

Working Group ID and RFC eBook

Introduction

This book is a collection of RFCs and Internet-Drafts related to
specific working group. The RFC and Internet-Drafts files are normally
stored in plain ascii text format and they are converted to html
suitable for eBook use by automatic scripts. Those scripts try to
detect headers, pictures, lists, references etc and create special
html for each of those. For text paragraphs those scripts remove
indentation and hard linebreaks and makes text paragraphs as normal
text so font size of the eBook can be adjusted at will and features
like text-to-speech work.

As this conversion is completely automatic there might be errors in
the converted files. I have tried to fix the issues when I find them,
but sometimes fixing issue in one RFC cause problems in others, so not
all errors can be easily fixed, this is especially true for very old
RFCs which do not follow the formatting specifications. If you notice
errors in the formatting please send email to the
<kivinen+rfc-ebook@iki.fi> and describle the problem.
Please, remember to include the RFC number and the version number of
the eBook file (found from the cover page).

As the collection of RFCs is quite large there has been some issues
with the conversion to kindle, and some features do not seem to work
properly when full set of RFCs is used. Because of this some
work-arounds have been made to make the eBook still usable. If the
kindle software gets updated some of those work-arounds might be
removed. For more information about those see the Conversion section.

The primary output format of the scripts is the .mobi
format used in the kindle, and I have been using Kindle 3 as my
primary testing device, so if other reader devices are used, there
might be more issues. The automatic tools also create the
.ePub file, which can be used on platforms which do not
support .mobi format. There is program called mobipocket for
reading .mobi files, and that program is available for wide
range of devices including PalmOS, Symbian, PC, Windows Mobile,
Blackberry etc, so also those devices can be used in addition to
normal eBook readers.

How to use this book

In this section I will concentrate mostly on how to use this on
Kindle 3. This eBook contains 5 main parts:

	Cover page

	This introduction

	Index

	RFCs and Internet-Drafts

	Description of the conversion process

The cover page includes the date when this
eBook was created (i.e. eBook version).

The conversion section includes technical information how this
eBook was created and some known issues etc.

Navigation

There are four main ways to navigate through the book in addition
to normal page up and down.

Fastest way to go to specific RFC or Internet-Draft is to press
menu button on the Kindle 3, and then select Index from
the menu. This will give you the automatic index of the contents of
the this file. This allows quick access to the RFC by just typing the
numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y
will jump you to the RFC 5996 and then you can use arrow down to
select RFC and hit enter to go there. For internet draft start typing
the draft name.

Another option is to use the RFC Index in the beginning of the file
(You can get to there by either pressing menu, selecting
Index and then clicking on the Index in the beginning
of the index, or by pressing menu, selecting Go to...
and then selecting Table of Contents).

Third option is to use left and right arrows to navigate the next
and previous RFC/Internet-Drafts.

The fourth way to navigate inside the book is to use the links
inside the files. The RFC Index has direct links to every 100th RFC.
Each file contains links to back 5, forward 5, next and previous rfc.
Also any reference inside the documents pointing to other RFCs gets
you directly there. Some of the links inside RFC moves you inside the
RFC, i.e. clicking link on the table of contents inside the RFC moves
you to that section etc. Also references inside the RFC will move you
to the refences section etc.

radext RFC and Internet-Draft Index

Index

RFC

	RFC4282 The Network Access Identifier

	RFC4372 Chargeable User Identity

	RFC4590 RADIUS Extension for Digest Authentication

	RFC4668 RADIUS Authentication Client MIB for IPv6

	RFC4669 RADIUS Authentication Server MIB for IPv6

	RFC4670 RADIUS Accounting Client MIB for IPv6

	RFC4671 RADIUS Accounting Server MIB for IPv6

	RFC4672 RADIUS Dynamic Authorization Client MIB

	RFC4673 RADIUS Dynamic Authorization Server MIB

	RFC4675 RADIUS Attributes for Virtual LAN and Priority Support

	RFC4818 RADIUS Delegated-IPv6-Prefix Attribute

	RFC4849 RADIUS Filter Rule Attribute

	RFC5080 Common Remote Authentication Dial In User Service (RADIUS) Implementation Issues and Suggested Fixes

	RFC5090 RADIUS Extension for Digest Authentication

	RFC5176 Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)

	RFC5607 Remote Authentication Dial-In User Service (RADIUS) Authorization for Network Access Server (NAS) Management

	RFC5997 Use of Status-Server Packets in the Remote Authentication Dial In User Service (RADIUS) Protocol

	RFC6158 RADIUS Design Guidelines

	RFC6421 Crypto-Agility Requirements for Remote Authentication Dial-In User Service (RADIUS)

	RFC6613 RADIUS over TCP

	RFC6614 Transport Layer Security (TLS) Encryption for RADIUS

	RFC6911 RADIUS Attributes for IPv6 Access Networks

	RFC6929 Remote Authentication Dial In User Service (RADIUS) Protocol Extensions

	RFC7268 RADIUS Attributes for IEEE 802 Networks

	RFC7360 Datagram Transport Layer Security (DTLS) as a Transport Layer for RADIUS

	RFC7499 Support of Fragmentation of RADIUS Packets

	RFC7542 The Network Access Identifier

	RFC7585 Dynamic Peer Discovery for RADIUS/TLS and RADIUS/DTLS Based on the Network Access Identifier (NAI)

	RFC7930 Larger Packets for RADIUS over TCP

	RFC8044 Data Types in RADIUS

	RFC8045 RADIUS Extensions for IP Port Configuration and Reporting

	RFC8559 Dynamic Authorization Proxying in the Remote Authentication Dial-In User Service (RADIUS) Protocol

4282 - The Network Access Identifier

Index
Next
Forward 5

Network Working Group

Request for Comments: 4282

Obsoletes: 2486

Category: Standards Track

B. Aboba

Microsoft

M. Beadles

ENDFORCE

J. Arkko

Ericsson

P. Eronen

Nokia

December 2005

The Network Access Identifier

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 In order to provide roaming services, it is necessary to have a
 standardized method for identifying users. This document defines the
 syntax for the Network Access Identifier (NAI), the user identity
 submitted by the client during network authentication. "Roaming" may
 be loosely defined as the ability to use any one of multiple Internet
 Service Providers (ISPs), while maintaining a formal, customer-vendor
 relationship with only one. Examples of where roaming capabilities
 might be required include ISP "confederations" and ISP-provided
 corporate network access support. This document is a revised version
 of RFC 2486, which originally defined NAIs. Enhancements include
 international character set and privacy support, as well as a number
 of corrections to the original RFC.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	 1.3. Purpose

	2. NAI Definition
	 2.1. Formal Syntax

	 2.2. NAI Length Considerations

	 2.3. Support for Username Privacy

	 2.4. International Character Sets

	 2.5. Compatibility with E-Mail Usernames

	 2.6. Compatibility with DNS

	 2.7. Realm Construction

	 2.8. Examples

	3. Security Considerations

	4. IANA Considerations

	5. References
	 5.1. Normative References

	 5.2. Informative References

	Appendix A. Changes from RFC 2486

	Appendix B. Acknowledgements

1. Introduction

 Considerable interest exists for a set of features that fit within
 the general category of "roaming capability" for network access,
 including dialup Internet users, Virtual Private Network (VPN) usage,
 wireless LAN authentication, and other applications. Interested
 parties have included the following:

 o Regional Internet Service Providers (ISPs) operating within a
 particular state or province, looking to combine their efforts
 with those of other regional providers to offer dialup service
 over a wider area.

 o National ISPs wishing to combine their operations with those of
 one or more ISPs in another nation to offer more comprehensive
 dialup service in a group of countries or on a continent.

 o Wireless LAN hotspots providing service to one or more ISPs.

 o Businesses desiring to offer their employees a comprehensive
 package of dialup services on a global basis. Those services may
 include Internet access as well as secure access to corporate
 intranets via a VPN, enabled by tunneling protocols such as the

 Point-to-Point Tunneling Protocol (PPTP) [RFC2637], the Layer 2
 Forwarding (L2F) protocol [RFC2341], the Layer 2 Tunneling
 Protocol (L2TP) [RFC2661], and the IPsec tunnel mode [RFC2401].

 In order to enhance the interoperability of roaming services, it is
 necessary to have a standardized method for identifying users. This
 document defines syntax for the Network Access Identifier (NAI).
 Examples of implementations that use the NAI, and descriptions of its
 semantics, can be found in [RFC2194].

 This document is a revised version of RFC 2486 [RFC2486], which
 originally defined NAIs. Differences and enhancements compared to
 RFC 2486 are listed in Appendix A.

1.1. Terminology

 This document frequently uses the following terms:

 Network Access Identifier

 The Network Access Identifier (NAI) is the user identity submitted
 by the client during network access authentication. In roaming,
 the purpose of the NAI is to identify the user as well as to
 assist in the routing of the authentication request. Please note
 that the NAI may not necessarily be the same as the user's e-mail
 address or the user identity submitted in an application layer
 authentication.

 Network Access Server

 The Network Access Server (NAS) is the device that clients connect
 to in order to get access to the network. In PPTP terminology,
 this is referred to as the PPTP Access Concentrator (PAC), and in
 L2TP terminology, it is referred to as the L2TP Access
 Concentrator (LAC). In IEEE 802.11, it is referred to as an
 Access Point.

 Roaming Capability

 Roaming capability can be loosely defined as the ability to use
 any one of multiple Internet Service Providers (ISPs), while
 maintaining a formal, customer-vendor relationship with only one.
 Examples of cases where roaming capability might be required
 include ISP "confederations" and ISP-provided corporate network
 access support.

 Tunneling Service

 A tunneling service is any network service enabled by tunneling
 protocols such as PPTP, L2F, L2TP, and IPsec tunnel mode. One
 example of a tunneling service is secure access to corporate
 intranets via a Virtual Private Network (VPN).

1.2. Requirements Language

 In this document, the key words "MAY", "MUST, "MUST NOT", "OPTIONAL",
 "RECOMMENDED", "SHOULD", and "SHOULD NOT", are to be interpreted as
 described in [RFC2119].

1.3. Purpose

 As described in [RFC2194], there are a number of providers offering
 network access services, and the number of Internet Service Providers
 involved in roaming consortia is increasing rapidly.

 In order to be able to offer roaming capability, one of the
 requirements is to be able to identify the user's home authentication
 server. For use in roaming, this function is accomplished via the
 Network Access Identifier (NAI) submitted by the user to the NAS in
 the initial network authentication. It is also expected that NASes
 will use the NAI as part of the process of opening a new tunnel, in
 order to determine the tunnel endpoint.

2. NAI Definition

2.1. Formal Syntax

 The grammar for the NAI is given below, described in Augmented
 Backus-Naur Form (ABNF) as documented in [RFC4234]. The grammar for
 the username is based on [RFC0821], and the grammar for the realm is
 an updated version of [RFC1035].

nai = username
nai =/ "@" realm
nai =/ username "@" realm

username = dot‑string
dot‑string = string
dot‑string =/ dot‑string "." string
string = char
string =/ string char
char = c
char =/ "\" x

c = %x21 ; '!' allowed
 ; '"' not allowed
c =/ %x23 ; '#' allowed
c =/ %x24 ; '$' allowed
c =/ %x25 ; '%' allowed
c =/ %x26 ; '&' allowed
c =/ %x27 ; ''' allowed
 ; '(', ')' not allowed
c =/ %x2A ; '*' allowed
c =/ %x2B ; '+' allowed
 ; ',' not allowed
c =/ %x2D ; '‑' allowed
 ; '.' not allowed
c =/ %x2F ; '/' allowed
c =/ %x30‑39 ; '0'‑'9' allowed
 ; ';', ':', '<' not allowed
c =/ %x3D ; '=' allowed
 ; '>' not allowed
c =/ %x3F ; '?' allowed
 ; '@' not allowed
c =/ %x41‑5a ; 'A'‑'Z' allowed
 ; '[', '\', ']' not allowed
c =/ %x5E ; '^' allowed
c =/ %x5F ; '_' allowed
c =/ %x60 ; '`' allowed
c =/ %x61‑7A ; 'a'‑'z' allowed
c =/ %x7B ; '{' allowed
c =/ %x7C ; '|' allowed
c =/ %x7D ; '}' allowed
c =/ %x7E ; '~' allowed
 ; DEL not allowed
c =/ %x80‑FF ; UTF‑8‑Octet allowed (not in RFC 2486)
 ; Where UTF‑8‑octet is any octet in the
 ; multi‑octet UTF‑8 representation of a
 ; unicode codepoint above %x7F.
 ; Note that c must also satisfy rules in
 ; Section 2.4, including, for instance,
 ; checking that no prohibited output is
 ; used (see also Section 2.3 of
 ; [RFC4013]).
x = %x00‑FF ; all 128 ASCII characters, no exception;
 ; as well as all UTF‑8‑octets as defined
 ; above (this was not allowed in
 ; RFC 2486). Note that x must nevertheless
 ; again satisfy the Section 2.4 rules.

realm = 1*(label ".") label
label = let‑dig *(ldh‑str)

ldh‑str = *(alpha / digit / "‑") let‑dig
let‑dig = alpha / digit
alpha = %x41‑5A ; 'A'‑'Z'
alpha =/ %x61‑7A ; 'a'‑'z'
digit = %x30‑39 ; '0'‑'9'

2.2. NAI Length Considerations

 Devices handling NAIs MUST support an NAI length of at least 72
 octets. Support for an NAI length of 253 octets is RECOMMENDED.
 However, the following implementation issues should be considered:

 o NAIs are often transported in the User-Name attribute of the
 Remote Authentication Dial-In User Service (RADIUS) protocol.
 Unfortunately, RFC 2865 [RFC2865], Section 5.1, states that "the
 ability to handle at least 63 octets is recommended." As a
 result, it may not be possible to transfer NAIs beyond 63 octets
 through all devices. In addition, since only a single User-Name
 attribute may be included in a RADIUS message and the maximum
 attribute length is 253 octets; RADIUS is unable to support NAI
 lengths beyond 253 octets.

 o NAIs can also be transported in the User-Name attribute of
 Diameter [RFC3588], which supports content lengths up to 2^24 - 9
 octets. As a result, NAIs processed only by Diameter nodes can be
 very long. Unfortunately, an NAI transported over Diameter may
 eventually be translated to RADIUS, in which case the above
 limitations apply.

2.3. Support for Username Privacy

 Interpretation of the username part of the NAI depends on the realm
 in question. Therefore, the "username" part SHOULD be treated as
 opaque data when processed by nodes that are not a part of the
 authoritative domain (in the sense of Section 4) for that realm.

 In some situations, NAIs are used together with a separate
 authentication method that can transfer the username part in a more
 secure manner to increase privacy. In this case, NAIs MAY be
 provided in an abbreviated form by omitting the username part.
 Omitting the username part is RECOMMENDED over using a fixed username
 part, such as "anonymous", since it provides an unambiguous way to
 determine whether the username is intended to uniquely identify a
 single user.

 For roaming purposes, it is typically necessary to locate the
 appropriate backend authentication server for the given NAI before
 the authentication conversation can proceed. As a result, the realm
 portion is typically required in order for the authentication
 exchange to be routed to the appropriate server.

2.4. International Character Sets

 This specification allows both international usernames and realms.
 International usernames are based on the use of Unicode characters,
 encoded as UTF-8 and processed with a certain algorithm to ensure a
 canonical representation. Internationalization of the realm portion
 of the NAI is based on "Internationalizing Domain Names in
 Applications (IDNA)" [RFC3490].

 In order to ensure a canonical representation, characters of the
 username portion in an NAI MUST fulfill the ABNF in this
 specification as well as the requirements specified in [RFC4013].
 These requirements consist of the following:

 o Mapping requirements, as specified in Section 2.1 of [RFC4013].
 Mapping consists of mapping certain characters to others (such as
 SPACE) in order to increase the likelihood of correctly performed
 comparisons.

 o Normalization requirements, as specified in Section 2.2 of
 [RFC4013], are also designed to assist in comparisons.

 o Prohibited output. Certain characters are not permitted in
 correctly formed strings that follow Section 2.3 of [RFC4013].
 Ensuring that NAIs conform to their ABNF is not sufficient; it is
 also necessary to ensure that they do not contain prohibited
 output.

 o Bidirectional characters are handled as specified in Section 2.4
 of [RFC4013].

 o Unassigned code points are specified in Section 2.5 of [RFC4013].
 The use of unassigned code points is prohibited.

 The mapping, normalization, and bidirectional character processing
 MUST be performed by end systems that take international text as
 input. In a network access setting, such systems are typically the
 client and the Authentication, Authorization, and Accounting (AAA)
 server. NAIs are sent over the wire in their canonical form, and
 tasks such as normalization do not typically need to be performed by
 nodes that just pass NAIs around or receive them from the network.
 End systems MUST also perform checking for prohibited output and
 unassigned code points. Other systems MAY perform such checks, when
 they know that a particular data item is an NAI.

 The realm name is an "IDN-unaware domain name slot" as defined in
 [RFC3490]. That is, it can contain only ASCII characters. An
 implementation MAY support Internationalized Domain Names (IDNs)
 using the ToASCII operation; see [RFC3490] for more information.

 The responsibility for the conversion of internationalized domain
 names to ASCII is left for the end systems, such as network access
 clients and AAA servers. Similarly, we expect domain name
 comparisons, matching, resolution, and AAA routing to be performed on
 the ASCII versions of the internationalized domain names. This
 provides a canonical representation, ensures that intermediate
 systems such as AAA proxies do not need to perform translations, and
 can be expected to work through systems that are unaware of
 international character sets.

2.5. Compatibility with E-Mail Usernames

 As proposed in this document, the Network Access Identifier is of the
 form user@realm. Please note that while the user portion of the NAI
 is based on the BNF described in [RFC0821], it has been extended for
 internationalization support as well as for purposes of Section 2.7,
 and is not necessarily compatible with the usernames used in e-mail.
 Note also that the internationalization requirements for NAIs and
 e-mail addresses are different, since the former need to be typed in
 only by the user himself and his own operator, not by others.

2.6. Compatibility with DNS

 The BNF of the realm portion allows the realm to begin with a digit,
 which is not permitted by the BNF described in [RFC1035]. This
 change was made to reflect current practice; although not permitted
 by the BNF described in [RFC1035], Fully Qualified Domain Names
 (FQDNs) such as 3com.com are commonly used and accepted by current
 software.

2.7. Realm Construction

 NAIs are used, among other purposes, for routing AAA transactions to
 the user's home realm. Usually, the home realm appears in the realm
 portion of the NAI, but in some cases a different realm can be used.
 This may be useful, for instance, when the home realm is reachable
 only via another mediating realm.

 Such usage may prevent interoperability unless the parties involved
 have a mutual agreement that the usage is allowed. In particular,
 NAIs MUST NOT use a different realm than the home realm unless the
 sender has explicit knowledge that (a) the specified other realm is
 available and (b) the other realm supports such usage. The sender
 may determine the fulfillment of these conditions through a database,
 dynamic discovery, or other means not specified here. Note that the
 first condition is affected by roaming, as the availability of the
 other realm may depend on the user's location or the desired
 application.

 The use of the home realm MUST be the default unless otherwise
 configured.

 Where these conditions are fulfilled, an NAI such as

 user@homerealm.example.net

 MAY be represented as in

 homerealm.example.net!user@otherrealm.example.net

In this case, the part before the (non‑escaped) '!' MUST be a realm
name as defined in the ABNF in Section 2.1. This realm name is an
"IDN‑unaware domain name slot", just like the realm name after the
"@" character; see Section 2.4 for details. When receiving such an
NAI, the other realm MUST convert the format back to
"user@homerealm.example.net" when passing the NAI forward, as well as
applying appropriate AAA routing for the transaction.

 The conversion process may apply also recursively. That is, after
 the conversion, the result may still have one or more '!' characters
 in the username. For instance, the NAI

 other2.example.net!home.example.net!user@other1.example.net

 would first be converted in other1.example.net to

 home.example.net!user@other2.example.net

 and then at other2.example.net finally to

 user@homerealm.example.net

 Note that the syntax described in this section is optional and is not
 a part of the ABNF. The '!' character may appear in the username
 portion of an NAI for other purposes as well, and in those cases, the
 rules outlined here do not apply; the interpretation of the username
 is up to an agreement between the identified user and the realm given
 after the '@' character.

2.8. Examples

 Examples of valid Network Access Identifiers include the following:

bob
joe@example.com
fred@foo‑9.example.com
jack@3rd.depts.example.com
fred.smith@example.com
fred_smith@example.com
fred$@example.com
fred=?#$&*+‑/^smith@example.com
nancy@eng.example.net
eng.example.net!nancy@example.net
eng%nancy@example.net
@privatecorp.example.net
\(user\)@example.net
alice@xn‑‑tmonesimerkki‑bfbb.example.net

 The last example uses an IDN converted into an ASCII representation.

 Examples of invalid Network Access Identifiers include the following:

fred@example
fred@example_9.com
fred@example.net@example.net
fred.@example.net
eng:nancy@example.net
eng;nancy@example.net
(user)@example.net
<nancy>@example.net

3. Security Considerations

 Since an NAI reveals the home affiliation of a user, it may assist an
 attacker in further probing the username space. Typically, this
 problem is of most concern in protocols that transmit the username in
 clear-text across the Internet, such as in RADIUS, described in
 [RFC2865] and [RFC2866]. In order to prevent snooping of the
 username, protocols may use confidentiality services provided by
 protocols transporting them, such as RADIUS protected by IPsec
 [RFC3579] or Diameter protected by TLS [RFC3588].

 This specification adds the possibility of hiding the username part
 in the NAI, by omitting it. As discussed in Section 2.3, this is
 possible only when NAIs are used together with a separate
 authentication method that can transfer the username in a secure
 manner. In some cases, application-specific privacy mechanism have
 also been used with NAIs. For instance, some Extensible
 Authentication Protocol (EAP) methods apply method-specific
 pseudonyms in the username part of the NAI [RFC3748]. While neither
 of these approaches can protect the realm part, their advantage over
 transport protection is that privacy of the username is protected,
 even through intermediate nodes such as NASes.

4. IANA Considerations

 In order to avoid creating any new administrative procedures,
 administration of the NAI realm namespace piggybacks on the
 administration of the DNS namespace.

 NAI realm names are required to be unique, and the rights to use a
 given NAI realm for roaming purposes are obtained coincident with
 acquiring the rights to use a particular Fully Qualified Domain Name
 (FQDN). Those wishing to use an NAI realm name should first acquire
 the rights to use the corresponding FQDN. Using an NAI realm without
 ownership of the corresponding FQDN creates the possibility of
 conflict and therefore is to be discouraged.

 Note that the use of an FQDN as the realm name does not require use
 of the DNS for location of the authentication server. While Diameter
 [RFC3588] supports the use of DNS for location of authentication
 servers, existing RADIUS implementations typically use proxy
 configuration files in order to locate authentication servers within
 a domain and perform authentication routing. The implementations
 described in [RFC2194] did not use DNS for location of the
 authentication server within a domain. Similarly, existing
 implementations have not found a need for dynamic routing protocols
 or propagation of global routing information. Note also that there
 is no requirement that the NAI represent a valid email address.

5. References

5.1. Normative References

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4234]
 Crocker, D. and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", RFC 4234, October
 2005.

 [RFC3490]
 Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications
 (IDNA)", RFC 3490, March 2003.

 [RFC4013]
 Zeilenga, K., "SASLprep: Stringprep Profile for User
 Names and Passwords", RFC 4013, February 2005.

5.2. Informative References

 [RFC0821]
 Postel, J., "Simple Mail Transfer Protocol", STD 10,
 RFC 821, August 1982.

 [RFC2194]
 Aboba, B., Lu, J., Alsop, J., Ding, J., and W. Wang,
 "Review of Roaming Implementations", RFC 2194,
 September 1997.

 [RFC2341]
 Valencia, A., Littlewood, M., and T. Kolar, "Cisco
 Layer Two Forwarding (Protocol) "L2F"", RFC 2341,
 May 1998.

 [RFC2401]
 Kent, S. and R. Atkinson, "Security Architecture for
 the Internet Protocol", RFC 2401, November 1998.

 [RFC2486]
 Aboba, B. and M. Beadles, "The Network Access
 Identifier", RFC 2486, January 1999.

 [RFC2637]
 Hamzeh, K., Pall, G., Verthein, W., Taarud, J.,
 Little, W., and G. Zorn, "Point-to-Point Tunneling
 Protocol", RFC 2637, July 1999.

 [RFC2661]
 Townsley, W., Valencia, A., Rubens, A., Pall, G.,
 Zorn, G., and B. Palter, "Layer Two Tunneling
 Protocol "L2TP"", RFC 2661, August 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service
 (RADIUS)", RFC 2865, June 2000.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June
 2000.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote
 Authentication Dial In User Service) Support For
 Extensible Authentication Protocol (EAP)", RFC 3579,
 September 2003.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G.,
 and J. Arkko, "Diameter Base Protocol", RFC 3588,
 September 2003.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J.,
 and H. Levkowetz, "Extensible Authentication
 Protocol (EAP)", RFC 3748, June 2004.

 [netsel-problem]
 Arkko, J. and B. Aboba, "Network Discovery and
 Selection Problem", Work in Progress, October 2005.

Appendix A. Changes from RFC 2486

 This document contains the following updates with respect to the
 original NAI definition in RFC 2486 [RFC2486]:

 o International character set support has been added for both
 usernames and realms. Note that this implies character codes 128
 - 255 may be used in the username portion, which may be
 unacceptable to nodes that only support RFC 2486. Many devices
 already allow this behaviour, however.

 o Username privacy support has been added. Note that NAIs without a
 username (for privacy) may not be acceptable to RFC 2486-compliant
 nodes. Many devices already allow this behaviour, however.

 o A recommendation to support NAI length of at least 253 octets has
 been added, and compatibility considerations among NAI lengths in
 this specification and various AAA protocols are discussed. Note
 that long NAIs may not be acceptable to RFC 2486-compliant nodes.

 o The mediating network syntax and its implications have been fully
 described and not given only as an example. Note that this syntax
 is not intended to be a full solution to network discovery and
 selection needs as defined in [netsel-problem]. Rather, it is
 intended as a clarification of RFC 2486.

 However, as discussed in Section 2.7, this specification requires
 that this syntax be applied only when there is explicit knowledge
 that the peer system supports such syntax.

 o The realm BNF entry definition has been changed to avoid an error
 (infinite recursion) in the original specification.

 o Several clarifications and improvements have been incorporated
 into the ABNF specification for NAIs.

Appendix B. Acknowledgements

 Thanks to Glen Zorn for many useful discussions of this problem
 space, and to Farid Adrangi for suggesting the representation of
 mediating networks in NAIs. Jonathan Rosenberg reported the BNF
 error. Dale Worley suggested clarifications of the x and special BNF
 entries. Arne Norefors reported the length differences between RFC
 2486 and RFC 2865. Paul Hoffman helped with the international
 character set issues. Kalle Tammela, Stefaan De Cnodder, Nagi
 Jonnala, Bert Wijnen, Blair Bullock, Yoshihiro Ohba, Ignacio Goyret,
 John Loughney, Henrik Levkowetz, Ted Hardie, Bill Fenner, Sam
 Hartman, and Richard Perlman provided many useful comments on this
 document. The ABNF validator at http://www.apps.ietf.org/abnf.html
 was used to verify the syntactic correctness of the ABNF in
 Section 2.1.

Authors' Addresses

Bernard Aboba
Microsoft
One Microsoft Way
Redmond, WA 98052
USA

 EMail: bernarda@microsoft.com

Mark A. Beadles
ENDFORCE
565 Metro Place South Suite 300
Dublin OH 43017
USA

 EMail: mbeadles@endforce.com

Jari Arkko
Ericsson
Jorvas 02420
Finland

 EMail: jari.arkko@ericsson.com

Pasi Eronen
Nokia Research Center
P.O. Box 407
FIN‑00045 Nokia Group
Finland

 EMail: pasi.eronen@nokia.com

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

4372 - Chargeable User Identity

Index
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4372

Category: Standards Track

F. Adrangi

Intel

A. Lior

Bridgewater Systems

J. Korhonen

Teliasonera

J. Loughney

Nokia

January 2006

Chargeable User Identity

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes a new Remote Authentication Dial-In User
 Service (RADIUS) attribute, Chargeable-User-Identity. This attribute
 can be used by a home network to identify a user for the purpose of
 roaming transactions that occur outside of the home network.

Table of Contents

	1. Introduction
	 1.1. Motivation

	 1.2. Terminology

	2. Operation
	 2.1. Chargeable-User-Identity (CUI) Attribute

	 2.2. CUI Attribute

	3. Attribute Table

	4. Diameter Consideration

	5. IANA Considerations

	6. Security Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

1. Introduction

 Some authentication methods, including EAP-PEAP, EAP-TTLS, EAP-SIM
 and EAP-AKA, can hide the true identity of the user from RADIUS
 servers outside of the user's home network. In these methods, the
 User-Name(1) attribute contains an anonymous identity (e.g.,
 @example.com) sufficient to route the RADIUS packets to the home
 network but otherwise insufficient to identify the user. While this
 mechanism is good practice in some circumstances, there are problems
 if local and intermediate networks require a surrogate identity to
 bind the current session.

 This document introduces an attribute that serves as an alias or
 handle (hereafter, it is called Chargeable-User-Identity) to the real
 user's identity. Chargeable-User-Identity can be used outside the
 home network in scenarios that traditionally relied on User-Name(1)
 to correlate a session to a user.

 For example, local or intermediate networks may limit the number of
 simultaneous sessions for specific users; they may require a
 Chargeable-User-Identity in order to demonstrate willingness to pay
 or otherwise limit the potential for fraud.

 This implies that a unique identity provided by the home network
 should be able to be conveyed to all parties involved in the roaming
 transaction for correlating the authentication and accounting
 packets.

 Providing a unique identity, Chargeable-User-Identity (CUI), to
 intermediaries, is necessary to fulfill certain business needs. This
 should not undermine the anonymity of the user. The mechanism
 provided by this document allows the home operator to meet these
 business requirements by providing a temporary identity representing
 the user and at the same time protecting the anonymity of the user.

 When the home network assigns a value to the CUI, it asserts that
 this value represents a user in the home network. The assertion
 should be temporary -- long enough to be useful for the external
 applications and not too long such that it can be used to identify
 the user.

 Several organizations, including WISPr, GSMA, 3GPP, Wi-Fi Alliance,
 and IRAP, have been studying mechanisms to provide roaming services,
 using RADIUS. Missing elements include mechanisms for billing and
 fraud prevention.

 The CUI attribute is intended to close operational loopholes in
 RADIUS specifications that have impacted roaming solutions
 negatively. Use of the CUI is geared toward EAP methods supporting
 privacy (such as PEAP and EAP-TTLS), which are, for the most part,
 recent deployments. A chargeable identity reflecting the user
 profile by the home network is needed in such roaming scenarios.

1.1. Motivation

 Some other mechanisms have been proposed in place of the CUI
 attribute. These mechanisms are insufficient or cause other
 problems. It has been suggested that standard RADIUS Class(25) or
 User-Name(1) attributes could be used to indicate the CUI. However,
 in a complex global roaming environment where there could be one or
 more intermediaries between the NAS [RFC4282] and the home RADIUS
 server, the use of aforementioned attributes could lead to problems
 as described below.

 - On the use of RADIUS Class(25) attribute:

 [RFC2865]
 states: "This Attribute is available to be sent by the
 server to the client in an Access-Accept packet and SHOULD be sent
 unmodified by the client to the accounting server as part of the
 Accounting-Request packet if accounting is supported. The client
 MUST NOT interpret the attribute locally." So RADIUS clients or
 intermediaries MUST NOT interpret the Class(25) attribute, which
 precludes determining whether it contains a CUI. Additionally,
 there could be multiple class attributes in a RADIUS packet, and
 since the contents of Class(25) attribute is not to be interpreted
 by clients, this makes it hard for the entities outside the home
 network to determine which one contains the CUI.

 - On the use of RADIUS User-Name(1) attribute:

 The User-Name(1) attribute included in the Access-Request packet
 may be used for the purpose of routing the Access-Request packet,
 and in the process may be rewritten by intermediaries. As a
 result, a RADIUS server receiving an Access-Request packet relayed
 by a proxy cannot assume that the User-Name(1) attribute remained
 unmodified.

 On the other hand, rewriting of a User-Name(1) attribute sent
 within an Access-Accept packet occurs more rarely, since a
 Proxy-State(33) attribute can be used to route the Access-Accept
 packet without parsing the User-Name(1) attribute. As a result, a
 RADIUS server cannot assume that a proxy stripping routing
 information from a User-Name(1) attribute within an Access-Request
 packet will add this information to a User-Name(1) attribute
 included within an Access-Accept packet. The result is that when
 a User-Name(1) attribute is sent in an Access-Accept packet, it is
 possible that the Access-Request packet and Accounting-Request
 packets will follow different paths. Where this outcome is
 undesirable, the RADIUS client should use the original
 User-Name(1) in accounting packets. Therefore, another mechanism
 is required to convey a CUI within an Access-Accept packet to the
 RADIUS client, so that the CUI can be included in the accounting
 packets.

 The CUI attribute provides a solution to the above problems and
 avoids overloading RADIUS User-Name(1) attribute or changing the
 usage of existing RADIUS Class(25) attribute. The CUI therefore
 provides a standard approach to billing and fraud prevention when EAP
 methods supporting privacy are used. It does not solve all related
 problems, but does provide for billing and fraud prevention.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following acronyms are used:

3GPP ‑ Third Generation Partnership Project
AAA ‑ Authentication, Authorization, and Accounting
AKA ‑ Authentication and Key Agreement
CUI ‑ Chargeable‑User‑Identity
GSMA ‑ GSM Association
IRAP ‑ International Roaming Access Protocols Program
NAS ‑ Network Access Server
PEAP ‑ Protected Extensible Authentication Protocol
SIM ‑ Subscriber Identity Modules
TTLS ‑ Tunneled Transport Layer Security
WISPr ‑ Wireless ISP Roaming
WPA ‑ Wi‑Fi Protected Access

2. Operation

 This document assumes that the RADIUS protocol operates as specified
 in [RFC2865] and [RFC2866], dynamic authorization as specified in
 [RFC3576], and the Diameter protocol as specified in [RFC3588].

2.1. Chargeable-User-Identity (CUI) Attribute

 The CUI attribute serves as an alias to the user's real identity,
 representing a chargeable identity as defined and provided by the
 home network as a supplemental or alternative information to
 User-Name(1). Typically, the CUI represents the identity of the
 actual user, but it may also indicate other chargeable identities
 such as a group of users. RADIUS clients (proxy or NAS) outside the
 home network MUST NOT modify the CUI attribute.

 The RADIUS server (a RADIUS proxy, home RADIUS server) may include
 the CUI attribute in the Access-Accept packet destined to a roaming
 partner. The CUI support by RADIUS infrastructure is driven by the
 business requirements between roaming entities. Therefore, a RADIUS
 server supporting this specification may choose not to send the CUI
 in response to an Access-Request packet from a given NAS, even if the
 NAS has indicated that it supports CUI.

 If an Access-Accept packet without the CUI attribute was received by
 a RADIUS client that requested the CUI attribute, then the
 Access-Accept packet MAY be treated as an Access-Reject.

 If the CUI was included in an Access-Accept packet, RADIUS clients
 supporting the CUI attribute MUST ensure that the CUI attribute
 appears in the RADIUS Accounting-Request (Start, Interim, and Stop).
 This requirement applies regardless of whether the RADIUS client
 requested the CUI attribute.

 RFC 2865 includes the following statements about behaviors of RADIUS
 client and server with respect to unsupported attributes:

‑ "A RADIUS client MAY ignore Attributes with an unknown Type."
‑ "A RADIUS server MAY ignore Attributes with an unknown Type."

 Therefore, RADIUS clients or servers that do not support the CUI may
 ignore the attribute.

 A RADIUS client requesting the CUI attribute in an Access-Accept
 packet MUST include within the Access-Request packet a CUI attribute.
 For the initial authentication, the CUI attribute will include a
 single NUL character (referred to as a nul CUI). And, during
 re-authentication, the CUI attribute will include a previously
 received CUI value (referred to as a non-nul CUI value) in the
 Access-Accept.

 Upon receiving a non-nul CUI value in an Access-Request, the home
 RADIUS server MAY verify that the value of CUI matches the CUI from
 the previous Access-Accept. If the verification fails, then the
 RADIUS server SHOULD respond with an Access-Reject message.

 If a home RADIUS server that supports the CUI attribute receives an
 Access-Request packet containing a CUI (set to nul or otherwise), it
 MUST include the CUI attribute in the Access-Accept packet.
 Otherwise, if the Access-Request packet does not contain a CUI, the
 home RADIUS server SHOULD NOT include the CUI attribute in the
 Access-Accept packet. The Access-Request may be sent either in the
 initial authentication or during re-authentication.

 A NAS that requested the CUI during re-authentication by including
 the CUI in the Access-Request will receive the CUI in the
 Access-Accept. The NAS MUST include the value of that CUI in all
 Accounting Messages.

2.2. CUI Attribute

 A summary of the RADIUS CUI attribute is given below.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type: 89 for Chargeable-User-Identity.

 Length: >= 3

 String:

 The string identifies the CUI of the end-user. This string value
 is a reference to a particular user. The format and content of
 the string value are determined by the Home RADIUS server. The
 binding lifetime of the reference to the user is determined based
 on business agreements. For example, the lifetime can be set to
 one billing period. RADIUS entities other than the Home RADIUS
 server MUST treat the CUI content as an opaque token, and SHOULD
 NOT perform operations on its content other than a binary equality
 comparison test, between two instances of CUI. In cases where the
 attribute is used to indicate the NAS support for the CUI, the
 string value contains a nul character.

3. Attribute Table

 The following table provides a guide to which attribute(s) may be
 found in which kinds of packets, and in what quantity.

Request Accept Reject Challenge Accounting # Attribute
 Request
 0‑1 0‑1 0 0 0‑1 89 Chargeable‑User‑Identity

 Note: If the Access-Accept packet contains CUI, then the NAS MUST
 include the CUI in Accounting Requests (Start, Interim, and Stop)
 packets.

4. Diameter Consideration

 Diameter needs to define an identical attribute with the same Type
 value. The CUI should be available as part of the NASREQ application
 [RFC4005].

5. IANA Considerations

 This document uses the RADIUS [RFC2865] namespace; see
 http://www.iana.org/assignments/radius-types. The IANA has assigned
 a new RADIUS attribute number for the CUI attribute.

 CUI 89

6. Security Considerations

 It is strongly recommended that the CUI format used is such that the
 real user identity is not revealed. Furthermore, where a reference
 is used to a real user identity, it is recommended that the binding
 lifetime of that reference to the real user be kept as short as
 possible.

 The RADIUS entities (RADIUS proxies and clients) outside the home
 network MUST NOT modify the CUI or insert a CUI in an Access-Accept.
 However, there is no way to detect or prevent this.

 Attempting theft of service, a man-in-the-middle may try to insert,
 modify, or remove the CUI in the Access-Accept packets and Accounting
 packets. However, RADIUS Access-Accept and Accounting packets
 already provide integrity protection.

 If the NAS includes CUI in an Access-Request packet, a
 man-in-the-middle may remove it. This will cause the Access-Accept
 packet to not include a CUI attribute, which may cause the NAS to
 reject the session. To prevent such a denial of service (DoS)
 attack, the NAS SHOULD include a Message-Authenticator(80) attribute
 within Access-Request packets containing a CUI attribute.

7. Acknowledgements

 The authors would like to thank Jari Arkko, Bernard Aboba, David
 Nelson, Barney Wolff, Blair Bullock, Sami Ala-Luukko, Lothar Reith,
 David Mariblanca, Eugene Chang, Greg Weber, and Mark Grayson for
 their feedback and guidance.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC4005]
 Calhoun, P., Zorn, G., Spence, D., and D. Mitton,
 "Diameter Network Access Server Application", RFC 4005,
 August 2005.

 [RFC4282]
 Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

8.2. Informative References

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 3576,
 July 2003.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

Authors' Addresses

Farid Adrangi
Intel Corporation
2111 N.E. 25th Avenue
Hillsboro, OR 97124
USA

Phone: +1 503‑712‑1791
EMail: farid.adrangi@intel.com

Avi Lior
Bridgewater Systems Corporation
303 Terry Fox Drive
Ottawa, Ontario K2K 3J1
Canada

Phone: +1 613‑591‑9104
EMail: avi@bridgewatersystems.com

Jouni Korhonen
Teliasonera Corporation
P.O.Box 970
FIN‑00051, Sonera
Finland

Phone: +358405344455
EMail: jouni.korhonen@teliasonera.com

John Loughney
Nokia
Itamerenkatu 11‑13
FIN‑00180, Helsinki
Finland

Phone: +358504836342
EMail: john.loughney@nokia.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4590 - RADIUS Extension for Digest Authentication

Index
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4590

Category: Standards Track

B. Sterman

Kayote Networks

D. Sadolevsky

SecureOL, Inc.

D. Schwartz

Kayote Networks

D. Williams

Cisco Systems

W. Beck

Deutsche Telekom AG

July 2006

RADIUS Extension for Digest Authentication

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document defines an extension to the Remote Authentication
 Dial-In User Service (RADIUS) protocol to enable support of Digest
 Authentication, for use with HTTP-style protocols like the Session
 Initiation Protocol (SIP) and HTTP.

Table of Contents

	1. Introduction
			 1.1. Terminology

	 1.2. Motivation

	 1.3. Overview

	2. Detailed Description
			 2.1. RADIUS Client Behavior
					 2.1.1. Credential Selection

	 2.1.2. Constructing an Access-Request

	 2.1.3. Constructing an Authentication-Info Header

	 2.1.4. Failed Authentication

	 2.1.5. Obtaining Nonces

	 2.2. RADIUS Server Behavior
					 2.2.1. General Attribute Checks

	 2.2.2. Authentication

	 2.2.3. Constructing the Reply

	3. New RADIUS Attributes
			 3.1. Digest-Response attribute

	 3.2. Digest-Realm Attribute

	 3.3. Digest-Nonce Attribute

	 3.4. Digest-Response-Auth Attribute

	 3.5. Digest-Nextnonce Attribute

	 3.6. Digest-Method Attribute

	 3.7. Digest-URI Attribute

	 3.8. Digest-Qop Attribute

	 3.9. Digest-Algorithm Attribute

	 3.10. Digest-Entity-Body-Hash Attribute

	 3.11. Digest-CNonce Attribute

	 3.12. Digest-Nonce-Count Attribute

	 3.13. Digest-Username Attribute

	 3.14. Digest-Opaque Attribute

	 3.15. Digest-Auth-Param Attribute

	 3.16. Digest-AKA-Auts Attribute

	 3.17. Digest-Domain Attribute

	 3.18. Digest-Stale Attribute

	 3.19. Digest-HA1 Attribute

	 3.20. SIP-AOR Attribute

	4. Diameter Compatibility

	5. Table of Attributes

	6. Examples

	7. IANA Considerations

	8. Security Considerations
			 8.1. Denial of Service

	 8.2. Confidentiality and Data Integrity

	9. Acknowledgements

	10. References
			 10.1. Normative References

	 10.2. Informative References

1. Introduction

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The use of normative requirement key words in this document shall
 apply only to RADIUS client and RADIUS server implementations that
 include the features described in this document. This document
 creates no normative requirements for existing implementations.

 HTTP-style protocol

 The term 'HTTP-style' denotes any protocol that uses HTTP-like
 headers and uses HTTP Digest Authentication as described in
 [RFC2617]. Examples are HTTP and the Session Initiation
 Protocol (SIP).

 NAS

 Network Access Server, the RADIUS client.

 nonce

 An unpredictable value used to prevent replay attacks. The
 nonce generator may use cryptographic mechanisms to produce
 nonces it can recognize without maintaining state.

 protection space

 HTTP-style protocols differ in their definition of the
 protection space. For HTTP, it is defined as the combination
 of realm and canonical root URL of the requested resource for
 which the use is authorized by the RADIUS server. In the case
 of SIP, the realm string alone defines the protection space.

 SIP UA

 SIP User Agent, an Internet endpoint that uses the Session
 Initiation Protocol.

 SIP UAS

 SIP User Agent Server, a logical entity that generates a
 response to a SIP (Session Initiation Protocol) request.

1.2. Motivation

 The HTTP Digest Authentication mechanism, defined in [RFC2617], was
 subsequently adapted for use with SIP [RFC3261]. Due to the
 limitations and weaknesses of Digest Authentication (see [RFC2617],
 section 4), additional authentication and encryption mechanisms are
 defined in SIP [RFC3261], including Transport Layer Security (TLS)
 [RFC4346] and Secure MIME (S/MIME) [RFC3851]. However, Digest
 Authentication support is mandatory in SIP implementations, and
 Digest Authentication is the preferred way for a SIP UA to
 authenticate itself to a proxy server. Digest Authentication is used
 in other protocols as well.

 To simplify the provisioning of users, there is a need to support
 this authentication mechanism within Authentication, Authorization,
 and Accounting (AAA) protocols such as RADIUS [RFC2865] and Diameter
 [RFC3588].

 This document defines an extension to the RADIUS protocol to enable
 support of Digest Authentication for use with SIP, HTTP, and other
 HTTP-style protocols using this authentication method. Support for
 Digest mechanisms such as Authentication and Key Agreement (AKA)
 [RFC3310] is also supported. A companion document [SIP-APP] defines
 support for Digest Authentication within Diameter.

1.3. Overview

 HTTP Digest is a challenge-response protocol used to authenticate a
 client's request to access some resource on a server. Figure 1 shows
 a single HTTP Digest transaction.

 HTTP/SIP..
+‑‑‑‑‑‑‑‑‑‑‑‑+ (1) +‑‑‑‑‑‑‑‑‑‑‑‑+
	‑‑‑‑‑‑‑‑‑>	
HTTP‑style	(2)	HTTP‑style
client	<‑‑‑‑‑‑‑‑‑	server
	(3)	
	‑‑‑‑‑‑‑‑‑>	
	(4)	
	<‑‑‑‑‑‑‑‑‑	
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Digest operation without RADIUS

 If the client sends a request without any credentials (1), the server
 will reply with an error response (2) containing a nonce. The client
 creates a cryptographic digest from parts of the request, from the
 nonce it received from the server, and from a shared secret. The
 client re-transmits the request (3) to the server, but now includes
 the digest within the packet. The server does the same digest
 calculation as the client and compares the result with the digest it
 received in (3). If the digest values are identical, the server
 grants access to the resource and sends a positive response to the
 client (4). If the digest values differ, the server sends a negative
 response to the client (4).

 Instead of maintaining a local user database, the server could use
 RADIUS to access a centralized user database. However, RADIUS
 [RFC2865] does not include support for HTTP Digest Authentication.
 The RADIUS client cannot use the User-Password attribute, since it
 does not receive a password from the HTTP-style client. The
 CHAP-Challenge and CHAP-Password attributes described in [RFC1994]
 are also not suitable since the CHAP algorithm is not compatible with
 HTTP Digest.

 This document defines new attributes that enable the RADIUS server to
 perform the digest calculation defined in [RFC2617], providing
 support for Digest Authentication as a native authentication
 mechanism within RADIUS.

 The nonces required by the digest algorithm are generated by the
 RADIUS server. Generating them in the RADIUS client would save a
 round-trip, but introduce security and operational issues. Some
 digest algorithms -- e.g., AKA [RFC3310] -- would not work.

 Figure 2 depicts a scenario in which the HTTP-style server defers
 authentication to a RADIUS server. Entities A and B communicate
 using HTTP or SIP, while entities B and C communicate using RADIUS.

 HTTP/SIP RADIUS

+‑‑‑‑‑+ (1) +‑‑‑‑‑+ +‑‑‑‑‑+
	==========>		(2)	
			‑‑‑‑‑‑‑‑‑‑>	
			(3)	
	(4)		<‑‑‑‑‑‑‑‑‑‑	
	<==========			
	(5)			
	==========>			
A		B	(6)	C
			‑‑‑‑‑‑‑‑‑‑>	
			(7)	
			<‑‑‑‑‑‑‑‑‑‑	
	(8)			
	<==========			
+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+

====> HTTP/SIP
‑‑‑‑> RADIUS

 Figure 2: HTTP Digest over RADIUS

 The entities have the following roles:

 A: HTTP client / SIP UA

 B: {HTTP server / HTTP proxy server / SIP proxy server / SIP UAS}

 acting also as a RADIUS NAS

 C: RADIUS server

 The following messages are sent in this scenario:

 A sends B an HTTP/SIP request without an authorization header (step
 1). B sends an Access-Request packet with the newly defined
 Digest-Method and Digest-URI attributes but without a Digest-Nonce
 attribute to the RADIUS server, C (step 2). C chooses a nonce and
 responds with an Access-Challenge (step 3). This Access-Challenge
 contains Digest attributes, from which B takes values to construct an
 HTTP/SIP "(Proxy) Authorization required" response. B sends this
 response to A (step 4). A resends its request with its credentials
 (step 5). B sends an Access-Request to C (step 6). C checks the
 credentials and replies with Access-Accept or Access-Reject (step 7).
 Depending on C's result, B processes A's request or rejects it with a
 "(Proxy) Authorization required" response (step 8).

2. Detailed Description

2.1. RADIUS Client Behavior

 The attributes described in this document are sent in cleartext.
 Therefore, were a RADIUS client to accept secure connections (HTTPS
 or SIPS) from HTTP-style clients, this could result in information
 intentionally protected by HTTP-style clients being sent in the clear
 during RADIUS exchange.

2.1.1. Credential Selection

 On reception of an HTTP-style request message, the RADIUS client
 checks whether it is authorized to authenticate the request. Where
 an HTTP-style request traverses several proxies and each of the
 proxies requests to authenticate the HTTP-style client, the request
 at the HTTP-style server may contain multiple credential sets.

 The RADIUS client can use the 'realm' directive in HTTP to determine
 which credentials are applicable. Where none of the realms are of
 interest, the RADIUS client MUST behave as though no relevant
 credentials were sent. In all situations, the RADIUS client MUST
 send zero or exactly one credential to the RADIUS server. The RADIUS
 client MUST choose the credential of the (Proxy-)Authorization header
 if the realm directive matches its locally configured realm.

2.1.2. Constructing an Access-Request

 If a matching (Proxy-)Authorization header is present and contains
 HTTP Digest information, the RADIUS client checks the 'nonce'
 parameter.

 If the RADIUS client recognizes the nonce, it takes the header
 directives and puts them into a RADIUS Access-Request packet. It
 puts the 'response' directive into a Digest-Response attribute and
 the realm, nonce, digest-uri, qop, algorithm, cnonce, nc, username,
 and opaque directives into the respective Digest-Realm, Digest-Nonce,
 Digest-URI, Digest-Qop, Digest-Algorithm, Digest-CNonce,
 Digest-Nonce-Count, Digest-Username, and Digest-Opaque attributes.
 The RADIUS client puts the request method into the Digest-Method
 attribute.

 Due to syntactic requirements, HTTP-style protocols have to escape
 with backslash all quote and backslash characters in contents of HTTP
 Digest directives. When translating directives into RADIUS
 attributes, the RADIUS client only removes the surrounding quotes
 where present. See Section 3 for an example.

 If the Quality of Protection (qop) directive's value is 'auth-int',
 the RADIUS client calculates H(entity-body) as described in
 [RFC2617], Section 3.2.1, and puts the result in a
 Digest-Entity-Body-Hash attribute.

 The RADIUS client adds a Message-Authenticator attribute, defined in
 [RFC3579], and sends the Access-Request packet to the RADIUS server.

 The RADIUS server processes the packet and responds with an
 Access-Accept or an Access-Reject.

2.1.3. Constructing an Authentication-Info Header

 After having received an Access-Accept from the RADIUS server, the
 RADIUS client constructs an Authentication-Info header:

 o If the Access-Accept packet contains a Digest-Response-Auth
 attribute, the RADIUS client checks the Digest-Qop attribute:

 * If the Digest-Qop attribute's value is 'auth' or not specified,
 the RADIUS client puts the Digest-Response-Auth attribute's
 content into the Authentication-Info header's 'rspauth'
 directive of the HTTP-style response.

 * If the Digest-Qop attribute's value is 'auth-int', the RADIUS
 client ignores the Access-Accept packet and behaves as if it
 had received an Access-Reject packet (Digest-Response-Auth
 can't be correct as the RADIUS server does not know the
 contents of the HTTP-style response's body).

 o If the Access-Accept packet contains a Digest-HA1 attribute, the
 RADIUS client checks the 'qop' and 'algorithm' directives in the
 Authorization header of the HTTP-style request it wants to
 authorize:

 * If the 'qop' directive is missing or its value is 'auth', the
 RADIUS client ignores the Digest-HA1 attribute. It does not
 include an Authentication-Info header in its HTTP-style
 response.

 * If the 'qop' directive's value is 'auth-int' and at least one
 of the following conditions is true, the RADIUS client
 calculates the contents of the HTTP-style response's 'rspauth'
 directive:

 + The algorithm directive's value is 'MD5-sess' or
 'AKAv1-MD5-sess'.

 + IP Security (IPsec) is configured to protect traffic between
 the RADIUS client and RADIUS server with IPsec (see
 Section 8).

 It creates the HTTP-style response message and calculates the
 hash of this message's body. It uses the result and the
 Digest-URI attribute's value of the corresponding
 Access-Request packet to perform the H(A2) calculation. It
 takes the Digest-Nonce, Digest-Nonce-Count, Digest-CNonce, and
 Digest-Qop values of the corresponding Access-Request and the
 Digest-HA1 attribute's value to finish the computation of the
 'rspauth' value.

 o If the Access-Accept packet contains neither a
 Digest-Response-Auth nor a Digest-HA1 attribute, the RADIUS client
 will not create an Authentication-Info header for its HTTP-style
 response.

 When the RADIUS server provides a Digest-Nextnonce attribute in the
 Access-Accept packet, the RADIUS client puts the contents of this
 attribute into a 'nextnonce' directive. Now it can send an
 HTTP-style response.

2.1.4. Failed Authentication

 If the RADIUS client did receive an HTTP-style request without a
 (Proxy-)Authorization header matching its locally configured realm
 value, it obtains a new nonce and sends an error response (401 or
 407) containing a (Proxy-)Authenticate header.

 If the RADIUS client receives an Access-Challenge packet in response
 to an Access-Request containing a Digest-Nonce attribute, the RADIUS
 server did not accept the nonce. If a Digest-Stale attribute is
 present in the Access-Challenge and has a value of 'true' (without
 surrounding quotes), the RADIUS client sends an error response (401
 or 407) containing a WWW-/Proxy-Authenticate header with the
 directive 'stale' and the digest directives derived from the Digest-*
 attributes.

 If the RADIUS client receives an Access-Reject from the RADIUS
 server, it sends an error response to the HTTP-style request it has
 received. If the RADIUS client does not receive a response, it
 retransmits or fails over to another RADIUS server as described in
 [RFC2865].

2.1.5. Obtaining Nonces

 The RADIUS client has two ways to obtain nonces: it has received one
 in a Digest-Nextnonce attribute of a previously received
 Access-Accept packet or it asks the RADIUS server for one. To do the
 latter, it sends an Access-Request containing a Digest-Method and a
 Digest-URI attribute but without a Digest-Nonce attribute. It adds a
 Message-Authenticator (see [RFC3579]) attribute to the Access-Request
 packet. The RADIUS server chooses a nonce and responds with an
 Access-Challenge containing a Digest-Nonce attribute.

 The RADIUS client constructs a (Proxy-)Authenticate header using the
 received Digest-Nonce and Digest-Realm attributes to fill the nonce
 and realm directives. The RADIUS server can send Digest-Qop,
 Digest-Algorithm, Digest-Domain, and Digest-Opaque attributes in the
 Access-Challenge carrying the nonce. If these attributes are
 present, the client MUST use them.

2.2. RADIUS Server Behavior

 If the RADIUS server receives an Access-Request packet with a
 Digest-Method and a Digest-URI attribute but without a Digest-Nonce
 attribute, it chooses a nonce. It puts the nonce into a Digest-Nonce
 attribute and sends it in an Access-Challenge packet to the RADIUS
 client. The RADIUS server MUST add Digest-Realm,
 Message-Authenticator (see [RFC3579]), SHOULD add Digest-Algorithm
 and one or more Digest-Qop, and MAY add Digest-Domain or
 Digest-Opaque attributes to the Access-Challenge packet.

2.2.1. General Attribute Checks

 If the RADIUS server receives an Access-Request packet containing a
 Digest-Response attribute, it looks for the following attributes:
 Digest-Realm, Digest-Nonce, Digest-Method, Digest-URI, Digest-Qop,
 Digest-Algorithm, and Digest-Username. Depending on the content of
 Digest-Algorithm and Digest-Qop, it looks for
 Digest-Entity-Body-Hash, Digest-CNonce, and Digest-AKA-Auts, too.
 See [RFC2617] and [RFC3310] for details. If the Digest-Algorithm
 attribute is missing, 'MD5' is assumed. If the RADIUS server has
 issued a Digest-Opaque attribute along with the nonce, the
 Access-Request MUST have a matching Digest-Opaque attribute.

 If mandatory attributes are missing, it MUST respond with an
 Access-Reject packet.

 The RADIUS server removes '\' characters that escape quote and '\'
 characters from the text values it has received in the Digest-*
 attributes.

 If the mandatory attributes are present, the RADIUS server MUST check
 if the RADIUS client is authorized to serve users of the realm
 mentioned in the Digest-Realm attribute. If the RADIUS client is not
 authorized, the RADIUS server MUST send an Access-Reject. The RADIUS
 server SHOULD log the event so as to notify the operator, and MAY
 take additional action such as sending an Access-Reject in response
 to all future requests from this client, until this behavior is reset
 by management action.

 The RADIUS server determines the age of the nonce in Digest-Nonce by
 using an embedded time-stamp or by looking it up in a local table.
 The RADIUS server MUST check the integrity of the nonce if it embeds
 the time-stamp in the nonce. Section 2.2.2 describes how the server
 handles old nonces.

2.2.2. Authentication

 If the Access-Request message has passed the checks described above,
 the RADIUS server calculates the digest response as described in
 [RFC2617]. To look up the password, the RADIUS server uses the
 RADIUS User-Name attribute. The RADIUS server MUST check if the user
 identified by the User-Name attribute

 o is authorized to access the protection space and

 o is authorized to use the URI included in the SIP-AOR attribute, if
 this attribute is present.

 If any of those checks fails, the RADIUS server MUST send an
 Access-Reject.

 Correlation between User-Name and SIP-AOR AVP values is required just
 to avoid that any user can register or misuse a SIP-AOR allocated to
 a different user.

 All values required for the digest calculation are taken from the
 Digest attributes described in this document. If the calculated
 digest response equals the value received in the Digest-Response
 attribute, the authentication was successful.

 If the response values match, but the RADIUS server considers the
 nonce in the Digest-Nonce attribute as too old, it sends an
 Access-Challenge packet containing a new nonce and a Digest-Stale
 attribute with a value of 'true' (without surrounding quotes).

 If the response values don't match, the RADIUS server responds with
 an Access-Reject.

2.2.3. Constructing the Reply

 If the authentication was successful, the RADIUS server adds an
 attribute to the Access-Accept packet that can be used by the RADIUS
 client to construct an Authentication-Info header:

 o If the Digest-Qop attribute's value is 'auth' or unspecified, the
 RADIUS server SHOULD put a Digest-Response-Auth attribute into the
 Access-Accept packet.

 o If the Digest-Qop attribute's value is 'auth-int' and at least one
 of the following conditions is true, the RADIUS server SHOULD put
 a Digest-HA1 attribute into the Access-Accept packet:

 * The Digest-Algorithm attribute's value is 'MD5-sess' or
 'AKAv1-MD5-sess'.

 * IPsec is configured to protect traffic between the RADIUS
 client and RADIUS server with IPsec (see Section 8).

 In all other cases, Digest-Response-Auth or Digest-HA1 MUST NOT be
 sent.

 RADIUS servers MAY construct a Digest-Nextnonce attribute and add it
 to the Access-Accept packet. This is useful to limit the lifetime of
 a nonce and to save a round-trip in future requests (see nextnonce
 discussion in [RFC2617], section 3.2.3). The RADIUS server adds a
 Message-Authenticator attribute (see [RFC3579]) and sends the
 Access-Accept packet to the RADIUS client.

 If the RADIUS server does not accept the nonce received in an
 Access-Request packet but authentication was successful, the RADIUS
 server MUST send an Access-Challenge packet containing a Digest-Stale
 attribute set to 'true' (without surrounding quotes). The RADIUS
 server MUST add Message-Authenticator (see [RFC3579]), Digest-Nonce,
 Digest-Realm, SHOULD add Digest-Algorithm and one or more Digest-Qop
 and MAY add Digest-Domain, Digest-Opaque attributes to the
 Access-Challenge packet.

3. New RADIUS Attributes

 If not stated otherwise, the attributes have the following format:

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
+‑+
| Type | Length | Text ...
+‑+

 Quote and backslash characters in Digest-* attributes representing
 HTTP-style directives with a quoted-string syntax are escaped. The
 surrounding quotes are removed. They are syntactical delimiters that
 are redundant in RADIUS. For example, the directive

 realm="the \"example\" value"

 is represented as follows:

+‑+
| Digest‑Realm | 23 | the \"example\" value |
+‑+

3.1. Digest-Response attribute

Description
 If this attribute is present in an Access‑Request message, a
 RADIUS server implementing this specification MUST treat the
 Access‑Request as a request for Digest Authentication. When a
 RADIUS client receives a (Proxy‑)Authorization header, it puts
 the request‑digest value into a Digest‑Response attribute.
 This attribute (which enables the user to prove possession of
 the password) MUST only be used in Access‑Requests.
Type
 103 for Digest‑Response.
Length
 >= 3

 Text

 When using HTTP Digest, the text field is 32 octets long and
 contains a hexadecimal representation of a 16-octet digest
 value as it was calculated by the authenticated client. Other
 digest algorithms MAY define different digest lengths. The
 text field MUST be copied from request-digest of
 digest-response ([RFC2617]) without surrounding quotes.

3.2. Digest-Realm Attribute

Description
 This attribute describes a protection space component of the
 RADIUS server. HTTP‑style protocols differ in their definition
 of the protection space. See [RFC2617], Section 1.2, for
 details. It MUST only be used in Access‑Request and
 Access‑Challenge packets.
Type
 104 for Digest‑Realm
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 realm directive (realm‑value according to [RFC2617]) without
 surrounding quotes from the HTTP‑style request it wants to
 authenticate. In Access‑Challenge packets, the RADIUS server
 puts the expected realm value into this attribute.

