> exchange has
 been successfully completed.

 Once session establishment is completed and a user has been
 authenticated, the NETCONF transport layer reports the username and a
 possibly empty set of group names associated with the user to the
 NETCONF server. The NETCONF server will enforce the access control
 rules, based on the supplied username, group names, and the
 configuration data stored on the server.

3.4.3. "access-denied" Error Handling

 The "access-denied" error-tag is generated when the access control
 system denies access to either a request to invoke a protocol
 operation or a request to perform a particular access operation on
 the configuration datastore.

 A server MUST NOT include any information the client is not allowed
 to read in any <error-info> elements within the <rpc-error> response.

3.4.4. Incoming RPC Message Validation

 The diagram below shows the basic conceptual structure of the access
 control processing model for incoming NETCONF <rpc> messages within a
 server.

 NETCONF server
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | XML |
 | message |
 | dispatcher |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 V
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | NC‑base NS |
 | <rpc> |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑‑‑+ |
 V V V
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
| Vendor NS | | NC‑base NS | | NC‑base NS |
| <my‑edit> | | <edit‑config> | | <unlock> |
+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | |
 V V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | configuration |
 | datastore |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3

 Access control begins with the message dispatcher.

 After the server validates the <rpc> element and determines the
 namespace URI and the element name of the protocol operation being
 requested, the server verifies that the user is authorized to invoke
 the protocol operation.

 The server MUST separately authorize every protocol operation by
 following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the protocol
 operation is permitted.

 2. If the requesting session is identified as a recovery session,
 then the protocol operation is permitted.

 3. If the requested operation is the NETCONF <close-session>
 protocol operation, then the protocol operation is permitted.

 4. Check all the "group" entries for ones that contain a "user-
 name" entry that equals the username for the session making the
 request. If the "enable-external-groups" leaf is "true", add to
 these groups the set of groups provided by the transport layer.

 5. If no groups are found, continue with step 10.

 6. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list's "group" leaf-list does not
 match any of the user's groups, proceed to the next rule-list
 entry.

 7. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule's "module-name" leaf is "*" or equals the name of
 the YANG module where the protocol operation is defined.

 * The rule does not have a "rule-type" defined or the "rule-
 type" is "protocol-operation" and the "rpc-name" is "*" or
 equals the name of the requested protocol operation.

 * The rule's "access-operations" leaf has the "exec" bit set or
 has the special value "*".

 8. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then the protocol operation is
 permitted; otherwise, it is denied.

 9. At this point, no matching rule was found in any rule-list
 entry.

 10. If the requested protocol operation is defined in a YANG module
 advertised in the server capabilities and the "rpc" statement
 contains a "nacm:default-deny-all" statement, then the protocol
 operation is denied.

 11. If the requested protocol operation is the NETCONF <kill-
 session> or <delete-config>, then the protocol operation is
 denied.

 12. If the "exec-default" leaf is set to "permit", then permit the
 protocol operation; otherwise, deny the request.

 If the user is not authorized to invoke the protocol operation, then
 an <rpc-error> is generated with the following information:

error‑tag: access‑denied

error‑path: Identifies the requested protocol operation. The
 following example represents the <edit‑config> protocol operation
 in the NETCONF base namespace:

 <error‑path
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 /nc:rpc/nc:edit‑config
 </error‑path>

 If a datastore is accessed, either directly or as a side effect of
 the protocol operation, then the server MUST intercept the access
 operation and make sure the user is authorized to perform the
 requested access operation on the specified data, as defined in
 Section 3.4.5.

3.4.5. Data Node Access Validation

 If a data node within a datastore is accessed, then the server MUST
 ensure that the user is authorized to perform the requested "read",
 "create", "update", or "delete" access operation on the specified
 data node.

 The data node access request is authorized by following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the access
 operation is permitted.

 2. If the requesting session is identified as a recovery session,
 then the access operation is permitted.

 3. Check all the "group" entries for ones that contain a "user-
 name" entry that equals the username for the session making the
 request. If the "enable-external-groups" leaf is "true", add to
 these groups the set of groups provided by the transport layer.

 4. If no groups are found, continue with step 9.

 5. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list's "group" leaf-list does not
 match any of the user's groups, proceed to the next rule-list
 entry.

 6. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule's "module-name" leaf is "*" or equals the name of
 the YANG module where the requested data node is defined.

 * The rule does not have a "rule-type" defined or the "rule-
 type" is "data-node" and the "path" matches the requested
 data node.

 * For a "read" access operation, the rule's "access-operations"
 leaf has the "read" bit set or has the special value "*".

 * For a "create" access operation, the rule's "access-
 operations" leaf has the "create" bit set or has the special
 value "*".

 * For a "delete" access operation, the rule's "access-
 operations" leaf has the "delete" bit set or has the special
 value "*".

 * For an "update" access operation, the rule's "access-
 operations" leaf has the "update" bit set or has the special
 value "*".

 7. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then the data node access is
 permitted; otherwise, it is denied. For a "read" access
 operation, "denied" means that the requested data is not
 returned in the reply.

 8. At this point, no matching rule was found in any rule-list
 entry.

 9. For a "read" access operation, if the requested data node is
 defined in a YANG module advertised in the server capabilities
 and the data definition statement contains a "nacm:default-deny-
 all" statement, then the requested data node is not included in
 the reply.

 10. For a "write" access operation, if the requested data node is
 defined in a YANG module advertised in the server capabilities
 and the data definition statement contains a "nacm:default-deny-
 write" or a "nacm:default-deny-all" statement, then the data
 node access request is denied.

 11. For a "read" access operation, if the "read-default" leaf is set
 to "permit", then include the requested data node in the reply;
 otherwise, do not include the requested data node in the reply.

 12. For a "write" access operation, if the "write-default" leaf is
 set to "permit", then permit the data node access request;
 otherwise, deny the request.

3.4.6. Outgoing <notification> Authorization

 Configuration of access control rules specifically for descendant
 nodes of the notification event type element are outside the scope of
 this document. If the user is authorized to receive the notification
 event type, then it is also authorized to receive any data it
 contains.

 The following figure shows the conceptual message processing model
 for outgoing <notification> messages.

 NETCONF server
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | XML |
 | message |
 | generator |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | <notification> |
 | generator |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 +=================+
 | <notification> |
 | access control |
 | <eventType> |
 +=================+
 ^
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| server instrumentation |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
 V |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | configuration |
 | datastore |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4

 The generation of a notification for a specific subscription
 [RFC5277] is authorized by following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the
 notification is permitted.

 2. If the session is identified as a recovery session, then the
 notification is permitted.

 3. If the notification is the NETCONF <replayComplete> or
 <notificationComplete> event type [RFC5277], then the
 notification is permitted.

 4. Check all the "group" entries for ones that contain a "user-
 name" entry that equals the username for the session making the
 request. If the "enable-external-groups" leaf is "true", add to
 these groups the set of groups provided by the transport layer.

 5. If no groups are found, continue with step 10.

 6. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list's "group" leaf-list does not
 match any of the user's groups, proceed to the next rule-list
 entry.

 7. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule's "module-name" leaf is "*" or equals the name of
 the YANG module where the notification is defined.

 * The rule does not have a "rule-type" defined or the "rule-
 type" is "notification" and the "notification-name" is "*"
 and equals the name of the notification.

 * The rule's "access-operations" leaf has the "read" bit set or
 has the special value "*".

 8. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then permit the notification;
 otherwise, drop the notification for the associated
 subscription.

 9. Otherwise, no matching rule was found in any rule-list entry.

 10. If the requested notification is defined in a YANG module
 advertised in the server capabilities and the "notification"
 statement contains a "nacm:default-deny-all" statement, then the
 notification is dropped for the associated subscription.

 11. If the "read-default" leaf is set to "permit", then permit the
 notification; otherwise, drop the notification for the
 associated subscription.

3.5. Data Model Definitions

3.5.1. Data Organization

 The following diagram highlights the contents and structure of the
 NACM YANG module.

+‑‑rw nacm
 +‑‑rw enable‑nacm? boolean
 +‑‑rw read‑default? action‑type
 +‑‑rw write‑default? action‑type
 +‑‑rw exec‑default? action‑type
 +‑‑rw enable‑external‑groups? boolean
 +‑‑ro denied‑operations yang:zero‑based‑counter32
 +‑‑ro denied‑data‑writes yang:zero‑based‑counter32
 +‑‑ro denied‑notifications yang:zero‑based‑counter32
 +‑‑rw groups
 | +‑‑rw group [name]
 | +‑‑rw name group‑name‑type
 | +‑‑rw user‑name* user‑name‑type
 +‑‑rw rule‑list [name]
 +‑‑rw name string
 +‑‑rw group* union
 +‑‑rw rule [name]
 +‑‑rw name string
 +‑‑rw module‑name? union
 +‑‑rw (rule‑type)?
 | +‑‑:(protocol‑operation)
 | | +‑‑rw rpc‑name? union
 | +‑‑:(notification)
 | | +‑‑rw notification‑name? union
 | +‑‑:(data‑node)
 | +‑‑rw path node‑instance‑identifier
 +‑‑rw access‑operations? union
 +‑‑rw action action‑type
 +‑‑rw comment? string

3.5.2. YANG Module

 The following YANG module specifies the normative NETCONF content
 that MUST by supported by the server.

 The "ietf-netconf-acm" YANG module imports typedefs from [RFC6021].

 <CODE BEGINS> file "ietf-netconf-acm@2012-02-22.yang"

 module ietf-netconf-acm {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-acm";

 prefix "nacm";

import ietf‑yang‑types {
 prefix yang;
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue

 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Bert Wijnen

 <mailto:bertietf@bwijnen.net>

Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

Editor: Martin Bjorklund
 <mailto:mbj@tail‑f.com>";

 description

 "NETCONF Access Control Model.

 Copyright (c) 2012 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license‑info).

This version of this YANG module is part of RFC 6536; see
the RFC itself for full legal notices.";

 revision "2012-02-22" {

 description
 "Initial version";
 reference
 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
}

/*
 * Extension statements
 */

extension default‑deny‑write {
 description
 "Used to indicate that the data model node
 represents a sensitive security system parameter.

 If present, and the NACM module is enabled (i.e.,
 /nacm/enable-nacm object equals 'true'), the NETCONF server
 will only allow the designated 'recovery session' to have
 write access to the node. An explicit access control rule is
 required for all other users.

 The 'default‑deny‑write' extension MAY appear within a data
 definition statement. It is ignored otherwise.";
}

extension default‑deny‑all {
 description
 "Used to indicate that the data model node
 controls a very sensitive security system parameter.

 If present, and the NACM module is enabled (i.e.,
 /nacm/enable-nacm object equals 'true'), the NETCONF server
 will only allow the designated 'recovery session' to have
 read, write, or execute access to the node. An explicit
 access control rule is required for all other users.

 The 'default‑deny‑all' extension MAY appear within a data
 definition statement, 'rpc' statement, or 'notification'
 statement. It is ignored otherwise.";
}

/*
 * Derived types
 */

 typedef user-name-type {

 type string {

 length "1..max";
 }
 description
 "General Purpose Username string.";
}

typedef matchall‑string‑type {
 type string {
 pattern "*";
 }
 description
 "The string containing a single asterisk '*' is used
 to conceptually represent all possible values
 for the particular leaf using this data type.";
}

typedef access‑operations‑type {
 type bits {
 bit create {
 description
 "Any protocol operation that creates a
 new data node.";
 }
 bit read {
 description
 "Any protocol operation or notification that
 returns the value of a data node.";
 }
 bit update {
 description
 "Any protocol operation that alters an existing
 data node.";
 }
 bit delete {
 description
 "Any protocol operation that removes a data node.";
 }
 bit exec {
 description
 "Execution access to the specified protocol operation.";
 }
 }
 description
 "NETCONF Access Operation.";
}

 typedef group-name-type {

 type string {

 length "1..max";
 pattern "[^*].*";
 }
 description
 "Name of administrative group to which
 users can be assigned.";
}

typedef action‑type {
 type enumeration {
 enum permit {
 description
 "Requested action is permitted.";
 }
 enum deny {
 description
 "Requested action is denied.";
 }
 }
 description
 "Action taken by the server when a particular
 rule matches.";
}

typedef node‑instance‑identifier {
 type yang:xpath1.0;
 description
 "Path expression used to represent a special
 data node instance identifier string.

 A node‑instance‑identifier value is an
 unrestricted YANG instance‑identifier expression.
 All the same rules as an instance‑identifier apply
 except predicates for keys are optional. If a key
 predicate is missing, then the node‑instance‑identifier
 represents all possible server instances for that key.

 This XPath expression is evaluated in the following context:

 o The set of namespace declarations are those in scope on
 the leaf element where this type is used.

 o The set of variable bindings contains one variable,
 'USER', which contains the name of the user of the current
 session.

 o The function library is the core function library, but
 note that due to the syntax restrictions of an

 instance-identifier, no functions are allowed.

 o The context node is the root node in the data tree.";
}

/*
 * Data definition statements
 */

 container nacm {

 nacm:default-deny-all;

 description

 "Parameters for NETCONF Access Control Model.";

leaf enable‑nacm {
 type boolean;
 default true;
 description
 "Enables or disables all NETCONF access control
 enforcement. If 'true', then enforcement
 is enabled. If 'false', then enforcement
 is disabled.";
}

leaf read‑default {
 type action‑type;
 default "permit";
 description
 "Controls whether read access is granted if
 no appropriate rule is found for a
 particular read request.";
}

leaf write‑default {
 type action‑type;
 default "deny";
 description
 "Controls whether create, update, or delete access
 is granted if no appropriate rule is found for a
 particular write request.";
}

leaf exec‑default {
 type action‑type;
 default "permit";
 description
 "Controls whether exec access is granted if no appropriate

 rule is found for a particular protocol operation request.";
 }

leaf enable‑external‑groups {
 type boolean;
 default true;
 description
 "Controls whether the server uses the groups reported by the
 NETCONF transport layer when it assigns the user to a set of
 NACM groups. If this leaf has the value 'false', any group
 names reported by the transport layer are ignored by the
 server.";
}

leaf denied‑operations {
 type yang:zero‑based‑counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that a
 protocol operation request was denied.";
}

leaf denied‑data‑writes {
 type yang:zero‑based‑counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that a
 protocol operation request to alter
 a configuration datastore was denied.";
}

leaf denied‑notifications {
 type yang:zero‑based‑counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that
 a notification was dropped for a subscription because
 access to the event type was denied.";
}

container groups {
 description
 "NETCONF Access Control Groups.";

 list group {

 key name;

 description
 "One NACM Group Entry. This list will only contain
 configured entries, not any entries learned from
 any transport protocols.";

 leaf name {
 type group‑name‑type;
 description
 "Group name associated with this entry.";
 }

 leaf‑list user‑name {
 type user‑name‑type;
 description
 "Each entry identifies the username of
 a member of the group associated with
 this entry.";
 }
 }
}

list rule‑list {
 key "name";
 ordered‑by user;
 description
 "An ordered collection of access control rules.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule‑list.";
 }
 leaf‑list group {
 type union {
 type matchall‑string‑type;
 type group‑name‑type;
 }
 description
 "List of administrative groups that will be
 assigned the associated access rights
 defined by the 'rule' list.

 The string '*' indicates that all groups apply to the
 entry.";

 }

list rule {
 key "name";
 ordered‑by user;
 description
 "One access control rule.

 Rules are processed in user-defined order until a match is
 found. A rule matches if 'module-name', 'rule-type', and
 'access-operations' match the request. If a rule
 matches, the 'action' leaf determines if access is granted
 or not.";

leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule.";
}

leaf module‑name {
 type union {
 type matchall‑string‑type;
 type string;
 }
 default "*";
 description
 "Name of the module associated with this rule.

 This leaf matches if it has the value '*' or if the
 object being accessed is defined in the module with the
 specified module name.";
}
choice rule‑type {
 description
 "This choice matches if all leafs present in the rule
 match the request. If no leafs are present, the
 choice matches all requests.";
 case protocol‑operation {
 leaf rpc‑name {
 type union {
 type matchall‑string‑type;
 type string;
 }
 description
 "This leaf matches if it has the value '*' or if

 its value equals the requested protocol operation
 name.";
 }
 }
 case notification {
 leaf notification‑name {
 type union {
 type matchall‑string‑type;
 type string;
 }
 description
 "This leaf matches if it has the value '*' or if its
 value equals the requested notification name.";
 }
 }
 case data‑node {
 leaf path {
 type node‑instance‑identifier;
 mandatory true;
 description
 "Data Node Instance Identifier associated with the
 data node controlled by this rule.

 Configuration data or state data instance
 identifiers start with a top-level data node. A
 complete instance identifier is required for this
 type of path value.

 The special value '/' refers to all possible
 datastore contents.";
 }
 }
}

leaf access‑operations {
 type union {
 type matchall‑string‑type;
 type access‑operations‑type;
 }
 default "*";
 description
 "Access operations associated with this rule.

 This leaf matches if it has the value '*' or if the
 bit corresponding to the requested operation is set.";
}

 leaf action {

 type action‑type;
 mandatory true;
 description
 "The access control action associated with the
 rule. If a rule is determined to match a
 particular request, then this object is used
 to determine whether to permit or deny the
 request.";
 }

 leaf comment {
 type string;
 description
 "A textual description of the access rule.";
 }
 }
 }
 }
}

 <CODE ENDS>

3.6. IANA Considerations

 This document registers one URI in "The IETF XML Registry".
 Following the format in [RFC3688], the following has been registered.

URI: urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.

 This document registers one module in the "YANG Module Names"
 registry. Following the format in [RFC6020], the following has been
 registered.

Name: ietf‑netconf‑acm
Namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm
Prefix: nacm
reference: RFC 6536

3.7. Security Considerations

 This entire document discusses access control requirements and
 mechanisms for restricting NETCONF protocol behavior within a given
 session.

 This section highlights the issues for an administrator to consider
 when configuring a NETCONF server with NACM.

3.7.1. NACM Configuration and Monitoring Considerations

 Configuration of the access control system is highly sensitive to
 system security. A server may choose not to allow any user
 configuration to some portions of it, such as the global security
 level or the groups that allowed access to system resources.

 By default, NACM enforcement is enabled. By default, "read" access
 to all datastore contents is enabled (unless "nacm:default-deny-all"
 is specified for the data definition), and "exec" access is enabled
 for safe protocol operations. An administrator needs to ensure that
 NACM is enabled and also decide if the default access parameters are
 set appropriately. Make sure the following data nodes are properly
 configured:

 o /nacm/enable-nacm (default "true")

 o /nacm/read-default (default "permit")

 o /nacm/write-default (default "deny")

 o /nacm/exec-default (default "permit")

 An administrator needs to restrict write access to all configurable
 objects within this data model.

 If write access is allowed for configuration of access control rules,
 then care needs to be taken not to disrupt the access control
 enforcement. For example, if the NACM access control rules are
 edited directly within the running configuration datastore (i.e.,
 :writable-running capability is supported and used), then care needs
 to be taken not to allow unintended access while the edits are being
 done.

 An administrator needs to make sure that the translation from a
 transport- or implementation-dependent user identity to a NACM
 username is unique and correct. This requirement is specified in
 detail in Section 2.2 of [RFC6241].

 An administrator needs to be aware that the YANG data structures
 representing access control rules (/nacm/rule-list and /nacm/
 rule-list/rule) are ordered by the client. The server will evaluate
 the access control rules according to their relative conceptual order
 within the running datastore configuration.

 Note that the /nacm/groups data structure contains the administrative
 group names used by the server. These group names may be configured
 locally and/or provided through an external protocol, such as RADIUS
 [RFC2865][RFC5607].

 An administrator needs to be aware of the security properties of any
 external protocol used by the NETCONF transport layer to determine
 group names. For example, if this protocol does not protect against
 man-in-the-middle attacks, an attacker might be able to inject group
 names that are configured in NACM, so that a user gets more
 permissions than it should. In such cases, the administrator may
 wish to disable the usage of such group names, by setting /nacm/
 enable-external-groups to "false".

 An administrator needs to restrict read access to the following
 objects within this data model, as they reveal access control
 configuration that could be considered sensitive.

 o /nacm/enable-nacm

 o /nacm/read-default

 o /nacm/write-default

 o /nacm/exec-default

 o /nacm/enable-external-groups

 o /nacm/groups

 o /nacm/rule-list

3.7.2. General Configuration Issues

 There is a risk that invocation of non-standard protocol operations
 will have undocumented side effects. An administrator needs to
 construct access control rules such that the configuration datastore
 is protected from such side effects.

 It is possible for a session with some write access (e.g., allowed to
 invoke <edit-config>), but without any access to a particular
 datastore subtree containing sensitive data, to determine the
 presence or non-presence of that data. This can be done by
 repeatedly issuing some sort of edit request (create, update, or
 delete) and possibly receiving "access-denied" errors in response.
 These "fishing" attacks can identify the presence or non-presence of
 specific sensitive data even without the "error-path" field being
 present within the <rpc-error> response.

 It may be possible for the set of NETCONF capabilities on the server
 to change over time. If so, then there is a risk that new protocol
 operations, notifications, and/or datastore content have been added
 to the device. An administrator needs to be sure the access control
 rules are correct for the new content in this case. Mechanisms to
 detect NETCONF capability changes on a specific device are outside
 the scope of this document.

 It is possible that the data model definition itself (e.g., YANG
 when-stmt) will help an unauthorized session determine the presence
 or even value of sensitive data nodes by examining the presence and
 values of different data nodes.

 There is a risk that non-standard protocol operations, or even the
 standard <get> protocol operation, may return data that "aliases" or
 "copies" sensitive data from a different data object. There may
 simply be multiple data model definitions that expose or even
 configure the same underlying system instrumentation.

 A data model may contain external keys (e.g., YANG leafref), which
 expose values from a different data structure. An administrator
 needs to be aware of sensitive data models that contain leafref
 nodes. This entails finding all the leafref objects that "point" at
 the sensitive data (i.e., "path-stmt" values) that implicitly or
 explicitly include the sensitive data node.

 It is beyond the scope of this document to define access control
 enforcement procedures for underlying device instrumentation that may
 exist to support the NETCONF server operation. An administrator can
 identify each protocol operation that the server provides and decide
 if it needs any access control applied to it.

 This document incorporates the optional use of a recovery session
 mechanism, which can be used to bypass access control enforcement in
 emergencies, such as NACM configuration errors that disable all
 access to the server. The configuration and identification of such a
 recovery session mechanism are implementation-specific and outside
 the scope of this document. An administrator needs to be aware of
 any recovery session mechanisms available on the device and make sure
 they are used appropriately.

 It is possible for a session to disrupt configuration management,
 even without any write access to the configuration, by locking the
 datastore. This may be done to ensure all or part of the
 configuration remains stable while it is being retrieved, or it may
 be done as a "denial-of-service" attack. There is no way for the
 server to know the difference. An administrator may wish to restrict
 "exec" access to the following protocol operations:

 o <lock>

 o <unlock>

 o <partial-lock>

 o <partial-unlock>

3.7.3. Data Model Design Considerations

 Designers need to clearly identify any sensitive data, notifications,
 or protocol operations defined within a YANG module. For such
 definitions, a "nacm:default-deny-write" or "nacm:default-deny-all"
 statement ought to be present, in addition to a clear description of
 the security risks.

 Protocol operations need to be properly documented by the data model
 designer, so it is clear to administrators what data nodes (if any)
 are affected by the protocol operation and what information (if any)
 is returned in the <rpc-reply> message.

 Data models ought to be designed so that different access levels for
 input parameters to protocol operations are not required. Use of
 generic protocol operations should be avoided, and if different
 access levels are needed, separate protocol operations should be
 defined instead.

4. References

4.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6020]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021]
 Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

 [RFC6241]
 Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)",
 RFC 6241, June 2011.

4.2. Informative References

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC5607]
 Nelson, D. and G. Weber, "Remote Authentication Dial-In
 User Service (RADIUS) Authorization for Network Access
 Server (NAS) Management", RFC 5607, July 2009.

Appendix A. Usage Examples

 The following XML snippets are provided as examples only, to
 demonstrate how NACM can be configured to perform some access control
 tasks.

A.1. <groups> Example

 There needs to be at least one <group> entry in order for any of the
 access control rules to be useful.

 The following XML shows arbitrary groups and is not intended to
 represent any particular use case.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <groups>
 <group>
 <name>admin</name>
 <user‑name>admin</user‑name>
 <user‑name>andy</user‑name>
 </group>

 <group>
 <name>limited</name>
 <user‑name>wilma</user‑name>
 <user‑name>bam‑bam</user‑name>
 </group>

 <group>
 <name>guest</name>
 <user‑name>guest</user‑name>
 <user‑name>guest@example.com</user‑name>
 </group>
 </groups>
</nacm>

 This example shows three groups:

admin: The "admin" group contains two users named "admin" and
 "andy".

limited: The "limited" group contains two users named "wilma" and
 "bam‑bam".

guest: The "guest" group contains two users named "guest" and
 "guest@example.com".

A.2. Module Rule Example

 Module rules are used to control access to all the content defined in
 a specific module. A module rule has the <module-name> leaf set, but
 no case in the "rule-type" choice.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑acl</name>
 <group>guest</group>

 <rule>
 <name>deny‑ncm</name>
 <module‑name>ietf‑netconf‑monitoring</module‑name>
 <access‑operations>*</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow guests any access to the NETCONF
 monitoring information.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>limited‑acl</name>
 <group>limited</group>

 <rule>
 <name>permit‑ncm</name>
 <module‑name>ietf‑netconf‑monitoring</module‑name>
 <access‑operations>read</access‑operations>
 <action>permit</action>
 <comment>
 Allow read access to the NETCONF
 monitoring information.
 </comment>
 </rule>
 <rule>
 <name>permit‑exec</name>
 <module‑name>*</module‑name>
 <access‑operations>exec</access‑operations>
 <action>permit</action>
 <comment>
 Allow invocation of the
 supported server operations.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>admin‑acl</name>
 <group>admin</group>

 <rule>
 <name>permit‑all</name>
 <module‑name>*</module‑name>
 <access‑operations>*</access‑operations>
 <action>permit</action>
 <comment>
 Allow the admin group complete access to all
 operations and data.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows four module rules:

deny‑ncm: This rule prevents the "guest" group from reading any
 monitoring information in the "ietf‑netconf‑monitoring" YANG
 module.

permit‑ncm: This rule allows the "limited" group to read the "ietf‑
 netconf‑monitoring" YANG module.

permit‑exec: This rule allows the "limited" group to invoke any
 protocol operation supported by the server.

permit‑all: This rule allows the "admin" group complete access to
 all content in the server. No subsequent rule will match for the
 "admin" group because of this module rule.

A.3. Protocol Operation Rule Example

 Protocol operation rules are used to control access to a specific
 protocol operation.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑limited‑acl</name>
 <group>limited</group>
 <group>guest</group>

 <rule>

 <name>deny-kill-session</name>
 <module-name>ietf-netconf</module-name>
 <rpc-name>kill-session</rpc-name>

 <access‑operations>exec</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow the limited or guest group
 to kill another session.
 </comment>
 </rule>
 <rule>
 <name>deny‑delete‑config</name>
 <module‑name>ietf‑netconf</module‑name>
 <rpc‑name>delete‑config</rpc‑name>
 <access‑operations>exec</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow limited or guest group
 to delete any configurations.
 </comment>
 </rule>
</rule‑list>

<rule‑list>
 <name>limited‑acl</name>
 <group>limited</group>

 <rule>
 <name>permit‑edit‑config</name>
 <module‑name>ietf‑netconf</module‑name>
 <rpc‑name>edit‑config</rpc‑name>
 <access‑operations>exec</access‑operations>
 <action>permit</action>
 <comment>
 Allow the limited group to edit the configuration.
 </comment>
 </rule>
</rule‑list>

 </nacm>

 This example shows three protocol operation rules:

deny‑kill‑session: This rule prevents the "limited" or "guest"
 groups from invoking the NETCONF <kill‑session> protocol
 operation.

deny‑delete‑config: This rule prevents the "limited" or "guest"
 groups from invoking the NETCONF <delete‑config> protocol
 operation.

permit‑edit‑config: This rule allows the "limited" group to invoke
 the NETCONF <edit‑config> protocol operation. This rule will have
 no real effect unless the "exec‑default" leaf is set to "deny".

A.4. Data Node Rule Example

 Data node rules are used to control access to specific (config and
 non-config) data nodes within the NETCONF content provided by the
 server.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑acl</name>
 <group>guest</group>

 <rule>
 <name>deny‑nacm</name>
 <path xmlns:n="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 /n:nacm
 </path>
 <access‑operations>*</access‑operations>
 <action>deny</action>
 <comment>
 Deny the guest group any access to the /nacm data.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>limited‑acl</name>
 <group>limited</group>

 <rule>
 <name>permit‑acme‑config</name>
 <path xmlns:acme="http://example.com/ns/netconf">
 /acme:acme‑netconf/acme:config‑parameters
 </path>
 <access‑operations>
 read create update delete
 </access‑operations>
 <action>permit</action>
 <comment>
 Allow the limited group complete access to the acme
 NETCONF configuration parameters. Showing long form
 of 'access‑operations' instead of shorthand.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>guest‑limited‑acl</name>
 <group>guest</group>
 <group>limited</group>

 <rule>
 <name>permit‑dummy‑interface</name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface[acme:name='dummy']
 </path>
 <access‑operations>read update</access‑operations>
 <action>permit</action>
 <comment>
 Allow the limited and guest groups read
 and update access to the dummy interface.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>admin‑acl</name>
 <group>admin</group>
 <rule>
 <name>permit‑interface</name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface
 </path>
 <access‑operations>*</access‑operations>
 <action>permit</action>
 <comment>
 Allow admin full access to all acme interfaces.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows four data node rules:

deny‑nacm: This rule denies the "guest" group any access to the
 <nacm> subtree. Note that the default namespace is only
 applicable because this subtree is defined in the same namespace
 as the <data‑rule> element.

permit‑acme‑config: This rule gives the "limited" group read‑write
 access to the acme <config‑parameters>.

permit‑dummy‑interface: This rule gives the "limited" and "guest"
 groups read‑update access to the acme <interface> entry named
 "dummy". This entry cannot be created or deleted by these groups,
 just altered.

permit‑interface: This rule gives the "admin" group read‑write
 access to all acme <interface> entries.

A.5. Notification Rule Example

 Notification rules are used to control access to a specific
 notification event type.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>sys‑acl</name>
 <group>limited</group>
 <group>guest</group>

 <rule>
 <name>deny‑config‑change</name>
 <module‑name>acme‑system</module‑name>
 <notification‑name>sys‑config‑change</notification‑name>
 <access‑operations>read</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow the guest or limited groups
 to receive config change events.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows one notification rule:

deny‑config‑change: This rule prevents the "limited" or "guest"
 groups from receiving the acme <sys‑config‑change> event type.

Authors' Addresses

Andy Bierman
YumaWorks

 EMail: andy@yumaworks.com

Martin Bjorklund
Tail‑f Systems

 EMail: mbj@tail-f.com

7589 - Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutua

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7589

Obsoletes: 5539

Category: Standards Track

ISSN: 2070-1721

M. Badra

Zayed University

A. Luchuk

SNMP Research, Inc.

J. Schoenwaelder

Jacobs University Bremen

June 2015

Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual X.509 Authentication

Abstract

 The Network Configuration Protocol (NETCONF) provides mechanisms to
 install, manipulate, and delete the configuration of network devices.
 This document describes how to use the Transport Layer Security (TLS)
 protocol with mutual X.509 authentication to secure the exchange of
 NETCONF messages. This revision of RFC 5539 documents the new
 message framing used by NETCONF 1.1 and it obsoletes RFC 5539.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7589.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Connection Initiation

	3. Message Framing

	4. Connection Closure

	5. Certificate Validation

	6. Server Identity

	7. Client Identity

	8. Cipher Suites

	9. Security Considerations

	10. IANA Considerations

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Changes from RFC 5539

	Acknowledgements

	Authors' Addresses

1. Introduction

 The NETCONF protocol [RFC6241] defines a mechanism through which a
 network device can be managed. NETCONF is connection-oriented,
 requiring a persistent connection between peers. This connection
 must provide integrity, confidentiality, peer authentication, and
 reliable, sequenced data delivery.

 This document defines how NETCONF messages can be exchanged over
 Transport Layer Security (TLS) [RFC5246]. Implementations MUST
 support mutual TLS certificate-based authentication [RFC5246]. This
 assures the NETCONF server of the identity of the principal who
 wishes to manipulate the management information. It also assures the
 NETCONF client of the identity of the server for which it wishes to
 manipulate the management information.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Connection Initiation

 The peer acting as the NETCONF client MUST act as the TLS client.
 The TLS client actively opens the TLS connection and the TLS server
 passively listens for the incoming TLS connections. The well-known
 TCP port number 6513 is used by NETCONF servers to listen for TCP
 connections established by NETCONF over TLS clients. The TLS client
 MUST send the TLS ClientHello message to begin the TLS handshake.
 The TLS server MUST send a CertificateRequest in order to request a
 certificate from the TLS client. Once the TLS handshake has
 finished, the client and the server MAY begin to exchange NETCONF
 messages. Client and server identity verification is done before the
 NETCONF <hello> message is sent. This means that the identity
 verification is completed before the NETCONF session is started.

3. Message Framing

 All NETCONF messages MUST be sent as TLS "application data". It is
 possible for multiple NETCONF messages to be contained in one TLS
 record, or for a NETCONF message to be transferred in multiple TLS
 records.

 The previous version of this specification [RFC5539] used the framing
 sequence defined in [RFC4742]. This version aligns with [RFC6242]
 and adopts the framing protocol defined in [RFC6242] as follows:

 The NETCONF <hello> message MUST be followed by the character
 sequence]]>]]>. Upon reception of the <hello> message, the peers
 inspect the announced capabilities. If the :base:1.1 capability is
 advertised by both peers, the chunked framing mechanism defined in
 Section 4.2 of [RFC6242] is used for the remainder of the NETCONF
 session. Otherwise, the old end-of-message-based mechanism (see
 Section 4.3 of [RFC6242]) is used.

4. Connection Closure

 A NETCONF server will process NETCONF messages from the NETCONF
 client in the order in which they are received. A NETCONF session is
 closed using the <close-session> operation. When the NETCONF server
 processes a <close-session> operation, the NETCONF server SHALL
 respond and close the TLS session as described in Section 7.2.1 of
 [RFC5246].

5. Certificate Validation

 Both peers MUST use X.509 certificate path validation [RFC5280] to
 verify the integrity of the certificate presented by the peer. The
 presented X.509 certificate may also be considered valid if it
 matches one obtained by another trusted mechanism, such as using a
 locally configured certificate fingerprint. If X.509 certificate
 path validation fails and the presented X.509 certificate does not
 match a certificate obtained by a trusted mechanism, the connection
 MUST be terminated as defined in [RFC5246].

6. Server Identity

 The NETCONF client MUST check the identity of the server according to
 Section 6 of [RFC6125].

7. Client Identity

 The NETCONF server MUST verify the identity of the NETCONF client to
 ensure that the incoming request to establish a NETCONF session is
 legitimate before the NETCONF session is started.

 The NETCONF protocol [RFC6241] requires that the transport protocol's
 authentication process results in an authenticated NETCONF client
 identity whose permissions are known to the server. The
 authenticated identity of a client is commonly referred to as the
 NETCONF username. The following algorithm is used by the NETCONF
 server to derive a NETCONF username from a certificate. (Note that
 the algorithm below is the same as the one described in the
 SNMP-TLS-TM-MIB MIB module defined in [RFC6353] and in the
 ietf-x509-cert-to-name YANG module defined in [RFC7407].)

 (a) The server maintains an ordered list of mappings of certificates

 to NETCONF usernames. Each list entry contains

 * a certificate fingerprint (used for matching the presented
 certificate),

 * a map type (indicates how the NETCONF username is derived
 from the certificate), and

 * optional auxiliary data (used to carry a NETCONF username if
 the map type indicates the username is explicitly
 configured).

 (b) The NETCONF username is derived by considering each list entry

 in order. The fingerprint member of the current list entry
 determines whether the current list entry is a match:

 1. If the list entry's fingerprint value matches the
 fingerprint of the presented certificate, then consider the
 list entry as a successful match.

 2. If the list entry's fingerprint value matches that of a
 locally held copy of a trusted certification authority (CA)
 certificate, and that CA certificate was part of the CA
 certificate chain to the presented certificate, then
 consider the list entry as a successful match.

 (c) Once a matching list entry has been found, the map type of the

 current list entry is used to determine how the username
 associated with the certificate should be determined. Possible
 mapping options are:

 A. The username is taken from the auxiliary data of the current

 list entry. This means the username is explicitly
 configured (map type 'specified').

 B. The subjectAltName's rfc822Name field is mapped to the

 username (map type 'san-rfc822-name'). The local part of
 the rfc822Name is used unaltered, but the host-part of the
 name must be converted to lowercase.

 C. The subjectAltName's dNSName is mapped to the username (map

 type 'san-dns-name'). The characters of the dNSName are
 converted to lowercase.

 D. The subjectAltName's iPAddress is mapped to the username

 (map type 'san-ip-address'). IPv4 addresses are converted
 into decimal-dotted quad notation (e.g., '192.0.2.1'). IPv6
 addresses are converted into a 32-character all lowercase
 hexadecimal string without any colon separators.

 E. The rfc822Name, dNSName, or iPAddress of the subjectAltName

 is mapped to the username (map type 'san-any'). The first
 matching subjectAltName value found in the certificate of
 the above types MUST be used when deriving the name.

 F. The certificate's CommonName is mapped to the username (map

 type 'common-name'). The CommonName is converted to UTF-8
 encoding. The usage of CommonNames is deprecated and users
 are encouraged to use subjectAltName mapping methods
 instead.

 (d) If it is impossible to determine a username from the list

 entry's data combined with the data presented in the
 certificate, then additional list entries MUST be searched to
 look for another potential match. Similarly, if the username
 does not comply to the NETCONF requirements on usernames
 [RFC6241], then additional list entries MUST be searched to look
 for another potential match. If there are no further list
 entries, the TLS session MUST be terminated.

 The username provided by the NETCONF over TLS implementation will be
 made available to the NETCONF message layer as the NETCONF username
 without modification.

 The NETCONF server configuration data model [NETCONF-RESTCONF] covers
 NETCONF over TLS and provides further details such as certificate
 fingerprint formats exposed to network configuration systems.

8. Cipher Suites

 Implementations MUST support TLS 1.2 [RFC5246] and are REQUIRED to
 support the mandatory-to-implement cipher suite. Implementations MAY
 implement additional TLS cipher suites that provide mutual
 authentication [RFC5246] and confidentiality as required by NETCONF
 [RFC6241]. Implementations SHOULD follow the recommendations given
 in [RFC7525].

9. Security Considerations

 NETCONF is used to access configuration and state information and to
 modify configuration information, so the ability to access this
 protocol should be limited to users and systems that are authorized
 to view the NETCONF server's configuration and state or to modify the
 NETCONF server's configuration.

 Configuration or state data may include sensitive information, such
 as usernames or security keys. So, NETCONF requires communications
 channels that provide strong encryption for data privacy. This
 document defines a NETCONF over TLS mapping that provides for support
 of strong encryption and authentication. The security considerations
 for TLS [RFC5246] and NETCONF [RFC6241] apply here as well.

 NETCONF over TLS requires mutual authentication. Neither side should
 establish a NETCONF over TLS connection with an unknown, unexpected,
 or incorrect identity on the opposite side. Note that the decision
 whether a certificate presented by the client is accepted can depend
 on whether a trusted CA certificate is white listed (see Section 7).
 If deployments make use of this option, it is recommended that the
 white-listed CA certificate is used only to issue certificates that
 are used for accessing NETCONF servers. Should the CA certificate be
 used to issue certificates for other purposes, then all certificates
 created for other purposes will be accepted by a NETCONF server as
 well, which is likely not suitable.

 This document does not support third-party authentication (e.g.,
 backend Authentication, Authorization, and Accounting (AAA) servers)
 due to the fact that TLS does not specify this way of authentication
 and that NETCONF depends on the transport protocol for the
 authentication service. If third-party authentication is needed, the
 Secure Shell (SSH) transport [RFC6242] can be used.

 RFC 5539 assumes that the end-of-message (EOM) sequence,]]>]]>,
 cannot appear in any well-formed XML document, which turned out to be
 mistaken. The EOM sequence can cause operational problems and open
 space for attacks if sent deliberately in NETCONF messages. It is
 however believed that the associated threat is not very high. This
 document still uses the EOM sequence for the initial <hello> message
 to avoid incompatibility with existing implementations. When both
 peers implement the :base:1.1 capability, a proper framing protocol
 (chunked framing mechanism; see Section 3) is used for the rest of
 the NETCONF session, to avoid injection attacks.

10. IANA Considerations

 Per RFC 5539, IANA assigned TCP port number (6513) in the "Registered
 Port Numbers" range with the service name "netconf-tls". This port
 is the default port for NETCONF over TLS, as defined in Section 2.
 Below is the registration template following the rules in [RFC6335].

Service Name: netconf‑tls
Transport Protocol(s): TCP
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Description: NETCONF over TLS
Reference: RFC 7589
Port Number: 6513

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <http://www.rfc-editor.org/info/rfc6335>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

11.2. Informative References

 [NETCONF-RESTCONF]

 Watsen, K. and J. Schoenwaelder, "NETCONF Server and
 RESTCONF Server Configuration Models", Work in Progress,
 draft-ietf-netconf-server-model-06, February 2015.

 [RFC4742]
 Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 DOI 10.17487/RFC4742, December 2006,
 <http://www.rfc-editor.org/info/rfc4742>.

 [RFC5539]
 Badra, M., "NETCONF over Transport Layer Security (TLS)",
 RFC 5539, DOI 10.17487/RFC5539, May 2009,
 <http://www.rfc-editor.org/info/rfc5539>.

 [RFC6353]
 Hardaker, W., "Transport Layer Security (TLS) Transport
 Model for the Simple Network Management Protocol (SNMP)",
 STD 78, RFC 6353, DOI 10.17487/RFC6353, July 2011,
 <http://www.rfc-editor.org/info/rfc6353>.

 [RFC7407]
 Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <http://www.rfc-editor.org/info/rfc7407>.

Appendix A. Changes from RFC 5539

 This section summarizes major changes between this document and RFC
 5539.

 o Documented that NETCONF over TLS uses the new message framing if
 both peers support the :base:1.1 capability.

 o Removed redundant text that can be found in the TLS and NETCONF
 specifications and restructured the text. Alignment with
 [RFC6125].

 o Added a high-level description on how NETCONF usernames are
 derived from certificates.

 o Removed the reference to BEEP.

Acknowledgements

 The authors like to acknowledge Martin Bjorklund, Olivier Coupelon,
 Pasi Eronen, Mehmet Ersue, Stephen Farrell, Miao Fuyou, Ibrahim
 Hajjeh, David Harrington, Sam Hartman, Alfred Hoenes, Simon
 Josefsson, Charlie Kaufman, Barry Leiba, Tom Petch, Tim Polk, Eric
 Rescorla, Dan Romascanu, Kent Watsen, Bert Wijnen, Stefan Winter, and
 the NETCONF mailing list members for their comments on this document.

 Juergen Schoenwaelder was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

Authors' Addresses

Mohamad Badra
Zayed University
P.O. Box 19282
Dubai, United Arab Emirates

Phone: +971 4 4021879
EMail: mohamad.badra@zu.ac.ae
URI: http://www.zu.ac.ae

Alan Luchuk
SNMP Research, Inc.
3001 Kimberlin Heights Road
Knoxville, TN 37920
United States

Phone: +1 865 573 1434
EMail: luchuk@snmp.com
URI: http://www.snmp.com/

Juergen Schoenwaelder
Jacobs University Bremen
Campus Ring 1
28759 Bremen
Germany

Phone: +49 421 200 3587
EMail: j.schoenwaelder@jacobs‑university.de
URI: http://www.jacobs‑university.de/

7895 - YANG Module Library

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7895

Category: Standards Track

ISSN: 2070-1721

A. Bierman

YumaWorks

M. Bjorklund

Tail-f Systems

K. Watsen

Juniper Networks

June 2016

YANG Module Library

Abstract

 This document describes a YANG library that provides information
 about all the YANG modules used by a network management server (e.g.,
 a Network Configuration Protocol (NETCONF) server). Simple caching
 mechanisms are provided to allow clients to minimize retrieval of
 this information.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7895.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Tree Diagrams

	2. YANG Module Library
	 2.1. modules-state
	 2.1.1. modules-state/module-set-id

	 2.1.2. modules-state/module

	 2.2. YANG Library Module

	3. IANA Considerations
	 3.1. YANG Module Registry

	4. Security Considerations

	5. References
	 5.1. Normative References

	 5.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 There is a need for standard mechanisms to identify the YANG modules
 and submodules that are in use by a server that implements YANG data
 models. If a large number of YANG modules are utilized by the
 server, then the YANG library contents needed can be relatively
 large. This information changes very infrequently, so it is
 important that clients be able to cache the YANG library contents and
 easily identify whether their cache is out of date.

 YANG library information can be different on every server and can
 change at runtime or across a server reboot.

 If the server implements multiple protocols to access the YANG-
 defined data, each such protocol has its own conceptual instantiation
 of the YANG library.

 The following information is needed by a client application (for each
 YANG module in the library) to fully utilize the YANG data modeling
 language:

 o name: The name of the YANG module.

 o revision: Each YANG module and submodule within the library has a
 revision. This is derived from the most recent revision statement
 within the module or submodule. If no such revision statement
 exists, the module's or submodule's revision is the zero-length
 string.

 o submodule list: The name and revision of each submodule used by
 the module MUST be identified.

 o feature list: The name of each YANG feature supported by the
 server MUST be identified.

 o deviation list: The name of each YANG module used for deviation
 statements MUST be identified.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

 The following terms are defined in [RFC6241]:

 o client

 o server

 The following terms are defined in [YANG1.1]:

 o module

 o submodule

 The following terms are used within this document:

 o YANG library: A collection of YANG modules and submodules used by
 a server.

1.2. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 data (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. YANG Module Library

 The "ietf-yang-library" module provides information about the YANG
 library used by a server. This module is defined using YANG version
 1, but it supports the description of YANG modules written in any
 revision of YANG.

