This book is a collection of RFCs and Internet-Drafts related to specific working group. The RFC and Internet-Drafts files are normally stored in plain ascii text format and they are converted to html suitable for eBook use by automatic scripts. Those scripts try to detect headers, pictures, lists, references etc and create special html for each of those. For text paragraphs those scripts remove indentation and hard linebreaks and makes text paragraphs as normal text so font size of the eBook can be adjusted at will and features like text-to-speech work.
As this conversion is completely automatic there might be errors in the converted files. I have tried to fix the issues when I find them, but sometimes fixing issue in one RFC cause problems in others, so not all errors can be easily fixed, this is especially true for very old RFCs which do not follow the formatting specifications. If you notice errors in the formatting please send email to the <kivinen+rfc-ebook@iki.fi> and describle the problem. Please, remember to include the RFC number and the version number of the eBook file (found from the cover page).
As the collection of RFCs is quite large there has been some issues with the conversion to kindle, and some features do not seem to work properly when full set of RFCs is used. Because of this some work-arounds have been made to make the eBook still usable. If the kindle software gets updated some of those work-arounds might be removed. For more information about those see the Conversion section.
The primary output format of the scripts is the .mobi format used in the kindle, and I have been using Kindle 3 as my primary testing device, so if other reader devices are used, there might be more issues. The automatic tools also create the .ePub file, which can be used on platforms which do not support .mobi format. There is program called mobipocket for reading .mobi files, and that program is available for wide range of devices including PalmOS, Symbian, PC, Windows Mobile, Blackberry etc, so also those devices can be used in addition to normal eBook readers.
In this section I will concentrate mostly on how to use this on Kindle 3. This eBook contains 5 main parts:
The cover page includes the date when this eBook was created (i.e. eBook version).
The conversion section includes technical information how this eBook was created and some known issues etc.
There are four main ways to navigate through the book in addition to normal page up and down.
Fastest way to go to specific RFC or Internet-Draft is to press menu button on the Kindle 3, and then select Index from the menu. This will give you the automatic index of the contents of the this file. This allows quick access to the RFC by just typing the numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y will jump you to the RFC 5996 and then you can use arrow down to select RFC and hit enter to go there. For internet draft start typing the draft name.
Another option is to use the RFC Index in the beginning of the file (You can get to there by either pressing menu, selecting Index and then clicking on the Index in the beginning of the index, or by pressing menu, selecting Go to... and then selecting Table of Contents).
Third option is to use left and right arrows to navigate the next and previous RFC/Internet-Drafts.
The fourth way to navigate inside the book is to use the links inside the files. The RFC Index has direct links to every 100th RFC. Each file contains links to back 5, forward 5, next and previous rfc. Also any reference inside the documents pointing to other RFCs gets you directly there. Some of the links inside RFC moves you inside the RFC, i.e. clicking link on the table of contents inside the RFC moves you to that section etc. Also references inside the RFC will move you to the refences section etc.
draft-ietf-opsec-ipv6-eh-filtering-06 - Recommendations on the Filtering of IPv6
opsec
Internet-Draft
Intended status: Informational
Expires: January 3, 2019
F. Gont
UTN-FRH / SI6 Networks
W. Liu
Huawei Technologies
July 2, 2018
draft-ietf-opsec-ipv6-eh-filtering-06
It is common operator practice to mitigate security risks by enforcing appropriate packet filtering. This document analyzes both the general security implications of IPv6 Extension Headers and the specific security implications of each Extension Header and Option type. Additionally, it discusses the operational and interoperability implications of discarding packets based on the IPv6 Extension Headers and IPv6 options they contain. Finally, it provides advice on the filtering of such IPv6 packets at transit routers for traffic *not* directed to them, for those cases in which such filtering is deemed as necessary.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 3, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Recent studies (see e.g. [RFC7872]) suggest that there is widespread dropping of IPv6 packets that contain IPv6 Extension Headers (EHs). In some cases, such packet drops occur at transit routers. While some operators "officially" drop packets that contain IPv6 EHs, it is possible that some of the measured packet drops be the result of improper configuration defaults, or inappropriate advice in this area.
This document analyzes both the general security implications of IPv6 EHs and the specific security implications of each EH and Option type, and provides advice on the filtering of IPv6 packets based on the IPv6 EHs and the IPv6 options they contain. Since various protocols may use IPv6 EHs (possibly with IPv6 options), discarding packets based on the IPv6 EHs or IPv6 options they contain may have implications on the proper functioning of such protocols. Thus, this document also attempts to discuss the operational and interoperability implications of such filtering policies.
The filtering policy typically depends on where in the network such policy is enforced: when the policy is enforced in a transit network, the policy typically follows a "black-list" approach, where only packets with clear negative implications are dropped. On the other hand, when the policy is enforced closer to the destination systems, the policy typically follows a "white-list" approach, where only traffic that is expected to be received is allowed. The advice in this document is aimed only at transit routers that may need to enforce a filtering policy based on the EHs and IPv6 options a packet may contain, following a "black-list" approach, and hence is likely to be much more permissive that a filtering policy to be employed e.g. at the edge of an enterprise network. The advice in this document is meant to improve the current situation of the dropping of packets with IPv6 EHs in the Internet [RFC7872].
This document is similar in nature to [RFC7126], which addresses the same problem for the IPv4 case. However, in IPv6, the problem space is compounded by the fact that IPv6 specifies a number of IPv6 EHs, and a number of IPv6 options which may be valid only when included in specific EH types.
This document completes and complements the considerations for protecting the control plane from packets containing IP options that can be found in [RFC6192].
Section 2 of this document specifies the terminology and conventions employed throughout this document. Section 3 of this document discusses IPv6 EHs and provides advice in the area of filtering IPv6 packets that contain such IPv6 EHs. Section 4 of this document discusses IPv6 options and provides advice in the area of filtering IPv6 packets that contain such options.
The terms "fast path", "slow path", and associated relative terms ("faster path" and "slower path") are loosely defined as in Section 2 of [RFC6398].
The terms "permit" (allow the traffic), "drop" (drop with no notification to sender), and "reject" (drop with appropriate notification to sender) are employed as defined in [RFC3871]. Throughout this document we also employ the term "discard" as a generic term to indicate the act of discarding a packet, irrespective of whether the sender is notified of such drops, and irrespective of whether the specific filtering action is logged.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This document provides advice on the filtering of IPv6 packets with EHs at transit routers for traffic *not* explicitly destined to such transit routers, for those cases in which such filtering is deemed as necessary.
This document assumes that nodes comply with the requirements in [RFC7045]. Namely (from [RFC7045]),
o If a forwarding node discards a packet containing a standard IPv6 EH, it MUST be the result of a configurable policy and not just the result of a failure to recognise such a header.
o The discard policy for each standard type of EH MUST be individually configurable.
o The default configuration SHOULD allow all standard IPv6 EHs.
The advice provided in this document is only meant to guide an operator in configuring forwarding devices, and is *not* to be interpreted as advice regarding default configuration settings for network devices. That is, this document provides advice with respect to operational configurations, but does not change the implementation defaults required by [RFC7045].
We recommend that configuration options are made available to govern the processing of each IPv6 EH type and each IPv6 option type. Such configuration options may include the following possible settings:
o Permit this IPv6 EH or IPv6 Option type
o Discard (and log) packets containing this IPv6 EH or option type
o Reject (and log) packets containing this IPv6 EH or option type (where the packet drop is signaled with an ICMPv6 error message)
o Rate-limit traffic containing this IPv6 EH or option type
o Ignore this IPv6 EH or option type (as if it was not present) and forward the packet. We note that if a packet carries forwarding information (e.g., in an IPv6 Routing Header) this might be an inappropriate or undesirable action.
We note that special care needs to be taken when devices log packet drops/rejects. Devices should count the number of packets dropped/ rejected, but the logging of drop/reject events should be limited so as to not overburden device resources.
Finally, we note that when discarding packets, it is generally desirable that the sender be signaled of the packet drop, since this is of use for trouble-shooting purposes. However, throughout this document (when recommending that packets be discarded) we generically refer to the action as "discard" without specifying whether the sender is signaled of the packet drop.
IPv6 [RFC8200] EHs allow for the extension of the IPv6 protocol. Since both IPv6 EHs and upper-layer protocols share the same namespace ("Next Header" registry/namespace), [RFC7045] identifies which of the currently assigned Internet Protocol numbers identify IPv6 EHs vs. upper-layer protocols. This document discusses the filtering of packets based on the IPv6 EHs (as specified by [RFC7045]) they contain.
NOTE: [RFC7112] specifies that non-fragmented IPv6 datagrams and IPv6 First-Fragments MUST contain the entire IPv6 header chain [RFC7112]. Therefore, intermediate systems can enforce the filtering policies discussed in this document, or resort to simply discarding the offending packets when they fail to comply with the requirements in [RFC7112]. We note that, in order to implement filtering rules on the fast path, it may be necessary for the filtering device to limit the depth into the packet that can be inspected before giving up. In circumstances where there is such a limitation, it is recommended that implementations discard packets if, when trying to determine whether to discard or permit a packet, the aforementioned limit is encountered.
In some specific device architectures, IPv6 packets that contain IPv6 EHs may cause the corresponding packets to be processed on the slow path, and hence may be leveraged for the purpose of Denial of Service (DoS) attacks [I-D.gont-v6ops-ipv6-ehs-packet-drops] [Cisco-EH] [FW-Benchmark].
Operators are urged to consider IPv6 EH filtering and IPv6 options handling capabilities of different devices as they make deployment decisions in future.
3.3. Summary of Advice on the Handling of IPv6 Packets with Specific IPv6 Extension Headers
This section summarizes the advice provided in Section 3.4, providing references to the specific sections in which a detailed analysis can be found.
Table 1: Summary of Advice on the Handling of IPv6 Packets with
Specific IPv6 Extension Headers
3.4. Advice on the Handling of IPv6 Packets with Specific IPv6 Extension Headers
The Hop-by-Hop Options header is used to carry optional information that may be examined by every node along a packet's delivery path. It is expected that nodes will examine the Hop-by-Hop Options header if explicitly configured to do so.
NOTE: [RFC2460] required that all nodes examined and processed the Hop-by-Hop Options header. However, even before the publication of [RFC8200] a number of implementations already provided the option of ignoring this header unless explicitly configured to examine it.
This EH is specified in [RFC8200]. At the time of this writing, the following options have been specified for the Hop-by-Hop Options EH:
o Type 0x00: Pad1 [RFC8200]
o Type 0x01: PadN [RFC8200]
o Type 0x05: Router Alert [RFC2711]
o Type 0x07: CALIPSO [RFC5570]
o Type 0x08: SMF_DPD [RFC6621]
o Type 0x23: RPL Option [I-D.ietf-roll-useofrplinfo]
o Type 0x26: Quick-Start [RFC4782]
o Type 0x4D: (Deprecated)
o Type 0x63: RPL Option [RFC6553]
o Type 0x6D: MPL Option [RFC7731]
o Type 0x8A: Endpoint Identification (Deprecated) [draft-ietf-nimrod-eid]
o Type 0xC2: Jumbo Payload [RFC2675]
o Type 0xEE: IPv6 DFF Header [RFC6971]
o Type 0x1E: RFC3692-style Experiment [RFC4727]
o Type 0x3E: RFC3692-style Experiment [RFC4727]
o Type 0x5E: RFC3692-style Experiment [RFC4727]
o Type 0x7E: RFC3692-style Experiment [RFC4727]
o Type 0x9E: RFC3692-style Experiment [RFC4727]
o Type 0xBE: RFC3692-style Experiment [RFC4727]
o Type 0xDE: RFC3692-style Experiment [RFC4727]
o Type 0xFE: RFC3692-style Experiment [RFC4727]
Legacy nodes that may process this extencion header could be subject to Denial of Service attacks.
NOTE: While [RFC8200] has removed this requirement, the deployed base may still reflect the traditional behavior for a while, and hence the potential security problems of this EH are still of concern.
Discarding packets containing a Hop-by-Hop Options EH would break any of the protocols that rely on it for proper functioning. For example, it would break RSVP [RFC2205] and multicast deployments, and would cause IPv6 jumbograms to be discarded.
Nodes implementing [RFC8200] would already ignore this extension header unless explicitly required to process it. For legacy ([RFC2460] nodes, the recommended configuration for the processing of these packets depends on the features and capabilities of the underlying platform. On platforms that allow forwarding of packets with HBH Options on the fast path, we recommend that packets with a HBH Options EH be forwarded as normal. Otherwise, on platforms in which processing of packets with a IPv6 HBH Options EH is carried out in the slow path, and an option is provided to rate-limit these packets, we recommend that this option be selected. Finally, when packets containing a HBH Options EH are processed in the slow-path, and the underlying platform does not have any mitigation options available for attacks based on these packets, we recommend that such platforms discard packets containing IPv6 HBH Options EHs.
Finally, we note that, for obvious reasons, RPL (Routing Protocol for Low-Power and Lossy Networks) [RFC6550] routers must not discard packets based on the presence of an IPv6 Hop-by-Hop Options EH.
The Routing header is used by an IPv6 source to list one or more intermediate nodes to be "visited" on the way to a packet's destination.
This EH is specified in [RFC8200]. [RFC2460] had originally specified the Routing Header Type 0, which was later obsoleted by [RFC5095], and thus removed from [RFC8200].
At the time of this writing, the following Routing Types have been specified:
o Type 0: Source Route (DEPRECATED) [RFC2460] [RFC5095]
o Type 1: Nimrod (DEPRECATED)
o Type 2: Type 2 Routing Header [RFC6275]
o Type 3: RPL Source Route Header [RFC6554]
o Types 4-252: Unassigned
o Type 253: RFC3692-style Experiment 1 [RFC4727]
o Type 254: RFC3692-style Experiment 2 [RFC4727]
o Type 255: Reserved
The security implications of RHT0 have been discussed in detail in [Biondi2007] and [RFC5095].
Blocking packets containing a RHT0 or RTH1 has no operational implications, since both have been deprecated. However, blocking packets employing other routing header types will break the protocols that rely on them.
Intermediate systems should discard packets containing a RHT0 or RHT1. Other routing header types should be permitted, as required by [RFC7045].
This EH provides the fragmentation functionality for IPv6.
This EH is specified in [RFC8200].
The security implications of the Fragment Header range from Denial of Service attacks (e.g. based on flooding a target with IPv6 fragments) to information leakage attacks [RFC7739].
Blocking packets that contain a Fragment Header will break any protocol that may rely on fragmentation (e.g., the DNS [RFC1034]).
Intermediate systems should permit packets that contain a Fragment Header.
This EH is employed for the IPsec suite [RFC4303].
This EH is specified in [RFC4303].
Besides the general implications of IPv6 EHs, this EH could be employed to potentially perform a DoS attack at the destination system by wasting CPU resources in validating the contents of the packet.
Discarding packets that employ this EH would break IPsec deployments.
Intermediate systems should permit packets containing the Encapsulating Security Payload EH.
The Authentication Header can be employed for provide authentication services in IPv4 and IPv6.
This EH is specified in [RFC4302].
Besides the general implications of IPv6 EHs, this EH could be employed to potentially perform a DoS attack at the destination system by wasting CPU resources in validating the contents of the packet.
Discarding packets that employ this EH would break IPsec deployments.
Intermediate systems should permit packets containing an Authentication Header.
The Destination Options header is used to carry optional information that needs be examined only by a packet's destination node(s).
This EH is specified in [RFC8200]. At the time of this writing, the following options have been specified for this EH:
o Type 0x00: Pad1 [RFC8200]
o Type 0x01: PadN [RFC8200]
o Type 0x04: Tunnel Encapsulation Limit [RFC2473]
o Type 0x4D: (Deprecated)
o Type 0xC9: Home Address [RFC6275]
o Type 0x8A: Endpoint Identification (Deprecated) [draft-ietf-nimrod-eid]
o Type 0x8B: ILNP Nonce [RFC6744]
o Type 0x8C: Line-Identification Option [RFC6788]
o Type 0x1E: RFC3692-style Experiment [RFC4727]
o Type 0x3E: RFC3692-style Experiment [RFC4727]
o Type 0x5E: RFC3692-style Experiment [RFC4727]
o Type 0x7E: RFC3692-style Experiment [RFC4727]
o Type 0x9E: RFC3692-style Experiment [RFC4727]
o Type 0xBE: RFC3692-style Experiment [RFC4727]
o Type 0xDE: RFC3692-style Experiment [RFC4727]
o Type 0xFE: RFC3692-style Experiment [RFC4727]
No security implications are known, other than the general implications of IPv6 EHs. For a discussion of possible security implications of specific options specified for the DO header, please see the Section 4.3.
Discarding packets that contain a Destination Options header would break protocols that rely on this EH type for conveying information, including protocols such as ILNP [RFC6740] and Mobile IPv6 [RFC6275], and IPv6 tunnels that employ the Tunnel Encapsulation Limit option.
Intermediate systems should permit packets that contain a Destination Options Header.
The Mobility Header is an EH used by mobile nodes, correspondent nodes, and home agents in all messaging related to the creation and management of bindings in Mobile IPv6.
This EH is specified in [RFC6275].
A thorough security assessment of the security implications of the Mobility Header and related mechanisms can be found in Section 15 of [RFC6275].
Discarding packets containing this EH would break Mobile IPv6.
Intermediate systems should permit packets containing this EH.
This EH is employed with the Host Identity Protocol (HIP), an experimental protocol that allows consenting hosts to securely establish and maintain shared IP-layer state, allowing separation of the identifier and locator roles of IP addresses, thereby enabling continuity of communications across IP address changes.
This EH is specified in [RFC5201].
The security implications of the HIP header are discussed in detail in Section 8 of [RFC6275].
Discarding packets that contain the Host Identity Protocol would break HIP deployments.
Intermediate systems should permit packets that contain a Host Identity Protocol EH.
This EH is employed by the Shim6 [RFC5533] Protocol.
This EH is specified in [RFC5533].
The specific security implications are discussed in detail in Section 16 of [RFC5533].
Discarding packets that contain this EH will break Shim6.
Intermediate systems should permit packets containing this EH.
3.4.10. Use for experimentation and testing (Protocol Numbers=253 and 254)
These IPv6 EHs are employed for performing RFC3692-Style experiments (see [RFC3692] for details).
These EHs are specified in [RFC3692] and [RFC4727].
The security implications of these EHs will depend on their specific use.
For obvious reasons, discarding packets that contain these EHs limits the ability to perform legitimate experiments across IPv6 routers.
Intermediate systems should discard packets containing these EHs. Only in specific scenarios in which RFC3692-Style experiments are to be performed should these EHs be permitted.
3.5. Advice on the Handling of Packets with Unknown IPv6 Extension Headers
We refer to IPv6 EHs that have not been assigned an Internet Protocol Number by IANA (and marked as such) in [IANA-PROTOCOLS] as "unknown IPv6 extension headers" ("unknown IPv6 EHs").
New IPv6 EHs may be specified as part of future extensions to the IPv6 protocol.
Since IPv6 EHs and Upper-layer protocols employ the same namespace, it is impossible to tell whether an unknown "Internet Protocol Number" is being employed for an IPv6 EH or an Upper-Layer protocol.
The processing of unknown IPv6 EHs is specified in [RFC8200] and [RFC7045].
For obvious reasons, it is impossible to determine specific security implications of unknown IPv6 EHs. However, from security standpoint, a device should discard IPv6 extension headers for which the security implications cannot be determined. We note that this policy is allowed by [RFC7045].
As noted in [RFC7045], discarding unknown IPv6 EHs may slow down the deployment of new IPv6 EHs and transport protocols. The corresponding IANA registry ([IANA-PROTOCOLS]) should be monitored such that filtering rules are updated as new IPv6 EHs are standardized.
We note that since IPv6 EHs and upper-layer protocols share the same numbering space, discarding unknown IPv6 EHs may result in packets encapsulating unknown upper-layer protocols being discarded.
Intermediate systems should discard packets containing unknown IPv6 EHs.
The following subsections describe specific security implications of different IPv6 options, and provide advice regarding filtering packets that contain such options.
The general security implications of IPv6 options are closely related to those discussed in Section 3.2 for IPv6 EHs. Essentially, packets that contain IPv6 options might need to be processed by an IPv6 router's general-purpose CPU,and hence could present a DDoS risk to that router's general-purpose CPU (and thus to the router itself). For some architectures, a possible mitigation would be to rate-limit the packets that are to be processed by the general-purpose CPU (see e.g. [Cisco-EH]).
The following subsections contain a description of each of the IPv6 options that have so far been specified, a summary of the security implications of each of such options, a discussion of possible interoperability implications if packets containing such options are discarded, and specific advice regarding whether packets containing these options should be permitted.
This option is used when necessary to align subsequent options and to pad out the containing header to a multiple of 8 octets in length.
This option is specified in [RFC8200].
None.
Discarding packets that contain this option would potentially break any protocol that relies on IPv6 EHs.
Intermediate systems should not discard packets based on the presence of this option.
This option is used when necessary to align subsequent options and to pad out the containing header to a multiple of 8 octets in length.
This option is specified in [RFC8200].
Because of the possible size of this option, it could be leveraged as a large-bandwidth covert channel.
Discarding packets that contain this option would potentially break any protocol that relies on IPv6 EHs.
Intermediate systems should not discard IPv6 packets based on the presence of this option.
The Jumbo payload option provides the means of specifying payloads larger than 65535 bytes.
This option is specified in [RFC2675].
There are no specific issues arising from this option, except for improper validity checks of the option and associated packet lengths.
Discarding packets based on the presence of this option will cause IPv6 jumbograms to be discarded.
Intermediate systems should discard packets that contain this option. An operator should permit this option only in specific scenarios in which support for IPv6 jumbograms is desired.
The RPL Option provides a mechanism to include routing information with each datagram that an RPL router forwards.
This option was originally specified in [RFC6553]. It has been deprecated by [I-D.ietf-roll-useofrplinfo].
Those described in [RFC6553].
This option is meant to be employed within an RPL instance. As a result, discarding packets based on the presence of this option (e.g. at an ISP) will not result in interoperability implications.
Non-RPL routers should discard packets that contain an RPL option.
The RPL Option provides a mechanism to include routing information with each datagram that an RPL router forwards.
This option is specified in [I-D.ietf-roll-useofrplinfo].
Those described in [I-D.ietf-roll-useofrplinfo].
This option is meant to survive outside of an RPL instance. As a result, discarding packets based on the presence of this option would break some use cases for RPL (see [I-D.ietf-roll-useofrplinfo]).
Intermediate systems should not discard IPv6 packets based on the presence of this option.
The Tunnel Encapsulation Limit option can be employed to specify how many further levels of nesting the packet is permitted to undergo.
This option is specified in [RFC2473].
Those described in [RFC2473].
Discarding packets based on the presence of this option could result in tunnel traffic being discarded.
Intermediate systems should not discard packets based on the presence of this option.
The Router Alert option [RFC2711] is typically employed for the RSVP protocol [RFC2205] and the MLD protocol [RFC2710].
This option is specified in [RFC2711].
Since this option causes the contents of the packet to be inspected by the handling device, this option could be leveraged for performing DoS attacks.
Discarding packets that contain this option would break RSVP and multicast deployments.
Intermediate systems should discard packets that contain this option. Only in specific environments where support for RSVP, multicast routing, or similar protocols is desired, should this option be permitted.
This IP Option is used in the specification of Quick-Start for TCP and IP, which is an experimental mechanism that allows transport protocols, in cooperation with routers, to determine an allowed sending rate at the start and, at times, in the middle of a data transfer (e.g., after an idle period) [RFC4782].
This option is specified in [RFC4782], on the "Experimental" track.
Section 9.6 of [RFC4782] notes that Quick-Start is vulnerable to two kinds of attacks:
o attacks to increase the routers' processing and state load, and,
o attacks with bogus Quick-Start Requests to temporarily tie up available Quick-Start bandwidth, preventing routers from approving Quick-Start Requests from other connections.
We note that if routers in a given environment do not implement and enable the Quick-Start mechanism, only the general security implications of IP options (discussed in Section 4.2) would apply.
The Quick-Start functionality would be disabled, and additional delays in TCP's connection establishment (for example) could be introduced. (Please see Section 4.7.2 of [RFC4782].) We note, however, that Quick-Start has been proposed as a mechanism that could be of use in controlled environments, and not as a mechanism that would be intended or appropriate for ubiquitous deployment in the global Internet [RFC4782].
Intermediate systems should not discard IPv6 packets based on the presence of this option.
This option is used for encoding explicit packet Sensitivity Labels on IPv6 packets. It is intended for use only within Multi-Level Secure (MLS) networking environments that are both trusted and trustworthy.
This option is specified in [RFC5570].
Presence of this option in a packet does not by itself create any specific new threat. Packets with this option ought not normally be seen on the global public Internet.
If packets with this option are discarded or if the option is stripped from the packet during transmission from source to destination, then the packet itself is likely to be discarded by the receiver because it is not properly labeled. In some cases, the receiver might receive the packet but associate an incorrect sensitivity label with the received data from the packet whose CALIPSO was stripped by an intermediate router or firewall. Associating an incorrect sensitivity label can cause the received information either to be handled as more sensitive than it really is ("upgrading") or as less sensitive than it really is ("downgrading"), either of which is problematic.
Intermediate systems that do not operate in Multi-Level Secure (MLS) networking environments should discard packets that contain this option.
This option is employed in the (experimental) Simplified Multicast Forwarding (SMF) for unique packet identification for IPv6 I-DPD, and as a mechanism to guarantee non-collision of hash values for different packets when H-DPD is used.
This option is specified in [RFC6621].
None. The use of identifiers is subject to the security and privacy considerations discussed in [I-D.gont-predictable-numeric-ids].
Dropping packets containing this option within a MANET domain would break SMF. However, dropping such packets at the border of such domain would have no negative impact.
Intermediate system should discard packets that contain this option.
The Home Address option is used by a Mobile IPv6 node while away from home, to inform the recipient of the mobile node's home address.
This option is specified in [RFC6275].
No (known) additional security implications than those described in [RFC6275].
Discarding IPv6 packets based on the presence of this option will break Mobile IPv6.
Intermediate systems should not discard IPv6 packets based on the presence of this option.
The Endpoint Identification option was meant to be used with the Nimrod routing architecture [NIMROD-DOC], but has never seen widespread deployment.
This option is specified in [NIMROD-DOC].
Undetermined.
None.
Intermediate systems should discard packets that contain this option.
This option is employed by Identifier-Locator Network Protocol for IPv6 (ILNPv6) for providing protection against off-path attacks for packets when ILNPv6 is in use, and as a signal during initial network-layer session creation that ILNPv6 is proposed for use with this network-layer session, rather than classic IPv6.
This option is specified in [RFC6744].
Those described in [RFC6744].
Discarding packets that contain this option will break INLPv6 deployments.
Intermediate systems should not discard packets based on the presence of this option.
This option is used by an Edge Router to identify the subscriber premises in scenarios where several subscriber premises may be logically connected to the same interface of an Edge Router.
This option is specified in [RFC6788].
Those described in [RFC6788].
Since this option is meant to be employed in Router Solicitation messages, discarding packets based on the presence of this option at intermediate systems will result in no interoperability implications.
Intermediate devices should discard packets that contain this option.
No information has been found about this option type.
No information has been found about this option type.
No information has been found about this option type, and hence it has been impossible to perform the corresponding security assessment.
Unknown.
Intermediate systems should discard packets that contain this option.
This option is used with the Multicast Protocol for Low power and Lossy Networks (MPL), that provides IPv6 multicast forwarding in constrained networks.
This option is specified in [RFC7731], and is meant to be included only in Hop-by-Hop Option headers.
Those described in [RFC7731].
Dropping packets that contain an MPL option within an MPL network would break the Multicast Protocol for Low power and Lossy Networks (MPL). However, dropping such packets at the border of such networks will have no negative impact.
Intermediate systems should not discard packets based on the presence of this option. However, since this option has been specified for the Hop-by-Hop Options, such systems should consider the discussion in Section 3.4.1.
This option is employed with the (Experimental) Depth-First Forwarding (DFF) in Unreliable Networks.
This option is specified in [RFC6971].
Those specified in [RFC6971].
Dropping packets containing this option within a routing domain that is running DFF would break DFF. However, droping such packets at the border of such domains will have no security implications.
Intermediate systems that do not operate within a routing domain that is running DFF should discard packets containing this option.
4.3.18. RFC3692-style Experiment (Types = 0x1E, 0x3E, 0x5E, 0x7E, 0x9E, 0xBE, 0xDE, 0xFE)
These options can be employed for performing RFC3692-style experiments. It is only appropriate to use these values in explicitly configured experiments; they must not be shipped as defaults in implementations.
Specified in RFC 4727 [RFC4727] in the context of RFC3692-style experiments.
The specific security implications will depend on the specific use of these options.
For obvious reasons, discarding packets that contain these options limits the ability to perform legitimate experiments across IPv6 routers.
Intermediate systems should discard packets that contain these options. Only in specific environments where RFC3692-style experiments are meant to be performed should these options be permitted.
We refer to IPv6 options that have not been assigned an IPv6 option type in the corresponding registry ([IANA-IPV6-PARAM]) as "unknown IPv6 options".
New IPv6 options may be specified as part of future protocol work.
The processing of unknown IPv6 options is specified in [RFC8200].
For obvious reasons, it is impossible to determine specific security implications of unknown IPv6 options.
Discarding unknown IPv6 options may slow down the deployment of new IPv6 options. As noted in [draft-gont-6man-ipv6-opt-transmit], the corresponding IANA registry ([IANA-IPV6-PARAM] should be monitored such that IPv6 option filtering rules are updated as new IPv6 options are standardized.
Enterprise intermediate systems that process the contents of IPv6 EHs should discard packets that contain unknown options. Other intermediate systems that process the contents of IPv6 EHs should permit packets that contain unknown options.
This document has no actions for IANA.
This document provides advice on the filtering of IPv6 packets that contain IPv6 EHs (and possibly IPv6 options) at IPv6 transit routers. It is meant to improve the current situation of widespread dropping of such IPv6 packets in those cases where the drops result from improper configuration defaults, or inappropriate advice in this area.
The authors would like to thank Ron Bonica for his work on earlier versions of this document.
The authors of this document would like to thank (in alphabetical order) Mikael Abrahamsson, Brian Carpenter, Darren Dukes, Mike Heard, Bob Hinden, Jen Linkova, Carlos Pignataro, Maria Ines Robles, Donald Smith, Pascal Thubert, Ole Troan, Gunter Van De Velde, and Eric Vyncke, for providing valuable comments on earlier versions of this document.
This document borrows some text and analysis from [RFC7126], authored by Fernando Gont, Randall Atkinson, and Carlos Pignataro.
Fernando Gont would like to thank Eric Vyncke for his guidance.
[draft-gont-6man-ipv6-opt-transmit]
Gont, F., Liu, W., and R. Bonica, "Transmission and Processing of IPv6 Options", IETF Internet Draft, work in progress, August 2014.
[I-D.ietf-roll-useofrplinfo]
Robles, I., Richardson, M., and P. Thubert, "When to use RFC 6553, 6554 and IPv6-in-IPv6", draft-ietf-roll- useofrplinfo-23 (work in progress), May 2018.
[RFC1034]
Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, <https://www.rfc-editor.org/info/rfc1034>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2205]
Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, DOI 10.17487/RFC2205, September 1997, <https://www.rfc-editor.org/info/rfc2205>.
[RFC2460]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, December 1998, <https://www.rfc-editor.org/info/rfc2460>.
[RFC2473]
Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473, December 1998, <https://www.rfc-editor.org/info/rfc2473>.
[RFC2675]
Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms", RFC 2675, DOI 10.17487/RFC2675, August 1999, <https://www.rfc-editor.org/info/rfc2675>.
[RFC2710]
Deering, S., Fenner, W., and B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, DOI 10.17487/RFC2710, October 1999, <https://www.rfc-editor.org/info/rfc2710>.
[RFC2711]
Partridge, C. and A. Jackson, "IPv6 Router Alert Option", RFC 2711, DOI 10.17487/RFC2711, October 1999, <https://www.rfc-editor.org/info/rfc2711>.
[RFC3692]
Narten, T., "Assigning Experimental and Testing Numbers Considered Useful", BCP 82, RFC 3692, DOI 10.17487/RFC3692, January 2004, <https://www.rfc-editor.org/info/rfc3692>.
[RFC4302]
Kent, S., "IP Authentication Header", RFC 4302, DOI 10.17487/RFC4302, December 2005, <https://www.rfc-editor.org/info/rfc4302>.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005, <https://www.rfc-editor.org/info/rfc4303>.
[RFC4304]
Kent, S., "Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP)", RFC 4304, DOI 10.17487/RFC4304, December 2005, <https://www.rfc-editor.org/info/rfc4304>.
[RFC4727]
Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4, ICMPv6, UDP, and TCP Headers", RFC 4727, DOI 10.17487/RFC4727, November 2006, <https://www.rfc-editor.org/info/rfc4727>.
[RFC4782]
Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick- Start for TCP and IP", RFC 4782, DOI 10.17487/RFC4782, January 2007, <https://www.rfc-editor.org/info/rfc4782>.
[RFC5095]
Abley, J., Savola, P., and G. Neville-Neil, "Deprecation of Type 0 Routing Headers in IPv6", RFC 5095, DOI 10.17487/RFC5095, December 2007, <https://www.rfc-editor.org/info/rfc5095>.
[RFC5201]
Moskowitz, R., Nikander, P., Jokela, P., Ed., and T. Henderson, "Host Identity Protocol", RFC 5201, DOI 10.17487/RFC5201, April 2008, <https://www.rfc-editor.org/info/rfc5201>.
[RFC5533]
Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming Shim Protocol for IPv6", RFC 5533, DOI 10.17487/RFC5533, June 2009, <https://www.rfc-editor.org/info/rfc5533>.
[RFC5570]
StJohns, M., Atkinson, R., and G. Thomas, "Common Architecture Label IPv6 Security Option (CALIPSO)", RFC 5570, DOI 10.17487/RFC5570, July 2009, <https://www.rfc-editor.org/info/rfc5570>.
[RFC6275]
Perkins, C., Ed., Johnson, D., and J. Arkko, "Mobility Support in IPv6", RFC 6275, DOI 10.17487/RFC6275, July 2011, <https://www.rfc-editor.org/info/rfc6275>.
[RFC6398]
Le Faucheur, F., Ed., "IP Router Alert Considerations and Usage", BCP 168, RFC 6398, DOI 10.17487/RFC6398, October 2011, <https://www.rfc-editor.org/info/rfc6398>.
[RFC6550]
Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, JP., and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", RFC 6550, DOI 10.17487/RFC6550, March 2012, <https://www.rfc-editor.org/info/rfc6550>.
[RFC6553]
Hui, J. and JP. Vasseur, "The Routing Protocol for Low- Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams", RFC 6553, DOI 10.17487/RFC6553, March 2012, <https://www.rfc-editor.org/info/rfc6553>.
[RFC6554]
Hui, J., Vasseur, JP., Culler, D., and V. Manral, "An IPv6 Routing Header for Source Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL)", RFC 6554, DOI 10.17487/RFC6554, March 2012, <https://www.rfc-editor.org/info/rfc6554>.
[RFC6621]
Macker, J., Ed., "Simplified Multicast Forwarding", RFC 6621, DOI 10.17487/RFC6621, May 2012, <https://www.rfc-editor.org/info/rfc6621>.
[RFC6740]
Atkinson, RJ. and SN. Bhatti, "Identifier-Locator Network Protocol (ILNP) Architectural Description", RFC 6740, DOI 10.17487/RFC6740, November 2012, <https://www.rfc-editor.org/info/rfc6740>.
[RFC6744]
Atkinson, RJ. and SN. Bhatti, "IPv6 Nonce Destination Option for the Identifier-Locator Network Protocol for IPv6 (ILNPv6)", RFC 6744, DOI 10.17487/RFC6744, November 2012, <https://www.rfc-editor.org/info/rfc6744>.
[RFC6788]
Krishnan, S., Kavanagh, A., Varga, B., Ooghe, S., and E. Nordmark, "The Line-Identification Option", RFC 6788, DOI 10.17487/RFC6788, November 2012, <https://www.rfc-editor.org/info/rfc6788>.
[RFC6971]
Herberg, U., Ed., Cardenas, A., Iwao, T., Dow, M., and S. Cespedes, "Depth-First Forwarding (DFF) in Unreliable Networks", RFC 6971, DOI 10.17487/RFC6971, June 2013, <https://www.rfc-editor.org/info/rfc6971>.
[RFC7045]
Carpenter, B. and S. Jiang, "Transmission and Processing of IPv6 Extension Headers", RFC 7045, DOI 10.17487/RFC7045, December 2013, <https://www.rfc-editor.org/info/rfc7045>.
[RFC7112]
Gont, F., Manral, V., and R. Bonica, "Implications of Oversized IPv6 Header Chains", RFC 7112, DOI 10.17487/RFC7112, January 2014, <https://www.rfc-editor.org/info/rfc7112>.
[RFC7731]
Hui, J. and R. Kelsey, "Multicast Protocol for Low-Power and Lossy Networks (MPL)", RFC 7731, DOI 10.17487/RFC7731, February 2016, <https://www.rfc-editor.org/info/rfc7731>.
[RFC8200]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>.
[Biondi2007]
Biondi, P. and A. Ebalard, "IPv6 Routing Header Security", CanSecWest 2007 Security Conference, 2007, <http://www.secdev.org/conf/IPv6_RH_security-csw07.pdf>.
[Cisco-EH]
Cisco Systems, "IPv6 Extension Headers Review and Considerations", Whitepaper. October 2006, <http://www.cisco.com/en/US/technologies/tk648/tk872/ technologies_white_paper0900aecd8054d37d.pdf>.
[draft-ietf-nimrod-eid]
Lynn, C., "Endpoint Identifier Destination Option", IETF Internet Draft, draft-ietf-nimrod-eid-00.txt, November 1995.
[FW-Benchmark]
Zack, E., "Firewall Security Assessment and Benchmarking IPv6 Firewall Load Tests", IPv6 Hackers Meeting #1, Berlin, Germany. June 30, 2013, <http://www.ipv6hackers.org/meetings/ipv6-hackers-1/zack- ipv6hackers1-firewall-security-assessment-and- benchmarking.pdf>.
[I-D.gont-predictable-numeric-ids]
Gont, F. and I. Arce, "Security and Privacy Implications of Numeric Identifiers Employed in Network Protocols", draft-gont-predictable-numeric-ids-02 (work in progress), February 2018.
[I-D.gont-v6ops-ipv6-ehs-packet-drops]
Gont, F., Hilliard, N., Doering, G., (Will), S., and W. Kumari, "Operational Implications of IPv6 Packets with Extension Headers", draft-gont-v6ops-ipv6-ehs-packet- drops-03 (work in progress), March 2016.
[I-D.ietf-6man-hbh-header-handling]
Baker, F. and R. Bonica, "IPv6 Hop-by-Hop Options Extension Header", draft-ietf-6man-hbh-header-handling-03 (work in progress), March 2016.
[IANA-IPV6-PARAM]
Internet Assigned Numbers Authority, "Internet Protocol Version 6 (IPv6) Parameters", December 2013, <http://www.iana.org/assignments/ipv6-parameters/ ipv6-parameters.xhtml>.
[IANA-PROTOCOLS]
Internet Assigned Numbers Authority, "Protocol Numbers", 2014, <http://www.iana.org/assignments/protocol-numbers/ protocol-numbers.xhtml>.
[NIMROD-DOC]
Nimrod Documentation Page, "http://ana-3.lcs.mit.edu/~jnc/nimrod/".
[RFC3871]
Jones, G., Ed., "Operational Security Requirements for Large Internet Service Provider (ISP) IP Network Infrastructure", RFC 3871, DOI 10.17487/RFC3871, September 2004, <https://www.rfc-editor.org/info/rfc3871>.
[RFC6192]
Dugal, D., Pignataro, C., and R. Dunn, "Protecting the Router Control Plane", RFC 6192, DOI 10.17487/RFC6192, March 2011, <https://www.rfc-editor.org/info/rfc6192>.
[RFC7126]
Gont, F., Atkinson, R., and C. Pignataro, "Recommendations on Filtering of IPv4 Packets Containing IPv4 Options", BCP 186, RFC 7126, DOI 10.17487/RFC7126, February 2014, <https://www.rfc-editor.org/info/rfc7126>.
[RFC7739]
Gont, F., "Security Implications of Predictable Fragment Identification Values", RFC 7739, DOI 10.17487/RFC7739, February 2016, <https://www.rfc-editor.org/info/rfc7739>.
[RFC7872]
Gont, F., Linkova, J., Chown, T., and W. Liu, "Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World", RFC 7872, DOI 10.17487/RFC7872, June 2016, <https://www.rfc-editor.org/info/rfc7872>.
Authors' Addresses
Email: liushucheng@huawei.com
draft-ietf-opsec-urpf-improvements-02 - Enhanced Feasible-Path Unicast Reverse P
OPSEC Working Group
Internet-Draft
Intended status: Best Current Practice
Expires: October 6, 2019
K. Sriram
D. Montgomery
USA NIST
J. Haas
Juniper Networks, Inc.
April 4, 2019
draft-ietf-opsec-urpf-improvements-02
This document identifies a need for improvement of the unicast Reverse Path Filtering techniques (uRPF) [BCP84] for source address validation (SAV) [BCP38]. The strict uRPF is inflexible about directionality, the loose uRPF is oblivious to directionality, and the current feasible-path uRPF attempts to strike a balance between the two [BCP84]. However, as shown in this draft, the existing feasible-path uRPF still has shortcomings. This document describes an enhanced feasible-path uRPF technique, which aims to be more flexible (in a meaningful way) about directionality than the feasible-path uRPF. It can potentially alleviate ISPs' concerns about the possibility of disrupting service for their customers, and encourage greater deployment of uRPF techniques.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 6, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This internet draft identifies a need for improvement of the unicast Reverse Path Filtering (uRPF) techniques [RFC2827] for source address validation (SAV) [RFC3704]. The strict uRPF is inflexible about directionality, the loose uRPF is oblivious to directionality, and the current feasible-path uRPF attempts to strike a balance between the two [RFC3704]. However, as shown in this draft, the existing feasible-path uRPF still has shortcomings. Even with the feasible- path uRPF, ISPs are often apprehensive that they may be dropping customers' data packets with legitimate source addresses.
This document describes an enhanced feasible-path uRPF technique, which aims to be more flexible (in a meaningful way) about directionality than the feasible-path uRPF. It is based on the principle that if BGP updates for multiple prefixes with the same origin AS were received on different interfaces (at border routers), then incoming data packets with source addresses in any of those prefixes should be accepted on any of those interfaces (presented in Section 3). For some challenging ISP-customer scenarios (see Section 3.3), this document also describes a more relaxed version of the enhanced feasible-path uRPF technique (presented in Section 3.4). Implementation considerations are discussed in Section 3.6.
Definition of Reverse Path Filtering (RPF) list: The list of permissible source address prefixes for incoming data packets on a given interface.
Throughout this document, the routes in consideration are assumed to have been vetted based on prefix filtering [RFC7454] and possibly (in the future) origin validation [RFC6811].
The enhanced feasible-path uRPF methods described here are expected to add greater operational robustness and efficacy to uRPF, while minimizing ISPs' concerns about accidental service disruption for their customers. It is expected that this will encourage more deployment of uRPF to help realize its DDoS prevention benefits network wide.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
There are various existing techniques for mitigation against DDoS attacks with spoofed addresses [RFC2827] [RFC3704]. There are also some techniques used for mitigating reflection attacks [RRL] [TA14-017A], which are used to amplify the impact in DDoS attacks. Employing a combination of these preventive techniques (as applicable) in enterprise and ISP border routers, broadband and wireless access network, data centers, and DNS/NTP servers provides reasonably effective protection against DDoS attacks.
Source address validation (SAV) is performed in network edge devices such as border routers, Cable Modem Termination Systems (CMTS), Digital Subscriber Line Access Multiplexers (DSLAM), and Packet Data Network (PDN) gateways in mobile networks. Ingress Access Control List (ACL) and unicast Reverse Path Filtering (uRPF) are techniques employed for implementing SAV [RFC2827][RFC3704][ISOC].
Ingress/egress Access Control Lists (ACLs) are maintained which list acceptable (or alternatively, unacceptable) prefixes for the source addresses in the incoming Internet Protocol (IP) packets. Any packet with a source address that does not match the filter is dropped. The ACLs for the ingress/egress filters need to be maintained to keep them up to date. Updating the ACLs is an operator driven manual process, and hence operationally difficult or infeasible.
Typically, the egress ACLs in access aggregation devices (e.g. CMTS, DSLAM) permit source addresses only from the address spaces (prefixes) that are associated with the interface on which the customer network is connected. Ingress ACLs are typically deployed on border routers, and drop ingress packets when the source address is spoofed (i.e. belongs to obviously disallowed prefix blocks, RFC 1918 prefixes, or provider's own prefixes).
In the strict unicast Reverse Path Filtering (uRPF) method, an ingress packet at border router is accepted only if the Forwarding Information Base (FIB) contains a prefix that encompasses the source address, and forwarding information for that prefix points back to the interface over which the packet was received. In other words, the reverse path for routing to the source address (if it were used as a destination address) should use the same interface over which the packet was received. It is well known that this method has limitations when networks are multi-homed, routes are not symmetrically announced to all transit providers, and there is asymmetric routing of data packets. Asymmetric routing occurs (see Figure 1) when a customer AS announces one prefix (P1) to one transit provider (ISP-a) and a different prefix (P2) to another transit provider (ISP-b), but routes data packets with source addresses in the second prefix (P2) to the first transit provider (ISP-a) or vice versa.
Figure 1: Scenario 1 for illustration of efficacy of uRPF schemes.
The feasible-path uRPF helps partially overcome the problem identified with the strict uRPF in the multi-homing case. The feasible-path uRPF is similar to the strict uRPF, but in addition to inserting the best-path prefix, additional prefixes from alternative announced routes are also included in the RPF table. This method relies on announcements for the same prefixes (albeit some may be prepended to effect lower preference) propagating to all routers performing feasible-path uRPF checks. Therefore, in the multi-homing scenario (see Figure 2), if the customer AS announces routes for both prefixes (P1, P2) to both transit providers (with suitable prepends if needed for traffic engineering), then the feasible-path uRPF method works. It should be mentioned that the feasible-path uRPF works in this scenario only if customer routes are preferred at AS2 and AS3 over a shorter non-customer route.
Figure 2: Scenario 2 for illustration of efficacy of uRPF schemes.
However, the feasible-path uRPF method has limitations as well. One form of limitation naturally occurs when the recommendation of propagating the same prefixes to all routers is not followed. Another form of limitation can be described as follows. In Scenario 2 (described above, illustrated in Figure 2), it is possible that the second transit provider (ISP-b or AS3) does not propagate the prepended route for prefix P1 to the first transit provider (ISP-a or AS2). This is because AS3's decision policy permits giving priority to a shorter route to prefix P1 via a peer (AS2) over a longer route learned directly from the customer (AS1). In such a scenario, AS3 would not send any route announcement for prefix P1 to AS2. Then a data packet with source address in prefix P1 that originates from AS1 and traverses via AS3 to AS2 will get dropped at AS2.
In the loose unicast Reverse Path Filtering (uRPF) method, an ingress packet at the border router is accepted only if the FIB has one or more prefixes that encompass the source address. That is, a packet is dropped if no route exists in the FIB for the source address. Loose uRPF sacrifices directionality. This method is not effective for prevention of address spoofing since there is little unrouted address space in IPv4. It only drops packets if the spoofed address is unreachable in the current FIB (e.g. RFC 1918, unallocated, allocated but currently not routed).
The Virtual Routing and Forwarding (VRF) technology allows a router to maintain multiple routing table instances, separate from the global Routing Information Base (RIB) [Cisco3]. External BGP (eBGP) peering sessions send specific routes to be stored in a dedicated VRF table. The uRPF process queries the VRF table (instead of the FIB) for source address validation. VRF table can be dedicated per eBGP peer and used for uRPF for only that peer, resulting in strict mode operation. On the other hand, if loose mode uRPF is desired with VRF, then the VRF table can be global (contains VRF routes received on all eBGP sessions at the router).
Enhanced feasible-path uRPF adds greater operational robustness and efficacy to existing uRPF methods discussed in Section 2. The technique is based on the principle that if BGP updates for multiple prefixes with the same origin AS were received on different interfaces (at border routers), then incoming data packets with source addresses in any of those prefixes should be accepted on any of those interfaces. It can be best explained with an example as follows:
Let us say, a border router of ISP-A has in its Adj-RIB-Ins [RFC4271] the set of prefixes {Q1, Q2, Q3} each of which has AS-x as its origin and AS-x is in ISP-A's customer cone. In this set, the border router received the route for prefix Q1 over a customer facing interface, while it learned the routes for prefixes Q2 and Q3 from a lateral peer and an upstream transit provider, respectively. In this example scenario, the enhanced feasible-path uRPF method requires Q1, Q2, and Q3 be included in the RPF list for the customer interface in consideration. Loose uRPF (see Section 2.4) is recommended to be applied to the peer and provider interfaces in consideration.
Thus, enhanced feasible-path uRPF defines feasible paths for customer interfaces in a more generalized but precise way (as compared to feasible-path uRPF).
Looking back at Scenarios 1 and 2 (Figure 1 and Figure 2), the enhanced feasible-path uRPF provides comparable or better performance than the other uRPF methods. Scenario 3 (Figure 3) further illustrates the enhanced feasible-path uRPF method with a more concrete example. In this scenario, the focus is on operation of the feasible-path uRPF at ISP4 (AS4). ISP4 learns a route for prefix P1 via a customer-to-provider (C2P) interface from customer ISP2 (AS2). This route for P1 has origin AS1. ISP4 also learns a route for P2 via another C2P interface from customer ISP3 (AS3). Additionally, AS4 learns a route for P3 via a peer-to-peer (p2p) interface from ISP5 (AS5). Routes for all three prefixes have the same origin AS (i.e. AS1). Using the enhanced feasible-path uRPF scheme, given the commonality of the origin AS across the routes for P1, P2 and P3, AS4 includes all of these prefixes to the RPF list for the customer interfaces (from AS2 and AS3).
Figure 3: Scenario 3 for illustration of efficacy of uRPF schemes.
The underlying algorithm in the solution method described above can be specified as follows (to be implemented in a transit AS):
1. Create the list of unique origin ASes considering only the routes in the Adj-RIB-Ins of customer interfaces. Call it Set A = {AS1, AS2, ..., ASn}.
2. Considering all routes in Adj-RIB-Ins for all interfaces (customer, lateral peer, and provider), form the set of unique prefixes that have a common origin AS1. Call it Set X1.
3. Include set X1 in Reverse Path Filter (RPF) list on all customer interfaces on which one or more of the prefixes in set X1 were received.
4. Repeat Steps 2 and 3 for each of the remaining ASes in Set A (i.e., for ASi, where i = 2, ..., n).
The following operational recommendations will make the operation of the enhanced feasible-path uRPF robust:
For multi-homed stub AS:
o A multi-homed stub AS SHOULD announce at least one of the prefixes it originates to each of its transit provider ASes.
For non-stub AS:
o A non-stub AS SHOULD also announce at least one of the prefixes it originates to each of its transit provider ASes.
o Additionally, from the routes it has learned from customers, a non-stub AS SHOULD announce at least one route per origin AS to each of its transit provider ASes.
(Note: It is worth noting that in the above recommendations if "at least one" is replaced with "all", then even traditional feasible- path uRPF would work effectively. But the latter recommendation ("all") does not seem practical.)
It should be observed that in the absence of ASes adhering the above recommendations, the following example scenario may be constructed which poses a challenge for the enhanced feasible-path uRPF (as well as for traditional feasible-path uRPF). In the scenario illustrated in Figure 4, since routes for neither P1 nor P2 are propagated on the AS2-AS4 interface, the enhanced feasible-path uRPF at AS4 will reject data packets received on that interface with source addresses in P1 or P2. (Please see slide #10 in [sriram-urpf] for an additional scenario.)
Figure 4: Illustration of a challenging scenario.
3.4. Algorithm B: Enhanced Feasible-Path uRPF with Additional Flexibility Across Customer Cone
Adding further flexibility to the enhanced feasible-path uRPF method can help address the potential limitation identified above using the scenario in Figure 4 (Section 3.3). In the following, "route" refers to a route currently existing in the Adj-RIB-in. Including the additional degree of flexibility, the modified algorithm (implemented in a transit AS) can be described as follows (we call this Algorithm B):
1. Create the set of all directly-connected customer interfaces. Call it Set I = {I1, I2, ..., Ik}.
2. Create the set of all unique prefixes for which routes exist in Adj-RIB-Ins for the interfaces in Set I. Call it Set P = {P1, P2, ..., Pm}.
3. Create the set of all unique origin ASes seen in the routes that exist in Adj-RIB-Ins for the interfaces in Set I. Call it Set A = {AS1, AS2, ..., ASn}.
4. Create the set of all unique prefixes for which routes exist in Adj-RIB-Ins of all lateral peer and provider interfaces such that each of the routes has its origin AS belonging in Set A. Call it Set Q = {Q1, Q2, ..., Qj}.
5. Then, Set Z = Union(P,Q) represents the RPF list for every customer interface in Set I.
6. Apply loose uRPF method for SAV on all peer and provider interfaces.
When Algorithm B (which is more flexible than Algorithm A) is employed, the type of limitation identified in Figure 4 (Section 3.3) goes away.
It is worth emphasizing that an indirect part of the proposal in the draft is that RPF filters may be augmented from secondary sources. Hence, the construction of RPF lists using a method proposed in this document (Algorithm A or B) can be augmented with data from Route Origin Authorization (ROA) [RFC6482] as well as Internet Routing Registry (IRR) data. Prefixes from registered ROAs or IRR route objects that include ASes in an ISP's customer cone SHOULD be used to augment the appropriate RPF tables. This will help make the RPF tables more robust about source addresses that may be legitimately used by customers of the ISP.
The existing RPF checks in edge routers take advantage of existing line card implementations to perform the RPF functions. For implementation of the enhanced feasible-path uRPF, the general necessary feature would be to extend the line cards to take arbitrary RPF lists that are not necessarily the same as the existing FIB contents. In the algorithms (Section 3.1.1 and Section 3.4) described here, the RPF lists are constructed by applying a set of rules to all received BGP routes (not just those selected as best path and installed in FIB). The concept of uRPF querying an RPF table (instead of the FIB) is similar to uRPF querying VRF table (see (Section 2.5).
The techniques described in this document require that there should be additional memory (i.e., TCAM) available to store the RPF lists in line cards. For an ISP's AS, the RPF list size for each line card will roughly and conservatively equal the total number of prefixes in its customer cone (assuming the algorithm in Section 3.4 is used). (Note: Most ISP customer cone scenarios would not require the algorithm in Section 3.4, but instead be served best by the algorithm in Section 3.1.1, which requires much less FIB memory.) The following table shows the measured customer cone sizes for various types of ISPs [sriram-ripe63]:
Table 1: Customer cone sizes (# prefixes) for various types of ISPs.
For some super large global ISPs that are at the core of the Internet, the customer cone size (# prefixes) can be as high as a few hundred thousand [CAIDA]. But uRPF is most effective when deployed at ASes at the edges of the Internet where the customer cone sizes are smaller as shown in Table 1.
A very large global ISP's router line card is likely to have a FIB size large enough to accommodate 2 to 6 million routes [Cisco1]. Similarly, the line cards in routers corresponding to a large global ISP, a mid-size global ISP, and a regional ISP are likely to have FIB sizes large enough to accommodate about 1 million, 0.5 million, and 100K routes, respectively [Cisco2]. Comparing these FIB size numbers with the corresponding RPF list size numbers in Table 1, it can be surmised that the conservatively estimated RPF list size is only a small fraction of the anticipated FIB memory size under relevant ISP scenarios.
BGP routing announcements can exhibit transient behavior. Routes may be withdrawn temporarily and then re-announced due to transient conditions such as BGP session reset or link failure-recovery. To cope with this, hysteresis should be introduced in the maintenance of the RPF lists. Changes to the RPF lists SHOULD be delayed by a pre- determined amount (TBD) when responding to route withdrawals. This should help suppress the effects due to the transients in BGP.
Depending on the scenario, an ISP or enterprise AS operator should follow one of the following recommendations concerning uRPF/SAV:
1. For directly connected networks, i.e., subnets directly connected to the AS and not multi-homed, the AS in consideration SHOULD perform ACL-based SAV.
2. For a directly connected single-homed stub AS (customer), the AS in consideration SHOULD perform SAV based on the strict uRPF method.
3. For all other scenarios:
* If the scenario does not involve complexity such as NO_EXPORT of routes (see Section 3.3, Figure 4), then the enhanced feasible-path uRPF method in Algorithm A (see Section 3.1.1) SHOULD be applied.
* Else, if the scenario involves the aforementioned complexity, then the enhanced feasible-path uRPF method in Algorithm B (see Section 3.4) SHOULD be applied.
The security considerations in BCP 38 [RFC2827] and BCP 84 [RFC3704] apply for this document as well. In addition, AS operator should apply the uRPF method that performs best (i.e., with zero or insignificant possibility of dropping legitimate data packets) for the type of peer (customer, provider, etc.) and the nature of customer cone scenario that apply (see Section 3.1.1 and Section 3.4).
This document does not request new capabilities or attributes. It does not create any new IANA registries.
The authors would like to thank Job Snijders, Marco Marzetti, Marco d'Itri, Nick Hilliard, Gert Doering, Igor Gashinsky, Igor Lubashev, Barry Greene, Amir Herzberg, Ruediger Volk, Jared Mauch, Oliver Borchert, Mehmet Adalier, and Joel Jaeggli for comments and suggestions.
[CAIDA]
"Information for AS 174 (COGENT-174)", CAIDA Spoofer Project , <https://spoofer.caida.org/as.php?asn=174>.
[Cisco1]
"Internet Routing Table Growth Causes ROUTING-FIB- 4-RSRC_LOW Message on Trident-Based Line Cards", Cisco Trouble-shooting Tech-notes , January 2014, <https://www.cisco.com/c/en/us/support/docs/routers/asr- 9000-series-aggregation-services-routers/116999-problem- line-card-00.html>.
[Cisco2]
"Cisco Nexus 7000 Series NX-OS Unicast Routing Configuration Guide, Release 5.x (Chapter 15: Managing the Unicast RIB and FIB)", Cisco Configuration Guides , March 2018, <https://www.cisco.com/c/en/us/td/docs/switches/data center/sw/5_x/nx- os/unicast/configuration/guide/l3_cli_nxos/ l3_NewChange.html>.
[Cisco3]
"Unicast reverse path forwarding enhancements for the Internet service provider", Cisco white paper , 2005, <https://www.cisco.com/c/dam/en_us/about/security/ intelligence/urpf.pdf>.
[ISOC]
Vixie (Ed.), P., "Addressing the challenge of IP spoofing", ISOC report , September 2015, <https://www.us-cert.gov/ncas/alerts/TA14-017A>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC2827]
Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827, May 2000, <https://www.rfc-editor.org/info/rfc2827>.
[RFC3704]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, DOI 10.17487/RFC3704, March 2004, <https://www.rfc-editor.org/info/rfc3704>.
[RFC4271]
Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006, <https://www.rfc-editor.org/info/rfc4271>.
[RFC6482]
Lepinski, M., Kent, S., and D. Kong, "A Profile for Route Origin Authorizations (ROAs)", RFC 6482, DOI 10.17487/RFC6482, February 2012, <https://www.rfc-editor.org/info/rfc6482>.
[RFC6811]
Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R. Austein, "BGP Prefix Origin Validation", RFC 6811, DOI 10.17487/RFC6811, January 2013, <https://www.rfc-editor.org/info/rfc6811>.
[RFC7454]
Durand, J., Pepelnjak, I., and G. Doering, "BGP Operations and Security", BCP 194, RFC 7454, DOI 10.17487/RFC7454, February 2015, <https://www.rfc-editor.org/info/rfc7454>.
[RRL]
"Response Rate Limiting in the Domain Name System", Redbarn blog , <http://www.redbarn.org/dns/ratelimits>.
[sriram-ripe63]
Sriram, K. and R. Bush, "Estimating CPU Cost of BGPSEC on a Router", Presented at RIPE-63; also, at IETF-83 SIDR WG Meeting, March 2012, <http://www.ietf.org/proceedings/83/slides/ slides-83-sidr-7.pdf>.
[sriram-urpf]
Sriram et al., K., "Enhanced Feasible-Path Unicast Reverse Path Filtering", Presented at the OPSEC WG Meeting, IETF-101 London , March 2018, <https://datatracker.ietf.org/meeting/101/materials/ slides-101-opsec-draft-sriram-opsec-urpf-improvements-00>.
[TA14-017A]
"UDP-Based Amplification Attacks", US-CERT alert TA14-017A , January 2014, <https://www.us-cert.gov/ncas/alerts/TA14-017A>.
Authors' Addresses
Email: ksriram@nist.gov
Email: dougm@nist.gov
Email: jhaas@juniper.net
draft-ietf-opsec-v6-16 - Operational Security Considerations for IPv6 Networks
OPSEC
Internet-Draft
Intended status: Informational
Expires: September 12, 2019
E. Vyncke, Ed.
Cisco
K. Chittimaneni
WeWork
M. Kaeo
Double Shot Security
E. Rey
ERNW
March 11, 2019
draft-ietf-opsec-v6-16
Knowledge and experience on how to operate IPv4 securely is available: whether it is the Internet or an enterprise internal network. However, IPv6 presents some new security challenges. RFC 4942 describes the security issues in the protocol but network managers also need a more practical, operations-minded document to enumerate advantages and/or disadvantages of certain choices.
This document analyzes the operational security issues in several places of a network (enterprises, service providers and residential users) and proposes technical and procedural mitigations techniques. Some very specific place of a network such as Internet of Things are not discussed in this document.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2019.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Running an IPv6 network is new for most operators not only because they are not yet used to large scale IPv6 networks but also because there are subtle differences between IPv4 and IPv6 especially with respect to security. For example, all layer-2 interactions are now done using Neighbor Discovery Protocol [RFC4861] rather than using Address Resolution Protocol [RFC0826]. Also, there are subtle differences between NAT44 [RFC2993] and NPTv6 [RFC6296] which are explicitly pointed out in the latter's security considerations section.
IPv6 networks are deployed using a variety of techniques, each of which have their own specific security concerns.
This document complements [RFC4942] by listing all security issues when operating a network utilizing varying transition technologies and updating with ones that have been standardized since 2007. It also provides more recent operational deployment experiences where warranted.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
IPv6 address allocations and overall architecture are an important part of securing IPv6. Initial designs, even if intended to be temporary, tend to last much longer than expected. Although initially IPv6 was thought to make renumbering easy, in practice, it may be extremely difficult to renumber without a good IP Addresses Management (IPAM) system.
Once an address allocation has been assigned, there should be some thought given to an overall address allocation plan. With the abundance of address space available, an address allocation may be structured around services along with geographic locations, which then can be a basis for more structured security policies to permit or deny services between geographic regions.
In [RFC7934], it is recommended that IPv6 network deployments provide multiple IPv6 addresses from each prefix to general-purpose hosts and it specifically does not recommend to limit a host to only one IPv6 address per prefix. It also recommends that the network give the host the ability to use new addresses without requiring explicit requests (for example by using SLAAC).
When considering how to assign statically configured addresses it is necessary to take into consideration the effectiveness of perimeter security in a given environment. There is a trade-off between ease of operation (where some portions of the IPv6 address could be easily recognizable for operational debugging and troubleshooting) versus the risk of trivial scanning used for reconnaissance. [SCANNING] shows that there are scientifically based mechanisms that make scanning for IPv6 reachable nodes more realizable than expected; see also [RFC7707]. The use of well-known(such as ff02::1 for all link- local nodes) or the use of commonly repeated addresses could make it easy to figure out which devices are name servers, routers or other critical devices; even a simple traceroute will expose most of the routers on a path. There are many scanning techniques and more to come possible, hence, operators should never relly on the 'impossible to find because my address is random' paradigm.
While in some environments obfuscating addresses could be considered an added benefit; it does not preclude that perimeter rules are actively enforced and that statically configured addresses follow some logical allocation scheme for ease of operation (as simplicity always helps security). Typical deployments will have a mix of static and non static addresses.
Unique Local Addresses (ULAs) [RFC4193] are intended for scenarios where systems are not globally reachable, despite formally having global scope. ULA looks similar to [RFC1918] addresses but have different use cases. One use of ULA is described in [RFC4864] and some considerations on using ULA is described in the draft document [I-D.ietf-v6ops-ula-usage-considerations].
[RFC6164] in section 5.1 documents the reasons why to use a /127 for inter-router point-to-point links; notably, a /127 prevents the ping- pong attack between routers not implementing correctly [RFC4443] and also prevents a DoS attack on the neighbor cache. The previous recommendation of [RFC3627] has been obsoleted and marked Historic by [RFC6547]).
Some environments are also using link-local addressing for point-to- point links. While this practice could further reduce the attack surface against infrastructure devices, the operational disadvantages need also to be carefully considered; see also [RFC7404].
Historically stateless address autoconfiguration (SLAAC) relied on an automatically generated64 bit interface identifier (IID) based on the EUI-64 MAC address, which together with the /64 prefix makes up the globally unique IPv6 address. The EUI-64 address is generated from the 48-bit stable MAC address. [RFC8064] recommends against the use of EUI-64 addresses and it must be noted that most host operating systems do not use EUI-64 addresses anymore and rely on either [RFC4941] or [RFC8064].
Randomly generating an interface ID, as described in [RFC4941], is part of SLAAC with so-called privacy extension addresses and used to address some privacy concerns. Privacy extension addresses a.k.a. temporary addresses may help to mitigate the correlation of activities of a node within the same network, and may also somehow reduce the attack exposure window.
Using [RFC4941] privacy extension addresses prevents the operator from building host specific access control lists (ACLs).
[RFC8064] specifies another way to generate while still keeping the same IID for each network prefix; this allows SLAAC nodes to always have the same stable IPv6 address on a specific network while having different IPv6 address on different networks.
As [RFC4941] privacy extension addresses could also be used to obfuscate some malevolent activities (whether on purpose or not), specific user attribution/accountability procedures should be put in place as described in section Section 2.6.
In some extreme use cases where user accountability is more important than user privacy, network operators may consider to disable SLAAC and rely only on DHCPv6; but, not all operating systems support DHCPv6 so some hosts will not get any IPv6 connectivity.Disabling SLAAC and privacy extensions addresses can be done for most OS and for non-hacker users by sending RA messages with a hint to get addresses via DHCPv6 by setting the M-bit but also disabling SLAAC by resetting all A-bits in all prefix information options. Hackers will find a way to bypass this mechanism if not enforced at the switch/ router level.
However, in scenarios where anonymity is a strong desire (protecting user privacy is more important than user attribution), privacy extension addresses should be used. When [RFC8064] is available, the stable privacy address is probably a good balance between privacy (among multiple networks) and security/user attribution (within a network).
The reader can learn more about privacy considerations for IPv6 addresses in [RFC7721].
Many environments use DHCPv6 to allocate addresses to ensure audit- ability and traceability (but see Section 2.6.1.5). A main security concern is the ability to detect and counteract against rogue DHCP servers (Section 2.3.3).
While there are no fundamental differences with IPv4 and IPv6 security concerns about DNS, there are specific consideration in DNS64 [RFC6147] environments that need to be understood. Specifically the interactions and potential to interference with DNSSEC implementation need to be understood - these are pointed out in detail in Section 2.7.3.2.
An interesting approach is using a /64 per host as proposed in [RFC8273]. This allows an easier user attribution (typically based on the host MAC address) as its /64 prefix is stable even if applications, containers within the host can change of IPv6 address within this /64.
The extension headers are an important difference between IPv4 and IPv6. The packet structure does make a big difference. For instance, it's trivial to find (in IPv4-based packets) the upper layer protocol type and protocol header, while in IPv6 it actually isn't as the extension header chain must be parsed completely. The IANA has closed the existing empty "Next Header Types" registry to new entries and is redirecting its users to a new "IPv6 Extension Header Types" registry per [RFC7045].
They have also become a very controversial topic since forwarding nodes that discard packets containing extension headers are known to cause connectivity failures and deployment problems [RFC7872]. Understanding the role of varying extension headers is important and this section enumerates the ones that need careful consideration.
A clarification on how intermediate nodes should handle existing packets with extension headers and any extension headers that are defined in the future is found in [RFC7045]. The uniform TLV format to be used for defining future extension headers is described in [RFC6564].
It must also be noted that there is no indication in the packet whether the Next Protocol field points to an extension header or to a transport header. This may confuse some filtering rules.
There is work in progress at the IETF about filtering rules for those extension headers: [I-D.ietf-opsec-ipv6-eh-filtering] for transit routers.
While [RFC8200] recommends the order and the maximum repetition of extension headers, there are still IPv6 implementations at the time of writing this document which support a non-recommended order of headers (such as ESP before routing) or an illegal repetition of headers (such as multiple routing headers). The same applies for options contained in the extension headers (see [I-D.kampanakis-6man-ipv6-eh-parsing]). In some cases, it has lead to nodes crashing when receiving or forwarding wrongly formated packets.
A firewall or any edge device should be used to enforce the recommended order and number of occurences of extension headers.
The hop-by-hop options header, when present in an IPv6 packet, forces all nodes in the path to inspect this header in the original IPv6 specification [RFC2460]. This was of course a large avenue for a denial of service as most if not all routers cannot process this kind of packets in hardware but have to 'punt' this packet for software processing. Section 4.3 of the current Internet Standard for IPv6, [RFC8200], is more sensible to this respect as the processing of hop- by-hop options header by intermediate routers is optional.
The fragment header is used by the source (and only the source) when it has to fragment packets. [RFC7112] and section 4.5 of [RFC8200] explain why it is important to:
firewall and security devices should drop first fragments that do not contain the entire ipv6 header chain (including the transport- layer header);
destination nodes should discard first fragments that do not contain the entire ipv6 header chain (including the transport- layer header).
Else, stateless filtering could be bypassed by an hostile party. [RFC6980] applies a stricter rule to NDP by enforcing the drop of fragmented NDP packets. [RFC7113] describes how RA-guard function described in [RFC6105] should behave in presence of fragmented RA packets.
The IPsec [RFC4301] [RFC4301] extension headers (AH [RFC4302] and ESP [RFC4303]) are required if IPsec is to be utilized for network level security functionality.
IPv6 relies heavily on the Neighbor Discovery protocol (NDP) [RFC4861] to perform a variety of link operations such as discovering other nodes on the link, resolving their link-layer addresses, and finding routers on the link. If not secured, NDP is vulnerable to various attacks such as router/neighbor message spoofing, redirect attacks, Duplicate Address Detection (DAD) DoS attacks, etc. many of these security threats to NDP have been documented in IPv6 ND Trust Models and Threats [RFC3756] and in [RFC6583].
Neighbor Discovery (ND) can be vulnerable to denial of service (DoS) attacks in which a router is forced to perform address resolution for a large number of unassigned addresses. Possible side effects of this attack preclude new devices from joining the network or even worse rendering the last hop router ineffective due to high CPU usage. Easy mitigative steps include rate limiting Neighbor Solicitations, restricting the amount of state reserved for unresolved solicitations, and clever cache/timer management.
[RFC6583] discusses the potential for DoS in detail and suggests implementation improvements and operational mitigation techniques that may be used to mitigate or alleviate the impact of such attacks. Here are some feasible mitigation options that can be employed by network operators today:
o Ingress filtering of unused addresses by ACL, route filtering, longer than /64 prefix; These require static configuration of the addresses.
o Tuning of NDP process (where supported).
o Using /127 on point-to-point link per [RFC6164].
Additionally, IPv6 ND uses multicast extensively for signaling messages on the local link to avoid broadcast messages for on-the- wire efficiency. However, this has some side effects on wifi networks, especially a negative impact on battery life of smartphones and other battery operated devices that are connected to such networks. The following drafts are actively discussing methods to rate limit RAs and other ND messages on wifi networks in order to address this issue:
o [I-D.thubert-savi-ra-throttler]
o [I-D.chakrabarti-nordmark-6man-efficient-nd]
Router Advertisement spoofing is a well-known attack vector and has been extensively documented. The presence of rogue RAs, either intentional or malicious, can cause partial or complete failure of operation of hosts on an IPv6 link. For example, a host can select an incorrect router address which can be used as a man-in-the-middle (MITM) attack or can assume wrong prefixes to be used for stateless address configuration (SLAAC). [RFC6104] summarizes the scenarios in which rogue RAs may be observed and presents a list of possible solutions to the problem. [RFC6105] (RA-Guard) describes a solution framework for the rogue RA problem where network segments are designed around switching devices that are capable of identifying invalid RAs and blocking them before the attack packets actually reach the target nodes.