3.3. Digest-Nonce Attribute

 Description

 This attribute holds a nonce to be used in the HTTP Digest
 calculation. If the Access‑Request had a Digest‑Method and a
 Digest‑URI but no Digest‑Nonce attribute, the RADIUS server
 MUST put a Digest‑Nonce attribute into its Access‑Challenge
 packet. This attribute MUST only be used in Access‑Request and
 Access‑Challenge packets.
Type
 105 for Digest‑Nonce
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 nonce directive (nonce‑value in [RFC2617]) without surrounding
 quotes from the HTTP‑style request it wants to authenticate.
 In Access‑Challenge packets, the attribute contains the nonce
 selected by the RADIUS server.

3.4. Digest-Response-Auth Attribute

Description
 This attribute enables the RADIUS server to prove possession of
 the password. If the previously received Digest‑Qop attribute
 was 'auth‑int' (without surrounding quotes), the RADIUS server
 MUST send a Digest‑HA1 attribute instead of a
 Digest‑Response‑Auth attribute. The Digest‑Response‑Auth
 attribute MUST only be used in Access‑Accept packets. The
 RADIUS client puts the attribute value without surrounding
 quotes into the rspauth directive of the Authentication‑Info
 header.
Type
 106 for Digest‑Response‑Auth.
Length
 >= 3
Text
 The RADIUS server calculates a digest according to section
 3.2.3 of [RFC2617] and copies the result into this attribute.
 Digest algorithms other than the one defined in [RFC2617] MAY
 define digest lengths other than 32.

3.5. Digest-Nextnonce Attribute

 This attribute holds a nonce to be used in the HTTP Digest
 calculation.

 Description

 The RADIUS server MAY put a Digest‑Nextnonce attribute into an
 Access‑Accept packet. If this attribute is present, the RADIUS
 client MUST put the contents of this attribute into the
 nextnonce directive of an Authentication‑Info header in its
 HTTP‑style response. This attribute MUST only be used in
 Access‑Accept packets.
Type
 107 for Digest‑Nextnonce
Length
 >=3
Text
 It is recommended that this text be base64 or hexadecimal data.

3.6. Digest-Method Attribute

 Description

 This attribute holds the method value to be used in the HTTP
 Digest calculation. This attribute MUST only be used in
 Access-Request packets.

Type
 108 for Digest‑Method
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 request method from the HTTP‑style request it wants to
 authenticate.

3.7. Digest-URI Attribute

Description
 This attribute is used to transport the contents of the
 digest‑uri directive or the URI of the HTTP‑style request. It
 MUST only be used in Access‑Request packets.
Type
 109 for Digest‑URI
Length
 >=3
Text
 If the HTTP‑style request has an Authorization header, the
 RADIUS client puts the value of the "uri" directive found in
 the HTTP‑style request Authorization header (known as
 "digest‑uri‑value" in section 3.2.2 of [RFC2617]) without
 surrounding quotes into this attribute. If there is no
 Authorization header, the RADIUS client takes the value of the
 request URI from the HTTP‑style request it wants to
 authenticate.

3.8. Digest-Qop Attribute

Description
 This attribute holds the Quality of Protection parameter that
 influences the HTTP Digest calculation. This attribute MUST
 only be used in Access‑Request and Access‑Challenge packets. A
 RADIUS client SHOULD insert one of the Digest‑Qop attributes it
 has received in a previous Access‑Challenge packet. RADIUS
 servers SHOULD insert at least one Digest‑Qop attribute in an
 Access‑Challenge packet. Digest‑Qop is optional in order to
 preserve backward compatibility with a minimal implementation
 of [RFC2069].
Type
 110 for Digest‑Qop
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 qop directive (qop‑value as described in [RFC2617]) from the

 HTTP-style request it wants to authenticate. In
 Access-Challenge packets, the RADIUS server puts a desired
 qop-value into this attribute. If the RADIUS server supports
 more than one "quality of protection" value, it puts each
 qop-value into a separate Digest-Qop attribute.

3.9. Digest-Algorithm Attribute

Description
 This attribute holds the algorithm parameter that influences
 the HTTP Digest calculation. It MUST only be used in
 Access‑Request and Access‑Challenge packets. If this attribute
 is missing, MD5 is assumed.
Type
 111 for Digest‑Algorithm
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 algorithm directive (as described in [RFC2617], section 3.2.1)
 from the HTTP‑style request it wants to authenticate. In
 Access‑Challenge packets, the RADIUS server SHOULD put the
 desired algorithm into this attribute.

3.10. Digest-Entity-Body-Hash Attribute

 Description

 When using the qop-level 'auth-int', a hash of the HTTP-style
 message body's contents is required for digest calculation.
 Instead of sending the complete body of the message, only its
 hash value is sent. This hash value can be used directly in
 the digest calculation.

 The clarifications described in section 22.4 of [RFC3261] about
 the hash of empty entity bodies apply to the
 Digest‑Entity‑Body‑Hash attribute. This attribute MUST only be
 sent in Access‑Request packets.
Type
 112 for Digest‑Entity‑Body‑Hash
Length
 >=3
Text
 The attribute holds the hexadecimal representation of
 H(entity‑body). This hash is required by certain
 authentication mechanisms, such as HTTP Digest with quality of
 protection set to "auth‑int". RADIUS clients MUST use this
 attribute to transport the hash of the entity body when HTTP
 Digest is the authentication mechanism and the RADIUS server

 requires that the integrity of the entity body (e.g., qop
 parameter set to "auth-int") be verified. Extensions to this
 document may define support for authentication mechanisms other
 than HTTP Digest.

3.11. Digest-CNonce Attribute

Description
 This attribute holds the client nonce parameter that is used in
 the HTTP Digest calculation. It MUST only be used in
 Access‑Request packets.
Type
 113 for Digest‑CNonce
Length
 >=3
Text
 This attribute includes the value of the cnonce‑value [RFC2617]
 without surrounding quotes, taken from the HTTP‑style request.

3.12. Digest-Nonce-Count Attribute

 Description

 This attribute includes the nonce count parameter that is used
 to detect replay attacks. The attribute MUST only be used in
 Access-Request packets.

Type
 114 for Digest‑Nonce‑Count
Length
 10
Text
 In Access‑Requests, the RADIUS client takes the value of the nc
 directive (nc‑value according to [RFC2617]) without surrounding
 quotes from the HTTP‑style request it wants to authenticate.

3.13. Digest-Username Attribute

Description
 This attribute holds the user name used in the HTTP Digest
 calculation. The RADIUS server MUST use this attribute only
 for the purposes of calculating the digest. In order to
 determine the appropriate user credentials, the RADIUS server
 MUST use the User‑Name (1) attribute, and MUST NOT use the
 Digest‑Username attribute. This attribute MUST only be used in
 Access‑Request packets.
Type
 115 for Digest‑Username

Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 username directive (username‑value according to [RFC2617])
 without surrounding quotes from the HTTP‑style request it wants
 to authenticate.

3.14. Digest-Opaque Attribute

Description
 This attribute holds the opaque parameter that is passed to the
 HTTP‑style client. The HTTP‑style client will pass this value
 back to the server (i.e., the RADIUS client) without
 modification. This attribute MUST only be used in
 Access‑Request and Access‑Challenge packets.
Type
 116 for Digest‑Opaque
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 opaque directive (opaque‑value according to [RFC2617]) without
 surrounding quotes from the HTTP‑style request it wants to
 authenticate and puts it into this attribute. In
 Access‑Challenge packets, the RADIUS server MAY include this
 attribute.

3.15. Digest-Auth-Param Attribute

 Description

 This attribute is a placeholder for future extensions and
 corresponds to the "auth-param" parameter defined in section
 3.2.1 of [RFC2617]. The Digest-Auth-Param is the mechanism
 whereby the RADIUS client and RADIUS server can exchange
 auth-param extension parameters contained within Digest headers
 that are not understood by the RADIUS client and for which
 there are no corresponding stand-alone attributes.

 Unlike the previously listed Digest-* attributes, the
 Digest-Auth-Param contains not only the value but also the
 parameter name, since the parameter name is unknown to the
 RADIUS client. If the Digest header contains several unknown
 parameters, then the RADIUS implementation MUST repeat this
 attribute and each instance MUST contain one different unknown
 Digest parameter/value combination. This attribute MUST ONLY
 be used in Access-Request, Access-Challenge, or Access-Accept
 packets.

Type
 117 for Digest‑Auth‑Param
Length
 >=3
Text
 The text consists of the whole parameter, including its name
 and the equal sign ('=') and quotes.

3.16. Digest-AKA-Auts Attribute

Description
 This attribute holds the auts parameter that is used in the
 Digest AKA ([RFC3310]) calculation. It is only used if the
 algorithm of the digest‑response denotes a version of AKA
 Digest [RFC3310]. This attribute MUST only be used in
 Access‑Request packets.
Type
 118 for Digest‑AKA‑Auts
Length
 >=3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 auts directive (auts‑param according to section 3.4 of
 [RFC3310]) without surrounding quotes from the HTTP‑style
 request it wants to authenticate.

3.17. Digest-Domain Attribute

Description
 When a RADIUS client has asked for a nonce, the RADIUS server
 MAY send one or more Digest‑Domain attributes in its
 Access‑Challenge packet. The RADIUS client puts them into the
 quoted, space‑separated list of URIs of the 'domain' directive
 of a WWW‑Authenticate header. Together with Digest‑Realm, the
 URIs in the list define the protection space (see [RFC2617],
 section 3.2.1) for some HTTP‑style protocols. This attribute
 MUST only be used in Access‑Challenge packets.
Type
 119 for Digest‑Domain
Length
 3
Text
 This attribute consists of a single URI that defines a
 protection space component.

3.18. Digest-Stale Attribute

Description
 This attribute is sent by a RADIUS server in order to notify
 the RADIUS client whether it has accepted a nonce. If the
 nonce presented by the RADIUS client was stale, the value is
 'true' and is 'false' otherwise. The RADIUS client puts the
 content of this attribute into a 'stale' directive of the
 WWW‑Authenticate header in the HTTP‑style response to the
 request it wants to authenticate. The attribute MUST only be
 used in Access‑Challenge packets.
Type
 120 for Digest‑Stale
Length
 3
Text
 The attribute has either the value 'true' or 'false' (both
 values without surrounding quotes).

3.19. Digest-HA1 Attribute

 Description

 This attribute is used to allow the generation of an
 Authentication-Info header, even if the HTTP-style response's
 body is required for the calculation of the rspauth value. It
 SHOULD be used in Access-Accept packets if the required quality
 of protection ('qop') is 'auth-int'.

 This attribute MUST NOT be sent if the qop parameter was not
 specified or has a value of 'auth' (in this case, use
 Digest-Response-Auth instead).

 The Digest-HA1 attribute MUST only be sent by the RADIUS server
 or processed by the RADIUS client if at least one of the
 following conditions is true:

 + The Digest-Algorithm attribute's value is 'MD5-sess' or
 'AKAv1-MD5-sess'.

 + IPsec is configured to protect traffic between RADIUS client
 and RADIUS server with IPsec (see Section 8).

 This attribute MUST only be used in Access‑Accept packets.
Type
 121 for Digest‑HA1
Length
 >= 3

 Text

 This attribute contains the hexadecimal representation of H(A1)
 as described in [RFC2617], sections 3.1.3, 3.2.1, and 3.2.2.2.

3.20. SIP-AOR Attribute

Description
 This attribute is used for the authorization of SIP messages.
 The SIP‑AOR attribute identifies the URI, the use of which must
 be authenticated and authorized. The RADIUS server uses this
 attribute to authorize the processing of the SIP request. The
 SIP‑AOR can be derived from, for example, the To header field
 in a SIP REGISTER request (user under registration), or the
 From header field in other SIP requests. However, the exact
 mapping of this attribute to SIP can change due to new
 developments in the protocol. This attribute MUST only be used
 when the RADIUS client wants to authorize SIP users and MUST
 only be used in Access‑Request packets.
Type
 122 for SIP‑AOR
Length
 >=3
Text
 The syntax of this attribute corresponds either to a SIP URI
 (with the format defined in [RFC3261] or a tel URI (with the
 format defined in [RFC3966]).

 The SIP-AOR attribute holds the complete URI, including
 parameters and other parts. It is up to the RADIUS server what
 components of the URI are regarded in the authorization
 decision.

4. Diameter Compatibility

 This document defines support for Digest Authentication in RADIUS. A
 companion document "Diameter Session Initiation Protocol (SIP)
 Application" [SIP-APP] defines support for Digest Authentication in
 Diameter, and addresses compatibility issues between RADIUS and
 Diameter.

5. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets, and in what quantity.

+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Req | Accept | Reject | Challenge | # | Attribute |
+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
1	0	0	0	1	User‑Name
1	1	1	1	80	Message‑Authenticator
0‑1	0	0	0	103	Digest‑Response
0‑1	0	0	1	104	Digest‑Realm
0‑1	0	0	1	105	Digest‑Nonce
0	0‑1	0	0	106	Digest‑Response‑Auth
					(see Note 1, 2)
0	0‑1	0	0	107	Digest‑Nextnonce
0‑1	0	0	0	108	Digest‑Method
0‑1	0	0	0	109	Digest‑URI
0‑1	0	0	0+	110	Digest‑Qop
0‑1	0	0	0‑1	111	Digest‑Algorithm (see
					Note 3)
0‑1	0	0	0	112	Digest‑Entity‑Body‑Hash
0‑1	0	0	0	113	Digest‑CNonce
0‑1	0	0	0	114	Digest‑Nonce‑Count
0‑1	0	0	0	115	Digest‑Username
0‑1	0	0	0‑1	116	Digest‑Opaque
0+	0+	0	0+	117	Digest‑Auth‑Param
0‑1	0	0	0	118	Digest‑AKA‑Auts
0	0	0	0+	119	Digest‑Domain
0	0	0	0‑1	120	Digest‑Stale
0	0‑1	0	0	121	Digest‑HA1 (see Note 1,
					2)
0‑1	0	0	0	122	SIP‑AOR
+‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 1

 [Note 1] Digest-HA1 MUST be used instead of Digest-Response-Auth if

 Digest-Qop is 'auth-int'.

 [Note 2] Digest-Response-Auth MUST be used instead of Digest-HA1 if

 Digest-Qop is 'auth'.

 [Note 3] If Digest-Algorithm is missing, 'MD5' is assumed.

6. Examples

 This is an example selected from the traffic between a softphone (A),
 a Proxy Server (B), and an example.com RADIUS server (C). The
 communication between the Proxy Server and a SIP Public Switched
 Telephone Network (PSTN) gateway is omitted for brevity. The SIP
 messages are not shown completely.

 A->B

INVITE sip:97226491335@example.com SIP/2.0
From: <sip:12345678@example.com>
To: <sip:97226491335@example.com>

 B->A

 SIP/2.0 100 Trying

 B->C

Code = 1 (Access‑Request)
Attributes:
NAS‑IP‑Address = c0 0 2 26 (192.0.2.38)
NAS‑Port‑Type = 5 (Virtual)
User‑Name = 12345678
Digest‑Method = INVITE
Digest‑URI = sip:97226491335@example.com
Message‑Authenticator =
 08 af 7e 01 b6 8d 74 c3 a4 3c 33 e1 56 2a 80 43

 C->B

Code = 11 (Access‑Challenge)
Attributes:
Digest‑Nonce = 3bada1a0
Digest‑Realm = example.com
Digest‑Qop = auth
Digest‑Algorithm = MD5
Message‑Authenticator =
 f8 01 26 9f 70 5e ef 5d 24 ac f5 ca fb 27 da 40

 B->A

SIP/2.0 407 Proxy Authentication Required
Proxy‑Authenticate: Digest realm="example.com"
 ,nonce="3bada1a0",qop=auth,algorithm=MD5
Content‑Length: 0

 A->B

 ACK sip:97226491335@example.com SIP/2.0

 A->B

INVITE sip:97226491335@example.com SIP/2.0
Proxy‑Authorization: Digest algorithm="md5",nonce="3bada1a0"
 ,realm="example.com"
 ,response="f3ce87e6984557cd0fecc26f3c5e97a4"
 ,uri="sip:97226491335@example.com",username="12345678"
 ,qop=auth,algorithm=MD5
From: <sip:12345678@example.com>
To: <sip:97226491335@example.com>

 B->C

Code = 1 (Access‑Request)
Attributes:
NAS‑IP‑Address = c0 0 2 26 (192.0.2.38)
NAS‑Port‑Type = 5 (Virtual)
User‑Name = 12345678
Digest‑Response = f3ce87e6984557cd0fecc26f3c5e97a4
Digest‑Realm = example.com
Digest‑Nonce = 3bada1a0
Digest‑Method = INVITE
Digest‑URI = sip:97226491335@example.com
Digest‑Qop = auth
Digest‑Algorithm = md5
Digest‑Username = 12345678
SIP‑AOR = sip:12345678@example.com
Message‑Authenticator =
 ff 67 f4 13 8e b8 59 32 22 f9 37 0f 32 f8 e0 ff

 C->B

Code = 2 (Access‑Accept)
Attributes:
Digest‑Response‑Auth =
 6303c41b0e2c3e524e413cafe8cce954
Message‑Authenticator =
 75 8d 44 49 66 1f 7b 47 9d 10 d0 2d 4a 2e aa f1

 B->A

 SIP/2.0 180 Ringing

 B->A

 SIP/2.0 200 OK

 A->B

 ACK sip:97226491335@example.com SIP/2.0

 A second example shows the traffic between a web browser (A), web
 server (B), and a RADIUS server (C).

 A->B

 GET /index.html HTTP/1.1

 B->C

Code = 1 (Access‑Request)
Attributes:
NAS‑IP‑Address = c0 0 2 26 (192.0.2.38)
NAS‑Port‑Type = 5 (Virtual)
Digest‑Method = GET
Digest‑URI = /index.html
Message‑Authenticator =
 34 a6 26 46 f3 81 f9 b4 97 c0 dd 9d 11 8f ca c7

 C->B

Code = 11 (Access‑Challenge)
Attributes:
Digest‑Nonce = a3086ac8
Digest‑Realm = example.com
Digest‑Qop = auth
Digest‑Algorithm = MD5
Message‑Authenticator =
 f8 01 26 9f 70 5e ef 5d 24 ac f5 ca fb 27 da 40

 B->A

HTTP/1.1 401 Authentication Required
WWW‑Authenticate: Digest realm="example.com",
 nonce="a3086ac8",qop=auth,algorithm=MD5
Content‑Length: 0

 A->B

GET /index.html HTTP/1.1
Authorization: Digest algorithm=MD5,nonce="a3086ac8"
 ,realm="example.com"
 ,response="f052b68058b2987aba493857ae1ab002"
 ,uri="/index.html",username="12345678"
 ,qop=auth,algorithm=MD5

 B->C

Code = 1 (Access‑Request)
Attributes:
NAS‑IP‑Address = c0 0 2 26 (192.0.2.38)
NAS‑Port‑Type = 5 (Virtual)
User‑Name = 12345678
Digest‑Response = f052b68058b2987aba493857ae1ab002
Digest‑Realm = example.com
Digest‑Nonce = a3086ac8
Digest‑Method = GET
Digest‑URI = /index.html
Digest‑Username = 12345678
Digest‑Qop = auth
Digest‑Algorithm = MD5
Message‑Authenticator =
 06 e1 65 23 57 94 e6 de 87 5a e8 ce a2 7d 43 6b

 C->B

Code = 2 (Access‑Accept)
Attributes:
Digest‑Response‑Auth =
 e644aa513effbfe1caff67103ff6433c
Message‑Authenticator =
 7a 66 73 a3 52 44 dd ca 90 e2 f6 10 61 2d 81 d7

 B->A

HTTP/1.1 200 OK
...

<html>
...

7. IANA Considerations

 This document serves as an IANA registration request for a number of
 values from the RADIUS attribute type number space. The IANA has
 assigned the following:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| placeholder | value assigned by IANA |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Digest‑Response	103
Digest‑Realm	104
Digest‑Nonce	105
Digest‑Nextnonce	106
Digest‑Response‑Auth	107
Digest‑Method	108
Digest‑URI	109
Digest‑Qop	110
Digest‑Algorithm	111
Digest‑Entity‑Body‑Hash	112
Digest‑CNonce	113
Digest‑Nonce‑Count	114
Digest‑Username	115
Digest‑Opaque	116
Digest‑Auth‑Param	117
Digest‑AKA‑Auts	118
Digest‑Domain	119
Digest‑Stale	120
Digest‑HA1	121
SIP‑AOR	122
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Table 2

8. Security Considerations

 The RADIUS extensions described in this document enable RADIUS to
 transport the data that is required to perform a digest calculation.
 As a result, RADIUS inherits the vulnerabilities of HTTP Digest (see
 [RFC2617], section 4) in addition to RADIUS security vulnerabilities
 described in [RFC2865], section 8, and [RFC3579], section 4.

 An attacker compromising a RADIUS client or proxy can carry out
 man-in-the-middle attacks even if the paths between A, B and B, C
 (Figure 2) have been secured with TLS or IPsec.

 The RADIUS server MUST check the Digest-Realm attribute it has
 received from a client. If the RADIUS client is not authorized to
 serve HTTP-style clients of that realm, it might be compromised.

8.1. Denial of Service

 RADIUS clients implementing the extension described in this document
 may authenticate HTTP-style requests received over the Internet. As
 compared with the use of RADIUS to authenticate link-layer network
 access, attackers may find it easier to cover their tracks in such a
 scenario.

 An attacker can attempt a denial-of-service attack on one or more
 RADIUS servers by sending a large number of HTTP-style requests. To
 make simple denial-of-service attacks more difficult, the RADIUS
 server MUST check whether it has generated the nonce received from an
 HTTP-style client. This SHOULD be done statelessly. For example, a
 nonce could consist of a cryptographically random part and some kind
 of signature provided by the RADIUS client, as described in
 [RFC2617], section 3.2.1.

8.2. Confidentiality and Data Integrity

 The attributes described in this document are sent in cleartext.
 RADIUS servers SHOULD include Digest-Qop and Digest-Algorithm
 attributes in Access-Challenge messages. A man in the middle can
 modify or remove those attributes in a bidding down attack, causing
 the RADIUS client to use a weaker authentication scheme than
 intended.

 The Message-Authenticator attribute, described in [RFC3579], section
 3.2 MUST be included in Access-Request, Access-Challenge,
 Access-Reject, and Access-Accept messages that contain attributes
 described in this specification.

 The Digest-HA1 attribute contains no random components if the
 algorithm is 'MD5' or 'AKAv1-MD5'. This makes offline dictionary
 attacks easier and enables replay attacks.

 Some parameter combinations require the protection of RADIUS packets
 against eavesdropping and tampering. Implementations SHOULD try to
 determine automatically whether IPsec is configured to protect
 traffic between the RADIUS client and the RADIUS server. If this is
 not possible, the implementation checks a configuration parameter
 telling it whether IPsec will protect RADIUS traffic. The default
 value of this configuration parameter tells the implementation that
 RADIUS packets will not be protected.

 HTTP-style clients can use TLS with server side certificates together
 with HTTP-Digest Authentication. Instead of TLS, IPsec can be used,
 too. TLS or IPsec secure the connection while Digest Authentication
 authenticates the user. The RADIUS transaction can be regarded as
 one leg on the path between the HTTP-style client and the HTTP-style
 server. To prevent RADIUS from representing the weak link, a RADIUS
 client receiving an HTTP-style request via TLS or IPsec could use an
 equally secure connection to the RADIUS server. There are several
 ways to achieve this, for example:

 o The RADIUS client may reject HTTP-style requests received over TLS
 or IPsec.

 o The RADIUS client may require that traffic be sent and received
 over IPsec.

 RADIUS over IPsec, if used, MUST conform to the requirements
 described in [RFC3579], section 4.2.

9. Acknowledgements

 We would like to acknowledge Kevin McDermott (Cisco Systems) for
 providing comments and experimental implementation.

 Many thanks to all reviewers, especially to Miguel Garcia, Jari
 Arkko, Avi Lior, and Jun Wang.

10. References

10.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2617]
 Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3261]
 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC3966]
 Schulzrinne, H., "The tel URI for Telephone Numbers", RFC
 3966, December 2004.

10.2. Informative References

 [SIP-APP]
 Garcia-Martin, M., "Diameter Session Initiation Protocol
 (SIP) Application", Work in Progress), April 2006.

 [RFC1994]
 Simpson, W., "PPP Challenge Handshake Authentication
 Protocol (CHAP)", RFC 1994, August 1996.

 [RFC2069]
 Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
 Luotonen, A., Sink, E., and L. Stewart, "An Extension to
 HTTP : Digest Access Authentication", RFC 2069, January
 1997.

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC3851]
 Ramsdell, B., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification",
 RFC 3851, July 2004.

 [RFC3310]
 Niemi, A., Arkko, J., and V. Torvinen, "Hypertext Transfer
 Protocol (HTTP) Digest Authentication Using Authentication
 and Key Agreement (AKA)", RFC 3310, September 2002.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

Authors' Addresses

Baruch Sterman
Kayote Networks
P.O. Box 1373
Efrat 90435
Israel

 EMail: baruch@kayote.com

Daniel Sadolevsky
SecureOL, Inc.
Jerusalem Technology Park
P.O. Box 16120
Jerusalem 91160
Israel

 EMail: dscreat@dscreat.com

David Schwartz
Kayote Networks
P.O. Box 1373
Efrat 90435
Israel

 EMail: david@kayote.com

David Williams
Cisco Systems
7025 Kit Creek Road
P.O. Box 14987
Research Triangle Park NC 27709
USA

 EMail: dwilli@cisco.com

Wolfgang Beck
Deutsche Telekom AG
Deutsche Telekom Allee 7
Darmstadt 64295
Germany

 EMail: beckw@t-systems.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4668 - RADIUS Authentication Client MIB for IPv6

Index
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4668

Obsoletes: 2618

Category: Standards Track

D. Nelson

Enterasys Networks

August 2006

RADIUS Authentication Client MIB for IPv6

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo defines a set of extensions that instrument RADIUS
 authentication client functions. These extensions represent a
 portion of the Management Information Base (MIB) for use with network
 management protocols in the Internet community. Using these
 extensions, IP-based management stations can manage RADIUS
 authentication clients.

 This memo obsoletes RFC 2618 by deprecating the MIB table containing
 IPv4-only address formats and defining a new table to add support for
 version-neutral IP address formats. The remaining MIB objects from
 RFC 2618 are carried forward into this document. The memo also adds
 UNITS and REFERENCE clauses to selected objects.

Table of Contents

	1. Introduction

	2. Terminology

	3. The Internet-Standard Management Framework

	4. Scope of Changes

	5. Structure of the MIB Module

	6. Deprecated Objects

	7. Definitions

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Acknowledgements

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 The objects defined within this memo relate to the Remote
 Authentication Dial-In User Service (RADIUS) Authentication Client as
 defined in RFC 2865 [RFC2865].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses terminology from RFC 2865 [RFC2865].

 This document uses the word "malformed" with respect to RADIUS
 packets, particularly in the context of counters of "malformed
 packets". While RFC 2865 does not provide an explicit definition of
 "malformed", malformed generally means that the implementation has
 determined the packet does not match the format defined in RFC 2865.
 Some implementations may determine that packets are malformed when
 the Vendor Specific Attribute (VSA) format does not follow the RFC
 2865 recommendations for VSAs. Those implementations are used in
 deployments today, and thus set the de facto definition of
 "malformed".

3. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

4. Scope of Changes

 This document obsoletes RFC 2618 [RFC2618], RADIUS Authentication
 Client MIB, by deprecating the radiusAuthServerTable table and adding
 a new table, radiusAuthServerExtTable, containing
 radiusAuthServerInetAddressType, radiusAuthServerInetAddress, and
 radiusAuthClientServerInetPortNumber. The purpose of these added MIB
 objects is to support version-neutral IP addressing formats. The
 existing table containing radiusAuthServerAddress and
 radiusAuthClientServerPortNumber is deprecated. The remaining MIB
 objects are carried forward from RFC 2618 into this document. This
 memo also adds UNITS and REFERENCE clauses to selected objects.

 RFC 4001 [RFC4001], which defines the SMI Textual Conventions for
 IPv6 addresses, contains the following recommendation.

 'In particular, when revising a MIB module that contains IPv4
 specific tables, it is suggested to define new tables using the
 textual conventions defined in this memo [RFC4001] that support all
 versions of IP. The status of the new tables SHOULD be "current",
 whereas the status of the old IP version specific tables SHOULD be
 changed to "deprecated". The other approach, of having multiple
 similar tables for different IP versions, is strongly discouraged.'

5. Structure of the MIB Module

 The RADIUS authentication protocol, described in RFC 2865 [RFC2865],
 distinguishes between the client function and the server function.
 In RADIUS authentication, clients send Access-Requests, and servers
 reply with Access-Accepts, Access-Rejects, and Access-Challenges.
 Typically, Network Access Server (NAS) devices implement the client
 function, and thus would be expected to implement the RADIUS
 authentication client MIB, while RADIUS authentication servers
 implement the server function, and thus would be expected to
 implement the RADIUS authentication server MIB.

 However, it is possible for a RADIUS authentication entity to perform
 both client and server functions. For example, a RADIUS proxy may
 act as a server to one or more RADIUS authentication clients, while
 simultaneously acting as an authentication client to one or more
 authentication servers. In such situations, it is expected that
 RADIUS entities combining client and server functionality will
 support both the client and server MIBs. The client MIB is defined
 in this document, and the server MIB is defined in [RFC4669].

 This MIB module contains two scalars as well as a single table, the
 RADIUS Authentication Server Table, which contains one row for each
 RADIUS authentication server with which the client shares a secret.
 Each entry in the RADIUS Authentication Server Table includes sixteen
 columns presenting a view of the activity of the RADIUS
 authentication client.

 This MIB imports from [RFC2578], [RFC2580], [RFC3411], and [RFC4001].

6. Deprecated Objects

 The deprecated table in this MIB is carried forward from RFC 2618
 [RFC2618]. There are two conditions under which it MAY be desirable
 for managed entities to continue to support the deprecated table:

 1. The managed entity only supports IPv4 address formats.

 2. The managed entity supports both IPv4 and IPv6 address formats,
 and the deprecated table is supported for backwards compatibility
 with older management stations. This option SHOULD only be used
 when the IP addresses in the new table are in IPv4 format and can
 accurately be represented in both the new table and the
 deprecated table.

 Managed entities SHOULD NOT instantiate row entries in the deprecated
 table, containing IPv4-only address objects, when the RADIUS server
 address represented in such a table row is not an IPv4 address.
 Managed entities SHOULD NOT return inaccurate values of IP address or
 SNMP object access errors for IPv4-only address objects in otherwise
 populated tables. When row entries exist in both the deprecated
 IPv4-only table and the new IP-version-neutral table that describe
 the same RADIUS server, the row indexes SHOULD be the same for the
 corresponding rows in each table, to facilitate correlation of these
 related rows by management applications.

7. Definitions

 RADIUS-AUTH-CLIENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE, OBJECT‑IDENTITY,
 Counter32, Integer32, Gauge32,
 IpAddress, TimeTicks, mib‑2 FROM SNMPv2‑SMI
 SnmpAdminString FROM SNMP‑FRAMEWORK‑MIB
 InetAddressType, InetAddress,
 InetPortNumber FROM INET‑ADDRESS‑MIB
 MODULE‑COMPLIANCE, OBJECT‑GROUP FROM SNMPv2‑CONF;

radiusAuthClientMIB MODULE‑IDENTITY
 LAST‑UPDATED "200608210000Z" ‑‑ 21 August 2006
 ORGANIZATION "IETF RADIUS Extensions Working Group."
 CONTACT‑INFO
 " Bernard Aboba
 Microsoft
 One Microsoft Way
 Redmond, WA 98052

 US
 Phone: +1 425 936 6605
 EMail: bernarda@microsoft.com"
 DESCRIPTION
 "The MIB module for entities implementing the client
 side of the Remote Authentication Dial‑In User Service
 (RADIUS) authentication protocol. Copyright (C) The
 Internet Society (2006). This version of this MIB
 module is part of RFC 4668; see the RFC itself for
 full legal notices."
 REVISION "200608210000Z" ‑‑ 21 August 2006
 DESCRIPTION
 "Revised version as published in RFC 4668. This
 version obsoletes that of RFC 2618 by deprecating
 the MIB table containing IPv4‑only address formats
 and defining a new table to add support for version
 neutral IP address formats. The remaining MIB objects
 from RFC 2618 are carried forward into this version."
 REVISION "199906110000Z" ‑‑ 11 Jun 1999
 DESCRIPTION "Initial version as published in RFC 2618."
 ::= { radiusAuthentication 2 }

radiusMIB OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "The OID assigned to RADIUS MIB work by the IANA."
 ::= { mib‑2 67 }

radiusAuthentication OBJECT IDENTIFIER ::= {radiusMIB 1}

radiusAuthClientMIBObjects OBJECT IDENTIFIER
 ::= { radiusAuthClientMIB 1 }

radiusAuthClient OBJECT IDENTIFIER
 ::= { radiusAuthClientMIBObjects 1 }

radiusAuthClientInvalidServerAddresses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Response packets
 received from unknown addresses."
 ::= { radiusAuthClient 1 }

 radiusAuthClientIdentifier OBJECT-TYPE

 SYNTAX SnmpAdminString

 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS authentication client.
 This is not necessarily the same as sysName in MIB II."
 REFERENCE "RFC 2865 section 5.32"
 ::= { radiusAuthClient 2 }

radiusAuthServerTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAuthServerEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "The (conceptual) table listing the RADIUS authentication
 servers with which the client shares a secret."
 ::= { radiusAuthClient 3 }

radiusAuthServerEntry OBJECT‑TYPE
 SYNTAX RadiusAuthServerEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 authentication server with which the client shares
 a secret."
 INDEX { radiusAuthServerIndex }
 ::= { radiusAuthServerTable 1 }

RadiusAuthServerEntry ::= SEQUENCE {
 radiusAuthServerIndex Integer32,
 radiusAuthServerAddress IpAddress,
 radiusAuthClientServerPortNumber Integer32,
 radiusAuthClientRoundTripTime TimeTicks,
 radiusAuthClientAccessRequests Counter32,
 radiusAuthClientAccessRetransmissions Counter32,
 radiusAuthClientAccessAccepts Counter32,
 radiusAuthClientAccessRejects Counter32,
 radiusAuthClientAccessChallenges Counter32,
 radiusAuthClientMalformedAccessResponses Counter32,
 radiusAuthClientBadAuthenticators Counter32,
 radiusAuthClientPendingRequests Gauge32,
 radiusAuthClientTimeouts Counter32,
 radiusAuthClientUnknownTypes Counter32,
 radiusAuthClientPacketsDropped Counter32
}

radiusAuthServerIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)

 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "A number uniquely identifying each RADIUS
 Authentication server with which this client
 communicates."
 ::= { radiusAuthServerEntry 1 }

radiusAuthServerAddress OBJECT‑TYPE
 SYNTAX IpAddress
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The IP address of the RADIUS authentication server
 referred to in this table entry."
 ::= { radiusAuthServerEntry 2 }

radiusAuthClientServerPortNumber OBJECT‑TYPE
 SYNTAX Integer32 (0..65535)
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The UDP port the client is using to send requests to
 this server."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthServerEntry 3 }

radiusAuthClientRoundTripTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The time interval (in hundredths of a second) between
 the most recent Access‑Reply/Access‑Challenge and the
 Access‑Request that matched it from this RADIUS
 authentication server."
 ::= { radiusAuthServerEntry 4 }

‑‑ Request/Response statistics
‑‑
‑‑ TotalIncomingPackets = Accepts + Rejects + Challenges +
‑‑ UnknownTypes
‑‑
‑‑ TotalIncomingPackets ‑ MalformedResponses ‑
‑‑ BadAuthenticators ‑ UnknownTypes ‑ PacketsDropped =
‑‑ Successfully received
‑‑
‑‑ AccessRequests + PendingRequests + ClientTimeouts =

‑‑ Successfully received
‑‑
‑‑

radiusAuthClientAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Request packets sent
 to this server. This does not include retransmissions."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthServerEntry 5 }

radiusAuthClientAccessRetransmissions OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Request packets
 retransmitted to this RADIUS authentication server."
 REFERENCE "RFC 2865 sections 2.5, 4.1"
 ::= { radiusAuthServerEntry 6 }

radiusAuthClientAccessAccepts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Accept packets
 (valid or invalid) received from this server."
 REFERENCE "RFC 2865 section 4.2"
 ::= { radiusAuthServerEntry 7 }

radiusAuthClientAccessRejects OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Reject packets
 (valid or invalid) received from this server."
 REFERENCE "RFC 2865 section 4.3"
 ::= { radiusAuthServerEntry 8 }

radiusAuthClientAccessChallenges OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Challenge packets
 (valid or invalid) received from this server."
 REFERENCE "RFC 2865 section 4.4"
 ::= { radiusAuthServerEntry 9 }

‑‑ "Access‑Response" includes an Access‑Accept, Access‑Challenge
‑‑ or Access‑Reject

radiusAuthClientMalformedAccessResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of malformed RADIUS Access‑Response
 packets received from this server.
 Malformed packets include packets with
 an invalid length. Bad authenticators or
 Message Authenticator attributes or unknown types
 are not included as malformed access responses."
 ::= { radiusAuthServerEntry 10 }

radiusAuthClientBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Response packets
 containing invalid authenticators or Message
 Authenticator attributes received from this server."
 REFERENCE "RFC 2865 section 3, RFC 2869 section 5.14"
 ::= { radiusAuthServerEntry 11 }

radiusAuthClientPendingRequests OBJECT‑TYPE
 SYNTAX Gauge32
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Request packets
 destined for this server that have not yet timed out
 or received a response. This variable is incremented

 when an Access‑Request is sent and decremented due to
 receipt of an Access‑Accept, Access‑Reject,
 Access‑Challenge, timeout, or retransmission."
 REFERENCE "RFC 2865 section 2"
 ::= { radiusAuthServerEntry 12 }

radiusAuthClientTimeouts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "timeouts"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of authentication timeouts to this server.
 After a timeout, the client may retry to the same
 server, send to a different server, or
 give up. A retry to the same server is counted as a
 retransmit as well as a timeout. A send to a different
 server is counted as a Request as well as a timeout."
 REFERENCE "RFC 2865 section 2, RFC 2869 section 2.3.2"
 ::= { radiusAuthServerEntry 13 }

radiusAuthClientUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this server on the authentication
 port."
 ::= { radiusAuthServerEntry 14 }

radiusAuthClientPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets that were
 received from this server on the authentication port
 and dropped for some other reason."
 ::= { radiusAuthServerEntry 15 }

 -- New MIB Objects in this revision

radiusAuthServerExtTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAuthServerExtEntry

 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the RADIUS authentication
 servers with which the client shares a secret."
 ::= { radiusAuthClient 4 }

radiusAuthServerExtEntry OBJECT‑TYPE
 SYNTAX RadiusAuthServerExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 authentication server with which the client shares
 a secret."
 INDEX { radiusAuthServerExtIndex }
 ::= { radiusAuthServerExtTable 1 }

RadiusAuthServerExtEntry ::= SEQUENCE {
 radiusAuthServerExtIndex Integer32,
 radiusAuthServerInetAddressType InetAddressType,
 radiusAuthServerInetAddress InetAddress,
 radiusAuthClientServerInetPortNumber InetPortNumber,
 radiusAuthClientExtRoundTripTime TimeTicks,
 radiusAuthClientExtAccessRequests Counter32,
 radiusAuthClientExtAccessRetransmissions Counter32,
 radiusAuthClientExtAccessAccepts Counter32,
 radiusAuthClientExtAccessRejects Counter32,
 radiusAuthClientExtAccessChallenges Counter32,
 radiusAuthClientExtMalformedAccessResponses Counter32,
 radiusAuthClientExtBadAuthenticators Counter32,
 radiusAuthClientExtPendingRequests Gauge32,
 radiusAuthClientExtTimeouts Counter32,
 radiusAuthClientExtUnknownTypes Counter32,
 radiusAuthClientExtPacketsDropped Counter32,
 radiusAuthClientCounterDiscontinuity TimeTicks
}

radiusAuthServerExtIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A number uniquely identifying each RADIUS
 Authentication server with which this client
 communicates."
 ::= { radiusAuthServerExtEntry 1 }

radiusAuthServerInetAddressType OBJECT‑TYPE
 SYNTAX InetAddressType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The type of address format used for the
 radiusAuthServerInetAddress object."
 ::= { radiusAuthServerExtEntry 2 }

radiusAuthServerInetAddress OBJECT‑TYPE
 SYNTAX InetAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The IP address of the RADIUS authentication
 server referred to in this table entry, using
 the version‑neutral IP address format."
 ::= { radiusAuthServerExtEntry 3 }

radiusAuthClientServerInetPortNumber OBJECT‑TYPE
 SYNTAX InetPortNumber (1..65535)
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The UDP port the client is using to send requests
 to this server. The value of zero (0) is invalid."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthServerExtEntry 4 }

radiusAuthClientExtRoundTripTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The time interval (in hundredths of a second) between
 the most recent Access‑Reply/Access‑Challenge and the
 Access‑Request that matched it from this RADIUS
 authentication server."
 REFERENCE "RFC 2865 section 2"
 ::= { radiusAuthServerExtEntry 5 }

‑‑ Request/Response statistics
‑‑
‑‑ TotalIncomingPackets = Accepts + Rejects + Challenges +
‑‑ UnknownTypes
‑‑
‑‑ TotalIncomingPackets ‑ MalformedResponses ‑
‑‑ BadAuthenticators ‑ UnknownTypes ‑ PacketsDropped =

‑‑ Successfully received
‑‑
‑‑ AccessRequests + PendingRequests + ClientTimeouts =
‑‑ Successfully received
‑‑
‑‑

radiusAuthClientExtAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Request packets sent
 to this server. This does not include retransmissions.
 This counter may experience a discontinuity when the
 RADIUS Client module within the managed entity is
 reinitialized, as indicated by the current value of
 radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthServerExtEntry 6 }

radiusAuthClientExtAccessRetransmissions OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Request packets
 retransmitted to this RADIUS authentication server.
 This counter may experience a discontinuity when
 the RADIUS Client module within the managed entity
 is reinitialized, as indicated by the current value
 of radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 sections 2.5, 4.1"
 ::= { radiusAuthServerExtEntry 7 }

radiusAuthClientExtAccessAccepts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Accept packets
 (valid or invalid) received from this server.
 This counter may experience a discontinuity when
 the RADIUS Client module within the managed entity
 is reinitialized, as indicated by the current value

 of radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.2"
 ::= { radiusAuthServerExtEntry 8 }

radiusAuthClientExtAccessRejects OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Reject packets
 (valid or invalid) received from this server.
 This counter may experience a discontinuity when
 the RADIUS Client module within the managed
 entity is reinitialized, as indicated by the
 current value of
 radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.3"
 ::= { radiusAuthServerExtEntry 9 }

radiusAuthClientExtAccessChallenges OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Challenge packets
 (valid or invalid) received from this server.
 This counter may experience a discontinuity when
 the RADIUS Client module within the managed
 entity is reinitialized, as indicated by the
 current value of
 radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.4"
 ::= { radiusAuthServerExtEntry 10 }

‑‑ "Access‑Response" includes an Access‑Accept, Access‑Challenge,
‑‑ or Access‑Reject

radiusAuthClientExtMalformedAccessResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Access‑Response
 packets received from this server.
 Malformed packets include packets with

 an invalid length. Bad authenticators or
 Message Authenticator attributes or unknown types
 are not included as malformed access responses.
 This counter may experience a discontinuity when
 the RADIUS Client module within the managed entity
 is reinitialized, as indicated by the current value
 of radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 sections 3, 4"
 ::= { radiusAuthServerExtEntry 11 }

radiusAuthClientExtBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Response packets
 containing invalid authenticators or Message
 Authenticator attributes received from this server.
 This counter may experience a discontinuity when
 the RADIUS Client module within the managed entity
 is reinitialized, as indicated by the current value
 of radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthServerExtEntry 12 }

radiusAuthClientExtPendingRequests OBJECT‑TYPE
 SYNTAX Gauge32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Request packets
 destined for this server that have not yet timed out
 or received a response. This variable is incremented
 when an Access‑Request is sent and decremented due to
 receipt of an Access‑Accept, Access‑Reject,
 Access‑Challenge, timeout, or retransmission."
 REFERENCE "RFC 2865 section 2"
 ::= { radiusAuthServerExtEntry 13 }

radiusAuthClientExtTimeouts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "timeouts"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of authentication timeouts to this server.

 After a timeout, the client may retry to the same
 server, send to a different server, or
 give up. A retry to the same server is counted as a
 retransmit as well as a timeout. A send to a different
 server is counted as a Request as well as a timeout.
 This counter may experience a discontinuity when the
 RADIUS Client module within the managed entity is
 reinitialized, as indicated by the current value of
 radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 sections 2.5, 4.1"
 ::= { radiusAuthServerExtEntry 14 }

radiusAuthClientExtUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this server on the authentication
 port. This counter may experience a discontinuity
 when the RADIUS Client module within the managed
 entity is reinitialized, as indicated by the current
 value of radiusAuthClientCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4"
 ::= { radiusAuthServerExtEntry 15 }

radiusAuthClientExtPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets that were
 received from this server on the authentication port
 and dropped for some other reason. This counter may
 experience a discontinuity when the RADIUS Client
 module within the managed entity is reinitialized,
 as indicated by the current value of
 radiusAuthClientCounterDiscontinuity."
 ::= { radiusAuthServerExtEntry 16 }

radiusAuthClientCounterDiscontinuity OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "centiseconds"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION

 "The number of centiseconds since the last discontinuity
 in the RADIUS Client counters. A discontinuity may
 be the result of a reinitialization of the RADIUS
 Client module within the managed entity."
 ::= { radiusAuthServerExtEntry 17 }

 -- conformance information

 radiusAuthClientMIBConformance OBJECT IDENTIFIER

 ::= { radiusAuthClientMIB 2 }

 radiusAuthClientMIBCompliances OBJECT IDENTIFIER

 ::= { radiusAuthClientMIBConformance 1 }

 radiusAuthClientMIBGroups OBJECT IDENTIFIER

 ::= { radiusAuthClientMIBConformance 2 }

 -- compliance statements

radiusAuthClientMIBCompliance MODULE‑COMPLIANCE
 STATUS deprecated
 DESCRIPTION
 "The compliance statement for authentication clients
 implementing the RADIUS Authentication Client MIB.
 Implementation of this module is for IPv4‑only
 entities, or for backwards compatibility use with
 entities that support both IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAuthClientMIBGroup }

 ::= { radiusAuthClientMIBCompliances 1 }

radiusAuthClientExtMIBCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for authentication
 clients implementing the RADIUS Authentication
 Client IPv6 Extensions MIB. Implementation of
 this module is for entities that support IPv6,
 or support IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAuthClientExtMIBGroup }

 OBJECT radiusAuthServerInetAddressType
 SYNTAX InetAddressType { ipv4(1), ipv6(2) }
 DESCRIPTION

 "An implementation is only required to support

 IPv4 and globally unique IPv6 addresses."

OBJECT radiusAuthServerInetAddress
SYNTAX InetAddress (SIZE (4|16))
DESCRIPTION
 "An implementation is only required to support
 IPv4 and globally unique IPv6 addresses."
::= { radiusAuthClientMIBCompliances 2 }

 -- units of conformance

radiusAuthClientMIBGroup OBJECT‑GROUP
 OBJECTS { radiusAuthClientIdentifier,
 radiusAuthClientInvalidServerAddresses,
 radiusAuthServerAddress,
 radiusAuthClientServerPortNumber,
 radiusAuthClientRoundTripTime,
 radiusAuthClientAccessRequests,
 radiusAuthClientAccessRetransmissions,
 radiusAuthClientAccessAccepts,
 radiusAuthClientAccessRejects,
 radiusAuthClientAccessChallenges,
 radiusAuthClientMalformedAccessResponses,
 radiusAuthClientBadAuthenticators,
 radiusAuthClientPendingRequests,
 radiusAuthClientTimeouts,
 radiusAuthClientUnknownTypes,
 radiusAuthClientPacketsDropped
 }
 STATUS deprecated
 DESCRIPTION
 "The basic collection of objects providing management of
 RADIUS Authentication Clients."
 ::= { radiusAuthClientMIBGroups 1 }

 radiusAuthClientExtMIBGroup OBJECT-GROUP

 OBJECTS { radiusAuthClientIdentifier,
 radiusAuthClientInvalidServerAddresses,
 radiusAuthServerInetAddressType,
 radiusAuthServerInetAddress,
 radiusAuthClientServerInetPortNumber,
 radiusAuthClientExtRoundTripTime,
 radiusAuthClientExtAccessRequests,
 radiusAuthClientExtAccessRetransmissions,
 radiusAuthClientExtAccessAccepts,

 radiusAuthClientExtAccessRejects,
 radiusAuthClientExtAccessChallenges,
 radiusAuthClientExtMalformedAccessResponses,
 radiusAuthClientExtBadAuthenticators,
 radiusAuthClientExtPendingRequests,
 radiusAuthClientExtTimeouts,
 radiusAuthClientExtUnknownTypes,
 radiusAuthClientExtPacketsDropped,
 radiusAuthClientCounterDiscontinuity
 }
STATUS current
DESCRIPTION
 "The collection of extended objects providing
 management of RADIUS Authentication Clients
 using version‑neutral IP address format."
::= { radiusAuthClientMIBGroups 2 }

 END

8. Security Considerations

 There are no management objects defined in this MIB that have a MAX-
 ACCESS clause of read-write and/or read-create. So, if this MIB is
 implemented correctly, then there is no risk that an intruder can
 alter or create any management objects of this MIB via direct SNMP
 SET operations.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:

 radiusAuthServerIPAddress

 This can be used to determine the address of the RADIUS
 authentication server with which the client is communicating.
 This information could be useful in mounting an attack on the
 authentication server.

 radiusAuthClientServerPortNumber

 This can be used to determine the port number on which the RADIUS
 authentication client is sending. This information could be
 useful in impersonating the client in order to send data to the
 authentication server.

 radiusAuthServerInetAddress

 This can be used to determine the address of the RADIUS
 authentication server with which the client is communicating.
 This information could be useful in mounting an attack on the
 authentication server.

 radiusAuthClientServerInetPortNumber

 This can be used to determine the port number on which the RADIUS
 authentication client is sending. This information could be
 useful in impersonating the client in order to send data to the
 authentication server.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPsec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC4001]
 Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

9.2. Informative References

 [RFC2618]
 Aboba, B. and G. Zorn, "RADIUS Authentication Client MIB",
 RFC 2618, June 1999.

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4669]
 Nelson, D., "RADIUS Authentication Server MIB for IPv6",
 RFC 4669, August 2006.

Appendix A. Acknowledgements

 The authors of the original MIB are Bernard Aboba and Glen Zorn.

 Many thanks to all reviewers, especially to Dave Harrington, Dan
 Romascanu, C.M. Heard, Bruno Pape, Greg Weber, and Bert Wijnen.

Author's Address

David B. Nelson
Enterasys Networks
50 Minuteman Road
Andover, MA 01810
USA

 EMail: dnelson@enterasys.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4669 - RADIUS Authentication Server MIB for IPv6

Index
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4669

Obsoletes: 2619

Category: Standards Track

D. Nelson

Enterasys Networks

August 2006

RADIUS Authentication Server MIB for IPv6

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo defines a set of extensions that instrument RADIUS
 authentication server functions. These extensions represent a
 portion of the Management Information Base (MIB) for use with network
 management protocols in the Internet community. Using these
 extensions, IP-based management stations can manage RADIUS
 authentication servers.

 This memo obsoletes RFC 2619 by deprecating the MIB table containing
 IPv4-only address formats and defining a new table to add support for
 version-neutral IP address formats. The remaining MIB objects from
 RFC 2619 are carried forward into this document. This memo also adds
 UNITS and REFERENCE clauses to selected objects.

Table of Contents

	1. Introduction

	2. Terminology

	3. The Internet-Standard Management Framework

	4. Scope of Changes

	5. Structure of the MIB Module

	6. Deprecated Objects

	7. Definitions

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Acknowledgements

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 The objects defined within this memo relate to the Remote
 Authentication Dial-In User Service (RADIUS) Authentication Server as
 defined in RFC 2865 [RFC2865].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses terminology from RFC 2865 [RFC2865].

 This document uses the word "malformed" with respect to RADIUS
 packets, particularly in the context of counters of "malformed
 packets". While RFC 2865 does not provide an explicit definition of
 "malformed", malformed generally means that the implementation has
 determined the packet does not match the format defined in RFC 2865.
 Some implementations may determine that packets are malformed when
 the Vendor Specific Attribute (VSA) format does not follow the RFC
 2865 recommendations for VSAs. Those implementations are used in
 deployments today, and thus set the de facto definition of
 "malformed".

3. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

4. Scope of Changes

 This document obsoletes RFC 2619 [RFC2619], RADIUS Authentication
 Server MIB, by deprecating the radiusAuthClientTable table and adding
 a new table, radiusAuthClientExtTable, containing
 radiusAuthClientInetAddressType and radiusAuthClientInetAddress. The
 purpose of these added MIB objects is to support version-neutral IP
 addressing formats. The existing table containing
 radiusAuthClientAddress is deprecated. The remaining MIB objects
 from RFC 2619 are carried forward into this document. This memo also
 adds UNITS and REFERENCE clauses to selected objects.

 RFC 4001 [RFC4001], which defines the SMI Textual Conventions for
 version-neutral IP addresses, contains the following recommendation.

 'In particular, when revising a MIB module that contains IPv4
 specific tables, it is suggested to define new tables using the
 textual conventions defined in this memo [RFC4001] that support all
 versions of IP. The status of the new tables SHOULD be "current",
 whereas the status of the old IP version specific tables SHOULD be
 changed to "deprecated". The other approach, of having multiple
 similar tables for different IP versions, is strongly discouraged.'

5. Structure of the MIB Module

 The RADIUS authentication protocol, described in RFC 2865 [RFC2865],
 distinguishes between the client function and the server function.
 In RADIUS authentication, clients send Access-Requests, and servers
 reply with Access-Accepts, Access-Rejects, and Access-Challenges.
 Typically, NAS devices implement the client function, and thus would
 be expected to implement the RADIUS authentication client MIB, while
 RADIUS authentication servers implement the server function, and thus
 would be expected to implement the RADIUS authentication server MIB.

 However, it is possible for a RADIUS authentication entity to perform
 both client and server functions. For example, a RADIUS proxy may
 act as a server to one or more RADIUS authentication clients, while
 simultaneously acting as an authentication client to one or more
 authentication servers. In such situations, it is expected that
 RADIUS entities combining client and server functionality will
 support both the client and server MIBs. The server MIB is defined
 in this document, and the client MIB is defined in [RFC4668].

 This MIB module contains fourteen scalars as well as a single table,
 the RADIUS Authentication Client Table, which contains one row for
 each RADIUS authentication client with which the server shares a
 secret. Each entry in the RADIUS Authentication Client Table
 includes thirteen columns presenting a view of the activity of the
 RADIUS authentication server.

 This MIB imports from [RFC2578], [RFC2580], [RFC3411], and [RFC4001].

6. Deprecated Objects

 The deprecated table in this MIB is carried forward from RFC 2619
 [RFC2619]. There are two conditions under which it MAY be desirable
 for managed entities to continue to support the deprecated table:

 1. The managed entity only supports IPv4 address formats.

 2. The managed entity supports both IPv4 and IPv6 address formats,
 and the deprecated table is supported for backwards compatibility
 with older management stations. This option SHOULD only be used
 when the IP addresses in the new table are in IPv4 format and can
 accurately be represented in both the new table and the
 deprecated table.

 Managed entities SHOULD NOT instantiate row entries in the deprecated
 table, containing IPv4-only address objects, when the RADIUS client
 address represented in such a table row is not an IPv4 address.
 Managed entities SHOULD NOT return inaccurate values of IP address or
 SNMP object access errors for IPv4-only address objects in otherwise
 populated tables. When row entries exist in both the deprecated
 IPv4-only table and the new IP-version-neutral table that describe
 the same RADIUS client, the row indexes SHOULD be the same for the
 corresponding rows in each table, to facilitate correlation of these
 related rows by management applications.

7. Definitions

 RADIUS-AUTH-SERVER-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE, OBJECT‑IDENTITY,
 Counter32, Integer32,
 IpAddress, TimeTicks, mib‑2 FROM SNMPv2‑SMI
 SnmpAdminString FROM SNMP‑FRAMEWORK‑MIB
 InetAddressType, InetAddress FROM INET‑ADDRESS‑MIB
 MODULE‑COMPLIANCE, OBJECT‑GROUP FROM SNMPv2‑CONF;

radiusAuthServMIB MODULE‑IDENTITY
 LAST‑UPDATED "200608210000Z" ‑‑ 21 August 2006
 ORGANIZATION "IETF RADIUS Extensions Working Group."
 CONTACT‑INFO
 " Bernard Aboba
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 US
 Phone: +1 425 936 6605

 EMail: bernarda@microsoft.com"
 DESCRIPTION
 "The MIB module for entities implementing the server
 side of the Remote Authentication Dial‑In User
 Service (RADIUS) authentication protocol. Copyright
 (C) The Internet Society (2006). This version of this
 MIB module is part of RFC 4669; see the RFC itself for
 full legal notices."
 REVISION "200608210000Z" ‑‑ 21 August 2006
 DESCRIPTION
 "Revised version as published in RFC 4669. This
 version obsoletes that of RFC 2619 by deprecating the
 MIB table containing IPv4‑only address formats and
 defining a new table to add support for version‑neutral
 IP address formats. The remaining MIB objects from RFC
 2619 are carried forward into this version."
 REVISION "199906110000Z" ‑‑ 11 Jun 1999
 DESCRIPTION "Initial version as published in RFC 2619."
 ::= { radiusAuthentication 1 }

radiusMIB OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "The OID assigned to RADIUS MIB work by the IANA."
 ::= { mib‑2 67 }

radiusAuthentication OBJECT IDENTIFIER ::= {radiusMIB 1}

 radiusAuthServMIBObjects OBJECT IDENTIFIER

 ::= { radiusAuthServMIB 1 }

radiusAuthServ OBJECT IDENTIFIER
 ::= { radiusAuthServMIBObjects 1 }

radiusAuthServIdent OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The implementation identification string for the
 RADIUS authentication server software in use on the
 system, for example, 'FNS‑2.1'."
 ::= {radiusAuthServ 1}

radiusAuthServUpTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "If the server has a persistent state (e.g., a
 process), this value will be the time elapsed (in
 hundredths of a second) since the server process
 was started. For software without persistent state,
 this value will be zero."
 ::= {radiusAuthServ 2}

radiusAuthServResetTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "If the server has a persistent state (e.g., a process)
 and supports a 'reset' operation (e.g., can be told to
 re‑read configuration files), this value will be the
 time elapsed (in hundredths of a second) since the
 server was 'reset.' For software that does not
 have persistence or does not support a 'reset'
 operation, this value will be zero."
 ::= {radiusAuthServ 3}

radiusAuthServConfigReset OBJECT‑TYPE
 SYNTAX INTEGER { other(1),
 reset(2),
 initializing(3),
 running(4)}
 MAX‑ACCESS read‑write
 STATUS current
 DESCRIPTION
 "Status/action object to reinitialize any persistent
 server state. When set to reset(2), any persistent
 server state (such as a process) is reinitialized as
 if the server had just been started. This value will
 never be returned by a read operation. When read,
 one of the following values will be returned:
 other(1) ‑ server in some unknown state;
 initializing(3) ‑ server (re)initializing;
 running(4) ‑ server currently running."
 ::= {radiusAuthServ 4}

radiusAuthServTotalAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of packets received on the

 authentication port."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthServ 5}

radiusAuthServTotalInvalidRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Request packets
 received from unknown addresses."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthServ 6 }

radiusAuthServTotalDupAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of duplicate RADIUS Access‑Request
 packets received."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthServ 7 }

radiusAuthServTotalAccessAccepts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Accept packets sent."
 REFERENCE "RFC 2865 section 4.2"
 ::= { radiusAuthServ 8 }

radiusAuthServTotalAccessRejects OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Reject packets sent."
 REFERENCE "RFC 2865 section 4.3"
 ::= { radiusAuthServ 9 }

 radiusAuthServTotalAccessChallenges OBJECT-TYPE

 SYNTAX Counter32

 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Challenge packets sent."
 REFERENCE "RFC 2865 section 4.4"
 ::= { radiusAuthServ 10 }

radiusAuthServTotalMalformedAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Access‑Request
 packets received. Bad authenticators
 and unknown types are not included as
 malformed Access‑Requests."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthServ 11 }

radiusAuthServTotalBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Authentication‑Request packets
 that contained invalid Message Authenticator
 attributes received."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthServ 12 }

radiusAuthServTotalPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming packets
 silently discarded for some reason other
 than malformed, bad authenticators or
 unknown types."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthServ 13 }

 radiusAuthServTotalUnknownTypes OBJECT-TYPE

 SYNTAX Counter32

 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received."
 REFERENCE "RFC 2865 section 4"
 ::= { radiusAuthServ 14 }

radiusAuthClientTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAuthClientEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "The (conceptual) table listing the RADIUS
 authentication clients with which the server shares
 a secret."
 ::= { radiusAuthServ 15 }

radiusAuthClientEntry OBJECT‑TYPE
 SYNTAX RadiusAuthClientEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 authentication client with which the server shares a
 secret."
 INDEX { radiusAuthClientIndex }
 ::= { radiusAuthClientTable 1 }

RadiusAuthClientEntry ::= SEQUENCE {
 radiusAuthClientIndex Integer32,
 radiusAuthClientAddress IpAddress,
 radiusAuthClientID SnmpAdminString,
 radiusAuthServAccessRequests Counter32,
 radiusAuthServDupAccessRequests Counter32,
 radiusAuthServAccessAccepts Counter32,
 radiusAuthServAccessRejects Counter32,
 radiusAuthServAccessChallenges Counter32,
 radiusAuthServMalformedAccessRequests Counter32,
 radiusAuthServBadAuthenticators Counter32,
 radiusAuthServPacketsDropped Counter32,
 radiusAuthServUnknownTypes Counter32
}

 radiusAuthClientIndex OBJECT-TYPE

 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "A number uniquely identifying each RADIUS
 authentication client with which this server
 communicates."
 ::= { radiusAuthClientEntry 1 }

radiusAuthClientAddress OBJECT‑TYPE
 SYNTAX IpAddress
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The NAS‑IP‑Address of the RADIUS authentication client
 referred to in this table entry."
 REFERENCE "RFC 2865 section 2"
 ::= { radiusAuthClientEntry 2 }

radiusAuthClientID OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS authentication client
 referred to in this table entry. This is not
 necessarily the same as sysName in MIB II."
 REFERENCE "RFC 2865 section 5.32"
 ::= { radiusAuthClientEntry 3 }

 -- Server Counters

‑‑
‑‑ Responses = AccessAccepts + AccessRejects + AccessChallenges
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped ‑ Responses = Pending
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped = entries logged

radiusAuthServAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of packets received on the authentication

 port from this client."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthClientEntry 4 }

radiusAuthServDupAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of duplicate RADIUS Access‑Request
 packets received from this client."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthClientEntry 5 }

radiusAuthServAccessAccepts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Accept packets
 sent to this client."
 REFERENCE "RFC 2865 section 4.2"
 ::= { radiusAuthClientEntry 6 }

radiusAuthServAccessRejects OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Reject packets
 sent to this client."
 REFERENCE "RFC 2865 section 4.3"
 ::= { radiusAuthClientEntry 7 }

radiusAuthServAccessChallenges OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Access‑Challenge packets
 sent to this client."
 REFERENCE "RFC 2865 section 4.4"
 ::= { radiusAuthClientEntry 8 }

radiusAuthServMalformedAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of malformed RADIUS Access‑Request
 packets received from this client.
 Bad authenticators and unknown types are not included
 as malformed Access‑Requests."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthClientEntry 9 }

radiusAuthServBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Authentication‑Request packets
 that contained invalid Message Authenticator
 attributes received from this client."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthClientEntry 10 }

radiusAuthServPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of incoming packets from this
 client silently discarded for some reason other
 than malformed, bad authenticators or
 unknown types."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthClientEntry 11 }

radiusAuthServUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this client."
 REFERENCE "RFC 2865 section 4"
 ::= { radiusAuthClientEntry 12 }

 -- New MIB objects added in this revision

radiusAuthClientExtTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAuthClientExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the RADIUS
 authentication clients with which the server shares
 a secret."
 ::= { radiusAuthServ 16 }

radiusAuthClientExtEntry OBJECT‑TYPE
 SYNTAX RadiusAuthClientExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 authentication client with which the server shares a
 secret."
 INDEX { radiusAuthClientExtIndex }
 ::= { radiusAuthClientExtTable 1 }

RadiusAuthClientExtEntry ::= SEQUENCE {
 radiusAuthClientExtIndex Integer32,
 radiusAuthClientInetAddressType InetAddressType,
 radiusAuthClientInetAddress InetAddress,
 radiusAuthClientExtID SnmpAdminString,
 radiusAuthServExtAccessRequests Counter32,
 radiusAuthServExtDupAccessRequests Counter32,
 radiusAuthServExtAccessAccepts Counter32,
 radiusAuthServExtAccessRejects Counter32,
 radiusAuthServExtAccessChallenges Counter32,
 radiusAuthServExtMalformedAccessRequests Counter32,
 radiusAuthServExtBadAuthenticators Counter32,
 radiusAuthServExtPacketsDropped Counter32,
 radiusAuthServExtUnknownTypes Counter32,
 radiusAuthServCounterDiscontinuity TimeTicks
}

radiusAuthClientExtIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A number uniquely identifying each RADIUS
 authentication client with which this server
 communicates."