 Following is the YANG Tree Diagram for the "ietf-yang-library"
 module:

+‑‑ro modules‑state
 +‑‑ro module‑set‑id string
 +‑‑ro module* [name revision]
 +‑‑ro name yang:yang‑identifier
 +‑‑ro revision union
 +‑‑ro schema? inet:uri
 +‑‑ro namespace inet:uri
 +‑‑ro feature* yang:yang‑identifier
 +‑‑ro deviation* [name revision]
 | +‑‑ro name yang:yang‑identifier
 | +‑‑ro revision union
 +‑‑ro conformance‑type enumeration
 +‑‑ro submodule* [name revision]
 +‑‑ro name yang:yang‑identifier
 +‑‑ro revision union
 +‑‑ro schema? inet:uri

2.1. modules-state

 This mandatory container holds the identifiers for the YANG data
 model modules supported by the server.

2.1.1. modules-state/module-set-id

 This mandatory leaf contains a unique implementation-specific
 identifier representing the current set of modules and submodules on
 a specific server. The value of this leaf MUST change whenever the
 set of modules and submodules in the YANG library changes. There is
 no requirement that the same set always results in the same "module-
 set-id" value.

 This leaf allows a client to fetch the module list once, cache it,
 and only refetch it if the value of this leaf has been changed.

 If the value of this leaf changes, the server also generates a
 "yang-library-change" notification, with the new value of
 "module-set-id".

 Note that for a NETCONF server that implements YANG 1.1 [YANG1.1], a
 change of the "module-set-id" value results in a new value for the
 :yang-library capability defined in [YANG1.1]. Thus, if such a
 server implements NETCONF notifications [RFC5277], and the
 notification "netconf-capability-change" [RFC6470], a
 "netconf-capability-change" notification is generated whenever the
 "module-set-id" changes.

2.1.2. modules-state/module

 This mandatory list contains one entry for each YANG data model
 module supported by the server. There MUST be an entry in this list
 for each revision of each YANG module that is used by the server. It
 is possible for multiple revisions of the same module to be imported,
 in addition to an entry for the revision that is implemented by the
 server.

2.2. YANG Library Module

 The "ietf-yang-library" module defines monitoring information for the
 YANG modules used by a server.

 The "ietf-yang-types" and "ietf-inet-types" modules from [RFC6991]
 are used by this module for some type definitions.

 <CODE BEGINS> file "ietf-yang-library@2016-06-21.yang"

module ietf‑yang‑library {
 namespace "urn:ietf:params:xml:ns:yang:ietf‑yang‑library";
 prefix "yanglib";

 import ietf‑yang‑types {
 prefix yang;
 }
 import ietf‑inet‑types {
 prefix inet;
 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue

 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani

 <mailto:mjethanandani@gmail.com>

Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

Editor: Martin Bjorklund
 <mailto:mbj@tail‑f.com>

Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description

 "This module contains monitoring information about the YANG
 modules and submodules that are used within a YANG-based
 server.

 Copyright (c) 2016 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 7895; see
 the RFC itself for full legal notices.";

revision 2016‑06‑21 {
 description
 "Initial revision.";
 reference
 "RFC 7895: YANG Module Library.";
}

/*
 * Typedefs
 */

typedef revision‑identifier {
 type string {
 pattern '\d{4}‑\d{2}‑\d{2}';
 }
 description
 "Represents a specific date in YYYY‑MM‑DD format.";
}

/*
 * Groupings
 */

grouping module‑list {
 description
 "The module data structure is represented as a grouping
 so it can be reused in configuration or another monitoring
 data structure.";

 grouping common‑leafs {
 description
 "Common parameters for YANG modules and submodules.";

 leaf name {
 type yang:yang‑identifier;
 description
 "The YANG module or submodule name.";
 }
 leaf revision {
 type union {
 type revision‑identifier;
 type string { length 0; }
 }
 description
 "The YANG module or submodule revision date.
 A zero‑length string is used if no revision statement
 is present in the YANG module or submodule.";
 }
 }

 grouping schema‑leaf {
 description
 "Common schema leaf parameter for modules and submodules.";

 leaf schema {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema
 resource for this module or submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }
 }

 list module {
 key "name revision";
 description
 "Each entry represents one revision of one module
 currently supported by the server.";

 uses common‑leafs;
 uses schema‑leaf;

 leaf namespace {
 type inet:uri;
 mandatory true;
 description
 "The XML namespace identifier for this module.";
 }
 leaf‑list feature {
 type yang:yang‑identifier;
 description
 "List of YANG feature names from this module that are
 supported by the server, regardless of whether they are
 defined in the module or any included submodule.";
 }
 list deviation {
 key "name revision";
 description
 "List of YANG deviation module names and revisions
 used by this server to modify the conformance of
 the module associated with this entry. Note that
 the same module can be used for deviations for
 multiple modules, so the same entry MAY appear
 within multiple 'module' entries.

 The deviation module MUST be present in the 'module'
 list, with the same name and revision values.
 The 'conformance‑type' value will be 'implement' for
 the deviation module.";
 uses common‑leafs;

 }
 leaf conformance‑type {
 type enumeration {
 enum implement {
 description
 "Indicates that the server implements one or more
 protocol‑accessible objects defined in the YANG module
 identified in this entry. This includes deviation
 statements defined in the module.

 For YANG version 1.1 modules, there is at most one
 module entry with conformance type 'implement' for a
 particular module name, since YANG 1.1 requires that,
 at most, one revision of a module is implemented.

 For YANG version 1 modules, there SHOULD NOT be more
 than one module entry for a particular module name.";
 }
 enum import {
 description
 "Indicates that the server imports reusable definitions
 from the specified revision of the module but does
 not implement any protocol‑accessible objects from
 this revision.

 Multiple module entries for the same module name MAY
 exist. This can occur if multiple modules import the
 same module but specify different revision dates in
 the import statements.";
 }
 }
 mandatory true;
 description
 "Indicates the type of conformance the server is claiming
 for the YANG module identified by this entry.";
 }
 list submodule {
 key "name revision";
 description
 "Each entry represents one submodule within the
 parent module.";
 uses common‑leafs;
 uses schema‑leaf;
 }
 }
}

/*
 * Operational state data nodes
 */

container modules‑state {
 config false;
 description
 "Contains YANG module monitoring information.";

 leaf module‑set‑id {
 type string;
 mandatory true;
 description
 "Contains a server‑specific identifier representing
 the current set of modules and submodules. The
 server MUST change the value of this leaf if the
 information represented by the 'module' list instances
 has changed.";
 }

 uses module‑list;
}

/*
 * Notifications
 */

notification yang‑library‑change {
 description
 "Generated when the set of modules and submodules supported
 by the server has changed.";
 leaf module‑set‑id {
 type leafref {
 path "/yanglib:modules‑state/yanglib:module‑set‑id";
 }
 mandatory true;
 description
 "Contains the module‑set‑id value representing the
 set of modules and submodules supported at the server at
 the time the notification is generated.";
 }
}

 }

 <CODE ENDS>

3. IANA Considerations

3.1. YANG Module Registry

 This document registers one URI in the "IETF XML Registry" [RFC3688].
 Following the format in RFC 3688, the following registration has been
 made.

URI: urn:ietf:params:xml:ns:yang:ietf‑yang‑library
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

 This document registers one YANG module in the "YANG Module Names"
 registry [RFC6020].

name: ietf‑yang‑library
namespace: urn:ietf:params:xml:ns:yang:ietf‑yang‑library
prefix: yanglib
reference: RFC 7895

4. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory-to-implement secure
 transport is SSH [RFC6242]. The NETCONF access control model
 [RFC6536] provides the means to restrict access for particular
 NETCONF users to a pre-configured subset of all available NETCONF
 protocol operations and content.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 o /modules-state/module: The module list used in a server
 implementation may help an attacker identify the server
 capabilities and server implementations with known bugs. Although
 some of this information may be available to all users via the
 NETCONF <hello> message (or similar messages in other management
 protocols), this YANG module potentially exposes additional
 details that could be of some assistance to an attacker. Server
 vulnerabilities may be specific to particular modules, module
 revisions, module features, or even module deviations. This
 information is included in each module entry. For example, if a
 particular operation on a particular data node is known to cause a
 server to crash or significantly degrade device performance, then

 the module list information will help an attacker identify server
 implementations with such a defect, in order to launch a denial-
 of-service attack on the device.

5. References

5.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

5.2. Informative References

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC6470]
 Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <http://www.rfc-editor.org/info/rfc6470>.

 [YANG1.1]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language", Work
 in Progress, draft-ietf-netmod-rfc6020bis-12, April 2016.

Acknowledgements

 Contributions to this material by Andy Bierman are based upon work
 supported by the Space & Terrestrial Communications Directorate
 (S&TCD) under Contract No. W15P7T-13-C-A616. Any opinions, findings,
 conclusions, or recommendations expressed in this material are those
 of the author(s) and do not necessarily reflect the views of the
 Space & Terrestrial Communications Directorate (S&TCD).

Authors' Addresses

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

8040 - RESTCONF Protocol

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8040

Category: Standards Track

ISSN: 2070-1721

A. Bierman

YumaWorks

M. Bjorklund

Tail-f Systems

K. Watsen

Juniper Networks

January 2017

RESTCONF Protocol

Abstract

 This document describes an HTTP-based protocol that provides a
 programmatic interface for accessing data defined in YANG, using the
 datastore concepts defined in the Network Configuration Protocol
 (NETCONF).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8040.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
		 1.1. Terminology
		 1.1.1. NETCONF

	 1.1.2. HTTP

	 1.1.3. YANG

	 1.1.4. NETCONF Notifications

	 1.1.5. Terms

	 1.1.6. URI Template and Examples

	 1.1.7. Tree Diagrams

	 1.2. Subset of NETCONF Functionality

	 1.3. Data-Model-Driven API

	 1.4. Coexistence with NETCONF

	 1.5. RESTCONF Extensibility

	2. Transport Protocol
		 2.1. Integrity and Confidentiality

	 2.2. HTTPS with X.509v3 Certificates

	 2.3. Certificate Validation

	 2.4. Authenticated Server Identity

	 2.5. Authenticated Client Identity

	3. Resources
		 3.1. Root Resource Discovery

	 3.2. RESTCONF Media Types

	 3.3. API Resource
		 3.3.1. {+restconf}/data

	 3.3.2. {+restconf}/operations

	 3.3.3. {+restconf}/yang-library-version

	 3.4. Datastore Resource
		 3.4.1. Edit Collision Prevention

	 3.5. Data Resource
		 3.5.1. Timestamp

	 3.5.2. Entity-Tag

	 3.5.3. Encoding Data Resource Identifiers in the Request URI

	 3.5.4. Default Handling

	 3.6. Operation Resource
		 3.6.1. Encoding Operation Resource Input Parameters

	 3.6.2. Encoding Operation Resource Output Parameters

	 3.6.3. Encoding Operation Resource Errors

	 3.7. Schema Resource

	 3.8. Event Stream Resource

	 3.9. "errors" YANG Data Template

	4. RESTCONF Methods
		 4.1. OPTIONS

	 4.2. HEAD

	 4.3. GET

	 4.4. POST
		 4.4.1. Create Resource Mode

	 4.4.2. Invoke Operation Mode

	 4.5. PUT

	 4.6. PATCH
		 4.6.1. Plain Patch

	 4.7. DELETE

	 4.8. Query Parameters
		 4.8.1. The "content" Query Parameter

	 4.8.2. The "depth" Query Parameter

	 4.8.3. The "fields" Query Parameter

	 4.8.4. The "filter" Query Parameter

	 4.8.5. The "insert" Query Parameter

	 4.8.6. The "point" Query Parameter

	 4.8.7. The "start-time" Query Parameter

	 4.8.8. The "stop-time" Query Parameter

	 4.8.9. The "with-defaults" Query Parameter

	5. Messages
		 5.1. Request URI Structure

	 5.2. Message Encoding

	 5.3. RESTCONF Metadata
		 5.3.1. XML Metadata Encoding Example

	 5.3.2. JSON Metadata Encoding Example

	 5.4. Return Status

	 5.5. Message Caching

	6. Notifications
		 6.1. Server Support

	 6.2. Event Streams

	 6.3. Subscribing to Receive Notifications
		 6.3.1. NETCONF Event Stream

	 6.4. Receiving Event Notifications

	7. Error Reporting
		 7.1. Error Response Message

	8. RESTCONF Module

	9. RESTCONF Monitoring
		 9.1. restconf-state/capabilities
		 9.1.1. Query Parameter URIs

	 9.1.2. The "defaults" Protocol Capability URI

	 9.2. restconf-state/streams

	 9.3. RESTCONF Monitoring Module

	10. YANG Module Library
		 10.1. modules-state/module

	11. IANA Considerations
		 11.1. The "restconf" Relation Type

	 11.2. Registrations for New URIs and YANG Modules

	 11.3. Media Types
		 11.3.1. Media Type "application/yang-data+xml"

	 11.3.2. Media Type "application/yang-data+json"

	 11.4. RESTCONF Capability URNs

	 11.5. Registration of "restconf" URN Sub-namespace

	12. Security Considerations

	13. References
		 13.1. Normative References

	 13.2. Informative References

	Appendix A. Example YANG Module
	 A.1. "example-jukebox" YANG Module

	Appendix B. RESTCONF Message Examples
	 B.1. Resource Retrieval Examples
		 B.1.1. Retrieve the Top-Level API Resource

	 B.1.2. Retrieve the Server Module Information

	 B.1.3. Retrieve the Server Capability Information

	 B.2. Data Resource and Datastore Resource Examples
		 B.2.1. Create New Data Resources

	 B.2.2. Detect Datastore Resource Entity-Tag Change

	 B.2.3. Edit a Datastore Resource

	 B.2.4. Replace a Datastore Resource

	 B.2.5. Edit a Data Resource

	 B.3. Query Parameter Examples
		 B.3.1. "content" Parameter

	 B.3.2. "depth" Parameter

	 B.3.3. "fields" Parameter

	 B.3.4. "insert" Parameter

	 B.3.5. "point" Parameter

	 B.3.6. "filter" Parameter

	 B.3.7. "start-time" Parameter

	 B.3.8. "stop-time" Parameter

	 B.3.9. "with-defaults" Parameter

	Acknowledgements

	Authors' Addresses

1. Introduction

 There is a need for standard mechanisms to allow Web applications to
 access the configuration data, state data, data-model-specific Remote
 Procedure Call (RPC) operations, and event notifications within a
 networking device, in a modular and extensible manner.

 This document defines a protocol based on HTTP [RFC7230] called
 "RESTCONF", for configuring data defined in YANG version 1 [RFC6020]
 or YANG version 1.1 [RFC7950], using the datastore concepts defined
 in the Network Configuration Protocol (NETCONF) [RFC6241].

 NETCONF defines configuration datastores and a set of Create, Read,
 Update, Delete (CRUD) operations that can be used to access these
 datastores. NETCONF also defines a protocol for invoking these
 operations. The YANG language defines the syntax and semantics of
 datastore content, configuration, state data, RPC operations, and
 event notifications.

 RESTCONF uses HTTP methods to provide CRUD operations on a conceptual
 datastore containing YANG-defined data, which is compatible with a
 server that implements NETCONF datastores.

 If a RESTCONF server is co-located with a NETCONF server, then there
 are protocol interactions with the NETCONF protocol; these
 interactions are described in Section 1.4. The RESTCONF server MAY
 provide access to specific datastores using operation resources, as
 described in Section 3.6. The RESTCONF protocol does not specify any
 mandatory operation resources. The semantics of each operation
 resource determine if and how datastores are accessed.

 Configuration data and state data are exposed as resources that can
 be retrieved with the GET method. Resources representing
 configuration data can be modified with the DELETE, PATCH, POST, and
 PUT methods. Data is encoded with either XML [W3C.REC-xml-20081126]
 or JSON [RFC7159].

 Data-model-specific RPC operations defined with the YANG "rpc" or
 "action" statements can be invoked with the POST method. Data-model-
 specific event notifications defined with the YANG "notification"
 statement can be accessed.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1.1. NETCONF

 The following terms are defined in [RFC6241]:

 o candidate configuration datastore

 o configuration data

 o datastore

 o configuration datastore

 o running configuration datastore

 o startup configuration datastore

 o state data

 o user

1.1.2. HTTP

 The following terms are defined in [RFC3986]:

 o fragment

 o path

 o query

 The following terms are defined in [RFC7230]:

 o header field

 o message-body

 o request-line

 o request URI

 o status-line

 The following terms are defined in [RFC7231]:

 o method

 o request

 o resource

 The following term is defined in [RFC7232]:

 o entity-tag

1.1.3. YANG

 The following terms are defined in [RFC7950]:

 o action

 o container

 o data node

 o key leaf

 o leaf

 o leaf-list

 o list

 o mandatory node

 o ordered-by user

 o presence container

 o RPC operation

 o top-level data node

1.1.4. NETCONF Notifications

 The following term is defined in [RFC5277]:

 o notification replay

1.1.5. Terms

 The following terms are used within this document:

 o API resource: the resource that models the RESTCONF root resource
 and the sub-resources to access YANG-defined content. It is
 defined with the YANG data template named "yang-api" in the
 "ietf-restconf" module.

 o client: a RESTCONF client.

 o data resource: a resource that models a YANG data node. It is
 defined with YANG data definition statements.

 o datastore resource: the resource that models a programmatic
 interface using NETCONF datastore concepts. By default, RESTCONF
 methods access a unified view of the underlying datastore
 implementation on the server. It is defined as a sub-resource
 within the API resource.

 o edit operation: a RESTCONF operation on a data resource using
 either a POST, PUT, PATCH, or DELETE method. This is not the same
 as the NETCONF edit operation (i.e., one of the values for the
 "nc:operation" attribute: "create", "replace", "merge", "delete",
 or "remove").

 o event stream resource: a resource that represents an SSE
 (Server-Sent Events) event stream. The content consists of text
 using the media type "text/event-stream", as defined by the SSE
 specification [W3C.REC-eventsource-20150203]. Event stream
 contents are described in Section 3.8.

 o media type: HTTP uses Internet media types [RFC2046] in the
 "Content-Type" and "Accept" header fields in order to provide open
 and extensible data typing and type negotiation.

 o NETCONF client: a client that implements the NETCONF protocol.
 Called "client" in [RFC6241].

 o NETCONF server: a server that implements the NETCONF protocol.
 Called "server" in [RFC6241].

 o operation: the conceptual RESTCONF operation for a message,
 derived from the HTTP method, request URI, header fields, and
 message-body.

 o operation resource: a resource that models a data-model-specific
 operation that is in turn defined with a YANG "rpc" or "action"
 statement. It is invoked with the POST method.

 o patch: a PATCH method on the target datastore or data resource.
 The media type of the message-body content will identify the patch
 type in use.

 o plain patch: a specific media type for use with the PATCH method;
 see Section 4.6.1. It can be used for simple "merge" edit
 operations. It is specified by a request Content-Type of
 "application/yang-data+xml" or "application/yang-data+json".

 o query parameter: a parameter (and its value, if any), encoded
 within the query component of the request URI.

 o resource type: one of the RESTCONF resource classes defined in
 this document. One of "api", "datastore", "data", "operation",
 "schema", or "event stream".

 o RESTCONF capability: an optional RESTCONF protocol feature that is
 advertised by a particular server if the feature is supported on
 that server. The feature is identified by an IANA-registered
 NETCONF Capability URI and advertised with an entry in the
 "capability" leaf-list defined in Section 9.3.

 o RESTCONF client: a client that implements the RESTCONF protocol.

 o RESTCONF server: a server that implements the RESTCONF protocol.

 o retrieval request: a request using the GET or HEAD methods.

 o schema resource: a resource that is used by the client to retrieve
 a YANG schema with the GET method. It has a representation with
 the media type "application/yang".

 o server: a RESTCONF server.

 o "stream" list: the set of data resource instances that describe
 the event stream resources available from the server. This
 information is defined in the "ietf-restconf-monitoring" module as
 the "stream" list. It can be retrieved using the target resource
 "{+restconf}/data/ietf-restconf-monitoring:restconf-state/streams/
 stream". The "stream" list contains information about each
 stream, such as the URL to retrieve the event stream data.

 o stream resource: an event stream resource.

 o target resource: the resource that is associated with a particular
 message, identified by the "path" component of the request URI.

 o yang-data extension: a YANG external statement that conforms to
 the "yang-data" extension statement, found in Section 8. The
 yang-data extension is used to define YANG data structures that
 are meant to be used as YANG data templates. These data
 structures are not intended to be implemented as part of a
 configuration datastore or as an operational state within the
 server, so normal YANG data definition statements cannot be used.

 o YANG data template: a schema for modeling protocol message
 components as conceptual data structures using YANG. This allows
 the messages to be defined in an encoding-independent manner.
 Each YANG data template is defined with the "yang-data" extension,
 found in Section 8. Representations of instances conforming to a
 particular YANG data template can be defined for YANG. The XML
 representation is defined in YANG version 1.1 [RFC7950] and
 supported with the "application/yang-data+xml" media type. The
 JSON representation is defined in "JSON Encoding of Data Modeled
 with YANG" [RFC7951] and supported with the
 "application/yang-data+json" media type.

1.1.6. URI Template and Examples

 Throughout this document, the URI template [RFC6570] syntax
 "{+restconf}" is used to refer to the RESTCONF root resource outside
 of an example. See Section 3.1 for details.

 For simplicity, all of the examples in this document use "/restconf"
 as the discovered RESTCONF API root path. Many of the examples
 throughout the document are based on the "example-jukebox" YANG
 module defined in Appendix A.1.

Many protocol header lines and message‑body text within examples
throughout the document are split into multiple lines for display
purposes only. When a line ends with a backslash ("\") as the last
character, the line is wrapped for display purposes. It is to be
considered to be joined to the next line by deleting the backslash,
the following line break, and the leading whitespace of the
next line.

1.1.7. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. The meanings of the symbols in these diagrams are as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 data (read-write), "ro" means state data (read-only), and "x"
 means operation resource (executable).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

1.2. Subset of NETCONF Functionality

 RESTCONF does not need to mirror the full functionality of the
 NETCONF protocol, but it does need to be compatible with NETCONF.
 RESTCONF achieves this by implementing a subset of the interaction
 capabilities provided by the NETCONF protocol -- for instance, by
 eliminating datastores and explicit locking.

 RESTCONF uses HTTP methods to implement the equivalent of NETCONF
 operations, enabling basic CRUD operations on a hierarchy of
 conceptual resources.

 The HTTP POST, PUT, PATCH, and DELETE methods are used to edit data
 resources represented by YANG data models. These basic edit
 operations allow the running configuration to be altered by a
 RESTCONF client.

 RESTCONF is not intended to replace NETCONF, but rather to provide an
 HTTP interface that follows Representational State Transfer (REST)
 principles [REST-Dissertation] and is compatible with the NETCONF
 datastore model.

1.3. Data-Model-Driven API

 RESTCONF combines the simplicity of HTTP with the predictability and
 automation potential of a schema-driven API. Knowing the YANG
 modules used by the server, a client can derive all management
 resource URLs and the proper structure of all RESTCONF requests and
 responses. This strategy obviates the need for responses provided by
 the server to contain Hypermedia as the Engine of Application State
 (HATEOAS) links, originally described in Roy Fielding's doctoral
 dissertation [REST-Dissertation], because the client can determine
 the links it needs from the YANG modules.

 RESTCONF utilizes the YANG library [RFC7895] to allow a client to
 discover the YANG module conformance information for the server, in
 case the client wants to use it.

 The server can optionally support the retrieval of the YANG modules
 it uses, as identified in its YANG library. See Section 3.7 for
 details.

 The URIs for data-model-specific RPC operations and datastore content
 are predictable, based on the YANG module definitions.

 The RESTCONF protocol operates on a conceptual datastore defined with
 the YANG data modeling language. The server lists each YANG module
 it supports using the "ietf-yang-library" YANG module defined in
 [RFC7895]. The server MUST implement the "ietf-yang-library" module,
 which MUST identify all of the YANG modules used by the server, in
 the "modules-state/module" list. The conceptual datastore contents,
 data-model-specific RPC operations, and event notifications are
 identified by this set of YANG modules.

 The classification of data as configuration data or non-configuration
 data is derived from the YANG "config" statement. Behavior related
 to the ordering of data is derived from the YANG "ordered-by"
 statement. Non-configuration data is also called "state data".

 The RESTCONF datastore editing model is simple and direct, similar to
 the behavior of the :writable-running capability in NETCONF. Each
 RESTCONF edit of a data resource within the datastore resource is
 activated upon successful completion of the edit.

1.4. Coexistence with NETCONF

 RESTCONF can be implemented on a device that supports the NETCONF
 protocol.

 The following figure shows the system components if a RESTCONF server
 is co-located with a NETCONF server:

+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Web app | <‑‑‑‑‑‑‑> | |
+‑‑‑‑‑‑‑‑‑‑‑+ RESTCONF | network device |
 | |
+‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑+ |
| NETCONF | <‑‑‑‑‑‑‑> | | datastore | |
| Client | NETCONF | | | |
+‑‑‑‑‑‑‑‑‑‑‑+ | +‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 The following figure shows the system components if a RESTCONF server
 is implemented in a device that does not have a NETCONF server:

+‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Web app | <‑‑‑‑‑‑‑> | |
+‑‑‑‑‑‑‑‑‑‑‑+ RESTCONF | network device |
 | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 There are interactions between the NETCONF protocol and RESTCONF
 protocol related to edit operations. It is possible that locks are
 in use on a RESTCONF server, even though RESTCONF cannot manipulate
 locks. In such a case, the RESTCONF protocol will not be granted
 write access to data resources within a datastore.

 If the NETCONF server supports :writable-running, all edits to
 configuration nodes in {+restconf}/data are performed in the running
 configuration datastore. The URI template "{+restconf}" is defined
 in Section 1.1.6.

 Otherwise, if the device supports :candidate, all edits to
 configuration nodes in {+restconf}/data are performed in the
 candidate configuration datastore. The candidate MUST be
 automatically committed to running immediately after each successful
 edit. Any edits from other sources that are in the candidate
 datastore will also be committed. If a confirmed commit procedure is
 in progress by any NETCONF client, then any new commit will act as
 the confirming commit. If the NETCONF server is expecting a
 "persist-id" parameter to complete the confirmed commit procedure,
 then the RESTCONF edit operation MUST fail with a "409 Conflict"
 status-line. The error-tag "in-use" is used in this case.

 If the NETCONF server supports :startup, the RESTCONF server MUST
 automatically update the non-volatile startup configuration
 datastore, after the "running" datastore has been altered as a
 consequence of a RESTCONF edit operation.

 If a datastore that would be modified by a RESTCONF operation has an
 active lock from a NETCONF client, the RESTCONF edit operation MUST
 fail with a "409 Conflict" status-line. The error-tag value "in-use"
 is returned in this case.

1.5. RESTCONF Extensibility

 There are two extensibility mechanisms built into RESTCONF:

 o protocol version

 o optional capabilities

 This document defines version 1 of the RESTCONF protocol. If a
 future version of this protocol is defined, then that document will
 specify how the new version of RESTCONF is identified. It is
 expected that a different RESTCONF root resource will be used, which
 will be located using a different link relation (see Section 3.1).

 The server will advertise all protocol versions that it supports in
 its host-meta data.

 In this example, the server supports both RESTCONF version 1 and a
 fictitious version 2.

 The client might send the following:

GET /.well‑known/host‑meta HTTP/1.1
Host: example.com
Accept: application/xrd+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Content‑Type: application/xrd+xml
Content‑Length: nnn

<XRD xmlns='http://docs.oasis‑open.org/ns/xri/xrd‑1.0'>
 <Link rel='restconf' href='/restconf'/>
 <Link rel='restconf2' href='/restconf2'/>
</XRD>

 RESTCONF also supports a server-defined list of optional
 capabilities, which are listed by a server using the
 "ietf-restconf-monitoring" module defined in Section 9.3. This
 document defines several query parameters in Section 4.8. Each
 optional parameter has a corresponding capability URI, defined in
 Section 9.1.1, that is advertised by the server if supported.

 The "capability" leaf-list can identify any sort of server extension.
 Currently, this extension mechanism is used to identify optional
 query parameters that are supported, but it is not limited to that
 purpose. For example, the "defaults" URI defined in Section 9.1.2
 specifies a mandatory URI identifying server default-handling
 behavior.

 A new sub-resource type could be identified with a capability if it
 is optional to implement. Mandatory protocol features and new
 resource types require a new revision of the RESTCONF protocol.

2. Transport Protocol

2.1. Integrity and Confidentiality

 HTTP [RFC7230] is an application-layer protocol that may be layered
 on any reliable transport-layer protocol. RESTCONF is defined on top
 of HTTP, but due to the sensitive nature of the information conveyed,
 RESTCONF requires that the transport-layer protocol provide both data
 integrity and confidentiality. A RESTCONF server MUST support the
 Transport Layer Security (TLS) protocol [RFC5246] and SHOULD adhere
 to [RFC7525]. The RESTCONF protocol MUST NOT be used over HTTP
 without using the TLS protocol.

 RESTCONF does not require a specific version of HTTP. However, it is
 RECOMMENDED that at least HTTP/1.1 [RFC7230] be supported by all
 implementations.

2.2. HTTPS with X.509v3 Certificates

 Given the nearly ubiquitous support for HTTP over TLS [RFC7230],
 RESTCONF implementations MUST support the "https" URI scheme, which
 has the IANA-assigned default port 443.

 RESTCONF servers MUST present an X.509v3-based certificate when
 establishing a TLS connection with a RESTCONF client. The use of
 X.509v3-based certificates is consistent with NETCONF over TLS
 [RFC7589].

2.3. Certificate Validation

 The RESTCONF client MUST either (1) use X.509 certificate path
 validation [RFC5280] to verify the integrity of the RESTCONF server's
 TLS certificate or (2) match the server's TLS certificate with a
 certificate obtained by a trusted mechanism (e.g., a pinned
 certificate). If X.509 certificate path validation fails and the
 presented X.509 certificate does not match a certificate obtained by
 a trusted mechanism, the connection MUST be terminated, as described
 in Section 7.2.1 of [RFC5246].

2.4. Authenticated Server Identity

 The RESTCONF client MUST check the identity of the server according
 to Section 3.1 of [RFC2818].

2.5. Authenticated Client Identity

 The RESTCONF server MUST authenticate client access to any protected
 resource. If the RESTCONF client is not authenticated, the server
 SHOULD send an HTTP response with a "401 Unauthorized" status-line,
 as defined in Section 3.1 of [RFC7235]. The error-tag value
 "access-denied" is used in this case.

 To authenticate a client, a RESTCONF server SHOULD require
 authentication based on TLS client certificates (Section 7.4.6 of
 [RFC5246]). If certificate-based authentication is not feasible
 (e.g., because one cannot build the required PKI for clients), then
 HTTP authentication MAY be used. In the latter case, one of the HTTP
 authentication schemes defined in the "Hypertext Transfer Protocol
 (HTTP) Authentication Scheme Registry" (Section 5.1 in [RFC7235])
 MUST be used.

 A server MAY also support the combination of both client certificates
 and an HTTP client authentication scheme, with the determination of
 how to process this combination left as an implementation decision.
 The RESTCONF client identity derived from the authentication
 mechanism used is hereafter known as the "RESTCONF username" and
 subject to the NETCONF Access Control Model (NACM) [RFC6536]. When a
 client certificate is presented, the RESTCONF username MUST be
 derived using the algorithm defined in Section 7 of [RFC7589]. For
 all other cases, when HTTP authentication is used, the RESTCONF
 username MUST be provided by the HTTP authentication scheme used.

3. Resources

 The RESTCONF protocol operates on a hierarchy of resources, starting
 with the top-level API resource itself (Section 3.1). Each resource
 represents a manageable component within the device.

 A resource can be considered as a collection of data and the set of
 allowed methods on that data. It can contain nested child resources.
 The child resource types and the methods allowed on them are specific
 to the data model.

 A resource has a representation associated with a media type
 identifier, as represented by the "Content-Type" header field in the
 HTTP response message. A resource has one or more representations,
 each associated with a different media type. When a representation
 of a resource is sent in an HTTP message, the associated media type
 is given in the "Content-Type" header. A resource can contain zero
 or more nested resources. A resource can be created and deleted
 independently of its parent resource, as long as the parent resource
 exists.

 The RESTCONF resources are accessed via a set of URIs defined in this
 document. The set of YANG modules supported by the server will
 determine the data-model-specific RPC operations, top-level data
 nodes, and event notification messages supported by the server.

 The RESTCONF protocol does not include a data resource discovery
 mechanism. Instead, the definitions within the YANG modules
 advertised by the server are used to construct an RPC operation or
 data resource identifier.

3.1. Root Resource Discovery

 In line with the best practices defined by [RFC7320], RESTCONF
 enables deployments to specify where the RESTCONF API is located.
 When first connecting to a RESTCONF server, a RESTCONF client MUST
 determine the root of the RESTCONF API. There MUST be exactly one
 "restconf" link relation returned by the device.

 The client discovers this by getting the "/.well-known/host-meta"
 resource ([RFC6415]) and using the <Link> element containing the
 "restconf" attribute:

 Example returning /restconf:

 The client might send the following:

GET /.well‑known/host‑meta HTTP/1.1
Host: example.com
Accept: application/xrd+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Content‑Type: application/xrd+xml
Content‑Length: nnn

<XRD xmlns='http://docs.oasis‑open.org/ns/xri/xrd‑1.0'>
 <Link rel='restconf' href='/restconf'/>
</XRD>

 After discovering the RESTCONF API root, the client MUST use this
 value as the initial part of the path in the request URI, in any
 subsequent request for a RESTCONF resource.

 In this example, the client would use the path "/restconf" as the
 RESTCONF root resource.

 Example returning /top/restconf:

 The client might send the following:

GET /.well‑known/host‑meta HTTP/1.1
Host: example.com
Accept: application/xrd+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Content‑Type: application/xrd+xml
Content‑Length: nnn

<XRD xmlns='http://docs.oasis‑open.org/ns/xri/xrd‑1.0'>
 <Link rel='restconf' href='/top/restconf'/>
</XRD>

 In this example, the client would use the path "/top/restconf" as the
 RESTCONF root resource.

 The client can now determine the operation resources supported by the
 server. In this example, a custom "play" operation is supported:

 The client might send the following:

GET /top/restconf/operations HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Last‑Modified: Thu, 26 Jan 2017 16:00:14 GMT
Content‑Type: application/yang‑data+json

 { "operations" : { "example-jukebox:play" : [null] } }

 If the Extensible Resource Descriptor (XRD) contains more than one
 link relation, then only the relation named "restconf" is relevant to
 this specification.

 Note that any given endpoint (host:port) can only support one
 RESTCONF server, due to the root resource discovery mechanism. This
 limits the number of RESTCONF servers that can run concurrently on a
 host, since each server must use a different port.

3.2. RESTCONF Media Types

 The RESTCONF protocol defines two application-specific media types to
 identify representations of data that conforms to the schema for a
 particular YANG construct.

This document defines media types for XML and JSON serialization
of YANG data. Other documents MAY define other media types for
different serializations of YANG data. The
"application/yang‑data+xml" media type is defined in Section 11.3.1.
The "application/yang‑data+json" media type is defined in
Section 11.3.2.

3.3. API Resource

 The API resource contains the RESTCONF root resource for the RESTCONF
 datastore and operation resources. It is the top-level resource
 located at {+restconf} and has the media type
 "application/yang-data+xml" or "application/yang-data+json".

 YANG tree diagram for an API resource:

+‑‑‑‑ {+restconf}
 +‑‑‑‑ data
 | ...
 +‑‑‑‑ operations?
 | ...
 +‑‑ro yang‑library‑version string

 The "yang-api" YANG data template is defined using the "yang-data"
 extension in the "ietf-restconf" module, found in Section 8. It
 specifies the structure and syntax of the conceptual child resources
 within the API resource.

 The API resource can be retrieved with the GET method.

 The {+restconf} root resource name used in responses representing the
 root of the "ietf-restconf" module MUST identify the "ietf-restconf"
 YANG module. For example, a request to GET the root resource
 "/restconf" in JSON format will return a representation of the API
 resource named "ietf-restconf:restconf".

 This resource has the following child resources:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Child Resource | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
data	Contains all data resources
operations	Data‑model‑specific operations
yang‑library‑version	"ietf‑yang‑library" module date
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 RESTCONF API Resource

3.3.1. {+restconf}/data

 This mandatory resource represents the combined configuration and
 state data resources that can be accessed by a client. It cannot be
 created or deleted by the client. The datastore resource type is
 defined in Section 3.4.

 Example:

 This example request by the client would retrieve only the
 non-configuration data nodes that exist within the "library"
 resource, using the "content" query parameter (see Section 4.8.1).

GET /restconf/data/example‑jukebox:jukebox/library\
 ?content=nonconfig HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+xml

<library xmlns="https://example.com/ns/example‑jukebox">
 <artist‑count>42</artist‑count>
 <album‑count>59</album‑count>
 <song‑count>374</song‑count>
</library>

3.3.2. {+restconf}/operations

 This optional resource is a container that provides access to the
 data-model-specific RPC operations supported by the server. The
 server MAY omit this resource if no data-model-specific RPC
 operations are advertised.

 Any data-model-specific RPC operations defined in the YANG modules
 advertised by the server MUST be available as child nodes of this
 resource.

 The access point for each RPC operation is represented as an empty
 leaf. If an operation resource is retrieved, the empty leaf
 representation is returned by the server.

 Operation resources are defined in Section 3.6.

3.3.3. {+restconf}/yang-library-version

 This mandatory leaf identifies the revision date of the
 "ietf-yang-library" YANG module that is implemented by this server.
 In the example that follows, the revision date for the module version
 found in [RFC7895] is used.

 Example:

GET /restconf/yang‑library‑version HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+xml

<yang‑library‑version
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf">\
 2016‑06‑21\
</yang‑library‑version>

3.4. Datastore Resource

 The "{+restconf}/data" subtree represents the datastore resource,
 which is a collection of configuration data and state data nodes.

 This resource type is an abstraction of the system's underlying
 datastore implementation. The client uses it to edit and retrieve
 data resources, as the conceptual root of all configuration and state
 data that is present on the device.

 Configuration edit transaction management and configuration
 persistence are handled by the server and not controlled by the
 client. A datastore resource can be written directly with the POST
 and PATCH methods. Each RESTCONF edit of a datastore resource is
 saved to non-volatile storage by the server if the server supports
 non-volatile storage of configuration data, as described in
 Section 1.4.

 If the datastore resource represented by the "{+restconf}/data"
 subtree is retrieved, then the datastore and its contents are
 returned by the server. The datastore is represented by a node named
 "data" in the "ietf-restconf" module namespace.

3.4.1. Edit Collision Prevention

 Two edit collision detection and prevention mechanisms are provided
 in RESTCONF for the datastore resource: a timestamp and an
 entity-tag. Any change to configuration data resources updates the
 timestamp and entity-tag of the datastore resource. In addition, the
 RESTCONF server MUST return an error if the datastore is locked by an
 external source (e.g., NETCONF server).

3.4.1.1. Timestamp

The last change time is maintained, and the "Last‑Modified" header
field (Section 2.2 of [RFC7232]) is returned in the response for a
retrieval request. The "If‑Unmodified‑Since" header field
(Section 3.4 of [RFC7232]) can be used in edit operation requests to
cause the server to reject the request if the resource has been
modified since the specified timestamp.

 The server SHOULD maintain a last-modified timestamp for the
 datastore resource, defined in Section 3.4. This timestamp is only
 affected by configuration child data resources and MUST NOT be
 updated for changes to non-configuration child data resources.
 Last-modified timestamps for data resources are discussed in
 Section 3.5.

 If the RESTCONF server is co-located with a NETCONF server, then the
 last-modified timestamp MUST be for the "running" datastore. Note
 that it is possible that other protocols can cause the last-modified
 timestamp to be updated. Such mechanisms are out of scope for this
 document.

3.4.1.2. Entity-Tag

 The server MUST maintain a unique opaque entity-tag for the datastore
 resource and MUST return it in the "ETag" (Section 2.3 of [RFC7232])
 header in the response for a retrieval request. The client MAY use
 an "If-Match" header in edit operation requests to cause the server
 to reject the request if the resource entity-tag does not match the
 specified value.

 The server MUST maintain an entity-tag for the top-level
 {+restconf}/data resource. This entity-tag is only affected by
 configuration data resources and MUST NOT be updated for changes to
 non-configuration data. Entity-tags for data resources are discussed
 in Section 3.5. Note that each representation (e.g., XML vs. JSON)
 requires a different entity-tag.

 If the RESTCONF server is co-located with a NETCONF server, then this
 entity-tag MUST be for the "running" datastore. Note that it is
 possible that other protocols can cause the entity-tag to be updated.
 Such mechanisms are out of scope for this document.

3.4.1.3. Update Procedure

 Changes to configuration data resources affect the timestamp and
 entity-tag for that resource, any ancestor data resources, and the
 datastore resource.

 For example, an edit to disable an interface might be done by setting
 the leaf "/interfaces/interface/enabled" to "false". The "enabled"
 data node and its ancestors (one "interface" list instance, and the
 "interfaces" container) are considered to be changed. The datastore
 is considered to be changed when any top-level configuration data
 node is changed (e.g., "interfaces").

3.5. Data Resource

 A data resource represents a YANG data node that is a descendant node
 of a datastore resource. Each YANG-defined data node can be uniquely
 targeted by the request-line of an HTTP method. Containers, leafs,
 leaf-list entries, list entries, anydata nodes, and anyxml nodes are
 data resources.

The representation maintained for each data resource is the
YANG‑defined subtree for that node. HTTP methods on a data resource
affect both the targeted data node and all of its descendants,
if any.

 A data resource can be retrieved with the GET method. Data resources
 are accessed via the "{+restconf}/data" URI. This subtree is used to
 retrieve and edit data resources.

3.5.1. Timestamp

 For configuration data resources, the server MAY maintain a
 last-modified timestamp for the resource and return the
 "Last-Modified" header field when it is retrieved with the GET or
 HEAD methods.

 The "Last-Modified" header field can be used by a RESTCONF client in
 subsequent requests, within the "If-Modified-Since" and
 "If-Unmodified-Since" header fields.

 If maintained, the resource timestamp MUST be set to the current time
 whenever the resource or any configuration resource within the
 resource is altered. If not maintained, then the resource timestamp
 for the datastore MUST be used instead. If the RESTCONF server is
 co-located with a NETCONF server, then the last-modified timestamp
 for a configuration data resource MUST represent the instance within
 the "running" datastore.

 This timestamp is only affected by configuration data resources and
 MUST NOT be updated for changes to non-configuration data.

3.5.2. Entity-Tag

 For configuration data resources, the server SHOULD maintain a
 resource entity-tag for each resource and return the "ETag" header
 field when it is retrieved as the target resource with the GET or
 HEAD methods. If maintained, the resource entity-tag MUST be updated
 whenever the resource or any configuration resource within the
 resource is altered. If not maintained, then the resource entity-tag
 for the datastore MUST be used instead.

 The "ETag" header field can be used by a RESTCONF client in
 subsequent requests, within the "If-Match" and "If-None-Match" header
 fields.

 This entity-tag is only affected by configuration data resources and
 MUST NOT be updated for changes to non-configuration data. If the
 RESTCONF server is co-located with a NETCONF server, then the
 entity-tag for a configuration data resource MUST represent the
 instance within the "running" datastore.

3.5.3. Encoding Data Resource Identifiers in the Request URI

 In YANG, data nodes can be identified with an absolute XPath
 expression, defined in [XPath], starting from the document root to
 the target resource. In RESTCONF, URI-encoded path expressions are
 used instead.

 A predictable location for a data resource is important, since
 applications will code to the YANG data model module, which uses
 static naming and defines an absolute path location for all data
 nodes.

 A RESTCONF data resource identifier is encoded from left to right,
 starting with the top-level data node, according to the "api-path"
 rule in Section 3.5.3.1. The node name of each ancestor of the
 target resource node is encoded in order, ending with the node name
 for the target resource. If a node in the path is defined in a
 module other than its parent node or its parent is the datastore,
 then the module name followed by a colon character (":") MUST be
 prepended to the node name in the resource identifier. See
 Section 3.5.3.1 for details.

 If a data node in the path expression is a YANG leaf-list node, then
 the leaf-list value MUST be encoded according to the following rules:

 o The identifier for the leaf-list MUST be encoded using one path
 segment [RFC3986].

 o The path segment is constructed by having the leaf-list name,
 followed by an "=" character, followed by the leaf-list value
 (e.g., /restconf/data/top-leaflist=fred).

 o The leaf-list value is specified as a string, using the canonical
 representation for the YANG data type. Any reserved characters
 MUST be percent-encoded, according to Sections 2.1 and 2.5 of
 [RFC3986].

 o YANG 1.1 allows duplicate leaf-list values for non-configuration
 data. In this case, there is no mechanism to specify the exact
 matching leaf-list instance.

 o The comma (",") character is percent-encoded [RFC3986], even
 though multiple key values are not possible for a leaf-list. This
 is more consistent and avoids special processing rules.

 If a data node in the path expression is a YANG list node, then the
 key values for the list (if any) MUST be encoded according to the
 following rules:

 o The key leaf values for a data resource representing a YANG list
 MUST be encoded using one path segment [RFC3986].

 o If there is only one key leaf value, the path segment is
 constructed by having the list name, followed by an "=" character,
 followed by the single key leaf value.

 o If there are multiple key leaf values, the path segment is
 constructed by having the list name, followed by the value of each
 leaf identified in the "key" statement, encoded in the order
 specified in the YANG "key" statement. Each key leaf value except
 the last one is followed by a comma character.

 o The key value is specified as a string, using the canonical
 representation for the YANG data type. Any reserved characters
 MUST be percent-encoded, according to Sections 2.1 and 2.5 of
 [RFC3986]. The comma (",") character MUST be percent-encoded if
 it is present in the key value.

 o All of the components in the "key" statement MUST be encoded.
 Partial instance identifiers are not supported.

 o Missing key values are not allowed, so two consecutive commas are
 interpreted as a comma, followed by a zero-length string, followed
 by a comma. For example, "list1=foo,,baz" would be interpreted as
 a list named "list1" with three key values, and the second key
 value is a zero-length string.

 o Note that non-configuration lists are not required to define keys.
 In this case, a single list instance cannot be accessed.

 o The "list-instance" Augmented Backus-Naur Form (ABNF) [RFC5234]
 rule defined in Section 3.5.3.1 represents the syntax of a list
 instance identifier.