However, several evasion techniques that circumvent the protection provided by RA-Guard have surfaced. A key challenge to this mitigation technique is introduced by IPv6 fragmentation. An attacker can conceal the attack by fragmenting his packets into multiple fragments such that the switching device that is responsible for blocking invalid RAs cannot find all the necessary information to perform packet filtering in the same packet. [RFC7113] describes such evasion techniques, and provides advice to RA-Guard implementers such that the aforementioned evasion vectors can be eliminated.
Given that the IPv6 Fragmentation Header can be leveraged to circumvent current implementations of RA-Guard, [RFC6980] updates [RFC4861] such that use of the IPv6 Fragmentation Header is forbidden in all Neighbor Discovery messages except "Certification Path Advertisement", thus allowing for simple and effective measures to counter Neighbor Discovery attacks.
The Source Address Validation Improvements (SAVI) working group has worked on other ways to mitigate the effects of such attacks. [RFC7513] would help in creating bindings between a DHCPv4 [RFC2131] /DHCPv6 [RFC3315] assigned source IP address and a binding anchor [RFC7039] on a SAVI device. Also, [RFC6620] describes how to glean similar bindings when DHCP is not used. The bindings can be used to filter packets generated on the local link with forged source IP address.
It is still recommended that RA-Guard and SAVI be be employed as a first line of defense against common attack vectors including misconfigured hosts. This line of defense is fully effective when weird fragments are dropped by routers and switches as described in Section 2.2.3. The generated log should also be analyzed to act on violations.
Dynamic Host Configuration Protocol for IPv6 (DHCPv6), as originally detailed in [RFC3315] now obsoleted by [RFC8415], enables DHCP servers to pass configuration parameters such as IPv6 network addresses and other configuration information to IPv6 nodes. DHCP plays an important role in any large network by providing robust stateful configuration and autoregistration of DNS Host Names.
The two most common threats to DHCP clients come from malicious (a.k.a. rogue) or unintentionally misconfigured DHCP servers. A malicious DHCP server is established with the intent of providing incorrect configuration information to the client to cause a denial of service attack or mount a man in the middle attack. While unintentionall, a misconfigured DHCP server can have the same impact. Additional threats against DHCP are discussed in the security considerations section of [RFC8415].
[RFC7610], DHCPv6-Shield, specifies a mechanism for protecting connected DHCPv6 clients against rogue DHCPv6 servers. This mechanism is based on DHCPv6 packet-filtering at the layer-2 device; the administrator specifies the interfaces connected to DHCPv6 servers. Of course, extension headers could be leveraged to bypass DHCPv6-Shield unless [RFC7112] is enforced. Another way to secure DHCPv6 would be to use the secure DHCPv6 protocol which is currently work in progress per [I-D.ietf-dhc-sedhcpv6] , but, with no real deployment known by the authors of this document.
It is recommended to use DHCP-shield and to analyze the log generated by this security feature.
The 3GPP link is a point-to-point like link that has no link-layer address. This implies there can only be an end host (the mobile hand-set) and the first-hop router (i.e., a GPRS Gateway Support Node (GGSN) or a Packet Gateway (PGW)) on that link. The GGSN/PGW never configures a non link-local address on the link using the advertised /64 prefix on it. The advertised prefix must not be used for on-link determination. There is no need for an address resolution on the 3GPP link, since there are no link-layer addresses. Furthermore, the GGSN/PGW assigns a prefix that is unique within each 3GPP link that uses IPv6 stateless address autoconfiguration. This avoids the necessity to perform DAD at the network level for every address built by the mobile host. The GGSN/PGW always provides an IID to the cellular host for the purpose of configuring the link-local address and ensures the uniqueness of the IID on the link (i.e., no collisions between its own link-local address and the mobile host's one).
The 3GPP link model itself mitigates most of the known NDP-related Denial-of-Service attacks. In practice, the GGSN/PGW only needs to route all traffic to the mobile host that falls under the prefix assigned to it. As there is also a single host on the 3GPP link, there is no need to defend that IPv6 address.
See Section 5 of [RFC6459] for a more detailed discussion on the 3GPP link model, NDP on it and the address configuration detail.
SEcure Neighbor Discovery (SeND), as described in [RFC3971], is a mechanism that was designed to secure ND messages. This approach involves the use of new NDP options to carry public key based signatures. Cryptographically Generated Addresses (CGA), as described in [RFC3972], are used to ensure that the sender of a Neighbor Discovery message is the actual "owner" of the claimed IPv6 address. A new NDP option, the CGA option, was introduced and is used to carry the public key and associated parameters. Another NDP option, the RSA Signature option, is used to protect all messages relating to neighbor and Router discovery.
SeND protects against:
o Neighbor Solicitation/Advertisement Spoofing
o Neighbor Unreachability Detection Failure
o Duplicate Address Detection DoS Attack
o Router Solicitation and Advertisement Attacks
o Replay Attacks
o Neighbor Discovery DoS Attacks
SeND does NOT:
o Protect statically configured addresses
o Protect addresses configured using fixed identifiers (i.e. EUI- 64)
o Provide confidentiality for NDP communications
o Compensate for an unsecured link - SEND does not require that the addresses on the link and Neighbor Advertisements correspond
However, at this time and after many years after their specifications, CGA and SeND do not have wide support from generic operating systems; hence, their usefulness is limited and should not be relied upon.
[RFC6192] defines the router control plane. This definition is repeated here for the reader's convenience.
Modern router architecture design maintains a strict separation of forwarding and router control plane hardware and software. The router control plane supports routing and management functions. It is generally described as the router architecture hardware and software components for handling packets destined to the device itself as well as building and sending packets originated locally on the device. The forwarding plane is typically described as the router architecture hardware and software components responsible for receiving a packet on an incoming interface, performing a lookup to identify the packet's IP next hop and determine the best outgoing interface towards the destination, and forwarding the packet out through the appropriate outgoing interface.
While the forwarding plane is usually implemented in high-speed hardware, the control plane is implemented by a generic processor (named router processor RP) and cannot process packets at a high rate. Hence, this processor can be attacked by flooding its input queue with more packets than it can process. The control plane processor is then unable to process valid control packets and the router can lose OSPF or BGP adjacencies which can cause a severe network disruption.
The mitigation technique is:
o To drop non-legit control packet before they are queued to the RP (this can be done by a forwarding plane ACL) and
o To rate limit the remaining packets to a rate that the RP can sustain. Protocol specific protection should also be done (for example, a spoofed OSPFv3 packet could trigger the execution of the Dijkstra algorithm, therefore the number of Dijsktra execution should be also rate limited).
This section will consider several classes of control packets:
o Control protocols: routing protocols: such as OSPFv3, BGP and by extension Neighbor Discovery and ICMP
o Management protocols: SSH, SNMP, IPfix, etc
o Packet exceptions: which are normal data packets which requires a specific processing such as generating a packet-too-big ICMP message or having the hop-by-hop options header.
This class includes OSPFv3, BGP, NDP, ICMP.
An ingress ACL to be applied on all the router interfaces SHOULD be configured such as:
o drop OSPFv3 (identified by Next-Header being 89) and RIPng (identified by UDP port 521) packets from a non link-local address
o allow BGP (identified by TCP port 179) packets from all BGP neighbors and drop the others
o allow all ICMP packets (transit and to the router interfaces)
Note: dropping OSPFv3 packets which are authenticated by IPsec could be impossible on some routers whose ACL are unable to parse the IPsec ESP or AH extension headers.
Rate limiting of the valid packets SHOULD be done. The exact configuration obviously depends on the power of the Route Processor.
This class includes: SSH, SNMP, syslog, NTP, etc
An ingress ACL to be applied on all the router interfaces SHOULD be configured such as:
o Drop packets destined to the routers except those belonging to protocols which are used (for example, permit TCP 22 and drop all when only SSH is used);
o Drop packets where the source does not match the security policy, for example if SSH connections should only be originated from the NOC, then the ACL should permit TCP port 22 packets only from the NOC prefix.
Rate limiting of the valid packets SHOULD be done. The exact configuration obviously depends on the power of the Route Processor.
This class covers multiple cases where a data plane packet is punted to the route processor because it requires specific processing:
o generation of an ICMP packet-too-big message when a data plane packet cannot be forwarded because it is too large;
o generation of an ICMP hop-limit-expired message when a data plane packet cannot be forwarded because its hop-limit field has reached 0;
o generation of an ICMP destination-unreachable message when a data plane packet cannot be forwarded for any reason;
o processing of the hop-by-hop options header, new implementations follow section 4.3 of [RFC8200] where this processing is optional;
o or more specific to some router implementation: an oversized extension header chain which cannot be processed by the hardware and force the packet to be punted to the generic router CPU.
On some routers, not everything can be done by the specialized data plane hardware which requires some packets to be 'punted' to the generic RP. This could include for example the processing of a long extension header chain in order to apply an ACL based on layer 4 information. [RFC6980] and more generally [RFC7112] highlights the security implications of oversized extension header chains on routers and updates the original IPv6 specifications, [RFC2460], such that the first fragment of a packet is required to contain the entire IPv6 header chain. Those changes are incorporated in the IPv6 standard [RFC8200]
An ingress ACL cannot help to mitigate a control plane attack using those packet exceptions. The only protection for the RP is to limit the rate of those packet exceptions forwarded to the RP, this means that some data plane packets will be dropped without any ICMP messages back to the source which may cause Path MTU holes.
In addition to limiting the rate of data plane packets queued to the RP, it is also important to limit the generation rate of ICMP messages both the save the RP but also to prevent an amplification attack using the router as a reflector.
Routing security in general can be broadly divided into three sections:
1. Authenticating neighbors/peers
2. Securing routing updates between peers
3. Route filtering
[RFC7454] covers these sections specifically for BGP in detail.
A basic element of routing is the process of forming adjacencies, neighbor, or peering relationships with other routers. From a security perspective, it is very important to establish such relationships only with routers and/or administrative domains that one trusts. A traditional approach has been to use MD5 HMAC, which allows routers to authenticate each other prior to establishing a routing relationship.
OSPFv3 can rely on IPsec to fulfill the authentication function. However, it should be noted that IPsec support is not standard on all routing platforms. In some cases, this requires specialized hardware that offloads crypto over to dedicated ASICs or enhanced software images (both of which often come with added financial cost) to provide such functionality. An added detail is to determine whether OSPFv3 IPsec implementations use AH or ESP-Null for integrity protection. In early implementations all OSPFv3 IPsec configurations relied on AH since the details weren't specified in [RFC5340] or [RFC2740] that was obsoleted by the former. However, the document which specifically describes how IPsec should be implemented for OSPFv3 [RFC4552] specifically states that ESP-Null MUST and AH MAY be implemented since it follows the overall IPsec standards wordings. OSPFv3 can also use normal ESP to encrypt the OSPFv3 payload to hide the routing information.
[RFC7166] (which obsoletes [RFC6506] changes OSPFv3's reliance on IPsec by appending an authentication trailer to the end of the OSPFv3 packets; it does not specifically authenticate the specific originator of an OSPFv3 packet; rather, it allows a router to confirm that the packet has indeed been issued by a router that had access to the shared authentication key.
With all authentication mechanisms, operators should confirm that implementations can support re-keying mechanisms that do not cause outages. There have been instances where any re-keying cause outages and therefore the tradeoff between utilizing this functionality needs to be weighed against the protection it provides.
IPv6 initially mandated the provisioning of IPsec capability in all nodes. However, in the updated IPv6 Nodes Requirement standard [RFC8504] (that obsoletes [RFC6434]) is a 'SHOULD' and no more a 'MUST' implement. Theoretically it is possible, and recommended, that communication between two IPv6 nodes, including routers exchanging routing information be encrypted using IPsec. In practice however, deploying IPsec is not always feasible given hardware and software limitations of various platforms deployed, as described in the earlier section.
Route filtering policies will be different depending on whether they pertain to edge route filtering vs internal route filtering. At a minimum, IPv6 routing policy as it pertains to routing between different administrative domains should aim to maintain parity with IPv4 from a policy perspective e.g.,
o Filter internal-use, non-globally routable IPv6 addresses at the perimeter
o Discard packets from and to bogon and reserved space (see [RFC8190])
o Configure ingress route filters that validate route origin, prefix ownership, etc. through the use of various routing databases, e.g., RADB. There is additional work being done in this area to formally validate the origin ASs of BGP announcements in [RFC6810]
Some good recommendations for filtering can be found from Team CYMRU at [CYMRU].
In order to perform forensic research in case of any security incident or to detect abnormal behaviors, network operators should log multiple pieces of information.
This includes:
o logs of all applications when available (for example web servers);
o use of IP Flow Information Export [RFC7011] also known as IPfix;
o use of SNMP MIB [RFC4293];
o use of the Neighbor cache;
o use of stateful DHCPv6 [RFC3315] lease cache, especially when a relay agent [RFC6221] in layer-2 switches is used;
o use of Source Address Validation Improvement (SAVI) [RFC7039] events, especially the binding of an IPv6 address to a MAC address and a specific switch or router interface;
o use of RADIUS [RFC2866] for accounting records.
Please note that there are privacy issues related to how those logs are collected, kept and safely discarded. Operators are urged to check their country legislation.
All those pieces of information will be used for:
o forensic (Section 2.6.2.1) investigations such as who did what and when?
o correlation (Section 2.6.2.3): which IP addresses were used by a specific node (assuming the use of privacy extensions addresses [RFC4941])
o inventory (Section 2.6.2.2): which IPv6 nodes are on my network?
o abnormal behavior detection (Section 2.6.2.4): unusual traffic patterns are often the symptoms of a abnormal behavior which is in turn a potential attack (denial of services, network scan, a node being part of a botnet, ...)
This section lists the most important sources of data that are useful for operational security.
Those logs are usually text files where the remote IPv6 address is stored in all characters (not binary). This can complicate the processing since one IPv6 address, 2001:db8::1 can be written in multiple ways such as:
o 2001:DB8::1 (in uppercase)
o 2001:0db8::0001 (with leading 0)
o and many other ways including the reverse DNS mapping into a FQDN (which should not be trusted).
RFC 5952 [RFC5952] explains this problem in detail and recommends the use of a single canonical format (in short use lower case and suppress leading 0). This memo recommends the use of canonical format [RFC5952] for IPv6 addresses in all possible cases. If the existing application cannot log under the canonical format, then this memo recommends the use an external program in order to canonicalize all IPv6 addresses.
For example, this perl script can be used:
my (@words, $word, $binary_address) ;
IPfix [RFC7012] defines some data elements that are useful for security:
o in section 5.4 (IP Header fields): nextHeaderIPv6 and sourceIPv6Address;
o in section 5.6 (Sub-IP fields) sourceMacAddress.
Moreover, IPfix is very efficient in terms of data handling and transport. It can also aggregate flows by a key such as sourceMacAddress in order to have aggregated data associated with a specific sourceMacAddress. This memo recommends the use of IPfix and aggregation on nextHeaderIPv6, sourceIPv6Address and sourceMacAddress.
RFC 4293 [RFC4293] defines a Management Information Base (MIB) for the two address families of IP. This memo recommends the use of:
o ipIfStatsTable table which collects traffic counters per interface;
o ipNetToPhysicalTable table which is the content of the Neighbor cache, i.e. the mapping between IPv6 and data-link layer addresses.
The neighbor cache of routers contains all mappings between IPv6 addresses and data-link layer addresses. It is usually available by two means:
o the SNMP MIB (Section 2.6.1.3) as explained above;
o using NETCONF [RFC6241] to collect the state of the neighbor cache;
o also by connecting over a secure management channel (such as SSH) and explicitely requesting a neighbor cache dump via the Command Line Interface or any other monitoring mechanism.
The neighbor cache is highly dynamic as mappings are added when a new IPv6 address appears on the network (could be quite often with privacy extension addresses [RFC4941] or when they are removed when the state goes from UNREACH to removed (the default time for a removal per Neighbor Unreachability Detection [RFC4861] algorithm is 38 seconds for a typical host such as Windows 7). This means that the content of the neighbor cache must periodically be fetched every 30 seconds (to be on the safe side) and stored for later use.
This is an important source of information because it is trivial (on a switch not using the SAVI [RFC7039] algorithm) to defeat the mapping between data-link layer address and IPv6 address. Let us rephrase the previous statement: having access to the current and past content of the neighbor cache has a paramount value for forensic and audit trail.
Using the approach of one /64 per host (Section 2.1.7) replaces the neighbor cache dumps by a mere caching of the allocated /64 prefix when combined with strict enforcement rule on the router and switches to prevent IPv6 spoofing.
In some networks, IPv6 addresses are managed by stateful DHCPv6 server [RFC3315] that leases IPv6 addresses to clients. It is indeed quite similar to DHCP for IPv4 so it can be tempting to use this DHCP lease file to discover the mapping between IPv6 addresses and data- link layer addresses as it was usually done in the IPv4 era.
It is not so easy in the IPv6 era because not all nodes will use DHCPv6 (there are nodes which can only do stateless autoconfiguration) but also because DHCPv6 clients are identified not by their hardware-client address as in IPv4 but by a DHCP Unique ID (DUID) which can have several formats: some being the data-link layer address, some being data-link layer address prepended with time information or even an opaque number which is useless for operation security. Moreover, when the DUID is based on the data-link address, this address can be of any interface of the client (such as the wireless interface while the client actually uses its wired interface to connect to the network).
If a lightweight DHCP relay agent [RFC6221] is used in the layer-2 switches, then the DHCP server also receives the Interface-ID information which could be save in order to identifity the interface of the switches which received a specific leased IPv6 address. Also, if a 'normal' (not lightweight) relay agent adds the data-link layer address in the option for Relay Agent Remote-ID [RFC4649] or [RFC6939], then the DHCPv6 server can keep track of the data-link and leased IPv6 addresses.
In short, the DHCPv6 lease file is less interesting than in the IPv4 era. DHCPv6 servers that keep the relayed data-link layer address in addition to the DUID in the lease file do not suffer from this limitation.
The mapping between data-link layer address and the IPv6 address can be secured by using switches implementing the SAVI [RFC7513] algorithms. Of course, this also requires that data-link layer address is protected by using layer-2 mechanism such as [IEEE-802.1X].
For interfaces where the user is authenticated via a RADIUS [RFC2866] server, and if RADIUS accounting is enabled, then the RADIUS server receives accounting Acct-Status-Type records at the start and at the end of the connection which include all IPv6 (and IPv4) addresses used by the user. This technique can be used notably for Wi-Fi networks with Wi-Fi Protected Address (WPA) or any other IEEE 802.1X [IEEE-802.1X]wired interface on an Ethernet switch.
There are other data sources that must be kept exactly as in the IPv4 network:
o historical mapping of IPv6 addresses to users of remote access VPN;
o historical mapping of MAC address to switch interface in a wired network.
This section leverages the data collected as described before (Section 2.6.1) in order to achieve several security benefits. Section 9.1 of [RFC7934] contains more details about host tracking.
The forensic use case is when the network operator must locate an IPv6 address that was present in the network at a certain time or is still currently in the network.
The source of information can be, in decreasing order, neighbor cache, DHCP lease file. Then, the procedure is:
1. based on the IPv6 prefix of the IPv6 address find the router(s) which is(are) used to reach this prefix (assuming that anti- spoofing mechanisms are used);
2. based on this limited set of routers, on the incident time and on IPv6 address to retrieve the data-link address from live neighbor cache, from the historical data of the neighbor cache or from SAVI events,
3. based on the incident time and on the IPv6 address, retrieve the data-link address from the DHCP lease file (Section 2.6.1.5);
4. based on the data-link layer address, look-up on which switch interface was this data-link layer address. In the case of wireless LAN, the RADIUS log should have the mapping between user identification and the MAC address. If a Configuration Management Data Base (CMDB) is used, the mapping between the data-link layer address and a switch port.
At the end of the process, the interface the host originating malicious activity or the username which was abused for malicious activity has been determined.
RFC 7707 [RFC7707] (which obsoletes RFC 5157 [RFC5157]) is about the difficulties for an attacker to scan an IPv6 network due to the vast number of IPv6 addresses per link (and why in some case it can stil be done). While the huge addressing space can sometime be perceived as a 'protection', it also make the inventory task difficult in an IPv6 network while it was trivial to do in an IPv4 network (a simple enumeration of all IPv4 addresses, followed by a ping and a TCP/UDP port scan). Getting an inventory of all connected devices is of prime importance for a secure operation of a network.
There are many ways to do an inventory of an IPv6 network.
The first technique is to use the IPfix information and extract the list of all IPv6 source addresses to find all IPv6 nodes that sent packets through a router. This is very efficient but alas will not discover silent node that never transmitted such packets... Also, it must be noted that link-local addresses will never be discovered by this means.
The second way is again to use the collected neighbor cache content to find all IPv6 addresses in the cache. This process will also discover all link-local addresses. See Section 2.6.1.4.
Another way works only for local network, it consists in sending a ICMP ECHO_REQUEST to the link-local multicast address ff02::1 which is all IPv6 nodes on the network. All nodes should reply to this ECHO_REQUEST per [RFC4443].
Other techniques involve obtaining data from DNS, parsing log files, leveraging service discovery such as mDNS [RFC6762] and [RFC6763].
Enumerating DNS zones, especially looking at reverse DNS records and CNAMES, is another common method employed by various tools. As already metioned in [RFC7707], this allows an attacker to prune the IPv6 reverse DNS tree, and hence enumerate it in a feasible time. Furthermore, authoritative servers that allow zone transfers (AXFR) may be a further information source.
In an IPv4 network, it is easy to correlate multiple logs, for example to find events related to a specific IPv4 address. A simple Unix grep command was enough to scan through multiple text-based files and extract all lines relevant to a specific IPv4 address.
In an IPv6 network, this is slightly more difficult because different character strings can express the same IPv6 address. Therefore, the simple Unix grep command cannot be used. Moreover, an IPv6 node can have multiple IPv6 addresses.
In order to do correlation in IPv6-related logs, it is advised to have all logs with canonical IPv6 addresses. Then, the neighbor cache current (or historical) data set must be searched to find the data-link layer address of the IPv6 address. Then, the current and historical neighbor cache data sets must be searched for all IPv6 addresses associated to this data-link layer address: this is the search set. The last step is to search in all log files (containing only IPv6 address in canonical format) for any IPv6 addresses in the search set.
Abnormal behaviors (such as network scanning, spamming, denial of service) can be detected in the same way as in an IPv4 network
o sudden increase of traffic detected by interface counter (SNMP) or by aggregated traffic from IPfix records [RFC7012];
o change of traffic pattern (number of connection per second, number of connection per host...) with the use of IPfix [RFC7012]
While some data sources (IPfix, MIB, switch CAM tables, logs, ...) used in IPv4 are also used in the secure operation of an IPv6 network, the DHCPv6 lease file is less reliable and the neighbor cache is of prime importance.
The fact that there are multiple ways to express in a character string the same IPv6 address renders the use of filters mandatory when correlation must be done.
As it is expected that some networks will not run in a pure IPv6-only way, the different transition mechanisms must be deployed and operated in a secure way. This section proposes operational guidelines for the most known and deployed transition techniques.
Dual stack is often the first deployment choice for network operators. Dual stacking the network offers some advantages over other transition mechanisms. Firstly, the impact on existing IPv4 operations is reduced. Secondly, in the absence of tunnels or address translation, the IPv4 and IPv6 traffics are native (easier to observe and secure) and should have the same network processing (path, quality of service, ...). Dual stack allows you to gradually turn IPv4 operations down when your IPv6 network is ready for prime time. On the other hand, the operators have to manage two networks with the added complexities.
From an operational security perspective, this now means that you have twice the exposure. One needs to think about protecting both protocols now. At a minimum, the IPv6 portion of a dual stacked network should maintain parity with IPv4 from a security policy point of view. Typically, the following methods are employed to protect IPv4 networks at the edge:
o ACLs to permit or deny traffic
o Firewalls with stateful packet inspection
It is recommended that these ACLs and/or firewalls be additionally configured to protect IPv6 communications. Also, given the end-to- end connectivity that IPv6 provides, it is also recommended that hosts be fortified against threats. General device hardening guidelines are provided in Section 2.8
For many years, all host operating systems have IPv6 enabled by default, so, it is possible even in an 'IPv4-only' network to attack layer-2 adjacent victims over IPv6 link-local address or over a global IPv6 address is rogue RA or rogue DHCPv6 addresses are provided by an attacker.
There are many tunnels used for specific use cases. Except when protected by IPsec [RFC4301], all those tunnels have a couple of security issues (most of them because they are tunnels and are described in RFC 6169 [RFC6169]);
o tunnel injection: a malevolent person knowing a few pieces of information (for example the tunnel endpoints and the used
protocol) can forge a packet which looks like a legit and valid encapsulated packet that will gladly be accepted by the destination tunnel endpoint, this is a specific case of spoofing;
o traffic interception: no confidentiality is provided by the tunnel protocols (without the use of IPsec), therefore anybody on the tunnel path can intercept the traffic and have access to the clear-text IPv6 packet; combined with the absence of authentication, a man in the middle attack can also be mounted;
o service theft: as there is no authorization, even a non authorized user can use a tunnel relay for free (this is a specific case of tunnel injection);
o reflection attack: another specific use case of tunnel injection where the attacker injects packets with an IPv4 destination address not matching the IPv6 address causing the first tunnel endpoint to re-encapsulate the packet to the destination... Hence, the final IPv4 destination will not see the original IPv4 address but only one IPv4 address of the relay router.
o bypassing security policy: if a firewall or an IPS is on the path of the tunnel, then it will probably neither inspect nor detect an malevolent IPv6 traffic contained in the tunnel.
To mitigate the bypassing of security policies, it is recomended to block all default configuration tunnels by denying all IPv4 traffic matching:
o IP protocol 47: this will block GRE (Section 2.7.2.1) tunnels;
o UDP protocol 3544: this will block the default encapsulation of Teredo (Section 2.7.2.8) tunnels.
Ingress filtering [RFC2827] should also be applied on all tunnel endpoints if applicable to prevent IPv6 address spoofing.
As several of the tunnel techniques share the same encapsulation (i.e. IPv4 protocol 41) and embed the IPv4 address in the IPv6 address, there are a set of well-known looping attacks described in RFC 6324 [RFC6324], this RFC also proposes mitigation techniques.
Site-to-site static tunnels are described in RFC 2529 [RFC2529] and in GRE [RFC2784]. As the IPv4 endpoints are statically configured and are not dynamic they are slightly more secure (bi-directional service theft is mostly impossible) but traffic interception and tunnel injection are still possible. Therefore, the use of IPsec [RFC4301] in transport mode and protecting the encapsulated IPv4 packets is recommended for those tunnels. Alternatively, IPsec in tunnel mode can be used to transport IPv6 traffic over a non-trusted IPv4 network.
ISATAP tunnels [RFC5214] are mainly used within a single administrative domain and to connect a single IPv6 host to the IPv6 network. This means that endpoints and and the tunnel endpoint are usually managed by a single entity; therefore, audit trail and strict anti-spoofing are usually possible and this raises the overall security.
Special care must be taken to avoid looping attack by implementing the measures of RFC 6324 [RFC6324] and of [RFC6964].
IPsec [RFC4301] in transport or tunnel mode can be used to secure the IPv4 ISATAP traffic to provide IPv6 traffic confidentiality and prevent service theft.
While 6rd tunnels share the same encapsulation as 6to4 tunnels (Section 2.7.2.7), they are designed to be used within a single SP domain, in other words they are deployed in a more constrained environment than 6to4 tunnels and have little security issues except lack of confidentiality. The security considerations (Section 12) of [RFC5969] describes how to secure the 6rd tunnels.
IPsec [RFC4301] for the transported IPv6 traffic can be used if confidentiality is important.
Organizations using MPLS in their core can also use 6PE [RFC4798] and 6VPE [RFC4659] to enable IPv6 access over MPLS. As 6PE and 6VPE are really similar to BGP/MPLS IP VPN described in [RFC4364], the security of these networks is also similar to the one described in [RFC4381]. It relies on:
o Address space, routing and traffic seperation with the help of VRF (only applicable to 6VPE);
o Hiding the IPv4 core, hence removing all attacks against P-routers;
o Securing the routing protocol between CE and PE, in the case of 6PE and 6VPE, link-local addresses (see [RFC7404]) can be used and as these addresses cannot be reached from outside of the link, the security of 6PE and 6VPE is even higher than the IPv4 BGP/MPLS IP VPN.
DS-lite is more a translation mechanism and is therefore analyzed further (Section 2.7.3.3) in this document.
With the encapsulation and translation versions of mapping of Address and Port (MAP-E [RFC7597] and MAP-T [RFC7599]), the access network is purely an IPv6 network and MAP protocols are used to give IPv4 hosts on the subscriber network, access to IPv4 hosts on the Internet. The subscriber router does stateful operations in order to map all internal IPv4 addresses and layer-4 ports to the IPv4 address and the set of layer-4 ports received through MAP configuration process. The SP equipment always does stateless operations (either decapsulation or stateless translation). Therefore, as opposed to Section 2.7.3.3 there is no state-exhaustion DoS attack against the SP equipment because there is no state and there is no operation caused by a new layer-4 connection (no logging operation).
The SP MAP equipment MUST implement all the security considerations of [RFC7597]; notably, ensuring that the mapping of the IPv4 address and port are consistent with the configuration. As MAP has a predictable IPv4 address and port mapping, the audit logs are easier to manage.
6to4 tunnels [RFC3056] require a public routable IPv4 address in order to work correctly. They can be used to provide either one IPv6 host connectivity to the IPv6 Internet or multiple IPv6 networks connectivity to the IPv6 Internet. The 6to4 relay is usually the anycast address defined in [RFC3068] which has been deprecated by [RFC7526], and is no more used by recent Operating Systems. Some security considerations are explained in [RFC3964].
[RFC6343] points out that if an operator provides well-managed servers and relays for 6to4, non-encapsulated IPv6 packets will pass through well- defined points (the native IPv6 interfaces of those servers and relays) at which security mechanisms may be applied. Client usage of 6to4 by default is now discouraged, and significant precautions are needed to avoid operational problems.
Teredo tunnels [RFC4380] are mainly used in a residential environment because that can easily traverse an IPv4 NAT-PT device thanks to its UDP encapsulation and they connect a single host to the IPv6 Internet. Teredo shares the same issues as other tunnels: no authentication, no confidentiality, possible spoofing and reflection attacks.
IPsec [RFC4301] for the transported IPv6 traffic is recommended.
The biggest threat to Teredo is probably for IPv4-only network as Teredo has been designed to easily traverse IPV4 NAT-PT devices which are quite often co-located with a stateful firewall. Therefore, if the stateful IPv4 firewall allows unrestricted UDP outbound and accept the return UDP traffic, then Teredo actually punches a hole in this firewall for all IPv6 traffic to the Internet and from the Internet. While host policies can be deployed to block Teredo in an IPv4-only network in order to avoid this firewall bypass, it would be more efficient to block all UDP outbound traffic at the IPv4 firewall if deemed possible (of course, at least port 53 should be left open for DNS traffic).
Teredo is now mostly never used and it is no more automated in most environment, so, it is less of a threat.
Translation mechanisms between IPv4 and IPv6 networks are alternative coexistence strategies while networks transition to IPv6. While a framework is described in [RFC6144] the specific security considerations are documented in each individual mechanism. For the most part they specifically mention interference with IPsec or DNSSEC deployments, how to mitigate spoofed traffic and what some effective filtering strategies may be.
Carrier-Grade NAT (CGN), also called NAT444 CGN or Large Scale NAT (LSN) or SP NAT is described in [RFC6264] and is utilized as an interim measure to prolong the use of IPv4 in a large service provider network until the provider can deploy and effective IPv6 solution. [RFC6598] requested a specific IANA allocated /10 IPv4 address block to be used as address space shared by all access networks using CGN. This has been allocated as 100.64.0.0/10.
Section 13 of [RFC6269] lists some specific security-related issues caused by large scale address sharing. The Security Considerations section of [RFC6598] also lists some specific mitigation techniques for potential misuse of shared address space. Some Law Enforcement Agencies have identified CGN as impeding their cyber-crime investigations (for example Europol press release on CGN [europol-cgn]). Many translation techniques (NAT64, DS-lite, ...) have the same security issues as CGN when one part of the connection is IPv4-only.
[RFC6302] has recommendations for Internet-facing servers to also log the source TCP or UDP ports of incoming connections in an attempt to help identify the users behind such a CGN.
[RFC7422] suggests the use of deterministic address mapping in order to reduce logging requirements for CGN. The idea is to have an algorithm mapping back and forth the internal subscriber to public ports.
Stateful NAT64 translation [RFC6146] allows IPv6-only clients to contact IPv4 servers using unicast UDP, TCP, or ICMP. It can be used in conjunction with DNS64 [RFC6147], a mechanism which synthesizes AAAA records from existing A records. There is also a stateless NAT64 [RFC7915] (that obsoletes [RFC6145]) which is similar for the security aspects with the added benefit of being stateless, so, less prone to a state exhaustion attack.
The Security Consideration sections of [RFC6146] and [RFC6147] list the comprehensive issues. A specific issue with the use of NAT64 is that it will interfere with most IPsec deployments unless UDP encapsulation is used. DNS64 has an incidence on DNSSEC see section 3.1 of [RFC7050].
Dual-Stack Lite (DS-Lite) [RFC6333] is a transition technique that enables a service provider to share IPv4 addresses among customers by combining two well-known technologies: IP in IP (IPv4-in-IPv6) and Network Address and Port Translation (NAPT).
Security considerations with respect to DS-Lite mainly revolve around logging data, preventing DoS attacks from rogue devices (as the AFTR function is stateful) and restricting service offered by the AFTR only to registered customers.
Section 11 of [RFC6333] describes important security issues associated with this technology.
There are many environments which rely too much on the network infrastructure to disallow malicious traffic to get access to critical hosts. In new IPv6 deployments it has been common to see IPv6 traffic enabled but none of the typical access control mechanisms enabled for IPv6 device access. With the possibility of network device configuration mistakes and the growth of IPv6 in the overall Internet it is important to ensure that all individual devices are hardened agains miscreant behavior.
The following guidelines should be used to ensure appropriate hardening of the host, be it an individual computer or router, firewall, load-balancer,server, etc device.
o Restrict access to the device to authorized individuals
o Monitor and audit access to the device
o Turn off any unused services on the end node
o Understand which IPv6 addresses are being used to source traffic and change defaults if necessary
o Use cryptographically protected protocols for device management if possible (SCP, SNMPv3, SSH, TLS, etc)
o Use host firewall capabilities to control traffic that gets processed by upper layer protocols
o Use virus scanners to detect malicious programs
Enterprises generally have robust network security policies in place to protect existing IPv4 networks. These policies have been distilled from years of experiential knowledge of securing IPv4 networks. At the very least, it is recommended that enterprise networks have parity between their security policies for both protocol versions.
Security considerations in the enterprise can be broadly categorized into two sections - External and Internal.
The external aspect deals with providing security at the edge or perimeter of the enterprise network where it meets the service providers network. This is commonly achieved by enforcing a security policy either by implementing dedicated firewalls with stateful packet inspection or a router with ACLs. A common default IPv4 policy on firewalls that could easily be ported to IPv6 is to allow all traffic outbound while only allowing specific traffic, such as established sessions, inbound (see also [RFC6092]). Here are a few more things that could enhance the default policy:
o Filter internal-use IPv6 addresses at the perimeter
o Discard packets from and to bogon and reserved space, see also [CYMRU]
o Accept certain ICMPv6 messages to allow proper operation of ND and PMTUD, see also [RFC4890]
o Filter specific extension headers by accepting only the required ones (white list approach) such as ESP, AH (not forgetting the required transport layers: ICMP, TCP, UDP, ...) , where possible at the edge and possibly inside the perimeter; see also [I-D.gont-opsec-ipv6-eh-filtering]
o Filter packets having an illegal IPv6 headers chain at the perimeter (and possible inside as well), see Section 2.2
o Filter unneeded services at the perimeter
o Implement anti-spoofing
o Implement appropriate rate-limiters and control-plane policers
The internal aspect deals with providing security inside the perimeter of the network, including the end host. The most significant concerns here are related to Neighbor Discovery. At the network level, it is recommended that all security considerations discussed in Section 2.3 be reviewed carefully and the recommendations be considered in-depth as well.
As mentioned in Section 2.6.2, care must be taken when running automated IPv6-in-IP4 tunnels.
Hosts need to be hardened directly through security policy to protect against security threats. The host firewall default capabilities have to be clearly understood, especially 3rd party ones which can have different settings for IPv4 or IPv6 default permit/deny behavior. In some cases, 3rd party firewalls have no IPv6 support whereas the native firewall installed by default has it. General device hardening guidelines are provided in Section 2.8
It should also be noted that many hosts still use IPv4 for transport for things like RADIUS, TACACS+, SYSLOG, etc. This will require some extra level of due diligence on the part of the operator.
The threats and mitigation techniques are identical between IPv4 and IPv6. Broadly speaking they are:
o Authenticating the TCP session;
o TTL security (which becomes hop-limit security in IPv6);
o Prefix Filtering.
These are explained in more detail in section Section 2.5.
RTBH [RFC5635] works identically in IPv4 and IPv6. IANA has allocated 100::/64 as discard prefix [RFC6666].
SP will typically use transition mechanisms such as 6rd, 6PE, MAP, DS-Lite which have been analyzed in the transition Section 2.7.2 section.
The Lawful Intercept requirements are similar for IPv6 and IPv4 architectures and will be subject to the laws enforced in varying geographic regions. The local issues with each jurisdiction can make this challenging and both corporate legal and privacy personnel should be involved in discussions pertaining to what information gets logged and what the logging retention policies will be.
The target of interception will usually be a residential subscriber (e.g. his/her PPP session or physical line or CPE MAC address). With the absence of NAT on the CPE, IPv6 has the provision to allow for intercepting the traffic from a single host (a /128 target) rather than the whole set of hosts of a subscriber (which could be a /48, a /60 or /64).
In contrast, in mobile environments, since the 3GPP specifications allocate a /64 per device, it may be sufficient to intercept traffic from the /64 rather than specific /128's (since each time the device powers up it gets a new IID).
A sample architecture which was written for informational purposes is found in [RFC3924].
The IETF Homenet working group is working on how IPv6 residential network should be done; this obviously includes operational security considerations; but, this is still work in progress.
Residential users have usually less experience and knowledge about security or networking. As most of the recent hosts, smartphones, tablets have all IPv6 enabled by default, IPv6 security is important for those users. Even with an IPv4-only ISP, those users can get IPv6 Internet access with the help of Teredo tunnels. Several peer- to-peer programs (notably Bittorrent) support IPv6 and those programs can initiate a Teredo tunnel through the IPv4 residential gateway, with the consequence of making the internal host reachable from any IPv6 host on the Internet. It is therefore recommended that all host security products (personal firewall, ...) are configured with a dual-stack security policy.
If the Residential Gateway has IPv6 connectivity, [RFC7084] (that obsoletes [RFC6204]) defines the requirements of an IPv6 CPE and does not take position on the debate of default IPv6 security policy as defined in [RFC6092]:
o outbound only: allowing all internally initiated connections and block all externally initiated ones, which is a common default security policy enforced by IPv4 Residential Gateway doing NAT-PT but it also breaks the end-to-end reachability promise of IPv6. [RFC6092] lists several recommendations to design such a CPE;
o open/transparent: allowing all internally and externally initiated connections, therefore restoring the end-to-end nature of the Internet for the IPv6 traffic but having a different security policy for IPv6 than for IPv4.
[RFC6092] REC-49 states that a choice must be given to the user to select one of those two policies.
There is also an alternate solution which has been deployed notably by Swisscom: open to all outbound and inbound connections at the exception of an handful of TCP and UDP ports known as vulnerable.
There are several documents that describe in more details the security of an IPv6 network; these documents are not written by the IETF but are listed here for your convenience:
1. Guidelines for the Secure Deployment of IPv6 [NIST]
2. North American IPv6 Task Force Technology Report - IPv6 Security Technology Paper [NAv6TF_Security]
3. IPv6 Security [IPv6_Security_Book]
The authors would like to thank the following people for their useful comments: Mikael Abrahamsson, Fred Baker, Mustafa Suha Botsali, Brian Carpenter, Tim Chown, Lorenzo Colitti, Markus deBruen, Tobias Fiebig, Fernando Gont, Jeffry Handal, Lee Howard, Panos Kampanakis, Erik Kline, Jouni Korhonen, Mark Lentczner, Bob Sleigh,Tarko Tikan, Ole Troan, Bernie Volz (by alphabetical order).
This memo includes no request to IANA.
This memo attempts to give an overview of security considerations of operating an IPv6 network both in an IPv6-only network and in utilizing the most widely deployed IPv4/IPv6 coexistence strategies.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC8200]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-editor.org/info/rfc8200>.
[CYMRU]
"Packet Filter and Route Filter Recommendation for IPv6 at xSP routers", <http://www.team- cymru.org/ReadingRoom/Templates/IPv6Routers/ xsp-recommendations.html>.
[europol-cgn]
Europol, "ARE YOU SHARING THE SAME IP ADDRESS AS A CRIMINAL? LAW ENFORCEMENT CALL FOR THE END OF CARRIER GRADE NAT (CGN) TO INCREASE ACCOUNTABILITY ONLINE", October 2017, <https://www.europol.europa.eu/newsroom/news/are-you- sharing-same-ip-address-criminal-law-enforcement-call-for- end-of-carrier-grade-nat-cgn-to-increase-accountability- online>.
[I-D.chakrabarti-nordmark-6man-efficient-nd]
Chakrabarti, S., Nordmark, E., Thubert, P., and M. Wasserman, "IPv6 Neighbor Discovery Optimizations for Wired and Wireless Networks", draft-chakrabarti-nordmark- 6man-efficient-nd-07 (work in progress), February 2015.
[I-D.gont-opsec-ipv6-eh-filtering]
Gont, F., Will, W., and R. Bonica, "Recommendations on Filtering of IPv6 Packets Containing IPv6 Extension Headers", draft-gont-opsec-ipv6-eh-filtering-02 (work in progress), August 2014.
[I-D.ietf-dhc-sedhcpv6]
Li, L., Jiang, S., Cui, Y., Jinmei, T., Lemon, T., and D. Zhang, "Secure DHCPv6", draft-ietf-dhc-sedhcpv6-21 (work in progress), February 2017.
[I-D.ietf-opsec-ipv6-eh-filtering]
Gont, F. and W. LIU, "Recommendations on the Filtering of IPv6 Packets Containing IPv6 Extension Headers", draft- ietf-opsec-ipv6-eh-filtering-06 (work in progress), July 2018.
[I-D.ietf-v6ops-ula-usage-considerations]
Liu, B. and S. Jiang, "Considerations For Using Unique Local Addresses", draft-ietf-v6ops-ula-usage- considerations-02 (work in progress), March 2017.
[I-D.kampanakis-6man-ipv6-eh-parsing]
Kampanakis, P., "Implementation Guidelines for parsing IPv6 Extension Headers", draft-kampanakis-6man-ipv6-eh- parsing-01 (work in progress), August 2014.
[I-D.thubert-savi-ra-throttler]
Thubert, P., "Throttling RAs on constrained interfaces", draft-thubert-savi-ra-throttler-01 (work in progress), June 2012.
[IEEE-802.1X]
IEEE, "IEEE Standard for Local and metropolitan area networks - Port-Based Network Access Control", IEEE Std 802.1X-2010, February 2010.
[IPv6_Security_Book]
Hogg, S. and E. Vyncke, "IPv6 Security", ISBN 1-58705-594-5, Publisher CiscoPress, December 2008.
[NAv6TF_Security]
Kaeo, M., Green, D., Bound, J., and Y. Pouffary, "North American IPv6 Task Force Technology Report - IPv6 Security Technology Paper", 2006, <http://www.ipv6forum.com/dl/white/ NAv6TF_Security_Report.pdf>.
[NIST]
Frankel, S., Graveman, R., Pearce, J., and M. Rooks, "Guidelines for the Secure Deployment of IPv6", 2010, <http://csrc.nist.gov/publications/nistpubs/800-119/ sp800-119.pdf>.
[RFC0826]
Plummer, D., "An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware", STD 37, RFC 826, DOI 10.17487/RFC0826, November 1982, <https://www.rfc-editor.org/info/rfc826>.
[RFC1918]
Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996, <https://www.rfc-editor.org/info/rfc1918>.
[RFC2131]
Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, DOI 10.17487/RFC2131, March 1997, <https://www.rfc-editor.org/info/rfc2131>.
[RFC2460]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, December 1998, <https://www.rfc-editor.org/info/rfc2460>.
[RFC2529]
Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4 Domains without Explicit Tunnels", RFC 2529, DOI 10.17487/RFC2529, March 1999, <https://www.rfc-editor.org/info/rfc2529>.
[RFC2740]
Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6", RFC 2740, DOI 10.17487/RFC2740, December 1999, <https://www.rfc-editor.org/info/rfc2740>.
[RFC2784]
Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, DOI 10.17487/RFC2784, March 2000, <https://www.rfc-editor.org/info/rfc2784>.
[RFC2827]
Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827, May 2000, <https://www.rfc-editor.org/info/rfc2827>.
[RFC2866]
Rigney, C., "RADIUS Accounting", RFC 2866, DOI 10.17487/RFC2866, June 2000, <https://www.rfc-editor.org/info/rfc2866>.
[RFC2993]
Hain, T., "Architectural Implications of NAT", RFC 2993, DOI 10.17487/RFC2993, November 2000, <https://www.rfc-editor.org/info/rfc2993>.
[RFC3056]
Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4 Clouds", RFC 3056, DOI 10.17487/RFC3056, February 2001, <https://www.rfc-editor.org/info/rfc3056>.
[RFC3068]
Huitema, C., "An Anycast Prefix for 6to4 Relay Routers", RFC 3068, DOI 10.17487/RFC3068, June 2001, <https://www.rfc-editor.org/info/rfc3068>.
[RFC3315]
Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July 2003, <https://www.rfc-editor.org/info/rfc3315>.
[RFC3627]
Savola, P., "Use of /127 Prefix Length Between Routers Considered Harmful", RFC 3627, DOI 10.17487/RFC3627, September 2003, <https://www.rfc-editor.org/info/rfc3627>.
[RFC3756]
Nikander, P., Ed., Kempf, J., and E. Nordmark, "IPv6 Neighbor Discovery (ND) Trust Models and Threats", RFC 3756, DOI 10.17487/RFC3756, May 2004, <https://www.rfc-editor.org/info/rfc3756>.
[RFC3924]
Baker, F., Foster, B., and C. Sharp, "Cisco Architecture for Lawful Intercept in IP Networks", RFC 3924, DOI 10.17487/RFC3924, October 2004, <https://www.rfc-editor.org/info/rfc3924>.
[RFC3964]
Savola, P. and C. Patel, "Security Considerations for 6to4", RFC 3964, DOI 10.17487/RFC3964, December 2004, <https://www.rfc-editor.org/info/rfc3964>.
[RFC3971]
Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander, "SEcure Neighbor Discovery (SEND)", RFC 3971, DOI 10.17487/RFC3971, March 2005, <https://www.rfc-editor.org/info/rfc3971>.
[RFC3972]
Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, DOI 10.17487/RFC3972, March 2005, <https://www.rfc-editor.org/info/rfc3972>.
[RFC4193]
Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005, <https://www.rfc-editor.org/info/rfc4193>.
[RFC4293]
Routhier, S., Ed., "Management Information Base for the Internet Protocol (IP)", RFC 4293, DOI 10.17487/RFC4293, April 2006, <https://www.rfc-editor.org/info/rfc4293>.
[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, December 2005, <https://www.rfc-editor.org/info/rfc4301>.
[RFC4302]
Kent, S., "IP Authentication Header", RFC 4302, DOI 10.17487/RFC4302, December 2005, <https://www.rfc-editor.org/info/rfc4302>.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005, <https://www.rfc-editor.org/info/rfc4303>.
[RFC4364]
Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February 2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4380]
Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)", RFC 4380, DOI 10.17487/RFC4380, February 2006, <https://www.rfc-editor.org/info/rfc4380>.
[RFC4381]
Behringer, M., "Analysis of the Security of BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4381, DOI 10.17487/RFC4381, February 2006, <https://www.rfc-editor.org/info/rfc4381>.
[RFC4443]
Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", STD 89, RFC 4443, DOI 10.17487/RFC4443, March 2006, <https://www.rfc-editor.org/info/rfc4443>.
[RFC4552]
Gupta, M. and N. Melam, "Authentication/Confidentiality for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006, <https://www.rfc-editor.org/info/rfc4552>.
[RFC4649]
Volz, B., "Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Remote-ID Option", RFC 4649, DOI 10.17487/RFC4649, August 2006, <https://www.rfc-editor.org/info/rfc4649>.
[RFC4659]
De Clercq, J., Ooms, D., Carugi, M., and F. Le Faucheur, "BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN", RFC 4659, DOI 10.17487/RFC4659, September 2006, <https://www.rfc-editor.org/info/rfc4659>.
[RFC4798]
De Clercq, J., Ooms, D., Prevost, S., and F. Le Faucheur, "Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)", RFC 4798, DOI 10.17487/RFC4798, February 2007, <https://www.rfc-editor.org/info/rfc4798>.
[RFC4861]
Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, DOI 10.17487/RFC4861, September 2007, <https://www.rfc-editor.org/info/rfc4861>.
[RFC4864]
Van de Velde, G., Hain, T., Droms, R., Carpenter, B., and E. Klein, "Local Network Protection for IPv6", RFC 4864, DOI 10.17487/RFC4864, May 2007, <https://www.rfc-editor.org/info/rfc4864>.
[RFC4890]
Davies, E. and J. Mohacsi, "Recommendations for Filtering ICMPv6 Messages in Firewalls", RFC 4890, DOI 10.17487/RFC4890, May 2007, <https://www.rfc-editor.org/info/rfc4890>.
[RFC4941]
Narten, T., Draves, R., and S. Krishnan, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007, <https://www.rfc-editor.org/info/rfc4941>.
[RFC4942]
Davies, E., Krishnan, S., and P. Savola, "IPv6 Transition/ Co-existence Security Considerations", RFC 4942, DOI 10.17487/RFC4942, September 2007, <https://www.rfc-editor.org/info/rfc4942>.
[RFC5157]
Chown, T., "IPv6 Implications for Network Scanning", RFC 5157, DOI 10.17487/RFC5157, March 2008, <https://www.rfc-editor.org/info/rfc5157>.
[RFC5214]
Templin, F., Gleeson, T., and D. Thaler, "Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214, DOI 10.17487/RFC5214, March 2008, <https://www.rfc-editor.org/info/rfc5214>.
[RFC5340]
Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008, <https://www.rfc-editor.org/info/rfc5340>.
[RFC5635]
Kumari, W. and D. McPherson, "Remote Triggered Black Hole Filtering with Unicast Reverse Path Forwarding (uRPF)", RFC 5635, DOI 10.17487/RFC5635, August 2009, <https://www.rfc-editor.org/info/rfc5635>.
[RFC5952]
Kawamura, S. and M. Kawashima, "A Recommendation for IPv6 Address Text Representation", RFC 5952, DOI 10.17487/RFC5952, August 2010, <https://www.rfc-editor.org/info/rfc5952>.
[RFC5969]
Townsley, W. and O. Troan, "IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) -- Protocol Specification", RFC 5969, DOI 10.17487/RFC5969, August 2010, <https://www.rfc-editor.org/info/rfc5969>.
[RFC6092]
Woodyatt, J., Ed., "Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6 Internet Service", RFC 6092, DOI 10.17487/RFC6092, January 2011, <https://www.rfc-editor.org/info/rfc6092>.
[RFC6104]
Chown, T. and S. Venaas, "Rogue IPv6 Router Advertisement Problem Statement", RFC 6104, DOI 10.17487/RFC6104, February 2011, <https://www.rfc-editor.org/info/rfc6104>.
[RFC6105]
Levy-Abegnoli, E., Van de Velde, G., Popoviciu, C., and J. Mohacsi, "IPv6 Router Advertisement Guard", RFC 6105, DOI 10.17487/RFC6105, February 2011, <https://www.rfc-editor.org/info/rfc6105>.
[RFC6144]
Baker, F., Li, X., Bao, C., and K. Yin, "Framework for IPv4/IPv6 Translation", RFC 6144, DOI 10.17487/RFC6144, April 2011, <https://www.rfc-editor.org/info/rfc6144>.
[RFC6145]
Li, X., Bao, C., and F. Baker, "IP/ICMP Translation Algorithm", RFC 6145, DOI 10.17487/RFC6145, April 2011, <https://www.rfc-editor.org/info/rfc6145>.
[RFC6146]
Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146, April 2011, <https://www.rfc-editor.org/info/rfc6146>.
[RFC6147]
Bagnulo, M., Sullivan, A., Matthews, P., and I. van Beijnum, "DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers", RFC 6147, DOI 10.17487/RFC6147, April 2011, <https://www.rfc-editor.org/info/rfc6147>.
[RFC6164]
Kohno, M., Nitzan, B., Bush, R., Matsuzaki, Y., Colitti, L., and T. Narten, "Using 127-Bit IPv6 Prefixes on Inter- Router Links", RFC 6164, DOI 10.17487/RFC6164, April 2011, <https://www.rfc-editor.org/info/rfc6164>.
[RFC6169]
Krishnan, S., Thaler, D., and J. Hoagland, "Security Concerns with IP Tunneling", RFC 6169, DOI 10.17487/RFC6169, April 2011, <https://www.rfc-editor.org/info/rfc6169>.
[RFC6192]
Dugal, D., Pignataro, C., and R. Dunn, "Protecting the Router Control Plane", RFC 6192, DOI 10.17487/RFC6192, March 2011, <https://www.rfc-editor.org/info/rfc6192>.
[RFC6204]
Singh, H., Beebee, W., Donley, C., Stark, B., and O. Troan, Ed., "Basic Requirements for IPv6 Customer Edge Routers", RFC 6204, DOI 10.17487/RFC6204, April 2011, <https://www.rfc-editor.org/info/rfc6204>.
[RFC6221]
Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A. Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221, DOI 10.17487/RFC6221, May 2011, <https://www.rfc-editor.org/info/rfc6221>.
[RFC6241]
Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, <https://www.rfc-editor.org/info/rfc6241>.
[RFC6264]
Jiang, S., Guo, D., and B. Carpenter, "An Incremental Carrier-Grade NAT (CGN) for IPv6 Transition", RFC 6264, DOI 10.17487/RFC6264, June 2011, <https://www.rfc-editor.org/info/rfc6264>.
[RFC6269]
Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and P. Roberts, "Issues with IP Address Sharing", RFC 6269, DOI 10.17487/RFC6269, June 2011, <https://www.rfc-editor.org/info/rfc6269>.
[RFC6296]
Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix Translation", RFC 6296, DOI 10.17487/RFC6296, June 2011, <https://www.rfc-editor.org/info/rfc6296>.
[RFC6302]
Durand, A., Gashinsky, I., Lee, D., and S. Sheppard, "Logging Recommendations for Internet-Facing Servers", BCP 162, RFC 6302, DOI 10.17487/RFC6302, June 2011, <https://www.rfc-editor.org/info/rfc6302>.
[RFC6324]
Nakibly, G. and F. Templin, "Routing Loop Attack Using IPv6 Automatic Tunnels: Problem Statement and Proposed Mitigations", RFC 6324, DOI 10.17487/RFC6324, August 2011, <https://www.rfc-editor.org/info/rfc6324>.
[RFC6333]
Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual- Stack Lite Broadband Deployments Following IPv4 Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011, <https://www.rfc-editor.org/info/rfc6333>.
[RFC6343]
Carpenter, B., "Advisory Guidelines for 6to4 Deployment", RFC 6343, DOI 10.17487/RFC6343, August 2011, <https://www.rfc-editor.org/info/rfc6343>.
[RFC6434]
Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node Requirements", RFC 6434, DOI 10.17487/RFC6434, December 2011, <https://www.rfc-editor.org/info/rfc6434>.
[RFC6459]
Korhonen, J., Ed., Soininen, J., Patil, B., Savolainen, T., Bajko, G., and K. Iisakkila, "IPv6 in 3rd Generation Partnership Project (3GPP) Evolved Packet System (EPS)", RFC 6459, DOI 10.17487/RFC6459, January 2012, <https://www.rfc-editor.org/info/rfc6459>.
[RFC6506]
Bhatia, M., Manral, V., and A. Lindem, "Supporting Authentication Trailer for OSPFv3", RFC 6506, DOI 10.17487/RFC6506, February 2012, <https://www.rfc-editor.org/info/rfc6506>.
[RFC6547]
George, W., "RFC 3627 to Historic Status", RFC 6547, DOI 10.17487/RFC6547, February 2012, <https://www.rfc-editor.org/info/rfc6547>.
[RFC6564]
Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., and M. Bhatia, "A Uniform Format for IPv6 Extension Headers", RFC 6564, DOI 10.17487/RFC6564, April 2012, <https://www.rfc-editor.org/info/rfc6564>.
[RFC6583]
Gashinsky, I., Jaeggli, J., and W. Kumari, "Operational Neighbor Discovery Problems", RFC 6583, DOI 10.17487/RFC6583, March 2012, <https://www.rfc-editor.org/info/rfc6583>.
[RFC6598]
Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address Space", BCP 153, RFC 6598, DOI 10.17487/RFC6598, April 2012, <https://www.rfc-editor.org/info/rfc6598>.
[RFC6620]
Nordmark, E., Bagnulo, M., and E. Levy-Abegnoli, "FCFS SAVI: First-Come, First-Served Source Address Validation Improvement for Locally Assigned IPv6 Addresses", RFC 6620, DOI 10.17487/RFC6620, May 2012, <https://www.rfc-editor.org/info/rfc6620>.
[RFC6666]
Hilliard, N. and D. Freedman, "A Discard Prefix for IPv6", RFC 6666, DOI 10.17487/RFC6666, August 2012, <https://www.rfc-editor.org/info/rfc6666>.
[RFC6762]
Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, DOI 10.17487/RFC6762, February 2013, <https://www.rfc-editor.org/info/rfc6762>.
[RFC6763]
Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013, <https://www.rfc-editor.org/info/rfc6763>.
[RFC6810]
Bush, R. and R. Austein, "The Resource Public Key Infrastructure (RPKI) to Router Protocol", RFC 6810, DOI 10.17487/RFC6810, January 2013, <https://www.rfc-editor.org/info/rfc6810>.
[RFC6939]
Halwasia, G., Bhandari, S., and W. Dec, "Client Link-Layer Address Option in DHCPv6", RFC 6939, DOI 10.17487/RFC6939, May 2013, <https://www.rfc-editor.org/info/rfc6939>.
[RFC6964]
Templin, F., "Operational Guidance for IPv6 Deployment in IPv4 Sites Using the Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 6964, DOI 10.17487/RFC6964, May 2013, <https://www.rfc-editor.org/info/rfc6964>.
[RFC6980]
Gont, F., "Security Implications of IPv6 Fragmentation with IPv6 Neighbor Discovery", RFC 6980, DOI 10.17487/RFC6980, August 2013, <https://www.rfc-editor.org/info/rfc6980>.
[RFC7011]
Claise, B., Ed., Trammell, B., Ed., and P. Aitken, "Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information", STD 77, RFC 7011, DOI 10.17487/RFC7011, September 2013, <https://www.rfc-editor.org/info/rfc7011>.
[RFC7012]
Claise, B., Ed. and B. Trammell, Ed., "Information Model for IP Flow Information Export (IPFIX)", RFC 7012, DOI 10.17487/RFC7012, September 2013, <https://www.rfc-editor.org/info/rfc7012>.
[RFC7039]
Wu, J., Bi, J., Bagnulo, M., Baker, F., and C. Vogt, Ed., "Source Address Validation Improvement (SAVI) Framework", RFC 7039, DOI 10.17487/RFC7039, October 2013, <https://www.rfc-editor.org/info/rfc7039>.
[RFC7045]
Carpenter, B. and S. Jiang, "Transmission and Processing of IPv6 Extension Headers", RFC 7045, DOI 10.17487/RFC7045, December 2013, <https://www.rfc-editor.org/info/rfc7045>.
[RFC7050]
Savolainen, T., Korhonen, J., and D. Wing, "Discovery of the IPv6 Prefix Used for IPv6 Address Synthesis", RFC 7050, DOI 10.17487/RFC7050, November 2013, <https://www.rfc-editor.org/info/rfc7050>.
[RFC7084]
Singh, H., Beebee, W., Donley, C., and B. Stark, "Basic Requirements for IPv6 Customer Edge Routers", RFC 7084, DOI 10.17487/RFC7084, November 2013, <https://www.rfc-editor.org/info/rfc7084>.
[RFC7112]
Gont, F., Manral, V., and R. Bonica, "Implications of Oversized IPv6 Header Chains", RFC 7112, DOI 10.17487/RFC7112, January 2014, <https://www.rfc-editor.org/info/rfc7112>.
[RFC7113]
Gont, F., "Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard)", RFC 7113, DOI 10.17487/RFC7113, February 2014, <https://www.rfc-editor.org/info/rfc7113>.
[RFC7166]
Bhatia, M., Manral, V., and A. Lindem, "Supporting Authentication Trailer for OSPFv3", RFC 7166, DOI 10.17487/RFC7166, March 2014, <https://www.rfc-editor.org/info/rfc7166>.
[RFC7381]
Chittimaneni, K., Chown, T., Howard, L., Kuarsingh, V., Pouffary, Y., and E. Vyncke, "Enterprise IPv6 Deployment Guidelines", RFC 7381, DOI 10.17487/RFC7381, October 2014, <https://www.rfc-editor.org/info/rfc7381>.
[RFC7404]
Behringer, M. and E. Vyncke, "Using Only Link-Local Addressing inside an IPv6 Network", RFC 7404, DOI 10.17487/RFC7404, November 2014, <https://www.rfc-editor.org/info/rfc7404>.
[RFC7422]
Donley, C., Grundemann, C., Sarawat, V., Sundaresan, K., and O. Vautrin, "Deterministic Address Mapping to Reduce Logging in Carrier-Grade NAT Deployments", RFC 7422, DOI 10.17487/RFC7422, December 2014, <https://www.rfc-editor.org/info/rfc7422>.
[RFC7454]
Durand, J., Pepelnjak, I., and G. Doering, "BGP Operations and Security", BCP 194, RFC 7454, DOI 10.17487/RFC7454, February 2015, <https://www.rfc-editor.org/info/rfc7454>.
[RFC7513]
Bi, J., Wu, J., Yao, G., and F. Baker, "Source Address Validation Improvement (SAVI) Solution for DHCP", RFC 7513, DOI 10.17487/RFC7513, May 2015, <https://www.rfc-editor.org/info/rfc7513>.
[RFC7526]
Troan, O. and B. Carpenter, Ed., "Deprecating the Anycast Prefix for 6to4 Relay Routers", BCP 196, RFC 7526, DOI 10.17487/RFC7526, May 2015, <https://www.rfc-editor.org/info/rfc7526>.
[RFC7597]
Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S., Murakami, T., and T. Taylor, Ed., "Mapping of Address and Port with Encapsulation (MAP-E)", RFC 7597, DOI 10.17487/RFC7597, July 2015, <https://www.rfc-editor.org/info/rfc7597>.
[RFC7599]
Li, X., Bao, C., Dec, W., Ed., Troan, O., Matsushima, S., and T. Murakami, "Mapping of Address and Port using Translation (MAP-T)", RFC 7599, DOI 10.17487/RFC7599, July 2015, <https://www.rfc-editor.org/info/rfc7599>.
[RFC7610]
Gont, F., Liu, W., and G. Van de Velde, "DHCPv6-Shield: Protecting against Rogue DHCPv6 Servers", BCP 199, RFC 7610, DOI 10.17487/RFC7610, August 2015, <https://www.rfc-editor.org/info/rfc7610>.
[RFC7707]
Gont, F. and T. Chown, "Network Reconnaissance in IPv6 Networks", RFC 7707, DOI 10.17487/RFC7707, March 2016, <https://www.rfc-editor.org/info/rfc7707>.
[RFC7721]
Cooper, A., Gont, F., and D. Thaler, "Security and Privacy Considerations for IPv6 Address Generation Mechanisms", RFC 7721, DOI 10.17487/RFC7721, March 2016, <https://www.rfc-editor.org/info/rfc7721>.
[RFC7872]
Gont, F., Linkova, J., Chown, T., and W. Liu, "Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World", RFC 7872, DOI 10.17487/RFC7872, June 2016, <https://www.rfc-editor.org/info/rfc7872>.
[RFC7915]
Bao, C., Li, X., Baker, F., Anderson, T., and F. Gont, "IP/ICMP Translation Algorithm", RFC 7915, DOI 10.17487/RFC7915, June 2016, <https://www.rfc-editor.org/info/rfc7915>.
[RFC7934]
Colitti, L., Cerf, V., Cheshire, S., and D. Schinazi, "Host Address Availability Recommendations", BCP 204, RFC 7934, DOI 10.17487/RFC7934, July 2016, <https://www.rfc-editor.org/info/rfc7934>.
[RFC8064]
Gont, F., Cooper, A., Thaler, D., and W. Liu, "Recommendation on Stable IPv6 Interface Identifiers", RFC 8064, DOI 10.17487/RFC8064, February 2017, <https://www.rfc-editor.org/info/rfc8064>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8190]
Bonica, R., Cotton, M., Haberman, B., and L. Vegoda, "Updates to the Special-Purpose IP Address Registries", BCP 153, RFC 8190, DOI 10.17487/RFC8190, June 2017, <https://www.rfc-editor.org/info/rfc8190>.
[RFC8273]
Brzozowski, J. and G. Van de Velde, "Unique IPv6 Prefix per Host", RFC 8273, DOI 10.17487/RFC8273, December 2017, <https://www.rfc-editor.org/info/rfc8273>.
[RFC8415]
Mrugalski, T., Siodelski, M., Volz, B., Yourtchenko, A., Richardson, M., Jiang, S., Lemon, T., and T. Winters, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 8415, DOI 10.17487/RFC8415, November 2018, <https://www.rfc-editor.org/info/rfc8415>.
[RFC8504]
Chown, T., Loughney, J., and T. Winters, "IPv6 Node Requirements", BCP 220, RFC 8504, DOI 10.17487/RFC8504, January 2019, <https://www.rfc-editor.org/info/rfc8504>.
[SCANNING]
"Mapping the Great Void - Smarter scanning for IPv6", <http://www.caida.org/workshops/isma/1202/slides/ aims1202_rbarnes.pdf>.
Authors' Addresses
Email: kk.chittimaneni@gmail.com
4778 - Current Operational Security Practices in Internet Service Provider Envir
Network Working Group
Request for Comments: 4778
Category: Informational
M. Kaeo
Double Shot Security, Inc.
January 2007
This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.
Copyright (C) The IETF Trust (2007).
This document is a survey of the current practices used in today's large ISP operational networks to secure layer 2 and layer 3 infrastructure devices. The information listed here is the result of information gathered from people directly responsible for defining and implementing secure infrastructures in Internet Service Provider environments.
Security practices are well understood by the network operators who have, for many years, gone through the growing pains of securing their network infrastructures. However, there does not exist a written document that enumerates these security practices. Network attacks are continually increasing and although it is not necessarily the role of an ISP to act as the Internet police, each ISP has to ensure that certain security practices are followed to ensure that their network is operationally available for their customers. This document is the result of a survey conducted to find out what current security practices are being deployed to secure network infrastructures.
The scope for this survey is restricted to security practices that mitigate exposure to risks with the potential to adversely impact network availability and reliability. Securing the actual data traffic is outside the scope of the conducted survey. This document focuses solely on documenting currently deployed security mechanisms for layer 2 and layer 3 network infrastructure devices. Although primarily focused on IPv4, many of the same practices can (and should) apply to IPv6 networks. Both IPv4 and IPv6 network infrastructures are taken into account in this survey.
A threat is a potential for a security violation, which exists when there is a circumstance, capability, action, or event that could breach security and cause harm [RFC2828]. Every operational network is subject to a multitude of threat actions, or attacks, i.e., an assault on system security that derives from an intelligent act that is a deliberate attempt to evade security services, and violate the security policy of a system [RFC2828]. Many of the threats to a network infrastructure occur from an instantiation (or combination) of the following:
Reconnaissance: An attack whereby information is gathered to ascertain the network topology or specific device information, which can be further used to exploit known vulnerabilities
Man-In-The-Middle: An attack where a malicious user impersonates either the sender or recipient of a communication stream while inserting, modifying, or dropping certain traffic. This type of attack also covers phishing and session hijacks.
Protocol Vulnerability Exploitation: An attack that takes advantage of known protocol vulnerabilities due to design or implementation flaws to cause inappropriate behavior.
Message Insertion: This can be a valid message (it could be a reply attack, which is a scenario where a message is captured and resent at a later time). A message can also be inserted with any of the fields in the message being spoofed, such as IP addresses, port numbers, header fields, or even packet content. Flooding is also part of this threat instantiation.
Message Diversion/Deletion: An attack where legitimate messages are removed before they can reach the desired recipient, or are re-directed to a network segment that is normally not part of the data path.
Message Modification: This is a subset of a message insertion attack where a previous message has been captured and modified before being retransmitted. The message can be captured using a man-in-the-middle attack or message diversion.
Note that sometimes denial-of-service attacks are listed as separate categories. A denial-of-service is a consequence of an attack and can be the result of too much traffic (i.e., flooding), exploiting protocol exploitation, or inserting/deleting/diverting/modifying messages.
These attacks can be sourced in a variety of ways:
Active vs Passive Attacks
An active attack involves writing data to the network. It is common practice in active attacks to disguise one's address and conceal the identity of the traffic sender. A passive attack involves only reading information off the network. This is possible if the attacker has control of a host in the communications path between two victim machines, or has compromised the routing infrastructure to specifically arrange that traffic pass through a compromised machine. There are also situations where mirrored traffic (often used for debugging, performance monitoring, or accounting purposes) is diverted to a compromised machine, which would not necessarily subvert any existing topology, and could be harder to detect. In general, the goal of a passive attack is to obtain information that the sender and receiver would prefer to remain private [RFC3552].
On-path vs Off-path Attacks
In order for a datagram to be transmitted from one host to another, it generally must traverse some set of intermediate links and routers. Such routers are naturally able to read, modify, or remove any datagram transmitted along that path. This makes it much easier to mount a wide variety of attacks if you are on-path. Off-path hosts can transmit arbitrary datagrams that appear to come from any host but cannot necessarily receive datagrams intended for other hosts. Thus, if an attack depends on being able to receive data, off-path hosts must first subvert the topology in order to place themselves on-path. This is by no means impossible, but is not necessarily trivial [RFC3552]. A more subtle attack is one where the traffic-mirroring capability of a device is hijacked and the traffic is diverted to a compromised host since the network topology may not need to be subverted.
Insider vs Outsider Attacks
An "insider attack" is initiated from inside a given security perimeter by an entity that is authorized to access system resources, but uses them in a way not approved by those who granted the authorization. An "outside attack" is initiated from outside the perimeter by an unauthorized or illegitimate user of the system.
Deliberate Attacks vs Unintentional Events
A deliberate attack is where a miscreant intentionally performs an assault on system security. However, there are also instances where unintentional events cause the same harm, yet are performed without malicious intent. Configuration errors and software bugs can be as devastating to network availability as any deliberate attack on the network infrastructure.
The attack source can be a combination of any of the above, all of which need to be considered when trying to ascertain the impact any attack can have on the availability and reliability of the network. It is nearly impossible to stop insider attacks or unintentional events. However, if appropriate monitoring mechanisms are in place, these attacks can also be detected and mitigated as with any other attack source. The amount of effort it takes to identify and trace an attack is, of course, dependent on the resourcefulness of the attacker. Any of the specific attacks discussed further in this document will elaborate on malicious behavior, which are sourced by an "outsider" and are deliberate attacks. Some further elaboration will be given to the feasibility of passive vs active and on-path vs off-path attacks to show the motivation behind deploying certain security features.