 ::= { radiusAuthClientExtEntry 1 }

radiusAuthClientInetAddressType OBJECT‑TYPE
 SYNTAX InetAddressType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The type of address format used for the
 radiusAuthClientInetAddress object."
 ::= { radiusAuthClientExtEntry 2 }

 radiusAuthClientInetAddress OBJECT‑TYPE
 SYNTAX InetAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The IP address of the RADIUS authentication
 client referred to in this table entry, using
 the version‑neutral IP address format."
 ::= { radiusAuthClientExtEntry 3 }

radiusAuthClientExtID OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS authentication client
 referred to in this table entry. This is not
 necessarily the same as sysName in MIB II."
 REFERENCE "RFC 2865 section 5.32"
 ::= { radiusAuthClientExtEntry 4 }

 -- Server Counters

‑‑
‑‑ Responses = AccessAccepts + AccessRejects + AccessChallenges
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped ‑ Responses = Pending
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped = entries logged

radiusAuthServExtAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only

 STATUS current
 DESCRIPTION
 "The number of packets received on the authentication
 port from this client. This counter may experience a
 discontinuity when the RADIUS Server module within the
 managed entity is reinitialized, as indicated by the
 current value of radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthClientExtEntry 5 }

radiusAuthServExtDupAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of duplicate RADIUS Access‑Request
 packets received from this client. This counter may
 experience a discontinuity when the RADIUS Server
 module within the managed entity is reinitialized, as
 indicated by the current value of
 radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.1"
 ::= { radiusAuthClientExtEntry 6 }

radiusAuthServExtAccessAccepts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Accept packets
 sent to this client. This counter may experience a
 discontinuity when the RADIUS Server module within the
 managed entity is reinitialized, as indicated by the
 current value of radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.2"
 ::= { radiusAuthClientExtEntry 7 }

radiusAuthServExtAccessRejects OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Reject packets
 sent to this client. This counter may experience a
 discontinuity when the RADIUS Server module within the

 managed entity is reinitialized, as indicated by the
 current value of radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.3"
 ::= { radiusAuthClientExtEntry 8 }

radiusAuthServExtAccessChallenges OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Access‑Challenge packets
 sent to this client. This counter may experience a
 discontinuity when the RADIUS Server module within the
 managed entity is reinitialized, as indicated by the
 current value of radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4.4"
 ::= { radiusAuthClientExtEntry 9 }

radiusAuthServExtMalformedAccessRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Access‑Request
 packets received from this client. Bad authenticators
 and unknown types are not included as malformed
 Access‑Requests. This counter may experience a
 discontinuity when the RADIUS Server module within the
 managed entity is reinitialized, as indicated by the
 current value of radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 sections 3, 4.1"
 ::= { radiusAuthClientExtEntry 10 }

radiusAuthServExtBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Authentication‑Request packets
 that contained invalid Message Authenticator
 attributes received from this client. This counter
 may experience a discontinuity when the RADIUS Server
 module within the managed entity is reinitialized, as
 indicated by the current value of
 radiusAuthServCounterDiscontinuity."

 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthClientExtEntry 11 }

radiusAuthServExtPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming packets from this client
 silently discarded for some reason other than
 malformed, bad authenticators or unknown types.
 This counter may experience a discontinuity when the
 RADIUS Server module within the managed entity is
 reinitialized, as indicated by the current value of
 radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 3"
 ::= { radiusAuthClientExtEntry 12 }

radiusAuthServExtUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this client. This counter may
 experience a discontinuity when the RADIUS Server
 module within the managed entity is reinitialized, as
 indicated by the current value of
 radiusAuthServCounterDiscontinuity."
 REFERENCE "RFC 2865 section 4"
 ::= { radiusAuthClientExtEntry 13 }

radiusAuthServCounterDiscontinuity OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "centiseconds"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of centiseconds since the last
 discontinuity in the RADIUS Server counters.
 A discontinuity may be the result of a
 reinitialization of the RADIUS Server module
 within the managed entity."
 ::= { radiusAuthClientExtEntry 14 }

 -- conformance information

radiusAuthServMIBConformance OBJECT IDENTIFIER
 ::= { radiusAuthServMIB 2 }

radiusAuthServMIBCompliances OBJECT IDENTIFIER
 ::= { radiusAuthServMIBConformance 1 }

radiusAuthServMIBGroups OBJECT IDENTIFIER
 ::= { radiusAuthServMIBConformance 2 }

 -- compliance statements

radiusAuthServMIBCompliance MODULE‑COMPLIANCE
 STATUS deprecated
 DESCRIPTION
 "The compliance statement for authentication
 servers implementing the RADIUS Authentication
 Server MIB. Implementation of this module is for
 IPv4‑only entities, or for backwards compatibility
 use with entities that support both IPv4 and
 IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAuthServMIBGroup }

 OBJECT radiusAuthServConfigReset
 WRITE‑SYNTAX INTEGER { reset(2) }
 DESCRIPTION "The only SETable value is 'reset' (2)."

 ::= { radiusAuthServMIBCompliances 1 }

radiusAuthServMIBExtCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for authentication
 servers implementing the RADIUS Authentication
 Server IPv6 Extensions MIB. Implementation of
 this module is for entities that support IPv6,
 or support IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAuthServExtMIBGroup }

 OBJECT radiusAuthServConfigReset
 WRITE‑SYNTAX INTEGER { reset(2) }
 DESCRIPTION "The only SETable value is 'reset' (2)."

 OBJECT radiusAuthClientInetAddressType

SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
 "An implementation is only required to support
 IPv4 and globally unique IPv6 addresses."

OBJECT radiusAuthClientInetAddress
SYNTAX InetAddress (SIZE (4|16))
DESCRIPTION
 "An implementation is only required to support
 IPv4 and globally unique IPv6 addresses."

 ::= { radiusAuthServMIBCompliances 2 }

 -- units of conformance

radiusAuthServMIBGroup OBJECT‑GROUP
 OBJECTS {radiusAuthServIdent,
 radiusAuthServUpTime,
 radiusAuthServResetTime,
 radiusAuthServConfigReset,
 radiusAuthServTotalAccessRequests,
 radiusAuthServTotalInvalidRequests,
 radiusAuthServTotalDupAccessRequests,
 radiusAuthServTotalAccessAccepts,
 radiusAuthServTotalAccessRejects,
 radiusAuthServTotalAccessChallenges,
 radiusAuthServTotalMalformedAccessRequests,
 radiusAuthServTotalBadAuthenticators,
 radiusAuthServTotalPacketsDropped,
 radiusAuthServTotalUnknownTypes,
 radiusAuthClientAddress,
 radiusAuthClientID,
 radiusAuthServAccessRequests,
 radiusAuthServDupAccessRequests,
 radiusAuthServAccessAccepts,
 radiusAuthServAccessRejects,
 radiusAuthServAccessChallenges,
 radiusAuthServMalformedAccessRequests,
 radiusAuthServBadAuthenticators,
 radiusAuthServPacketsDropped,
 radiusAuthServUnknownTypes
 }
 STATUS deprecated
 DESCRIPTION
 "The collection of objects providing management of
 a RADIUS Authentication Server."
 ::= { radiusAuthServMIBGroups 1 }

radiusAuthServExtMIBGroup OBJECT‑GROUP
 OBJECTS {radiusAuthServIdent,
 radiusAuthServUpTime,
 radiusAuthServResetTime,
 radiusAuthServConfigReset,
 radiusAuthServTotalAccessRequests,
 radiusAuthServTotalInvalidRequests,
 radiusAuthServTotalDupAccessRequests,
 radiusAuthServTotalAccessAccepts,
 radiusAuthServTotalAccessRejects,
 radiusAuthServTotalAccessChallenges,
 radiusAuthServTotalMalformedAccessRequests,
 radiusAuthServTotalBadAuthenticators,
 radiusAuthServTotalPacketsDropped,
 radiusAuthServTotalUnknownTypes,
 radiusAuthClientInetAddressType,
 radiusAuthClientInetAddress,
 radiusAuthClientExtID,
 radiusAuthServExtAccessRequests,
 radiusAuthServExtDupAccessRequests,
 radiusAuthServExtAccessAccepts,
 radiusAuthServExtAccessRejects,
 radiusAuthServExtAccessChallenges,
 radiusAuthServExtMalformedAccessRequests,
 radiusAuthServExtBadAuthenticators,
 radiusAuthServExtPacketsDropped,
 radiusAuthServExtUnknownTypes,
 radiusAuthServCounterDiscontinuity
 }
 STATUS current
 DESCRIPTION
 "The collection of objects providing management of
 a RADIUS Authentication Server."
 ::= { radiusAuthServMIBGroups 2 }

 END

8. Security Considerations

 There are a number of management objects defined in this MIB that
 have a MAX-ACCESS clause of read-write and/or read-create. Such
 objects may be considered sensitive or vulnerable in some network
 environments. The support for SET operations in a non-secure
 environment without proper protection can have a negative effect on
 network operations. These are:

 radiusAuthServConfigReset

 This object can be used to reinitialize the persistent state of
 any server. When set to reset(2), any persistent server state
 (such as a process) is reinitialized as if the server had just
 been started. Depending on the server implementation details,
 this action may or may not interrupt the processing of pending
 request in the server. Abuse of this object may lead to a Denial
 of Service attack on the server.

 There are a number of managed objects in this MIB that may contain
 sensitive information. These are:

 radiusAuthClientIPAddress

 This can be used to determine the address of the RADIUS
 authentication client with which the server is communicating.
 This information could be useful in mounting an attack on the
 authentication client.

 radiusAuthClientInetAddress

 This can be used to determine the address of the RADIUS
 authentication client with which the server is communicating.
 This information could be useful in mounting an attack on the
 authentication client.

 It is thus important to control even GET access to these objects and
 possibly to even encrypt the values of these object when sending them
 over the network via SNMP. Not all versions of SNMP provide features
 for such a secure environment.

 SNMP versions prior to SNMPv3 do not provide a secure environment.
 Even if the network itself is secure (for example by using IPsec),
 there is no control as to who on the secure network is allowed to
 access and GET/SET (read/change/create/delete) the objects in this
 MIB.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC4001]
 Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

9.2. Informative References

 [RFC2619]
 Zorn, G. and B. Aboba, "RADIUS Authentication Server MIB",
 RFC 2619, June 1999.

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4668]
 Nelson, D., "RADIUS Authentication Client MIB for IPv6",
 RFC 4668, August 2006.

Appendix A. Acknowledgements

 The authors of the original MIB are Bernard Aboba and Glen Zorn.

 Many thanks to all reviewers, especially to David Harrington, Dan
 Romascanu, C.M. Heard, Bruno Pape, Greg Weber, and Bert Wijnen.

Author's Address

David B. Nelson
Enterasys Networks
50 Minuteman Road
Andover, MA 01810
USA

 EMail: dnelson@enterasys.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4670 - RADIUS Accounting Client MIB for IPv6

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4670

Obsoletes: 2620

Category: Informational

D. Nelson

Enterasys Networks

August 2006

RADIUS Accounting Client MIB for IPv6

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo defines a set of extensions that instrument RADIUS
 accounting client functions. These extensions represent a portion of
 the Management Information Base (MIB) for use with network management
 protocols in the Internet community. Using these extensions,
 IP-based management stations can manage RADIUS accounting clients.

 This memo obsoletes RFC 2620 by deprecating the MIB table containing
 IPv4-only address formats and defining a new table to add support for
 version-neutral IP address formats. The remaining MIB objects from
 RFC 2620 are carried forward into this document. This memo also adds
 UNITS and REFERENCE clauses to selected objects.

Table of Contents

	1. Introduction

	2. Terminology

	3. The Internet-Standard Management Framework

	4. Scope of Changes

	5. Structure of the MIB Module

	6. Deprecated Objects

	7. Definitions

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Acknowledgements

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 The objects defined within this memo relate to the Remote
 Authentication Dial-In User Service (RADIUS) Accounting Client as
 defined in RFC 2866 [RFC2866].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses terminology from RFC 2865 [RFC2865] and RFC 2866
 [RFC2866].

 This document uses the word "malformed" with respect to RADIUS
 packets, particularly in the context of counters of "malformed
 packets". While RFC 2866 does not provide an explicit definition of
 "malformed", malformed generally means that the implementation has
 determined the packet does not match the format defined in RFC 2866.
 Those implementations are used in deployments today, and thus set the
 de facto definition of "malformed".

3. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

4. Scope of Changes

 This document obsoletes RFC 2620 [RFC2620], RADIUS Accounting Client
 MIB, by deprecating the radiusAccServerTable table and adding a new
 table, radiusAccServerExtTable, containing
 radiusAccServerInetAddressType, radiusAccServerInetAddress, and
 radiusAccClientServerInetPortNumber. The purpose of these added MIB
 objects is to support version-neutral IP addressing formats. The
 existing table containing radiusAuthServerAddress and
 radiusAuthClientServerPortNumber is deprecated. The remaining MIB
 objects from RFC 2620 are carried forward into this document.

 RFC 4001 [RFC4001], which defines the SMI Textual Conventions for
 IPv6 addresses, contains the following recommendation.

 'In particular, when revising a MIB module that contains IPv4
 specific tables, it is suggested to define new tables using the
 textual conventions defined in this memo [RFC4001] that support all
 versions of IP. The status of the new tables SHOULD be "current",
 whereas the status of the old IP version specific tables SHOULD be
 changed to "deprecated". The other approach, of having multiple
 similar tables for different IP versions, is strongly discouraged.'

5. Structure of the MIB Module

 The RADIUS accounting protocol, described in RFC 2866 [RFC2866],
 distinguishes between the client function and the server function.
 In RADIUS accounting, clients send Accounting-Requests, and servers
 reply with Accounting-Responses. Typically, Network Access Server
 (NAS) devices implement the client function, and thus would be
 expected to implement the RADIUS accounting client MIB, while RADIUS
 accounting servers implement the server function, and thus would be
 expected to implement the RADIUS accounting server MIB.

 However, it is possible for a RADIUS accounting entity to perform
 both client and server functions. For example, a RADIUS proxy may
 act as a server to one or more RADIUS accounting clients, while
 simultaneously acting as an accounting client to one or more
 accounting servers. In such situations, it is expected that RADIUS
 entities combining client and server functionality will support both
 the client and server MIBs. The client MIB is defined in this
 document, and the server MIB is defined in [RFC4671].

 This MIB module contains two scalars as well as a single table, the
 RADIUS Accounting Server Table, which contains one row for each
 RADIUS server with which the client shares a secret. Each entry in
 the RADIUS Accounting Server Table includes fifteen columns
 presenting a view of the activity of the RADIUS client.

 This MIB imports from [RFC2578], [RFC2580], [RFC3411], and [RFC4001].

6. Deprecated Objects

 The deprecated table in this MIB is carried forward from RFC 2620
 [RFC2620]. There are two conditions under which it MAY be desirable
 for managed entities to continue to support the deprecated table:

 1. The managed entity only supports IPv4 address formats.

 2. The managed entity supports both IPv4 and IPv6 address formats,
 and the deprecated table is supported for backwards compatibility
 with older management stations. This option SHOULD only be used
 when the IP addresses in the new table are in IPv4 format and can
 accurately be represented in both the new table and the
 deprecated table.

 Managed entities SHOULD NOT instantiate row entries in the deprecated
 table, containing IPv4-only address objects, when the RADIUS
 accounting server address represented in such a table row is not an
 IPv4 address. Managed entities SHOULD NOT return inaccurate values
 of IP address or SNMP object access errors for IPv4-only address
 objects in otherwise populated tables. When row entries exist in
 both the deprecated IPv4-only table and the new IP-version-neutral
 table that describe the same RADIUS accounting server, the row
 indexes SHOULD be the same for the corresponding rows in each table,
 to facilitate correlation of these related rows by management
 applications.

7. Definitions

 RADIUS-ACC-CLIENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE, OBJECT‑IDENTITY,
 Counter32, Integer32, Gauge32,
 IpAddress, TimeTicks, mib‑2 FROM SNMPv2‑SMI
 SnmpAdminString FROM SNMP‑FRAMEWORK‑MIB
 InetAddressType, InetAddress,
 InetPortNumber FROM INET‑ADDRESS‑MIB
 MODULE‑COMPLIANCE, OBJECT‑GROUP FROM SNMPv2‑CONF;

radiusAccClientMIB MODULE‑IDENTITY
 LAST‑UPDATED "200608210000Z" ‑‑ 21 August 2006
 ORGANIZATION "IETF RADIUS Extensions Working Group."
 CONTACT‑INFO
 " Bernard Aboba
 Microsoft
 One Microsoft Way

 Redmond, WA 98052
 US
 Phone: +1 425 936 6605
 EMail: bernarda@microsoft.com"
 DESCRIPTION
 "The MIB module for entities implementing the client
 side of the Remote Authentication Dial‑In User Service
 (RADIUS) accounting protocol. Copyright (C) The
 Internet Society (2006). This version of this MIB
 module is part of RFC 4670; see the RFC itself for
 full legal notices."
 REVISION "200608210000Z" ‑‑ 21 August 2006
 DESCRIPTION
 "Revised version as published in RFC 4670.
 This version obsoletes that of RFC 2620 by
 deprecating the MIB table containing IPv4‑only
 address formats and defining a new table to add support
 for version‑neutral IP address formats. The remaining
 MIB objects from RFC 2620 are carried forward into this
 version."
 REVISION "199906110000Z" ‑‑ 11 Jun 1999
 DESCRIPTION "Initial version as published in RFC 2620."
 ::= { radiusAccounting 2 }

radiusMIB OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "The OID assigned to RADIUS MIB work by the IANA."
 ::= { mib‑2 67 }

radiusAccounting OBJECT IDENTIFIER ::= {radiusMIB 2}

radiusAccClientMIBObjects OBJECT IDENTIFIER
 ::= { radiusAccClientMIB 1 }

radiusAccClient OBJECT IDENTIFIER
 ::= { radiusAccClientMIBObjects 1 }

radiusAccClientInvalidServerAddresses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Response packets
 received from unknown addresses."
 ::= { radiusAccClient 1 }

radiusAccClientIdentifier OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS accounting client.
 This is not necessarily the same as sysName in MIB
 II."
 REFERENCE "RFC 2865 section 5.32"
 ::= { radiusAccClient 2 }

radiusAccServerTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAccServerEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "The (conceptual) table listing the RADIUS accounting
 servers with which the client shares a secret."
 ::= { radiusAccClient 3 }

radiusAccServerEntry OBJECT‑TYPE
 SYNTAX RadiusAccServerEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 accounting server with which the client shares a
 secret."
 INDEX { radiusAccServerIndex }
 ::= { radiusAccServerTable 1 }

RadiusAccServerEntry ::= SEQUENCE {
 radiusAccServerIndex Integer32,
 radiusAccServerAddress IpAddress,
 radiusAccClientServerPortNumber Integer32,
 radiusAccClientRoundTripTime TimeTicks,
 radiusAccClientRequests Counter32,
 radiusAccClientRetransmissions Counter32,
 radiusAccClientResponses Counter32,
 radiusAccClientMalformedResponses Counter32,
 radiusAccClientBadAuthenticators Counter32,
 radiusAccClientPendingRequests Gauge32,
 radiusAccClientTimeouts Counter32,
 radiusAccClientUnknownTypes Counter32,
 radiusAccClientPacketsDropped Counter32
}

radiusAccServerIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "A number uniquely identifying each RADIUS
 Accounting server with which this client
 communicates."
 ::= { radiusAccServerEntry 1 }

radiusAccServerAddress OBJECT‑TYPE
 SYNTAX IpAddress
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The IP address of the RADIUS accounting server
 referred to in this table entry."
 ::= { radiusAccServerEntry 2 }

radiusAccClientServerPortNumber OBJECT‑TYPE
 SYNTAX Integer32 (0..65535)
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The UDP port the client is using to send requests to
 this server."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServerEntry 3 }

radiusAccClientRoundTripTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The time interval between the most recent
 Accounting‑Response and the Accounting‑Request that
 matched it from this RADIUS accounting server."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerEntry 4 }

‑‑ Request/Response statistics
‑‑
‑‑ Requests = Responses + PendingRequests + ClientTimeouts
‑‑
‑‑ Responses ‑ MalformedResponses ‑ BadAuthenticators ‑
‑‑ UnknownTypes ‑ PacketsDropped = Successfully received

radiusAccClientRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 sent. This does not include retransmissions."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccServerEntry 5 }

radiusAccClientRetransmissions OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 retransmitted to this RADIUS accounting server.
 Retransmissions include retries where the
 Identifier and Acct‑Delay have been updated, as
 well as those in which they remain the same."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerEntry 6 }

radiusAccClientResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets received on the
 accounting port from this server."
 REFERENCE "RFC 2866 section 4.2"
 ::= { radiusAccServerEntry 7 }

radiusAccClientMalformedResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of malformed RADIUS Accounting‑Response
 packets received from this server. Malformed packets
 include packets with an invalid length. Bad
 authenticators and unknown types are not included as
 malformed accounting responses."
 REFERENCE "RFC 2866 section 3"

 ::= { radiusAccServerEntry 8 }

radiusAccClientBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Response
 packets that contained invalid authenticators
 received from this server."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServerEntry 9 }

radiusAccClientPendingRequests OBJECT‑TYPE
 SYNTAX Gauge32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 sent to this server that have not yet timed out or
 received a response. This variable is incremented
 when an Accounting‑Request is sent and decremented
 due to receipt of an Accounting‑Response, a timeout,
 or a retransmission."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerEntry 10 }

radiusAccClientTimeouts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "timeouts"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of accounting timeouts to this server.
 After a timeout, the client may retry to the same
 server, send to a different server, or give up.
 A retry to the same server is counted as a
 retransmit as well as a timeout. A send to a different
 server is counted as an Accounting‑Request as well as
 a timeout."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerEntry 11 }

radiusAccClientUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"

 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this server on the accounting port."
 REFERENCE "RFC 2866 section 4"
 ::= { radiusAccServerEntry 12 }

radiusAccClientPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets that were received from
 this server on the accounting port and dropped for some
 other reason."
 ::= { radiusAccServerEntry 13 }

 -- New MIB objects added in this revision

radiusAccServerExtTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAccServerExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the RADIUS accounting
 servers with which the client shares a secret."
 ::= { radiusAccClient 4 }

radiusAccServerExtEntry OBJECT‑TYPE
 SYNTAX RadiusAccServerExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 accounting server with which the client shares a
 secret."
 INDEX { radiusAccServerExtIndex }
 ::= { radiusAccServerExtTable 1 }

RadiusAccServerExtEntry ::= SEQUENCE {
 radiusAccServerExtIndex Integer32,
 radiusAccServerInetAddressType InetAddressType,
 radiusAccServerInetAddress InetAddress,
 radiusAccClientServerInetPortNumber InetPortNumber,
 radiusAccClientExtRoundTripTime TimeTicks,

 radiusAccClientExtRequests Counter32,
 radiusAccClientExtRetransmissions Counter32,
 radiusAccClientExtResponses Counter32,
 radiusAccClientExtMalformedResponses Counter32,
 radiusAccClientExtBadAuthenticators Counter32,
 radiusAccClientExtPendingRequests Gauge32,
 radiusAccClientExtTimeouts Counter32,
 radiusAccClientExtUnknownTypes Counter32,
 radiusAccClientExtPacketsDropped Counter32,
 radiusAccClientCounterDiscontinuity TimeTicks
}

radiusAccServerExtIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A number uniquely identifying each RADIUS
 Accounting server with which this client
 communicates."
 ::= { radiusAccServerExtEntry 1 }

radiusAccServerInetAddressType OBJECT‑TYPE
 SYNTAX InetAddressType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The type of address format used for the
 radiusAccServerInetAddress object."
 ::= { radiusAccServerExtEntry 2 }

 radiusAccServerInetAddress OBJECT‑TYPE
 SYNTAX InetAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The IP address of the RADIUS accounting
 server referred to in this table entry, using
 the version‑neutral IP address format."
 ::= { radiusAccServerExtEntry 3 }

 radiusAccClientServerInetPortNumber OBJECT‑TYPE
 SYNTAX InetPortNumber (1..65535)
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION

 "The UDP port the client is using to send requests
 to this accounting server. The value zero (0) is
 invalid."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServerExtEntry 4 }

radiusAccClientExtRoundTripTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The time interval between the most recent
 Accounting‑Response and the Accounting‑Request that
 matched it from this RADIUS accounting server."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerExtEntry 5 }

‑‑ Request/Response statistics
‑‑
‑‑ Requests = Responses + PendingRequests + ClientTimeouts
‑‑
‑‑ Responses ‑ MalformedResponses ‑ BadAuthenticators ‑
‑‑ UnknownTypes ‑ PacketsDropped = Successfully received

radiusAccClientExtRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 sent. This does not include retransmissions.
 This counter may experience a discontinuity when the
 RADIUS Accounting Client module within the managed
 entity is reinitialized, as indicated by the current
 value of radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccServerExtEntry 6 }

radiusAccClientExtRetransmissions OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 retransmitted to this RADIUS accounting server.

 Retransmissions include retries where the
 Identifier and Acct‑Delay have been updated, as
 well as those in which they remain the same.
 This counter may experience a discontinuity when the
 RADIUS Accounting Client module within the managed
 entity is reinitialized, as indicated by the current
 value of radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerExtEntry 7 }

radiusAccClientExtResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets received on the
 accounting port from this server. This counter
 may experience a discontinuity when the RADIUS
 Accounting Client module within the managed entity is
 reinitialized, as indicated by the current value of
 radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4.2"
 ::= { radiusAccServerExtEntry 8 }

radiusAccClientExtMalformedResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Accounting‑Response
 packets received from this server. Malformed packets
 include packets with an invalid length. Bad
 authenticators and unknown types are not included as
 malformed accounting responses. This counter may
 experience a discontinuity when the RADIUS Accounting
 Client module within the managed entity is
 reinitialized, as indicated by the current
 value of radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServerExtEntry 9 }

radiusAccClientExtBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "The number of RADIUS Accounting‑Response
 packets that contained invalid authenticators
 received from this server. This counter may
 experience a discontinuity when the RADIUS
 Accounting Client module within the managed
 entity is reinitialized, as indicated by the
 current value of
 radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServerExtEntry 10 }

radiusAccClientExtPendingRequests OBJECT‑TYPE
 SYNTAX Gauge32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 sent to this server that have not yet timed out or
 received a response. This variable is incremented
 when an Accounting‑Request is sent and decremented
 due to receipt of an Accounting‑Response, a timeout,
 or a retransmission. This counter may experience a
 discontinuity when the RADIUS Accounting Client module
 within the managed entity is reinitialized, as
 indicated by the current value of
 radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 2"
 ::= { radiusAccServerExtEntry 11 }

radiusAccClientExtTimeouts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "timeouts"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of accounting timeouts to this server.
 After a timeout, the client may retry to the same
 server, send to a different server, or give up.
 A retry to the same server is counted as a
 retransmit as well as a timeout. A send to a different
 server is counted as an Accounting‑Request as well as
 a timeout. This counter may experience a discontinuity
 when the RADIUS Accounting Client module within the
 managed entity is reinitialized, as indicated by the
 current value of radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 2"

 ::= { radiusAccServerExtEntry 12 }

radiusAccClientExtUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this server on the accounting port.
 This counter may experience a discontinuity when the
 RADIUS Accounting Client module within the managed
 entity is reinitialized, as indicated by the current
 value of radiusAccClientCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4"
 ::= { radiusAccServerExtEntry 13 }

radiusAccClientExtPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets that were received from
 this server on the accounting port and dropped for some
 other reason. This counter may experience a
 discontinuity when the RADIUS Accounting Client module
 within the managed entity is reinitialized, as indicated
 by the current value of
 radiusAccClientCounterDiscontinuity."
 ::= { radiusAccServerExtEntry 14 }

radiusAccClientCounterDiscontinuity OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "centiseconds"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of centiseconds since the last
 discontinuity in the RADIUS Accounting Client
 counters. A discontinuity may be the result of a
 reinitialization of the RADIUS Accounting Client
 module within the managed entity."
 ::= { radiusAccServerExtEntry 15 }

 -- conformance information

radiusAccClientMIBConformance OBJECT IDENTIFIER
 ::= { radiusAccClientMIB 2 }

radiusAccClientMIBCompliances OBJECT IDENTIFIER
 ::= { radiusAccClientMIBConformance 1 }

radiusAccClientMIBGroups OBJECT IDENTIFIER
 ::= { radiusAccClientMIBConformance 2 }

 -- units of conformance

radiusAccClientMIBCompliance MODULE‑COMPLIANCE
 STATUS deprecated
 DESCRIPTION
 "The compliance statement for accounting clients
 implementing the RADIUS Accounting Client MIB.
 Implementation of this module is for IPv4‑only
 entities, or for backwards compatibility use with
 entities that support both IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAccClientMIBGroup }

 ::= { radiusAccClientMIBCompliances 1 }

radiusAccClientExtMIBCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for accounting
 clients implementing the RADIUS Accounting
 Client IPv6 Extensions MIB. Implementation of
 this module is for entities that support IPv6,
 or support IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAccClientExtMIBGroup }

 OBJECT radiusAccServerInetAddressType
 SYNTAX InetAddressType { ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation is only required to support
 IPv4 and globally unique IPv6 addresses."

 OBJECT radiusAccServerInetAddress
 SYNTAX InetAddress (SIZE (4|16))
 DESCRIPTION

 "An implementation is only required to support

 IPv4 and globally unique IPv6 addresses."

 ::= { radiusAccClientMIBCompliances 2 }

 -- units of conformance

radiusAccClientMIBGroup OBJECT‑GROUP
 OBJECTS { radiusAccClientIdentifier,
 radiusAccClientInvalidServerAddresses,
 radiusAccServerAddress,
 radiusAccClientServerPortNumber,
 radiusAccClientRoundTripTime,
 radiusAccClientRequests,
 radiusAccClientRetransmissions,
 radiusAccClientResponses,
 radiusAccClientMalformedResponses,
 radiusAccClientBadAuthenticators,
 radiusAccClientPendingRequests,
 radiusAccClientTimeouts,
 radiusAccClientUnknownTypes,
 radiusAccClientPacketsDropped
 }
 STATUS deprecated
 DESCRIPTION
 "The basic collection of objects providing management of
 RADIUS Accounting Clients."
 ::= { radiusAccClientMIBGroups 1 }

 radiusAccClientExtMIBGroup OBJECT-GROUP

 OBJECTS { radiusAccClientIdentifier,
 radiusAccClientInvalidServerAddresses,
 radiusAccServerInetAddressType,
 radiusAccServerInetAddress,
 radiusAccClientServerInetPortNumber,
 radiusAccClientExtRoundTripTime,
 radiusAccClientExtRequests,
 radiusAccClientExtRetransmissions,
 radiusAccClientExtResponses,
 radiusAccClientExtMalformedResponses,
 radiusAccClientExtBadAuthenticators,
 radiusAccClientExtPendingRequests,
 radiusAccClientExtTimeouts,
 radiusAccClientExtUnknownTypes,
 radiusAccClientExtPacketsDropped,
 radiusAccClientCounterDiscontinuity

 }
STATUS current
DESCRIPTION
 "The basic collection of objects providing management of
 RADIUS Accounting Clients."
::= { radiusAccClientMIBGroups 2 }

 END

8. Security Considerations

 There are no management objects defined in this MIB that have a MAX-
 ACCESS clause of read-write and/or read-create. So, if this MIB is
 implemented correctly, then there is no risk that an intruder can
 alter or create any management objects of this MIB via direct SNMP
 SET operations.

 There are a number of managed objects in this MIB that may contain
 sensitive information. These are:

 radiusAcctServerIPAddress

 This can be used to determine the address of the RADIUS accounting
 server with which the client is communicating. This information
 could be useful in mounting an attack on the accounting server.

 radiusAcctServerInetAddress

 This can be used to determine the address of the RADIUS accounting
 server with which the client is communicating. This information
 could be useful in mounting an attack on the accounting server.

 radiusAcctClientServerPortNumber

 This can be used to determine the port number on which the RADIUS
 accounting client is sending. This information could be useful in
 impersonating the client in order to send data to the accounting
 server.

 radiusAcctClientServerInetPortNumber

 This can be used to determine the port number on which the RADIUS
 accounting client is sending. This information could be useful in
 impersonating the client in order to send data to the accounting
 server.

 It is thus important to control even GET access to these objects and
 possibly to even encrypt the values of these object when sending them
 over the network via SNMP. Not all versions of SNMP provide features
 for such a secure environment.

 SNMP versions prior to SNMPv3 do not provide a secure environment.
 Even if the network itself is secure (for example by using IPsec),
 there is no control as to who on the secure network is allowed to
 access and GET/SET (read/change/create/delete) the objects in this
 MIB.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC4001]
 Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

9.2. Informative References

 [RFC2620]
 Aboba, B. and G. Zorn, "RADIUS Accounting Client MIB",
 RFC 2620, June 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4671]
 Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC
 4671, August 2006.

Appendix A. Acknowledgements

 The authors of the original MIB are Bernard Aboba and Glen Zorn.

 Many thanks to all reviewers, especially to Dave Harrington, Dan
 Romascanu, C.M. Heard, Bruno Pape, Greg Weber, and Bert Wijnen.

Author's Address

David B. Nelson
Enterasys Networks
50 Minuteman Road
Andover, MA 01810
USA

 EMail: dnelson@enterasys.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4671 - RADIUS Accounting Server MIB for IPv6

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4671

Obsoletes: 2621

Category: Informational

D. Nelson

Enterasys Networks

August 2006

RADIUS Accounting Server MIB for IPv6

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo defines a set of extensions that instrument RADIUS
 accounting server functions. These extensions represent a portion of
 the Management Information Base (MIB) for use with network management
 protocols in the Internet community. Using these extensions,
 IP-based management stations can manage RADIUS accounting servers.

 This memo obsoletes RFC 2621 by deprecating the MIB table containing
 IPv4-only address formats and defining a new table to add support for
 version-neutral IP address formats. The remaining MIB objects from
 RFC 2621 are carried forward into this document. This memo also adds
 UNITS and REFERENCE clauses to selected objects.

Table of Contents

	1. Introduction

	2. Terminology

	3. The Internet-Standard Management Framework

	4. Scope of Changes

	5. Structure of the MIB Module

	6. Deprecated Objects

	7. Definitions

	8. Security Considerations

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Acknowledgements

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 The objects defined within this memo relate to the Remote
 Authentication Dial-In User Service (RADIUS) Accounting Server as
 defined in RFC 2866 [RFC2866].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses terminology from RFC 2865 [RFC2865] and RFC 2866
 [RFC2866].

 This document uses the word "malformed" with respect to RADIUS
 packets, particularly in the context of counters of "malformed
 packets". While RFC 2866 does not provide an explicit definition of
 "malformed", malformed generally means that the implementation has
 determined the packet does not match the format defined in RFC 2866.
 Those implementations are used in deployments today, and thus set the
 de facto definition of "malformed".

3. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

4. Scope of Changes

 This document obsoletes RFC 2621 [RFC2621], RADIUS Accounting Server
 MIB, by deprecating the radiusAccClientTable table and adding a new
 table, radiusAccClientExtTable, containing
 radiusAccClientInetAddressType and radiusAccClientInetAddress. The
 purpose of these added MIB objects is to support version-neutral IP
 addressing formats. The existing table containing
 radiusAccClientAddress is deprecated. The remaining MIB objects from
 RFC 2621 are carried forward into this document. This memo also adds
 UNITS and REFERENCE clauses to selected objects.

 RFC 4001 [RFC4001], which defines the SMI Textual Conventions for
 version-neutral IP addresses, contains the following recommendation.

 'In particular, when revising a MIB module that contains IPv4
 specific tables, it is suggested to define new tables using the
 textual conventions defined in this memo [RFC4001] that support all
 versions of IP. The status of the new tables SHOULD be "current",
 whereas the status of the old IP version specific tables SHOULD be
 changed to "deprecated". The other approach, of having multiple
 similar tables for different IP versions, is strongly discouraged.'

5. Structure of the MIB Module

 The RADIUS accounting protocol, described in RFC 2866 [RFC2866],
 distinguishes between the client function and the server function.
 In RADIUS accounting, clients send Accounting-Requests, and servers
 reply with Accounting-Responses. Typically, Network Access Server
 (NAS) devices implement the client function, and thus would be
 expected to implement the RADIUS accounting client MIB, while RADIUS
 accounting servers implement the server function, and thus would be
 expected to implement the RADIUS accounting server MIB.

 However, it is possible for a RADIUS accounting entity to perform
 both client and server functions. For example, a RADIUS proxy may
 act as a server to one or more RADIUS accounting clients, while
 simultaneously acting as an accounting client to one or more
 accounting servers. In such situations, it is expected that RADIUS
 entities combining client and server functionality will support both
 the client and server MIBs. The server MIB is defined in this
 document, and the client MIB is defined in [RFC4670].

 This MIB module contains thirteen scalars as well as a single table,
 the RADIUS Accounting Client Table, which contains one row for each
 RADIUS accounting client with which the server shares a secret. Each
 entry in the RADIUS Accounting Client Table includes twelve columns
 presenting a view of the activity of the RADIUS accounting server.

 This MIB imports from [RFC2578], [RFC2580], [RFC3411], and [RFC4001].

6. Deprecated Objects

 The deprecated table in this MIB is carried forward from RFC 2621
 [RFC2621]. There are two conditions under which it MAY be desirable
 for managed entities to continue to support the deprecated table:

 1. The managed entity only supports IPv4 address formats.

 2. The managed entity supports both IPv4 and IPv6 address formats,
 and the deprecated table is supported for backwards compatibility
 with older management stations. This option SHOULD only be used
 when the IP addresses in the new table are in IPv4 format and can
 accurately be represented in both the new table and the
 deprecated table.

 Managed entities SHOULD NOT instantiate row entries in the deprecated
 table, containing IPv4-only address objects, when the RADIUS
 accounting client address represented in such a table row is not an
 IPv4 address. Managed entities SHOULD NOT return inaccurate values
 of IP address or SNMP object access errors for IPv4-only address
 objects in otherwise populated tables. When row entries exist in
 both the deprecated IPv4-only table and the new IP-version-neutral
 table that describe the same RADIUS accounting client, the row
 indexes SHOULD be the same for the corresponding rows in each table,
 to facilitate correlation of these related rows by management
 applications.

7. Definitions

 RADIUS-ACC-SERVER-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE, OBJECT‑IDENTITY,
 Counter32, Integer32,
 IpAddress, TimeTicks, mib‑2 FROM SNMPv2‑SMI
 SnmpAdminString FROM SNMP‑FRAMEWORK‑MIB
 InetAddressType, InetAddress FROM INET‑ADDRESS‑MIB
 MODULE‑COMPLIANCE, OBJECT‑GROUP FROM SNMPv2‑CONF;

radiusAccServMIB MODULE‑IDENTITY
 LAST‑UPDATED "200608210000Z" ‑‑ 21 August 2006
 ORGANIZATION "IETF RADIUS Extensions Working Group."
 CONTACT‑INFO
 " Bernard Aboba
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 US

 Phone: +1 425 936 6605
 EMail: bernarda@microsoft.com"
 DESCRIPTION
 "The MIB module for entities implementing the server
 side of the Remote Authentication Dial‑In User
 Service (RADIUS) accounting protocol. Copyright (C)
 The Internet Society (2006). This version of this
 MIB module is part of RFC 4671; see the RFC itself
 for full legal notices."
 REVISION "200608210000Z" ‑‑ 21 August 2006
 DESCRIPTION
 "Revised version as published in RFC 4671. This
 version obsoletes that of RFC 2621 by deprecating
 the MIB table containing IPv4‑only address formats
 and defining a new table to add support for version‑
 neutral IP address formats. The remaining MIB objects
 from RFC 2621 are carried forward into this version."
 REVISION "199906110000Z" ‑‑ 11 Jun 1999
 DESCRIPTION "Initial version as published in RFC 2621."
 ::= { radiusAccounting 1 }

radiusMIB OBJECT‑IDENTITY
 STATUS current
 DESCRIPTION
 "The OID assigned to RADIUS MIB work by the IANA."
 ::= { mib‑2 67 }

radiusAccounting OBJECT IDENTIFIER ::= {radiusMIB 2}

radiusAccServMIBObjects OBJECT IDENTIFIER
 ::= { radiusAccServMIB 1 }

radiusAccServ OBJECT IDENTIFIER
 ::= { radiusAccServMIBObjects 1 }

radiusAccServIdent OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The implementation identification string for the
 RADIUS accounting server software in use on the
 system, for example, 'FNS‑2.1'."
 ::= {radiusAccServ 1}

radiusAccServUpTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only

 STATUS current
 DESCRIPTION
 "If the server has a persistent state (e.g., a
 process), this value will be the time elapsed (in
 hundredths of a second) since the server process was
 started. For software without persistent state, this
 value will be zero."
 ::= {radiusAccServ 2}

radiusAccServResetTime OBJECT‑TYPE
 SYNTAX TimeTicks
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "If the server has a persistent state (e.g., a process)
 and supports a 'reset' operation (e.g., can be told to
 re‑read configuration files), this value will be the
 time elapsed (in hundredths of a second) since the
 server was 'reset.' For software that does not
 have persistence or does not support a 'reset'
 operation, this value will be zero."
 ::= {radiusAccServ 3}

radiusAccServConfigReset OBJECT‑TYPE
 SYNTAX INTEGER { other(1),
 reset(2),
 initializing(3),
 running(4)}
 MAX‑ACCESS read‑write
 STATUS current
 DESCRIPTION
 "Status/action object to reinitialize any persistent
 server state. When set to reset(2), any persistent
 server state (such as a process) is reinitialized as
 if the server had just been started. This value will
 never be returned by a read operation. When read,
 one of the following values will be returned:
 other(1) ‑ server in some unknown state;
 initializing(3) ‑ server (re)initializing;
 running(4) ‑ server currently running."
 ::= {radiusAccServ 4}

radiusAccServTotalRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION

 "The number of packets received on the
 accounting port."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccServ 5 }

radiusAccServTotalInvalidRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 received from unknown addresses."
 REFERENCE "RFC 2866 sections 2, 4.1"
 ::= { radiusAccServ 6 }

radiusAccServTotalDupRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of duplicate RADIUS Accounting‑Request
 packets received."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccServ 7 }

radiusAccServTotalResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Response packets
 sent."
 REFERENCE "RFC 2866 section 4.2"
 ::= { radiusAccServ 8 }

radiusAccServTotalMalformedRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Accounting‑Request
 packets received. Bad authenticators or unknown
 types are not included as malformed Access‑Requests."
 REFERENCE "RFC 2866 section 3"

 ::= { radiusAccServ 9 }

radiusAccServTotalBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 that contained an invalid authenticator."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServ 10 }

radiusAccServTotalPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming packets silently discarded
 for a reason other than malformed, bad authenticators,
 or unknown types."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccServ 11 }

radiusAccServTotalNoRecords OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 that were received and responded to but not
 recorded."
 ::= { radiusAccServ 12 }

radiusAccServTotalUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received."
 REFERENCE "RFC 2866 section 4"
 ::= { radiusAccServ 13 }

 radiusAccClientTable OBJECT-TYPE

 SYNTAX SEQUENCE OF RadiusAccClientEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "The (conceptual) table listing the RADIUS accounting
 clients with which the server shares a secret."
 ::= { radiusAccServ 14 }

radiusAccClientEntry OBJECT‑TYPE
 SYNTAX RadiusAccClientEntry
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 accounting client with which the server shares a
 secret."
 INDEX { radiusAccClientIndex }
 ::= { radiusAccClientTable 1 }

RadiusAccClientEntry ::= SEQUENCE {
 radiusAccClientIndex Integer32,
 radiusAccClientAddress IpAddress,
 radiusAccClientID SnmpAdminString,
 radiusAccServPacketsDropped Counter32,
 radiusAccServRequests Counter32,
 radiusAccServDupRequests Counter32,
 radiusAccServResponses Counter32,
 radiusAccServBadAuthenticators Counter32,
 radiusAccServMalformedRequests Counter32,
 radiusAccServNoRecords Counter32,
 radiusAccServUnknownTypes Counter32
}

radiusAccClientIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS deprecated
 DESCRIPTION
 "A number uniquely identifying each RADIUS accounting
 client with which this server communicates."
 ::= { radiusAccClientEntry 1 }

radiusAccClientAddress OBJECT‑TYPE
 SYNTAX IpAddress
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The NAS‑IP‑Address of the RADIUS accounting client

 referred to in this table entry."
 ::= { radiusAccClientEntry 2 }

radiusAccClientID OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS accounting client
 referred to in this table entry. This is not
 necessarily the same as sysName in MIB II."
 REFERENCE "RFC 2865 section 5.32"
 ::= { radiusAccClientEntry 3 }

‑‑ Server Counters
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped ‑ Responses = Pending
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped ‑ NoRecords = entries logged

radiusAccServPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of incoming packets received
 from this client and silently discarded
 for a reason other than malformed, bad
 authenticators, or unknown types."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccClientEntry 4 }

radiusAccServRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of packets received from this
 client on the accounting port."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccClientEntry 5 }

 radiusAccServDupRequests OBJECT-TYPE

 SYNTAX Counter32

 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of duplicate RADIUS Accounting‑Request
 packets received from this client."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccClientEntry 6 }

radiusAccServResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Response packets
 sent to this client."
 REFERENCE "RFC 2866 section 4.2"
 ::= { radiusAccClientEntry 7 }

radiusAccServBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 that contained invalid authenticators received
 from this client."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccClientEntry 8 }

radiusAccServMalformedRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of malformed RADIUS Accounting‑Request
 packets that were received from this client.
 Bad authenticators and unknown types
 are not included as malformed Accounting‑Requests."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccClientEntry 9 }

radiusAccServNoRecords OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"

 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 that were received and responded to but not
 recorded."
 ::= { radiusAccClientEntry 10 }

radiusAccServUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS deprecated
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this client."
 REFERENCE "RFC 2866 section 4"
 ::= { radiusAccClientEntry 11 }

 -- New MIB objects added in this revision

radiusAccClientExtTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusAccClientExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the RADIUS accounting
 clients with which the server shares a secret."
 ::= { radiusAccServ 15 }

radiusAccClientExtEntry OBJECT‑TYPE
 SYNTAX RadiusAccClientExtEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) representing a RADIUS
 accounting client with which the server shares a
 secret."
 INDEX { radiusAccClientExtIndex }
 ::= { radiusAccClientExtTable 1 }

RadiusAccClientExtEntry ::= SEQUENCE {
 radiusAccClientExtIndex Integer32,
 radiusAccClientInetAddressType InetAddressType,
 radiusAccClientInetAddress InetAddress,
 radiusAccClientExtID SnmpAdminString,
 radiusAccServExtPacketsDropped Counter32,

 radiusAccServExtRequests Counter32,
 radiusAccServExtDupRequests Counter32,
 radiusAccServExtResponses Counter32,
 radiusAccServExtBadAuthenticators Counter32,
 radiusAccServExtMalformedRequests Counter32,
 radiusAccServExtNoRecords Counter32,
 radiusAccServExtUnknownTypes Counter32,
 radiusAccServerCounterDiscontinuity TimeTicks
}

radiusAccClientExtIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A number uniquely identifying each RADIUS accounting
 client with which this server communicates."
 ::= { radiusAccClientExtEntry 1 }

 radiusAccClientInetAddressType OBJECT‑TYPE
 SYNTAX InetAddressType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The type of address format used for the
 radiusAccClientInetAddress object."
 ::= { radiusAccClientExtEntry 2 }

 radiusAccClientInetAddress OBJECT‑TYPE
 SYNTAX InetAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The IP address of the RADIUS accounting
 client referred to in this table entry, using
 the IPv6 address format."
 ::= { radiusAccClientExtEntry 3 }

radiusAccClientExtID OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS accounting client
 referred to in this table entry. This is not
 necessarily the same as sysName in MIB II."
 REFERENCE "RFC 2865 section 5.32"
 ::= { radiusAccClientExtEntry 4 }

‑‑ Server Counters
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped ‑ Responses = Pending
‑‑
‑‑ Requests ‑ DupRequests ‑ BadAuthenticators ‑ MalformedRequests ‑
‑‑ UnknownTypes ‑ PacketsDropped ‑ NoRecords = entries logged

radiusAccServExtPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming packets received from this
 client and silently discarded for a reason other
 than malformed, bad authenticators, or unknown types.
 This counter may experience a discontinuity when the
 RADIUS Accounting Server module within the managed
 entity is reinitialized, as indicated by the current
 value of radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccClientExtEntry 5 }

radiusAccServExtRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of packets received from this
 client on the accounting port. This counter
 may experience a discontinuity when the
 RADIUS Accounting Server module within the
 managed entity is reinitialized, as indicated by
 the current value of
 radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccClientExtEntry 6 }

radiusAccServExtDupRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of duplicate RADIUS Accounting‑Request
 packets received from this client. This counter

 may experience a discontinuity when the RADIUS
 Accounting Server module within the managed
 entity is reinitialized, as indicated by the
 current value of
 radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4.1"
 ::= { radiusAccClientExtEntry 7 }

radiusAccServExtResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Response packets
 sent to this client. This counter may experience
 a discontinuity when the RADIUS Accounting Server
 module within the managed entity is reinitialized,
 as indicated by the current value of
 radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4.2"
 ::= { radiusAccClientExtEntry 8 }

radiusAccServExtBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 that contained invalid authenticators received
 from this client. This counter may experience a
 discontinuity when the RADIUS Accounting Server
 module within the managed entity is reinitialized,
 as indicated by the current value of
 radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccClientExtEntry 9 }

radiusAccServExtMalformedRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Accounting‑Request
 packets that were received from this client.
 Bad authenticators and unknown types are not

 included as malformed Accounting‑Requests. This
 counter may experience a discontinuity when the
 RADIUS Accounting Server module within the managed
 entity is reinitialized, as indicated by the current
 value of radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 3"
 ::= { radiusAccClientExtEntry 10 }

radiusAccServExtNoRecords OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Accounting‑Request packets
 that were received and responded to but not
 recorded. This counter may experience a
 discontinuity when the RADIUS Accounting Server
 module within the managed entity is reinitialized,
 as indicated by the current value of
 radiusAccServerCounterDiscontinuity."
 ::= { radiusAccClientExtEntry 11 }

radiusAccServExtUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "packets"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS packets of unknown type that
 were received from this client. This counter may
 experience a discontinuity when the RADIUS Accounting
 Server module within the managed entity is
 reinitialized, as indicated by the current value of
 radiusAccServerCounterDiscontinuity."
 REFERENCE "RFC 2866 section 4"
 ::= { radiusAccClientExtEntry 12 }

radiusAccServerCounterDiscontinuity OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "centiseconds"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of centiseconds since the last
 discontinuity in the RADIUS Accounting Server
 counters. A discontinuity may be the result of
 a reinitialization of the RADIUS Accounting Server

 module within the managed entity."
 ::= { radiusAccClientExtEntry 13 }

 -- conformance information

radiusAccServMIBConformance OBJECT IDENTIFIER
 ::= { radiusAccServMIB 2 }

radiusAccServMIBCompliances OBJECT IDENTIFIER
 ::= { radiusAccServMIBConformance 1 }

radiusAccServMIBGroups OBJECT IDENTIFIER
 ::= { radiusAccServMIBConformance 2 }

 -- compliance statements

radiusAccServMIBCompliance MODULE‑COMPLIANCE
 STATUS deprecated
 DESCRIPTION
 "The compliance statement for accounting servers
 implementing the RADIUS Accounting Server MIB.
 Implementation of this module is for IPv4‑only
 entities, or for backwards compatibility use with
 entities that support both IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAccServMIBGroup }

 OBJECT radiusAccServConfigReset
 WRITE‑SYNTAX INTEGER { reset(2) }
 DESCRIPTION "The only SETable value is 'reset' (2)."

 ::= { radiusAccServMIBCompliances 1 }

radiusAccServExtMIBCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for accounting
 servers implementing the RADIUS Accounting
 Server IPv6 Extensions MIB. Implementation of
 this module is for entities that support IPv6,
 or support IPv4 and IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusAccServExtMIBGroup }

 OBJECT radiusAccServConfigReset
 WRITE‑SYNTAX INTEGER { reset(2) }

 DESCRIPTION "The only SETable value is 'reset' (2)."

 OBJECT radiusAccClientInetAddressType
 SYNTAX InetAddressType { ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation is only required to support
 IPv4 and globally unique IPv6 addresses."

 OBJECT radiusAccClientInetAddress
 SYNTAX InetAddress (SIZE (4|16))
 DESCRIPTION
 "An implementation is only required to support
 IPv4 and globally unique IPv6 addresses."

 ::= { radiusAccServMIBCompliances 2 }

 -- units of conformance

radiusAccServMIBGroup OBJECT‑GROUP
 OBJECTS {radiusAccServIdent,
 radiusAccServUpTime,
 radiusAccServResetTime,
 radiusAccServConfigReset,
 radiusAccServTotalRequests,
 radiusAccServTotalInvalidRequests,
 radiusAccServTotalDupRequests,
 radiusAccServTotalResponses,
 radiusAccServTotalMalformedRequests,
 radiusAccServTotalBadAuthenticators,
 radiusAccServTotalPacketsDropped,
 radiusAccServTotalNoRecords,
 radiusAccServTotalUnknownTypes,
 radiusAccClientAddress,
 radiusAccClientID,
 radiusAccServPacketsDropped,
 radiusAccServRequests,
 radiusAccServDupRequests,
 radiusAccServResponses,
 radiusAccServBadAuthenticators,
 radiusAccServMalformedRequests,
 radiusAccServNoRecords,
 radiusAccServUnknownTypes
 }
 STATUS deprecated
 DESCRIPTION
 "The collection of objects providing management of
 a RADIUS Accounting Server."

 ::= { radiusAccServMIBGroups 1 }

radiusAccServExtMIBGroup OBJECT‑GROUP
 OBJECTS {radiusAccServIdent,
 radiusAccServUpTime,
 radiusAccServResetTime,
 radiusAccServConfigReset,
 radiusAccServTotalRequests,
 radiusAccServTotalInvalidRequests,
 radiusAccServTotalDupRequests,
 radiusAccServTotalResponses,
 radiusAccServTotalMalformedRequests,
 radiusAccServTotalBadAuthenticators,
 radiusAccServTotalPacketsDropped,
 radiusAccServTotalNoRecords,
 radiusAccServTotalUnknownTypes,
 radiusAccClientInetAddressType,
 radiusAccClientInetAddress,
 radiusAccClientExtID,
 radiusAccServExtPacketsDropped,
 radiusAccServExtRequests,
 radiusAccServExtDupRequests,
 radiusAccServExtResponses,
 radiusAccServExtBadAuthenticators,
 radiusAccServExtMalformedRequests,
 radiusAccServExtNoRecords,
 radiusAccServExtUnknownTypes,
 radiusAccServerCounterDiscontinuity
 }
 STATUS current
 DESCRIPTION
 "The collection of objects providing management of
 a RADIUS Accounting Server."
 ::= { radiusAccServMIBGroups 2 }

 END

8. Security Considerations

 There are management objects (radiusAccServConfigReset) defined in
 this MIB that have a MAX-ACCESS clause of read-write and/or read-
 create. Such objects may be considered sensitive or vulnerable in
 some network environments. The support for SET operations in a non-
 secure environment without proper protection can have a negative
 effect on network operations. These are:

 radiusAccServConfigReset

 This object can be used to reinitialize the persistent state of
 any server. When set to reset(2), any persistent server state
 (such as a process) is reinitialized as if the server had just
 been started. Depending on the server implementation details,
 this action may or may not interrupt the processing of pending
 request in the server. Abuse of this object may lead to a Denial
 of Service attack on the server.

 There are a number of managed objects in this MIB that may contain
 sensitive information. These are:

 radiusAccClientIPAddress

 This can be used to determine the address of the RADIUS accounting
 client with which the server is communicating. This information
 could be useful in mounting an attack on the accounting client.

 radiusAccClientInetAddress

 This can be used to determine the address of the RADIUS accounting
 client with which the server is communicating. This information
 could be useful in mounting an attack on the accounting client.

 It is thus important to control even GET access to these objects and
 possibly to even encrypt the values of these object when sending them
 over the network via SNMP. Not all versions of SNMP provide features
 for such a secure environment.

 SNMP versions prior to SNMPv3 do not provide a secure environment.
 Even if the network itself is secure (for example by using IPsec),
 there is no control as to who on the secure network is allowed to
 access and GET/SET (read/change/create/delete) the objects in this
 MIB.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579]
 McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC4001]
 Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

9.2. Informative References

 [RFC2621]
 Zorn, G. and B. Aboba, "RADIUS Accounting Server MIB",
 RFC 2621, June 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4670]
 Nelson, D., "RADIUS Accounting Client MIB for IPv6", RFC
 4670, August 2006.

Appendix A. Acknowledgements

 The authors of the original MIB are Bernard Aboba and Glen Zorn.

 Many thanks to all reviewers, especially to Dave Harrington, Dan
 Romascanu, C.M. Heard, Bruno Pape, Greg Weber, and Bert Wijnen.

Author's Address

David B. Nelson
Enterasys Networks
50 Minuteman Road
Andover, MA 01810
USA

 EMail: dnelson@enterasys.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4672 - RADIUS Dynamic Authorization Client MIB

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4672

Category: Informational

S. De Cnodder

Alcatel

N. Jonnala

M. Chiba

Cisco Systems, Inc.

September 2006

RADIUS Dynamic Authorization Client MIB

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes the Remote Authentication Dial-In User
 Service (RADIUS) (RFC2865) Dynamic Authorization Client (DAC)
 functions that support the dynamic authorization extensions as
 defined in RFC 3576.

Table of Contents

	1. Introduction
	 1.1. Requirements Notation

	 1.2. Terminology

	2. The Internet-Standard Management Framework

	3. Overview

	4. RADIUS Dynamic Authorization Client MIB Definitions

	5. Security Considerations

	6. IANA Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes the Remote Authentication Dial-In User
 Service (RADIUS) [RFC2865] Dynamic Authorization Client (DAC)
 functions that support the dynamic authorization extensions as
 defined in RFC 3576.

 It is becoming increasingly important to support Dynamic
 Authorization extensions on the network access server (NAS) devices
 to handle the Disconnect and Change-of-Authorization (CoA) messages,
 as described in [RFC3576]. As a result, the effective management of
 RADIUS Dynamic Authorization entities is of considerable importance.
 This RADIUS Dynamic Authorization Client MIB complements the managed
 objects used for managing RADIUS authentication and accounting
 servers, as described in [RFC4669] and [RFC4671], respectively.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Terminology

 Dynamic Authorization Server (DAS)

 The component that resides on the NAS that processes the Disconnect
 and Change-of-Authorization (CoA) Request packets [RFC3576] sent by
 the Dynamic Authorization Client.

 Dynamic Authorization Client (DAC)

 The component that sends Disconnect and CoA-Request packets to the
 Dynamic Authorization Server. Although this component often resides
 on the RADIUS server, it is also possible for this component to be
 located on a separate host, such as a Rating Engine.

 Dynamic Authorization Server Port

 The UDP port on which the Dynamic Authorization Server listens for
 the Disconnect and CoA requests sent by the Dynamic Authorization
 Client.

2. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579], and STD 58, RFC 2580
 [RFC2580].

3. Overview

 "Dynamic Authorization Extensions to RADIUS" [RFC3576] defines the
 operation of Disconnect-Request, Disconnect-ACK, Disconnect-NAK,
 CoA-Request, CoA-ACK, and CoA-NAK packets. [RFC4673] defines the
 Dynamic Authorization Server MIB and the relationship with other MIB
 modules. This MIB module for the Dynamic Authorization Client
 contains the following:

 1. Two scalar objects

 2. One Dynamic Authorization Server table. This table contains one
 row for each DAS with which the DAC shares a secret.

4. RADIUS Dynamic Authorization Client MIB Definitions

 RADIUS-DYNAUTH-CLIENT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE,
 Counter32, Gauge32, Integer32,
 mib‑2, TimeTicks FROM SNMPv2‑SMI ‑‑ [RFC2578]
 SnmpAdminString FROM SNMP‑FRAMEWORK‑MIB ‑‑ [RFC3411]
 InetAddressType, InetAddress,
 InetPortNumber FROM INET‑ADDRESS‑MIB ‑‑ [RFC4001]
 MODULE‑COMPLIANCE,
 OBJECT‑GROUP FROM SNMPv2‑CONF; ‑‑ [RFC2580]

radiusDynAuthClientMIB MODULE‑IDENTITY
 LAST‑UPDATED "200608290000Z" ‑‑ 29 August 2006
 ORGANIZATION "IETF RADEXT Working Group"
 CONTACT‑INFO
 " Stefaan De Cnodder

 Alcatel
 Francis Wellesplein 1
 B‑2018 Antwerp
 Belgium

 Phone: +32 3 240 85 15
 EMail: stefaan.de_cnodder@alcatel.be

 Nagi Reddy Jonnala
 Cisco Systems, Inc.
 Divyasree Chambers, B Wing,
 O'Shaugnessy Road,
 Bangalore‑560027, India.