 Examples:

container top {
 list list1 {
 key "key1 key2 key3";
 ...
 list list2 {
 key "key4 key5";
 ...
 leaf X { type string; }
 }
 }
 leaf‑list Y {
 type uint32;
 }
 }

 For the above YANG definition, the container "top" is defined in the
 "example-top" YANG module, and a target resource URI for leaf "X"
 would be encoded as follows:

 /restconf/data/example-top:top/list1=key1,key2,key3/\

 list2=key4,key5/X

For the above YANG definition, a target resource URI for
leaf‑list "Y" would be encoded as follows:

 /restconf/data/example-top:top/Y=instance-value

The following example shows how reserved characters are
percent‑encoded within a key value. The value of "key1" contains
a comma, single‑quote, double‑quote, colon, double‑quote, space,
and forward slash (,'":" /). Note that double‑quote is not a
reserved character and does not need to be percent‑encoded. The
value of "key2" is the empty string, and the value of "key3" is the
string "foo".

 Example URL:

 /restconf/data/example-top:top/list1=%2C%27"%3A"%20%2F,,foo

3.5.3.1. ABNF for Data Resource Identifiers

 The "api-path" ABNF [RFC5234] syntax is used to construct RESTCONF
 path identifiers. Note that this syntax is used for all resources,
 and the API path starts with the RESTCONF root resource. Data
 resources are required to be identified under the "{+restconf}/data"
 subtree.

 An identifier is not allowed to start with the case-insensitive
 string "XML", according to YANG identifier rules. The syntax for
 "api-identifier" and "key-value" MUST conform to the JSON identifier
 encoding rules in Section 4 of [RFC7951]: The RESTCONF root resource
 path is required. Additional sub-resource identifiers are optional.
 The characters in a key value string are constrained, and some
 characters need to be percent-encoded, as described in Section 3.5.3.

 api-path = root *("/" (api-identifier / list-instance))

root = string ;; replacement string for {+restconf}

 api-identifier = [module-name ":"] identifier

 module-name = identifier

 list-instance = api-identifier "=" key-value *("," key-value)

key‑value = string ;; constrained chars are percent‑encoded

 string = <an unquoted string>

 identifier = (ALPHA / "_")

 *(ALPHA / DIGIT / "_" / "-" / ".")

3.5.4. Default Handling

 RESTCONF requires that a server report its default-handling mode (see
 Section 9.1.2 for details). If the optional "with-defaults" query
 parameter is supported by the server, a client may use it to control
 the retrieval of default values (see Section 4.8.9 for details).

 If a leaf or leaf-list is missing from the configuration and there is
 a YANG-defined default for that data resource, then the server MUST
 use the YANG-defined default as the configured value.

 If the target of a GET method is a data node that represents a leaf
 or leaf-list that has a default value and the leaf or leaf-list has
 not been instantiated yet, the server MUST return the default value
 or values that are in use by the server. In this case, the server
 MUST ignore its "basic-mode", described in Section 4.8.9, and return
 the default value.

 If the target of a GET method is a data node that represents a
 container or list that has any child resources with default values,
 for the child resources that have not been given values yet, the
 server MAY return the default values that are in use by the server in
 accordance with its reported default-handling mode and query
 parameters passed by the client.

3.6. Operation Resource

 An operation resource represents an RPC operation defined with the
 YANG "rpc" statement or a data-model-specific action defined with a
 YANG "action" statement. It is invoked using a POST method on the
 operation resource.

 An RPC operation is invoked as:

 POST {+restconf}/operations/<operation>

 The <operation> field identifies the module name and rpc identifier
 string for the desired operation.

 For example, if "module-A" defined a "reset" RPC operation, then
 invoking the operation would be requested as follows:

POST /restconf/operations/module‑A:reset HTTP/1.1
Server: example.com

 An action is invoked as:

 POST {+restconf}/data/<data-resource-identifier>/<action>

 where <data-resource-identifier> contains the path to the data node
 where the action is defined, and <action> is the name of the action.

 For example, if "module-A" defined a "reset-all" action in the
 container "interfaces", then invoking this action would be requested
 as follows:

 POST /restconf/data/module-A:interfaces/reset-all HTTP/1.1
 Server: example.com

 If the RPC operation is invoked without errors and if the "rpc" or
 "action" statement has no "output" section, the response message
 MUST NOT include a message-body and MUST send a "204 No Content"
 status-line instead.

 All operation resources representing RPC operations supported by the
 server MUST be identified in the "{+restconf}/operations" subtree,
 defined in Section 3.3.2. Operation resources representing YANG
 actions are not identified in this subtree, since they are invoked
 using a URI within the "{+restconf}/data" subtree.

3.6.1. Encoding Operation Resource Input Parameters

 If the "rpc" or "action" statement has an "input" section, then
 instances of these input parameters are encoded in the module
 namespace where the "rpc" or "action" statement is defined, in an XML
 element or JSON object named "input", which is in the module
 namespace where the "rpc" or "action" statement is defined.

 If the "rpc" or "action" statement has an "input" section and the
 "input" object tree contains any child data nodes that are considered
 mandatory nodes, then a message-body MUST be sent by the client in
 the request.

 If the "rpc" or "action" statement has an "input" section and the
 "input" object tree does not contain any child nodes that are
 considered mandatory nodes, then a message-body MAY be sent by the
 client in the request.

 If the "rpc" or "action" statement has no "input" section, the
 request message MUST NOT include a message-body.

 Examples:

 The following YANG module is used for the RPC operation examples in
 this section.

module example‑ops {
 namespace "https://example.com/ns/example‑ops";
 prefix "ops";

 organization "Example, Inc.";
 contact "support at example.com";
 description "Example Operations Data Model Module.";
 revision "2016‑07‑07" {
 description "Initial version.";
 reference "example.com document 3‑3373.";
 }

 rpc reboot {
 description "Reboot operation.";
 input {
 leaf delay {
 type uint32;
 units "seconds";
 default 0;
 description
 "Number of seconds to wait before initiating the
 reboot operation.";
 }
 leaf message {
 type string;
 description
 "Log message to display when reboot is started.";
 }
 leaf language {
 type string;
 description "Language identifier string.";
 reference "RFC 5646.";
 }
 }
 }

 rpc get‑reboot‑info {
 description
 "Retrieve parameters used in the last reboot operation.";
 output {
 leaf reboot‑time {
 type uint32;
 description
 "The 'delay' parameter used in the last reboot
 operation.";
 }
 leaf message {
 type string;
 description
 "The 'message' parameter used in the last reboot
 operation.";
 }
 leaf language {
 type string;
 description
 "The 'language' parameter used in the last reboot
 operation.";
 }
 }
 }
}

 The following YANG module is used for the YANG action examples in
 this section.

module example‑actions {
 yang‑version 1.1;
 namespace "https://example.com/ns/example‑actions";
 prefix "act";
 import ietf‑yang‑types { prefix yang; }

 organization "Example, Inc.";
 contact "support at example.com";
 description "Example Actions Data Model Module.";
 revision "2016‑07‑07" {
 description "Initial version.";
 reference "example.com document 2‑9973.";
 }

 container interfaces {
 description "System interfaces.";
 list interface {
 key name;
 description "One interface entry.";
 leaf name {
 type string;
 description "Interface name.";
 }

 action reset {
 description "Reset an interface.";
 input {
 leaf delay {
 type uint32;
 units "seconds";
 default 0;
 description
 "Number of seconds to wait before starting the
 interface reset.";
 }
 }
 }

 action get‑last‑reset‑time {
 description
 "Retrieve the last interface reset time.";
 output {
 leaf last‑reset {
 type yang:date‑and‑time;
 mandatory true;
 description
 "Date and time of the last interface reset, or
 the last reboot time of the device.";
 }
 }
 }
 }
 }

 }

 RPC Input Example:

 The client might send the following POST request message to invoke
 the "reboot" RPC operation:

POST /restconf/operations/example‑ops:reboot HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<input xmlns="https://example.com/ns/example‑ops">
 <delay>600</delay>
 <message>Going down for system maintenance</message>
 <language>en‑US</language>
</input>

 The server might respond as follows:

HTTP/1.1 204 No Content
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server

 The same example request message is shown here using JSON encoding:

POST /restconf/operations/example‑ops:reboot HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "example‑ops:input" : {
 "delay" : 600,
 "message" : "Going down for system maintenance",
 "language" : "en‑US"
 }
}

 Action Input Example:

 The client might send the following POST request message to invoke
 the "reset" action:

POST /restconf/data/example‑actions:interfaces/\
 interface=eth0/reset HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<input xmlns="https://example.com/ns/example‑actions">
 <delay>600</delay>
</input>

 The server might respond as follows:

HTTP/1.1 204 No Content
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server

 The same example request message is shown here using JSON encoding:

POST /restconf/data/example‑actions:interfaces/\
 interface=eth0/reset HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{ "example‑actions:input" : {
 "delay" : 600
 }
}

3.6.2. Encoding Operation Resource Output Parameters

 If the "rpc" or "action" statement has an "output" section, then
 instances of these output parameters are encoded in the module
 namespace where the "rpc" or "action" statement is defined, in an XML
 element or JSON object named "output", which is in the module
 namespace where the "rpc" or "action" statement is defined.

 If the RPC operation is invoked without errors, and if the "rpc" or
 "action" statement has an "output" section and the "output" object
 tree contains any child data nodes that are considered mandatory
 nodes, then a response message-body MUST be sent by the server in the
 response.

 If the RPC operation is invoked without errors, and if the "rpc" or
 "action" statement has an "output" section and the "output" object
 tree does not contain any child nodes that are considered mandatory
 nodes, then a response message-body MAY be sent by the server in the
 response.

 The request URI is not returned in the response. Knowledge of the
 request URI may be needed to associate the output with the specific
 "rpc" or "action" statement used in the request.

 Examples:

 RPC Output Example:

 The "example-ops" YANG module defined in Section 3.6.1 is used for
 this example.

 The client might send the following POST request message to invoke
 the "get-reboot-info" operation:

POST /restconf/operations/example‑ops:get‑reboot‑info HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "example‑ops:output" : {
 "reboot‑time" : 30,
 "message" : "Going down for system maintenance",
 "language" : "en‑US"
 }
}

 The same response is shown here using XML encoding:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+xml

<output xmlns="https://example.com/ns/example‑ops">
 <reboot‑time>30</reboot‑time>
 <message>Going down for system maintenance</message>
 <language>en‑US</language>
</output>

 Action Output Example:

 The "example-actions" YANG module defined in Section 3.6.1 is used
 for this example.

 The client might send the following POST request message to invoke
 the "get-last-reset-time" action:

POST /restconf/data/example‑actions:interfaces/\
 interface=eth0/get‑last‑reset‑time HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "example‑actions:output" : {
 "last‑reset" : "2015‑10‑10T02:14:11Z"
 }
}

3.6.3. Encoding Operation Resource Errors

 If any errors occur while attempting to invoke the operation or
 action, then an "errors" media type is returned with the appropriate
 error status.

 If (1) the RPC operation input is not valid or (2) the RPC operation
 is invoked but errors occur, then a message-body containing an
 "errors" resource MUST be sent by the server, as defined in
 Section 3.9.

 Using the "reboot" RPC operation from the example in Section 3.6.1,
 the client might send the following POST request message:

POST /restconf/operations/example‑ops:reboot HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<input xmlns="https://example.com/ns/example‑ops">
 <delay>‑33</delay>
 <message>Going down for system maintenance</message>
 <language>en‑US</language>
</input>

 The server might respond with an "invalid-value" error:

HTTP/1.1 400 Bad Request
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+xml

<errors xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf">
 <error>
 <error‑type>protocol</error‑type>
 <error‑tag>invalid‑value</error‑tag>
 <error‑path xmlns:ops="https://example.com/ns/example‑ops">
 /ops:input/ops:delay
 </error‑path>
 <error‑message>Invalid input parameter</error‑message>
 </error>
</errors>

 The same response is shown here using JSON encoding:

HTTP/1.1 400 Bad Request
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{ "ietf‑restconf:errors" : {
 "error" : [
 {
 "error‑type" : "protocol",
 "error‑tag" : "invalid‑value",
 "error‑path" : "/example‑ops:input/delay",
 "error‑message" : "Invalid input parameter"
 }
]
 }
}

3.7. Schema Resource

 The server can optionally support the retrieval of the YANG modules
 it uses. If retrieval is supported, then the "schema" leaf MUST be
 present in the associated "module" list entry, defined in [RFC7895].

 To retrieve a YANG module, a client first needs to get the URL for
 retrieving the schema, which is stored in the "schema" leaf. Note
 that there is no required structure for this URL. The URL value
 shown below is just an example.

 The client might send the following GET request message:

GET /restconf/data/ietf‑yang‑library:modules‑state/\
 module=example‑jukebox,2016‑08‑15/schema HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "ietf‑yang‑library:schema" :
 "https://example.com/mymodules/example‑jukebox/2016‑08‑15"
}

 Next, the client needs to retrieve the actual YANG schema.

 The client might send the following GET request message:

GET https://example.com/mymodules/example‑jukebox/\
 2016‑08‑15 HTTP/1.1
Host: example.com
Accept: application/yang

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang

 // entire YANG module contents deleted for this example...

3.8. Event Stream Resource

 An event stream resource represents a source for system-generated
 event notifications. Each stream is created and modified by the
 server only. A client can retrieve a stream resource or initiate a
 long-poll server-sent event stream [W3C.REC-eventsource-20150203],
 using the procedure specified in Section 6.3.

 An event stream functions according to the "NETCONF Event
 Notifications" specification [RFC5277]. The available streams can be
 retrieved from the "stream" list, which specifies the syntax and
 semantics of the stream resources.

3.9. "errors" YANG Data Template

 The "errors" YANG data template models a collection of error
 information that is sent as the message-body in a server response
 message if an error occurs while processing a request message. It is
 not considered as a resource type because no instances can be
 retrieved with a GET request.

 The "ietf-restconf" YANG module contains the "yang-errors" YANG data
 template, which specifies the syntax and semantics of an "errors"
 container within a RESTCONF response. RESTCONF error-handling
 behavior is defined in Section 7.

4. RESTCONF Methods

 The RESTCONF protocol uses HTTP methods to identify the CRUD
 operations requested for a particular resource.

 The following table shows how the RESTCONF operations relate to
 NETCONF protocol operations.

+‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| RESTCONF | NETCONF |
+‑‑‑‑‑‑‑‑‑‑+‑‑‑+
OPTIONS	none
HEAD	<get‑config>, <get>
GET	<get‑config>, <get>
POST	<edit‑config> (nc:operation="create")
POST	invoke an RPC operation
PUT	<copy‑config> (PUT on datastore)
PUT	<edit‑config> (nc:operation="create/replace")
PATCH	<edit‑config> (nc:operation depends on PATCH content)
DELETE	<edit‑config> (nc:operation="delete")
+‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 CRUD Methods in RESTCONF

 The "remove" edit operation attribute for the NETCONF <edit-config>
 RPC operation is not supported by the HTTP DELETE method. The
 resource must exist or the DELETE method will fail. The PATCH method
 is equivalent to a "merge" edit operation when using a plain patch
 (see Section 4.6.1); other media types may provide more granular
 control.

 Access control mechanisms are used to limit what CRUD operations can
 be used. In particular, RESTCONF is compatible with the NETCONF
 Access Control Model (NACM) [RFC6536], as there is a specific mapping
 between RESTCONF and NETCONF operations. The resource path needs to
 be converted internally by the server to the corresponding YANG
 instance identifier. Using this information, the server can apply
 the NACM access control rules to RESTCONF messages.

 The server MUST NOT allow any RESTCONF operation for any resources
 that the client is not authorized to access.

 The implementation of all methods (except PATCH [RFC5789]) is defined
 in [RFC7231]. This section defines the RESTCONF protocol usage for
 each HTTP method.

4.1. OPTIONS

 The OPTIONS method is sent by the client to discover which methods
 are supported by the server for a specific resource (e.g., GET, POST,
 DELETE). The server MUST implement this method.

 The "Accept-Patch" header field MUST be supported and returned in the
 response to the OPTIONS request, as defined in [RFC5789].

4.2. HEAD

 The RESTCONF server MUST support the HEAD method. The HEAD method is
 sent by the client to retrieve just the header fields (which contain
 the metadata for a resource) that would be returned for the
 comparable GET method, without the response message-body. It is
 supported for all resources that support the GET method.

 The request MUST contain a request URI that contains at least the
 root resource. The same query parameters supported by the GET method
 are supported by the HEAD method.

 The access control behavior is enforced as if the method was GET
 instead of HEAD. The server MUST respond the same as if the method
 was GET instead of HEAD, except that no response message-body is
 included.

4.3. GET

 The RESTCONF server MUST support the GET method. The GET method is
 sent by the client to retrieve data and metadata for a resource. It
 is supported for all resource types, except operation resources. The
 request MUST contain a request URI that contains at least the root
 resource.

 The server MUST NOT return any data resources for which the user does
 not have read privileges. If the user is not authorized to read the
 target resource, an error response containing a "401 Unauthorized"
 status-line SHOULD be returned. The error-tag value "access-denied"
 is returned in this case. A server MAY return a "404 Not Found"
 status-line, as described in Section 6.5.4 in [RFC7231]. The
 error-tag value "invalid-value" is returned in this case.

 If the user is authorized to read some but not all of the target
 resource, the unauthorized content is omitted from the response
 message-body, and the authorized content is returned to the client.

 If any content is returned to the client, then the server MUST send a
 valid response message-body. More than one element MUST NOT be
 returned for XML encoding. If multiple elements are sent in a JSON
 message-body, then they MUST be sent as a JSON array. In this case,
 any timestamp or entity-tag returned in the response MUST be
 associated with the first element returned.

 If a retrieval request for a data resource representing a YANG
 leaf-list or list object identifies more than one instance and XML
 encoding is used in the response, then an error response containing a
 "400 Bad Request" status-line MUST be returned by the server. The
 error-tag value "invalid-value" is used in this case. Note that a
 non-configuration list is not required to define any keys. In this
 case, the retrieval of a single list instance is not possible.

 If a retrieval request for a data resource represents an instance
 that does not exist, then an error response containing a "404 Not
 Found" status-line MUST be returned by the server. The error-tag
 value "invalid-value" is used in this case.

 If the target resource of a retrieval request is for an operation
 resource, then a "405 Method Not Allowed" status-line MUST be
 returned by the server. The error-tag value
 "operation-not-supported" is used in this case.

 Note that the way that access control is applied to data resources
 may not be completely compatible with HTTP caching. The
 "Last-Modified" and "ETag" header fields maintained for a data
 resource are not affected by changes to the access control rules for
 that data resource. It is possible for the representation of a data
 resource that is visible to a particular client to be changed without
 detection via the "Last-Modified" or "ETag" values.

 Example:

 The client might request the response header fields for an XML
 representation of a specific "album" resource:

GET /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+xml
Cache‑Control: no‑cache
ETag: "a74eefc993a2b"
Last‑Modified: Thu, 26 Jan 2017 14:02:14 GMT

<album xmlns="http://example.com/ns/example‑jukebox"
 xmlns:jbox="http://example.com/ns/example‑jukebox">
 <name>Wasting Light</name>
 <genre>jbox:alternative</genre>
 <year>2011</year>
</album>

 Refer to Appendix B.1 for more resource retrieval examples.

4.4. POST

 The RESTCONF server MUST support the POST method. The POST method is
 sent by the client to create a data resource or invoke an operation
 resource. The server uses the target resource type to determine how
 to process the request.

+‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Type | Description |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑+
Datastore	Create a top‑level configuration data resource
Data	Create a configuration data child resource
Operation	Invoke an RPC operation
+‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 Resource Types That Support POST

4.4.1. Create Resource Mode

 If the target resource type is a datastore or data resource, then the
 POST is treated as a request to create a top-level resource or child
 resource, respectively. The message-body is expected to contain the
 content of a child resource to create within the parent (target
 resource). The message-body MUST contain exactly one instance of the
 expected data resource. The data model for the child tree is the
 subtree, as defined by YANG for the child resource.

 The "insert" (Section 4.8.5) and "point" (Section 4.8.6) query
 parameters MUST be supported by the POST method for datastore and
 data resources. These parameters are only allowed if the list or
 leaf-list is "ordered-by user".

 If the POST method succeeds, a "201 Created" status-line is returned
 and there is no response message-body. A "Location" header field
 identifying the child resource that was created MUST be present in
 the response in this case.

 If the data resource already exists, then the POST request MUST fail
 and a "409 Conflict" status-line MUST be returned. The error-tag
 value "resource-denied" is used in this case.

 If the user is not authorized to create the target resource, an error
 response containing a "403 Forbidden" status-line SHOULD be returned.
 The error-tag value "access-denied" is used in this case. A server
 MAY return a "404 Not Found" status-line, as described in
 Section 6.5.4 in [RFC7231]. The error-tag value "invalid-value" is
 used in this case. All other error responses are handled according
 to the procedures defined in Section 7.

 Example:

 To create a new "jukebox" resource, the client might send the
 following:

POST /restconf/data HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

 { "example-jukebox:jukebox" : {} }

 If the resource is created, the server might respond as follows:

HTTP/1.1 201 Created
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Location: https://example.com/restconf/data/\
 example‑jukebox:jukebox
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
ETag: "b3a3e673be2"

 Refer to Appendix B.2.1 for more resource creation examples.

4.4.2. Invoke Operation Mode

 If the target resource type is an operation resource, then the POST
 method is treated as a request to invoke that operation. The
 message-body (if any) is processed as the operation input parameters.
 Refer to Section 3.6 for details on operation resources.

 If the POST request succeeds, a "200 OK" status-line is returned if
 there is a response message-body, and a "204 No Content" status-line
 is returned if there is no response message-body.

 If the user is not authorized to invoke the target operation, an
 error response containing a "403 Forbidden" status-line SHOULD be
 returned. The error-tag value "access-denied" is used in this case.
 A server MAY return a "404 Not Found" status-line, as described in
 Section 6.5.4 in [RFC7231]. All other error responses are handled
 according to the procedures defined in Section 7.

 Example:

 In this example, the client is invoking the "play" operation defined
 in the "example-jukebox" YANG module.

 A client might send a "play" request as follows:

POST /restconf/operations/example‑jukebox:play HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:input" : {
 "playlist" : "Foo‑One",
 "song‑number" : 2
 }
}

 The server might respond as follows:

HTTP/1.1 204 No Content
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server

4.5. PUT

 The RESTCONF server MUST support the PUT method. The PUT method is
 sent by the client to create or replace the target data resource. A
 request message-body MUST be present, representing the new data
 resource, or the server MUST return a "400 Bad Request" status-line.
 The error-tag value "invalid-value" is used in this case.

 Both the POST and PUT methods can be used to create data resources.
 The difference is that for POST, the client does not provide the
 resource identifier for the resource that will be created. The
 target resource for the POST method for resource creation is the
 parent of the new resource. The target resource for the PUT method
 for resource creation is the new resource.

 The PUT method MUST be supported for data and datastore resources. A
 PUT on the datastore resource is used to replace the entire contents
 of the datastore. A PUT on a data resource only replaces that data
 resource within the datastore.

 The "insert" (Section 4.8.5) and "point" (Section 4.8.6) query
 parameters MUST be supported by the PUT method for data resources.
 These parameters are only allowed if the list or leaf-list is
 "ordered-by user".

 Consistent with [RFC7231], if the PUT request creates a new resource,
 a "201 Created" status-line is returned. If an existing resource is
 modified, a "204 No Content" status-line is returned.

 If the user is not authorized to create or replace the target
 resource, an error response containing a "403 Forbidden" status-line
 SHOULD be returned. The error-tag value "access-denied" is used in
 this case.

 A server MAY return a "404 Not Found" status-line, as described in
 Section 6.5.4 in [RFC7231]. The error-tag value "invalid-value" is
 used in this case. All other error responses are handled according
 to the procedures defined in Section 7.

 If the target resource represents a YANG leaf-list, then the PUT
 method MUST NOT change the value of the leaf-list instance.

 If the target resource represents a YANG list instance, then the key
 leaf values, in message-body representation, MUST be the same as the
 key leaf values in the request URI. The PUT method MUST NOT be used
 to change the key leaf values for a data resource instance.
 Example:

 An "album" child resource defined in the "example-jukebox" YANG
 module is replaced, or it is created if it does not already exist.

 To replace the "album" resource contents, the client might send the
 following:

PUT /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:album" : [
 {
 "name" : "Wasting Light",
 "genre" : "example‑jukebox:alternative",
 "year" : 2011
 }
]
}

 If the resource is updated, the server might respond as follows:

HTTP/1.1 204 No Content
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
ETag: "b27480aeda4c"

 The same request is shown here using XML encoding:

PUT /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<album xmlns="http://example.com/ns/example‑jukebox"
 xmlns:jbox="http://example.com/ns/example‑jukebox">
 <name>Wasting Light</name>
 <genre>jbox:alternative</genre>
 <year>2011</year>
</album>

 Refer to Appendix B.2.4 for an example using the PUT method to
 replace the contents of the datastore resource.

4.6. PATCH

 The RESTCONF server MUST support the PATCH method for a plain patch
 and MAY support additional media types. The media types for the
 PATCH method supported by the server can be discovered by the client
 by sending an OPTIONS request and examining the "Accept-Patch" header
 field in the response (see Section 4.1).

 RESTCONF uses the HTTP PATCH method defined in [RFC5789] to provide
 an extensible framework for resource patching mechanisms. Each patch
 mechanism needs a unique media type.

 This document defines one patch mechanism (Section 4.6.1). Another
 patch mechanism, the YANG Patch mechanism, is defined in
 [YANG-Patch]. Other patch mechanisms may be defined by future
 specifications.

 If the target resource instance does not exist, the server MUST NOT
 create it.

 If the PATCH request succeeds, a "200 OK" status-line is returned if
 there is a message-body, and "204 No Content" is returned if no
 response message-body is sent.

 If the user is not authorized to alter the target resource, an error
 response containing a "403 Forbidden" status-line SHOULD be returned.
 A server MAY return a "404 Not Found" status-line, as described in
 Section 6.5.4 in [RFC7231]. The error-tag value "invalid-value" is
 used in this case. All other error responses are handled according
 to the procedures defined in Section 7.

4.6.1. Plain Patch

 The plain patch mechanism merges the contents of the message-body
 with the target resource. The message-body for a plain patch MUST be
 present and MUST be represented by the media type
 "application/yang-data+xml" or "application/yang-data+json".

 Plain patch can be used to create or update, but not delete, a child
 resource within the target resource. Please see [YANG-Patch] for an
 alternate media type supporting the ability to delete child
 resources. The YANG Patch media type allows multiple suboperations
 (e.g., "merge", "delete") within a single PATCH method.

 If the target resource represents a YANG leaf-list, then the PATCH
 method MUST NOT change the value of the leaf-list instance.

 If the target resource represents a YANG list instance, then the key
 leaf values, in message-body representation, MUST be the same as the
 key leaf values in the request URI. The PATCH method MUST NOT be
 used to change the key leaf values for a data resource instance.

 After the plain patch is processed by the server, a response will be
 returned to the client, as specified in Section 4.6.

 Example:

 To replace just the "year" field in the "album" resource (instead of
 replacing the entire resource with the PUT method), the client might
 send a plain patch as follows:

PATCH /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
Host: example.com
If‑Match: "b8389233a4c"
Content‑Type: application/yang‑data+xml

<album xmlns="http://example.com/ns/example‑jukebox">
 <year>2011</year>
</album>

 If the field is updated, the server might respond as follows:

HTTP/1.1 204 No Content
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
ETag: "b2788923da4c"

4.7. DELETE

 The RESTCONF server MUST support the DELETE method. The DELETE
 method is used to delete the target resource. If the DELETE request
 succeeds, a "204 No Content" status-line is returned.

 If the user is not authorized to delete the target resource, then an
 error response containing a "403 Forbidden" status-line SHOULD be
 returned. The error-tag value "access-denied" is returned in this
 case. A server MAY return a "404 Not Found" status-line, as
 described in Section 6.5.4 in [RFC7231]. The error-tag value
 "invalid-value" is returned in this case. All other error responses
 are handled according to the procedures defined in Section 7.

 If the target resource represents a configuration leaf-list or list
 data node, then it MUST represent a single YANG leaf-list or list
 instance. The server MUST NOT use the DELETE method to delete more
 than one such instance.

 Example:

 To delete the "album" resource with the key "Wasting Light", the
 client might send the following:

 DELETE /restconf/data/example-jukebox:jukebox/\

 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com

 If the resource is deleted, the server might respond as follows:

HTTP/1.1 204 No Content
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server

4.8. Query Parameters

 Each RESTCONF operation allows zero or more query parameters to be
 present in the request URI. Which specific parameters are allowed
 will depend on the resource type, and sometimes the specific target
 resource used, in the request.

 o Query parameters can be given in any order.

 o Each parameter can appear at most once in a request URI.

 o If more than one instance of a query parameter is present, then a
 "400 Bad Request" status-line MUST be returned by the server. The
 error-tag value "invalid-value" is returned in this case.

 o A default value may apply if the parameter is missing.

 o Query parameter names and values are case sensitive.

 o A server MUST return an error with a "400 Bad Request" status-line
 if a query parameter is unexpected. The error-tag value
 "invalid-value" is returned in this case.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑+
| Name | Methods | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑+
content	GET,	Select config and/or non‑config data
	HEAD	resources
depth	GET,	Request limited subtree depth in the
	HEAD	reply content
fields	GET,	Request a subset of the target resource
	HEAD	contents
filter	GET,	Boolean notification filter for event
	HEAD	stream resources
insert	POST,	Insertion mode for "ordered‑by user"
	PUT	data resources
point	POST,	Insertion point for "ordered‑by user"
	PUT	data resources
start‑time	GET,	Replay buffer start time for event
	HEAD	stream resources
stop‑time	GET,	Replay buffer stop time for event
	HEAD	stream resources
with‑defaults	GET,	Control the retrieval of default values
	HEAD	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑+

 RESTCONF Query Parameters

 Refer to Appendix B.3 for examples of query parameter usage.

 If vendors define additional query parameters, they SHOULD use a
 prefix (such as the enterprise or organization name) for query
 parameter names in order to avoid collisions with other parameters.

4.8.1. The "content" Query Parameter

 The "content" query parameter controls how descendant nodes of the
 requested data nodes will be processed in the reply.

 The allowed values are:

+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Value | Description |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
config	Return only configuration descendant data nodes
nonconfig	Return only non‑configuration descendant data nodes
all	Return all descendant data nodes
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 This parameter is only allowed for GET methods on datastore and data
 resources. A "400 Bad Request" status-line is returned if used for
 other methods or resource types.

 If this query parameter is not present, the default value is "all".
 This query parameter MUST be supported by the server.

4.8.2. The "depth" Query Parameter

 The "depth" query parameter is used to limit the depth of subtrees
 returned by the server. Data nodes with a "depth" value greater than
 the "depth" parameter are not returned in a response for a GET
 method.

 The requested data node has a depth level of "1". If the "fields"
 parameter (Section 4.8.3) is used to select descendant data nodes,
 then these nodes and all of their ancestor nodes have a "depth" value
 of "1". (This has the effect of including the nodes specified by the
 fields, even if the "depth" value is less than the actual depth level
 of the specified fields.) Any other child node has a "depth" value
 that is 1 greater than its parent.

 The value of the "depth" parameter is either an integer between 1 and
 65535 or the string "unbounded". "unbounded" is the default.

 This parameter is only allowed for GET methods on API, datastore, and
 data resources. A "400 Bad Request" status-line is returned if used
 for other methods or resource types.

 By default, the server will include all sub-resources within a
 retrieved resource that have the same resource type as the requested
 resource. The exception is the datastore resource. If this resource
 type is retrieved, then by default the datastore and all child data
 resources are returned.

 If the "depth" query parameter URI is listed in the "capability"
 leaf-list defined in Section 9.3, then the server supports the
 "depth" query parameter.

4.8.3. The "fields" Query Parameter

 The "fields" query parameter is used to optionally identify data
 nodes within the target resource to be retrieved in a GET method.
 The client can use this parameter to retrieve a subset of all nodes
 in a resource.

 The server will return a message-body representing the target
 resource, with descendant nodes pruned as specified in the
 "fields-expr" value. The server does not return a set of separate
 sub-resources.

 A value of the "fields" query parameter matches the following rule:

 fields-expr = path "(" fields-expr ")" / path ";" fields-expr / path
 path = api-identifier ["/" path]

 "api-identifier" is defined in Section 3.5.3.1.

 ";" is used to select multiple nodes. For example, to retrieve only
 the "genre" and "year" of an album, use "fields=genre;year".

 Parentheses are used to specify sub-selectors of a node. Note that
 there is no path separator character "/" between a "path" field and a
 left parenthesis character "(".

 For example, assume that the target resource is the "album" list. To
 retrieve only the "label" and "catalogue-number" of the "admin"
 container within an album, use
 "fields=admin(label;catalogue-number)".

 "/" is used in a path to retrieve a child node of a node. For
 example, to retrieve only the "label" of an album, use
 "fields=admin/label".

 This parameter is only allowed for GET methods on API, datastore, and
 data resources. A "400 Bad Request" status-line is returned if used
 for other methods or resource types.

 If the "fields" query parameter URI is listed in the "capability"
 leaf-list defined in Section 9.3, then the server supports the
 "fields" parameter.

4.8.4. The "filter" Query Parameter

 The "filter" query parameter is used to indicate which subset of all
 possible events is of interest. If not present, all events not
 precluded by other parameters will be sent.

 This parameter is only allowed for GET methods on an event stream
 resource. A "400 Bad Request" status-line is returned if used for
 other methods or resource types.

 The format of this parameter is an XPath 1.0 expression [XPath] and
 is evaluated in the following context:

 o The set of namespace declarations is the set of prefix and
 namespace pairs for all supported YANG modules, where the prefix
 is the YANG module name and the namespace is as defined by the
 "namespace" statement in the YANG module.

 o The function library is the core function library defined in
 XPath 1.0, plus any functions defined by the data model.

 o The set of variable bindings is empty.

 o The context node is the root node.

 The "filter" query parameter is used as defined in Section 3.6 of
 [RFC5277]. If the boolean result of the expression is "true" when
 applied to the conceptual "notification" document root, then the
 event notification is delivered to the client.

 If the "filter" query parameter URI is listed in the "capability"
 leaf-list defined in Section 9.3, then the server supports the
 "filter" query parameter.

4.8.5. The "insert" Query Parameter

 The "insert" query parameter is used to specify how a resource should
 be inserted within an "ordered-by user" list.

 The allowed values are:

+‑‑‑‑‑‑‑‑+‑‑+
| Value | Description |
+‑‑‑‑‑‑‑‑+‑‑+
first	Insert the new data as the new first entry.
last	Insert the new data as the new last entry.
before	Insert the new data before the insertion point, as
	specified by the value of the "point" parameter.
after	Insert the new data after the insertion point, as
	specified by the value of the "point" parameter.
+‑‑‑‑‑‑‑‑+‑‑+

 The default value is "last".

This parameter is only supported for the POST and PUT methods. It is
also only supported if the target resource is a data resource, and
that data represents a YANG list or leaf‑list that is
"ordered‑by user".

 If the values "before" or "after" are used, then a "point" query
 parameter for the "insert" query parameter MUST also be present, or a
 "400 Bad Request" status-line is returned.

 The "insert" query parameter MUST be supported by the server.

4.8.6. The "point" Query Parameter

 The "point" query parameter is used to specify the insertion point
 for a data resource that is being created or moved within an
 "ordered-by user" list or leaf-list.

 The value of the "point" parameter is a string that identifies the
 path to the insertion point object. The format is the same as a
 target resource URI string.

This parameter is only supported for the POST and PUT methods. It is
also only supported if the target resource is a data resource, and
that data represents a YANG list or leaf‑list that is
"ordered‑by user".

 If the "insert" query parameter is not present or has a value other
 than "before" or "after", then a "400 Bad Request" status-line is
 returned.

 This parameter contains the instance identifier of the resource to be
 used as the insertion point for a POST or PUT method.

 The "point" query parameter MUST be supported by the server.

4.8.7. The "start-time" Query Parameter

The "start‑time" query parameter is used to trigger the notification
replay feature defined in [RFC5277] and indicate that the replay
should start at the time specified. If the stream does not support
replay per the "replay‑support" attribute returned by the
"stream" list entry for the stream resource, then the server MUST
return a "400 Bad Request" status‑line.

 The value of the "start-time" parameter is of type "date-and-time",
 defined in the "ietf-yang-types" YANG module [RFC6991].

 This parameter is only allowed for GET methods on a
 "text/event-stream" data resource. A "400 Bad Request" status-line
 is returned if used for other methods or resource types.

 If this parameter is not present, then a replay subscription is not
 being requested. It is not valid to specify start times that are
 later than the current time. If the value specified is earlier than
 the log can support, the replay will begin with the earliest
 available notification. A client can obtain a server's current time
 by examining the "Date" header field that the server returns in
 response messages, according to [RFC7231].

 If this query parameter is supported by the server, then the "replay"
 query parameter URI MUST be listed in the "capability" leaf-list
 defined in Section 9.3, and the "stop-time" query parameter MUST also
 be supported by the server.

 If the "replay-support" leaf has the value "true" in the "stream"
 entry (defined in Section 9.3), then the server MUST support the
 "start-time" and "stop-time" query parameters for that stream.

4.8.8. The "stop-time" Query Parameter

 The "stop-time" query parameter is used with the replay feature to
 indicate the newest notifications of interest. This parameter MUST
 be used with, and have a value later than, the "start-time"
 parameter.

 The value of the "stop-time" parameter is of type "date-and-time",
 defined in the "ietf-yang-types" YANG module [RFC6991].

 This parameter is only allowed for GET methods on a
 "text/event-stream" data resource. A "400 Bad Request" status-line
 is returned if used for other methods or resource types.

 If this parameter is not present, the notifications will continue
 until the subscription is terminated. Values in the future are
 valid.

 If this query parameter is supported by the server, then the "replay"
 query parameter URI MUST be listed in the "capability" leaf-list
 defined in Section 9.3, and the "start-time" query parameter MUST
 also be supported by the server.

 If the "replay-support" leaf is present in the "stream" entry
 (defined in Section 9.3), then the server MUST support the
 "start-time" and "stop-time" query parameters for that stream.

4.8.9. The "with-defaults" Query Parameter

 The "with-defaults" query parameter is used to specify how
 information about default data nodes should be returned in response
 to GET requests on data resources.

 If the server supports this capability, then it MUST implement the
 behavior described in Section 4.5.1 of [RFC6243], except applied to
 the RESTCONF GET operation instead of the NETCONF operations.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Value | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
report‑all	All data nodes are reported
trim	Data nodes set to the YANG default are not
	reported
explicit	Data nodes set to the YANG default by the
	client are reported
report‑all‑tagged	All data nodes are reported, and defaults are
	tagged
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 If the "with-defaults" parameter is set to "report-all", then the
 server MUST adhere to the default-reporting behavior defined in
 Section 3.1 of [RFC6243].

 If the "with-defaults" parameter is set to "trim", then the server
 MUST adhere to the default-reporting behavior defined in Section 3.2
 of [RFC6243].

 If the "with-defaults" parameter is set to "explicit", then the
 server MUST adhere to the default-reporting behavior defined in
 Section 3.3 of [RFC6243].

 If the "with-defaults" parameter is set to "report-all-tagged", then
 the server MUST adhere to the default-reporting behavior defined in
 Section 3.4 of [RFC6243]. Metadata is reported by the server as
 specified in Section 5.3. The XML encoding for the "default"
 attribute sent by the server for default nodes is defined in
 Section 6 of [RFC6243]. The JSON encoding for the "default"
 attribute MUST use the same values, as defined in [RFC6243], but
 encoded according to the rules in [RFC7952]. The module name
 "ietf-netconf-with-defaults" MUST be used for the "default"
 attribute.

 If the "with-defaults" parameter is not present, then the server MUST
 adhere to the default-reporting behavior defined in its "basic-mode"
 parameter for the "defaults" protocol capability URI, defined in
 Section 9.1.2.

 If the server includes the "with-defaults" query parameter URI in the
 "capability" leaf-list defined in Section 9.3, then the
 "with-defaults" query parameter MUST be supported.

 Since the server does not report the "also-supported" parameter as
 described in Section 4.3 of [RFC6243], it is possible that some
 values for the "with-defaults" parameter will not be supported. If
 the server does not support the requested value of the
 "with-defaults" parameter, the server MUST return a response with a
 "400 Bad Request" status-line. The error-tag value "invalid-value"
 is used in this case.

5. Messages

 The RESTCONF protocol uses HTTP messages. A single HTTP message
 corresponds to a single protocol method. Most messages can perform a
 single task on a single resource, such as retrieving a resource or
 editing a resource. The exception is the PATCH method, which allows
 multiple datastore edits within a single message.

5.1. Request URI Structure

 Resources are represented with URIs following the structure for
 generic URIs in [RFC3986].

 A RESTCONF operation is derived from the HTTP method and the request
 URI, using the following conceptual fields:

 <OP> /<restconf>/<path>?<query>

 ^ ^ ^ ^
 | | | |
method entry resource query

 M M O O

 M=mandatory, O=optional

 where:

<OP> is the HTTP method
<restconf> is the RESTCONF root resource
<path> is the target resource URI
<query> is the query parameter list

 o method: the HTTP method identifying the RESTCONF operation
 requested by the client, to act upon the target resource specified
 in the request URI. RESTCONF operation details are described in
 Section 4.

 o entry: the root of the RESTCONF API configured on this HTTP
 server, discovered by getting the "/.well-known/host-meta"
 resource, as described in Section 3.1.

 o resource: the path expression identifying the resource that is
 being accessed by the RESTCONF operation. If this field is not
 present, then the target resource is the API itself, represented
 by the YANG data template named "yang-api", found in Section 8.

 o query: the set of parameters associated with the RESTCONF message;
 see Section 3.4 of [RFC3986]. RESTCONF parameters have the
 familiar form of "name=value" pairs. Most query parameters are
 optional to implement by the server and optional to use by the
 client. Each optional query parameter is identified by a URI.
 The server MUST list the optional query parameter URIs it supports
 in the "capability" leaf-list defined in Section 9.3.

 There is a specific set of parameters defined, although the server
 MAY choose to support query parameters not defined in this document.
 The contents of any query parameter value MUST be encoded according
 to Section 3.4 of [RFC3986]. Any reserved characters MUST be
 percent-encoded, according to Sections 2.1 and 2.5 of [RFC3986].

 Note that the fragment component is not used by the RESTCONF
 protocol. The fragment is excluded from the target URI by a server,
 as described in Section 5.1 of [RFC7230].

 When new resources are created by the client, a "Location" header
 field is returned, which identifies the path of the newly created
 resource. The client uses this exact path identifier to access the
 resource once it has been created.

 The target of a RESTCONF operation is a resource. The "path" field
 in the request URI represents the target resource for the RESTCONF
 operation.

 Refer to Appendix B for examples of RESTCONF request URIs.

5.2. Message Encoding

 RESTCONF messages are encoded in HTTP according to [RFC7230]. The
 "utf-8" character set is used for all messages. RESTCONF message
 content is sent in the HTTP message-body.

 Content is encoded in either JSON or XML format. A server MUST
 support one of either XML or JSON encoding. A server MAY support
 both XML and JSON encoding. A client will need to support both XML
 and JSON to interoperate with all RESTCONF servers.

 XML encoding rules for data nodes are defined in [RFC7950]. The same
 encoding rules are used for all XML content. JSON encoding rules are
 defined in [RFC7951]. Additional JSON encoding rules for metadata
 are defined in [RFC7952]. This encoding is valid JSON, but it also
 has special encoding rules to identify module namespaces and provide
 consistent type processing of YANG data.

 The request input content encoding format is identified with the
 "Content-Type" header field. This field MUST be present if a
 message-body is sent by the client.

 The server MUST support the "Accept" header field and the "406 Not
 Acceptable" status-line, as defined in [RFC7231]. The response
 output content encoding formats that the client will accept are
 identified with the "Accept" header field in the request. If it is
 not specified, the request input encoding format SHOULD be used, or
 the server MAY choose any supported content encoding format.

 If there was no request input, then the default output encoding is
 XML or JSON, depending on server preference. File extensions encoded
 in the request are not used to identify format encoding.

 A client can determine if the RESTCONF server supports an encoding
 format by sending a request using a specific format in the
 "Content-Type" and/or "Accept" header field. If the server does not
 support the requested input encoding for a request, then it MUST
 return an error response with a "415 Unsupported Media Type"
 status-line. If the server does not support any of the requested
 output encodings for a request, then it MUST return an error response
 with a "406 Not Acceptable" status-line.

5.3. RESTCONF Metadata

 The RESTCONF protocol needs to support the retrieval of the same
 metadata that is used in the NETCONF protocol. Information about
 default leafs, last-modified timestamps, etc. is commonly used to
 annotate representations of the datastore contents.

 With the XML encoding, the metadata is encoded as attributes in XML,
 according to Section 3.3 of [W3C.REC-xml-20081126]. With the JSON
 encoding, the metadata is encoded as specified in [RFC7952].

 The following examples are based on the example in Appendix B.3.9.
 The "report-all-tagged" mode for the "with-defaults" query parameter
 requires that a "default" attribute be returned for default nodes.
 These examples show that attribute for the "mtu" leaf.

5.3.1. XML Metadata Encoding Example

GET /restconf/data/interfaces/interface=eth1
 ?with‑defaults=report‑all‑tagged HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+xml

<interface
 xmlns="urn:example.com:params:xml:ns:yang:example‑interface">
 <name>eth1</name>
 <mtu xmlns:wd="urn:ietf:params:xml:ns:netconf:default:1.0"
 wd:default="true">1500</mtu>
 <status>up</status>
</interface>

5.3.2. JSON Metadata Encoding Example

Note that RFC 6243 defines the "default" attribute with the
XML Schema Definition (XSD), not YANG, so the YANG module name has to
be assigned instead of derived from the YANG module. The value
"ietf‑netconf‑with‑defaults" is assigned for JSON metadata encoding.