The main concern for any of the potential attack scenarios is the impact and harm it can cause to the network infrastructure. The threat consequences are the security violations that results from a threat action, i.e., an attack. These are typically classified as follows:
(Unauthorized) Disclosure
A circumstance or event whereby an entity gains access to data for which the entity is not authorized.
Deception
A circumstance or event that may result in an authorized entity receiving false data and believing it to be true.
Disruption
A circumstance or event that interrupts or prevents the correct operation of system services and functions. A broad variety of attacks, collectively called denial of service attacks, threaten the availability of systems and bandwidth to legitimate users. Many such attacks are designed to consume machine resources, making it difficult or impossible to serve legitimate users. Other attacks cause the target machine to crash, completely denying service to users.
Usurpation
A circumstance or event that results in control of system services or functions by an unauthorized entity. Most network infrastructure systems are only intended to be completely accessible to certain authorized individuals. Should an unauthorized person gain access to critical layer 2/layer 3 infrastructure devices or services, they could cause great harm to the reliability and availability of the network.
A complete description of threat actions that can cause these threat consequences can be found in [RFC2828]. Typically, a number of different network attacks are used in combination to cause one or more of the above-mentioned threat consequences. An example would be a malicious user who has the capability to eavesdrop on traffic. First, he may listen in on traffic for a while, doing reconnaissance work and ascertaining which IP addresses belong to specific devices, such as routers. Were this miscreant to obtain information, such as a router password sent in cleartext, he can then proceed to compromise the actual router. From there, the miscreant can launch various active attacks, such as sending bogus routing updates to redirect traffic or capture additional traffic to compromise other network devices. While this document enumerates which countermeasures ISPs are deploying today, a useful generic analysis of actual backbone infrastructure attacks and the appropriate countermeasures can be found in [RTGWG].
This document is a survey of current operational practices that mitigate the risk of being susceptible to any threat actions. As such, the main focus is on the currently deployed security practices used to detect and/or mitigate attacks. The top-level categories in this document are based on operational functions for ISPs and generally relate to what is to be protected. This is followed by a description of which attacks are possible and the security practices currently deployed. This will provide the necessary security services to help mitigate these attacks. These security services are classified as follows:
o User Authentication
o User Authorization
o Data Origin Authentication
o Access Control
o Data Integrity
o Data Confidentiality
o Auditing/Logging
o DoS Mitigation
In many instances, a specific protocol currently deployed will offer a combination of these services. For example, Authentication, Authorization, and Accounting (AAA) can offer user authentication, user authorization, and audit/logging services, while the Secure SHell (SSH) Protocol can provide data origin authentication, data integrity, and data confidentiality. The services offered are more important than the actual protocol used. Note that access control will refer basically to logical access control, i.e., filtering. Each section ends with an additional considerations section that explains why specific protocols may or may not be used, and also gives some information regarding capabilities, which are not possible today due to bugs or lack of usability.
Device physical access pertains to protecting the physical location and access of the layer 2 or layer 3 network infrastructure device. Physical security is a large field of study/practice in and of itself, arguably the largest, oldest, and most well-understood area of security. Although it is important to have contingency plans for natural disasters, such as earthquakes and floods, which can cause damage to networking devices, this is out of the scope of this document. Here, we concern ourselves with protecting access to the physical location and how a device can be further protected from unauthorized access if the physical location has been compromised, i.e., protecting the console access. This is aimed largely at stopping an intruder with physical access from gaining operational control of the device(s). Note that nothing will stop an attacker with physical access from effecting a denial-of-service attack, which can be easily accomplished by powering off the device or just unplugging some cables.
If any intruder gets physical access to a layer 2 or layer 3 device, the entire network infrastructure can be under the control of the intruder. At a minimum, the intruder can take the compromised device out of service, causing network disruption, the extent of which depends on the network topology. A worse scenario is where the intruder uses this device to crack the console password, gaining complete control of the device (perhaps without anyone detecting such a compromise, or to attach another network device onto a port and siphon off data with which the intruder can ascertain the network topology) and the entire network.
The threat of gaining physical access can be realized in a variety of ways, even if critical devices are under high security. Cases still occur where attackers have impersonated maintenance workers to gain physical access to critical devices that have caused major outages and privacy compromises. Insider attacks from authorized personnel also pose a real threat and must be adequately recognized and addressed.
For physical device security, equipment is kept in highly restrictive environments. Only authorized users with card-key badges have access to any of the physical locations that contain critical network infrastructure devices. These card-key systems keep track of who accessed which location and at what time. Most cardkey systems have a fail-back "master key" in case the card system is down. This "master key" usually has limited access and its use is also carefully logged (which should only happen if the card-key system is NOT online/functional).
All console access is always password protected and the login time is set to time out after a specified amount of inactivity - typically between 3-10 minutes. The type of privileges that you obtain from a console login varies between separate vendor devices. In some cases you get initial basic access and need to perform a second authentication step to get more privileged access (i.e., enable or root). In other vendors, you get the more privileged access when you log into the console as root, without requiring a second authentication step.
How ISPs manage these logins vary greatly, although many of the larger ISPs employ some sort of AAA mechanism to help automate privilege-level authorization and utilize the automation to bypass the need for a second authentication step. Also, many ISPs define separate classes of users to have different privileges while logged onto the console. Typically, all console access is provided via an out-of-band (OOB) management infrastructure, which is discussed in Section 2.2 of this document.
The following security services are offered through the use of the practices described in the previous section:
o User Authentication - All individuals who have access to the physical facility are authenticated. Console access is authenticated.
o User Authorization - An authenticated individual has implicit authorization to perform commands on the device. In some cases, multiple authentication is required to differentiate between basic and more privileged access.
o Data Origin Authentication - Not applicable.
o Access Control - Not applicable.
o Data Integrity - Not applicable.
o Data Confidentiality - Not applicable.
o Auditing/Logging - All access to the physical locations of the infrastructure equipment is logged via electronic card-key systems. All console access is logged (refer to Section 2.2 of this document for more details).
o DoS Mitigation - Not applicable.
Physical security is relevant to operational security practices as described in this document, mostly from a console-access perspective. Most ISPs provide console access via an OOB management infrastructure, which is discussed in Section 2.2 of this document.
The physical and logical authentication and logging systems should be run independently of each other and should reside in different physical locations. These systems need to be secured to ensure that they themselves will not be compromised, which could give the intruder valuable authentication and logging information.
Social engineering plays a big role in many physical access compromises. Most ISPs have set up training classes and awareness programs to educate company personnel to deny physical access to people who are not properly authenticated or authorized to have physical access to critical infrastructure devices.
In-band management is generally considered to be device access, where the control traffic takes the same data path as the data that traverses the network. Out-of-band management is generally considered to be device access, where the control traffic takes a separate path as the data that traverses the network. In many environments, device management for layer 2 and layer 3 infrastructure devices is deployed as part of an out-of-band management infrastructure, although there are some instances where it is deployed in-band as well. Note that while many of the security concerns and practices are the same for OOB management and in-band management, most ISPs prefer an OOB management system, since access to the devices that make up this management network are more vigilantly protected and considered to be less susceptible to malicious activity.
Console access is always architected via an OOB network. Presently, the mechanisms used for either in-band management or OOB are via virtual terminal access (i.e., Telnet or SSH), Simple Network Management Protocol (SNMP), or HTTP. In all large ISPs that were interviewed, HTTP management was never used and was explicitly disabled. Note that file transfer protocols (TFTP, FTP, and SCP) will be covered in Section 2.5 of this document.
For device management, passive attacks are possible if someone has the capability to intercept data between the management device and the managed device. The threat is possible if a single infrastructure device is somehow compromised and can act as a network sniffer, or if it is possible to insert a new device that acts as a network sniffer.
Active attacks are possible for both on-path and off-path scenarios. For on-path active attacks, the situation is the same as for a passive attack, where either a device has to already be compromised or a device can be inserted into the path. For off-path active attacks, where a topology subversion is required to reroute traffic and essentially bring the attacker on-path, the attack is generally limited to message insertion or modification.
Confidentiality violations can occur when a miscreant intercepts any management data that has been sent in cleartext or with weak encryption. This includes interception of usernames and passwords with which an intruder can obtain unauthorized access to network devices. It can also include other information, such as logging or configuration information, if an administrator is remotely viewing local logfiles or configuration information.
If username/password information was encrypted but the cryptographic mechanism used made it easy to capture data and break the encryption key, the device management traffic could be compromised. The traffic would need to be captured either by eavesdropping on the network or by being able to divert traffic to a malicious user.
For a replay attack to be successful, the management traffic would need to first be captured either on-path or diverted to an attacker to later be replayed to the intended recipient.
Data can be manipulated by someone in control of intermediary hosts. Forging data is also possible with IP spoofing, where a remote host sends out packets that appear to come from another, trusted host.
A man-in-the-middle attack attacks the identity of a communicating peer rather than the data stream itself. The attacker intercepts traffic that is sent from a management system to the networking infrastructure device and traffic that is sent from the network infrastructure device to the management system.
OOB management is done via a terminal server at each location. SSH access is used to get to the terminal server from where sessions to the devices are initiated. Dial-in access is deployed as a backup if the network is not available. However, it is common to use dial- back, encrypting modems, and/or one-time-password (OTP) modems to avoid the security weaknesses of plain dial-in access.
All in-band management and OOB management access to layer 2 and layer 3 devices is authenticated. The user authentication and authorization is typically controlled by an AAA server (i.e., Remote Authentication Dial-in User Service (RADIUS) and/or Terminal Access Controller Access-Control System (TACACS+)). Credentials used to determine the identity of the user vary from static username/password to one-time username/password schemes such as Secure-ID. Static username/passwords are expired after a specified period of time, usually 30 days. Every authenticated entity via AAA is an individual user for greater granularity of control. Note that often the AAA server used for OOB management authentication is a separate physical device from the AAA server used for in-band management user authentication. In some deployments, the AAA servers used for device management authentication/authorization/accounting are on separate networks to provide a demarcation for any other authentication functions.
For backup purposes, there is often a single local database entry for authentication that is known to a very limited set of key personnel. It is usually the highest privilege-level username/password combination, which in most cases is the same across all devices. This local device password is routinely regenerated once every 2-3 months, and is also regenerated immediately after an employee who had access to that password leaves the company or is no longer authorized to have knowledge of that password.
Each individual user in the AAA database is configured with specific authorization capability. Specific commands are either individually denied or permitted, depending on the capability of the device to be accessed. Multiple privilege levels are deployed. Most individuals are authorized with basic authorization to perform a minimal set of commands, while a subset of individuals are authorized to perform more privileged commands. Securing the AAA server is imperative and access to the AAA server itself is strictly controlled. When an individual leaves the company, his/her AAA account is immediately deleted and the TACACS/RADIUS shared secret is reset for all devices.
Some management functions are performed using command line interface (CLI) scripting. In these scenarios, a dedicated user is used for the identity in scripts that perform CLI scripting. Once authenticated, these scripts control which commands are legitimate, depending on authorization rights of the authenticated individual.
SSH is always used for virtual terminal access to provide for an encrypted communication channel. There are exceptions due to equipment limitations which are described in the additional considerations section.
If SNMP is used for management, it is for read queries only and restricted to specific hosts. If possible, the view is also restricted to only send the information that the management station needs, rather than expose the entire configuration file with the read-only SNMP community. The community strings are carefully chosen to be difficult to crack and there are procedures in place to change these community strings between 30-90 days. If systems support two SNMP community strings, the old string is replaced by first configuring a second, newer community string and then migrating over from the currently used string to the newer one. Most large ISPs have multiple SNMP systems accessing their routers so it takes more then one maintenance period to get all the strings fixed in all the right systems. SNMP RW is not used and is disabled by configuration.
Access control is strictly enforced for infrastructure devices by using stringent filtering rules. A limited set of IP addresses are allowed to initiate connections to the infrastructure devices and are specific to the services to which they are to limited (i.e., SSH and SNMP).
All device management access is audited and any violations trigger alarms that initiate automated email, pager, and/or telephone notifications. AAA servers keep track of the authenticated entity as well as all the commands that were carried out on a specific device. Additionally, the device itself logs any access control violations (i.e., if an SSH request comes in from an IP address that is not explicitly permitted, that event is logged so that the offending IP address can be tracked down and investigations made as to why it was trying to access a particular infrastructure device)
The security services offered for device OOB management are nearly identical to those of device in-band management. Due to the critical nature of controlling and limiting device access, many ISPs feel that physically separating the management traffic from the normal customer data traffic will provide an added level of risk mitigation and limit the potential attack vectors. The following security services are offered through the use of the practices described in the previous section:
o User Authentication - All individuals are authenticated via AAA services.
o User Authorization - All individuals are authorized via AAA services to perform specific operations once successfully authenticated.
o Data Origin Authentication - Management traffic is strictly filtered to allow only specific IP addresses to have access to the infrastructure devices. This does not alleviate risk the from spoofed traffic, although when combined with edge filtering using BCP38 [RFC2827] and BCP84 [RFC3704] guidelines (discussed in Section 2.5), then the risk of spoofing is mitigated, barring a compromised internal system. Also, using SSH for device access ensures that no one can spoof the traffic during the SSH session.
o Access Control - Management traffic is filtered to allow only specific IP addresses to have access to the infrastructure devices.
o Data Integrity - Using SSH provides data integrity and ensures that no one has altered the management data in transit.
o Data Confidentiality - Using SSH provides data confidentiality.
o Auditing/Logging - Using AAA provides an audit trail for who accessed which device and which operations were performed.
o DoS Mitigation - Using packet filters to allow only specific IP addresses to have access to the infrastructure devices. This limits but does not prevent spoofed DoS attacks directed at an infrastructure device. However, the risk is lowered by using a separate physical network for management purposes.
Password selection for any device management protocol used is critical to ensure that the passwords are hard to guess or break using a brute-force attack.
IP security (IPsec) is considered too difficult to deploy, and the common protocol to provide for confidential management access is SSH. There are exceptions for using SSH due to equipment limitations since SSH may not be supported on legacy equipment. In some cases, changing the host name of a device requires an SSH rekey event since the key is based on some combination of host name, Message Authentication Code (MAC) address, and time. Also, in the case where the SSH key is stored on a route processor card, a re-keying of SSH would be required whenever the route processor card needs to be swapped. Some providers feel that this operational impact exceeds the security necessary and instead use Telnet from trusted inside hosts (called 'jumphosts' or 'bastion hosts') to manage those devices. An individual would first SSH to the jumphost and then Telnet from the jumphost to the actual infrastructure device, fully understanding that any passwords will be sent in the clear between the jumphost and the device to which it is connecting. All authentication and authorization is still carried out using AAA servers.
In instances where Telnet access is used, the logs on the AAA servers are more verbose and more attention is paid to them to detect any abnormal behavior. The jumphosts themselves are carefully controlled machines and usually have limited access. Note that Telnet is NEVER allowed to an infrastructure device except from specific jumphosts; i.e., packet filters are used at the console server and/or infrastructure device to ensure that Telnet is only allowed from specific IP addresses.
With thousands of devices to manage, some ISPs have created automated mechanisms to authenticate to devices. As an example, Kerberos has been used to automate the authentication process for devices that have support for Kerberos. An individual would first log in to a Kerberized UNIX server using SSH and generate a Kerberos 'ticket'. This 'ticket' is generally set to have a lifespan of 10 hours and is used to automatically authenticate the individual to the infrastructure devices.
In instances where SNMP is used, some legacy devices only support SNMPv1, which then requires the provider to mandate its use across all infrastructure devices for operational simplicity. SNMPv2 is primarily deployed since it is easier to set up than v3.
This section refers to how traffic is handled that traverses the network infrastructure device. The primary goal of ISPs is to forward customer traffic. However, due to the large amount of malicious traffic that can cause DoS attacks and render the network unavailable, specific measures are sometimes deployed to ensure the availability to forward legitimate customer traffic.
Any data traffic can potentially be attack traffic and the challenge is to detect and potentially stop forwarding any of the malicious traffic. The deliberately sourced attack traffic can consist of packets with spoofed source and/or destination addresses or any other malformed packet that mangle any portion of a header field to cause protocol-related security issues (such as resetting connections, causing unwelcome ICMP redirects, creating unwelcome IP options, or packet fragmentations).
Filtering and rate limiting are the primary mechanism to provide risk mitigation of malicious traffic rendering the ISP services unavailable. However, filtering and rate limiting of data path traffic is deployed in a variety of ways, depending on how automated the process is and what the capabilities and performance limitations of the existing deployed hardware are.
The ISPs that do not have performance issues with their equipment follow BCP38 [RFC2827] and BCP84 [RFC3704] guidelines for ingress filtering. BCP38 recommends filtering ingress packets with obviously spoofed and/or 'reserved' source addresses to limit the effects of denial-of-service attacks, while BCP84 extends the recommendation for multi-homed environments. Filters are also used to help alleviate issues between service providers. Without any filtering, an inter-exchange peer could steal transit just by using static routes, and essentially redirect data traffic. Therefore, some ISPs have implemented ingress/egress filters that block unexpected source and destination addresses not defined in the above-mentioned documents. Null routes and black-hole triggered routing [RFC3882] are used to deter any detected malicious traffic streams. These two techniques are described in more detail in Section 2.8 below.
Most ISPs consider layer 4 filtering useful, but it is only implemented if performance limitations allow for it. Since it poses a large administrative overhead and ISPs are very much opposed to acting as the Internet firewall, Layer 4 filtering is typically implemented as a last option. Netflow is used for tracking traffic flows, but there is some concern whether sampling is good enough to detect malicious behavior.
Unicast Reverse Path Forwarding (RPF) is not consistently implemented. Some ISPs are in the process of doing so, while other ISPs think that the perceived benefit of knowing that spoofed traffic comes from legitimate addresses are not worth the operational complexity. Some providers have a policy of implementing uRPF at link speeds of Digital Signal 3 (DS3) and below, which was due to the fact that all hardware in the network supported uRPF for DS3 speeds and below. At higher-speed links, the uRPF support was inconsistent and it was easier for operational people to implement a consistent solution.
o User Authentication - Not applicable.
o User Authorization - Not applicable.
o Data Origin Authentication - When IP address filtering per BCP38, BCP84, and uRPF are deployed at network edges it can ensure that any spoofed traffic comes from at least a legitimate IP address and can be tracked.
o Access Control - IP address filtering and layer 4 filtering is used to deny forbidden protocols and limit traffic destined for infrastructure device itself. Filters are also used to block unexpected source/destination addresses.
o Data Integrity - Not applicable.
o Data Confidentiality - Not applicable.
o Auditing/Logging - Filtering exceptions are logged for potential attack traffic.
o DoS Mitigation - Black-hole triggered filtering and rate-limiting are used to limit the risk of DoS attacks.
For layer 2 devices, MAC address filtering and authentication is not used in large-scale deployments. This is due to the problems it can cause when troubleshooting networking issues. Port security becomes unmanageable at a large scale where thousands of switches are deployed.
Rate limiting is used by some ISPs, although other ISPs believe it is not really useful, since attackers are not well-behaved and it doesn't provide any operational benefit over the complexity. Some ISPs feel that rate limiting can also make an attacker's job easier by requiring the attacker to send less traffic to starve legitimate traffic that is part of a rate limiting scheme. Rate limiting may be improved by developing flow-based rate-limiting capabilities with filtering hooks. This would improve the performance as well as the granularity over current capabilities.
Lack of consistency regarding the ability to filter, especially with respect to performance issues, cause some ISPs not to implement BCP38 and BCP84 guidelines for ingress filtering. One such example is at edge boxes, where up to 1000 T1s connecting into a router with an OC-12 (Optical Carrier) uplink. Some deployed devices experience a large performance impact with filtering, which is unacceptable for passing customer traffic through, though ingress filtering (uRPF) might be applicable at the devices that are connecting these aggregation routers. Where performance is not an issue, the ISPs make a tradeoff between management versus risk.
The routing control plane deals with all the traffic that is part of establishing and maintaining routing protocol information.
Attacks on the routing control plane can be from both passive or active sources. Passive attacks are possible if someone has the capability to intercept data between the communicating routing peers. This can be accomplished if a single routing peer is somehow compromised and can act as a network sniffer, or if it is possible to insert a new device that acts as a network sniffer.
Active attacks are possible for both on-path and off-path scenarios. For on-path active attacks, the situation is the same as for a passive attack, where either a device has to already be compromised or a device can be inserted into the path. This may lead to an attacker impersonating a legitimate routing peer and exchanging routing information. Unintentional active attacks are more common due to configuration errors, which cause legitimate routing peers to feed invalid routing information to other neighboring peers.
For off-path active attacks, the attacks are generally limited to message insertion or modification, which can divert traffic to illegitimate destinations, causing traffic to never reach its intended destination.
Confidentiality violations can occur when a miscreant intercepts any of the routing update traffic. This is becoming more of a concern because many ISPs are classifying addressing schemes and network topologies as private and proprietary information. It is also a concern because the routing protocol packets contain information that may show ways in which routing sessions could be spoofed or hijacked. This in turn could lead into a man-in-the-middle attack, where the miscreants can insert themselves into the traffic path or divert the traffic path and violate the confidentiality of user data.
If any cryptographic mechanism was used to provide for data integrity and confidentiality, an offline cryptographic attack could potentially compromise the data. The traffic would need to be captured either by eavesdropping on the network or by being able to divert traffic to a malicious user. Note that by using cryptographically protected routing information, the latter would require the cryptographic key to already be compromised anyway, so this attack is only feasible if a device was able to eavesdrop and capture the cryptographically protected routing information.
For a replay attack to be successful, the routing control plane traffic would need to first be captured either on-path or diverted to an attacker to later be replayed to the intended recipient. Additionally, since many of these protocols include replay protection mechanisms, these would also need to be subverted, if applicable.
Routing control plane traffic can be manipulated by someone in control of intermediate hosts. In addition, traffic can be injected by forging IP addresses, where a remote router sends out packets that appear to come from another, trusted router. If enough traffic is injected to be processed by limited memory routers, it can cause a DoS attack.
A man-in-the-middle attack attacks the identity of a communicating peer rather than the data stream itself. The attacker intercepts traffic that is sent from one routing peer to the other and communicates on behalf of one of the peers. This can lead to a diversion of the user traffic to either an unauthorized receiving party or cause legitimate traffic to never reach its intended destination.
Securing the routing control plane takes many features, which are generally deployed as a system. Message Digest 5 (MD5) authentication is used by some ISPs to validate the sending peer and to ensure that the data in transit has not been altered. Some ISPs only deploy MD5 authentication at the customers' request. Additional sanity checks to ensure with reasonable certainty that the received routing update was originated by a valid routing peer include route filters and the Generalized TTL Security Mechanism (GTSM) feature [RFC3682] (sometimes also referred to as the TTL-Hack). The GTSM feature is used for protocols such as the Border Gateway Protocol (BGP), and makes use of a packet's Time To Live (TTL) field (IPv4) or Hop Limit (IPv6) to protect communicating peers. If GTSM is used, it is typically deployed only in limited scenarios between internal BGP peers due to lack of consistent support between vendor products and operating system versions.
Packet filters are used to limit which systems can appear as a valid peer, while route filters are used to limit which routes are believed to be from a valid peer. In the case of BGP routing, a variety of policies are deployed to limit the propagation of invalid routing information. These include: incoming and outgoing prefix filters for BGP customers, incoming and outgoing prefix filters for peers and upstream neighbors, incoming AS-PATH filter for BGP customers, outgoing AS-PATH filter towards peers and upstream neighbors, route dampening and rejecting selected attributes and communities. Consistency between these policies varies greatly and there is a definite distinction whether the other end is an end-site vs an internal peer vs another big ISP or customer. Mostly ISPs do prefix-filter their end-site customers, but due to the operational constraints of maintaining large prefix filter lists, many ISPs are starting to depend on BGP AS-PATH filters to/from their peers and upstream neighbors.
In cases where prefix lists are not used, operators often define a maximum prefix limit per peer to prevent misconfiguration (e.g., unintentional de-aggregation or neighbor routing policy mis-configuration) or overload attacks. ISPs need to coordinate with each other what the expected prefix exchange is, and increase this number by some sane amount. It is important for ISPs to pad the max-prefix number enough to allow for valid swings in routing announcements, preventing an unintentional shut down of the BGP session. Individual implementation amongst ISPs are unique, and depending on equipment supplier(s), different implementation options are available. Most equipment vendors offer implementation options ranging from just logging excessive prefixes being received, to automatically shutting down the session. If the option of reestablishing a session after some pre-configured idle timeout has been reached is available, it should be understood that automatically reestablishing the session may potentially introduce instability continuously into the overall routing table if a policy mis-configuration on the adjacent neighbor is causing the condition. If a serious mis-configuration on a peering neighbor has occurred, then automatically shutting down the session and leaving it shut down until being manually cleared, is sometimes best and allows for operator intervention to correct as needed.
Some large ISPs require that routes be registered in an Internet Routing Registry (IRR), which can then be part of the Routing Assets Database (RADb) - a public registry of routing information for networks in the Internet that can be used to generate filter lists. Some ISPs, especially in Europe, require registered routes before agreeing to become an eBGP peer with someone.
Many ISPs also do not propagate interface IP addresses to further reduce attack vectors on routers and connected customers.
o User Authentication - Not applicable.
o User Authorization - Not applicable.
o Data Origin Authentication - By using MD5 authentication and/or the TTL-hack, a routing peer can be reasonably certain that traffic originated from a valid peer.
o Access Control - Route filters, AS-PATH filters, and prefix limits are used to control access to specific parts of the network.
o Data Integrity - By using MD5 authentication, a peer can be reasonably certain that the data has not been modified in transit, but there is no mechanism to prove the validity of the routing information itself.
o Data Confidentiality - Not implemented.
o Auditing / Logging - Filter exceptions are logged.
o DoS Mitigation - Many DoS attacks are mitigated using a combination of techniques including: MD5 authentication, the GTSM feature, filtering routing advertisements to bogons, and filtering routing advertisements to one's own network.
So far the primary concern to secure the routing control plane has been to validate the sending peer and to ensure that the data in transit has not been altered. Although MD5 routing protocol extensions have been implemented, which can provide both services, they are not consistently deployed amongst ISPs. Two major deployment concerns have been implementation issues, where both software bugs and the lack of graceful re-keying options have caused significant network down times. Also, some ISPs express concern that deploying MD5 authentication will itself be a worse DoS attack victim and prefer to use a combination of other risk mitigation mechanisms such as GTSM (for BGP) and route filters. An issue with GTSM is that it is not supported on all devices across different vendors' products.
IPsec is not deployed since the operational management aspects of ensuring interoperability and reliable configurations is too complex and time consuming to be operationally viable. There is also limited concern to the confidentiality of the routing information. The integrity and validity of the updates are of much greater concern.
There is concern for manual or automated actions, which introduce new routes and can affect the entire routing domain.
Software upgrades and configuration changes are usually performed as part of either in-band or OOB management functions. However, there are additional considerations to be taken into account, which are enumerated in this section.
Attacks performed on system software and configurations can be both from passive or active sources. Passive attacks are possible if someone has the capability to intercept data between the network infrastructure device and the system which is downloading or uploading the software or configuration information. This can be accomplished if a single infrastructure device is somehow compromised and can act as a network sniffer, or if it is possible to insert a new device that acts as a network sniffer.
Active attacks are possible for both on-path and off-path scenarios. For on-path active attacks, the situation is the same as for a passive attack, where either a device has to already be compromised or a device can be inserted into the path. For off-path active attacks, the attacks are generally limited to message insertion or modification where the attacker may wish to load illegal software or configuration files to an infrastructure device.
Note that similar issues are relevant when software updates are downloaded from a vendor site to an ISPs network management system that is responsible for software updates and/or configuration information.
Confidentiality violations can occur when a miscreant intercepts any of the software image or configuration information. The software image may give an indication of exploits which the device is vulnerable to while the configuration information can inadvertently lead attackers to identify critical infrastructure IP addresses and passwords.
If any cryptographic mechanism was used to provide for data integrity and confidentiality, an offline cryptographic attack could potentially compromise the data. The traffic would need to be captured either by eavesdropping on the communication path or by being able to divert traffic to a malicious user.
For a replay attack to be successful, the software image or configuration file would need to first be captured either on-path or diverted to an attacker to later be replayed to the intended recipient. Additionally, since many protocols do have replay protection capabilities, these would have to be subverted as well in applicable situations.
Software images and configuration files can be manipulated by someone in control of intermediate hosts. By forging an IP address and impersonating a valid host which can download software images or configuration files, invalid files can be downloaded to an infrastructure device. This can also be the case from trusted vendors who may unbeknownst to them have compromised trusted hosts. An invalid software image or configuration file can cause a device to hang and become inoperable. Spoofed configuration files can be hard to detect, especially when the only added command is to allow a miscreant access to that device by entering a filter allowing a specific host access and configuring a local username/password database entry for authentication to that device.
A man-in-the-middle attack attacks the identity of a communicating peer rather than the data stream itself. The attacker intercepts traffic that is sent between the infrastructure device and the host used to upload/download the system image or configuration file. He/she can then act on behalf of one or both of these systems.
If an attacker obtained a copy of the software image being deployed, he could potentially exploit a known vulnerability and gain access to the system. From a captured configuration file, he could obtain confidential network topology information, or even more damaging information, if any of the passwords in the configuration file were not encrypted.
Images and configurations are stored on specific hosts that have limited access. All access and activity relating to these hosts are authenticated and logged via AAA services. When uploaded/downloading any system software or configuration files, either TFTP, FTP, or SCP can be used. Where possible, SCP is used to secure the data transfer and FTP is generally never used. All SCP access is username/password authenticated but since this requires an interactive shell, most ISPs will use shared key authentication to avoid the interactive shell. While TFTP access does not have any security measures, it is still widely used, especially in OOB management scenarios. Some ISPs implement IP-based restriction on the TFTP server, while some custom written TFTP servers will support MAC-based authentication. The MAC-based authentication is more common when using TFTP to bootstrap routers remotely.
In most environments, scripts are used for maintaining the images and configurations of a large number of routers. To ensure the integrity of the configurations, every hour the configuration files are polled and compared to the previously polled version to find discrepancies. In at least one environment these, tools are Kerberized to take advantage of automated authentication (not confidentiality). 'Rancid' is one popular publicly available tool for detecting configuration and system changes.
Filters are used to limit access to uploading/downloading configuration files and system images to specific IP addresses and protocols.
The software images perform Cyclic Redundancy Checks (CRC) and the system binaries use the MD5 algorithm to validate integrity. Many ISPs expressed interest in having software image integrity validation based on the MD5 algorithm for enhanced security.
In all configuration files, most passwords are stored in an encrypted format. Note that the encryption techniques used in varying products can vary and that some weaker encryption schemes may be subject to off-line dictionary attacks. This includes passwords for user authentication, MD5-authentication shared secrets, AAA server shared secrets, NTP shared secrets, etc. For older software that may not support this functionality, configuration files may contain some passwords in readable format. Most ISPs mitigate any risk of password compromise by either storing these configuration files without the password lines or by requiring authenticated and authorized access to the configuration files that are stored on protected OOB management devices.
Automated security validation is performed on infrastructure devices using Network Mapping (Nmap) and Nessus to ensure valid configuration against many of the well-known attacks.
o User Authentication - All users are authenticated before being able to download/upload any system images or configuration files.
o User Authorization - All authenticated users are granted specific privileges to download or upload system images and/or configuration files.
o Data Origin Authentication - Filters are used to limit access to uploading/downloading configuration files and system images to specific IP addresses.
o Access Control - Filters are used to limit access to uploading/ downloading configuration files and system images to specific IP addresses and protocols.
o Data Integrity - All systems use either a CRC-check or MD5 authentication to ensure data integrity. Also, tools such as rancid are used to automatically detect configuration changes.
o Data Confidentiality - If the SCP protocol is used then there is confidentiality of the downloaded/uploaded configuration files and system images.
o Auditing/Logging - All access and activity relating to downloading/uploading system images and configuration files are logged via AAA services and filter exception rules.
o DoS Mitigation - A combination of filtering and CRC-check/ MD5-based integrity checks are used to mitigate the risks of DoS attacks. If the software updates and configuration changes are performed via an OOB management system, this is also added protection.
Where the MD5 algorithm is not used to perform data-integrity checking of software images and configuration files, ISPs have expressed an interest in having this functionality. IPsec is considered too cumbersome and operationally difficult to use for data integrity and confidentiality.
Although logging is part of all the previous sections, it is important enough to be covered as a separate item. The main issues revolve around what gets logged, how long are logs kept, and what mechanisms are used to secure the logged information while it is in transit and while it is stored.
Attacks on the logged data can be both from passive or active sources. Passive attacks are possible if someone has the capability to intercept data between the recipient logging server and the device from which the logged data originated. This can be accomplished if a single infrastructure device is somehow compromised and can act as a network sniffer, or if it is possible to insert a new device that acts as a network sniffer.
Active attacks are possible for both on-path and off-path scenarios. For on-path active attacks, the situation is the same as for a passive attack, where either a device has to already be compromised, or a device can be inserted into the path. For off-path active attacks, the attacks are generally limited to message insertion or modification that can alter the logged data to keep any compromise from being detected, or to destroy any evidence that could be used for criminal prosecution.
Confidentiality violations can occur when a miscreant intercepts any of the logging data that is in transit on the network. This could lead to privacy violations if some of the logged data has not been sanitized to disallow any data that could be a violation of privacy to be included in the logged data.
If any cryptographic mechanism was used to provide for data integrity and confidentiality, an offline cryptographic attack could potentially compromise the data. The traffic would need to be captured either by eavesdropping on the network or by being able to divert traffic to a malicious user.
For a replay attack to be successful, the logging data would need to first be captured either on-path or diverted to an attacker and later replayed to the recipient.
Logging data could be injected, deleted, or modified by someone in control of intermediate hosts. Logging data can also be injected by forging packets from either legitimate or illegitimate IP addresses.
A man-in-the-middle attack attacks the identity of a communicating peer rather than the data stream itself. The attacker intercepts traffic that is sent between the infrastructure device and the logging server or traffic sent between the logging server and the database that is used to archive the logged data. Any unauthorized access to logging information could lead to the knowledge of private and proprietary network topology information, which could be used to compromise portions of the network. An additional concern is having access to logging information, which could be deleted or modified so as to cover any traces of a security breach.
When it comes to filtering, logging is mostly performed on an exception auditing basis (i.e., traffic that is NOT allowed is logged). This is to assure that the logging servers are not overwhelmed with data, which would render most logs unusable. Typically the data logged will contain the source and destination IP addresses and layer 4 port numbers as well as a timestamp. The syslog protocol is used to transfer the logged data between the infrastructure device to the syslog server. Many ISPs use the OOB management network to transfer syslog data since there is virtually no security performed between the syslog server and the device. All ISPs have multiple syslog servers - some ISPs choose to use separate syslog servers for varying infrastructure devices (i.e., one syslog server for backbone routers, one syslog server for customer edge routers, etc.)
The timestamp is derived from NTP, which is generally configured as a flat hierarchy at stratum1 and stratum2 to have less configuration and less maintenance. Consistency of configuration and redundancy is the primary goal. Each router is configured with several stratum1 server sources, which are chosen to ensure that proper NTP time is available, even in the event of varying network outages.
In addition to logging filtering exceptions, the following is typically logged: routing protocol state changes, all device access (regardless of authentication success or failure), all commands issued to a device, all configuration changes, and all router events (boot-up/flaps).
The main function of any of these log messages is to see what the device is doing as well as to try and ascertain what certain malicious attackers are trying to do. Since syslog is an unreliable protocol, when routers boot or lose adjacencies, not all messages will get delivered to the remote syslog server. Some vendors may implement syslog buffering (e.g., buffer the messages until you have a route to the syslog destination), but this is not standard. Therefore, operators often have to look at local syslog information on a device (which typically has very little memory allocated to it) to make up for the fact that the server-based syslog files can be incomplete. Some ISPs also put in passive devices to see routing updates and withdrawals and do not rely solely on the device for log files. This provides a backup mechanism to see what is going on in the network in the event that a device may 'forget' to do syslog if the CPU is busy.
The logs from the various syslog server devices are generally transferred into databases at a set interval that can be anywhere from every 10 minutes to every hour. One ISP uses Rsync to push the data into a database, and then the information is sorted manually by someone SSH'ing to that database.
o User Authentication - Not applicable.
o User Authorization - Not applicable.
o Data Origin Authentication - Not implemented.
o Access Control - Filtering on logging host and server IP address to ensure that syslog information only goes to specific syslog hosts.
o Data Integrity - Not implemented.
o Data Confidentiality - Not implemented.
o Auditing/Logging - This entire section deals with logging.
o DoS Mitigation - An OOB management system is used and sometimes different syslog servers are used for logging information from varying equipment. Exception logging tries to keep information to a minimum.
There is no security with syslog and ISPs are fully cognizant of this. IPsec is considered too operationally expensive and cumbersome to deploy. Syslog-ng and stunnel are being looked at for providing better authenticated and integrity-protected solutions. Mechanisms to prevent unauthorized personnel from tampering with logs is constrained to auditing who has access to the logging servers and files.
ISPs expressed requirements for more than just UDP syslog. Additionally, they would like more granular and flexible facilities and priorities, i.e., specific logs to specific servers. Also, a common format for reporting standard events so that modifying parsers after each upgrade of a vendor device or software is not necessary.
Although filtering has been covered under many of the previous sections, this section will provide some more insights to the filtering considerations that are currently being taken into account. Filtering is now being categorized into three specific areas: data plane, management plane, and routing control plane.
Data plane filters control the traffic that traverses through a device and affects transit traffic. Most ISPs deploy these kinds of filters at customer facing edge devices to mitigate spoofing attacks using BCP38 and BCP84 guidelines.
Management filters control the traffic to and from a device. All of the protocols that are used for device management fall under this category and include: SSH, Telnet, SNMP, NTP, HTTP, DNS, TFTP, FTP, SCP, and Syslog. This type of traffic is often filtered per interface and is based on any combination of protocol, source and destination IP address, and source and destination port number. Some devices support functionality to apply management filters to the device rather than to the specific interfaces (e.g., receive ACL or loopback interface ACL), which is gaining wider acceptance. Note that logging the filtering rules can today place a burden on many systems and more granularity is often required to more specifically log the required exceptions.
Any services that are not specifically used are turned off.
IPv6 networks require the use of specific ICMP messages for proper protocol operation. Therefore, ICMP cannot be completely filtered to and from a device. Instead, granular ICMPv6 filtering is always deployed to allow for specific ICMPv6 types to be sourced or destined to a network device. A good guideline for IPv6 filtering is in the Recommendations for Filtering ICMPv6 Messages in Firewalls [ICMPv6].
Routing filters are used to control the flow of routing information. In IPv6 networks, some providers are liberal in accepting /48s due to the still unresolved multihoming issues, while others filter at allocation boundaries, which are typically at /32. Any announcement received that is longer than a /48 for IPv6 routing and a /24 for IPv4 routing is filtered out of eBGP. Note that this is for non-customer traffic. Most ISPs will accept any agreed upon prefix length from its customer(s).
Denial-of-Service attacks are an ever-increasing problem and require vast amounts of resources to combat effectively. Some large ISPs do not concern themselves with attack streams that are less than 1G in bandwidth - this is on the larger pipes where 1G is essentially less than 5% of an offered load. This is largely due to the large amounts of DoS traffic, which continually requires investigation and mitigation. At last count, the number of hosts making up large distributed DoS botnets exceeded 1 million hosts.
New techniques are continually evolving to automate the process of detecting DoS sources and mitigating any adverse effects as quickly as possible. At this time, ISPs are using a variety of mitigation techniques including: sinkhole routing, black hole triggered routing, uRPF, rate limiting, and specific control plane traffic enhancements. Each of these techniques will be detailed below.
Sinkhole routing refers to injecting a more specific route for any known attack traffic, which will ensure that the malicious traffic is redirected to a valid device or specific system where it can be analyzed.
Black hole triggered routing (also referred to as Remote Triggered Black Hole Filtering) is a technique where the BGP routing protocol is used to propagate routes which in turn redirects attack traffic to the null interface where it is effectively dropped. This technique is often used in large routing infrastructures since BGP can propagate the information in a fast, effective manner, as opposed to using any packet-based filtering techniques on hundreds or thousands of routers (refer to the following NANOG presentation for a more complete description http://www.nanog.org/mtg-0402/pdf/morrow.pdf).
Note that this black-holing technique may actually fulfill the goal of the attacker if the goal was to instigate black-holing traffic that appeared to come from a certain site. On the other hand, this black hole technique can decrease the collateral damage caused by an overly large attack aimed at something other than critical services.
Unicast Reverse Path Forwarding (uRPF) is a mechanism for validating whether or not an incoming packet has a legitimate source address. It has two modes: strict mode and loose mode. In strict mode, uRPF checks whether the incoming packet has a source address that matches a prefix in the routing table, and whether the interface expects to receive a packet with this source address prefix. If the incoming packet fails the unicast RPF check, the packet is not accepted on the incoming interface. Loose mode uRPF is not as specific and the incoming packet is accepted if there is any route in the routing table for the source address.
While BCP84 [RFC3704] and a study on uRPF experiences [BCP84-URPF] detail how asymmetry, i.e., multiple routes to the source of a packet, does not preclude applying feasible paths strict uRPF, it is generally not used on interfaces that are likely to have routing asymmetry. Usually for the larger ISPs, uRPF is placed at the customer edge of a network.
Rate limiting refers to allocating a specific amount of bandwidth or packets per second to specific traffic types. This technique is widely used to mitigate well-known protocol attacks such as the TCP-SYN attack, where a large number of resources get allocated for spoofed TCP traffic. Although this technique does not stop an attack, it can sometimes lessen the damage and impact on a specific service. However, it can also make the impact of a DoS attack much worse if the rate limiting is impacting (i.e., discarding) more legitimate traffic.
Some ISPs are starting to use capabilities that are available from some vendors to simplify the filtering and rate limiting of control traffic. Control traffic here refers to the routing control plane and management plane traffic that requires CPU cycles. A DoS attack against any control plane traffic can therefore be much more damaging to a critical device than other types of traffic. No consistent deployment of this capability was found at the time of this writing.
This entire document deals with current security practices in large ISP environments. It lists specific practices used in today's environments and as such, does not in itself pose any security risk.
The editor gratefully acknowledges the contributions of: George Jones, who has been instrumental in providing guidance and direction for this document, and the insightful comments from Ross Callon, Ron Bonica, Ryan Mcdowell, Gaurab Upadhaya, Warren Kumari, Pekka Savola, Fernando Gont, Chris Morrow, Ted Seely, Donald Smith, and the numerous ISP operators who supplied the information that is depicted in this document.
[RFC2827]
Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000.
[RFC2828]
Shirey, R., "Internet Security Glossary", RFC 2828, May 2000.
[RFC3552]
Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, July 2003.
[RFC3682]
Gill, V., Heasley, J., and D. Meyer, "The Generalized TTL Security Mechanism (GTSM)", RFC 3682, February 2004.
[RFC3704]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004.
[RFC3882]
Turk, D., "Configuring BGP to Block Denial-of-Service Attacks", RFC 3882, September 2004.
[BCP84-URPF]
Savola, P., "Experiences from Using Unicast RPF", Work in Progress, November 2006.
[ICMPv6]
Davies, E. and J. Mohacsi, "Recommendations for Filtering ICMPv6 Messages in Firewalls", Work in Progress, July 2006.
[RTGWG]
Savola, P., "Backbone Infrastructure Attacks and Protections", Work in Progress, July 2006.
This section will list many of the traditional protocol-based attacks that have been observed over the years to cause malformed packets and/or exploit protocol deficiencies. Note that they all exploit vulnerabilities in the actual protocol itself and often, additional authentication and auditing mechanisms are now used to detect and mitigate the impact of these attacks. The list is not exhaustive, but is a fraction of the representation of what types of attacks are possible for varying protocols.
o ARP Flooding
o IP Addresses, either source or destination, can be spoofed which in turn can circumvent established filtering rules.
o IP Source Route Option can allows attackers to establish stealth TCP connections.
o IP Record Route Option can disclose information about the topology of the network.
o IP header that is too long or too short can cause DoS attacks to devices.
o IP Timestamp Option can leak information that can be used to discern network behavior.
o Fragmentation attacks which can vary widely - more detailed information can be found at http://www-src.lip6.fr/homepages/ Fabrice.Legond-Aubry/www.ouah.org/fragma.html.
o IP ToS field (or the Differentiated Services (DSCP) field) can be used to reroute or reclassify traffic based on specified precedence.
o IP checksum field has been used for scanning purposes, for example when some firewalls did not check the checksum and allowed an attacker to differentiate when the response came from an end- system, and when from a firewall.
o IP TTL field can be used to bypass certain network-based intrusion detection systems and to map network behavior.
The following lists additional attacks, but does not explicitly numerate them in detail. It is for informational purposes only.
o IGMP oversized packet
o ICMP Source Quench
o ICMP Mask Request
o ICMP Large Packet (> 1472)
o ICMP Oversized packet (>65536)
o ICMP Flood
o ICMP Broadcast w/ Spoofed Source (Smurf Attack)
o ICMP Error Packet Flood
o ICMP Spoofed Unreachable
o TCP Packet without Flag
o TCP Oversized Packet
o TCP FIN bit with no ACK bit
o TCP Packet with URG/OOB flag (Nuke Attack)
o SYN Fragments
o SYN Flood
o SYN with IP Spoofing (Land Attack)
o SYN and FIN bits set
o TCP port scan attack
o UDP spoofed broadcast echo (Fraggle Attack)
o UDP attack on diagnostic ports (Pepsi Attack)
Any of the above-mentioned IPv4 attacks could be used in IPv6 networks with the exception of any fragmentation and broadcast traffic, which operate differently in IPv6. Note that all of these attacks are based on either spoofing or misusing any part of the protocol field(s).
Today, IPv6-enabled hosts are starting to be used to create IPv6 tunnels, which can effectively hide botnet and other malicious traffic if firewalls and network flow collection tools are not capable of detecting this traffic. The security measures used for protecting IPv6 infrastructures should be the same as in IPv4 networks, but with additional considerations for IPv6 network operations, which may be different from IPv4.
Author's Address
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the Internet Society.
5635 - Remote Triggered Black Hole Filtering with Unicast Reverse Path Forwardin
Network Working Group
Request for Comments: 5635
Category: Informational
W. Kumari
Google
D. McPherson
Arbor Networks
August 2009
Remote Triggered Black Hole (RTBH) filtering is a popular and effective technique for the mitigation of denial-of-service attacks. This document expands upon destination-based RTBH filtering by outlining a method to enable filtering by source address as well.
This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.
Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
This document expands upon the technique outlined in "Configuring BGP to Block Denial-of-Service Attacks" [RFC3882] to demonstrate a method that allows for filtering by source address(es).
Network operators have developed a variety of techniques for mitigating denial-of-service (DoS) attacks. While different techniques have varying strengths and weaknesses, from an implementation perspective, the selection of which method to use for each type of attack involves evaluating the tradeoffs associated with each method.
A common DoS attack directed against a customer of a service provider involves generating a greater volume of attack traffic destined for the target than will fit down the links from the service provider(s) to the victim (customer). This traffic "starves out" legitimate traffic and often results in collateral damage or negative effects to other customers or the network infrastructure as well. Rather than having all destinations on their network be affected by the attack, the customer may ask their service provider to filter traffic destined to the target destination IP address(es), or the service provider may determine that this is necessary themselves, in order to preserve network availability.
One method that the service provider can use to implement this filtering is to deploy access control lists on the edge of their network. While this technique provides a large amount of flexibility in the filtering, it runs into scalability issues, both in terms of the number of entries in the filter and the packet rate.
Most routers are able to forward traffic at a much higher rate than they are able to filter, and they are able to hold many more forwarding table entries and routes than filter entries. RTBH filtering leverages the forwarding performance of modern routers to filter more entries and at a higher rate than access control lists would otherwise allow.
However, with destination-based RTBH filtering, the impact of the attack on the target is complete. That is, destination-based RTBH filtering injects a discard route into the forwarding table for the target prefix. All packets towards that destination, attack traffic AND legitimate traffic, are then dropped by the participating routers,thereby taking the target completely offline. The benefit is that collateral damage to other systems or network availability at the customer location or in the ISP network is limited, but the negative impact to the target itself is arguably increased.
By coupling unicast Reverse Path Forwarding (uRPF) [RFC3704] techniques with RTBH filtering, BGP can be used to distribute discard routes that are based not on destination or target addresses, but on source addresses of unwanted traffic. Note that this will drop all traffic to/from the address, and not just the traffic to the victim.
This document is broken up into three logical parts: the first outlines how to configure destination-based RTBH, the second covers source-based RTBH, and the third part has examples and a history of the technique.
A discard route is installed on each edge router in the network with the destination set to the discard (or null) interface. In order to use RTBH filtering for a single IP address (or prefix), a BGP route for the address to be filtered is announced, with the next-hop set as the discard route. This causes traffic to the announced network prefix to be forwarded to the discard interface so that it does not transit the network wasting resources or triggering collateral damage to other resources along the path towards the target.
While this does "complete" the attack in that the target address(es) are made unreachable, collateral damage is minimized. It may also be possible to move the host or service on the target IP address(es) to another address and keep the service up, for example, by updating associated DNS resource records.
Before deploying RTBH filtering, there is some preparation and planning that needs to occur and decisions that need to be made. These include:
- What are the discard addresses?
- What are the discard BGP communities?
- What is the largest prefix that can be black-holed?
- What is the smallest advertisement that your provider will accept?
Steps to configure destination-based RTBH filtering:
Step 1. Select Your Discard Address Schema
An address is chosen to become the "discard address". This is often chosen from 192.0.2.0/24 (TEST-NET [RFC3330]), or from RFC 1918 [RFC1918] space. Multiple addresses allow an operator to configure multiple static routes, one for each incident:
Customer #1, who has a DDoS (Distributed DoS) attack can be pointed to discard route 192.0.2.1. Customer #2 can be pointed to discard route 192.0.2.2. If capable, the router can then count the drops for each, providing some level of telemetry on the volume of drops as well as status of an ongoing attack. A consistent address schema facilitates operations.
Step 2. Configure the Discard Route(s) on Each Router
A route for the "discard address" is installed on the routers that form the edge/perimeter of the network in all routers in the network or some subset (e.g., peering, but not customer, etc.). The destination of the route is set to the "discard" or "null" interface. This route is called the "discard route". Implementation experience demonstrates the value of configuring each ingress router with a capability for dropping traffic via RTBH filtering.
Step 3. Configure the RTBH BGP Policy on Each Router
A BGP policy is configured on all routers that have the discard route so that routes announced with a chosen community will have their next-hop set to the discard address. The BGP policy should be made restrictive so that only BGP routes covering a defined number of hosts addresses will be accepted. That is, typically, only specific /32s are necessary. Shorter prefix blocks may also be required or desirable, for example, if larger numbers of attack targets are located within a single prefix, or the employment of this mechanism is to drop traffic bound for specific networks. When filtering based on shorter prefixes, extreme caution should be used as to avoid collateral damage to other hosts that reside within those address blocks. Full implementations will have multiple communities, with each community used for different parts of a provider's network and for different security incidents.
Step 4. Configure the Safety Egress Prefix Filters
There is always a chance that the triggering BGP update could leak from the network and so egress prefix filters are strongly recommended. These egress prefix filter details may vary, but experience has demonstrated that the following works:
- Deny all prefixes longer than the longest prefix that you expect to announce. For example, if the longest prefix that you expect to announce is /24, deny all prefixes of length /25 though /32. If your triggering BGP update is only /32s, then this egress prefix filter will add a safe measure in case the NO_EXPORT community does not work.
- Deny all communities used for triggering RTBH filtering. This is also a "safety" measure in case the NO_EXPORT community does not work.
Step 5: Configure the Trigger Router
Configure the trigger router, workstation, or other device so that adding and removing the triggers can be done easily and quickly. The BGP update should have the NO_EXPORT community as a mandatory attribute. An egress prefix filter or policy that prevents RTBH filtering prefixes in the /8 to /24 range is also recommended as a safety tool. The trigger router can be set up as an iBGP (Internal BGP) route reflector client that does not receive any prefixes from its BGP peer. This allows a low-cost router/workstation to be used as the trigger router.
Using the RTBH filtering:
1: When RTBH filtering is desired for a specific address, that
address is announced from a trigger router (or route server), tagged with the chosen "RTBH" community and with the NO_EXPORT community, and passed via iBGP. The receiving routers check the BGP policy, set the next-hop to be the discard route, resulting in a Forwarding Information Base (FIB) entry pointing to a discard address.
2: Traffic entering the network will now be forwarded to the discard
interface on all edge routers and will therefore be dropped at the edge of the network, saving resources.
2.1: Multiple Discard Addresses for Incident Granularity. This
technique can be expanded by having multiple discard addresses, routes, and communities to allow for monitoring of the discarded traffic volume on devices that support multiple discard interfaces. As mentioned earlier, each router can have a discard address schema to allow the operator to distinguish multiple incidents from each other -- making it easier to monitor the life-cycle of the incidents.
2.2: Multiple "Trigger Communities" for Network-Wide Granularity.
The network can be sectioned into multiple communities, providing the operator with an ability to drop in discrete parts of their network. For example, the network can be divided into the following communities (where XXX represents the operator's AS number):
XXX:604 RTBH filtering on all customers (to see how many
customers are being used by the attacker)
Some diligent thinking is required to develop a community schema that provides flexibility while reflecting topological considerations.
2.3: "Customer-Triggered" RTBH filtering. The technique can also
be expanded by relaxing the Autonomous System (AS) path rule to allow customers of a service provider to enable RTBH filtering without interacting with the service provider's trigger routers. If this is configured, an operator MUST only accept announcements from the customer for prefixes that the customer is authorized to advertise, in order to prevent the customer from accidentally (or intentionally) black- holing space that they are not allowed to advertise.
A common policy for this type of setup would first permit any longer prefix within an authorized prefix only if the black hole communities are attached, append NO_EXPORT, NO_ADVERTISE, or similar communities, and then also accept from the customer the original aggregate prefix that will be advertised as standard policy permits.
Extreme caution should be used in order to avoid leaking any more specifics beyond the local routing domain, unless policy explicitly aims at doing just that.
In many instances, denial-of-service attacks sourced from botnets are being configured to "follow DNS". (The attacking machines are instructed to attack www.example.com, and re-resolve this periodically. Historically, the attacks were aimed simply at an IP address and so renumbering www.example.com to a new address was an effective mitigation.) This makes it desirable to employ a technique that allows black-holing to be based on source address.
By combining traditional RTBH filtering with unicast Reverse Path Forwarding (uRPF), a network operator can filter based upon the source address. uRPF performs a route lookup of the source address of the packet and checks to see if the ingress interface of the packet is a valid egress interface for the packet source address (strict mode) or if any route to the source address of the packet exists (loose mode). If the check fails, the packet is typically dropped. In loose mode, some vendors also verify that the destination route does not point to an invalid next-hop -- this allows source-based RTBH filtering to be deployed in networks that cannot implement strict (or feasible path) mode uRPF. Before enabling uRPF (in any mode), it is vital that you fully understand the implications of doing so:
- Strict mode will cause the router to drop all ingress traffic if the best path back to the source address of the traffic is not the interface from which the traffic was received. Asymmetric routing will cause strict mode uRPF to drop legitimate traffic.
- Loose mode causes the router to check if a route for the source address of the traffic exists. This may also cause legitimate traffic to be discarded.
It is hoped that in the future, vendors will implement a "DoS- mitigation" mode in addition to the loose and strict modes -- in this mode, the uRPF check will only fail if the next-hop for the source of the packet is a discard interface.
By enabling the uRPF feature on interfaces at predetermined points in their network and announcing the source address(es) of attack traffic, a network operator can effectively drop the identified attack traffic at specified devices (ideally ingress edge) of their network based on source address.
While administrators may choose to drop traffic from any prefix they wish, it is recommended when employing source-based RTBH filtering inter-domain that explicit policy be defined that enables peers to only announce source-based RTBH routes for prefixes that they originate.
The same steps that are required to implement destination address RTBH filtering are taken with the additional step of enabling unicast Reverse Path Forwarding on predetermined interfaces. When a source address (or network) needs to be blocked, that address (or network) is announced using BGP tagged with a community. This will cause the route to be installed with a next-hop of the discard interface, causing the uRPF check to fail and the packets to be discarded. The destination-based RTBH filtering community should not be used for source-based RTBH filtering, and the routes tagged with the selected community should be carefully filtered.
The BGP policy will need to be relaxed to accept announcements tagged with this community to be accepted even though they contain addresses not controlled by the network announcing them. These announcements must NOT be propagated outside the local AS and should carry the NO_EXPORT community.
As a matter of policy, operators SHOULD NOT accept source-based RTBH announcements from their peers or customers, they should only be installed by local or attack management systems within their administrative domain.
The techniques presented here provide enough power to cause significant traffic forwarding loss if incorrectly deployed. It is imperative that the announcements that trigger the black-holing are carefully checked and that the BGP policy that accepts these announcements is implemented in such a manner that the announcements:
- Are not propagated outside the AS (NO_EXPORT).
- Are not accepted from outside the AS (except from customers).
- Except where source-based filtering is deployed, that the network contained in the announcement falls within the address ranges controlled by the announcing AS (i.e., for customers that the address falls within their space).
I would like to thank Joe Abley, Ron Bonica, Rodney Dunn, Alfred Hoenes, Donald Smith, Joel Jaeggli, and Steve Williams for their assistance, feedback and not laughing *too* much at the quality of the initial versions.
I would also like to thank all of the regular contributors to the OPSEC Working Group and Google for 20% time :-)
The authors would also like to thank Steven L Johnson and Barry Greene for getting this implemented and Chris Morrow for publicizing the technique in multiple talks.
[RFC1918]
Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3330]
IANA, "Special-Use IPv4 Addresses", RFC 3330, September 2002.
[RFC3704]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004.
[RFC3882]
Turk, D., "Configuring BGP to Block Denial-of-Service Attacks", RFC 3882, September 2004.
[Greene2001]
Greene Barry Raveendran and Jarvis Neil, "Unicast Reverse Path Forwarding (uRPF) Enhancements for the ISP-ISP Edge", ftp://ftp-eng.cisco.com/ cons/isp/documents/uRPF_Enhancement.pdf, 2001.
This section provides a partial configuration for configuring RTBH filtering on a Cisco router. This is not a complete configuration and should be customized before being used.
This section provides a partial configuration for configuring RTBH filtering on a Juniper router. This is not a complete configuration and should be customized before being used.
Announcing router:
Filtering router:
Understanding the history and motivation behind the development of a technique often helps with understanding how to best utilize the technique. In this spirit, we present a history of unicast RPF and RTBH filtering.
This section has been provided by Barry Raveendran Greene:
Unicast RPF Loose Check (uRPF Loose Check) was created by Neil Jarvis and Barry Greene to be used with destination-based RTBH as a rapid reaction tool to DDoS attacks. The requirements for this rapid reaction tool was based on post mortem conversation after the February 2000 attacks on several big content hosting companies. The summary of the requirement became the "Exodus Requirement" which stated:
We need a tool to drop packets based on source IP address that can be pushed out to over 60 routers within 60 seconds, be longer than a thousand lines, be modified on the fly, and work in all your platforms filtering at line rate.
A variety of options were looked at to meet this requirement, from reviving Common Open Policy Service (COPS), to pushing out Access Control Lists (ACLs) with BGP, creating a new protocol. In 2000, the quickest way to meet the "Exodus requirement" was to marry two functions. First, modify unicast RPF so that the interface check was no longer required and to make sure that a "null" or discard route would drop the packet (i.e., loose check). Second, the technique where BGP is used to trigger a distributed drop is dusted off and documented. Combining these two techniques was deemed a fast way to put a distributed capability to drop packets out into the industry. To clarify and restate, uRPF loose check was created as one part of a rapid reaction tool to DDoS attacks that "drop packets based on source IP address that can be pushed out to over 60 routers with in 60 seconds, be longer than a thousand lines, be modified on the fly, and work in all your platforms filtering at line rate". The secondary benefits of using uRPF Loose Check for other functions is a secondary benefit -- not the primary goal for its creation.
To facilitate the adoption to the industry, uRPF Loose Check was not patented. It was publicly published and disclosed in "Unicast Reverse PathForwarding (uRPF) Enhancements for the ISP-ISP Edge" [Greene2001].
Authors' Addresses
EMail: warren@kumari.net
EMail: danny@arbor.net
6039 - Issues with Existing Cryptographic Protection Methods for Routing Protoco
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 6039
Category: Informational
ISSN: 2070-1721
V. Manral
IP Infusion
M. Bhatia
Alcatel-Lucent
J. Jaeggli
Nokia Inc.
R. White
Cisco Systems
October 2010
Routing protocols have been extended over time to use cryptographic mechanisms to ensure that data received from a neighboring router has not been modified in transit and actually originated from an authorized neighboring router.
The cryptographic mechanisms defined to date and described in this document rely on a digest produced with a hash algorithm applied to the payload encapsulated in the routing protocol packet.
This document outlines some of the limitations of the current mechanism, problems with manual keying of these cryptographic algorithms, and possible vectors for the exploitation of these limitations.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6039.
Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Protocols, such as OSPF version 2 [RFC2328], version 3 [RFC5340], IS-IS [RFC1195], BGP-4 [RFC4271], and BFD [RFC5880], employ various mechanisms to create a cryptographic digest of each transmitted protocol packet. Traditionally, these digests are the results of a one-way hash algorithm, such as Message Digest 5 (MD5) [RFC1321], across the contents of the packet being transmitted. A secret key is used as the hash base (or seed). The digest is then recomputed by the receiving router, using the same key as the original router used to create the hash, then compared with the transmitted digest to verify:
o That the router originating this packet is authorized via the shared key mechanism to peer with the local router and exchange routing data. The implicit trust of the routing protocol exchange protected by a shared secret is intended to protect against the injection of falsely generated routing data into the routing system by unauthorized systems.
o That the data has not been altered in transit between the two neighboring routers.
Digest verification schemes are not intended to protect the confidentiality of information being exchanged between routers. The information (entries in the routing table) is potentially available through other mechanisms. Moreover, access to the physical media between two routers exchanging routing data will confer the ability to capture or otherwise discover the contents of the routing tables in those routers.
Authentication mechanisms defined today have notable limitations:
o Manual configuration of shared secret keys, especially in large networks and between networks, poses a major management problem. In many cases, it is challenging to replace keys without significant coordination or disruption.
o In some cases, when manual keys are configured, some forms of replay protection are no longer possible, allowing the routing protocol to be attacked through the replay of captured routing messages.
This document outlines some of the problems with manual keying of these cryptographic algorithms.
A pre-image attack (an attempt to find new data with the same hash value) would enable someone to find an input message that causes a hash function to produce a particular output. In contrast, a collision attack finds two messages with the same hash, but the attacker can't pick what the message will be. Feasible collision attacks against MD4, MD5, HAVAL-128, and RIPEMD have been documented in [Crypto2004].
The ability to produce a collision does not currently introduce any obvious or known attacks on routing protocols. Pre-image attacks have the potential to cause problems in the future; however, due to the message length, there are serious limitations to the feasibility of mounting such an attack.
Protocols themselves have some built-in protection against collision attacks. This is because a lot of values for fields in a protocol packet are invalid or will produce an unusable packet. For example, in OSPF the Link State Advertisement (LSA) type can be from 1 to 11. Any other value in the field will result in the packet being discarded.
Assume two packets M and M' are generated and have the same hash. The above condition will further reduce the ability to produce a message that is also a correct message from the protocol perspective, as a lot of potential values are themselves not valid.
There are published concerns about the overall strength of the MD5 algorithm ([Dobb96a], [Dobb96b], [Wang04]). While those published concerns apply to the use of MD5 in other modes (e.g., use of MD5 X.509v3/PKIX digital certificates), they are not an attack upon Keyed MD5 and Hash-based Message Authentication Code MD5 (HMAC-MD5), which is what the current routing protocols have specified. There are also published concerns about the Secure Hash Algorithm (SHA) algorithm ([Wang05], [Philip01], [Prav01], [Prav02], [Arjen05]) and also concerns about the MD5 and SHA algorithms in the HMAC [RFC2104] mode ([RR07], [RR08]). The National Institute of Standards and Technology (NIST) will be supporting HMAC-SHA-1 even after 2010 [NISTHmacSHA], whereas it will drop support for SHA-1 in digital signatures. NIST also recommends application and protocol designers move to the SHA-2 family of hash functions (i.e., SHA-224, SHA-256, SHA-384 and SHA-512) for all new applications and protocols.
However, as explained above, such attacks are currently not applicable to the routing protocols. Separately, some organizations (e.g., the US government) prefer NIST algorithms, such as the SHA family, over other algorithms (like MD5) for local policy reasons.
OSPF [RFC2328] describes the use of an MD5 digest with OSPF packets. MD5 keys are manually configured. The OSPF packet header includes an authentication type field as well as 64 bits of data for use by the appropriate authentication scheme. OSPF also provides for a non- decreasing sequence number to be included in each OSPF protocol packet to protect against replay attacks.
"OSPF with Digital Signatures" [RFC2154] is an Experimental RFC that describes extensions to OSPF to digitally sign its Link State Advertisements (LSAs). It is believed that if stronger authentication and security is required, then OSPF (and the other routing protocols) must migrate to using full digital signatures. Doing this would enable precise authentication of the OSPF router originating each OSPF link-state advertisement, and thereby provide much stronger integrity protection for the OSPF routing domain. However, since there have been no deployments, there is precious little operational experience with this specification, and hence it is not covered in this document.
According to the OSPF specification [RFC2328], digests are applied to packets transmitted between adjacent neighbors, rather than being applied to the routing information originated by a router (digests are not applied at the LSA level, but rather at the packet level). [RFC2328] states that any set of OSPF routers adjacent across a single link may use a different key to build MD5 digests than the key used to build MD5 digests on any other link. Thus, MD5 keys may be configured, and changed, on a per-link basis in an OSPF network.
OSPF does not specify a mechanism to negotiate keys, nor does it specify any mechanism to negotiate the hash algorithms to be used.
With the proliferation of the number of hash algorithms, as well as the need to continuously upgrade the algorithms, manually configuring the information becomes very tedious. It should also be noted that rekeying OSPF requires coordination among the adjacent routers.
While OSPF provides relatively strong protection through the inclusion of MD5 digests, with additional data and sequence numbers in transmitted packets, there are still attacks against OSPF:
o The sequence number is initialized to zero when forming an adjacency with a newly discovered neighbor. When an adjacency is brought down, the sequence number is also set to zero. If the cryptographically protected packets of a router that is brought down (for administrative or other reasons) are replayed by a malicious router, traffic could be forced through the malicious router. A malicious router might then induce routing loops, or intercept or blackhole the traffic.
o OSPF allows multiple packets with the same sequence number. This means that it's possible to replay the same packet many times before the next legitimate packet is sent. An attacker may resend the same packet repeatedly until the next Hello packet is transmitted and received. The Hello interval, which is unknown, determines the attack window.
o OSPF does not require the use of any particular hash algorithm; however, only the use of MD5 digests for authentication and replay protection is specified in RFC 2328. Most OSPF implementations only support MD5 in addition to Null and Simple Password authentication.
Recently, limitations in collision-resistance properties of the MD5 and SHA-1 hash functions have been discovered; [RFC4270] summarizes the discoveries. There have been attacks against the use of MD5 as a hash; while these attacks do not directly apply to the use of MD5 in routing protocols, it is prudent to have other options available. For this reason, the general use of these algorithms should be discouraged, and [RFC5709] adds support for using SHA-1 and SHA-2 with the HMAC construct for OSPF.
o OSPF on a broadcast network shares the same key between all neighbors on that broadcast network. Some OSPF packets are sent to a multicast address.
Spoofing by any malicious neighbor possessing credentials or replayable packets is therefore very easy. Possession of the key itself is used as an identity validation, and no other identity check is used. A malicious neighbor could send a packet, forging the identity of the sender as being from another neighbor. There would be no way in which the victim could distinguish the identity of the packet sender.
o In some OSPF implementations, neighbors on broadcast, non- broadcast multi-access (NBMA), and point-to-multipoint networks are identified by the IP address in the IP header. The IP header is not covered by the MAC in the cryptographic authentication scheme as described in RFC 2328, and an attack can be made to exploit this omission.
Assume the following scenario.
R1 sends an authenticated HELLO to R2. This HELLO is captured and replayed back to R1. The source IP in the IP header of the replayed packet is changed to that of R2.
R1, not finding itself in the HELLO, would deduce that the connection is not bidirectional and would bring down the adjacency.
OSPFv3 [RFC5340] relies on the IP Authentication Header (AH) [RFC4302] and the IP Encapsulating Security Payload (ESP) [RFC4303] to cryptographically sign routing information passed between routers.
When using ESP, the null encryption algorithm [RFC2410] is used, so the data carried in the OSPFv3 packets is signed, but not encrypted. This provides data origin authentication for adjacent routers, and data integrity (which gives the assurance that the data transmitted by a router has not changed in transit). However, it does not provide confidentiality of the information transmitted; this is acceptable because the privacy of the information being carried in the routing protocols need not be kept secret.
"Authentication/Confidentiality for OSPFv3" [RFC4552] mandates the use of ESP with null encryption for authentication and also does encourage the use of confidentiality to protect the privacy of the routing information transmitted, using ESP encryption. However, it only specifies the use of manual keying of routing information as discussed in the following section.
The OSPFv3 security document ("Authentication/Confidentiality for OSPFv3" [RFC4552]) discusses, at length, the reasoning behind using manually configured keys, rather than some automated key management protocol such as IKEv2 [RFC4306]. The primary problem is the lack of a suitable key management mechanism, as OSPF adjacencies are formed on a one-to-many basis and most key management mechanisms are designed for a one-to-one communication model. This forces the system administrator to use manually configured security associations (SAs) and cryptographic keys to provide the authentication and, if desired, confidentiality services.
Regarding replay protection, [RFC4552] states that:
Since it is not possible using the current standards to provide complete replay protection while using manual keying, the proposed solution will not provide protection against replay attacks.
In the OSPFv3 case, the primary administrative issue with manually configured SAs and keys is the management issue -- maintaining shared sets of keys on all routers within a network. As with OSPFv2, rekeying is an infrequent event requiring coordination. [RFC4552] does not require that all OSPFv3 routers have the same key configured for every neighbor, so each set of neighbors connected to a given link could have a different key configured. While this makes it easier to change the keys (by forcing the system administrator to only change the keys on the routers on a single link), the process of manual configuration for all the routers in a network to change the keys used for OSPFv3 digests and confidentiality on a periodic basis can be difficult.
The primary technical concern with the current specifications for OSPFv3 is that when manual SA and key management is used as specified in "Sequence Number Generation", Section 3.3.2 of [RFC4302]: "The sender assumes anti-replay is enabled as a default, unless otherwise notified by the receiver (see Section 3.4.3) or if the SA was configured using manual key management". Replaying OSPFv3 packets can induce several failures in a network, including:
o Replaying Hello packets with an empty neighbor list can cause all the neighbor adjacencies with the sending router to be reset, disrupting network communications.
o Replaying Hello packets from early in the designated router election process on broadcast links can cause all the neighbor adjacencies with the sending router to be reset, disrupting network communications.
o Replaying database description (DB-Description) packets can cause all FULL neighbor adjacencies with the sending router to be reset, disrupting network communications.
o Replaying link state request (LS-Request) packets can cause all FULL neighbor adjacencies with the sending router to be reset, disrupting network communications.
o Capturing a full adjacency process (from two-way all the way to FULL state), and then replaying this process when the router is no longer attached can cause a false adjacency to be formed, allowing an attacker to attract traffic.
o OSPFv3 on a broadcast network shares the same key between all neighbors on that network. Some OSPF packets are sent to a multicast address.
Spoofing by a malicious neighbor is very easy. Possession of the key itself is used as an identity check. There is no other identity check used. A neighbor could send a packet specifying the packet came from some other neighbor and there would be no way in which the attacked router could figure out the identity of the packet sender.
Integrated IS-IS [RFC1195] uses HMAC-MD5 authentication with manual keying, as described in [RFC5304], and has recently been extended to provide support for using the HMAC construct along with the SHA family of cryptographic hash functions [RFC5310]. There is no provision within IS-IS to encrypt the body of a routing protocol message.