 Phone: +91 94487 60828
 EMail: njonnala@cisco.com

 Murtaza Chiba
 Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose CA, 95134

 Phone: +1 408 525 7198
 EMail: mchiba@cisco.com "
 DESCRIPTION
 "The MIB module for entities implementing the client
 side of the Dynamic Authorization Extensions to the
 Remote Authentication Dial‑In User Service (RADIUS)
 protocol. Copyright (C) The Internet Society (2006).
 Initial version as published in RFC 4672;
 for full legal notices see the RFC itself."

 REVISION "200609290000Z" ‑‑ 29 August 2006
 DESCRIPTION "Initial version as published in RFC 4672"
 ::= { mib‑2 145 }

 radiusDynAuthClientMIBObjects OBJECT IDENTIFIER ::=

 { radiusDynAuthClientMIB 1 }

radiusDynAuthClientScalars OBJECT IDENTIFIER ::=
 { radiusDynAuthClientMIBObjects 1 }

radiusDynAuthClientDisconInvalidServerAddresses OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of Disconnect‑Ack and Disconnect‑NAK packets

 received from unknown addresses. This counter may
 experience a discontinuity when the DAC module
 (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 ::= { radiusDynAuthClientScalars 1 }

radiusDynAuthClientCoAInvalidServerAddresses OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of CoA‑Ack and CoA‑NAK packets received from
 unknown addresses. Disconnect‑NAK packets received
 from unknown addresses. This counter may experience a
 discontinuity when the DAC module (re)starts, as
 indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 ::= { radiusDynAuthClientScalars 2 }

radiusDynAuthServerTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusDynAuthServerEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the RADIUS Dynamic
 Authorization Servers with which the client shares a
 secret."
 ::= { radiusDynAuthClientMIBObjects 2 }

radiusDynAuthServerEntry OBJECT‑TYPE
 SYNTAX RadiusDynAuthServerEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) representing one Dynamic
 Authorization Server with which the client shares a
 secret."
 INDEX { radiusDynAuthServerIndex }
 ::= { radiusDynAuthServerTable 1 }

RadiusDynAuthServerEntry ::= SEQUENCE {
 radiusDynAuthServerIndex Integer32,
 radiusDynAuthServerAddressType InetAddressType,
 radiusDynAuthServerAddress InetAddress,
 radiusDynAuthServerClientPortNumber InetPortNumber,
 radiusDynAuthServerID SnmpAdminString,
 radiusDynAuthClientRoundTripTime TimeTicks,
 radiusDynAuthClientDisconRequests Counter32,

 radiusDynAuthClientDisconAuthOnlyRequests Counter32,
 radiusDynAuthClientDisconRetransmissions Counter32,
 radiusDynAuthClientDisconAcks Counter32,
 radiusDynAuthClientDisconNaks Counter32,
 radiusDynAuthClientDisconNakAuthOnlyRequest Counter32,
 radiusDynAuthClientDisconNakSessNoContext Counter32,
 radiusDynAuthClientMalformedDisconResponses Counter32,
 radiusDynAuthClientDisconBadAuthenticators Counter32,
 radiusDynAuthClientDisconPendingRequests Gauge32,
 radiusDynAuthClientDisconTimeouts Counter32,
 radiusDynAuthClientDisconPacketsDropped Counter32,
 radiusDynAuthClientCoARequests Counter32,
 radiusDynAuthClientCoAAuthOnlyRequest Counter32,
 radiusDynAuthClientCoARetransmissions Counter32,
 radiusDynAuthClientCoAAcks Counter32,
 radiusDynAuthClientCoANaks Counter32,
 radiusDynAuthClientCoANakAuthOnlyRequest Counter32,
 radiusDynAuthClientCoANakSessNoContext Counter32,
 radiusDynAuthClientMalformedCoAResponses Counter32,
 radiusDynAuthClientCoABadAuthenticators Counter32,
 radiusDynAuthClientCoAPendingRequests Gauge32,
 radiusDynAuthClientCoATimeouts Counter32,
 radiusDynAuthClientCoAPacketsDropped Counter32,
 radiusDynAuthClientUnknownTypes Counter32,
 radiusDynAuthClientCounterDiscontinuity TimeTicks
}

radiusDynAuthServerIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A number uniquely identifying each RADIUS Dynamic
 Authorization Server with which this Dynamic
 Authorization Client communicates. This number is
 allocated by the agent implementing this MIB module
 and is unique in this context."
 ::= { radiusDynAuthServerEntry 1 }

radiusDynAuthServerAddressType OBJECT‑TYPE
 SYNTAX InetAddressType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The type of IP address of the RADIUS Dynamic
 Authorization Server referred to in this table entry."
 ::= { radiusDynAuthServerEntry 2 }

radiusDynAuthServerAddress OBJECT‑TYPE
 SYNTAX InetAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The IP address value of the RADIUS Dynamic
 Authorization Server referred to in this table entry
 using the version neutral IP address format. The type
 of this address is determined by the value of the
 radiusDynAuthServerAddressType object."
 ::= { radiusDynAuthServerEntry 3 }

radiusDynAuthServerClientPortNumber OBJECT‑TYPE
 SYNTAX InetPortNumber (1..65535)
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The UDP destination port that the RADIUS Dynamic
 Authorization Client is using to send requests to this
 server. The value zero is invalid."
 ::= { radiusDynAuthServerEntry 4 }

radiusDynAuthServerID OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS Dynamic Authorization
 Server referred to in this table entry. This is not
 necessarily the same as sysName in MIB II."
 REFERENCE
 "RFC 2865, Section 5.32, NAS‑Identifier."
 ::= { radiusDynAuthServerEntry 5 }

radiusDynAuthClientRoundTripTime OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "hundredths of a second"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The time interval (in hundredths of a second) between
 the most recent Disconnect or CoA request and the
 receipt of the corresponding Disconnect or CoA reply.
 A value of zero is returned if no reply has been
 received yet from this server."
 ::= { radiusDynAuthServerEntry 6 }

radiusDynAuthClientDisconRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑Requests sent
 to this Dynamic Authorization Server. This also
 includes the RADIUS Disconnect‑Requests that have a
 Service‑Type attribute with value 'Authorize Only'.
 Disconnect‑NAK packets received from unknown addresses.
 This counter may experience a discontinuity when the
 DAC module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 7 }

radiusDynAuthClientDisconAuthOnlyRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑Requests that include a
 Service‑Type attribute with value 'Authorize Only'
 sent to this Dynamic Authorization Server.
 Disconnect‑NAK packets received from unknown addresses.
 This counter may experience a discontinuity when the
 DAC module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 8 }

radiusDynAuthClientDisconRetransmissions OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "retransmissions"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑request packets
 retransmitted to this RADIUS Dynamic Authorization
 Server. Disconnect‑NAK packets received from unknown
 addresses. This counter may experience a discontinuity
 when the DAC module (re)starts, as indicated by the
 value of radiusDynAuthClientCounterDiscontinuity."
 REFERENCE

 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 9 }

radiusDynAuthClientDisconAcks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑ACK packets
 received from this Dynamic Authorization Server. This
 counter may experience a discontinuity when the DAC
 module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 10 }

radiusDynAuthClientDisconNaks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑NAK packets
 received from this Dynamic Authorization Server.
 This includes the RADIUS Disconnect‑NAK packets
 received with a Service‑Type attribute with value
 'Authorize Only' and the RADIUS Disconnect‑NAK
 packets received if no session context was found. This
 counter may experience a discontinuity when the DAC
 module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 11 }

radiusDynAuthClientDisconNakAuthOnlyRequest OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑NAK packets
 that include a Service‑Type attribute with value
 'Authorize Only' received from this Dynamic
 Authorization Server. This counter may experience a
 discontinuity when the DAC module (re)starts, as

 indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 12 }

radiusDynAuthClientDisconNakSessNoContext OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑NAK packets
 received from this Dynamic Authorization Server
 because no session context was found; i.e., it
 includes an Error‑Cause attribute with value 503
 ('Session Context Not Found'). This counter may
 experience a discontinuity when the DAC module
 (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 13 }

radiusDynAuthClientMalformedDisconResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Disconnect‑Ack and
 Disconnect‑NAK packets received from this Dynamic
 Authorization Server. Bad authenticators and unknown
 types are not included as malformed Disconnect‑Ack and
 Disconnect‑NAK packets. This counter may experience a
 discontinuity when the DAC module (re)starts, as
 indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM), and
 Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 14 }

radiusDynAuthClientDisconBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "The number of RADIUS Disconnect‑Ack and Disconnect‑NAK
 packets that contained invalid Authenticator field
 received from this Dynamic Authorization Server. This
 counter may experience a discontinuity when the DAC
 module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM), and
 Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 15 }

radiusDynAuthClientDisconPendingRequests OBJECT‑TYPE
 SYNTAX Gauge32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑request packets
 destined for this server that have not yet timed out
 or received a response. This variable is incremented
 when an Disconnect‑Request is sent and decremented
 due to receipt of a Disconnect‑Ack, a Disconnect‑NAK,
 a timeout, or a retransmission."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 16 }

radiusDynAuthClientDisconTimeouts OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "timeouts"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of Disconnect request timeouts to this
 server. After a timeout, the client may retry to the
 same server or give up. A retry to the same server is
 counted as a retransmit and as a timeout. A send
 to a different server is counted as a
 Disconnect‑Request and as a timeout. This counter
 may experience a discontinuity when the DAC module
 (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthServerEntry 17 }

 radiusDynAuthClientDisconPacketsDropped OBJECT-TYPE

 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming Disconnect‑Ack and
 Disconnect‑NAK packets from this Dynamic Authorization
 Server silently discarded by the client application for
 some reason other than malformed, bad authenticators,
 or unknown types. This counter may experience a
 discontinuity when the DAC module (re)starts, as
 indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM), and
 Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 18 }

radiusDynAuthClientCoARequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑Requests sent to this
 Dynamic Authorization Server. This also includes
 CoA requests that have a Service‑Type attribute
 with value 'Authorize Only'. This counter may
 experience a discontinuity when the DAC module
 (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 19 }

radiusDynAuthClientCoAAuthOnlyRequest OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑requests that include a
 Service‑Type attribute with value 'Authorize Only'
 sent to this Dynamic Authorization Client. This
 counter may experience a discontinuity when the DAC
 module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."

 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 20 }

radiusDynAuthClientCoARetransmissions OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "retransmissions"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑request packets
 retransmitted to this RADIUS Dynamic Authorization
 Server. This counter may experience a discontinuity
 when the DAC module (re)starts, as indicated by the
 value of radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 21 }

radiusDynAuthClientCoAAcks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑ACK packets received from
 this Dynamic Authorization Server. This counter may
 experience a discontinuity when the DAC module
 (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 22 }

radiusDynAuthClientCoANaks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑NAK packets received from
 this Dynamic Authorization Server. This includes the
 RADIUS CoA‑NAK packets received with a Service‑Type
 attribute with value 'Authorize Only' and the RADIUS
 CoA‑NAK packets received because no session context

 was found. This counter may experience a discontinuity
 when the DAC module (re)starts, as indicated by the
 value of radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 23 }

radiusDynAuthClientCoANakAuthOnlyRequest OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑NAK packets that include a
 Service‑Type attribute with value 'Authorize Only'
 received from this Dynamic Authorization Server. This
 counter may experience a discontinuity when the DAC
 module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 24 }

radiusDynAuthClientCoANakSessNoContext OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑NAK packets received from
 this Dynamic Authorization Server because no session
 context was found; i.e., it includes an Error‑Cause
 attribute with value 503 ('Session Context Not Found').
 This counter may experience a discontinuity when the
 DAC module (re)starts as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 25 }

radiusDynAuthClientMalformedCoAResponses OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "The number of malformed RADIUS CoA‑Ack and CoA‑NAK
 packets received from this Dynamic Authorization
 Server. Bad authenticators and unknown types are
 not included as malformed CoA‑Ack and CoA‑NAK packets.
 This counter may experience a discontinuity when the
 DAC module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA), and Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 26 }

radiusDynAuthClientCoABadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑Ack and CoA‑NAK packets
 that contained invalid Authenticator field
 received from this Dynamic Authorization Server.
 This counter may experience a discontinuity when the
 DAC module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA), and Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 27 }

radiusDynAuthClientCoAPendingRequests OBJECT‑TYPE
 SYNTAX Gauge32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑request packets destined for
 this server that have not yet timed out or received a
 response. This variable is incremented when an
 CoA‑Request is sent and decremented due to receipt of
 a CoA‑Ack, a CoA‑NAK, or a timeout, or a
 retransmission."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 28 }

 radiusDynAuthClientCoATimeouts OBJECT-TYPE

 SYNTAX Counter32
 UNITS "timeouts"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of CoA request timeouts to this server.
 After a timeout, the client may retry to the same
 server or give up. A retry to the same server is
 counted as a retransmit and as a timeout. A send to
 a different server is counted as a CoA‑Request and
 as a timeout. This counter may experience a
 discontinuity when the DAC module (re)starts, as
 indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthServerEntry 29 }

radiusDynAuthClientCoAPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming CoA‑Ack and CoA‑NAK from this
 Dynamic Authorization Server silently discarded by the
 client application for some reason other than
 malformed, bad authenticators, or unknown types. This
 counter may experience a discontinuity when the DAC
 module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA), and Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 30 }

radiusDynAuthClientUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming packets of unknown types
 that were received on the Dynamic Authorization port.
 This counter may experience a discontinuity when the
 DAC module (re)starts, as indicated by the value of
 radiusDynAuthClientCounterDiscontinuity."

 REFERENCE
 "RFC 3576, Section 2.3, Packet Format."
 ::= { radiusDynAuthServerEntry 31 }

radiusDynAuthClientCounterDiscontinuity OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "hundredths of a second"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The time (in hundredths of a second) since the
 last counter discontinuity. A discontinuity may
 be the result of a reinitialization of the DAC
 module within the managed entity."
 ::= { radiusDynAuthServerEntry 32 }

 -- conformance information

radiusDynAuthClientMIBConformance
 OBJECT IDENTIFIER ::= { radiusDynAuthClientMIB 2 }
radiusDynAuthClientMIBCompliances
 OBJECT IDENTIFIER ::= { radiusDynAuthClientMIBConformance 1 }
radiusDynAuthClientMIBGroups
 OBJECT IDENTIFIER ::= { radiusDynAuthClientMIBConformance 2 }
‑‑ compliance statements

radiusDynAuthClientMIBCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for entities implementing
 the RADIUS Dynamic Authorization Client.
 Implementation of this module is for entities that
 support IPv4 and/or IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusDynAuthClientMIBGroup }

 OBJECT radiusDynAuthServerAddressType
 SYNTAX InetAddressType { ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation is only required to support IPv4 and
 globally unique IPv6 addresses."

 OBJECT radiusDynAuthServerAddress
 SYNTAX InetAddress (SIZE(4|16))
 DESCRIPTION
 "An implementation is only required to support IPv4 and
 globally unique IPv6 addresses."

 GROUP radiusDynAuthClientAuthOnlyGroup
 DESCRIPTION
 "Only required for Dynamic Authorization Clients that
 are supporting Service‑Type attributes with value
 'Authorize‑Only'."

 GROUP radiusDynAuthClientNoSessGroup
 DESCRIPTION
 "This group is not required if the Dynamic
 Authorization Server cannot easily determine whether
 a session exists (e.g., in case of a RADIUS
 proxy)."

 ::= { radiusDynAuthClientMIBCompliances 1 }

 -- units of conformance

radiusDynAuthClientMIBGroup OBJECT‑GROUP
 OBJECTS { radiusDynAuthClientDisconInvalidServerAddresses,
 radiusDynAuthClientCoAInvalidServerAddresses,
 radiusDynAuthServerAddressType,
 radiusDynAuthServerAddress,
 radiusDynAuthServerClientPortNumber,
 radiusDynAuthServerID,
 radiusDynAuthClientRoundTripTime,
 radiusDynAuthClientDisconRequests,
 radiusDynAuthClientDisconRetransmissions,
 radiusDynAuthClientDisconAcks,
 radiusDynAuthClientDisconNaks,
 radiusDynAuthClientMalformedDisconResponses,
 radiusDynAuthClientDisconBadAuthenticators,
 radiusDynAuthClientDisconPendingRequests,
 radiusDynAuthClientDisconTimeouts,
 radiusDynAuthClientDisconPacketsDropped,
 radiusDynAuthClientCoARequests,
 radiusDynAuthClientCoARetransmissions,
 radiusDynAuthClientCoAAcks,
 radiusDynAuthClientCoANaks,
 radiusDynAuthClientMalformedCoAResponses,
 radiusDynAuthClientCoABadAuthenticators,
 radiusDynAuthClientCoAPendingRequests,
 radiusDynAuthClientCoATimeouts,
 radiusDynAuthClientCoAPacketsDropped,
 radiusDynAuthClientUnknownTypes,
 radiusDynAuthClientCounterDiscontinuity
 }
 STATUS current

 DESCRIPTION
 "The collection of objects providing management of
 a RADIUS Dynamic Authorization Client."
 ::= { radiusDynAuthClientMIBGroups 1 }

radiusDynAuthClientAuthOnlyGroup OBJECT‑GROUP
 OBJECTS { radiusDynAuthClientDisconAuthOnlyRequests,
 radiusDynAuthClientDisconNakAuthOnlyRequest,
 radiusDynAuthClientCoAAuthOnlyRequest,
 radiusDynAuthClientCoANakAuthOnlyRequest
 }
 STATUS current
 DESCRIPTION
 "The collection of objects supporting the RADIUS
 messages including Service‑Type attribute with
 value 'Authorize Only'."
 ::= { radiusDynAuthClientMIBGroups 2 }

radiusDynAuthClientNoSessGroup OBJECT‑GROUP
 OBJECTS { radiusDynAuthClientDisconNakSessNoContext,
 radiusDynAuthClientCoANakSessNoContext
 }
 STATUS current
 DESCRIPTION
 "The collection of objects supporting the RADIUS
 messages that are referring to non‑existing sessions."
 ::= { radiusDynAuthClientMIBGroups 3 }

 END

5. Security Considerations

 There are no management objects defined in this MIB module that have
 a MAX-ACCESS clause of read-write and/or read-create. So, if this
 MIB module is implemented correctly, then there is no risk that an
 intruder can alter or create any management objects of this MIB
 module via direct SNMP SET operations.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:

 radiusDynAuthServerAddress and radiusDynAuthServerAddressType

 These can be used to determine the address of the DAS with which
 the DAC is communicating. This information could be useful in
 mounting an attack on the DAS.

 radiusDynAuthServerID

 This can be used to determine the Identifier of the DAS. This
 information could be useful in impersonating the DAS.

 radiusDynAuthServerClientPortNumber

 This can be used to determine the destination port number to which
 the DAC is sending. This information could be useful in mounting
 an attack on the DAS.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPsec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

6. IANA Considerations

 The IANA has assigned OID number 145 under mib-2.

7. Acknowledgements

 The authors would also like to acknowledge the following people for
 their comments on this document: Bernard Aboba, Alan DeKok, David
 Nelson, Anjaneyulu Pata, Dan Romascanu, Juergen Schoenwaelder, Greg
 Weber, Bert Wijnen, and Glen Zorn.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Structure of Management Information Version 2 (SMIv2)",
 STD 58, RFC 2578, April 1999.

 [RFC2579]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Textual Conventions for SMIv2", STD 58, RFC 2579, April
 1999.

 [RFC2580]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 3576,
 July 2003.

 [RFC4001]
 Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

8.2. Informative References

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4669]
 Nelson, D., "RADIUS Authentication Server MIB for IPv6",
 RFC 4669, August 2006.

 [RFC4671]
 Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC
 4671, August 2006.

 [RFC4673]
 De Cnodder, S., Jonnala, N., and M. Chiba, "RADIUS Dynamic
 Authorization Server MIB", RFC 4673, September 2006.

Authors' Addresses

Stefaan De Cnodder
Alcatel
Francis Wellesplein 1
B‑2018 Antwerp
Belgium

Phone: +32 3 240 85 15
EMail: stefaan.de_cnodder@alcatel.be

Nagi Reddy Jonnala
Cisco Systems, Inc.
Divyasree Chambers, B Wing, O'Shaugnessy Road
Bangalore‑560027, India

Phone: +91 94487 60828
EMail: njonnala@cisco.com

Murtaza Chiba
Cisco Systems, Inc.
170 West Tasman Dr.
San Jose CA, 95134

Phone: +1 408 525 7198
EMail: mchiba@cisco.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4673 - RADIUS Dynamic Authorization Server MIB

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4673

Category: Informational

S. De Cnodder

Alcatel

N. Jonnala

M. Chiba

Cisco Systems, Inc.

September 2006

RADIUS Dynamic Authorization Server MIB

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 In particular, it describes the Remote Authentication Dial-In User
 Service (RADIUS) (RFC 2865) Dynamic Authorization Server (DAS)
 functions that support the dynamic authorization extensions as
 defined in RFC 3576.

Table of Contents

	1. Introduction
	 1.1. Requirements Notation

	 1.2. Terminology

	2. The Internet-Standard Management Framework

	3. Overview

	4. RADIUS Dynamic Authorization Server MIB Definitions

	5. Security Considerations

	6. IANA Considerations

	7. Acknowledgements

	8. References
	 8.1. Normative References

	 8.2. Informative References

1. Introduction

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in the Internet community.
 It is becoming increasingly important to support Dynamic
 Authorization extensions on the network access server (NAS) devices
 to handle the Disconnect and Change-of-Authorization (CoA) messages
 as described in [RFC3576]. As a result, the effective management of
 RADIUS Dynamic Authorization entities is of considerable importance.
 This RADIUS Dynamic Authorization Server (DAS) MIB complements the
 managed objects used for managing RADIUS authentication and
 accounting clients as described in [RFC4668] and [RFC4670],
 respectively.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Terminology

 Dynamic Authorization Server (DAS)

 The component that resides on the NAS that processes the Disconnect
 and Change-of-Authorization (CoA) Request packets [RFC3576] sent by
 the Dynamic Authorization Client.

 Dynamic Authorization Client (DAC)

 The component that sends Disconnect and CoA-Request packets to the
 Dynamic Authorization Server. Although this component often resides
 on the RADIUS server, it is also possible for it to be located on a
 separate host, such as a Rating Engine.

 Dynamic Authorization Server Port

 The UDP port on which the Dynamic Authorization Server listens for
 the Disconnect and CoA requests sent by the Dynamic Authorization
 Client.

2. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base, or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579], and STD 58, RFC 2580
 [RFC2580].

3. Overview

 "Dynamic Authorization Extensions to RADIUS" [RFC3576] defines the
 operation of Disconnect-Request, Disconnect-ACK, Disconnect-NAK,
 CoA-Request, CoA-ACK, and CoA-NAK packets. Typically, NAS devices
 implement the DAS function, and thus would be expected to implement
 the RADIUS Dynamic Authorization Server MIB, whereas DACs implement
 the client function and thus would be expected to implement the
 RADIUS Dynamic Authorization Client MIB.

 However, it is possible for a RADIUS Dynamic Authorization entity to
 perform both client and server functions. For example, a RADIUS
 proxy may act as a DAS to one or more DACs while simultaneously
 acting as a DAC to one or more DASs. In such situations, it is
 expected that RADIUS entities combining client and server
 functionality will support both the client and server MIBs.

 This memo describes the MIB for Dynamic Authorization Servers and
 relates to the following documents as follows:

 [RFC4668] describes the MIB for a RADIUS Auth Client MIB.

 [RFC4669] describes the MIB for a RADIUS Auth Server MIB.

 [RFC4670] describes the MIB for a RADIUS Acct Client MIB.

 [RFC4671] describes the MIB for a RADIUS Acct Server MIB.

 [RFC4672] describes the MIB for a RADIUS Dynamic Auth Client.

 A NAS typically implements the MIBs for a RADIUS Authentication
 Client, a RADIUS accounting client, and a RADIUS Dynamic
 Authorization Server. However, any one MIB can be implemented
 without implementing any of the other MIBs; i.e., the MIBs have no
 dependencies on each other. A typical case would be for a device to
 implement the MIBs RADIUS authentication server, RADIUS accounting
 server, and RADIUS Dynamic Authorization Client. A RADIUS proxy
 might implement any, all, or a subset of the MIBs listed above and
 the MIB as defined in this document.

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
User 1‑‑‑‑| | Disconnect‑Request | |
 | Dynamic | CoA‑Request | Dynamic |
User 2‑‑‑‑| Authorization |<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑| Authorization |
 | Server |‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>| Client |
User 3‑‑‑‑| (DAS) | Disconnect‑Ack | (DAC) |
 | | Disconnect‑NAK | |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+ CoA‑Ack/CoA‑NAK +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1. Mapping of clients and servers

 This MIB module for the Dynamic Authorization Server contains the
 following:

 1. Three scalar objects.

 2. One Dynamic Authorization Client Table. This table contains one
 row for each DAC with which the DAS shares a secret.

4. RADIUS Dynamic Authorization Server MIB Definitions

RADIUS-DYNAUTH-SERVER-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE‑IDENTITY, OBJECT‑TYPE,
 Counter32, Integer32, mib‑2,
 TimeTicks FROM SNMPv2‑SMI ‑‑ [RFC2578]
 SnmpAdminString FROM SNMP‑FRAMEWORK‑MIB ‑‑ [RFC3411]
 InetAddressType,
 InetAddress FROM INET‑ADDRESS‑MIB ‑‑ [RFC4001]
 MODULE‑COMPLIANCE,
 OBJECT‑GROUP FROM SNMPv2‑CONF; ‑‑ [RFC2580]

radiusDynAuthServerMIB MODULE‑IDENTITY
 LAST‑UPDATED "200608290000Z" ‑‑ 29 August 2006
 ORGANIZATION "IETF RADEXT Working Group"
 CONTACT‑INFO
 " Stefaan De Cnodder
 Alcatel
 Francis Wellesplein 1
 B‑2018 Antwerp
 Belgium

 Phone: +32 3 240 85 15
 EMail: stefaan.de_cnodder@alcatel.be

 Nagi Reddy Jonnala
 Cisco Systems, Inc.
 Divyasree Chambers, B Wing,
 O'Shaugnessy Road,
 Bangalore‑560027, India.

 Phone: +91 94487 60828
 EMail: njonnala@cisco.com

 Murtaza Chiba
 Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose CA, 95134

 Phone: +1 408 525 7198
 EMail: mchiba@cisco.com "
 DESCRIPTION
 "The MIB module for entities implementing the server
 side of the Dynamic Authorization Extensions to the
 Remote Authentication Dial‑In User Service (RADIUS)
 protocol. Copyright (C) The Internet Society (2006).

 Initial version as published in RFC 4673; for full
 legal notices see the RFC itself."

 REVISION "200608290000Z" ‑‑ 29 August 2006
 DESCRIPTION "Initial version as published in RFC 4673."
 ::= { mib‑2 146 }

radiusDynAuthServerMIBObjects OBJECT IDENTIFIER ::=
 { radiusDynAuthServerMIB 1 }

radiusDynAuthServerScalars OBJECT IDENTIFIER ::=
 { radiusDynAuthServerMIBObjects 1 }

radiusDynAuthServerDisconInvalidClientAddresses OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of Disconnect‑Request packets received from
 unknown addresses. This counter may experience a
 discontinuity when the DAS module (re)starts, as
 indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 ::= { radiusDynAuthServerScalars 1 }

radiusDynAuthServerCoAInvalidClientAddresses OBJECT‑TYPE
 SYNTAX Counter32
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of CoA‑Request packets received from unknown
 addresses. This counter may experience a discontinuity
 when the DAS module (re)starts, as indicated by the
 value of radiusDynAuthServerCounterDiscontinuity."
 ::= { radiusDynAuthServerScalars 2 }

radiusDynAuthServerIdentifier OBJECT‑TYPE
 SYNTAX SnmpAdminString
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The NAS‑Identifier of the RADIUS Dynamic Authorization
 Server. This is not necessarily the same as sysName in
 MIB II."
 REFERENCE
 "RFC 2865, Section 5.32, NAS‑Identifier."
 ::= { radiusDynAuthServerScalars 3 }

radiusDynAuthClientTable OBJECT‑TYPE
 SYNTAX SEQUENCE OF RadiusDynAuthClientEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "The (conceptual) table listing the RADIUS Dynamic
 Authorization Clients with which the server shares a
 secret."
 ::= { radiusDynAuthServerMIBObjects 2 }

radiusDynAuthClientEntry OBJECT‑TYPE
 SYNTAX RadiusDynAuthClientEntry
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) representing one Dynamic
 Authorization Client with which the server shares a
 secret."
 INDEX { radiusDynAuthClientIndex }
 ::= { radiusDynAuthClientTable 1 }

RadiusDynAuthClientEntry ::= SEQUENCE {
 radiusDynAuthClientIndex Integer32,
 radiusDynAuthClientAddressType InetAddressType,
 radiusDynAuthClientAddress InetAddress,
 radiusDynAuthServDisconRequests Counter32,
 radiusDynAuthServDisconAuthOnlyRequests Counter32,
 radiusDynAuthServDupDisconRequests Counter32,
 radiusDynAuthServDisconAcks Counter32,
 radiusDynAuthServDisconNaks Counter32,
 radiusDynAuthServDisconNakAuthOnlyRequests Counter32,
 radiusDynAuthServDisconNakSessNoContext Counter32,
 radiusDynAuthServDisconUserSessRemoved Counter32,
 radiusDynAuthServMalformedDisconRequests Counter32,
 radiusDynAuthServDisconBadAuthenticators Counter32,
 radiusDynAuthServDisconPacketsDropped Counter32,
 radiusDynAuthServCoARequests Counter32,
 radiusDynAuthServCoAAuthOnlyRequests Counter32,
 radiusDynAuthServDupCoARequests Counter32,
 radiusDynAuthServCoAAcks Counter32,
 radiusDynAuthServCoANaks Counter32,
 radiusDynAuthServCoANakAuthOnlyRequests Counter32,
 radiusDynAuthServCoANakSessNoContext Counter32,
 radiusDynAuthServCoAUserSessChanged Counter32,
 radiusDynAuthServMalformedCoARequests Counter32,
 radiusDynAuthServCoABadAuthenticators Counter32,
 radiusDynAuthServCoAPacketsDropped Counter32,
 radiusDynAuthServUnknownTypes Counter32,

 radiusDynAuthServerCounterDiscontinuity TimeTicks
}

radiusDynAuthClientIndex OBJECT‑TYPE
 SYNTAX Integer32 (1..2147483647)
 MAX‑ACCESS not‑accessible
 STATUS current
 DESCRIPTION
 "A number uniquely identifying each RADIUS Dynamic
 Authorization Client with which this Dynamic
 Authorization Server communicates. This number is
 allocated by the agent implementing this MIB module
 and is unique in this context."
 ::= { radiusDynAuthClientEntry 1 }

radiusDynAuthClientAddressType OBJECT‑TYPE
 SYNTAX InetAddressType
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The type of IP address of the RADIUS Dynamic
 Authorization Client referred to in this table entry."
 ::= { radiusDynAuthClientEntry 2 }

radiusDynAuthClientAddress OBJECT‑TYPE
 SYNTAX InetAddress
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The IP address value of the RADIUS Dynamic
 Authorization Client referred to in this table entry,
 using the version neutral IP address format. The type
 of this address is determined by the value of
 the radiusDynAuthClientAddressType object."
 ::= { radiusDynAuthClientEntry 3 }

radiusDynAuthServDisconRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑Requests received
 from this Dynamic Authorization Client. This also
 includes the RADIUS Disconnect‑Requests that have a
 Service‑Type attribute with value 'Authorize Only'.
 This counter may experience a discontinuity when the

 DAS module (re)starts as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 4 }

radiusDynAuthServDisconAuthOnlyRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑Requests that include
 a Service‑Type attribute with value 'Authorize Only'
 received from this Dynamic Authorization Client. This
 counter may experience a discontinuity when the DAS
 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 5 }

radiusDynAuthServDupDisconRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of duplicate RADIUS Disconnect‑Request
 packets received from this Dynamic Authorization
 Client. This counter may experience a discontinuity
 when the DAS module (re)starts, as indicated by the
 value of radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 6 }

radiusDynAuthServDisconAcks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑ACK packets sent to
 this Dynamic Authorization Client. This counter may
 experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."

 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 7 }

radiusDynAuthServDisconNaks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑NAK packets
 sent to this Dynamic Authorization Client. This
 includes the RADIUS Disconnect‑NAK packets sent
 with a Service‑Type attribute with value 'Authorize
 Only' and the RADIUS Disconnect‑NAK packets sent
 because no session context was found. This counter
 may experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 8 }

radiusDynAuthServDisconNakAuthOnlyRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑NAK packets that
 include a Service‑Type attribute with value
 'Authorize Only' sent to this Dynamic Authorization
 Client. This counter may experience a discontinuity
 when the DAS module (re)starts, as indicated by the
 value of radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 9 }

radiusDynAuthServDisconNakSessNoContext OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑NAK packets
 sent to this Dynamic Authorization Client
 because no session context was found. This counter may

 experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 10 }

radiusDynAuthServDisconUserSessRemoved OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "sessions"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of user sessions removed for the
 Disconnect‑Requests received from this
 Dynamic Authorization Client. Depending on site‑
 specific policies, a single Disconnect request
 can remove multiple user sessions. In cases where
 this Dynamic Authorization Server has no
 knowledge of the number of user sessions that
 are affected by a single request, each such
 Disconnect‑Request will count as a single
 affected user session only. This counter may experience
 a discontinuity when the DAS module (re)starts, as
 indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM)."
 ::= { radiusDynAuthClientEntry 11 }

radiusDynAuthServMalformedDisconRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS Disconnect‑Request
 packets received from this Dynamic Authorization
 Client. Bad authenticators and unknown types are not
 included as malformed Disconnect‑Requests. This counter
 may experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM), and
 Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 12 }

radiusDynAuthServDisconBadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS Disconnect‑Request packets
 that contained an invalid Authenticator field
 received from this Dynamic Authorization Client. This
 counter may experience a discontinuity when the DAS
 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM), and
 Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 13 }

radiusDynAuthServDisconPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming Disconnect‑Requests
 from this Dynamic Authorization Client silently
 discarded by the server application for some reason
 other than malformed, bad authenticators, or unknown
 types. This counter may experience a discontinuity
 when the DAS module (re)starts, as indicated by the
 value of radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.1, Disconnect Messages (DM), and
 Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 14 }

radiusDynAuthServCoARequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑requests received from this
 Dynamic Authorization Client. This also includes
 the CoA requests that have a Service‑Type attribute
 with value 'Authorize Only'. This counter may
 experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."

 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 15 }

radiusDynAuthServCoAAuthOnlyRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑requests that include a
 Service‑Type attribute with value 'Authorize Only'
 received from this Dynamic Authorization Client. This
 counter may experience a discontinuity when the DAS
 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 16 }

radiusDynAuthServDupCoARequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of duplicate RADIUS CoA‑Request packets
 received from this Dynamic Authorization Client. This
 counter may experience a discontinuity when the DAS
 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 17 }

radiusDynAuthServCoAAcks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑ACK packets sent to this
 Dynamic Authorization Client. This counter may
 experience a discontinuity when the DAS module

 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 18 }

radiusDynAuthServCoANaks OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑NAK packets sent to
 this Dynamic Authorization Client. This includes
 the RADIUS CoA‑NAK packets sent with a Service‑Type
 attribute with value 'Authorize Only' and the RADIUS
 CoA‑NAK packets sent because no session context was
 found. This counter may experience a discontinuity
 when the DAS module (re)starts, as indicated by the
 value of radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 19 }

radiusDynAuthServCoANakAuthOnlyRequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑NAK packets that include a
 Service‑Type attribute with value 'Authorize Only'
 sent to this Dynamic Authorization Client. This counter
 may experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 20 }

radiusDynAuthServCoANakSessNoContext OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "replies"
 MAX‑ACCESS read‑only
 STATUS current

 DESCRIPTION
 "The number of RADIUS CoA‑NAK packets sent to this
 Dynamic Authorization Client because no session context
 was found. This counter may experience a discontinuity
 when the DAS module (re)starts, as indicated by the
 value of radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 21 }

radiusDynAuthServCoAUserSessChanged OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "sessions"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of user sessions authorization
 changed for the CoA‑Requests received from this
 Dynamic Authorization Client. Depending on site‑
 specific policies, a single CoA request can change
 multiple user sessions' authorization. In cases where
 this Dynamic Authorization Server has no knowledge of
 the number of user sessions that are affected by a
 single request, each such CoA‑Request will
 count as a single affected user session only. This
 counter may experience a discontinuity when the DAS
 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA)."
 ::= { radiusDynAuthClientEntry 22 }

radiusDynAuthServMalformedCoARequests OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of malformed RADIUS CoA‑Request packets
 received from this Dynamic Authorization Client. Bad
 authenticators and unknown types are not included as
 malformed CoA‑Requests. This counter may experience a
 discontinuity when the DAS module (re)starts, as
 indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE

 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA), and Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 23 }

radiusDynAuthServCoABadAuthenticators OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of RADIUS CoA‑Request packets that
 contained an invalid Authenticator field received
 from this Dynamic Authorization Client. This counter
 may experience a discontinuity when the DAS module
 (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA), and Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 24 }

radiusDynAuthServCoAPacketsDropped OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming CoA packets from this
 Dynamic Authorization Client silently discarded
 by the server application for some reason other than
 malformed, bad authenticators, or unknown types. This
 counter may experience a discontinuity when the DAS
 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.2, Change‑of‑Authorization
 Messages (CoA), and Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 25 }

radiusDynAuthServUnknownTypes OBJECT‑TYPE
 SYNTAX Counter32
 UNITS "requests"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The number of incoming packets of unknown types that
 were received on the Dynamic Authorization port. This
 counter may experience a discontinuity when the DAS

 module (re)starts, as indicated by the value of
 radiusDynAuthServerCounterDiscontinuity."
 REFERENCE
 "RFC 3576, Section 2.3, Packet Format."
 ::= { radiusDynAuthClientEntry 26 }

radiusDynAuthServerCounterDiscontinuity OBJECT‑TYPE
 SYNTAX TimeTicks
 UNITS "hundredths of a second"
 MAX‑ACCESS read‑only
 STATUS current
 DESCRIPTION
 "The time (in hundredths of a second) since the
 last counter discontinuity. A discontinuity may
 be the result of a reinitialization of the DAS
 module within the managed entity."
 ::= { radiusDynAuthClientEntry 27 }

-- conformance information

radiusDynAuthServerMIBConformance
 OBJECT IDENTIFIER ::= { radiusDynAuthServerMIB 2 }
radiusDynAuthServerMIBCompliances
 OBJECT IDENTIFIER ::= { radiusDynAuthServerMIBConformance 1 }
radiusDynAuthServerMIBGroups
 OBJECT IDENTIFIER ::= { radiusDynAuthServerMIBConformance 2 }

-- compliance statements

radiusAuthServerMIBCompliance MODULE‑COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for entities implementing
 the RADIUS Dynamic Authorization Server. Implementation
 of this module is for entities that support IPv4 and/or
 IPv6."
 MODULE ‑‑ this module
 MANDATORY‑GROUPS { radiusDynAuthServerMIBGroup }

 OBJECT radiusDynAuthClientAddressType
 SYNTAX InetAddressType { ipv4(1), ipv6(2) }
 DESCRIPTION
 "An implementation is only required to support IPv4 and
 globally unique IPv6 addresses."

 OBJECT radiusDynAuthClientAddress
 SYNTAX InetAddress (SIZE(4|16))

 DESCRIPTION

 "An implementation is only required to support IPv4 and
 globally unique IPv6 addresses."

GROUP radiusDynAuthServerAuthOnlyGroup
DESCRIPTION
 "Only required for Dynamic Authorization Clients that
 are supporting Service‑Type attributes with value
 'Authorize‑Only'."

GROUP radiusDynAuthServerNoSessGroup
DESCRIPTION
 "This group is not required if the Dynamic
 Authorization Server cannot easily determine whether
 a session exists (e.g., in case of a RADIUS
 proxy)."

 ::= { radiusDynAuthServerMIBCompliances 1 }

-- units of conformance

radiusDynAuthServerMIBGroup OBJECT‑GROUP
 OBJECTS { radiusDynAuthServerDisconInvalidClientAddresses,
 radiusDynAuthServerCoAInvalidClientAddresses,
 radiusDynAuthServerIdentifier,
 radiusDynAuthClientAddressType,
 radiusDynAuthClientAddress,
 radiusDynAuthServDisconRequests,
 radiusDynAuthServDupDisconRequests,
 radiusDynAuthServDisconAcks,
 radiusDynAuthServDisconNaks,
 radiusDynAuthServDisconUserSessRemoved,
 radiusDynAuthServMalformedDisconRequests,
 radiusDynAuthServDisconBadAuthenticators,
 radiusDynAuthServDisconPacketsDropped,
 radiusDynAuthServCoARequests,
 radiusDynAuthServDupCoARequests,
 radiusDynAuthServCoAAcks,
 radiusDynAuthServCoANaks,
 radiusDynAuthServCoAUserSessChanged,
 radiusDynAuthServMalformedCoARequests,
 radiusDynAuthServCoABadAuthenticators,
 radiusDynAuthServCoAPacketsDropped,
 radiusDynAuthServUnknownTypes,
 radiusDynAuthServerCounterDiscontinuity
 }
 STATUS current

 DESCRIPTION
 "The collection of objects providing management of
 a RADIUS Dynamic Authorization Server."
 ::= { radiusDynAuthServerMIBGroups 1 }

radiusDynAuthServerAuthOnlyGroup OBJECT‑GROUP
 OBJECTS { radiusDynAuthServDisconAuthOnlyRequests,
 radiusDynAuthServDisconNakAuthOnlyRequests,
 radiusDynAuthServCoAAuthOnlyRequests,
 radiusDynAuthServCoANakAuthOnlyRequests
 }
 STATUS current
 DESCRIPTION
 "The collection of objects supporting the RADIUS
 messages including Service‑Type attribute with
 value 'Authorize Only'."
 ::= { radiusDynAuthServerMIBGroups 2 }

radiusDynAuthServerNoSessGroup OBJECT‑GROUP
 OBJECTS { radiusDynAuthServDisconNakSessNoContext,
 radiusDynAuthServCoANakSessNoContext
 }
 STATUS current
 DESCRIPTION
 "The collection of objects supporting the RADIUS
 messages that are referring to non‑existing sessions."
 ::= { radiusDynAuthServerMIBGroups 3 }

END

5. Security Considerations

 There are no management objects defined in this MIB module that have
 a MAX-ACCESS clause of read-write and/or read-create. So, if this
 MIB module is implemented correctly, then there is no risk that an
 intruder can alter or create any management objects of this MIB
 module via direct SNMP SET operations.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:

 radiusDynAuthClientAddress and radiusDynAuthClientAddressType

 These can be used to determine the address of the DAC with which
 the DAS is communicating. This information could be useful in
 mounting an attack on the DAC.

 radiusDynAuthServerIdentifier

 This can be used to determine the Identifier of the DAS. This
 information could be useful in impersonating the DAS.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPsec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

6. IANA Considerations

 The IANA has assigned OID number 146 under mib-2.

7. Acknowledgements

 The authors would like to acknowledge the following people for their
 comments on this document: Bernard Aboba, Alan DeKok, David Nelson,
 Anjaneyulu Pata, Dan Romascanu, Juergen Schoenwaelder, Greg Weber,
 Bert Wijnen, and Glen Zorn.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Structure of Management Information Version 2 (SMIv2)",
 STD 58, RFC 2578, April 1999.

 [RFC2579]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Textual Conventions for SMIv2", STD 58, RFC 2579, April
 1999.

 [RFC2580]
 McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 3576,
 July 2003.

 [RFC4001]
 Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

8.2. Informative References

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3410]
 Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4668]
 Nelson, D., "RADIUS Authentication Client MIB for IPv6",
 RFC 4668, August 2006.

 [RFC4669]
 Nelson, D., "RADIUS Authentication Server MIB for IPv6",
 RFC 4669, August 2006.

 [RFC4670]
 Nelson, D., "RADIUS Accounting Client MIB for IPv6", RFC
 4670, August 2006.

 [RFC4671]
 Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC
 4671, August 2006.

 [RFC4672]
 De Cnodder, S., Jonnala, N., and M. Chiba, "RADIUS Dynamic
 Authorization Client MIB", RFC 4672, September 2006.

Authors' Addresses

Stefaan De Cnodder
Alcatel
Francis Wellesplein 1
B‑2018 Antwerp
Belgium

Phone: +32 3 240 85 15
EMail: stefaan.de_cnodder@alcatel.be

Nagi Reddy Jonnala
Cisco Systems, Inc.
Divyasree Chambers, B Wing, O'Shaugnessy Road
Bangalore‑560027, India

Phone: +91 94487 60828
EMail: njonnala@cisco.com

Murtaza Chiba
Cisco Systems, Inc.
170 West Tasman Dr.
San Jose CA, 95134

Phone: +1 408 525 7198
EMail: mchiba@cisco.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4675 - RADIUS Attributes for Virtual LAN and Priority Support

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4675

Category: Standards Track

P. Congdon

M. Sanchez

Hewlett-Packard Company

B. Aboba

Microsoft Corporation

September 2006

RADIUS Attributes for Virtual LAN and Priority Support

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document proposes additional Remote Authentication Dial-In User
 Service (RADIUS) attributes for dynamic Virtual LAN assignment and
 prioritization, for use in provisioning of access to IEEE 802 local
 area networks. These attributes are usable within either RADIUS or
 Diameter.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	 1.3. Attribute Interpretation

	2. Attributes
	 2.1. Egress-VLANID

	 2.2. Ingress-Filters

	 2.3. Egress-VLAN-Name

	 2.4. User-Priority-Table

	3. Table of Attributes

	4. Diameter Considerations

	5. IANA Considerations

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	8. Acknowledgements

1. Introduction

 This document describes Virtual LAN (VLAN) and re-prioritization
 attributes that may prove useful for provisioning of access to IEEE
 802 local area networks [IEEE-802] with the Remote Authentication
 Dial-In User Service (RADIUS) or Diameter.

 While [RFC3580] enables support for VLAN assignment based on the
 tunnel attributes defined in [RFC2868], it does not provide support
 for a more complete set of VLAN functionality as defined by
 [IEEE-802.1Q]. The attributes defined in this document provide
 support within RADIUS and Diameter analogous to the management
 variables supported in [IEEE-802.1Q] and MIB objects defined in
 [RFC4363]. In addition, this document enables support for a wider
 range of [IEEE-802.1X] configurations.

1.1. Terminology

 This document uses the following terms:

 Network Access Server (NAS)

 A device that provides an access service for a user to a
 network. Also known as a RADIUS client.

 RADIUS server

 A RADIUS authentication server is an entity that provides an
 authentication service to a NAS.

 RADIUS proxy

 A RADIUS proxy acts as an authentication server to the NAS, and
 a RADIUS client to the RADIUS server.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Attribute Interpretation

 The attributes described in this document apply to a single instance
 of a NAS port, or more specifically an IEEE 802.1Q bridge port.
 [IEEE-802.1Q], [IEEE-802.1D], and [IEEE-802.1X] do not recognize
 finer management granularity than "per port". In some cases, such as
 with IEEE 802.11 wireless LANs, the concept of a "virtual port" is
 used in place of the physical port. Such virtual ports are typically
 based on security associations and scoped by station, or Media Access
 Control (MAC) address.

 The attributes defined in this document are applied on a per-user
 basis and it is expected that there is a single user per port;
 however, in some cases that port may be a "virtual port". If a NAS
 implementation conforming to this document supports "virtual ports",
 it may be possible to provision those "virtual ports" with unique
 values of the attributes described in this document, allowing
 multiple users sharing the same physical port to each have a unique
 set of authorization parameters.

 If a NAS conforming to this specification receives an Access-Accept
 packet containing an attribute defined in this document that it
 cannot apply, it MUST act as though it had received an Access-Reject.
 [RFC3576] requires that a NAS receiving a Change of Authorization
 Request (CoA-Request) reply with a CoA-NAK if the Request contains an
 unsupported attribute. It is recommended that an Error-Cause
 attribute with the value set to "Unsupported Attribute" (401) be
 included in the CoA-NAK. As noted in [RFC3576], authorization
 changes are atomic so that this situation does not result in session
 termination and the preexisting configuration remains unchanged. As
 a result, no accounting packets should be generated.

2. Attributes

2.1. Egress-VLANID

 Description

 The Egress-VLANID attribute represents an allowed IEEE 802 Egress
 VLANID for this port, indicating if the VLANID is allowed for
 tagged or untagged frames as well as the VLANID.

 As defined in [RFC3580], the VLAN assigned via tunnel attributes
 applies both to the ingress VLANID for untagged packets (known as
 the PVID) and the egress VLANID for untagged packets. In
 contrast, the Egress-VLANID attribute configures only the egress
 VLANID for either tagged or untagged packets. The Egress-VLANID
 attribute MAY be included in the same RADIUS packet as [RFC3580]
 tunnel attributes; however, the Egress-VLANID attribute is not
 necessary if it is being used to configure the same untagged
 VLANID included in tunnel attributes. To configure an untagged
 VLAN for both ingress and egress, the tunnel attributes of
 [RFC3580] MUST be used.

 Multiple Egress-VLANID attributes MAY be included in Access-
 Request, Access-Accept, CoA-Request, or Accounting-Request
 packets; this attribute MUST NOT be sent within an Access-
 Challenge, Access-Reject, Disconnect-Request, Disconnect-ACK,
 Disconnect-NAK, CoA-ACK, or CoA-NAK. Each attribute adds the
 specified VLAN to the list of allowed egress VLANs for the port.

 The Egress-VLANID attribute is shown below. The fields are
 transmitted from left to right:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 56

 Length

 6

 Value

 The Value field is four octets. The format is described below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Tag Indic. | Pad | VLANID |
+‑+

 The Tag Indication field is one octet in length and indicates
 whether the frames on the VLAN are tagged (0x31) or untagged
 (0x32). The Pad field is 12 bits in length and MUST be 0 (zero).
 The VLANID is 12 bits in length and contains the [IEEE-802.1Q]
 VLAN VID value.

2.2. Ingress-Filters

 Description

 The Ingress-Filters attribute corresponds to the Ingress Filter
 per-port variable defined in [IEEE-802.1Q] clause 8.4.5. When the
 attribute has the value "Enabled", the set of VLANs that are
 allowed to ingress a port must match the set of VLANs that are
 allowed to egress a port. Only a single Ingress-Filters attribute
 MAY be sent within an Access-Request, Access-Accept, CoA-Request,
 or Accounting-Request packet; this attribute MUST NOT be sent
 within an Access-Challenge, Access-Reject, Disconnect-Request,
 Disconnect-ACK, Disconnect-NAK, CoA-ACK, or CoA-NAK.

 The Ingress-Filters attribute is shown below. The fields are
 transmitted from left to right:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 57

 Length

 6

 Value

 The Value field is four octets. Supported values include:

1 ‑ Enabled
2 ‑ Disabled

2.3. Egress-VLAN-Name

 Description

 Clause 12.10.2.1.3 (a) in [IEEE-802.1Q] describes the
 administratively assigned VLAN Name associated with a VLAN-ID
 defined within an IEEE 802.1Q bridge. The Egress-VLAN-Name
 attribute represents an allowed VLAN for this port. It is similar
 to the Egress-VLANID attribute, except that the VLAN-ID itself is
 not specified or known; rather, the VLAN name is used to identify
 the VLAN within the system.

 The tunnel attributes described in [RFC3580] and the Egress-VLAN-
 Name attribute both can be used to configure the egress VLAN for
 untagged packets. These attributes can be used concurrently and
 MAY appear in the same RADIUS packet. When they do appear
 concurrently, the list of allowed VLANs is the concatenation of
 the Egress-VLAN-Name and the Tunnel-Private-Group-ID (81)
 attributes. The Egress-VLAN-Name attribute does not alter the
 ingress VLAN for untagged traffic on a port (also known as the
 PVID). The tunnel attributes from [RFC3580] should be relied upon
 instead to set the PVID.

 The Egress-VLAN-Name attribute contains two parts; the first part
 indicates if frames on the VLAN for this port are to be
 represented in tagged or untagged format, the second part is the
 VLAN name.

 Multiple Egress-VLAN-Name attributes MAY be included within an
 Access-Request, Access-Accept, CoA-Request, or Accounting-Request
 packet; this attribute MUST NOT be sent within an Access-
 Challenge, Access-Reject, Disconnect-Request, Disconnect-ACK,
 Disconnect-NAK, CoA-ACK, or CoA-NAK. Each attribute adds the
 named VLAN to the list of allowed egress VLANs for the port. The
 Egress-VLAN-Name attribute is shown below. The fields are
 transmitted from left to right:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Tag Indic. | String...
+‑+

 Type

 58

 Length

 >=4

 Tag Indication

 The Tag Indication field is one octet in length and indicates
 whether the frames on the VLAN are tagged (0x31, ASCII '1') or
 untagged (0x32, ASCII '2'). These values were chosen so as to
 make them easier for users to enter.

 String

 The String field is at least one octet in length and contains the
 VLAN Name as defined in [IEEE-802.1Q] clause 12.10.2.1.3 (a).
 [RFC3629] UTF-8 encoded 10646 characters are RECOMMENDED, but a
 robust implementation SHOULD support the field as undistinguished
 octets.

2.4. User-Priority-Table

 Description

 [IEEE-802.1D] clause 7.5.1 discusses how to regenerate (or re-map)
 user priority on frames received at a port. This per-port
 configuration enables a bridge to cause the priority of received
 traffic at a port to be mapped to a particular priority.
 [IEEE-802.1D] clause 6.3.9 describes the use of remapping:

 The ability to signal user priority in IEEE 802 LANs allows
 user priority to be carried with end-to-end significance across
 a Bridged Local Area Network. This, coupled with a consistent
 approach to the mapping of user priority to traffic classes and
 of user priority to access_priority, allows consistent use of
 priority information, according to the capabilities of the
 Bridges and MACs in the transmission path...

 Under normal circumstances, user priority is not modified in
 transit through the relay function of a Bridge; however,
 network management can control how user priority is propagated.
 Table 7-1 provides the ability to map incoming user priority
 values on a per-Port basis. By default, the regenerated user
 priority is identical to the incoming user priority.

 This attribute represents the IEEE 802 prioritization that will be
 applied to frames arriving at this port. There are eight possible
 user priorities, according to the [IEEE-802] standard.
 [IEEE-802.1D] clause 14.6.2.3.3 specifies the regeneration table
 as 8 values, each an integer in the range 0-7. The management
 variables are described in clause 14.6.2.2.

 A single User-Priority-Table attribute MAY be included in an
 Access-Accept or CoA-Request packet; this attribute MUST NOT be
 sent within an Access-Request, Access-Challenge, Access-Reject,
 Disconnect-Request, Disconnect-ACK, Disconnect-NAK, CoA-ACK, CoA-
 NAK or Accounting-Request. Since the regeneration table is only
 maintained by a bridge conforming to [IEEE-802.1D], this attribute
 should only be sent to a RADIUS client supporting that
 specification.

 The User-Priority-Table attribute is shown below. The fields are
 transmitted from left to right:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String
+‑+
 String
+‑+
 String |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 59

 Length

 10

 String

 The String field is 8 octets in length and includes a table that
 maps the incoming priority (if it is set -- the default is 0) into
 one of eight regenerated priorities. The first octet maps to
 incoming priority 0, the second octet to incoming priority 1, etc.
 The values in each octet represent the regenerated priority of the
 frame.

 It is thus possible to either remap incoming priorities to more
 appropriate values; to honor the incoming priorities; or to
 override any incoming priorities, forcing them to all map to a
 single chosen priority.

 The [IEEE-802.1D] specification, Annex G, provides a useful
 description of traffic type - traffic class mappings.

3. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets, and in what quantity.

Access‑ Access‑ Access‑ Access‑ CoA‑ Acct‑
Request Accept Reject Challenge Req Req # Attribute
 0+ 0+ 0 0 0+ 0+ 56 Egress‑VLANID
 0‑1 0‑1 0 0 0‑1 0‑1 57 Ingress‑Filters
 0+ 0+ 0 0 0+ 0+ 58 Egress‑VLAN‑Name
 0 0‑1 0 0 0‑1 0 59 User‑Priority‑Table

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in the packet.
0+ Zero or more instances of this attribute MAY be
 present in the packet.
0‑1 Zero or one instance of this attribute MAY be
 present in the packet.

4. Diameter Considerations

 When used in Diameter, the attributes defined in this specification
 can be used as Diameter attribute-value pair (AVPs) from the Code
 space 1-255 (RADIUS attribute compatibility space). No additional
 Diameter Code values are therefore allocated. The data types and
 flag rules for the attributes are as follows:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | AVP Flag rules |
 |‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑+
 | | |SHLD| MUST| |
Attribute Name Value Type |MUST| MAY | NOT| NOT|Encr|
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑|
Egress‑VLANID OctetString| M | P | | V | Y |
Ingress‑Filters Enumerated | M | P | | V | Y |
Egress‑VLAN‑Name UTF8String | M | P | | V | Y |
User‑Priority‑Table OctetString| M | P | | V | Y |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑|

 The attributes in this specification have no special translation
 requirements for Diameter to RADIUS or RADIUS to Diameter gateways;
 they are copied as is, except for changes relating to headers,
 alignment, and padding. See also [RFC3588] Section 4.1 and [RFC4005]
 Section 9.

 What this specification says about the applicability of the
 attributes for RADIUS Access-Request packets applies in Diameter to
 AA-Request [RFC4005] or Diameter-EAP-Request [RFC4072]. What is said
 about Access-Challenge applies in Diameter to AA-Answer [RFC4005] or
 Diameter-EAP-Answer [RFC4072] with Result-Code AVP set to
 DIAMETER_MULTI_ROUND_AUTH.

 What is said about Access-Accept applies in Diameter to AA-Answer or
 Diameter-EAP-Answer messages that indicate success. Similarly, what
 is said about RADIUS Access-Reject packets applies in Diameter to
 AA-Answer or Diameter-EAP-Answer messages that indicate failure.

 What is said about COA-Request applies in Diameter to Re-Auth-Request
 [RFC4005].

 What is said about Accounting-Request applies to Diameter
 Accounting-Request [RFC4005] as well.

5. IANA Considerations

 This specification does not create any new registries.

 This document uses the RADIUS [RFC2865] namespace; see
 <http://www.iana.org/assignments/radius-types>. Allocation of four
 updates for the section "RADIUS Attribute Types" has been made by the
 IANA. The RADIUS attributes are:

56 ‑ Egress‑VLANID
57 ‑ Ingress‑Filters
58 ‑ Egress‑VLAN‑Name
59 ‑ User‑Priority‑Table

6. Security Considerations

 This specification describes the use of RADIUS and Diameter for
 purposes of authentication, authorization, and accounting in IEEE 802
 local area networks. RADIUS threats and security issues for this
 application are described in [RFC3579] and [RFC3580]; security issues
 encountered in roaming are described in [RFC2607]. For Diameter, the
 security issues relating to this application are described in
 [RFC4005] and [RFC4072].

 This document specifies new attributes that can be included in
 existing RADIUS packets, which are protected as described in
 [RFC3579] and [RFC3576]. In Diameter, the attributes are protected
 as specified in [RFC3588]. See those documents for a more detailed
 description.

 The security mechanisms supported in RADIUS and Diameter are focused
 on preventing an attacker from spoofing packets or modifying packets
 in transit. They do not prevent an authorized RADIUS/Diameter server
 or proxy from inserting attributes with malicious intent.

 VLAN attributes sent by a RADIUS/Diameter server or proxy may enable
 access to unauthorized VLANs. These vulnerabilities can be limited
 by performing authorization checks at the NAS. For example, a NAS
 can be configured to accept only certain VLANIDs from a given
 RADIUS/Diameter server/proxy.

 Similarly, an attacker gaining control of a RADIUS/Diameter server or
 proxy can modify the user priority table, causing either degradation
 of quality of service (by downgrading user priority of frames
 arriving at a port), or denial of service (by raising the level of
 priority of traffic at multiple ports of a device, oversubscribing
 the switch or link capabilities).

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and
 J. Arkko, "Diameter Base Protocol", RFC 3588, September
 2003.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4363]
 Levi, D. and D. Harrington, "Definitions of Managed
 Objects for Bridges with Traffic Classes, Multicast
 Filtering, and Virtual LAN Extensions", RFC 4363,
 January 2006.

[IEEE‑802] IEEE Standards for Local and Metropolitan Area
 Networks: Overview and Architecture, ANSI/IEEE Std
 802, 1990.

 [IEEE-802.1D] IEEE Standards for Local and Metropolitan Area

 Networks: Media Access Control (MAC) Bridges, IEEE Std
 802.1D-2004, June 2004.

 [IEEE-802.1Q] IEEE Standards for Local and Metropolitan Area

 Networks: Draft Standard for Virtual Bridged Local Area
 Networks, P802.1Q-2003, January 2003.

7.2. Informative References

 [IEEE-802.1X] IEEE Standards for Local and Metropolitan Area

 Networks: Port based Network Access Control, IEEE Std
 802.1X-2004, December 2004.

 [RFC2607]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC2868]
 Zorn, G., Leifer, D., Rubens, A., Shriver, J.,
 Holdrege, M., and I. Goyret, "RADIUS Attributes for
 Tunnel Protocol Support", RFC 2868, June 2000.

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC
 3576, July 2003.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote
 Authentication Dial In User Service) Support For
 Extensible Authentication Protocol (EAP)", RFC 3579,
 September 2003.

 [RFC3580]
 Congdon, P., Aboba, B., Smith, A., Zorn, G., and J.
 Roese, "IEEE 802.1X Remote Authentication Dial In User
 Service (RADIUS) Usage Guidelines", RFC 3580, September
 2003.

 [RFC4005]
 Calhoun, P., Zorn, G., Spence, D., and D. Mitton,
 "Diameter Network Access Server Application", RFC 4005,
 August 2005.

 [RFC4072]
 Eronen, P., Hiller, T., and G. Zorn, "Diameter
 Extensible Authentication Protocol (EAP) Application",
 RFC 4072, August 2005.