 GET /restconf/data/interfaces/interface=eth1\
 ?with‑defaults=report‑all‑tagged HTTP/1.1
 Host: example.com
 Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "example:interface" : [
 {
 "name" : "eth1",
 "mtu" : 1500,
 "@mtu" : {
 "ietf‑netconf‑with‑defaults:default" : true
 },
 "status" : "up"
 }
]
}

5.4. Return Status

 Each message represents some sort of resource access. An HTTP
 "status-line" header field is returned for each request. If a status
 code in the "4xx" range is returned in the status-line, then the
 error information SHOULD be returned in the response, according to
 the format defined in Section 7.1. If a status code in the "5xx"
 range is returned in the status-line, then the error information MAY
 be returned in the response, according to the format defined in
 Section 7.1. If a status code in the "1xx", "2xx", or "3xx" range is
 returned in the status-line, then error information MUST NOT be
 returned in the response, since these ranges do not represent error
 conditions.

5.5. Message Caching

 Since the datastore contents change at unpredictable times, responses
 from a RESTCONF server generally SHOULD NOT be cached.

 The server MUST include a "Cache-Control" header field in every
 response that specifies whether the response should be cached.

 Instead of relying on HTTP caching, the client SHOULD track the
 "ETag" and/or "Last-Modified" header fields returned by the server
 for the datastore resource (or data resource, if the server supports
 it). A retrieval request for a resource can include the
 "If-None-Match" and/or "If-Modified-Since" header fields, which will
 cause the server to return a "304 Not Modified" status-line if the
 resource has not changed. The client MAY use the HEAD method to
 retrieve just the message header fields, which SHOULD include the
 "ETag" and "Last-Modified" header fields, if this metadata is
 maintained for the target resource.

 Note that access control can be applied to data resources, such that
 the values in the "Last-Modified" and "ETag" headers maintained for a
 data resource may not be reliable, as described in Section 4.3.

6. Notifications

 The RESTCONF protocol supports YANG-defined event notifications. The
 solution preserves aspects of NETCONF event notifications [RFC5277]
 while utilizing the Server-Sent Events [W3C.REC-eventsource-20150203]
 transport strategy.

6.1. Server Support

 A RESTCONF server MAY support RESTCONF notifications. Clients may
 determine if a server supports RESTCONF notifications by using the
 HTTP OPTIONS, HEAD, or GET method on the "stream" list. The server
 does not support RESTCONF notifications if an HTTP error code is
 returned (e.g., a "404 Not Found" status-line).

6.2. Event Streams

 A RESTCONF server that supports notifications will populate a stream
 resource for each notification delivery service access point. A
 RESTCONF client can retrieve the list of supported event streams from
 a RESTCONF server using the GET method on the "stream" list.

 The "restconf-state/streams" container definition in the
 "ietf-restconf-monitoring" module (defined in Section 9.3) is used to
 specify the structure and syntax of the conceptual child resources
 within the "streams" resource.

 For example:

 The client might send the following request:

GET /restconf/data/ietf‑restconf‑monitoring:restconf‑state/\
 streams HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might send the following response:

HTTP/1.1 200 OK
Content‑Type: application/yang‑data+xml

<streams
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf‑monitoring">
 <stream>
 <name>NETCONF</name>
 <description>default NETCONF event stream</description>
 <replay‑support>true</replay‑support>
 <replay‑log‑creation‑time>\
 2007‑07‑08T00:00:00Z\
 </replay‑log‑creation‑time>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/NETCONF\
 </location>
 </access>
 <access>
 <encoding>json</encoding>
 <location>https://example.com/streams/NETCONF‑JSON\
 </location>
 </access>
 </stream>

 <stream>
 <name>SNMP</name>
 <description>SNMP notifications</description>
 <replay‑support>false</replay‑support>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/SNMP</location>
 </access>
 </stream>
 <stream>
 <name>syslog‑critical</name>
 <description>Critical and higher severity</description>
 <replay‑support>true</replay‑support>
 <replay‑log‑creation‑time>
 2007‑07‑01T00:00:00Z
 </replay‑log‑creation‑time>
 <access>
 <encoding>xml</encoding>
 <location>\
 https://example.com/streams/syslog‑critical\
 </location>
 </access>
 </stream>
</streams>

6.3. Subscribing to Receive Notifications

 RESTCONF clients can determine the URL for the subscription resource
 (to receive notifications) by sending an HTTP GET request for the
 "location" leaf with the "stream" list entry. The value returned by
 the server can be used for the actual notification subscription.

 The client will send an HTTP GET request for the URL returned by the
 server with the "Accept" type "text/event-stream".

 The server will treat the connection as an event stream, using the
 Server-Sent Events [W3C.REC-eventsource-20150203] transport strategy.

 The server MAY support query parameters for a GET method on this
 resource. These parameters are specific to each event stream.

 For example:

 The client might send the following request:

GET /restconf/data/ietf‑restconf‑monitoring:restconf‑state/\
 streams/stream=NETCONF/access=xml/location HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might send the following response:

HTTP/1.1 200 OK
Content‑Type: application/yang‑data+xml

<location
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf‑monitoring">\
 https://example.com/streams/NETCONF\
</location>

 The RESTCONF client can then use this URL value to start monitoring
 the event stream:

GET /streams/NETCONF HTTP/1.1
Host: example.com
Accept: text/event‑stream
Cache‑Control: no‑cache
Connection: keep‑alive

 A RESTCONF client MAY request that the server compress the events
 using the HTTP header field "Accept-Encoding". For instance:

GET /streams/NETCONF HTTP/1.1
Host: example.com
Accept: text/event‑stream
Cache‑Control: no‑cache
Connection: keep‑alive
Accept‑Encoding: gzip, deflate

6.3.1. NETCONF Event Stream

 The server SHOULD support the NETCONF event stream defined in
 Section 3.2.3 of [RFC5277]. The notification messages for this
 stream are encoded in XML.

 The server MAY support additional streams that represent the semantic
 content of the NETCONF event stream, but using a representation with
 a different media type.

 The server MAY support the "start-time", "stop-time", and "filter"
 query parameters, defined in Section 4.8. Refer to Appendix B.3.6
 for filter parameter examples.

6.4. Receiving Event Notifications

 RESTCONF notifications are encoded according to the definition of the
 event stream.

 The structure of the event data is based on the <notification>
 element definition in Section 4 of [RFC5277]. It MUST conform to the
 schema for the <notification> element in Section 4 of [RFC5277],
 using the XML namespace as defined in the XSD as follows:

 urn:ietf:params:xml:ns:netconf:notification:1.0

 For JSON-encoding purposes, the module name for the "notification"
 element is "ietf-restconf".

 Two child nodes within the "notification" container are expected,
 representing the event time and the event payload. The "eventTime"
 node is defined within the same XML namespace as the <notification>
 element. It is defined to be within the "ietf-restconf" module
 namespace for JSON-encoding purposes.

 The name and namespace of the payload element are determined by the
 YANG module containing the notification-stmt representing the
 notification message.

 In the following example, the YANG module "example-mod" is used:

module example‑mod {
 namespace "http://example.com/event/1.0";
 prefix ex;

 organization "Example, Inc.";
 contact "support at example.com";
 description "Example Notification Data Model Module.";
 revision "2016‑07‑07" {
 description "Initial version.";
 reference "example.com document 2‑9976.";
 }

 notification event {
 description "Example notification event.";
 leaf event‑class {
 type string;
 description "Event class identifier.";
 }
 container reporting‑entity {
 description "Event specific information.";
 leaf card {
 type string;
 description "Line card identifier.";
 }
 }
 leaf severity {
 type string;
 description "Event severity description.";
 }
 }
}

 An example SSE event notification encoded using XML:

data: <notification
data: xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
data: <eventTime>2013‑12‑21T00:01:00Z</eventTime>
data: <event xmlns="http://example.com/event/1.0">
data: <event‑class>fault</event‑class>
data: <reporting‑entity>
data: <card>Ethernet0</card>
data: </reporting‑entity>
data: <severity>major</severity>
data: </event>
data: </notification>

 An example SSE event notification encoded using JSON:

data: {
data: "ietf‑restconf:notification" : {
data: "eventTime" : "2013‑12‑21T00:01:00Z",
data: "example‑mod:event" : {
data: "event‑class" : "fault",
data: "reporting‑entity" : { "card" : "Ethernet0" },
data: "severity" : "major"
data: }
data: }
data: }

 Alternatively, since neither XML nor JSON is whitespace sensitive,
 the above messages can be encoded onto a single line. For example:

 XML:

 data: <notification xmlns="urn:ietf:params:xml:ns:netconf:notif\
 ication:1.0"><eventTime>2013-12-21T00:01:00Z</eventTime><event \
 xmlns="http://example.com/event/1.0"><event-class>fault</event-\
 class><reportingEntity><card>Ethernet0</card></reporting-entity>\
 <severity>major</severity></event></notification>

 JSON:

 data: {"ietf-restconf:notification":{"eventTime":"2013-12-21\
 T00:01:00Z","example-mod:event":{"event-class": "fault","repor\
 tingEntity":{"card":"Ethernet0"},"severity":"major"}}}

 The SSE specification supports the following additional fields:
 "event", "id", and "retry". A RESTCONF server MAY send the "retry"
 field, and if it does, RESTCONF clients SHOULD use it. A RESTCONF
 server SHOULD NOT send the "event" or "id" fields, as there are no
 meaningful values that could be used for them that would not be
 redundant to the contents of the notification itself. RESTCONF
 servers that do not send the "id" field also do not need to support
 the HTTP header field "Last-Event-ID" [W3C.REC-eventsource-20150203].
 RESTCONF servers that do send the "id" field SHOULD support the
 "start-time" query parameter as the preferred means for a client to
 specify where to restart the event stream.

7. Error Reporting

 HTTP status codes are used to report success or failure for RESTCONF
 operations. The error information that NETCONF error responses
 contain in the <rpc-error> element is adapted for use in RESTCONF,
 and <errors> data tree information is returned for the "4xx" and
 "5xx" classes of status codes.

 Since an operation resource is defined with a YANG "rpc" statement
 and an action is defined with a YANG "action" statement, a mapping
 from the NETCONF <error-tag> value to the HTTP status code is needed.
 The specific error-tag and response code to use are specific to the
 data model and might be contained in the YANG "description" statement
 for the "action" or "rpc" statement.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| error‑tag | status code |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
in‑use	409
invalid‑value	400, 404, or 406
(request) too‑big	413
(response) too‑big	400
missing‑attribute	400
bad‑attribute	400
unknown‑attribute	400
bad‑element	400
unknown‑element	400
unknown‑namespace	400
access‑denied	401 or 403
lock‑denied	409
resource‑denied	409
rollback‑failed	500
data‑exists	409
data‑missing	409
operation‑not‑supported	405 or 501
operation‑failed	412 or 500
partial‑operation	500
malformed‑message	400
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Mapping from <error-tag> to Status Code

7.1. Error Response Message

 When an error occurs for a request message on any resource type and
 the status code that will be returned is in the "4xx" range (except
 for status code "403 Forbidden"), the server SHOULD send a response
 message-body containing the information described by the
 "yang-errors" YANG data template within the "ietf-restconf" module
 found in Section 8. The Content-Type of this response message MUST
 be "application/yang-data", plus, optionally, a structured syntax
 name suffix.

The client SHOULD specify the desired encoding(s) for response
messages by specifying the appropriate media type(s) in the
"Accept" header. If the client did not specify an "Accept" header,
then the same structured syntax name suffix used in the request
message SHOULD be used, or the server MAY choose any supported
message‑encoding format. If there is no request message, the server
MUST select "application/yang‑data+xml" or
"application/yang‑data+json", depending on server preference. All of
the examples in this document, except for the one below, assume that
XML encoding will be returned if there is an error.

 YANG tree diagram for <errors> data:

+‑‑‑‑ errors
 +‑‑‑‑ error*
 +‑‑‑‑ error‑type enumeration
 +‑‑‑‑ error‑tag string
 +‑‑‑‑ error‑app‑tag? string
 +‑‑‑‑ error‑path? instance‑identifier
 +‑‑‑‑ error‑message? string
 +‑‑‑‑ error‑info?

 The semantics and syntax for RESTCONF error messages are defined with
 the "yang-errors" YANG data template extension, found in Section 8.
 Examples:

 The following example shows an error returned for a "lock-denied"
 error that can occur if a NETCONF client has locked a datastore. The
 RESTCONF client is attempting to delete a data resource. Note that
 an "Accept" header field is used to specify the desired encoding for
 the error message. There would be no response message-body content
 if this operation was successful.

DELETE /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 409 Conflict
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "ietf‑restconf:errors" : {
 "error" : [
 {
 "error‑type" : "protocol",
 "error‑tag" : "lock‑denied",
 "error‑message" : "Lock failed; lock already held"
 }
]
 }
}

 The following example shows an error returned for a "data-exists"
 error on a data resource. The "jukebox" resource already exists, so
 it cannot be created.

 The client might send the following:

POST /restconf/data/example‑jukebox:jukebox HTTP/1.1
Host: example.com

 The server might respond as follows:

HTTP/1.1 409 Conflict
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+xml

<errors xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf">
 <error>
 <error‑type>protocol</error‑type>
 <error‑tag>data‑exists</error‑tag>
 <error‑path
 xmlns:rc="urn:ietf:params:xml:ns:yang:ietf‑restconf"
 xmlns:jbox="https://example.com/ns/example‑jukebox">\
 /rc:restconf/rc:data/jbox:jukebox
 </error‑path>
 <error‑message>
 Data already exists; cannot create new resource
 </error‑message>
 </error>
</errors>

8. RESTCONF Module

 The "ietf-restconf" module defines conceptual definitions within an
 extension and two groupings, which are not meant to be implemented as
 datastore contents by a server. For example, the "restconf"
 container is not intended to be implemented as a top-level data node
 (under the "/restconf/data" URI).

 Note that the "ietf-restconf" module does not have any
 protocol-accessible objects, so no YANG tree diagram is shown.

 <CODE BEGINS>

 file "ietf-restconf@2017-01-26.yang"

module ietf‑restconf {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑restconf";
 prefix "rc";

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail‑f.com>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

description
 "This module contains conceptual YANG specifications
 for basic RESTCONF media type definitions used in
 RESTCONF protocol messages.

 Note that the YANG definitions within this module do not
 represent configuration data of any kind.
 The 'restconf‑media‑type' YANG extension statement
 provides a normative syntax for XML and JSON
 message‑encoding purposes.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8040; see
 the RFC itself for full legal notices.";

revision 2017‑01‑26 {
 description
 "Initial revision.";
 reference
 "RFC 8040: RESTCONF Protocol.";
}

extension yang‑data {
 argument name {
 yin‑element true;
 }
 description
 "This extension is used to specify a YANG data template that
 represents conceptual data defined in YANG. It is
 intended to describe hierarchical data independent of
 protocol context or specific message‑encoding format.
 Data definition statements within a yang‑data extension
 specify the generic syntax for the specific YANG data
 template, whose name is the argument of the 'yang‑data'
 extension statement.

 Note that this extension does not define a media type.
 A specification using this extension MUST specify the
 message‑encoding rules, including the content media type.

 The mandatory 'name' parameter value identifies the YANG
 data template that is being defined. It contains the
 template name.

 This extension is ignored unless it appears as a top‑level
 statement. It MUST contain data definition statements
 that result in exactly one container data node definition.
 An instance of a YANG data template can thus be translated
 into an XML instance document, whose top‑level element
 corresponds to the top‑level container.

 The module name and namespace values for the YANG module using
 the extension statement are assigned to instance document data
 conforming to the data definition statements within
 this extension.

 The substatements of this extension MUST follow the
 'data-def-stmt' rule in the YANG ABNF.

The XPath document root is the extension statement itself,
such that the child nodes of the document root are
represented by the data‑def‑stmt substatements within
this extension. This conceptual document is the context
for the following YANG statements:

 ‑ must‑stmt
 ‑ when‑stmt
 ‑ path‑stmt
 ‑ min‑elements‑stmt
 ‑ max‑elements‑stmt
 ‑ mandatory‑stmt
 ‑ unique‑stmt
 ‑ ordered‑by
 ‑ instance‑identifier data type

 The following data-def-stmt substatements are constrained
 when used within a 'yang-data' extension statement.

 ‑ The list‑stmt is not required to have a key‑stmt defined.
 ‑ The if‑feature‑stmt is ignored if present.
 ‑ The config‑stmt is ignored if present.
 ‑ The available identity values for any 'identityref'
 leaf or leaf‑list nodes are limited to the module
 containing this extension statement and the modules
 imported into that module.
 ";
}

rc:yang‑data yang‑errors {
 uses errors;
}

rc:yang‑data yang‑api {
 uses restconf;
}

grouping errors {
 description
 "A grouping that contains a YANG container
 representing the syntax and semantics of a
 YANG Patch error report within a response message.";

 container errors {
 description
 "Represents an error report returned by the server if
 a request results in an error.";

 list error {
 description
 "An entry containing information about one
 specific error that occurred while processing
 a RESTCONF request.";
 reference
 "RFC 6241, Section 4.3.";

 leaf error‑type {
 type enumeration {
 enum transport {
 description
 "The transport layer.";
 }
 enum rpc {
 description
 "The rpc or notification layer.";
 }
 enum protocol {
 description
 "The protocol operation layer.";
 }
 enum application {
 description
 "The server application layer.";
 }
 }
 mandatory true;
 description
 "The protocol layer where the error occurred.";
 }

 leaf error‑tag {
 type string;
 mandatory true;
 description
 "The enumerated error‑tag.";
 }

 leaf error‑app‑tag {
 type string;
 description
 "The application‑specific error‑tag.";
 }

 leaf error‑path {
 type instance‑identifier;
 description
 "The YANG instance identifier associated
 with the error node.";
 }

 leaf error‑message {
 type string;
 description
 "A message describing the error.";
 }

 anydata error‑info {
 description
 "This anydata value MUST represent a container with
 zero or more data nodes representing additional
 error information.";
 }
 }
 }
}

grouping restconf {
 description
 "Conceptual grouping representing the RESTCONF
 root resource.";

 container restconf {
 description
 "Conceptual container representing the RESTCONF
 root resource.";

 container data {
 description
 "Container representing the datastore resource.
 Represents the conceptual root of all state data
 and configuration data supported by the server.
 The child nodes of this container can be any data
 resources that are defined as top‑level data nodes
 from the YANG modules advertised by the server in
 the 'ietf‑yang‑library' module.";
 }

 container operations {
 description
 "Container for all operation resources.

 Each resource is represented as an empty leaf with the
 name of the RPC operation from the YANG 'rpc' statement.

For example, the 'system‑restart' RPC operation defined
in the 'ietf‑system' module would be represented as
an empty leaf in the 'ietf‑system' namespace. This is
a conceptual leaf and will not actually be found in
the module:

 module ietf‑system {
 leaf system‑reset {
 type empty;
 }
 }

 To invoke the 'system-restart' RPC operation:

 POST /restconf/operations/ietf-system:system-restart

 To discover the RPC operations supported by the server:

 GET /restconf/operations

 In XML, the YANG module namespace identifies the module:

 <system-restart

 xmlns='urn:ietf:params:xml:ns:yang:ietf-system'/>

 In JSON, the YANG module name identifies the module:

 { 'ietf‑system:system‑restart' : [null] }
 ";
 }

 leaf yang‑library‑version {
 type string {
 pattern '\d{4}‑\d{2}‑\d{2}';
 }
 config false;
 mandatory true;
 description
 "Identifies the revision date of the 'ietf‑yang‑library'
 module that is implemented by this RESTCONF server.
 Indicates the year, month, and day in YYYY‑MM‑DD
 numeric format.";
 }
 }
}

 }

 <CODE ENDS>

9. RESTCONF Monitoring

 The "ietf-restconf-monitoring" module provides information about the
 RESTCONF protocol capabilities and event streams available from the
 server. A RESTCONF server MUST implement the
 "ietf-restconf-monitoring" module.

 YANG tree diagram for the "ietf-restconf-monitoring" module:

+‑‑ro restconf‑state
 +‑‑ro capabilities
 | +‑‑ro capability* inet:uri
 +‑‑ro streams
 +‑‑ro stream* [name]
 +‑‑ro name string
 +‑‑ro description? string
 +‑‑ro replay‑support? boolean
 +‑‑ro replay‑log‑creation‑time? yang:date‑and‑time
 +‑‑ro access* [encoding]
 +‑‑ro encoding string
 +‑‑ro location inet:uri

9.1. restconf-state/capabilities

 This mandatory container holds the RESTCONF protocol capability URIs
 supported by the server.

 The server MAY maintain a last-modified timestamp for this container
 and return the "Last-Modified" header field when this data node is
 retrieved with the GET or HEAD methods. Note that the last-modified
 timestamp for the datastore resource is not affected by changes to
 this subtree.

 The server SHOULD maintain an entity-tag for this container and
 return the "ETag" header field when this data node is retrieved with
 the GET or HEAD methods. Note that the entity-tag for the datastore
 resource is not affected by changes to this subtree.

 The server MUST include a "capability" URI leaf-list entry for the
 "defaults" mode used by the server, defined in Section 9.1.2.

 The server MUST include a "capability" URI leaf-list entry
 identifying each supported optional protocol feature. This includes
 optional query parameters and MAY include other capability URIs
 defined outside this document.

9.1.1. Query Parameter URIs

 A new set of RESTCONF Capability URIs are defined to identify the
 specific query parameters (defined in Section 4.8) supported by the
 server.

 The server MUST include a "capability" leaf-list entry for each
 optional query parameter that it supports.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name | Section | URI |
| | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
depth	4.8.2	urn:ietf:params:restconf:capability:
		depth:1.0
fields	4.8.3	urn:ietf:params:restconf:capability:
		fields:1.0
filter	4.8.4	urn:ietf:params:restconf:capability:
		filter:1.0
replay	4.8.7	urn:ietf:params:restconf:capability:
	4.8.8	replay:1.0
with‑defaults	4.8.9	urn:ietf:params:restconf:capability:
		with‑defaults:1.0
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 RESTCONF Query Parameter URIs

9.1.2. The "defaults" Protocol Capability URI

 This URI identifies the "basic-mode" default-handling mode that is
 used by the server for processing default leafs in requests for data
 resources. This protocol capability URI MUST be supported by the
 server and MUST be listed in the "capability" leaf-list defined in
 Section 9.3.

+‑‑‑‑‑‑‑‑‑‑+‑‑+
| Name | URI |
+‑‑‑‑‑‑‑‑‑‑+‑‑+
| defaults | urn:ietf:params:restconf:capability:defaults:1.0 |
+‑‑‑‑‑‑‑‑‑‑+‑‑+

 RESTCONF "defaults" Capability URI

 The URI MUST contain a query parameter named "basic-mode" with one of
 the values listed below:

+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
| Value | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+
report‑all	No data nodes are considered default
trim	Values set to the YANG default‑stmt value are
	default
explicit	Values set by the client are never considered
	default
+‑‑‑‑‑‑‑‑‑‑‑‑+‑‑+

 The "basic-mode" definitions are specified in "With-defaults
 Capability for NETCONF" [RFC6243].

 If the "basic-mode" is set to "report-all", then the server MUST
 adhere to the default-handling behavior defined in Section 2.1 of
 [RFC6243].

 If the "basic-mode" is set to "trim", then the server MUST adhere to
 the default-handling behavior defined in Section 2.2 of [RFC6243].

 If the "basic-mode" is set to "explicit", then the server MUST adhere
 to the default-handling behavior defined in Section 2.3 of [RFC6243].

 Example (split for display purposes only):

 urn:ietf:params:restconf:capability:defaults:1.0?

 basic-mode=explicit

9.2. restconf-state/streams

 This optional container provides access to the event streams
 supported by the server. The server MAY omit this container if no
 event streams are supported.

 The server will populate this container with a "stream" list entry
 for each stream type it supports. Each stream contains a leaf called
 "events", which contains a URI that represents an event stream
 resource.

 Stream resources are defined in Section 3.8. Notifications are
 defined in Section 6.

9.3. RESTCONF Monitoring Module

 The "ietf-restconf-monitoring" module defines monitoring information
 for the RESTCONF protocol.

 The "ietf-yang-types" and "ietf-inet-types" modules from [RFC6991]
 are used by this module for some type definitions.

 <CODE BEGINS>

 file "ietf-restconf-monitoring@2017-01-26.yang"

 module ietf-restconf-monitoring {

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring";
 prefix "rcmon";

import ietf‑yang‑types { prefix yang; }
import ietf‑inet‑types { prefix inet; }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail‑f.com>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

description
 "This module contains monitoring information for the
 RESTCONF protocol.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8040; see
 the RFC itself for full legal notices.";

revision 2017‑01‑26 {
 description
 "Initial revision.";
 reference
 "RFC 8040: RESTCONF Protocol.";
}

container restconf‑state {
 config false;
 description
 "Contains RESTCONF protocol monitoring information.";

 container capabilities {
 description
 "Contains a list of protocol capability URIs.";

 leaf‑list capability {
 type inet:uri;
 description
 "A RESTCONF protocol capability URI.";
 }
 }

 container streams {
 description
 "Container representing the notification event streams
 supported by the server.";
 reference
 "RFC 5277, Section 3.4, <streams> element.";

 list stream {
 key name;
 description
 "Each entry describes an event stream supported by
 the server.";

 leaf name {
 type string;
 description
 "The stream name.";
 reference
 "RFC 5277, Section 3.4, <name> element.";
 }

 leaf description {
 type string;
 description
 "Description of stream content.";
 reference
 "RFC 5277, Section 3.4, <description> element.";
 }

 leaf replay‑support {
 type boolean;
 default false;
 description
 "Indicates if replay buffer is supported for this stream.
 If 'true', then the server MUST support the 'start‑time'
 and 'stop‑time' query parameters for this stream.";
 reference
 "RFC 5277, Section 3.4, <replaySupport> element.";
 }

 leaf replay‑log‑creation‑time {
 when "../replay‑support" {
 description
 "Only present if notification replay is supported.";
 }
 type yang:date‑and‑time;
 description
 "Indicates the time the replay log for this stream
 was created.";
 reference
 "RFC 5277, Section 3.4, <replayLogCreationTime>
 element.";
 }

 list access {
 key encoding;
 min‑elements 1;
 description
 "The server will create an entry in this list for each
 encoding format that is supported for this stream.
 The media type 'text/event‑stream' is expected
 for all event streams. This list identifies the
 subtypes supported for this stream.";

 leaf encoding {
 type string;
 description
 "This is the secondary encoding format within the
 'text/event‑stream' encoding used by all streams.
 The type 'xml' is supported for XML encoding.
 The type 'json' is supported for JSON encoding.";
 }

 leaf location {
 type inet:uri;
 mandatory true;
 description
 "Contains a URL that represents the entry point
 for establishing notification delivery via
 server‑sent events.";
 }
 }
 }
 }
}

 }

 <CODE ENDS>

10. YANG Module Library

 The "ietf-yang-library" module defined in [RFC7895] provides
 information about the YANG modules and submodules used by the
 RESTCONF server. Implementation is mandatory for RESTCONF servers.
 All YANG modules and submodules used by the server MUST be identified
 in the YANG module library.

10.1. modules-state/module

 This mandatory list contains one entry for each YANG data model
 module supported by the server. There MUST be an instance of this
 list for every YANG module that is used by the server.

 The contents of this list are defined in the "module" YANG list
 statement in [RFC7895].

 Note that there are no protocol-accessible objects in the
 "ietf-restconf" module to implement, but it is possible that a server
 will list the "ietf-restconf" module in the YANG library if it is
 imported (directly or indirectly) by an implemented module.

11. IANA Considerations

11.1. The "restconf" Relation Type

 This specification registers the "restconf" relation type in the
 "Link Relation Types" registry defined by [RFC5988]:

 Relation Name: restconf

 Description: Identifies the root of the RESTCONF API as configured

 on this HTTP server. The "restconf" relation
 defines the root of the API defined in RFC 8040.
 Subsequent revisions of RESTCONF will use alternate
 relation values to support protocol versioning.

 Reference: RFC 8040

11.2. Registrations for New URIs and YANG Modules

 This document registers two URIs as namespaces in the "IETF XML
 Registry" [RFC3688]:

URI: urn:ietf:params:xml:ns:yang:ietf‑restconf
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf‑restconf‑monitoring
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers two YANG modules in the "YANG Module Names"
 registry [RFC6020]:

name: ietf‑restconf
namespace: urn:ietf:params:xml:ns:yang:ietf‑restconf
prefix: rc
reference: RFC 8040

name: ietf‑restconf‑monitoring
namespace: urn:ietf:params:xml:ns:yang:ietf‑restconf‑monitoring
prefix: rcmon
reference: RFC 8040

11.3. Media Types

11.3.1. Media Type "application/yang-data+xml"

 Type name: application

 Subtype name: yang-data+xml

 Required parameters: None

 Optional parameters: None

Encoding considerations: 8‑bit
 Each conceptual YANG data node is encoded according to the
 XML Encoding Rules and Canonical Format for the specific
 YANG data node type defined in [RFC7950].

Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 12 of RFC 8040.
 Additional security considerations are specific to the
 semantics of particular YANG data models. Each YANG module
 is expected to specify security considerations for the
 YANG data defined in that module.

Interoperability considerations: RFC 8040 specifies the
 format of conforming messages and the interpretation
 thereof.

 Published specification: RFC 8040

Applications that use this media type: Instance document
 data parsers used within a protocol or automation tool
 that utilize YANG‑defined data structures.

Fragment identifier considerations: Fragment identifiers for
 this type are not defined. All YANG data nodes are
 accessible as resources using the path in the request URI.

 Additional information:

Deprecated alias names for this type: N/A
Magic number(s): N/A
File extension(s): None
Macintosh file type code(s): "TEXT"

 Person & email address to contact for further information: See

 the Authors' Addresses section of RFC 8040.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors' Addresses section of RFC 8040.

 Change controller: Internet Engineering Task Force

 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

11.3.2. Media Type "application/yang-data+json"

 Type name: application

 Subtype name: yang-data+json

 Required parameters: None

 Optional parameters: None

Encoding considerations: 8‑bit
 Each conceptual YANG data node is encoded according to
 [RFC7951]. A metadata annotation is encoded according to
 [RFC7952].

Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 12 of RFC 8040.
 Additional security considerations are specific to the
 semantics of particular YANG data models. Each YANG module
 is expected to specify security considerations for the
 YANG data defined in that module.

 Interoperability considerations: RFC 8040 specifies the format

 of conforming messages and the interpretation thereof.

 Published specification: RFC 8040

Applications that use this media type: Instance document
 data parsers used within a protocol or automation tool
 that utilize YANG‑defined data structures.

 Fragment identifier considerations: The syntax and semantics

 of fragment identifiers are the same as the syntax and semantics
 specified for the "application/json" media type.

 Additional information:

Deprecated alias names for this type: N/A
Magic number(s): N/A
File extension(s): None
Macintosh file type code(s): "TEXT"

 Person & email address to contact for further information: See

 the Authors' Addresses section of RFC 8040.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors' Addresses section of RFC 8040.

 Change controller: Internet Engineering Task Force

 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

11.4. RESTCONF Capability URNs

 This document defines a registry for RESTCONF capability identifiers.
 The name of the registry is "RESTCONF Capability URNs". The review
 policy for this registry is "IETF Review" [RFC5226]. The registry
 shall record the following for each entry:

 o the name of the RESTCONF capability. By convention, this name
 begins with the colon (":") character.

 o the URN for the RESTCONF capability.

 o the reference for the document registering the value.

 This document registers several capability identifiers in the
 "RESTCONF Capability URNs" registry:

Index Capability Identifier
‑‑‑
:defaults urn:ietf:params:restconf:capability:defaults:1.0

:depth urn:ietf:params:restconf:capability:depth:1.0

:fields urn:ietf:params:restconf:capability:fields:1.0

:filter urn:ietf:params:restconf:capability:filter:1.0

:replay urn:ietf:params:restconf:capability:replay:1.0

:with‑defaults urn:ietf:params:restconf:capability:with‑defaults:1.0

11.5. Registration of "restconf" URN Sub-namespace

 IANA has registered a new URN sub-namespace within the "IETF URN
 Sub-namespace for Registered Protocol Parameter Identifiers" registry
 defined in [RFC3553].

 Registry Name: restconf

 Specification: RFC 8040

 Repository: "RESTCONF Capability URNs" registry (Section 11.4)

Index value: Sub‑parameters MUST be specified in UTF‑8, using
 standard URI encoding where necessary.

12. Security Considerations

 Section 2.1 states that "a RESTCONF server MUST support the TLS
 protocol [RFC5246]." This language leaves open the possibility that
 a RESTCONF server might also support future versions of the TLS
 protocol. Of specific concern, TLS 1.3 [TLS1.3] introduces support
 for 0-RTT handshakes that can lead to security issues for RESTCONF
 APIs, as described in Appendix B.1 of the TLS 1.3 document. It is
 therefore RECOMMENDED that RESTCONF servers do not support 0-RTT at
 all (not even for idempotent requests) until an update to this RFC
 guides otherwise.

 Section 2.5 recommends authentication based on TLS client
 certificates but allows the use of any authentication scheme defined
 in the "Hypertext Transfer Protocol (HTTP) Authentication Scheme
 Registry". Implementations need to be aware that the strengths of
 these methods vary greatly and that some may be considered
 experimental. Selection of any of these schemes SHOULD be performed
 after reading the Security Considerations section of the RFC
 associated with the scheme's registry entry.

 The "ietf-restconf-monitoring" YANG module defined in this memo is
 designed to be accessed via the NETCONF protocol [RFC6241]. The
 lowest NETCONF layer is the secure transport layer, and the
 mandatory-to-implement secure transport is Secure Shell (SSH)
 [RFC6242]. The NETCONF access control model [RFC6536] provides the
 means to restrict access for particular NETCONF users to a
 preconfigured subset of all available NETCONF protocol operations and
 content.

 The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement
 secure transport is TLS [RFC5246]. The RESTCONF protocol uses the
 NETCONF access control model [RFC6536], which provides the means to
 restrict access for particular RESTCONF users to a preconfigured
 subset of all available RESTCONF protocol operations and content.

 This section provides security considerations for the resources
 defined by the RESTCONF protocol. Security considerations for HTTPS
 are defined in [RFC7230]. Aside from the "ietf-restconf-monitoring"
 module (Section 9) and the "ietf-yang-library" module (Section 10),
 RESTCONF does not specify which YANG modules a server needs to
 support. Security considerations for the other modules manipulated
 by RESTCONF can be found in the documents defining those YANG
 modules.

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic eavesdropping and false data injection
 attacks. Configuration information often contains passwords, user
 names, service descriptions, and topological information, all of
 which are sensitive. There are many patterns of attack that have
 been observed through operational practice with existing management
 interfaces. It would be wise for implementers to research them and
 take them into account when implementing this protocol.

 Different environments may well allow different rights prior to, and
 then after, authentication. When a RESTCONF operation is not
 properly authorized, the RESTCONF server MUST return a "401
 Unauthorized" status-line. Note that authorization information can
 be exchanged in the form of configuration information, which is all
 the more reason to ensure the security of the connection. Note that
 it is possible for a client to detect configuration changes in data
 resources it is not authorized to access by monitoring changes in the
 "ETag" and "Last-Modified" header fields returned by the server for
 the datastore resource.

 A RESTCONF server implementation SHOULD attempt to prevent system
 disruption due to excessive resource consumption required to fulfill
 edit requests via the POST, PUT, and PATCH methods. On such an
 implementation, it may be possible to construct an attack that
 attempts to consume all available memory or other resource types.

13. References

13.1. Normative References

 [RFC2046]
 Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <http://www.rfc-editor.org/info/rfc2046>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3553]
 Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553,
 June 2003, <http://www.rfc-editor.org/info/rfc3553>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC3986]
 Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <http://www.rfc-editor.org/info/rfc5277>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5789]
 Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <http://www.rfc-editor.org/info/rfc5789>.

 [RFC5988]
 Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010,
 <http://www.rfc-editor.org/info/rfc5988>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6243]
 Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
 <http://www.rfc-editor.org/info/rfc6243>.

 [RFC6415]
 Hammer-Lahav, E., Ed., and B. Cook, "Web Host Metadata",
 RFC 6415, DOI 10.17487/RFC6415, October 2011,
 <http://www.rfc-editor.org/info/rfc6415>.

 [RFC6536]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC6570]
 Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

 [RFC7159]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159,
 March 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Semantics and Content",
 RFC 7231, DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Conditional Requests",
 RFC 7232, DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7235]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7320]
 Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 7320, DOI 10.17487/RFC7320, July 2014,
 <http://www.rfc-editor.org/info/rfc7320>.

 [RFC7525]
 Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525,
 May 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [RFC7589]
 Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

 [RFC7895]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <http://www.rfc-editor.org/info/rfc7895>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <http://www.rfc-editor.org/info/rfc7951>.

 [RFC7952]
 Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <http://www.rfc-editor.org/info/rfc7952>.

 [W3C.REC-eventsource-20150203]

 Hickson, I., "Server-Sent Events", World Wide Web
 Consortium Recommendation REC-eventsource-20150203,
 February 2015,
 <http://www.w3.org/TR/2015/REC-eventsource-20150203>.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E.,
 and F. Yergeau, "Extensible Markup Language (XML) 1.0
 (Fifth Edition)", World Wide Web Consortium Recommendation
 REC-xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [XPath]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium Recommendation
 REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

13.2. Informative References

 [REST-Dissertation]

 Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000.

 [RFC2818]
 Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [TLS1.3]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", Work in Progress, draft-ietf-tls-tls13-18,
 October 2016.

 [YANG-Patch]

 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", Work in Progress,
 draft-ietf-netconf-yang-patch-14, November 2016.

Appendix A. Example YANG Module

 The example YANG module used in this document represents a simple
 media jukebox interface.

 YANG tree diagram for the "example-jukebox" module:

+‑‑rw jukebox!
 +‑‑rw library
 | +‑‑rw artist* [name]
 | | +‑‑rw name string
 | | +‑‑rw album* [name]
 | | +‑‑rw name string
 | | +‑‑rw genre? identityref
 | | +‑‑rw year? uint16
 | | +‑‑rw admin
 | | | +‑‑rw label? string
 | | | +‑‑rw catalogue‑number? string
 | | +‑‑rw song* [name]
 | | +‑‑rw name string
 | | +‑‑rw location string
 | | +‑‑rw format? string
 | | +‑‑rw length? uint32
 | +‑‑ro artist‑count? uint32
 | +‑‑ro album‑count? uint32
 | +‑‑ro song‑count? uint32
 +‑‑rw playlist* [name]
 | +‑‑rw name string
 | +‑‑rw description? string
 | +‑‑rw song* [index]
 | +‑‑rw index uint32
 | +‑‑rw id instance‑identifier
 +‑‑rw player
 +‑‑rw gap? decimal64

 rpcs:

+‑‑‑x play
 +‑‑ro input
 +‑‑ro playlist string
 +‑‑ro song‑number uint32

A.1. "example-jukebox" YANG Module

 module example-jukebox {

namespace "http://example.com/ns/example‑jukebox";
prefix "jbox";

organization "Example, Inc.";
contact "support at example.com";
description "Example Jukebox Data Model Module.";
revision "2016‑08‑15" {
 description "Initial version.";
 reference "example.com document 1‑4673.";
}

identity genre {
 description
 "Base for all genre types.";
}

// abbreviated list of genre classifications
identity alternative {
 base genre;
 description
 "Alternative music.";
}
identity blues {
 base genre;
 description
 "Blues music.";
}
identity country {
 base genre;
 description
 "Country music.";
}
identity jazz {
 base genre;
 description
 "Jazz music.";
}
identity pop {
 base genre;
 description
 "Pop music.";
}

identity rock {
 base genre;
 description
 "Rock music.";
}

container jukebox {
 presence
 "An empty container indicates that the jukebox
 service is available.";

 description

 "Represents a 'jukebox' resource, with a library, playlists,
 and a 'play' operation.";

 container library {

 description

 "Represents the 'jukebox' library resource.";

 list artist {
 key name;
 description
 "Represents one 'artist' resource within the
 'jukebox' library resource.";

 leaf name {
 type string {
 length "1 .. max";
 }
 description
 "The name of the artist.";
 }

 list album {
 key name;
 description
 "Represents one 'album' resource within one
 'artist' resource, within the jukebox library.";

 leaf name {
 type string {
 length "1 .. max";
 }
 description
 "The name of the album.";
 }

 leaf genre {
 type identityref { base genre; }
 description
 "The genre identifying the type of music on
 the album.";
 }

 leaf year {
 type uint16 {
 range "1900 .. max";
 }
 description
 "The year the album was released.";
 }

 container admin {
 description
 "Administrative information for the album.";

 leaf label {
 type string;
 description
 "The label that released the album.";
 }
 leaf catalogue‑number {
 type string;
 description
 "The album's catalogue number.";
 }
 }

 list song {
 key name;
 description
 "Represents one 'song' resource within one
 'album' resource, within the jukebox library.";

 leaf name {
 type string {
 length "1 .. max";
 }
 description
 "The name of the song.";
 }

 leaf location {
 type string;
 mandatory true;
 description
 "The file location string of the
 media file for the song.";
 }
 leaf format {
 type string;
 description
 "An identifier string for the media type
 for the file associated with the
 'location' leaf for this entry.";
 }
 leaf length {
 type uint32;
 units "seconds";
 description
 "The duration of this song in seconds.";
 }
 } // end list 'song'
 } // end list 'album'
 } // end list 'artist'

 leaf artist‑count {
 type uint32;
 units "artists";
 config false;
 description
 "Number of artists in the library.";
 }
 leaf album‑count {
 type uint32;
 units "albums";
 config false;
 description
 "Number of albums in the library.";
 }
 leaf song‑count {
 type uint32;
 units "songs";
 config false;
 description
 "Number of songs in the library.";
 }
} // end library

list playlist {
 key name;
 description
 "Example configuration data resource.";

 leaf name {
 type string;
 description
 "The name of the playlist.";
 }
 leaf description {
 type string;
 description
 "A comment describing the playlist.";
 }
 list song {
 key index;
 ordered‑by user;

 description

 "Example nested configuration data resource.";

 leaf index { // not really needed
 type uint32;
 description
 "An arbitrary integer index for this playlist song.";
 }
 leaf id {
 type instance‑identifier;
 mandatory true;
 description
 "Song identifier. Must identify an instance of
 /jukebox/library/artist/album/song/name.";
 }
 }
 }

 container player {
 description
 "Represents the jukebox player resource.";

 leaf gap {
 type decimal64 {
 fraction‑digits 1;
 range "0.0 .. 2.0";
 }
 units "tenths of seconds";
 description
 "Time gap between each song.";
 }
 }
 }

 rpc play {
 description
 "Control function for the jukebox player.";
 input {
 leaf playlist {
 type string;
 mandatory true;
 description
 "The playlist name.";
 }
 leaf song‑number {
 type uint32;
 mandatory true;
 description
 "Song number in playlist to play.";
 }
 }
 }
}

Appendix B. RESTCONF Message Examples

 The examples within this document use the normative YANG module
 "ietf-restconf" as defined in Section 8 and the non-normative example
 YANG module "example-jukebox" as defined in Appendix A.1.

 This section shows some typical RESTCONF message exchanges.

B.1. Resource Retrieval Examples

B.1.1. Retrieve the Top-Level API Resource

 The client starts by retrieving the RESTCONF root resource:

GET /.well‑known/host‑meta HTTP/1.1
Host: example.com
Accept: application/xrd+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Content‑Type: application/xrd+xml
Content‑Length: nnn

<XRD xmlns='http://docs.oasis‑open.org/ns/xri/xrd‑1.0'>
 <Link rel='restconf' href='/restconf'/>
</XRD>

 The client may then retrieve the top-level API resource, using the
 root resource "/restconf".

GET /restconf HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "ietf‑restconf:restconf" : {
 "data" : {},
 "operations" : {},
 "yang‑library‑version" : "2016‑06‑21"
 }
}

 To request that the response content be encoded in XML, the "Accept"
 header can be used, as in this example request:

GET /restconf HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server will return the same conceptual data either way, which
 might be as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+xml

<restconf xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf">
 <data/>
 <operations/>
 <yang‑library‑version>2016‑06‑21</yang‑library‑version>
</restconf>

B.1.2. Retrieve the Server Module Information

 It is possible that the YANG library module will change over time.
 The client can retrieve the revision date of the "ietf-yang-library"
 module supported by the server from the API resource, as described in
 the previous section.