[RFC5304] states that each Link State Protocol Data Unit (LSP) generated by an intermediate system is signed with the HMAC-MD5 algorithm using a key manually defined by the network administrator. Since authentication is performed on the LSPs transmitted by an intermediate system, rather than on the packets transmitted to a specific neighbor, it is implied that all the intermediate systems within a single flooding domain must be configured with the same key in order for authentication to work correctly.
The initial configuration of manual keys for authentication within an IS-IS network is simplified by a state where LSPs containing HMAC-MD5/HMAC-SHA authentication TLVs are accepted by intermediate systems without the keys, but the digest is not validated. Once keys are configured on all routers, changing those keys becomes much more difficult.
IS-IS [RFC1195] does not specify a mechanism to negotiate keys, nor does it specify any mechanism to negotiate the hash algorithms to be used.
With the proliferation of available hash algorithms, as well as the need to upgrade the algorithms, manual configuration requires coordination among intermediate systems, which can become tedious.
[RFC5304]
states: "This mechanism does not prevent replay attacks; however, in most cases, such attacks would trigger existing mechanisms in the IS-IS protocol that would effectively reject old information".
As described in IS-IS [RFC1195], a list of known neighbors is included in each Hello transmitted by an intermediate system to ensure two-way communications with any specific neighbor before exchanging link state databases.
IS-IS does not provide a sequence number. IS-IS packets are vulnerable to replay attacks; any packet can be replayed at any point of time. So long as the keys used are the same, protocol elements that would not be rejected will affect existing sessions.
A Hello packet containing a digest within a TLV and an empty neighbor list could be replayed, resulting in all adjacencies with the original transmitting intermediate system to be restarted.
A replay of an old Complete Sequence Number Packet (CSNP) could cause LSPs to be flooded, resulting in an LSP storm.
IS-IS specifies the use of the HMAC-MD5 and HMAC-SHA-1 to protect IS-IS packets.
IS-IS does not have a notion of Key ID. During key rollover, each message received has to be checked for integrity against all keys that are valid. A denial-of-service (DoS) attack may be induced by sending IS-IS packets with random hashes. This will cause the IS-IS packet to be checked for authentication with all possible keys, increasing the amount of processing required. This issue, however, has been fixed in the recent [RFC5310], which introduces the concept of Key IDs in IS-IS.
Recently, limitations in collision-resistance properties of the MD5 and SHA-1 hash functions have been discovered; [RFC4270] summarizes the discoveries. There have been attacks against the use of MD5 as a hash; while these attacks do not directly apply to the use of HMAC-MD5 in IS-IS, it is prudent to have other options available. For this reason, the general use of these algorithms should be discouraged, and [RFC5310] adds support for using HMAC-SHA with IS-IS.
IS-IS on a broadcast network shares the same key between all neighbors on that network.
This makes spoofing by a malicious neighbor easy since IS-IS packets are sent to a link-layer multicast address. Possession of the key itself is used as an authorization check. A neighbor could send a packet spoofing the identity of a neighbor, and there would be no way in which the attacked router could discern the identity of the malicious packet sender.
The Remaining Lifetime field in the LSP is not covered by the authentication. An IS-IS router can receive its own self-generated LSP segment with zero lifetime remaining. In that case, if it has a copy with non-zero lifetime, it purges that LSP, i.e., it increments the current sequence number and floods all the segments again. This is much worse in IS-IS than in OSPF because there is only one LSP other than the pseudonode LSPs for the LANs on which the IS-IS router is the Designated Intermediate System (DIS).
In this way, an attacker can force the router to flood all segments -- potentially a large number if the number of routes is large. It also causes the sequence number of all the LSPs to increase fast. If the sequence number increases to the maximum (0xFFFFFFFF), the IS-IS process must shut down for around 20 minutes (the product of MaxAge + ZeroAgeLifetime) to allow the old LSPs to age out of all the router databases.
BGP-4 [RFC4271] uses TCP [RFC0793] for transporting routing information between BGP speakers that have formed an adjacency.
[RFC2385] describes the use of the TCP MD5 digest option for providing packet origin authentication and data integrity protection of BGP packets. [RFC3562] provides suggestions for choosing the key length of the ad hoc Keyed MD5 mechanism specified in [RFC2385]. There is no provision for confidentiality for any of these BGP messages.
TCP MD5 [RFC2385] has recently been obsoleted by a new TCP Authentication Option (TCP-AO) [RFC5925]. [RFC5925] specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details than TCP-MD5 on the association of security with TCP connections. It allows rekeying during a TCP connection, assuming that an out-of-band protocol or manual mechanism provides the new keys. Note that TCP MD5 does not preclude rekeying during a connection, but does not require its support either. Further, TCP-AO supports key changes with zero segment loss, whereas key changes in TCP MD5 can lose segments in transit during the changeover or require trying multiple keys on each received segment during key use overlap because TCP MD5 lacks an explicit Key ID. Although TCP recovers lost segments through retransmission, loss can have a substantial impact on performance.
However, this document covers only TCP MD5, as all current deployments are still using BGP with TCP MD5 and have not upgraded to [RFC5925]. There isn't enough operational experience present to evaluate the technical and management issues with this proposal yet.
Compared to previously described IGP protocols, BGP has additional exposure due to the nature of the environment where it is typically used -- namely, between autonomous networks (under different administrative control). While routers running interior gateway protocols may all be configured with the same administrative authority, two BGP peers may be in different administrative domains, having different policies for key strength, rollover frequency, etc. An autonomous system must often support a large number of keys at different BGP boundaries, as each connecting AS represents a different administrative entity. In practice, once set, shared secrets between BGP peers are rarely, if ever, changed.
Each pair of BGP speakers forming a peering may have a different MD5 shared key that facilitates the independent configuration and changing of keys across a large-scale network. Manual configuration and maintenance of cryptographic keys across all BGP sessions is a challenge in any large-scale environment.
Most BGP implementations will accept BGP packets with a bad digest up to the hold interval negotiated between BGP peers at peering startup, in order to allow for MD5 keys to be changed with minimal impact on operation of the network. This technique does, however, allow some short period of time during which an attacker may inject BGP packets with false MD5 digests into the network and can expect those packets to be accepted, even though the MD5 digests are not valid.
BGP relies on TCP [RFC0793] for transporting data between BGP speakers. BGP can rely on TCP's protection against data corruption and replay to preclude replay attacks against BGP sessions. A great deal of research has gone into the feasibility of an attacker overcoming these protections, including [TcpWindow] and [Conv01]. Most router and operating system (OS) vendors have modified their TCP implementations to resolve the security vulnerabilities described in these references, where possible.
As mentioned earlier, MD5 is vulnerable to collision attacks and can be attacked through several means, such as those explored in [Wang04].
Though it can be argued that the collision attacks do not have a practical application in this scenario, the use of MD5 should be discouraged.
Routers performing cryptographic processing of packets in software may be exposed to additional opportunities for DoS attacks. An attacker may be able to transmit enough spoofed traffic with false digests that the router's processor and memory resources are consumed, causing the router to be unable to perform normal processing. This exposure is particularly problematic between routers not under unified administrative control.
The initial version of RIP was specified in STD 34 [RFC1058]. This version did not provide for any authentication or authorization of routing data, and thus was vulnerable to any of a number of attacks against routing protocols. This limitation was one reason why this protocol was moved to Historic status [RFC1923].
RIPv2, originally specified in [RFC1388], then [RFC1723], was finalized in STD 56 [RFC2453]. This version of the protocol provides for authenticating packets with a digest. The details thereof have initially been provided in "RIP-2 MD5 Authentication" [RFC2082]; "RIPv2 Cryptographic Authentication" [RFC4822] obsoletes [RFC2082] and adds details of how the SHA family of hash algorithms can be used to protect RIPv2. [RFC2082] only specified the use of Keyed MD5.
o The sequence number used by a router is initialized to zero at startup, and is also set to zero whenever the neighbor is brought down. If the cryptographically protected packets of a router that is brought down (for administrative or other reasons) are stored by a malicious router, the new router could replay the packets from the previous session, thus forcing traffic through the malicious router. Dropping of such packets by the router could result in blackholes. Also, forwarding wrong packets could result in routing loops.
o RIPv2 allows multiple packets with the same sequence number. This could mean the same packet may be replayed many times before the next legitimate packet is sent. An attacker may resend the same packet repeatedly until the next Hello packet is transmitted and received, which means the Hello interval therefore determines the attack window.
o RIPv2 [RFC2453] did not specify the use of any particular hash algorithm. RFC 4822 introduced HMAC-SHA1 as mandatory to implement, along with Keyed MD5 as specified in [RFC2082]. Support for Keyed MD5 was mandated to ensure compatability with legacy implementations.
o "RIPv2 Cryptographic Authentication" [RFC4822] does not cover the UDP and the IP headers. It is therefore possible for an attacker to modify some fields in the above headers without routers becoming aware of it.
There is limited exposure to modification of the UDP header, as the RIP protocol uses only it to compute the length of the RIP packet. Changes introduced in the UDP header would cause RIP authentication to fail the RIP authentication, thereby limiting exposure.
RIP uses the source IP address from the IP header to determine which RIP neighbor it has learnt the RIP Update from. Changing the source IP address can be used by an attacker to disrupt the RIP routing sessions between two routers R1 and R2, as shown in the following examples.
Scenario 1:
R1 sends an authenticated RIP message to R2 with a cryptographic sequence number X.
The attacker then needs a packet with a higher sequence number originated by R2 either, from this session or from some earlier session.
The attacker can then replay this packet to R2 by changing the source IP to that of R1.
R2 would then no longer accept any more RIP Updates from R1, as those would have a lower cryptographic sequence number. After 180 seconds (or less), R2 would consider R1 timed out and bring down the RIP session.
Scenario 2:
R1 announces a route with cost C1 to R2. This packet can be captured by an attacker. Later, if this cost changes and R1 announces this with a different cost C2, the attacker can replay the captured packet, modifying the source IP to a new arbitrary IP address, thereby masquerading as a different router.
R2 will accept this route and the router as a new gateway, and R2 would then use the non-existent router as a next hop for that network. This would only be effective if the cost C1 is less than C2.
BFD is specified in [RFC5880]. Extensions to BFD for multihop [RFC5883] and single hop [RFC5881] are defined for IPv4 and IPv6. It is designed to detect failure with the forwarding plane next hop.
The BFD base specification specifies an optional authentication mechanism that can be used by the receiver of a packet to be able to authenticate the source of the packet. It relies on the facts that the keys are shared between the peers and no mechanism is defined for the actual key generation.
o The level of security provided is based on the Authentication Type used. However, the authentication algorithms defined are MD5 or SHA-1 based. As mentioned earlier, MD5 and SHA-1 are both known to be vulnerable to collision attacks.
o The BFD specification mentions mechanisms to allow for the change of authentication state based on the state of a received packet. This can cause a denial-of-service attack where a malicious authenticated packet (stored from a past session) can be relayed
over a session that does not use authentication. This causes one end to assume that authentication is enabled at the other end, and hence the BFD adjacency is dropped. This would be a harder attack to put forth when meticulously keyed authentication is in use.
o BFD works on microsecond timers. When malicious packets are sent at short intervals, with the authentication bit set, it can cause a DoS attack.
o BFD allows a mode called the echo mode. Echo packets are not defined in the BFD specification, though they can keep the BFD session up. There are no guidelines on the properties of the echo packets beyond the choice of the source and destination addresses. While the BFD specification recommends applying security mechanisms to prevent spoofing of these packets, there are no guidelines on what type of mechanisms are appropriate.
Any security issues in the echo mode will directly affect the BFD protocol and session states, and hence the network stability. The potential effects and remedies as understood today are somewhat limited, however. For instance, any replay attacks would be indistinguishable from normal forwarding of the tested router. An attack would still cause a faulty link to be believed to be up, but there is little that can be done about it. However, if the echo packets are guessable, it may be possible to spoof from an external source and cause BFD to believe that a one-way link is really bidirectional. As a result, it is important that the echo packets contain random material that is also checked upon reception.
o BFD packets can be sent at millisecond intervals (the protocol uses timers at microsecond intervals). When using authentication, this can cause frequent sequence number wrap-around as a 32-bit sequence number is used, thus considerably reducing the security of the authentication algorithms.
o Recently, limitations in collision-resistance properties of the MD5 and SHA-1 hash functions have been discovered; [RFC4270] summarizes the discoveries. There have been attacks against the use of MD5 as a hash; while these attacks do not directly apply to the use of HMAC-MD5 and keyed SHA-1 in BFD, it is prudent to have other options available. Such attacks do not mean that BFD using SHA-1 for authentication is at risk. However, it does mean that SHA-1 should be replaced as soon as possible and should not be used for new applications.
It should be noted that if SHA-1 is used in the Hashed Message Authentication Code (HMAC) [RFC2104] construction, then collision attacks currently known against SHA-1 do not apply. The new attacks on SHA-1 have no impact on the security of HMAC-SHA-1.
There are already proposals [GenBFDAuth] that add support for HMAC with the SHA-1 and SHA-2 family of hash functions for BFD.
This document outlines security issues arising from the current methodology for manual keying of various routing protocols. No specific changes to routing protocols are proposed in this document; likewise, no new security requirements result.
We would like to acknowledge Sam Hartman, Ran Atkinson, Stephen Kent and Brian Weis for their initial comments on this document. Thanks to Merike Kaeo and Alfred Hoenes for reviewing many sections of the document and providing lot of useful comments.
[RFC0793]
Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981.
[RFC1195]
Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, December 1990.
[RFC2328]
Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC2385]
Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, August 1998.
[RFC2453]
Malkin, G., "RIP Version 2", STD 56, RFC 2453, November 1998.
[RFC4271]
Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006.
[RFC4302]
Kent, S., "IP Authentication Header", RFC 4302, December 2005. Kent, S., "IP Authentication Header",
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[RFC4552]
Gupta, M. and N. Melam, "Authentication/Confidentiality for OSPFv3", RFC 4552, June 2006.
[RFC4822]
Atkinson, R. and M. Fanto, "RIPv2 Cryptographic Authentication", RFC 4822, February 2007.
[RFC5340]
Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, July 2008.
[RFC5304]
Li, T. and R. Atkinson, "IS-IS Cryptographic Authentication", RFC 5304, October 2008.
[RFC5310]
Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R., and M. Fanto, "IS-IS Generic Cryptographic Authentication", RFC 5310, February 2009.
[Arjen05]
Arjen K. Lenstra, "Further progress in Hashing cryptanalysis", Lucent Bell Laboratories, February 26, 2005.
[Conv01]
Convery, et al., "BGP Vulnerability Testing: Separating Fact from FUD v1.00", NANOG 28, pp. 1-61, June 2003.
[Crypto2004]
Xiaoyun Wang, Xuejia Lai, Dengguo Feng, and Hongbo Yu, "Collisions for hash functions MD4, MD5, HAVAL-128, and RIPEMD", Crypto 2004 Rump Session.
[Dobb96a]
Dobbertin, H., "Cryptanalysis of MD5 Compress", Technical Report, 2 May 1996. (Presented at the Rump Session of EuroCrypt 1996.)
[Dobb96b]
Dobbertin, H., "The Status of MD5 After a Recent Attack", CryptoBytes, Vol. 2, No. 2, Summer 1996.
[GenBFDAuth]
Bhatia, M. and V. Manral, "BFD Generic Cryptographic Authentication", Work in Progress, June 2010.
[NISTHmacSHA]
"NIST's Policy on Hash Functions", 2006, http://csrc.nist.gov/groups/ST/hash/policy.html.
[Philip01]
Philip Hawkes, Michael Paddon, and Gregory G. Rose, "On Corrective Patterns for the SHA-2 Family", IACR ePrint Archive, 2004, http://eprint.iacr.org/2004/207.
[Prav01]
Praveen Gauravaram, et al., "Collision Attacks on MD5 and SHA-1: Is this the 'Sword of Domocles' for Electronic Commerce?", Information Security Institue (ISI), Queensland University of Technology (QUT), Australia.
[Prav02]
Praveen Gauravaram, et al., "Some thoughts on Collision Attacks in the Hash Functions Md5, SHA-0 and SHA-1", Information Security Institue (ISI), Queensland University of Technology (QUT), Australia.
[RFC1058]
Hedrick, C., "Routing Information Protocol", RFC 1058, June 1988.
[RFC1321]
Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.
[RFC1388]
Malkin, G., "RIP Version 2 Carrying Additional Information", RFC 1388, January 1993.
[RFC1723]
Malkin, G., "RIP Version 2 - Carrying Additional Information", RFC 1723, November 1994.
[RFC1923]
Halpern, J. and S. Bradner, "RIPv1 Applicability Statement for Historic Status", RFC 1923, March 1996.
[RFC2082]
Baker, F. and R. Atkinson, "RIP-2 MD5 Authentication", RFC 2082, January 1997.
[RFC2104]
Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.
[RFC2154]
Murphy, S., Badger, M., and B. Wellington, "OSPF with Digital Signatures", RFC 2154, June 1997.
[RFC2410]
Glenn, R. and S. Kent, "The NULL Encryption Algorithm and Its Use With IPsec", RFC 2410, November 1998.
[RFC3562]
Leech, M., "Key Management Considerations for the TCP MD5 Signature Option", RFC 3562, July 2003.
[RFC4270]
Hoffman, P. and B. Schneier, "Attacks on Cryptographic Hashes in Internet Protocols", RFC 4270, November 2005.
[RFC4306]
Kaufman, C., Ed., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005.
[RFC5709]
Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M., Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic Authentication", RFC 5709, October 2009.
[RFC5880]
Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, June 2010.
[RFC5881]
Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881, June 2010.
[RFC5883]
Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for Multihop Paths", RFC 5883, June 2010.
[RFC5925]
Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, June 2010.
[RR07]
Rechberger, C. and V. Rijmen, "On Authentication with HMAC and Non-random Properties", Financial Cryptography and Data Security, Lecture Notes in Computer Science, Volume 4886/2008, Springer-Verlag, Berlin, December 2007.
[RR08]
Rechberger, C. and V. Rijmen, "New Results on NMAC/HMAC when Instantiated with Popular Hash Functions", Journal of Universal Computer Science, Volume 14, Number 3, pp. 347-376, 1 February 2008.
[TcpWindow]
Watson, P., "Slipping in the Window: TCP Reset attacks", Presentation at 2004 CanSecWest, http://cansecwest.com/csw04archive.html.
[Wang04]
Wang, X., et al., "Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD", August 2004, IACR ePrint Archive, http://eprint.iacr.org/2004/199.
[Wang05]
Wang, X., et al., "Finding Collisions in the Full SHA-1", Proceedings of Crypto 2005, Lecture Notes in Computer Science, Volume 3621, pp. 17-36, Springer- Verlag, Berlin, August 31, 2005.
Authors' Addresses
6094 - Summary of Cryptographic Authentication Algorithm Implementation Requirem
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 6094
Category: Informational
ISSN: 2070-1721
M. Bhatia
Alcatel-Lucent
V. Manral
IP Infusion
February 2011
The routing protocols Open Shortest Path First version 2 (OSPFv2), Intermediate System to Intermediate System (IS-IS), and Routing Information Protocol (RIP) currently define cleartext and MD5 (Message Digest 5) methods for authenticating protocol packets. Recently, effort has been made to add support for the SHA (Secure Hash Algorithm) family of hash functions for the purpose of authenticating routing protocol packets for RIP, IS-IS, and OSPF.
To encourage interoperability between disparate implementations, it is imperative that we specify the expected minimal set of algorithms, thereby ensuring that there is at least one algorithm that all implementations will have in common.
Similarly, RIP for IPv6 (RIPng) and OSPFv3 support IPsec algorithms for authenticating their protocol packets.
This document examines the current set of available algorithms, with interoperability and effective cryptographic authentication protection being the principal considerations. Cryptographic authentication of these routing protocols requires the availability of the same algorithms in disparate implementations. It is desirable that newly specified algorithms should be implemented and available in routing protocol implementations because they may be promoted to requirements at some future time.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6094.
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Most routing protocols include three different types of authentication schemes: Null authentication, cleartext password, and cryptographic authentication. Null authentication is equivalent to having no authentication scheme at all.
In a cleartext scheme, also known as a "simple password" scheme, the password is exchanged completely unprotected, and anyone with physical access to the network can learn the password and compromise the integrity of the routing domain. The simple password scheme protects against accidental establishment of routing sessions in a given domain, but beyond that it offers no additional protection.
In a cryptographic authentication scheme, routers share a secret key that is used to generate a message authentication code for each of the protocol packets. Today, routing protocols that implement message authentication codes often use a Keyed-MD5 [RFC1321] digest. The recent escalating series of attacks on MD5 raise concerns about its remaining useful lifetime.
These attacks may not necessarily result in direct vulnerabilities for Keyed-MD5 digests as message authentication codes because the colliding message may not correspond to a syntactically correct protocol packet. The known collision, pre-image, and second pre-image attacks [RFC4270] on MD5 may not increase the effectiveness of the key recovery attacks on HMAC-MD5. Regardless, there is a need felt to deprecate MD5 [RFC1321] as the basis for the Hashed Message Authentication Code (HMAC) algorithm in favor of stronger digest algorithms.
In light of these considerations, there are proposals to replace HMAC-MD5 with keyed HMAC-SHA [SHS] digests where HMAC-MD5 is currently mandated in RIPv2 [RFC2453] IS-IS [ISO] [RFC1195], and Keyed-MD5 in OSPFv2 [RFC2328].
OSPFv3 [RFC5340] and RIPng [RFC2080] rely on the IPv6 Authentication Header (AH) [RFC4302] and IPv6 Encapsulating Security Payload (ESP) [RFC4303] in order to provide integrity, authentication, and/or confidentiality.
However, the nature of cryptography is that algorithmic improvement is an ongoing process, as is the exploration and refinement of attack vectors. An algorithm believed to be strong today may be demonstrated to be weak tomorrow. Given this, the choice of preferred algorithm should favor the minimization of the likelihood of it being compromised quickly.
It should be recognized that preferred algorithm(s) will change over time to adapt to the evolving threats. At any particular time, the mandatory-to-implement algorithm(s) might not be specified in the base protocol specification. As protocols are extended, the preference for presently stronger algorithms presents a problem regarding the question of interoperability of existing and future implementations with respect to standards, and also regarding operational preference for the configuration as deployed.
It is expected that an implementation should support the changing of security (authentication) keys. Changing the symmetric key used in any HMAC algorithm on a periodic basis is good security practice. Operators need to plan for this.
Implementations can support in-service key change so that no control packets are lost. During an in-service/in-band key change, more than one key can be active for receiving packets for a session. Some protocols support a key identifier that allows the two peers of a session to have multiple keys simultaneously for a session.
However, these protocols currently manage keys manually (i.e., via operator intervention) or dynamically based on some timer or security protocol.
The IS-IS specification allows for authentication of its Protocol Data Units (PDUs) via the authentication TLV (TLV 10) in the PDU. The base specification [ISO] had provisions only for cleartext passwords. [RFC5304] extends the authentication capabilities by providing cryptographic authentication for IS-IS PDUs. It mandates support for HMAC-MD5.
[RFC5310] adds support for the use of any cryptographic hash function for authenticating IS-IS PDUs. In addition to this, [RFC5310] also details how IS-IS can use the HMAC construct along with the Secure Hash Algorithm (SHA) family of cryptographic hash functions to secure IS-IS PDUs.
In order for IS-IS implementations to securely interoperate, they must support one or more authentication schemes in common. This section specifies the preference for standards-conformant IS-IS implementations that use accepted authentication schemes.
The earliest interoperability requirement for authentication as stated by [ISO] [RFC1195] required all implementations to support a cleartext password. This authentication scheme's utility is limited to precluding the accidental introduction of a new IS into a broadcast domain. Operators should not use this scheme, as it provides no protection against an attacker with access to the broadcast domain: anyone can determine the secret password through inspection of the PDU. This mechanism does not provide any significant level of security and should be avoided.
[RFC5304] defined the cryptographic authentication scheme for IS-IS. HMAC-MD5 was the only algorithm specified; hence, it is mandated. [RFC5310] defined a generic cryptographic scheme and added support for additional algorithms. Implementations should support [RFC5310], as it defines the generic cryptographic authentication scheme.
For IS-IS implementations to securely interoperate, they must have support for one or more authentication algorithms in common.
This section details the authentication algorithm requirements for standards-conformant IS-IS implementations.
The following are the available options for authentication algorithms:
o [RFC5304] mandates the use of HMAC-MD5.
o [RFC5310] does not require a particular algorithm but instead supports any digest algorithm (i.e., cryptographic hash functions).
As noted earlier, there is a desire to deprecate MD5. IS-IS implementations will likely migrate to an authentication scheme supported by [RFC5310], because it is algorithm agnostic. Possible digest algorithms include SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. Picking at least one mandatory-to-implement algorithm is imperative to ensuring interoperability.
[RFC2328]
includes three different types of authentication schemes: Null authentication, cleartext password (defined as "simple password" in [RFC2328]), and cryptographic authentication. Null authentication is semantically equivalent to no authentication.
In the cryptographic authentication scheme, the OSPFv2 routers on a common network/subnet are configured with a shared secret that is used to generate a Keyed-MD5 digest for each packet. A monotonically increasing sequence number scheme is used to protect against replay attacks.
[RFC5709] adds support for the use of the SHA family of hash algorithms for authentication of OSPFv2 packets.
For OSPF implementations to securely interoperate, they must have one or more authentication schemes in common.
While all implementations will have Null authentication since it's mandated by [RFC2328], its use is not appropriate in any context where the operator wishes to authenticate OSPFv2 packets in their network.
While all implementations will also support a cleartext password since it's mandated by [RFC2328], its use is only appropriate when the operator wants to preclude the accidental introduction of a router into the domain. This scheme is patently not useful when an operator wants to authenticate the OSPFv2 packets.
Cryptographic authentication is a mandatory scheme defined in [RFC2328], and all conformant implementations must support this.
For OSPFv2 implementations to securely interoperate, they must support one or more cryptographic authentication algorithms in common.
The following are the available options for authentication algorithms:
o [RFC2328] specifies the use of Keyed-MD5.
o [RFC5709] specifies the use of HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512, and also mandates support for HMAC-SHA-256 (HMAC-SHA-1 is optional).
As noted earlier, there is a desire to deprecate MD5. Some alternatives for MD5 are listed in [RFC5709].
Possible digest algorithms include SHA-1, SHA-256, SHA-384, and SHA-512. Picking one mandatory-to-implement algorithm is imperative to ensuring interoperability.
OSPFv3 [RFC5340] relies on the IPv6 Authentication Header (AH) [RFC4302] and IPv6 Encapsulating Security Payload (ESP) [RFC4303] in order to provide integrity, authentication, and/or confidentiality.
[RFC4552] mandates the use of ESP for authenticating OSPFv3 packets. The implementations could also provide support for using AH to protect these packets.
The algorithm requirements for AH and ESP are described in [RFC4835] as follows:
o [RFC2404] mandates HMAC-SHA-1-96.
o [RFC3566] indicates AES-XCBC-MAC-96 as a "should", but it's likely that this will be mandated at some future time.
RIPv2, originally specified in [RFC1388] and then in [RFC1723], has been updated and published as STD 56, [RFC2453]. If the Address Family Identifier of the first (and only the first) entry in the RIPv2 message is 0xFFFF, then the remainder of the entry contains the authentication information. The [RFC2453] version of the protocol provides for authenticating packets using a cleartext password (defined as "simple password" in [RFC2453]) not more than 16 octets in length.
[RFC2082] added support for Keyed-MD5 authentication, where a digest is appended to the end of the RIP packet. [RFC4822] obsoleted [RFC2082] and added the SHA family of hash algorithms to the list of cryptographic authentications that can be used to protect RIPv2, whereas [RFC2082] previously specified only the use of Keyed-MD5.
For RIPv2 implementations to securely interoperate, they must support one or more authentication schemes in common.
While all implementations will support a cleartext password since it's mandated by [RFC2453], its use is only appropriate when the operator wants to preclude the accidental introduction of a router into the domain. This scheme is patently not useful when an operator wants to authenticate the RIPv2 packets.
[RFC2082] mandates the use of an authentication scheme that uses Keyed-MD5. However, [RFC2082] has been obsoleted by [RFC4822]. Compliant implementations must provide support for an authentication scheme that uses Keyed-MD5 but should recognize that this is superseded by cryptographic authentication as defined in [RFC4822].
Implementations should provide support for [RFC4822], as it specifies the RIPv2 cryptographic authentication schemes.
For RIPv2 implementations to securely interoperate, they must support one or more authentication algorithms in common.
The following are the available options for authentication algorithms:
o [RFC2082] specifies the use of Keyed-MD5.
o [RFC4822] specifies the use of Keyed-MD5, HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512.
As noted earlier, there is a desire to deprecate MD5. Some alternatives for MD5 are listed in [RFC4822]. Possible digest algorithms include SHA-1, SHA-256, SHA-384, and SHA-512. Picking one mandatory-to-implement algorithm is imperative to ensuring interoperability.
RIPng [RFC2080] relies on the IPv6 Authentication Header (AH) [RFC4302] and IPv6 Encapsulating Security Payload (ESP) [RFC4303] in order to provide integrity, authentication, and/or confidentiality.
The algorithm requirements for AH and ESP are described in [RFC4835] as follows:
o [RFC2404] mandates HMAC-SHA-1-96.
o [RFC3566] indicates AES-XCBC-MAC-96 as a "should", but it's likely that this will be mandated at some future time.
The cryptographic mechanisms referenced in this document provide only authentication algorithms. These algorithms do not provide confidentiality. Encrypting the content of the packet and thereby providing confidentiality is not considered in the definition of the routing protocols.
The cryptographic strength of the HMAC depends upon the cryptographic strength of the underlying hash function and on the size and quality of the key. The feasibility of attacking the integrity of routing protocol messages protected by keyed digests may be significantly more limited than that of other data; however, preference for one family of algorithms over another may also change independently of the perceived risk to a particular protocol.
To ensure greater security, the keys used should be changed periodically, and implementations must be able to store and use more than one key at the same time. Operational experience suggests that the lack of periodic rekeying is a source of significant exposure and that the lifespan of shared keys in the network is frequently measured in years.
While simple password schemes are well represented in the document series and in conformant implementations of the protocols, the inability to offer either integrity or identity protection are sufficient reason to strongly discourage their use.
This document concerns itself with the selection of cryptographic algorithms for use in the authentication of routing protocol packets being exchanged between adjacent routing processes. The cryptographic algorithms identified in this document are not known to be broken at the current time, and ongoing cryptographic research so far leads us to believe that they will likely remain secure in the foreseeable future. We expect that new revisions of this document will be issued in the future to reflect current thinking on the algorithms that various routing protocols should employ to ensure interoperability between disparate implementations.
We would like to thank Joel Jaeggli, Sean Turner, and Adrian Farrel for their comments and feedback on this document, which resulted in significant improvement of the same.
[ISO]
"Intermediate system to Intermediate system routing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service", ISO/IEC 10589:1992 (ISO 8473).
[RFC1195]
Callon, R., "Use of OSI IS-IS for routing in TCP/IP and dual environments", RFC 1195, December 1990.
[RFC2080]
Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080, January 1997.
[RFC2328]
Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC2453]
Malkin, G., "RIP Version 2", STD 56, RFC 2453, November 1998.
[RFC4822]
Atkinson, R. and M. Fanto, "RIPv2 Cryptographic Authentication", RFC 4822, February 2007.
[RFC4835]
Manral, V., "Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)", RFC 4835, April 2007.
[RFC5304]
Li, T. and R. Atkinson, "IS-IS Cryptographic Authentication", RFC 5304, October 2008.
[RFC5310]
Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R., and M. Fanto, "IS-IS Generic Cryptographic Authentication", RFC 5310, February 2009.
[RFC5340]
Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, July 2008.
[RFC5709]
Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M., Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic Authentication", RFC 5709, October 2009.
[RFC1321]
Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.
[RFC1388]
Malkin, G., "RIP Version 2 Carrying Additional Information", RFC 1388, January 1993.
[RFC1723]
Malkin, G., "RIP Version 2 - Carrying Additional Information", RFC 1723, November 1994.
[RFC2082]
Baker, F. and R. Atkinson, "RIP-2 MD5 Authentication", RFC 2082, January 1997.
[RFC2404]
Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998.
[RFC3566]
Frankel, S. and H. Herbert, "The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec", RFC 3566, September 2003.
[RFC4270]
Hoffman, P. and B. Schneier, "Attacks on Cryptographic Hashes in Internet Protocols", RFC 4270, November 2005.
[RFC4302]
Kent, S., "IP Authentication Header", RFC 4302, December 2005.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005.
[RFC4552]
Gupta, M. and N. Melam, "Authentication/Confidentiality for OSPFv3", RFC 4552, June 2006.
[SHS]
"Secure Hash Standard (SHS)", National Institute of Standards and Technology (NIST) FIPS Publication 180-3, October 2008.
Authors' Addresses
EMail: manav.bhatia@alcatel-lucent.com
6192 - Protecting the Router Control Plane
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 6192
Category: Informational
ISSN: 2070-1721
D. Dugal
Juniper Networks
C. Pignataro
R. Dunn
Cisco Systems
March 2011
This memo provides a method for protecting a router's control plane from undesired or malicious traffic. In this approach, all legitimate router control plane traffic is identified. Once legitimate traffic has been identified, a filter is deployed in the router's forwarding plane. That filter prevents traffic not specifically identified as legitimate from reaching the router's control plane, or rate-limits such traffic to an acceptable level.
Note that the filters described in this memo are applied only to traffic that is destined for the router, and not to all traffic that is passing through the router.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6192.
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Modern router architecture design maintains a strict separation of forwarding and router control plane hardware and software. The router control plane supports routing and management functions. It is generally described as the router architecture hardware and software components for handling packets destined to the device itself as well as building and sending packets originated locally on the device. The forwarding plane is typically described as the router architecture hardware and software components responsible for receiving a packet on an incoming interface, performing a lookup to identify the packet's IP next hop and determine the best outgoing interface towards the destination, and forwarding the packet out through the appropriate outgoing interface.
Visually, this architecture can be represented as the router's control plane hardware sitting on top of, and interfacing with, the forwarding plane hardware with interfaces connecting to other network devices. See Figure 1.
Figure 1: Router Control Plane Protection
Typically, forwarding plane functionality is realized in high- performance Application Specific Integrated Circuits (ASICs) that are capable of handling very high packet rates. By contrast, the router control plane is generally realized in software on general-purpose processors. While software instructions run on both planes, the router control plane hardware is usually not optimized for high-speed packet handling. Given their differences in packet-handling capabilities, the router's control plane hardware is more susceptible to being overwhelmed by a Denial-of-Service (DoS) attack than the forwarding plane's ASICs. It is imperative that the router control plane remain stable regardless of traffic load to and from the device because the router control plane is what drives the programming of the forwarding plane.
The router control plane also processes traffic destined to the router, and because of the wider range of functionality is more susceptible to security vulnerabilities and a more likely target for a DoS attack than the forwarding plane.
It is advisable to protect the router control plane by implementing mechanisms to filter completely or rate-limit traffic not required at the control plane level (i.e., unwanted traffic). "Router control plane protection" is the concept of filtering or rate-limiting unwanted traffic that would be diverted from the forwarding plane up to the router control plane. The closer the filters and rate limiters are to the forwarding plane and line-rate hardware, the more effective the protection is and the more resistant the system is to DoS attacks. This memo demonstrates one example of how to deploy a policy filter that satisfies a set of sample traffic-matching, filtering, and rate-limiting criteria.
Note that the filters described in this memo are applied only to traffic that is destined for the router, and not to all traffic that is passing through the router.
The method described in Section 3 and depicted in Figure 1 illustrates how to protect the router control plane from unwanted traffic. Recognizing that deployment scenarios will vary, the exact implementation is not generally applicable in all situations. The categorization of legitimate router control plane traffic is critically important in a successful implementation.
The examples given in this memo are simplified and minimalistic, designed to illustrate the concept of protecting the router's control plane. From them, operators can extrapolate specifics based on their unique configuration and environment. This document is about semantics, and Appendix A exemplifies syntax. For additional router vendor implementations, or other converged devices, the syntax should be translated to the respective language in a manner that preserves the semantics.
Additionally, the need to provide the router control plane with isolation, stability, and protection against rogue packets has been incorporated into router designs for some time. Consequently, there may be other vendor or implementation specific router control plane protection mechanisms that are active by default or always active. Those approaches may apply in conjunction with, or in addition to, the method described in Section 3 and illustrated in Appendices A.1 and A.2. Those implementations should be considered as part of an overall traffic management plan but are outside the scope of this document.
This method is applicable for IPv4 as well as IPv6 address families, and the legitimate traffic example in Section 3.1 provides examples for both.
In this memo, the authors demonstrate how a filter protecting the router control plane can be deployed. In Section 3.1, a sample router is introduced, and all traffic that its control plane must process is identified. In Section 3.2, filter design concepts are discussed. Cisco (Cisco IOS software) and Juniper (JUNOS) implementations are provided in Appendices A.1 and A.2, respectively.
In this example, the router control plane must process traffic (i.e., traffic destined to the router and not through the router) per the following criteria:
o Drop all IP packets that are fragments (see Section 3.3)
o Permit ICMP and ICMPv6 traffic from any source, rate-limited to 500 kbps for each category
o Permit OSPF traffic from routers within subnet 192.0.2.0/24 and OSPFv3 traffic from IPv6 Link-Local unicast addresses (fe80::/10)
o Permit internal BGP (iBGP) traffic from routers within subnets 192.0.2.0/24 and 2001:db8:1::/48
o Permit external BGP (eBGP) traffic from eBGP peers 198.51.100.25, 198.51.100.27, 198.51.100.29, and 198.51.100.31; and IPv6 peers 2001:db8:100::25, 2001:db8:100::27, 2001:db8:100::29, and 2001:db8:100::31
o Permit DNS traffic from DNS servers within subnet 198.51.100.0/30 and 2001:db8:100:1::/64
o Permit NTP traffic from NTP servers within subnet 198.51.100.4/30 and 2001:db8:100:2::/64
o Permit Secure SHell (SSH) traffic from network management stations within subnet 198.51.100.128/25 and 2001:db8:100:3::/64
o Permit Simple Network Management Protocol (SNMP) traffic from network management stations within subnet 198.51.100.128/25 and 2001:db8:100:3::/64
o Permit RADIUS authentication and accounting replies from RADIUS servers 198.51.100.9, 198.51.100.10, 2001:db8:100::9, and 2001:db8:100::10 that are listening on UDP ports 1812 and 1813 (Internet Assigned Numbers Authority (IANA) RADIUS ports). Note that this does not accommodate a server using the original UDP ports of 1645 and 1646
o Permit all other IPv4 and IPv6 traffic that was not explicitly matched in a class above, rate-limited to 500 kbps, and drop above that rate for each category
o Permit non-IP traffic (e.g., Connectionless Network Service (CLNS), Internetwork Packet Exchange (IPX), PPP Link Control Protocol (LCP), etc.), rate-limited to 250 kbps, and drop all remaining traffic above that rate
The characteristics of legitimate traffic will vary from network to network. To illustrate this, a router implementing the DHCP relay function can rate-limit inbound DHCP traffic from clients and restrict traffic from servers to a list of known DHCP servers. The list of criteria above is provided for example only.
A filter is installed on the forwarding plane. This filter counts and applies the actions to the categories of traffic described in Section 3.1. Because the filter is enforced in the forwarding plane, it prevents traffic from consuming bandwidth on the interface that connects the forwarding plane to the router control plane. The counters serve as an important forensic tool for the analysis of potential attacks, and as an invaluable debugging and troubleshooting aid. By adjusting the granularity and order of the filters, more granular forensics can be performed (i.e., create a filter that matches only traffic allowed from a group of IP addresses for a given protocol followed by a filter that denies all traffic for that protocol). This would allow for counters to be monitored for the allowed protocol filter, as well as any traffic matching the specific protocol that didn't originate from the explicitly allowed hosts.
In addition to the filters, rate limiters for certain classes of traffic are also installed in the forwarding plane as defined in Section 3.1. These rate limiters help further control the traffic that will reach the router control plane for each filtered class as well as all traffic not matching an explicit class. The actual rates selected for various classes are network deployment specific; analysis of the rates required for stability should be done periodically. It is important to note that the most significant factor to consider regarding the traffic profile going to the router control plane is the packets per second (pps) rate. Therefore, careful consideration must be given to determine the maximum pps rate that could be generated from a given set of packet size and bandwidth usage scenarios.
Syntactically, these filters explicitly define "allowed" traffic (including IP addresses, protocols, and ports), define acceptable actions for these acceptable traffic profiles (e.g., rate-limit or simply permit the traffic), and then discard all traffic destined to the router control plane that is not within the specifications of the policy definition.
In an actual production environment, predicting a complete and exhaustive list of traffic necessary to reach the router's control plane for day-to-day operation may not be as obvious as the example described herein. One recommended method to gauge this set of traffic is to allow all traffic initially, and audit the traffic that reaches the router control plane before applying any explicit filters or rate limits. See Section 3.3 below for more discussion of this topic.
The filter design provided in this document is intentionally limited to attachment at the local router in question (e.g., a "service- policy" attached to the "control-plane" in Cisco IOS, or a firewall filter attached to the "lo0" interface in JUNOS). While virtually all production environments utilize and rely heavily upon edge protection or interface filtering, these methods of router protection are beyond the intended scope of this document. Additionally, the protocols themselves that are allowed to reach the router control plane (e.g., OSPF, RSVP, TCP, SNMP, DNS, NTP, and inherently, SSH, TLS, ESP, etc.) may have cryptographic security methods applied to them, and the method of router control plane protection provided herein is not a replacement for those cryptographic methods.
In designing the protection method, there are two independent parts to consider: the classification of traffic (i.e., which traffic is matched by the filters), and the policy actions taken on the classified traffic (i.e., drop, permit, rate-limit, etc.).
There are different levels of granularity utilized for traffic classification. For example, allowing all traffic from specific source IP addresses versus allowing only a specific set of protocols from those specific source IP addresses will each affect a different subset of traffic.
Similarly, the policy actions taken on the classified traffic have degrees of impact that may not become immediately obvious. For example, discarding all ICMP traffic will have a negative impact on the operational use of ICMP tools such as ping or traceroute to debug network issues or to test deployment of a new circuit. Expanding on this, in a real production network, an astute operator could define varying rate limits for ICMP such that internal traffic is granted uninhibited access to the router control plane, while traffic from external addresses is rate-limited. Operators should pay special attention to the new functionality and roles that ICMPv6 has in the overall operation of IPv6 when designing the rate-limit policies. Example functions include Neighbor Discovery (ND) and Multicast Listener Discovery version 2 (MLDv2).
It is important to note that both classification and policy action decisions are accompanied by respective trade-offs. Two examples of these trade-off decisions are operational complexity at the expense of policy and statistics-gathering detail, and tighter protection at the expense of network supportability and troubleshooting ability.
Two types of traffic that need special consideration are IP fragments and IP optioned packets:
o For network deployments where IP fragmentation is necessary, a blanket policy of dropping all fragments destined to the router control plane may not be feasible. However, many deployments allow network configurations such that the router control plane should never see a fragmented datagram. Since many attacks rely on IP fragmentation, the example policy included herein drops all fragments destined to the router control plane.
o Similarly, some deployments may choose to drop all IP optioned packets. Others may need to loosen the constraint to allow for protocols that require IP optioned packets such as the Resource Reservation Protocol (RSVP). The design trade-off is that dropping all IP optioned packets protects the router from attacks that leverage malformed options, as well as attacks that rely on the slow-path processing (i.e., software processing path) of IP optioned packets. For network deployments where the protocols do not use IP options, the filter is simpler to design in that it can drop all packets with any IP option set. However, for networks utilizing protocols relying on IP options, the filter to identify the legitimate packets is more complex. If the filter is not designed correctly, it could result in the inadvertent blackholing of traffic for those protocols. This document does not include filter configurations for IP optioned packets; additional explanations regarding the filtering of packets based on the IP options they contain can be found in [IP-OPTIONS-FILTER].
The goal of the method for protecting the router control plane is to minimize the possibility for disruptions by reducing the vulnerable surface, which is inversely proportional to the granularity of the filter design. The finer the granularity of the filter design (e.g., filtering a more targeted subset of traffic from the rest of the policed traffic, or isolating valid source addresses into a different class or classes), the smaller the probability of disruption.
In addition to the traffic that matches explicit classes, care should be taken on the policy decision that governs the handling of traffic that would fall through the classification. Typically, that traffic is referred to as traffic that gets matched in a default class. It may also be traffic that matches a blanket protocol specific class where previous classes that have more granular classification did not match all packets for that specific protocol. The ideal policy would have explicit classes to match only the traffic specifically required at the router control plane and would drop all other traffic that does not match a predefined class. As most vendor implementations permit all traffic hitting the default class, an explicit drop action would need to be configured in the policy such that the traffic hitting that default class would be dropped, versus being permitted and delivered to the router control plane. This approach requires rigorous traffic pattern identification such that a default drop policy does not break existing device functionality. The approach defined in this document allows the default traffic and rate-limits it as opposed to dropping it. This approach was chosen as a way to give the operator time to evaluate and characterize traffic in a production scenario prior to dropping all traffic not explicitly matched and permitted. However, it is highly recommended that after monitoring the traffic matching the default class, explicit classes be defined to catch the legitimate traffic. After all legitimate traffic has been identified and explicitly allowed, the default class should be configured to drop any remaining traffic.
Additionally, the baselining and monitoring of traffic flows to the router's control plane are critical in determining both the rates and granularity of the policies being applied. It is also important to validate the existing policies and rules or update them as the network evolves and its traffic dynamics change. Some possible ways to achieve this include individual policy counters that can be exported or retrieved, for example via SNMP, and logging of filtering actions.
Finally, the use of flow-based behavioral analysis or command-line interface (CLI) functions to identify what client/server functions a given router's control plane handles would be very useful during initial policy development phases, and certainly for ongoing forensic analysis.
In addition to the design described in this document of defining "allowed" traffic (i.e., identifying traffic that the control plane must process) and limiting (e.g., rate-limiting or blocking) the rest, the router control plane protection method can be applied to thwart specific attacks. In particular, it can be used to protect against TCP SYN flooding attacks and other Denial-of-Service attacks that starve router control plane resources.
The filters described in this document leave the router susceptible to discovery from any host in the Internet. If network operators find this risk objectionable, they can reduce the exposure to discovery with ICMP by restricting the sub-networks from which ICMP Echo requests and potential traceroute packets (i.e., packets that would trigger an ICMP Time Exceeded reply) are accepted, and therefore to which sub-networks ICMP responses (ICMP Echo Reply and Time Exceeded) are sent. A similar concern exists for ICMPv6 traffic but on a broader level due to the additional functionalities implemented in ICMPv6. Filtering recommendations for ICMPv6 can be found in [RFC4890]. Moreover, different rate-limiting policies may be defined for internally (e.g., from the Network Operations Center (NOC)) versus externally sourced traffic. Note that this document is not targeted at the specifics of ICMP filtering or traffic filtering designed to prevent device discovery.
The filters described in this document do not block unwanted traffic having spoofed source addresses that match a defined traffic profile as discussed in Section 3.1. Network operators can mitigate this risk by preventing source address spoofing with filters applied at the network edge. Refer to Section 5.3.8 of [RFC1812] for more information regarding source address validation. Other methods also exist for limiting exposure to packet spoofing, such as the Generalized Time to Live (TTL) Security Mechanism (GTSM) [RFC5082] and Ingress Filtering [RFC2827] [RFC3704].
The ICMP rate limiter specified for the filters described in this document protects the router from floods of ICMP traffic; see Sections 3.1 and 3.3 for details. However, during an ICMP flood, some legitimate ICMP traffic may be dropped. Because of this, when operators discover a flood of ICMP traffic, they are highly motivated to stop it at the source where the traffic is being originated. Additional considerations pertaining to the usage and handling of traffic that utilizes the IP Router Alert Options can be found in [RTR-ALERT-CONS], and additional IP options filtering explanations can be found in [IP-OPTIONS-FILTER].
The treatment of exception traffic in the forwarding plane and the generation of specific messages by the router control plane also require protection from a DoS attack. Specifically, the generation of ICMP Unreachable messages by the router control plane needs to be rate-limited, either implicitly within the router's architecture or explicitly through configuration. When possible, different ICMP Destination Unreachable codes (e.g., "fragmentation needed and DF set") or "Packet Too Big" messages can receive a different rate- limiting treatment. Continuous benchmarking of router-generated ICMP traffic should be done before applying rate limits such that sufficient headroom is included to prevent inadvertent Path Maximum Transmission Unit Discovery (PMTUD) blackhole scenarios during normal operation. It is also recommended to deploy explicit rate limiters where possible to improve troubleshooting and monitoring capability. The explicit rate limiters in a class allow for monitoring tools to detect and report when these rate limiters become active (i.e., when traffic is policed). This in turn serves as an indicator that either the normal traffic rates have increased or "out of policy" traffic rates have been detected. More thorough analysis of the traffic flows and rate-limited traffic is needed to identify which of these two cases triggered the rate limiters. For additional information regarding specific ICMP rate-limiting, see Section 4.3.2.8 of [RFC1812].
Additionally, the handling of TTL / Hop Limit expired traffic needs protection. This traffic is not necessarily addressed to the device, but it can get sent to the router control plane to process the TTL / Hop Limit expiration. For example, rate-limiting the TTL / Hop Limit expired traffic before sending the packets to the router control plane component that will generate the ICMP error, and distributing the sending of ICMP errors to Line Card CPUs, are protection mechanisms that mitigate attacks before they can negatively affect a rate-limited router control plane component.
The authors would like to thank Ron Bonica for providing initial and ongoing review, suggestions, and valuable input. Pekka Savola, Warren Kumari, and Xu Chen provided very thorough and useful feedback that improved the document. Many thanks to John Kristoff, Christopher Morrow, and Donald Smith for a fruitful discussion around the operational and manageability aspects of router control plane protection techniques. The authors would also like to thank
Joel Jaeggli, Richard Graveman, Danny McPherson, Gregg Schudel, Eddie Parra, Seo Boon Ng, Manav Bhatia, German Martinez, Wen Zhang, Roni Even, Acee Lindem, Glen Zorn, Joe Abley, Ralph Droms, and Stewart Bryant for providing thorough review, useful suggestions, and valuable input. Assistance from Jim Bailey and Raphan Han in providing technical direction and sample configuration guidance on the IPv6 sections was also very much appreciated. Finally, the authors extend kudos to Andrew Yourtchenko for his review, comments, and willingness to present this document at IETF 78 (July 2010, Maastricht, The Netherlands) on behalf of the authors.
[IP-OPTIONS-FILTER]
Gont, F. and S. Fouant, "IP Options Filtering Recommendations", Work in Progress, February 2010.
[RFC1812]
Baker, F., Ed., "Requirements for IP Version 4 Routers", RFC 1812, June 1995.
[RFC2827]
Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000.
[RFC3704]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004.
[RFC4890]
Davies, E. and J. Mohacsi, "Recommendations for Filtering ICMPv6 Messages in Firewalls", RFC 4890, May 2007.
[RFC5082]
Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C. Pignataro, "The Generalized TTL Security Mechanism (GTSM)", RFC 5082, October 2007.
[RTR-ALERT-CONS]
Le Faucheur, F., Ed., "IP Router Alert Considerations and Usage", Work in Progress, March 2011.
The configurations provided below are syntactical representations of the semantics described in the document and should be treated as non-normative.
Refer to the Control Plane Policing (CoPP) document in the Cisco IOS Software Feature Guides (available at <http://www.cisco.com/>) for more information on the syntax and options available when configuring Control Plane Policing.
Refer to the Firewall Filter Configuration section of the Junos Software Policy Framework Configuration Guide (available at <http://www.juniper.net/>) for more information on the syntax and options available when configuring Junos firewall filters.
Authors' Addresses
EMail: dave@juniper.net
EMail: cpignata@cisco.com
EMail: rodunn@cisco.com
6274 - Security Assessment of the Internet Protocol Version 4
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 6274
Category: Informational
ISSN: 2070-1721
F. Gont
UK CPNI
July 2011
This document contains a security assessment of the IETF specifications of the Internet Protocol version 4 and of a number of mechanisms and policies in use by popular IPv4 implementations. It is based on the results of a project carried out by the UK's Centre for the Protection of National Infrastructure (CPNI).
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6274.
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The TCP/IP protocols were conceived in an environment that was quite different from the hostile environment in which they currently operate. However, the effectiveness of the protocols led to their early adoption in production environments, to the point that, to some extent, the current world's economy depends on them.
While many textbooks and articles have created the myth that the Internet protocols were designed for warfare environments, the top level goal for the Defense Advanced Research Projects Agency (DARPA) Internet Program was the sharing of large service machines on the ARPANET [Clark1988]. As a result, many protocol specifications focus only on the operational aspects of the protocols they specify and overlook their security implications.
While the Internet technology evolved since its inception, the Internet's building blocks are basically the same core protocols adopted by the ARPANET more than two decades ago. During the last twenty years, many vulnerabilities have been identified in the TCP/IP stacks of a number of systems. Some of them were based on flaws in some protocol implementations, affecting only a reduced number of systems, while others were based on flaws in the protocols themselves, affecting virtually every existing implementation [Bellovin1989]. Even in the last couple of years, researchers were still working on security problems in the core protocols [RFC5927] [Watson2004] [NISCC2004] [NISCC2005].
The discovery of vulnerabilities in the TCP/IP protocols led to reports being published by a number of CSIRTs (Computer Security Incident Response Teams) and vendors, which helped to raise awareness about the threats and the best mitigations known at the time the reports were published. Unfortunately, this also led to the documentation of the discovered protocol vulnerabilities being spread among a large number of documents, which are sometimes difficult to identify.
For some reason, much of the effort of the security community on the Internet protocols did not result in official documents (RFCs) being issued by the IETF (Internet Engineering Task Force). This basically led to a situation in which "known" security problems have not always been addressed by all vendors. In addition, in many cases, vendors have implemented quick "fixes" to protocol flaws without a careful analysis of their effectiveness and their impact on interoperability [Silbersack2005].
The lack of adoption of these fixes by the IETF means that any system built in the future according to the official TCP/IP specifications will reincarnate security flaws that have already hit our communication systems in the past.
Nowadays, producing a secure TCP/IP implementation is a very difficult task, in part because of the lack of a single document that serves as a security roadmap for the protocols. Implementers are faced with the hard task of identifying relevant documentation and differentiating between that which provides correct advisory and that which provides misleading advisory based on inaccurate or wrong assumptions.
There is a clear need for a companion document to the IETF specifications; one that discusses the security aspects and implications of the protocols, identifies the possible threats, discusses the possible countermeasures, and analyzes their respective effectiveness.
This document is the result of an assessment of the IETF specifications of the Internet Protocol version 4 (IPv4), from a security point of view. Possible threats were identified and, where possible, countermeasures were proposed. Additionally, many implementation flaws that have led to security vulnerabilities have been referenced in the hope that future implementations will not incur the same problems. Furthermore, this document does not limit itself to performing a security assessment of the relevant IETF specifications, but also provides an assessment of common implementation strategies found in the real world.
Many IP implementations have also been subject of the so-called "packet-of-death" vulnerabilities, in which a single specially crafted packet causes the IP implementation to crash or otherwise misbehave. In most cases, the attack packet is simply malformed; in other cases, the attack packet is well-formed, but exercises a little used path through the IP stack. Well-designed IP implementations should protect against these attacks, and therefore this document describes a number of sanity checks that are expected to prevent most of the aforementioned "packet-of-death" attack vectors. We note that if an IP implementation is found to be vulnerable to one of these attacks, administrators must resort to mitigating them by packet filtering.
Additionally, this document analyzes the security implications from changes in the operational environment since the Internet Protocol was designed. For example, it analyzes how the Internet Protocol could be exploited to evade Network Intrusion Detection Systems (NIDSs) or to circumvent firewalls.
This document does not aim to be the final word on the security of the Internet Protocol (IP). On the contrary, it aims to raise awareness about many security threats based on the IP protocol that have been faced in the past, those that we are currently facing, and those we may still have to deal with in the future. It provides advice for the secure implementation of the Internet Protocol (IP), but also provides insights about the security aspects of the Internet Protocol that may be of help to the Internet operations community.
Feedback from the community is more than encouraged to help this document be as accurate as possible and to keep it updated as new threats are discovered.
This document is heavily based on the "Security Assessment of the Internet Protocol" [CPNI2008] released by the UK Centre for the Protection of National Infrastructure (CPNI), available at http://www.cpni.gov.uk/Products/technicalnotes/3677.aspx.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
While there are a number of protocols that affect the way in which IP systems operate, this document focuses only on the specifications of the Internet Protocol (IP). For example, routing and bootstrapping protocols are considered out of the scope of this project.
The following IETF RFCs were selected as the primary sources for the assessment as part of this work:
o RFC 791, "INTERNET PROTOCOL DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION" (45 pages).
o RFC 815, "IP DATAGRAM REASSEMBLY ALGORITHMS" (9 pages).
o RFC 919, "BROADCASTING INTERNET DATAGRAMS" (8 pages).
o RFC 950, "Internet Standard Subnetting Procedure" (18 pages)
o RFC 1112, "Host Extensions for IP Multicasting" (17 pages)
o RFC 1122, "Requirements for Internet Hosts -- Communication Layers" (116 pages).
o RFC 1812, "Requirements for IP Version 4 Routers" (175 pages).
o RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers" (20 pages).
o RFC 2475, "An Architecture for Differentiated Services" (36 pages).
o RFC 3168, "The Addition of Explicit Congestion Notification (ECN) to IP" (63 pages).
o RFC 4632, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan" (27 pages).
This document is basically organized in two parts: "Internet Protocol header fields" and "Internet Protocol mechanisms". The former contains an analysis of each of the fields of the Internet Protocol header, identifies their security implications, and discusses possible countermeasures for the identified threats. The latter contains an analysis of the security implications of the mechanisms implemented by the Internet Protocol.
The Internet Protocol (IP) provides a basic data transfer function for passing data blocks called "datagrams" from a source host to a destination host, across the possible intervening networks. Additionally, it provides some functions that are useful for the interconnection of heterogeneous networks, such as fragmentation and reassembly.
The "datagram" has a number of characteristics that makes it convenient for interconnecting systems [Clark1988]:
o It eliminates the need of connection state within the network, which improves the survivability characteristics of the network.
o It provides a basic service of data transport that can be used as a building block for other transport services (reliable data transport services, etc.).
o It represents the minimum network service assumption, which enables IP to be run over virtually any network technology.
The IETF specifications of the Internet Protocol define the syntax of the protocol header, along with the semantics of each of its fields. Figure 1 shows the format of an IP datagram, as specified in [RFC0791].
Figure 1: Internet Protocol Header Format
Even though the minimum IP header size is 20 bytes, an IP module might be handed an (illegitimate) "datagram" of less than 20 bytes. Therefore, before doing any processing of the IP header fields, the following check should be performed by the IP module on the packets handed by the link layer:
LinkLayer.PayloadSize >= 20
where LinkLayer.PayloadSize is the length (in octets) of the datagram passed from the link layer to the IP layer.
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop).
The following subsections contain further sanity checks that should be performed on IP packets.
This is a 4-bit field that indicates the version of the Internet Protocol (IP), and thus the syntax of the packet. For IPv4, this field must be 4.
When a link-layer protocol de-multiplexes a packet to an Internet module, it does so based on a Protocol Type field in the data-link packet header.
In theory, different versions of IP could coexist on a network by using the same Protocol Type at the link layer, but a different value in the Version field of the IP header. Thus, a single IP module could handle all versions of the Internet Protocol, differentiating them by means of this field.
However, in practice different versions of IP are identified by a different Protocol Type (e.g., EtherType in the case of Ethernet) number in the link-layer protocol header. For example, IPv4 datagrams are encapsulated in Ethernet frames using an EtherType of 0x0800, while IPv6 datagrams are encapsulated in Ethernet frames using an EtherType of 0x86DD [IANA_ET].
Therefore, if an IPv4 module receives a packet, the Version field must be checked to be 4. If this check fails, the packet should be silently dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop). If an implementation does not perform this check, an attacker could use a different value for the Version field, possibly evading NIDSs that decide which pattern-matching rules to apply based on the Version field.
If the link-layer protocol employs a specific "Protocol Type" value for encapsulating IPv4 packets (e.g., as is the case of Ethernet), a node should check that IPv4 packets are de-multiplexed to the IPv4 module when such value was used for the Protocol Type field of the link-layer protocol. If a packet does not pass this check, it should be silently dropped.
An attacker could encapsulate IPv4 packets using other link-layer "Protocol Type" values to try to subvert link-layer Access Control Lists (ACLs) and/or for tampering with NIDSs.
The IHL (Internet Header Length) field indicates the length of the Internet header in 32-bit words (4 bytes). The following paragraphs describe a number of sanity checks to be performed on the IHL field, such that possible packet-of-death vulnerabilities are avoided.
As the minimum datagram size is 20 bytes, the minimum legal value for this field is 5. Therefore, the following check should be enforced:
IHL >= 5
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop).
For obvious reasons, the Internet header cannot be larger than the whole Internet datagram of which it is part. Therefore, the following check should be enforced:
IHL * 4 <= Total Length
This needs to refer to the size of the datagram as specified by the sender in the Total Length field, since link layers might have added some padding (see Section 3.4).
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop).
The above check allows for Internet datagrams with no data bytes in the payload that, while nonsensical for virtually every protocol that runs over IP, are still legal.
Figure 2 shows the original syntax of the Type of Service field, as defined by RFC 791 [RFC0791] and updated by RFC 1349 [RFC1349]. This definition has been superseded long ago (see Sections 3.3.2.1 and 3.3.2.2), but it is still assumed by some deployed implementations.
Figure 2: Type of Service Field (Original Interpretation)
Table 1: Semantics of the TOS Bits
Table 2: Semantics of the Possible Precedence Field Values
The Type of Service field can be used to affect the way in which the packet is treated by the systems of a network that process it. Section 4.2.1 ("Precedence-Ordered Queue Service") and Section 4.2.2 ("Weak Type of Service") of this document describe the security implications of the Type of Service field in the forwarding of packets.
The Differentiated Services Architecture is intended to enable scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop [RFC2475]. RFC 2474 [RFC2474] redefined the IP "Type of Service" octet, introducing a Differentiated Services Field (DS Field). Figure 3 shows the format of the field.
Figure 3: Revised Structure of the Type of Service Field (RFC 2474)
The DSCP ("Differentiated Services CodePoint") is used to select the treatment the packet is to receive within the Differentiated Services Domain. The CU ("Currently Unused") field was, at the time the specification was issued, reserved for future use. The DSCP field is used to select a PHB (Per-Hop Behavior), by matching against the entire 6-bit field.
Considering that the DSCP field determines how a packet is treated within a Differentiated Services (DS) domain, an attacker could send packets with a forged DSCP field to perform a theft of service or even a Denial-of-Service (DoS) attack. In particular, an attacker could forge packets with a codepoint of the type '11x000' which, according to Section 4.2.2.2 of RFC 2474 [RFC2474], would give the packets preferential forwarding treatment when compared with the PHB selected by the codepoint '000000'. If strict priority queuing were utilized, a continuous stream of such packets could cause a DoS to other flows that have a DSCP of lower relative order.
As the DS field is incompatible with the original Type of Service field, both DS domains and networks using the original Type of Service field should protect themselves by remarking the corresponding field where appropriate, probably deploying remarking boundary nodes. Nevertheless, care must be taken so that packets received with an unrecognized DSCP do not cause the handling system to malfunction.
RFC 3168 [RFC3168] specifies a mechanism for routers to signal congestion to hosts exchanging IP packets, by marking the offending packets rather than discarding them. RFC 3168 defines the ECN field, which utilizes the CU field defined in RFC 2474 [RFC2474]. Figure 4 shows the current syntax of the IP Type of Service field, with the DSCP field used for Differentiated Services and the ECN field.
Figure 4: The Differentiated Services and ECN Fields in IP
As such, the ECN field defines four codepoints:
Table 3: ECN Codepoints
ECN is an end-to-end transport protocol mechanism based on notifications by routers through which a packet flow passes. To allow this interaction to happen on the fast path of routers, the ECN field is located at a fixed location in the IP header. However, its use must be negotiated at the transport layer, and the accumulated congestion notifications must be communicated back to the sending node using transport protocol means. Thus, ECN support must be specified per transport protocol.
[RFC6040] specifies how the Explicit Congestion Notification (ECN) field of the IP header should be constructed on entry to and exit from any IP-in-IP tunnel.
The security implications of ECN are discussed in detail in a number of Sections of RFC 3168. Of the possible threats discussed in the ECN specification, we believe that one that can be easily exploited is that of a host falsely indicating ECN-Capability.
An attacker could set the ECT codepoint in the packets it sends, to signal the network that the endpoints of the transport protocol are ECN-capable. Consequently, when experiencing moderate congestion, routers using active queue management based on Random Early Detection (RED) would mark the packets (with the CE codepoint) rather than discard them. In this same scenario, packets of competing flows that do not have the ECT codepoint set would be dropped. Therefore, an attacker would get better network service than the competing flows.
However, if this moderate congestion turned into heavy congestion, routers should switch to drop packets, regardless of whether or not the packets have the ECT codepoint set.
A number of other threats could arise if an attacker was a man in the middle (i.e., was in the middle of the path the packets travel to get to the destination host). For a detailed discussion of those cases, we urge the reader to consult Section 16 of RFC 3168.
There is also ongoing work in the research community and the IETF to define alternate semantics for the CU/ECN field of IP TOS octet (see [RFC5559], [RFC5670], and [RFC5696]). The application of these methods must be confined to tightly administered domains, and on exit from such domains, all packets need to be (re-)marked with ECN semantics.
The Total Length field is the length of the datagram, measured in bytes, including both the IP header and the IP payload. Being a 16-bit field, it allows for datagrams of up to 65535 bytes. RFC 791 [RFC0791] states that all hosts should be prepared to receive datagrams of up to 576 bytes (whether they arrive as a whole, or in fragments). However, most modern implementations can reassemble datagrams of at least 9 Kbytes.
Usually, a host will not send to a remote peer an IP datagram larger than 576 bytes, unless it is explicitly signaled that the remote peer is able to receive such "large" datagrams (for example, by means of TCP's Maximum Segment Size (MSS) option). However, systems should assume that they may receive datagrams larger than 576 bytes, regardless of whether or not they signal their remote peers to do so. In fact, it is common for Network File System (NFS) [RFC3530] implementations to send datagrams larger than 576 bytes, even without explicit signaling that the destination system can receive such "large" datagram.
Additionally, see the discussion in Section 4.1 ("Fragment Reassembly") regarding the possible packet sizes resulting from fragment reassembly.
Implementations should be aware that the IP module could be handed a packet larger than the value actually contained in the Total Length field. Such a difference usually has to do with legitimate padding bytes at the link-layer protocol, but it could also be the result of malicious activity by an attacker. Furthermore, even when the maximum length of an IP datagram is 65535 bytes, if the link-layer technology in use allows for payloads larger than 65535 bytes, an attacker could forge such a large link-layer packet, meaning it for the IP module. If the IP module of the receiving system were not prepared to handle such an oversized link-layer payload, an unexpected failure might occur. Therefore, the memory buffer used by the IP module to store the link-layer payload should be allocated according to the payload size reported by the link layer, rather than according to the Total Length field of the IP packet it contains.
The IP module could also be handed a packet that is smaller than the actual IP packet size claimed by the Total Length field. This could be used, for example, to produce an information leakage. Therefore, the following check should be performed:
LinkLayer.PayloadSize >= Total Length
If this check fails, the IP packet should be dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop). As the previous expression implies, the number of bytes passed by the link layer to the IP module should contain at least as many bytes as claimed by the Total Length field of the IP header.
[US-CERT2002] is an example of the exploitation of a forged IP Total Length field to produce an information leakage attack.
The Identification field is set by the sending host to aid in the reassembly of fragmented datagrams. At any time, it needs to be unique for each set of {Source Address, Destination Address, Protocol}.
In many systems, the value used for this field is determined at the IP layer, on a protocol-independent basis. Many of those systems also simply increment the IP Identification field for each packet they send.
This implementation strategy is inappropriate for a number of reasons. Firstly, if the Identification field is set on a protocol- independent basis, it will wrap more often than necessary, and thus the implementation will be more prone to the problems discussed in [Kent1987] and [RFC4963]. Secondly, this implementation strategy opens the door to an information leakage that can be exploited in a number of ways.
[Sanfilippo1998a] describes how the Identification field can be leveraged to determine the packet rate at which a given system is transmitting information. Later, [Sanfilippo1998b] described how a system with such an implementation can be used to perform a stealth port scan to a third (victim) host. [Sanfilippo1999] explained how to exploit this implementation strategy to uncover the rules of a number of firewalls. [Bellovin2002] explains how the IP Identification field can be exploited to count the number of systems behind a NAT. [Fyodor2004] is an entire paper on most (if not all) of the ways to exploit the information provided by the Identification field of the IP header.
Section 4.1 contains a discussion of the security implications of the IP fragment reassembly mechanism, which is the primary "consumer" of this field.
As the IP Identification field is only used for the reassembly of datagrams, some operating systems (such as Linux) decided to set this field to 0 in all packets that have the DF bit set. This would, in principle, avoid any type of information leakage. However, it was detected that some non-RFC-compliant middle-boxes fragmented packets even if they had the DF bit set. In such a scenario, all datagrams originally sent with the DF bit set would all result in fragments with an Identification field of 0, which would lead to problems ("collision" of the Identification number) in the reassembly process.
Linux (and Solaris) later set the IP Identification field on a per- IP-address basis. This avoids some of the security implications of the IP Identification field, but not all. For example, systems behind a load balancer can still be counted.
Contrary to common wisdom, the IP Identification field does not need to be system-wide unique for each packet, but has to be unique for each {Source Address, Destination Address, Protocol} tuple.
For instance, the TCP specification defines a generic send() function that takes the IP ID as one of its arguments.
We provide an analysis of the possible security improvements that could be implemented, based on whether the protocol using the services of IP is connection-oriented or connection-less.
To avoid the security implications of the information leakage described above, a pseudo-random number generator (PRNG) could be used to set the IP Identification field on a {Source Address, Destination Address} basis (for each connection-oriented transport protocol).
[RFC4086] provides advice on the generation of pseudo-random numbers.
[Klein2007] is a security advisory that describes a weakness in the pseudo-random number generator (PRNG) employed for the generation of the IP Identification by a number of operating systems.
While in theory a pseudo-random number generator could lead to scenarios in which a given Identification number is used more than once in the same time span for datagrams that end up getting fragmented (with the corresponding potential reassembly problems), in practice, this is unlikely to cause trouble.
By default, most implementations of connection-oriented protocols, such as TCP, implement some mechanism for avoiding fragmentation (such as the Path-MTU Discovery mechanism described in [RFC1191]). Thus, fragmentation will only take place if a non-RFC-compliant middle-box that still fragments packets even when the DF bit is set is placed somewhere along the path that the packets travel to get to the destination host. Once the sending system is signaled by the middle-box (by means of an ICMP "fragmentation needed and DF bit set" error message) that it should reduce the size of the packets it sends, fragmentation would be avoided. Also, for reassembly problems to arise, the same Identification value would need to be reused very frequently, and either strong packet reordering or packet loss would need to take place.
Nevertheless, regardless of what policy is used for selecting the Identification field, with the current link speeds fragmentation is already bad enough (i.e., very likely to lead to fragment reassembly errors) to rely on it. A mechanism for avoiding fragmentation (such as [RFC1191] or [RFC4821] should be implemented, instead.
Connectionless transport protocols often have these characteristics:
o lack of flow-control mechanisms,
o lack of packet sequencing mechanisms, and/or,
o lack of reliability mechanisms (such as "timeout and retransmit").
This basically means that the scenarios and/or applications for which connection-less transport protocols are used assume that:
o Applications will be used in environments in which packet reordering is very unlikely (such as Local Area Networks), as the transport protocol itself does not provide data sequencing.
o The data transfer rates will be low enough that flow control will be unnecessary.
o Packet loss is can be tolerated and/or is unlikely.
With these assumptions in mind, the Identification field could still be set according to a pseudo-random number generator (PRNG).
[RFC4086] provides advice on the generation of pseudo-random numbers.