8. Acknowledgements

 The authors would like to acknowledge Joseph Salowey of Cisco, David
 Nelson of Enterasys, Chuck Black of Hewlett-Packard, and Ashwin
 Palekar of Microsoft.

Authors' Addresses

Paul Congdon
Hewlett‑Packard Company
HP ProCurve Networking
8000 Foothills Blvd, M/S 5662
Roseville, CA 95747

Phone: +1 916 785 5753
Fax: +1 916 785 8478
EMail: paul.congdon@hp.com

Mauricio Sanchez
Hewlett‑Packard Company
HP ProCurve Networking
8000 Foothills Blvd, M/S 5559
Roseville, CA 95747

Phone: +1 916 785 1910
Fax: +1 916 785 1815
EMail: mauricio.sanchez@hp.com

Bernard Aboba
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Phone: +1 425 706 6605
Fax: +1 425 936 7329
EMail: bernarda@microsoft.com

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

4818 - RADIUS Delegated-IPv6-Prefix Attribute

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4818

Category: Standards Track

J. Salowey

R. Droms

Cisco Systems, Inc.

April 2007

RADIUS Delegated-IPv6-Prefix Attribute

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document defines a RADIUS (Remote Authentication Dial In User
 Service) attribute that carries an IPv6 prefix that is to be
 delegated to the user. This attribute is usable within either RADIUS
 or Diameter.

1. Introduction

 This document defines the Delegated-IPv6-Prefix attribute as a RADIUS
 [1] attribute that carries an IPv6 prefix to be delegated to the
 user, for use in the user's network. For example, the prefix in a
 Delegated-IPv6-Prefix attribute can be delegated to another node
 through DHCP Prefix Delegation [2].

 The Delegated-IPv6-Prefix attribute can be used in DHCP Prefix
 Delegation between the delegating router and a RADIUS server, as
 illustrated in the following message sequence.

Requesting Router Delegating Router RADIUS Server
 | | |
 |‑Solicit‑‑‑‑‑‑‑‑‑‑‑‑>| |
 | |‑Request‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>|
 | |<‑‑Accept(Delegated‑IPv6‑Prefix)‑|
 |<‑‑Advertise(Prefix)‑| |
 |‑Request(Prefix)‑‑‑‑>| |
 |<‑‑Reply(Prefix)‑‑‑‑‑| |
 | | |
 DHCP PD RADIUS

 The Framed-IPv6-Prefix attribute [4] is not designed to support
 delegation of IPv6 prefixes to be used in the user's network, and
 therefore Framed-IPv6-Prefix and Delegated-IPv6-Prefix attributes may
 be included in the same RADIUS packet.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

3. Attribute Format

 The format of the Delegated-IPv6-Prefix is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Reserved | Prefix‑Length |
+‑+
 Prefix
+‑+
 Prefix
+‑+
 Prefix
+‑+
 Prefix |
+‑+

 Type

 123 for Delegated-IPv6-Prefix

 Length

 The length of the entire attribute, in bytes. At least 4 (to
 hold Type/Length/Reserved/Prefix-Length for a 0-bit prefix),
 and no larger than 20 (to hold Type/Length/ Reserved/Prefix-
 Length for a 128-bit prefix)

 Reserved

 Always set to zero by sender; ignored by receiver

 Prefix-Length

 The length of the prefix being delegated, in bits. At least
 0 and no larger than 128 bits (identifying a single IPv6
 address)

 Note that the prefix field is only required to be long enough to hold
 the prefix bits and can be shorter than 16 bytes. Any bits in the
 prefix field that are not part of the prefix MUST be zero.

 The Delegated-IPv6-Prefix MAY appear in an Access-Accept packet, and
 can appear multiple times. It MAY appear in an Access-Request packet
 as a hint by the NAS to the server that it would prefer these
 prefix(es), but the server is not required to honor the hint.

 The Delegated-IPv6-Prefix attribute MAY appear in an Accounting-
 Request packet.

 The Delegated-IPv6-Prefix MUST NOT appear in any other RADIUS
 packets.

4. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets, and in what quantity.

+‑‑‑+
| Request Accept Reject Challenge Accounting # Attribute |
| Request |
| 0+ 0+ 0 0 0+ 123 Delegated‑IPv6‑ |
| Prefix |
+‑‑‑+

The meaning of the above table entries is as follows:
 0 This attribute MUST NOT be present.
 0+ Zero or more instances of this attribute MAY be present.
 0‑1 Zero or one instance of this attribute MAY be present.
 1 Exactly one instance of this attribute MUST be present.
 1+ One or more of these attributes MUST be present.

5. Diameter Considerations

 When used in Diameter, the attribute defined in this specification
 can be used as a Diameter AVP from the Code space 1-255, i.e., RADIUS
 attribute compatibility space. No additional Diameter Code values
 are therefore allocated. The data types of the attributes are as
 follows:

Delegated‑IPv6‑Prefix OctetString

 The attribute in this specification has no special translation
 requirements for Diameter to RADIUS or RADIUS to Diameter gateways,
 i.e., the attribute is copied as is, except for changes relating to
 headers, alignment, and padding. See also RFC 3588 [5], Section 4.1,
 and RFC 4005 [6], Section 9.

 The text in this specification describing the applicability of the
 Delegated-IPv6-Prefix attribute for RADIUS Access-Request applies in
 Diameter to AA-Request [6] or Diameter-EAP-Request [7].

 The text in this specification describing the applicability of the
 Delegated-IPv6-Prefix attribute for RADIUS Access-Accept applies in
 Diameter to AA-Answer or Diameter-EAP-Answer that indicates success.
 The text in this specification describing the applicability of the
 Delegated-IPv6-Prefix attribute for RADIUS Accounting-Request applies
 to Diameter Accounting-Request [6] as well.

 The AVP flag rules [5] for the Delegated-IPv6-Prefix attribute are:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | AVP Flag rules |
 |‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑+
 AVP | | |SHLD| MUST| |
Attribute Name Code Value Type |MUST| MAY | NOT| NOT|Encr|
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑|
Delegated‑IPv6‑ 123 OctetString| M | P | | V | Y |
 Prefix | | | | | |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑|

6. IANA Considerations

 IANA assigned a Type value, 123, for this attribute from the RADIUS
 Attribute Types registry.

7. Security Considerations

 Known security vulnerabilities of the RADIUS protocol are discussed
 in RFC 2607 [8], RFC 2865 [1], and RFC 2869 [9]. Use of IPsec [10]
 for providing security when RADIUS is carried in IPv6 is discussed in
 RFC 3162.

 Security considerations for the Diameter protocol are discussed in
 RFC 3588 [5].

8. References

8.1. Normative References

 [1]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

 [2]
 Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic Host
 Configuration Protocol (DHCP) version 6", RFC 3633, December
 2003.

 [3]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [4]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6", RFC 3162,
 August 2001.

 [5]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J. Arkko,
 "Diameter Base Protocol", RFC 3588, September 2003.

 [6]
 Calhoun, P., Zorn, G., Spence, D., and D. Mitton, "Diameter
 Network Access Server Application", RFC 4005, August 2005.

 [7]
 Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072, August
 2005.

 [8]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [9]
 Rigney, C., Willats, W., and P. Calhoun, "RADIUS Extensions",
 RFC 2869, June 2000.

 [10]
 Kent, S. and K. Seo, "Security Architecture for the Internet
 Protocol", RFC 4301, December 2005.

Authors' Addresses

Joe Salowey
Cisco Systems, Inc.
2901 Third Avenue
Seattle, WA 98121
USA

Phone: +1 206.310.0596
EMail: jsalowey@cisco.com

Ralph Droms
Cisco Systems, Inc.
1414 Massachusetts Avenue
Boxborough, MA 01719
USA

Phone: +1 978.936.1674
EMail: rdroms@cisco.com

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

4849 - RADIUS Filter Rule Attribute

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 4849

Category: Standards Track

P. Congdon

M. Sanchez

ProCurve Networking by HP

B. Aboba

Microsoft Corporation

April 2007

RADIUS Filter Rule Attribute

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 While RFC 2865 defines the Filter-Id attribute, it requires that the
 Network Access Server (NAS) be pre-populated with the desired
 filters. However, in situations where the server operator does not
 know which filters have been pre-populated, it is useful to specify
 filter rules explicitly. This document defines the NAS-Filter-Rule
 attribute within the Remote Authentication Dial In User Service
 (RADIUS). This attribute is based on the Diameter NAS-Filter-Rule
 Attribute Value Pair (AVP) described in RFC 4005, and the
 IPFilterRule syntax defined in RFC 3588.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	 1.3. Attribute Interpretation

	2. NAS-Filter-Rule Attribute

	3. Table of Attributes

	4. Diameter Considerations

	5. IANA Considerations

	6. Security Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	8. Acknowledgments

1. Introduction

 This document defines the NAS-Filter-Rule attribute within the Remote
 Authentication Dial In User Service (RADIUS). This attribute has the
 same functionality as the Diameter NAS-Filter-Rule AVP (400) defined
 in [RFC4005], Section 6.6, and the same syntax as an IPFilterRule
 defined in [RFC3588], Section 4.3. This attribute may prove useful
 for provisioning of filter rules.

 While [RFC2865], Section 5.11, defines the Filter-Id attribute (11),
 it requires that the Network Access Server (NAS) be pre-populated
 with the desired filters. However, in situations where the server
 operator does not know which filters have been pre-populated, it is
 useful to specify filter rules explicitly.

1.1. Terminology

 This document uses the following terms:

 Network Access Server (NAS)

 A device that provides an access service for a user to a network.

 RADIUS server

 A RADIUS authentication server is an entity that provides an
 authentication service to a NAS.

 RADIUS proxy

 A RADIUS proxy acts as an authentication server to the NAS, and a
 RADIUS client to the RADIUS server.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

1.3. Attribute Interpretation

 If a NAS conforming to this specification receives an Access-Accept
 packet containing a NAS-Filter-Rule attribute that it cannot apply,
 it MUST act as though it had received an Access-Reject. [RFC3576]
 requires that a NAS receiving a Change of Authorization Request
 (CoA-Request) reply with a CoA-NAK if the Request contains an
 unsupported attribute. It is RECOMMENDED that an Error-Cause
 attribute with value set to "Unsupported Attribute" (401) be included
 in the CoA-NAK. As noted in [RFC3576], authorization changes are
 atomic so that this situation does not result in session termination,
 and the pre-existing configuration remains unchanged. As a result,
 no accounting packets should be generated because of the CoA-Request.

2. NAS-Filter-Rule Attribute

 Description

 This attribute indicates filter rules to be applied for this user.
 Zero or more NAS-Filter-Rule attributes MAY be sent in Access-Accept,
 CoA-Request, or Accounting-Request packets.

 The NAS-Filter-Rule attribute is not intended to be used concurrently
 with any other filter rule attribute, including Filter-Id (11) and
 NAS-Traffic-Rule [Traffic] attributes. NAS-Filter-Rule and NAS-
 Traffic-Rule attributes MUST NOT appear in the same RADIUS packet.
 If a NAS-Traffic-Rule attribute is present, a NAS implementing this
 specification MUST silently discard any NAS-Filter-Rule attributes
 that are present. Filter-Id and NAS-Filter-Rule attributes SHOULD
 NOT appear in the same RADIUS packet. Given the absence in [RFC4005]
 of well-defined precedence rules for combining Filter-Id and NAS-
 Filter-Rule attributes into a single rule set, the behavior of NASes
 receiving both attributes is undefined, and therefore a RADIUS server
 implementation cannot assume a consistent behavior.

 Where multiple NAS-Filter-Rule attributes are included in a RADIUS
 packet, the String field of the attributes are to be concatenated to
 form a set of filter rules. As noted in [RFC2865], Section 2.3, "the
 forwarding server MUST NOT change the order of any attributes of the
 same type", so that RADIUS proxies will not reorder NAS-Filter-Rule
 attributes.

 A summary of the NAS-Filter-Rule Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 92

 Length

 >=3

 String

 The String field is one or more octets. It contains filter rules
 in the IPFilterRule syntax defined in [RFC3588], Section 4.3, with
 individual filter rules separated by a NUL (0x00). A NAS-Filter-
 Rule attribute may contain a partial rule, one rule, or more than
 one rule. Filter rules may be continued across attribute
 boundaries, so implementations cannot assume that individual
 filter rules begin or end on attribute boundaries.

 The set of NAS-Filter-Rule attributes SHOULD be created by
 concatenating the individual filter rules, separated by a NUL
 (0x00) octet. The resulting data should be split on 253-octet
 boundaries to obtain a set of NAS-Filter-Rule attributes. On
 reception, the individual filter rules are determined by
 concatenating the contents of all NAS-Filter-Rule attributes, and
 then splitting individual filter rules with the NUL octet (0x00)
 as a delimiter.

3. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets, and in what quantity.

Access‑ Access‑ Access‑ Access‑ CoA‑ Acct‑
Request Accept Reject Challenge Req Req # Attribute
 0 0+ 0 0 0+ 0+ 92 NAS‑Filter‑Rule

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in the packet.
0+ Zero or more instances of this attribute MAY be
 present in the packet.
0‑1 Zero or one instance of this attribute MAY be
 present in the packet.

4. Diameter Considerations

 [RFC4005], Section 6.6, defines the NAS-Filter-Rule AVP (400) with
 the same functionality as the RADIUS NAS-Filter-Rule attribute. In
 order to support interoperability, Diameter/RADIUS gateways will need
 to be configured to translate RADIUS attribute 92 to Diameter NAS-
 Filter-Rule AVP (400) and vice versa.

 When translating Diameter NAS-Filter-Rule AVPs to RADIUS NAS-Filter-
 Rule attributes, the set of NAS-Filter-Rule attributes is created by
 concatenating the individual filter rules, separated by a NUL octet.
 The resulting data SHOULD then be split on 253-octet boundaries.

 When translating RADIUS NAS-Filter-Rule attributes to Diameter NAS-
 Filter-Rule AVPs, the individual rules are determined by
 concatenating the contents of all NAS-Filter-Rule attributes, and
 then splitting individual filter rules with the NUL octet as a
 delimiter. Each rule is then encoded as a single Diameter NAS-
 Filter-Rule AVP.

 Note that a translated Diameter message can be larger than the
 maximum RADIUS packet size (4096 bytes). Where a Diameter/RADIUS
 gateway receives a Diameter message containing a NAS-Filter-Rule AVP
 that is too large to fit into a RADIUS packet, the Diameter/RADIUS
 gateway will respond to the originating Diameter peer with a Result-
 Code AVP with the value DIAMETER_RADIUS_AVP_UNTRANSLATABLE (5018),
 and with a Failed-AVP AVP containing the NAS-Filter-Rule AVP. Since
 repairing the error will probably require re-working the filter
 rules, the originating peer should treat the combination of a
 Result-Code AVP with value DIAMETER_RADIUS_AVP_UNTRANSLATABLE and a
 Failed-AVP AVP containing a NAS-Filter-Rule AVP as a terminal error.

5. IANA Considerations

 This specification does not create any new registries.

 This document uses the RADIUS [RFC2865] namespace, see
 <http://www.iana.org/assignments/radius-types>. One value has been
 allocated in the section "RADIUS Attribute Types". The RADIUS
 attribute for which a value has been assigned is:

 92 - NAS-Filter-Rule

 This document also utilizes the Diameter [RFC3588] namespace. A
 Diameter Result-Code AVP value for the
 DIAMETER_RADIUS_AVP_UNTRANSLATABLE error has been allocated. Since
 this is a permanent failure, the allocation (5018) is in the 5xxx
 range.

6. Security Considerations

 This specification describes the use of RADIUS for purposes of
 authentication, authorization and accounting. Threats and security
 issues for this application are described in [RFC3579] and [RFC3580];
 security issues encountered in roaming are described in [RFC2607].

 This document specifies a new attribute that can be included in
 existing RADIUS packets, which are protected as described in
 [RFC3579] and [RFC3576]. See those documents for a more detailed
 description.

 The security mechanisms supported in RADIUS and Diameter are focused
 on preventing an attacker from spoofing packets or modifying packets
 in transit. They do not prevent an authorized RADIUS/Diameter server
 or proxy from modifying, inserting, or removing attributes with
 malicious intent. Filter attributes modified or removed by a
 RADIUS/Diameter proxy may enable a user to obtain network access
 without the appropriate filters; if the proxy were also to modify
 accounting packets, then the modification would not be reflected in
 the accounting server logs.

 Since the RADIUS protocol currently does not support capability
 negotiation, a RADIUS server cannot automatically discover whether a
 NAS supports the NAS-Filter-Rule attribute. A legacy NAS not
 compliant with this specification may silently discard the NAS-
 Filter-Rule attribute while permitting the user to access the
 network. This can cause users to improperly receive unfiltered
 access to the network. As a result, the NAS-Filter-Rule attribute
 SHOULD only be sent to a NAS that is known to support it.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March, 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC4005]
 Calhoun, P., Zorn, G., Spence, D., and D. Mitton, "Diameter
 Network Access Server Application", RFC 4005, August 2005.

7.2. Informative References

 [RFC2607]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 3576,
 July 2003.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible Authentication
 Protocol (EAP)", RFC 3579, September 2003.

 [RFC3580]
 Congdon, P., Aboba, B., Smith, A., Zorn, G., and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580, September 2003.

 [Traffic]
 Congdon, P., Sanchez, M., Lior, A., Adrangi, F., and B.
 Aboba, "RADIUS Attributes for Filtering and Redirection",
 Work in Progress, March 2007.

8. Acknowledgments

 The authors would like to acknowledge Emile Bergen, Alan DeKok, Greg
 Weber, Glen Zorn, Pasi Eronen, David Mitton, and David Nelson for
 contributions to this document.

Authors' Addresses

Paul Congdon
Hewlett Packard Company
ProCurve Networking by HP
8000 Foothills Blvd, M/S 5662
Roseville, CA 95747

EMail: paul.congdon@hp.com
Phone: +1 916 785 5753
Fax: +1 916 785 8478

Mauricio Sanchez
Hewlett Packard Company
ProCurve Networking by HP
8000 Foothills Blvd, M/S 5559
Roseville, CA 95747

EMail: mauricio.sanchez@hp.com
Phone: +1 916 785 1910
Fax: +1 916 785 1815

Bernard Aboba
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

EMail: bernarda@microsoft.com
Phone: +1 425 706 6605
Fax: +1 425 936 7329

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

5080 - Common Remote Authentication Dial In User Service (RADIUS) Implementation

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5080

Updates: 2865, 2866, 2869, 3579

Category: Standards Track

D. Nelson

Elbrys Networks, Inc

A. DeKok

FreeRADIUS

December 2007

Common Remote Authentication Dial In User Service (RADIUS) Implementation Issues and Suggested Fixes

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes common issues seen in Remote Authentication
 Dial In User Service (RADIUS) implementations and suggests some
 fixes. Where applicable, ambiguities and errors in previous RADIUS
 specifications are clarified.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	2. Issues
	 2.1. Session Definition
	 2.1.1. State Attribute

	 2.1.2. Request-ID Supplementation

	 2.2. Overload Conditions
	 2.2.1. Retransmission Behavior

	 2.2.2. Duplicate Detection and Orderly Delivery

	 2.2.3. Server Response to Overload

	 2.3. Accounting Issues
	 2.3.1. Attributes Allowed in an Interim Update

	 2.3.2. Acct-Session-Id and Acct-Multi-Session-Id

	 2.3.3. Request Authenticator

	 2.3.4. Interim-Accounting-Interval

	 2.3.5. Counter Values in the RADIUS Management Information Base (MIB)

	 2.4. Multiple Filter-ID Attributes

	 2.5. Mandatory and Optional Attributes

	 2.6. Interpretation of Access-Reject
	 2.6.1. Improper Use of Access-Reject

	 2.6.2. Service Request Denial

	 2.7. Addressing
	 2.7.1. Link-Local Addresses

	 2.7.2. Multiple Addresses

	 2.8. Idle-Timeout

	 2.9. Unknown Identity

	 2.10. Responses After Retransmissions

	 2.11. Framed-IPv6-Prefix

	3. Security Considerations

	4. References
	 4.1. Normative References

	 4.2. Informative References

1. Introduction

 The last few years have seen an increase in the deployment of RADIUS
 clients and servers. This document describes common issues seen in
 RADIUS implementations and suggests some fixes. Where applicable,
 ambiguities and errors in previous RADIUS specifications are
 clarified.

1.1. Terminology

 This document uses the following terms:

 Network Access Server (NAS)

 The device providing access to the network. Also known as the
 Authenticator in IEEE 802.1X or Extensible Authentication Protocol
 (EAP) terminology, or RADIUS client.

 service

 The NAS provides a service to the user, such as network access via
 802.11 or Point to Point Protocol (PPP).

 session

 Each service provided by the NAS to a peer constitutes a session,
 with the beginning of the session defined as the point where
 service is first provided, and the end of the session is defined
 as the point where service is ended. A peer may have multiple
 sessions in parallel or series if the NAS supports that, with each
 session generating a separate start and stop accounting record.

 silently discard

 This means the implementation discards the packet without further
 processing. The implementation SHOULD provide the capability of
 logging the error, including the contents of the silently
 discarded packet, and SHOULD record the event in a statistics
 counter.

1.2. Requirements Language

In this document, several words are used to signify the requirements
of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

2. Issues

2.1. Session Definition

2.1.1. State Attribute

 Regarding the State attribute, [RFC2865] Section 5.24 states:

 This Attribute is available to be sent by the server to the client
 in an Access-Challenge and MUST be sent unmodified from the client
 to the server in the new Access-Request reply to that challenge,
 if any.

 This Attribute is available to be sent by the server to the client
 in an Access-Accept that also includes a Termination-Action
 Attribute with the value of RADIUS-Request. If the NAS performs
 the Termination-Action by sending a new Access-Request upon
 termination of the current session, it MUST include the State
 attribute unchanged in that Access-Request.

 Some RADIUS client implementations do not properly use the State
 attribute in order to distinguish a restarted EAP authentication
 process from the continuation of an ongoing process (by the same user
 on the same NAS and port). Where an EAP-Message attribute is
 included in an Access-Challenge or Access-Accept attribute, RADIUS
 servers SHOULD also include a State attribute. See Section 2.1.2 on
 Request ID supplementation for additional benefits to using the State
 attribute in this fashion.

 As defined in [RFC2865] Table 5.44, Access-Request packets may
 contain a State attribute. The table does not qualify this
 statement, while the text in Section 5.24 (quoted above) adds other
 requirements not specified in that table.

 We extend the requirements of [RFC2865] to say that Access-Requests
 that are part of an ongoing Access-Request / Access-Challenge
 authentication process SHOULD contain a State attribute. It is the
 responsibility of the server, to send a State attribute in an
 Access-Challenge packet, if that server needs a State attribute in a
 subsequent Access-Request to tie multiple Access-Requests together
 into one authentication session. As defined in [RFC2865] Section
 5.24, the State MUST be sent unmodified from the client to the server
 in the new Access-Request reply to that challenge, if any.

 While most server implementations require the presence of a State
 attribute in an Access-Challenge packet, some challenge-response
 systems can distinguish the initial request from the response to the
 challenge without using a State attribute to track an authentication
 session. The Access-Challenge and subsequent Access-Request packets
 for those systems do not need to contain a State attribute.

 Other authentication mechanisms need to tie a sequence of Access-
 Request / Access-Challenge packets together into one ongoing
 authentication session. Servers implementing those authentication
 mechanisms SHOULD include a State attribute in Access-Challenge
 packets.

 In general, if the authentication process involves one or more
 Access-Request / Access-Challenge sequences, the State attribute
 SHOULD be sent by the server in the Access-Challenge packets. Using
 the State attribute to create a multi-packet session is the simplest
 method available in RADIUS today. While other methods of creating
 multi-packet sessions are possible (e.g., [RFC3579] Section 2.6.1),
 those methods are NOT RECOMMENDED.

 The only permissible values for a State attribute are values provided
 in an Access-Accept, Access-Challenge, CoA-Request or Disconnect-
 Request packet. A RADIUS client MUST use only those values for the
 State attribute that it has previously received from a server. An
 Access-Request sent as a result of a new or restarted authentication
 run MUST NOT include the State attribute, even if a State attribute
 has previously been received in an Access-Challenge for the same user
 and port.

 Access-Request packets that contain a Service-Type attribute with the
 value Authorize Only (17) MUST contain a State attribute. Access-
 Request packets that contain a Service-Type attribute with value Call
 Check (10) SHOULD NOT contain a State attribute. Any other Access-
 Request packet that performs authorization checks MUST contain a
 State attribute. This last requirement often means that an Access-
 Accept needs to contain a State attribute, which can then be used in
 a later Access-Request that performs authorization checks.

 The standard use case for Call Check is pre-screening authentication
 based solely on the end-point identifier information, such as phone
 number or Media Access Control (MAC) address in Calling-Station-ID
 and optionally Called-Station-ID. In this use case, the NAS has no
 way to obtain a State attribute suitable for inclusion in an Access-
 Request. Other, non-standard, uses of Call Check may require or
 permit the use of a State attribute, but are beyond the scope of this
 document.

 In an Access-Request with a Service-Type Attribute with value Call
 Check, it is NOT RECOMMENDED for the User-Name and User-Password
 attributes to contain the same values (e.g., a MAC address).
 Implementing MAC address checking without using a Service-Type of
 Call Check is NOT RECOMMENDED. This practice gives an attacker both
 the clear-text and cipher-text of the User-Password field, which
 permits many attacks on the security of the RADIUS protocol. For
 example, if the Request Authenticator does not satisfy the [RFC2865]
 requirements on global and temporal uniqueness, the practice
 described above may lead to the compromise of the User-Password
 attribute in other Access-Requests for unrelated users. Access to
 the cipher-text enables offline dictionary attacks, potentially
 exposing the shared secret and compromising the entire RADIUS
 protocol.

 Any Access-Request packet that performs authorization checks,
 including Call Check, SHOULD contain a Message-Authenticator
 attribute. Any response to an Access-Request performing an
 authorization check MUST NOT contain confidential information about
 any user (such as Tunnel-Password), unless that Access-Request
 contains a State attribute. The use of State here permits the
 authorization check to be tied to an earlier user authentication. In
 that case, the server MAY respond to the NAS with confidential
 information about that user. The server MUST NOT respond to that
 authorization check with confidential information about any other
 user.

 For an Access-Request packet performing an authorization check that
 does not contain a State attribute, the server MUST respond with an
 Access-Reject.

2.1.2. Request-ID Supplementation

 [RFC3579] Section 2.6.1 states:

 In EAP, each session has its own unique Identifier space. RADIUS
 server implementations MUST be able to distinguish between EAP
 packets with the same Identifier existing within distinct
 sessions, originating on the same NAS. For this purpose, sessions
 can be distinguished based on NAS and session identification
 attributes. NAS identification attributes include NAS-Identifier,
 NAS-IPv6-Address and NAS-IPv4-Address. Session identification
 attributes include User-Name, NAS-Port, NAS-Port-Type, NAS-Port-
 Id, Called-Station-Id, Calling-Station-Id and Originating-Line-
 Info.

 There are issues with the suggested algorithm. Since proxies may
 modify Access-Request attributes such as NAS-IP-Address, depending on
 any attribute under control of the NAS to distinguish request
 identifiers can result in deployment problems.

 The FreeRADIUS implementation does not track EAP identifiers by NAS-
 IP-Address or other non-EAP attributes sent by the NAS. Instead, it
 uses the EAP identifier, source Internet Protocol (IP) address, and
 the State attribute as a "key" to uniquely identify each EAP session.
 Since the State attribute is under the control of the RADIUS server,
 the uniqueness of each session is controlled by the server, not the
 NAS. The algorithm used in FreeRADIUS is as follows:

if (EAP start, or EAP identity) {
 allocate unique State Attribute
 insert session into "active session" table with
 key=(EAP identifier, State, source IP)
} else {
 look up active session in table, with above key
}

 This algorithm appears to work well in a variety of situations,
 including situations where home servers receive messages via
 intermediate RADIUS proxies.

 Implementations that do not use this algorithm are often restricted
 to having an EAP Identifier space per NAS, or perhaps one that is
 global to the implementation. These restrictions are unnecessary
 when the above algorithm is used, which gives each session a unique
 EAP Identifier space. The above algorithm SHOULD be used to track
 EAP sessions in preference to any other method.

2.2. Overload Conditions

2.2.1. Retransmission Behavior

 [RFC2865] Section 2.4 describes the retransmission requirements for
 RADIUS clients:

 At one extreme, RADIUS does not require a "responsive" detection
 of lost data. The user is willing to wait several seconds for the
 authentication to complete. The generally aggressive Transmission
 Control Protocol (TCP) retransmission (based on average round trip
 time) is not required, nor is the acknowledgment overhead of TCP.

 At the other extreme, the user is not willing to wait several
 minutes for authentication. Therefore the reliable delivery of
 TCP data two minutes later is not useful. The faster use of an
 alternate server allows the user to gain access before giving up.

 Some existing RADIUS clients implement excessively aggressive
 retransmission behavior, utilizing default retransmission timeouts of
 one second or less without support for congestive backoff. When
 deployed at a large scale, these implementations are susceptible to
 congestive collapse. For example, as the result of a power failure,
 a network with 3,000 NAS devices with a fixed retransmission timer of
 one second will continuously generate 3,000 RADIUS Access-Requests
 per second. This is sufficient to overwhelm most RADIUS servers.
 Suggested solutions include:

[a] Jitter. To avoid synchronization, a RADIUS client SHOULD
 incorporate induced jitter within its retransmission
 algorithm, as specified below.

[b] Congestive backoff. While it is not necessary for RADIUS
 client implementations to implement complex retransmission
 algorithms, implementations SHOULD support congestive
 backoff.

 RADIUS retransmission timers are based on the model used in Dynamic
 Host Configuration Protocol for IPv6 (DHCPv6) [RFC3315]. Variables
 used here are also borrowed from this specification. RADIUS is a
 request/response-based protocol. The message exchange terminates
 when the requester successfully receives the answer, or the message
 exchange is considered to have failed according to the RECOMMENDED
 retransmission mechanism described below. Other retransmission
 mechanisms are possible, as long as they satisfy the requirements on
 jitter and congestive backoff.

 The following algorithms apply to any client that originates RADIUS
 packets, including but not limited to Access-Request, Accounting-
 Request, Disconnect-Request, and CoA-Request [RFC3576].

 The retransmission behavior is controlled and described by the
 following variables:

RT Retransmission timeout

IRT Initial retransmission time (default 2 seconds)

MRC Maximum retransmission count (default 5 attempts)

MRT Maximum retransmission time (default 16 seconds)

MRD Maximum retransmission duration (default 30 seconds)

RAND Randomization factor

 With each message transmission or retransmission, the sender sets RT
 according to the rules given below. If RT expires before the message
 exchange terminates, the sender re-computes RT and retransmits the
 message.

 Each of the computations of a new RT include a randomization factor
 (RAND), which is a random number chosen with a uniform distribution
 between -0.1 and +0.1. The randomization factor is included to
 minimize the synchronization of messages.

 The algorithm for choosing a random number does not need to be
 cryptographically sound. The algorithm SHOULD produce a different
 sequence of random numbers from each invocation.

 RT for the first message transmission is based on IRT:

 RT = IRT + RAND*IRT

 RT for each subsequent message retransmission is based on the
 previous value of RT:

 RT = 2*RTprev + RAND*RTprev

 MRT specifies an upper bound on the value of RT (disregarding the
 randomization added by the use of RAND). If MRT has a value of 0,
 there is no upper limit on the value of RT. Otherwise:

 if (RT > MRT)

 RT = MRT + RAND*MRT

 MRD specifies an upper bound on the length of time a sender may
 retransmit a message. The message exchange fails once MRD seconds
 have elapsed since the client first transmitted the message. MRD
 MUST be set, and SHOULD have a value between 5 and 30 seconds. These
 values mirror the values for a server's duplicate detection cache, as
 described in the next section.

 MRC specifies an upper bound on the number of times a sender may
 retransmit a message. If MRC is zero, the message exchange fails
 once MRD seconds have elapsed since the client first transmitted the
 message. If MRC is non-zero, the message exchange fails when either
 the sender has transmitted the message MRC times, or when MRD seconds
 have elapsed since the client first transmitted the message.

 For Accounting-Request packets, the default values for MRC, MRD, and
 MRT SHOULD be zero. These settings will enable a RADIUS client to
 continue sending accounting requests to a RADIUS server until the
 request is acknowledged. If any of MRC, MRD, or MRT are non-zero,
 then the accounting information could potentially be discarded
 without being recorded.

2.2.2. Duplicate Detection and Orderly Delivery

 When packets are retransmitted by a client, the server may receive
 duplicate requests. The limitations of the transport protocol used
 by RADIUS, the User Datagram Protocol (UDP), means that the Access-
 Request packets may be received, and potentially processed, in an
 order different from the order in which the packets were sent.
 However, the discussion of the Identifier field in Section 3 of
 [RFC2865] says:

 The RADIUS server can detect a duplicate request if it has the
 same client source IP address and source UDP port and Identifier
 within a short span of time.

 Also, Section 7 of [RFC4669] defines a
 radiusAuthServDupAccessRequests object as:

 The number of duplicate Access-Request packets received.

 This text has a number of implications. First, without duplicate
 detection, a RADIUS server may process an authentication request
 twice, leading to an erroneous conclusion that a user has logged in
 twice. That behavior is undesirable, so duplicate detection is
 desirable. Second, the server may track not only the duplicate
 request, but also the replies to those requests. This behavior
 permits the server to send duplicate replies in response to duplicate
 requests, increasing network stability.

 Since Access-Request packets may also be sent by the client in
 response to an Access-Challenge from the server, those packets form a
 logically ordered stream, and, therefore have additional ordering
 requirements over Access-Request packets for different sessions.
 Implementing duplicate detection results in new packets being
 processed only once, ensuring order.

 RADIUS servers MUST therefore implement duplicate detection for
 Access-Request packets, as described in Section 3 of [RFC2865].
 Implementations MUST also cache the Responses (Access-Accept,
 Access-Challenge, or Access-Reject) that they send in response to
 Access-Request packets. If a server receives a valid duplicate
 Access-Request for which it has already sent a Response, it MUST
 resend its original Response without reprocessing the request. The
 server MUST silently discard any duplicate Access-Requests for which
 a Response has not yet been sent.

 Each cache entry SHOULD be purged after a period of time. This time
 SHOULD be no less than 5 seconds, and no more than 30 seconds. After
 about 30 seconds, most RADIUS clients and end users will have given
 up on the authentication request. Therefore, there is little value
 in having a larger cache timeout.

 Cache entries MUST also be purged if the server receives a valid
 Access-Request packet that matches a cached Access-Request packet in
 source address, source port, RADIUS Identifier, and receiving socket,
 but where the Request Authenticator field is different from the one
 in the cached packet. If the request contains a Message-
 Authenticator attribute, the request MUST be processed as described
 in [RFC3580] Section 3.2. Packets with invalid Message-
 Authenticators MUST NOT affect the cache in any way.

 However, Access-Request packets not containing a Message-
 Authenticator attribute always affect the cache, even though they may
 be trivially forged. To avoid this issue, server implementations may
 be configured to require the presence of a Message-Authenticator
 attribute in Access-Request packets. Requests not containing a
 Message-Authenticator attribute MAY then be silently discarded.

 Client implementations SHOULD include a Message-Authenticator
 attribute in every Access-Request to further help mitigate this
 issue.

 When sending requests, RADIUS clients MUST NOT reuse Identifiers for
 a source IP address and source UDP port until either a valid response
 has been received, or the request has timed out. Clients SHOULD
 allocate Identifiers via a least-recently-used (LRU) method for a
 particular source IP address and source UDP port.

 RADIUS clients do not have to perform duplicate detection. When a
 client sends a request, it processes the first response that has a
 valid Response Authenticator as defined in [RFC2865] Section 3. Any
 later responses MUST be silently discarded, as they do not match a
 pending request. That is, later responses are treated exactly the
 same as unsolicited responses, and are silently discarded.

2.2.3. Server Response to Overload

 Some RADIUS server implementations are not robust in response to
 overload, dropping packets with even probability across multiple
 sessions. In an overload situation, this results in a high failure
 rate for multi-round authentication protocols such as EAP [RFC3579].
 Typically, users will continually retry in an attempt to gain access,
 increasing the load even further.

 A more sensible approach is for a RADIUS server to preferentially
 accept RADIUS Access-Request packets containing a valid State
 attribute, so that multi-round authentication conversations, once
 begun, will be more likely to succeed. Similarly, a server that is
 proxying requests should preferentially process Access-Accept,
 Access-Challenge, or Access-Reject packets from home servers before
 processing new requests from a NAS.

 These methods will allow some users to gain access to the network,
 reducing the load created by ongoing access attempts.

2.3. Accounting Issues

2.3.1. Attributes Allowed in an Interim Update

 [RFC2866]
 indicates that Acct-Input-Octets, Acct-Output-Octets,
 Acct-Session-Time, Acct-Input-Packets, Acct-Output-Packets and Acct-
 Terminate-Cause attributes "can only be present in Accounting-Request
 records where the Acct-Status-Type is set to Stop".

 However [RFC2869] Section 2.1 states:

 It is envisioned that an Interim Accounting record (with Acct-
 Status-Type = Interim-Update (3)) would contain all of the
 attributes normally found in an Accounting Stop message with the
 exception of the Acct-Term-Cause attribute.

 Although [RFC2869] does not indicate that it updates [RFC2866], this
 is an oversight, and the above attributes are allowable in an Interim
 Accounting record.

2.3.2. Acct-Session-Id and Acct-Multi-Session-Id

 [RFC2866]
 Section 5.5 describes Acct-Session-Id as Text within the
 figure summarizing the attribute format, but then goes on to state
 that "The String field SHOULD be a string of UTF-8 encoded 10646
 characters".

 [RFC2865]
 defines the Text type as "containing UTF-8 encoded 10646
 characters", which is compatible with the description of Acct-
 Session-Id. Since other attributes are consistently described as
 "Text" within both the figure summarizing the attribute format, and
 the following attribute definition, it appears that this is a
 typographical error, and that Acct-Session-Id is of type Text, and
 not of type String.

 The definition of the Acct-Multi-Session-Id attribute also has
 typographical errors. It says:

 A summary of the Acct-Session-Id attribute format ...

 This text should read:

 A summary of the Acct-Multi-Session-Id attribute format ...

 The Acct-Multi-Session-Id attribute is also defined as being of type
 String. However, the language in the text strongly recommends that
 implementors consider the attribute as being of type Text. It is
 unclear why the type String was chosen for this attribute when the
 type Text would be sufficient. This attribute SHOULD be treated as
 Text.

2.3.3. Request Authenticator

 [RFC2866] Section 4.1 states:

 The Request Authenticator of an Accounting-Request contains a 16-
 octet MD5 hash value calculated according to the method described
 in "Request Authenticator" above.

 However, the text does not indicate any action to take when an
 Accounting-Request packet contains an invalid Request Authenticator.
 The following text should be considered to be part of the above
 description:

 The Request Authenticator field MUST contain the correct data, as
 given by the above calculation. Invalid packets are silently
 discarded. Note that some early implementations always set the
 Request Authenticator to all zeros. New implementations of RADIUS
 clients MUST use the above algorithm to calculate the Request
 Authenticator field. New RADIUS server implementations MUST
 silently discard invalid packets.

2.3.4. Interim-Accounting-Interval

 [RFC2869] Section 2.1 states:

 It is also possible to statically configure an interim value on
 the NAS itself. Note that a locally configured value on the NAS
 MUST override the value found in an Access-Accept.

 This requirement may be phrased too strongly. It is conceivable that
 a NAS implementation has a setting for a "minimum" value of Interim-
 Accounting-Interval, based on resource constraints in the NAS, and
 network loading in the local environment of the NAS. In such cases,
 the value administratively provisioned in the NAS should not be
 over-ridden by a smaller value from an Access-Accept message. The
 NAS's value could be over-ridden by a larger one, however. The
 intent is that the NAS sends accounting information at fixed
 intervals that are short enough so that the potential loss of
 billable revenue is limited, but also that the accounting updates are
 infrequent enough so that the NAS, network, and RADIUS server are not
 overloaded.

2.3.5. Counter Values in the RADIUS Management Information Base (MIB)

 The RADIUS Authentication and Authorization Client MIB module
 ([RFC2618] [RFC4668]) includes counters of packet statistics. In the
 descriptive text of the MIB module, formulas are provided for certain
 counter objects. Implementors have noted apparent inconsistencies in
 the formulas that could result in negative values.

 Since the original MIB module specified in [RFC2618] had been widely
 implemented, the RADEXT WG chose not to change the object definitions
 or to create new ones within the revised MIB module [RFC4668].
 However, this section explains the issues and provides guidance for
 implementors regarding the interpretation of the textual description
 and comments for certain MIB objects.

 The issues raised can be summarized as follows:

 Issue (1):

‑‑ TotalIncomingPackets = Accepts + Rejects + Challenges +
UnknownTypes
‑‑
‑‑ TotalIncomingPackets ‑ MalformedResponses ‑ BadAuthenticators ‑
‑‑ UnknownTypes ‑ PacketsDropped = Successfully received
‑‑
‑‑ AccessRequests + PendingRequests + ClientTimeouts =
‑‑ Successfully Received

 It appears that the value of "Successfully Received" could be
 negative, since various counters are subtracted from
 TotalIncomingPackets that are not included in the calculation of
 TotalIncomingPackets.

 It also appears that "AccessRequests + PendingRequests +
 ClientTimeouts = Successfully Received" should read "AccessRequests +
 PendingRequests + ClientTimeouts = Successfully Transmitted".
 "TotalIncomingPackets" and "Successfully Received" are temporary
 variables, i.e., not objects within the MIB module. The comment text
 in the MIB modules is intended, therefore, to aid in understanding.
 What's of consequence is the consistency of values of the objects in
 the MIB module, and that does not appear to be impacted by the
 inconsistencies noted above. It does appear, however, that the
 "Successfully Received" variable should be labeled "Successfully
 Transmitted".

 In addition, the definition of Accept, Reject or Challenge counters
 indicates that they MUST be incremented before the message is
 validated. If the message is invalid, one of MalformedResponses,
 BadAuthenticators, or PacketsDropped counters will be additionally
 incremented. In that case, the first two equations are consistent,
 i.e., "Successfully Received" could not be negative.

 Issue (2):

 It appears that the radiusAuthClientPendingRequests counter is
 decremented upon retransmission. That would mean a retransmitted
 packet is not considered as being pending, although such
 retransmissions can still be considered as being pending requests.

 The definition of this MIB object in [RFC2618] is as follows:

 The number of RADIUS Access-Request packets destined for this
 server that have not yet timed out or received a response. This
 variable is incremented when an Access-Request is sent and
 decremented due to receipt of an Access-Accept, Access-Reject or
 Access-Challenge, a timeout or retransmission.

 This object purports to count the number of pending request packets.
 It is open to interpretation whether or not retransmissions of a
 request are to be counted as additional pending packets. In either
 event, it seems appropriate to treat retransmissions consistently
 with respect to incrementing and decrementing this counter.

2.4. Multiple Filter-ID Attributes

 [RFC2865] Section 5.11 states:

 Zero or more Filter-Id attributes MAY be sent in an Access-Accept
 packet.

 In practice, the behavior of a RADIUS client receiving multiple
 Filter-ID attributes is implementation dependent. For example, some
 implementations treat multiple instances of the Filter-ID attribute
 as alternative filters; the first Filter-ID attribute having a name
 matching a locally defined filter is used, and the remaining ones are
 discarded. Other implementations may combine matching filters.

 As a result, the interpretation of multiple Filter-ID attributes is
 undefined within RADIUS. The sending of multiple Filter-ID
 attributes within an Access-Accept SHOULD be avoided within
 heterogeneous deployments and roaming scenarios, where it is likely
 to produce unpredictable results.

2.5. Mandatory and Optional Attributes

 RADIUS attributes do not explicitly state whether they are optional
 or mandatory. Nevertheless, there are instances where RADIUS
 attributes need to be treated as mandatory.

 [RFC2865] Section 1.1 states:

 A NAS that does not implement a given service MUST NOT implement
 the RADIUS attributes for that service. For example, a NAS that
 is unable to offer Apple Remote Access Protocol (ARAP) service
 MUST NOT implement the RADIUS attributes for ARAP. A NAS MUST
 treat a RADIUS access-accept authorizing an unavailable service as
 an access-reject instead.

 With respect to the Service-Type attribute, [RFC2865] Section 5.6
 says:

 This Attribute indicates the type of service the user has
 requested, or the type of service to be provided. It MAY be used
 in both Access-Request and Access-Accept packets. A NAS is not
 required to implement all of these service types, and MUST treat
 unknown or unsupported Service-Types as though an Access-Reject
 had been received instead.

 [RFC2865] Section 5 states:

 A RADIUS server MAY ignore Attributes with an unknown Type.

 A RADIUS client MAY ignore Attributes with an unknown Type.

 With respect to Vendor-Specific Attributes (VSAs), [RFC2865] Section
 5.26 states:

 Servers not equipped to interpret the vendor-specific information
 sent by a client MUST ignore it (although it may be reported).
 Clients which do not receive desired vendor-specific information
 SHOULD make an attempt to operate without it, although they may do
 so (and report they are doing so) in a degraded mode.

 It is possible for either a standard attribute or a VSA to represent
 a request for an unavailable service. However, where the Type,
 Vendor-ID, or Vendor-Type is unknown, a RADIUS client will not know
 whether or not the attribute defines a service.

 In general, it is best for a RADIUS client to err on the side of
 caution. On receiving an Access-Accept including an attribute of
 known Type for an unimplemented service, a RADIUS client MUST treat
 it as an Access-Reject, as directed in [RFC2865] Section 1.1. On
 receiving an Access-Accept including an attribute of unknown Type, a
 RADIUS client SHOULD assume that it is a potential service
 definition, and treat it as an Access-Reject. Unknown VSAs SHOULD be
 ignored by RADIUS clients.

 In order to avoid introducing changes in default behavior, existing
 implementations that do not obey this recommendation should make the
 behavior configurable, with the legacy behavior being enabled by
 default. A configuration flag such as "treat unknown attributes as
 reject" can be exposed to the system administrator. If the flag is
 set to true, then Access-Accepts containing unknown attributes are
 treated as Access-Rejects. If the flag is set to false, then unknown
 attributes in Access-Accepts are silently ignored.

 On receiving a packet including an attribute of unknown Type, RADIUS
 authentication server implementations SHOULD ignore such attributes.
 However, RADIUS accounting server implementations typically do not
 need to understand attributes in order to write them to stable
 storage or pass them to the billing engine. Therefore, accounting
 server implementations SHOULD be equipped to handle unknown
 attributes.

 To avoid misinterpretation of service requests encoded within VSAs,
 RADIUS servers SHOULD NOT send VSAs containing service requests to
 RADIUS clients that are not known to understand them. For example, a
 RADIUS server should not send a VSA encoding a filter without
 knowledge that the RADIUS client supports the VSA.

2.6. Interpretation of Access-Reject

2.6.1. Improper Use of Access-Reject

 The intent of an Access-Reject is to deny access to the requested
 service. [RFC2865] Section 2 states:

 If any condition is not met, the RADIUS server sends an "Access-
 Reject" response indicating that this user request is invalid. If
 desired, the server MAY include a text message in the Access-
 Reject which MAY be displayed by the client to the user. No other
 Attributes (except Proxy-State) are permitted in an Access-Reject.

 This text makes it clear that RADIUS does not allow the provisioning
 of services within an Access-Reject. If the desire is to allow
 limited access, then an Access-Accept can be sent with attributes
 provisioning limited access. Attributes within an Access-Reject are
 restricted to those necessary to route the message (e.g., Proxy-
 State), attributes providing the user with an indication that access
 has been denied (e.g., an EAP-Message attribute containing an EAP-
 Failure), or attributes conveying an error message (e.g., a Reply-
 Message or Error-Cause attribute).

 Unfortunately, there are examples where this requirement has been
 misunderstood. [RFC2869] Section 2.2 states:

 If that authentication fails, the RADIUS server should return an
 Access-Reject packet to the NAS, with optional Password-Retry and
 Reply-Messages attributes. The presence of Password-Retry
 indicates the ARAP NAS MAY choose to initiate another challenge-
 response cycle...

 This paragraph is problematic from two perspectives. Firstly, a
 Password-Retry attribute is being returned in an Access-Reject; this
 attribute does not fit into the categories established in [RFC2865].
 Secondly, an Access-Reject packet is being sent in the context of a
 continuing authentication conversation; [RFC2865] requires use of an
 Access-Challenge for this. [RFC2869] uses the phrase "challenge-
 response" to describe this use of Access-Reject, indicating that the
 semantics of Access-Challenge are being used.

 [RFC2865] Section 4.4 addresses the semantics of Access-Challenge
 being equivalent to Access-Reject in some cases:

 If the NAS does not support challenge/response, it MUST treat an
 Access-Challenge as though it had received an Access-Reject
 instead.

 While it is difficult to correct existing deployments of [RFC2869],
 we make the following recommendations:

[1] New RADIUS specifications and implementations MUST NOT use
 Access‑Reject where the semantics of Access‑Challenge are
 intended.

[2] Access‑Reject MUST mean denial of access to the requested
 service. In response to an Access‑Reject, the NAS MUST NOT
 send any additional Access‑Request packets for that user
 session.

[3] New deployments of ARAP [RFC2869] SHOULD use Access‑
 Challenge instead of Access‑Reject packets in the
 conversations described in [RFC2869] Section 2.2.

 We also note that the table of attributes in [RFC2869] Section 5.19
 has an error for the Password-Retry attribute. It says:

Request Accept Reject Challenge # Attribute
0 0 0‑1 0 75 Password‑Retry

 However, the text in [RFC2869], Section 2.3.2 says that Password-
 Retry can be included within an Access-Challenge packet for EAP
 authentication sessions. We recommend a correction to the table that
 removes the "0-1" from the Reject column, and moves it to the
 Challenge column. We also add a "Note 2" to follow the existing
 "Note 1" in the document to clarify the use of this attribute.

Request Accept Reject Challenge # Attribute
0 0 0 0‑1 75 Password‑Retry [Note 2]

 [Note 2] As per RFC 3579, the use of the Password-Retry in EAP
 authentications is deprecated. The Password-Retry attribute can be
 used only for ARAP authentication.

2.6.2. Service Request Denial

 RADIUS has been deployed for purposes outside network access
 authentication, authorization, and accounting. For example, RADIUS
 has been deployed as a "back-end" for authenticating Voice Over IP
 (VOIP) connections, Hypertext Transfer Protocol (HTTP) sessions
 (e.g., Apache), File Transfer Protocol (FTP) sessions (e.g.,
 proftpd), and machine logins for multiple operating systems (e.g.,
 bsdi, pam, and gina). In those contexts, an Access-Reject sent to
 the RADIUS client MUST be interpreted as a rejection of the request
 for service, and the RADIUS client MUST NOT offer that service to the
 user.

 For example, when an authentication failure occurs in the context of
 an FTP session, the normal semantics for rejecting FTP services
 apply. The rejection does not necessarily cause the FTP server to
 terminate the underlying TCP connection, but the FTP server MUST NOT
 offer any services protected by user authentication.

 Users may request multiple services from the NAS. Where those
 services are independent, the deployment MUST treat the RADIUS
 sessions as being independent.

 For example, a NAS may offer multi-link services where a user may
 have multiple simultaneous network connections. In that case, an
 Access-Reject for a later multi-link connection request does not
 necessarily mean that earlier multi-link connections are torn down.
 Similarly, if a NAS offers both dialup and VOIP services, the
 rejection of a VOIP attempt does not mean that the dialup session is
 torn down.

2.7. Addressing

2.7.1. Link-Local Addresses

 Since Link-Local addresses are unique only on the local link, if the
 NAS and RADIUS server are not on the same link, then an IPv6 Link-
 Local address [RFC4862] or an IPv4 Link-Local Address [RFC3927]
 cannot be used to uniquely identify the NAS. A NAS SHOULD NOT
 utilize a link-scope address within a NAS-IPv6-Address or NAS-IP-
 Address attribute. A RADIUS server receiving a NAS-IPv6-Address or
 NAS-IP-Address attribute containing a Link-Local address SHOULD NOT
 count such an attribute toward satisfying the requirements of
 [RFC3162] Section 2.1:

 NAS-IPv6-Address and/or NAS-IP-Address MAY be present in an
 Access-Request packet; however, if neither attribute is present
 then NAS-Identifier MUST be present.

2.7.2. Multiple Addresses

 There are situations in which a RADIUS client or server may have
 multiple addresses. For example, a dual stack host can have both
 IPv4 and IPv6 addresses; a host that is a member of multiple VLANs
 could have IPv4 and/or IPv6 addresses on each VLAN; a host can have
 multiple IPv4 or IPv6 addresses on a single interface. However,
 [RFC2865] Section 5.44 only permits zero or one NAS-IP-Address
 attributes within an Access-Request, and [RFC3162] Section 3 only
 permits zero or one NAS-IPv6-Address attributes within an Access-
 Request. When a NAS has more than one global address and no ability
 to determine which is used for identification in a particular
 request, it is RECOMMENDED that the NAS include the NAS-Identifier
 attribute in an Access-Request in order to identify itself to the
 RADIUS server.

 [RFC2865] Section 3 states:

 A RADIUS server MUST use the source IP address of the RADIUS UDP
 packet to decide which shared secret to use, so that RADIUS
 requests can be proxied.

 Therefore, if a RADIUS client sends packets from more than one source
 address, a shared secret will need to be configured on both the
 client and server for each source address.

2.8. Idle-Timeout

 With respect to the Idle-Timeout attribute, [RFC2865] Section 5.28
 states:

 This Attribute sets the maximum number of consecutive seconds of
 idle connection allowed to the user before termination of the
 session or prompt. This Attribute is available to be sent by the
 server to the client in an Access-Accept or Access-Challenge.

 [RFC3580] Section 3.12 states:

 The Idle-Timeout attribute is described in [RFC2865]. For IEEE
 802 media other than 802.11 the media are always on. As a result
 the Idle-Timeout attribute is typically only used with wireless
 media such as IEEE 802.11. It is possible for a wireless device
 to wander out of range of all Access Points. In this case, the
 Idle-Timeout attribute indicates the maximum time that a wireless
 device may remain idle.

 In the above paragraphs "idle" may not necessarily mean "no traffic";
 the NAS may support filters defining what traffic is included in the
 idle time determination. As a result, an "idle connection" is
 defined by local policy in the absence of other attributes.

2.9. Unknown Identity

 [RFC3748] Section 5.1 states:

 If the Identity is unknown, the Identity Response field should be
 zero bytes in length.

 However, [RFC2865] Section 5.1 describes the User-Name attribute as
 follows:

 The String field is one or more octets.

 How should the RADIUS client behave if it receives an EAP-
 Response/Identity that is zero octets in length?

 [RFC2865] Section 5.1 states:

 This Attribute indicates the name of the user to be authenticated.
 It MUST be sent in Access-Request packets if available.

 This suggests that the User-Name attribute may be omitted if it is
 unavailable.

 However, [RFC3579] Section 2.1 states:

 In order to permit non-EAP aware RADIUS proxies to forward the
 Access-Request packet, if the NAS initially sends an EAP-
 Request/Identity message to the peer, the NAS MUST copy the
 contents of the Type-Data field of the EAP-Response/Identity
 received from the peer into the User-Name attribute and MUST
 include the Type-Data field of the EAP-Response/Identity in the
 User-Name attribute in every subsequent Access-Request.

 This suggests that the User-Name attribute should contain the
 contents of the Type-Data field of the EAP-Response/Identity, even if
 it is zero octets in length.

 Note that [RFC4282] does not permit a Network Access Identifier (NAI)
 of zero octets, so that an EAP-Response/Identity with a Type-Data
 field of zero octets MUST NOT be construed as a request for privacy
 (e.g., anonymous NAI).

 When a NAS receives an EAP-Response/Identity with a Type-Data field
 that is zero octets in length, it is RECOMMENDED that it either omit
 the User-Name attribute in the Access-Request or include the
 Calling-Station-Id in the User-Name attribute, along with a Calling-
 Station-Id attribute.

2.10. Responses After Retransmissions

 Some implementations do not correctly handle the receipt of RADIUS
 responses after retransmissions. [RFC2865] Section 2.5 states:

 If the NAS is retransmitting a RADIUS request to the same server
 as before, and the attributes haven't changed, you MUST use the
 same Request Authenticator, ID, and source port. If any
 attributes have changed, you MUST use a new Request Authenticator
 and ID.

 Note that changing the Request ID for a retransmission may have
 undesirable side effects. Since RADIUS does not have a clear
 definition of a "session", it is perfectly valid for a RADIUS server
 to treat a retransmission as a new session request, and to reject it
 due to, for example, the enforcement of restrictions on multiple
 simultaneous logins.

 In that situation, the NAS may receive a belated Access-Accept for
 the first request, and an Access-Reject for the retransmitted
 request, both of which apply to the same "session".

 We suggest that the contents of Access-Request packets SHOULD NOT be
 changed during retransmissions. If they must be changed due to the
 inclusion of an Event-Timestamp attribute, for example, then
 responses to earlier transmissions MUST be silently discarded. Any
 response to the current request MUST be treated as the definitive
 response, even if as noted above, it disagrees with earlier
 responses.

 This problem can be made worse by implementations that use a fixed
 retransmission timeout (30 seconds is common). We reiterate the
 suggestions in Section 2.1 about using congestive backoff. In that
 case, responses to earlier transmissions MAY be used as data points
 for congestive backoff, even if their contents are discarded.

2.11. Framed-IPv6-Prefix

 [RFC3162] Section 2.3 says:

 This Attribute indicates an IPv6 prefix (and corresponding route)
 to be configured for the user. It MAY be used in Access-Accept
 packets, and can appear multiple times. It MAY be used in an
 Access-Request packet as a hint by the NAS to the server that it
 would prefer these prefix(es), but the server is not required to
 honor the hint. Since it is assumed that the NAS will plumb a
 route corresponding to the prefix, it is not necessary for the
 server to also send a Framed-IPv6-Route attribute for the same
 prefix.

 An Internet Service Provider (ISP) may desire to support Prefix
 Delegation [RFC4818] at the same time that it would like to assign a
 prefix for the link between the NAS and the user. The intent of the
 paragraph was to enable the NAS to advertise the prefix (such as via
 a Router Advertisement). If the Framed-Routing attribute is used, it
 is also possible that the prefix would be advertised in a routing
 protocol such as Routing Information Protocol Next Generation
 (RIPNG). RFC 2865 Section 5.10 describes the purpose of Framed-
 Routing:

 This Attribute indicates the routing method for the user, when the
 user is a router to a network. It is only used in Access-Accept
 packets.

 The description of the Prefix-Length field in RFC 3162 indicates
 excessively wide latitude:

 The length of the prefix, in bits. At least 0 and no larger than
 128.

 This length appears too broad, because it is not clear what a NAS
 should do with a prefix of greater granularity than /64. For
 example, the Framed-IPv6-Prefix may contain a /128. This does not
 imply that the NAS should assign an IPv6 address to the end user,
 because RFC 3162 already defines a Framed-IPv6-Identifier attribute
 to handle the Identifier portion.

 It appears that the Framed-IPv6-Prefix is used for the link between
 the NAS and Customer Premises Equipment (CPE) only if a /64 prefix is
 assigned. When a /64 or larger prefix is sent, the intent is for the
 NAS to send a routing advertisement containing the information
 present in the Framed-IPv6-Prefix attribute.

 The CPE may also require a delegated prefix for its own use, if it is
 decrementing the Hop Limit field of IP headers. In that case, it
 should be delegated a prefix by the NAS via the Delegated-IPv6-Prefix
 attribute [RFC4818]. If the CPE is not decrementing Hop Limit, it
 does not require a delegated prefix.

3. Security Considerations

 The contents of the State attribute are available to both the RADIUS
 client and observers of the RADIUS protocol. RADIUS server
 implementations should ensure that the State attribute does not
 disclose sensitive information to a RADIUS client or third parties
 observing the RADIUS protocol.

 The cache mechanism described in Section 2.2.2 is vulnerable to
 attacks when Access-Request packets do not contain a Message-
 Authenticator attribute. If the server accepts requests without a
 Message-Authenticator, then RADIUS packets can be trivially forged by
 an attacker. Cache entries can then be forcibly expired, negating
 the utility of the cache. This attack can be mitigated by following
 the suggestions in [RFC3579] Section 4, or by requiring the presence
 of Message-Authenticator, as described in Sections 2.1.1 and 2.2.2.

 Since this document describes the use of RADIUS for purposes of
 authentication, authorization, and accounting in a wide variety of
 networks, applications using these specifications are vulnerable to
 all of the threats that are present in other RADIUS applications.
 For a discussion of these threats, see [RFC2865], [RFC2607],
 [RFC3162], [RFC3579], and [RFC3580].

4. References

4.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC4818]
 Salowey, J. and R. Droms, "RADIUS Delegated-IPv6-Prefix
 Attribute", RFC 4818, April 2007.

4.2. Informative References

 [RFC2607]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC2618]
 Aboba, B. and G. Zorn, "RADIUS Authentication Client
 MIB", RFC 2618, June 1999.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC2869]
 Rigney, C., Willats, W., and P. Calhoun, "RADIUS
 Extensions", RFC 2869, June 2000.

 [RFC3162]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6",
 RFC 3162, August 2001.

 [RFC3315]
 Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 3576,
 July 2003.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC3580]
 Congdon, P., Aboba, B., Smith, A., Zorn, G., and J.
 Roese, "IEEE 802.1X Remote Authentication Dial In User
 Service (RADIUS) Usage Guidelines", RFC 3580, September
 2003.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, June 2004.

 [RFC3927]
 Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 May 2005.

 [RFC4282]
 Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [RFC4668]
 Nelson, D., "RADIUS Authentication Client MIB for IPv6",
 RFC 4668, August 2006.

 [RFC4669]
 Nelson, D., "RADIUS Authentication Server MIB for IPv6",
 RFC 4669, August 2006.

 [RFC4862]
 Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [PANA]
 Forsberg, D., Ohba, Y.,Ed., Patil, B., Tschofenig, H.,
 and A. Yegin, "Protocol for Carrying Authentication for
 Network Access (PANA)", Work in Progress.

Acknowledgments

 The authors would like to acknowledge Glen Zorn and Bernard Aboba for
 contributions to this document.

 The alternate algorithm to [RFC3579] Section 2.6.1 that is described
 in Section 2.1.2 of this document was designed by Raghu Dendukuri.

 The text discussing retransmissions in Section 2.2.1 is taken with
 minor edits from Section 9 of" Protocol for Carrying Authentication
 for Network Access (PANA)" [PANA].

 Alan DeKok wishes to acknowledge the support of Quiconnect Inc.,
 where he was employed during much of the work on this document.

 David Nelson wishes to acknowledge the support of Enterasys Networks,
 where he was employed during much of the work on this document.