 In this example, the client is retrieving the module information from
 the server in JSON format:

GET /restconf/data/ietf‑yang‑library:modules‑state HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Last‑Modified: Thu, 26 Jan 2017 14:00:14 GMT
Content‑Type: application/yang‑data+json

{
 "ietf‑yang‑library:modules‑state" : {
 "module‑set‑id" : "5479120c17a619545ea6aff7aa19838b036ebbd7",
 "module" : [
 {
 "name" : "foo",
 "revision" : "2012‑01‑02",
 "schema" : "https://example.com/modules/foo/2012‑01‑02",
 "namespace" : "http://example.com/ns/foo",
 "feature" : ["feature1", "feature2"],
 "deviation" : [
 {
 "name" : "foo‑dev",
 "revision" : "2012‑02‑16"
 }
],
 "conformance‑type" : "implement"
 },
 {
 "name" : "ietf‑yang‑library",
 "revision" : "2016‑06‑21",
 "schema" : "https://example.com/modules/\
 ietf‑yang‑library/2016‑06‑21",
 "namespace" :
 "urn:ietf:params:xml:ns:yang:ietf‑yang‑library",
 "conformance‑type" : "implement"
 },
 {
 "name" : "foo‑types",
 "revision" : "2012‑01‑05",
 "schema" :
 "https://example.com/modules/foo‑types/2012‑01‑05",
 "namespace" : "http://example.com/ns/foo‑types",
 "conformance‑type" : "import"
 },

 {
 "name" : "bar",
 "revision" : "2012‑11‑05",
 "schema" : "https://example.com/modules/bar/2012‑11‑05",
 "namespace" : "http://example.com/ns/bar",
 "feature" : ["bar‑ext"],
 "conformance‑type" : "implement",
 "submodule" : [
 {
 "name" : "bar‑submod1",
 "revision" : "2012‑11‑05",
 "schema" :
 "https://example.com/modules/bar‑submod1/2012‑11‑05"
 },
 {
 "name" : "bar‑submod2",
 "revision" : "2012‑11‑05",
 "schema" :
 "https://example.com/modules/bar‑submod2/2012‑11‑05"
 }
]
 }
]
 }
}

B.1.3. Retrieve the Server Capability Information

 In this example, the client is retrieving the capability information
 from the server in XML format, and the server supports all of the
 RESTCONF query parameters, plus one vendor parameter:

GET /restconf/data/ietf‑restconf‑monitoring:restconf‑state/\
 capabilities HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Last‑Modified: Thu, 26 Jan 2017 16:00:14 GMT
Content‑Type: application/yang‑data+xml

<capabilities
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf‑monitoring">
 <capability>\
 urn:ietf:params:restconf:capability:defaults:1.0?\
 basic‑mode=explicit\
 </capability>
 <capability>\
 urn:ietf:params:restconf:capability:with‑defaults:1.0\
 </capability>
 <capability>\
 urn:ietf:params:restconf:capability:depth:1.0\
 </capability>
 <capability>\
 urn:ietf:params:restconf:capability:fields:1.0\
 </capability>
 <capability>\
 urn:ietf:params:restconf:capability:filter:1.0\
 </capability>
 <capability>\
 urn:ietf:params:restconf:capability:start‑time:1.0\
 </capability>
 <capability>\
 urn:ietf:params:restconf:capability:stop‑time:1.0\
 </capability>
 <capability>\
 http://example.com/capabilities/myparam\
 </capability>
</capabilities>

B.2. Data Resource and Datastore Resource Examples

B.2.1. Create New Data Resources

 To create a new "artist" resource within the "library" resource, the
 client might send the following request:

POST /restconf/data/example‑jukebox:jukebox/library HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:artist" : [
 {
 "name" : "Foo Fighters"
 }
]
}

 If the resource is created, the server might respond as follows:

HTTP/1.1 201 Created
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Location: https://example.com/restconf/data/\
 example‑jukebox:jukebox/library/artist=Foo%20Fighters
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
ETag: "b3830f23a4c"

 To create a new "album" resource for this artist within the "jukebox"
 resource, the client might send the following request:

POST /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<album xmlns="http://example.com/ns/example‑jukebox">
 <name>Wasting Light</name>
 <year>2011</year>
</album>

 If the resource is created, the server might respond as follows:

HTTP/1.1 201 Created
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Location: https://example.com/restconf/data/\
 example‑jukebox:jukebox/library/artist=Foo%20Fighters/\
 album=Wasting%20Light
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
ETag: "b8389233a4c"

B.2.2. Detect Datastore Resource Entity-Tag Change

 In this example, the server just supports the datastore last-changed
 timestamp. Assume that the client has cached the "Last-Modified"
 header from the response to the previous request. This value is used
 as in the "If-Unmodified-Since" header in the following request to
 patch an "album" list entry with a key value of "Wasting Light".
 Only the "genre" field is being updated.

PATCH /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light/\
 genre HTTP/1.1
Host: example.com
If‑Unmodified‑Since: Thu, 26 Jan 2017 20:56:30 GMT
Content‑Type: application/yang‑data+json

 { "example-jukebox:genre" : "example-jukebox:alternative" }

 In this example, the datastore resource has changed since the time
 specified in the "If-Unmodified-Since" header. The server might
 respond as follows:

HTTP/1.1 412 Precondition Failed
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 19:41:00 GMT
ETag: "b34aed893a4c"

B.2.3. Edit a Datastore Resource

 In this example, assume that there is a top-level data resource named
 "system" from the example-system module, and this container has a
 child leaf called "enable-jukebox-streaming":

container system {
 leaf enable‑jukebox‑streaming {
 type boolean;
 }
}

 In this example, PATCH is used by the client to modify two top-level
 resources at once, in order to enable jukebox streaming and add an
 "album" sub-resource to each of two "artist" resources:

PATCH /restconf/data HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<data xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf">
 <system xmlns="http://example.com/ns/example‑system">
 <enable‑jukebox‑streaming>true</enable‑jukebox‑streaming>
 </system>
 <jukebox xmlns="http://example.com/ns/example‑jukebox">
 <library>
 <artist>
 <name>Foo Fighters</name>
 <album>
 <name>One by One</name>
 <year>2012</year>
 </album>
 </artist>
 <artist>
 <name>Nick Cave and the Bad Seeds</name>
 <album>
 <name>Tender Prey</name>
 <year>1988</year>
 </album>
 </artist>
 </library>
 </jukebox>
</data>

B.2.4. Replace a Datastore Resource

 In this example, the entire configuration datastore contents are
 being replaced. Any child nodes not present in the <data> element
 but present in the server will be deleted.

PUT /restconf/data HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<data xmlns="urn:ietf:params:xml:ns:yang:ietf‑restconf">
 <jukebox xmlns="http://example.com/ns/example‑jukebox">
 <library>
 <artist>
 <name>Foo Fighters</name>
 <album>
 <name>One by One</name>
 <year>2012</year>
 </album>
 </artist>
 <artist>
 <name>Nick Cave and the Bad Seeds</name>
 <album>
 <name>Tender Prey</name>
 <year>1988</year>
 </album>
 </artist>
 </library>
 </jukebox>
</data>

B.2.5. Edit a Data Resource

 In this example, the client modifies one data node by adding an
 "album" sub-resource by sending a PATCH for the data resource:

PATCH /restconf/data/example‑jukebox:jukebox/library/\
 artist=Nick%20Cave%20and%20the%20Bad%20Seeds HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+xml

<artist xmlns="http://example.com/ns/example‑jukebox">
 <name>Nick Cave and the Bad Seeds</name>
 <album>
 <name>The Good Son</name>
 <year>1990</year>
 </album>
</artist>

B.3. Query Parameter Examples

B.3.1. "content" Parameter

 The "content" parameter is used to select the types of data child
 resources (configuration and/or non-configuration) that are returned
 by the server for a GET method request.

 In this example, a simple YANG list is used that has configuration
 and non-configuration child resources.

container events {
 list event {
 key name;
 leaf name { type string; }
 leaf description { type string; }
 leaf event‑count {
 type uint32;
 config false;
 }
 }
}

 Example 1: content=all

 To retrieve all of the child resources, the "content" parameter is
 set to "all", or omitted, since this is the default value. The
 client might send the following:

GET /restconf/data/example‑events:events?\
 content=all HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json

{
 "example‑events:events" : {
 "event" : [
 {
 "name" : "interface‑up",
 "description" : "Interface up notification count",
 "event‑count" : 42
 },
 {
 "name" : "interface‑down",
 "description" : "Interface down notification count",
 "event‑count" : 4
 }
]
 }
}

 Example 2: content=config

 To retrieve only the configuration child resources, the "content"
 parameter is set to "config". Note that the "ETag" and
 "Last-Modified" headers are only returned if the "content" parameter
 value is "config".

GET /restconf/data/example‑events:events?\
 content=config HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 16:45:20 GMT
ETag: "eeeada438af"
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json

{
 "example‑events:events" : {
 "event" : [
 {
 "name" : "interface‑up",
 "description" : "Interface up notification count"
 },
 {
 "name" : "interface‑down",
 "description" : "Interface down notification count"
 }
]
 }
}

 Example 3: content=nonconfig

 To retrieve only the non-configuration child resources, the "content"
 parameter is set to "nonconfig". Note that configuration ancestors
 (if any) and list key leafs (if any) are also returned. The client
 might send the following:

GET /restconf/data/example‑events:events?\
 content=nonconfig HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json

{
 "example‑events:events" : {
 "event" : [
 {
 "name" : "interface‑up",
 "event‑count" : 42
 },
 {
 "name" : "interface‑down",
 "event‑count" : 4
 }
]
 }
}

B.3.2. "depth" Parameter

 The "depth" parameter is used to limit the number of levels of child
 resources that are returned by the server for a GET method request.

 The "depth" parameter starts counting levels at the level of the
 target resource that is specified, so that a depth level of "1"
 includes just the target resource level itself. A depth level of "2"
 includes the target resource level and its child nodes.

 This example shows how different values of the "depth" parameter
 would affect the reply content for the retrieval of the top-level
 "jukebox" data resource.

 Example 1: depth=unbounded

 To retrieve all of the child resources, the "depth" parameter is not
 present or is set to the default value "unbounded".

GET /restconf/data/example‑jukebox:jukebox?\
 depth=unbounded HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:jukebox" : {
 "library" : {
 "artist" : [
 {
 "name" : "Foo Fighters",
 "album" : [
 {
 "name" : "Wasting Light",
 "genre" : "example‑jukebox:alternative",
 "year" : 2011,
 "song" : [
 {
 "name" : "Wasting Light",
 "location" :
 "/media/foo/a7/wasting‑light.mp3",
 "format" : "MP3",
 "length" : 286
 },

 {
 "name" : "Rope",
 "location" : "/media/foo/a7/rope.mp3",
 "format" : "MP3",
 "length" : 259
 }
]
 }
]
 }
]
 },
 "playlist" : [
 {
 "name" : "Foo‑One",
 "description" : "example playlist 1",
 "song" : [
 {
 "index" : 1,
 "id" : "/example‑jukebox:jukebox/library\
 /artist[name='Foo Fighters']\
 /album[name='Wasting Light']\
 /song[name='Rope']"
 },
 {
 "index" : 2,
 "id" : "/example‑jukebox:jukebox/library\
 /artist[name='Foo Fighters']\
 /album[name='Wasting Light']\
 /song[name='Bridge Burning']"
 }
]
 }
],
 "player" : {
 "gap" : 0.5
 }
 }
}

 Example 2: depth=1

 To determine if one or more resource instances exist for a given
 target resource, the value "1" is used.

GET /restconf/data/example‑jukebox:jukebox?depth=1 HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:jukebox" : {}
}

 Example 3: depth=3

 To limit the depth level to the target resource plus two child
 resource layers, the value "3" is used.

GET /restconf/data/example‑jukebox:jukebox?depth=3 HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Cache‑Control: no‑cache
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:jukebox" : {
 "library" : {
 "artist" : {}
 },
 "playlist" : [
 {
 "name" : "Foo‑One",
 "description" : "example playlist 1",
 "song" : {}
 }
],
 "player" : {
 "gap" : 0.5
 }
 }
}

B.3.3. "fields" Parameter

 In this example, the client is retrieving the datastore resource in
 JSON format, but retrieving only the "modules-state/module" list, and
 only the "name" and "revision" nodes from each list entry. Note that
 the top node returned by the server matches the target resource node
 (which is "data" in this example). The "module-set-id" leaf is not
 returned because it is not selected in the fields expression.

GET /restconf/data?fields=ietf‑yang‑library:modules‑state/\
 module(name;revision) HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "ietf‑restconf:data" : {
 "ietf‑yang‑library:modules‑state" : {
 "module" : [
 {
 "name" : "example‑jukebox",
 "revision" : "2016‑08‑15"
 },
 {
 "name" : "ietf‑inet‑types",
 "revision" : "2013‑07‑15"
 },
 {
 "name" : "ietf‑restconf‑monitoring",
 "revision" : "2017‑01‑26"
 },
 {
 "name" : "ietf‑yang‑library",
 "revision" : "2016‑06‑21"
 },
 {
 "name" : "ietf‑yang‑types",
 "revision" : "2013‑07‑15"
 }
]
 }
 }
}

B.3.4. "insert" Parameter

 In this example, a new first song entry in the "Foo-One" playlist is
 being created.

 Request from client:

POST /restconf/data/example‑jukebox:jukebox/\
 playlist=Foo‑One?insert=first HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:song" : [
 {
 "index" : 1,
 "id" : "/example‑jukebox:jukebox/library\
 /artist[name='Foo Fighters']\
 /album[name='Wasting Light']\
 /song[name='Rope']"
 }
]
}

 Response from server:

HTTP/1.1 201 Created
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
Location: https://example.com/restconf/data/\
 example‑jukebox:jukebox/playlist=Foo‑One/song=1
ETag: "eeeada438af"

B.3.5. "point" Parameter

 In this example, the client is inserting a new song entry in the
 "Foo-One" playlist after the first song.

 Request from client:

POST /restconf/data/example‑jukebox:jukebox/\
 playlist=Foo‑One?insert=after&point=\
 %2Fexample‑jukebox%3Ajukebox\
 %2Fplaylist%3DFoo‑One%2Fsong%3D1 HTTP/1.1
Host: example.com
Content‑Type: application/yang‑data+json

{
 "example‑jukebox:song" : [
 {
 "index" : 2,
 "id" : "/example‑jukebox:jukebox/library\
 /artist[name='Foo Fighters']\
 /album[name='Wasting Light']\
 /song[name='Bridge Burning']"
 }
]
}

 Response from server:

HTTP/1.1 201 Created
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
Location: https://example.com/restconf/data/\
 example‑jukebox:jukebox/playlist=Foo‑One/song=2
ETag: "abcada438af"

B.3.6. "filter" Parameter

 The following URIs show some examples of notification filter
 specifications:

// filter = /event/event‑class='fault'
GET /streams/NETCONF?filter=%2Fevent%2Fevent‑class%3D'fault'

// filter = /event/severity<=4
GET /streams/NETCONF?filter=%2Fevent%2Fseverity%3C%3D4

// filter = /linkUp|/linkDown
GET /streams/SNMP?filter=%2FlinkUp%7C%2FlinkDown

// filter = /*/reporting‑entity/card!='Ethernet0'
GET /streams/NETCONF?\
 filter=%2F*%2Freporting‑entity%2Fcard%21%3D'Ethernet0'

// filter = /*/email‑addr[contains(.,'company.com')]
GET /streams/critical‑syslog?\
 filter=%2F*%2Femail‑addr[contains(.%2C'company.com')]

// Note: The module name is used as the prefix.
// filter = (/example‑mod:event1/name='joe' and
// /example‑mod:event1/status='online')
GET /streams/NETCONF?\
 filter=(%2Fexample‑mod%3Aevent1%2Fname%3D'joe'%20and\
 %20%2Fexample‑mod%3Aevent1%2Fstatus%3D'online')

// To get notifications from just two modules (e.g., m1 + m2)
// filter=(/m1:* or /m2:*)
GET /streams/NETCONF?filter=(%2Fm1%3A*%20or%20%2Fm2%3A*)

B.3.7. "start-time" Parameter

 The following URI shows an example of the "start-time" query
 parameter:

// start‑time = 2014‑10‑25T10:02:00Z
GET /streams/NETCONF?start‑time=2014‑10‑25T10%3A02%3A00Z

B.3.8. "stop-time" Parameter

 The following URI shows an example of the "stop-time" query
 parameter:

// start‑time = 2014‑10‑25T10:02:00Z
// stop‑time = 2014‑10‑25T12:31:00Z
GET /mystreams/NETCONF?start‑time=2014‑10‑25T10%3A02%3A00Z\
 &stop‑time=2014‑10‑25T12%3A31%3A00Z

B.3.9. "with-defaults" Parameter

 Assume that the server implements the module "example" defined in
 Appendix A.1 of [RFC6243], and assume that the server's datastore is
 as defined in Appendix A.2 of [RFC6243].

 If the server's "basic-mode" parameter in the "defaults" protocol
 capability URI (Section 9.1.2) is "trim", the following request for
 interface "eth1" might be as follows:

 Without query parameter:

GET /restconf/data/example:interfaces/interface=eth1 HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "example:interface" : [
 {
 "name" : "eth1",
 "status" : "up"
 }
]
}

 Note that the "mtu" leaf is missing because it is set to the default
 "1500", and the server's default-handling "basic-mode" parameter is
 "trim".

 With query parameter:

GET /restconf/data/example:interfaces/interface=eth1\
 ?with‑defaults=report‑all HTTP/1.1
Host: example.com
Accept: application/yang‑data+json

 The server might respond as follows:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Content‑Type: application/yang‑data+json

{
 "example:interface" : [
 {
 "name" : "eth1",
 "mtu" : 1500,
 "status" : "up"
 }
]
}

 Note that the server returns the "mtu" leaf because the "report-all"
 mode was requested with the "with-defaults" query parameter.

Acknowledgements

 The authors would like to thank the following people for their
 contributions to this document: Ladislav Lhotka, Juergen
 Schoenwaelder, Rex Fernando, Robert Wilton, and Jonathan Hansford.

 The authors would like to thank the following people for their
 excellent technical reviews of this document: Mehmet Ersue, Mahesh
 Jethanandani, Qin Wu, Joe Clarke, Bert Wijnen, Ladislav Lhotka,
 Rodney Cummings, Frank Xialiang, Tom Petch, Robert Sparks, Balint
 Uveges, Randy Presuhn, Sue Hares, Mark Nottingham, Benoit Claise,
 Dale Worley, and Lionel Morand.

Contributions to this material by Andy Bierman are based upon work
supported by the United States Army, Space & Terrestrial
Communications Directorate (S&TCD) under Contract
No. W15P7T‑13‑C‑A616. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the S&TCD.

Authors' Addresses

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

8071 - NETCONF Call Home and RESTCONF Call Home

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8071

Category: Standards Track

ISSN: 2070-1721

K. Watsen

Juniper Networks

February 2017

NETCONF Call Home and RESTCONF Call Home

Abstract

 This RFC presents NETCONF Call Home and RESTCONF Call Home, which
 enable a NETCONF or RESTCONF server to initiate a secure connection
 to a NETCONF or RESTCONF client, respectively.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8071.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Motivation

	 1.2. Requirements Terminology

	 1.3. Applicability Statement

	 1.4. Relation to RFC 4253

	 1.5. The NETCONF/RESTCONF Convention

	2. Solution Overview

	3. The NETCONF or RESTCONF Client
	 3.1. Client Protocol Operation

	 3.2. Client Configuration Data Model

	4. The NETCONF or RESTCONF Server
	 4.1. Server Protocol Operation

	 4.2. Server Configuration Data Model

	5. Security Considerations

	6. IANA Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgements

	Author's Address

1. Introduction

 This RFC presents NETCONF Call Home and RESTCONF Call Home, which
 enable a NETCONF or RESTCONF server to initiate a secure connection
 to a NETCONF or RESTCONF client, respectively.

 NETCONF Call Home supports both of the secure transports used by the
 Network Configuration Protocol (NETCONF) [RFC6241], Secure Shell
 (SSH), and Transport Layer Security (TLS). The NETCONF protocol's
 binding to SSH is defined in [RFC6242]. The NETCONF protocol's
 binding to TLS is defined in [RFC7589].

 RESTCONF Call Home only supports TLS, the same as the RESTCONF
 protocol [RFC8040]. The RESTCONF protocol's binding to TLS is
 defined in [RFC8040].

 The SSH protocol is defined in [RFC4253]. The TLS protocol is
 defined in [RFC5246]. Both the SSH and TLS protocols are layered on
 top of the TCP protocol, which is defined in [RFC793].

 Both NETCONF Call Home and RESTCONF Call Home preserve all but one of
 the client/server roles in their respective protocol stacks, as
 compared to client-initiated NETCONF and RESTCONF connections. The
 one and only role reversal that occurs is at the TCP layer; that is,
 which peer is the TCP client and which is the TCP server.

 For example, a network element is traditionally the TCP server.
 However, when calling home, the network element initially assumes the
 role of the TCP client. The network element's secure transport-layer
 roles (SSH server, TLS server) and its application-layer roles
 (NETCONF server, RESTCONF server) all remain the same.

 Having consistency in both the secure transport-layer (SSH, TLS) and
 application-layer (NETCONF, RESTCONF) roles conveniently enables
 deployed network management infrastructure to support call home also.
 For instance, existing certificate chains and user authentication
 mechanisms are unaffected by call home.

1.1. Motivation

 Call home is generally useful for both the initial deployment and
 ongoing management of networking elements. Here are some scenarios
 enabled by call home:

 o The network element may proactively "call home" after being
 powered on for the first time in order to register itself with its
 management system.

 o The network element may access the network in a way that
 dynamically assigns it an IP address, but does not register its
 assigned IP address to a mapping service (e.g., dynamic DNS).

 o The network element may be deployed behind a firewall that
 implements Network Address Translation (NAT) for all internal
 network IP addresses.

 o The network element may be deployed behind a firewall that does
 not allow any management access to the internal network.

 o The network element may be configured in "stealth mode", and thus
 does not have any open ports for the management system to connect
 to.

 o The operator may prefer to have network elements initiate
 management connections, believing it is easier to secure one open
 port in the data center than to have an open port on each network
 element in the network.

1.2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Applicability Statement

 The techniques described in this document are suitable for network
 management scenarios such as the ones described in Section 1.1.
 However, these techniques are only defined for NETCONF Call Home and
 RESTCONF Call Home, as described in this document.

 The reason for this restriction is that different protocols have
 different security assumptions. The NETCONF and RESTCONF protocols
 require clients and servers to verify the identity of the other
 party. This requirement is specified for the NETCONF protocol in
 Section 2.2 of [RFC6241], and is specified for the RESTCONF protocol
 in Sections 2.4 and 2.5 of [RFC8040].

 This contrasts with the base SSH and TLS protocols, which do not
 require programmatic verification of the other party (Section 9.3.4
 of [RFC4251], Section 4 of [RFC4252], and Section 7.3 of [RFC5246]).
 In such circumstances, allowing the SSH/TLS server to contact the
 SSH/TLS client would open new vulnerabilities. Any use of call home
 with SSH/TLS for purposes other than NETCONF or RESTCONF will need a
 thorough contextual risk assessment. A risk assessment for this RFC
 is in the Security Considerations section (Section 5).

1.4. Relation to RFC 4253

 This document uses the SSH Transport Layer Protocol [RFC4253] with
 the exception that the statement "The client initiates the
 connection" made in Section 4 of RFC 4253 does not apply. Assuming
 the reference to the client means "SSH client" and the reference to
 the connection means "TCP connection", this statement doesn't hold
 true in call home, where the network element is the SSH server and
 yet still initiates the TCP connection. Security implications
 related to this change are discussed in Section 5.

1.5. The NETCONF/RESTCONF Convention

 Throughout the remainder of this document, the term "NETCONF/
 RESTCONF" is used as an abbreviation in place of the text "the
 NETCONF or the RESTCONF". The NETCONF/RESTCONF abbreviation is not
 intended to require or to imply that a client or server must
 implement both the NETCONF standard and the RESTCONF standard.

2. Solution Overview

 The diagram below illustrates call home from a protocol-layering
 perspective:

NETCONF/RESTCONF NETCONF/RESTCONF
 Server Client
 | |
 | 1. TCP |
 |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | |
 | |
 | 2. SSH/TLS |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 | |
 | 3. NETCONF/RESTCONF |
 |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|
 | |
 Note: Arrows point from the "client" to
 the "server" at each protocol layer.

 Figure 1: Call Home Sequence Diagram

 This diagram makes the following points:

 1. The NETCONF/RESTCONF server begins by initiating a TCP connection
 to the NETCONF/RESTCONF client.

 2. Using this TCP connection, the NETCONF/RESTCONF client initiates
 an SSH/TLS session to the NETCONF/RESTCONF server.

 3. Using this SSH/TLS session, the NETCONF/RESTCONF client initiates
 a NETCONF/RESTCONF session to the NETCONF/RESTCONF server.

3. The NETCONF or RESTCONF Client

 The term "client" is defined in [RFC6241], Section 1.1. In the
 context of network management, the NETCONF/RESTCONF client might be a
 network management system.

3.1. Client Protocol Operation

C1 The NETCONF/RESTCONF client listens for TCP connection requests
 from NETCONF/RESTCONF servers. The client MUST support accepting
 TCP connections on the IANA‑assigned ports defined in Section 6,
 but MAY be configured to listen to a different port.

C2 The NETCONF/RESTCONF client accepts an incoming TCP connection
 request and a TCP connection is established.

C3 Using this TCP connection, the NETCONF/RESTCONF client starts
 either the SSH client [RFC4253] or the TLS client [RFC5246]
 protocol. For example, assuming the use of the IANA‑assigned
 ports, the SSH client protocol is started when the connection is
 accepted on port 4334 and the TLS client protocol is started when
 the connection is accepted on either port 4335 or port 4336.

C4 When using TLS, the NETCONF/RESTCONF client MUST advertise
 "peer_allowed_to_send", as defined by [RFC6520]. This is
 required so that NETCONF/RESTCONF servers can depend on it being
 there for call home connections, when keep‑alives are needed the
 most.

C5 As part of establishing an SSH or TLS connection, the NETCONF/
 RESTCONF client MUST validate the server's presented host key or
 certificate. This validation MAY be accomplished by certificate
 path validation or by comparing the host key or certificate to a
 previously trusted or "pinned" value. If a certificate is
 presented and it contains revocation‑checking information, the
 NETCONF/RESTCONF client SHOULD check the revocation status of the
 certificate. If it is determined that a certificate has been
 revoked, the client MUST immediately close the connection.

C6 If certificate path validation is used, the NETCONF/RESTCONF
 client MUST ensure that the presented certificate has a valid
 chain of trust to a preconfigured issuer certificate, and that
 the presented certificate encodes an "identifier" [RFC6125] that
 the client was aware of before the connection attempt. How
 identifiers are encoded in certificates MAY be determined by a
 policy associated with the certificate's issuer. For instance, a
 given issuer may be known to only sign IDevID certificates
 [Std‑802.1AR‑2009] having a unique identifier (e.g., a serial
 number) in the X.509 certificate's "CommonName" field.

C7 After the server's host key or certificate is validated, the SSH
 or TLS protocol proceeds as normal to establish an SSH or TLS
 connection. When performing client authentication with the
 NETCONF/RESTCONF server, the NETCONF/RESTCONF client MUST only
 use credentials that it had previously associated for the
 NETCONF/RESTCONF server's presented host key or server
 certificate.

C8 Once the SSH or TLS connection is established, the NETCONF/
 RESTCONF client starts either the NETCONF client [RFC6241] or
 RESTCONF client [RFC8040] protocol. Assuming the use of the
 IANA‑assigned ports, the NETCONF client protocol is started when
 the connection is accepted on either port 4334 or port 4335 and
 the RESTCONF client protocol is started when the connection is
 accepted on port 4336.

3.2. Client Configuration Data Model

 How a NETCONF or RESTCONF client is configured is outside the scope
 of this document. For instance, such a configuration might be used
 to enable listening for call home connections, configuring trusted
 certificate issuers, or configuring identifiers for expected
 connections. That said, YANG [RFC7950] data modules for configuring
 NETCONF and RESTCONF clients, including call home, are provided in
 [NETCONF-MODELS] and [RESTCONF-MODELS].

4. The NETCONF or RESTCONF Server

 The term "server" is defined in [RFC6241], Section 1.1. In the
 context of network management, the NETCONF/RESTCONF server might be a
 network element or a device.

4.1. Server Protocol Operation

S1 The NETCONF/RESTCONF server initiates a TCP connection request to
 the NETCONF/RESTCONF client. The source port may be per local
 policy or randomly assigned by the operating system. The server
 MUST support connecting to one of the IANA‑assigned ports defined
 in Section 6, but MAY be configured to connect to a different
 port. Using the IANA‑assigned ports, the server connects to port
 4334 for NETCONF over SSH, port 4335 for NETCONF over TLS, and
 port 4336 for RESTCONF over TLS.

S2 The TCP connection request is accepted and a TCP connection is
 established.

S3 Using this TCP connection, the NETCONF/RESTCONF server starts
 either the SSH server [RFC4253] or the TLS server [RFC5246]
 protocol, depending on how it is configured. For example,
 assuming the use of the IANA‑assigned ports, the SSH server
 protocol is used after connecting to the remote port 4334 and the
 TLS server protocol is used after connecting to either remote
 port 4335 or remote port 4336.

S4 As part of establishing the SSH or TLS connection, the NETCONF/
 RESTCONF server will send its host key or certificate to the
 client. If a certificate is sent, the server MUST also send all
 intermediate certificates leading up to a well‑known and trusted
 issuer. How to send a list of certificates is defined for SSH in
 [RFC6187], Section 2.1, and for TLS in [RFC5246], Section 7.4.2.

S5 Establishing an SSH or TLS session requires server authentication
 of client credentials in all cases except with RESTCONF, where
 some client authentication schemes occur after the secure
 transport connection (TLS) has been established. If transport‑
 level (SSH or TLS) client authentication is required, and the
 client is unable to successfully authenticate itself to the
 server in an amount of time defined by local policy, the server
 MUST close the connection.

S6 Once the SSH or TLS connection is established, the NETCONF/
 RESTCONF server starts either the NETCONF server [RFC6241] or
 RESTCONF server [RFC8040] protocol, depending on how it is
 configured. Assuming the use of the IANA‑assigned ports, the
 NETCONF server protocol is used after connecting to remote port
 4334 or remote port 4335, and the RESTCONF server protocol is
 used after connecting to remote port 4336.

S7 If a persistent connection is desired, the NETCONF/RESTCONF
 server, as the connection initiator, SHOULD actively test the
 aliveness of the connection using a keep‑alive mechanism. For
 TLS‑based connections, the NETCONF/RESTCONF server SHOULD send
 HeartbeatRequest messages, as defined by [RFC6520]. For SSH‑
 based connections, per Section 4 of [RFC4254], the server SHOULD
 send an SSH_MSG_GLOBAL_REQUEST message with a purposely
 nonexistent "request name" value (e.g., keepalive@ietf.org) and
 the "want reply" value set to '1'.

4.2. Server Configuration Data Model

 How a NETCONF or RESTCONF server is configured is outside the scope
 of this document. This includes configuration that might be used to
 specify hostnames, IP addresses, ports, algorithms, or other relevant
 parameters. That said, YANG [RFC7950] data modules for configuring
 NETCONF and RESTCONF servers, including call home, are provided in
 [NETCONF-MODELS] and [RESTCONF-MODELS].

5. Security Considerations

 The security considerations described in [RFC6242] and [RFC7589], and
 by extension [RFC4253], [RFC5246], and [RFC8040] apply here as well.

 This RFC deviates from standard SSH and TLS usage by having the SSH/
 TLS server initiate the underlying TCP connection. This reversal is
 incongruous with [RFC4253], which says "the client initiates the
 connection" and also [RFC6125], which says "the client MUST construct
 a list of acceptable reference identifiers, and MUST do so
 independently of the identifiers presented by the service."

 Risks associated with these variances are centered around server
 authentication and the inability for clients to compare an
 independently constructed reference identifier to one presented by
 the server. To mitigate against these risks, this RFC requires that
 the NETCONF/RESTCONF client validate the server's SSH host key or
 certificate, by certificate path validation to a preconfigured issuer
 certificate, or by comparing the host key or certificate to a
 previously trusted or "pinned" value. Furthermore, when a
 certificate is used, this RFC requires that the client be able to
 match an identifier encoded in the presented certificate with an
 identifier the client was preconfigured to expect (e.g., a serial
 number).

 For cases when the NETCONF/RESTCONF server presents an X.509
 certificate, NETCONF/RESTCONF clients should ensure that the
 preconfigured issuer certificate used for certificate path validation
 is unique to the manufacturer of the server. That is, the
 certificate should not belong to a third-party certificate authority
 that might issue certificates for more than one manufacturer. This
 is especially important when a client authentication mechanism
 passing a shared secret (e.g., a password) to the server is used.
 Not doing so could otherwise lead to a case where the client sends
 the shared secret to another server that happens to have the same
 identity (e.g., a serial number) as the server the client was
 configured to expect.

 Considerations not associated with server authentication follow next.

 Internet-facing hosts running NETCONF Call Home or RESTCONF Call Home
 will be fingerprinted via scanning tools such as "zmap" [zmap]. Both
 SSH and TLS provide many ways in which a host can be fingerprinted.
 SSH and TLS servers are fairly mature and able to withstand attacks,
 but SSH and TLS clients may not be as robust. Implementers and
 deployments need to ensure that software update mechanisms are
 provided so that vulnerabilities can be fixed in a timely fashion.
 An attacker could launch a denial-of-service (DoS) attack on the
 NETCONF/RESTCONF client by having it perform computationally
 expensive operations, before deducing that the attacker doesn't
 possess a valid key. For instance, in TLS 1.3 [TLS1.3], the
 ClientHello message contains a Key Share value based on an expensive
 asymmetric key operation. Common precautions mitigating DoS attacks
 are recommended, such as temporarily blacklisting the source address
 after a set number of unsuccessful login attempts.

 When using call home with the RESTCONF protocol, special care is
 required when using some HTTP authentication schemes, especially the
 Basic [RFC7617] and Digest [RFC7616] schemes, which convey a shared
 secret (e.g., a password). Implementers and deployments should be
 sure to review the Security Considerations section in the RFC for any
 HTTP client authentication scheme used.

6. IANA Considerations

 IANA has assigned three TCP port numbers in the "User Ports" range
 with the service names "netconf-ch-ssh", "netconf-ch-tls", and
 "restconf-ch-tls". These ports will be the default ports for NETCONF
 Call Home and RESTCONF Call Home protocols. Below is the
 registration template following the rules in [RFC6335].

Service Name: netconf‑ch‑ssh
Port Number: 4334
Transport Protocol(s): TCP
Description: NETCONF Call Home (SSH)
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Reference: RFC 8071

Service Name: netconf‑ch‑tls
Port Number: 4335
Transport Protocol(s): TCP
Description: NETCONF Call Home (TLS)
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Reference: RFC 8071

Service Name: restconf‑ch‑tls
Port Number: 4336
Transport Protocol(s): TCP
Description: RESTCONF Call Home (TLS)
Assignee: IESG <iesg@ietf.org>
Contact: IETF Chair <chair@ietf.org>
Reference: RFC 8071

7. References

7.1. Normative References

 [RFC793]
 Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4251]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <http://www.rfc-editor.org/info/rfc4251>.

 [RFC4252]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
 January 2006, <http://www.rfc-editor.org/info/rfc4252>.

 [RFC4253]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <http://www.rfc-editor.org/info/rfc4253>.

 [RFC4254]
 Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,
 January 2006, <http://www.rfc-editor.org/info/rfc4254>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC6187]
 Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <http://www.rfc-editor.org/info/rfc6187>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <http://www.rfc-editor.org/info/rfc6335>.

 [RFC6520]
 Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <http://www.rfc-editor.org/info/rfc6520>.

 [RFC7589]
 Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

7.2. Informative References

 [NETCONF-MODELS]

 Watsen, K., Wu, G., and J. Schoenwaelder, "NETCONF Client
 and Server Models", Work in Progress, draft-ietf-netconf-
 netconf-client-server-01, November 2016.

 [RESTCONF-MODELS]

 Watsen, K. and J. Schoenwaelder, "RESTCONF Client and
 Server Models", Work in Progress draft-ietf-netconf-
 restconf-client-server-01, November 2016.

 [RFC7616]
 Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
 Digest Access Authentication", RFC 7616,
 DOI 10.17487/RFC7616, September 2015,
 <http://www.rfc-editor.org/info/rfc7616>.

 [RFC7617]
 Reschke, J., "The 'Basic' HTTP Authentication Scheme",
 RFC 7617, DOI 10.17487/RFC7617, September 2015,
 <http://www.rfc-editor.org/info/rfc7617>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [Std-802.1AR-2009]

 IEEE, "IEEE Standard for Local and metropolitan area
 networks - Secure Device Identity", IEEE Std 802.1AR-2009,
 DOI 10.1109/IEEESTD.2009.5367679, December 2009,
 <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [TLS1.3]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", Work in Progress, draft-ietf-tls-tls13-18,
 October 2016.

 [zmap]
 Durumeric, Z., Wustrow, E., and J. Halderman, "ZMap: Fast
 Internet-Wide Scanning and its Security Applications",
 22nd Usenix Security Symposium, August 2013,
 <https://zmap.io/paper.html>.

Acknowledgements

 The author would like to thank the following (ordered by last name)
 for lively discussions on the mailing list and in the halls: Jari
 Arkko, Andy Bierman, Martin Bjorklund, Ben Campbell, Spencer Dawkins,
 Mehmet Ersue, Stephen Farrell, Wes Hardaker, Stephen Hanna, David
 Harrington, Jeffrey Hutzelman, Simon Josefsson, Radek Krejci, Suresh
 Krishnan, Barry Leiba, Alan Luchuk, Kathleen Moriarty, Mouse, Russ
 Mundy, Tom Petch, Peter Saint-Andre, Joseph Salowey, Juergen
 Schoenwaelder, Martin Stiemerling, Joe Touch, Hannes Tschofenig, Sean
 Turner, and Bert Wijnen.

Author's Address

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

8072 - YANG Patch Media Type

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8072

Category: Standards Track

ISSN: 2070-1721

A. Bierman

YumaWorks

M. Bjorklund

Tail-f Systems

K. Watsen

Juniper Networks

February 2017

YANG Patch Media Type

Abstract

 This document describes a method for applying patches to
 configuration datastores using data defined with the YANG data
 modeling language.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8072.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
		 1.1. Terminology
		 1.1.1. NETCONF

	 1.1.2. HTTP

	 1.1.3. YANG

	 1.1.4. RESTCONF

	 1.1.5. YANG Patch

	 1.1.6. Examples

	 1.1.7. Tree Diagram Notations

	2. YANG Patch
		 2.1. Target Resource

	 2.2. yang-patch Request

	 2.3. yang-patch-status Response

	 2.4. Target Data Node

	 2.5. Edit Operations

	 2.6. Successful Edit Response Handling

	 2.7. Error Handling

	 2.8. ":yang-patch" RESTCONF Capability

	3. YANG Module

	4. IANA Considerations
		 4.1. Registrations for New URI and YANG Module

	 4.2. Media Types
		 4.2.1. Media Type "application/yang-patch+xml"

	 4.2.2. Media Type "application/yang-patch+json"

	 4.3. RESTCONF Capability URNs

	5. Security Considerations

	6. References
		 6.1. Normative References

	 6.2. Informative References

	Appendix A. Example YANG Module
	 A.1. YANG Patch Examples
		 A.1.1. Add Resources: Error

	 A.1.2. Add Resources: Success

	 A.1.3. Insert List Entry

	 A.1.4. Move List Entry

	 A.1.5. Edit Datastore Resource

	Acknowledgements

	Authors' Addresses

1. Introduction

 There is a need for standard mechanisms to patch datastores defined
 in [RFC6241], which contain conceptual data that conforms to schema
 specified with YANG [RFC7950]. An "ordered 'edit' list" approach is
 needed to provide RESTCONF client developers with more precise
 RESTCONF client control of the edit procedure than the "plain patch"
 mechanism found in [RFC8040].

 This document defines a media type for a YANG-based editing mechanism
 that can be used with the HTTP PATCH method [RFC5789]. YANG Patch is
 designed to support the RESTCONF protocol, defined in [RFC8040].
 This document only specifies the use of the YANG Patch media type
 with the RESTCONF protocol.

 It may be possible to use YANG Patch with other protocols besides
 RESTCONF. This is outside the scope of this document. For any
 protocol that supports the YANG Patch media type, if the entire patch
 document cannot be successfully applied, then the server MUST NOT
 apply any of the changes. It may be possible to use YANG Patch with
 datastore types other than a configuration datastore. This is
 outside the scope of this document.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1.1. NETCONF

 The following terms are defined in [RFC6241]:

 o configuration data

 o datastore

 o configuration datastore

 o protocol operation

 o running configuration datastore

 o state data

 o user

1.1.2. HTTP

 The following terms are defined in [RFC7230]:

 o header field

 o message-body

 o query

 o request URI

 The following terms are defined in [RFC7231]:

 o method

 o request

 o resource

1.1.3. YANG

 The following terms are defined in [RFC7950]:

 o container

 o data node

 o leaf

 o leaf-list

 o list

1.1.4. RESTCONF

 The following terms are defined in [RFC8040]:

 o application/yang-data+xml

 o application/yang-data+json

 o data resource

 o datastore resource

 o patch

 o RESTCONF capability

 o target resource

 o YANG data template

1.1.5. YANG Patch

 The following terms are used within this document:

 o RESTCONF client: a client that implements the RESTCONF protocol.

 o RESTCONF server: a server that implements the RESTCONF protocol.

 o YANG Patch: a conceptual edit request using the "yang-patch" YANG
 Patch template, defined in Section 3. In HTTP, refers to a PATCH
 method where a representation uses either the media type
 "application/yang-patch+xml" or "application/yang-patch+json".

 o YANG Patch Status: a conceptual edit status response using the
 YANG "yang-patch-status" YANG data template, defined in Section 3.
 In HTTP, refers to a response message for a PATCH method, where it
 has a representation with either the media type
 "application/yang-data+xml" or "application/yang-data+json".

 o YANG Patch template: similar to a YANG data template, except that
 it has a representation with the media type
 "application/yang-patch+xml" or "application/yang-patch+json".

1.1.6. Examples

 Some protocol message lines within examples throughout this document
 are split into multiple lines for display purposes only. When a line
 ends with a backslash ("\") as the last character, the line is
 wrapped for display purposes. It is to be considered to be joined to
 the next line by deleting the backslash, the following line break,
 and the leading whitespace of the next line.

1.1.7. Tree Diagram Notations

 A simplified graphical representation of the data model is used in
 this document. The meanings of the symbols in these diagrams are as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 data (read-write), "ro" means state data (read-only), and "x"
 means operation resource (executable).

 o Symbols after data node names: "?" means an optional node, and "*"
 denotes a "list" and "leaf-list".

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. YANG Patch

 A "YANG Patch" is an ordered list of edits that are applied to the
 target datastore by the RESTCONF server. The specific fields are
 defined in the YANG module in Section 3.

 The YANG Patch operation is invoked by the RESTCONF client by
 sending a PATCH method request with a representation using either
 the media type "application/yang-patch+xml" or
 "application/yang-patch+json". This message-body representing the
 YANG Patch input parameters MUST be present.

 YANG Patch has some features that are not possible with the
 "plain-patch" mechanism defined in RESTCONF [RFC8040]:

 o YANG Patch allows multiple sub-resources to be edited within the
 same PATCH method.

o YANG Patch allows a more precise edit operation than the
 "plain patch" mechanism found in [RFC8040]. There are seven
 operations supported ("create", "delete", "insert", "merge",
 "move", "replace", and "remove").

 o YANG Patch uses an "edit" list with an explicit processing order.
 The edits are processed in client-specified order, and error
 processing can be precise even when multiple errors occur in the
 same YANG Patch request.

 The YANG Patch "patch-id" may be useful for debugging and SHOULD be
 present in any audit logging records generated by the RESTCONF server
 for a patch.

 The RESTCONF server MUST return the "Accept-Patch" header field in an
 OPTIONS response, as specified in [RFC5789], which includes the
 media type for YANG Patch. This is needed by a client to determine
 the message-encoding formats supported by the server (e.g., XML,
 JSON, or both). The following is an example of an "Accept-Patch"
 header:

 Accept-Patch: application/yang-patch+xml,application/yang-patch+json

 Note that YANG Patch can only edit data resources. The PATCH method
 cannot be used to replace the datastore resource. Although the
 "ietf-yang-patch" YANG module is written using YANG version 1.1
 [RFC7950], an implementation of YANG Patch can be used with content
 defined in YANG version 1 [RFC6020] as well.

 A YANG Patch can be encoded in XML format according to
 [W3C.REC-xml-20081126]. It can also be encoded in JSON according to
 "JSON Encoding of Data Modeled with YANG" [RFC7951]. If any metadata
 needs to be sent in a JSON message, it is encoded according to
 "Defining and Using Metadata with YANG" [RFC7952].

2.1. Target Resource

 The YANG Patch operation uses the RESTCONF target resource URI to
 identify the resource that will be patched. This can be the
 datastore resource itself, i.e., "{+restconf}/data", to edit
 top-level configuration data resources, or it can be a configuration
 data resource within the datastore resource, e.g.,
 "{+restconf}/data/ietf-interfaces:interfaces", to edit sub-resources
 within a top-level configuration data resource.

The target resource MUST identify exactly one resource instance. If
more than one resource instance is identified, then the request
MUST NOT be processed and a "400 Bad Request" error response MUST be
sent by the server. If the target resource does not identify any
existing resource instance, then the request MUST NOT be processed
and a "404 Not Found" error response MUST be sent by the server.

 Each edit with a YANG Patch identifies a target data node for the
 associated edit. This is described in Section 2.4.

2.2. yang-patch Request

 A YANG Patch is identified by a unique "patch-id", and it may have an
 optional comment. A patch is an ordered collection of edits. Each
 edit is identified by an "edit-id", and it has an edit operation
 ("create", "delete", "insert", "merge", "move", "replace", or
 "remove") that is applied to the target resource. Each edit can be
 applied to a sub-resource "target" within the target resource. If
 the operation is "insert" or "move", then the "where" parameter
 indicates how the node is inserted or moved. For values "before" and
 "after", the "point" parameter specifies the data node insertion
 point.

 The "merge", "replace", "create", "delete", and "remove" edit
 operations have exactly the same meanings as those defined for the
 "operation" attribute described in Section 7.2 of [RFC6241].

 Each edit within a YANG Patch MUST identify exactly one data resource
 instance. If an edit represents more than one resource instance,
 then the request MUST NOT be processed and a "400 Bad Request" error
 response MUST be sent by the server. If the edit does not identify
 any existing resource instance and the operation for the edit is not
 "create", then the request MUST NOT be processed and a "404 Not
 Found" error response MUST be sent by the server. A
 "yang-patch-status" response MUST be sent by the server identifying
 the edit or edits that are not valid.

 YANG Patch does not provide any access to specific datastores. How a
 server processes an edit if it is co-located with a Network
 Configuration Protocol (NETCONF) server that does provide access to
 individual datastores is left up to the implementation. A complete
 datastore cannot be replaced in the same manner as that provided by
 the <copy-config> operation defined in Section 7.3 of [RFC6241].
 Only the specified nodes in a YANG Patch are affected.

A message‑body representing the YANG Patch is sent by the RESTCONF
client to specify the edit operation request. When used with the
HTTP PATCH method, this data is identified by the YANG Patch
media type.

 YANG tree diagram for "yang-patch" container:

+‑‑‑‑ yang‑patch
 +‑‑‑‑ patch‑id string
 +‑‑‑‑ comment? string
 +‑‑‑‑ edit* [edit‑id]
 +‑‑‑‑ edit‑id string
 +‑‑‑‑ operation enumeration
 +‑‑‑‑ target target‑resource‑offset
 +‑‑‑‑ point? target‑resource‑offset
 +‑‑‑‑ where? enumeration
 +‑‑‑‑ value?