In the event a given Identification number was reused while the first instance of the same number is still on the network, the first IP datagram would be reassembled before the fragments of the second IP datagram get to their destination.
In the event this was not the case, the reassembly of fragments would result in a corrupt datagram. While some existing work [Silbersack2005] assumes that this error would be caught by some upper-layer error detection code, the error detection code in question (such as UDP's checksum) might not be able to reliably detect data corruption arising from the replacement of a complete data block (as is the case in corruption arising from collision of IP Identification numbers).
In the case of UDP, unfortunately some systems have been known to not enable the UDP checksum by default. For most applications, packets containing errors should be dropped by the transport layer and not delivered to the application. A small number of applications may benefit from disabling the checksum; for example, streaming media where it is desired to avoid dropping a complete sample for a single-bit error, and UDP tunneling applications where the payload (i.e., the inner packet) is protected by its own transport checksum or other error detection mechanism.
In general, if IP Identification number collisions become an issue for the application using the connection-less protocol, the application designers should consider using a different transport protocol (which hopefully avoids fragmentation).
It must be noted that an attacker could intentionally exploit collisions of IP Identification numbers to perform a DoS attack, by sending forged fragments that would cause the reassembly process to result in a corrupt datagram that either would be dropped by the transport protocol or would incorrectly be handed to the corresponding application. This issue is discussed in detail in Section 4.1 ("Fragment Reassembly").
The IP header contains 3 control bits, two of which are currently used for the fragmentation and reassembly function.
As described by RFC 791, their meaning is:
o Bit 0: reserved, must be zero (i.e., reserved for future standardization)
o Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment
o Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments
The DF bit is usually set to implement the Path-MTU Discovery (PMTUD) mechanism described in [RFC1191]. However, it can also be exploited by an attacker to evade Network Intrusion Detection Systems. An attacker could send a packet with the DF bit set to a system monitored by a NIDS, and depending on the Path-MTU to the intended recipient, the packet might be dropped by some intervening router (because of being too big to be forwarded without fragmentation), without the NIDS being aware of it.
Figure 5: NIDS Evasion by Means of the Internet Protocol DF Bit
In Figure 3, an attacker sends a 17914-byte datagram meant for the victim host in the same figure. The attacker's packet probably contains an overlapping IP fragment or an overlapping TCP segment, aiming at "confusing" the NIDS, as described in [Ptacek1998]. The packet is screened by the NIDS sensor at the network perimeter, which probably reassembles IP fragments and TCP segments for the purpose of assessing the data transferred to and from the monitored systems. However, as the attacker's packet should transit a link with an MTU smaller than 17914 bytes (1500 bytes in this example), the router that encounters that this packet cannot be forwarded without fragmentation (Router B) discards the packet, and sends an ICMP "fragmentation needed and DF bit set" error message to the source host. In this scenario, the NIDS may remain unaware that the screened packet never reached the intended destination, and thus get an incorrect picture of the data being transferred to the monitored systems.
[Shankar2003]
introduces a technique named "Active Mapping" that prevents evasion of a NIDS by acquiring sufficient knowledge about the network being monitored, to assess which packets will arrive at the intended recipient, and how they will be interpreted by it.
Some firewalls are known to drop packets that have both the MF (More Fragments) and the DF (Don't Fragment) bits set. While in principle such a packet might seem nonsensical, there are a number of reasons for which non-malicious packets with these two bits set can be found in a network. First, they may exist as the result of some middle-box processing a packet that was too large to be forwarded without fragmentation. Instead of simply dropping the corresponding packet and sending an ICMP error message to the source host, some middle- boxes fragment the packet (copying the DF bit to each fragment), and also send an ICMP error message to the originating system. Second, some systems (notably Linux) set both the MF and the DF bits to implement Path-MTU Discovery (PMTUD) for UDP. These scenarios should be taken into account when configuring firewalls and/or tuning NIDSs.
Section 4.1 contains a discussion of the security implications of the IP fragment reassembly mechanism.
The Fragment Offset is used for the fragmentation and reassembly of IP datagrams. It indicates where in the original datagram payload the payload of the fragment belongs, and is measured in units of eight bytes. As a consequence, all fragments (except the last one), have to be aligned on an 8-byte boundary. Therefore, if a packet has the MF flag set, the following check should be enforced:
(Total Length - IHL * 4) % 8 == 0
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop).
Given that Fragment Offset is a 13-bit field, it can hold a value of up to 8191, which would correspond to an offset 65528 bytes within the original (non-fragmented) datagram. As such, it is possible for a fragment to implicitly claim to belong to a datagram larger than 65535 bytes (the maximum size for a legitimate IP datagram). Even when the fragmentation mechanism would seem to allow fragments that could reassemble into such large datagrams, the intent of the specification is to allow for the transmission of datagrams of up to 65535 bytes. Therefore, if a given fragment would reassemble into a datagram of more than 65535 bytes, the resulting datagram should be dropped, and this event should be logged (e.g., a counter could be incremented reflecting the packet drop). To detect such a case, the following check should be enforced on all packets for which the Fragment Offset contains a non-zero value:
Fragment Offset * 8 + (Total Length - IHL * 4) + IHL_FF * 4 <= 65535
where IHL_FF is the IHL field of the first fragment (the one with a Fragment Offset of 0).
If a fragment does not pass this check, it should be dropped.
If IHL_FF is not yet available because the first fragment has not yet arrived, for a preliminary, less rigid test, IHL_FF == IHL should be assumed, and the test is simplified to:
Fragment Offset * 8 + Total Length <= 65535
Once the first fragment is received, the full sanity check described earlier should be applied, if that fragment contains "don't copy" options.
In the worst-case scenario, an attacker could craft IP fragments such that the reassembled datagram reassembled into a datagram of 131043 bytes.
Such a datagram would result when the first fragment has a Fragment Offset of 0 and a Total Length of 65532, and the second (and last) fragment has a Fragment Offset of 8189 (65512 bytes), and a Total Length of 65535. Assuming an IHL of 5 (i.e., a header length of 20 bytes), the reassembled datagram would be 65532 + (65535 - 20) = 131047 bytes.
Additionally, the IP module should implement all the necessary measures to be able to handle such illegitimate reassembled datagrams, so as to avoid them from overflowing the buffer(s) used for the reassembly function.
[CERT1996c] and [Kenney1996] describe the exploitation of this issue to perform a DoS attack.
Section 4.1 contains a discussion of the security implications of the IP fragment reassembly mechanism.
The Time to Live (TTL) field has two functions: to bound the lifetime of the upper-layer packets (e.g., TCP segments) and to prevent packets from looping indefinitely in the network.
Originally, this field was meant to indicate the maximum time a datagram was allowed to remain in the Internet system, in units of seconds. As every Internet module that processes a datagram must decrement the TTL by at least one, the original definition of the TTL field became obsolete, and in practice it is interpreted as a hop count (see Section 5.3.1 of [RFC1812]).
Most systems allow the administrator to configure the TTL to be used for the packets they originate, with the default value usually being a power of 2, or 255 (e.g., see [Arkin2000]). The recommended value for the TTL field, as specified by the IANA is 64 [IANA_IP_PARAM]. This value reflects the assumed "diameter" of the Internet, plus a margin to accommodate its growth.
The TTL field has a number of properties that are interesting from a security point of view. Given that the default value used for the TTL is usually either a power of two, or 255, chances are that unless the originating system has been explicitly tuned to use a non-default value, if a packet arrives with a TTL of 60, the packet was originally sent with a TTL of 64. In the same way, if a packet is received with a TTL of 120, chances are that the original packet had a TTL of 128.
This discussion assumes there was no protocol scrubber, transparent proxy, or some other middle-box that overwrites the TTL field in a non-standard way, between the originating system and the point of the network in which the packet was received.
Determining the TTL with which a packet was originally sent by the source system can help to obtain valuable information. Among other things, it may help in:
o Fingerprinting the originating operating system.
o Fingerprinting the originating physical device.
o Mapping the network topology.
o Locating the source host in the network topology.
o Evading Network Intrusion Detection Systems.
However, it can also be used to perform important functions such as:
o Improving the security of applications that make use of the Internet Protocol (IP).
o Limiting spread of packets.
Different operating systems use a different default TTL for the packets they send. Thus, asserting the TTL with which a packet was originally sent will help heuristics to reduce the number of possible operating systems in use by the source host. It should be noted that since most systems use only a handful of different default values, the granularity of OS fingerprinting that this technique provides is negligible. Additionally, these defaults may be configurable (system-wide or per protocol), and managed systems may employ such opportunities for operational purposes and to defeat the capability of fingerprinting heuristics.
3.8.2. Fingerprinting the Physical Device from which the Packets Originate
When several systems are behind a middle-box such as a NAT or a load balancer, the TTL may help to count the number of systems behind the middle-box. If each of the systems behind the middle-box uses a different default TTL value for the packets it sends, or each system is located at different distances in the network topology, an attacker could stimulate responses from the devices being fingerprinted, and responses that arrive with different TTL values could be assumed to come from a different devices.
Of course, there are many other (and much more precise) techniques to fingerprint physical devices. One weakness of this method is that, while many systems differ in the default TTL value that they use, there are also many implementations which use the same default TTL value. Additionally, packets sent by a given device may take different routes (e.g., due to load sharing or route changes), and thus a given packet may incorrectly be presumed to come from a different device, when in fact it just traveled a different route.
However, these defaults may be configurable (system-wide or per protocol) and managed systems may employ such opportunities for operational purposes and to defeat the capability of fingerprinting heuristics.
An originating host may set the TTL field of the packets it sends to progressively increasing values in order to elicit an ICMP error message from the routers that decrement the TTL of each packet to zero, and thereby determine the IP addresses of the routers on the path to the packet's destination. This procedure has been traditionally employed by the traceroute tool.
The TTL field may also be used to locate the source system in the network topology [Northcutt2000].
Figure 6: Tracking a Host by Means of the TTL Field
Consider network topology of Figure 6. Assuming that an attacker ("F" in the figure) is performing some type of attack that requires forging the Source Address (such as for a TCP-based DoS reflection attack), and some of the involved hosts are willing to cooperate to locate the attacking system.
Assuming that:
o All the packets A gets have a TTL of 61.
o All the packets B gets have a TTL of 61.
o All the packets C gets have a TTL of 61.
o All the packets D gets have a TTL of 62.
Based on this information, and assuming that the system's default value was not overridden, it would be fair to assume that the original TTL of the packets was 64. With this information, the number of hops between the attacker and each of the aforementioned hosts can be calculated.
The attacker is:
o Four hops away from A.
o Four hops away from B.
o Four hops away from C.
o Four hops away from D.
In the network setup of Figure 3, the only system that satisfies all these conditions is the one marked as the "F".
The scenario described above is for illustration purposes only. In practice, there are a number of factors that may prevent this technique from being successfully applied:
o Unless there is a "large" number of cooperating systems, and the attacker is assumed to be no more than a few hops away from these systems, the number of "candidate" hosts will usually be too large for the information to be useful.
o The attacker may be using a non-default TTL value, or, what is worse, using a pseudo-random value for the TTL of the packets it sends.
o The packets sent by the attacker may take different routes, as a result of a change in network topology, load sharing, etc., and thus may lead to an incorrect analysis.
The TTL field can be used to evade Network Intrusion Detection Systems. Depending on the position of a sensor relative to the destination host of the examined packet, the NIDS may get a different picture from that of the intended destination system. As an example, a sensor may process a packet that will expire before getting to the destination host. A general countermeasure for this type of attack is to normalize the traffic that gets to an organizational network. Examples of such traffic normalization can be found in [Paxson2001]. OpenBSD Packet Filter is an example of a packet filter that includes TTL-normalization functionality [OpenBSD-PF]
3.8.6. Improving the Security of Applications That Make Use of the Internet Protocol (IP)
In some scenarios, the TTL field can be also used to improve the security of an application, by restricting the hosts that can communicate with the given application [RFC5082]. For example, there are applications for which the communicating systems are typically in the same network segment (i.e., there are no intervening routers). Such an application is the BGP (Border Gateway Protocol) utilized by two peer routers (usually on a shared link medium).
If both systems use a TTL of 255 for all the packets they send to each other, then a check could be enforced to require all packets meant for the application in question to have a TTL of 255.
As all packets sent by systems that are not in the same network segment will have a TTL smaller than 255, those packets will not pass the check enforced by these two cooperating peers. This check reduces the set of systems that may perform attacks against the protected application (BGP in this case), thus mitigating the attack vectors described in [NISCC2004] and [Watson2004].
This same check is enforced for related ICMP error messages, with the intent of mitigating the attack vectors described in [NISCC2005] and [RFC5927].
The TTL field can be used in a similar way in scenarios in which the cooperating systems are not in the same network segment (i.e., multi- hop peering). In that case, the following check could be enforced:
TTL >= 255 - DeltaHops
This means that the set of hosts from which packets will be accepted for the protected application will be reduced to those that are no more than DeltaHops away. While for obvious reasons the level of protection will be smaller than in the case of directly connected peers, the use of the TTL field for protecting multi-hop peering still reduces the set of hosts that could potentially perform a number of attacks against the protected application.
This use of the TTL field has been officially documented by the IETF under the name "Generalized TTL Security Mechanism" (GTSM) in [RFC5082].
Some protocol scrubbers enforce a minimum value for the TTL field of the packets they forward. It must be understood that depending on the minimum TTL being enforced, and depending on the particular network setup, the protocol scrubber may actually help attackers to fool the GTSM, by "raising" the TTL of the attacking packets.
The originating host sets the TTL field to a small value (frequently 1, for link-scope services) in order to artificially limit the (topological) distance the packet is allowed to travel. This is suggested in Section 4.2.2.9 of RFC 1812 [RFC1812]. Further discussion of this technique can be found in RFC 1112 [RFC1112].
The Protocol field indicates the protocol encapsulated in the Internet datagram. The Protocol field may not only contain a value corresponding to a protocol implemented by the system processing the packet, but also a value corresponding to a protocol not implemented, or even a value not yet assigned by the IANA [IANA_PROT_NUM].
While in theory there should not be security implications from the use of any value in the protocol field, there have been security issues in the past with systems that had problems when handling packets with some specific protocol numbers [Cisco2003] [CERT2003].
A host (i.e., end-system) that receives an IP packet encapsulating a Protocol it does not support should drop the corresponding packet, log the event, and possibly send an ICMP Protocol Unreachable (type 3, code 2) error message.
The Header Checksum field is an error-detection mechanism meant to detect errors in the IP header. While in principle there should not be security implications arising from this field, it should be noted that due to non-RFC-compliant implementations, the Header Checksum might be exploited to detect firewalls and/or evade NIDSs.
[Ed3f2002] describes the exploitation of the TCP checksum for performing such actions. As there are Internet routers known to not check the IP Header Checksum, and there might also be middle-boxes (NATs, firewalls, etc.) not checking the IP checksum allegedly due to performance reasons, similar malicious activity to the one described in [Ed3f2002] might be performed with the IP checksum.
The Source Address of an IP datagram identifies the node from which the packet originated.
Strictly speaking, the Source Address of an IP datagram identifies the interface of the sending system from which the packet was sent, (rather than the originating "system"), as in the Internet Architecture there's no concept of "node address".
Unfortunately, it is trivial to forge the Source Address of an Internet datagram because of the apparent lack of consistent "egress filtering" near the edge of the network. This has been exploited in the past for performing a variety of DoS attacks [NISCC2004] [RFC4987] [CERT1996a] [CERT1996b] [CERT1998a] and for impersonating other systems in scenarios in which authentication was based on the Source Address of the sending system [daemon91996].
The extent to which these attacks can be successfully performed in the Internet can be reduced through deployment of ingress/egress filtering in the Internet routers. [NISCC2006] is a detailed guide on ingress and egress filtering. [RFC2827] and [RFC3704] discuss ingress filtering. [GIAC2000] discusses egress filtering. [SpooferProject] measures the Internet's susceptibility to forged Source Address IP packets.
Even when the obvious field on which to perform checks for ingress/egress filtering is the Source Address and Destination Address fields of the IP header, there are other occurrences of IP addresses on which the same type of checks should be performed. One example is the IP addresses contained in the payload of ICMP error messages, as discussed in [RFC5927] and [Gont2006].
There are a number of sanity checks that should be performed on the Source Address of an IP datagram. Details can be found in Section 4.3 ("Addressing").
Additionally, there exist freely available tools that allow administrators to monitor which IP addresses are used with which MAC addresses [LBNL2006]. This functionality is also included in many NIDSs.
It is also very important to understand that authentication should never rely solely on the Source Address used by the communicating systems.
The Destination Address of an IP datagram identifies the destination host to which the packet is meant to be delivered.
Strictly speaking, the Destination Address of an IP datagram identifies the interface of the destination network interface, rather than the destination "system", as in the Internet Architecture there's no concept of "node address".
There are a number of sanity checks that should be performed on the Destination Address of an IP datagram. Details can be found in Section 4.3 ("Addressing").
According to RFC 791, IP options must be implemented by all IP modules, both in hosts and gateways (i.e., end-systems and intermediate-systems). This means that the general rules for assembling, parsing, and processing of IP options must be implemented. RFC 791 defines a set of options that "must be understood", but this set has been updated by RFC 1122 [RFC1122], RFC 1812 [RFC1812], and other documents. Section 3.13.2 of this document describes for each option type the current understanding of the implementation requirements. IP systems are required to ignore options they do not implement.
It should be noted that while a number of IP options have been specified, they are generally only used for troubleshooting purposes (except for the Router Alert option and the different Security options).
There are two cases for the format of an option:
o Case 1: A single byte of option-type.
o Case 2: An option-type byte, an option-length byte, and the actual option-data bytes.
In Case 2, the option-length byte counts the option-type byte and the option-length byte, as well as the actual option-data bytes.
All current and future options except End of Option List (Type = 0) and No Operation (Type = 1), are of Class 2.
The option-type has three fields:
o 1 bit: copied flag.
o 2 bits: option class.
o 5 bits: option number.
This format allows for the creation of new options for the extension of the Internet Protocol (IP) and their transparent treatment on intermediate-systems that do not "understand" them, under direction of the first three functional parts.
The copied flag indicates whether this option should be copied to all fragments in the event the packet carrying it needs to be fragmented:
o 0 = not copied.
o 1 = copied.
The values for the option class are:
o 0 = control.
o 1 = reserved for future use.
o 2 = debugging and measurement.
o 3 = reserved for future use.
Finally, the option number identifies the syntax of the rest of the option.
[IANA_IP_PARAM] contains the list of the currently assigned IP option numbers. It should be noted that IP systems are required to ignore those options they do not implement.
The following subsections discuss security issues that apply to all IP options. The proposed checks should be performed in addition to any option-specific checks proposed in the next sections.
Router manufacturers tend to do IP option processing on the main processor, rather than on line cards. Unless special care is taken, this represents DoS risk, as there is potential for overwhelming the router with option processing.
To reduce the impact of these packets on the system performance, a few countermeasures could be implemented:
o Rate-limit the number of packets with IP options that are processed by the system.
o Enforce a limit on the maximum number of options to be accepted on a given Internet datagram.
The first check avoids a flow of packets with IP options to overwhelm the system in question. The second check avoids packets with many IP options to affect the performance of the system.
Section 3.2.1.8 of RFC 1122 [RFC1122] states that all the IP options received in IP datagrams must be passed to the transport layer (or to ICMP processing when the datagram is an ICMP message). Therefore, care in option processing must be taken not only at the Internet layer but also in every protocol module that may end up processing the options included in an IP datagram.
There are a number of sanity checks that should be performed on IP options before further option processing is done. They help prevent a number of potential security problems, including buffer overflows. When these checks fail, the packet carrying the option should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
RFC 1122 [RFC1122] recommends to send an ICMP "Parameter Problem" message to the originating system when a packet is dropped because of an invalid value in a field, such as the cases discussed in the following subsections. Sending such a message might help in debugging some network problems. However, it would also alert attackers about the system that is dropping packets because of the invalid values in the protocol fields.
We advice that systems default to sending an ICMP "Parameter Problem" error message when a packet is dropped because of an invalid value in a protocol field (e.g., as a result of dropping a packet due to the sanity checks described in this section). However, we recommend that systems provide a system-wide toggle that allows an administrator to override the default behavior so that packets can be silently dropped when an invalid value in a protocol field is encountered.
Option length
Section 3.2.1.8 of RFC 1122 explicitly states that the IP layer must not crash as the result of an option length that is outside the possible range, and mentions that erroneous option lengths have been observed to put some IP implementations into infinite loops.
For options that belong to the "Case 2" described in the previous section, the following check should be performed:
option-length >= 2
The value "2" accounts for the option-type byte and the option- length byte.
This check prevents, among other things, loops in option processing that may arise from incorrect option lengths.
For all options of "Case 2", the following check should be enforced:
option-offset + option-length <= IHL * 4
Where option-offset is the offset of the first byte of the option within the IP header, with the first byte of the IP header being assigned an offset of 0.
This check assures that the option does not claim to extend beyond the IP header. If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The aforementioned check is meant to detect forged option-length values that might make an option overlap with the IP payload. This would be particularly dangerous for those IP options that request the processing systems to write information into the option-data area (such as the Record Route option), as it would allow the generation of overflows.
Data types
Many IP options use pointer and length fields. Care must be taken as to the data type used for these fields in the implementation. For example, if an 8-bit signed data type were used to hold an 8-bit pointer, then, pointer values larger than 128 might mistakenly be interpreted as negative numbers, and thus might lead to unpredictable results.
This option is used to indicate the "end of options" in those cases in which the end of options would not coincide with the end of the Internet Protocol header. Octets in the IP header following the "End of Option List" are to be regarded as padding (they should set to 0 by the originator and must to be ignored by receiving nodes).
However, an originating node could alternatively fill the remaining space in the Internet header with No Operation options (see Section 3.13.2.2). The End of Option List option allows slightly more efficient parsing on receiving nodes and should be preferred by packet originators. All IP systems are required to understand both encodings.
The No Operation option is basically meant to allow the sending system to align subsequent options in, for example, 32-bit boundaries, but it can also be used at the end of the options (see Section 3.13.2.1).
With a single exception (see Section 3.13.2.13), this option is the only IP option defined so far that can occur in multiple instances in a single IP packet.
This option does not have security implications.
This option lets the originating system specify a number of intermediate-systems a packet must pass through to get to the destination host. Additionally, the route followed by the packet is recorded in the option. The receiving host (end-system) must use the reverse of the path contained in the received LSRR option.
The LSSR option can be of help in debugging some network problems. Some ISP (Internet Service Provider) peering agreements require support for this option in the routers within the peer of the ISP.
The LSRR option has well-known security implications. Among other things, the option can be used to:
o Bypass firewall rules
o Reach otherwise unreachable Internet systems
o Establish TCP connections in a stealthy way
o Learn about the topology of a network
o Perform bandwidth-exhaustion attacks
Of these attack vectors, the one that has probably received the least attention is the use of the LSRR option to perform bandwidth exhaustion attacks. The LSRR option can be used as an amplification method for performing bandwidth-exhaustion attacks, as an attacker could make a packet bounce multiple times between a number of systems by carefully crafting an LSRR option.
This is the IPv4-version of the IPv6 amplification attack that was widely publicized in 2007 [Biondi2007]. The only difference is that the maximum length of the IPv4 header (and hence the LSRR option) limits the amplification factor when compared to the IPv6 counterpart.
While the LSSR option may be of help in debugging some network problems, its security implications outweigh any legitimate use.
All systems should, by default, drop IP packets that contain an LSRR option, and should log this event (e.g., a counter could be incremented to reflect the packet drop). However, they should provide a system-wide toggle to enable support for this option for those scenarios in which this option is required. Such system-wide toggle should default to "off" (or "disable").
[OpenBSD1998] is a security advisory about an improper implementation of such a system-wide toggle in 4.4BSD kernels.
Section 3.3.5 of RFC 1122 [RFC1122] states that a host may be able to act as an intermediate hop in a source route, forwarding a source- routed datagram to the next specified hop. We strongly discourage host software from forwarding source-routed datagrams.
If processing of source-routed datagrams is explicitly enabled in a system, the following sanity checks should be performed.
RFC 791 states that this option should appear, at most, once in a given packet. Thus, if a packet contains more than one LSRR option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). Additionally, packets containing a combination of LSRR and SSRR options should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
As all other IP options of "Case 2", the LSSR contains a Length field that indicates the length of the option. Given the format of the option, the Length field should be checked to have a minimum value of three and be 3 (3 + n*4):
LSRR.Length % 4 == 3 && LSRR.Length != 0
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The Pointer is relative to this option. Thus, the minimum legal value is 4. Therefore, the following check should be performed.
LSRR.Pointer >= 4
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). Additionally, the Pointer field should be a multiple of 4. Consequently, the following check should be performed:
LSRR.Pointer % 4 == 0
If a packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
When a system receives an IP packet with the LSRR option passing the above checks, it should check whether or not the source route is empty. The option is empty if:
LSRR.Pointer > LSRR.Length
In that case, routing should be based on the Destination Address field, and no further processing should be done on the LSRR option. [Microsoft1999] is a security advisory about a vulnerability arising from improper validation of the LSRR.Pointer field.
If the address in the Destination Address field has been reached, and the option is not empty, the next address in the source route replaces the address in the Destination Address field, and the IP address of the interface that will be used to forward this datagram is recorded in its place in the LSRR.Data field. Then, the LSRR.Pointer. is incremented by 4.
Note that the sanity checks for the LSRR.Length and the LSRR.Pointer fields described above ensure that if the option is not empty, there will be (4*n) octets in the option. That is, there will be at least one IP address to read and enough room to record the IP address of the interface that will be used to forward this datagram.
The LSRR must be copied on fragmentation. This means that if a packet that carries the LSRR is fragmented, each of the fragments will have to go through the list of systems specified in the LSRR option.
This option allows the originating system to specify a number of intermediate-systems a packet must pass through to get to the destination host. Additionally, the route followed by the packet is recorded in the option, and the destination host (end-system) must use the reverse of the path contained in the received SSRR option.
This option is similar to the Loose Source and Record Route (LSRR) option, with the only difference that in the case of SSRR, the route specified in the option is the exact route the packet must take (i.e., no other intervening routers are allowed to be in the route).
The SSSR option can be of help in debugging some network problems. Some ISP (Internet Service Provider) peering agreements require support for this option in the routers within the peer of the ISP.
The SSRR option has the same security implications as the LSRR option. Please refer to Section 3.13.2.3 for a discussion of such security implications.
As with the LSRR, while the SSSR option may be of help in debugging some network problems, its security implications outweigh any legitimate use of it.
All systems should, by default, drop IP packets that contain an SSRR option, and should log this event (e.g., a counter could be incremented to reflect the packet drop). However, they should provide a system-wide toggle to enable support for this option for those scenarios in which this option is required. Such system-wide toggle should default to "off" (or "disable").
[OpenBSD1998] is a security advisory about an improper implementation of such a system-wide toggle in 4.4BSD kernels.
In the event processing of the SSRR option were explicitly enabled, the same sanity checks described for the LSRR option in Section 3.13.2.3 should be performed on the SSRR option. Namely, sanity checks should be performed on the option length (SSRR.Length) and the pointer field (SSRR.Pointer).
If the packet passes the aforementioned sanity checks, the receiving system should determine whether the Destination Address of the packet corresponds to one of its IP addresses. If does not, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
Contrary to the IP Loose Source and Record Route (LSRR) option, the SSRR option does not allow in the route other routers than those contained in the option. If the system implements the weak end-system model, it is allowed for the system to receive a packet destined to any of its IP addresses, on any of its interfaces. If the system implements the strong end-system model, a packet destined to it can be received only on the interface that corresponds to the IP address contained in the Destination Address field [RFC1122].
If the packet passes this check, the receiving system should determine whether the source route is empty or not. The option is empty if:
SSRR.Pointer > SSRR.Length
In that case, if the address in the destination field has not been reached, the packet should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
[Microsoft1999] is a security advisory about a vulnerability arising from improper validation of the SSRR.Pointer field.
If the option is not empty, and the address in the Destination Address field has been reached, the next address in the source route replaces the address in the Destination Address field, and the IP address of the interface that will be used to forward this datagram is recorded in its place in the source route (SSRR.Data field). Then, the SSRR.Pointer is incremented by 4.
Note that the sanity checks for the SSRR.Length and the SSRR.Pointer fields described above ensure that if the option is not empty, there will be (4*n) octets in the option. That is, there will be at least one IP address to read, and enough room to record the IP address of the interface that will be used to forward this datagram.
The SSRR option must be copied on fragmentation. This means that if a packet that carries the SSRR is fragmented, each of the fragments will have to go through the list of systems specified in the SSRR option.
This option provides a means to record the route that a given packet follows.
The option begins with an 8-bit option code, which is equal to 7. The second byte is the option length, which includes the option-type byte, the option-length byte, the pointer byte, and the actual option-data. The third byte is a pointer into the route data, indicating the first byte of the area in which to store the next route data. The pointer is relative to the option start.
RFC 791 states that this option should appear, at most, once in a given packet. Therefore, if a packet has more than one instance of this option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The same sanity checks performed for the Length field and the Pointer field of the LSRR and the SSRR options should be performed on the Length field (RR.Length) and the Pointer field (RR.Pointer) of the RR option. As with the LSRR and SSRR options, if the packet does not pass these checks it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
When a system receives an IP packet with the Record Route option that passes the above checks, it should check whether there is space in the option to store route information. The option is full if: RR.Pointer > RR.Length
If the option is full, the datagram should be forwarded without further processing of this option.
If the option is not full (i.e., RR.Pointer <= RR.Length), the IP address of the interface that will be used to forward this datagram should be recorded into the area pointed to by the RR.Pointer, and RR.Pointer should then incremented by 4.
This option is not copied on fragmentation, and thus appears in the first fragment only. If a fragment other than the one with offset 0 contains the Record Route option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The Record Route option can be exploited to learn about the topology of a network. However, the limited space in the IP header limits the usefulness of this option for that purpose if the target network is several hops away.
The Stream Identifier option originally provided a means for the 16-bit SATNET stream Identifier to be carried through networks that did not support the stream concept.
However, as stated by Section 4.2.2.1 of RFC 1812 [RFC1812], this option is obsolete. Therefore, it must be ignored by the processing systems.
In the case of legacy systems still using this option, the length field of the option should be checked to be 4. If the option does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
RFC 791 states that this option appears at most once in a given datagram. Therefore, if a packet contains more than one instance of this option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option provides a means for recording the time at which each system processed this datagram. The timestamp option has a number of security implications. Among them are the following:
o It allows an attacker to obtain the current time of the systems that process the packet, which the attacker may find useful in a number of scenarios.
o It may be used to map the network topology, in a similar way to the IP Record Route option.
o It may be used to fingerprint the operating system in use by a system processing the datagram.
o It may be used to fingerprint physical devices by analyzing the clock skew.
Therefore, by default, the timestamp option should be ignored.
For those systems that have been explicitly configured to honor this option, the rest of this subsection describes some sanity checks that should be enforced on the option before further processing.
The option begins with an option-type byte, which must be equal to 68. The second byte is the option-length, which includes the option- type byte, the option-length byte, the pointer, and the overflow/flag byte. The minimum legal value for the option-length byte is 4, which corresponds to an Internet Timestamp option that is empty (no space to store timestamps). Therefore, upon receipt of a packet that contains an Internet Timestamp option, the following check should be performed:
IT.Length >= 4
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The Pointer is an index within this option, counting the option type octet as octet #1. It points to the first byte of the area in which the next timestamp data should be stored and thus, the minimum legal value is 5. Since the only change of the Pointer allowed by RFC 791 is incrementing it by 4 or 8, the following checks should be performed on the Internet Timestamp option, depending on the Flag value (see below).
If IT.Flag is equal to 0, the following check should be performed:
IT.Pointer %4 == 1 && IT.Pointer != 1
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
Otherwise, the following sanity check should be performed on the option:
IT.Pointer % 8 == 5
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The flag field has three possible legal values:
o 0: Record time stamps only, stored in consecutive 32-bit words.
o 1: Record each timestamp preceded with the Internet address of the registering entity.
o 3: The internet address fields of the option are pre-specified. An IP module only registers its timestamp if it matches its own address with the next specified Internet address.
Therefore the following check should be performed:
IT.Flag == 0 || IT.Flag == 1 || IT.Flag == 3
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The timestamp field is a right-justified 32-bit timestamp in milliseconds since UTC. If the time is not available in milliseconds, or cannot be provided with respect to UTC, then any time may be inserted as a timestamp, provided the high-order bit of the timestamp is set, to indicate this non-standard value.
According to RFC 791, the initial contents of the timestamp area must be initialized to zero, or Internet address/zero pairs. However, Internet systems should be able to handle non-zero values, possibly discarding the offending datagram.
When an Internet system receives a packet with an Internet Timestamp option, it decides whether it should record its timestamp in the option. If it determines that it should, it should then determine whether the timestamp data area is full, by means of the following check:
IT.Pointer > IT.Length
If this condition is true, the timestamp data area is full. If not, there is room in the timestamp data area.
If the timestamp data area is full, the overflow byte should be incremented, and the packet should be forwarded without inserting the timestamp. If the overflow byte itself overflows, the packet should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
If the timestamp data area is not full, then processing continues as follows (note that the above checks on IT.Pointer ensure that there is room for another entry in the option):
o If IT.Flag is 0, then the system's 32-bit timestamp is stored into the area pointed to by the pointer byte and the pointer byte is incremented by 4.
o If IT.Flag is 1, then the IP address of the system is stored into the area pointed to by the pointer byte, followed by the 32-bit system timestamp, and the pointer byte is incremented by 8.
o Otherwise (IT.Flag is 3), if the IP address in the first 4 bytes pointed to by IT.Pointer matches one of the IP addresses assigned to an interface of the system, then the system's timestamp is stored into the area pointed to by IT.Pointer + 4, and the pointer byte is incremented by 8.
[Kohno2005] describes a technique for fingerprinting devices by measuring the clock skew. It exploits, among other things, the timestamps that can be obtained by means of the ICMP timestamp request messages [RFC0791]. However, the same fingerprinting method could be implemented with the aid of the Internet Timestamp option.
The Router Alert option is defined in RFC 2113 [RFC2113] and later updates to it have been clarified by RFC 5350 [RFC5350]. It contains a 16-bit Value governed by an IANA registry (see [RFC5350]). The Router Alert option has the semantic "routers should examine this packet more closely, if they participate in the functionality denoted by the Value of the option".
According to the syntax of the option as defined in RFC 2113, the following check should be enforced, if the router supports this option:
RA.Length == 4
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
A packet that contains a Router Alert option with an option value corresponding to functionality supported by an active module in the router will not go through the router's fast-path but will be processed in the slow path of the router, handing it over for closer inspection to the modules that has registered the matching option value. Therefore, this option may impact the performance of the systems that handle the packet carrying it.
[ROUTER-ALERT] analyzes the security implications of the Router Alert option, and identifies controlled environments in which the Router Alert option can be used safely.
As explained in RFC 2113 [RFC2113], hosts should ignore this option.
This option was defined in RFC 1063 [RFC1063] and originally provided a mechanism to discover the Path-MTU.
This option is obsolete, and therefore any packet that is received containing this option should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option is defined in RFC 1063 [RFC1063], and originally provided a mechanism to discover the Path-MTU.
This option is obsolete, and therefore any packet that is received containing this option should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option is defined in RFC 1393 [RFC1393], and originally provided a mechanism to trace the path to a host.
The Traceroute option was specified as "experimental", and it was never deployed on the public Internet. Therefore, any packet that is received containing this option should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option is used by Multi-Level-Secure (MLS) end-systems and intermediate-systems in specific environments to [RFC1108]:
o Transmit from source to destination in a network standard representation the common security labels required by computer security models,
o Validate the datagram as appropriate for transmission from the source and delivery to the destination, and
o Ensure that the route taken by the datagram is protected to the level required by all protection authorities indicated on the datagram.
It is specified by RFC 1108 [RFC1108] (which obsoletes RFC 1038 [RFC1038]).
RFC 791 [RFC0791] defined the "Security Option" (Type=130), which used the same option type as the DoD Basic Security option discussed in this section. The "Security Option" specified in RFC 791 is considered obsolete by Section 3.2.1.8 of RFC 1122, and therefore the discussion in this section is focused on the DoD Basic Security option specified by RFC 1108 [RFC1108].
Section 4.2.2.1 of RFC 1812 states that routers "SHOULD implement this option".
The DoD Basic Security option is currently implemented in a number of operating systems (e.g., [IRIX2008], [SELinux2009], [Solaris2007], and [Cisco2008]), and deployed in a number of high-security networks.
Systems that belong to networks in which this option is in use should process the DoD Basic Security option contained in each packet as specified in [RFC1108].
RFC 1108 states that the option should appear at most once in a datagram. Therefore, if more than one DoD Basic Security option (BSO) appears in a given datagram, the corresponding datagram should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
RFC 1108 states that the option Length is variable, with a minimum option Length of 3 bytes. Therefore, the following check should be performed:
BSO.Length >= 3
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
Current deployments of the security options described in this section and the two subsequent sections have motivated the specification of a "Common Architecture Label IPv6 Security Option (CALIPSO)" for the IPv6 protocol [RFC5570].
This option permits additional security labeling information, beyond that present in the Basic Security option (Section 3.13.2.13), to be supplied in an IP datagram to meet the needs of registered authorities. It is specified by RFC 1108 [RFC1108].
This option may be present only in conjunction with the DoD Basic Security option. Therefore, if a packet contains a DoD Extended Security option (ESO), but does not contain a DoD Basic Security option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). It should be noted that, unlike the DoD Basic Security option, this option may appear multiple times in a single IP header.
Systems that belong to networks in which this option is in use, should process the DoD Extended Security option contained in each packet as specified in RFC 1108 [RFC1108].
RFC 1108 states that the option Length is variable, with a minimum option Length of 3 bytes. Therefore, the following check should be performed:
ESO.Length >= 3
If the packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option was proposed by the Trusted Systems Interoperability Group (TSIG), with the intent of meeting trusted networking requirements for the commercial trusted systems market place. It is specified in [CIPSO1992] and [FIPS1994].
The TSIG proposal was taken to the Commercial Internet Security Option (CIPSO) Working Group of the IETF [CIPSOWG1994], and an Internet-Draft was produced [CIPSO1992]. The Internet-Draft was never published as an RFC, but the proposal was later standardized by the U.S. National Institute of Standards and Technology (NIST) as "Federal Information Processing Standard Publication 188" [FIPS1994].
It is currently implemented in a number of operating systems (e.g., IRIX [IRIX2008], Security-Enhanced Linux [SELinux2009], and Solaris [Solaris2007]), and deployed in a number of high-security networks.
[Zakrzewski2002] and [Haddad2004] provide an overview of a Linux implementation.
Systems that belong to networks in which this option is in use should process the CIPSO option contained in each packet as specified in [CIPSO1992].
According to the option syntax specified in [CIPSO1992], the following validation check should be performed:
CIPSO.Length >= 6
If a packet does not pass this check, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option is defined in RFC 1770 [RFC1770] and originally provided unreliable UDP delivery to a set of addresses included in the option.
This option is obsolete. If a received packet contains this option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
To accommodate networks with different Maximum Transmission Units (MTUs), the Internet Protocol provides a mechanism for the fragmentation of IP packets by end-systems (hosts) and/or intermediate-systems (routers). Reassembly of fragments is performed only by the end-systems.
[Cerf1974] provides the rationale for why packet reassembly is not performed by intermediate-systems.
During the last few decades, IP fragmentation and reassembly has been exploited in a number of ways, to perform actions such as evading NIDSs, bypassing firewall rules, and performing DoS attacks.
[Bendi1998] and [Humble1998] are examples of the exploitation of these issues for performing DoS attacks. [CERT1997] and [CERT1998b] document these issues. [Anderson2001] is a survey of fragmentation attacks. [US-CERT2001] is an example of the exploitation of IP fragmentation to bypass firewall rules. [CERT1999] describes the implementation of fragmentation attacks in Distributed Denial-of-Service (DDoS) attack tools.
The problem with IP fragment reassembly basically has to do with the complexity of the function, in a number of aspects:
o Fragment reassembly is a stateful operation for a stateless protocol (IP). The IP module at the host performing the reassembly function must allocate memory buffers both for temporarily storing the received fragments and to perform the reassembly function. Attackers can exploit this fact to exhaust memory buffers at the system performing the fragment reassembly.
o The fragmentation and reassembly mechanisms were designed at a time in which the available bandwidths were very different from the bandwidths available nowadays. With the current available bandwidths, a number of interoperability problems may arise, and these issues may be intentionally exploited by attackers to perform DoS attacks.
o Fragment reassembly must usually be performed without any knowledge of the properties of the path the fragments follow. Without this information, hosts cannot make any educated guess on how long they should wait for missing fragments to arrive.
o The fragment reassembly algorithm, as described by the IETF specifications, is ambiguous, and allows for a number of interpretations, each of which has found place in different TCP/IP stack implementations.
o The reassembly process is somewhat complex. Fragments may arrive out of order, duplicated, overlapping each other, etc. This complexity has lead to numerous bugs in different implementations of the IP protocol.
When an IP datagram is received by an end-system, it will be temporarily stored in system memory, until the IP module processes it and hands it to the protocol machine that corresponds to the encapsulated protocol.
In the case of fragmented IP packets, while the IP module may perform preliminary processing of the IP header (such as checking the header for errors and processing IP options), fragments must be kept in system buffers until all fragments are received and are reassembled into a complete Internet datagram.
As mentioned above, because the Internet layer will not usually have information about the characteristics of the path between the system and the remote host, no educated guess can be made on the amount of time that should be waited for the other fragments to arrive. Therefore, the specifications recommend to wait for a period of time that is acceptable for virtually all the possible network scenarios in which the protocols might operate. After that time has elapsed, all the received fragments for the corresponding incomplete packet are discarded.
The original IP Specification, RFC 791 [RFC0791], states that systems should wait for at least 15 seconds for the missing fragments to arrive. Systems that follow the "Example Reassembly Procedure" described in Section 3.2 of RFC 791 may end up using a reassembly timer of up to 4.25 minutes, with a minimum of 15 seconds. Section 3.3.2 ("Reassembly") of RFC 1122 corrected this advice, stating that the reassembly timeout should be a fixed value between 60 and 120 seconds.
However, the longer the system waits for the missing fragments to arrive, the longer the corresponding system resources must be tied to the corresponding packet. The amount of system memory is finite, and even with today's systems, it can still be considered a scarce resource.
An attacker could take advantage of the uncomfortable situation the system performing fragment reassembly is in, by sending forged fragments that will never reassemble into a complete datagram. That is, an attacker would send many different fragments, with different IP IDs, without ever sending all the necessary fragments that would be needed to reassemble them into a full IP datagram. For each of the fragments, the IP module would allocate resources and tie them to the corresponding fragment, until the reassembly timer for the corresponding packet expires.
There are some implementation strategies which could increase the impact of this attack. For example, upon receipt of a fragment, some systems allocate a memory buffer that will be large enough to reassemble the whole datagram. While this might be beneficial in legitimate cases, this just amplifies the impact of the possible attacks, as a single small fragment could tie up memory buffers for the size of an extremely large (and unlikely) datagram. The implementation strategy suggested in RFC 815 [RFC0815] leads to such an implementation.
The impact of the aforementioned attack may vary depending on some specific implementation details:
o If the system does not enforce limits on the amount of memory that can be allocated by the IP module, then an attacker could tie all system memory to fragments, at which point the system would become unusable, perhaps crashing.
o If the system enforces limits on the amount of memory that can be allocated by the IP module as a whole, then, when this limit is reached, all further IP packets that arrive would be discarded, until some fragments time out and free memory is available again.
o If the system enforces limits on the amount memory that can be allocated for the reassembly of fragments, then, when this limit is reached, all further fragments that arrive would be discarded, until some fragment(s) time out and free memory is available again.
4.1.1.2. Problems That Arise from the Length of the IP Identification Field
The Internet Protocols are currently being used in environments that are quite different from the ones in which they were conceived. For instance, the availability of bandwidth at the time the Internet Protocol was designed was completely different from the availability of bandwidth in today's networks.
The Identification field is a 16-bit field that is used for the fragmentation and reassembly function. In the event a datagram gets fragmented, all the corresponding fragments will share the same {Source Address, Destination Address, Protocol, Identification number} four-tuple. Thus, the system receiving the fragments will be able to uniquely identify them as fragments that correspond to the same IP datagram. At a given point in time, there must be at most only one packet in the network with a given four-tuple. If not, an Identification number "collision" might occur, and the receiving system might end up "mixing" fragments that correspond to different IP datagrams which simply reused the same Identification number.
For example, sending over a 1 Gbit/s path a continuous stream of (UDP) packets of roughly 1 kb size that all get fragmented into two equally sized fragments of 576 octets each (minimum reassembly buffer size) would repeat the IP Identification values within less than 0.65 seconds (assuming roughly 10% link layer overhead); with shorter packets that still get fragmented, this figure could easily drop below 0.4 seconds. With a single IP packet dropped in this short time frame, packets would start to be reassembled wrongly and continuously once in such interval until an error detection and recovery algorithm at an upper layer lets the application back out.
For each group of fragments whose Identification numbers "collide", the fragment reassembly will lead to corrupted packets. The IP payload of the reassembled datagram will be handed to the corresponding upper-layer protocol, where the error will (hopefully) be detected by some error detecting code (such as the TCP checksum) and the packet will be discarded.
An attacker could exploit this fact to intentionally cause a system to discard all or part of the fragmented traffic it gets, thus performing a DoS attack. Such an attacker would simply establish a flow of fragments with different IP Identification numbers, to trash all or part of the IP Identification space. As a result, the receiving system would use the attacker's fragments for the reassembly of legitimate datagrams, leading to corrupted packets which would later (and hopefully) get dropped.
In most cases, use of a long fragment timeout will benefit the attacker, as forged fragments will keep the IP Identification space trashed for a longer period of time.
4.1.1.3. Problems That Arise from the Complexity of the Reassembly Algorithm
As IP packets can be duplicated by the network, and each packet may take a different path to get to the destination host, fragments may arrive not only out of order and/or duplicated but also overlapping. This means that the reassembly process can be somewhat complex, with the corresponding implementation being not specifically trivial.
[Shannon2001] analyzes the causes and attributes of fragment traffic measured in several types of WANs.
During the years, a number of attacks have exploited bugs in the reassembly function of several operating systems, producing buffer overflows that have led, in most cases, to a crash of the attacked system.
4.1.1.4. Problems That Arise from the Ambiguity of the Reassembly Process
Network Intrusion Detection Systems (NIDSs) typically monitor the traffic on a given network with the intent of identifying traffic patterns that might indicate network intrusions.
In the presence of IP fragments, in order to detect illegitimate activity at the transport or application layers (i.e., any protocol layer above the network layer), a NIDS must perform IP fragment reassembly.
In order to correctly assess the traffic, the result of the reassembly function performed by the NIDS should be the same as that of the reassembly function performed by the intended recipient of the packets.
However, a number of factors make the result of the reassembly process ambiguous:
o The IETF specifications are ambiguous as to what should be done in the event overlapping fragments were received. Thus, in the presence of overlapping data, the system performing the reassembly function is free to honor either the first set of data received, the latest copy received, or any other copy received in between.
o As the specifications do not enforce any specific fragment timeout value, different systems may choose different values for the fragment timeout. This means that given a set of fragments received at some specified time intervals, some systems will reassemble the fragments into a full datagram, while others may timeout the fragments and therefore drop them.
o As mentioned before, as the fragment buffers get full, a DoS condition will occur unless some action is taken. Many systems flush part of the fragment buffers when some threshold is reached. Thus, depending on fragment load, timing issues, and flushing policy, a NIDS may get incorrect assumptions about how (and if) fragments are being reassembled by their intended recipient.
As originally discussed by [Ptacek1998], these issues can be exploited by attackers to evade intrusion detection systems.
There exist freely available tools to forcefully fragment IP datagrams so as to help evade Intrusion Detection Systems. Frag router [Song1999] is an example of such a tool; it allows an attacker to perform all the evasion techniques described in [Ptacek1998]. Ftester [Barisani2006] is a tool that helps to audit systems regarding fragmentation issues.
One approach to fragment filtering involves keeping track of the results of applying filter rules to the first fragment (i.e., the fragment with a Fragment Offset of 0), and applying them to subsequent fragments of the same packet. The filtering module would maintain a list of packets indexed by the Source Address, Destination Address, Protocol, and Identification number. When the initial fragment is seen, if the MF bit is set, a list item would be allocated to hold the result of filter access checks. When packets with a non-zero Fragment Offset come in, look up the list element with a matching Source Address/Destination Address/Protocol/ Identification and apply the stored result (pass or block). When a fragment with a zero MF bit is seen, free the list element. Unfortunately, the rules of this type of packet filter can usually be bypassed. [RFC1858] describes the details of the involved technique.
A design choice usually has to be made as to how to allocate memory to reassemble the fragments of a given packet. There are basically two options:
o Upon receipt of the first fragment, allocate a buffer that will be large enough to concatenate the payload of each fragment.
o Upon receipt of the first fragment, create the first node of a linked list to which each of the following fragments will be linked. When all fragments have been received, copy the IP payload of each of the fragments (in the correct order) to a separate buffer that will be handed to the protocol being encapsulated in the IP payload.
While the first of the choices might seem to be the most straightforward, it implies that even when a single small fragment of a given packet is received, the amount of memory that will be allocated for that fragment will account for the size of the complete IP datagram, thus using more system resources than what is actually needed.
Furthermore, the only situation in which the actual size of the whole datagram will be known is when the last fragment of the packet is received first, as that is the only packet from which the total size of the IP datagram can be asserted. Otherwise, memory should be allocated for the largest possible packet size (65535 bytes).
The IP module should also enforce a limit on the amount of memory that can be allocated for IP fragments, as well as a limit on the number of fragments that at any time will be allowed in the system. This will basically limit the resources spent on the reassembly process, and prevent an attacker from trashing the whole system memory.
Furthermore, the IP module should keep a different buffer for IP fragments than for complete IP datagrams. This will basically separate the effects of fragment attacks on non-fragmented traffic. Most TCP/IP implementations, such as that in Linux and those in BSD- derived systems, already implement this.
[Jones2002] analyzes the amount of memory that may be needed for the fragment reassembly buffer depending on a number of network characteristics.
In the case of those attacks that aim to consume the memory buffers used for fragments, and those that aim to cause a collision of IP Identification numbers, there are a number of countermeasures that can be implemented.
Even with these countermeasures in place, there is still the issue of what to do when the buffer pool used for IP fragments gets full. Basically, if the fragment buffer is full, no instance of communication that relies on fragmentation will be able to progress.
Unfortunately, there are not many options for reacting to this situation. If nothing is done, all the instances of communication that rely on fragmentation will experience a denial of service. Thus, the only thing that can be done is flush all or part of the fragment buffer, on the premise that legitimate traffic will be able to make use of the freed buffer space to allow communication flows to progress.
There are a number of factors that should be taken into consideration when flushing the fragment buffers. First, if a fragment of a given packet (i.e., fragment with a given Identification number) is flushed, all the other fragments that correspond to the same datagram should be flushed. As in order for a packet to be reassembled all of its fragments must be received by the system performing the reassembly function, flushing only a subset of the fragments of a given packet would keep the corresponding buffers tied to fragments that would never reassemble into a complete datagram. Additionally, care must be taken so that, in the event that subsequent buffer flushes need to be performed, it is not always the same set of fragments that get dropped, as such a behavior would probably cause a selective DoS to the traffic flows to which that set of fragments belongs.
Many TCP/IP implementations define a threshold for the number of fragments that, when reached, triggers a fragment-buffer flush. Some systems flush 1/2 of the fragment buffer when the threshold is reached. As mentioned before, the idea of flushing the buffer is to create some free space in the fragment buffer, on the premise that this will allow for new and legitimate fragments to be processed by the IP module, thus letting communication survive the overwhelming situation. On the other hand, the idea of flushing a somewhat large portion of the buffer is to avoid flushing always the same set of packets.
One of the difficulties in implementing countermeasures for the fragmentation attacks described throughout Section 4.1 is that it is difficult to perform validation checks on the received fragments. For instance, the fragment on which validity checks could be performed, the first fragment, may be not the first fragment to arrive at the destination host.
Fragments cannot only arrive out of order because of packet reordering performed by the network, but also because the system (or systems) that fragmented the IP datagram may indeed transmit the fragments out of order. A notable example of this is the Linux TCP/IP stack, which transmits the fragments in reverse order.
This means that we cannot enforce checks on the fragments for which we allocate reassembly resources, as the first fragment we receive for a given packet may be some other fragment than the first one (the one with an Fragment Offset of 0).
However, at the point in which we decide to free some space in the fragment buffer, some refinements can be done to the flushing policy. The first thing we would like to do is to stop different types of traffic from interfering with each other. This means, in principle, that we do not want fragmented UDP traffic to interfere with fragmented TCP traffic. In order to implement this traffic separation for the different protocols, a different fragment buffer pool would be needed, in principle, for each of the 256 different protocols that can be encapsulated in an IP datagram.
We believe a trade-off is to implement two separate fragment buffers: one for IP datagrams that encapsulate IPsec packets and another for the rest of the traffic. This basically means that traffic not protected by IPsec will not interfere with those flows of communication that are being protected by IPsec.
The processing of each of these two different fragment buffer pools would be completely independent from each other. In the case of the IPsec fragment buffer pool, when the buffers needs to be flushed, the following refined policy could be applied:
o First, for each packet for which the IPsec header has been received, check that the Security Parameters Index (SPI) field of the IPsec header corresponds to an existing IPsec Security Association (SA), and probably also check that the IPsec sequence number is valid. If the check fails, drop all the fragments that correspond to this packet.
o Second, if still more fragment buffers need to be flushed, drop all the fragments that correspond to packets for which the full IPsec header has not yet been received. The number of packets for which this flushing is performed depends on the amount of free space that needs to be created.
o Third, if after flushing packets with invalid IPsec information (First step), and packets on which validation checks could not be performed (Second step), there is still not enough space in the
fragment buffer, drop all the fragments that correspond to packets that passed the checks of the first step, until the necessary free space is created.
The rationale behind this policy is that, at the point of flushing fragment buffers, we prefer to keep those packets on which we could successfully perform a number of validation checks, over those packets on which those checks failed, or the checks could not even be performed.
By checking both the IPsec SPI and the IPsec sequence number, it is virtually impossible for an attacker that is off-path to perform a DoS attack to communication flows being protected by IPsec.
Unfortunately, some IP implementations (such as that in Linux [Linux]), when performing fragmentation, send the corresponding fragments in reverse order. In such cases, at the point of flushing the fragment buffer, legitimate fragments will receive the same treatment as the possible forged fragments.
This refined flushing policy provides an increased level of protection against this type of resource exhaustion attack, while not making the situation of out-of-order IPsec-secured traffic worse than with the simplified flushing policy described in the previous section.
RFC 1122 [RFC1122] states that the reassembly timeout should be a fixed value between 60 and 120 seconds. The rationale behind these long timeout values is that they should accommodate any path characteristics, such as long-delay paths. However, it must be noted that this timer is really measuring inter-fragment delays, or, more specifically, fragment jitter.
If all fragments take paths of similar characteristics, the inter- fragment delay will usually be, at most, a few seconds. Nevertheless, even if fragments take different paths of different characteristics, the recommended 60 to 120 seconds are, in practice, excessive.
Some systems have already reduced the fragment timeout to 30 seconds [Linux]. The fragment timeout could probably be further reduced to approximately 15 seconds; although further research on this issue is necessary.
It should be noted that in network scenarios of long-delay and high- bandwidth (usually referred to as "Long-Fat Networks"), using a long fragment timeout would likely increase the probability of collision of IP ID numbers. Therefore, in such scenarios it is highly desirable to avoid the use of fragmentation with techniques such as PMTUD [RFC1191] or PLPMTUD [RFC4821].
[Shankar2003]
introduces a technique named "Active Mapping" that prevents evasion of a NIDS by acquiring sufficient knowledge about the network being monitored, to assess which packets will arrive at the intended recipient, and how they will be interpreted by it. [Novak2005] describes some techniques that are applied by the Snort [Snort] NIDS to avoid evasion.
One of the classical techniques to bypass firewall rules involves sending packets in which the header of the encapsulated protocol is fragmented. Even when it would be legal (as far as the IETF specifications are concerned) to receive such a packets, the MTUs of the network technologies used in practice are not that small to require the header of the encapsulated protocol to be fragmented (e.g., see [RFC2544]). Therefore, the system performing reassembly should drop all packets which fragment the upper-layer protocol header, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
Additionally, given that many middle-boxes such as firewalls create state according to the contents of the first fragment of a given packet, it is best that, in the event an end-system receives overlapping fragments, it honors the information contained in the fragment that was received first.
RFC 1858 [RFC1858] describes the abuse of IP fragmentation to bypass firewall rules. RFC 3128 [RFC3128] corrects some errors in RFC 1858.
Section 5.3.3.1 of RFC 1812 [RFC1812] states that routers should implement precedence-ordered queue service. This means that when a packet is selected for output on a (logical) link, the packet of highest precedence that has been queued for that link is sent. Section 5.3.3.2 of RFC 1812 advises routers to default to maintaining strict precedence-ordered service.
Unfortunately, given that it is trivial to forge the IP precedence field of the IP header, an attacker could simply forge a high precedence number in the packets it sends to illegitimately get better network service. If precedence-ordered queued service is not required in a particular network infrastructure, it should be disabled, and thus all packets would receive the same type of service, despite the values in their Type of Service or Differentiated Services fields.
When precedence-ordered queue service is required in the network infrastructure, in order to mitigate the attack vector discussed in the previous paragraph, edge routers or switches should be configured to police and remark the Type of Service or Differentiated Services values, according to the type of service at which each end-system has been allowed to send packets.
Bullet 4 of Section 5.3.3.3 of RFC 1812 states that routers "MUST NOT change precedence settings on packets it did not originate". However, given the security implications of the Precedence field, it is fair for routers, switches, or other middle-boxes, particularly those in the network edge, to overwrite the Type of Service (or Differentiated Services) field of the packets they are forwarding, according to a configured network policy (this is the specified behavior for DS domains [RFC2475]).
Sections 5.3.3.1 and 5.3.6 of RFC 1812 state that if precedence- ordered queue service is implemented and enabled, the router "MUST NOT discard a packet whose precedence is higher than that of a packet that is not discarded". While this recommendation makes sense given the semantics of the Precedence field, it is important to note that it would be simple for an attacker to send packets with forged high Precedence value to congest some internet router(s), and cause all (or most) traffic with a lower Precedence value to be discarded.
Section 5.2.4.3 of RFC 1812 describes the algorithm for determining the next-hop address (i.e., the forwarding algorithm). Bullet 3, "Weak TOS", addresses the case in which routes contain a "type of service" attribute. It states that in case a packet contains a non- default TOS (i.e., 0000), only routes with the same TOS or with the default TOS should be considered for forwarding that packet. However, this means that if among the longest match routes for a given packet are routes with some TOS other than the one contained in the received packet, and no routes with the default TOS, the corresponding packet would be dropped. This may or may not be a desired behavior.
An alternative for the case in which among the "longest match" routes there are only routes with non-default type of service that do not match the TOS contained in the received packet, would be to use a route with any other TOS. While this route would most likely not be able to address the type of service requested by packet, it would, at least, provide a "best effort" service.
It must be noted that Section 5.3.2 of RFC 1812 allows routers to not honor the TOS field. Therefore, the proposed alternative behavior is still compliant with the IETF specifications.
While officially specified in the RFC series, TOS-based routing is not widely deployed in the Internet.
In the case of broadcast link-layer technologies, in order for a system to transfer an IP datagram it must usually first map an IP address to the corresponding link-layer address (for example, by means of the Address Resolution Protocol (ARP) [RFC0826]) . This means that while this operation is being performed, the packets that would require such a mapping would need to be kept in memory. This may happen both in the case of hosts and in the case of routers.
This situation might be exploited by an attacker, which could send a large amount of packets to a non-existent host that would supposedly be directly connected to the attacked router. While trying to map the corresponding IP address into a link-layer address, the attacked router would keep in memory all the packets that would need to make use of that link-layer address. At the point in which the mapping function times out, depending on the policy implemented by the attacked router, only the packet that triggered the call to the mapping function might be dropped. In that case, the same operation would be repeated for every packet destined to the non-existent host. Depending on the timeout value for the mapping function, this situation might lead the router to run out of free buffer space, with the consequence that incoming legitimate packets would have to be dropped, or that legitimate packets already stored in the router's buffers might get dropped. Both of these situations would lead either to a complete DoS or to a degradation of the network service.
One countermeasure to this problem would be to drop, at the point the mapping function times out, all the packets destined to the address that timed out. In addition, a "negative cache entry" might be kept in the module performing the matching function, so that for some amount of time, the mapping function would return an error when the IP module requests to perform a mapping for some address for which the mapping has recently timed out.
A common implementation strategy for routers is that when a packet is received that requires an ARP resolution to be performed before the packet can be forwarded, the packet is dropped and the router is then engaged in the ARP procedure.
In some scenarios, it may be necessary for a host or router to drop packets from the output queue. In the event that one of such packets happens to be an IP fragment, and there were other fragments of the same packet in the queue, those other fragments should also be dropped. The rationale for this policy is that it is nonsensical to spend system resources on those other fragments, because, as long as one fragment is missing, it will be impossible for the receiving system to reassemble them into a complete IP datagram.
Some systems have been known to drop just a subset of fragments of a given datagram, leading to a denial-of-service condition, as only a subset of all the fragments of the packets were actually transferred to the next hop.
It is important to understand that while there are some addresses that are supposed to be unreachable from the public Internet (such as the private IP addresses described in RFC 1918 [RFC1918], or the "loopback" address), there are a number of tricks an attacker can perform to reach those IP addresses that would otherwise be unreachable (e.g., exploit the LSRR or SSRR IP options). Therefore, when applicable, packet filtering should be performed at the private network boundary to assure that those addresses will be unreachable.
Similarly, link-local unicast addresses [RFC3927] and multicast addresses with limited scope (link- and site-local addresses) should not be accessible from outside the proper network boundaries and not be passed across these boundaries.
[RFC5735] provides a summary of special use IPv4 addresses.
The Internet Assigned Numbers Authority (IANA) has reserved the following three blocks of the IP address space for private internets:
o 10.0.0.0 - 10.255.255.255 (10/8 prefix)
o 172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
o 192.168.0.0 - 192.168.255.255 (192.168/16 prefix)
Use of these address blocks is described in RFC 1918 [RFC1918].
Where applicable, packet filtering should be performed at the organizational perimeter to assure that these addresses are not reachable from outside the private network where such addresses are employed.
The former Class D addresses correspond to the 224/4 address block and are used for Internet multicast. Therefore, if a packet is received with a "Class D" address as the Source Address, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). Additionally, if an IP packet with a multicast Destination Address is received for a connection-oriented protocol (e.g., TCP), the packet should be dropped (see Section 4.3.5), and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
The former Class E addresses correspond to the 240/4 address block, and are currently reserved for experimental use. As a result, a most routers discard packets that contain a "Class" E address as the Source Address or Destination Address. If a packet is received with a 240/4 address as the Source Address and/or the Destination Address, the packet should be dropped and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
It should be noted that the broadcast address 255.255.255.255 still must be treated as indicated in Section 4.3.7 of this document.
For connection-oriented protocols, such as TCP, shared state is maintained between only two endpoints at a time. Therefore, if an IP packet with a multicast (or broadcast) Destination Address is received for a connection-oriented protocol (e.g., TCP), the packet should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
Originally, the IETF specifications did not permit IP addresses to have the value 0 or -1 (shorthand for all bits set to 1) for any of the Host number, network number, or subnet number fields, except for the cases indicated in Section 4.3.7. However, this changed fundamentally with the deployment of Classless Inter-Domain Routing (CIDR) [RFC4632], as with CIDR a system cannot know a priori what the subnet mask is for a particular IP address.
Many systems now allow administrators to use the values 0 or -1 for those fields. Despite that according to the original IETF specifications these addresses are illegal, modern IP implementations should consider these addresses to be valid.
RFC 1812 [RFC1812] discusses the use of some special Internet addresses, which is of interest to perform some sanity checks on the Source Address and Destination Address fields of an IP packet. It uses the following notation for an IP address:
{ <Network-prefix>, <Host-number> }
where the length of the network prefix is generally implied by the network mask assigned to the IP interface under consideration.
RFC 1122 [RFC1122] contained a similar discussion of special Internet addresses, including some of the form { <Network-prefix>, <Subnet-number>, <Host-number> }. However, as explained in Section 4.2.2.11 of RFC 1812, in a CIDR world, the subnet number is clearly an extension of the network prefix and cannot be distinguished from the remainder of the prefix.
{0, 0}
This address means "this host on this network". It is meant to be used only during the initialization procedure, by which the host learns its own IP address.
If a packet is received with 0.0.0.0 as the Source Address for any purpose other than bootstrapping, the corresponding packet should be silently dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). If a packet is received with 0.0.0.0 as the Destination Address, it should be silently dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
{0, Host number}
This address means "the specified host, in this network". As in the previous case, it is meant to be used only during the initialization procedure by which the host learns its own IP address. If a packet is received with such an address as the Source Address for any purpose other than bootstrapping, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). If a packet is received with such an address as the Destination Address, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
{-1, -1}
This address is the local broadcast address. It should not be used as a source IP address. If a packet is received with 255.255.255.255 as the Source Address, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
Some systems, when receiving an ICMP echo request, for example, will use the Destination Address in the ICMP echo request packet as the Source Address of the response they send (in this case, an ICMP echo reply). Thus, when such systems receive a request sent to a broadcast address, the Source Address of the response will contain a broadcast address. This should be considered a bug, rather than a malicious use of the limited broadcast address.
{Network number, -1}
This is the directed broadcast to the specified network. As recommended by RFC 2644 [RFC2644], routers should not forward network-directed broadcasts. This avoids the corresponding network from being utilized as, for example, a "smurf amplifier" [CERT1998a].
As noted in Section 4.3.6 of this document, many systems now allow administrators to configure these addresses as unicast addresses for network interfaces. In such scenarios, routers should forward these addresses as if they were traditional unicast addresses.
In some scenarios, a host may have knowledge about a particular IP address being a network-directed broadcast address, rather than a unicast address (e.g., that IP address is configured on the local system as a "broadcast address"). In such scenarios, if a system can infer that the Source Address of a received packet is a network- directed broadcast address, the packet should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
As noted in Section 4.3.6 of this document, with the deployment of CIDR [RFC4632], it may be difficult for a system to infer whether a particular IP address that does not belong to a directly attached subnet is a broadcast address.
{127.0.0.0/8, any}
This is the internal host loopback address. Any packet that arrives on any physical interface containing this address as the Source Address, the Destination Address, or as part of a source route (either LSRR or SSRR), should be dropped.
For example, packets with a Destination Address in the 127.0.0.0/8 address block that are received on an interface other than loopback should be silently dropped. Packets received on any interface other than loopback with a Source Address corresponding to the system receiving the packet should also be dropped.
In all the above cases, when a packet is dropped, this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This document discusses the security implications of the Internet Protocol (IP) and a number of implementation strategies that help to mitigate a number of vulnerabilities found in the protocol during the last 25 years or so.
The author wishes to thank Alfred Hoenes for providing very thorough reviews of earlier versions of this document, thus leading to numerous improvements.
The author would like to thank Jari Arkko, Ron Bonica, Stewart Bryant, Adrian Farrel, Joel Jaeggli, Warren Kumari, Bruno Rohee, and Andrew Yourtchenko for providing valuable comments on earlier versions of this document.
This document was written by Fernando Gont on behalf of the UK CPNI (United Kingdom's Centre for the Protection of National Infrastructure), and is heavily based on the "Security Assessment of the Internet Protocol" [CPNI2008] published by the UK CPNI in 2008. The author would like to thank Randall Atkinson, John Day, Juan Fraschini, Roque Gagliano, Guillermo Gont, Martin Marino, Pekka Savola, and Christos Zoulas for providing valuable comments on earlier versions of [CPNI2008], on which this document is based.
The author would like to thank Randall Atkinson and Roque Gagliano, who generously answered a number of questions.
Finally, the author would like to thank UK CPNI (formerly NISCC) for their continued support.
[RFC0791]
Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.
[RFC0826]
Plummer, D., "Ethernet Address Resolution Protocol: Or converting network protocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware", STD 37, RFC 826, November 1982.
[RFC1038]
St. Johns, M., "Draft revised IP security option", RFC 1038, January 1988.
[RFC1063]
Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP MTU discovery options", RFC 1063, July 1988.
[RFC1108]
Kent, S., "U.S", RFC 1108, November 1991.
[RFC1112]
Deering, S., "Host extensions for IP multicasting", STD 5, RFC 1112, August 1989.
[RFC1122]
Braden, R., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989.
[RFC1191]
Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191, November 1990.
[RFC1349]
Almquist, P., "Type of Service in the Internet Protocol Suite", RFC 1349, July 1992.
[RFC1393]
Malkin, G., "Traceroute Using an IP Option", RFC 1393, January 1993.
[RFC1770]
Graff, C., "IPv4 Option for Sender Directed Multi- Destination Delivery", RFC 1770, March 1995.
[RFC1812]
Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995.
[RFC1918]
Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and E. Lear, "Address Allocation for Private Internets", BCP 5, RFC 1918, February 1996.
[RFC2113]
Katz, D., "IP Router Alert Option", RFC 2113, February 1997.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2474]
Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998.
[RFC2475]
Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and W. Weiss, "An Architecture for Differentiated Services", RFC 2475, December 1998.
[RFC2644]
Senie, D., "Changing the Default for Directed Broadcasts in Routers", BCP 34, RFC 2644, August 1999.
[RFC2827]
Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000.
[RFC3168]
Ramakrishnan, K., Floyd, S., and D. Black, "The Addition of Explicit Congestion Notification (ECN) to IP", RFC 3168, September 2001.
[RFC3704]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004.
[RFC3927]
Cheshire, S., Aboba, B., and E. Guttman, "Dynamic Configuration of IPv4 Link-Local Addresses", RFC 3927, May 2005.
[RFC4086]
Eastlake, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, June 2005.
[RFC4632]
Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.
[RFC4821]
Mathis, M. and J. Heffner, "Packetization Layer Path MTU Discovery", RFC 4821, March 2007.
[RFC5082]
Gill, V., Heasley, J., Meyer, D., Savola, P., and C. Pignataro, "The Generalized TTL Security Mechanism (GTSM)", RFC 5082, October 2007.
[RFC5350]
Manner, J. and A. McDonald, "IANA Considerations for the IPv4 and IPv6 Router Alert Options", RFC 5350, September 2008.
[RFC5735]
Cotton, M. and L. Vegoda, "Special Use IPv4 Addresses", BCP 153, RFC 5735, January 2010.
[RFC6040]
Briscoe, B., "Tunnelling of Explicit Congestion Notification", RFC 6040, November 2010.
[Anderson2001]
Anderson, J., "An Analysis of Fragmentation Attacks", 2001, <http://www.ouah.org/fragma.html>.
[Arkin2000]
Arkin, "IP TTL Field Value with ICMP (Oops - Identifying Windows 2000 again and more)", 2000, <http://ofirarkin.files.wordpress.com/2008/11/ ofirarkin2000-06.pdf>.
[Barisani2006]
Barisani, A., "FTester - Firewall and IDS testing tool", 2001, <http://dev.inversepath.com/trac/ftester>.
[Bellovin1989]
Bellovin, S., "Security Problems in the TCP/IP Protocol Suite", Computer Communication Review Vol. 19, No. 2, pp. 32-48, 1989.
[Bellovin2002]
Bellovin, S., "A Technique for Counting NATted Hosts", IMW'02 Nov. 6-8, 2002, Marseille, France, 2002.
[Bendi1998]
Bendi, "Bonk exploit", 1998, <http://www.insecure.org/sploits/ 95.NT.fragmentation.bonk.html>.
[Biondi2007]
Biondi, P. and A. Ebalard, "IPv6 Routing Header Security", CanSecWest 2007 Security Conference, 2007, <http://www.secdev.org/conf/IPv6_RH_security-csw07.pdf>.
[CERT1996a]
CERT, "CERT Advisory CA-1996-01: UDP Port Denial-of- Service Attack", 1996, <http://www.cert.org/advisories/CA-1996-01.html>.