Authors' Addresses

David B. Nelson
Elbrys Networks, Inc.
75 Rochester Ave., Unit 3
Portsmouth, N.H. 03801 USA

Phone: +1.603.570.2636
EMail: dnelson@elbrysnetworks.com

Alan DeKok
The FreeRADIUS Server Project
http://freeradius.org/

 EMail: aland@freeradius.org

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

5090 - RADIUS Extension for Digest Authentication

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5090

Obsoletes: 4590

Category: Standards Track

B. Sterman

Kayote Networks

D. Sadolevsky

SecureOL, Inc.

D. Schwartz

Kayote Networks

D. Williams

Cisco Systems

W. Beck

Deutsche Telekom AG

February 2008

RADIUS Extension for Digest Authentication

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document defines an extension to the Remote Authentication
 Dial-In User Service (RADIUS) protocol to enable support of Digest
 Authentication, for use with HTTP-style protocols like the Session
 Initiation Protocol (SIP) and HTTP.

Table of Contents

	1. Introduction
	 1.1. Motivation

	 1.2. Terminology

	 1.3. Overview

	2. Detailed Description
	 2.1. RADIUS Client Behavior

	 2.2. RADIUS Server Behavior

	3. New RADIUS Attributes
	 3.1. Digest-Response Attribute

	 3.2. Digest-Realm Attribute

	 3.3. Digest-Nonce Attribute

	 3.4. Digest-Response-Auth Attribute

	 3.5. Digest-Nextnonce Attribute

	 3.6. Digest-Method Attribute

	 3.7. Digest-URI Attribute

	 3.8. Digest-Qop Attribute

	 3.9. Digest-Algorithm Attribute

	 3.10. Digest-Entity-Body-Hash Attribute

	 3.11. Digest-CNonce Attribute

	 3.12. Digest-Nonce-Count Attribute

	 3.13. Digest-Username Attribute

	 3.14. Digest-Opaque Attribute

	 3.15. Digest-Auth-Param Attribute

	 3.16. Digest-AKA-Auts Attribute

	 3.17. Digest-Domain Attribute

	 3.18. Digest-Stale Attribute

	 3.19. Digest-HA1 Attribute

	 3.20. SIP-AOR Attribute

	4. Diameter Compatibility

	5. Table of Attributes

	6. Examples

	7. IANA Considerations

	8. Security Considerations
	 8.1. Denial of Service

	 8.2. Confidentiality and Data Integrity

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A - Changes from RFC 4590

	Acknowledgements

1. Introduction

1.1. Motivation

 The HTTP Digest Authentication mechanism, defined in [RFC2617], was
 subsequently adapted for use with SIP [RFC3261]. Due to the
 limitations and weaknesses of Digest Authentication (see [RFC2617],
 Section 4), additional authentication and encryption mechanisms are
 defined in SIP [RFC3261], including Transport Layer Security (TLS)
 [RFC4346] and Secure MIME (S/MIME) [RFC3851]. However, Digest
 Authentication support is mandatory in SIP implementations, and
 Digest Authentication is the preferred way for a SIP UA to
 authenticate itself to a proxy server. Digest Authentication is used
 in other protocols as well.

 To simplify the provisioning of users, there is a need to support
 this authentication mechanism within Authentication, Authorization,
 and Accounting (AAA) protocols such as RADIUS [RFC2865] and Diameter
 [RFC3588].

 This document defines an extension to the RADIUS protocol to enable
 support of Digest Authentication for use with SIP, HTTP, and other
 HTTP-style protocols using this authentication method. Support for
 Digest mechanisms such as Authentication and Key Agreement (AKA)
 [RFC3310] is also supported. A companion document [RFC4740] defines
 support for Digest Authentication within Diameter.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The use of normative requirement key words in this document shall
 apply only to RADIUS client and RADIUS server implementations that
 include the features described in this document. This document
 creates no normative requirements for existing implementations.

 HTTP-style protocol

 The term "HTTP-style" denotes any protocol that uses HTTP-like
 headers and uses HTTP Digest Authentication as described in
 [RFC2617]. Examples are HTTP and the Session Initiation Protocol
 (SIP).

NAS (Network Access Server)
 The RADIUS client.

 nonce

 An unpredictable value used to prevent replay attacks. The nonce
 generator may use cryptographic mechanisms to produce nonces it
 can recognize without maintaining state.

 protection space

 HTTP-style protocols differ in their definition of the protection
 space. For HTTP, it is defined as the combination of the realm
 and canonical root URL of the requested resource for which the use
 is authorized by the RADIUS server. In the case of SIP, the realm
 string alone defines the protection space.

 SIP UA (SIP User Agent)

 An Internet endpoint that uses the Session Initiation Protocol.

 SIP UAS (SIP User Agent Server)

 A logical entity that generates a response to a SIP (Session
 Initiation Protocol) request.

1.3. Overview

 HTTP Digest is a challenge-response protocol used to authenticate a
 client's request to access some resource on a server. Figure 1 shows
 a single HTTP Digest transaction.

 HTTP/SIP..
+‑‑‑‑‑‑‑‑‑‑‑‑+ (1) +‑‑‑‑‑‑‑‑‑‑‑‑+
	‑‑‑‑‑‑‑‑‑>	
HTTP‑style	(2)	HTTP‑style
client	<‑‑‑‑‑‑‑‑‑	server
	(3)	
	‑‑‑‑‑‑‑‑‑>	
	(4)	
	<‑‑‑‑‑‑‑‑‑	
+‑‑‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑‑+

 Figure 1: Digest Operation without RADIUS

 If the client sends a request without any credentials (1), the server
 will reply with an error response (2) containing a nonce. The client
 creates a cryptographic digest from parts of the request, from the
 nonce it received from the server, and from a shared secret. The
 client retransmits the request (3) to the server, but now includes
 the digest within the packet. The server does the same digest
 calculation as the client and compares the result with the digest it
 received in (3). If the digest values are identical, the server
 grants access to the resource and sends a positive response to the
 client (4). If the digest values differ, the server sends a negative
 response to the client (4).

 Instead of maintaining a local user database, the server could use
 RADIUS to access a centralized user database. However, RADIUS
 [RFC2865] does not include support for HTTP Digest Authentication.
 The RADIUS client cannot use the User-Password Attribute, since it
 does not receive a password from the HTTP-style client. The CHAP-
 Challenge and CHAP-Password attributes described in [RFC1994] are
 also not suitable since the Challenge Handshake Authentication
 Protocol (CHAP) algorithm is not compatible with HTTP Digest.

 This document defines new attributes that enable the RADIUS server to
 perform the digest calculation defined in [RFC2617], providing
 support for Digest Authentication as a native authentication
 mechanism within RADIUS.

 The nonces required by the digest algorithm are generated by the
 RADIUS server. Generating them in the RADIUS client would save a
 round-trip, but introduce security and operational issues. Some
 digest algorithms -- e.g., AKA [RFC3310] -- would not work.

 Figure 2 depicts a scenario in which the HTTP-style server defers
 authentication to a RADIUS server. Entities A and B communicate
 using HTTP or SIP, while entities B and C communicate using RADIUS.

 HTTP/SIP RADIUS

+‑‑‑‑‑+ (1) +‑‑‑‑‑+ +‑‑‑‑‑+
	==========>		(2)	
			‑‑‑‑‑‑‑‑‑‑>	
			(3)	
	(4)		<‑‑‑‑‑‑‑‑‑‑	
	<==========			
	(5)			
	==========>			
A		B	(6)	C
			‑‑‑‑‑‑‑‑‑‑>	
			(7)	
			<‑‑‑‑‑‑‑‑‑‑	
	(8)			
	<==========			
+‑‑‑‑‑+ +‑‑‑‑‑+ +‑‑‑‑‑+

 ====> HTTP/SIP
 ‑‑‑‑> RADIUS

 Figure 2: HTTP Digest over RADIUS

 The entities have the following roles:

 A: HTTP client / SIP UA

 B: {HTTP server / HTTP proxy server / SIP proxy server / SIP UAS}

 acting also as a RADIUS NAS

 C: RADIUS server

 The following messages are sent in this scenario:

 A sends B an HTTP/SIP request without an Authorization header (step
 1). B sends an Access-Request packet with the newly defined Digest-
 Method and Digest-URI attributes but without a Digest-Nonce Attribute
 to the RADIUS server, C (step 2). C chooses a nonce and responds
 with an Access-Challenge (step 3). This Access-Challenge contains
 Digest attributes, from which B takes values to construct an HTTP/SIP
 "(Proxy) Authorization required" response. B sends this response to
 A (step 4). A resends its request with its credentials (step 5). B
 sends an Access-Request to C (step 6). C checks the credentials and
 replies with Access-Accept or Access-Reject (step 7). Depending on
 C's result, B processes A's request or rejects it with a "(Proxy)
 Authorization required" response (step 8).

2. Detailed Description

2.1. RADIUS Client Behavior

 The attributes described in this document are sent in cleartext.
 Therefore, were a RADIUS client to accept secure connections (HTTPS
 or SIPS) from HTTP-style clients, this could result in information
 intentionally protected by HTTP-style clients being sent in the clear
 during RADIUS exchange.

2.1.1. Credential Selection

 On reception of an HTTP-style request message, the RADIUS client
 checks whether it is authorized to authenticate the request. Where
 an HTTP-style request traverses several proxies, and each of the
 proxies requests to authenticate the HTTP-style client, the request
 at the HTTP-style server may contain multiple credential sets.

 The RADIUS client can use the realm directive in HTTP to determine
 which credentials are applicable. Where none of the realms are of
 interest, the RADIUS client MUST behave as though no relevant
 credentials were sent. In all situations, the RADIUS client MUST
 send zero or exactly one credential to the RADIUS server. The RADIUS
 client MUST choose the credential of the (Proxy-)Authorization header
 if the realm directive matches its locally configured realm.

2.1.2. Constructing an Access-Request

 If a matching (Proxy-)Authorization header is present and contains
 HTTP Digest information, the RADIUS client checks the nonce
 parameter.

 If the RADIUS client recognizes the nonce, it takes the header
 directives and puts them into a RADIUS Access-Request packet. It
 puts the response directive into a Digest-Response Attribute and the
 realm, nonce, digest-uri, qop, algorithm, cnonce, nc, username, and
 opaque directives into the respective Digest-Realm, Digest-Nonce,
 Digest-URI, Digest-Qop, Digest-Algorithm, Digest-CNonce, Digest-
 Nonce-Count, Digest-Username, and Digest-Opaque attributes. The
 RADIUS client puts the request method into the Digest-Method
 Attribute.

 Due to HTTP syntactic requirements, quoted strings found in HTTP
 Digest directives may contain escaped quote and backslash characters.
 When translating these directives into RADIUS attributes, the RADIUS
 client only removes the leading and trailing quote characters which
 surround the directive value, it does not unescape anything within
 the string. See Section 3 for an example.

 If the Quality of Protection (qop) directive's value is 'auth-int',
 the RADIUS client calculates H(entity-body) as described in
 [RFC2617], Section 3.2.1, and puts the result in a Digest-Entity-
 Body-Hash Attribute.

 The RADIUS client adds a Message-Authenticator Attribute, defined in
 [RFC3579], and sends the Access-Request packet to the RADIUS server.

 The RADIUS server processes the packet and responds with an Access-
 Accept or an Access-Reject.

2.1.3. Constructing an Authentication-Info Header

 After having received an Access-Accept from the RADIUS server, the
 RADIUS client constructs an Authentication-Info header:

 o If the Access-Accept packet contains a Digest-Response-Auth
 Attribute, the RADIUS client checks the Digest-Qop Attribute:

 * If the Digest-Qop Attribute's value is 'auth' or not specified,
 the RADIUS client puts the Digest-Response-Auth Attribute's

 content into the Authentication-Info header's rspauth directive
 of the HTTP-style response.

 * If the Digest-Qop Attribute's value is 'auth-int', the RADIUS
 client ignores the Access-Accept packet and behaves as if it
 had received an Access-Reject packet (Digest-Response-Auth
 can't be correct as the RADIUS server does not know the
 contents of the HTTP-style response's body).

 o If the Access-Accept packet contains a Digest-HA1 Attribute, the
 RADIUS client checks the qop and algorithm directives in the
 Authorization header of the HTTP-style request it wants to
 authorize:

 * If the qop directive is missing or its value is 'auth', the
 RADIUS client ignores the Digest-HA1 Attribute. It does not
 include an Authentication-Info header in its HTTP-style
 response.

 * If the qop directive's value is 'auth-int' and at least one of
 the following conditions is true, the RADIUS client calculates
 the contents of the HTTP-style response's rspauth directive:

 + The algorithm directive's value is 'MD5-sess' or 'AKAv1-
 MD5-sess'.

 + IP Security (IPsec) is configured to protect traffic between
 the RADIUS client and RADIUS server with IPsec (see Section
 8).

 The RADIUS client creates the HTTP-style response message and
 calculates the hash of this message's body. It uses the result
 and the Digest-URI Attribute's value of the corresponding
 Access-Request packet to perform the H(A2) calculation. It
 takes the Digest-Nonce, Digest-Nonce-Count, Digest-CNonce, and
 Digest-Qop values of the corresponding Access-Request and the
 Digest-HA1 Attribute's value to finish the computation of the
 rspauth value.

 o If the Access-Accept packet contains neither a Digest-Response-
 Auth nor a Digest-HA1 Attribute, the RADIUS client will not create
 an Authentication-Info header for its HTTP-style response.

 When the RADIUS server provides a Digest-Nextnonce Attribute in the
 Access-Accept packet, the RADIUS client puts the contents of this
 attribute into a nextnonce directive. Now it can send an HTTP-style
 response.

2.1.4. Failed Authentication

 If the RADIUS client did receive an HTTP-style request without a
 (Proxy-)Authorization header matching its locally configured realm
 value, it obtains a new nonce and sends an error response (401 or
 407) containing a (Proxy-)Authenticate header.

 If the RADIUS client receives an Access-Challenge packet in response
 to an Access-Request containing a Digest-Nonce Attribute, the RADIUS
 server did not accept the nonce. If a Digest-Stale Attribute is
 present in the Access-Challenge and has a value of 'true' (without
 surrounding quotes), the RADIUS client sends an error response (401
 or 407) containing a WWW-/Proxy-Authenticate header with the stale
 directive set to 'true' and the digest directives derived from the
 Digest-* attributes.

 If the RADIUS client receives an Access-Reject from the RADIUS
 server, it sends an error response to the HTTP-style request it has
 received. If the RADIUS client does not receive a response, it
 retransmits or fails over to another RADIUS server as described in
 [RFC2865].

2.1.5. Obtaining Nonces

 The RADIUS client has two ways to obtain nonces: it has received one
 in a Digest-Nextnonce Attribute of a previously received Access-
 Accept packet, or it asks the RADIUS server for one. To do the
 latter, it sends an Access-Request containing a Digest-Method and a
 Digest-URI Attribute, but without a Digest-Nonce Attribute. It adds
 a Message-Authenticator (see [RFC3579]) Attribute to the Access-
 Request packet. The RADIUS server chooses a nonce and responds with
 an Access-Challenge containing a Digest-Nonce Attribute.

 The RADIUS client constructs a (Proxy-)Authenticate header using the
 received Digest-Nonce and Digest-Realm attributes to fill the nonce
 and realm directives. The RADIUS server can send Digest-Qop,
 Digest-Algorithm, Digest-Domain, and Digest-Opaque attributes in the
 Access-Challenge carrying the nonce. If these attributes are
 present, the client MUST use them.

2.2. RADIUS Server Behavior

 If the RADIUS server receives an Access-Request packet with a
 Digest-Method and a Digest-URI Attribute but without a Digest-Nonce
 Attribute, it chooses a nonce. It puts the nonce into a Digest-Nonce
 Attribute and sends it in an Access-Challenge packet to the RADIUS
 client. The RADIUS server MUST add Digest-Realm, Message-
 Authenticator (see [RFC3579]), SHOULD add Digest-Algorithm and one or
 more Digest-Qop, and MAY add Digest-Domain or Digest-Opaque
 attributes to the Access-Challenge packet.

2.2.1. General Attribute Checks

 If the RADIUS server receives an Access-Request packet containing a
 Digest-Response Attribute, it looks for the following attributes:

 Digest-Realm, Digest-Nonce, Digest-Method, Digest-URI, Digest-Qop,
 Digest-Algorithm, and Digest-Username. Depending on the content of
 Digest-Algorithm and Digest-Qop, it looks for Digest-Entity-Body-
 Hash, Digest-CNonce, and Digest-AKA-Auts, too. See [RFC2617] and
 [RFC3310] for details. If the Digest-Algorithm Attribute is missing,
 'MD5' is assumed. If the RADIUS server has issued a Digest-Opaque
 Attribute along with the nonce, the Access-Request MUST have a
 matching Digest-Opaque Attribute.

 If mandatory attributes are missing, it MUST respond with an Access-
 Reject packet.

 The RADIUS server removes '\' characters that escape quote and '\'
 characters from the text values it has received in the Digest-*
 attributes.

 If the mandatory attributes are present, the RADIUS server MUST check
 if the RADIUS client is authorized to serve users of the realm
 mentioned in the Digest-Realm Attribute. If the RADIUS client is not
 authorized, the RADIUS server MUST send an Access-Reject. The RADIUS
 server SHOULD log the event so as to notify the operator, and MAY
 take additional action such as sending an Access-Reject in response
 to all future requests from this client, until this behavior is reset
 by management action.

 The RADIUS server determines the age of the nonce in the Digest-Nonce
 by using an embedded timestamp or by looking it up in a local table.
 The RADIUS server MUST check the integrity of the nonce if it embeds
 the timestamp in the nonce. Section 2.2.2 describes how the server
 handles old nonces.

2.2.2. Authentication

 If the Access-Request message passes the checks described above, the
 RADIUS server calculates the digest response as described in
 [RFC2617]. To look up the password, the RADIUS server uses the
 RADIUS User-Name Attribute. The RADIUS server MUST check if the user
 identified by the User-Name Attribute:

 o is authorized to access the protection space and

 o is authorized to use the URI included in the SIP-AOR Attribute, if
 this attribute is present.

 If any of those checks fails, the RADIUS server MUST send an Access-
 Reject.

 Correlation between User-Name and SIP-AOR AVP values is required just
 to avoid any user from registering or misusing a SIP-AOR that has
 been allocated to a different user.

 All values required for the digest calculation are taken from the
 Digest attributes described in this document. If the calculated
 digest response equals the value received in the Digest-Response
 Attribute, the authentication was successful.

 If the response values match, but the RADIUS server considers the
 nonce in the Digest-Nonce Attribute too old, it sends an Access-
 Challenge packet containing a new nonce and a Digest-Stale Attribute
 with a value of 'true' (without surrounding quotes).

 If the response values don't match, the RADIUS server responds with
 an Access-Reject.

2.2.3. Constructing the Reply

 If the authentication was successful, the RADIUS server adds an
 attribute to the Access-Accept packet that can be used by the RADIUS
 client to construct an Authentication-Info header:

 o If the Digest-Qop Attribute's value is 'auth' or unspecified, the
 RADIUS server SHOULD put a Digest-Response-Auth Attribute into the
 Access-Accept packet.

 o If the Digest-Qop Attribute's value is 'auth-int' and at least one
 of the following conditions is true, the RADIUS server SHOULD put
 a Digest-HA1 Attribute into the Access-Accept packet:

 * The Digest-Algorithm Attribute's value is 'MD5-sess' or
 'AKAv1-MD5-sess'.

 * IPsec is configured to protect traffic between the RADIUS
 client and RADIUS server with IPsec (see Section 8).

 In all other cases, Digest-Response-Auth or Digest-HA1 MUST NOT be
 sent.

 RADIUS servers MAY construct a Digest-Nextnonce Attribute and add it
 to the Access-Accept packet. This is useful to limit the lifetime of
 a nonce and to save a round-trip in future requests (see nextnonce
 discussion in [RFC2617], Section 3.2.3). The RADIUS server adds a
 Message-Authenticator Attribute (see [RFC3579]) and sends the
 Access-Accept packet to the RADIUS client.

 If the RADIUS server does not accept the nonce received in an
 Access-Request packet but authentication was successful, the RADIUS
 server MUST send an Access-Challenge packet containing a Digest-Stale
 Attribute set to 'true' (without surrounding quotes). The RADIUS
 server MUST add Message-Authenticator (see [RFC3579]), Digest-Nonce,
 Digest-Realm, SHOULD add Digest-Algorithm and one or more Digest-
 Qops, and MAY add Digest-Domain or Digest-Opaque attributes to the
 Access-Challenge packet.

3. New RADIUS Attributes

 If not stated otherwise, the attributes have the following format:

0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
+‑+
| Type | Length | Text ...
+‑+

 Quote and backslash characters in Digest-* attributes representing
 HTTP-style directives with a quoted-string syntax are escaped. The
 surrounding quotes are removed. They are syntactical delimiters that
 are redundant in RADIUS. For example, the directive

 realm="the \"example\" value"

 is represented as follows:

+‑+
| Digest‑Realm | 23 | the \"example\" value |
+‑+

3.1. Digest-Response Attribute

 Description

 If this attribute is present in an Access-Request message, a
 RADIUS server implementing this specification MUST treat the
 Access-Request as a request for Digest Authentication. When a
 RADIUS client receives a (Proxy-)Authorization header, it puts
 the request-digest value into a Digest-Response Attribute.
 This attribute (which enables the user to prove possession of
 the password) MUST only be used in Access-Request packets.

Type
 103 for Digest‑Response.
Length
 >= 3
Text
 When using HTTP Digest, the text field is 32 octets long and
 contains a hexadecimal representation of a 16‑octet digest
 value as it was calculated by the authenticated client. Other
 digest algorithms MAY define different digest lengths. The
 text field MUST be copied from request‑digest of digest‑
 response [RFC2617] without surrounding quotes.

3.2. Digest-Realm Attribute

Description
 This attribute describes a protection space component of the
 RADIUS server. HTTP‑style protocols differ in their definition
 of the protection space. See [RFC2617], Section 1.2, for
 details. It MUST only be used in Access‑Request, Access‑
 Challenge, and Accounting‑Request packets.
Type
 104 for Digest‑Realm
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 realm directive (realm‑value according to [RFC2617]) without
 surrounding quotes from the HTTP‑style request it wants to
 authenticate. In Access‑Challenge packets, the RADIUS server
 puts the expected realm value into this attribute.

3.3. Digest-Nonce Attribute

Description
 This attribute holds a nonce to be used in the HTTP Digest
 calculation. If the Access‑Request had a Digest‑Method and a
 Digest‑URI but no Digest‑Nonce Attribute, the RADIUS server
 MUST put a Digest‑Nonce Attribute into its Access‑Challenge
 packet. This attribute MUST only be used in Access‑Request and
 Access‑Challenge packets.
Type
 105 for Digest‑Nonce
Length
 >= 3

 Text

 In Access-Requests, the RADIUS client takes the value of the
 nonce directive (nonce-value in [RFC2617]) without surrounding
 quotes from the HTTP-style request it wants to authenticate.
 In Access-Challenge packets, the attribute contains the nonce
 selected by the RADIUS server.

3.4. Digest-Response-Auth Attribute

Description
 This attribute enables the RADIUS server to prove possession of
 the password. If the previously received Digest‑Qop Attribute
 was 'auth‑int' (without surrounding quotes), the RADIUS server
 MUST send a Digest‑HA1 Attribute instead of a Digest‑Response‑
 Auth Attribute. The Digest‑Response‑Auth Attribute MUST only
 be used in Access‑Accept packets. The RADIUS client puts the
 attribute value without surrounding quotes into the rspauth
 directive of the Authentication‑Info header.
Type
 106 for Digest‑Response‑Auth.
Length
 >= 3
Text
 The RADIUS server calculates a digest according to Section
 3.2.3 of [RFC2617] and copies the result into this attribute.
 Digest algorithms other than the one defined in [RFC2617] MAY
 define digest lengths other than 32.

3.5. Digest-Nextnonce Attribute

 This attribute holds a nonce to be used in the HTTP Digest
 calculation.

Description
 The RADIUS server MAY put a Digest‑Nextnonce Attribute into an
 Access‑Accept packet. If this attribute is present, the RADIUS
 client MUST put the contents of this attribute into the
 nextnonce directive of an Authentication‑Info header in its
 HTTP‑style response. This attribute MUST only be used in
 Access‑Accept packets.
Type
 107 for Digest‑Nextnonce
Length
 >= 3
Text
 It is recommended that this text be base64 or hexadecimal data.

3.6. Digest-Method Attribute

Description
 This attribute holds the method value to be used in the HTTP
 Digest calculation. This attribute MUST only be used in
 Access‑Request and Accounting‑Request packets.
Type
 108 for Digest‑Method
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 request method from the HTTP‑style request it wants to
 authenticate.

3.7. Digest-URI Attribute

Description
 This attribute is used to transport the contents of the
 digest‑uri directive or the URI of the HTTP‑style request. It
 MUST only be used in Access‑Request and Accounting‑Request
 packets.
Type
 109 for Digest‑URI
Length
 >= 3
Text
 If the HTTP‑style request has an Authorization header, the
 RADIUS client puts the value of the uri directive found in the
 HTTP‑style request Authorization header (known as "digest‑uri‑
 value" in Section 3.2.2 of [RFC2617]) without surrounding
 quotes into this attribute. If there is no Authorization
 header, the RADIUS client takes the value of the request URI
 from the HTTP‑style request it wants to authenticate.

3.8. Digest-Qop Attribute

 Description

 This attribute holds the Quality of Protection parameter that
 influences the HTTP Digest calculation. This attribute MUST
 only be used in Access-Request, Access-Challenge, and
 Accounting-Request packets. A RADIUS client SHOULD insert one
 of the Digest-Qop attributes it has received in a previous
 Access-Challenge packet. RADIUS servers SHOULD insert at least
 one Digest-Qop Attribute in an Access-Challenge packet.
 Digest-Qop is optional in order to preserve backward
 compatibility with a minimal implementation of [RFC2069].

Type
 110 for Digest‑Qop
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 qop directive (qop‑value as described in [RFC2617]) from the
 HTTP‑style request it wants to authenticate. In Access‑
 Challenge packets, the RADIUS server puts a desired qop‑value
 into this attribute. If the RADIUS server supports more than
 one "quality of protection" value, it puts each qop‑value into
 a separate Digest‑Qop Attribute.

3.9. Digest-Algorithm Attribute

Description
 This attribute holds the algorithm parameter that influences
 the HTTP Digest calculation. It MUST only be used in Access‑
 Request, Access‑Challenge and Accounting‑Request packets. If
 this attribute is missing, MD5 is assumed.
Type
 111 for Digest‑Algorithm
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 algorithm directive (as described in [RFC2617], Section 3.2.1)
 from the HTTP‑style request it wants to authenticate. In
 Access‑Challenge packets, the RADIUS server SHOULD put the
 desired algorithm into this attribute.

3.10. Digest-Entity-Body-Hash Attribute

 Description

 When using the qop-value 'auth-int', a hash of the HTTP-style
 message body's contents is required for digest calculation.
 Instead of sending the complete body of the message, only its
 hash value is sent. This hash value can be used directly in
 the digest calculation.

 The clarifications described in section 22.4 of [RFC3261] about
 the hash of empty entity bodies apply to the Digest‑Entity‑
 Body‑Hash Attribute. This attribute MUST only be sent in
 Access‑Request packets.
Type
 112 for Digest‑Entity‑Body‑Hash
Length
 >= 3

 Text

 The attribute holds the hexadecimal representation of
 H(entity-body). This hash is required by certain
 authentication mechanisms, such as HTTP Digest with quality of
 protection set to 'auth-int'. RADIUS clients MUST use this
 attribute to transport the hash of the entity body when HTTP
 Digest is the authentication mechanism and the RADIUS server
 requires that the integrity of the entity body (e.g., qop
 parameter set to 'auth-int') be verified. Extensions to this
 document may define support for authentication mechanisms other
 than HTTP Digest.

3.11. Digest-CNonce Attribute

Description
 This attribute holds the client nonce parameter that is used in
 the HTTP Digest calculation. It MUST only be used in Access‑
 Request packets.
Type
 113 for Digest‑CNonce
Length
 >= 3
Text
 This attribute includes the value of the cnonce‑value [RFC2617]
 without surrounding quotes, taken from the HTTP‑style request.

3.12. Digest-Nonce-Count Attribute

Description
 This attribute includes the nonce count parameter that is used
 to detect replay attacks. The attribute MUST only be used in
 Access‑Request packets.
Type
 114 for Digest‑Nonce‑Count
Length
 10
Text
 In Access‑Requests, the RADIUS client takes the value of the nc
 directive (nc‑value according to [RFC2617]) without surrounding
 quotes from the HTTP‑style request it wants to authenticate.

3.13. Digest-Username Attribute

 Description

 This attribute holds the user name used in the HTTP Digest
 calculation. The RADIUS server MUST use this attribute only
 for the purposes of calculating the digest. In order to
 determine the appropriate user credentials, the RADIUS server

 MUST use the User‑Name (1) Attribute, and MUST NOT use the
 Digest‑Username Attribute. This attribute MUST only be used in
 Access‑Request and Accounting‑Request packets.
Type
 115 for Digest‑Username
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 username directive (username‑value according to [RFC2617])
 without surrounding quotes from the HTTP‑style request it wants
 to authenticate.

3.14. Digest-Opaque Attribute

Description
 This attribute holds the opaque parameter that is passed to the
 HTTP‑style client. The HTTP‑style client will pass this value
 back to the server (i.e., the RADIUS client) without
 modification. This attribute MUST only be used in Access‑
 Request and Access‑Challenge packets.
Type
 116 for Digest‑Opaque
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 opaque directive (opaque‑value according to [RFC2617]) without
 surrounding quotes from the HTTP‑style request it wants to
 authenticate and puts it into this attribute. In Access‑
 Challenge packets, the RADIUS server MAY include this
 attribute.

3.15. Digest-Auth-Param Attribute

 Description

 This attribute is a placeholder for future extensions and
 corresponds to the auth-param parameter defined in Section
 3.2.1 of [RFC2617]. The Digest-Auth-Param is the mechanism
 whereby the RADIUS client and RADIUS server can exchange auth-
 param extension parameters contained within Digest headers that
 are not understood by the RADIUS client and for which there are
 no corresponding stand-alone attributes.

 Unlike the previously listed Digest-* attributes, the Digest-
 Auth-Param contains not only the value but also the parameter
 name, since the parameter name is unknown to the RADIUS client.
 If the Digest header contains several unknown parameters, then

 the RADIUS implementation MUST repeat this attribute, and each
 instance MUST contain one different unknown Digest
 parameter/value combination. This attribute MUST ONLY be used
 in Access‑Request, Access‑Challenge, Access‑Accept, and
 Accounting‑Request packets.
Type
 117 for Digest‑Auth‑Param
Length
 >= 3
Text
 The text consists of the whole parameter, including its name,
 the equal sign ('='), and quotes.

3.16. Digest-AKA-Auts Attribute

Description
 This attribute holds the auts parameter that is used in the
 Digest AKA [RFC3310] calculation. It is only used if the
 algorithm of the digest‑response denotes a version of AKA
 Digest [RFC3310]. This attribute MUST only be used in Access‑
 Request packets.
Type
 118 for Digest‑AKA‑Auts
Length
 >= 3
Text
 In Access‑Requests, the RADIUS client takes the value of the
 auts directive (auts‑param according to Section 3.4 of
 [RFC3310]) without surrounding quotes from the HTTP‑style
 request it wants to authenticate.

3.17. Digest-Domain Attribute

Description
 When a RADIUS client has asked for a nonce, the RADIUS server
 MAY send one or more Digest‑Domain attributes in its Access‑
 Challenge packet. The RADIUS client puts them into the quoted,
 space‑separated list of URIs of the domain directive of a WWW‑
 Authenticate header. Together with Digest‑Realm, the URIs in
 the list define the protection space (see [RFC2617], Section
 3.2.1) for some HTTP‑style protocols. This attribute MUST only
 be used in Access‑Challenge and Accounting‑Request packets.
Type
 119 for Digest‑Domain
Length
 3

 Text

 This attribute consists of a single URI that defines a
 protection space component.

3.18. Digest-Stale Attribute

Description
 This attribute is sent by a RADIUS server in order to notify
 the RADIUS client whether it has accepted a nonce. If the
 nonce presented by the RADIUS client was stale, the value is
 'true' and is 'false' otherwise. The RADIUS client puts the
 content of this attribute into a stale directive of the WWW‑
 Authenticate header in the HTTP‑style response to the request
 it wants to authenticate. The attribute MUST only be used in
 Access‑Challenge packets.
Type
 120 for Digest‑Stale
Length
 3
Text
 The attribute has either the value 'true' or 'false' (both
 values without surrounding quotes).

3.19. Digest-HA1 Attribute

 Description

 This attribute is used to allow the generation of an
 Authentication-Info header, even if the HTTP-style response's
 body is required for the calculation of the rspauth value. It
 SHOULD be used in Access-Accept packets if the required quality
 of protection (qop) is 'auth-int'.

 This attribute MUST NOT be sent if the qop parameter was not
 specified or has a value of 'auth' (in this case, use Digest-
 Response-Auth instead).

 The Digest-HA1 Attribute MUST only be sent by the RADIUS server
 or processed by the RADIUS client if at least one of the
 following conditions is true:

 + The Digest-Algorithm Attribute's value is 'MD5-sess' or
 'AKAv1-MD5-sess'.

 + IPsec is configured to protect traffic between the RADIUS
 client and RADIUS server with IPsec (see Section 8).

 This attribute MUST only be used in Access-Accept packets.

Type
 121 for Digest‑HA1
Length
 >= 3
Text
 This attribute contains the hexadecimal representation of H(A1)
 as described in [RFC2617], Sections 3.1.3, 3.2.1, and 3.2.2.2.

3.20. SIP-AOR Attribute

Description
 This attribute is used for the authorization of SIP messages.
 The SIP‑AOR Attribute identifies the URI, the use of which must
 be authenticated and authorized. The RADIUS server uses this
 attribute to authorize the processing of the SIP request. The
 SIP‑AOR can be derived from, for example, the To header field
 in a SIP REGISTER request (user under registration), or the
 From header field in other SIP requests. However, the exact
 mapping of this attribute to SIP can change due to new
 developments in the protocol. This attribute MUST only be used
 when the RADIUS client wants to authorize SIP users and MUST
 only be used in Access‑Request packets.
Type
 122 for SIP‑AOR
Length
 >= 3
Text
 The syntax of this attribute corresponds either to a SIP URI
 (with the format defined in [RFC3261] or a tel URI (with the
 format defined in [RFC3966]).

 The SIP-AOR Attribute holds the complete URI, including
 parameters and other parts. It is up to the RADIUS server as
 to which components of the URI are regarded in the
 authorization decision.

4. Diameter Compatibility

 This document defines support for Digest Authentication in RADIUS. A
 companion document "Diameter Session Initiation Protocol (SIP)
 Application" [RFC4740] defines support for Digest Authentication in
 Diameter, and addresses compatibility issues between RADIUS and
 Diameter.

5. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets, and in what quantity.

Access‑ Access‑ Access‑ Access‑ Acct‑
Request Accept Reject Challenge Req # Attribute
 0‑1 0 0 0 0‑1 1 User‑Name
 0‑1 0 0 1 0 24 State [4]
 1 1 1 1 0‑1 80 Message‑Authenticator
 0‑1 0 0 0 0 103 Digest‑Response
 0‑1 0 0 1 0‑1 104 Digest‑Realm
 0‑1 0 0 1 0 105 Digest‑Nonce
 0 0‑1 0 0 0 106 Digest‑Response‑Auth [1][2]
 0 0‑1 0 0 0 107 Digest‑Nextnonce
 1 0 0 0 0‑1 108 Digest‑Method
 0‑1 0 0 0 0‑1 109 Digest‑URI
 0‑1 0 0 0+ 0‑1 110 Digest‑Qop
 0‑1 0 0 0‑1 0‑1 111 Digest‑Algorithm [3]
 0‑1 0 0 0 0 112 Digest‑Entity‑Body‑Hash
 0‑1 0 0 0 0 113 Digest‑CNonce
 0‑1 0 0 0 0 114 Digest‑Nonce‑Count
 0‑1 0 0 0 0‑1 115 Digest‑Username
 0‑1 0 0 0‑1 0 116 Digest‑Opaque
 0+ 0+ 0 0+ 0+ 117 Digest‑Auth‑Param
 0‑1 0 0 0 0 118 Digest‑AKA‑Auts
 0 0 0 0+ 0+ 119 Digest‑Domain
 0 0 0 0‑1 0 120 Digest‑Stale
 0 0‑1 0 0 0 121 Digest‑HA1 [1][2]
 0‑1 0 0 0 0 122 SIP‑AOR

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in the packet.
0+ Zero or more instances of this attribute MAY be
 present in the packet.
0‑1 Zero or one instance of this attribute MAY be
 present in the packet.

 [Note 1] Digest-HA1 MUST be used instead of Digest-Response-Auth if

 Digest-Qop is 'auth-int'.

 [Note 2] Digest-Response-Auth MUST be used instead of Digest-HA1 if

 Digest-Qop is 'auth'.

 [Note 3] If Digest-Algorithm is missing, 'MD5' is assumed.

 [Note 4] An Access-Challenge MUST contain a State attribute, which is

 copied to the subsequent Access-Request. A server receiving
 an Access-Request that contains a State attribute MUST
 respond with either an Access-Accept or an Access-Reject;
 the server MUST NOT respond with an Access-Challenge.

6. Examples

 This is an example selected from the traffic between a softphone (A),
 a Proxy Server (B), and an example.com RADIUS server (C). The
 communication between the Proxy Server and a SIP Public Switched
 Telephone Network (PSTN) gateway is omitted for brevity. The SIP
 messages are not shown completely.

 The password of user '12345678' is 'secret'. The shared secret
 between the RADIUS client and server is 'secret'. To ease testing,
 only the last byte of the RADIUS authenticator changes between
 requests. In a real implementation, this would be a serious flaw.

 A->B

INVITE sip:97226491335@example.com SIP/2.0
From: <sip:12345678@example.com>
To: <sip:97226491335@example.com>

 B->A

 SIP/2.0 100 Trying

 B->C

Code = Access‑Request (1)
Packet identifier = 0x7c (124)
Length = 97
Authenticator = F5E55840E324AA49D216D9DBD069807C
NAS‑IP‑Address = 192.0.2.38
NAS‑Port = 5
User‑Name = 12345678
Digest‑Method = INVITE
Digest‑URI = sip:97226491335@example.com
Message‑Authenticator = 7600D5B0BDC33987A60D5C6167B28B3B

 C->B

Code = Access‑challenge (11)
Packet identifier = 0x7c (124)
Length = 72
Authenticator = EBE20199C26EFEAD69BF8AB0E786CA4D
Digest‑Nonce = 3bada1a0
Digest‑Realm = example.com
Digest‑Qop = auth
Digest‑Algorithm = MD5
Message‑Authenticator = 5DA18ED3BBC9513DCBDE0A37F51B7DE3

 B->A

SIP/2.0 407 Proxy Authentication Required
Proxy‑Authenticate: Digest realm="example.com"
 ,nonce="3bada1a0",qop=auth,algorithm=MD5
Content‑Length: 0

 A->B

 ACK sip:97226491335@example.com SIP/2.0

 A->B

INVITE sip:97226491335@example.com SIP/2.0
Proxy‑Authorization: Digest nonce="3bada1a0"
 ,realm="example.com"
 ,response="756933f735fcd93f90a4bbdd5467f263"
 ,uri="sip:97226491335@example.com",username="12345678"
 ,qop=auth,algorithm=MD5
 ,cnonce="56593a80,nc="00000001"

From: <sip:12345678@example.com>
To: <sip:97226491335@example.com>

 B->C

Code = Access‑Request (1)
Packet identifier = 0x7d (125)
Length = 221
Authenticator = F5E55840E324AA49D216D9DBD069807D
NAS‑IP‑Address = 192.0.2.38
NAS‑Port = 5
User‑Name = 12345678
Digest‑Method = INVITE
Digest‑URI = sip:97226491335@example.com
Digest‑Realm = example.com
Digest‑Qop = auth
Digest‑Algorithm = MD5
Digest‑CNonce = 56593a80
Digest‑Nonce = 3bada1a0
Digest‑Nonce‑Count = 00000001
Digest‑Response = 756933f735fcd93f90a4bbdd5467f263
Digest‑Username = 12345678
SIP‑AOR = sip:12345678@example.com
Message‑Authenticator = B6C7F7F8D11EF261A26933D234561A60

 C->B

Code = Access‑Accept (2)
Packet identifier = 0x7d (125)
Length = 72
Authenticator = FFDD74D6470D21CB6FC4D6056BE245D2
Digest‑Response‑Auth = f847de948d12285f8f4199e366f1af21
Message‑Authenticator = 7B76E2F10A7067AF601938BF13B0A62E

 B->A

 SIP/2.0 180 Ringing

 B->A

 SIP/2.0 200 OK

 A->B

 ACK sip:97226491335@example.com SIP/2.0

 A second example shows the traffic between a web browser (A), a web
 server (B), and a RADIUS server (C).

 A->B

 GET /index.html HTTP/1.1

 B->C

Code = Access‑Request (1)
Packet identifier = 0x7e (126)
Length = 68
Authenticator = F5E55840E324AA49D216D9DBD069807E
NAS‑IP‑Address = 192.0.2.38
NAS‑Port = 5
Digest‑Method = GET
Digest‑URI = /index.html
Message‑Authenticator = 690BFC95E88DF3B185F15CD78E469992

 C->B

Code = Access‑challenge (11)
Packet identifier = 0x7e (126)
Length = 72
Authenticator = 2EE5EB01C02C773B6C6EC8515F565E8E
Digest‑Nonce = a3086ac8
Digest‑Realm = example.com
Digest‑Qop = auth
Digest‑Algorithm = MD5
Message‑Authenticator = 646DB2B0AF9E72FFF2CF7FEB33C4952A

 B->A

HTTP/1.1 401 Authentication Required
WWW‑Authenticate: Digest realm="example.com",
 nonce="a3086ac8",qop=auth,algorithm=MD5
Content‑Length: 0

 A->B

GET /index.html HTTP/1.1
Authorization: Digest = algorithm=MD5,qop=auth,nonce="a3086ac8"
 ,nc="00000001",cnonce="56593a80"
 ,realm="example.com"
 ,response="a4fac45c27a30f4f244c54a2e99fa117"
 ,uri="/index.html",username="12345678"

 B->C

Code = Access‑Request (1)
Packet identifier = 0x7f (127)
Length = 176
Authenticator = F5E55840E324AA49D216D9DBD069807F
NAS‑IP‑Address = 192.0.2.38
NAS‑Port = 5
User‑Name = 12345678
Digest‑Method = GET
Digest‑URI = /index.html
Digest‑Realm = example.com
Digest‑Qop = auth
Digest‑Algorithm = MD5
Digest‑CNonce = 56593a80
Digest‑Nonce = a3086ac8
Digest‑Nonce‑Count = 00000001
Digest‑Response = a4fac45c27a30f4f244c54a2e99fa117
Digest‑Username = 12345678
Message‑Authenticator = 237D85C1478C70C67EEAF22A9C456821

 C->B

Code = Access‑Accept (2)
Packet identifier = 0x7f (127)
Length = 72
Authenticator = 6364FA6ED66012847C05A0895607C694
Digest‑Response‑Auth = 08c4e942d1d0a191de8b3aa98cd35147
Message‑Authenticator = 43795A3166492AD2A890AD57D5F97D56

 B->A

HTTP/1.1 200 OK
...

<html>
...

7. IANA Considerations

 The following values from the RADIUS Attribute Types number space
 were assigned in [RFC4590]. This document requests that the values
 in the table below be entered within the existing registry.

Attribute #
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑
Digest‑Response 103
Digest‑Realm 104
Digest‑Nonce 105
Digest‑Response‑Auth 106
Digest‑Nextnonce 107
Digest‑Method 108
Digest‑URI 109
Digest‑Qop 110
Digest‑Algorithm 111
Digest‑Entity‑Body‑Hash 112
Digest‑CNonce 113
Digest‑Nonce‑Count 114
Digest‑Username 115
Digest‑Opaque 116
Digest‑Auth‑Param 117
Digest‑AKA‑Auts 118
Digest‑Domain 119
Digest‑Stale 120
Digest‑HA1 121
SIP‑AOR 122

8. Security Considerations

 The RADIUS extensions described in this document enable RADIUS to
 transport the data that is required to perform a digest calculation.
 As a result, RADIUS inherits the vulnerabilities of HTTP Digest (see
 [RFC2617], Section 4) in addition to RADIUS security vulnerabilities
 described in [RFC2865], Section 8, and [RFC3579], Section 4.

 An attacker compromising a RADIUS client or proxy can carry out man-
 in-the-middle attacks even if the paths between A, B and B, C (Figure
 2) have been secured with TLS or IPsec.

 The RADIUS server MUST check the Digest-Realm Attribute it has
 received from a client. If the RADIUS client is not authorized to
 serve HTTP-style clients of that realm, it might be compromised.

8.1. Denial of Service

 RADIUS clients implementing the extension described in this document
 may authenticate HTTP-style requests received over the Internet. As
 compared with the use of RADIUS to authenticate link-layer network
 access, attackers may find it easier to cover their tracks in such a
 scenario.

 An attacker can attempt a denial-of-service attack on one or more
 RADIUS servers by sending a large number of HTTP-style requests. To
 make simple denial-of-service attacks more difficult, the RADIUS
 server MUST check whether it has generated the nonce received from an
 HTTP-style client. This SHOULD be done statelessly. For example, a
 nonce could consist of a cryptographically random part and some kind
 of signature provided by the RADIUS client, as described in
 [RFC2617], Section 3.2.1.

8.2. Confidentiality and Data Integrity

 The attributes described in this document are sent in cleartext.
 RADIUS servers SHOULD include Digest-Qop and Digest-Algorithm
 attributes in Access-Challenge messages. A man in the middle can
 modify or remove those attributes in a bidding down attack, causing
 the RADIUS client to use a weaker authentication scheme than
 intended.

 The Message-Authenticator Attribute, described in [RFC3579], Section
 3.2 MUST be included in Access-Request, Access-Challenge, Access-
 Reject, and Access-Accept messages that contain attributes described
 in this specification.

 The Digest-HA1 Attribute contains no random components if the
 algorithm is 'MD5' or 'AKAv1-MD5'. This makes offline dictionary
 attacks easier and enables replay attacks.

 Some parameter combinations require the protection of RADIUS packets
 against eavesdropping and tampering. Implementations SHOULD try to
 determine automatically whether IPsec is configured to protect
 traffic between the RADIUS client and the RADIUS server. If this is
 not possible, the implementation checks a configuration parameter
 telling it whether IPsec will protect RADIUS traffic. The default
 value of this configuration parameter tells the implementation that
 RADIUS packets will not be protected.

 HTTP-style clients can use TLS with server-side certificates together
 with HTTP-Digest Authentication. Instead of TLS, IPsec can be used,
 too. TLS or IPsec secure the connection while Digest Authentication
 authenticates the user. The RADIUS transaction can be regarded as
 one leg on the path between the HTTP-style client and the HTTP-style
 server. To prevent RADIUS from representing the weak link, a RADIUS
 client receiving an HTTP-style request via TLS or IPsec could use an
 equally secure connection to the RADIUS server. There are several
 ways to achieve this, for example:

 o The RADIUS client may reject HTTP-style requests received over TLS
 or IPsec.

 o The RADIUS client may require that traffic be sent and received
 over IPsec.

 RADIUS over IPsec, if used, MUST conform to the requirements
 described in [RFC3579], Section 4.2.

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2617]
 Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC3261]
 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E. Schooler,
 "SIP: Session Initiation Protocol", RFC 3261, June 2002.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible Authentication
 Protocol (EAP)", RFC 3579, September 2003.

 [RFC3966]
 Schulzrinne, H., "The tel URI for Telephone Numbers", RFC
 3966, December 2004.

9.2. Informative References

 [RFC1994]
 Simpson, W., "PPP Challenge Handshake Authentication
 Protocol (CHAP)", RFC 1994, August 1996.

 [RFC2069]
 Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
 Luotonen, A., Sink, E., and L. Stewart, "An Extension to
 HTTP : Digest Access Authentication", RFC 2069, January
 1997.

 [RFC3310]
 Niemi, A., Arkko, J., and V. Torvinen, "Hypertext Transfer
 Protocol (HTTP) Digest Authentication Using Authentication
 and Key Agreement (AKA)", RFC 3310, September 2002.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC3851]
 Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification", RFC
 3851, July 2004.

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4590]
 Sterman, B., Sadolevsky, D., Schwartz, D., Williams, D.,
 and W. Beck, "RADIUS Extension for Digest Authentication",
 RFC 4590, July 2006.

 [RFC4740]
 Garcia-Martin, M., Ed., Belinchon, M., Pallares-Lopez, M.,
 Canales-Valenzuela, C., and K. Tammi, "Diameter Session
 Initiation Protocol (SIP) Application", RFC 4740, November
 2006.

Appendix A - Changes from RFC 4590

 This Appendix lists the major changes between [RFC4590] and this
 document. Minor changes, including style, grammar, spelling, and
 editorial changes are not mentioned here.

 o The Table of Attributes (Section 5) now indicates that the
 Digest-Method Attribute is required within an Access-Request.
 Also, an entry has been added for the State attribute. The table
 also includes entries for Accounting-Request messages. As noted
 in the examples, the User-Name Attribute is not necessary when
 requesting a nonce.

 o Two errors in attribute assignment have been corrected within the
 IANA Considerations (Section 7). Digest-Response-Auth is assigned
 attribute 106, and Digest-Nextnonce is assigned attribute 107.

 o Several errors in the examples section have been corrected.

Acknowledgments

 The authors would like to thank Mike McCauley for his help in working
 through the details of the examples.

 We would like to acknowledge Kevin McDermott (Cisco Systems) for
 providing comments and experimental implementation.

 Many thanks to all reviewers, especially to Miguel Garcia, Jari
 Arkko, Avi Lior, and Jun Wang.

Authors' Addresses

Baruch Sterman
Kayote Networks
P.O. Box 1373
Efrat 90435
Israel

 EMail: baruch@kayote.com

Daniel Sadolevsky
SecureOL, Inc.
Jerusalem Technology Park
P.O. Box 16120
Jerusalem 91160
Israel

 EMail: dscreat@dscreat.com

David Schwartz
Kayote Networks
P.O. Box 1373
Efrat 90435
Israel

 EMail: david@kayote.com

David Williams
Cisco Systems
7025 Kit Creek Road
P.O. Box 14987
Research Triangle Park NC 27709
USA

 EMail: dwilli@cisco.com

Wolfgang Beck
Deutsche Telekom AG
Deutsche Telekom Allee 7
Darmstadt 64295
Germany

 EMail: beckw@t-systems.com

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

5176 - Dynamic Authorization Extensions to Remote Authentication Dial In User Se

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5176

Obsoletes: 3576

Category: Informational

M. Chiba

G. Dommety

M. Eklund

Cisco Systems, Inc.

D. Mitton

RSA, Security Division of EMC

B. Aboba

Microsoft Corporation

January 2008

Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Abstract

 This document describes a currently deployed extension to the Remote
 Authentication Dial In User Service (RADIUS) protocol, allowing
 dynamic changes to a user session, as implemented by network access
 server products. This includes support for disconnecting users and
 changing authorizations applicable to a user session.

Table of Contents

	1. Introduction
	 1.1. Applicability

	 1.2. Requirements Language

	 1.3. Terminology

	2. Overview
	 2.1. Disconnect Messages (DMs)

	 2.2. Change-of-Authorization (CoA) Messages

	 2.3. Packet Format

	3. Attributes
	 3.1. Proxy State

	 3.2. Authorize Only

	 3.3. State

	 3.4. Message-Authenticator

	 3.5. Error-Cause

	 3.6. Table of Attributes

	4. Diameter Considerations

	5. IANA Considerations

	6. Security Considerations
	 6.1. Authorization Issues

	 6.2. IPsec Usage Guidelines

	 6.3. Replay Protection

	7. Example Traces

	8. References
	 8.1. Normative References

	 8.2. Informative References

	9. Acknowledgments

	Appendix A

1. Introduction

 The RADIUS protocol, defined in [RFC2865], does not support
 unsolicited messages sent from the RADIUS server to the Network
 Access Server (NAS).

 However, there are many instances in which it is desirable for
 changes to be made to session characteristics, without requiring the
 NAS to initiate the exchange. For example, it may be desirable for
 administrators to be able to terminate user session(s) in progress.
 Alternatively, if the user changes authorization level, this may
 require that authorization attributes be added/deleted from user
 session(s).

 To overcome these limitations, several vendors have implemented
 additional RADIUS commands in order to enable unsolicited messages to
 be sent to the NAS. These extended commands provide support for
 Disconnect and Change-of-Authorization (CoA) packets. Disconnect
 packets cause user session(s) to be terminated immediately, whereas
 CoA packets modify session authorization attributes such as data
 filters.

1.1. Applicability

 This protocol is being recommended for publication as an
 Informational RFC rather than as a standards-track RFC because of
 problems that cannot be fixed without creating incompatibilities with
 deployed implementations. This includes security vulnerabilities, as
 well as semantic ambiguities resulting from the design of the
 Change-of-Authorization (CoA) commands. While fixes are recommended,
 they cannot be made mandatory since this would be incompatible with
 existing implementations.

 Existing implementations of this protocol do not support
 authorization checks, so that an ISP sharing a NAS with another ISP
 could disconnect or change authorizations for another ISP's users.
 In order to remedy this problem, a "Reverse Path Forwarding" check is
 described; see Section 6.1 for details.

 Existing implementations utilize per-packet authentication and
 integrity protection algorithms with known weaknesses [MD5Attack].
 To provide stronger per-packet authentication and integrity
 protection, the use of IPsec is recommended. See Section 6.2 for
 details.

 Existing implementations lack replay protection. In order to support
 replay detection, it is recommended that an Event-Timestamp Attribute
 be added to all packets in situations where IPsec replay protection
 is not employed. See Section 6.3 for details.

 The approach taken with CoA commands in existing implementations
 results in a semantic ambiguity. Existing implementations of the
 CoA-Request identify the affected session, as well as supply the
 authorization changes. Since RADIUS Attributes included within
 existing implementations of the CoA-Request can be used for session
 identification or authorization change, it may not be clear which
 function a given attribute is serving.

 The problem does not exist within the Diameter protocol [RFC3588], in
 which server-initiated authorization change is initiated using a
 Re-Auth-Request (RAR) command identifying the session via User-Name
 and Session-Id Attribute Value Pairs (AVPs) and containing a
 Re-Auth-Request-Type AVP with value "AUTHORIZE_ONLY". This results
 in initiation of a standard Request/Response sequence where
 authorization changes are supplied. As a result, in no command can
 Diameter AVPs have multiple potential meanings.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Terminology

 This document frequently uses the following terms:

 Dynamic Authorization Client (DAC)

 The entity originating Change of Authorization (CoA) Requests or
 Disconnect-Requests. While it is possible that the DAC is
 co-resident with a RADIUS authentication or accounting server,
 this need not necessarily be the case.

 Dynamic Authorization Server (DAS)

 The entity receiving CoA-Request or Disconnect-Request packets.
 The DAS may be a NAS or a RADIUS proxy.

 Network Access Server (NAS)

 The device providing access to the network.

 service

 The NAS provides a service to the user, such as IEEE 802 or
 Point-to-Point Protocol (PPP).

 session

 Each service provided by the NAS to a user constitutes a
 session, with the beginning of the session defined as the point
 where service is first provided and the end of the session
 defined as the point where service is ended. A user may have
 multiple sessions in parallel or series if the NAS supports
 that.

 silently discard

 This means the implementation discards the packet without
 further processing. The implementation SHOULD provide the
 capability of logging the error, including the contents of the
 silently discarded packet, and SHOULD record the event in a
 statistics counter.

2. Overview

 This section describes the most commonly implemented features of
 Disconnect and Change-of-Authorization (CoA) packets.

2.1. Disconnect Messages (DMs)

 A Disconnect-Request packet is sent by the Dynamic Authorization
 Client in order to terminate user session(s) on a NAS and discard all
 associated session context. The Disconnect-Request packet is sent to
 UDP port 3799, and identifies the NAS as well as the user session(s)
 to be terminated by inclusion of the identification attributes
 described in Section 3.

+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
	Disconnect‑Request	
	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
NAS		DAC
	Disconnect‑ACK/NAK	
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+

 The NAS responds to a Disconnect-Request packet sent by a Dynamic
 Authorization Client with a Disconnect-ACK if all associated session
 context is discarded and the user session(s) are no longer connected,
 or a Disconnect-NAK, if the NAS was unable to disconnect one or more
 sessions and discard all associated session context. A Disconnect-
 ACK MAY contain the Acct-Terminate-Cause (49) Attribute [RFC2866]
 with the value set to 6 for Admin-Reset.

2.2. Change-of-Authorization (CoA) Messages

 CoA-Request packets contain information for dynamically changing
 session authorizations. Typically, this is used to change data
 filters. The data filters can be of either the ingress or egress
 kind, and are sent in addition to the identification attributes as
 described in Section 3. The port used and packet format (described
 in Section 2.3) are the same as those for Disconnect-Request packets.

 The following attributes MAY be sent in a CoA-Request:

Filter‑ID (11) ‑ Indicates the name of a data filter list
 to be applied for the session(s) that the
 identification attributes map to.

NAS‑Filter‑Rule (92) ‑ Provides a filter list to be applied for
 the session(s) that the identification
 attributes map to [RFC4849].

+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+
	CoA‑Request	
	<‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	
NAS		DAC
	CoA‑ACK/NAK	
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>	
+‑‑‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑+

 The NAS responds to a CoA-Request sent by a Dynamic Authorization
 Client with a CoA-ACK if the NAS is able to successfully change the
 authorizations for the user session(s), or a CoA-NAK if the CoA-
 Request is unsuccessful. A NAS MUST respond to a CoA-Request
 including a Service-Type Attribute with an unsupported value with a
 CoA-NAK; an Error-Cause Attribute with value "Unsupported Service"
 SHOULD be included.

2.3. Packet Format

 For either Disconnect-Request or CoA-Request packets UDP port 3799 is
 used as the destination port. For responses, the source and
 destination ports are reversed. Exactly one RADIUS packet is
 encapsulated in the UDP Data field.

 A summary of the data format is shown below. The fields are
 transmitted from left to right.

 The packet format consists of the following fields: Code, Identifier,
 Length, Authenticator, and Attributes in Type-Length-Value (TLV)
 format. All fields hold the same meaning as those described in
 RADIUS [RFC2865]. The Authenticator field MUST be calculated in the
 same way as is specified for an Accounting-Request in [RFC2866].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Code | Identifier | Length |
+‑+
| |
| Authenticator |
| |
| |
+‑+
| Attributes ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑

 Code

 The Code field is one octet, and identifies the type of RADIUS
 packet. Packets received with an invalid Code field MUST be
 silently discarded. RADIUS codes (decimal) for this extension are
 assigned as follows:

40 ‑ Disconnect‑Request [RFC3575]
41 ‑ Disconnect‑ACK [RFC3575]
42 ‑ Disconnect‑NAK [RFC3575]
43 ‑ CoA‑Request [RFC3575]
44 ‑ CoA‑ACK [RFC3575]
45 ‑ CoA‑NAK [RFC3575]

 Identifier

 The Identifier field is one octet, and aids in matching requests
 and replies. A Dynamic Authorization Server implementing this
 specification MUST be capable of detecting a duplicate request if
 it has the same source IP address, source UDP port, and Identifier
 within a short span of time.

 The responsibility for retransmission of Disconnect-Request and
 CoA-Request packets lies with the Dynamic Authorization Client.
 If after sending these packets, the Dynamic Authorization Client
 does not receive a response, it will retransmit.

 The Identifier field MUST be changed whenever the content of the
 Attributes field changes, or whenever a valid reply has been
 received for a previous request. For retransmissions where the
 contents are identical, the Identifier MUST remain unchanged.

 If the Dynamic Authorization Client is retransmitting a
 Disconnect-Request or CoA-Request to the same Dynamic
 Authorization Server as before, and the attributes haven't
 changed, the same Request Authenticator, Identifier, and source
 port MUST be used. If any attributes have changed, a new
 Authenticator and Identifier MUST be used.

 If the Request to a primary Dynamic Authorization Server fails, a
 secondary Dynamic Authorization Server must be queried, if
 available; issues relating to failover algorithms are described in
 [RFC3539]. Since this represents a new request, a new Request
 Authenticator and Identifier MUST be used. However, where the
 Dynamic Authorization Client is sending directly to the NAS,
 failover typically does not make sense, since CoA-Request or
 Disconnect-Request packets need to be delivered to the NAS where
 the session resides.

 Length

 The Length field is two octets. It indicates the length of the
 packet including the Code, Identifier, Length, Authenticator, and
 Attribute fields. Octets outside the range of the Length field
 MUST be treated as padding and ignored on reception. If the
 packet is shorter than the Length field indicates, it MUST be
 silently discarded. The minimum length is 20 and maximum length
 is 4096.

 Authenticator

 The Authenticator field is sixteen (16) octets. The most
 significant octet is transmitted first. This value is used to
 authenticate packets between the Dynamic Authorization Client and
 the Dynamic Authorization Server.

 Request Authenticator

 In Request packets, the Authenticator value is a 16-octet MD5
 [RFC1321] checksum, called the Request Authenticator. The
 Request Authenticator is calculated the same way as for an
 Accounting-Request, specified in [RFC2866].

 Note that the Request Authenticator of a CoA-Request or
 Disconnect-Request cannot be computed the same way as the
 Request Authenticator of a RADIUS Access-Request, because there
 is no User-Password Attribute in a CoA-Request or Disconnect-
 Request.

 Response Authenticator

 The Authenticator field in a Response packet (e.g.,
 Disconnect-ACK, Disconnect-NAK, CoA-ACK, or CoA-NAK) is called
 the Response Authenticator, and contains a one-way MD5 hash
 calculated over a stream of octets consisting of the Code,
 Identifier, Length, the Request Authenticator field from the
 packet being replied to, and the response attributes if any,
 followed by the shared secret. The resulting 16-octet MD5 hash
 value is stored in the Authenticator field of the Response
 packet.

 Administrative note: As noted in [RFC2865], Section 3, the secret
 (password shared between the Dynamic Authorization Client and the
 Dynamic Authorization Server) SHOULD be at least as large and
 unguessable as a well-chosen password. The Dynamic Authorization
 Server MUST use the source IP address of the RADIUS UDP packet to
 decide which shared secret to use, so that requests can be
 proxied.