2.3. yang-patch-status Response

 A message-body representing the YANG Patch Status is returned to the
 RESTCONF client to report the detailed status of the edit operation.
 When used with the HTTP PATCH method, this data is identified by the
 YANG Patch Status media type; the syntax specification is defined in
 Section 3.

 YANG tree diagram for "yang-patch-status" container:

+‑‑‑‑ yang‑patch‑status
 +‑‑‑‑ patch‑id string
 +‑‑‑‑ (global‑status)?
 | +‑‑:(global‑errors)
 | | +‑‑‑‑ errors
 | | +‑‑‑‑ error*
 | | +‑‑‑‑ error‑type enumeration
 | | +‑‑‑‑ error‑tag string
 | | +‑‑‑‑ error‑app‑tag? string
 | | +‑‑‑‑ error‑path? instance‑identifier
 | | +‑‑‑‑ error‑message? string
 | | +‑‑‑‑ error‑info?
 | +‑‑:(ok)
 | +‑‑‑‑ ok? empty
 +‑‑‑‑ edit‑status
 +‑‑‑‑ edit* [edit‑id]
 +‑‑‑‑ edit‑id string
 +‑‑‑‑ (edit‑status‑choice)?
 +‑‑:(ok)
 | +‑‑‑‑ ok? empty
 +‑‑:(errors)
 +‑‑‑‑ errors
 +‑‑‑‑ error*
 +‑‑‑‑ error‑type enumeration
 +‑‑‑‑ error‑tag string
 +‑‑‑‑ error‑app‑tag? string
 +‑‑‑‑ error‑path? instance‑identifier
 +‑‑‑‑ error‑message? string
 +‑‑‑‑ error‑info?

2.4. Target Data Node

 The target data node for each edit operation is determined by the
 value of the target resource in the request and the "target" leaf
 within each "edit" entry.

 If the target resource specified in the request URI identifies a
 datastore resource, then the path string in the "target" leaf is
 treated as an absolute path expression identifying the target data
 node for the corresponding edit. The first node specified in the
 "target" leaf is a top-level data node defined within a YANG module.
 The "target" leaf MUST NOT contain a single forward slash ("/"),
 since this would identify the datastore resource, not a data
 resource.

 If the target resource specified in the request URI identifies a
 configuration data resource, then the path string in the "target"
 leaf is treated as a relative path expression. The first node
 specified in the "target" leaf is a child configuration data node of
 the data node associated with the target resource. If the "target"
 leaf contains a single forward slash ("/"), then the target data node
 is the target resource data node.

2.5. Edit Operations

 Each YANG Patch edit specifies one edit operation on the target data
 node. The set of operations is aligned with the NETCONF edit
 operations but also includes some new operations.

+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Operation | Description |
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
create	create a new data resource if it does not already
	exist; if it already exists, return an error
delete	delete a data resource if it already exists; if it
	does not exist, return an error
insert	insert a new user‑ordered data resource
merge	merge the edit value with the target data resource;
	create if it does not already exist
move	reorder the target data resource
replace	replace the target data resource with the edit value
remove	remove a data resource if it already exists
+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 YANG Patch Edit Operations

2.6. Successful Edit Response Handling

 If a YANG Patch is completed without errors, the RESTCONF server MUST
 return a "yang-patch-status" message with a "global-status" choice
 set to "ok".

 Refer to Appendix A.1.2 for an example of a successful YANG Patch
 response.

2.7. Error Handling

 If a well-formed, schema-valid YANG Patch message is received, then
 the RESTCONF server will process the supplied edits in ascending
 order. The following error modes apply to the processing of this
 "edit" list:

 If a YANG Patch is completed with errors, the RESTCONF server SHOULD
 return a "yang-patch-status" message. It is possible (e.g., within a
 distributed implementation) that an invalid request will be rejected
 before the YANG Patch edits are processed. In this case, the server
 MUST send the appropriate HTTP error response instead.

 Refer to Appendix A.1.1 for an example of an error YANG Patch
 response.

2.8. ":yang-patch" RESTCONF Capability

 A URI is defined to identify the YANG Patch extension to the base
 RESTCONF protocol. If the RESTCONF server supports the YANG Patch
 media type, then the ":yang-patch" RESTCONF capability defined in
 Section 4.3 MUST be present in the "capability" leaf-list in the
 "ietf-restconf-monitoring" module defined in [RFC8040].

3. YANG Module

 The "ietf-yang-patch" module defines conceptual definitions with the
 "yang-data" extension statements, which are not meant to be
 implemented as datastore contents by a RESTCONF server.

 The "ietf-restconf" module from [RFC8040] is used by this module for
 the "yang-data" extension definition.

 <CODE BEGINS>

 file "ietf-yang-patch@2017-02-22.yang"

module ietf‑yang‑patch {
 yang‑version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf‑yang‑patch";
 prefix "ypatch";

 import ietf-restconf { prefix rc; }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail‑f.com>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

description
 "This module contains conceptual YANG specifications
 for the YANG Patch and YANG Patch Status data structures.

 Note that the YANG definitions within this module do not
 represent configuration data of any kind.
 The YANG grouping statements provide a normative syntax
 for XML and JSON message‑encoding purposes.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8072; see
 the RFC itself for full legal notices.";

revision 2017‑02‑22 {
 description
 "Initial revision.";
 reference
 "RFC 8072: YANG Patch Media Type.";
}

typedef target‑resource‑offset {
 type string;
 description
 "Contains a data resource identifier string representing
 a sub‑resource within the target resource.
 The document root for this expression is the
 target resource that is specified in the
 protocol operation (e.g., the URI for the PATCH request).

 This string is encoded according to the same rules as those
 for a data resource identifier in a RESTCONF request URI.";
 reference
 "RFC 8040, Section 3.5.3.";
}

rc:yang‑data "yang‑patch" {
 uses yang‑patch;
}

rc:yang‑data "yang‑patch‑status" {
 uses yang‑patch‑status;
}

 grouping yang-patch {

 description

 "A grouping that contains a YANG container representing the
 syntax and semantics of a YANG Patch edit request message.";

container yang‑patch {
 description
 "Represents a conceptual sequence of datastore edits,
 called a patch. Each patch is given a client‑assigned
 patch identifier. Each edit MUST be applied
 in ascending order, and all edits MUST be applied.
 If any errors occur, then the target datastore MUST NOT
 be changed by the YANG Patch operation.

 It is possible for a datastore constraint violation to occur
 due to any node in the datastore, including nodes not
 included in the 'edit' list. Any validation errors MUST
 be reported in the reply message.";

 reference

 "RFC 7950, Section 8.3.";

leaf patch‑id {
 type string;
 mandatory true;
 description
 "An arbitrary string provided by the client to identify
 the entire patch. Error messages returned by the server
 that pertain to this patch will be identified by this
 'patch‑id' value. A client SHOULD attempt to generate
 unique 'patch‑id' values to distinguish between
 transactions from multiple clients in any audit logs
 maintained by the server.";
}

leaf comment {
 type string;
 description
 "An arbitrary string provided by the client to describe
 the entire patch. This value SHOULD be present in any
 audit logging records generated by the server for the
 patch.";
}

list edit {
 key edit‑id;
 ordered‑by user;

 description

 "Represents one edit within the YANG Patch request message.
 The 'edit' list is applied in the following manner:

 ‑ The first edit is conceptually applied to a copy
 of the existing target datastore, e.g., the
 running configuration datastore.
 ‑ Each ascending edit is conceptually applied to
 the result of the previous edit(s).
 ‑ After all edits have been successfully processed,
 the result is validated according to YANG constraints.
 ‑ If successful, the server will attempt to apply
 the result to the target datastore.";

leaf edit‑id {
 type string;
 description
 "Arbitrary string index for the edit.
 Error messages returned by the server that pertain
 to a specific edit will be identified by this value.";
}

leaf operation {
 type enumeration {
 enum create {
 description
 "The target data node is created using the supplied
 value, only if it does not already exist. The
 'target' leaf identifies the data node to be
 created, not the parent data node.";
 }
 enum delete {
 description
 "Delete the target node, only if the data resource
 currently exists; otherwise, return an error.";
 }

 enum insert {
 description
 "Insert the supplied value into a user‑ordered
 list or leaf‑list entry. The target node must
 represent a new data resource. If the 'where'
 parameter is set to 'before' or 'after', then
 the 'point' parameter identifies the insertion
 point for the target node.";
 }
 enum merge {
 description
 "The supplied value is merged with the target data
 node.";
 }
 enum move {
 description
 "Move the target node. Reorder a user‑ordered
 list or leaf‑list. The target node must represent
 an existing data resource. If the 'where' parameter
 is set to 'before' or 'after', then the 'point'
 parameter identifies the insertion point to move
 the target node.";
 }
 enum replace {
 description
 "The supplied value is used to replace the target
 data node.";
 }
 enum remove {
 description
 "Delete the target node if it currently exists.";
 }
 }
 mandatory true;
 description
 "The datastore operation requested for the associated
 'edit' entry.";
}

leaf target {
 type target‑resource‑offset;
 mandatory true;
 description
 "Identifies the target data node for the edit
 operation. If the target has the value '/', then
 the target data node is the target resource.
 The target node MUST identify a data resource,
 not the datastore resource.";
}

leaf point {
 when "(../operation = 'insert' or ../operation = 'move')"
 + "and (../where = 'before' or ../where = 'after')" {
 description
 "This leaf only applies for 'insert' or 'move'
 operations, before or after an existing entry.";
 }
 type target‑resource‑offset;
 description
 "The absolute URL path for the data node that is being
 used as the insertion point or move point for the
 target of this 'edit' entry.";
}

leaf where {
 when "../operation = 'insert' or ../operation = 'move'" {
 description
 "This leaf only applies for 'insert' or 'move'
 operations.";
 }
 type enumeration {
 enum before {
 description
 "Insert or move a data node before the data resource
 identified by the 'point' parameter.";
 }
 enum after {
 description
 "Insert or move a data node after the data resource
 identified by the 'point' parameter.";
 }

 enum first {
 description
 "Insert or move a data node so it becomes ordered
 as the first entry.";
 }
 enum last {
 description
 "Insert or move a data node so it becomes ordered
 as the last entry.";
 }
 }
 default last;
 description
 "Identifies where a data resource will be inserted
 or moved. YANG only allows these operations for
 list and leaf‑list data nodes that are
 'ordered‑by user'.";
}

anydata value {
 when "../operation = 'create' "
 + "or ../operation = 'merge' "
 + "or ../operation = 'replace' "
 + "or ../operation = 'insert'" {
 description
 "The anydata 'value' is only used for 'create',
 'merge', 'replace', and 'insert' operations.";
 }
 description
 "Value used for this edit operation. The anydata 'value'
 contains the target resource associated with the
 'target' leaf.

 For example, suppose the target node is a YANG container
 named foo:

container foo {
 leaf a { type string; }
 leaf b { type int32; }
}

 The 'value' node contains one instance of foo:

 <value>
 <foo xmlns='example‑foo‑namespace'>
 <a>some value
 42
 </foo>
 </value>
 ";
 }
 }
}

 } // grouping yang-patch

 grouping yang-patch-status {

 description

 "A grouping that contains a YANG container representing the
 syntax and semantics of a YANG Patch Status response
 message.";

container yang‑patch‑status {
 description
 "A container representing the response message sent by the
 server after a YANG Patch edit request message has been
 processed.";

 leaf patch‑id {
 type string;
 mandatory true;
 description
 "The 'patch‑id' value used in the request.";
 }

 choice global‑status {
 description
 "Report global errors or complete success.
 If there is no case selected, then errors
 are reported in the 'edit‑status' container.";

 case global‑errors {
 uses rc:errors;
 description
 "This container will be present if global errors that
 are unrelated to a specific edit occurred.";
 }
 leaf ok {
 type empty;
 description
 "This leaf will be present if the request succeeded
 and there are no errors reported in the 'edit‑status'
 container.";
 }
 }

 container edit‑status {
 description
 "This container will be present if there are
 edit‑specific status responses to report.
 If all edits succeeded and the 'global‑status'
 returned is 'ok', then a server MAY omit this
 container.";

 list edit {

 key edit-id;

 description
 "Represents a list of status responses,
 corresponding to edits in the YANG Patch
 request message. If an 'edit' entry was
 skipped or not reached by the server,
 then this list will not contain a corresponding
 entry for that edit.";

 leaf edit‑id {
 type string;
 description
 "Response status is for the 'edit' list entry
 with this 'edit‑id' value.";
 }

 choice edit‑status‑choice {
 description
 "A choice between different types of status
 responses for each 'edit' entry.";
 leaf ok {
 type empty;
 description
 "This 'edit' entry was invoked without any
 errors detected by the server associated
 with this edit.";
 }
 case errors {
 uses rc:errors;
 description
 "The server detected errors associated with the
 edit identified by the same 'edit‑id' value.";
 }
 }
 }
 }
 }
} // grouping yang‑patch‑status

 }

 <CODE ENDS>

4. IANA Considerations

4.1. Registrations for New URI and YANG Module

 This document registers one URI as a namespace in the "IETF XML
 Registry" [RFC3688]. It follows the format in RFC 3688.

URI: urn:ietf:params:xml:ns:yang:ietf‑yang‑patch
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.

 This document registers one YANG module in the "YANG Module Names"
 registry [RFC6020].

name: ietf‑yang‑patch
namespace: urn:ietf:params:xml:ns:yang:ietf‑yang‑patch
prefix: ypatch
reference: RFC 8072

4.2. Media Types

4.2.1. Media Type "application/yang-patch+xml"

 Type name: application

 Subtype name: yang-patch+xml

 Required parameters: None

 Optional parameters: None

Encoding considerations: 8‑bit
 The "utf‑8" charset is always used for this type.
 Each conceptual YANG data node is encoded according to the
 XML Encoding Rules and Canonical Format for the specific
 YANG data node type defined in [RFC7950].
 In addition, the "yang‑patch" YANG Patch template found
 in RFC 8072 defines the structure of a YANG Patch request.

Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 5 of RFC 8072.
 Additional security considerations are specific to the
 semantics of particular YANG data models. Each YANG module
 is expected to specify security considerations for the
 YANG data defined in that module.

 Interoperability considerations: RFC 8072 specifies the format

 of conforming messages and the interpretation thereof.

 Published specification: RFC 8072

Applications that use this media type: Instance document
 data parsers used within a protocol or automation tool
 that utilize the YANG Patch data structure.

 Fragment identifier considerations: The syntax and semantics

 of fragment identifiers are the same as the syntax and semantics
 specified for the "application/xml" media type.

 Additional information:

Deprecated alias names for this type: N/A
Magic number(s): N/A
File extension(s): None
Macintosh file type code(s): "TEXT"

 Person & email address to contact for further information: See

 the Authors' Addresses section of RFC 8072.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors' Addresses section of RFC 8072.

 Change controller: Internet Engineering Task Force

 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

4.2.2. Media Type "application/yang-patch+json"

 Type name: application

 Subtype name: yang-patch+json

 Required parameters: None

 Optional parameters: None

Encoding considerations: 8‑bit
 The "utf‑8" charset is always used for this type.
 Each conceptual YANG data node is encoded according to
 RFC 7951. A metadata annotation is encoded according to
 RFC 7952. In addition, the "yang‑patch" YANG Patch
 template found in RFC 8072 defines the structure of a
 YANG Patch request.

Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 5 of RFC 8072.
 Additional security considerations are specific to the
 semantics of particular YANG data models. Each YANG module
 is expected to specify security considerations for the
 YANG data defined in that module.

 Interoperability considerations: RFC 8072 specifies the format

 of conforming messages and the interpretation thereof.

 Published specification: RFC 8072

Applications that use this media type: Instance document
 data parsers used within a protocol or automation tool
 that utilize the YANG Patch data structure.

 Fragment identifier considerations: The syntax and semantics

 of fragment identifiers are the same as the syntax and semantics
 specified for the "application/json" media type.

 Additional information:

Deprecated alias names for this type: N/A
Magic number(s): N/A
File extension(s): None
Macintosh file type code(s): "TEXT"

 Person & email address to contact for further information: See

 the Authors' Addresses section of RFC 8072.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors' Addresses section of RFC 8072.

 Change controller: Internet Engineering Task Force

 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

4.3. RESTCONF Capability URNs

 This document registers one capability identifier in the "RESTCONF
 Capability URNs" registry [RFC8040]. The review policy for this
 registry is "IETF Review" [RFC5226].

Index Capability Identifier
‑‑
:yang‑patch urn:ietf:params:restconf:capability:yang‑patch:1.0

5. Security Considerations

 The YANG Patch media type does not introduce any significant new
 security threats, beyond what is described in [RFC8040]. This
 document defines edit processing instructions for a variant of the
 PATCH method, as used within the RESTCONF protocol. Message
 integrity is provided by the RESTCONF protocol. There is no
 additional capability to validate that a patch has not been altered.

 It may be possible to use YANG Patch with other protocols besides
 RESTCONF; this topic is outside the scope of this document.

 For RESTCONF, both the client and server MUST be authenticated
 according to Section 2 of [RFC8040]. It is important for RESTCONF
 server implementations to carefully validate all the edit request
 parameters in some manner. If the entire YANG Patch request cannot
 be completed, then no configuration changes to the system are done.
 A PATCH request MUST be applied atomically, as specified in Section 2
 of [RFC5789].

A RESTCONF server implementation SHOULD attempt to prevent system
disruption due to incremental processing of the YANG Patch
"edit" list. It may be possible to construct an attack on such a
RESTCONF server, which relies on the edit processing order mandated
by YANG Patch. A server SHOULD apply only the fully validated
configuration to the underlying system. For example, an "edit" list
that deleted an interface and then recreated it could cause system
disruption if the "edit" list was incrementally applied.

 A RESTCONF server implementation SHOULD attempt to prevent system
 disruption due to excessive resource consumption required to fulfill
 YANG Patch edit requests. On such an implementation, it may be
 possible to construct an attack that attempts to consume all
 available memory or other resource types.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688]
 Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC5789]
 Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <http://www.rfc-editor.org/info/rfc5789>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7159]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159,
 March 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Semantics and Content",
 RFC 7231, DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7951]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <http://www.rfc-editor.org/info/rfc7951>.

 [RFC7952]
 Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <http://www.rfc-editor.org/info/rfc7952>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0
 (Fifth Edition)", World Wide Web Consortium
 Recommendation REC-xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

6.2. Informative References

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

Appendix A. Example YANG Module

 The example YANG module used in this document represents a simple
 media jukebox interface. The "example-jukebox" YANG module is
 defined in [RFC8040].

 YANG tree diagram for the "example-jukebox" module:

+‑‑rw jukebox!
 +‑‑rw library
 | +‑‑rw artist* [name]
 | | +‑‑rw name string
 | | +‑‑rw album* [name]
 | | +‑‑rw name string
 | | +‑‑rw genre? identityref
 | | +‑‑rw year? uint16
 | | +‑‑rw admin
 | | | +‑‑rw label? string
 | | | +‑‑rw catalogue‑number? string
 | | +‑‑rw song* [name]
 | | +‑‑rw name string
 | | +‑‑rw location string
 | | +‑‑rw format? string
 | | +‑‑rw length? uint32
 | +‑‑ro artist‑count? uint32
 | +‑‑ro album‑count? uint32
 | +‑‑ro song‑count? uint32
 +‑‑rw playlist* [name]
 | +‑‑rw name string
 | +‑‑rw description? string
 | +‑‑rw song* [index]
 | +‑‑rw index uint32
 | +‑‑rw id instance‑identifier
 +‑‑rw player
 +‑‑rw gap? decimal64

 rpcs:

+‑‑‑x play
 +‑‑ro input
 +‑‑ro playlist string
 +‑‑ro song‑number uint32

A.1. YANG Patch Examples

 This section includes RESTCONF examples. Most examples are shown in
 JSON encoding [RFC7159], and some are shown in XML encoding
 [W3C.REC-xml-20081126].

A.1.1. Add Resources: Error

 The following example shows several songs being added to an existing
 album. Each edit contains one song. The first song already exists,
 so an error will be reported for that edit. The rest of the edits
 were not attempted, since the first edit failed. XML encoding is
 used in this example.

 Request from the RESTCONF client:

PATCH /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
Host: example.com
Accept: application/yang‑data+xml
Content‑Type: application/yang‑patch+xml

<yang‑patch xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑patch">
 <patch‑id>add‑songs‑patch</patch‑id>
 <edit>
 <edit‑id>edit1</edit‑id>
 <operation>create</operation>
 <target>/song=Bridge%20Burning</target>
 <value>
 <song xmlns="http://example.com/ns/example‑jukebox">
 <name>Bridge Burning</name>
 <location>/media/bridge_burning.mp3</location>
 <format>MP3</format>
 <length>288</length>
 </song>
 </value>
 </edit>

 <edit>
 <edit‑id>edit2</edit‑id>
 <operation>create</operation>
 <target>/song=Rope</target>
 <value>
 <song xmlns="http://example.com/ns/example‑jukebox">
 <name>Rope</name>
 <location>/media/rope.mp3</location>
 <format>MP3</format>
 <length>259</length>
 </song>
 </value>
 </edit>
 <edit>
 <edit‑id>edit3</edit‑id>
 <operation>create</operation>
 <target>/song=Dear%20Rosemary</target>
 <value>
 <song xmlns="http://example.com/ns/example‑jukebox">
 <name>Dear Rosemary</name>
 <location>/media/dear_rosemary.mp3</location>
 <format>MP3</format>
 <length>269</length>
 </song>
 </value>
 </edit>
</yang‑patch>

 XML response from the RESTCONF server:

 HTTP/1.1 409 Conflict
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example‑server
 Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
 Content‑Type: application/yang‑data+xml

 <yang‑patch‑status
 xmlns="urn:ietf:params:xml:ns:yang:ietf‑yang‑patch">
 <patch‑id>add‑songs‑patch</patch‑id>
 <edit‑status>
 <edit>
 <edit‑id>edit1</edit‑id>
 <errors>
 <error>
 <error‑type>application</error‑type>
 <error‑tag>data‑exists</error‑tag>
 <error‑path
 xmlns:jb="http://example.com/ns/example‑jukebox">
 /jb:jukebox/jb:library
 /jb:artist[jb:name='Foo Fighters']
 /jb:album[jb:name='Wasting Light']
 /jb:song[jb:name='Bridge Burning']
 </error‑path>
 <error‑message>
 Data already exists; cannot be created
 </error‑message>
 </error>
 </errors>
 </edit>
 </edit‑status>
</yang‑patch‑status>

 JSON response from the RESTCONF server:

 The following response is shown in JSON format to highlight the
 difference in the "error-path" object encoding. For JSON, the
 instance-identifier encoding specified in [RFC7951] is used.

HTTP/1.1 409 Conflict
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
Content‑Type: application/yang‑data+json

{
 "ietf‑yang‑patch:yang‑patch‑status" : {
 "patch‑id" : "add‑songs‑patch",
 "edit‑status" : {
 "edit" : [
 {
 "edit‑id" : "edit1",
 "errors" : {
 "error" : [
 {
 "error‑type": "application",
 "error‑tag": "data‑exists",
 "error‑path": "/example‑jukebox:jukebox/library\
 /artist[name='Foo Fighters']\
 /album[name='Wasting Light']\
 /song[name='Bridge Burning']",
 "error‑message":
 "Data already exists; cannot be created"
 }
]
 }
 }
]
 }
 }
}

A.1.2. Add Resources: Success

 The following example shows several songs being added to an existing
 album.

 o Each of two edits contains one song.

 o Both edits succeed, and new sub-resources are created.

 Request from the RESTCONF client:

PATCH /restconf/data/example‑jukebox:jukebox/\
 library/artist=Foo%20Fighters/album=Wasting%20Light \
 HTTP/1.1
Host: example.com
Accept: application/yang‑data+json
Content‑Type: application/yang‑patch+json

{
 "ietf‑yang‑patch:yang‑patch" : {
 "patch‑id" : "add‑songs‑patch‑2",
 "edit" : [
 {
 "edit‑id" : "edit1",
 "operation" : "create",
 "target" : "/song=Rope",
 "value" : {
 "song" : [
 {
 "name" : "Rope",
 "location" : "/media/rope.mp3",
 "format" : "MP3",
 "length" : 259
 }
]
 }
 },

 {
 "edit‑id" : "edit2",
 "operation" : "create",
 "target" : "/song=Dear%20Rosemary",
 "value" : {
 "song" : [
 {
 "name" : "Dear Rosemary",
 "location" : "/media/dear_rosemary.mp3",
 "format" : "MP3",
 "length" : 269
 }
]
 }
 }
]
 }
}

 Response from the RESTCONF server:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
Content‑Type: application/yang‑data+json

{
 "ietf‑yang‑patch:yang‑patch‑status" : {
 "patch‑id" : "add‑songs‑patch‑2",
 "ok" : [null]
 }
}

A.1.3. Insert List Entry

 The following example shows a song being inserted within an existing
 playlist. Song "6" in playlist "Foo-One" is being inserted after
 song "5" in the playlist. The operation succeeds, so a non-error
 reply can be provided.

 Request from the RESTCONF client:

PATCH /restconf/data/example‑jukebox:jukebox/\
 playlist=Foo‑One HTTP/1.1
Host: example.com
Accept: application/yang‑data+json
Content‑Type: application/yang‑patch+json

{
 "ietf‑yang‑patch:yang‑patch" : {
 "patch‑id" : "insert‑song‑patch",
 "comment" : "Insert song 6 after song 5",
 "edit" : [
 {
 "edit‑id" : "edit1",
 "operation" : "insert",
 "target" : "/song=6",
 "point" : "/song=5",
 "where" : "after",
 "value" : {
 "example‑jukebox:song" : [
 {
 "index" : 6,
 "id" : "/example‑jukebox:jukebox/library\
 /artist[name='Foo Fighters']\
 /album[name='Wasting Light']\
 /song[name='Bridge Burning']"
 }
]
 }
 }
]
 }

 Response from the RESTCONF server:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
Content‑Type: application/yang‑data+json

{
 "ietf‑yang‑patch:yang‑patch‑status" : {
 "patch‑id" : "insert‑song‑patch",
 "ok" : [null]
 }
}

A.1.4. Move List Entry

The following example shows a song being moved within an existing
playlist. Song "1" in playlist "Foo‑One" is being moved after
song "3" in the playlist. Note that no "value" parameter is needed
for a "move" operation. The operation succeeds, so a non‑error reply
can be provided.

 Request from the RESTCONF client:

PATCH /restconf/data/example‑jukebox:jukebox/\
 playlist=Foo‑One HTTP/1.1
Host: example.com
Accept: application/yang‑data+json
Content‑Type: application/yang‑patch+json

{
 "ietf‑yang‑patch:yang‑patch" : {
 "patch‑id" : "move‑song‑patch",
 "comment" : "Move song 1 after song 3",
 "edit" : [
 {
 "edit‑id" : "edit1",
 "operation" : "move",
 "target" : "/song=1",
 "point" : "/song=3",
 "where" : "after"
 }
]
 }
}

 Response from the RESTCONF server:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:56:30 GMT
Content‑Type: application/yang‑data+json

{
 "ietf‑restconf:yang‑patch‑status" : {
 "patch‑id" : "move‑song‑patch",
 "ok" : [null]
 }
}

A.1.5. Edit Datastore Resource

 The following example shows how three top-level data nodes from
 different modules can be edited at the same time.

 Example module "foo" defines leaf X. Example module "bar" defines
 container Y, with child leafs A and B. Example module "baz" defines
 list Z, with key C and child leafs D and E.

 Request from the RESTCONF client:

PATCH /restconf/data HTTP/1.1
Host: example.com
Accept: application/yang‑data+json
Content‑Type: application/yang‑patch+json

{
 "ietf‑yang‑patch:yang‑patch" : {
 "patch‑id" : "datastore‑patch‑1",
 "comment" : "Edit 3 top‑level data nodes at once",
 "edit" : [
 {
 "edit‑id" : "edit1",
 "operation" : "create",
 "target" : "/foo:X",
 "value" : {
 "foo:X" : 42
 }
 },

 {
 "edit‑id" : "edit2",
 "operation" : "merge",
 "target" : "/bar:Y",
 "value" : {
 "bar:Y" : {
 "A" : "test1",
 "B" : 99
 }
 }
 },
 {
 "edit‑id" : "edit3",
 "operation" : "replace",
 "target" : "/baz:Z=2",
 "value" : {
 "baz:Z" : [
 {
 "C" : 2,
 "D" : 100,
 "E" : false
 }
]
 }
 }
]
 }
}

 Response from the RESTCONF server:

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Server: example‑server
Last‑Modified: Thu, 26 Jan 2017 20:55:30 GMT
Content‑Type: application/yang‑data+json

{
 "ietf‑yang‑patch:yang‑patch‑status" : {
 "patch‑id" : "datastore‑patch‑1",
 "ok" : [null]
 }
}

Acknowledgements

 The authors would like to thank Rex Fernando for his contributions to
 this document.

Contributions to this material by Andy Bierman are based upon work
supported by the United States Army, Space & Terrestrial
Communications Directorate (S&TCD) under Contract
No. W15P7T‑13‑C‑A616. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the S&TCD.

Authors' Addresses

Andy Bierman
YumaWorks

 Email: andy@yumaworks.com

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

Kent Watsen
Juniper Networks

 Email: kwatsen@juniper.net

8341 - Network Configuration Access Control Model

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 8341

STD: 91

Obsoletes: 6536

Category: Standards Track

ISSN: 2070-1721

A. Bierman

YumaWorks

M. Bjorklund

Tail-f Systems

March 2018

Network Configuration Access Control Model

Abstract

 The standardization of network configuration interfaces for use with
 the Network Configuration Protocol (NETCONF) or the RESTCONF protocol
 requires a structured and secure operating environment that promotes
 human usability and multi-vendor interoperability. There is a need
 for standard mechanisms to restrict NETCONF or RESTCONF protocol
 access for particular users to a preconfigured subset of all
 available NETCONF or RESTCONF protocol operations and content. This
 document defines such an access control model.

 This document obsoletes RFC 6536.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8341.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
		 1.1. Terminology

	 1.2. Changes since RFC 6536

	2. Access Control Design Objectives
		 2.1. Access Control Points

	 2.2. Simplicity

	 2.3. Procedural Interface

	 2.4. Datastore Access

	 2.5. Users and Groups

	 2.6. Maintenance

	 2.7. Configuration Capabilities

	 2.8. Identifying Security-Sensitive Content

	3. NETCONF Access Control Model (NACM)
		 3.1. Overview
	 3.1.1. Features

	 3.1.2. External Dependencies

	 3.1.3. Message Processing Model

	 3.2. Datastore Access
	 3.2.1. Mapping New Datastores to NACM

	 3.2.2. Access Rights

	 3.2.3. RESTCONF Methods

	 3.2.4. <get> and <get-config> Operations

	 3.2.5. <edit-config> Operation

	 3.2.6. <copy-config> Operation

	 3.2.7. <delete-config> Operation

	 3.2.8. <commit> Operation

	 3.2.9. <discard-changes> Operation

	 3.2.10. <kill-session> Operation

	 3.3. Model Components
	 3.3.1. Users

	 3.3.2. Groups

	 3.3.3. Emergency Recovery Session

	 3.3.4. Global Enforcement Controls
	 3.3.4.1. enable-nacm Switch

	 3.3.4.2. read-default Switch

	 3.3.4.3. write-default Switch

	 3.3.4.4. exec-default Switch

	 3.3.4.5. enable-external-groups Switch

	 3.3.5. Access Control Rules

	 3.4. Access Control Enforcement Procedures
	 3.4.1. Initial Operation

	 3.4.2. Session Establishment

	 3.4.3. "access-denied" Error Handling

	 3.4.4. Incoming RPC Message Validation

	 3.4.5. Data Node Access Validation

	 3.4.6. Outgoing <notification> Authorization

	 3.5. Data Model Definitions
	 3.5.1. Data Organization

	 3.5.2. YANG Module

	4. IANA Considerations

	5. Security Considerations
		 5.1. NACM Configuration and Monitoring Considerations

	 5.2. General Configuration Issues

	 5.3. Data Model Design Considerations

	6. References
		 6.1. Normative References

	 6.2. Informative References

	Appendix A. Usage Examples
	 A.1. <groups> Example

	 A.2. Module Rule Example

	 A.3. Protocol Operation Rule Example

	 A.4. Data Node Rule Example

	 A.5. Notification Rule Example

	Authors' Addresses

1. Introduction

 The Network Configuration Protocol (NETCONF) and the RESTCONF
 protocol do not provide any standard mechanisms to restrict the
 protocol operations and content that each user is authorized to
 access.

 There is a need for interoperable management of the controlled access
 to administrator-selected portions of the available NETCONF or
 RESTCONF content within a particular server.

 This document addresses access control mechanisms for the Operations
 and Content layers of NETCONF, as defined in [RFC6241]; and RESTCONF,
 as defined in [RFC8040]. It contains three main sections:

 1. Access Control Design Objectives

 2. NETCONF Access Control Model (NACM)

 3. YANG Data Model (ietf-netconf-acm.yang)

 YANG version 1.1 [RFC7950] adds two new constructs that need special
 access control handling. The "action" statement is similar to the
 "rpc" statement, except that it is located within a data node. The
 "notification" statement can also be located within a data node.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC8342] and are not redefined
 here:

 o datastore

 o configuration datastore

 o conventional configuration datastore

 o candidate configuration datastore

 o running configuration datastore

 o startup configuration datastore

 o operational state datastore

 o client

 o server

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o protocol operation

 o session

 o user

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o action

 o data node

 o data definition statement

 The following terms are defined in [RFC8040] and are not redefined
 here:

 o data resource

 o datastore resource

 o operation resource

 o target resource

 The following term is defined in [RFC7230] and is not redefined here:

 o request URI

 The following terms are used throughout this document:

access control: A security feature provided by the server that
 allows an administrator to restrict access to a subset of all
 protocol operations and data, based on various criteria.

access control model (ACM): A conceptual model used to configure and
 monitor the access control procedures desired by the administrator
 to enforce a particular access control policy.

access control rule: The criterion used to determine if a particular
 access operation will be permitted or denied.

access operation: How a request attempts to access a conceptual
 object. One of "none", "read", "create", "delete", "update", or
 "execute".

data node hierarchy: The hierarchy of data nodes that identifies the
 specific "action" or "notification" node in the datastore.

recovery session: A special administrative session that is given
 unlimited NETCONF access and is exempt from all access control
 enforcement. The mechanism or mechanisms used by a server to
 control and identify whether or not a session is a recovery
 session are implementation specific and are outside the scope of
 this document.

write access: A shorthand for the "create", "delete", and "update"
 access operations.

1.2. Changes since RFC 6536

 The NACM procedures and data model have been updated to support new
 data modeling capabilities in version 1.1 of the YANG data modeling
 language. The "action" and "notification" statements can be used
 within data nodes to define data-model-specific operations and
 notifications.

 An important use case for these new YANG statements is the increased
 access control granularity that can be achieved over top-level "rpc"
 and "notification" statements. The new "action" and "notification"
 statements are used within data nodes, and access to the action or
 notification can be restricted to specific instances of these data
 nodes.

 Support for the RESTCONF protocol has been added. The RESTCONF
 operations are similar to the NETCONF operations, so a simple mapping
 to the existing NACM procedures and data model is possible.

 The data node access behavior for path matches has been clarified to
 also include matching descendant nodes of the specified path.

 The <edit-config> operation access rights behavior has been clarified
 to indicate that write access is not required for data nodes that are
 implicitly modified through side effects (such as the evaluation of
 YANG when-stmts, or data nodes implicitly deleted when creating a
 data node under a different branch under a YANG choice-stmt).

 The Security Considerations section has been updated to comply with
 the "YANG module security guidelines" [YANG-SEC]. Note that the YANG
 module in this document does not define any RPC operations.

2. Access Control Design Objectives

 This section documents the design objectives for the NETCONF access
 control model presented in Section 3.

2.1. Access Control Points

 NETCONF allows server implementers to add new custom protocol
 operations, and the YANG data modeling language supports this
 feature. These operations can be defined in standard or proprietary
 YANG modules.

 It is not possible to design an ACM for NETCONF that only focuses on
 a static set of standard protocol operations defined by NETCONF
 itself, like some other protocols. Since few assumptions can be made
 about an arbitrary protocol operation, the NETCONF architectural
 server components need to be protected at three conceptual control
 points.

 These access control points, described in Figure 1, are as follows:

protocol operation: Permission to invoke specific protocol
 operations.

datastore: Permission to read and/or alter specific data nodes
 within any datastore.

notification: Permission to receive specific notification event
 types.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 client | protocol | | data node |
 request ‑‑> | operation | ‑‑‑‑‑‑‑‑‑‑‑‑‑> | access |
 | allowed? | datastore | allowed? |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑+ or state +‑‑‑‑‑‑‑‑‑‑‑‑‑+
 data access

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | notification |
 event ‑‑> | allowed? |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1

2.2. Simplicity

 There is concern that a complicated ACM will not be widely deployed
 because it is too hard to use. Configuration of the access control
 system needs to be as simple as possible. Simple and common tasks
 need to be easy to configure and require little expertise or
 domain-specific knowledge. Complex tasks are possible using
 additional mechanisms that may require additional expertise.

 A single set of access control rules ought to be able to control all
 types of NETCONF protocol operation invocation, all datastore access,
 and all notification events.

 Access control ought to be defined with a small and familiar set of
 permissions, while still allowing full control of datastore access.

2.3. Procedural Interface

 NETCONF uses a Remote Procedure Call (RPC) model and an extensible
 set of protocol operations. Access control for any possible protocol
 operation is necessary.

2.4. Datastore Access

 It is necessary to control access to specific nodes and subtrees
 within the datastore, regardless of which protocol operation --
 standard or proprietary -- was used to access the datastore.

2.5. Users and Groups

 It is necessary that access control rules for a single user or a
 configurable group of users can be configured.

 The ACM needs to support the concept of administrative groups, to
 support the well-established distinction between a root account and
 other types of less-privileged conceptual user accounts. These
 groups need to be configurable by the administrator.

 It is necessary that the user-to-group mapping can be delegated to a
 central server, such as a RADIUS server [RFC2865] [RFC5607]. Since
 authentication is performed by the transport layer and RADIUS
 performs authentication and service authorization at the same time,
 the underlying transport protocol needs to be able to report a set of
 group names associated with the user to the server. It is necessary
 that the administrator can disable the usage of these group names
 within the ACM.

2.6. Maintenance

 It ought to be possible to disable part or all of the access control
 model enforcement procedures without deleting any access control
 rules.

2.7. Configuration Capabilities

 Suitable configuration and monitoring mechanisms are needed to allow
 an administrator to easily manage all aspects of the ACM's behavior.
 A standard data model, suitable for use with the <edit-config>
 protocol operation, needs to be available for this purpose.

 Access control rules to restrict access operations on specific
 subtrees within the configuration datastore need to be supported.

2.8. Identifying Security-Sensitive Content

 One of the most important aspects of the data model documentation,
 and one of the biggest concerns during deployment, is the
 identification of security-sensitive content. This applies to
 protocol operations in NETCONF, not just data and notifications.

 It is mandatory for security-sensitive objects to be documented in
 the Security Considerations section of an RFC. This is nice, but it
 is not good enough, for the following reasons:

 o This documentation-only approach forces administrators to study
 the RFC and determine if there are any potential security risks
 introduced by a new data model.

 o If any security risks are identified, then the administrator must
 study some more RFC text and determine how to mitigate the
 security risk(s).

 o The ACM on each server must be configured to mitigate the security
 risks, e.g., require privileged access to read or write the
 specific data identified in the Security Considerations section.

 o If the ACM is not preconfigured, then there will be a time window
 of vulnerability after the new data model is loaded and before the
 new access control rules for that data model are configured,
 enabled, and debugged.

 Often, the administrator just wants to disable default access to the
 secure content so that no inadvertent or malicious changes can be
 made to the server. This allows the default rules to be more
 lenient, without significantly increasing the security risk.

 A data model designer needs to be able to use machine-readable
 statements to identify content that needs to be protected by default.
 This will allow client and server tools to automatically identify
 data-model-specific security risks, by denying access to sensitive
 data unless the user is explicitly authorized to perform the
 requested access operation.

3. NETCONF Access Control Model (NACM)

3.1. Overview

 This section provides a high-level overview of the access control
 model structure. It describes the NETCONF protocol message
 processing model and the conceptual access control requirements
 within that model.

3.1.1. Features

 The NACM data model provides the following features:

 o Independent control of RPC, action, data, and notification access
 is provided.

 o The concept of an emergency recovery session is supported, but
 configuration of the server for this purpose is beyond the scope
 of this document. An emergency recovery session will bypass all
 access control enforcement, in order to allow it to initialize or
 repair the NACM configuration.

 o A simple and familiar set of datastore permissions is used.

 o Support for YANG security tagging (e.g., a
 "nacm:default-deny-write" statement) allows default security modes
 to automatically exclude sensitive data.

 o Separate default access modes for read, write, and execute
 permissions are provided.

 o Access control rules are applied to configurable groups of users.

 o The access control enforcement procedures can be disabled during
 operation, without deleting any access control rules, in order to
 debug operational problems.

 o The number of denied protocol operation requests and denied
 datastore write requests can be monitored by the client.

 o Simple unconstrained YANG instance-identifiers are used to
 configure access control rules for specific data nodes.

3.1.2. External Dependencies

 NETCONF [RFC6241] and RESTCONF [RFC8040] are used for network
 management purposes within this document.

 The YANG data modeling language [RFC7950] is used to define the data
 models for use with NETCONF or RESTCONF. YANG is also used to define
 the data model in this document.

3.1.3. Message Processing Model

 The following diagram shows the conceptual message flow model,
 including the points at which access control is applied during
 NETCONF message processing.

 RESTCONF operations are mapped to the access control model based on
 the HTTP method and resource class used in the operation. For
 example, a POST method on a data resource is considered "write data
 node" access, but a POST method on an operation resource is
 considered "operation" access.

 The new "pre-read data node acc. ctl" boxes in the diagram below
 refer to group read access as it relates to data node ancestors of an
 action or notification. As an example, if an action is defined as
 /interfaces/interface/reset-interface, the group must be authorized
 to (1) read /interfaces and /interfaces/interface and (2) execute on
 /interfaces/interface/reset-interface.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | session |
 | (username) |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
 V |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | message | | message |
 | dispatcher | | generator |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | ^ ^
 | V | | | |
 | +=============+ | |
 | | pre‑read | | |
 | | data node | | |
 | | acc. ctl | | |
 | +=============+ | |
 | | | |
 V V | |
+===========+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| operation |‑‑‑> | reply | | <notification> |
| acc. ctl | | generator | | generator |
+===========+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^ ^ ^
 V +‑‑‑‑‑‑+ | |
+‑‑‑‑‑‑‑‑‑‑‑+ | +=============+ +================+
operation			read		<notification>
processor	‑+	data node		access ctl	
		acc. ctl			
+‑‑‑‑‑‑‑‑‑‑‑+ +=============+ +================+
 | | ^ ^ ^
 V +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | |
+===========+ | | | +============+
write					pre‑read
data node					data node
acc. ctl	‑‑‑‑‑‑‑‑‑‑‑+				acc. ctl
+===========+ | | | | +============+
 | | | | | ^
 V V V | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
configuration	‑‑‑>	server
datastore		instrumentation
	<‑‑‑	
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 2

 The following high-level sequence of conceptual processing steps is
 executed for each received <rpc> message, if access control
 enforcement is enabled:

 o For each active session, access control is applied individually to
 all <rpc> messages (except <close-session>) received by the
 server, unless the session is identified as a recovery session.

 o If the <action> operation defined in [RFC7950] is invoked, then
 read access is required for all instances in the hierarchy of data
 nodes that identifies the specific action in the datastore, and
 execute access is required for the action node. If the user is
 not authorized to read all the specified data nodes and execute
 the action, then the request is rejected with an "access-denied"
 error.

 o Otherwise, if the user is not authorized to execute the specified
 protocol operation, then the request is rejected with an
 "access-denied" error.

 o If a datastore is accessed by the protocol operation, then the
 server checks to see if the client is authorized to access the
 nodes in the datastore. If the user is not authorized to perform
 the requested access operation on the requested data, then the
 request is rejected with an "access-denied" error.

 The following sequence of conceptual processing steps is executed for
 each generated notification event, if access control enforcement is
 enabled:

 o Server instrumentation generates a notification for a particular
 subscription.

 o If the "notification" statement is specified within a data
 subtree, as specified in [RFC7950], then read access is required
 for all instances in the hierarchy of data nodes that identifies
 the specific notification in the datastore, and read access is
 required for the notification node. If the user is not authorized
 to read all the specified data nodes and the notification node,
 then the notification is dropped for that subscription.

 o If the "notification" statement is a top-level statement, the
 notification access control enforcer checks the notification event
 type, and if it is one that the user is not authorized to read,
 then the notification is dropped for that subscription.

3.2. Datastore Access

 The same access control rules apply to all datastores that support
 the NACM -- for example, the candidate configuration datastore or the
 running configuration datastore.

 All conventional configuration datastores and the operational state
 datastore are controlled by the NACM. Local files, remote files, or
 datastores accessed via the <url> parameter are not controlled by
 the NACM.

3.2.1. Mapping New Datastores to NACM

 It is possible that new datastores will be defined over time for use
 with NETCONF. The NACM MAY be applied to other datastores that have
 similar access rights as defined in the NACM. To apply the NACM to a
 new datastore, the new datastore specification needs to define how it
 maps to the NACM CRUDX (Create, Read, Update, Delete, eXec) access
 rights. It is possible that only a subset of the NACM access rights
 would be applicable. For example, only retrieval access control
 would be needed for a read-only datastore. Operations and access
 rights not supported by the NACM CRUDX model are outside the scope of
 this document. A datastore does not need to use the NACM, e.g., the
 datastore specification defines something else or does not use access
 control.

3.2.2. Access Rights

 A small set of hard-wired datastore access rights is needed to
 control access to all possible protocol operations, including vendor
 extensions to the standard protocol operation set.