[CERT1996b]
CERT, "CERT Advisory CA-1996-21: TCP SYN Flooding and IP Spoofing Attacks", 1996, <http://www.cert.org/advisories/CA-1996-21.html>.
[CERT1996c]
CERT, "CERT Advisory CA-1996-26: Denial-of-Service Attack via ping", 1996, <http://www.cert.org/advisories/CA-1996-26.html>.
[CERT1997]
CERT, "CERT Advisory CA-1997-28: IP Denial-of-Service Attacks", 1997, <http://www.cert.org/advisories/CA-1997-28.html>.
[CERT1998a]
CERT, "CERT Advisory CA-1998-01: Smurf IP Denial-of- Service Attacks", 1998, <http://www.cert.org/advisories/CA-1998-01.html>.
[CERT1998b]
CERT, "CERT Advisory CA-1998-13: Vulnerability in Certain TCP/IP Implementations", 1998, <http://www.cert.org/advisories/CA-1998-13.html>.
[CERT1999]
CERT, "CERT Advisory CA-1999-17: Denial-of-Service Tools", 1999, <http://www.cert.org/advisories/CA-1999-17.html>.
[CERT2003]
CERT, "CERT Advisory CA-2003-15: Cisco IOS Interface Blocked by IPv4 Packet", 2003, <http://www.cert.org/advisories/CA-2003-15.html>.
[CIPSO1992]
CIPSO, "COMMERCIAL IP SECURITY OPTION (CIPSO 2.2)", Work in Progress, 1992.
[CIPSOWG1994]
CIPSOWG, "Commercial Internet Protocol Security Option (CIPSO) Working Group", 1994, <http://www.ietf.org/ proceedings/94jul/charters/cipso-charter.html>.
[CPNI2008]
Gont, F., "Security Assessment of the Internet Protocol", 2008, <http://www.cpni.gov.uk/Docs/InternetProtocol.pdf>.
[Cerf1974]
Cerf, V. and R. Kahn, "A Protocol for Packet Network Intercommunication", IEEE Transactions on Communications Vol. 22, No. 5, May 1974, pp. 637-648, 1974.
[Cisco2003]
Cisco, "Cisco Security Advisory: Cisco IOS Interface Blocked by IPv4 packet", 2003, <http://www.cisco.com/en/ US/products/ products_security_advisory09186a00801a34c2.shtml>.
[Cisco2008]
Cisco, "Cisco IOS Security Configuration Guide, Release 12.2", 2003, <http://www.cisco.com/en/US/docs/ios/12_2/ security/configuration/guide/scfipso.html>.
[Clark1988]
Clark, D., "The Design Philosophy of the DARPA Internet Protocols", Computer Communication Review Vol. 18, No. 4, 1988.
[Ed3f2002]
Ed3f, "Firewall spotting and networks analysis with a broken CRC", Phrack Magazine, Volume 0x0b, Issue 0x3c, Phile #0x0c of 0x10, 2002, <http://www.phrack.org/ issues.html?issue=60&id=12&mode=txt>.
[FIPS1994]
FIPS, "Standard Security Label for Information Transfer", Federal Information Processing Standards Publication. FIP PUBS 188, 1994, <http://csrc.nist.gov/publications/fips/ fips188/fips188.pdf>.
[Fyodor2004]
Fyodor, "Idle scanning and related IP ID games", 2004, <http://www.insecure.org/nmap/idlescan.html>.
[GIAC2000]
GIAC, "Egress Filtering v 0.2", 2000, <http://www.sans.org/y2k/egress.htm>.
[Gont2006]
Gont, F., "Advanced ICMP packet filtering", 2006, <http://www.gont.com.ar/papers/icmp-filtering.html>.
[Haddad2004]
Haddad, I. and M. Zakrzewski, "Security Distribution for Linux Clusters", Linux Journal, 2004, <http://www.linuxjournal.com/article/6943>.
[Humble1998]
Humble, "Nestea exploit", 1998, <http://www.insecure.org/sploits/ linux.PalmOS.nestea.html>.
[IANA_ET]
IANA, "Ether Types", <http://www.iana.org/assignments/ethernet-numbers>.
[IANA_IP_PARAM]
IANA, "IP Parameters", <http://www.iana.org/assignments/ip-parameters>.
[IANA_PROT_NUM]
IANA, "Protocol Numbers", <http://www.iana.org/assignments/protocol-numbers>.
[IRIX2008]
IRIX, "IRIX 6.5 trusted_networking(7) manual page", 2008, <http://techpubs.sgi.com/library/tpl/cgi-bin/ getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/a_man/ cat7/trusted_networking.z>.
[Jones2002]
Jones, R., "A Method Of Selecting Values For the Parameters Controlling IP Fragment Reassembly", 2002, <ftp://ftp.cup.hp.com/dist/networking/briefs/ ip_reass_tuning.txt>.
[Kenney1996]
Kenney, M., "The Ping of Death Page", 1996, <http://www.insecure.org/sploits/ping-o-death.html>.
[Kent1987]
Kent, C. and J. Mogul, "Fragmentation considered harmful", Proc. SIGCOMM '87 Vol. 17, No. 5, October 1987, 1987.
[Klein2007]
Klein, A., "OpenBSD DNS Cache Poisoning and Multiple O/S Predictable IP ID Vulnerability", 2007, <http://www.trusteer.com/files/ OpenBSD_DNS_Cache_Poisoning_and_Multiple_OS_Predictable_IP _ID_Vulnerability.pdf>.
[Kohno2005]
Kohno, T., Broido, A., and kc. Claffy, "Remote Physical Device Fingerprinting", IEEE Transactions on Dependable and Secure Computing Vol. 2, No. 2, 2005.
[LBNL2006]
LBNL/NRG, "arpwatch tool", 2006, <http://ee.lbl.gov/>.
[Linux]
Linux Kernel Organization, "The Linux Kernel Archives", <http://www.kernel.org>.
[Microsoft1999]
Microsoft, "Microsoft Security Program: Microsoft Security Bulletin (MS99-038). Patch Available for "Spoofed Route Pointer" Vulnerability", 1999, <http://www.microsoft.com/ technet/security/bulletin/ms99-038.mspx>.
[NISCC2004]
NISCC, "NISCC Vulnerability Advisory 236929: Vulnerability Issues in TCP", 2004, <http://www.cpni.gov.uk>.
[NISCC2005]
NISCC, "NISCC Vulnerability Advisory 532967/NISCC/ICMP: Vulnerability Issues in ICMP packets with TCP payloads", 2005, <http://www.gont.com.ar/advisories/index.html>.
[NISCC2006]
NISCC, "NISCC Technical Note 01/2006: Egress and Ingress Filtering", 2006, <http://www.cpni.gov.uk>.
[Northcutt2000]
Northcut, S. and Novak, "Network Intrusion Detection - An Analyst's Handbook", Second Edition New Riders Publishing, 2000.
[Novak2005]
Novak, "Target-Based Fragmentation Reassembly", 2005, <http://www.snort.org/assets/165/target_based_frag.pdf>.
[OpenBSD-PF]
Sanfilippo, S., "PF: Scrub (Packet Normalization)", 2010, <ftp://ftp.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf>.
[OpenBSD1998]
OpenBSD, "OpenBSD Security Advisory: IP Source Routing Problem", 1998, <http://www.openbsd.org/advisories/sourceroute.txt>.
[Paxson2001]
Paxson, V., Handley, M., and C. Kreibich, "Network Intrusion Detection: Evasion, Traffic Normalization, and End-to-End Protocol Semantics", USENIX Conference, 2001.
[Ptacek1998]
Ptacek, T. and T. Newsham, "Insertion, Evasion and Denial of Service: Eluding Network Intrusion Detection", 1998, <http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps>.
[RFC0815]
Clark, D., "IP datagram reassembly algorithms", RFC 815, July 1982.
[RFC1858]
Ziemba, G., Reed, D., and P. Traina, "Security Considerations for IP Fragment Filtering", RFC 1858, October 1995.
[RFC2544]
Bradner, S. and J. McQuaid, "Benchmarking Methodology for Network Interconnect Devices", RFC 2544, March 1999.
[RFC3128]
Miller, I., "Protection Against a Variant of the Tiny Fragment Attack (RFC 1858)", RFC 3128, June 2001.
[RFC3530]
Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M., and D. Noveck, "Network File System (NFS) version 4 Protocol", RFC 3530, April 2003.
[RFC4963]
Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly Errors at High Data Rates", RFC 4963, July 2007.
[RFC4987]
Eddy, W., "TCP SYN Flooding Attacks and Common Mitigations", RFC 4987, August 2007.
[RFC5559]
Eardley, P., "Pre-Congestion Notification (PCN) Architecture", RFC 5559, June 2009.
[RFC5570]
StJohns, M., Atkinson, R., and G. Thomas, "Common Architecture Label IPv6 Security Option (CALIPSO)", RFC 5570, July 2009.
[RFC5670]
Eardley, P., "Metering and Marking Behaviour of PCN- Nodes", RFC 5670, November 2009.
[RFC5696]
Moncaster, T., Briscoe, B., and M. Menth, "Baseline Encoding and Transport of Pre-Congestion Information", RFC 5696, November 2009.
[RFC5927]
Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.
[ROUTER-ALERT]
Le Faucheur, F., Ed., "IP Router Alert Considerations and Usage", Work in Progress, June 2011.
[SELinux2009]
NSA, "Security-Enhanced Linux", <http://www.nsa.gov/research/selinux/>.
[Sanfilippo1998a]
Sanfilippo, S., "about the ip header id", Post to Bugtraq mailing-list, Mon Dec 14 1998, <http://www.kyuzz.org/antirez/papers/ipid.html>.
[Sanfilippo1998b]
Sanfilippo, S., "Idle scan", Post to Bugtraq mailing-list, 1998, <http://www.kyuzz.org/antirez/papers/dumbscan.html>.
[Sanfilippo1999]
Sanfilippo, S., "more ip id", Post to Bugtraq mailing- list, 1999, <http://www.kyuzz.org/antirez/papers/moreipid.html>.
[Shankar2003]
Shankar, U. and V. Paxson, "Active Mapping: Resisting NIDS Evasion Without Altering Traffic", 2003, <http://www.icir.org/vern/papers/activemap-oak03.pdf>.
[Shannon2001]
Shannon, C., Moore, D., and K. Claffy, "Characteristics of Fragmented IP Traffic on Internet Links", 2001.
[Silbersack2005]
Silbersack, M., "Improving TCP/IP security through randomization without sacrificing interoperability", EuroBSDCon 2005 Conference, 2005, <http://www.silby.com/eurobsdcon05/eurobsdcon_slides.pdf>.
[Snort]
Sourcefire, Inc., "Snort", <http://www.snort.org>.
[Solaris2007]
Oracle, "ORACLE SOLARIS WITH TRUSTED EXTENSIONS", 2007, <h ttp://www.oracle.com/us/products/servers-storage/solaris/ solaris-trusted-ext-ds-075583.pdf>.
[Song1999]
Song, D., "Frag router tool", <http://www.monkey.org/~dugsong/fragroute/>.
[SpooferProject]
MIT ANA, "Spoofer Project", 2010, <http://spoofer.csail.mit.edu/index.php>.
[US-CERT2001]
US-CERT, "US-CERT Vulnerability Note VU#446689: Check Point FireWall-1 allows fragmented packets through firewall if Fast Mode is enabled", 2001, <http://www.kb.cert.org/vuls/id/446689>.
[US-CERT2002]
US-CERT, "US-CERT Vulnerability Note VU#310387: Cisco IOS discloses fragments of previous packets when Express Forwarding is enabled", 2002.
[Watson2004]
Watson, P., "Slipping in the Window: TCP Reset Attacks", CanSecWest Conference, 2004.
[Zakrzewski2002]
Zakrzewski, M. and I. Haddad, "Linux Distributed Security Module", 2002, <http://www.linuxjournal.com/article/6215>.
[daemon91996]
daemon9, route, and infinity, "IP-spoofing Demystified (Trust-Relationship Exploitation)", Phrack Magazine, Volume Seven, Issue Forty-Eight, File 14 of 18, 1988, <htt p://www.phrack.org/issues.html?issue=48&id=14&mode=txt>.
Author's Address
7123 - Security Implications of IPv6 on IPv4 Networks
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 7123
Category: Informational
ISSN: 2070-1721
F. Gont
SI6 Networks/UTN-FRH
W. Liu
Huawei Technologies
February 2014
This document discusses the security implications of native IPv6 support and IPv6 transition/coexistence technologies on "IPv4-only" networks and describes possible mitigations for the aforementioned issues.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7123.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Most general-purpose operating systems implement and enable native IPv6 [RFC2460] support and a number of transition/coexistence technologies by default. Support of IPv6 by all nodes is intended to become best current practice [RFC6540]. Some enterprise networks might, however, choose to delay active use of IPv6.
This document describes operational practices to prevent security exposure in enterprise networks resulting from unplanned use of IPv6 on such networks. This document is only applicable to enterprise networks: networks where the network operator is not providing a general-purpose internet, but rather a business-specific network. The solutions proposed here are not practical for home networks, nor are they appropriate for provider networks such as ISPs, mobile providers, WiFi hotspot providers, or any other public internet service.
In scenarios in which IPv6-enabled devices are deployed on enterprise networks that are intended to be IPv4-only, native IPv6 support and/ or IPv6 transition/coexistence technologies could be leveraged by local or remote attackers for a number of (illegitimate) purposes. For example,
o A Network Intrusion Detection System (NIDS) might be prepared to detect attack patterns for IPv4 traffic, but might be unable to detect the same attack patterns when a transition/coexistence technology is leveraged for that purpose.
o An IPv4 firewall might enforce a specific security policy in IPv4, but might be unable to enforce the same policy in IPv6.
o A NIDS or firewall might support both IPv4 and IPv6, but might not be configured to enforce on IPv6 traffic the same controls/ policies it enforces on IPv4 traffic.
o Some transition/coexistence mechanisms could cause an internal host with otherwise limited IPv4 connectivity to become globally reachable over IPv6, therefore resulting in increased (and possibly unexpected) host exposure.
NOTE: Some transition/coexistence mechanisms (notably Teredo) are designed to traverse Network Address Port Translation (NAPT) [RFC2663] devices, allowing incoming IPv6 connections from the Internet to hosts behind the organizational firewall or NAPT (which in many deployments provides a minimum level of protection by only allowing those instances of communication that have been initiated from the internal network).
o IPv6 support could, either inadvertently or as a result of a deliberate attack, result in Virtual Private Network (VPN) traffic leaks if IPv6-unaware VPN software is employed by dual-stacked hosts [VPN-LEAKS].
In general, most of the aforementioned security implications can be mitigated by enforcing security controls on native IPv6 traffic and on IPv4-tunneled IPv6 traffic. Among such controls, is the enforcement of filtering policies to block undesirable traffic. While IPv6 widespread/global IPv6 deployment has been slower than expected, it is nevertheless happening; and thus, filtering IPv6 traffic (whether native or transition/coexistence) to mitigate IPv6 security implications on IPv4 networks should (generally) only be considered as a temporary measure until IPv6 is deployed.
NOTE: The aforementioned security controls should contemplate not only network-based solutions, but also host-based solutions (such as, e.g., personal firewalls).
Most popular operating systems include IPv6 support that is enabled by default. This means that even if a network is expected to be IPv4-only, much of its infrastructure is nevertheless likely to be IPv6-enabled. For example, hosts are likely to have at least link- local IPv6 connectivity, which might be exploited by attackers with access to the local network.
Additionally, unless appropriate measures are taken, an attacker with access to an "IPv4-only" local network could impersonate a local router and cause local hosts to enable their 'non-link-local' IPv6 connectivity (e.g., by sending Router Advertisement messages), possibly circumventing security controls that were enforced only on IPv4 communications.
NOTE: [THC-IPV6] and [IPv6-Toolkit] include tools that implement this attack vector (along with many others). [Waters2011] provides an example of how this could be achieved using publicly available tools.
Native IPv6 support could also possibly lead to VPN-traffic leakages when hosts employ VPN software that, not only does not support IPv6, but does nothing about IPv6 traffic. [VPN-LEAKS] describes this issue, along with possible mitigations.
In general, networks should enforce on native IPv6 traffic the same security policies currently enforced on IPv4 traffic. However, in those networks in which IPv6 has not yet been deployed and enforcing the aforementioned policies is deemed as infeasible, a network administrator might mitigate IPv6-based attack vectors by means of appropriate packet filtering.
Some layer-2 devices might have the ability to selectively filter packets based on the type of layer-2 payload. When such functionality is available, IPv6 traffic could be blocked at those layer-2 devices by blocking, for example, Ethernet frames with the Protocol Type field set to 0x86dd [IANA-ETHER]. We note, however, that blocking IPv6 at layer-2 might create problems that are difficult to diagnose, inclusive of intentional or incidental use of link-local addressing (as in Multicast DNS/DNS-based Service Discovery [RFC6762] [RFC6763]); sites that enforce such a filtering policy should keep that possibility in mind when debugging the network.
Attacks based on Stateless Address Autoconfiguration (SLAAC) [RFC3756] can be mitigated with technologies such as Router Advertisement Guard (RA-Guard) [RFC6105] [RA-GRD-IMP]. In a similar way, DHCPv6-based attacks can be mitigated with technologies such as DHCPv6-Shield [SHIELD]. However, both RA-Guard and DHCPv6-Shield are incapable of mitigating attack vectors that employ IPv6 link-local addresses, since configuration of such addresses does not rely on Router Advertisement messages or DHCPv6-server messages.
Administrators considering the filtering of native IPv6 traffic at layer-3 devices are urged to pay attention to the general considerations for IPv6 traffic filtering discussed in Section 4.
NOTE: If native IPv6 traffic is filtered at layer-2, local IPv6 nodes would only get to configure IPv6 link-local addresses.
In order to mitigate attacks based on native IPv6 traffic, IPv6 security controls should be enforced on both IPv4 and IPv6 networks. The aforementioned controls might include: deploying IPv6-enabled NIDS, implementing IPv6 firewalling, etc.
NOTE: In some very specific scenarios (e.g., military operations networks) in which only IPv4 service might be desired, a network administrator might want to disable IPv6 support in all the communicating devices.
Unless properly managed, tunneling mechanisms might result in negative security implications. For example, they might increase host exposure, might be leveraged to evade security controls, might contain protocol-based vulnerabilities, and/or the corresponding code might contain bugs with security implications.
NOTE: [RFC6169] describes the security implications of tunneling mechanisms in detail. Of the plethora of tunneling mechanisms that have so far been standardized and widely implemented, the so- called "automatic tunneling" mechanisms (such as Teredo, Intra- Site Automatic Tunnel Addressing Protocol (ISATAP), and 6to4) are of particular interest from a security standpoint, since they might be employed without prior consent or action of the user or network administrator.
Tunneling mechanisms should be a concern not only to network administrators that have consciously deployed them, but also to those who have not deployed them, as these mechanisms might be leveraged to bypass their security policies.
NOTE: [CERT2009] contains some examples of how tunnels can be leveraged to bypass firewall rules.
The aforementioned issues could be mitigated by applying the common security practice of only allowing traffic deemed as "necessary" (i.e., the so-called "default deny" policy). Thus, when such policy is enforced, IPv6 transition/coexistence traffic would be blocked by default and would only be allowed as a result of an explicit decision.
NOTE: It should be noted that this type of policy is usually enforced on a network that is the target of such traffic (such as an enterprise network). IPv6 transition traffic should generally never be filtered, e.g., by an ISP when it is transit traffic.
In those scenarios in which transition/coexistence traffic is meant to be blocked, it is highly recommended that, in addition to the enforcement of filtering policies at the organizational perimeter, the corresponding transition/coexistence mechanisms be disabled on each node connected to the organizational network. This would not only prevent security breaches resulting from accidental use of these mechanisms, but would also disable this functionality altogether, possibly mitigating vulnerabilities that might be present in the host implementation of these transition/coexistence mechanisms.
IPv6-in-IPv4 tunneling mechanisms (such as 6to4 or configured tunnels) can generally be blocked by dropping IPv4 packets that contain a Protocol field set to 41. Security devices such as NIDS might also include signatures that detect such transition/coexistence traffic.
Administrators considering the filtering of transition/coexistence traffic are urged to pay attention to the general considerations for IPv6 traffic filtering discussed in Section 4.
We note that this document only covers standardized IPv6 tunneling mechanisms; it does not aim to cover non-standard tunneling mechanisms or tunneling based on IPsec [RFC4301] or on SSL/TLS [RFC5246] [RFC6101].
Probably the most basic type of tunnel employed for connecting IPv6 "islands" is the so-called "6in4", in which IPv6 packets are encapsulated within IPv4 packets. These tunnels typically result from manual configuration at the two tunnel endpoints.
6in4 tunnels can be blocked by blocking IPv4 packets with a Protocol field of 41.
[RFC2529] specifies a mechanism known as 6over4 or 'IPv6 over IPv4' (or colloquially as 'virtual Ethernet'), which comprises a set of mechanisms and policies to allow isolated IPv6 hosts located on physical links with no directly connected IPv6 router to become fully functional IPv6 hosts by using an IPv4 domain that supports IPv4 multicast as their virtual local link.
NOTE: This transition technology has never been widely deployed because of the low level of deployment of multicast in most networks.
6over4 encapsulates IPv6 packets in IPv4 packets with their Protocol field set to 41. As a result, simply filtering all IPv4 packets that have a Protocol field equal to 41 will filter 6over4 (along with many other transition technologies).
A more selective filtering could be enforced such that 6over4 traffic is filtered while other transition traffic is still allowed. Such a filtering policy would block all IPv4 packets that have their Protocol field set to 41, and that have a Destination Address that belongs to the prefix 239.0.0.0/8.
This filtering policy basically blocks 6over4 Neighbor Discovery traffic directed to multicast addresses, thus preventing SLAAC, address resolution, etc. Additionally, it would prevent the 6over4 multicast addresses from being leveraged for the purpose of network reconnaissance.
6rd builds upon the mechanisms of 6to4 to enable the rapid deployment of IPv6 on IPv4 infrastructures, while avoiding some downsides of 6to4. Usage of 6rd was originally documented in [RFC5569], and the mechanism was generalized to other access technologies and formally standardized in [RFC5969].
6rd can be blocked by blocking IPv4 packets with the Protocol field set to 41.
6to4 [RFC3056] is an address assignment and router-to-router, host- to-router, and router-to-host automatic tunneling mechanism that is meant to provide IPv6 connectivity between IPv6 sites and hosts across the IPv4 Internet.
NOTE: The security considerations for 6to4 are discussed in detail in [RFC3964]. [RFC6343] provides advice to network operators about 6to4 (some of which relates to security mitigations).
As discussed in Section 3, all IPv6-in-IPv4 traffic, including 6to4, could be easily blocked by filtering IPv4 packets that contain their Protocol field set to 41. This is the most effective way of filtering such traffic.
If 6to4 traffic is meant to be filtered while other IPv6-in-IPv4 traffic is allowed, then more finer-grained filtering rules could be applied. For example, 6to4 traffic could be filtered by applying filtering rules such as:
o Filter outgoing IPv4 packets that have the Destination Address set to an address that belongs to the prefix 192.88.99.0/24.
o Filter incoming IPv4 packets that have the Source Address set to an address that belongs to the prefix 192.88.99.0/24.
NOTE: These rules assume that the corresponding nodes employ the "Anycast Prefix for 6to4 Relay Routers" [RFC3068]. It has been suggested that 6to4 relays send their packets with their IPv4 Source Address set to 192.88.99.1.
o Filter outgoing IPv4 packets that have the Destination Address set to the IPv4 address of well-known 6to4 relays.
o Filter incoming IPv4 packets that have the Source Address set to the IPv4 address of well-known 6to4 relays.
These last two filtering policies will generally be unnecessary, and possibly infeasible to enforce (given the number of potential 6to4 relays, and the fact that many relays might remain unknown to the network administrator). If anything, they should be applied with the additional requirement that such IPv4 packets have their Protocol field set to 41 to avoid the case where other services available at the same IPv4 address as a 6to4 relay are mistakenly made inaccessible.
If the filtering device has capabilities to inspect the payload of IPv4 packets, then the following filtering rules could be enforced:
o Filter outgoing IPv4 packets that have their Protocol field set to 41, and that have an IPv6 Source Address (embedded in the IPv4 payload) that belongs to the prefix 2002::/16.
o Filter incoming IPv4 packets that have their Protocol field set to 41, and that have an IPv6 Destination address (embedded in the IPv4 payload) that belongs to the prefix 2002::/16.
ISATAP [RFC5214] is an Intra-site tunneling protocol, and thus it is generally expected that such traffic will not traverse the organizational firewall of an IPv4-only network. Nevertheless, ISATAP can be easily blocked by blocking IPv4 packets with a Protocol field of 41.
The most popular operating system that includes an implementation of ISATAP in the default installation is Microsoft Windows. Microsoft Windows obtains the ISATAP router address by resolving the domain name isatap.<localdomain> to DNS A resource records. Additionally, it tries to learn the ISATAP router address by employing Link-Local Multicast Name Resolution (LLMNR) [RFC4795] to resolve the name "isatap". As a result, blocking ISATAP by preventing hosts from successfully performing name resolution for the aforementioned names and/or by filtering packets with specific IPv4 destination addresses is both difficult and undesirable.
Teredo [RFC4380] is an address assignment and automatic tunneling technology that provides IPv6 connectivity to dual-stack nodes that are behind one or more Network Address Port Translation (NAPT) [RFC2663] devices, by encapsulating IPv6 packets in IPv4-based UDP datagrams. Teredo is meant to be a 'last-resort' IPv6 connectivity technology, to be used only when other technologies such as 6to4 cannot be deployed (e.g., because the edge device has not been assigned a public IPv4 address).
As noted in [RFC4380], in order for a Teredo client to configure its Teredo IPv6 address, it must contact a Teredo server through the Teredo service port (UDP port number 3544).
To prevent the Teredo initialization process from succeeding, and hence prevent the use of Teredo, an organizational firewall could filter outgoing UDP packets with a Destination Port of 3544.
NOTE: It is clear that such a filtering policy does not prevent an attacker from running its own Teredo server in the public Internet, using a non-standard UDP port for the Teredo service port (i.e., a port number other than 3544).
If the filtering device has capabilities to inspect the payload of IPv4 packets, the following (additional) filtering policy could be enforced:
o Filter outgoing IPv4/UDP packets that embed an IPv6 packet with the "Version" field set to 6, and an IPv6 Source Address that belongs to the prefix 2001::/32.
o Filter incoming IPv4/UDP packets that embed an IPv6 packet with the "Version" field set to 6, and an IPv6 Destination Address that belongs to the prefix 2001::/32.
NOTE: These two filtering rules could, at least in theory, result in false positives. Additionally, they would generally require the filtering device to reassemble fragments prior to enforcing filtering rules, since the information required to enforce them might be missing in the received fragments (which should be expected if Teredo is being employed for malicious purposes).
The most popular operating system that includes an implementation of Teredo in the default installation is Microsoft Windows. Microsoft Windows obtains the Teredo server addresses (primary and secondary) by resolving the domain name teredo.ipv6.microsoft.com into DNS A records. A network administrator might want to prevent Microsoft Windows hosts from obtaining Teredo service by filtering, at the organizational firewall, outgoing UDP datagrams (i.e., IPv4 packets with the Protocol field set to 17) that contain in the IPv4 Destination Address any of the IPv4 addresses that the domain name teredo.ipv6.microsoft.com maps to (or the IPv4 address of any well- known Teredo server). Additionally, the firewall would filter incoming UDP datagrams from any of the IPv4 addresses to which the domain names of well-known Teredo servers (such as teredo.ipv6.microsoft.com) resolve.
NOTE: As these IPv4 addresses might change over time, an administrator should obtain these addresses when implementing the filtering policy, and should also be prepared to keep this list up to date. The corresponding addresses can be easily obtained from a UNIX host by issuing the command 'dig teredo.ipv6.microsoft.com a' (without quotes), where dig(1) is a free-software tool (part of the "dnsutils" package) produced by the Internet Software Consortium (ISC).
It should be noted that even with all these filtering policies in place, a node in the internal network might still be able to communicate with some Teredo clients. That is, it could configure an IPv6 address itself (without even contacting a Teredo server), and it might send Teredo traffic to those peers for which intervention of the host's Teredo server is not required (e.g., Teredo clients behind a cone NAT).
The tunnel broker model enables dynamic configuration of tunnels between a tunnel client and a tunnel server. The tunnel broker provides a control channel for creating, deleting, or updating a tunnel between the tunnel client and the tunnel server. Additionally, the tunnel broker may register the user's IPv6 address and name in the DNS. Once the tunnel is configured, data can flow between the tunnel client and the tunnel server. [RFC3053] describes the tunnel broker model, while [RFC5572] specifies the Tunnel Setup Protocol (TSP), which can be used by clients to communicate with the Tunnel Broker.
TSP can use either TCP or UDP as the transport protocol. In both cases, TSP uses port number 3653, which has been assigned by the IANA for this purpose. As a result, TSP (the Tunnel Broker control channel) can be blocked by blocking TCP and UDP packets originating from the local network and destined to UDP port 3653 or TCP port 3653. Additionally, the data channel can be blocked by blocking UDP packets originated from the local network and destined to UDP port 3653, and IPv4 packets with a Protocol field set to 41.
AYIYA ("Anything In Anything") [AYIYA] allows the tunneling of packets across Network Address Port Translation (NAPT) [RFC2663] devices. While the specification of this tunneling mechanism was never published as an RFC, it is nevertheless widely deployed [SixXS-stats].
AYIYA can be blocked by blocking TCP and UDP packets originating from the local network and destined to UDP port 5072 or TCP port 5072.
IPv6 deployments in the Internet are continually increasing, and some hosts default to preferring IPv6 connectivity whenever it is available. This is likely to cause IPv6-capable hosts to attempt to reach an ever-increasing number of popular destinations via IPv6, even if this IPv6 connectivity relies on a transition technology over an "IPv4-only" network.
A large source of IPv6 brokenness today comes from nodes that believe that they have functional IPv6 connectivity, but the path to their destination fails somewhere upstream [Anderson2010] [Anderson2011] [Huston2010b] [Huston2012]. Upstream filtering of transition technologies or situations where a misconfigured node attempts to "provide" native IPv6 service on a given network without proper upstream IPv6 connectivity may result in hosts attempting to reach remote nodes via IPv6, and depending on the absence or presence and specific implementation details of "Happy Eyeballs" [RFC6555], there might be a non-trivial timeout period before the host falls back to IPv4 [Huston2010a] [Huston2012].
For this reason, networks attempting to prevent IPv6 traffic from traversing their devices should consider configuring their local recursive DNS servers to respond to queries for AAAA DNS records with a DNS RCODE of 0 (NOERROR) [RFC1035] or to silently ignore such queries, and should even consider filtering AAAA records at the network ingress point to prevent the internal hosts from attempting their own DNS resolution. This will ensure that hosts that are on an "IPv4-only" network will only receive DNS A records, and they will be unlikely to attempt to use (likely broken) IPv6 connectivity to reach their desired destinations.
We note that in scenarios where DNSSEC [RFC4033] is deployed, stripping AAAA records from DNS responses would lead to DNS responses elicited by queries with the DO and CD bits set [RFC4035] to be considered invalid, and hence discarded. This situation is similar to that of DNS64 [RFC6147] in the presence of DNSSEC and should be considered a drawback associated with this approach.
Additionally, it should be noted that when filtering IPv6 traffic, it is good practice to signal the packet drop to the source node, such that it is able to react to the packet drop in a more appropriate and timely way. For example, a firewall could signal the packet drop by means of an ICMPv6 error message (or TCP [RFC0793] RST segment if appropriate), such that the source node can, e.g., quickly react as described in [RFC5461]. For obvious reasons, if the traffic being filtered is IPv6 transition/coexistence traffic, the signaling packet should be sent by means of the corresponding IPv6 transition/ coexistence technology.
This document discusses the security implications of IPv6 on IPv4 networks and describes a number of techniques to mitigate the aforementioned issues. In general, the possible mitigations boil down to enforcing on native IPv6 and IPv6 transition/coexistence traffic the same security policies currently enforced for IPv4 traffic and/or blocking the aforementioned traffic when it is deemed as undesirable.
The authors would like to thank Wes George, who contributed most of the text that comprises Section 4 of this document.
The authors would like to thank (in alphabetical order) Ran Atkinson, Brian Carpenter, Stephen Farrell, Guillermo Gont, Joel Jaeggli, Panos Kampanakis, Warren Kumari, Ted Lemon, David Malone, Joseph Salowey, Arturo Servin, Donald Smith, Tina Tsou, and Eric Vyncke for providing valuable comments on earlier versions of this document.
This document is based on the results of the project "Security Assessment of the Internet Protocol version 6 (IPv6)" [CPNI-IPv6], carried out by Fernando Gont on behalf of the UK Centre for the Protection of National Infrastructure (CPNI). Fernando Gont would like to thank the UK CPNI for their continued support.
[RFC1035]
Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, November 1987.
[RFC2460]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[RFC2529]
Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4 Domains without Explicit Tunnels", RFC 2529, March 1999.
[RFC3053]
Durand, A., Fasano, P., Guardini, I., and D. Lento, "IPv6 Tunnel Broker", RFC 3053, January 2001.
[RFC3056]
Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4 Clouds", RFC 3056, February 2001.
[RFC3068]
Huitema, C., "An Anycast Prefix for 6to4 Relay Routers", RFC 3068, June 2001.
[RFC4033]
Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, March 2005.
[RFC4035]
Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Protocol Modifications for the DNS Security Extensions", RFC 4035, March 2005.
[RFC4380]
Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)", RFC 4380, February 2006.
[RFC4795]
Aboba, B., Thaler, D., and L. Esibov, "Link-local Multicast Name Resolution (LLMNR)", RFC 4795, January 2007.
[RFC5214]
Templin, F., Gleeson, T., and D. Thaler, "Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214, March 2008.
[RFC5569]
Despres, R., "IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)", RFC 5569, January 2010.
[RFC5969]
Townsley, W. and O. Troan, "IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) -- Protocol Specification", RFC 5969, August 2010.
[RFC5572]
Blanchet, M. and F. Parent, "IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)", RFC 5572, February 2010.
[RFC6147]
Bagnulo, M., Sullivan, A., Matthews, P., and I. van Beijnum, "DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to IPv4 Servers", RFC 6147, April 2011.
[RFC0793]
Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981.
[RFC2663]
Srisuresh, P. and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations", RFC 2663, August 1999.
[RFC3756]
Nikander, P., Kempf, J., and E. Nordmark, "IPv6 Neighbor Discovery (ND) Trust Models and Threats", RFC 3756, May 2004.
[RFC3964]
Savola, P. and C. Patel, "Security Considerations for 6to4", RFC 3964, December 2004.
[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, December 2005.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5461]
Gont, F., "TCP's Reaction to Soft Errors", RFC 5461, February 2009.
[RFC6101]
Freier, A., Karlton, P., and P. Kocher, "The Secure Sockets Layer (SSL) Protocol Version 3.0", RFC 6101, August 2011.
[RFC6105]
Levy-Abegnoli, E., Van de Velde, G., Popoviciu, C., and J. Mohacsi, "IPv6 Router Advertisement Guard", RFC 6105, February 2011.
[RFC6169]
Krishnan, S., Thaler, D., and J. Hoagland, "Security Concerns with IP Tunneling", RFC 6169, April 2011.
[RFC6343]
Carpenter, B., "Advisory Guidelines for 6to4 Deployment", RFC 6343, August 2011.
[RFC6540]
George, W., Donley, C., Liljenstolpe, C., and L. Howard, "IPv6 Support Required for All IP-Capable Nodes", BCP 177, RFC 6540, April 2012.
[RFC6555]
Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with Dual-Stack Hosts", RFC 6555, April 2012.
[RFC6762]
Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, February 2013.
[RFC6763]
Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, February 2013.
[RA-GRD-IMP]
Gont, F., "Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard)", Work in Progress, November 2012.
[VPN-LEAKS]
Gont, F., "Virtual Private Network (VPN) traffic leakages in dual-stack hosts/ networks", Work in Progress, August 2013.
[SHIELD]
Gont, F., Liu, W., and G. Van de Velde, "DHCPv6-Shield: Protecting Against Rogue DHCPv6 Servers", Work in Progress, October 2013.
[AYIYA]
Massar, J., "AYIYA: Anything In Anything", Work in Progress, July 2004.
[IANA-ETHER]
IANA, "Ethernet Numbers", <http://www.iana.org/assignments/ethernet-numbers>.
[CERT2009]
Giobbi, R., "Bypassing Firewalls with IPv6 Tunnels", CERT/ CC Blog, April 2009, <http://www.cert.org/blogs/vuls/2009/ 04/bypassing_firewalls_with_ipv6.html>.
[Huston2010a]
Huston, G., "IPv6 Measurements", 2010, <http://www.potaroo.net/stats/1x1/>.
[Huston2010b]
Huston, G., "Flailing IPv6", The ISP Column: A monthly column on things Internet, December 2010, <http://www.potaroo.net/ispcol/2010-12/6to4fail.pdf>.
[Huston2012]
Huston, G., "Bemused Eyeballs: Tailoring Dual Stack Applications in a CGN Environment", The ISP Column: A monthly column on things Internet, May 2012, <http://www.potaroo.net/ispcol/2012-05/notquite.pdf>.
[Anderson2010]
Anderson, T., "Measuring and combating IPv6 brokenness", RIPE 61, Roma, November 2010, <http://ripe61.ripe.net/presentations/162-ripe61.pdf>.
[Anderson2011]
Anderson, T., "IPv6 dual-stack client loss in Norway", 2011, <http://www.fud.no/ipv6/>.
[CPNI-IPv6]
Gont, F., "Security Assessment of the Internet Protocol version 6 (IPv6)", UK Centre for the Protection of National Infrastructure, (available on request), .
[IPv6-Toolkit]
SI6 Networks, "SI6 Networks' IPv6 Toolkit", <http://www.si6networks.com/tools/ipv6toolkit>.
[THC-IPV6]
The Hacker's Choice, "THC-IPV6 - attacking the IPV6 protocol suite", December 2013, <http://www.thc.org/thc-ipv6/>.
[Waters2011]
Waters, A., "The SLAAC Attack - using IPv6 as a weapon against IPv4", April 2011, <http://wirewatcher.wordpress.com/2011/04/04/ the-slaac-attack-using-ipv6-as-a-weapon-against-ipv4/>.
[SixXS-stats]
SixXS, , "SixXS - IPv6 Deployment & Tunnel Broker :: Statistics", 2013, <http://www.sixxs.net/misc/usage/>.
Table 1: Summary of filtering rules
NOTE: the table above describes general and simple filtering rules for blocking the corresponding traffic. More finer-grained rules might be available in each of the corresponding sections of this document.
Authors' Addresses
EMail: liushucheng@huawei.com
7126 - Recommendations on Filtering of IPv4 Packets Containing IPv4 Options
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 7126
BCP: 186
Category: Best Current Practice
ISSN: 2070-1721
F. Gont
UTN-FRH / SI6 Networks
R. Atkinson
Consultant
C. Pignataro
Cisco
February 2014
This document provides advice on the filtering of IPv4 packets based on the IPv4 options they contain. Additionally, it discusses the operational and interoperability implications of dropping packets based on the IP options they contain.
This memo documents an Internet Best Current Practice.
This document is a product of the Internet Engineering Task Force (IETF). It has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7126.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document discusses the filtering of IPv4 packets based on the IPv4 options they contain. Since various protocols may use IPv4 options to some extent, dropping packets based on the options they contain may have implications on the proper functioning of such protocols. Therefore, this document attempts to discuss the operational and interoperability implications of such dropping. Additionally, it outlines what a network operator might do in typical enterprise or Service Provider environments. This document also draws and is partly derived from [RFC6274], which also received review from the operational community.
We note that data seems to indicate that there is a current widespread practice of blocking IPv4 optioned packets. There are various plausible approaches to minimize the potential negative effects of IPv4 optioned packets while allowing some option semantics. One approach is to allow for specific options that are expected or needed, and have a default deny. A different approach is to deny unneeded options and have a default allow. Yet a third possible approach is to allow for end-to-end semantics by ignoring options and treating packets as un-optioned while in transit. Experiments and currently available data tend to support the first or third approaches as more realistic. Some results regarding the current state of affairs with respect to dropping packets containing IP options can be found in [MEDINA] and [FONSECA]. Additionally, [BREMIER-BARR] points out that the deployed Internet already has many routers that do not process IP options.
We also note that while this document provides advice on dropping packets on a "per IP option type", not all devices (routers, security gateways, and firewalls) may provide this capability with such granularity. Additionally, even in cases in which such functionality is provided, an operator might want to specify a dropping policy with a coarser granularity (rather than on a "per IP option type" granularity), as indicated above.
Finally, in scenarios in which processing of IP options by intermediate systems is not required, a widespread approach is to simply ignore IP options and process the corresponding packets as if they do not contain any IP options.
The terms "fast path", "slow path", and associated relative terms ("faster path" and "slower path") are loosely defined as in Section 2 of [RFC6398].
Because of the security-oriented nature of this document, we are deliberately including some historical citations. The goal is to explicitly retain and show history, as well as remove ambiguity and confusion.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
All of the recommendations in this document have been made in an effort to optimize for operational community consensus, as best the authors have been able to determine that. This has included not only accepting feedback from public lists, but also accepting off-list feedback from people at various network operators (e.g. Internet Service Providers, content providers, educational institutions, commercial firms).
IP options allow for the extension of the Internet Protocol. As specified in [RFC0791], there are two cases for the format of an option:
o Case 1: A single byte of option-type.
o Case 2: An option-type byte, an option-length byte, and the actual option-data bytes.
IP options of Case 1 have the following syntax:
The length of IP options of Case 1 is implicitly specified by the option-type byte.
IP options of Case 2 have the following syntax:
In this case, the option-length byte counts the option-type byte and the option-length byte, as well as the actual option-data bytes. All current and future options, except "End of Option List" (Type = 0) and "No Operation" (Type = 1), are of Class 2.
The option-type has three fields:
o 1 bit: copied flag.
o 2 bits: option class.
o 5 bits: option number.
The copied flag indicates whether this option should be copied to all fragments in the event the packet carrying it needs to be fragmented:
o 0 = not copied.
o 1 = copied.
The values for the option class are:
o 0 = control.
o 1 = reserved for future use.
o 2 = debugging and measurement.
o 3 = reserved for future use.
This format allows for the creation of new options for the extension of the Internet Protocol (IP).
Finally, the option number identifies the syntax of the rest of the option.
The "IP OPTION NUMBERS" registry [IANA-IP] contains the list of the currently assigned IP option numbers.
Historically, most IP routers used a general-purpose CPU to process IP packets and forward them towards their destinations. This same CPU usually also processed network management traffic (e.g., SNMP), configuration commands (e.g., command line interface), and various routing protocols (e.g., RIP, OSPF, BGP, IS-IS) or other control protocols (e.g., RSVP, ICMP). In such architectures, it has been common for the general-purpose CPU also to perform any packet filtering that has been enabled on the router (or router interface). An IP router built using this architecture often has a significant Distributed Denial-of-Service (DDoS) attack risk if the router control plane (e.g., CPU) is overwhelmed by a large number of IPv4 packets that contain IPv4 options.
From about 1995 onwards, a growing number of IP routers have incorporated silicon specialized for IP packet processing (i.e., Field-Programmable Gate Array (FPGA), Application-Specific Integrated Circuit (ASIC)), thereby separating the function of IP packet forwarding from the other functions of the router. Such router architectures tend to be more resilient to DDoS attacks that might be seen in the global public Internet. Depending upon various implementation and configuration details, routers with a silicon packet-forwarding engine can handle high volumes of IP packets containing IP options without any adverse impact on packet-forwarding rates or on the router's control plane (e.g., general-purpose CPU). Some implementations have a configuration knob simply to forward all IP packets containing IP options at wire-speed in silicon, as if the IP packet did not contain any IP options ("ignore options & forward"). Other implementations support wire-speed silicon-based packet filtering, thereby enabling packets containing certain IP options to be selectively dropped ("drop"), packets containing certain other IP options to have those IP options ignored ("ignore options & forward"), and other packets containing different IP options to have those options processed, either on a general-purpose CPU or using custom logic (e.g., FPGA, ASIC), while the packet is being forwarded ("process option & forward").
Broadly speaking, any IP packet that requires processing by an IP router's general-purpose CPU can be a DDoS risk to that router's general-purpose CPU (and thus to the router itself). However, at present, the particular architectural and engineering details of the specific IP router being considered are important to understand when evaluating the operational security risks associated with a particular IP packet type or IP option type.
Operators are urged to consider the capabilities of potential IP routers for IP option filtering and handling as they make deployment decisions in the future.
Additional considerations for protecting the control plane from packets containing IP options can be found in [RFC6192].
Finally, in addition to advice to operators, this document also provides advice to router, security gateway, and firewall implementers in terms of providing the capability to filter packets with different granularities: both on a "per IP option type" granularity (to maximize flexibility) as well as more coarse filters (to minimize configuration complexity).
The following subsections contain a description of each of the IP options that have so far been specified, a discussion of possible interoperability implications if packets containing such options are dropped, and specific advice on whether to drop packets containing these options in a typical enterprise or Service Provider environment.
This option is used to indicate the "end of options" in those cases in which the end of options would not coincide with the end of the Internet Protocol header.
Specified in RFC 791 [RFC0791].
No specific security issues are known for this IPv4 option.
Packets containing any IP options are likely to include an End of Option List. Therefore, if packets containing this option are dropped, it is very likely that legitimate traffic is blocked.
Routers, security gateways, and firewalls SHOULD NOT drop packets because they contain this option.
The no-operation option is basically meant to allow the sending system to align subsequent options in, for example, 32-bit boundaries.
Specified in RFC 791 [RFC0791].
No specific security issues are known for this IPv4 option.
Packets containing any IP options are likely to include a No Operation option. Therefore, if packets containing this option are dropped, it is very likely that legitimate traffic is blocked.
Routers, security gateways, and firewalls SHOULD NOT drop packets because they contain this option.
RFC 791 states that this option should appear at most once in a given packet. Thus, if a packet contains more than one LSRR option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop). Additionally, packets containing a combination of LSRR and SSRR options should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option lets the originating system specify a number of intermediate systems a packet must pass through to get to the destination host. Additionally, the route followed by the packet is recorded in the option. The receiving host (end-system) must use the reverse of the path contained in the received LSRR option.
The LSSR option can be of help in debugging some network problems. Some Internet Service Provider (ISP) peering agreements require support for this option in the routers within the peer of the ISP.
Specified in RFC 791 [RFC0791].
The LSRR option has well-known security implications [RFC6274]. Among other things, the option can be used to:
o Bypass firewall rules.
o Reach otherwise unreachable internet systems.
o Establish TCP connections in a stealthy way.
o Learn about the topology of a network.
o Perform bandwidth-exhaustion attacks.
Of these attack vectors, the one that has probably received least attention is the use of the LSRR option to perform bandwidth exhaustion attacks. The LSRR option can be used as an amplification method for performing bandwidth-exhaustion attacks, as an attacker could make a packet bounce multiple times between a number of systems by carefully crafting an LSRR option.
This is the IPv4 version of the IPv6 amplification attack that was widely publicized in 2007 [Biondi2007]. The only difference is that the maximum length of the IPv4 header (and hence the LSRR option) limits the amplification factor when compared to the IPv6 counterpart.
Additionally, some implementations have been found to fail to include proper sanity checks on the LSRR option, thus leading to security issues. These specific issues are believed to be solved in all modern implementations.
[Microsoft1999] is a security advisory about a vulnerability arising from improper validation of the Pointer field of the LSRR option.
Finally, we note that some systems were known for providing a system- wide toggle to enable support for this option for those scenarios in which this option is required. However, improper implementation of such a system-wide toggle caused those systems to support the LSRR option even when explicitly configured not to do so.
[OpenBSD1998] is a security advisory about an improper implementation of such a system-wide toggle in 4.4BSD kernels. This issue was resolved in later versions of the corresponding operating system.
Network troubleshooting techniques that may employ the LSRR option (such as ping or traceroute with the appropriate arguments) would break when using the LSRR option. (Ping and traceroute without IPv4 options are not impacted.) Nevertheless, it should be noted that it is virtually impossible to use the LSRR option for troubleshooting, due to widespread dropping of packets that contain the option.
Routers, security gateways, and firewalls SHOULD implement an option- specific configuration knob to select whether packets with this option are dropped, packets with this IP option are forwarded as if they did not contain this IP option, or packets with this option are processed and forwarded as per [RFC0791]. The default setting for this knob SHOULD be "drop", and the default setting MUST be documented.
Please note that treating packets with LSRR as if they did not contain this option can result in such packets being sent to a different device than the initially intended destination. With appropriate ingress filtering, this should not open an attack vector into the infrastructure. Nonetheless, it could result in traffic that would never reach the initially intended destination. Dropping these packets prevents unnecessary network traffic and does not make end-to-end communication any worse.
This option allows the originating system to specify a number of intermediate systems a packet must pass through to get to the destination host. Additionally, the route followed by the packet is recorded in the option, and the destination host (end-system) must use the reverse of the path contained in the received SSRR option.
This option is similar to the Loose Source and Record Route (LSRR) option, with the only difference that in the case of SSRR, the route specified in the option is the exact route the packet must take (i.e., no other intervening routers are allowed to be in the route).
The SSRR option can be of help in debugging some network problems. Some ISP peering agreements require support for this option in the routers within the peer of the ISP.
Specified in RFC 791 [RFC0791].
The SSRR option has the same security implications as the LSRR option. Please refer to Section 4.3 for a discussion of such security implications.
Network troubleshooting techniques that may employ the SSRR option (such as ping or traceroute with the appropriate arguments) would break when using the SSRR option. (Ping and traceroute without IPv4 options are not impacted.) Nevertheless, it should be noted that it is virtually impossible to use the SSRR option for trouble-shooting, due to widespread dropping of packets that contain such option.
Routers, security gateways, and firewalls SHOULD implement an option- specific configuration knob to select whether packets with this option are dropped, packets with this IP option are forwarded as if they did not contain this IP option, or packets with this option are processed and forwarded as per [RFC0791]. The default setting for this knob SHOULD be "drop", and the default setting MUST be documented.
Please note that treating packets with SSRR as if they did not contain this option can result in such packets being sent to a different device that the initially intended destination. With appropriate ingress filtering this should not open an attack vector into the infrastructure. Nonetheless, it could result in traffic that would never reach the initially intended destination. Dropping these packets prevents unnecessary network traffic, and does not make end-to-end communication any worse.
This option provides a means to record the route that a given packet follows.
Specified in RFC 791 [RFC0791].
This option can be exploited to map the topology of a network. However, the limited space in the IP header limits the usefulness of this option for that purpose.
Network troubleshooting techniques that may employ the RR option (such as ping with the RR option) would break when using the RR option. (Ping without IPv4 options is not impacted.) Nevertheless, it should be noted that it is virtually impossible to use such techniques due to widespread dropping of packets that contain RR options.
Routers, security gateways, and firewalls SHOULD implement an option- specific configuration knob to select whether packets with this option are dropped, packets with this IP option are forwarded as if they did not contain this IP option, or packets with this option are processed and forwarded as per [RFC0791]. The default setting for this knob SHOULD be "drop", and the default setting MUST be documented.
The Stream Identifier option originally provided a means for the 16-bit SATNET stream Identifier to be carried through networks that did not support the stream concept.
However, as stated by Section 3.2.1.8 of RFC 1122 [RFC1122] and Section 4.2.2.1 of RFC 1812 [RFC1812], this option is obsolete. Therefore, it must be ignored by the processing systems. See also [IANA-IP] and [RFC6814].
RFC 791 states that this option appears at most once in a given datagram. Therefore, if a packet contains more than one instance of this option, it should be dropped, and this event should be logged (e.g., a counter could be incremented to reflect the packet drop).
This option is obsolete. There is no current use for this option.
Specified in RFC 791 [RFC0791], and deprecated in RFC 1122 [RFC1122] and RFC 1812 [RFC1812]. This option has been formally obsoleted by [RFC6814].
No specific security issues are known for this IPv4 option.
None.
Routers, security gateways, and firewalls SHOULD drop IP packets containing a Stream Identifier option.
This option provides a means for recording the time at which each system (or a specified set of systems) processed this datagram, and it may optionally record the addresses of the systems providing the timestamps.
Specified by RFC 791 [RFC0791].
The timestamp option has a number of security implications [RFC6274]. Among them are:
o It allows an attacker to obtain the current time of the systems that process the packet, which the attacker may find useful in a number of scenarios.
o It may be used to map the network topology in a similar way to the IP Record Route option.
o It may be used to fingerprint the operating system in use by a system processing the datagram.
o It may be used to fingerprint physical devices by analyzing the clock skew.
[Kohno2005] describes a technique for fingerprinting devices by measuring the clock skew. It exploits, among other things, the timestamps that can be obtained by means of the ICMP timestamp request messages [RFC0791]. However, the same fingerprinting method could be implemented with the aid of the Internet Timestamp option.
Network troubleshooting techniques that may employ the Internet Timestamp option (such as ping with the Timestamp option) would break when using the Timestamp option. (Ping without IPv4 options is not impacted.) Nevertheless, it should be noted that it is virtually impossible to use such techniques due to widespread dropping of packets that contain Internet Timestamp options.
Routers, security gateways, and firewalls SHOULD drop IP packets containing an Internet Timestamp option.
The Router Alert option has the semantic "routers should examine this packet more closely, if they participate in the functionality denoted by the Value of the option".
The Router Alert option is defined in RFC 2113 [RFC2113] and later updates to it have been clarified by RFC 5350 [RFC5350]. It contains a 16-bit Value governed by an IANA registry (see [RFC5350]).
The security implications of the Router Alert option have been discussed in detail in [RFC6398]. Basically, the Router Alert option might be exploited to perform a DoS attack by exhausting CPU resources at the processing routers.
Applications that employ the Router Alert option (such as RSVP [RFC2205]) would break.
This option SHOULD be allowed only in controlled environments, where the option can be used safely. [RFC6398] identifies some such environments. In unsafe environments, packets containing this option SHOULD be dropped.
A given router, security gateway, or firewall system has no way of knowing a priori whether this option is valid in its operational environment. Therefore, routers, security gateways, and firewalls SHOULD, by default, ignore the Router Alert option. Additionally, routers, security gateways, and firewalls SHOULD have a configuration setting that governs their reaction in the presence of packets containing the Router Alert option. This configuration setting SHOULD allow to honor and process the option, ignore the option, or drop packets containing this option.
This option originally provided a mechanism to discover the Path-MTU. It has been declared obsolete.
This option was originally defined in RFC 1063 [RFC1063] and was obsoleted with RFC 1191 [RFC1191]. This option is now obsolete, as RFC 1191 obsoletes RFC 1063 without using IP options.
This option is obsolete. This option could have been exploited to cause a host to set its Path MTU (PMTU) estimate to an inordinately low or an inordinately high value, thereby causing performance problems.
None
This option is NOT employed with the modern "Path MTU Discovery" (PMTUD) mechanism [RFC1191], which employs special ICMP messages (Type 3, Code 4) in combination with the IP DF bit. Packetization Layer PMTUD (PLPMTUD) [RFC4821] can perform PMTUD without the need for any special packets.
Routers, security gateways, and firewalls SHOULD drop IP packets that contain a Probe MTU option.
This option originally provided a mechanism to discover the Path-MTU. It is now obsolete.
This option was originally defined in RFC 1063 [RFC1063] and was obsoleted with RFC 1191 [RFC1191]. This option is now obsolete, as RFC 1191 obsoletes RFC 1063 without using IP options.
This option is obsolete. This option could have been exploited to cause a host to set its PMTU estimate to an inordinately low or an inordinately high value, thereby causing performance problems.
None
This option is NOT employed with the modern "Path MTU Discovery" (PMTUD) mechanism [RFC1191], which employs special ICMP messages (Type 3, Code 4) in combination with the IP DF bit. PLPMTUD [RFC4821] can perform PMTUD without the need of any special packets.
Routers, security gateways, and firewalls SHOULD drop IP packets that contain a Reply MTU option.
This option originally provided a mechanism to trace the path to a host.
This option was originally specified by RFC 1393 [RFC1393] as "experimental", and it was never widely deployed on the public Internet. This option has been formally obsoleted by [RFC6814].
This option is obsolete. Because this option required each router in the path both to provide special processing and to send an ICMP message, it could have been exploited to perform a DoS attack by exhausting CPU resources at the processing routers.
None
Routers, security gateways, and firewalls SHOULD drop IP packets that contain a Traceroute option.
This option [RFC1108] is used by Multi-Level Secure (MLS) end-systems and intermediate systems in specific environments to:
o transmit from source to destination in a network standard representation the common security labels required by computer security models [Landwehr81],
o validate the datagram as appropriate for transmission from the source and delivery to the destination, and,
o ensure that the route taken by the datagram is protected to the level required by all protection authorities indicated on the datagram.
The DoD Basic Security Option (BSO) was implemented in IRIX [IRIX2008] and is currently implemented in a number of operating systems (e.g., Security-Enhanced Linux [SELinux2008], Solaris [Solaris2008], and Cisco IOS [Cisco-IPSO]). It is also currently deployed in a number of high-security networks. These networks are typically either in physically secure locations, protected by military/governmental communications security equipment, or both. Such networks are typically built using commercial off-the-shelf (COTS) IP routers and Ethernet switches, but they are not normally interconnected with the global public Internet. MLS systems are much more widely deployed now than they were at the time the then-IESG decided to remove IPSO (IP Security Options) from the IETF Standards Track. Since nearly all MLS systems also support IPSO BSO and IPSO ESO, this option is believed to have more deployment now than when the IESG removed this option from the IETF Standards Track. [RFC5570] describes a similar option recently defined for IPv6 and has much more detailed explanations of how sensitivity label options are used in real-world deployments.
It is specified by RFC 1108 [RFC1108], which obsoleted RFC 1038 [RFC1038] (which in turn obsoleted the Security Option defined in RFC 791 [RFC0791]).
RFC 791 [RFC0791] defined the "Security Option" (Type = 130), which used the same option type as the DoD Basic Security option discussed in this section. Later, RFC 1038 [RFC1038] revised the IP security options, and in turn was obsoleted by RFC 1108 [RFC1108]. The "Security Option" specified in RFC 791 is considered obsolete by Section 3.2.1.8 of RFC 1122 [RFC1122] and Section 4.2.2.1 of RFC 1812 [RFC1812], and therefore the discussion in this section is focused on the DoD Basic Security option specified by RFC 1108 [RFC1108].
Section 4.2.2.1 of RFC 1812 states that routers "SHOULD implement [this option]".
Some private IP networks consider IP router-based per-interface selective filtering of packets based on (a) the presence of an IPSO option (including BSO and ESO) and (b) the contents of that IPSO option to be important for operational security reasons. The recent IPv6 Common Architecture Label IPv6 Security Option (CALIPSO) specification discusses this in additional detail, albeit in an IPv6 context [RFC5570].
Such private IP networks commonly are built using both commercial and open-source products -- for hosts, guards, firewalls, switches, routers, etc. Some commercial IP routers support this option, as do some IP routers that are built on top of MLS operating systems (e.g., on top of Trusted Solaris [Solaris2008] or Security-Enhanced Linux [SELinux2008]).
For example, many Cisco routers that run Cisco IOS include support for selectively filtering packets that contain the IP Security Options (IPSO) with per-interface granularity. This capability has been present in many Cisco routers since the early 1990s [Cisco-IPSO-Cmds]. Some government-sector products reportedly also support the IP Security Options (IPSO), for example, CANEWARE [RFC4949].
Support for the IPSO Basic Security Option also is included in the "IPsec Configuration Policy Information Model" [RFC3585] and in the "IPsec Security Policy Database Configuration MIB" [RFC4807]. Section 4.6.1 of the IP Security Domain of Interpretation [RFC2407] includes support for labeled IPsec security associations compatible with the IP Security Options. (Note: RFC 2407 was obsoleted by [RFC4306], which was obsoleted by [RFC5996].)
Presence of this option in a packet does not by itself create any specific new threat. Packets with this option ought not normally be seen on the global public Internet.
If packets with this option are blocked or if the option is stripped from the packet during transmission from source to destination, then the packet itself is likely to be dropped by the receiver because it is not properly labeled. In some cases, the receiver might receive the packet but associate an incorrect sensitivity label with the received data from the packet whose BSO was stripped by an intermediate router or firewall. Associating an incorrect sensitivity label can cause the received information either to be handled as more sensitive than it really is ("upgrading") or as less sensitive than it really is ("downgrading"), either of which is problematic.
A given IP router, security gateway, or firewall has no way to know a priori what environment it has been deployed into. Even closed IP deployments generally use exactly the same commercial routers, security gateways, and firewalls that are used in the public Internet.
Since operational problems result in environments where this option is needed if either the option is dropped or IP packets containing this option are dropped, but no harm results if the option is carried in environments where it is not needed, the default configuration SHOULD NOT (a) modify or remove this IP option or (b) drop an IP packet because the IP packet contains this option.
A given IP router, security gateway, or firewall MAY be configured to drop this option or to drop IP packets containing this option in an environment known to not use this option.
For auditing reasons, routers, security gateways, and firewalls SHOULD be capable of logging the numbers of packets containing the BSO on a per-interface basis. Also, routers, security gateways, and firewalls SHOULD be capable of dropping packets based on the BSO presence as well as the BSO values.
This option permits additional security labeling information, beyond that present in the Basic Security Option (Section 4.12), to be supplied in an IP datagram to meet the needs of registered authorities.
The DoD Extended Security Option (ESO) is specified by RFC 1108 [RFC1108].
Some private IP networks consider IP router-based per-interface selective filtering of packets based on (a) the presence of an IPSO option (including BSO and ESO) and (b) based on the contents of that IPSO option to be important for operational security reasons. The recent IPv6 CALIPSO option specification discusses this in additional detail, albeit in an IPv6 context [RFC5570].
Such private IP networks commonly are built using both commercial and open-source products -- for hosts, guards, firewalls, switches, routers, etc. Some commercial IP routers support this option, as do some IP routers that are built on top of MLS operating systems (e.g., on top of Trusted Solaris [Solaris2008] or Security-Enhanced Linux [SELinux2008]).
For example, many Cisco routers that run Cisco IOS include support for selectively filtering packets that contain the IP Security Options (IPSO) with per-interface granularity. This capability has been present in many Cisco routers since the early 1990s [Cisco-IPSO-Cmds]. Some government sector products reportedly also support the IP Security Options (IPSO), for example, CANEWARE [RFC4949].
Support for the IPSO Extended Security Option also is included in the "IPsec Configuration Policy Information Model" [RFC3585] and in the "IPsec Security Policy Database Configuration MIB" [RFC4807]. Section 4.6.1 of the IP Security Domain of Interpretation [RFC2407] includes support for labeled IPsec security associations compatible with the IP Security Options.
Presence of this option in a packet does not by itself create any specific new threat. Packets with this option ought not normally be seen on the global public Internet.
If packets with this option are blocked or if the option is stripped from the packet during transmission from source to destination, then the packet itself is likely to be dropped by the receiver because it is not properly labeled. In some cases, the receiver might receive the packet but associate an incorrect sensitivity label with the received data from the packet whose ESO was stripped by an intermediate router or firewall. Associating an incorrect sensitivity label can cause the received information either to be handled as more sensitive than it really is ("upgrading") or as less sensitive than it really is ("downgrading"), either of which is problematic.
A given IP router, security gateway, or firewall has no way to know a priori what environment it has been deployed into. Even closed IP deployments generally use exactly the same commercial routers, security gateways, and firewalls that are used in the public Internet.
Since operational problems result in environments where this option is needed if either the option is dropped or IP packets containing this option are dropped, but no harm results if the option is carried in environments where it is not needed, the default configuration SHOULD NOT (a) modify or remove this IP option or (b) drop an IP packet because the IP packet contains this option.
A given IP router, security gateway, or firewall MAY be configured to drop this option or to drop IP packets containing this option in an environment known to not use this option.
For auditing reasons, routers, security gateways, and firewalls SHOULD be capable of logging the numbers of packets containing the ESO on a per-interface basis. Also, routers, security gateways, and firewalls SHOULD be capable of dropping packets based on the ESO presence as well as the ESO values.
This option was proposed by the Trusted Systems Interoperability Group (TSIG), with the intent of meeting trusted networking requirements for the commercial trusted systems marketplace.
It was implemented in IRIX [IRIX2008] and is currently implemented in a number of operating systems (e.g., Security-Enhanced Linux [SELinux2008] and Solaris [Solaris2008]). It is also currently deployed in a number of high-security networks.
This option is specified in [CIPSO] and [FIPS1994]. There are zero known IP router implementations of CIPSO. Several MLS operating systems support CIPSO, generally the same MLS operating systems that support IPSO.
The TSIG proposal was taken to the Commercial Internet Security Option (CIPSO) Working Group of the IETF [CIPSOWG1994], and an Internet-Draft was produced [CIPSO]. The Internet-Draft was never published as an RFC, but the proposal was later standardized by the U.S. National Institute of Standards and Technology (NIST) as "Federal Information Processing Standard Publication 188" [FIPS1994].
Presence of this option in a packet does not by itself create any specific new threat. Packets with this option ought not normally be seen on the global public Internet.
If packets with this option are blocked or if the option is stripped from the packet during transmission from source to destination, then the packet itself is likely to be dropped by the receiver because it is not properly labeled. In some cases, the receiver might receive the packet but associate an incorrect sensitivity label with the received data from the packet whose CIPSO was stripped by an intermediate router or firewall. Associating an incorrect sensitivity label can cause the received information either to be handled as more sensitive than it really is ("upgrading") or as less sensitive than it really is ("downgrading"), either of which is problematic.
Because of the design of this option, with variable syntax and variable length, it is not practical to support specialized filtering using the CIPSO information. No routers or firewalls are known to support this option. However, routers, security gateways, and firewalls SHOULD NOT by default modify or remove this option from IP packets and SHOULD NOT by default drop packets because they contain this option. For auditing reasons, routers, security gateways, and firewalls SHOULD be capable of logging the numbers of packets containing the CIPSO on a per-interface basis. Also, routers, security gateways, and firewalls SHOULD be capable of dropping packets based on the CIPSO presence.
This options was part of an experiment at the University of Southern California (USC) and was never widely deployed.
The original option specification is not publicly available. This option has been formally obsoleted by [RFC6814].
Not possible to determine (other than the general security implications of IP options discussed in Section 3), since the corresponding specification is not publicly available.
None.
Routers, security gateways, and firewalls SHOULD drop IP packets that contain this option.
The EIP option was introduced by one of the proposals submitted during the IP Next Generation (IPng) efforts to address the problem of IPv4 address exhaustion.
Specified in [RFC1385]. This option has been formally obsoleted by [RFC6814].
This option is obsolete. This option was used (or was intended to be used) to signal that a packet superficially similar to an IPv4 packet actually contained a different protocol, opening up the possibility that an IPv4 node that simply ignored this option would process a received packet in a manner inconsistent with the intent of the sender. There are no known threats arising from this option, other than the general security implications of IP options discussed in Section 3.
None.
Routers, security gateways, and firewalls SHOULD drop packets that contain this option.
The Address Extension option was introduced by one of the proposals submitted during the IPng efforts to address the problem of IPv4 address exhaustion.
Specified in [RFC1475]. This option has been formally obsoleted by [RFC6814].
There are no known threats arising from this option, other than the general security implications of IP options discussed in Section 3.
None.
Routers, security gateways, and firewalls SHOULD drop packets that contain this option.
This option originally provided unreliable UDP delivery to a set of addresses included in the option.
This option is specified in RFC 1770 [RFC1770]. It has been formally obsoleted by [RFC6814].
This option could have been exploited for bandwidth-amplification in DoS attacks.
None.
Routers, security gateways, and firewalls SHOULD drop IP packets that contain a Sender Directed Multi-Destination Delivery option.
The Dynamic Packet State option was used to specify the Dynamic Packet State (DPS) in the context of the differentiated services architecture.
The Dynamic Packet State option was specified in [DIFFSERV-DPS]. The aforementioned document was meant to be published as "Experimental", but never made it into an RFC. This option has been formally obsoleted by [RFC6814].
Possible threats include theft of service and denial of service. However, we note that this option has never been widely implemented or deployed.
None.
Routers, security gateways, and firewalls SHOULD drop packets that contain this option.
This option was meant to solve the problem of doing upstream forwarding of multicast packets on a multi-access LAN.
This option was originally specified in [BIDIR-TREES]. It was never formally standardized in the RFC series and was never widely implemented and deployed. Its use was obsoleted by [RFC5015], which employs a control-plane mechanism to solve the problem of doing upstream forwarding of multicast packets on a multi-access LAN. This option has been formally obsoleted by [RFC6814].
This option is obsolete. A router that ignored this option instead of processing it as specified in [BIDIR-TREES] could have forwarded multicast packets to an unintended destination.
None.
Routers, security gateways, and firewalls SHOULD drop packets that contain this option.
This IP Option is used in the specification of Quick-Start for TCP and IP, which is an experimental mechanism that allows transport protocols, in cooperation with routers, to determine an allowed sending rate at the start and, at times, in the middle of a data transfer (e.g., after an idle period) [RFC4782].
Specified in RFC 4782 [RFC4782], on the "Experimental" track.
Section 9.6 of [RFC4782] notes that Quick-Start is vulnerable to two kinds of attacks:
o attacks to increase the routers' processing and state load, and,
o attacks with bogus Quick-Start Requests to temporarily tie up available Quick-Start bandwidth, preventing routers from approving Quick-Start Requests from other connections.
The Quick-Start functionality would be disabled, and additional delays in TCP's connection establishment (for example) could be introduced. (Please see Section 4.7.2 of [RFC4782].) We note, however, that Quick-Start has been proposed as a mechanism that could be of use in controlled environments, and not as a mechanism that would be intended or appropriate for ubiquitous deployment in the global Internet [RFC4782].
A given router, security gateway, or firewall system has no way of knowing a priori whether this option is valid in its operational environment. Therefore, routers, security gateways, and firewalls SHOULD, by default, ignore the Quick-Start option. Additionally, routers, security gateways, and firewalls SHOULD have a configuration setting that governs their reaction in the presence of packets containing the Quick-Start option. This configuration setting SHOULD allow to honor and process the option, ignore the option, or drop packets containing this option. The default configuration is to ignore the Quick-Start option.
We note that if routers in a given environment do not implement and enable the Quick-Start mechanism, only the general security implications of IP options (discussed in Section 3) would apply.
Section 2.5 of RFC 4727 [RFC4727] allocates an option number with all defined values of the "copy" and "class" fields for RFC3692-style experiments. This results in four distinct option type codes: 30, 94, 158, and 222.
It is only appropriate to use these values in explicitly configured experiments; they MUST NOT be shipped as defaults in implementations.
Specified in RFC 4727 [RFC4727] in the context of RFC3692-style experiments.
No specific security issues are known for this IPv4 option.
None.
Routers, security gateways, and firewalls SHOULD have configuration knobs for IP packets that contain RFC3692-style Experiment options to select between "ignore & forward" and "drop & log". Otherwise, no legitimate experiment using these options will be able to traverse any IP router.
Special care needs to be taken in the case of "drop & log". Devices SHOULD count the number of packets dropped, but the logging of drop events SHOULD be limited so as to not overburden device resources.
The aforementioned configuration knob SHOULD default to "drop & log".
Unrecognized IP options are to be ignored. Section 3.2.1.8 of RFC 1122 [RFC1122] specifies this behavior as follows:
The IP and transport layer MUST each interpret those IP options that they understand and silently ignore the others.
Additionally, Section 4.2.2.6 of RFC 1812 [RFC1812] specifies it as follows:
A router MUST ignore IP options which it does not recognize.
This document adds that unrecognized IP options MAY also be logged.
Further, routers, security gateways, and firewalls MUST provide the ability to log drop events of IP packets containing unrecognized or obsolete options.
A number of additional options are listed in the "IP OPTION NUMBERS" IANA registry [IANA-IP] as of the time this document was last edited. Specifically:
The ENCODE option (type 15) has been formally obsoleted by [RFC6814].
The lack of open specifications for these options makes it impossible to evaluate their security implications.
The lack of open specifications for these options makes it impossible to evaluate the operational and interoperability impact if packets containing these options are blocked.