 Attributes

 In CoA-Request and Disconnect-Request packets, all attributes MUST
 be treated as mandatory. If one or more authorization changes
 specified in a CoA-Request cannot be carried out, the NAS MUST
 send a CoA-NAK. A NAS MUST respond to a CoA-Request containing
 one or more unsupported attributes or Attribute values with a
 CoA-NAK; an Error-Cause Attribute with value 401 (Unsupported
 Attribute) or 407 (Invalid Attribute Value) MAY be included. A
 NAS MUST respond to a Disconnect-Request containing one or more
 unsupported attributes or Attribute values with a Disconnect-NAK;
 an Error-Cause Attribute with value 401 (Unsupported Attribute) or
 407 (Invalid Attribute Value) MAY be included.

 State changes resulting from a CoA-Request MUST be atomic: if the
 CoA-Request is successful for all matching sessions, the NAS MUST
 send a CoA-ACK in reply, and all requested authorization changes
 MUST be made. If the CoA-Request is unsuccessful for any matching
 sessions, the NAS MUST send a CoA-NAK in reply, and the requested
 authorization changes MUST NOT be made for any of the matching
 sessions. Similarly, a state change MUST NOT occur as a result of
 a Disconnect-Request that is unsuccessful with respect to any of
 the matching sessions; a NAS MUST send a Disconnect-NAK in reply
 if any of the matching sessions cannot be successfully terminated.
 A NAS that does not support dynamic authorization changes applying
 to multiple sessions MUST send a CoA-NAK or Disconnect-NAK in
 reply; an Error-Cause Attribute with value 508 (Multiple Session
 Selection Unsupported) SHOULD be included.

 Within this specification, attributes can be used for
 identification, authorization, or other purposes. RADIUS
 Attribute specifications created after publication of this
 document SHOULD state whether an attribute can be included in CoA
 or Disconnect messages, and if so, which messages it can be
 included in and whether it serves as an identification or
 authorization attribute.

 Even if a NAS implements an attribute for use with RADIUS
 authentication and accounting, it is possible that it will not
 support inclusion of that attribute within CoA-Request and
 Disconnect-Request packets, given the difference in attribute
 semantics. This is true even for attributes specified as
 allowable within Access-Accept packets (such as those defined
 within [RFC2865], [RFC2868], [RFC2869], [RFC3162], [RFC3579],
 [RFC4372], [RFC4675], [RFC4818], and [RFC4849]).

3. Attributes

 In Disconnect-Request and CoA-Request packets, certain attributes are
 used to uniquely identify the NAS as well as user session(s) on the
 NAS. The combination of NAS and session identification attributes
 included in a CoA-Request or Disconnect-Request packet MUST match at
 least one session in order for a Request to be successful; otherwise
 a Disconnect-NAK or CoA-NAK MUST be sent. If all NAS identification
 attributes match, and more than one session matches all of the
 session identification attributes, then a CoA-Request or Disconnect-
 Request MUST apply to all matching sessions.

 Identification attributes include NAS and session identification
 attributes, as described below.

 NAS identification attributes

Attribute # Reference Description
‑‑‑‑‑‑‑‑‑ ‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑
NAS‑IP‑Address 4 [RFC2865] The IPv4 address of the NAS.
NAS‑Identifier 32 [RFC2865] String identifying the NAS.
NAS‑IPv6‑Address 95 [RFC3162] The IPv6 address of the NAS.

 Session identification attributes

Attribute # Reference Description
‑‑‑‑‑‑‑‑‑ ‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑
User‑Name 1 [RFC2865] The name of the user
 associated with one or
 more sessions.
NAS‑Port 5 [RFC2865] The port on which a
 session is terminated.
Framed‑IP‑Address 8 [RFC2865] The IPv4 address associated
 with a session.
Vendor‑Specific 26 [RFC2865] One or more vendor‑specific
 identification attributes.
Called‑Station‑Id 30 [RFC2865] The link address to which
 a session is connected.
Calling‑Station‑Id 31 [RFC2865] The link address from which
 one or more sessions are
 connected.
Acct‑Session‑Id 44 [RFC2866] The identifier uniquely
 identifying a session
 on the NAS.

Acct‑Multi‑Session‑Id 50 [RFC2866] The identifier uniquely
 identifying related sessions.
NAS‑Port‑Id 87 [RFC2869] String identifying the port
 where a session is.
Chargeable‑User‑ 89 [RFC4372] The CUI associated with one
Identity or more sessions. Needed
 where a privacy Network
 Access Identifier (NAI) is
 used, since in this case the
 User‑Name (e.g., "anonymous")
 may not identify sessions
 belonging to a given user.
Framed‑Interface‑Id 96 [RFC3162] The IPv6 Interface Identifier
 associated with a session,
 always sent with
 Framed‑IPv6‑Prefix.
Framed‑IPv6‑Prefix 97 [RFC3162] The IPv6 prefix associated
 with a session, always sent
 with Framed‑Interface‑Id.

 To address security concerns described in Section 6.1, either the
 User-Name or Chargeable-User-Identity attribute SHOULD be present in
 Disconnect-Request and CoA-Request packets.

 Where a Diameter client utilizes the same Session-Id for both
 authorization and accounting, inclusion of an Acct-Session-Id
 Attribute in a Disconnect-Request or CoA-Request can assist with
 Diameter/RADIUS translation, since Diameter RAR and ASR commands
 include a Session-Id AVP. An Acct-Session-Id Attribute SHOULD be
 included in Disconnect-Request and CoA-Request packets.

 A NAS implementing this specification SHOULD send an Acct-Session-Id
 or Acct-Multi-Session-Id Attribute within an Access-Request. Where
 an Acct-Session-Id or Acct-Multi-Session-Id Attribute is not included
 within an Access-Request, the Dynamic Authorization Client will not
 know the Acct-Session-Id or Acct-Multi-Session-Id of the session it
 is attempting to target, unless it also has access to the accounting
 data for that session.

 Where an Acct-Session-Id or Acct-Multi-Session-Id Attribute is not
 present in a CoA-Request or Disconnect-Request, it is possible that
 the User-Name or Chargeable-User-Identity attributes will not be
 sufficient to uniquely identify a single session (e.g., if the same
 user has multiple sessions on the NAS, or if the privacy NAI is
 used). In this case, if it is desired to identify a single session,
 session identification MAY be performed by using one or more of the
 Framed-IP-Address, Framed-IPv6-Prefix/Framed-Interface-Id, Called-
 Station-Id, Calling-Station-Id, NAS-Port, and NAS-Port-Id attributes.
 To assist RADIUS proxies in routing Request packets to their
 destination, one or more of the NAS-IP-Address or NAS-IPv6-Address
 attributes SHOULD be present in CoA-Request and Disconnect-Request
 packets; the NAS-Identifier Attribute MAY be present. Impersonation
 issues with NAS Identification attributes are discussed in [RFC3579],
 Section 4.3.7.

 A Disconnect-Request MUST contain only NAS and session identification
 attributes. If other attributes are included in a Disconnect-
 Request, implementations MUST send a Disconnect-NAK; an Error-Cause
 Attribute with value "Unsupported Attribute" MAY be included.

 The DAC may require access to data from RADIUS authentication or
 accounting packets. It uses this data to compose compliant CoA-
 Request or Disconnect-Request packets. For example, as described in
 Section 3.3, a CoA-Request packet containing a Service-Type Attribute
 with a value of "Authorize Only" is required to contain a State
 Attribute. The NAS will subsequently transmit this attribute to the
 RADIUS server in an Access-Request. In order for the DAC to include
 a State Attribute that the RADIUS server will subsequently accept,
 some coordination between the two parties may be required.

 This coordination can be achieved in multiple ways. The DAC may be
 co-located with a RADIUS server, in which case it is presumed to have
 access to the necessary data. The RADIUS server may also store that
 information in a common database. The DAC can then be separated from
 the RADIUS server, so long as it has access to that common database.

 Where the DAC is not co-located with a RADIUS server, and does not
 have access to a common database, the DAC SHOULD send CoA-Request or
 Disconnect-Request packets to a RADIUS server acting as a proxy,
 rather than sending them directly to the NAS.

 A RADIUS server receiving a CoA-Request or Disconnect-Request packet
 from the DAC MAY then add or update attributes (such as adding NAS or
 session identification attributes or appending a State Attribute),
 prior to forwarding the packet. Having CoA/Disconnect-Requests
 forwarded by a RADIUS server can also enable upstream RADIUS proxies
 to perform a Reverse Path Forwarding (RPF) check (see Section 6.1).

3.1. Proxy State

 If there are any Proxy-State attributes in a Disconnect-Request or
 CoA-Request received from the Dynamic Authorization Client, the
 Dynamic Authorization Server MUST include those Proxy-State
 attributes in its response to the Dynamic Authorization Client.

 A forwarding proxy or NAS MUST NOT modify existing Proxy-State,
 State, or Class attributes present in the packet. The forwarding
 proxy or NAS MUST treat any Proxy-State attributes already in the
 packet as opaque data. Its operation MUST NOT depend on the content
 of Proxy-State attributes added by previous proxies. The forwarding
 proxy MUST NOT modify any other Proxy-State attributes that were in
 the packet; it may choose not to forward them, but it MUST NOT change
 their contents. If the forwarding proxy omits the Proxy-State
 attributes in the request, it MUST attach them to the response before
 sending it.

 When the proxy forwards a Disconnect-Request or CoA-Request, it MAY
 add a Proxy-State Attribute, but it MUST NOT add more than one. If a
 Proxy-State Attribute is added to a packet when forwarding the
 packet, the Proxy-State Attribute MUST be added after any existing
 Proxy-State attributes. The forwarding proxy MUST NOT change the
 order of any attributes of the same type, including Proxy-State.
 Other attributes can be placed before, after, or even between the
 Proxy-State attributes.

 When the proxy receives a response to a CoA-Request or Disconnect-
 Request, it MUST remove its own Proxy-State Attribute (the last
 Proxy-State in the packet) before forwarding the response. Since
 Disconnect and CoA responses are authenticated on the entire packet
 contents, the stripping of the Proxy-State Attribute invalidates the
 integrity check, so the proxy MUST recompute it.

3.2. Authorize Only

 To simplify translation between RADIUS and Diameter, Dynamic
 Authorization Clients can include a Service-Type Attribute with value
 "Authorize Only" within a CoA-Request; see Section 4 for details on
 Diameter considerations. Support for a CoA-Request including a
 Service-Type Attribute with value "Authorize Only" is OPTIONAL on the
 NAS and Dynamic Authorization Client. A Service-Type Attribute MUST
 NOT be included within a Disconnect-Request.

 A NAS MUST respond to a CoA-Request including a Service-Type
 Attribute with value "Authorize Only" with a CoA-NAK; a CoA-ACK MUST
 NOT be sent. If the NAS does not support a Service-Type value of
 "Authorize Only", then it MUST respond with a CoA-NAK; an Error-Cause
 Attribute with a value of 405 (Unsupported Service) SHOULD be
 included.

 A CoA-Request containing a Service-Type Attribute with value
 "Authorize Only" MUST in addition contain only NAS or session
 identification attributes, as well as a State Attribute. If other
 attributes are included in such a CoA-Request, a CoA-NAK MUST be
 sent; an Error-Cause Attribute with value 401 (Unsupported Attribute)
 SHOULD be included.

 If a CoA-Request packet including a Service-Type value of "Authorize
 Only" is successfully processed, the NAS MUST respond with a CoA-NAK
 containing a Service-Type Attribute with value "Authorize Only", and
 an Error-Cause Attribute with value 507 (Request Initiated). The NAS
 then MUST send an Access-Request to the RADIUS server including a
 Service-Type Attribute with value "Authorize Only", along with a
 State Attribute. This Access-Request SHOULD contain the NAS
 identification attributes from the CoA-Request, as well as the
 session identification attributes from the CoA-Request permitted in
 an Access-Request; it also MAY contain other attributes permitted in
 an Access-Request.

 As noted in [RFC2869], Section 5.19, a Message-Authenticator
 attribute SHOULD be included in an Access-Request that does not
 contain a User-Password, CHAP-Password, ARAP-Password, or EAP-Message
 Attribute. The RADIUS server then will respond to the Access-Request
 with an Access-Accept to (re-)authorize the session or an Access-
 Reject to refuse to (re-)authorize it.

3.3. State

 The State Attribute is available to be sent by the Dynamic
 Authorization Client to the NAS in a CoA-Request packet and MUST be
 sent unmodified from the NAS to the Dynamic Authorization Client in a
 subsequent ACK or NAK packet.

 [RFC2865], Section 5.44 states:

 An Access-Request MUST contain either a User-Password or a
 CHAP-Password or State. An Access-Request MUST NOT contain both a
 User-Password and a CHAP-Password. If future extensions allow
 other kinds of authentication information to be conveyed, the
 attribute for that can be used in an Access-Request instead of
 User-Password or CHAP-Password.

 In order to satisfy the requirements of [RFC2865], Section 5.44, an
 Access-Request with Service-Type Attribute with value "Authorize
 Only" MUST contain a State Attribute.

 In order to provide a State Attribute to the NAS, a Dynamic
 Authorization Client sending a CoA-Request with a Service-Type
 Attribute with a value of "Authorize Only" MUST include a State
 Attribute, and the NAS MUST send the State Attribute unmodified to
 the RADIUS server in the resulting Access-Request, if any. A NAS
 receiving a CoA-Request containing a Service-Type Attribute with a
 value of "Authorize Only" but lacking a State Attribute MUST send a
 CoA-NAK and SHOULD include an Error-Cause Attribute with a value of
 402 (Missing Attribute).

 The State Attribute is also available to be sent by the Dynamic
 Authorization Client to the NAS in a CoA-Request that also includes a
 Termination-Action Attribute with the value of RADIUS-Request. If
 the NAS performs the Termination-Action by sending a new Access-
 Request upon termination of the current session, it MUST include the
 State Attribute unchanged in that Access-Request. In either usage,
 the Dynamic Authorization Server MUST NOT interpret the Attribute
 locally. A CoA-Request packet MUST have only zero or one State
 Attribute. Usage of the State Attribute is implementation dependent.

3.4. Message-Authenticator

 The Message-Authenticator Attribute MAY be used to authenticate and
 integrity-protect CoA-Request, CoA-ACK, CoA-NAK, Disconnect-Request,
 Disconnect-ACK, and Disconnect-NAK packets in order to prevent
 spoofing.

 A Dynamic Authorization Server receiving a CoA-Request or
 Disconnect-Request with a Message-Authenticator Attribute present
 MUST calculate the correct value of the Message-Authenticator and
 silently discard the packet if it does not match the value sent. A
 Dynamic Authorization Client receiving a CoA/Disconnect-ACK or
 CoA/Disconnect-NAK with a Message-Authenticator Attribute present
 MUST calculate the correct value of the Message-Authenticator and
 silently discard the packet if it does not match the value sent.

 When a Message-Authenticator Attribute is included within a CoA-
 Request or Disconnect-Request, it is calculated as follows:

 Message-Authenticator = HMAC-MD5 (Type, Identifier, Length,
 Request Authenticator, Attributes)

 When the HMAC-MD5 message integrity check is calculated the
 Request Authenticator field and Message-Authenticator Attribute
 MUST each be considered to be sixteen octets of zero. The
 Message-Authenticator Attribute is calculated and inserted in the
 packet before the Request Authenticator is calculated.

 When a Message-Authenticator Attribute is included within a CoA-
 ACK, CoA-NAK, Disconnect-ACK, or Disconnect-NAK, it is calculated
 as follows:

 Message-Authenticator = HMAC-MD5 (Type, Identifier, Length,
 Request Authenticator, Attributes)

 When the HMAC-MD5 message integrity check is calculated, the
 Message-Authenticator Attribute MUST be considered to be sixteen
 octets of zero. The Request Authenticator is taken from the
 corresponding CoA/Disconnect-Request. The Message-Authenticator
 is calculated and inserted in the packet before the Response
 Authenticator is calculated.

3.5. Error-Cause

 Description

 It is possible that a Dynamic Authorization Server cannot honor
 Disconnect-Request or CoA-Request packets for some reason. The
 Error-Cause Attribute provides more detail on the cause of the
 problem. It MAY be included within CoA-NAK and Disconnect-NAK
 packets.

 A summary of the Error-Cause Attribute format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 101 for Error-Cause

 Length

 6

 Value

 The Value field is four octets, containing an integer specifying
 the cause of the error. Values 0-199 and 300-399 are reserved.
 Values 200-299 represent successful completion, so that these
 values may only be sent within CoA-ACK or Disconnect-ACK packets
 and MUST NOT be sent within a CoA-NAK or Disconnect-NAK packet.
 Values 400-499 represent fatal errors committed by the Dynamic
 Authorization Client, so that they MAY be sent within CoA-NAK or
 Disconnect-NAK packets, and MUST NOT be sent within CoA-ACK or
 Disconnect-ACK packets. Values 500-599 represent fatal errors
 occurring on a Dynamic Authorization Server, so that they MAY be
 sent within CoA-NAK and Disconnect-NAK packets, and MUST NOT be
 sent within CoA-ACK or Disconnect-ACK packets. Error-Cause values
 SHOULD be logged by the Dynamic Authorization Client. Error-Code
 values (expressed in decimal) include:

 # Value
‑‑‑ ‑‑‑‑‑
201 Residual Session Context Removed
202 Invalid EAP Packet (Ignored)
401 Unsupported Attribute
402 Missing Attribute
403 NAS Identification Mismatch
404 Invalid Request
405 Unsupported Service
406 Unsupported Extension
407 Invalid Attribute Value
501 Administratively Prohibited
502 Request Not Routable (Proxy)
503 Session Context Not Found
504 Session Context Not Removable
505 Other Proxy Processing Error
506 Resources Unavailable
507 Request Initiated
508 Multiple Session Selection Unsupported

 "Residual Session Context Removed" is sent in response to a
 Disconnect-Request if one or more user sessions are no longer
 active, but residual session context was found and successfully
 removed. This value is only sent within a Disconnect-ACK and MUST
 NOT be sent within a CoA-ACK, Disconnect-NAK, or CoA-NAK.

 "Invalid EAP Packet (Ignored)" is a non-fatal error that MUST NOT
 be sent by implementations of this specification.

 "Unsupported Attribute" is a fatal error sent if a Request
 contains an attribute (such as a Vendor-Specific or EAP-Message
 Attribute) that is not supported.

 "Missing Attribute" is a fatal error sent if critical attributes
 (such as NAS or session identification attributes) are missing
 from a Request.

 "NAS Identification Mismatch" is a fatal error sent if one or more
 NAS identification attributes (see Section 3) do not match the
 identity of the NAS receiving the Request.

 "Invalid Request" is a fatal error sent if some other aspect of
 the Request is invalid, such as if one or more attributes (such as
 EAP-Message Attribute(s)) are not formatted properly.

 "Unsupported Service" is a fatal error sent if a Service-Type
 Attribute included with the Request is sent with an invalid or
 unsupported value. This error cannot be sent in response to a
 Disconnect-Request.

 "Unsupported Extension" is a fatal error sent due to lack of
 support for an extension such as Disconnect and/or CoA packets.
 This will typically be sent by a proxy receiving an ICMP port
 unreachable message after attempting to forward a CoA-Request or
 Disconnect-Request to the NAS.

 "Invalid Attribute Value" is a fatal error sent if a CoA-Request
 or Disconnect-Request contains an attribute with an unsupported
 value.

 "Administratively Prohibited" is a fatal error sent if the NAS is
 configured to prohibit honoring of CoA-Request or Disconnect-
 Request packets for the specified session.

 "Request Not Routable" is a fatal error that MAY be sent by a
 proxy and MUST NOT be sent by a NAS. It indicates that the proxy
 was unable to determine how to route a CoA-Request or Disconnect-
 Request to the NAS. For example, this can occur if the required
 entries are not present in the proxy's realm routing table.

 "Session Context Not Found" is a fatal error sent if the session
 context identified in the CoA-Request or Disconnect-Request does
 not exist on the NAS.

 "Session Context Not Removable" is a fatal error sent in response
 to a Disconnect-Request if the NAS was able to locate the session
 context, but could not remove it for some reason. It MUST NOT be
 sent within a CoA-ACK, CoA-NAK, or Disconnect-ACK, only within a
 Disconnect-NAK.

 "Other Proxy Processing Error" is a fatal error sent in response
 to a CoA or Disconnect-Request that could not be processed by a
 proxy, for reasons other than routing.

 "Resources Unavailable" is a fatal error sent when a CoA or
 Disconnect-Request could not be honored due to lack of available
 NAS resources (memory, non-volatile storage, etc.).

 "Request Initiated" is a fatal error sent by a NAS in response to
 a CoA-Request including a Service-Type Attribute with a value of
 "Authorize Only". It indicates that the CoA-Request has not been
 honored, but that the NAS is sending one or more RADIUS Access-
 Requests including a Service-Type Attribute with value "Authorize
 Only" to the RADIUS server.

 "Multiple Session Selection Unsupported" is a fatal error sent by
 a NAS in response to a CoA-Request or Disconnect-Request whose
 session identification attributes match multiple sessions, where
 the NAS does not support Requests applying to multiple sessions.

3.6. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which packets, and in what quantity.

 Change-of-Authorization Messages

Request ACK NAK # Attribute
0‑1 0 0 1 User‑Name (Note 1)
0‑1 0 0 4 NAS‑IP‑Address (Note 1)
0‑1 0 0 5 NAS‑Port (Note 1)
0‑1 0 0‑1 6 Service‑Type
0‑1 0 0 7 Framed‑Protocol (Note 3)
0‑1 0 0 8 Framed‑IP‑Address (Notes 1, 6)
0‑1 0 0 9 Framed‑IP‑Netmask (Note 3)
0‑1 0 0 10 Framed‑Routing (Note 3)
0+ 0 0 11 Filter‑ID (Note 3)
0‑1 0 0 12 Framed‑MTU (Note 3)
0+ 0 0 13 Framed‑Compression (Note 3)
0+ 0 0 14 Login‑IP‑Host (Note 3)
0‑1 0 0 15 Login‑Service (Note 3)
0‑1 0 0 16 Login‑TCP‑Port (Note 3)
0+ 0 0 18 Reply‑Message (Note 2)
0‑1 0 0 19 Callback‑Number (Note 3)
0‑1 0 0 20 Callback‑Id (Note 3)
0+ 0 0 22 Framed‑Route (Note 3)
0‑1 0 0 23 Framed‑IPX‑Network (Note 3)
0‑1 0‑1 0‑1 24 State
0+ 0 0 25 Class (Note 3)
0+ 0 0 26 Vendor‑Specific (Note 7)
0‑1 0 0 27 Session‑Timeout (Note 3)
0‑1 0 0 28 Idle‑Timeout (Note 3)
0‑1 0 0 29 Termination‑Action (Note 3)
Request ACK NAK # Attribute

Request ACK NAK # Attribute
0‑1 0 0 30 Called‑Station‑Id (Note 1)
0‑1 0 0 31 Calling‑Station‑Id (Note 1)
0‑1 0 0 32 NAS‑Identifier (Note 1)
0+ 0+ 0+ 33 Proxy‑State
0‑1 0 0 34 Login‑LAT‑Service (Note 3)
0‑1 0 0 35 Login‑LAT‑Node (Note 3)
0‑1 0 0 36 Login‑LAT‑Group (Note 3)
0‑1 0 0 37 Framed‑AppleTalk‑Link (Note 3)
0+ 0 0 38 Framed‑AppleTalk‑Network (Note 3)
0‑1 0 0 39 Framed‑AppleTalk‑Zone (Note 3)
0‑1 0 0 44 Acct‑Session‑Id (Note 1)
0‑1 0 0 50 Acct‑Multi‑Session‑Id (Note 1)
0‑1 0‑1 0‑1 55 Event‑Timestamp
0+ 0 0 56 Egress‑VLANID (Note 3)
0‑1 0 0 57 Ingress‑Filters (Note 3)
0+ 0 0 58 Egress‑VLAN‑Name (Note 3)
0‑1 0 0 59 User‑Priority‑Table (Note 3)
0‑1 0 0 61 NAS‑Port‑Type (Note 3)
0‑1 0 0 62 Port‑Limit (Note 3)
0‑1 0 0 63 Login‑LAT‑Port (Note 3)
0+ 0 0 64 Tunnel‑Type (Note 5)
0+ 0 0 65 Tunnel‑Medium‑Type (Note 5)
0+ 0 0 66 Tunnel‑Client‑Endpoint (Note 5)
0+ 0 0 67 Tunnel‑Server‑Endpoint (Note 5)
0+ 0 0 69 Tunnel‑Password (Note 5)
0‑1 0 0 71 ARAP‑Features (Note 3)
0‑1 0 0 72 ARAP‑Zone‑Access (Note 3)
0+ 0 0 78 Configuration‑Token (Note 3)
0+ 0‑1 0 79 EAP‑Message (Note 2)
0‑1 0‑1 0‑1 80 Message‑Authenticator
0+ 0 0 81 Tunnel‑Private‑Group‑ID (Note 5)
0+ 0 0 82 Tunnel‑Assignment‑ID (Note 5)
0+ 0 0 83 Tunnel‑Preference (Note 5)
0‑1 0 0 85 Acct‑Interim‑Interval (Note 3)
0‑1 0 0 87 NAS‑Port‑Id (Note 1)
0‑1 0 0 88 Framed‑Pool (Note 3)
0‑1 0 0 89 Chargeable‑User‑Identity (Note 1)
0+ 0 0 90 Tunnel‑Client‑Auth‑ID (Note 5)
0+ 0 0 91 Tunnel‑Server‑Auth‑ID (Note 5)
0‑1 0 0 92 NAS‑Filter‑Rule (Note 3)
0 0 0 94 Originating‑Line‑Info
0‑1 0 0 95 NAS‑IPv6‑Address (Note 1)
0‑1 0 0 96 Framed‑Interface‑Id (Notes 1, 6)
0+ 0 0 97 Framed‑IPv6‑Prefix (Notes 1, 6)
0+ 0 0 98 Login‑IPv6‑Host (Note 3)
0+ 0 0 99 Framed‑IPv6‑Route (Note 3)
Request ACK NAK # Attribute

Request ACK NAK # Attribute
0‑1 0 0 100 Framed‑IPv6‑Pool (Note 3)
0 0 0+ 101 Error‑Cause
0+ 0 0 123 Delegated‑IPv6‑Prefix (Note 3)
Request ACK NAK # Attribute

 Disconnect Messages

Request ACK NAK # Attribute
0‑1 0 0 1 User‑Name (Note 1)
0‑1 0 0 4 NAS‑IP‑Address (Note 1)
0‑1 0 0 5 NAS‑Port (Note 1)
0 0 0 6 Service‑Type
0 0 0 8 Framed‑IP‑Address (Note 1)
0+ 0 0 18 Reply‑Message (Note 2)
0 0 0 24 State
0+ 0 0 25 Class (Note 4)
0+ 0 0 26 Vendor‑Specific (Note 7)
0‑1 0 0 30 Called‑Station‑Id (Note 1)
0‑1 0 0 31 Calling‑Station‑Id (Note 1)
0‑1 0 0 32 NAS‑Identifier (Note 1)
0+ 0+ 0+ 33 Proxy‑State
0‑1 0 0 44 Acct‑Session‑Id (Note 1)
0‑1 0‑1 0 49 Acct‑Terminate‑Cause
0‑1 0 0 50 Acct‑Multi‑Session‑Id (Note 1)
0‑1 0‑1 0‑1 55 Event‑Timestamp
0 0 0 61 NAS‑Port‑Type
0+ 0‑1 0 79 EAP‑Message (Note 2)
0‑1 0‑1 0‑1 80 Message‑Authenticator
0‑1 0 0 87 NAS‑Port‑Id (Note 1)
0‑1 0 0 89 Chargeable‑User‑Identity (Note 1)
0‑1 0 0 95 NAS‑IPv6‑Address (Note 1)
0 0 0 96 Framed‑Interface‑Id (Note 1)
0 0 0 97 Framed‑IPv6‑Prefix (Note 1)
0 0 0+ 101 Error‑Cause
Request ACK NAK # Attribute

 The following defines the meaning of the above table entries:

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in
 packet.
0‑1 Zero or one instance of this attribute MAY be present in packet.
1 Exactly one instance of this attribute MUST be present in
 packet.

 (Note 1) Where NAS or session identification attributes are included
 in Disconnect-Request or CoA-Request packets, they are used for
 identification purposes only. These attributes MUST NOT be used for
 purposes other than identification (e.g., within CoA-Request packets
 to request authorization changes).

 (Note 2) The Reply-Message Attribute is used to present a displayable
 message to the user. The message is only displayed as a result of a
 successful Disconnect-Request or CoA-Request (where a Disconnect-ACK
 or CoA-ACK is subsequently sent). Where Extension Authentication
 Protocol (EAP) is used for authentication, an EAP-
 Message/Notification-Request Attribute is sent instead, and
 Disconnect-ACK or CoA-ACK packets contain an EAP-
 Message/Notification-Response Attribute.

 (Note 3) When included within a CoA-Request, these attributes
 represent an authorization change request. When one of these
 attributes is omitted from a CoA-Request, the NAS assumes that the
 attribute value is to remain unchanged. Attributes included in a
 CoA-Request replace all existing values of the same attribute(s).

 (Note 4) When included within a successful Disconnect-Request (where
 a Disconnect-ACK is subsequently sent), the Class Attribute SHOULD be
 sent unmodified by the NAS to the RADIUS accounting server in the
 Accounting Stop packet. If the Disconnect-Request is unsuccessful,
 then the Class Attribute is not processed.

 (Note 5) When included within a CoA-Request, these attributes
 represent an authorization change request. Where tunnel attributes
 are included within a successful CoA-Request, all existing tunnel
 attributes are removed and replaced by the new attribute(s).

 (Note 6) Since the Framed-IP-Address, Framed-IPv6-Prefix, and
 Framed-Interface-Id attributes are used for session identification,
 renumbering cannot be accomplished by including values of these
 attributes within a CoA-Request. Instead, a CoA-Request including a
 Service-Type Attribute with a value of "Authorize Only" is sent; new
 values can be supplied in an Access-Accept sent in response to the
 ensuing Access-Request. Note that renumbering will not be possible
 in all situations. For example, in order to change an IP address,
 IPCP or IPv6CP re-negotiation could be required, which is not
 supported by all PPP implementations.

 (Note 7) Within Disconnect-Request packets, Vendor-Specific
 Attributes (VSAs) MAY be used for session identification. Within
 CoA-Request packets, VSAs MAY be used for either session
 identification or authorization change. However, the same Attribute
 MUST NOT be used for both purposes simultaneously.

4. Diameter Considerations

Due to differences in handling change‑of‑authorization requests in
RADIUS and Diameter, it may be difficult or impossible for a
Diameter/RADIUS gateway to successfully translate a Diameter
Re‑Auth‑Request (RAR) to a CoA‑Request and vice versa. For example,
since a CoA‑Request only initiates an authorization change but does
not initiate re‑authentication, a RAR command containing a
Re‑Auth‑Request‑Type AVP with value "AUTHORIZE_AUTHENTICATE" cannot
be directly translated to a CoA‑Request. A Diameter/RADIUS gateway
receiving a CoA‑Request containing authorization changes will need to
translate this into two Diameter exchanges. First, the
Diameter/RADIUS gateway will issue a RAR command including a
Session‑Id AVP and a Re‑Auth‑Request‑Type AVP with value "AUTHORIZE
ONLY". Then the Diameter/RADIUS gateway will respond to the ensuing
access request with a response including the authorization attributes
gleaned from the CoA‑Request. To enable translation, the CoA‑Request
SHOULD include a Acct‑Session‑Id Attribute. If the Diameter client
uses the same Session‑Id for both authorization and accounting, then
the Diameter/RADIUS gateway can copy the contents of the Acct‑
Session‑Id Attribute into the Session‑Id AVP; otherwise, it will
need to map the Acct‑Session‑Id value to an equivalent Session‑Id for
use within a RAR command.

 Where an Acct-Session-Id Attribute is not present in a CoA-Request or
 Disconnect-Request, a Diameter/RADIUS gateway will either need to
 determine the appropriate Acct-Session-Id or, if it cannot do so, it
 can send a CoA-NAK or Disconnect-NAK in reply, possibly including an
 Error-Cause Attribute with a value of 508 (Multiple Session Selection
 Unsupported).

 To simplify translation between RADIUS and Diameter, Dynamic
 Authorization Clients can include a Service-Type Attribute with value
 "Authorize Only" within a CoA-Request, as described in Section 3.2.
 A Diameter/RADIUS gateway receiving a CoA-Request containing a
 Service-Type Attribute with a value "Authorize Only" translates this
 to a RAR with Re-Auth-Request-Type AVP with value "AUTHORIZE ONLY".
 The received RAA is then translated to a CoA-NAK with a Service-Type
 Attribute with value "Authorize Only". If the Result-Code AVP in the
 RAA has a value in the success category, then an Error-Cause
 Attribute with value "Request Initiated" is included in the CoA-NAK.
 If the Result-Code AVP in the RAA has a value indicating a Protocol
 Error or a Transient or Permanent Failure, then an alternate Error-
 Cause Attribute is returned as suggested below.

 Within Diameter, a server can request that a session be aborted by
 sending an Abort-Session-Request (ASR), identifying the session to be
 terminated using Session-ID and User-Name AVPs. The ASR command is
 translated to a Disconnect-Request containing Acct-Session-Id and
 User-Name attributes. If the Diameter client utilizes the same
 Session-Id in both authorization and accounting, then the value of
 the Session-ID AVP may be placed in the Acct-Session-Id Attribute;
 otherwise the value of the Session-ID AVP will need to be mapped to
 an appropriate Acct-Session-Id Attribute. To enable translation of a
 Disconnect-Request to an ASR, an Acct-Session-Id Attribute SHOULD be
 present.

 If the Diameter client utilizes the same Session-Id in both
 authorization and accounting, then the value of the Acct-Session-Id
 Attribute may be placed into the Session-ID AVP within the ASR;
 otherwise the value of the Acct-Session-Id Attribute will need to be
 mapped to an appropriate Session-ID AVP.

 An Abort-Session-Answer (ASA) command is sent in response to an ASR
 in order to indicate the disposition of the request. A
 Diameter/RADIUS gateway receiving a Disconnect-ACK translates this to
 an ASA command with a Result-Code AVP of "DIAMETER_SUCCESS". A
 Disconnect-NAK received from the NAS is translated to an ASA command
 with a Result-Code AVP that depends on the value of the Error-Cause
 Attribute. Suggested translations between Error-Cause Attribute
 values and Result-Code AVP values are included below:

 # Error‑Cause Attribute Value Result‑Code AVP
‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
201 Residual Session Context DIAMETER_SUCCESS
 Removed
202 Invalid EAP Packet DIAMETER_LIMITED_SUCCESS
 (Ignored)
401 Unsupported Attribute DIAMETER_AVP_UNSUPPORTED
402 Missing Attribute DIAMETER_MISSING_AVP
403 NAS Identification DIAMETER_REALM_NOT_SERVED
 Mismatch
404 Invalid Request DIAMETER_UNABLE_TO_COMPLY
405 Unsupported Service DIAMETER_COMMAND_UNSUPPORTED
406 Unsupported Extension DIAMETER_APPLICATION_UNSUPPORTED
407 Invalid Attribute Value DIAMETER_INVALID_AVP_VALUE
501 Administratively DIAMETER_AUTHORIZATION_REJECTED
 Prohibited
502 Request Not Routable (Proxy) DIAMETER_UNABLE_TO_DELIVER
503 Session Context Not Found DIAMETER_UNKNOWN_SESSION_ID
504 Session Context Not DIAMETER_AUTHORIZATION_REJECTED
 Removable
505 Other Proxy Processing DIAMETER_UNABLE_TO_COMPLY
 Error
506 Resources Unavailable DIAMETER_RESOURCES_EXCEEDED
507 Request Initiated DIAMETER_SUCCESS

 Since both the ASR/ASA and Disconnect-Request/Disconnect-
 NAK/Disconnect-ACK exchanges involve just a request and response,
 inclusion of an "Authorize Only" Service-Type within a Disconnect-
 Request is not needed to assist in Diameter/RADIUS translation, and
 may make translation more difficult. As a result, as noted in
 Section 3.2, the Service-Type Attribute MUST NOT be used within a
 Disconnect-Request.

5. IANA Considerations

 This document uses the RADIUS [RFC2865] namespace; see
 <http://www.iana.org/assignments/radius-types>. In addition to the
 allocations already made in [RFC3575] and [RFC3576], this
 specification allocates additional values of the Error-Cause
 Attribute (101):

 # Value
‑‑‑ ‑‑‑‑‑
407 Invalid Attribute Value
508 Multiple Session Selection Unsupported

6. Security Considerations

6.1. Authorization Issues

 Where a NAS is shared by multiple providers, it is undesirable for
 one provider to be able to send Disconnect-Requests or CoA-Requests
 affecting the sessions of another provider.

 A Dynamic Authorization Server MUST silently discard Disconnect-
 Request or CoA-Request packets from untrusted sources. In situations
 where the Dynamic Authorization Client is co-resident with a RADIUS
 authentication or accounting server, a proxy MAY perform a "reverse
 path forwarding" (RPF) check to verify that a Disconnect-Request or
 CoA-Request originates from an authorized Dynamic Authorization
 Client. In addition, it SHOULD be possible to explicitly authorize
 additional sources of Disconnect-Request or CoA-Request packets
 relating to certain classes of sessions. For example, a particular
 source can be explicitly authorized to send CoA-Request packets
 relating to users within a set of realms.

 To perform the RPF check, the Dynamic Authorization Server uses the
 session identification attributes included in Disconnect-Request or
 CoA-Request packets, in order to determine the RADIUS server(s) to
 which an equivalent Access-Request could be routed. If the source
 address of the Disconnect-Request or CoA-Request is within this set,
 then the CoA-Request or Disconnect-Request is forwarded; otherwise it
 MUST be silently discarded.

 Typically, the Dynamic Authorization Server will extract the realm
 from the Network Access Identifier [RFC4282] included within the
 User-Name or Chargeable-User-Identity Attribute, and determine the
 corresponding RADIUS servers in the realm routing tables. If the
 Dynamic Authorization Server maintains long-term session state, it
 MAY perform the authorization check based on the session
 identification attributes in the CoA-Request. The session
 identification attributes can be used to tie a session to a
 particular proxy or set of proxies, as with the NAI realm.

 Where no proxy is present, the RPF check can only be performed by the
 NAS if it maintains its own a realm routing table. If the NAS does
 not maintain a realm routing table (e.g., it selects forwarding
 proxies based on primary/secondary configuration and/or liveness
 checks), then an RPF check cannot be performed.

 Since authorization to send a Disconnect-Request or CoA-Request is
 determined based on the source address and the corresponding shared
 secret, the Dynamic Authorization Server SHOULD configure a different
 shared secret for each Dynamic Authorization Client.

6.2. IPsec Usage Guidelines

 In addition to security vulnerabilities unique to Disconnect or CoA
 packets, the protocol exchanges described in this document are
 susceptible to the same vulnerabilities as RADIUS [RFC2865]. It is
 RECOMMENDED that IPsec be employed to afford better security,
 utilizing the profile described in [RFC3579], Section 4.2.

 For Dynamic Authorization Servers implementing this specification,
 the IPsec policy would be "Require IPsec, from any to me, destination
 port UDP 3799". This causes the Dynamic Authorization Server to
 require use of IPsec. If some Dynamic Authorization Clients do not
 support IPsec, then a more granular policy will be required: "Require
 IPsec, from IPsec-Capable-DAC to me".

 For Dynamic Authorization Clients implementing this specification,
 the IPsec policy would be "Initiate IPsec, from me to any,
 destination port UDP 3799". This causes the Dynamic Authorization
 Client to initiate IPsec when sending Dynamic Authorization traffic
 to any Dynamic Authorization Server. If some Dynamic Authorization
 Servers contacted by the Dynamic Authorization Client do not support
 IPsec, then a more granular policy will be required, such as
 "Initiate IPsec, from me to IPsec-Capable-DAS, destination port UDP
 3799".

6.3. Replay Protection

 Where IPsec replay protection is not used, an Event-Timestamp (55)
 [RFC2869] Attribute SHOULD be included within CoA-Request and
 Disconnect-Request packets, and MAY be included within CoA-ACK, CoA-
 NAK, Disconnect-ACK, and Disconnect-NAK packets.

 When the Event-Timestamp Attribute is present, both the Dynamic
 Authorization Server and the Dynamic Authorization Client MUST check
 that the Event-Timestamp Attribute is current within an acceptable
 time window. If the Event-Timestamp Attribute is not current, then
 the packet MUST be silently discarded. This implies the need for
 loose time synchronization within the network, which can be achieved
 by a variety of means, including Simple Network Time Protocol (SNTP),
 as described in [RFC4330]. Implementations SHOULD be configurable to
 discard CoA-Request or Disconnect-Request packets not containing an
 Event-Timestamp Attribute.

 If the Event-Timestamp Attribute is included, it represents the time
 at which the original packet was sent, and therefore it SHOULD NOT be
 updated when the packet is retransmitted. If the Event-Timestamp
 Attribute is not updated, this implies that the Identifier is not
 changed in retransmitted packets. As a result, the ability to detect
 replay within the time window is dependent on support for duplicate
 detection within that same window. As noted in Section 2.3,
 duplicate detection is REQUIRED for Dynamic Authorization Servers
 implementing this specification.

 The time window used for duplicate detection MUST be the same as the
 window used to detect a stale Event-Timestamp Attribute. Since the
 RADIUS Identifier cannot be repeated within the selected time window,
 no more than 256 Requests can be accepted within the time window. As
 a result, the chosen time window will depend on the expected maximum
 volume of CoA/Disconnect-Requests, so that unnecessary discards can
 be avoided. A default time window of 300 seconds should be adequate
 in many circumstances.

7. Example Traces

 Disconnect Request with User-Name:

 0: xxxx xxxx xxxx xxxx xxxx 2801 001c 1b23 .B.....$.‑(....#
16: 624c 3543 ceba 55f1 be55 a714 ca5e 0108 bL5C..U..U...^..
32: 6d63 6869 6261

 Disconnect Request with Acct-Session-ID:

 0: xxxx xxxx xxxx xxxx xxxx 2801 001e ad0d .B..... ~.(.....
16: 8e53 55b6 bd02 a0cb ace6 4e38 77bd 2c0a .SU.......N8w.,.
32: 3930 3233 3435 3637 90234567

 Disconnect Request with Framed-IP-Address:

 0: xxxx xxxx xxxx xxxx xxxx 2801 001a 0bda .B....."2.(.....
16: 33fe 765b 05f0 fd9c c32a 2f6b 5182 0806 3.v[.....*/kQ...
32: 0a00 0203

8. References

8.1. Normative References

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Rubens, A., Simpson, W. and S. Willens,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC2869]
 Rigney, C., Willats W. and P. Calhoun, "RADIUS
 Extensions", RFC 2869, June 2000.

 [RFC3162]
 Aboba, B., Zorn, G. and D. Mitton, "RADIUS and IPv6", RFC
 3162, August 2001.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS", RFC 3575,
 July 2003.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS Support for Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC4282]
 Aboba, B., Beadles, M., Arkko, J. and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

8.2. Informative References

 [MD5Attack]
 Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes Vol.2 No.2, Summer 1996.

 [RFC2868]
 Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,
 M. and I. Goyret, "RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, June 2000.

 [RFC3539]
 Aboba, B. and J. Wood, "Authentication, Authorization
 and Accounting Transport Profile", RFC 3539, June 2003.

 [RFC3576]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 3576,
 July 2003.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G. and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September
 2003.

 [RFC4330]
 Mills, D., "Simple Network Time Protocol (SNTP) Version 4
 for IPv4, IPv6 and OSI", RFC 4330, January 2006.

 [RFC4372]
 Adrangi, F., Lior, A., Korhonen, J. and J. Loughney,
 "Chargeable User Identity", RFC 4372, January 2006.

 [RFC4675]
 Congdon, P., Sanchez, M. and B. Aboba, "RADIUS Attributes
 for Virtual LAN and Priority Support", RFC 4675,
 September 2006.

 [RFC4818]
 Salowey, J. and R. Droms, "RADIUS Delegated-IPv6-Prefix
 Attribute", RFC 4818, April 2007.

 [RFC4849]
 Congdon, P., Sanchez, M. and B. Aboba, "RADIUS Filter
 Rule Attribute", RFC 4849, April 2007.

9. Acknowledgments

 This protocol was first developed and distributed by Ascend
 Communications. Example code was distributed in their free server
 kit.

 The authors would like to acknowledge valuable suggestions and
 feedback from Avi Lior, Randy Bush, Steve Bellovin, Glen Zorn, Mark
 Jones, Claudio Lapidus, Anurag Batta, Kuntal Chowdhury, Tim Moore,
 Russ Housley, Joe Salowey, Alan DeKok, and David Nelson.

Appendix A. Changes from RFC 3576

 This Appendix lists the major changes between [RFC3576] and this
 document. Minor changes, including style, grammar, spelling, and
 editorial changes, are not mentioned here.

 o The term "Dynamic Authorization Client" is used instead of RADIUS
 server where it applies to the originator of CoA-Request and
 Disconnect-Request packets. The term "Dynamic Authorization Server"
 is used instead of NAS where it applies to the receiver of CoA-
 Request and Disconnect-Request packets. Definitions of these terms
 have been added (Section 1.3).

 o Added requirement for duplicate detection on the Dynamic
 Authorization Server (Section 2.3).

 o Clarified expected behavior when session identification attributes
 match more than one session (Sections 2.3, 3, 3.5, 4).

 o Added Chargeable-User-Identity as a session identification
 attribute. Removed NAS-Port-Type as a session identification
 attribute (Section 3).

 o Added recommendation that an Acct-Session-Id or Acct-Multi-
 Session-Id Attribute be included in an Access-Request (Section 3).

 o Added discussion of scenarios in which the "Dynamic Authorization
 Client" and RADIUS server are not co-located (Section 3).

 o Added details relating to handling of the Proxy-State Attribute
 (Section 3.1).

 o Added clarification that support for a Service-Type Attribute with
 value "Authorize Only" is optional on both the NAS and Dynamic
 Authorization Client (Section 3.2). Use of the Service-Type
 Attribute within a Disconnect-Request is prohibited (Sections 3.2,
 3.6).

 o Added requirement for inclusion of the State Attribute in CoA-
 Request packets including a Service-Type Attribute with a value of
 "Authorize Only" (Section 3.3).

 o Added clarification on the calculation of the Message-
 Authenticator Attribute (Section 3.4).

 o Additional Error-Cause Attribute values are allocated for Invalid
 Attribute Value (407) and Multiple Session Selection
 Identification (508) (Sections 3.5, 4).

 o Updated the CoA-Request Attribute Table to include Filter-Rule,
 Delegated-IPv6-Prefix, Egress-VLANID, Ingress-Filters, Egress-
 VLAN-Name, and User-Priority attributes (Section 3.6).

 o Added the Chargeable-User-Identity Attribute to both the CoA-
 Request and Disconnect-Request Attribute table (Section 3.6).

 o Use of Vendor-Specific Attributes (VSAs) for session
 identification and authorization change has been clarified
 (Section 3.6).

 o Added Note 6 on the use of the CoA-Request for renumbering, and
 Note 7 on the use of Vendor-Specific attributes (Section 3.6).

 o Added Diameter Considerations (Section 4).

 o Event-Timestamp Attribute should not be recalculated on
 retransmission. The implications for replay and duplicate
 detection are discussed (Section 6.3).

 o Operation of the Reverse Path Forwarding (RPF) check has been
 clarified. Use of the RPF check is optional rather than
 recommended by default (Section 6.1).

 o Text on impersonation (included in [RFC3579], Section 4.3.7) and
 IPsec operation (included in [RFC3579], Section 4.2) has been
 removed, and is now referenced.

Authors' Addresses

Murtaza Chiba
Cisco Systems, Inc.
170 West Tasman Dr.
San Jose CA, 95134

EMail: mchiba@cisco.com
Phone: +1 408 525 7198

Gopal Dommety
Cisco Systems, Inc.
170 West Tasman Dr.
San Jose, CA 95134

EMail: gdommety@cisco.com
Phone: +1 408 525 1404

Mark Eklund
Cisco Systems, Inc.
170 West Tasman Dr.
San Jose, CA 95134

EMail: meklund@cisco.com
Phone: +1 865 671 6255

David Mitton
RSA, Security Division of EMC
174 Middlesex Turnpike
Bedford, MA 01730

 EMail: david@mitton.com

Bernard Aboba
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

EMail: bernarda@microsoft.com
Phone: +1 425 706 6605
Fax: +1 425 936 7329

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

5607 - Remote Authentication Dial-In User Service (RADIUS) Authorization for Net

Index
Back 5
Prev
Next
Forward 5

Network Working Group

Request for Comments: 5607

Category: Standards Track

D. Nelson

Elbrys Networks, Inc.

G. Weber

Individual Contributor

July 2009

Remote Authentication Dial-In User Service (RADIUS) Authorization for Network Access Server (NAS) Management

Abstract

 This document specifies Remote Authentication Dial-In User Service
 (RADIUS) attributes for authorizing management access to a Network
 Access Server (NAS). Both local and remote management are supported,
 with granular access rights and management privileges. Specific
 provisions are made for remote management via Framed Management
 protocols and for management access over a secure transport protocol.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction

	2. Terminology

	3. Overview

	4. Domain of Applicability

	5. New Values for Existing RADIUS Attributes
	 5.1. Service-Type

	6. New RADIUS Attributes
	 6.1. Framed-Management-Protocol

	 6.2. Management-Transport-Protection

	 6.3. Management-Policy-Id

	 6.4. Management-Privilege-Level

	7. Use with Dynamic Authorization

	8. Examples of Attribute Groupings

	9. Diameter Translation Considerations

	10. Table of Attributes

	11. IANA Considerations

	12. Security Considerations
	 12.1. General Considerations

	 12.2. RADIUS Proxy Operation Considerations

	13. Acknowledgments

	14. References
	 14.1. Normative References

	 14.2. Informative References

1. Introduction

 RFC 2865 [RFC2865] defines the NAS-Prompt (7) and Administrative (6)
 values of the Service-Type (6) Attribute. Both of these values
 provide access to the interactive, text-based Command Line Interface
 (CLI) of the NAS, and were originally developed to control access to
 the physical console port of the NAS, most often a serial port.

 Remote access to the CLI of the NAS has been available in NAS
 implementations for many years, using protocols such as Telnet,
 Rlogin, and the remote terminal service of the Secure SHell (SSH).
 In order to distinguish local, physical, console access from remote
 access, the NAS-Port-Type (61) Attribute is generally included in
 Access-Request and Access-Accept messages, along with the Service-
 Type (6) Attribute, to indicate the form of access. A NAS-Port-Type
 (61) Attribute with a value of Async (0) is used to signify a local
 serial port connection, while a value of Virtual (5) is used to
 signify a remote connection, via a remote terminal protocol. This
 usage provides no selectivity among the various available remote
 terminal protocols (e.g., Telnet, Rlogin, SSH, etc.).

 Today, it is common for network devices to support more than the two
 privilege levels for management access provided by the Service-Type
 (6) Attribute with values of NAS-Prompt (7) (non-privileged) and
 Administrative (6) (privileged). Also, other management mechanisms
 may be used, such as Web-based management, the Simple Network
 Management Protocol (SNMP), and the Network Configuration Protocol
 (NETCONF). To provide support for these additional features, this
 specification defines attributes for Framed Management protocols,
 management protocol security, and management access privilege levels.

 Remote management via the command line is carried over protocols such
 as Telnet, Rlogin, and the remote terminal service of SSH. Since
 these protocols are primarily for the delivery of terminal or
 terminal emulation services, the term "Framed Management" is used to
 describe management protocols supporting techniques other than the
 command line. Typically, these mechanisms format management
 information in a binary or textual encoding such as HTML, XML, or
 ASN.1/BER. Examples include Web-based management (HTML over HTTP or
 HTTPS), NETCONF (XML over SSH or BEEP or SOAP), and SNMP (SMI over
 ASN.1/BER). Command line interface, menu interface, or other text-
 based (e.g., ASCII or UTF-8) terminal emulation services are not
 considered to be Framed Management protocols.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses terminology from RFC 2865 [RFC2865], RFC 2866
 [RFC2866], and RFC 5176 [RFC5176].

 The term "integrity protection", as used in this document, is *not*
 the same as "authentication", as used in SNMP. Integrity protection
 requires the sharing of cryptographic keys, but it does not require
 authenticated principals. Integrity protection could be used, for
 example, with anonymous Diffie-Hellman key agreement. In SNMP, the
 proof of identity of the principals (authentication) is conflated
 with tamper-resistance of the protected messages (integrity). In
 this document, we assume that integrity protection and authentication
 are separate concerns. Authentication is part of the base RADIUS
 protocol.

 SNMP uses the terms "auth" and "noAuth", as well as "priv" and
 "noPriv". There is no analog to auth or noAuth in this document. In
 this document, we are assuming that authentication always occurs when
 it is required, i.e., as a prerequisite to provisioning of access via
 an Access-Accept packet.

3. Overview

 To support the authorization and provisioning of Framed Management
 access to managed entities, this document introduces a new value for
 the Service-Type (6) Attribute [RFC2865] and one new attribute. The
 new value for the Service-Type (6) Attribute is Framed-Management
 (18), used for remote device management via a Framed Management
 protocol. The new attribute is Framed-Management-Protocol (133), the
 value of which specifies a particular protocol for use in the remote
 management session.

 Two new attributes are introduced in this document in support of
 granular management access rights or command privilege levels. The
 Management-Policy-Id (135) Attribute provides a text string
 specifying a policy name of local scope, that is assumed to have been
 pre-provisioned on the NAS. This use of an attribute to specify use
 of a pre-provisioned policy is similar to the Filter-Id (11)
 Attribute defined in [RFC2865] Section 5.11.

 The local application of the Management-Policy-Id (135) Attribute
 within the managed entity may take the form of (a) one of an
 enumeration of command privilege levels, (b) a mapping into an SNMP
 Access Control Model, such as the View-Based Access Control Model
 (VACM) [RFC3415], or (c) some other set of management access policy
 rules that is mutually understood by the managed entity and the
 remote management application. Examples are given in Section 8.

 The Management-Privilege-Level (136) Attribute contains an integer-
 valued management privilege level indication. This attribute serves
 to modify or augment the management permissions provided by the NAS-
 Prompt (7) value of the Service-Type (6) Attribute, and thus applies
 to CLI management.

 To enable management security requirements to be specified, the
 Management-Transport-Protection (134) Attribute is introduced. The
 value of this attribute indicates the minimum level of secure
 transport protocol protection required for the provisioning of NAS-
 Prompt (7), Administrative (6), or Framed-Management (18) service.

4. Domain of Applicability

 Most of the RADIUS attributes defined in this document have broad
 applicability for provisioning local and remote management access to
 NAS devices. However, those attributes that provision remote access
 over Framed Management protocols and over secure transports have
 special considerations. This document does not specify the details
 of the integration of these protocols with a RADIUS client in the NAS
 implementation. However, there are functional requirements for
 correct application of Framed Management protocols and/or secure
 transport protocols that will limit the selection of such protocols
 that can be considered for use with RADIUS. Since the RADIUS user
 credentials are typically obtained by the RADIUS client from the
 secure transport protocol server or the Framed Management protocol
 server, the protocol, and its implementation in the NAS, MUST support
 forms of credentials that are compatible with the authentication
 methods supported by RADIUS.

 RADIUS currently supports the following user authentication methods,
 although others may be added in the future:

 o Password - RFC 2865

 o CHAP (Challenge Handshake Authentication Protocol) - RFC 2865

 o ARAP (Apple Remote Access Protocol) - RFC 2869

 o EAP (Extensible Authentication Protocol) - RFC 2869, RFC 3579

 o HTTP Digest - RFC 5090

 The remote management protocols selected for use with the RADIUS
 remote NAS management sessions, for example, those described in
 Section 6.1, and the secure transport protocols selected to meet the
 protection requirements, as described in Section 6.2, obviously need
 to support user authentication methods that are compatible with those
 that exist in RADIUS. The RADIUS authentication methods most likely
 usable with these protocols are Password, CHAP, and possibly HTTP
 Digest, with Password being the distinct common denominator. There
 are many secure transports that support other, more robust,
 authentication mechanisms, such as public key. RADIUS has no support
 for public key authentication, except within the context of an EAP
 Method. The applicability statement for EAP indicates that it is not
 intended for use as an application-layer authentication mechanism, so
 its use with the mechanisms described in this document is NOT
 RECOMMENDED. In some cases, Password may be the only compatible
 RADIUS authentication method available.

5. New Values for Existing RADIUS Attributes

5.1. Service-Type

 The Service-Type (6) Attribute is defined in Section 5.6 of RFC 2865
 [RFC2865]. This document defines a new value of the Service-Type
 Attribute, as follows:

18 Framed‑Management

 The semantics of the Framed-Management service are as follows:

Framed‑Management A Framed Management protocol session should
 be started on the NAS.

6. New RADIUS Attributes

 This document defines four new RADIUS attributes related to
 management authorization.

6.1. Framed-Management-Protocol

 The Framed-Management-Protocol (133) Attribute indicates the
 application-layer management protocol to be used for Framed
 Management access. It MAY be used in both Access-Request and Access-
 Accept packets. This attribute is used in conjunction with a
 Service-Type (6) Attribute with the value of Framed-Management (18).

 It is RECOMMENDED that the NAS include an appropriately valued
 Framed-Management-Protocol (133) Attribute in an Access-Request
 packet, indicating the type of management access being requested. It
 is further RECOMMENDED that the NAS include a Service-Type (6)
 Attribute with the value Framed-Management (18) in the same Access-
 Request packet. The RADIUS server MAY use these attributes as a hint
 in making its authorization decision.

 The RADIUS server MAY include a Framed-Management-Protocol (133)
 Attribute in an Access-Accept packet that also includes a Service-
 Type (6) Attribute with a value of Framed-Management (18), when the
 RADIUS server chooses to enforce a management access policy for the
 authenticated user that dictates one form of management access in
 preference to others.

 When a NAS receives a Framed-Management-Protocol (133) Attribute in
 an Access-Accept packet, it MUST deliver that specified form of
 management access or disconnect the session. If the NAS does not
 support the provisioned management application-layer protocol, or the
 management access protocol requested by the user does not match that
 of the Framed-Management-Protocol (133) Attribute in the Access-
 Accept packet, the NAS MUST treat the Access-Accept packet as if it
 had been an Access-Reject.

 A summary of the Framed-Management-Protocol (133) Attribute format is
 shown below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 133 for Framed-Management-Protocol.

 Length

 6

 Value

 The Value field is a four-octet enumerated value.

1 SNMP
2 Web‑based
3 NETCONF
4 FTP
5 TFTP
6 SFTP
7 RCP
8 SCP

 All other values are reserved for IANA allocation subject to the
 provisions of Section 11.

 The acronyms used in the above table expand as follows:

 o SNMP: Simple Network Management Protocol [RFC3411], [RFC3412],
 [RFC3413], [RFC3414], [RFC3415], [RFC3416], [RFC3417], [RFC3418].

 o Web-based: Use of an embedded web server in the NAS for management
 via a generic web browser client. The interface presented to the
 administrator may be graphical, tabular, or textual. The protocol
 is HTML over HTTP. The protocol may optionally be HTML over
 HTTPS, i.e., using HTTP over TLS [HTML] [RFC2616].

 o NETCONF: Management via the NETCONF protocol using XML over
 supported transports (e.g., SSH, BEEP, SOAP). As secure transport
 profiles are defined for NETCONF, the list of transport options
 may expand [RFC4741], [RFC4742], [RFC4743], [RFC4744].

 o FTP: File Transfer Protocol, used to transfer configuration files
 to and from the NAS [RFC0959].

 o TFTP: Trivial File Transfer Protocol, used to transfer
 configuration files to and from the NAS [RFC1350].

 o SFTP: SSH File Transfer Protocol, used to securely transfer
 configuration files to and from the NAS. SFTP uses the services
 of SSH [SFTP]. See also Section 3.7, "SSH and File Transfers" of
 [SSH]. Additional information on the "sftp" program may typically
 be found in the online documentation ("man" pages) of Unix
 systems.

 o RCP: Remote CoPy file copy utility (Unix-based), used to transfer
 configuration files to and from the NAS. See Section 3.7, "SSH
 and File Transfers", of [SSH]. Additional information on the
 "rcp" program may typically be found in the online documentation
 ("man" pages) of Unix systems.

 o SCP: Secure CoPy file copy utility (Unix-based), used to transfer
 configuration files to and from the NAS. The "scp" program is a
 simple wrapper around SSH. It's basically a patched BSD Unix
 "rcp", which uses ssh to do the data transfer (instead of using
 "rcmd"). See Section 3.7, "SSH and File Transfers", of [SSH].
 Additional information on the "scp" program may typically be found
 in the online documentation ("man" pages) of Unix systems.

6.2. Management-Transport-Protection

 The Management-Transport-Protection (134) Attribute specifies the
 minimum level of protection that is required for a protected
 transport used with the Framed or non-Framed Management access
 session. The protected transport used by the NAS MAY provide a
 greater level of protection, but MUST NOT provide a lower level of
 protection.

 When a secure form of non-Framed Management access is specified, it
 means that the remote terminal session is encapsulated in some form
 of protected transport, or tunnel. It may also mean that an explicit
 secure mode of operation is required, when the Framed Management
 protocol contains an intrinsic secure mode of operation. The
 Management-Transport-Protection (134) Attribute does not apply to CLI
 access via a local serial port, or other non-remote connection.

 When a secure form of Framed Management access is specified, it means
 that the application-layer management protocol is encapsulated in
 some form of protected transport, or tunnel. It may also mean that
 an explicit secure mode of operation is required, when the Framed
 Management protocol contains an intrinsic secure mode of operation.

 A value of "No Protection (1)" indicates that a secure transport
 protocol is not required, and that the NAS SHOULD accept a connection
 over any transport associated with the application-layer management
 protocol. The definitions of management application to transport
 bindings are defined in the relevant documents that specify those
 management application protocols. The same "No Protection" semantics
 are conveyed by omitting this attribute from an Access-Accept packet.

 Specific protected transport protocols, cipher suites, key agreement
 methods, or authentication methods are not specified by this
 attribute. Such provisioning is beyond the scope of this document.
 It is RECOMMENDED that the NAS include an appropriately valued
 Management-Transport-Protection (134) Attribute in an Access-Request
 packet, indicating the level of transport protection for the
 management access being requested, when that information is available
 to the RADIUS client. The RADIUS server MAY use this attribute as a
 hint in making its authorization decision.

 The RADIUS server MAY include a Management-Transport-Protection (134)
 Attribute in an Access-Accept packet that also includes a Service-
 Type (6) Attribute with a value of Framed-Management (18), when the
 RADIUS server chooses to enforce a management access security policy
 for the authenticated user that dictates a minimum level of transport
 security.

 When a NAS receives a Management-Transport-Protection (134) Attribute
 in an Access-Accept packet, it MUST deliver the management access
 over a transport with equal or better protection characteristics or
 disconnect the session. If the NAS does not support protected
 management transport protocols, or the level of protection available
 does not match that of the Management-Transport-Protection (134)
 Attribute in the Access-Accept packet, the NAS MUST treat the
 response packet as if it had been an Access-Reject.