 The CRUDX model can support all protocol operations:

 o Create: allows the client to add a new data node instance to a
 datastore.

 o Read: allows the client to read a data node instance from a
 datastore or receive the notification event type.

 o Update: allows the client to update an existing data node instance
 in a datastore.

 o Delete: allows the client to delete a data node instance from a
 datastore.

 o eXec: allows the client to execute the operation.

3.2.3. RESTCONF Methods

 The RESTCONF protocol utilizes HTTP methods to perform datastore
 operations, similar to NETCONF. The NACM procedures were originally
 written for NETCONF protocol operations, so the RESTCONF methods are
 mapped to NETCONF operations for the purpose of access control
 processing. The enforcement procedures described within this
 document apply to both protocols unless explicitly stated otherwise.

 The request URI needs to be considered when processing RESTCONF
 requests on data resources:

 o For HEAD and GET requests, any data nodes that are ancestor nodes
 of the target resource are considered to be part of the retrieval
 request for access control purposes.

 o For PUT, PATCH, and DELETE requests, any data nodes that are
 ancestor nodes of the target resource are not considered to be
 part of the edit request for access control purposes. The access
 operation for these nodes is considered to be "none". The edit
 begins at the target resource.

 o For POST requests on data resources, any data nodes that are
 specified in the request URI, including the target resource, are
 not considered to be part of the edit request for access control
 purposes. The access operation for these nodes is considered to
 be "none". The edit begins at a child node of the target
 resource, specified in the message body.

 Not all RESTCONF methods are subject to access control. The
 following table specifies how each method is mapped to NETCONF
 protocol operations. The value "none" indicates that the NACM is not
 applied at all to the specific RESTCONF method.

+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Method | Resource class | NETCONF operation | Access |
| | | | operation |
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
OPTIONS	all	none	none
HEAD	all	<get>, <get‑config>	read
GET	all	<get>, <get‑config>	read
POST	datastore, data	<edit‑config>	create
POST	operation	specified operation	execute
PUT	data	<edit‑config>	create, update
PUT	datastore	<copy‑config>	update
PATCH	data, datastore	<edit‑config>	update
DELETE	data	<edit‑config>	delete
+‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1: Mapping RESTCONF Methods to NETCONF

3.2.4. <get> and <get-config> Operations

 The NACM access rights are not directly coupled to the <get> and
 <get-config> protocol operations but apply to all <rpc> operations
 that would result in a "read" access operation to the target
 datastore. This section describes how these access rights apply to
 the specific access operations supported by the <get> and
 <get-config> protocol operations.

 Data nodes to which the client does not have read access are silently
 omitted, along with any descendants, from the <rpc-reply> message.
 This is done to allow NETCONF filters for <get> and <get-config> to
 function properly, instead of causing an "access-denied" error
 because the filter criteria would otherwise include unauthorized read
 access to some data nodes. For NETCONF filtering purposes, the
 selection criteria are applied to the subset of nodes that the user
 is authorized to read, not the entire datastore.

3.2.5. <edit-config> Operation

 The NACM access rights are not directly coupled to the <edit-config>
 "operation" attribute, although they are similar. Instead, a NACM
 access right applies to all protocol operations that would result in
 a particular access operation to the target datastore. This section
 describes how these access rights apply to the specific access
 operations supported by the <edit-config> protocol operation.

 If the effective access operation is "none" (i.e.,
 default-operation="none") for a particular data node, then no access
 control is applied to that data node. This is required to allow
 access to a subtree within a larger data structure. For example, a
 user may be authorized to create a new "/interfaces/interface" list
 entry but not be authorized to create or delete its parent container
 ("/interfaces"). If the "/interfaces" container already exists in
 the target datastore, then the effective operation will be "none" for
 the "/interfaces" node if an "/interfaces/interface" list entry is
 edited.

 If the protocol operation would result in the creation of a datastore
 node and the user does not have "create" access permission for that
 node, the protocol operation is rejected with an "access-denied"
 error.

 If the protocol operation would result in the deletion of a datastore
 node and the user does not have "delete" access permission for that
 node, the protocol operation is rejected with an "access-denied"
 error.

 If the protocol operation would result in the modification of a
 datastore node and the user does not have "update" access permission
 for that node, the protocol operation is rejected with an
 "access-denied" error.

 A "merge" or "replace" <edit-config> operation may include data nodes
 that do not alter portions of the existing datastore. For example, a
 container or list node may be present for naming purposes but does
 not actually alter the corresponding datastore node. These unaltered
 data nodes are ignored by the server and do not require any access
 rights by the client.

 A "merge" <edit-config> operation may include data nodes but not
 include particular child data nodes that are present in the
 datastore. These missing data nodes within the scope of a "merge"
 <edit-config> operation are ignored by the server and do not require
 any access rights by the client.

 The contents of specific restricted datastore nodes MUST NOT be
 exposed in any <rpc-error> elements within the reply.

 An <edit-config> operation may cause data nodes to be implicitly
 created or deleted as an implicit side effect of a requested
 operation. For example, a YANG when-stmt expression may evaluate to
 a different result, causing data nodes to be deleted, or created with
 default values; or if a data node is created under one branch of a
 YANG choice-stmt, then all data nodes under the other branches are
 implicitly removed. No NACM access rights are required on any data
 nodes that are implicitly changed as a side effect of another allowed
 operation.

3.2.6. <copy-config> Operation

 Access control for the <copy-config> protocol operation requires
 special consideration because the administrator may be replacing the
 entire target datastore.

 If the source of the <copy-config> protocol operation is the running
 configuration datastore and the target is the startup configuration
 datastore, the client is only required to have permission to execute
 the <copy-config> protocol operation.

 Otherwise:

 o If the source of the <copy-config> operation is a datastore, then
 data nodes to which the client does not have read access are
 silently omitted.

 o If the target of the <copy-config> operation is a datastore, the
 client needs access to the modified nodes. Specifically:

 * If the protocol operation would result in the creation of a
 datastore node and the user does not have "create" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

 * If the protocol operation would result in the deletion of a
 datastore node and the user does not have "delete" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

 * If the protocol operation would result in the modification of a
 datastore node and the user does not have "update" access
 permission for that node, the protocol operation is rejected
 with an "access-denied" error.

3.2.7. <delete-config> Operation

 Access to the <delete-config> protocol operation is denied by
 default. The "exec-default" leaf does not apply to this protocol
 operation. Access control rules must be explicitly configured to
 allow invocation by a non-recovery session.

3.2.8. <commit> Operation

 The server MUST determine the exact nodes in the running
 configuration datastore that are actually different and only check
 "create", "update", and "delete" access permissions for this set of
 nodes, which could be empty.

 For example, if a session can read the entire datastore but only
 change one leaf, that session needs to be able to edit and commit
 that one leaf.

3.2.9. <discard-changes> Operation

 The client is only required to have permission to execute the
 <discard-changes> protocol operation. No datastore permissions are
 needed.

3.2.10. <kill-session> Operation

 The <kill-session> operation does not directly alter a datastore.
 However, it allows one session to disrupt another session that is
 editing a datastore.

 Access to the <kill-session> protocol operation is denied by default.
 The "exec-default" leaf does not apply to this protocol operation.
 Access control rules must be explicitly configured to allow
 invocation by a non-recovery session.

3.3. Model Components

 This section defines the conceptual components related to the access
 control model.

3.3.1. Users

 A "user" is the conceptual entity that is associated with the access
 permissions granted to a particular session. A user is identified by
 a string that is unique within the server.

 As described in [RFC6241], the username string is derived from the
 transport layer during session establishment. If the transport layer
 cannot authenticate the user, the session is terminated.

3.3.2. Groups

Access to a specific NETCONF protocol operation is granted to a
session. The session is associated with a group (i.e., not with
a user).

 A group is identified by its name. All group names are unique within
 the server.

 Access control is applied at the level of groups. A group contains
 zero or more group members.

 A group member is identified by a username string.

 The same user can be a member of multiple groups.

3.3.3. Emergency Recovery Session

 The server MAY support a recovery session mechanism, which will
 bypass all access control enforcement. This is useful for
 restricting initial access and repairing a broken access control
 configuration.

3.3.4. Global Enforcement Controls

 There are five global controls that are used to help control how
 access control is enforced.

3.3.4.1. enable-nacm Switch

 A global "enable-nacm" on/off switch is provided to enable or disable
 all access control enforcement. When this global switch is set to
 "true", all requests are checked against the access control rules and
 only permitted if configured to allow the specific access request.
 When this global switch is set to "false", all access requests are
 permitted.

3.3.4.2. read-default Switch

 An on/off "read-default" switch is provided to enable or disable
 default access to receive data in replies and notifications. When
 the "enable-nacm" global switch is set to "true", this global switch
 is relevant if no matching access control rule is found to explicitly
 permit or deny read access to the requested datastore data or
 notification event type.

 When this global switch is set to "permit" and no matching access
 control rule is found for the datastore read or notification event
 requested, access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the datastore read or notification event
 requested, access is denied. This means that the requested data is
 not sent to the client. See step 11 in Section 3.4.5 for details.

3.3.4.3. write-default Switch

 An on/off "write-default" switch is provided to enable or disable
 default access to alter configuration data. When the "enable-nacm"
 global switch is set to "true", this global switch is relevant if no
 matching access control rule is found to explicitly permit or deny
 write access to the requested datastore data.

 When this global switch is set to "permit" and no matching access
 control rule is found for the datastore write requested, access is
 permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the datastore write requested, access is
 denied. See step 12 in Section 3.4.5 for details.

3.3.4.4. exec-default Switch

 An on/off "exec-default" switch is provided to enable or disable
 default access to execute protocol operations. When the
 "enable-nacm" global switch is set to "true", this global switch is
 relevant if no matching access control rule is found to explicitly
 permit or deny access to the requested NETCONF protocol operation.

 When this global switch is set to "permit" and no matching access
 control rule is found for the NETCONF protocol operation requested,
 access is permitted.

 When this global switch is set to "deny" and no matching access
 control rule is found for the NETCONF protocol operation requested,
 access is denied. See step 12 in Section 3.4.4 and step 13 in
 Section 3.4.5 for details.

3.3.4.5. enable-external-groups Switch

 When this global switch is set to "true", the group names reported by
 the transport layer for a session are used together with the locally
 configured group names to determine the access control rules for the
 session.

 When this switch is set to "false", the group names reported by the
 transport layer are ignored by the NACM.

3.3.5. Access Control Rules

 There are four types of rules available in the NACM:

module rule: controls access for definitions in a specific YANG
 module, identified by its name.

protocol operation rule: controls access for a specific protocol
 operation, identified by its YANG module and name.

data node rule: controls access for a specific data node and its
 descendants, identified by its path location within the conceptual
 XML document for the data node.

notification rule: controls access for a specific notification event
 type, identified by its YANG module and name.

3.4. Access Control Enforcement Procedures

There are six separate phases that need to be addressed, four of
which are related to the NETCONF message processing model
(Section 3.1.3):

 1. Initial operation

 2. Session establishment

 3. "access-denied" error handling

 4. Incoming RPC message validation

 5. Data node access validation

 6. Outgoing <notification> authorization

 In addition, the initial startup mode for a NETCONF server, session
 establishment, and "access-denied" error-handling procedures also
 need to be considered.

 The server MUST use the access control rules in effect at the time it
 starts processing the message. The same access control rules MUST
 stay in effect for the processing of the entire message.

3.4.1. Initial Operation

 Upon the very first startup of the NETCONF server, the access control
 configuration will probably not be present. If it isn't, a server
 MUST NOT allow any write access to any session role except a recovery
 session.

 Access rules are enforced any time a request is initiated from a user
 session. Access control is not enforced for server-initiated access
 requests, such as the initial load of the running configuration
 datastore, during bootup.

3.4.2. Session Establishment

 The access control model applies specifically to the well-formed XML
 content transferred between a client and a server after session
 establishment has been completed and after the <hello> exchange has
 been successfully completed.

 Once session establishment is completed and a user has been
 authenticated, the transport layer reports the username and a
 possibly empty set of group names associated with the user to the
 NETCONF server. The NETCONF server will enforce the access control
 rules, based on the supplied username, group names, and the
 configuration data stored on the server.

3.4.3. "access-denied" Error Handling

 The "access-denied" error-tag is generated when the access control
 system denies access to either a request to invoke a protocol
 operation or a request to perform a particular access operation on
 the configuration datastore.

 A server MUST NOT include any information the client is not allowed
 to read in any <error-info> elements within the <rpc-error> response.

3.4.4. Incoming RPC Message Validation

 The diagram below shows the basic conceptual structure of the access
 control processing model for incoming NETCONF <rpc> messages within a
 server.

 NETCONF server
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | XML |
 | message |
 | dispatcher |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 |
 |
 V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | <rpc> message |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 | | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 V V V
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| vendor operation | | standard operation | | standard operation |
| <my‑edit> | | <edit‑config> | | <unlock> |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | |
 V V
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | configuration |
 | datastore |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 3

 Access control begins with the message dispatcher.

 After the server validates the <rpc> element and determines the
 namespace URI and the element name of the protocol operation being
 requested, the server verifies that the user is authorized to invoke
 the protocol operation.

 The server MUST separately authorize every protocol operation by
 following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the protocol
 operation is permitted.

 2. If the requesting session is identified as a recovery session,
 then the protocol operation is permitted.

 3. If the requested operation is the NETCONF <close-session>
 protocol operation, then the protocol operation is permitted.

 4. Check all the "group" entries to see if any of them contain a
 "user-name" entry that equals the username for the session
 making the request. If the "enable-external-groups" leaf is
 "true", add to these groups the set of groups provided by the
 transport layer.

 5. If no groups are found, continue with step 10.

 6. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list's "group" leaf-list does not
 match any of the user's groups, proceed to the next rule-list
 entry.

 7. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule's "module-name" leaf is "*" or equals the name of
 the YANG module where the protocol operation is defined.

 * Either (1) the rule does not have a "rule-type" defined or
 (2) the "rule-type" is "protocol-operation" and the
 "rpc-name" is "*" or equals the name of the requested
 protocol operation.

 * The rule's "access-operations" leaf has the "exec" bit set or
 has the special value "*".

 8. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then the protocol operation is
 permitted; otherwise, it is denied.

 9. At this point, no matching rule was found in any rule-list
 entry.

 10. If the requested protocol operation is defined in a YANG module
 advertised in the server capabilities and the "rpc" statement
 contains a "nacm:default-deny-all" statement, then the protocol
 operation is denied.

 11. If the requested protocol operation is the NETCONF
 <kill-session> or <delete-config>, then the protocol operation
 is denied.

 12. If the "exec-default" leaf is set to "permit", then permit the
 protocol operation; otherwise, deny the request.

 If the user is not authorized to invoke the protocol operation, then
 an <rpc-error> is generated with the following information:

error‑tag: access‑denied

error‑path: Identifies the requested protocol operation. The
 following example represents the <edit‑config> protocol operation
 in the NETCONF base namespace:

 <error‑path
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 /nc:rpc/nc:edit‑config
 </error‑path>

 If a datastore is accessed, either directly or as a side effect of
 the protocol operation, then the server MUST intercept the access
 operation and make sure that the user is authorized to perform the
 requested access operation on the specified data, as defined in
 Section 3.4.5.

3.4.5. Data Node Access Validation

 If (1) a data node within a datastore is accessed or (2) an action or
 notification is tied to a data node, then the server MUST ensure that
 the user is authorized to perform the requested "read", "create",
 "update", "delete", or "execute" access operation on the specified
 data node.

 If an action is requested to be executed, the server MUST ensure that
 the user is authorized to perform the "execute" access operation on
 the requested action.

 If a notification tied to a data node is generated, the server MUST
 ensure that the user is authorized to perform the "read" access
 operation on the requested notification.

 The data node access request is authorized by following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the access
 operation is permitted.

 2. If the requesting session is identified as a recovery session,
 then the access operation is permitted.

 3. Check all the "group" entries to see if any of them contain a
 "user-name" entry that equals the username for the session
 making the request. If the "enable-external-groups" leaf is
 "true", add to these groups the set of groups provided by the
 transport layer.

 4. If no groups are found, continue with step 9.

 5. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list's "group" leaf-list does not
 match any of the user's groups, proceed to the next rule-list
 entry.

 6. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule's "module-name" leaf is "*" or equals the name of
 the YANG module where the requested data node is defined.

 * Either (1) the rule does not have a "rule-type" defined or
 (2) the "rule-type" is "data-node" and the "path" matches the
 requested data node, action node, or notification node. A
 path is considered to match if the requested node is the node
 specified by the path or is a descendant node of the path.

 * For a "read" access operation, the rule's "access-operations"
 leaf has the "read" bit set or has the special value "*".

 * For a "create" access operation, the rule's
 "access-operations" leaf has the "create" bit set or has the
 special value "*".

 * For a "delete" access operation, the rule's
 "access-operations" leaf has the "delete" bit set or has the
 special value "*".

 * For an "update" access operation, the rule's
 "access-operations" leaf has the "update" bit set or has the
 special value "*".

 * For an "execute" access operation, the rule's
 "access-operations" leaf has the "exec" bit set or has the
 special value "*".

 7. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then the data node access is
 permitted; otherwise, it is denied. For a "read" access
 operation, "denied" means that the requested data is not
 returned in the reply.

 8. At this point, no matching rule was found in any rule-list
 entry.

 9. For a "read" access operation, if the requested data node is
 defined in a YANG module advertised in the server capabilities
 and the data definition statement contains a
 "nacm:default-deny-all" statement, then the requested data node
 and all its descendants are not included in the reply.

 10. For a "write" access operation, if the requested data node is
 defined in a YANG module advertised in the server capabilities
 and the data definition statement contains a
 "nacm:default-deny-write" or a "nacm:default-deny-all"
 statement, then the access request is denied for the data node
 and all its descendants.

 11. For a "read" access operation, if the "read-default" leaf is set
 to "permit", then include the requested data node in the reply;
 otherwise, do not include the requested data node or any of its
 descendants in the reply.

 12. For a "write" access operation, if the "write-default" leaf is
 set to "permit", then permit the data node access request;
 otherwise, deny the request.

 13. For an "execute" access operation, if the "exec-default" leaf is
 set to "permit", then permit the request; otherwise, deny the
 request.

3.4.6. Outgoing <notification> Authorization

 Configuration of access control rules specifically for descendant
 nodes of the notification event type are outside the scope of this
 document. If the user is authorized to receive the notification
 event type, then it is also authorized to receive any data it
 contains.

 If the notification is specified within a data subtree, as specified
 in [RFC7950], then read access to the notification is required.
 Processing continues as described in Section 3.4.5.

 The following figure shows the conceptual message processing model
 for outgoing <notification> messages.

 NETCONF server
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 | XML |
 | message |
 | generator |
 +‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | <notification> |
 | generator |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 ^
 |
 +=================+
 | <notification> |
 | access control |
 | <eventType> |
 +=================+
 ^
 |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| server instrumentation |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
 V |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | configuration |
 | datastore |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 4

 The generation of a notification for a specific subscription
 [RFC5277] is authorized by following these steps:

 1. If the "enable-nacm" leaf is set to "false", then the
 notification is permitted.

 2. If the session is identified as a recovery session, then the
 notification is permitted.

 3. If the notification is the NETCONF <replayComplete> or
 <notificationComplete> event type [RFC5277], then the
 notification is permitted.

 4. Check all the "group" entries to see if any of them contain a
 "user-name" entry that equals the username for the session
 making the request. If the "enable-external-groups" leaf is
 "true", add to these groups the set of groups provided by the
 transport layer.

 5. If no groups are found, continue with step 10.

 6. Process all rule-list entries, in the order they appear in the
 configuration. If a rule-list's "group" leaf-list does not
 match any of the user's groups, proceed to the next rule-list
 entry.

 7. For each rule-list entry found, process all rules, in order,
 until a rule that matches the requested access operation is
 found. A rule matches if all of the following criteria are met:

 * The rule's "module-name" leaf is "*" or equals the name of
 the YANG module where the notification is defined.

 * Either (1) the rule does not have a "rule-type" defined or
 (2) the "rule-type" is "notification" and the
 "notification-name" is "*" or equals the name of the
 notification.

 * The rule's "access-operations" leaf has the "read" bit set or
 has the special value "*".

 8. If a matching rule is found, then the "action" leaf is checked.
 If it is equal to "permit", then permit the notification;
 otherwise, drop the notification for the associated
 subscription.

 9. Otherwise, no matching rule was found in any rule-list entry.

 10. If the requested notification is defined in a YANG module
 advertised in the server capabilities and the "notification"
 statement contains a "nacm:default-deny-all" statement, then the
 notification is dropped for the associated subscription.

 11. If the "read-default" leaf is set to "permit", then permit the
 notification; otherwise, drop the notification for the
 associated subscription.

3.5. Data Model Definitions

3.5.1. Data Organization

 The following diagram highlights the contents and structure of the
 NACM YANG module.

module: ietf‑netconf‑acm
 +‑‑rw nacm
 +‑‑rw enable‑nacm? boolean
 +‑‑rw read‑default? action‑type
 +‑‑rw write‑default? action‑type
 +‑‑rw exec‑default? action‑type
 +‑‑rw enable‑external‑groups? boolean
 +‑‑ro denied‑operations yang:zero‑based‑counter32
 +‑‑ro denied‑data‑writes yang:zero‑based‑counter32
 +‑‑ro denied‑notifications yang:zero‑based‑counter32
 +‑‑rw groups
 | +‑‑rw group* [name]
 | +‑‑rw name group‑name‑type
 | +‑‑rw user‑name* user‑name‑type
 +‑‑rw rule‑list* [name]
 +‑‑rw name string
 +‑‑rw group* union
 +‑‑rw rule* [name]
 +‑‑rw name string
 +‑‑rw module‑name? union
 +‑‑rw (rule‑type)?
 | +‑‑:(protocol‑operation)
 | | +‑‑rw rpc‑name? union
 | +‑‑:(notification)
 | | +‑‑rw notification‑name? union
 | +‑‑:(data‑node)
 | +‑‑rw path node‑instance‑identifier
 +‑‑rw access‑operations? union
 +‑‑rw action action‑type
 +‑‑rw comment? string

3.5.2. YANG Module

 The following YANG module specifies the normative NETCONF content
 that MUST be supported by the server.

 The "ietf-netconf-acm" YANG module imports typedefs from [RFC6991].

<CODE BEGINS> file "ietf‑netconf‑acm@2018‑02‑14.yang"
module ietf‑netconf‑acm {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-acm";

 prefix nacm;

import ietf‑yang‑types {
 prefix yang;
}

 organization

 "IETF NETCONF (Network Configuration) Working Group";

contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj@tail‑f.com>";

 description

 "Network Configuration Access Control Model.

 Copyright (c) 2012 ‑ 2018 IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 This version of this YANG module is part of RFC 8341; see
 the RFC itself for full legal notices.";

revision "2018‑02‑14" {
 description
 "Added support for YANG 1.1 actions and notifications tied to
 data nodes. Clarified how NACM extensions can be used by
 other data models.";
 reference
 "RFC 8341: Network Configuration Access Control Model";
}

revision "2012‑02‑22" {
 description
 "Initial version.";
 reference
 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
}

/*
 * Extension statements
 */

extension default‑deny‑write {
 description
 "Used to indicate that the data model node
 represents a sensitive security system parameter.

 If present, the NETCONF server will only allow the designated
 'recovery session' to have write access to the node. An
 explicit access control rule is required for all other users.

 If the NACM module is used, then it must be enabled (i.e.,
 /nacm/enable‑nacm object equals 'true'), or this extension
 is ignored.

 The 'default‑deny‑write' extension MAY appear within a data
 definition statement. It is ignored otherwise.";
}

extension default‑deny‑all {
 description
 "Used to indicate that the data model node
 controls a very sensitive security system parameter.

 If present, the NETCONF server will only allow the designated
 'recovery session' to have read, write, or execute access to
 the node. An explicit access control rule is required for all
 other users.

 If the NACM module is used, then it must be enabled (i.e.,
 /nacm/enable‑nacm object equals 'true'), or this extension
 is ignored.

 The 'default‑deny‑all' extension MAY appear within a data
 definition statement, 'rpc' statement, or 'notification'
 statement. It is ignored otherwise.";
}

/*
 * Derived types
 */

typedef user‑name‑type {
 type string {
 length "1..max";
 }
 description
 "General‑purpose username string.";
}

typedef matchall‑string‑type {
 type string {
 pattern '*';
 }
 description
 "The string containing a single asterisk '*' is used
 to conceptually represent all possible values
 for the particular leaf using this data type.";
}

typedef access‑operations‑type {
 type bits {
 bit create {
 description
 "Any protocol operation that creates a
 new data node.";
 }
 bit read {
 description
 "Any protocol operation or notification that
 returns the value of a data node.";
 }
 bit update {
 description
 "Any protocol operation that alters an existing
 data node.";
 }

 bit delete {
 description
 "Any protocol operation that removes a data node.";
 }
 bit exec {
 description
 "Execution access to the specified protocol operation.";
 }
 }
 description
 "Access operation.";
}

typedef group‑name‑type {
 type string {
 length "1..max";
 pattern '[^*].*';
 }
 description
 "Name of administrative group to which
 users can be assigned.";
}

typedef action‑type {
 type enumeration {
 enum permit {
 description
 "Requested action is permitted.";
 }
 enum deny {
 description
 "Requested action is denied.";
 }
 }
 description
 "Action taken by the server when a particular
 rule matches.";
}

typedef node‑instance‑identifier {
 type yang:xpath1.0;
 description
 "Path expression used to represent a special
 data node, action, or notification instance‑identifier
 string.

 A node‑instance‑identifier value is an
 unrestricted YANG instance‑identifier expression.

 All the same rules as an instance‑identifier apply,
 except that predicates for keys are optional. If a key
 predicate is missing, then the node‑instance‑identifier
 represents all possible server instances for that key.

 This XML Path Language (XPath) expression is evaluated in the
 following context:

 o The set of namespace declarations are those in scope on
 the leaf element where this type is used.

 o The set of variable bindings contains one variable,
 'USER', which contains the name of the user of the
 current session.

 o The function library is the core function library, but
 note that due to the syntax restrictions of an
 instance-identifier, no functions are allowed.

 o The context node is the root node in the data tree.

 The accessible tree includes actions and notifications tied
 to data nodes.";
}

/*
 * Data definition statements
 */

 container nacm {

 nacm:default-deny-all;

 description

 "Parameters for NETCONF access control model.";

leaf enable‑nacm {
 type boolean;
 default "true";
 description
 "Enables or disables all NETCONF access control
 enforcement. If 'true', then enforcement
 is enabled. If 'false', then enforcement
 is disabled.";
}

leaf read‑default {
 type action‑type;
 default "permit";
 description
 "Controls whether read access is granted if
 no appropriate rule is found for a
 particular read request.";
}

leaf write‑default {
 type action‑type;
 default "deny";
 description
 "Controls whether create, update, or delete access
 is granted if no appropriate rule is found for a
 particular write request.";
}

leaf exec‑default {
 type action‑type;
 default "permit";
 description
 "Controls whether exec access is granted if no appropriate
 rule is found for a particular protocol operation request.";
}

leaf enable‑external‑groups {
 type boolean;
 default "true";
 description
 "Controls whether the server uses the groups reported by the
 NETCONF transport layer when it assigns the user to a set of
 NACM groups. If this leaf has the value 'false', any group
 names reported by the transport layer are ignored by the
 server.";
}

leaf denied‑operations {
 type yang:zero‑based‑counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that a
 protocol operation request was denied.";
}

leaf denied‑data‑writes {
 type yang:zero‑based‑counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that a
 protocol operation request to alter
 a configuration datastore was denied.";
}

leaf denied‑notifications {
 type yang:zero‑based‑counter32;
 config false;
 mandatory true;
 description
 "Number of times since the server last restarted that
 a notification was dropped for a subscription because
 access to the event type was denied.";
}

container groups {
 description
 "NETCONF access control groups.";

 list group {

 key name;

 description
 "One NACM group entry. This list will only contain
 configured entries, not any entries learned from
 any transport protocols.";

 leaf name {
 type group‑name‑type;
 description
 "Group name associated with this entry.";
 }

 leaf‑list user‑name {
 type user‑name‑type;
 description
 "Each entry identifies the username of
 a member of the group associated with
 this entry.";
 }
 }
}

list rule‑list {
 key name;
 ordered‑by user;
 description
 "An ordered collection of access control rules.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule‑list.";
 }
 leaf‑list group {
 type union {
 type matchall‑string‑type;
 type group‑name‑type;
 }
 description
 "List of administrative groups that will be
 assigned the associated access rights
 defined by the 'rule' list.

 The string '*' indicates that all groups apply to the
 entry.";
 }

 list rule {
 key name;
 ordered‑by user;
 description
 "One access control rule.

 Rules are processed in user-defined order until a match is
 found. A rule matches if 'module-name', 'rule-type', and
 'access-operations' match the request. If a rule
 matches, the 'action' leaf determines whether or not
 access is granted.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule.";
 }

 leaf module‑name {
 type union {
 type matchall‑string‑type;
 type string;
 }
 default "*";
 description
 "Name of the module associated with this rule.

 This leaf matches if it has the value '*' or if the
 object being accessed is defined in the module with the
 specified module name.";
 }
 choice rule‑type {
 description
 "This choice matches if all leafs present in the rule
 match the request. If no leafs are present, the
 choice matches all requests.";
 case protocol‑operation {
 leaf rpc‑name {
 type union {
 type matchall‑string‑type;
 type string;
 }
 description
 "This leaf matches if it has the value '*' or if
 its value equals the requested protocol operation
 name.";
 }
 }
 case notification {
 leaf notification‑name {
 type union {
 type matchall‑string‑type;
 type string;
 }
 description
 "This leaf matches if it has the value '*' or if its
 value equals the requested notification name.";
 }
 }

 case data‑node {
 leaf path {
 type node‑instance‑identifier;
 mandatory true;
 description
 "Data node instance‑identifier associated with the
 data node, action, or notification controlled by
 this rule.

 Configuration data or state data
 instance‑identifiers start with a top‑level
 data node. A complete instance‑identifier is
 required for this type of path value.

 The special value '/' refers to all possible
 datastore contents.";
 }
 }
 }

 leaf access‑operations {
 type union {
 type matchall‑string‑type;
 type access‑operations‑type;
 }
 default "*";
 description
 "Access operations associated with this rule.

 This leaf matches if it has the value '*' or if the
 bit corresponding to the requested operation is set.";
 }

 leaf action {
 type action‑type;
 mandatory true;
 description
 "The access control action associated with the
 rule. If a rule has been determined to match a
 particular request, then this object is used
 to determine whether to permit or deny the
 request.";
 }

 leaf comment {
 type string;
 description
 "A textual description of the access rule.";
 }
 }
 }
 }
}

 <CODE ENDS>

4. IANA Considerations

 This document reuses the URI for "ietf-netconf-acm" in the "IETF XML
 Registry".

 This document updates the module registration in the "YANG Module
 Names" registry to reference this RFC instead of RFC 6536 for
 "ietf-netconf-acm". Following the format in [RFC6020], the following
 has been registered.

Name: ietf‑netconf‑acm
Namespace: urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm
Prefix: nacm
Reference: RFC 8341

5. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There is a risk related to the lack of access control enforcement for
 the RESTCONF OPTIONS and PATCH methods. The risk here is that the
 response to OPTIONS and PATCH may vary based on the presence or
 absence of a resource corresponding to the URL's path. If this is
 the case, then it can be used to trivially probe for the presence or
 absence of values within a tree. Therefore, a server MUST NOT vary
 its responses based on the existence of the underlying resource,
 which would indicate the presence or absence of resource instances.
 In particular, servers should not expose any instance information
 before ensuring that the client has the necessary access permissions
 to obtain that information. In such cases, servers are expected to
 always return the "access-denied" error response.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 o /nacm: The entire /nacm subtree is related to security. Refer to
 the following sections for more details.

 This section highlights the issues for an administrator to consider
 when configuring a NETCONF server with the NACM.

5.1. NACM Configuration and Monitoring Considerations

 Configuration of the access control system is highly sensitive to
 system security. A server may choose not to allow any user
 configuration to some portions of it, such as the global security
 level or the groups that allowed access to system resources.

 By default, NACM enforcement is enabled. By default, "read" access
 to all datastore contents is enabled (unless "nacm:default-deny-all"
 is specified for the data definition), and "exec" access is enabled
 for safe protocol operations. An administrator needs to ensure that
 the NACM is enabled and also decide if the default access parameters
 are set appropriately. Make sure that the following data nodes are
 properly configured:

 o /nacm/enable-nacm (default "true")

 o /nacm/read-default (default "permit")

 o /nacm/write-default (default "deny")

 o /nacm/exec-default (default "permit")

 An administrator needs to restrict write access to all configurable
 objects within this data model.

 If write access is allowed for configuration of access control rules,
 then care needs to be taken not to disrupt the access control
 enforcement. For example, if the NACM access control rules are
 edited directly within the running configuration datastore (i.e.,
 :writable-running capability is supported and used), then care needs
 to be taken not to allow unintended access while the edits are being
 done.

 An administrator needs to make sure that the translation from a
 transport- or implementation-dependent user identity to a NACM
 username is unique and correct. This requirement is specified in
 detail in Section 2.2 of [RFC6241].

 An administrator needs to be aware that the YANG data structures
 representing access control rules (/nacm/rule-list and
 /nacm/rule-list/rule) are ordered by the client. The server will
 evaluate the access control rules according to their relative
 conceptual order within the running configuration datastore.

 Note that the /nacm/groups data structure contains the administrative
 group names used by the server. These group names may be configured
 locally and/or provided through an external protocol, such as RADIUS
 [RFC2865] [RFC5607].

 An administrator needs to be aware of the security properties of any
 external protocol used by the transport layer to determine group
 names. For example, if this protocol does not protect against
 man-in-the-middle attacks, an attacker might be able to inject group
 names that are configured in the NACM so that a user gets more
 permissions than it should. In such cases, the administrator may
 wish to disable the usage of such group names by setting
 /nacm/enable-external-groups to "false".

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 o /nacm/enable-nacm

 o /nacm/read-default

 o /nacm/write-default

 o /nacm/exec-default

 o /nacm/enable-external-groups

 o /nacm/groups

 o /nacm/rule-list

 An administrator needs to restrict read access to the above-listed
 objects within this data model, as they reveal access control
 configuration that could be considered sensitive.

5.2. General Configuration Issues

 There is a risk that invocation of non-standard protocol operations
 will have undocumented side effects. An administrator needs to
 construct access control rules such that the configuration datastore
 is protected from such side effects.

 It is possible for a session with some write access (e.g., allowed to
 invoke <edit-config>), but without any access to a particular
 datastore subtree containing sensitive data, to determine the
 presence or non-presence of that data. This can be done by
 repeatedly issuing some sort of edit request (create, update, or
 delete) and possibly receiving "access-denied" errors in response.
 These "fishing" attacks can identify the presence or non-presence of
 specific sensitive data even without the "error-path" field being
 present within the <rpc-error> response.

 It may be possible for the set of NETCONF capabilities on the server
 to change over time. If so, then there is a risk that new protocol
 operations, notifications, and/or datastore content have been added
 to the device. An administrator needs to be sure that the access
 control rules are correct for the new content in this case.
 Mechanisms to detect NETCONF capability changes on a specific device
 are outside the scope of this document.

 It is possible that the data model definition itself (e.g., a YANG
 when-stmt) will help an unauthorized session determine the presence
 or even value of sensitive data nodes by examining the presence and
 values of different data nodes.

 It is possible that the data model definition itself (e.g., a YANG
 when-stmt or choice-stmt) will allow a session to implicitly create
 or delete nodes that the session does not have write access to as an
 implicit side effect from the processing of an allowed <edit-config>
 operation.

 There is a risk that non-standard protocol operations, or even the
 standard <get> protocol operation, may return data that "aliases" or
 "copies" sensitive data from a different data object. There may
 simply be multiple data model definitions that expose or even
 configure the same underlying system instrumentation.

 A data model may contain external keys (e.g., YANG leafref), which
 expose values from a different data structure. An administrator
 needs to be aware of sensitive data models that contain leafref
 nodes. This entails finding all the leafref objects that "point" at
 the sensitive data (i.e., "path-stmt" values) that implicitly or
 explicitly includes the sensitive data node.

 It is beyond the scope of this document to define access control
 enforcement procedures for underlying device instrumentation that may
 exist to support the NETCONF server operation. An administrator can
 identify each protocol operation that the server provides and decide
 if it needs any access control applied to it.

 This document incorporates the optional use of a recovery session
 mechanism, which can be used to bypass access control enforcement in
 emergencies such as NACM configuration errors that disable all access
 to the server. The configuration and identification of such a
 recovery session mechanism are implementation specific and are
 outside the scope of this document. An administrator needs to be
 aware of any recovery session mechanisms available on the device and
 make sure that they are used appropriately.

 It is possible for a session to disrupt configuration management,
 even without any write access to the configuration, by locking the
 datastore. This may be done to ensure that all or part of the
 configuration remains stable while it is being retrieved, or it may
 be done as a "denial-of-service" attack. There is no way for the
 server to know the difference. An administrator may wish to restrict
 "exec" access to the following protocol operations:

 o <lock>

 o <unlock>

 o <partial-lock>

 o <partial-unlock>

5.3. Data Model Design Considerations

 Designers need to clearly identify any sensitive data, notifications,
 or protocol operations defined within a YANG module. For such
 definitions, a "nacm:default-deny-write" or "nacm:default-deny-all"
 statement ought to be present, in addition to a clear description of
 the security risks.

 Protocol operations need to be properly documented by the data model
 designer so that it is clear to administrators what data nodes (if
 any) are affected by the protocol operation and what information (if
 any) is returned in the <rpc-reply> message.

 Data models ought to be designed so that different access levels for
 input parameters to protocol operations are not required. The use of
 generic protocol operations should be avoided, and if different
 access levels are needed, separate protocol operations should be
 defined instead.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7230]
 Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0
 (Fifth Edition)", World Wide Web Consortium Recommendation
 REC-xml-20081126, November 2008,
 <https://www.w3.org/TR/2008/REC-xml-20081126>.

6.2. Informative References

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC5607]
 Nelson, D. and G. Weber, "Remote Authentication Dial-In
 User Service (RADIUS) Authorization for Network Access
 Server (NAS) Management", RFC 5607, DOI 10.17487/RFC5607,
 July 2009, <https://www.rfc-editor.org/info/rfc5607>.

 [YANG-SEC]
 IETF, "YANG Security Guidelines", <https://trac.ietf.org/
 trac/ops/wiki/yang-security-guidelines>.

Appendix A. Usage Examples

 The following XML [W3C.REC-xml-20081126] snippets are provided as
 examples only, to demonstrate how the NACM can be configured to
 perform some access control tasks.

A.1. <groups> Example

 There needs to be at least one <group> entry in order for any of the
 access control rules to be useful.

 The following XML shows arbitrary groups and is not intended to
 represent any particular use case.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <groups>
 <group>
 <name>admin</name>
 <user‑name>admin</user‑name>
 <user‑name>andy</user‑name>
 </group>

 <group>
 <name>limited</name>
 <user‑name>wilma</user‑name>
 <user‑name>bam‑bam</user‑name>
 </group>

 <group>
 <name>guest</name>
 <user‑name>guest</user‑name>
 <user‑name>guest@example.com</user‑name>
 </group>
 </groups>
</nacm>

 This example shows three groups:

admin: The "admin" group contains two users named "admin" and
 "andy".

limited: The "limited" group contains two users named "wilma" and
 "bam‑bam".

guest: The "guest" group contains two users named "guest" and
 "guest@example.com".

A.2. Module Rule Example

 Module rules are used to control access to all the content defined in
 a specific module. A module rule has the "module-name" leaf set but
 no nodes from the "rule-type" choice set.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑acl</name>
 <group>guest</group>

 <rule>
 <name>deny‑ncm</name>
 <module‑name>ietf‑netconf‑monitoring</module‑name>
 <access‑operations>*</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow guests any access to the NETCONF
 monitoring information.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>limited‑acl</name>
 <group>limited</group>

 <rule>
 <name>permit‑ncm</name>
 <module‑name>ietf‑netconf‑monitoring</module‑name>
 <access‑operations>read</access‑operations>
 <action>permit</action>
 <comment>
 Allow read access to the NETCONF
 monitoring information.
 </comment>
 </rule>
 <rule>
 <name>permit‑exec</name>
 <module‑name>*</module‑name>
 <access‑operations>exec</access‑operations>
 <action>permit</action>
 <comment>
 Allow invocation of the
 supported server operations.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>admin‑acl</name>
 <group>admin</group>

 <rule>
 <name>permit‑all</name>
 <module‑name>*</module‑name>
 <access‑operations>*</access‑operations>
 <action>permit</action>
 <comment>
 Allow the 'admin' group complete access to all
 operations and data.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows four module rules:

deny‑ncm: This rule prevents the "guest" group from reading any
 monitoring information in the "ietf‑netconf‑monitoring" YANG
 module.

permit‑ncm: This rule allows the "limited" group to read the
 "ietf‑netconf‑monitoring" YANG module.

permit‑exec: This rule allows the "limited" group to invoke any
 protocol operation supported by the server.

permit‑all: This rule allows the "admin" group complete access to
 all content in the server. No subsequent rule will match for the
 "admin" group because of this module rule.

A.3. Protocol Operation Rule Example

 Protocol operation rules are used to control access to a specific
 protocol operation.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑limited‑acl</name>
 <group>limited</group>
 <group>guest</group>

 <rule>
 <name>deny‑kill‑session</name>
 <module‑name>ietf‑netconf</module‑name>
 <rpc‑name>kill‑session</rpc‑name>
 <access‑operations>exec</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow the 'limited' group or the 'guest' group
 to kill another session.
 </comment>
 </rule>
 <rule>
 <name>deny‑delete‑config</name>
 <module‑name>ietf‑netconf</module‑name>
 <rpc‑name>delete‑config</rpc‑name>
 <access‑operations>exec</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow the 'limited' group or the 'guest' group
 to delete any configurations.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>limited‑acl</name>
 <group>limited</group>

 <rule>
 <name>permit‑edit‑config</name>
 <module‑name>ietf‑netconf</module‑name>
 <rpc‑name>edit‑config</rpc‑name>
 <access‑operations>exec</access‑operations>
 <action>permit</action>
 <comment>
 Allow the 'limited' group to edit the configuration.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows three protocol operation rules:

deny‑kill‑session: This rule prevents the "limited" group or the
 "guest" group from invoking the NETCONF <kill‑session> protocol
 operation.

deny‑delete‑config: This rule prevents the "limited" group or the
 "guest" group from invoking the NETCONF <delete‑config> protocol
 operation.

permit‑edit‑config: This rule allows the "limited" group to invoke
 the NETCONF <edit‑config> protocol operation. This rule will have
 no real effect unless the "exec‑default" leaf is set to "deny".

A.4. Data Node Rule Example

 Data node rules are used to control access to specific (config and
 non-config) data nodes within the NETCONF content provided by the
 server.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>guest‑acl</name>
 <group>guest</group>

 <rule>
 <name>deny‑nacm</name>
 <path xmlns:n="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 /n:nacm
 </path>
 <access‑operations>*</access‑operations>
 <action>deny</action>
 <comment>
 Deny the 'guest' group any access to the /nacm data.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>limited‑acl</name>
 <group>limited</group>

 <rule>
 <name>permit‑acme‑config</name>
 <path xmlns:acme="http://example.com/ns/netconf">
 /acme:acme‑netconf/acme:config‑parameters
 </path>
 <access‑operations>
 read create update delete
 </access‑operations>
 <action>permit</action>
 <comment>
 Allow the 'limited' group complete access to the acme
 NETCONF configuration parameters. Showing long form
 of 'access‑operations' instead of shorthand.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>guest‑limited‑acl</name>
 <group>guest</group>
 <group>limited</group>

 <rule>
 <name>permit‑dummy‑interface</name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface[acme:name='dummy']
 </path>
 <access‑operations>read update</access‑operations>
 <action>permit</action>
 <comment>
 Allow the 'limited' and 'guest' groups read
 and update access to the dummy interface.
 </comment>
 </rule>
 </rule‑list>

 <rule‑list>
 <name>admin‑acl</name>
 <group>admin</group>
 <rule>
 <name>permit‑interface</name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface
 </path>
 <access‑operations>*</access‑operations>
 <action>permit</action>
 <comment>
 Allow the 'admin' group full access to all acme interfaces.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows four data node rules:

deny‑nacm: This rule denies the "guest" group any access to the
 /nacm subtree.

permit‑acme‑config: This rule gives the "limited" group read‑write
 access to the acme <config‑parameters>.

permit‑dummy‑interface: This rule gives the "limited" and "guest"
 groups read‑update access to the acme <interface> entry named
 "dummy". This entry cannot be created or deleted by these groups;
 it can only be altered.

permit‑interface: This rule gives the "admin" group read‑write
 access to all acme <interface> entries.

A.5. Notification Rule Example

 Notification rules are used to control access to a specific
 notification event type.

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf‑netconf‑acm">
 <rule‑list>
 <name>sys‑acl</name>
 <group>limited</group>
 <group>guest</group>

 <rule>
 <name>deny‑config‑change</name>
 <module‑name>acme‑system</module‑name>
 <notification‑name>sys‑config‑change</notification‑name>
 <access‑operations>read</access‑operations>
 <action>deny</action>
 <comment>
 Do not allow the 'guest' group or the 'limited' group
 to receive config change events.
 </comment>
 </rule>
 </rule‑list>
</nacm>

 This example shows one notification rule:

deny‑config‑change: This rule prevents the "limited" group or the
 "guest" group from receiving the acme <sys‑config‑change>
 event type.

Authors' Addresses

Andy Bierman
YumaWorks
685 Cochran St.
Suite #160
Simi Valley, CA 93065
United States of America

 Email: andy@yumaworks.com

Martin Bjorklund
Tail‑f Systems

 Email: mbj@tail-f.com

draft-wu-netconf-nmda-compatibility-00 - NMDA Backwards-Compatibility with Legac

Index
Back 5
Prev
Next

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: June 22, 2019

Q. Wu

C. Feng

Huawei

December 19, 2018

NMDA Backwards-Compatibility with Legacy Devices

draft-wu-netconf-nmda-compatibility-00

Abstract

 NMDA architectural framework eliminates the need to duplicate data
 structures to provide separate configuration and operational state
 sections and uses different datastores and new protocol operations to
 distinct configuration from operation state. However when a server
 needs to support both NMDA client and non-NMDA clients, it is not
 clear whether a NMDA compliant server can use existing operation to
 return the same results with <rpc-reply> as non-NMDA-aware server
 does.