Routers, security gateways, and firewalls SHOULD have configuration knobs for IP packets containing these options (or other options not recognized) to select between "ignore & forward" and "drop & log".
Section 4.23.1 points out that [RFC1122] and [RFC1812] specify that unrecognized IP options MUST be ignored. However, the previous paragraph states that routers, security gateways, and firewalls SHOULD have a configuration option for dropping and logging IP packets containing unrecognized options. While it is acknowledged that this advice contradicts the previous RFCs' requirements, the advice in this document reflects current operational reality.
Special care needs to be taken in the case of "drop & log". Devices SHOULD count the number of packets dropped, but the logging of drop events SHOULD be limited so as to not overburden device resources.
This document provides advice on the filtering of IP packets that contain IP options. Dropping such packets can help to mitigate the security issues that arise from use of different IP options. Many of the IPv4 options listed in this document are deprecated and cause no operational impact if dropped. However, dropping packets containing IPv4 options that are in use can cause real operational problems in deployed networks. Therefore, the practice of dropping all IPv4 packets containing one or more IPv4 options without careful consideration is not recommended.
The authors would like to thank (in alphabetical order) Ron Bonica, C. M. Heard, Merike Kaeo, Panos Kampanakis, Suresh Krishnan, Arturo Servin, SM, and Donald Smith for providing thorough reviews and valuable comments. Merike Kaeo also contributed text used in this document.
The authors also wish to thank various network operations folks who supplied feedback on earlier versions of this document but did not wish to be named explicitly in this document.
Part of this document is initially based on the document "Security Assessment of the Internet Protocol" [CPNI2008] that is the result of a project carried out by Fernando Gont on behalf of UK CPNI (formerly NISCC). Fernando Gont would like to thank UK CPNI (formerly NISCC) for their continued support.
[RFC0791]
Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981.
[RFC1122]
Braden, R., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989.
[RFC1191]
Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191, November 1990.
[RFC1812]
Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995.
[RFC2113]
Katz, D., "IP Router Alert Option", RFC 2113, February 1997.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4727]
Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4, ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.
[RFC4821]
Mathis, M. and J. Heffner, "Packetization Layer Path MTU Discovery", RFC 4821, March 2007.
[RFC5015]
Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bidirectional Protocol Independent Multicast (BIDIR- PIM)", RFC 5015, October 2007.
[RFC6398]
Le Faucheur, F., "IP Router Alert Considerations and Usage", BCP 168, RFC 6398, October 2011.
[RFC6814]
Pignataro, C. and F. Gont, "Formally Deprecating Some IPv4 Options", RFC 6814, November 2012.
[BIDIR-TREES]
Estrin, D. and D. Farinacci, "Bi-Directional Shared Trees in PIM-SM", Work in Progress, May 1999.
[BREMIER-BARR]
Bremier-Barr, A. and H. Levy, "Spoofing prevention method", Proceedings of IEEE InfoCom 2005, Volume 1, pp. 536-547, March 2005.
[Biondi2007]
Biondi, P. and A. Ebalard, "IPv6 Routing Header Security", CanSecWest 2007 Security Conference, 2007, <http://www.secdev.org/conf/IPv6_RH_security-csw07.pdf>.
[CIPSOWG1994]
IETF CIPSO Working Group, "Commercial Internet Protocol Security Option (CIPSO) Charter", 1994, <http://www.ietf.org/proceedings/94jul/charters/ cipso-charter.html>.
[CIPSO]
IETF CIPSO Working Group, "COMMERCIAL IP SECURITY OPTION (CIPSO 2.2)", Work in Progress, 1992.
[CPNI2008]
Gont, F., "Security Assessment of the Internet Protocol", 2008, <http://www.gont.com.ar/papers/InternetProtocol.pdf>.
[Cisco-IPSO-Cmds]
Cisco Systems, Inc., "IP Security Options Commands", Cisco IOS Security Command Reference, Release 12.2, <http://www.cisco.com/en/US/docs/ios/12_2/security/ command/reference/srfipso.html>.
[Cisco-IPSO]
Cisco Systems, Inc., "Configuring IP Security Options", Cisco IOS Security Configuration Guide, Release 12.2, 2006, <http://www.cisco.com/en/US/docs/ios/12_2/security/ configuration/guide/scfipso.html>.
[DIFFSERV-DPS]
Stoica, I., Zhang, H., Venkitaram, N., and J. Mysore, "Per Hop Behaviors Based on Dynamic Packet State", Work in Progress, October 2002.
[FIPS1994]
FIPS, "Standard Security Label for Information Transfer", Federal Information Processing Standards Publication, FIP PUBS 188, 1994, <http://csrc.nist.gov/publications/fips/ fips188/fips188.pdf>.
[FONSECA]
Fonseca, R., Porter, G., Katz, R., Shenker, S., and I. Stoica, "IP Options are not an option", EECS Department, University of California, Berkeley, December 2005, <http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/ EECS-2005-24.html>.
[IANA-IP]
IANA, "IP OPTION NUMBERS", <http://www.iana.org/assignments/ip-parameters>.
[IRIX2008]
IRIX, "IRIX 6.5 trusted_networking(7) manual page", 2008, <http://techpubs.sgi.com/library/tpl/cgi-bin/ getdoc.cgi?coll=0650&db=man&fname=/usr/share/catman/a_man/ cat7/trusted_networking.z>.
[Kohno2005]
Kohno, T., Broido, A., and kc. Claffy, "Remote Physical Device Fingerprinting", IEEE Transactions on Dependable and Secure Computing, Vol. 2, No. 2, 2005.
[Landwehr81]
Landwehr, C., "Formal Models for Computer Security", ACM Computing Surveys, Vol. 13, No. 3, Association for Computing Machinery, New York, NY, USA, September 1981.
[MEDINA]
Medina, A., Allman, M., and S. Floyd, "Measuring Interactions Between Transport Protocols and Middleboxes", Proc. 4th ACM SIGCOMM/USENIX Conference on Internet Measurement, October 2004.
[Microsoft1999]
Microsoft, "Microsoft Security Program: Microsoft Security Bulletin (MS99-038). Patch Available for "Spoofed Route Pointer" Vulnerability", September 1999, <http://www.microsoft.com/technet/security/bulletin/ ms99-038.mspx>.
[OpenBSD1998]
OpenBSD, "OpenBSD Security Advisory: IP Source Routing Problem", February 1998, <http://www.openbsd.org/advisories/sourceroute.txt>.
[RFC1038]
St. Johns, M., "Draft revised IP security option", RFC 1038, January 1988.
[RFC1063]
Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP MTU discovery options", RFC 1063, July 1988.
[RFC1108]
Kent, S., "U.S. Department of Defense Security Options for the Internet Protocol", RFC 1108, November 1991.
[RFC1385]
Wang, Z., "EIP: The Extended Internet Protocol", RFC 1385, November 1992.
[RFC1393]
Malkin, G., "Traceroute Using an IP Option", RFC 1393, January 1993.
[RFC1475]
Ullmann, R., "TP/IX: The Next Internet", RFC 1475, June 1993.
[RFC1770]
Graff, C., "IPv4 Option for Sender Directed Multi- Destination Delivery", RFC 1770, March 1995.
[RFC2205]
Braden, B., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, September 1997.
[RFC2407]
Piper, D., "The Internet IP Security Domain of Interpretation for ISAKMP", RFC 2407, November 1998.
[RFC3585]
Jason, J., Rafalow, L., and E. Vyncke, "IPsec Configuration Policy Information Model", RFC 3585, August 2003.
[RFC4306]
Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005.
[RFC4782]
Floyd, S., Allman, M., Jain, A., and P. Sarolahti, "Quick- Start for TCP and IP", RFC 4782, January 2007.
[RFC4807]
Baer, M., Charlet, R., Hardaker, W., Story, R., and C. Wang, "IPsec Security Policy Database Configuration MIB", RFC 4807, March 2007.
[RFC4949]
Shirey, R., "Internet Security Glossary, Version 2", RFC 4949, August 2007.
[RFC5350]
Manner, J. and A. McDonald, "IANA Considerations for the IPv4 and IPv6 Router Alert Options", RFC 5350, September 2008.
[RFC5570]
StJohns, M., Atkinson, R., and G. Thomas, "Common Architecture Label IPv6 Security Option (CALIPSO)", RFC 5570, July 2009.
[RFC5996]
Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen, "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC 5996, September 2010.
[RFC6192]
Dugal, D., Pignataro, C., and R. Dunn, "Protecting the Router Control Plane", RFC 6192, March 2011.
[RFC6274]
Gont, F., "Security Assessment of the Internet Protocol Version 4", RFC 6274, July 2011.
[SELinux2008]
National Security Agency (United States), "Security- Enhanced Linux - NSA/CSS", January 2009, <http://www.nsa.gov/research/selinux/index.shtml>.
[Solaris2008]
"Solaris Trusted Extensions: Labeled Security for Absolute Protection", 2008, <http://www.oracle.com/technetwork/server-storage/ solaris10/overview/trusted-extensions-149944.pdf>.
Authors' Addresses
EMail: rja.lists@gmail.com
EMail: cpignata@cisco.com
7359 - Layer 3 Virtual Private Network (VPN) Tunnel Traffic Leakages in Dual-Sta
Index Back 5 Prev Next Forward 5
Internet Engineering Task Force (IETF)
Request for Comments: 7359
Category: Informational
ISSN: 2070-1721
F. Gont
Huawei Technologies
August 2014
The subtle way in which the IPv6 and IPv4 protocols coexist in typical networks, together with the lack of proper IPv6 support in popular Virtual Private Network (VPN) tunnel products, may inadvertently result in VPN tunnel traffic leakages. That is, traffic meant to be transferred over an encrypted and integrity- protected VPN tunnel may leak out of such a tunnel and be sent in the clear on the local network towards the final destination. This document discusses some scenarios in which such VPN tunnel traffic leakages may occur as a result of employing IPv6-unaware VPN software. Additionally, this document offers possible mitigations for this issue.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7359.
IESG Note
This document describes a problem of information leakage in VPN software and attributes that problem to the software's inability to deal with IPv6. We do not think this is an appropriate characterization of the problem. It is true that when a device supports more than one address family, the inability to apply policy to more than one address family on that device is a defect. Despite that, inadvertent or maliciously induced information leakage may also occur due to the existence of any unencrypted interface allowed on the system, including the configuration of split tunnels in the VPN software itself. While there are some attacks that are unique to an IPv6 interface, the sort of information leakage described by this document is a general problem that is not unique to the situation of IPv6-unaware VPN software. We do not think this document sufficiently describes the general issue.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
It is a very common practice for users to employ VPN software when employing a public (and possibly rogue) local network. This is typically done not only to gain access to remote resources that may not otherwise be accessible from the public Internet, but also to secure the host's traffic against attackers that might be connected to the same local network as the victim host. The latter case constitutes the problem space of this document. Indeed, it is sometimes assumed that employing a VPN tunnel makes the use of insecure protocols (e.g., that transfer sensitive information in the clear) acceptable, as a VPN tunnel provides security services (such as data integrity and/or confidentiality) for all communications made over it. However, this document illustrates that under certain circumstances, some traffic might not be mapped onto the VPN tunnel and thus might be sent in the clear on the local network.
Many VPN products that are typically employed for the aforementioned VPN tunnels only support the IPv4 protocol: that is, they perform the necessary actions such that IPv4 traffic is sent over the VPN tunnel, but they do nothing to secure IPv6 traffic originated from (or being received at) the host employing the VPN client. However, the hosts themselves are typically dual-stacked: they support (and enable by default) both IPv4 and IPv6 (even if such IPv6 connectivity is simply "dormant" when they connect to IPv4-only networks). When the IPv6 connectivity of such hosts is enabled, they may end up employing an IPv6-unaware VPN client in a dual-stack network. This may have "unexpected" consequences, as explained below.
The subtle way in which the IPv4 and IPv6 protocols interact and coexist in dual-stacked networks might, either inadvertently or as a result of a deliberate attack, result in VPN tunnel traffic leakages -- that is, traffic meant to be transferred over a VPN tunnel could leak out of the VPN tunnel and be transmitted in the clear from the local network to the final destination, without employing the VPN services at all.
Since this issue is specific to VPN solutions that route Layer 3 traffic, it is applicable to the following types of VPN technologies:
o IPsec-based VPN tunnels
o SSL/TLS VPN tunnels
NOTE: see Section 2 for a definition and description of these terms.
Section 2 clarifies the terminology employed throughout this document. Section 3 provides some background about IPv6 and IPv4 coexistence, summarizing how IPv6 and IPv4 interact on a typical dual-stacked network. Section 4 describes the underlying problem that leads to the aforementioned VPN traffic leakages. Section 5 describes legitimate scenarios in which such traffic leakages might occur, while Section 6 describes how VPN traffic leakages can be triggered by deliberate attacks. Finally, Section 7 discusses possible mitigations for the aforementioned issue.
When employing the term "Virtual Private Network tunnel" (or "VPN tunnel"), this document refers to VPN tunnels based on IPsec or SSL/ TLS, where Layer 3 packets are encapsulated and sent from a client to a middlebox, to access multiple network services (possibly employing different transport and/or application protocols).
IPsec-based VPN tunnels simply employ IPsec in tunnel mode to encapsulate and transfer Layer 3 packets over the VPN tunnel. On the other hand, the term "SSL/TLS-based VPN tunnels" warrants a clarification, since two different technologies are usually referred to as "SSL/TLS VPN":
SSL/TLS VPN tunnel:
A technology that encapsulates traffic from a client to a middlebox. In essence, an SSL/TLS VPN tunnel acts just like an IPsec-based tunnel, but instead employs SSL/TLS for encryption and some proprietary/unspecified mechanism for encapsulation and routing.
SSL/TLS VPN portal:
A front-end provided by the middlebox to add security to a normally unsecured site. An SSL/TLS VPN portal is typically application specific, wrapping the specific protocol, such as HTTP, to provide access to specific services on a network. In such a case, the SSL/TLS VPN portal would be accessed just like any HTTPS URL. SSL/TLS VPN portals are used when one wants to restrict access and only provide remote users to very specific services on the network. SSL/TLS VPN portals do not require an agent, and the policy is typically more liberal from organizations allowing access from anywhere via this access method. All other traffic on the system may be routed directly to the destination, whether it is IPv4, IPv6, or even other service level (HTTP) destination addresses.
Our document focuses on Layer 3 VPNs that employ IPsec-based or SSL/ TLS-based tunnels, and excludes the so-called SSL/TLS VPN portals. Both IPsec-based and SSL/TLS-based VPN tunnels are designed to route Layer 3 traffic via the VPN tunnel through to the VPN tunnel server. Typically, these solutions are agent based, meaning that software is required on the client endpoint to establish the VPN tunnel and manage access control or routing rules. This provides an opportunity for controls to be managed through that application as well as on the client endpoint.
NOTE: Further discussion of SSL-based VPNs can be found in [SSL-VPNs].
We note that, in addition to the general case of "send all traffic through the VPN", this document considers the so-called "split- tunnel" case, where some subset of the traffic is sent through the VPN, while other traffic is sent to its intended destination with a direct routing path (i.e., without employing the VPN tunnel). We note that many organizations will prevent split-tunneling in their VPN configurations if they would like to make sure the users data goes through a gateway with protections (malware detection, URL filtering, etc.), but others are more interested in performance of the user's access or the ability for researchers to have options to access sites they may not be able to through the gateway.
The coexistence of the IPv4 and IPv6 protocols has a number of interesting and subtle aspects that may have "surprising" consequences. While IPv6 is not backwards-compatible with IPv4, the two protocols are "glued" together by the Domain Name System (DNS). For example, consider a site (say, www.example.com) that has both IPv4 and IPv6 support. The corresponding domain name (www.example.com, in our case) will contain both A and AAAA DNS resource records (RRs). Each A record will contain one IPv4 address, while each AAAA record will contain one IPv6 address -- and there might be more than one instance of each of these record types. Thus, when a dual-stacked client application means to communicate with www.example.com, it can request both A and AAAA records and use any of the available addresses. The preferred address family (IPv4 or IPv6) and the specific address that will be used (assuming more than one address of each family is available) varies from one protocol implementation to another, with many host implementations preferring IPv6 addresses over IPv4 addresses.
NOTE: [RFC6724] specifies an algorithm for selecting a destination address from a list of IPv6 and IPv4 addresses. [RFC6555] discusses the challenge of selecting the most appropriate destination address, along with a proposed implementation approach that mitigates connection-establishment delays.
As a result of this "coexistence" between IPv6 and IPv4, when a dual- stacked client means to communicate with some other system, the availability of A and AAAA DNS resource records will typically affect which protocol is employed to communicate with that system.
Many VPN tunnel implementations do not support the IPv6 protocol -- or, what is worse, they completely ignore IPv6. This typically means that, once a VPN tunnel has been established, the VPN software takes care of the IPv4 connectivity by, e.g., inserting an IPv4 default route that causes all IPv4 traffic to be sent over the VPN tunnel (as opposed to sending the traffic in the clear, employing the local router). However, if IPv6 is not supported (or completely ignored), any packets destined to an IPv6 address will be sent in the clear using the local IPv6 router. That is, the VPN software will do nothing about the IPv6 traffic.
The underlying reason for which these VPN leakages may occur is that, for dual-stacked systems, it is not possible to secure the communication with another system without securing both protocols (IPv6 and IPv4). Therefore, as long as the traffic for one of these protocols is not secured, there is the potential for VPN traffic leakages.
Consider a dual-stacked host that employs IPv4-only VPN software to establish a VPN tunnel with a VPN server, and that said host now connects to a dual-stacked network (that provides both IPv6 and IPv4 connectivity). If some application on the client means to communicate with a dual-stacked destination, the client will typically query both A and AAAA DNS resource records. Since the host will have both IPv4 and IPv6 connectivity, and the intended destination will have both A and AAAA DNS resource records, one of the possible outcomes is that the host will employ IPv6 to communicate with the intended destination. Since the VPN software does not support IPv6, the IPv6 traffic will not employ the VPN tunnel; hence, it will have neither integrity nor confidentiality protection from the source host to the final destination.
This could inadvertently expose sensitive traffic that was assumed to be secured by the VPN software. In this particular scenario, the resulting VPN tunnel traffic leakage is a side effect of employing IPv6-unaware VPN software in a dual-stacked host/network.
A local attacker could deliberately trigger IPv6 connectivity on the victim host by sending forged ICMPv6 Router Advertisement messages [RFC4861]. Such packets could be sent by employing standard software such as rtadvd [RTADVD], or by employing packet-crafting tools such as SI6 Network's IPv6 Toolkit [SI6-Toolkit] or THC's IPv6 Attack Toolkit [THC-IPv6]. Once IPv6 connectivity has been enabled, communications with dual-stacked systems could result in VPN tunnel traffic leakages, as previously described.
While this attack may be useful enough (due to the increasing number of IPv6-enabled sites), it will only lead to traffic leakages when the destination system is dual-stacked. However, it is usually trivial for an attacker to trigger such VPN tunnel traffic leakages for any destination system: an attacker could simply advertise himself as the local recursive DNS server by sending forged Router Advertisement messages [RFC4861] that include the corresponding Recursive DNS Server (RDNSS) option [RFC6106], and then perform a DNS spoofing attack such that he can become a "man in the middle" and intercept the corresponding traffic. As with the previous attack scenario, packet-crafting tools such as [SI6-Toolkit] and [THC-IPv6] can readily perform this attack.
NOTE: Some systems are known to prefer IPv6-based recursive DNS servers over IPv4-based ones; hence, the "malicious" recursive DNS servers would be preferred over the legitimate ones advertised by the VPN server.
At the time of this writing, a large number of VPN implementations have not yet addressed the issue of VPN tunnel traffic leakages. Most of these implementations simply ignore IPv6; hence, IPv6 traffic leaks out of the VPN tunnel. Some VPN tunnel implementations handle IPv6, but not properly. For example, they may be able to prevent inadvertent VPN tunnel traffic leakages arising in legitimate dual- stack networks, but they may fail to properly handle the myriad of vectors available to an attacker for injecting "more specific routes", such as ICMPv6 Router Advertisement messages with Prefix Information Options and/or Route Information Options, and ICMPv6 Redirect messages.
Clearly, the issue of VPN tunnel traffic leakages warrants proper IPv6 support in VPN tunnel implementations.
There are a number of possible mitigations for the VPN tunnel traffic leakage vulnerability discussed in this document.
If the VPN client is configured by administrative decision to redirect all IPv4 traffic to the VPN, it should:
1. If IPv6 is not supported in the VPN software, disable IPv6 support in all network interfaces.
NOTE: For IPv6-unaware VPN clients, the most simple mitigation would be to disable IPv6 support in all network interface cards when a VPN tunnel is meant to be employed. Thus, applications on the host running the VPN client software will have no other option than to employ IPv4; hence, they will simply not even try to send/process IPv6 traffic. We note that this should only be regarded as a temporary workaround, since the proper mitigation would be to correctly handle IPv6 traffic.
2. If IPv6 is supported in the VPN software, ensure that all IPv6 traffic is also sent via the VPN.
NOTE: This would imply, among other things, properly handling any vectors that might be employed by an attacker to install IPv6 routes at the victim system (such as ICMPv6 Router Advertisement messages with Prefix Information Options or Route information Options [RFC4191], ICMPv6 Redirect messages, etc.). We note that properly handling all the aforementioned vectors may prove to be nontrivial.
If the VPN client is configured to only send a subset of IPv4 traffic to the VPN tunnel (split-tunnel mode), then:
1. If the VPN client does not support IPv6, it should disable IPv6 support in all network interfaces.
NOTE: As noted above, this should only be regarded as a temporary workaround, since the proper mitigation would be to correctly handle IPv6 traffic.
2. If the VPN client supports IPv6, it is the administrators responsibility to ensure that the correct corresponding sets of IPv4 and IPv6 networks get routed into the VPN tunnel.
NOTE: As noted above, this would imply, among other things, properly handling any vectors that might be employed by an attacker to install IPv6 routes at the victim system. This may prove to be a nontrivial task.
A network may prevent local attackers from successfully performing the aforementioned attacks against other local hosts by implementing First-Hop Security solutions such as Router Advertisement Guard (RA-Guard) [RFC6105] and DHCPv6-Shield [DHCPv6-SHIELD]. However, for obvious reasons, a host cannot and should not rely on this type of mitigations when connecting to an open network (cybercafe, etc.).
NOTE: Besides, popular implementations of RA-Guard are known to be vulnerable to evasion attacks [RFC7113].
Finally, we note that if (eventually) IPv6-only VPN implementations become available, similar issues to the ones discussed in this document could arise if these IPv6-only VPN implementations do nothing about the IPv4 traffic.
While the desired mitigation for the issues discussed in this document is for VPN clients to be IPv6 aware, we note that in scenarios where this would be unfeasible, an administrator may want to disable IPv6 connectivity on all network interfaces of the node employing the IPv6-unaware VPN client.
This document discusses how traffic meant to be transferred over a VPN tunnel can leak out of such a tunnel and, hence, appear in the clear on the local network. This is the result of employing IPv6-unaware VPN client software on dual-stacked hosts.
The proper mitigation of this issue is to correctly handle IPv6 traffic in the VPN client software. However, in scenarios in which such a mitigation is unfeasible, an administrator may choose to disable IPv6 connectivity on all network interfaces of the host employing the VPN client.
The author would like to thank Kathleen Moriarty and Paul Hoffman who contributed text that was readily incorporated into Section 2 of this document.
The author of this document would like to thank (in alphabetical order) Cameron Byrne, Spencer Dawkins, Gert Doering, Stephen Farrell, Seth Hall, Paul Hoffman, Tor Houghton, Russ Housley, Joel Jaeggli, Alastair Johnson, Merike Kaeo, Panos Kampanakis, Stephen Kent, Henrik Lund Kramshoj, Warren Kumari, Barry Leiba, Kathleen Moriarty, Thomas Osterried, Jim Small, Martin Vigoureux, and Andrew Yourtchenko for providing valuable comments on earlier draft versions of this document.
The author wishes to express deep and heartfelt gratitude to Enrique Garcia and Vicenta Tejedo, for their precious love and support.
[RFC4191]
Draves, R. and D. Thaler, "Default Router Preferences and More-Specific Routes", RFC 4191, November 2005.
[RFC4861]
Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007.
[RFC6106]
Jeong, J., Park, S., Beloeil, L., and S. Madanapalli, "IPv6 Router Advertisement Options for DNS Configuration", RFC 6106, November 2010.
[RFC6555]
Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with Dual-Stack Hosts", RFC 6555, April 2012.
[RFC6724]
Thaler, D., Draves, R., Matsumoto, A., and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)", RFC 6724, September 2012.
[DHCPv6-SHIELD]
Gont, F., Liu, W., and G. Van de Velde, "DHCPv6-Shield: Protecting Against Rogue DHCPv6 Servers", Work in Progress, July 2014.
[RFC6105]
Levy-Abegnoli, E., Van de Velde, G., Popoviciu, C., and J. Mohacsi, "IPv6 Router Advertisement Guard", RFC 6105, February 2011.
[RFC7113]
Gont, F., "Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard)", RFC 7113, February 2014.
[RTADVD]
"rtadvd(8) manual page", <http://www.freebsd.org/cgi/ man.cgi?query=rtadvd&sektion=8>.
[SI6-Toolkit]
SI6 Networks, "SI6 Networks' IPv6 Toolkit", <http://www.si6networks.com/tools/ipv6toolkit>.
[SSL-VPNs]
Hoffman, P., "SSL VPNs: An IETF Perspective", IETF 72, SAAG Meeting, 2008, <http://www.ietf.org/proceedings/72/slides/saag-4.pdf>.
[THC-IPv6]
The Hacker's Choice, "THC-IPV6 - attacking the IPV6 protocol suite", <http://www.thc.org/thc-ipv6/>.
Author's Address
7404 - Using Only Link-Local Addressing inside an IPv6 Network
Internet Engineering Task Force (IETF)
Request for Comments: 7404
Category: Informational
ISSN: 2070-1721
M. Behringer
E. Vyncke
Cisco
November 2014
In an IPv6 network, it is possible to use only link-local addresses on infrastructure links between routers. This document discusses the advantages and disadvantages of this approach to facilitate the decision process for a given network.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7404.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
An infrastructure link between a set of routers typically does not require global or unique local addresses [RFC4193]. Using only link- local addressing on such links has a number of advantages; for example, routing tables do not need to carry link addressing and can therefore be significantly smaller. This helps to decrease failover times in certain routing convergence events. An interface of a router is also not reachable beyond the link boundaries, therefore reducing the attack surface.
This document discusses the advantages and caveats of this approach.
Note that some traditional techniques used to operate a network, such as pinging interfaces or seeing interface information in a traceroute, do not work with this approach. Details are discussed below.
During WG and IETF last call, the technical correctness of the document was reviewed; however, debate exists as to whether to recommend this technique. The deployment of this technique is appropriate where it is found to be necessary.
This document discusses the approach of using only link-local addresses (LLAs) on all router interfaces on infrastructure links. Routers don't typically need to receive packets from hosts or nodes outside the network. For a network operator, there may be reasons to use addresses that are greater than link-local scope on infrastructure interfaces for certain operational tasks, such as pings to an interface or traceroutes across the network. This document discusses such cases and proposes alternative procedures.
In this approach, neither globally routed IPv6 addresses nor unique local addresses are configured on infrastructure links. In the absence of specific global or unique local address definitions, the default behavior of routers is to use link-local addresses, notably for routing protocols.
The sending of ICMPv6 [RFC4443] error messages ("packet-too-big", "time-exceeded", etc.) is required for routers. Therefore, another interface must be configured with an IPv6 address that has a greater scope than link-local. This address will usually be a loopback interface with a global scope address belonging to the operator and part of an announced prefix (with a suitable prefix length) to avoid being dropped by other routers implementing ingress filtering [RFC3704]. This is implementation dependent. For the remainder of this document, we will refer to this interface as a "loopback interface".
[RFC6724] recommends that IPv6 addresses that are greater than link- local scope be used as the source IPv6 address for all generated ICMPv6 messages sent to a non-link-local address, with the exception of ICMPv6 redirect messages (as defined in Section 4.5 of [RFC4861]).
The effect on specific traffic types is as follows:
o Most control plane protocols (such as BGP [RFC4271], IS-IS [IS-IS], OSPFv3 [RFC5340], Routing Information Protocol Next Generation (RIPng) [RFC2080], and PIM [RFC4609]) work by default or can be configured to work with link-local addresses. Exceptions are explained in the caveats section (Section 2.3).
o Management plane traffic (such as Secure SHell (SSH) Protocol [RFC4251], Telnet [RFC0495], Simple Network Management Protocol (SNMP) [RFC1157], and ICMPv6 Echo Request [RFC4443]) can use the address of the router loopback interface as the destination address. Router management can also be done over out-of-band channels.
o ICMP error messages are usually sourced from a loopback interface with a scope that is greater than link-local. Section 4.5 of [RFC4861] explains one exception: ICMP redirect messages can also be sourced from a link-local address.
o Data plane traffic is forwarded independently of the link address type.
o Neighbor discovery (neighbor solicitation and neighbor advertisement) is done by using link-local unicast and multicast addresses. Therefore, neighbor discovery is not affected.
Thus, we conclude that it is possible to construct a working network in this way.
The following list of advantages is in no particular order.
Smaller routing tables: Since the routing protocol only needs to carry one global address (the loopback interface) per router, it is smaller than the traditional approach where every infrastructure link address is carried in the routing protocol. This reduces memory consumption and increases the convergence speed in some routing failover cases. Because the Forwarding Information Base to be downloaded to line cards is smaller, and there are fewer prefixes in the Routing Information Base, the routing algorithm is accelerated. Note that smaller routing tables can also be achieved by putting interfaces in passive mode for the Interior Gateway Protocol (IGP).
Simpler address management: Only loopback interface addresses need to be considered in an addressing plan. This also allows for easier renumbering.
Lower configuration complexity: Link-local addresses require no specific configuration, thereby lowering the complexity and size of router configurations. This also reduces the likelihood of configuration mistakes.
Simpler DNS: Less routable address space in use also means less reverse and forward mapping DNS resource records to maintain. Of course, if the operator selects not to enter any global interface addresses in the DNS anyway, then this is less of an advantage.
Reduced attack surface: Every routable address on a router constitutes a potential attack point; a remote attacker can send traffic to that address, for example, a TCP SYN flood (see [RFC4987]). If a network only uses the addresses of the router loopback interface(s), only those addresses need to be protected from outside the network. This may ease protection measures, such as Infrastructure Access Control Lists (iACL). Without using link-local addresses, it is still possible to achieve the simple iACL if the network addressing scheme is set up such that all link and loopback interfaces have addresses that are greater than link-local and are aggregatable, and if the infrastructure access list covers that entire aggregated space. See also [RFC6752] for further discussion on this topic. [RFC6860] describes another approach to hide addressing on infrastructure links for OSPFv2 and OSPFv3 by modifying the existing protocols. This document does not modify any protocol and applies only to IPv6.
The caveats listed in this section are in no particular order.
Interface ping: If an interface doesn't have a routable address, it can only be pinged from a node on the same link. Therefore, it is not possible to ping a specific link interface remotely. A possible workaround is to ping the loopback address of a router instead. In most cases today, it is not possible to see which link the packet was received on; however, [RFC5837] suggests including the interface identifier of the interface a packet was received on in the ICMPv6 response. It must be noted that there are few implementations of this ICMPv6 extension. With this approach, it would be possible to ping a router on the addresses of loopback interfaces, yet see which interface the packet was received on. To check liveliness of a specific interface, it may be necessary to use other methods, such as connecting to the router via SSH and checking locally or using SNMP.
Traceroute: Similar to the ping case, a reply to a traceroute packet would come from the address of a loopback interface, and current implementations do not display the specific interface the packets came in on. Again, [RFC5837] provides a solution. As in the ping case above, it is not possible to traceroute to a particular interface if it only has a link-local address. Conversely, this approach may make network topology discovery from outside the network simpler: instead of responding with multiple different interface IP addresses, which have to be correlated by the outsider, a router will always respond with the same loopback address. If reverse DNS mapping is used, the mapping is trivial in either case.
Hardware dependency: LLAs have usually been based on 64-bit Extended Unique Identifiers (EUI-64); hence, they change when the Message Authentication Code (MAC) address is changed. This could pose a problem in a case where the routing neighbor must be configured explicitly (e.g., BGP) and a line card needs to be physically replaced, hence changing the EUI-64 LLA and breaking the routing neighborship. LLAs can be statically configured, such as fe80::1 and fe80::2, which can be used to configure any required static routing neighborship. However, this static LLA configuration may be more complex to operate than statically configured addresses that are greater than link-local scope. This is because LLAs are inherently ambiguous. For a multi-link node, such as a router, to deal with the ambiguity, the link zone index must also be considered explicitly, e.g., using the extended textual notation described in [RFC4007], as in this example, 'BGP neighbor fe80::1%eth0 is down'.
Network Management System (NMS) toolkits: If there is any NMS tool that makes use of an interface IP address of a router to carry out any of its NMS functions, then it would no longer work if the interface does not have a routable address. A possible workaround for such tools is to use the routable address of the router loopback interface instead. Most vendor implementations allow the specification of loopback interface addresses for SYSLOG, IPFIX, and SNMP. The Link Layer Discovery Protocol (LLDP) (IEEE 802.1AB-2009) runs directly over Ethernet and does not require any IPv6 address, so dynamic network discovery is not hindered by using only LLA when using LLDP. But, network discovery based on Neighbor Discovery Protocol (NDP) cache content will only display the link-local addresses and not the addresses of the loopback interfaces; therefore, network discovery should rather be based on the Route Information Base to detect adjacent nodes.
MPLS and RSVP-Traffic Engineering (RSVP-TE) [RFC3209] allow the establishment of an MPLS Label Switched Path (LSP) on a path that is explicitly identified by a strict sequence of IP prefixes or addresses (each pertaining to an interface or a router on the path). This is commonly used for Fast Reroute (FRR). However, if an interface uses only a link-local address, then such LSPs cannot be established. At the time of writing this document, there is no workaround for this case; therefore, where RSVP-TE is being used, the approach described in this document does not work.
Internet Exchange Points (IXPs) have a special importance in the global Internet because they connect a high number of networks in a single location and because a significant part of Internet traffic passes through at least one IXP. An IXP requires, therefore, a very high level of security. The address space used on an IXP is generally known, as it is registered in the global Internet Route Registry, or it is easily discoverable through traceroute. The IXP prefix is especially critical because practically all addresses on this prefix are critical systems in the Internet.
Apart from general device security guidelines, there are basically two additional ways to raise security (see also [BGP-OPSEC]):
1. Not to announce the prefix in question, and
2. To drop all traffic from remote locations destined to the IXP prefixes.
Not announcing the prefix of the IXP would frequently result in traceroute and similar packets (required for Path MTU Discovery (PMTUD)) being dropped due to unicast Reverse Path Forwarding (uRPF) checks. Given that PMTUD is critical, this is generally not acceptable. Dropping all external traffic to the IXP prefix is hard to implement because if only one service provider connected to an IXP does not filter correctly, then all IXP routers are reachable from at least that service provider network.
As the prefix used in the IXP is usually longer than a /48, it is frequently dropped by route filters on the Internet having the same net effect as not announcing the prefix.
Using link-local addresses on the IXP may help in this scenario. In this case, the generated ICMPv6 packets would be generated from loopback interfaces or from any other interface with a globally routable address without any configuration. However, in this case, each service provider would use their own address space, making a generic attack against all devices on the IXP harder. All of an IXP's loopback interface addresses can be discovered by a potential attacker with a simple traceroute; a generic attack is, therefore, still possible, but it would require more work.
In some cases, service providers carry the IXP addresses in their IGP for certain forms of traffic engineering across multiple exit points. Link-local addresses cannot be used for this purpose; in this case, the service provider would have to employ other methods of traffic engineering.
If an Internet Exchange Point is using a global prefix registered for this purpose, a traceroute will indicate whether the trace crosses an IXP rather than a private interconnect. If link-local addressing is used instead, a traceroute will not provide this distinction.
Exclusively using link-local addressing on infrastructure links has a number of advantages and disadvantages, both of which are described in detail in this document. A network operator can use this document to evaluate whether or not using link-local addressing on infrastructure links is a good idea in the context of his/her network. This document makes no particular recommendation either in favor or against.
Using only LLAs on infrastructure links reduces the attack surface of a router. Loopback interfaces with routed addresses are still reachable and must be secured, but infrastructure links can only be attacked from the local link. This simplifies security of control and management planes. The approach does not impact the security of the data plane. The link-local-only approach does not address control plane [RFC6192] attacks generated by data plane packets (such as hop-limit expiration or packets containing a hop-by-hop extension header).
For additional security considerations, as previously stated, see also [RFC5837] and [BGP-OPSEC].
[BGP-OPSEC]
Durand, J., Pepelnjak, I., and G. Doering, "BGP operations and security", Work in Progress, draft-ietf-opsec-bgp- security-05, August 2014.
[IS-IS]
International Organization for Standardization, "Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)", ISO Standard 10589, 2002.
[RFC0495]
McKenzie, A., "Telnet Protocol specifications", RFC 495, May 1973, <http://www.rfc-editor.org/info/rfc0495>.
[RFC1157]
Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol (SNMP)", STD 15, RFC 1157, May 1990, <http://www.rfc-editor.org/info/rfc1157>.
[RFC2080]
Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080, January 1997, <http://www.rfc-editor.org/info/rfc2080>.
[RFC3209]
Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001, <http://www.rfc-editor.org/info/rfc3209>.
[RFC3704]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004, <http://www.rfc-editor.org/info/rfc3704>.
[RFC4007]
Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and B. Zill, "IPv6 Scoped Address Architecture", RFC 4007, March 2005, <http://www.rfc-editor.org/info/rfc4007>.
[RFC4193]
Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, October 2005, <http://www.rfc-editor.org/info/rfc4193>.
[RFC4251]
Ylonen, T. and C. Lonvick, "The Secure Shell (SSH) Protocol Architecture", RFC 4251, January 2006, <http://www.rfc-editor.org/info/rfc4251>.
[RFC4271]
Rekhter, Y., Li, T., and S. Hares, "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006, <http://www.rfc-editor.org/info/rfc4271>.
[RFC4443]
Conta, A., Deering, S., and M. Gupta, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 4443, March 2006, <http://www.rfc-editor.org/info/rfc4443>.
[RFC4609]
Savola, P., Lehtonen, R., and D. Meyer, "Protocol Independent Multicast - Sparse Mode (PIM-SM) Multicast Routing Security Issues and Enhancements", RFC 4609, October 2006, <http://www.rfc-editor.org/info/rfc4609>.
[RFC4861]
Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007, <http://rfc-editor.org/info/rfc4861>.
[RFC4987]
Eddy, W., "TCP SYN Flooding Attacks and Common Mitigations", RFC 4987, August 2007, <http://www.rfc-editor.org/info/rfc4987>.
[RFC5340]
Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, July 2008, <http://www.rfc-editor.org/info/rfc5340>.
[RFC5837]
Atlas, A., Bonica, R., Pignataro, C., Shen, N., and JR. Rivers, "Extending ICMP for Interface and Next-Hop Identification", RFC 5837, April 2010, <http://www.rfc-editor.org/info/rfc5837>.
[RFC6192]
Dugal, D., Pignataro, C., and R. Dunn, "Protecting the Router Control Plane", RFC 6192, March 2011, <http://www.rfc-editor.org/info/rfc6192>.
[RFC6724]
Thaler, D., Draves, R., Matsumoto, A., and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)", RFC 6724, September 2012, <http://www.rfc-editor.org/info/rfc6724>.
[RFC6752]
Kirkham, A., "Issues with Private IP Addressing in the Internet", RFC 6752, September 2012, <http://www.rfc-editor.org/info/rfc6752>.
[RFC6860]
Yang, Y., Retana, A., and A. Roy, "Hiding Transit-Only Networks in OSPF", RFC 6860, January 2013, <http://www.rfc-editor.org/info/rfc6860>.
Acknowledgments
The authors would like to thank Salman Asadullah, Brian Carpenter, Bill Cerveny, Benoit Claise, Rama Darbha, Simon Eng, Wes George, Fernando Gont, Jen Linkova, Harald Michl, Janos Mohacsi, Ivan Pepelnjak, Alvaro Retana, Jinmei Tatuya, and Peter Yee for their useful comments about this work.
Authors' Addresses
EMail: mbehring@cisco.com
EMail: evyncke@cisco.com
7454 - BGP Operations and Security
Internet Engineering Task Force (IETF)
Request for Comments: 7454
BCP: 194
Category: Best Current Practice
ISSN: 2070-1721
J. Durand
Cisco Systems, Inc.
I. Pepelnjak
NIL
G. Doering
SpaceNet
February 2015
The Border Gateway Protocol (BGP) is the protocol almost exclusively used in the Internet to exchange routing information between network domains. Due to this central nature, it is important to understand the security measures that can and should be deployed to prevent accidental or intentional routing disturbances.
This document describes measures to protect the BGP sessions itself such as Time to Live (TTL), the TCP Authentication Option (TCP-AO), and control-plane filtering. It also describes measures to better control the flow of routing information, using prefix filtering and automation of prefix filters, max-prefix filtering, Autonomous System (AS) path filtering, route flap dampening, and BGP community scrubbing.
This memo documents an Internet Best Current Practice.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7454.
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Border Gateway Protocol (BGP), specified in RFC 4271 [2], is the protocol used in the Internet to exchange routing information between network domains. BGP does not directly include mechanisms that control whether the routes exchanged conform to the various guidelines defined by the Internet community. This document intends to both summarize common existing guidelines and help network administrators apply coherent BGP policies.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].
The guidelines defined in this document are intended for generic Internet BGP peerings. The nature of the Internet is such that Autonomous Systems can always agree on exceptions to a common framework for relevant local needs, and therefore configure a BGP session in a manner that may differ from the recommendations provided in this document. While this is perfectly acceptable, every configured exception might have an impact on the entire inter-domain routing environment, and network administrators SHOULD carefully appraise this impact before implementation.
o ACL: Access Control List
o ASN: Autonomous System Number
o IRR: Internet Routing Registry
o IXP: Internet Exchange Point
o LIR: Local Internet Registry
o PMTUD: Path MTU Discovery
o RIR: Regional Internet Registry
o Tier 1 transit provider: an IP transit provider that can reach any network on the Internet without purchasing transit services.
o uRPF: Unicast Reverse Path Forwarding
In addition to the list above, the following terms are used with a specific meaning.
o Downstream: any network that is downstream; it can be a provider or a customer network.
o Upstream: any network that is upstream.
The BGP speaker needs to be protected from attempts to subvert the BGP session. This protection SHOULD be achieved by an Access Control List (ACL) that would discard all packets directed to TCP port 179 on the local device and sourced from an address not known or permitted to become a BGP neighbor. Experience has shown that the natural protection TCP should offer is not always sufficient, as it is sometimes run in control-plane software. In the absence of ACLs, it is possible to attack a BGP speaker by simply sending a high volume of connection requests to it.
If supported, an ACL specific to the control plane of the router SHOULD be used (receive-ACL, control-plane policing, etc.), to avoid configuration of data-plane filters for packets transiting through the router (and therefore not reaching the control plane). If the hardware cannot do that, interface ACLs can be used to block packets addressed to the local router.
Some routers automatically program such an ACL upon BGP configuration. On other devices, this ACL should be configured and maintained manually or using scripts.
In addition to strict filtering, rate-limiting MAY be configured for accepted BGP traffic. Rate-limiting BGP traffic consists in permitting only a certain quantity of bits per second (or packets per second) of BGP traffic to the control plane. This protects the BGP router control plane in case the amount of BGP traffic surpasses platform capabilities.
Filtering and rate-limiting of control-plane traffic is a wider topic than "just for BGP". (If a network administrator brings down a router by overloading one of the other protocols remotely, BGP is harmed as well.) For a more detailed recommendation on how to protect the router's control plane, see RFC 6192 [11].
Current security issues of TCP-based protocols (therefore including BGP) have been documented in RFC 6952 [14]. The following subsections list the major points raised in this RFC and give the best practices related to TCP session protection for BGP operation.
Attacks on TCP sessions used by BGP (aka BGP sessions), for example, sending spoofed TCP RST packets, could bring down a BGP peering. Following a successful ARP spoofing attack (or other similar man-in- the-middle attack), the attacker might even be able to inject packets into the TCP stream (routing attacks).
BGP sessions can be secured with a variety of mechanisms. MD5 protection of the TCP session header, described in RFC 2385 [7], was the first such mechanism. It has been obsoleted by the TCP Authentication Option (TCP-AO; RFC 5925 [4]), which offers stronger protection. While MD5 is still the most used mechanism due to its availability in vendors' equipment, TCP-AO SHOULD be preferred when implemented.
IPsec could also be used for session protection. At the time of publication, there is not enough experience of the impact of using IPsec for BGP peerings, and further analysis is required to define guidelines.
The drawback of TCP session protection is additional configuration and management overhead for the maintenance of authentication information (for example, MD5 passwords). Protection of TCP sessions used by BGP is thus NOT REQUIRED even when peerings are established over shared networks where spoofing can be done (like IXPs), but operators are RECOMMENDED to consider the trade-offs and to apply TCP session protection where appropriate.
Furthermore, network administrators SHOULD block spoofed packets (packets with a source IP address belonging to their IP address space) at all edges of their network (see RFC 2827 [8] and RFC 3704 [9]). This protects the TCP session used by Internal BGP (IBGP) from attackers outside the Autonomous System.
BGP sessions can be made harder to spoof with the Generalized TTL Security Mechanisms (GTSM aka TTL security), defined in RFC 5082 [3]. Instead of sending TCP packets with TTL value of 1, the BGP speakers send the TCP packets with TTL value of 255, and the receiver checks that the TTL value equals 255. Since it's impossible to send an IP packet with TTL of 255 to an IP host that is not directly connected, BGP TTL security effectively prevents all spoofing attacks coming from third parties not directly connected to the same subnet as the BGP-speaking routers. Network administrators SHOULD implement TTL security on directly connected BGP peerings.
GTSM could also be applied to multi-hop BGP peering as well. To achieve this, TTL needs to be configured with a proper value depending on the distance between BGP speakers (using the principle described above). Nevertheless, it is not as effective because anyone inside the TTL diameter could spoof the TTL.
Like MD5 protection, TTL security has to be configured on both ends of a BGP session.
The main aspect of securing BGP resides in controlling the prefixes that are received and advertised on the BGP peerings. Prefixes exchanged between BGP peers are controlled with inbound and outbound filters that can match on IP prefixes (as described in this section), AS paths (as described in Section 9) or any other attributes of a BGP prefix (for example, BGP communities, as described in Section 11).
This section lists the most commonly used prefix filters. The following sections will clarify where these filters should be applied.
The IANA IPv4 Special-Purpose Address Registry [23] maintains the list of IPv4 special-purpose prefixes and their routing scope, and it SHOULD be used for prefix-filter configuration. Prefixes with value "False" in column "Global" SHOULD be discarded on Internet BGP peerings.
The IANA IPv6 Special-Purpose Address Registry [24] maintains the list of IPv6 special-purpose prefixes and their routing scope, and it SHOULD be used for prefix-filter configuration. Only prefixes with value "False" in column "Global" SHOULD be discarded on Internet BGP peerings.
IANA allocates prefixes to RIRs that in turn allocate prefixes to LIRs (Local Internet Registries). It is wise not to accept routing table prefixes that are not allocated by IANA and/or RIRs. This section details the options for building a list of allocated prefixes at every level. It is important to understand that filtering unallocated prefixes requires constant updates, as prefixes are continually allocated. Therefore, automation of such prefix filters is key for the success of this approach. Network administrators SHOULD NOT consider solutions described in this section if they are not capable of maintaining updated prefix filters: the damage would probably be worse than the intended security policy.
IANA has allocated all the IPv4 available space. Therefore, there is no reason why network administrators would keep checking that prefixes they receive from BGP peers are in the IANA-allocated IPv4 address space [25]. No specific filters need to be put in place by administrators who want to make sure that IPv4 prefixes they receive in BGP updates have been allocated by IANA.
For IPv6, given the size of the address space, it can be seen as wise to accept only prefixes derived from those allocated by IANA. Administrators can dynamically build this list from the IANA- allocated IPv6 space [26]. As IANA keeps allocating prefixes to RIRs, the aforementioned list should be checked regularly against changes, and if they occur, prefix filters should be computed and pushed on network devices. The list could also be pulled directly by routers when they implement such mechanisms. As there is delay between the time a RIR receives a new prefix and the moment it starts allocating portions of it to its LIRs, there is no need for doing this step quickly and frequently. However, network administrators SHOULD ensure that all IPv6 prefix filters are updated within a maximum of one month after any change in the list of IPv6 prefixes allocated by IANA.
If the process in place (whether manual or automatic) cannot guarantee that the list is updated regularly, then it's better not to configure any filters based on allocated networks. The IPv4 experience has shown that many network operators implemented filters for prefixes not allocated by IANA but did not update them on a regular basis. This created problems for the latest allocations, and required extra work for RIRs that had to "de-bogonize" the newly allocated prefixes. (See [18] for information on de-bogonizing.)
A more precise check can be performed when one would like to make sure that prefixes they receive are being originated or transited by Autonomous Systems (ASes) entitled to do so. It has been observed in the past that an AS could easily advertise someone else's prefix (or more specific prefixes) and create black holes or security threats. To partially mitigate this risk, administrators would need to make sure BGP advertisements correspond to information located in the existing registries. At this stage, two options can be considered: short- and long-term options. They are described in the following subsections.
6.1.2.2.1. Prefix Filters Created from Internet Routing Registries (IRRs)
An Internet Routing Registry (IRR) is a database containing Internet routing information, described using Routing Policy Specification Language objects as described in RFC 4012 [10]. Network administrators are given privileges to describe routing policies of their own networks in the IRR, and that information is published, usually publicly. A majority of Regional Internet Registries do also operate an IRR and can control whether registered routes conform to the prefixes that are allocated or directly assigned. However, it should be noted that the list of such prefixes is not necessarily a complete list, and as such the list of routes in an IRR is not the same as the set of RIR-allocated prefixes.
It is possible to use the IRR information to build, for a given neighbor AS, a list of originated or transited prefixes that one may accept. This can be done relatively easily using scripts and existing tools capable of retrieving this information from the registries. This approach is exactly the same for both IPv4 and IPv6.
The macro-algorithm for the script is as follows. For the peer that is considered, the distant network administrator has provided the AS and may be able to provide an AS-SET object (aka AS-MACRO). An AS-SET is an object that contains AS numbers or other AS-SETs. An operator may create an AS-SET defining all the AS numbers of its customers. A Tier 1 transit provider might create an AS-SET describing the AS-SET of connected operators, which in turn describe the AS numbers of their customers. Using recursion, it is possible to retrieve from an AS-SET the complete list of AS numbers that the peer is likely to announce. For each of these AS numbers, it is also easy to look in the corresponding IRR for all associated prefixes. With these two mechanisms, a script can build, for a given peer, the list of allowed prefixes and the AS number from which they should be originated. One could decide not use the origin information and only build monolithic prefix filters from fetched data.
As prefixes, AS numbers, and AS-SETs may not all be under the same RIR authority, it is difficult to choose for each object the appropriate IRR to poll. Some IRRs have been created and are not restricted to a given region or authoritative RIR. They allow RIRs to publish information contained in their IRR in a common place. They also make it possible for any subscriber (probably under contract) to publish information too. When doing requests inside such an IRR, it is possible to specify the source of information in order to have the most reliable data. One could check a popular IRR containing many sources (such as RADb [27], the Routing Assets Database) and only select as sources some desired RIRs and trusted major ISPs (Internet Service Providers).
As objects in IRRs may frequently vary over time, it is important that prefix filters computed using this mechanism are refreshed regularly. Refreshing the filters on a daily basis SHOULD be considered because routing changes must sometimes be done in an emergency and registries may be updated at the very last moment. Note that this approach significantly increases the complexity of the router configurations, as it can quickly add tens of thousands of configuration lines for some important peers. To manage this complexity, network administrators could use, for example, IRRToolSet [30], a set of tools making it possible to simplify the creation of automated filter configuration from policies stored in an IRR.
Last but not least, network administrators SHOULD publish and maintain their resources properly in the IRR database maintained by their RIR, when available.
An infrastructure called SIDR (Secure Inter-Domain Routing), described in RFC 6480 [12], has been designed to secure Internet advertisements. At the time of writing this document, many documents have been published and a framework with a complete set of protocols is proposed so that advertisements can be checked against signed routing objects in RIRs. There are basically two services that SIDR offers:
o Origin validation, described in RFC 6811 [5], seeks to make sure that attributes associated with routes are correct. (The major point is the validation of the AS number originating a given route.) Origin validation is now operational (Internet
registries, protocols, implementations on some routers), and in theory it can be implemented knowing that the number of signed resources is still low at the time of writing this document.
o Path validation provided by BGPsec [29] seeks to make sure that no one announces fake/wrong BGP paths that would attract traffic for a given destination; see RFC 7132 [16]. BGPsec is still an ongoing work item at the time of writing this document and therefore cannot be implemented.
Implementing SIDR mechanisms is expected to solve many of the BGP routing security problems in the long term, but it may take time for deployments to be made and objects to become signed. Also, note that the SIDR infrastructure is complementing (not replacing) the security best practices listed in this document. Therefore, network administrators SHOULD implement any SIDR proposed mechanism (for example, route origin validation) on top of the other existing mechanisms even if they could sometimes appear to be targeting the same goal.
If route origin validation is implemented, the reader SHOULD refer to the rules described in RFC 7115 [15]. In short, each external route received on a router SHOULD be checked against the Resource Public Key Infrastructure (RPKI) data set:
o If a corresponding ROA (Route Origin Authorization) is found and is valid, then the prefix SHOULD be accepted.
o If the ROA is found and is INVALID, then the prefix SHOULD be discarded.
o If a ROA is not found, then the prefix SHOULD be accepted, but the corresponding route SHOULD be given a low preference.
In addition to this, network administrators SHOULD sign their routing objects so their routes can be validated by other networks running origin validation.
One should understand that the RPKI model brings new, interesting challenges. The paper "On the Risk of Misbehaving RPKI Authorities" [31] explains how the RPKI model can impact the Internet if authorities don't behave as they are supposed to. Further analysis is certainly required on RPKI, which carries part of BGP security.
Most ISPs will not accept advertisements beyond a certain level of specificity (and in return, they do not announce prefixes they consider to be too specific). That acceptable specificity is decided for each peering between the two BGP peers. Some ISP communities have tried to document acceptable specificity. This document does not make any judgement on what the best approach is, it just notes that there are existing practices on the Internet and recommends that the reader refer to them. As an example, the RIPE community has documented that, at the time of writing of this document, IPv4 prefixes longer than /24 and IPv6 prefixes longer than /48 are generally neither announced nor accepted in the Internet [20] [21]. These values may change in the future.
A network SHOULD filter its own prefixes on peerings with all its peers (inbound direction). This prevents local traffic (from a local source to a local destination) from leaking over an external peering, in case someone else is announcing the prefix over the Internet. This also protects the infrastructure that may directly suffer if the backbone's prefix is suddenly preferred over the Internet.
In some cases, for example, multihoming scenarios, such filters SHOULD NOT be applied, as this would break the desired redundancy.
To an extent, such filters can also be configured on a network for the prefixes of its downstreams in order to protect them, too. Such filters must be defined with caution as they can break existing redundancy mechanisms. For example, when an operator has a multihomed customer, it should keep accepting the customer prefix from its peers and upstreams. This will make it possible for the customer to keep accessing its operator network (and other customers) via the Internet even if the BGP peering between the customer and the operator is down.
When a network is present on an IXP and peers with other IXP members over a common subnet (IXP LAN prefix), it SHOULD NOT accept more- specific prefixes for the IXP LAN prefix from any of its external BGP peers. Accepting these routes may create a black hole for connectivity to the IXP LAN.
If the IXP LAN prefix is accepted as an "exact match", care needs to be taken to prevent other routers in the network from sending IXP traffic towards the externally learned IXP LAN prefix (recursive route lookup pointing into the wrong direction). This can be achieved by preferring IGP routes over External BGP (EBGP), or by using "BGP next-hop-self" on all routes learned on that IXP.
If the IXP LAN prefix is accepted at all, it SHOULD only be accepted from the ASes that the IXP authorizes to announce it -- this will usually be automatically achieved by filtering announcements using the IRR database.
In order to have PMTUD working in the presence of loose uRPF, it is necessary that all the networks that may source traffic that could flow through the IXP (i.e., IXP members and their downstreams) have a route for the IXP LAN prefix. This is necessary as "packet too big" ICMP messages sent by IXP members' routers may be sourced using an address of the IXP LAN prefix. In the presence of loose uRPF, this ICMP packet is dropped if there is no route for the IXP LAN prefix or a less specific route covering IXP LAN prefix.
In that case, any IXP member SHOULD make sure it has a route for the IXP LAN prefix or a less specific prefix on all its routers and that it announces the IXP LAN prefix or the less specific route (up to a default route) to its downstreams. The announcements done for this purpose SHOULD pass IRR-generated filters described in Section 6.1.2.2.1 as well as "prefixes that are too specific" filters described in Section 6.1.3. The easiest way to implement this is for the IXP itself to take care of the origination of its prefix and advertise it to all IXP members through a BGP peering. Most likely, the BGP route servers would be used for this, and the IXP would send its entire prefix, which would be equal to or less specific than the IXP LAN prefix.
Appendix A gives an example of guidelines regarding IXP LAN prefix.
Typically, the 0.0.0.0/0 prefix is not intended to be accepted or advertised except in specific customer/provider configurations; general filtering outside of these is RECOMMENDED.
Typically, the ::/0 prefix is not intended to be accepted or advertised except in specific customer/provider configurations; general filtering outside of these is RECOMMENDED.
For networks that have the full Internet BGP table, some policies should be applied on each BGP peer for received and advertised routes. It is RECOMMENDED that each Autonomous System configures rules for advertised and received routes at all its borders, as this will protect the network and its peer even in case of misconfiguration. The most commonly used filtering policy is proposed in this section and uses prefix filters defined in Section 6.1.
There are basically two options -- the loose one where no check will be done against RIR allocations and the strict one where it will be verified that announcements strictly conform to what is declared in routing registries.
In this case, the following prefixes received from a BGP peer will be filtered:
o prefixes that are not globally routable (Section 6.1.1)
o prefixes not allocated by IANA (IPv6 only) (Section 6.1.2.1)
o routes that are too specific (Section 6.1.3)
o prefixes belonging to the local AS (Section 6.1.4)
o IXP LAN prefixes (Section 6.1.5)
o the default route (Section 6.1.6)
accurate (prefixes missing, wrong information, etc.). This varies across the registries and regions of the Internet. Before applying a strict policy, the reader SHOULD check the impact on the filter and make sure the solution is not worse than the problem.
Also, in case of script failure, each administrator may decide if all routes are accepted or rejected depending on routing policy. While accepting the routes during that time frame could break the BGP routing security, rejecting them might re-route too much traffic on transit peers, and could cause more harm than what a loose policy would have done.
In addition to this, network administrators could apply the following filters beforehand in case the routing registry that's used as the source of information by the script is not fully trusted:
o prefixes that are not globally routable (Section 6.1.1)
o routes that are too specific (Section 6.1.3)
o prefixes belonging to the local AS (Section 6.1.4)
o IXP LAN prefixes (Section 6.1.5)
o the default route (Section 6.1.6)
The configuration should ensure that only appropriate prefixes are sent. These can be, for example, prefixes belonging to both the network in question and its downstreams. This can be achieved by using BGP communities, AS paths, or both. Also, it may be desirable to add the following filters before any policy to avoid unwanted route announcements due to bad configuration:
o Prefixes that are not globally routable (Section 6.1.1)
o Routes that are too specific (Section 6.1.3)
o IXP LAN prefixes (Section 6.1.5)
o The default route (Section 6.1.6)
If it is possible to list the prefixes to be advertised, then just configuring the list of allowed prefixes and denying the rest is sufficient.
The inbound policy with end customers is pretty straightforward: only customer prefixes SHOULD be accepted, all others SHOULD be discarded. The list of accepted prefixes can be manually specified, after having verified that they are valid. This validation can be done with the appropriate IP address management authorities.
The same rules apply when the customer is a network connecting other customers (for example, a Tier 1 transit provider connecting service providers). An exception is when the customer network applies strict inbound/outbound prefix filtering, and there are too many prefixes announced by that network to list them in the router configuration. In that case, filters as in Section 6.2.1.1 can be applied.
The outbound policy with customers may vary according to the routes the customer wants to receive. In the simplest possible scenario, the customer may want to receive only the default route; this can be done easily by applying a filter with the default route only.
In case the customer wants to receive the full routing (if it is multihomed or if it wants to have a view of the Internet table), the following filters can be applied on the BGP peering:
o prefixes that are not globally routable (Section 6.1.1)
o routes that are too specific (Section 6.1.3)
o the default route (Section 6.1.6)
In some cases, the customer may desire to receive the default route in addition to the full BGP table. This can be done by the provider simply by removing the filter for the default route. As the default route may not be present in the routing table, network administrators may decide to originate it only for peerings where it has to be advertised.
If the full routing table is desired from the upstream, the prefix filtering to apply is the same as the one for peers Section 6.2.1.1 with the exception of the default route. Sometimes, the default route (in addition to the full BGP table) can be desired from an upstream provider. If the upstream provider is supposed to announce only the default route, a simple filter will be applied to accept only the default prefix and nothing else.
The filters to be applied would most likely not differ much from the ones applied for Internet peers (Section 6.2.1.2). However, different policies could be applied if a particular upstream should not provide transit to all the prefixes.
The leaf network will deploy the filters corresponding to the routes it is requesting from its upstream. If a default route is requested, a simple inbound filter can be applied to accept only the default route (Section 6.1.6). If the leaf network is not capable of listing the prefixes because there are too many (for example, if it requires the full Internet routing table), then it should configure the following filters to avoid receiving bad announcements from its upstream:
o prefixes not routable (Section 6.1.1)
o routes that are too specific (Section 6.1.3)
o prefixes belonging to local AS (Section 6.1.4)
o the default route (Section 6.1.6) depending on whether or not the route is requested
A leaf network will most likely have a very straightforward policy: it will only announce its local routes. It can also configure the prefix filters described in Section 6.2.1.2 to avoid announcing invalid routes to its upstream provider.
The BGP route flap dampening mechanism makes it possible to give penalties to routes each time they change in the BGP routing table. Initially, this mechanism was created to protect the entire Internet from multiple events that impact a single network. Studies have shown that implementations of BGP route flap dampening could cause more harm than benefit; therefore, in the past, the RIPE community has recommended against using BGP route flap dampening [19]. Later, studies were conducted to propose new route flap dampening thresholds in order to make the solution "usable"; see RFC 7196 [6] and [22] (in which RIPE reviewed its recommendations). This document RECOMMENDS following IETF and RIPE recommendations and using BGP route flap dampening with the adjusted configured thresholds.
It is RECOMMENDED to configure a limit on the number of routes to be accepted from a peer. The following rules are generally RECOMMENDED:
o From peers, it is RECOMMENDED to have a limit lower than the number of routes in the Internet. This will shut down the BGP peering if the peer suddenly advertises the full table. Network administrators can also configure different limits for each peer, according to the number of routes they are supposed to advertise, plus some headroom to permit growth.
o From upstreams that provide full routing, it is RECOMMENDED to have a limit higher than the number of routes in the Internet. A limit is still useful in order to protect the network (and in particular, the routers' memory) if too many routes are sent by the upstream. The limit should be chosen according to the number of routes that can actually be handled by routers.
It is important to regularly review the limits that are configured as the Internet can quickly change over time. Some vendors propose mechanisms to have two thresholds: while the higher number specified will shut down the peering, the first threshold will only trigger a log and can be used to passively adjust limits based on observations made on the network.
This section lists the RECOMMENDED practices when processing BGP AS paths.
o Network administrators SHOULD accept from customers only 2-byte or 4-byte AS paths containing ASNs belonging to (or authorized to transit through) the customer. If network administrators cannot build and generate filtering expressions to implement this, they SHOULD consider accepting only path lengths relevant to the type of customer they have (as in, if these customers are a leaf or have customers of their own) and SHOULD try to discourage excessive prepending in such paths. This loose policy could be
combined with filters for specific 2-byte or 4-byte AS paths that must not be accepted if advertised by the customer, such as upstream transit providers or peer ASNs.
o Network administrators SHOULD NOT accept prefixes with private AS numbers in the AS path unless the prefixes are from customers. An exception could occur when an upstream is offering some particular service like black-hole origination based on a private AS number: in that case, prefixes SHOULD be accepted. Customers should be informed by their upstream in order to put in place ad hoc policy to use such services.
o Network administrators SHOULD NOT accept prefixes when the first AS number in the AS path is not the one of the peer's unless the peering is done toward a BGP route server [17] (for example, on an IXP) with transparent AS path handling. In that case, this verification needs to be deactivated, as the first AS number will be the one of an IXP member, whereas the peer AS number will be the one of the BGP route server.
o Network administrators SHOULD NOT advertise prefixes with a nonempty AS path unless they intend to provide transit for these prefixes.
o Network administrators SHOULD NOT advertise prefixes with upstream AS numbers in the AS path to their peering AS unless they intend to provide transit for these prefixes.
o Private AS numbers are conventionally used in contexts that are "private" and SHOULD NOT be used in advertisements to BGP peers that are not party to such private arrangements, and they SHOULD be stripped when received from BGP peers that are not party to such private arrangements.
o Network administrators SHOULD NOT override BGP's default behavior, i.e., they should not accept their own AS number in the AS path. When considering an exception, the impact (which may be severe on routing) should be studied carefully.
AS path filtering should be further analyzed when ASN renumbering is done. Such an operation is common, and mechanisms exist to allow smooth ASN migration [28]. The usual migration technique, local to a router, consists in modifying the AS path so it is presented to a peer with the previous ASN, as if no renumbering was done. This makes it possible to change the ASN of a router without reconfiguring all EBGP peers at the same time (as that operation would require synchronization with all peers attached to that router). During this renumbering operation, the rules described above may be adjusted.
If peering on a shared network, like an IXP, BGP can advertise prefixes with a third-party next hop, thus directing packets not to the peer announcing the prefix but somewhere else.
This is a desirable property for BGP route-server setups [17], where the route server will relay routing information but has neither the capacity nor the desire to receive the actual data packets. So, the BGP route server will announce prefixes with a next-hop setting pointing to the router that originally announced the prefix to the route server.
In direct peerings between ISPs, this is undesirable, as one of the peers could trick the other one into sending packets into a black hole (unreachable next hop) or to an unsuspecting third party who would then have to carry the traffic. Especially for black-holing, the root cause of the problem is hard to see without inspecting BGP prefixes at the receiving router of the IXP.
Therefore, an inbound route policy SHOULD be applied on IXP peerings in order to set the next hop for accepted prefixes to the BGP peer IP address (belonging to the IXP LAN) that sent the prefix (which is what "next-hop-self" would enforce on the sending side).
This policy SHOULD NOT be used on route-server peerings or on peerings where network administrators intentionally permit the other side to send third-party next hops.
This policy also SHOULD be adjusted if the best practice of Remote Triggered Black Holing (aka RTBH as described in RFC 6666 [13]) is implemented. In that case, network administrators would apply a well-known BGP next hop for routes they want to filter (if an Internet threat is observed from/to this route, for example). This well-known next hop will be statically routed to a null interface. In combination with a unicast RPF check, this will discard traffic from and toward this prefix. Peers can exchange information about black holes using, for example, particular BGP communities. Network administrators could propagate black-hole information to their peers using an agreed-upon BGP community: when receiving a route with that community, a configured policy could change the next hop in order to create the black hole.
Optionally, we can consider the following rules on BGP AS paths:
o Network administrators SHOULD scrub inbound communities with their number in the high-order bits, and allow only those communities that customers/peers can use as a signaling mechanism
o Networks administrators SHOULD NOT remove other communities applied on received routes (communities not removed after application of the previous statement). In particular, they SHOULD keep original communities when they apply a community. Customers might need them to communicate with upstream providers. In particular, network administrators SHOULD NOT (generally) remove the no-export community, as it is usually announced by their peer for a certain purpose.
This document is entirely about BGP operational security. It depicts best practices that one should adopt to secure BGP infrastructure: protecting BGP router and BGP sessions, adopting consistent BGP prefix and AS path filters, and configuring other options to secure the BGP network.
This document does not aim to describe existing BGP implementations, their potential vulnerabilities, or ways they handle errors. It does not detail how protection could be enforced against attack techniques using crafted packets.
[1]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[2]
Rekhter,, Y., Li,, T., and S. Hares,, "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, January 2006, <http://www.rfc-editor.org/info/rfc4271>.
[3]
Gill, V., Heasley, J., Meyer, D., Savola,, P., and C. Pignataro, "The Generalized TTL Security Mechanism (GTSM)", RFC 5082, October 2007, <http://www.rfc-editor.org/info/rfc5082>.
[4]
Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, June 2010, <http://www.rfc-editor.org/info/rfc5925>.
[5]
Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R. Austein, "BGP Prefix Origin Validation", RFC 6811, January 2013, <http://www.rfc-editor.org/info/rfc6811>.
[6]
Pelsser, C., Bush, R., Patel, K., Mohapatra, P., and O. Maennel, "Making Route Flap Damping Usable", RFC 7196, May 2014, <http://www.rfc-editor.org/info/rfc7196>.
[7]
Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, August 1998, <http://www.rfc-editor.org/info/rfc2385>.
[8]
Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", RFC 2827, May 2000, <http://www.rfc-editor.org/info/rfc2827>.
[9]
Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", RFC 3704, March 2004, <http://www.rfc-editor.org/info/rfc3704>.
[10]
Blunk, L., Damas, J., Parent, F., and A. Robachevsky, "Routing Policy Specification Language next generation (RPSLng)", RFC 4012, March 2005, <http://www.rfc-editor.org/info/rfc4012>.
[11]
Dugal, D., Pignataro, C., and R. Dunn, "Protecting the Router Control Plane", RFC 6192, March 2011, <http://www.rfc-editor.org/info/rfc6192>.
[12]
Lepinski, M. and S. Kent, "An Infrastructure to Support Secure Internet Routing", RFC 6480, February 2012, <http://www.rfc-editor.org/info/rfc6480>.
[13]
Hilliard, N. and D. Freedman, "A Discard Prefix for IPv6", RFC 6666, August 2012, <http://www.rfc-editor.org/info/rfc6666>.
[14]
Jethanandani, M., Patel, K., and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, May 2013, <http://www.rfc-editor.org/info/rfc6952>.
[15]
Bush, R., "Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI)", RFC 7115, January 2014, <http://www.rfc-editor.org/info/rfc7115>.
[16]
Kent, S. and A. Chi, "Threat Model for BGP Path Security", RFC 7132, February 2014, <http://www.rfc-editor.org/info/rfc7132>.
[17]
Jasinska, E., Hilliard, N., Raszuk, R., and N. Bakker, "Internet Exchange Route Server", Work in Progress, draft-ietf-idr-ix-bgp-route-server-06, December 2014.
[18]
Karrenberg, D., "RIPE-351 - De-Bogonising New Address Blocks", October 2005.
[19]
Smith, P. and C. Panigl, "RIPE-378 - RIPE Routing Working Group Recommendations On Route-flap Damping", May 2006.
[20]
Smith, P., Evans, R., and M. Hughes, "RIPE-399 - RIPE Routing Working Group Recommendations on Route Aggregation", December 2006.
[21]
Smith, P. and R. Evans, "RIPE-532 - RIPE Routing Working Group Recommendations on IPv6 Route Aggregation", November 2011.
[22]
Smith, P., Bush, R., Kuhne, M., Pelsser, C., Maennel, O., Patel, K., Mohapatra, P., and R. Evans, "RIPE-580 - RIPE Routing Working Group Recommendations On Route-flap Damping", January 2013.
[23]
IANA, "IANA IPv4 Special-Purpose Address Registry", <http://www.iana.org/assignments/iana-ipv4-special-registry>.
[24]
IANA, "IANA IPv6 Special-Purpose Address Registry", <http://www.iana.org/assignments/iana-ipv6-special-registry>.
[25]
IANA, "IANA IPv4 Address Space Registry", <http://www.iana.org/assignments/ipv4-address-space>.