 This document identifies some of the major challenges, and provides
 solutions that are able to mitigate those challenges and smooth the
 migration towards NMDA deployment.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Problems
	 2.1. NMDA Client vs Non-NMDA Client

	 2.2. NETCONF Server Back-Compatibility

	 2.3. Feed System Configuration Back into Running Datastore

	3. Solution
	 3.1. Client Support on NMDA

	 3.2. Default handling Behaviour
	 3.2.1. Default-Handling Basic Modes

	 3.2.2. get/get-config Operation

	 3.2.3. get-data Operation

	 3.3. Protocol Operation Clarification
	 3.3.1. <get>

	 3.3.2. <get-config>

	 3.3.3. <edit-config>

	 3.3.4. <get-data>

	 3.3.5. <edit-data>

	4. IANA Considerations

	5. Security Considerations

	6. Acknowledgements

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Authors' Addresses

1. Introduction

 NMDA architectural framework introduces additional datastores for
 systems that support more advanced processing chains converting
 configuration to operational state. It eliminates the need to
 duplicate data structures to provide separate configuration and
 operational state sections and uses different datastores and new
 protocol operations (e.g.,<get-data>,<edit-data> to distinct
 configuration from operation state.

 However when a server needs to support both NMDA client and non-NMDA
 clients, it is not clear whether a NMDA compliant server can return
 the same results with <rpc-reply> to non-NMDA clients as non-NMDA-
 aware server does since the system configuration and default
 configuration originally part of conventional configuration
 datastores have been separated and moved to operational state
 datastore. Also it is not clear whether the server should maintain
 backwards-compatibility when the server is upgraded from non-NMDA-
 aware server to NMDA compliant server.

 NMDA Transition Guidelines in section 4.23.3 of [RFC8407] only
 provides guidelines to transform non-NMDA compliant model into NMDA
 compatible model, but doesn't provide guidelines on whether existing
 NETCONF protocol operations such as get/get-config/edit-config
 changes behaviour or semantics when they are exchanged between the
 client and the server.

 This document identifies some of the major challenges, and provides
 solutions that are able to address those challenges which provide
 smooth migration towards NMDA deployment.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC8342] and are not redefined
 here:

 o startup configuration datastore

 o candiate configuration datastore

 o running configuration datastore

 o intended configuration datastore

 o operational state datastore

 The following terms are defined in this document:

 Server Backwards-Compatibility: The client can use the same
 protocol operation to get the same results from both NMDA
 compliant server and Non NMDA server.

2. Problems

2.1. NMDA Client vs Non-NMDA Client

 When a server is upgraded to NMDA compliant server and needs to
 support both NMDA client and non-NMDA clients, there is no way for
 the server to know whether the client supports NMDA.

2.2. NETCONF Server Back-Compatibility

 When a server is upgraded to NMDA compliant server and needs to
 support both NMDA client and non-NMDA clients, without NETCONF server
 backwards-comability, a NMDA compliant server can return the results
 with <rpc-reply> to non-NMDA clients different from non-NMDA-aware
 server does. Since the system configuration and default
 configuration originally part of conventional configuration
 datastores have been separated and moved to operational state
 datastore. For non-NMDA client, the configuration retrieved by <get-
 config> on the running datastore will be reduced without including
 system configuration and default configuration set by the server.
 Non-NMDA client also has no way to retrieve system configuration
 without new operations support on operational state datstore.

2.3. Feed System Configuration Back into Running Datastore

 As we know, the system configuration and default configuration
 originally part of conventional configuration datastores have been
 separated and moved to operational state datastore. When further
 configuration is needed within the system configuration,e.g.,
 configure IP address of the interface after such interface
 configuration (i.e.,system configuration) is auto-created, such auto-
 created interface configuration needs to set by the client. The
 effect is the same as feeding auto-created interface configuration
 into running datastore and make it become client set configuration.
 After the interface configuration is applied, it will be merged with
 the current system configuration in the operational state datastore.

3. Solution

3.1. Client Support on NMDA

 When a sever needs to support both NMDA client and non-NMDA clients,
 server support on NMDA can be advertised to the client via capability
 identifier :yang-library:1.1 to the client. Client support on NMDA
 can be indicated by protocol operations. If <get>/<get-
 config>/<edit-config> operation is recieved from the client, the
 server should assume the client is Non-NMDA client. If <get-
 data>/<edit-data> operation is recieved from the client, the server
 should assume the client is NMDA client.

 Editor-Note: There are three ways to Indicate client support on NMDA:

 1. Define capability identifier for client support on NMDA and
 advertising this capability identifier to the server;

 2. Use new or old protocol operation to indicate client support on
 NMDA;

 3. Use whether module type is NMDA compliant to indicate client
 support on NMDA;

 Either advertising capability identifier to the server or using
 module type to indicate client support on NMDA adds server
 implementation complexity. We argue to use protocol operation to
 indicate whether the client support NMDA.

3.2. Default handling Behaviour

 With-default capability defined in [RFC6243] is designed for
 conventional configuration datatore. When NMDA is introduced, [I-
 D.ietf-netconf-nmda-netconf] defines with-operational-defaults
 capability and applies "with-defaults" parameter to <get-data>
 operations that target <operational>. However when default
 configuration is separated from conventional configuration datastore,
 the behaviour and semantics of "with-defaults" parameter also make a
 few changes.

3.2.1. Default-Handling Basic Modes

 A server still supports three basic modes defined in [RFC6243] for
 handling default data. The' report-all' basic mode should be treated
 in the same way as 'explicit' basic model since default configuration
 has been moved to operational state datastore and therefore the
 server should not consider the default configuration is part of
 conventional configuration datastore unless it is explicitly set by
 the client.

3.2.1.1. 'report-all' Basic Mode Retrieval

 When data is retrieved from a server using the 'report-all' basic
 mode, and the <with-defaults> parameter is not present, data nodes
 MUST be reported if explicitly set by the client, even if they
 contain the schema default value.

3.2.1.2. 'report-all' <edit-config> and <copy-config> Behaviour

 For backwards compatibility consideration, the server consider the
 default data part of conventional configuration datastore. A valid
 'create' operation attribute for a data node that has been set by a
 server to its schema default value MUST fail with a 'data-exists'
 error-tag. A valid 'delete' operation attribute for a data node that
 has been set by a server to its schema default value MUST succeed.

3.2.1.3. 'report-all' <edit-data> Behaviour

 If the "with-defaults" capability is supported by the server, the
 "report-all" basic mode, defined in section 3.2.1.1, is supported for
 <edit-data> operations that target conventional configuration
 datastores.

 A valid 'create' operation attribute for a data node that has been
 set by a server to its schema default value MUST succeed. A valid
 'delete' operation attribute for a data node that has been set by a
 server to its schema default value MUST fail with a 'data-missing'
 error-tag.

3.2.2. get/get-config Operation

 For backwards compatibility consideration, when the basic mode is set
 to 'report-all' or "with-defaults" parameter is set to report all,
 the server should return all the data based on filtering selection
 criteria including all the data from conventional configuration
 datastore and default configuration from operational state datastore.

3.2.3. get-data Operation

 When the basic mode is set to report-all or "with-defaults" parameter
 is set to report all, the server should return all the data based on
 filtering selection criteria including all the data from conventional
 configuration datastore, but not include default configuration from
 operational state datastore unless they are explicitly set by the
 client.

3.3. Protocol Operation Clarification

3.3.1. <get>

 As described in [RFC6241], the NETCONF <get> operation returns the
 contents of <running> together with the operational state.

 If both the client and the server support NMDA and the client sends
 <get> request, the server should assume the client is non-NMDA client
 and retrieve running configuration and device state from operational
 state datastore and return it together with the system configuration
 to the client in <rpc-reply>.

 If the server supports NMDA and the client doesn't support NMDA, when
 the client sends <get> request, the server should retrieve running
 configuration and device state from operational state datastore and
 return the same results as it retrieves from non-NMDA aware server.

 For default handling basic modes, please refer to Section 3.2.2.

3.3.2. <get-config>

 As described in [RFC6241], the NETCONF <get-config> operation can be
 used to retrieve all or part of a specified configuration datastore.

 If both the client and the server support NMDA and the client sends
 <get-config> request, the server should assume the client is non-NMDA
 client and retrieve specified configuration from <running> together
 with system configuration.

 If the server supports NMDA and the client doesn't support NMDA, when
 the client send <get-config> request, the server should retrieve
 specified configuration from <running> together with system
 configuration and return the same result as it retrieves from non-
 NMDA aware server.

 For default handling basic modes, please refer to Section 3.2.2.

3.3.3. <edit-config>

 As described in [RFC6241], the NETCONF <edit-config> operation can be
 used to load all or part of a specified configuration to the
 specified target configuration datastore.

 If the client wants to have further configuration based on system
 configuration,(e.g.,configure IP address within auto-created physical
 interface configuration),the server should create corresponding
 physical interface with IP address configuration without error to be
 returned to the client as long as IP address configuration is valid.
 The effect is the same as the physical interface has already been
 part of conventional configuration datastore. If the system
 configuration is set by client sending <edit-config>operation
 request, the error should be returned as if the system configuration
 is part of conventional configuration datastore.

 For default handling basic modes, please refer to Section 3.2.1.2.

3.3.4. <get-data>

 As described in [I-D.ietf-netconf-nmda-netconf], the <get-data>
 operation retrieves data from a specific NMDA datastore,similar to
 NETCONF's <get-config> operation defined in [RFC6241].

 If the client sends <get-data> request with specified target
 configuration datastore set to running datastore, the server should
 assume the client is NMDA client and retrieve specified configuration
 from <running> without system configuration set by the server since
 system configuration is separated from conventional configuration
 datastore.

 For default handling basic modes, please refer to Section 3.2.3.

3.3.5. <edit-data>

 As described in [I-D.ietf-netconf-nmda-netconf], the NETCONF <edit-
 data> operation can be used to load all or part of a specified
 configuration to the specified target configuration datastore.

 For NMDA client sending <edit-data> operation request with specified
 target configuration datastore set to configuration datastore such as
 running datastore, since system configuration is separated from
 conventional configuration datastore, if the client wants to use
 system configuration or configure other parameter(e.g., IP address)
 within system configuration(e.g., auto-created interface
 configuration), Explicitly creating system configuration by the
 client MUST be allowed without error being returned. For default
 configuration, since it doesn't exist in the conventional
 configuration datastore, the default configuration MUST be created
 without error being returned, irrespectively "with-defaults"
 parameter being set to basic-mode, trim or report-all.

4. IANA Considerations

 There is no IANA action in this document.

5. Security Considerations

 This document does not introduce any security vulnerability besides
 one defined in [RFC6241] [I-D.ietf-netconf-nmda-netconf].

6. Acknowledgements

 Thanks Robert Wilton,Guangying Zheng,Shouchuan Yang,Dan Qu, Ye Niu to
 discuss NMDA comability issues on existing protocol operation and
 provide important input to this document.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8407]
 Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

7.2. Informative References

 [I-D.ietf-netconf-nmda-netconf]

 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", draft-ietf-netconf-
 nmda-netconf-08 (work in progress), October 2018.

Authors' Addresses

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: bill.wu@huawei.com

Chong Feng
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: frank.fengchong@huawei.com

draft-wu-netconf-restconf-factory-restore-03 - Factory default Setting

Index
Back 5
Prev
Next

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: April 14, 2019

Q. Wu

Huawei

B. Lengyel

Ericsson Hungary

Y. Niu

Huawei

October 11, 2018

Factory default Setting

draft-wu-netconf-restconf-factory-restore-03

Abstract

 This document defines a method to reset a YANG datastore to its
 factory-default content. The reset operation may be used e.g. during
 initial zero-touch configuration or when the existing configuration
 has major errors, so re-starting the configuration process from
 scratch is the best option.

 A new reset-datastore RPC is defined. Several methods of documenting
 the factory-default content are specified.

 Optionally a new "factory-default" read-only datastore is defined,
 that contains the data that will be copied over to the running
 datastore at reset.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 14, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Reset-Datastore RPC

	3. Factory-Default Datastore

	4. YANG Module

	5. IANA Considerations

	6. Security Considerations

	7. Acknowledgements

	8. Contributors

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Open Issues

	Appendix B. Changes between revisions

	Authors' Addresses

1. Introduction

 This document defines a method to reset a YANG datastore to its
 factory-default content. The reset operation may be used e.g. during
 initial zero-touch configuration or when the existing configuration
 has major errors, so re-starting the configuration process from
 scratch is the best option. When resetting a datastore all previous
 configuration settings will be lost and replaced by the factory-
 default content.

 A new reset-datastore RPC is defined. Several methods of documenting
 the factory-default content are specified.

 Optionally a new "factory-default" read-only datastore is defined,
 that contains the data that will be copied over to the running
 datastore at reset. This datastore can be used in <get-data> or
 <copy-config> operations.

 NETCONF defines the <delete> operation that allows resetting the
 <startup> datastore, and the <discard-changes> operation that copies
 the content of the <running> datastore into the <candidate>
 datastore. However it is not possible to reset the running
 datastore, to reset the candidate datastore without changing the
 running datastore or to reset any dynamic datastore.

 A RESTCONF server MAY implement the above NETCONF operations, but
 that would still not allow it to reset the running configuration.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC8342] and are not redefined
 here:

 o startup configuration datastore

 o candiate configuration datastore

 o running configuration datastore

 o intended configuration datastore

 o operational state datastore

 The following terms are defined in this document as follows:

 o factory-default datastore: A read-only datastore holding a
 preconfigured minimal initial configuration that can be used to
 initialize the configuration of a server. The content of the
 datastore is usually static, but MAY depend on external factors
 like available HW.

2. Reset-Datastore RPC

 A new "reset-datastore" RPC is introduced. It will have a target
 datastore as a parameter. Upon receiveing the RPC the YANG server
 resets the content of the target datastore to its factory-default
 content. Only writable datastores can be specified as a target.
 Read-only datastores receive their content from other datastores
 (e.g. <intended> gets its content from <running>).

 Factory-default content SHALL be specified by one of the following
 means in order of precedence

 1. For the <running>, <candidate> and <startup> datastores as the
 content of the <factory-default> datastore, if it exists

 2. YANG Instance Data [I-D.lengyel-netmod-yang-instance-data]

 3. In some implementation specific manner

 4. For dynamic datastores unless otherwise specified the factory-
 default content is empty.

3. Factory-Default Datastore

 This document introduces a new datastore resource named 'Factory-
 Default' that represents a preconfigured minimal initial
 configuration that can be used to initialize the configuration of a
 server.

 o Name: "factory-default"

 o YANG modules: all

 o YANG nodes: all "config true" data nodes

 o Management operations: The content of the datastore is set by the
 YANG server in an implementation dependent manner. The content
 can not be changed by management operations via NETCONF, RESTCONF,
 the CLI etc. unless specialized, dedicated operations are
 provided. The contents of the datastore can be read using
 NETCONF, RESTCONF <get-data> operation. The operations <reset-
 datastore> or <copy-config> can be used to copy the content of the
 datastore to another datastore. The content of the datastore is
 not propagated auomatically to any other datastores.

 o Origin: This document does not define a new origin identity as it
 does not interact with <operational> datastore.

 o Protocols: All e.g. Restconf, Netconf

 o Defining YANG module: "ietf-factory-reset"

 The datastore content is usually defined by the device vendor. It is
 usually static, but MAY change e.g. depending on external factors
 like HW available or during device upgrade.

 On devices that support non-volatile storage, the contents of
 <factory > MUST persist across restarts

4. YANG Module

<CODE BEGINS> file "ietf‑factory‑reset.yang"
module ietf‑factory‑reset {
 yang‑version 1.1;
 namespace urn:ietf:params:xml:ns:yang:ietf‑factory‑reset ;
 prefix fres ;

 import ietf‑netconf { prefix nc ; }
 import ietf‑datastores { prefix ds; }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <https://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Kent Watsen

 <mailto:kwatsen@juniper.net>

 WG Chair: Mahesh Jethanandani

 <mailto:mjethanandani@gmail.com>

 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>";

description
 "This module defines the
 ‑ reset‑datastore RPC
 ‑ factory‑default datastore
 ‑ an extension to the Netconf <copy‑config> operation to
 allow it to operate on the factory‑default datastore.

 It provides functionality to reset a YANG datastore to its
 factory-default content.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license‑info).

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and
 'OPTIONAL' in the module text are to be interpreted as described
 in RFC 2119 (https://tools.ietf.org/html/rfc2119).

 This version of this YANG module is part of RFC XXXX
 (https://tools.ietf.org/html/rfcXXXX); see the RFC itself for
 full legal notices.";

revision 2018‑10‑09 {
 description
 "Initial revision.";
 reference "RFC XXXX: Factory default Setting Capability for
 RESTCONF";
}

feature factory‑default‑as‑datastore {
 description "Indicates that the factory default configuration is
 also available as a separate datastore";
}

rpc reset‑datastore {
 description "The target datastore is reset to its factory
 default content. ";

 input {
 leaf‑list target‑datasore {
 type identityref {
 base "ds:datastore" ;
 }
 min‑elements 1;
 description "The datastore(s) whose content will be
 replaced by the factory‑default configuration.";
 }
 // Do we need an extra parameter that may order a restart of
 // the YANG‑server or the whole system?
 }
}

 identity factory-default {

 if-feature factory-default-as-datastore;

 base ds:datastore;
 description "The read‑only datastore contains the configuration that
 will be copied into e.g. the running datastore by the
 reset‑datastore operation if the target is the running
 datastore.";
 }

 augment /nc:copy‑config/nc:input/nc:source/nc:config‑source {
 if‑feature factory‑default‑as‑datastore;
 description " Allows the copy‑config operation to use the
 factory‑default datastore as a source";
 leaf factory‑default {
 type empty ;
 description
 "The factory‑default datastore is the source."; }
 }
}
<CODE ENDS>

5. IANA Considerations

 This document registers one URI in the IETF XML Registry [RFC3688].
 The following registration has been made:

 URI: urn:ietf:params:xml:ns:yang:ietf-factory-reset

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 This document registers one YANG module in the YANG Module Names
 Registry [RFC6020]. The following registration has been made:

 name: ietf-factory-reset

 namespace: urn:ietf:params:xml:ns:yang:ietf-factory-reset

 prefix: fres

 RFC: xxxx

6. Security Considerations

 The <reset-datastore> RPC can overwrite important and security
 sensitive information in one of the other datastores e.g. running,
 therefore it is important to restrict access to this RPC using the
 standard NETCONF/RESTCONF access control methods.[RFC8341]

 The content of the factory-default datastore is usually not security
 sensitive as it is the same on any device of a certain type.

7. Acknowledgements

 Thanks to Juergen Schoenwaelder, Ladislav Lhotka to review this draft
 and provide important input to this document.

8. Contributors

Rohit R Ranade
Huawei
Email: rohitrranade@huawei.com

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

9.2. Informative References

 [I-D.ietf-netconf-zerotouch]

 Watsen, K., Abrahamsson, M., and I. Farrer, "Zero Touch
 Provisioning for Networking Devices", draft-ietf-netconf-
 zerotouch-25 (work in progress), September 2018.

 [I-D.lengyel-netmod-yang-instance-data]

 Lengyel, B. and B. Claise, "YANG Instance Data Files and
 their use for Documenting Server Capabilities", draft-
 lengyel-netmod-yang-instance-data-03 (work in progress),
 July 2018.

Appendix A. Open Issues

 o Do we need a restart after <reset-datastore> ? What kind of
 restart, just the Yang-Server or the full system?

 o Do we need the concept of reboot? How is that different from a
 restart? Does it result in some sort of reset-datastore?

Appendix B. Changes between revisions

 v02 - v03

 o Restructured

 o Made new datastore optional

 o Removed Netconf capability

 o Listed Open issues

 v01 - v02

 o -

 v00 - v01

 o -

Authors' Addresses

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: bill.wu@huawei.com

Balazs Lengyel
Ericsson Hungary
Magyar Tudosok korutja 11
1117 Budapest
Hungary

Phone: +36‑70‑330‑7909
Email: balazs.lengyel@ericsson.com

Ye Niu
Huawei

 Email: niuye@huawei.com

draft-zheng-netconf-inline-action-capability-02 - Inline Action Capability for N

Index
Back 5
Prev
Next

NETCONF Working Group

Internet-Draft

Intended status: Standards Track

Expires: May 8, 2019

W. Zheng

Q. Wu

Huawei

November 4, 2018

Inline Action Capability for NETCONF

draft-zheng-netconf-inline-action-capability-02

Abstract

 NETCONF provides mechanism to install configuration of network
 devices. In many cases, it is required that the same configuration
 repeats on many interfaces. In the absence of protocol semantics for
 performing operations with group-specific scope, this results in
 either a significant amount of signaling traffic and configuration
 template applying on a periodic basis or large packet size between a
 given network management system and a network devices. This document
 defines optimizations to the NETCONF protocol operations for
 performing operations with group-specific scope with the use of a
 group identifier.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 8, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	2. Inline-Action Capability
	 2.1. Description

	 2.2. Dependencies

	 2.3. Capability Identifier

	 2.4. New Operations

	 2.5. Modifications to Existing Operations

	3. Security Considerations

	4. IANA Considerations
	 4.1. NETCONF Capability URN

	5. Normative References

	Authors' Addresses

1. Introduction

 NETCONF provides mechanism to install configuration of network
 devices. In many cases, it is required that the same configuration
 repeats on many interfaces, e.g., configure multiple VLAN ranges on
 the same Trunk interface. In the absence of protocol semantics for
 performing operations with group-specific scope, using configuration
 template to replicate multiple copies on the same interface result in
 either a significant amount of signaling traffic(e.g, multiple data
 retrieval for vlan tag configuration on the interface) on a periodic
 basis or large packet size (e.g,edit-config operation related to
 protocol message) between a given network management system and a
 network devices.

 This document defines optimizations to the NETCONF protocol
 operation(i.e., inline action operation) for performing bulk
 operations with group-specific scope with the use of a group
 identifier and allows NETCONF protocol operation work together with
 inline action operation that apply to different conceptual node in
 the underlying data model in one transaction.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Inline-Action Capability

2.1. Description

 The :inline-action capability indicates that the device supports
 Inline-action operation within protocol operation on specific
 datastore. In other words, the device supports <record-merge>
 operation which is included in existing protocol operations.

2.2. Dependencies

 None.

2.3. Capability Identifier

 The :inline-action capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:inline-action:1.1

2.4. New Operations

 None.

2.5. Modifications to Existing Operations

 The :inline-action:1.1 capability modifies the protocol operation to
 accept <record-merge> attribute value within operation attribute.

 As described in [RFC6241], "operation" attribute is defined in a
 element within <config> subtree and identify the point in the
 configuration to perform the operation and MAY appear on multiple
 elements throughout the <config> subtree. In this document, two new
 "operation" attribute values are added as follows:

record‑split: The range constrait of the configuration data
 identified by the element containing this attribute is split at
 the corresponding level in the configuration datastore identified
 by the <target> parameter.

record‑merge: The range constrait of the configuration data
 identified by the element containing this attribute is merged at
 the corresponding level in the configuration datastore identified
 by the <target> parameter.

 In addition, the record-merge and record-split operation attributes
 and other "operation" attributes MUST apply to the different
 conceptual nodes In the underlying data model.

 As described in [RFC6241], the config subtree is expressed as a
 hierarchy of configuration data as defined by one of the device's
 data models. The contents MUST follow the constraints of that data
 model, as defined by its capability definition. If inline action
 capability is supported, the config subtree may contain a schema node
 with the name "input" and a schema node with the name "output"
 connected to a specific container or list data node containing
 recrod-merge element in a datastore.

Excample:
container interfaces {
 list trunk‑interface {
 key "name";
 config true;
 leaf name {
 type string;
 }
 container vlan‑id‑ranges{
 list vlan‑id‑range{
 key "group‑id";
 leaf group‑id {
 type string;
 description
 "Specified VLAN group ID.";
 }
 leaf lower‑vlan‑id {
 type uint32 {
 range "1..4094";
 }
 mandatory true;
 description
 "Start outer VLAN ID.";
 }
 leaf upper‑vlan‑id {
 type uint16 {
 range "1..4094";
 }
 description
 "End outer VLAN ID.";
 }
 action range‑merge {
 input {
 leaf lower‑vlan‑id {
 type uint32 {

 range "1..4094";
 }
 mandatory true;
 description
 "Start outer VLAN ID.";
 }
 leaf upper‑vlan‑id {
 type uint16 {
 range "1..4094";
 }
 description
 "End outer VLAN ID.";
 }
 }
 }
 }
 }
 }
}

 Suppose we configure trunk interface with multiple discrete vlan tag
 ranges from the running configuration and without inline action
 capability, edit-config with configuration template will be used to
 merge them as one record with extra computation in the client app.

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.1">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.1">
 <top xmlns="http://example.com/schema/1.2/config">
 <interfaces>
 <interface>
 <name>Ethernet0/0</name>
 <vlan‑id‑ranges>
 <vlan‑id‑range xc:operation="delete">
 <group‑id>0</group‑id>
 <lower‑vlan‑id>1</lower‑vlan‑id>
 <upper‑vlan‑id>3</upper‑vlan‑id>
 </vlan‑id‑range>
 <vlan‑id‑range xc:operation="delete">
 <group‑id>2</group‑id>
 <lower‑vlan‑id>5</lower‑vlan‑id>
 <upper‑vlan‑id>6</upper‑vlan‑id>
 </vlan‑id‑range>
 <vlan‑id‑range xc:operation="delete">
 <group‑id>3</group‑id>
 <lower‑vlan‑id>7</lower‑vlan‑id>
 <upper‑vlan‑id>8</upper‑vlan‑id>
 </vlan‑id‑range>
 <vlan‑id‑range xc:operation="delete">
 <group‑id>4</group‑id>
 <lower‑vlan‑id>9</lower‑vlan‑id>
 <upper‑vlan‑id>10</upper‑vlan‑id>
 </vlan‑id‑range>
 <vlan‑id‑range xc:operation="create">
 <group‑id>0</group‑id>
 <lower‑vlan‑id>1</lower‑vlan‑id>
 <upper‑vlan‑id>10</upper‑vlan‑id>
 </vlan‑id‑range>
 </vlan‑id‑ranges>
 </interface>
 </interfaces>
 </top>
 </config>
 </edit‑config>
</rpc>

 If inline-action capability supported, bulk operation in one protocol
 message will be used to merge multiple records with different vlan
 tag range will into one record:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.1">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.1">
 <top xmlns="http://example.com/schema/1.2/config">
 <interfaces>
 <interface xc:operation="record‑merge">
 <name>Ethernet0/0</name>
 <vlan‑id‑ranges>
 <vlan‑id‑range>
 <action xmlns="http://example.com/schema/1.2/config">
 <range‑merge>
 <input>
 <lower‑vlan‑id>1</lower‑vlan‑id>
 <upper‑vlan‑id>10</upper‑vlan‑id>
 </input>
 </range‑merge>
 </action>
 </vlan‑id‑range>
 <vlan‑id‑ranges>
 </interface>
 </interfaces>
 </top>
 </config>
 </edit‑config>
 </rpc>

 Suppose we have a trunk interface with vlan tag range [1,10], we
 delete one vlan tag from this trunk interface,without inline action
 capability, edit-config with configuration template will be used to
 split valn tag range into multiple records with extra computation in
 the client app.

<rpc message‑id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.1">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.1">
 <top xmlns="http://example.com/schema/1.2/config">
 <interfaces>
 <interface>
 <name>Ethernet0/0</name>
 <vlan‑id‑ranges>
 <vlan‑id‑range xc:operation="delete">
 <group‑id>0</group‑id>
 <lower‑vlan‑id>4</lower‑vlan‑id>
 <upper‑vlan‑id>4</upper‑vlan‑id>
 </vlan‑id‑range>
 <vlan‑id‑range xc:operation="create">
 <group‑id>0</group‑id>
 <lower‑vlan‑id>1</lower‑vlan‑id>
 <upper‑vlan‑id>3</upper‑vlan‑id>
 </vlan‑id‑range>
 <vlan‑id‑range xc:operation="create">
 <group‑id>1</group‑id>
 <lower‑vlan‑id>4</lower‑vlan‑id>
 <upper‑vlan‑id>10</upper‑vlan‑id>
 </vlan‑id‑range>
 </vlan‑id‑ranges>
 </interface>
 </interfaces>
 </top>
 </config>
 </edit‑config>
</rpc>

 If inline-action capability supported, bulk operation in one protocol
 message will be used to split one record with vlan tag range into two
 records:

<rpc message‑id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.1">
 <edit‑config>
 <target>
 <running/>
 </target>
 <default‑operation>none</default‑operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.1">
 <top xmlns="http://example.com/schema/1.2/config">
 <interfaces>
 <interface xc:operation="record‑merge">
 <name>Ethernet0/0</name>
 <vlan‑id‑ranges>
 <vlan‑id‑range>
 <lower‑vlan‑id>1</lower‑vlan‑id>
 <upper‑vlan‑id>10</upper‑vlan‑id>
 <action xmlns="http://example.com/schema/1.2/config">
 <range‑split>
 <input>
 <lower‑vlan‑id>4</lower‑vlan‑id>
 <upper‑vlan‑id>4</upper‑vlan‑id>
 </input>
 </range‑split>
 </action>
 </vlan‑id‑range>
 <vlan‑id‑ranges>
 </interface>
 </interfaces>
 </top>
 </config>
 </edit‑config>
 </rpc>

3. Security Considerations

 This document does not introduce any security vulnerability besides
 on defined in [RFC6241].

4. IANA Considerations

4.1. NETCONF Capability URN

 IANA has created and now maintains a registry "Network Configuration
 Protocol (NETCONF) Capability URNs" that allocates NETCONF capability
 identifiers. Additions to the registry require IETF Standards
 Action.

 IANA has added the following capabilities to the registry:

Index
 Capability Identifier
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
:inline‑action:1.1
 urn:ietf:params:netconf:capability:inline‑action:1.1

5. Normative References

 [I-D.ietf-netconf-nmda-netconf]

 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", draft-ietf-netconf-
 nmda-netconf-08 (work in progress), October 2018.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020]
 Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6021]
 Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6021, DOI 10.17487/RFC6021, October 2010,
 <https://www.rfc-editor.org/info/rfc6021>.

 [RFC6241]
 Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242]
 Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6470]
 Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

Authors' Addresses

Walker Zheng
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: zhengguangying@huawei.com

Qin Wu
Huawei
101 Software Avenue, Yuhua District
Nanjing, Jiangsu 210012
China

 Email: bill.wu@huawei.com

draft-zhou-netconf-multi-stream-originators-03 - Subscription to Multiple Stream

Index
Back 5
Prev
Next

NETCONF

Internet-Draft

Intended status: Standards Track

Expires: April 21, 2019

T. Zhou

G. Zheng

Huawei

E. Voit

Cisco Systems

A. Clemm

Huawei

A. Bierman

YumaWorks

October 18, 2018

Subscription to Multiple Stream Originators

draft-zhou-netconf-multi-stream-originators-03

Abstract

 This document describes the distributed data collection mechanism
 that allows multiple data streams to be managed using a single
 subscription. Specifically, multiple data streams are pushed
 directly to the collector without passing through a broker for
 internal consolidation.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Use Cases
	 2.1. Use Case 1: Data Collection from Devices with Main-board and Line-cards

	 2.2. Use Case 2: IoT Data Collection

	3. Terminologies

	4. Solution Overview

	5. Subscription Decomposition

	6. Publication Composition

	7. Subscription State Change Notifications

	8. IANA Considerations

	9. Security Considerations

	10. Acknowledgements

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Appendix A. Change Log

	Authors' Addresses

1. Introduction

 Streaming telemetry refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics. Devices generate telemetry data and push that data to a
 collector for further analysis. By streaming the data, much better
 performance, finer-grained sampling, monitoring accuracy, and
 bandwidth utilization can be achieved than with polling-based
 alternatives.

 YANG-Push [I-D.ietf-netconf-yang-push] defines a transport-
 independent subscription mechanism for datastore updates, in which a
 subscriber can subscribe to a stream of datastore updates from a
 server, or update provider. The current design involves subscription
 to a single push server. This conceptually centralized model
 encounters efficiency limitations in cases where the data sources are
 themselves distributed, such as line cards in a piece of network
 equipment. In such cases, it will be a lot more efficient to have
 each data source (e.g., each line card) originate its own stream of
 updates, rather than requiring updates to be tunneled through a
 central server where they are combined. What is needed is a
 distributed mechanism that allows to directly push multiple
 individual data substreams, without needing to first pass them
 through an additional processing stage for internal consolidation,
 but still allowing those substreams to be managed and controlled via
 a single subscription.

 This document will describe such distributed data collection
 mechanism and how it can work by extending existing YANG-Push
 mechanism. The proposal is general enough to fit many scenarios.

2. Use Cases

2.1. Use Case 1: Data Collection from Devices with Main-board and Line-
 cards

 For data collection from devices with main-board and line-cards,
 existing YANG-Push solutions consider only one push server typically
 reside in the main board. As shown in the following figure, data are
 collected from line cards and aggregate to the main board as one
 consolidated stream. So the main board can easily become the
 performance bottle-neck. The optimization is to apply the
 distributed data collection mechanism which can directly push data
 from line cards to a collector. On one hand, this will reduce the
 cost of scarce compute and memory resources on the main board for
 data processing and assembling. On the other hand, distributed data
 push can off-load the streaming traffic to multiple interfaces.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| collector |
+‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑+
 | | |
 | | |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
	+‑‑‑‑‑+‑‑‑‑‑‑+			
		main board		
	+‑‑^‑‑‑‑‑^‑‑‑+			
	+‑‑‑+ +‑‑‑+			
+‑‑‑‑+‑‑‑‑+‑‑‑+ +‑‑‑+‑‑‑‑+‑‑‑‑+				
	line card 1		line card 2	
+‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑+				
device				
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Fig. 1 Data Collection from Devices with Main-board and Line-cards

2.2. Use Case 2: IoT Data Collection

 In the IoT data collection scenario, as shown in the following
 figure, collector usually cannot access to IoT nodes directly, but is
 isolated by the border router. So the collector subscribes data from
 the border router, and let the border router to disassemble the
 subscription to corresponding IoT nodes. The border router is
 typically the traffic convergence point. It's intuitive to treat the
 border router as a broker assembling the data collected from the IoT
 nodes and forwarding to the collector[I-D.ietf-core-coap-pubsub].
 However, the border router is not so powerful on data assembling as a
 network device. It's more efficient for the collector, which may be
 a server or even a cluster, to assemble the subscribed data if
 possible. In this case, push servers that reside in IoT nodes can
 stream data to the collector directly while traffic only passes
 through the border router.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| collector |
+‑‑‑^‑‑‑‑‑‑‑‑‑‑‑^‑‑‑‑‑‑‑‑‑‑‑‑^‑‑+
 | | |
 | | |
 | | |
 | +‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+ |
 | | border router | |
 | +‑‑‑‑^‑‑‑‑‑‑^‑‑‑‑+ |
 | | | |
 | | | |
 | +‑‑‑+ +‑‑‑+ |
 | | | |
+‑‑‑+‑‑‑‑+‑‑‑+ +‑‑‑+‑‑‑‑+‑‑‑+
| IoT node 1 | | IoT node 2 |
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Fig. 2 IoT Data Collection

3. Terminologies

 Subscriber: generates the subscription instructions to express what
 and how the collector want to receive the data

 Receiver: is the target for the data publication.

 Publisher: pushes data to the receiver according to the subscription
 information.

 Subscription Server: which manages capabilities that it can provide
 to the subscriber.

 Global Subscription: the subscription requested by the subscriber.
 It may be decomposed into multiple Component Subscriptions.

 Component Subscription: is the subscription that defines the data
 from each individual telemetry source which is managed and controlled
 by a single Subscription Server.

 Global Capability: is the overall subscription capability that the
 group of Publishers can expose to the Subscriber.

 Component Capability: is the subscription capability that each
 Publisher can expose to the Subscriber.

 Master Publication Channel: the session between the Master Publisher
 and the Receiver.

 Agent Publication Channel: the session between the Agent Publisher
 and the Receiver.

4. Solution Overview

 All the use cases described in the previous section are very similar
 on the data subscription and publication mode, hence can be
 abstracted to the following generic distributed data collection
 framework, as shown in the following figure.

 A Collector usually includes two components,

 o the Subscriber generates the subscription instructions to express
 what and how the collector want to receive the data;

 o the Receiver is the target for the data publication.

 For one subscription, there may be one to many receivers. And the
 subscriber does not necessarily share the same address with the
 receivers.

 In this framework, the Publisher pushes data to the receiver
 according to the subscription information. The Publisher has the
 Master role and the Agent role. Both the Master and the Agent
 include the Subscription Server which actually manages capabilities
 that it can provide to the subscriber.

 The Master knows all the capabilities that the attached Agents and
 itself can provide, and exposes the Global Capability to the
 Collector. The Collector cannot see the Agents directly, so it will
 only send the Global Subscription information to the Master. The
 Master disassembles the Global Subscription to multiple Component
 Subscriptions, each involving data from a separate telemetry source.
 The Component Subscriptions are then distributed to the corresponding
 Agents.

 When data streaming, the Publisher collects and encapsulates the
 packets per the Component Subscription, and pushes the piece of data
 which can serve directly to the designated data Collector. The
 Collector is able to assemble many pieces of data associated with one
 Global Subscription, and can also deduce the missing pieces of data.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | Collector |‑‑‑‑‑‑‑‑‑‑‑‑‑+ | | | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑+ | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑+ || Receiver | | |
 | | Subscriber | |‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | +‑^‑‑‑‑+‑‑‑‑‑+ +‑‑‑^‑‑‑‑‑‑‑‑^ |
 | | | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Global | |Global |Push |
Capability | |Subscription | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+ |
 | | | Publisher(Master) | |
 | +‑‑+‑‑‑‑v‑‑‑‑‑‑+ | |
 | | Subscription | | |
 | | Server | | |
 | +‑‑^‑‑‑‑+‑‑‑‑‑‑+ | |
 | | | | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
Component | | Component |Push
Capability | | Subscription |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 | | | Publisher(Agent) | |
 | +‑‑+‑‑‑‑v‑‑‑‑‑‑+ | |
 | | Component | | |
 | | Subscription | +‑‑+
 | | Server | |
 | +‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Fig. 3 The Generic Distributed Data Collection Framework

 Master and Agents may interact with each other in several ways:

 o Agents need to have a registration or announcement handshake with
 the Master, so the Master is aware of them and of life-cycle
 events (such as Agent appearing and disappearing).

 o Contracts are needed between the Master and each Agent on the
 Component Capability, and the format for streaming data structure.

 o The Master relays the component subscriptions to the Agents.

 o The Agents indicate status of Component Subscriptions to the
 Master. The status of the overall subscription is maintained by
 the Master. The Master is also responsible for notifying the
 subscriber in case of any problems of Component Subscriptions.

 Any technical mechanisms or protocols used for the coordination of
 operational information between Master and Agent is out-of-scope of
 the solution. We will need to instrument the results of this
 coordination on the Master Node.

5. Subscription Decomposition

 Since Agents are invisible to the Collector, the Collector can only
 subscribe to the Master. This requires the Master to:

 1. expose the Global Capability that can be served by multiple
 Publishers;

 2. disassemble the Global Subscription to multiple Component
 Subscriptions, and distribute them to the corresponding telemetry
 sources;

 3. notify on changes when portions of a subscription moving between
 different Agents over time.

 To achieve the above requirements, the Master need a Global
 Capability description which is typically the YANG [RFC7950] data
 model. This global YANG model is provided as the contract between
 the Master and the Collector. Each Agent associating with the Master
 owns a local YANG model to describe the Component Capabilities which
 it can serve as part of the Global Capability. All the Agents need
 to know the namespace associated with the Master.

 The Master also need a data structure, typically a Resource-Location
 Table, to keep track of the mapping between the resource and the
 corresponding location of the Subscription Server which commits to
 serve the data. When a Global Subscription request arrives, the
 Master will firstly extract the filter information from the request.
 Consequently, according to the Resource-Location Table, the Global
 Subscription can be disassembled into multiple Component
 Subscriptions, and the corresponding location can be associated.

 The decision whether to decompose a Global Subscription into multiple
 Component Subscriptions rests with the Resource-Location Table. A
 Master can decide to not decompose a Global Subscription at all and
 push a single stream to the receiver, because the location
 information indicates the Global Subscription can be served locally
 by the Master. Similarly, it can decide to entirely decompose a
 Global Subscription into multiple Component Subscriptions that each
 push their own streams, but not from the Master. It can also decide
 to decompose the Global Subscription into several Component
 Subscriptions and retain some aspects of the Global Subscription
 itself, also pushing its own stream.

 Component Subscriptions belonging to the same Global Subscription
 MUST NOT overlap. The combination of all Component Subscriptions
 MUST cover the same range of nodes as the Global Subscription. Also,
 the same subscription settings apply to each Component Subscription,
 i.e., the same receivers, the same time periods, the same encodings
 are applied to each Component Subscription per the settings of the
 Global Subscription.

 Each Component Subscription in effect constitutes a full-fledged
 subscription, with the following constraints:

 o Component subscriptions are system-controlled, i.e. managed by the
 Master, not by the subscriber.

 o Component subscription settings such as time periods, dampening
 periods, encodings, receivers adopt the settings of their Global
 Subscription.

 o The life-cycle of the Component Subscription is tied to the life-
 cycle of the Global Subscription. Specifically, terminating/
 removing the Global Subscription results in termination/removal of
 Component Subscriptions.

 o The Component Subscriptions share the same Subscription ID as the
 Global Subscription.

6. Publication Composition

 The Publisher collects data and encapsulates the packets per the
 Component Subscription. There are several potential encodings,
 including XML, JSON, CBOR and GPB. The format and structure of the
 data records are defined by the YANG schema, so that the composition
 at the Receiver can benefit from the structured and hierarchical data
 instance.

 The Receiver is able to assemble many pieces of data associated with
 one subscription, and can also deduce the missing pieces of data.
 The Receiver recognizes data records associated with one subscription
 according the Subscription ID. Data records generated per one
 subscription are assigned with the same Subscription ID.

 For the time series data stream, records are produced periodically
 from each stream originator. The message arrival time varies because
 of the distributed nature of the publication. The Receiver assembles
 data generated at the same time period based on the recording time
 consisted in each data record. In this case, time synchronization is
 required for all the Publishers.

 To check the integrity of the data generated from different
 Publishers at the same time period, the Message Generator ID
 [I-D.ietf-netconf-notification-messages]is helpful. This requires
 the Subscriber to know the number of Component Subscriptions which
 the Global Subscription is decomposed to. For the dynamic
 subscription, the reponse of the "establish-subscription" and
 "modify-subscription" RPC defined in
 [I-D.ietf-netconf-subscribed-notifications] can include a list of
 Message Generator IDs to indicate how the Global Subscription is
 decomposed into several Component Subscriptions. The "subscription-
 started" and "subscription-modified" notification defined in
 [I-D.ietf-netconf-subscribed-notifications] can also include a list
 of Message Generator IDs to notify the current Publishers for the
 corresponding Global Subscription.

7. Subscription State Change Notifications

 In addition to sending event records to receivers, the Master MUST
 also send subscription state change
 notifications[I-D.ietf-netconf-subscribed-notifications] when events
 related to subscription management have occurred. All the
 subscription state change notifications MUST be delivered by the
 Master Publication Channel which is the session between the Master
 Publisher and the Receiver.

 When the subscription decomposition result changed, the
 "subscription-modified" notification will be sent to indicate the new
 a list of Publishers.

8. IANA Considerations

 TBD

9. Security Considerations

 It's expected to reuse the existing secure transport layer protocols,
 such as TLS [RFC5246] and DTLS [RFC6347], to secure the telemetry
 stream.

10. Acknowledgements

 TBD

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7950]
 Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

11.2. Informative References

 [I-D.ietf-core-coap-pubsub]

 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-ietf-core-coap-pubsub-05 (work in
 progress), July 2018.

 [I-D.ietf-netconf-notification-messages]

 Voit, E., Birkholz, H., Bierman, A., Clemm, A., and T.
 Jenkins, "Notification Message Headers and Bundles",
 draft-ietf-netconf-notification-messages-04 (work in
 progress), August 2018.

 [I-D.ietf-netconf-subscribed-notifications]

 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Customized Subscriptions to a Publisher's
 Event Streams", draft-ietf-netconf-subscribed-
 notifications-17 (work in progress), September 2018.

 [I-D.ietf-netconf-yang-push]

 Clemm, A., Voit, E., Prieto, A., Tripathy, A., Nilsen-
 Nygaard, E., Bierman, A., and B. Lengyel, "YANG Datastore
 Subscription", draft-ietf-netconf-yang-push-19 (work in
 progress), September 2018.

Appendix A. Change Log

 (To be removed by RFC editor prior to publication)

 v01

 o Minor revision on Subscription Decomposition

 o Revised terminologies

 o Removed most implementation related text

 o Place holder of two sections: Subscription Management, and
 Notifications on Subscription State Changes

 v02

 o Revised section 4 and 5. Moved them from apendix to the main
 text.

 v03

 o Added a section for Terminologies.

 o Added a section for Subscription State Change Notifications.

 o Improved the Publication Composition section by adding a methed to
 check the integrity of the data generated from different
 Publishers at the same time period.

 o Revised the solution overview for a more clear description.

Authors' Addresses

Tianran Zhou
Huawei
156 Beiqing Rd., Haidian District
Beijing
China

 Email: zhoutianran@huawei.com

Guangying Zheng
Huawei
101 Yu‑Hua‑Tai Software Road
Nanjing, Jiangsu
China

 Email: zhengguangying@huawei.com

Eric Voit
Cisco Systems
United States of America

 Email: evoit@cisco.com

Alexander Clemm
Huawei
2330 Central Expressway
Santa Clara, California
United States of America

 Email: alexander.clemm@huawei.com

Andy Bierman
YumaWorks
United States of America

 Email: andy@yumaworks.com

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
netconf
Documents
2019-01-13

SO ¢

1 E T F

Kindle transformation by Tero Kivinen
0041113