[26]
IANA, "Internet Protocol Version 6 Address Space", <http://www.iana.org/assignments/ipv6-address-space>.
[27]
Merit Network Inc., "Merit RADb", <http://www.radb.net>.
[28]
George, W. and S. Amante, "Autonomous System (AS) Migration Features and Their Effects on the BGP AS_PATH Attribute", Work in Progress, draft-ga-idr-as-migration-03, January 2014.
[29]
Bellovin, S., Bush, R., and D. Ward, "Security Requirements for BGP Path Validation", RFC 7353, August 2014, <http://www.rfc-editor.org/info/rfc7353>.
[30]
"IRRToolSet project page", <http://irrtoolset.isc.org>.
[31]
Cooper, D., Heilman, E., Brogle, K., Reyzin, L., and S. Goldberg, "On the Risk of Misbehaving RPKI Authorities", <http://www.cs.bu.edu/~goldbe/papers/hotRPKI.pdf>.
An IXP in the RIPE region is allocated an IPv4 /22 prefix by RIPE NCC (X.Y.0.0/22 in this example) and uses a /23 of this /22 for the IXP LAN (let say X.Y.0.0/23). This IXP LAN prefix is the one used by IXP members to configure EBGP peerings. The IXP could also be allocated an AS number (AS64496 in our example).
Any IXP member SHOULD make sure it filters prefixes more specific than X.Y.0.0/23 from all its EBGP peers. If it received X.Y.0.0/24 or X.Y.1.0/24 this could seriously impact its routing.
The IXP SHOULD originate X.Y.0.0/22 and advertise it to its members through an EBGP peering (most likely from its BGP route servers, configured with AS64496).
The IXP members SHOULD accept the IXP prefix only if it passes the IRR generated filters (see Section 6.1.2.2.1)
IXP members SHOULD then advertise X.Y.0.0/22 prefix to their downstreams. This announce would pass IRR based filters as it is originated by the IXP.
The authors would like to thank the following people for their comments and support: Marc Blanchet, Ron Bonica, Randy Bush, David Freedman, Wesley George, Daniel Ginsburg, David Groves, Mike Hugues, Joel Jaeggli, Tim Kleefass, Warren Kumari, Jacques Latour, Lionel Morand, Jerome Nicolle, Hagen Paul Pfeifer, Thomas Pinaud, Carlos Pignataro, Jean Rebiffe, Donald Smith, Kotikalapudi Sriram, Matjaz Straus, Tony Tauber, Gunter Van de Velde, Sebastian Wiesinger, and Matsuzaki Yoshinobu.
The authors would like to thank once again Gunter Van de Velde for presenting the document at several IETF meetings in various working groups, indeed helping dissemination of this document and gathering of precious feedback.
Authors' Addresses
EMail: jerduran@cisco.com
EMail: ip@ipspace.net
EMail: gert@space.net
7610 - DHCPv6-Shield: Protecting against Rogue DHCPv6 Servers
Internet Engineering Task Force (IETF)
Request for Comments: 7610
BCP: 199
Category: Best Current Practice
ISSN: 2070-1721
F. Gont
SI6 Networks / UTN-FRH
W. Liu
Huawei Technologies
G. Van de Velde
Alcatel-Lucent
August 2015
This document specifies a mechanism for protecting hosts connected to a switched network against rogue DHCPv6 servers. It is based on DHCPv6 packet filtering at the layer 2 device at which the packets are received. A similar mechanism has been widely deployed in IPv4 networks ('DHCP snooping'); hence, it is desirable that similar functionality be provided for IPv6 networks. This document specifies a Best Current Practice for the implementation of DHCPv6-Shield.
This memo documents an Internet Best Current Practice.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7610.
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document specifies DHCPv6-Shield, a mechanism for protecting hosts connected to a switched network against rogue DHCPv6 servers [RFC3315]. The basic concept behind DHCPv6-Shield is that a layer 2 device filters DHCPv6 messages intended for DHCPv6 clients (henceforth, "DHCPv6-server messages"), according to a number of different criteria. The most basic filtering criterion is that DHCPv6-server messages are discarded by the layer 2 device unless they are received on specific ports of the layer 2 device.
Before the DHCPv6-Shield device is deployed, the administrator specifies the layer 2 port(s) on which DHCPv6-server messages are to be allowed. Only those ports to which a DHCPv6 server or relay is to be connected should be specified as such. Once deployed, the DHCPv6-Shield device inspects received packets and allows (i.e., passes) DHCPv6-server messages only if they are received on layer 2 ports that have been explicitly configured for such purpose.
DHCPv6-Shield is analogous to the Router Advertisement Guard (RA-Guard) mechanism [RFC6104] [RFC6105] [RFC7113], intended for protection against rogue Router Advertisement [RFC4861] messages.
We note that DHCPv6-Shield mitigates only DHCPv6-based attacks against hosts. Attack vectors based on other messages meant for network configuration (such as ICMPv6 Router Advertisements) are not addressed by DHCPv6-Shield itself. In a similar vein, DHCPv6-Shield does not mitigate attacks against DHCPv6 servers (e.g., Denial of Service).
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
DHCPv6-Shield:
The set of filtering rules specified in this document, meant to mitigate attacks that employ DHCPv6-server packets.
DHCPv6-Shield device:
A layer 2 device (typically a layer 2 switch) that enforces the filtering policy specified in this document.
For the purposes of this document, the terms "IPv6 Extension Header", "First Fragment", "IPv6 Header Chain", and "Upper-Layer Header" are used as specified in [RFC7112]:
IPv6 Extension Header:
IPv6 Extension Headers are defined in Section 4 of [RFC2460]. As a result of [RFC7045], [IANA-PROTO] provides a list of assigned Internet Protocol Numbers and designates which of those protocol numbers also represent IPv6 Extension Headers.
First Fragment:
An IPv6 fragment with a Fragment Offset equal to 0.
IPv6 Header Chain:
The IPv6 Header Chain contains an initial IPv6 header, zero or more IPv6 Extension Headers, and optionally, a single Upper-Layer Header. If an Upper-Layer Header is present, it terminates the IPv6 Header Chain; otherwise, the "No Next Header" value (Next Header = 59) terminates it.
The first member of the IPv6 Header Chain is always an IPv6 header. For a subsequent header to qualify as a member of the IPv6 Header Chain, it must be referenced by the "Next Header" field of the previous member of the IPv6 Header Chain. However, if a second IPv6 header appears in the IPv6 Header Chain, as is the case when IPv6 is tunneled over IPv6, the second IPv6 header is considered to be an Upper-Layer Header and terminates the IPv6 Header Chain. Likewise, if an Encapsulating Security Payload (ESP) header appears in the IPv6 Header Chain, it is considered to be an Upper-Layer Header, and it terminates the IPv6 Header Chain.
Upper-Layer Header:
In the general case, the Upper-Layer Header is the first member of the Header Chain that is neither an IPv6 header nor an IPv6 Extension Header. However, if either an ESP header or a second IPv6 header occurs in the IPv6 Header Chain, it is considered to be an Upper-Layer Header, and it terminates the IPv6 Header Chain.
Neither the upper-layer payload nor any protocol data following the upper-layer payload is considered to be part of the IPv6 Header Chain. In a simple example, if the Upper-Layer Header is a TCP header, the TCP payload is not part of the IPv6 Header Chain. In a more complex example, if the Upper-Layer Header is an ESP header, neither the payload data nor any of the fields that follow the payload data in the ESP header are part of the IPv6 Header Chain.
Before being deployed for production, the DHCPv6-Shield device is explicitly configured with respect to which layer 2 ports are allowed to receive DHCPv6 packets destined to DHCPv6 clients (i.e., DHCPv6-server messages). Only those layer 2 ports explicitly configured for such purpose are allowed to receive DHCPv6 packets to pass to DHCPv6 clients.
Following are the filtering rules that are enforced as part of a DHCPv6-Shield implementation on those ports that are not allowed to receive DHCPv6 packets to DHCPv6 clients:
1. DHCPv6-Shield implementations MUST parse the entire IPv6 Header Chain present in the packet to identify whether or not it is a DHCPv6 packet meant for a DHCPv6 client (i.e., a DHCPv6-server message).
RATIONALE: DHCPv6-Shield implementations MUST NOT enforce a limit on the number of bytes they can inspect (starting from the beginning of the IPv6 packet), since this could introduce false negatives: DHCP6-server packets received on ports not allowed to receive such packets could be allowed simply because the DHCPv6-Shield device does not parse the entire IPv6 Header Chain present in the packet.
2. When parsing the IPv6 Header Chain, if the packet is a First Fragment (i.e., a packet containing a Fragment Header with the Fragment Offset set to 0) and it fails to contain the entire IPv6 Header Chain (i.e., all the headers starting from the IPv6 header up to, and including, the Upper-Layer Header), DHCPv6-Shield MUST drop the packet and ought to log the packet drop event in an implementation-specific manner as a security fault.
RATIONALE: Packets that fail to contain the entire IPv6 Header Chain could otherwise be leveraged for circumventing DHCPv6-Shield. [RFC7112] requires that the First Fragment (i.e., the fragment with the Fragment Offset set to 0) contain the entire IPv6 Header Chain. [RFC7112] also allows intermediate systems such as routers to drop packets that fail to comply with this requirement.
NOTE: This rule should only be applied to IPv6 fragments with a Fragment Offset of 0 (non-First Fragments can be safely passed, since they will never reassemble into a complete datagram if they are part of a DHCPv6 packet meant for a DHCPv6 client received on a port where such packets are not allowed).
3. DHCPv6-Shield MUST provide a configuration knob that controls whether or not packets with unrecognized Next Header values are dropped; this configuration knob MUST default to "drop". When parsing the IPv6 Header Chain, if the packet contains an unrecognized Next Header value and the configuration knob is configured to "drop", DHCPv6-Shield MUST drop the packet and ought to log the packet drop event in an implementation-specific manner as a security fault.
RATIONALE: An unrecognized Next Header value could possibly identify an IPv6 Extension Header and thus be leveraged to conceal a DHCPv6-server packet (since there is no way for DHCPv6-Shield to parse past unrecognized Next Header values [IPV6-UEH]). [RFC7045] requires that nodes be configurable with respect to whether or not packets with unrecognized headers are forwarded and allows the default behavior to be that such packets be dropped.
4. When parsing the IPv6 Header Chain, if the packet is identified to be a DHCPv6 packet meant for a DHCPv6 client, DHCPv6-Shield MUST drop the packet and SHOULD log the packet drop event in an implementation-specific manner as a security alert.
RATIONALE: Ultimately, the goal of DHCPv6-Shield is to drop DHCPv6 packets destined to DHCPv6 clients (i.e., DHCPv6-server messages) that are received on ports that have not been explicitly configured to allow the receipt of such packets.
5. In all other cases, DHCPv6-Shield MUST pass the packet as usual.
NOTE: For the purpose of enforcing the DHCPv6-Shield filtering policy, an ESP header [RFC4303] should be considered to be an "upper-layer protocol" (that is, it should be considered the last header in the IPv6 Header Chain). This means that packets employing ESP would be passed by the DHCPv6-Shield device to the intended destination. If the destination host does not have a security association with the sender of the aforementioned IPv6 packet, the packet would be dropped. Otherwise, if the packet is considered valid by the IPsec implementation at the receiving host and encapsulates a DHCPv6 message, what to do with such a packet is up to the receiving host.
The rules above indicate that if a packet is dropped due to this filtering policy, the packet drop event should be logged in an implementation-specific manner as a security fault. It is useful for the logging mechanism to include a per-port drop counter dedicated to DHCPv6-Shield packet drops.
In order to protect current end-node IPv6 implementations, Rule #2 has been defined such that the default is for packets that cannot be positively identified as not being DHCPv6-server packets (because the packet is a fragment that fails to include the entire IPv6 Header Chain) to be dropped. This means that, at least in theory, DHCPv6-Shield could result in false-positive blocking of some legitimate (non-DHCPv6-server) packets. However, as noted in [RFC7112], IPv6 packets that fail to include the entire IPv6 Header Chain are virtually impossible to police with stateless filters and firewalls; hence, they are unlikely to survive in real networks. [RFC7112] requires that hosts employing fragmentation include the entire IPv6 Header Chain in the First Fragment (the fragment with the Fragment Offset set to 0), thus eliminating the aforementioned false positives.
The aforementioned filtering rules implicitly handle the case of fragmented packets: if the DHCPv6-Shield device fails to identify the upper-layer protocol as a result of the use of fragmentation, the corresponding packets would be dropped.
Finally, we note that IPv6 implementations that allow overlapping fragments (i.e., that do not comply with [RFC5722]) might still be subject of DHCPv6-based attacks. However, a recent assessment of IPv6 implementations [SI6-FRAG] with respect to their fragment reassembly policy seems to indicate that most current implementations comply with [RFC5722].
The recommendations in this document represent the ideal behavior of a DHCPv6-Shield device. However, in order to implement DHCPv6-Shield on the fast path, it may be necessary to limit the depth into the packet that can be scanned before giving up. In circumstances where there is such a limitation, it is recommended that implementations drop packets after attempting to find a protocol header up to that limit, whatever it is. Ideally, such devices should be configurable with a list of protocol header identifiers so that if new transport protocols are standardized after the device is released, they can be added to the list of protocol header types that the device recognizes. Since any protocol header that is not a UDP header would be passed by the DHCPv6-Shield algorithm, this would allow such devices to avoid blocking the use of new transport protocols. When an implementation must stop searching for recognizable header types in a packet due to such limitations, the device SHOULD be configurable to either pass or drop that packet.
The mechanism specified in this document can be used to mitigate DHCPv6-based attacks against hosts. Attack vectors based on other messages meant for network configuration (such as ICMPv6 Router Advertisements) are out of the scope of this document. Additionally, the mechanism specified in this document does not mitigate attacks against DHCPv6 servers (e.g., Denial of Service).
If deployed in a layer 2 domain with several cascading switches, there will be an ingress port on the host's local switch that will need to be enabled for receiving DHCPv6-server messages. However, this local switch will be reliant on the upstream devices filtering out rogue DHCPv6-server messages, as the local switch has no way of determining which upstream DHCP-server messages are valid. Therefore, in order to be effective, DHCPv6-Shield should be deployed and enabled on all layer 2 switches of a given layer 2 domain.
As noted in Section 5, IPv6 implementations that allow overlapping fragments (i.e., that do not comply with [RFC5722]) might still be subject to DHCPv6-based attacks. However, most current implementations seem to comply with [RFC5722] and hence forbid IPv6 overlapping fragments.
We note that if an attacker sends a fragmented DHCPv6 packet on a port not allowed to receive such packets, the First Fragment would be dropped, and the rest of the fragments would be passed. This means that the victim node would tie memory buffers for the aforementioned fragments, which would never reassemble into a complete datagram. If a large number of such packets were sent by an attacker, and the victim node failed to implement proper resource management for the fragment reassembly buffer, this could lead to a Denial of Service (DoS). However, this does not really introduce a new attack vector, since an attacker could always perform the same attack by sending a forged fragmented datagram in which at least one of the fragments is missing. [CPNI-IPv6] discusses some resource management strategies that could be implemented for the fragment reassembly buffer.
Additionally, we note that the security of a site employing DHCPv6-Shield could be further improved by deploying [RFC7513] to mitigate IPv6 address spoofing attacks.
Finally, we note that other mechanisms for mitigating attacks based on DHCPv6-server messages are available that have different deployment considerations. For example, [SECURE-DHCPV6] allows for authentication of DHCPv6-server packets if the IPv6 addresses of the DHCPv6 servers can be pre-configured at the client nodes.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[RFC2460]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, December 1998, <http://www.rfc-editor.org/info/rfc2460>.
[RFC3315]
Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July 2003, <http://www.rfc-editor.org/info/rfc3315>.
[RFC4303]
Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005, <http://www.rfc-editor.org/info/rfc4303>.
[RFC4861]
Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, DOI 10.17487/RFC4861, September 2007, <http://www.rfc-editor.org/info/rfc4861>.
[RFC5722]
Krishnan, S., "Handling of Overlapping IPv6 Fragments", RFC 5722, DOI 10.17487/RFC5722, December 2009, <http://www.rfc-editor.org/info/rfc5722>.
[RFC7045]
Carpenter, B. and S. Jiang, "Transmission and Processing of IPv6 Extension Headers", RFC 7045, DOI 10.17487/RFC7045, December 2013, <http://www.rfc-editor.org/info/rfc7045>.
[RFC7112]
Gont, F., Manral, V., and R. Bonica, "Implications of Oversized IPv6 Header Chains", RFC 7112, DOI 10.17487/RFC7112, January 2014, <http://www.rfc-editor.org/info/rfc7112>.
[CPNI-IPv6]
Gont, F., "Security Assessment of the Internet Protocol version 6 (IPv6)", UK Centre for the Protection of National Infrastructure, (available on request).
[IANA-PROTO]
IANA, "Protocol Numbers", <http://www.iana.org/assignments/protocol-numbers>.
[IPV6-UEH]
Gont, F., Liu, W., Krishnan, S., and H. Pfeifer, "IPv6 Universal Extension Header", Work in Progress, draft-gont-6man-rfc6564bis-00, April 2014.
[RFC6104]
Chown, T. and S. Venaas, "Rogue IPv6 Router Advertisement Problem Statement", RFC 6104, DOI 10.17487/RFC6104, February 2011, <http://www.rfc-editor.org/info/rfc6104>.
[RFC6105]
Levy-Abegnoli, E., Van de Velde, G., Popoviciu, C., and J. Mohacsi, "IPv6 Router Advertisement Guard", RFC 6105, DOI 10.17487/RFC6105, February 2011, <http://www.rfc-editor.org/info/rfc6105>.
[RFC7113]
Gont, F., "Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard)", RFC 7113, DOI 10.17487/RFC7113, February 2014, <http://www.rfc-editor.org/info/rfc7113>.
[RFC7513]
Bi, J., Wu, J., Yao, G., and F. Baker, "Source Address Validation Improvement (SAVI) Solution for DHCP", RFC 7513, DOI 10.17487/RFC7513, May 2015, <http://www.rfc-editor.org/info/rfc7513>.
[SECURE-DHCPV6]
Jiang, S. and S. Shen, "Secure DHCPv6 Using CGAs", Work in Progress, draft-ietf-dhc-secure-dhcpv6-07, September 2012.
[SI6-FRAG]
SI6 Networks, "IPv6 NIDS evasion and improvements in IPv6 fragmentation/reassembly", 2012, <http://blog.si6networks.com/2012/02/ ipv6-nids-evasion-and-improvements-in.html>.
The authors would like to thank Mike Heard, who provided detailed feedback on earlier draft versions of this document and helped a lot in producing a technically sound document throughout the whole publication process.
The authors would like to thank (in alphabetical order) Ben Campbell, Jean-Michel Combes, Sheng Jiang, Ted Lemon, Pete Resnick, Carsten Schmoll, Juergen Schoenwaelder, Robert Sleigh, Donald Smith, Mark Smith, Hannes Tschofenig, Eric Vyncke, and Qin Wu for providing valuable comments on earlier draft versions of this document.
Part of Section 3 of this document was borrowed from [RFC7112], authored by Fernando Gont, Vishwas Manral, and Ron Bonica.
This document is heavily based on [RFC7113], authored by Fernando Gont. Thus, the authors would like to thank the following individuals for providing valuable comments on [RFC7113]: Ran Atkinson, Karl Auer, Robert Downie, Washam Fan, David Farmer, Mike Heard, Marc Heuse, Nick Hilliard, Ray Hunter, Joel Jaeggli, Simon Perreault, Arturo Servin, Gunter Van de Velde, James Woodyatt, and Bjoern A. Zeeb.
The authors would like to thank Joel Jaeggli for his advice and guidance throughout the IETF process.
Fernando Gont would like to thank Diego Armando Maradona for his magic and inspiration.
Authors' Addresses
Email: liushucheng@huawei.com
7707 - Network Reconnaissance in IPv6 Networks
Internet Engineering Task Force (IETF)
Request for Comments: 7707
Obsoletes: 5157
Category: Informational
ISSN: 2070-1721
F. Gont
Huawei Technologies
T. Chown
Jisc
March 2016
IPv6 offers a much larger address space than that of its IPv4 counterpart. An IPv6 subnet of size /64 can (in theory) accommodate approximately 1.844 * 10^19 hosts, thus resulting in a much lower host density (#hosts/#addresses) than is typical in IPv4 networks, where a site typically has 65,000 or fewer unique addresses. As a result, it is widely assumed that it would take a tremendous effort to perform address-scanning attacks against IPv6 networks; therefore, IPv6 address-scanning attacks have been considered unfeasible. This document formally obsoletes RFC 5157, which first discussed this assumption, by providing further analysis on how traditional address- scanning techniques apply to IPv6 networks and exploring some additional techniques that can be employed for IPv6 network reconnaissance.
This document is not an Internet Standards Track specification; it is published for informational purposes.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7707.
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The main driver for IPv6 [RFC2460] deployment is its larger address space [CPNI-IPv6]. This larger address space not only allows for an increased number of connected devices but also introduces a number of subtle changes in several aspects of the resulting networks. One of these changes is the reduced host density (the number of hosts divided by the number of addresses) of typical IPv6 subnetworks, when compared to their IPv4 counterparts. [RFC5157] describes how this significantly lower IPv6 host density is likely to make classic network address-scanning attacks less feasible, since even by applying various heuristics, the address space to be scanned remains very large. RFC 5157 goes on to describe some alternative methods for attackers to glean active IPv6 addresses and provides some guidance for administrators and implementors, e.g., not using sequential addresses with DHCPv6.
With the benefit of more than five years of additional IPv6 deployment experience, this document formally obsoletes RFC 5157. It emphasizes that while address-scanning attacks are less feasible, they may, with appropriate heuristics, remain possible. At the time that RFC 5157 was written, observed address-scanning attacks were typically across ports on the addresses of discovered servers; since then, evidence that some classic address scanning is occurring is being witnessed. This text thus updates the analysis on the feasibility of address-scanning attacks in IPv6 networks, and it explores a number of additional techniques that can be employed for IPv6 network reconnaissance. Practical examples and guidance are also included in the appendices.
On one hand, raising awareness about IPv6 network reconnaissance techniques may allow (in some cases) network and security administrators to prevent or detect such attempts. On the other hand, network reconnaissance is essential for the so-called "penetration tests" typically performed to assess the security of production networks. As a result, we believe the benefits of a thorough discussion of IPv6 network reconnaissance are twofold.
Section 4 analyzes the feasibility of address-scanning attacks (e.g., ping sweeps) in IPv6 networks and explores a number of possible improvements to such techniques. Appendix A describes how the aforementioned analysis can be leveraged to produce address-scanning tools (e.g., for penetration testing purposes). Finally, the rest of this document discusses a number of miscellaneous techniques that could be leveraged for IPv6 network reconnaissance.
Throughout this document, we consider that bits are numbered from left to right, starting at 0, and that bytes are numbered from left to right, starting at 0.
3. Requirements for the Applicability of Network Reconnaissance Techniques
Throughout this document, a number of network reconnaissance techniques are discussed. Each of these techniques has different requirements on the side of the practitioner, with respect to whether they require local access to the target network and whether they require login access (or similar access credentials) to the system on which the technique is applied.
The following table tries to summarize the aforementioned requirements and serves as a cross index to the corresponding sections.
Table 1: Requirements for the Applicability of
Network Reconnaissance Techniques
This section discusses how traditional address-scanning techniques (e.g., "ping sweeps") apply to IPv6 networks. Section 4.1 provides an essential analysis of how address configuration is performed in IPv6, identifying patterns in IPv6 addresses that can be leveraged to reduce the IPv6 address search space when performing IPv6 address- scanning attacks. Section 4.2 discusses IPv6 address scanning of remote networks. Section 4.3 discusses IPv6 address scanning of local networks. Section 4.4 discusses existing IPv6 address-scanning tools. Section 4.5 provides advice on how to mitigate IPv6 address- scanning attacks. Finally, Appendix A discusses how the insights obtained in the following subsections can be incorporated into a fully fledged IPv6 address-scanning tool.
IPv6 incorporates two automatic address-configuration mechanisms: Stateless Address Autoconfiguration (SLAAC) [RFC4862] and Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Support for SLAAC for automatic address configuration is mandatory, while support for DHCPv6 is optional -- however, most current versions of general- purpose operating systems support both. In addition to automatic address configuration, hosts, typically servers, may employ manual configuration, in which all the necessary information is manually entered by the host or network administrator into configuration files at the host.
The following subsections describe each of the possible configuration mechanisms/approaches in more detail.
The basic idea behind SLAAC is that every host joining a network will send a multicasted solicitation requesting network configuration information, and local routers will respond to the request providing the necessary information. SLAAC employs two different ICMPv6 message types: ICMPv6 Router Solicitation and ICMPv6 Router Advertisement messages. Router Solicitation messages are employed by hosts to query local routers for configuration information, while Router Advertisement messages are employed by local routers to convey the requested information.
Router Advertisement messages convey a plethora of network configuration information, including the IPv6 prefix that should be used for configuring IPv6 addresses on the local network. For each local prefix learned from a Router Advertisement message, an IPv6 address is configured by appending a locally generated Interface Identifier (IID) to the corresponding IPv6 prefix.
The following subsections describe currently deployed policies for generating the IIDs used with SLAAC.
The traditional SLAAC IIDs are based on the link-layer address of the corresponding network interface card. For example, in the case of Ethernet addresses, the IIDs are constructed as follows:
1. The "Universal" bit (bit 6, from left to right) of the address is set to 1.
2. The word 0xfffe is inserted between the Organizationally Unique Identifier (OUI) and the rest of the Ethernet address.
For example, the Media Access Control (MAC) address 00:1b:38:83:88:3c would lead to the IID 021b:38ff:fe83:883c.
A number of considerations should be made about these identifiers. Firstly, one 16-bit word (bytes 3-4) of the resulting address always has a fixed value (0xfffe), thus reducing the search space for the IID. Secondly, the high-order three bytes of the IID correspond to the OUI of the network interface card vendor. Since not all possible OUIs have been assigned, this further reduces the IID search space. Furthermore, of the assigned OUIs, many could be regarded as corresponding to legacy devices and thus are unlikely to be used for Internet-connected IPv6-enabled systems, yet further reducing the IID search space. Finally, in some scenarios, it could be possible to infer the OUI in use by the target network devices, yet narrowing down the possible IIDs even more.
NOTE:
For example, an organization known for being provisioned by vendor X is likely to have most of the nodes in its organizational network with OUIs corresponding to vendor X.
These considerations mean that in some scenarios, the original IID search space of 64 bits may be effectively reduced to 2^24 or n * 2^24 (where "n" is the number of different OUIs assigned to the target vendor).
Furthermore, if just one host address is detected or known within a subnet, it is not unlikely that, if systems were ordered in a batch, they may have sequential MAC addresses. Additionally, given a MAC address observed in one subnet, sequential or nearby MAC addresses may be seen in other subnets in the same site.
NOTE:
[RFC7136] notes that all bits of an IID should be treated as "opaque" bits. Furthermore, [DEFAULT-IIDS] is currently in the process of changing the default IID generation scheme to align with [RFC7217] (as described below in Section 4.1.1.5), such that IIDs are semantically opaque and do not follow any patterns. Therefore, the traditional IIDs based on link-layer addresses are expected to become less common over time.
IIDs resulting from virtualization technologies can be considered a specific subcase of IIDs embedding IEEE identifiers (please see Section 4.1.1.1): they employ IEEE identifiers, but part of the IID has specific patterns. The following subsections describe IIDs of some popular virtualization technologies.
All automatically generated MAC addresses in VirtualBox virtual machines employ the OUI 08:00:27 [VBox2011]. This means that all addresses resulting from traditional SLAAC will have an IID of the form a00:27ff:feXX:XXXX, thus effectively reducing the IID search space from 64 bits to 24 bits.
The VMware ESX server (versions 1.0 to 2.5) provides yet a more interesting example. Automatically generated MAC addresses have the following pattern [vmesx2011]:
1. The OUI is set to 00:05:69.
2. The next 16 bits of the MAC address are set to the same value as the last 16 bits of the console operating system's primary IPv4 address.
3. The final 8 bits of the MAC address are set to a hash value based on the name of the virtual machine's configuration file.
This means that, assuming the console operating system's primary IPv4 address is known, the IID search space is reduced from 64 bits to 8 bits.
On the other hand, manually configured MAC addresses in the VMware ESX server employ the OUI 00:50:56, with the low-order three bytes of the MAC address being in the range 00:00:00-3F:FF:FF (to avoid conflicts with other VMware products). Therefore, even in the case of manually configured MAC addresses, the IID search space is reduced from 64 bits to 22 bits.
VMware vSphere [vSphere] supports these default MAC address generation algorithms:
o Generated addresses
* Assigned by the vCenter server
* Assigned by the ESXi host
o Manually configured addresses
By default, MAC addresses assigned by the vCenter server use the OUI 00:50:56 and have the format 00:50:56:XX:YY:ZZ, where XX is calculated as (0x80 + vCenter Server ID (in the range 0x00-0x3F)), and XX and YY are random two-digit hexadecimal numbers. Thus, the possible IID range is 00:50:56:80:00:00-00:50:56:BF:FF:FF; therefore, the search space for the resulting SLAAC addresses will be 22 bits.
MAC addresses generated by the ESXi host use the OUI 00:0C:29 and have the format 00:0C:29:XX:YY:ZZ, where XX, YY, and ZZ are the last three octets in hexadecimal format of the virtual machine Universally Unique Identifier (UUID) (based on a hash calculated with the UUID of the ESXi physical machine and the path to a configuration file). Thus, the MAC addresses will be in the range 00:0C:29:00:00:00-00:0C:29:FF:FF:FF; therefore, the search space for the resulting SLAAC addresses will be 24 bits.
Finally, manually configured MAC addresses employ the OUI 00:50:56, with the low-order three bytes being in the range 00:00:00-3F:FF:FF (to avoid conflicts with other VMware products). Therefore, the resulting MAC addresses will be in the range 00:50:56:00:00:00-00:50:56:3F:FF:FF, and the search space for the corresponding SLAAC addresses will be 22 bits.
Privacy concerns [Gont-DEEPSEC2011] [RFC7721] regarding IIDs embedding IEEE identifiers led to the introduction of "Privacy Extensions for Stateless Address Autoconfiguration in IPv6" [RFC4941], also known as "temporary addresses" or "privacy addresses". Essentially, "temporary addresses" produce random addresses by concatenating a random identifier to the autoconfiguration IPv6 prefix advertised in a Router Advertisement message.
NOTE:
In addition to their unpredictability, these addresses are typically short-lived, such that even if an attacker were to learn of one of these addresses, they would be of use for a limited period of time. A typical implementation may keep a temporary address preferred for 24 hours, and configured but deprecated for seven days.
It is important to note that "temporary addresses" are generated in addition to the stable addresses [RFC7721] (such as the traditional SLAAC addresses based on IEEE identifiers): stable SLAAC addresses are meant to be employed for "server-like" inbound communications, while "temporary addresses" are meant to be employed for "client- like" outbound communications. This means that implementation/use of "temporary addresses" does not prevent an attacker from leveraging the predictability of stable SLAAC addresses, since "temporary addresses" are generated in addition to (rather than as a replacement of) the stable SLAAC addresses (such as those derived from IEEE identifiers).
The benefit that temporary addresses offer in this context is that they reduce the exposure of the host addresses to any third parties that may observe traffic sent from a host where temporary addresses are enabled and used by default. But, in the absence of firewall protection for the host, its stable SLAAC address remains liable to be scanned from off-site.
In order to mitigate the security implications arising from the predictable IPv6 addresses derived from IEEE identifiers, Microsoft Windows produced an alternative scheme for generating "stable addresses" (in replacement of the ones embedding IEEE identifiers). The aforementioned scheme is believed to be an implementation of RFC 4941 [RFC4941], but without regenerating the addresses over time. The resulting IIDs are constant across system bootstraps, and also constant across networks.
Assuming no flaws in the aforementioned algorithm, this scheme would remove any patterns from the SLAAC addresses.
NOTE:
However, since the resulting IIDs are constant across networks, these addresses may still be leveraged for host-tracking purposes [RFC7217] [RFC7721].
The benefit of this scheme is thus that the host may be less readily detected by applying heuristics to an address-scanning attack, but, in the absence of concurrent use of temporary addresses, the host is liable to be tracked across visited networks.
In response to the predictability issues discussed in Section 4.1.1.1 and the privacy issues discussed in [RFC7721], the IETF has standardized (in [RFC7217]) a method for generating IPv6 IIDs to be used with IPv6 SLAAC, such that addresses configured using this method are stable within each subnet, but the IIDs change when hosts move from one subnet to another. The aforementioned method is meant to be an alternative to generating IIDs based on IEEE identifiers, such that the benefits of stable addresses can be achieved without sacrificing the privacy of users.
Implementation of this method (in replacement of IIDs based on IEEE identifiers) eliminates any patterns from the IID, thus benefiting user privacy and reducing the ease with which addresses can be scanned.
DHCPv6 can be employed as a stateful address configuration mechanism, in which a server (the DHCPv6 server) leases IPv6 addresses to IPv6 hosts. As with the IPv4 counterpart, addresses are assigned according to a configuration-defined address range and policy, with some DHCPv6 servers assigning addresses sequentially, from a specific range. In such cases, addresses tend to be predictable.
NOTE:
For example, if the prefix 2001:db8::/64 is used for assigning addresses on the local network, the DHCPv6 server might (sequentially) assign addresses from the range 2001:db8::1 - 2001:db8::100.
In most common scenarios, this means that the IID search space will be reduced from the original 64 bits to 8 or 16 bits. [RFC5157] recommended that DHCPv6 instead issue addresses randomly from a large pool; that advice is repeated here. [IIDS-DHCPv6] specifies an algorithm that can be employed by DHCPv6 servers to produce stable addresses that do not follow any specific pattern, thus resulting in an IID search space of 64 bits.
In some scenarios, node addresses may be manually configured. This is typically the case for IPv6 addresses assigned to routers (since routers do not employ automatic address configuration) but also for servers (since having a stable address that does not depend on the underlying link-layer address is generally desirable).
While network administrators are mostly free to select the IID from any value in the range 1 - 2^64, for the sake of simplicity (i.e., ease of remembering), they tend to select addresses with one of the following patterns:
o low-byte addresses: in which most of the bytes of the IID are set to 0 (except for the least significant byte)
o IPv4-based addresses: in which the IID embeds the IPv4 address of the network interface (as in 2001:db8::192.0.2.1)
o service port addresses: in which the IID embeds the TCP/UDP service port of the main service running on that node (as in 2001:db8::80 or 2001:db8::25)
o wordy addresses: which encode words (as in 2001:db8::bad:cafe)
Each of these patterns is discussed in detail in the following subsections.
The most common form of low-byte addresses is that in which all the bytes of the IID (except the least significant bytes) are set to zero (as in 2001:db8::1, 2001:db8::2, etc.). However, it is also common to find similar addresses in which the two lowest-order 16-bit words (from the right to left) are set to small numbers (as in 2001::db8::1:10, 2001:db8::2:10, etc.). Yet it is not uncommon to find IPv6 addresses in which the second lowest-order 16-bit word (from right to left) is set to a small value in the range 0x0000:0x00ff, while the lowest-order 16-bit word (from right to left) varies in the range 0x0000:0xffff. It should be noted that all of these address patterns are generally referred to as "low-byte addresses", even when, strictly speaking, it is not only the lowest- order byte of the IPv6 address that varies from one address to another.
In the worst-case scenario, the search space for this pattern is 2^24 (although most systems can be found by searching 2^16 or even 2^8 addresses).
The most common form of these addresses is that in which an IPv4 address is encoded in the lowest-order 32 bits of the IPv6 address (usually as a result of the address notation of the form 2001:db8::192.0.2.1). However, it is also common for administrators to encode each of the bytes of the IPv4 address in each of the 16-bit words of the IID (as in, e.g., 2001:db8::192:0:2:1).
Therefore, the search space for addresses following this pattern is that of the corresponding IPv4 prefix (or twice the size of that search space if both forms of "IPv4-based addresses" are to be searched).
Addresses following this pattern include the service port (e.g., 80 for HTTP) in the lowest-order byte of the IID and have the rest of the bytes of the IID set to zero. There are a number of variants for this address pattern:
o The lowest-order 16-bit word (from right to left) may contain the service port, and the second lowest-order 16-bit word (from right to left) may be set to a number in the range 0x0000-0x00ff (as in, e.g., 2001:db8::1:80).
o The lowest-order 16-bit word (from right to left) may be set to a value in the range 0x0000-0x00ff, while the second lowest-order 16-bit word (from right to left) may contain the service port (as in, e.g., 2001:db8::80:1).
o The service port itself might be encoded in decimal or in hexadecimal notation (e.g., an address embedding the HTTP port might be 2001:db8::80 or 2001:db8::50) -- with addresses encoding the service port as a decimal number being more common.
Considering a maximum of 20 popular service ports, the search space for addresses following this pattern is, in the worst-case scenario, 10 * 2^11.
Since the IPv6 address notation allows for a number of hexadecimal digits, it is not difficult to encode words into IPv6 addresses (as in, e.g., 2001:db8::bad:cafe).
Addresses following this pattern are likely to be explored by means of "dictionary attacks"; therefore, computing the corresponding search space is not straightforward.
4.1.4. IPv6 Addresses Corresponding to Transition/Coexistence Technologies
Some transition/coexistence technologies might be leveraged to reduce the target search space of remote address-scanning attacks, since they specify how the corresponding IPv6 address must be generated. For example, in the case of Teredo [RFC4380], the 64-bit IID is generated from the IPv4 address observed at a Teredo server along with a UDP port number.
For obvious reasons, the search space for these addresses will depend on the specific transition/coexistence technology being employed.
Figures 1, 2, and 3 provide a summary of the results obtained by [Gont-LACSEC2013] when measuring the address patterns employed by web servers, name servers, and mail servers, respectively. Figure 4 provides a rough summary of the results obtained by [Malone2008] for IPv6 routers. Figure 5 provides a summary of the results obtained by [Ford2013] for clients.
Figure 1: Measured Web Server Addresses
Figure 2: Measured Name Server Addresses
Figure 3: Measured Mail Server Addresses
Figure 4: Measured Router Addresses
Figure 5: Measured Client Addresses
NOTE:
"ISATAP" stands for "Intra-Site Automatic Tunnel Addressing Protocol" [RFC5214].
It should be clear from these measurements that a very high percentage of host and router addresses follow very specific patterns.
Figure 5 shows that while around 70% of clients observed in this measurement appear to be using temporary addresses, a significant number of clients still expose IEEE-based addresses and addresses using embedded IPv4 (thus also revealing IPv4 addresses). Besides, as noted in Section 4.1.1.3, temporary addresses are employed along with stable IPv6 addresses; thus, hosts employing a temporary address may still be the subject of address-scanning attacks that target their stable address(es).
[ADDR-ANALYSIS] contains a spatial and temporal analysis of IPv6 addresses corresponding to clients and routers.
Although attackers have been able to get away with "brute-force" address-scanning attacks in IPv4 networks (thanks to the lesser search space), successfully performing a brute-force address-scanning attack of an entire /64 network would be infeasible. As a result, it is expected that attackers will leverage the IPv6 address patterns discussed in Section 4.1 to reduce the IPv6 address search space. IPv6 address scanning of remote networks should consider an additional factor not present for the IPv4 case: since the typical IPv6 subnet is a /64, scanning an entire /64 could, in theory, lead to the creation of 2^64 entries in the Neighbor Cache of the last-hop router. Unfortunately, a number of IPv6 implementations have been found to be unable to properly handle a large number of entries in the Neighbor Cache; hence, these address-scanning attacks may have the side effect of resulting in a Denial-of-Service (DoS) attack [CPNI-IPv6] [RFC6583].
[RFC7421]
discusses the "default" /64 boundary for host subnets and the assumptions surrounding it. While there are reports of sites implementing IPv6 subnets of size /112 or smaller to reduce concerns about the above attack, such smaller subnets are likely to make address-scanning attacks more feasible, in addition to encountering the issues with non-/64 host subnets discussed in [RFC7421].
When address scanning a remote network, consideration is required to select which subnet IDs to choose. A typical site might have a /48 allocation, which would mean up to 65,000 or so IPv6 /64 subnets to be scanned.
However, in the same way the search space for the IID can be reduced, we may also be able to reduce the subnet ID search space in a number of ways, by guessing likely address plan schemes or using any complementary clues that might exist from other sources or observations. For example, there are a number of documents available online (e.g., [RFC5375]) that provide recommendations for the allocation of address space, which address various operational considerations, including Regional Internet Registry (RIR) assignment policy, ability to delegate reverse DNS zones to different servers, ability to aggregate routes efficiently, address space preservation, ability to delegate address assignment within the organization, ability to add/allocate new sites/prefixes to existing entities without updating Access Control Lists (ACLs), and ability to de-aggregate and advertise subspaces via various Autonomous System (AS) interfaces.
Address plans might include use of subnets that:
o Run from low ID upwards, e.g., 2001:db8:0::/64, 2001:db8:1::/64, etc.
o Use building numbers, in hexadecimal or decimal form.
o Use Virtual Local Area Network (VLAN) numbers.
o Use an IPv4 subnet number in a dual-stack target, e.g., a site with a /16 for IPv4 might use /24 subnets, and the IPv6 address plan may reuse the third byte of the IPv4 address as the IPv6 subnet ID.
o Use the service "color", as defined for service-based prefix coloring, or semantic prefixes. For example, a site using a specific coloring for a specific service such as Voice over IP (VoIP) may reduce the subnet ID search space for those devices.
The net effect is that the address space of an organization may be highly structured, and allocations of individual elements within this structure may be predictable once other elements are known.
In general, any subnet ID address plan may convey information, or be based on known information, which may in turn be of advantage to an attacker.
IPv6 address scanning in Local Area Networks (LANs) could be considered, to some extent, a completely different problem than that of scanning a remote IPv6 network. The main difference is that use of link-local multicast addresses can relieve the attacker of searching for unicast addresses in a large IPv6 address space.
NOTE:
While a number of other network reconnaissance vectors (such as network snooping, leveraging Neighbor Discovery traffic, etc.) are available when scanning a local network, this section focuses only on address-scanning attacks (a la "ping sweep").
An attacker can simply send probe packets to the all-nodes link-local multicast address (ff02::1), such that responses are elicited from all local nodes.
Since Windows systems (Vista, 7, etc.) do not respond to ICMPv6 Echo Request messages sent to multicast addresses, IPv6 address-scanning tools typically employ a number of additional probe packets to elicit responses from all the local nodes. For example, unrecognized IPv6 options of type 10xxxxxx elicit Internet Control Message Protocol version 6 (ICMPv6) Parameter Problem, code 2, error messages.
Many address-scanning tools discover only IPv6 link-local addresses (rather than, e.g., the global addresses of the target systems): since the probe packets are typically sent with the attacker's IPv6 link-local address, the "victim" nodes send the response packets using the IPv6 link-local address of the corresponding network interface (as specified by the IPv6 address-selection rules [RFC6724]). However, sending multiple probe packets, with each packet employing source addresses from different prefixes, typically helps to overcome this limitation.
IPv4 address-scanning tools have traditionally carried out their task by probing an entire address range (usually the entire address range comprised by the target subnetwork). One might argue that the reason for which they have been able to get away with such somewhat "rudimentary" techniques is that the scale or challenge of the task is so small in the IPv4 world that a "brute-force" attack is "good enough". However, the scale of the "address-scanning" task is so large in IPv6 that attackers must be very creative to be "good enough". Simply sweeping an entire /64 IPv6 subnet would just not be feasible.
Many address-scanning tools do not even support sweeping an IPv6 address range. On the other hand, the alive6 tool from [THC-IPV6] supports sweeping address ranges, thus being able to leverage some patterns found in IPv6 addresses, such as the incremental addresses resulting from some DHCPv6 setups. Finally, the scan6 tool from [IPv6-Toolkit] supports sweeping address ranges and can also leverage all the address patterns described in Section 4.1 of this document.
Clearly, a limitation of many of the currently available tools for IPv6 address scanning is that they lack an appropriately tuned "heuristics engine" that can help reduce the search space, such that the problem of IPv6 address scanning becomes tractable.
It should be noted that IPv6 network monitoring and management tools also need to build and maintain information about the hosts in their network. Such systems can no longer scan internal systems in a reasonable time to build a database of connected systems. Rather, such systems will need more efficient approaches, e.g., by polling network devices for data held about observed IP addresses, MAC addresses, physical ports used, etc. Such an approach can also enhance address accountability, by mapping IPv4 and IPv6 addresses to observed MAC addresses. This of course implies that any access control mechanisms for querying such network devices, e.g., community strings for SNMP, should be set appropriately to avoid an attacker being able to gather address information remotely.
There are a variety of publicly available local IPv6 network address- scanners:
o Current versions of nmap [nmap2015] implement this functionality.
o The Hacker's Choice (THC) IPv6 Attack Toolkit [THC-IPV6] includes a tool (alive6) that implements this functionality.
o SI6 Network's IPv6 Toolkit [IPv6-Toolkit] includes a tool (scan6) that implements this functionality.
IPv6 address-scanning attacks can be mitigated in a number of ways. A non-exhaustive list of the possible mitigations includes:
o Employing [RFC7217] (stable, semantically opaque IIDs) in replacement of addresses based on IEEE identifiers, such that any address patterns are eliminated.
o Employing Intrusion Prevention Systems (IPSs) at the perimeter.
o Enforcing IPv6 packet filtering where applicable (see, e.g., [RFC4890]).
o Employing manually configured MAC addresses if virtual machines are employed and "resistance" to address-scanning attacks is deemed desirable, such that even if the virtual machines employ IEEE-derived IIDs, they are generated from non-predictable MAC addresses.
o Avoiding use of sequential addresses when using DHCPv6. Ideally, the DHCPv6 server would allocate random addresses from a large pool (see, e.g., [IIDS-DHCPv6]).
o Using the "default" /64 size IPv6 subnet prefixes.
o In general, avoiding being predictable in the way addresses are assigned.
It should be noted that some of the aforementioned mitigations are operational, while others depend on the availability of specific protocol features (such as [RFC7217]) on the corresponding nodes. Additionally, while some resistance to address-scanning attacks is generally desirable (particularly when lightweight mitigations are available), there are scenarios in which mitigation of some address- scanning vectors is unlikely to be a high priority (if at all possible). And one should always remember that security by obscurity is not a reasonable defense in itself; it may only be one (relatively small) layer in a broader security environment.
Two of the techniques discussed in this document for local address- scanning attacks are those that employ multicasted ICMPv6 Echo Requests and multicasted IPv6 packets containing unsupported options of type 10xxxxxx. These two vectors could be easily mitigated by configuring nodes to not respond to multicasted ICMPv6 Echo Requests (default on Windows systems) and by updating the IPv6 specifications (and/or possibly configuring local nodes) such that multicasted packets never elicit ICMPv6 error messages (even if they contain unsupported options of type 10xxxxxx).
NOTE:
[SMURF-AMPLIFIER] proposed such an update to the IPv6 specifications.
In any case, when it comes to local networks, there are a variety of network reconnaissance vectors. Therefore, even if address-scanning vectors were mitigated, an attacker could still rely on, e.g., protocols employed for the so-called "service discovery protocols" (see Section 5.2) or eventually rely on network snooping as a last resort for network reconnaissance. There is ongoing work in the IETF on extending mDNS, or at least DNS-based service discovery, to work across a whole site, rather than in just a single subnet, which will have associated security implications.
In the previous subsections, we have shown why a /64 host subnet may be more vulnerable to address-based scanning than might intuitively be thought and how an attacker might reduce the target search space when performing an address-scanning attack.
We have described a number of mitigations against address-scanning attacks, including the replacement of traditional SLAAC with stable semantically opaque IIDs (which requires support from system vendors). We have also offered some practical guidance in regard to the principle of avoiding predictability in host addressing schemes. Finally, examples of address-scanning approaches and tools are discussed in the appendices.
While most early IPv6-enabled networks remain dual stack, they are more likely to be scanned and attacked over IPv4 transport, and one may argue that the IPv6-specific considerations discussed here are not of an immediate concern. However, an early IPv6 deployment within a dual-stack network may be seen by an attacker as a potentially "easier" target if the implementation of security policies is not as strict for IPv6 (for whatever reason). As IPv6-only networks become more common, the above considerations will be of much greater importance.
The following subsections describe alternative methods by which an attacker might attempt to glean IPv6 addresses for subsequent probing.
Any systems that are "published" in the DNS, e.g., Mail Exchange (MX) relays or web servers, will remain open to probing from the very fact that their IPv6 addresses are publicly available. It is worth noting that where the addresses used at a site follow specific patterns, publishing just one address may lead to an attack upon the other nodes.
Additionally, we note that publication of IPv6 addresses in the DNS should not discourage the elimination of IPv6 address patterns: if any address patterns are eliminated from addresses published in the DNS, an attacker may have to rely on performing dictionary-based DNS lookups in order to find all systems in a target network (which is generally less reliable and more time/traffic consuming than mapping nodes with predictable IPv6 addresses).
A DNS zone transfer (DNS query type "AXFR") [RFC1034] [RFC1035] can readily provide information about potential attack targets. Restricting zone transfers is thus probably more important for IPv6, even if it is already good practice to restrict them in the IPv4 world.
Attackers may employ DNS brute-forcing techniques by testing for the presence of DNS AAAA records against commonly used host names.
[van-Dijk]
describes an interesting technique that employs DNS reverse mappings for network reconnaissance. Essentially, the attacker walks through the "ip6.arpa" zone looking up PTR records, in the hopes of learning the IPv6 addresses of hosts in a given target network (assuming that the reverse mappings have been configured, of course). What is most interesting about this technique is that it can greatly reduce the IPv6 address search space.
Basically, an attacker would walk the ip6.arpa zone corresponding to a target network (e.g., "0.8.0.0.8.b.d.0.1.0.0.2.ip6.arpa." for "2001:db8:80::/48"), issuing queries for PTR records corresponding to the domain names "0.0.8.0.0.8.b.d.0.1.0.0.2.ip6.arpa.", "1.0.8.0.0.8.b.d.0.1.0.0.2.ip6.arpa.", etc. If, say, there were PTR records for any hosts "starting" with the domain name "0.0.8.0.0.8.b.d.0.1.0.0.2.ip6.arpa." (e.g., the ip6.arpa domain name corresponding to the IPv6 address 2001:db8:80::1), the response would contain an RCODE of 0 (no error). Otherwise, the response would contain an RCODE of 4 (NXDOMAIN). As noted in [van-Dijk], this technique allows for a tremendous reduction in the "IPv6 address" search space.
NOTE:
Some name servers, incorrectly implementing the DNS protocol, reply NXDOMAIN instead of NODATA (NOERROR=0 and ANSWER=0) when encountering a domain without any resource records but that has child domains, something that is very common in ip6.arpa (these domains are called ENT for Empty Non-Terminals; see [RFC7719]). When scanning ip6.arpa, this behavior may slow down or completely prevent the exploration of ip6.arpa. Nevertheless, since such behavior is wrong (see [NXDOMAIN-DEF]), one cannot rely on it to "secure" ip6.arpa against tree walking.
[IPv6-RDNS] analyzes different approaches and considerations for ISPs in managing the ip6.arpa zone for IPv6 address space assigned to many customers, which may affect the technique described in this section.
A number of protocols allow for unmanaged local name resolution and service. For example, mDNS [RFC6762] and DNS Service Discovery (DNS- SD) [RFC6763], or Link-Local Multicast Name Resolution (LLMNR) [RFC4795], are examples of such protocols.
NOTE:
Besides the Graphical User Interfaces (GUIs) included in products supporting such protocols, command-line tools such as mdns-scan [mdns-scan] and mzclient [mzclient] can help discover IPv6 hosts employing mDNS/DNS-SD.
Public mailing-list archives or Usenet news messages archives may prove to be a useful channel for an attacker, since hostnames and/or IPv6 addresses could be easily obtained by inspection of the (many) "Received from:" or other header lines in the archived email or Usenet news messages.
Peer-to-peer applications often include some centralized server that coordinates the transfer of data between peers. For example, BitTorrent [BitTorrent] builds swarms of nodes that exchange chunks of files, with a tracker passing information about peers with available chunks of data between the peers. Such applications may offer an attacker a source of peer addresses to probe.
Information about other systems connected to the local network might be readily available from the Neighbor Cache [RFC4861] and/or the routing table of any system connected to such network. Source Address Validation Improvement (SAVI) [RFC6620] also builds a cache of IPv6 and link-layer addresses (without actively participating in the Neighbor Discovery packet exchange) and hence is another source of similar information.
These data structures could be inspected via either "login" access or SNMP. While this requirement may limit the applicability of this technique, there are a number of scenarios in which this technique might be of use. For example, security audit tools might be provided with the necessary credentials such that the Neighbor Cache and the routing table of all systems for which the tool has "login" or SNMP access can be automatically gleaned. On the other hand, IPv6 worms [V6-WORMS] could leverage this technique for the purpose of spreading on the local network, since they will typically have access to the Neighbor Cache and routing table of an infected system.
Section 2.5.1.4 of [OPSEC-IPv6] discusses additional considerations for the inspection of the IPv6 Neighbor Cache.
Nodes are generally configured with the addresses of other important local computers, such as email servers, local file servers, web proxy servers, recursive DNS servers, etc. The /etc/hosts file in UNIX- like systems, Secure Shell (SSH) known_hosts files, or the Microsoft Windows registry are just some examples of places where interesting information about such systems might be found.
Additionally, system log files (including web server logs, etc.) may also prove to be a useful source for an attacker.
While the required credentials to access the aforementioned configuration and log files may limit the applicability of this technique, there are a number of scenarios in which this technique might be of use. For example, security audit tools might be provided with the necessary credentials such that these files can be automatically accessed. On the other hand, IPv6 worms could leverage this technique for the purpose of spreading on the local network, since they will typically have access to these files on an infected system [V6-WORMS].
Some organizational IPv6 networks employ routing protocols to dynamically maintain routing information. In such an environment, a local attacker could become a passive listener of the routing protocol, to determine other valid subnets/prefixes and some router addresses within that organization [V6-WORMS].
IPFIX [RFC7012] can aggregate the flows by source addresses and hence may be leveraged for obtaining a list of "active" IPv6 addresses. Additional discussion of IPFIX can be found in Section 2.5.1.2 of [OPSEC-IPv6].
IPv6 traceroute [traceroute6] and similar tools (such as path6 from [IPv6-Toolkit]) can be employed to find router addresses and valid network prefixes.
SNMP can be leveraged to obtain information from a number of data structures such as the Neighbor Cache [RFC4861], the routing table, and the SAVI [RFC6620] cache of IPv6 and link-layer addresses. SNMP access should be secured, such that unauthorized access to the aforementioned information is prevented.
Snooping network traffic can help in discovering active nodes in a number of ways. Firstly, each captured packet will reveal the source and destination of the packet. Secondly, the captured traffic may correspond to network protocols that transfer information such as host or router addresses, network topology information, etc.
This document explores the topic of network reconnaissance in IPv6 networks. It analyzes the feasibility of address-scanning attacks in IPv6 networks and shows that the search space for such attacks is typically much smaller than the one traditionally assumed (64 bits).
Additionally, this document explores a plethora of other network reconnaissance techniques, ranging from inspecting the IPv6 Network Cache of an attacker-controlled system to gleaning information about IPv6 addresses from public mailing-list archives or Peer-to-Peer (P2P) protocols.
We expect traditional address-scanning attacks to become more and more elaborated (i.e., less "brute force"), and other network reconnaissance techniques to be actively explored, as global deployment of IPv6 increases and, more specifically, as more IPv6-only devices are deployed.
This document reviews methods by which addresses of hosts within IPv6 subnets can be determined. As such, it raises no new security concerns.
[RFC1034]
Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, <http://www.rfc-editor.org/info/rfc1034>.
[RFC1035]
Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, November 1987, <http://www.rfc-editor.org/info/rfc1035>.
[RFC2460]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, December 1998, <http://www.rfc-editor.org/info/rfc2460>.
[RFC3315]
Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July 2003, <http://www.rfc-editor.org/info/rfc3315>.
[RFC4380]
Huitema, C., "Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)", RFC 4380, DOI 10.17487/RFC4380, February 2006, <http://www.rfc-editor.org/info/rfc4380>.
[RFC4861]
Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, DOI 10.17487/RFC4861, September 2007, <http://www.rfc-editor.org/info/rfc4861>.
[RFC4862]
Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, DOI 10.17487/RFC4862, September 2007, <http://www.rfc-editor.org/info/rfc4862>.
[RFC4941]
Narten, T., Draves, R., and S. Krishnan, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007, <http://www.rfc-editor.org/info/rfc4941>.
[RFC5214]
Templin, F., Gleeson, T., and D. Thaler, "Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214, DOI 10.17487/RFC5214, March 2008, <http://www.rfc-editor.org/info/rfc5214>.
[RFC6620]
Nordmark, E., Bagnulo, M., and E. Levy-Abegnoli, "FCFS SAVI: First-Come, First-Served Source Address Validation Improvement for Locally Assigned IPv6 Addresses", RFC 6620, DOI 10.17487/RFC6620, May 2012, <http://www.rfc-editor.org/info/rfc6620>.
[RFC6724]
Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012, <http://www.rfc-editor.org/info/rfc6724>.
[RFC7012]
Claise, B., Ed. and B. Trammell, Ed., "Information Model for IP Flow Information Export (IPFIX)", RFC 7012, DOI 10.17487/RFC7012, September 2013, <http://www.rfc-editor.org/info/rfc7012>.
[RFC7136]
Carpenter, B. and S. Jiang, "Significance of IPv6 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136, February 2014, <http://www.rfc-editor.org/info/rfc7136>.
[RFC7217]
Gont, F., "A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC)", RFC 7217, DOI 10.17487/RFC7217, April 2014, <http://www.rfc-editor.org/info/rfc7217>.
[ADDR-ANALYSIS]
Plonka, D. and A. Berger, "Temporal and Spatial Classification of Active IPv6 Addresses", ACM Internet Measurement Conference (IMC), Tokyo, Japan, Pages 509-522, DOI 10.1145/2815675.2815678, October 2015, <http://conferences2.sigcomm.org/imc/2015/papers/ p509.pdf>.
[BitTorrent]
Wikipedia, "BitTorrent", November 2015, <https://en.wikipedia.org/w/ index.php?title=BitTorrent&oldid=690381343>.
[CPNI-IPv6]
Gont, F., "Security Assessment of the Internet Protocol version 6 (IPv6)", UK Centre for the Protection of National Infrastructure, (available on request).
[DEFAULT-IIDS]
Gont, F., Cooper, A., Thaler, D., and W. Liu, "Recommendation on Stable IPv6 Interface Identifiers", Work in Progress, draft-ietf-6man-default-iids-10, February 2016.
[Ford2013]
Ford, M., "IPv6 Address Analysis - Privacy In, Transition Out", May 2013, <http://www.internetsociety.org/blog/2013/05/ ipv6-address-analysis-privacy-transition-out>.
[Gont-DEEPSEC2011]
Gont, F., "Results of a Security Assessment of the Internet Protocol version 6 (IPv6)", DEEPSEC Conference, Vienna, Austria, November 2011, <http://www.si6networks.com/presentations/deepsec2011/ fgont-deepsec2011-ipv6-security.pdf>.
[Gont-LACSEC2013]
Gont, F., "IPv6 Network Reconnaissance: Theory & Practice", LACSEC Conference, Medellin, Colombia, May 2013, <http://www.si6networks.com/presentations/lacnic19/ lacsec2013-fgont-ipv6-network-reconnaissance.pdf>.
[IIDS-DHCPv6]
Gont, F. and W. Liu, "A Method for Generating Semantically Opaque Interface Identifiers with Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", Work in Progress, draft-ietf-dhc-stable-privacy-addresses-02, April 2015.
[IPV6-EXT-HEADERS]
Gont, F., Linkova, J., Chown, T., and W. Liu, "Observations on the Dropping of Packets with IPv6 Extension Headers in the Real World", Work in Progress, draft-ietf-v6ops-ipv6-ehs-in-real-world-02, December 2015.
[IPv6-RDNS]
Howard, L., "Reverse DNS in IPv6 for Internet Service Providers", Work in Progress, draft-ietf-dnsop-isp- ip6rdns-00, October 2015.
[IPv6-Toolkit]
SI6 Networks, "SI6 Networks' IPv6 Toolkit", <http://www.si6networks.com/tools/ipv6toolkit>.
[Malone2008]
Malone, D., "Observations of IPv6 Addresses", Passive and Active Network Measurement (PAM 2008, LNCS 4979), DOI 10.1007/978-3-540-79232-1_3, April 2008, <http://www.maths.tcd.ie/~dwmalone/p/addr-pam08.pdf>.
[mdns-scan]
Poettering, L., "mdns-scan(1) Manual Page", <http://manpages.ubuntu.com/manpages/precise/man1/ mdns-scan.1.html>.
[mzclient]
Bockover, A., "Mono Zeroconf Project -- mzclient command- line tool", <http://www.mono-project.com/archived/monozeroconf/>.
[nmap2015]
Lyon, Gordon "Fyodor", "Nmap 7.00", November 2015, <http://insecure.org>.
[NXDOMAIN-DEF]
Bortzmeyer, S. and S. Huque, "NXDOMAIN really means there is nothing underneath", Work in Progress, draft-ietf- dnsop-nxdomain-cut-00, December 2015.
[OPSEC-IPv6]
Chittimaneni, K., Kaeo, M., and E. Vyncke, "Operational Security Considerations for IPv6 Networks", Work in Progress, draft-ietf-opsec-v6-07, September 2015.
[RFC4795]
Aboba, B., Thaler, D., and L. Esibov, "Link-local Multicast Name Resolution (LLMNR)", RFC 4795, DOI 10.17487/RFC4795, January 2007, <http://www.rfc-editor.org/info/rfc4795>.
[RFC4890]
Davies, E. and J. Mohacsi, "Recommendations for Filtering ICMPv6 Messages in Firewalls", RFC 4890, DOI 10.17487/RFC4890, May 2007, <http://www.rfc-editor.org/info/rfc4890>.
[RFC5157]
Chown, T., "IPv6 Implications for Network Scanning", RFC 5157, DOI 10.17487/RFC5157, March 2008, <http://www.rfc-editor.org/info/rfc5157>.
[RFC5375]
Van de Velde, G., Popoviciu, C., Chown, T., Bonness, O., and C. Hahn, "IPv6 Unicast Address Assignment Considerations", RFC 5375, DOI 10.17487/RFC5375, December 2008, <http://www.rfc-editor.org/info/rfc5375>.
[RFC6583]
Gashinsky, I., Jaeggli, J., and W. Kumari, "Operational Neighbor Discovery Problems", RFC 6583, DOI 10.17487/RFC6583, March 2012, <http://www.rfc-editor.org/info/rfc6583>.
[RFC6762]
Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, DOI 10.17487/RFC6762, February 2013, <http://www.rfc-editor.org/info/rfc6762>.
[RFC6763]
Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013, <http://www.rfc-editor.org/info/rfc6763>.
[RFC7421]
Carpenter, B., Ed., Chown, T., Gont, F., Jiang, S., Petrescu, A., and A. Yourtchenko, "Analysis of the 64-bit Boundary in IPv6 Addressing", RFC 7421, DOI 10.17487/RFC7421, January 2015, <http://www.rfc-editor.org/info/rfc7421>.
[RFC7719]
Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS Terminology", RFC 7719, DOI 10.17487/RFC7719, December 2015, <http://www.rfc-editor.org/info/rfc7719>.
[RFC7721]
Cooper, A., Gont, F., and D. Thaler, "Security and Privacy Considerations for IPv6 Address Generation Mechanisms", RFC 7721, DOI 10.17487/RFC7721, March 2016, <http://www.rfc-editor.org/info/rfc7721>.
[SMURF-AMPLIFIER]
Gont, F. and W. Liu, "Security Implications of IPv6 Options of Type 10xxxxxx", Work in Progress, draft-gont- 6man-ipv6-smurf-amplifier-03, March 2013.
[THC-IPV6]
"THC-IPV6", <http://www.thc.org/thc-ipv6/>.
[traceroute6]
FreeBSD, "FreeBSD System Manager's Manual: traceroute6(8) manual page", August 2009, <https://www.freebsd.org/cgi/ man.cgi?query=traceroute6>.
[V6-WORMS]
Bellovin, S., Cheswick, B., and A. Keromytis, "Worm propagation strategies in an IPv6 Internet", Vol. 31, No. 1, pp. 70-76, February 2006, <https://www.cs.columbia.edu/~smb/papers/v6worms.pdf>.
[van-Dijk]
van Dijk, P., "Finding v6 hosts by efficiently mapping ip6.arpa", March 2012, <http://7bits.nl/blog/2012/03/26/ finding-v6-hosts-by-efficiently-mapping-ip6-arpa>.
[VBox2011]
VirtualBox, "Oracle VM VirtualBox User Manual", Version 4.1.2, August 2011, <http://www.virtualbox.org>.
[vmesx2011]
VMware, "Setting a static MAC address for a virtual NIC (219)", VMware Knowledge Base, August 2011, <http://kb.vmware.com/selfservice/microsites/ search.do?language=en_US&cmd=displayKC&externalId=219>.
[vSphere]
VMware, "vSphere Networking", vSphere 5.5, Update 2, September 2014, <http://pubs.vmware.com/ vsphere-55/topic/com.vmware.ICbase/PDF/ vsphere-esxi-vcenter-server-552-networking-guide.pdf>.
This section describes the implementation of a full-fledged IPv6 address-scanning tool. Appendix A.1 discusses the selection of host probes. Appendix A.2 describes the implementation of an IPv6 address scanner for local area networks. Appendix A.3 outlines the implementation of a general (i.e., non-local) IPv6 address scanner.
A number of factors should be considered when selecting the probe packet types and the probing rate for an IPv6 address-scanning tool.
Firstly, some hosts (or border firewalls) might be configured to block or rate limit some specific packet types. For example, it is usual for host and router implementations to rate-limit ICMPv6 error traffic. Additionally, some firewalls might be configured to block or rate limit incoming ICMPv6 echo request packets (see, e.g., [RFC4890]).
NOTE:
As noted earlier in this document, Windows systems simply do not respond to ICMPv6 echo requests sent to multicast IPv6 addresses.
Among the possible probe types are:
o ICMPv6 Echo Request packets (meant to elicit ICMPv6 Echo Replies),
o TCP SYN segments (meant to elicit SYN/ACK or RST segments),
o TCP segments that do not contain the ACK bit set (meant to elicit RST segments),
o UDP datagrams (meant to elicit a UDP application response or an ICMPv6 Port Unreachable),
o IPv6 packets containing any suitable payload and an unrecognized extension header (meant to elicit ICMPv6 Parameter Problem error messages), or
o IPv6 packets containing any suitable payload and an unrecognized option of type 10xxxxxx (meant to elicit an ICMPv6 Parameter Problem error message).
Selecting an appropriate probe packet might help conceal the ongoing attack, but it may also be actually necessary if host or network configuration causes certain probe packets to be dropped.
Some address-scanning tools (such as scan6 of [IPv6-Toolkit]) incorporate support for IPv6 extension headers. In some cases, inserting some IPv6 extension headers in the probe packet may allow some filtering policies or monitoring devices to be circumvented. However, it may also result in the probe packets being dropped, as a result of the widespread dropping of IPv6 packets that employ IPv6 extension headers (see [IPV6-EXT-HEADERS]).
Another factor to consider is the address-probing rate. Clearly, the higher the rate, the smaller the amount of time required to perform the attack. However, the probing rate should not be too high, or else:
1. the attack might cause network congestion, thus resulting in packet loss.
2. the attack might hit rate limiting, thus resulting in packet loss.
3. the attack might reveal underlying problems in Neighbor Discovery implementations, thus leading to packet loss and possibly even Denial of Service.
Packet loss is undesirable, since it would mean that an "alive" node might remain undetected as a result of a lost probe or response. Such losses could be the result of congestion (in case the attacker is scanning a target network at a rate higher than the target network can handle) or may be the result of rate limiting (as it would be typically the case if ICMPv6 is employed for the probe packets). Finally, as discussed in [CPNI-IPv6] and [RFC6583], some IPv6 router implementations have been found to be unable to perform decent resource management when faced with Neighbor Discovery traffic involving a large number of local nodes. This essentially means that regardless of the type of probe packets, an address-scanning attack might result in a DoS of the target network, with the same (or worse) effects as that of network congestion or rate limiting.
The specific rates at which each of these issues may come into play vary from one scenario to another and depend on the type of deployed routers/firewalls, configuration parameters, etc.
scan6 [IPv6-Toolkit] is a full-fledged IPv6 local address-scanning tool, which has proven to be effective and efficient for the discovery of IPv6 hosts on a local network.
The scan6 tool operates (roughly) as follows:
1. The tool learns the local prefixes used for autoconfiguration and generates/configures one address for each local prefix (in addition to a link-local address).
2. An ICMPv6 Echo Request message destined to the all-nodes on-link multicast address (ff02::1) is sent from each of the addresses "configured" in the previous step. Because of the different source addresses, each probe packet causes the victim nodes to use different source addresses for the response packets (this allows the tool to learn virtually all the addresses in use in the local network segment).
3. The same procedure of the previous bullet is performed, but this time with ICMPv6 packets that contain an unrecognized option of type 10xxxxxx, such that ICMPv6 Parameter Problem error messages are elicited. This allows the tool to discover, e.g., Windows nodes, which otherwise do not respond to multicasted ICMPv6 Echo Request messages.
4. Each time a new "alive" address is discovered, the corresponding IID is combined with all the local prefixes, and the resulting addresses are probed (with unicasted packets). This can help to discover other addresses in use on the local network segment, since the same IID is typically used with all the available prefixes for the local network.
NOTE:
The aforementioned scheme can fail to discover some addresses for some implementations. For example, Mac OS X employs IPv6 addresses embedding IEEE identifiers (rather than "temporary addresses") when responding to packets destined to a link-local multicast address, sourced from an on-link prefix.
An IPv6 remote address-scanning tool could be implemented with the following features:
o The tool can be instructed to target specific address ranges (e.g., 2001:db8::0-10:0-1000).
o The tool can be instructed to scan for SLAAC addresses of a specific vendor, such that only addresses embedding the corresponding IEEE OUIs are probed.
o The tool can be instructed to scan for SLAAC addresses that employ a specific IEEE OUI or set of OUIs corresponding to a specific vector.
o The tool can be instructed to discover virtual machines, such that a given IPv6 prefix is only scanned for the address patterns resulting from virtual machines.
o The tool can be instructed to scan for low-byte addresses.
o The tool can be instructed to scan for wordy addresses, in which case the tool selects addresses based on a local dictionary.
o The tool can be instructed to scan for IPv6 addresses embedding TCP/UDP service ports, in which case the tool selects addresses based on a list of well-known service ports.
o The tool can be specified to scan an IPv4 address range in use at the target network, such that only IPv4-based IPv6 addresses are scanned.
The scan6 tool of [IPv6-Toolkit] implements all these techniques/ features. Furthermore, when given a target domain name or sample IPv6 address for a given prefix, the tool will try to infer the address pattern in use at the target network, and reduce the address search space accordingly.
The authors would like to thank Ray Hunter, who provided valuable text that was readily incorporated into Section 4.2.1 of this document.
The authors would like to thank (in alphabetical order) Ivan Arce, Alissa Cooper, Spencer Dawkins, Stephen Farrell, Wesley George, Marc Heuse, Ray Hunter, Barry Leiba, Libor Polcak, Alvaro Retana, Tomoyuki Sahara, Jan Schaumann, Arturo Servin, and Eric Vyncke for providing valuable comments on earlier draft versions of this document.
Fernando Gont would like to thank Jan Zorz of Go6 Lab <http://go6lab.si/> and Jared Mauch of NTT America for providing access to systems and networks that were employed to perform experiments and measurements that helped to improve this document. Additionally, he would like to thank SixXS <https://www.sixxs.net> for providing IPv6 connectivity.
Part of the contents of this document are based on the results of the project "Security Assessment of the Internet Protocol version 6 (IPv6)" [CPNI-IPv6], carried out by Fernando Gont on behalf of the UK Centre for the Protection of National Infrastructure (CPNI).
Fernando Gont would like to thank Daniel Bellomo (UNRC) for his continued support.
Authors' Addresses
Email: tim.chown@jisc.ac.uk
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.