 A summary of the Management-Transport-Protection (134) Attribute
 format is shown below. The fields are transmitted from left to
 right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 134 for Management-Transport-Protection.

 Length

 6

 Value

 The Value field is a four-octet enumerated value.

1 No‑Protection
2 Integrity‑Protection
3 Integrity‑Confidentiality‑Protection

 All other values are reserved for IANA allocation subject to the
 provisions of Section 11.

 The names used in the above table are elaborated as follows:

 o No-Protection: No transport protection is required. Accept
 connections via any supported transport.

 o Integrity-Protection: The management transport MUST provide
 Integrity Protection, i.e., protection from unauthorized
 modification, using a cryptographic checksum.

 o Integrity-Confidentiality-Protection: The management transport
 MUST provide both Integrity Protection and Confidentiality
 Protection, i.e., protection from unauthorized modification, using
 a cryptographic checksum, and protection from unauthorized
 disclosure, using encryption.

 The configuration or negotiation of acceptable algorithms, modes, and
 credentials for the cryptographic protection mechanisms used in
 implementing protected management transports is outside the scope of
 this document. Many such mechanisms have standardized methods of
 configuration and key management.

6.3. Management-Policy-Id

 The Management-Policy-Id (135) Attribute indicates the name of the
 management access policy for this user. Zero or one Management-
 Policy-Id (135) Attributes MAY be sent in an Access-Accept packet.
 Identifying a policy by name allows the policy to be used on
 different NASes without regard to implementation details.

 Multiple forms of management access rules may be expressed by the
 underlying named policy, the definition of which is beyond the scope
 of this document. The management access policy MAY be applied
 contextually, based on the nature of the management access method.
 For example, some named policies may only be valid for application to
 NAS-Prompt (7) services and some other policies may only be valid for
 SNMP.

 The management access policy named in this attribute, received in an
 Access-Accept packet, MUST be applied to the session authorized by
 the Access-Accept. If the NAS supports this attribute, but the
 policy name is unknown, or if the RADIUS client is able to determine
 that the policy rules are incorrectly formatted, the NAS MUST treat
 the Access-Accept packet as if it had been an Access-Reject.

 No precedence relationship is defined for multiple occurrences of the
 Management-Policy-Id (135) Attribute. NAS behavior in such cases is
 undefined. Therefore, two or more occurrences of this attribute
 SHOULD NOT be included in an Access-Accept or CoA-Request (Change-of-
 Authorization). In the absence of further specification defining
 some sort of precedence relationship, it is not possible to guarantee
 multi-vendor interoperability when using multiple instances of this
 attribute in a single Access-Accept or CoA-Request packet.

 The content of the Management-Policy-Id (135) Attribute is expected
 to be the name of a management access policy of local significance to
 the NAS, within a namespace of significance to the NAS. In this
 regard, the behavior is similar to that for the Filter-Id (11)
 Attribute. The policy names and rules are committed to the local
 configuration data-store of the NAS, and are provisioned by means
 beyond the scope of this document, such as via SNMP, NETCONF, or CLI.

 The namespace used in the Management-Policy-Id (135) Attribute is
 simple and monolithic. There is no explicit or implicit structure or
 hierarchy. For example, in the text string "example.com", the "."
 (period or dot) is just another character. It is expected that text
 string matching will be performed without parsing the text string
 into any sub-fields.

 Overloading or subdividing this simple name with multi-part
 specifiers (e.g., Access=remote, Level=7) is likely to lead to poor
 multi-vendor interoperability and SHOULD NOT be utilized. If a
 simple, unstructured policy name is not sufficient, it is RECOMMENDED
 that a Vendor Specific (26) Attribute be used instead, rather than
 overloading the semantics of Management-Policy-Id.

 A summary of the Management-Policy-Id (135) Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑
| Type | Length | Text ...
+‑

 Type

 135 for Management-Policy-Id.

 Length

 >= 3

 Text

The Text field is one or more octets, and its contents are
implementation dependent. It is intended to be human
readable and the contents MUST NOT be parsed by the receiver;
the contents can only be used to look up locally defined
policies. It is RECOMMENDED that the message contain UTF‑8
encoded 10646 [RFC3629] characters.

6.4. Management-Privilege-Level

 The Management-Privilege-Level (136) Attribute indicates the integer-
 valued privilege level to be assigned for management access for the
 authenticated user. Many NASes provide the notion of differentiated
 management privilege levels denoted by an integer value. The
 specific access rights conferred by each value are implementation
 dependent. It MAY be used in both Access-Request and Access-Accept
 packets.

 The mapping of integer values for this attribute to specific
 collections of management access rights or permissions on the NAS is
 vendor and implementation specific. Such mapping is often a user-
 configurable feature. It's RECOMMENDED that greater numeric values
 imply greater privilege. However, it would be a mistake to assume
 that this recommendation always holds.

 The management access level indicated in this attribute, received in
 an Access-Accept packet, MUST be applied to the session authorized by
 the Access-Accept. If the NAS supports this attribute, but the
 privilege level is unknown, the NAS MUST treat the Access-Accept
 packet as if it had been an Access-Reject.

 A summary of the Management-Privilege-Level (136) Attribute format is
 show below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 136 for Management-Privilege-Level.

 Length

 6

 Value

 The Value field is a four-octet Integer, denoting a management
 privilege level.

 It is RECOMMENDED to limit use of the Management-Privilege-Level
 (136) Attribute to sessions where the Service-Type (6) Attribute has
 a value of NAS-Prompt (7) (not Administrative). Typically, NASes
 treat NAS-Prompt as the minimal privilege CLI service and
 Administrative as full privilege. Using the Management-Privilege-
 Level (136) Attribute with a Service-Type (6) Attribute having a
 value of NAS-Prompt (7) will have the effect of increasing the
 minimum privilege level. Conversely, it is NOT RECOMMENDED to use
 this attribute with a Service-Type (6) Attribute with a value of
 Administrative (6), which may require decreasing the maximum
 privilege level.

 It is NOT RECOMMENDED to use the Management-Privilege-Level (136)
 Attribute in combination with a Management-Policy-Id (135) Attribute
 or for management access methods other than interactive CLI. The
 behavior resulting from such an overlay of management access control
 provisioning is not defined by this document, and in the absence of
 further specification, is likely to lead to unexpected behaviors,
 especially in multi-vendor environments.

7. Use with Dynamic Authorization

 It is entirely OPTIONAL for the NAS management authorization
 attributes specified in this document to be used in conjunction with
 Dynamic Authorization extensions to RADIUS [RFC5176]. When such
 usage occurs, those attributes MAY be used as listed in the Table of
 Attributes in Section 10.

 Some guidance on how to identify existing management sessions on a
 NAS for the purposes of Dynamic Authorization is useful. The primary
 session identifiers SHOULD be User-Name (1) and Service-Type (6). To
 accommodate instances when that information alone does not uniquely
 identify a session, a NAS supporting Dynamic Authorization SHOULD
 maintain one or more internal session identifiers that can be
 represented as RADIUS attributes. Examples of such attributes
 include Acct-Session-Id (44), Acct-Multi-Session-Id (50), NAS-Port
 (5), or NAS-Port-Id (87). In the case of a remote management
 session, common identifier values might include things such as the
 remote IP address and remote TCP port number, or the file descriptor
 value for use with the open socket. Any such identifier is obviously
 transient in nature, and implementations SHOULD take care to avoid
 and/or properly handle duplicate or stale values.

 In order for the session identification attributes to be available to
 the Dynamic Authorization Client, a NAS supporting Dynamic
 Authorization for management sessions SHOULD include those session
 identification attributes in the Access-Request message for each such
 session. Additional discussion of session identification attribute
 usage may be found in Section 3 of [RFC5176].

8. Examples of Attribute Groupings

 1. Unprotected CLI access, via the local console, to the "super-
 user" access level:

 * Service-Type (6) = Administrative (6)

 * NAS-Port-Type (61) = Async (0)

 * Management-Transport-Protection (134) = No-Protection (1)

 2. Unprotected CLI access, via a remote console, to the "super-user"
 access level:

 * Service-Type (6) = Administrative (6)

 * NAS-Port-Type (61) = Virtual (5)

 * Management-Transport-Protection (134) = No-Protection (1)

 3. CLI access, via a fully protected secure remote terminal service
 to the non-privileged user access level:

 * Service-Type (6) = NAS-Prompt (7)

 * NAS-Port-Type (61) = Virtual (5)

 * Management-Transport-Protection (134) = Integrity-
 Confidentiality-Protection (3)

 4. CLI access, via a fully protected secure remote terminal service,
 to a custom management access level, defined by a policy:

 * Service-Type (6) = NAS-Prompt (7)

 * NAS-Port-Type (61) = Virtual (5)

 * Management-Transport-Protection (134) = Integrity-
 Confidentiality-Protection (3)

 * Management-Policy-Id (135) = "Network Administrator"

 5. CLI access, via a fully protected secure remote terminal service,
 with a management privilege level of 15:

 * Service-Type (6) = NAS-Prompt (7)

 * NAS-Port-Type (61) = Virtual (5)

 * Management-Transport-Protection (134) = Integrity-
 Confidentiality-Protection (3)

 * Management-Privilege-Level (136) = 15

 6. SNMP access, using an Access Control Model specifier, such as a
 custom VACM View, defined by a policy:

 * Service-Type (6) = Framed-Management (18)

 * NAS-Port-Type (61) = Virtual (5)

 * Framed-Management-Protocol (133) = SNMP (1)

 * Management-Policy-Id (135) = "SNMP Network Administrator View"

 There is currently no standardized way of implementing this
 management policy mapping within SNMP. Such mechanisms are the
 topic of current research.

 7. SNMP fully protected access:

 * Service-Type (6) = Framed-Management (18)

 * NAS-Port-Type (61) = Virtual (5)

 * Framed-Management-Protocol (133) = SNMP (1)

 * Management-Transport-Protection (134) = Integrity-
 Confidentiality-Protection (3)

 8. Web (HTTP/HTML) access:

 * Service-Type (6) = Framed-Management (18)

 * NAS-Port-Type (61) = Virtual (5)

 * Framed-Management-Protocol (133) = Web-based (2)

 9. Secure web access, using a custom management access level,
 defined by a policy:

 * Service-Type (6) = Framed-Management (18)

 * NAS-Port-Type (61) = Virtual (5)

 * Framed-Management-Protocol (133) = Web-based (2)

 * Management-Transport-Protection (134) = Integrity-
 Confidentiality-Protection (3)

 * Management-Policy-Id (135) = "Read-only web access"

9. Diameter Translation Considerations

 When used in Diameter, the attributes defined in this specification
 can be used as Diameter attribute-value pairs (AVPs) from the Code
 space 1-255 (RADIUS attribute compatibility space). No additional
 Diameter Code values are therefore allocated. The data types and
 flag rules for the attributes are as follows:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | AVP Flag rules |
 |‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑+
 | | SHOULD MUST| |
Attribute Name Value Type |MUST| MAY | NOT| NOT|Encr|
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑|
Service‑Type | | | | | |
 Enumerated | M | P | | V | Y |
Framed‑Management‑Protocol | | | | | |
 Enumerated | M | P | | V | Y |
Management‑Transport‑Protection | | | | | |
 Enumerated | M | P | | V | Y |
Management‑Policy‑Id | | | | | |
 UTF8String | M | P | | V | Y |
Management‑Privilege‑Level | | | | | |
 Integer | M | P | | V | Y |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑|‑‑‑‑+‑‑‑‑‑+‑‑‑‑+‑‑‑‑‑|‑‑‑‑|

 The attributes in this specification have no special translation
 requirements for Diameter to RADIUS or RADIUS to Diameter gateways;
 they are copied as is, except for changes relating to headers,
 alignment, and padding. See also [RFC3588], Section 4.1, and
 [RFC4005], Section 9.

 What this specification says about the applicability of the
 attributes for RADIUS Access-Request packets applies in Diameter to
 AA-Request [RFC4005].

 What is said about Access-Accept applies in Diameter to AA-Answer
 messages that indicate success.

10. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets, and in what quantity.

Access Messages
Request Accept Reject Challenge # Attribute
‑‑‑
0‑1 0‑1 0 0 133 Framed‑Management‑Protocol
0‑1 0‑1 0 0 134 Management‑Transport‑Protection
0 0‑1 0 0 135 Management‑Policy‑Id
0 0‑1 0 0 136 Management‑Privilege‑Level

Accounting Messages
Request Response # Attribute
‑‑‑
0‑1 0 133 Framed‑Management‑Protocol
0‑1 0 134 Management‑Transport‑Protection
0‑1 0 135 Management‑Policy‑Id
0‑1 0 136 Management‑Privilege‑Level

Change‑of‑Authorization Messages
Request ACK NAK # Attribute
‑‑
0 0 0 133 Framed‑Management‑Protocol
0 0 0 134 Management‑Transport‑Protection
0‑1 0 0 135 Management‑Policy‑Id (Note 1)
0‑1 0 0 136 Management‑Privilege‑Level (Note 1)

Disconnect Messages
Request ACK NAK # Attribute
‑‑‑
0 0 0 133 Framed‑Management‑Protocol
0 0 0 134 Management‑Transport‑Protection
0 0 0 135 Management‑Policy‑Id
0 0 0 136 Management‑Privilege‑Level

 (Note 1) When included within a CoA-Request, these attributes

 represent an authorization change request. When one of these
 attributes is omitted from a CoA-Request, the NAS assumes that the
 attribute value is to remain unchanged. Attributes included in a
 CoA-Request replace all existing values of the same attribute(s).

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in a packet.
0+ Zero or more instances of this attribute MAY be present in
 a packet.
0‑1 Zero or one instance of this attribute MAY be present in
 a packet.
1 Exactly one instance of this attribute MUST be present in
 a packet.

11. IANA Considerations

 The following numbers have been assigned in the RADIUS Attribute
 Types registry.

 o New enumerated value for the existing Service-Type Attribute:

 * Framed-Management (18)

 o New RADIUS Attribute Types:

 * Framed-Management-Protocol (133)

 * Management-Transport-Protection (134)

 * Management-Policy-Id (135)

 * Management-Privilege-Level (136)

 The enumerated values of the newly assigned RADIUS Attribute Types as
 defined in this document were assigned at the same time as the new
 Attribute Types.

 For the Framed-Management-Protocol Attribute:

1 SNMP
2 Web‑based
3 NETCONF
4 FTP
5 TFTP
6 SFTP
7 RCP
8 SCP

 For the Management-Transport-Protection Attribute:

1 No‑Protection
2 Integrity‑Protection
3 Integrity‑Confidentiality‑Protection

 Assignments of additional enumerated values for the RADIUS attributes
 defined in this document are to be processed as described in
 [RFC3575], subject to the additional requirement of a published
 specification.

12. Security Considerations

12.1. General Considerations

 This specification describes the use of RADIUS and Diameter for
 purposes of authentication, authorization, and accounting for
 management access to devices within networks. RADIUS threats and
 security issues for this application are described in [RFC3579] and
 [RFC3580]; security issues encountered in roaming are described in
 [RFC2607]. For Diameter, the security issues relating to this
 application are described in [RFC4005] and [RFC4072].

 This document specifies new attributes that can be included in
 existing RADIUS packets, which may be protected as described in
 [RFC3579] and [RFC5176]. In Diameter, the attributes are protected
 as specified in [RFC3588]. See those documents for a more detailed
 description.

 The security mechanisms supported in RADIUS and Diameter are focused
 on preventing an attacker from spoofing packets or modifying packets
 in transit. They do not prevent an authorized RADIUS/Diameter server
 or proxy from inserting attributes with malicious intent.

 A legacy NAS may not recognize the attributes in this document that
 supplement the provisioning of CLI management access. If the value
 of the Service-Type Attribute is NAS-Prompt or Administrative, the
 legacy NAS may silently discard such attributes, while permitting the
 user to access the CLI management interface(s) of the NAS. This can
 lead to users improperly receiving authorized management access to
 the NAS, or access with greater levels of access rights than were
 intended. RADIUS servers SHOULD attempt to ascertain whether or not
 the NAS supports these attributes before sending them in an Access-
 Accept message that provisions CLI access.

 It is possible that certain NAS implementations may not be able to
 determine the protection properties of the underlying transport
 protocol as specified by the Management-Transport-Protection
 Attribute. This may be a limitation of the standard application
 programming interface of the underlying transport implementation or
 of the integration of the transport into the NAS implementation. In
 either event, NASes conforming to this specification, which cannot
 determine the protection state of the remote management connection,
 MUST treat an Access-Accept message containing a Management-
 Transport-Protection Attribute containing a value other than No-
 Protection (1) as if it were an Access-Reject message, unless
 specifically overridden by local policy configuration.

 Use of the No-Protection (1) option for the Management-Transport-
 Protection (134) Attribute is NOT RECOMMENDED in any deployment where
 secure management or configuration is required.

12.2. RADIUS Proxy Operation Considerations

 The device management access authorization attributes presented in
 this document present certain considerations when used in RADIUS
 proxy environments. These considerations are not different from
 those that exist in RFC 2865 [RFC2865] with respect to the Service-
 Type Attribute values of Administrative and NAS-Prompt.

 Most RADIUS proxy environments are also multi-party environments. In
 multi-party proxy environments it is important to distinguish which
 entities have the authority to provision management access to the
 edge devices, i.e., NASes, and which entities only have authority to
 provision network access services of various sorts.

 It may be important that operators of the NAS are able to ensure that
 access to the CLI, or other management interfaces of the NAS, is only
 provisioned to their own employees or contractors. One way for the
 NAS to enforce this requirement is to use only local, non-proxy
 RADIUS servers for management access requests. Proxy RADIUS servers
 could be used for non-management access requests, based on local
 policy. This "bifurcation" of RADIUS authentication and
 authorization is a simple case of separate administrative realms.
 The NAS may be designed so as to maintain separate lists of RADIUS
 servers for management AAA use and for non-management AAA use.

 An alternate method of enforcing this requirement would be for the
 first-hop RADIUS proxy server, operated by the owner of the NAS, to
 filter out any RADIUS attributes that provision management access
 rights that originate from "up-stream" proxy servers not operated by
 the NAS owner. Access-Accept messages that provision such locally
 unauthorized management access MAY be treated as if they were an
 Access-Reject by the first-hop proxy server.

 An additional exposure present in proxy deployments is that sensitive
 user credentials, e.g., passwords, are likely to be available in
 cleartext form at each of the proxy servers. Encrypted or hashed
 credentials are not subject to this risk, but password authentication
 is a very commonly used mechanism for management access
 authentication, and in RADIUS passwords are only protected on a hop-
 by-hop basis. Malicious proxy servers could misuse this sensitive
 information.

 These issues are not of concern when all the RADIUS servers, local
 and proxy, used by the NAS are under the sole administrative control
 of the NAS owner.

13. Acknowledgments

 Many thanks to all reviewers, including Bernard Aboba, Alan DeKok,
 David Harrington, Mauricio Sanchez, Juergen Schoenwaelder, Hannes
 Tschofenig, Barney Wolff, and Glen Zorn.

14. References

14.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

14.2. Informative References

 [HTML]
 Raggett, D., Le Hors, A., and I. Jacobs, "The HTML 4.01
 Specification, W3C", December 1999.

 [RFC0959]
 Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

 [RFC1350]
 Sollins, K., "The TFTP Protocol (Revision 2)", STD 33,
 RFC 1350, July 1992.

 [RFC2607]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC2616]
 Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3411]
 Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412]
 Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
 "Message Processing and Dispatching for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3413]
 Levi, D., Meyer, P., and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62,
 RFC 3413, December 2002.

 [RFC3414]
 Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [RFC3415]
 Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415,
 December 2002.

 [RFC3416]
 Presuhn, R., "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3416, December 2002.

 [RFC3417]
 Presuhn, R., "Transport Mappings for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3417,
 December 2002.

 [RFC3418]
 Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, December 2002.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 July 2003.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC3580]
 Congdon, P., Aboba, B., Smith, A., Zorn, G., and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580, September 2003.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC4005]
 Calhoun, P., Zorn, G., Spence, D., and D. Mitton,
 "Diameter Network Access Server Application", RFC 4005,
 August 2005.

 [RFC4072]
 Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
 Authentication Protocol (EAP) Application", RFC 4072,
 August 2005.

 [RFC4741]
 Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4742]
 Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC4743]
 Goddard, T., "Using NETCONF over the Simple Object Access
 Protocol (SOAP)", RFC 4743, December 2006.

 [RFC4744]
 Lear, E. and K. Crozier, "Using the NETCONF Protocol over
 the Blocks Extensible Exchange Protocol (BEEP)", RFC 4744,
 December 2006.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [SFTP]
 Galbraith, J. and O. Saarenmaa, "SSH File Transfer
 Protocol", Work in Progress, July 2006.

 [SSH]
 Barrett, D., Silverman, R., and R. Byrnes, "SSH, the
 Secure Shell: The Definitive Guide, Second Edition,
 O'Reilly and Associates", May 2005.

Authors' Addresses

David B. Nelson
Elbrys Networks, Inc.
282 Corporate Drive
Portsmouth, NH 03801
USA

 EMail: dnelson@elbrysnetworks.com

Greg Weber
Individual Contributor
Knoxville, TN 37932
USA

 EMail: gdweber@gmail.com

5997 - Use of Status-Server Packets in the Remote Authentication Dial In User Se

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 5997

Updates: 2866

Category: Informational

ISSN: 2070-1721

A. DeKok

FreeRADIUS

August 2010

Use of Status-Server Packets in the Remote Authentication Dial In User Service (RADIUS) Protocol

Abstract

 This document describes a deployed extension to the Remote
 Authentication Dial In User Service (RADIUS) protocol, enabling
 clients to query the status of a RADIUS server. This extension
 utilizes the Status-Server (12) Code, which was reserved for
 experimental use in RFC 2865.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5997.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Applicability

	 1.2. Terminology

	 1.3. Requirements Language

	2. Overview
	 2.1. Why Access-Request is Inappropriate
	 2.1.1. Recommendation against Access-Request

	 2.2. Why Accounting-Request is Inappropriate
	 2.2.1. Recommendation against Accounting-Request

	3. Packet Format
	 3.1. Single Definition for Status-Server

	4. Implementation Notes
	 4.1. Client Requirements

	 4.2. Server Requirements

	 4.3. Failover with Status-Server

	 4.4. Proxy Server Handling of Status-Server

	 4.5. Limitations of Status-Server

	 4.6. Management Information Base (MIB) Considerations
	 4.6.1. Interaction with RADIUS Server MIB Modules

	 4.6.2. Interaction with RADIUS Client MIB Modules

	5. Table of Attributes

	6. Examples
	 6.1. Minimal Query to Authentication Port

	 6.2. Minimal Query to Accounting Port

	 6.3. Verbose Query and Response

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgments

1. Introduction

 This document specifies a deployed extension to the Remote
 Authentication Dial In User Service (RADIUS) protocol, enabling
 clients to query the status of a RADIUS server. While the Status-
 Server (12) Code was defined as experimental in [RFC2865], Section 3,
 details of the operation and potential uses of the Code were not
 provided.

 As with the core RADIUS protocol, the Status-Server extension is
 stateless, and queries do not otherwise affect the normal operation
 of a server, nor do they result in any side effects, other than
 perhaps incrementing an internal packet counter. Most of the
 implementations of this extension have utilized it alongside
 implementations of RADIUS as defined in [RFC2865], so that this
 document focuses solely on the use of this extension with UDP
 transport.

 The rest of this document is laid out as follows. Section 2 contains
 the problem statement, and explanations as to why some possible
 solutions can have unwanted side effects. Section 3 defines the
 Status-Server packet format. Section 4 contains client and server
 requirements, along with some implementation notes. Section 5
 contains a RADIUS table of attributes. The remaining text discusses
 security considerations not covered elsewhere in the document.

1.1. Applicability

 This protocol is being recommended for publication as an
 Informational RFC rather than as a Standards-Track RFC because of
 problems with deployed implementations. This includes security
 vulnerabilities. The fixes recommended here are compatible with
 existing servers that receive Status-Server packets, but impose new
 security requirements on clients that send Status-Server packets.

 Some existing implementations of this protocol do not support the
 Message-Authenticator attribute ([RFC3579]). This enables an
 unauthorized client to spoof Status-Server packets, potentially
 leading to incorrect Access-Accepts. In order to remedy this
 problem, this specification requires the use of the Message-
 Authenticator attribute to provide per-packet authentication and
 integrity protection.

 With existing implementations of this protocol, the potential exists
 for Status-Server requests to be in conflict with Access-Request or
 Accounting-Request packets using the same Identifier. This
 specification recommends techniques to avoid this problem.

 These limitations are discussed in more detail below.

1.2. Terminology

 This document uses the following terms:

 "Network Access Server (NAS)"

 The device providing access to the network. Also known as the
 Authenticator (in IEEE 802.1X terminology) or RADIUS client.

 "RADIUS Proxy"

 In order to provide for the routing of RADIUS authentication and
 accounting requests, a RADIUS proxy can be employed. To the NAS,
 the RADIUS proxy appears to act as a RADIUS server, and to the
 RADIUS server, the proxy appears to act as a RADIUS client.

 "silently discard"

 This means the implementation discards the packet without further
 processing. The implementation MAY provide the capability of
 logging the error, including the contents of the silently
 discarded packet, and SHOULD record the event in a statistics
 counter.

1.3. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. Overview

 Status-Server packets are sent by a RADIUS client to a RADIUS server
 in order to test the status of that server. The destination of a
 Status-Server packet is set to the IP address and port of the server
 that is being tested. A single Status-Server packet MUST be included
 within a UDP datagram. A Message-Authenticator attribute MUST be
 included so as to provide per-packet authentication and integrity
 protection.

 RADIUS proxies or servers MUST NOT forward Status-Server packets. A
 RADIUS server or proxy implementing this specification SHOULD respond
 to a Status-Server packet with an Access-Accept (authentication port)
 or Accounting-Response (accounting port). An Access-Challenge
 response is NOT RECOMMENDED. An Access-Reject response MAY be used.
 The list of attributes that are permitted in Status-Server packets,
 and in Access-Accept or Accounting-Response packets responding to
 Status-Server packets, is provided in Section 5. Section 6 provides
 several examples.

 Since a Status-Server packet MUST NOT be forwarded by a RADIUS proxy
 or server, the client is provided with an indication of the status of
 that server only, since no RADIUS proxies are on the path between the
 RADIUS client and server. As servers respond to a Status-Server
 packet without examining the User-Name attribute, the response to a
 Status-Server packet cannot be used to infer any information about
 the reachability of specific realms.

 The "hop-by-hop" functionality of Status-Server packets is useful to
 RADIUS clients attempting to determine the status of the first
 element on the path between the client and a server. Since the
 Status-Server packet is non-forwardable, the lack of a response may
 only be due to packet loss or the failure of the server at the
 destination IP address, and not due to faults in downstream links,
 proxies, or servers. It therefore provides an unambiguous indication
 of the status of a server.

 This information may be useful in situations in which the RADIUS
 client does not receive a response to an Access-Request. A client
 may have multiple proxies configured, with one proxy marked as
 primary and another marked as secondary. If the client does not
 receive a response to a request sent to the primary proxy, it can
 "failover" to the secondary, and send requests to the secondary proxy
 instead.

 However, it is possible that the lack of a response to requests sent
 to the primary proxy was due not to a failure within the primary, but
 to alternative causes such as a failed link along the path to the
 destination server or the failure of the destination server itself.

 In such a situation, it may be useful for the client to be able to
 distinguish between failure causes so that it does not trigger
 failover inappropriately. For example, if the primary proxy is down,
 then a quick failover to the secondary proxy would be prudent;
 whereas, if a downstream failure is the cause, then the value of
 failover to a secondary proxy will depend on whether packets
 forwarded by the secondary will utilize independent links,
 intermediaries, or destination servers.

 The Status-Server packet is not a "Keep-Alive" as discussed in
 [RFC2865], Section 2.6. "Keep-Alives" are Access-Request packets
 sent to determine whether a downstream server is responsive. These
 packets are typically sent only when a server is suspected to be
 down, and they are no longer sent as soon as the server is available
 again.

2.1. Why Access-Request is Inappropriate

 One possible solution to the problem of querying server status is for
 a NAS to send specially formed Access-Request packets to a RADIUS
 server's authentication port. The NAS can then look for a response
 and use this information to determine if the server is active or
 unresponsive.

 However, the server may see the request as a normal login request for
 a user and conclude that a real user has logged onto that NAS. The
 server may then perform actions that are undesirable for a simple
 status query. The server may alternatively respond with an Access-
 Challenge, indicating that it believes an extended authentication
 conversation is necessary.

 Another possibility is that the server responds with an Access-
 Reject, indicating that the user is not authorized to gain access to
 the network. As above, the server may also perform local-site
 actions, such as warning an administrator of failed login attempts.
 The server may also delay the Access-Reject response, in the
 traditional manner of rate-limiting failed authentication attempts.
 This delay in response means that the querying administrator is
 unsure as to whether or not the server is down, slow to respond, or
 intentionally delaying its response to the query.

 In addition, using Access-Request queries may mean that the server
 may have local users configured whose sole reason for existence is to
 enable these query requests. Unless the server policy is designed
 carefully, it may be possible for an attacker to use those
 credentials to gain unauthorized network access.

 We note that some NAS implementations currently use Access-Request
 packets as described above, with a fixed (and non-configurable) user
 name and password. Implementation issues with that equipment mean
 that if a RADIUS server does not respond to those queries, it may be
 marked as unresponsive by the NAS. This marking may happen even if
 the server is actively responding to other Access-Requests from that
 same NAS. This behavior is confusing to administrators who then need
 to determine why an active server has been marked as "unresponsive".

2.1.1. Recommendation against Access-Request

 For the reasons outlined above, NAS implementors SHOULD NOT generate
 Access-Request packets solely to see if a server is alive.
 Similarly, site administrators SHOULD NOT configure test users whose
 sole reason for existence is to enable such queries via Access-
 Request packets.

 Note that it still may be useful to configure test users for the
 purpose of performing end-to-end or in-depth testing of a server
 policy. While this practice is widespread, we caution administrators
 to use it with care.

2.2. Why Accounting-Request is Inappropriate

 A similar solution for the problem of querying server status may be
 for a NAS to send specially formed Accounting-Request packets to a
 RADIUS server's accounting port. The NAS can then look for a
 response and use this information to determine if the server is
 active or unresponsive.

 As seen above with Access-Request, the server may then conclude that
 a real user has logged onto a NAS, and perform local-site actions
 that are undesirable for a simple status query.

 Another consideration is that some attributes are mandatory to
 include in an Accounting-Request. This requirement forces the
 administrator to query an accounting server with fake values for
 those attributes in a test packet. These fake values increase the
 work required to perform a simple query, and they may pollute the
 server's accounting database with incorrect data.

2.2.1. Recommendation against Accounting-Request

 For the reasons outlined above, NAS implementors SHOULD NOT generate
 Accounting-Request packets solely to see if a server is alive.
 Similarly, site administrators SHOULD NOT configure accounting
 policies whose sole reason for existence is to enable such queries
 via Accounting-Request packets.

 Note that it still may be useful to configure test users for the
 purpose of performing end-to-end or in-depth testing of a server's
 policy. While this practice is widespread, we caution administrators
 to use it with care.

3. Packet Format

 Status-Server packets reuse the RADIUS packet format, with the fields
 and values for those fields as defined in [RFC2865], Section 3. We
 do not include all of the text or diagrams of that section here, but
 instead explain the differences required to implement Status-Server.

 The Authenticator field of Status-Server packets MUST be generated
 using the same method as that used for the Request Authenticator
 field of Access-Request packets, as given below.

 The role of the Identifier field is the same for Status-Server as for
 other packets. However, as Status-Server is taking the role of
 Access-Request or Accounting-Request packets, there is the potential
 for Status-Server requests to be in conflict with Access-Request or
 Accounting-Request packets with the same Identifier. In Section 4.2
 below, we describe a method for avoiding these problems. This method
 MUST be used to avoid conflicts between Status-Server and other
 packet types.

 Request Authenticator

 In Status-Server packets, the Authenticator value is a 16-octet
 random number called the Request Authenticator. The value
 SHOULD be unpredictable and unique over the lifetime of a
 secret (the password shared between the client and the RADIUS
 server), since repetition of a request value in conjunction
 with the same secret would permit an attacker to reply with a
 previously intercepted response. Since it is expected that the
 same secret MAY be used to authenticate with servers in
 disparate geographic regions, the Request Authenticator field
 SHOULD exhibit global and temporal uniqueness. See [RFC4086]
 for suggestions as to how random numbers may be generated.

 The Request Authenticator value in a Status-Server packet
 SHOULD also be unpredictable, lest an attacker trick a server
 into responding to a predicted future request, and then use the
 response to masquerade as that server to a future Status-Server
 request from a client.

 Similarly, the Response Authenticator field of an Access-Accept
 packet sent in response to Status-Server queries MUST be generated
 using the same method as used for calculating the Response
 Authenticator of the Access-Accept sent in response to an Access-
 Request, with the Status-Server Request Authenticator taking the
 place of the Access-Request Request Authenticator.

 The Response Authenticator field of an Accounting-Response packet
 sent in response to Status-Server queries MUST be generated using the
 same method as used for calculating the Response Authenticator of the
 Accounting-Response sent in response to an Accounting-Request, with
 the Status-Server Request Authenticator taking the place of the
 Accounting-Request Request Authenticator.

 Note that when a server responds to a Status-Server request, it MUST
 NOT send more than one Response packet.

 Response Authenticator

 The value of the Authenticator field in Access-Accept or
 Accounting-Response packets is called the Response
 Authenticator, and contains a one-way MD5 hash calculated over
 a stream of octets consisting of: the RADIUS packet, beginning
 with the Code field, including the Identifier, the Length, the
 Request Authenticator field from the Status-Server packet, and
 the response Attributes (if any), followed by the shared
 secret. That is,

 ResponseAuth =

 MD5(Code+ID+Length+RequestAuth+Attributes+Secret)

 where + denotes concatenation.

 In addition to the above requirements, all Status-Server packets MUST
 include a Message-Authenticator attribute. Failure to do so would
 mean that the packets could be trivially spoofed.

 Status-Server packets MAY include NAS-Identifier, and one of
 NAS-IP-Address or NAS-IPv6-Address. These attributes are not
 necessary for the operation of Status-Server, but may be useful
 information to a server that receives those packets.

 Other attributes SHOULD NOT be included in a Status-Server packet,
 and MUST be ignored if they are included. User authentication
 credentials such as User-Name, User-Password, CHAP-Password,
 EAP-Message MUST NOT appear in a Status-Server packet sent to a
 RADIUS authentication port. User or NAS accounting attributes such
 as Acct-Session-Id, Acct-Status-Type, Acct-Input-Octets MUST NOT
 appear in a Status-Server packet sent to a RADIUS accounting port.

 The Access-Accept MAY contain a Reply-Message or Message-
 Authenticator attribute. It SHOULD NOT contain other attributes.
 The Accounting-Response packets sent in response to a Status-Server
 query SHOULD NOT contain any attributes. As the intent is to
 implement a simple query instead of user authentication or
 accounting, there is little reason to include other attributes in
 either the query or the corresponding response.

 Examples of Status-Server packet flows are given below in Section 6.

3.1. Single Definition for Status-Server

 When sent to a RADIUS accounting port, the contents of the Status-
 Server packets are calculated as described above. That is, even
 though the packets are being sent to an accounting port, they are not
 created using the same method as is used for Accounting-Requests.
 This difference has a number of benefits.

 Having a single definition for Status-Server packets is simpler than
 having different definitions for different destination ports. In
 addition, if we were to define Status-Server as being similar to
 Accounting-Request but containing no attributes, then those packets
 could be trivially forged.

 We therefore define Status-Server consistently, and vary the response
 packets depending on the port to which the request is sent. When
 sent to an authentication port, the response to a Status-Server query
 is an Access-Accept packet. When sent to an accounting port, the
 response to a Status-Server query is an Accounting-Response packet.

4. Implementation Notes

 There are a number of considerations to take into account when
 implementing support for Status-Server. This section describes
 implementation details and requirements for RADIUS clients and
 servers that support Status-Server.

 The following text applies to the authentication and accounting
 ports. We use the generic terms below to simplify the discussion:

 * Request packet

 An Access-Request packet sent to an authentication port or an
 Accounting-Request packet sent to an accounting port.

 * Response packet

 An Access-Accept, Access-Challenge, or Access-Reject packet
 sent from an authentication port or an Accounting-Response
 packet sent from an accounting port.

 We also refer to "client" as the originator of the Status-Server
 packet, and "server" as the receiver of that packet and the
 originator of the Response packet.

 Using generic terms to describe the Status-Server conversations is
 simpler than duplicating the text for authentication and accounting
 packets.

4.1. Client Requirements

 Clients SHOULD permit administrators to globally enable or disable
 the generation of Status-Server packets. The default SHOULD be that
 it is disabled. As it is undesirable to send queries to servers that
 do not support Status-Server, clients SHOULD also have a per-server
 configuration indicating whether or not to enable Status-Server for a
 particular destination. The default SHOULD be that it is disabled.

 The client SHOULD use a watchdog timer, such as is defined in Section
 2.2.1 of [RFC5080], to determine when to send Status-Server packets.

 When Status-Server packets are sent from a client, they MUST NOT be
 retransmitted. Instead, the Identity field MUST be changed every
 time a packet is transmitted. The old packet should be discarded,
 and a new Status-Server packet should be generated and sent, with new
 Identity and Authenticator fields.

 Clients MUST include the Message-Authenticator attribute in all
 Status-Server packets. Failure to do so would mean that the packets
 could be trivially spoofed, leading to potential denial-of-service
 (DoS) attacks. Other attributes SHOULD NOT appear in a Status-Server
 packet, except as outlined below in Section 5. As the intent of the
 packet is a simple status query, there is little reason for any
 additional attributes to appear in Status-Server packets.

 The client MAY increment packet counters as a result of sending a
 Status-Server request or of receiving a Response packet. The client
 MUST NOT perform any other action that is normally performed when it
 receives a Response packet, such as permitting a user to have login
 access to a port.

 Clients MAY send Status-Server requests to the RADIUS destination
 ports from the same source port used to send normal Request packets.
 Other clients MAY choose to send Status-Server requests from a unique
 source port that is not used to send Request packets.

 The above suggestion for a unique source port for Status-Server
 packets aids in matching responses to requests. Since the response
 to a Status-Server packet is an Access-Accept or Accounting-Response
 packet, those responses are indistinguishable from other packets sent
 in response to a Request packet. Therefore, the best way to
 distinguish them from other traffic is to have a unique port.

 A client MAY send a Status-Server packet from a source port also used
 to send Request packets. In that case, the Identifier field MUST be
 unique across all outstanding Request packets for that source port,
 independent of the value of the RADIUS Code field for those
 outstanding requests. Once the client has either received a response
 to the Status-Server packet or determined that the Status-Server
 packet has timed out, it may reuse that Identifier in another packet.

 Robust implementations SHOULD accept any Response packet as a valid
 response to a Status-Server packet, subject to the validation
 requirements defined above for the Response Authenticator. The Code
 field of the packet matters less than the fact that a valid, signed
 response has been received.

 That is, prior to accepting the response as valid, the client should
 check that the Response packet Code field is either Access-Accept (2)
 or Accounting-Response (5). If the Code does not match any of these
 values, the packet MUST be silently discarded. The client MUST then
 validate the Response Authenticator via the algorithm given above in
 Section 3. If the Response Authenticator is not valid, the packet
 MUST be silently discarded. If the Response Authenticator is valid,
 then the packet MUST be deemed to be a valid response from the
 server.

 If the client instead discarded the response because the packet Code
 did not match what it expected, then it could erroneously discard
 valid responses from a server, and mark that server as unresponsive.
 This behavior would affect the stability of a RADIUS network, as
 responsive servers would erroneously be marked as unresponsive. We
 therefore recommend that clients should be liberal in what they
 accept as responses to Status-Server queries.

4.2. Server Requirements

 Servers SHOULD permit administrators to globally enable or disable
 the acceptance of Status-Server packets. The default SHOULD be that
 acceptance is enabled. Servers SHOULD also permit administrators to
 enable or disable acceptance of Status-Server packets on a per-client
 basis. The default SHOULD be that acceptance is enabled.

 Status-Server packets originating from clients that are not permitted
 to send the server Request packets MUST be silently discarded. If a
 server does not support Status-Server packets, or is configured not
 to respond to them, then it MUST silently discard the packet.

We note that [RFC2865], Section 3, defines a number of RADIUS Codes,
but does not make statements about which Codes are valid for
port 1812. In contrast, [RFC2866], Section 3, specifies that only
RADIUS Accounting packets are to be sent to port 1813. This
specification is compatible with [RFC2865], as it uses a known Code
for packets to port 1812. This specification is not compatible with
[RFC2866], as it adds a new Code (Status‑Server) that is valid for
port 1812. However, as the category of [RFC2866] is Informational,
this conflict is acceptable.

 Servers SHOULD silently discard Status-Server packets if they
 determine that a client is sending too many Status-Server requests in
 a particular time period. The method used by a server to make this
 determination is implementation specific and out of scope for this
 specification.

 If a server supports Status-Server packets, and is configured to
 respond to them, and receives a packet from a known client, it MUST
 validate the Message-Authenticator attribute as defined in [RFC3579],
 Section 3.2. Packets failing that validation MUST be silently
 discarded.

 Servers SHOULD NOT otherwise discard Status-Server packets if they
 have recently sent the client a Response packet. The query may have
 originated from an administrator who does not have access to the
 Response packet stream or one who is interested in obtaining
 additional information about the server.

 The server MAY prioritize the handling of Status-Server packets over
 the handling of other requests, subject to the rate limiting
 described above.

 The server MAY decide not to respond to a Status-Server, depending on
 local-site policy. For example, a server that is running but is
 unable to perform its normal activities MAY silently discard Status-
 Server packets. This situation can happen, for example, when a
 server requires access to a database for normal operation, but the
 connection to that database is down. Or, it may happen when the
 accepted load on the server is lower than the offered load.

 Some server implementations require that Access-Request packets be
 accepted only on "authentication" ports (e.g., 1812/udp), and that
 Accounting-Request packets be accepted only on "accounting" ports
 (e.g., 1813/udp). Those implementations SHOULD reply to Status-
 Server packets sent to an "authentication" port with an Access-Accept
 packet and SHOULD reply to Status-Server packets sent to an
 "accounting" port with an Accounting-Response packet.

 Some server implementations accept both Access-Request and
 Accounting-Request packets on the same port, and they do not
 distinguish between "authentication only" ports and "accounting only"
 ports. Those implementations SHOULD reply to Status-Server packets
 with an Access-Accept packet.

 The server MAY increment packet counters as a result of receiving a
 Status-Server packet or sending a Response packet. The server SHOULD
 NOT perform any other action that is normally performed when it
 receives a Request packet, other than sending a Response packet.

4.3. Failover with Status-Server

 A client may wish to "failover" from one proxy to another in the
 event that it does not receive a response to an Access-Request or
 Accounting-Request. In order to determine whether the lack of
 response is due to a problem with the proxy or a downstream server,
 the client can send periodic Status-Server packets to a proxy after
 the lack of a response.

 These packets will help the client determine if the failure was due
 to an issue on the path between the client and proxy or the proxy
 itself, or whether the issue is occurring downstream.

 If no response is received to Status-Server packets, the RADIUS
 client can initiate failover to another proxy. By continuing to send
 Status-Server packets to the original proxy, the RADIUS client can
 determine when it becomes responsive again.

 Once the server has been deemed responsive, normal RADIUS requests
 may be sent to it again. This determination should be made
 separately for each server with which the client has a relationship.
 The same algorithm SHOULD be used for both authentication and
 accounting ports. The client MUST treat each destination (IP, port)
 combination as a unique server for the purposes of this
 determination.

 Clients SHOULD use a retransmission mechanism similar to that given
 in Section 2.2.1 of [RFC5080]. If a reliable transport is used for
 RADIUS, then the watchdog timer algorithm specified in [RFC3539] MUST
 be used.

4.4. Proxy Server Handling of Status-Server

 Many RADIUS servers can act as proxy servers, and can forward
 requests to another RADIUS server. Such servers MUST NOT proxy
 Status-Server packets. The purpose of Status-Server as specified
 here is to permit the client to query the responsiveness of a server
 with which it has a direct relationship. Proxying Status-Server
 queries would negate any usefulness that may be gained by
 implementing support for them.

 Proxy servers MAY be configured to respond to Status-Server queries
 from clients, and they MAY act as clients sending Status-Server
 queries to other servers. However, those activities MUST be
 independent of one another.

4.5. Limitations of Status-Server

 RADIUS servers are commonly used in an environment where Network
 Access Identifiers (NAIs) are used as routing identifiers [RFC4282].
 In this practice, the User-Name attribute is decorated with realm-
 routing information, commonly in the format of "user@realm". Since a
 particular RADIUS server may act as a proxy for more than one realm,
 we need to explain how the behavior defined above in Section 4.3
 affects realm routing.

 The schematic below demonstrates this scenario.

 /‑> RADIUS Proxy P ‑‑‑‑‑> RADIUS Server for Realm A
 / \ /
NAS X
 \ / \
 \‑> RADIUS Proxy S ‑‑‑‑‑> RADIUS Server for Realm B

 That is, the NAS has relationships with two RADIUS Proxies, P and S.
 Each RADIUS proxy has relationships with RADIUS servers for both
 Realm A and Realm B.

 In this scenario, the RADIUS proxies can determine if one or both of
 the RADIUS servers are dead or unreachable. The NAS can determine if
 one or both of the RADIUS proxies are dead or unreachable. There is
 an additional case to consider, however.

 If RADIUS Proxy P cannot reach the RADIUS server for Realm A, but
 RADIUS Proxy S can reach that RADIUS server, then the NAS cannot
 discover this information using the Status-Server queries as outlined
 above. It would therefore be useful for the NAS to know that Realm A
 is reachable from RADIUS Proxy S, as it can then route all requests
 for Realm A to that RADIUS proxy. Without this knowledge, the client
 may route requests to RADIUS Proxy P, where they may be discarded or
 rejected.

 To complicate matters, the behavior of RADIUS Proxies P and S in this
 situation is not well defined. Some implementations simply fail to
 respond to the request, and other implementations respond with an
 Access-Reject. If the implementation fails to respond, then the NAS
 cannot distinguish between the RADIUS proxy being down and the next
 server along the proxy chain being unreachable.

 In the worst case, failures in routing for Realm A may affect users
 of Realm B. For example, if RADIUS Proxy P can reach Realm B but not
 Realm A, and RADIUS Proxy S can reach Realm A but not Realm B, then
 active paths exist to handle all RADIUS requests. However, depending
 on the NAS and RADIUS proxy implementation choices, the NAS may not
 be able to determine to which server requests may be sent in order to
 maintain network stability.

 Unfortunately, this problem cannot be solved by using Status-Server
 requests. A robust solution would involve either a RADIUS routing
 table for the NAI realms or a RADIUS "destination unreachable"
 response to authentication requests. Either solution would not fit
 into the traditional RADIUS model, and both are therefore outside of
 the scope of this specification.

 The problem is discussed here in order to define how best to use
 Status-Server in this situation, rather than to define a new
 solution.

 When a server has responded recently to a request from a client, that
 client MUST mark the server as "responsive". In the above case, a
 RADIUS proxy may be responding to requests destined for Realm A, but
 not responding to requests destined for Realm B. The client
 therefore considers the server to be responsive, as it is receiving
 responses from the server.

 The client will then continue to send requests to the RADIUS proxy
 for destination Realm B, even though the RADIUS proxy cannot route
 the requests to that destination. This failure is a known limitation
 of RADIUS, and can be partially addressed through the use of failover
 in the RADIUS proxies.

 A more realistic situation than the one outlined above is one in
 which each RADIUS proxy also has multiple choices of RADIUS servers
 for a realm, as outlined below.

 /‑> RADIUS Proxy P ‑‑‑‑‑> RADIUS Server P
 / \ /
NAS X
 \ / \
 \‑> RADIUS Proxy S ‑‑‑‑‑> RADIUS Server S

 In this situation, if all participants implement Status-Server as
 defined herein, any one link may be broken, and all requests from the
 NAS will still reach a RADIUS server. If two links are broken at
 different places (i.e., not both links from the NAS), then all
 requests from the NAS will still reach a RADIUS server. In many
 situations where three or more links are broken, requests from the
 NAS may still reach a RADIUS server.

 It is RECOMMENDED, therefore, that implementations desiring the most
 benefit from Status-Server also implement server failover. The
 combination of these two practices will maximize network reliability
 and stability.

4.6. Management Information Base (MIB) Considerations

4.6.1. Interaction with RADIUS Server MIB Modules

 Since Status-Server packets are sent to the defined RADIUS ports,
 they can affect the [RFC4669] and [RFC4671] RADIUS server MIB
 modules. [RFC4669] defines a counter named
 radiusAuthServTotalUnknownTypes that counts "The number of RADIUS
 packets of unknown type that were received". [RFC4671] defines a
 similar counter named radiusAccServTotalUnknownTypes.
 Implementations not supporting Status-Server or implementations that
 are configured not to respond to Status-Server packets MUST use these
 counters to track received Status-Server packets.

 If, however, Status-Server is supported and the server is configured
 to respond as described above, then the counters defined in [RFC4669]
 and [RFC4671] MUST NOT be used to track Status-Server requests or
 responses to those requests. That is, when a server fully implements
 Status-Server, the counters defined in [RFC4669] and [RFC4671] MUST
 be unaffected by the transmission or reception of packets relating to
 Status-Server.

 If a server supports Status-Server and the [RFC4669] or [RFC4671] MIB
 modules, then it SHOULD also support vendor-specific MIB extensions
 dedicated solely to tracking Status-Server requests and responses.
 Any definition of the server MIB modules for Status-Server is outside
 of the scope of this document.

4.6.2. Interaction with RADIUS Client MIB Modules

 Clients implementing Status-Server MUST NOT increment [RFC4668] or
 [RFC4670] counters upon reception of Response packets to Status-
 Server queries. That is, when a server fully implements Status-
 Server, the counters defined in [RFC4668] and [RFC4670] MUST be
 unaffected by the transmission or reception of packets relating to
 Status-Server.

 If an implementation supports Status-Server and the [RFC4668] or
 [RFC4670] MIB modules, then it SHOULD also support vendor-specific
 MIB extensions dedicated solely to tracking Status-Server requests
 and responses. Any definition of the client MIB modules for Status-
 Server is outside of the scope of this document.

5. Table of Attributes

 The following table provides a guide to which attributes may be found
 in Status-Server packets, and in what quantity. Attributes other
 than the ones listed below SHOULD NOT be found in a Status-Server
 packet.

Status‑ Access‑ Accounting‑
Server Accept Response # Attribute

0 0 0 1 User‑Name
0 0 0 2 User‑Password
0 0 0 3 CHAP‑Password
0‑1 0 0 4 NAS‑IP‑Address (Note 1)
0 0+ 0 18 Reply‑Message
0+ 0+ 0+ 26 Vendor‑Specific
0‑1 0 0 32 NAS‑Identifier (Note 1)
0 0 0 79 EAP‑Message
1 0‑1 0‑1 80 Message‑Authenticator
0‑1 0 0 95 NAS‑IPv6‑Address (Note 1)
0 0 0 103‑121 Digest‑*

 Note 1: A Status-Server packet SHOULD contain one of
 (NAS-IP-Address or NAS-IPv6-Address), or NAS-Identifier, or both
 NAS-Identifier and one of (NAS-IP-Address or NAS-IPv6-Address).

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in
 packet.
0‑1 Zero or one instance of this attribute MAY be present in
 packet.
1 Exactly one instance of this attribute MUST be present in
 packet.

6. Examples

 A few examples are presented to illustrate the flow of packets to
 both the authentication and accounting ports. These examples are not
 intended to be exhaustive; many others are possible. Hexadecimal
 dumps of the example packets are given in network byte order, using
 the shared secret "xyzzy5461".

6.1. Minimal Query to Authentication Port

 The NAS sends a Status-Server UDP packet with minimal content to a
 RADIUS server on port 1812.

 The Request Authenticator is a 16-octet random number generated by
 the NAS. Message-Authenticator is included in order to authenticate
 that the request came from a known client.

0c da 00 26 8a 54 f4 68 6f b3 94 c5 28 66 e3 02
18 5d 06 23 50 12 5a 66 5e 2e 1e 84 11 f3 e2 43
82 20 97 c8 4f a3

 1 Code = Status‑Server (12)
 1 ID = 218
 2 Length = 38
16 Request Authenticator

Attributes:
18 Message‑Authenticator (80) = 5a665e2e1e8411f3e243822097c84fa3

 The Response Authenticator is a 16-octet MD5 checksum of the Code
 (2), ID (218), Length (20), the Request Authenticator from above, and
 the shared secret.

 02 da 00 14 ef 0d 55 2a 4b f2 d6 93 ec 2b 6f e8
 b5 41 1d 66

 1 Code = Access‑Accept (2)
 1 ID = 218
 2 Length = 20
16 Request Authenticator

 Attributes:

 None.

6.2. Minimal Query to Accounting Port

 The NAS sends a Status-Server UDP packet with minimal content to a
 RADIUS server on port 1813.

 The Request Authenticator is a 16-octet random number generated by
 the NAS. Message-Authenticator is included in order to authenticate
 that the request came from a known client.

0c b3 00 26 92 5f 6b 66 dd 5f ed 57 1f cb 1d b7
ad 38 82 60 50 12 e8 d6 ea bd a9 10 87 5c d9 1f
da de 26 36 78 58

 1 Code = Status‑Server (12)
 1 ID = 179
 2 Length = 38
16 Request Authenticator

Attributes:
18 Message‑Authenticator (80) = e8d6eabda910875cd91fdade26367858

 The Response Authenticator is a 16-octet MD5 checksum of the Code
 (5), ID (179), Length (20), the Request Authenticator from above, and
 the shared secret.

02 b3 00 14 0f 6f 92 14 5f 10 7e 2f 50 4e 86 0a
48 60 66 9c

 1 Code = Accounting‑Response (5)
 1 ID = 179
 2 Length = 20
16 Request Authenticator

 Attributes:

 None.

6.3. Verbose Query and Response

 The NAS at 192.0.2.16 sends a Status-Server UDP packet to the RADIUS
 server on port 1812.

 The Request Authenticator is a 16-octet random number generated by
 the NAS.

0c 47 00 2c bf 58 de 56 ae 40 8a d3 b7 0c 85 13
f9 b0 3f be 04 06 c0 00 02 10 50 12 85 2d 6f ec
61 e7 ed 74 b8 e3 2d ac 2f 2a 5f b2

 1 Code = Status‑Server (12)
 1 ID = 71
 2 Length = 44
16 Request Authenticator

Attributes:
 6 NAS‑IP‑Address (4) = 192.0.2.16
18 Message‑Authenticator (80) = 852d6fec61e7ed74b8e32dac2f2a5fb2

 The Response Authenticator is a 16-octet MD5 checksum of the Code
 (2), ID (71), Length (52), the Request Authenticator from above, the
 attributes in this reply, and the shared secret.

 The Reply-Message is "RADIUS Server up 2 days, 18:40"

02 47 00 34 46 f4 3e 62 fd 03 54 42 4c bb eb fd
6d 21 4e 06 12 20 52 41 44 49 55 53 20 53 65 72
76 65 72 20 75 70 20 32 20 64 61 79 73 2c 20 31
38 3a 34 30

 1 Code = Access‑Accept (2)
 1 ID = 71
 2 Length = 52
16 Request Authenticator

Attributes:
32 Reply‑Message (18)

7. Security Considerations

 This document defines the Status-Server packet as being similar in
 treatment to the Access-Request packet, and is therefore subject to
 the same security considerations as described in [RFC2865],
 Section 8. Status-Server packets also use the Message-Authenticator
 attribute, and are therefore subject to the same security
 considerations as [RFC3579], Section 4.

 We reiterate that Status-Server packets MUST contain a Message-
 Authenticator attribute. Early implementations supporting Status-
 Server did not enforce this requirement, and were vulnerable to the
 following attacks:

 * Servers not checking the Message-Authenticator attribute could
 respond to Status-Server packets from an attacker, potentially
 enabling a reflected DoS attack onto a real client.

 * Servers not checking the Message-Authenticator attribute could
 be subject to a race condition, where an attacker could see an
 Access-Request packet from a valid client and synthesize a
 Status-Server packet containing the same Request Authenticator.
 If the attacker won the race against the valid client, the
 server could respond with an Access-Accept and potentially
 authorize unwanted service.

 The last attack is similar to a related attack when Access-Request
 packets contain a CHAP-Password but no Message-Authenticator. We
 re-iterate the suggestion of [RFC5080], Section 2.2.2, which proposes
 that all clients send a Message-Authenticator in every Access-Request
 packet, and that all servers have a configuration setting to require
 (or not) that a Message-Authenticator attribute be used in every
 Access-Request packet.

 Failure to include a Message-Authenticator attribute in a Status-
 Server packet means that any RADIUS client or server may be
 vulnerable to the attacks outlined above. For this reason,
 implementations of this specification that fail to require use of the
 Message-Authenticator attribute are NOT RECOMMENDED.

 Where this document differs from [RFC2865] is that it defines a new
 request/response method in RADIUS: the Status-Server request. As
 this use is based on previously described and implemented standards,
 we know of no additional security considerations that arise from the
 use of Status-Server as defined herein.

 Attacks on cryptographic hashes are well known [RFC4270] and getting
 better with time. RADIUS uses the MD5 hash [RFC1321] for packet
 authentication and attribute obfuscation. There are ongoing efforts
 in the IETF to analyze and address these issues for the RADIUS
 protocol.

8. References

8.1. Normative References

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3539]
 Aboba, B. and J. Wood, "Authentication, Authorization and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

 [RFC4086]
 Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106,
 RFC 4086, June 2005.

 [RFC4282]
 Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [RFC5080]
 Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

8.2. Informative References

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC4270]
 Hoffman, P. and B. Schneier, "Attacks on Cryptographic
 Hashes in Internet Protocols", RFC 4270, November 2005.

 [RFC4668]
 Nelson, D., "RADIUS Authentication Client MIB for IPv6",
 RFC 4668, August 2006.

 [RFC4669]
 Nelson, D., "RADIUS Authentication Server MIB for IPv6",
 RFC 4669, August 2006.

 [RFC4670]
 Nelson, D., "RADIUS Accounting Client MIB for IPv6",
 RFC 4670, August 2006.

 [RFC4671]
 Nelson, D., "RADIUS Accounting Server MIB for IPv6",
 RFC 4671, August 2006.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken, with minor edits, from [RFC2865],
 Section 3.

 The author would like to thank Mike McCauley of Open Systems
 Consultants for making a Radiator server available for
 interoperability testing.

 Ignacio Goyret provided valuable feedback on the history and security
 of the Status-Server packet.

Author's Address

Alan DeKok
The FreeRADIUS Server Project
http://freeradius.org

 EMail: aland@freeradius.org

6158 - RADIUS Design Guidelines

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6158

BCP: 158

Category: Best Current Practice

ISSN: 2070-1721

A. DeKok, Ed.

FreeRADIUS

G. Weber

Individual Contributor

March 2011

RADIUS Design Guidelines

Abstract

 This document provides guidelines for the design of attributes used
 by the Remote Authentication Dial In User Service (RADIUS) protocol.
 It is expected that these guidelines will prove useful to authors and
 reviewers of future RADIUS attribute specifications, within the IETF
 as well as other Standards Development Organizations (SDOs).

Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 BCPs is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6158.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	 1.3. Applicability
		 1.3.1. Reviews

	2. Guidelines
	 2.1. Data Types

	 2.2. Vendor Space

	 2.3. Service Definitions and RADIUS

	 2.4. Translation of Vendor Specifications

	3. Rationale
	 3.1. RADIUS Operational Model

	 3.2. Data Model Issues
		 3.2.1. Issues with Definitions of Types

	 3.2.2. Tagging Mechanism

	 3.2.3. Complex Data Types

	 3.2.4. Complex Data Type Exceptions

	 3.3. Vendor Space
		 3.3.1. Interoperability Considerations

	 3.3.2. Vendor Allocations

	 3.3.3. SDO Allocations

	 3.4. Polymorphic Attributes

	4. IANA Considerations

	5. Security Considerations
	 5.1. New Data Types and Complex Attributes

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Design Guidelines Checklist
	 A.1. Types Matching the RADIUS Data Model
	 A.1.1. Transport of Basic Data Types

	 A.1.2. Transport of Authentication and Security Data

	 A.1.3. Opaque Data Types

	 A.1.4. Pre-existing Data Types

	 A.2. Improper Data Types
	 A.2.1. Simple Data Types

	 A.2.2. More Complex Data Types

	 A.3. Vendor-Specific Formats

	 A.4. Changes to the RADIUS Operational Model

	 A.5. Allocation of Attributes

	Appendix B. Complex Attributes
	 B.1. CHAP-Password

	 B.2. CHAP-Challenge

	 B.3. Tunnel-Password

	 B.4. ARAP-Password

	 B.5. ARAP-Features

	 B.6. Connect-Info

	 B.7. Framed-IPv6-Prefix

	 B.8. Egress-VLANID

	 B.9. Egress-VLAN-Name

	 B.10. Digest-*

	Acknowledgments

1. Introduction

 This document provides guidelines for the design of Remote
 Authentication Dial In User Service (RADIUS) attributes within the
 IETF as well as within other Standards Development Organizations
 (SDOs). By articulating RADIUS design guidelines, it is hoped that
 this document will encourage the development and publication of high-
 quality RADIUS attribute specifications.

 However, the advice in this document will not be helpful unless it is
 put to use. As with "Guidelines for Authors and Reviewers of MIB
 Documents" [RFC4181], it is expected that authors will check their
 document against the guidelines in this document prior to publication
 or requesting review (such as an "Expert Review" described in
 [RFC3575]). Similarly, it is expected that this document will be
 used by reviewers (such as WG participants or the Authentication,
 Authorization, and Accounting (AAA) Doctors [DOCTORS]), resulting in
 an improvement in the consistency of reviews.

 In order to meet these objectives, this document needs to cover not
 only the science of attribute design but also the art. Therefore, in
 addition to covering the most frequently encountered issues, this
 document explains some of the considerations motivating the
 guidelines. These considerations include complexity trade-offs that
 make it difficult to provide "hard and fast" rules for attribute
 design. This document explains those trade-offs through reviews of
 current attribute usage.

 The rest of the document is organized as follows. Section 1
 discusses the applicability of the guidelines and defines a
 recommended review process for RADIUS specifications. Section 2
 defines the design guidelines in terms of what is "RECOMMENDED" and
 "NOT RECOMMENDED". Section 3 gives a longer explanation of the
 rationale behind the guidelines given in the previous section.
 Appendix A repeats the guidelines in a "checklist" format. Appendix
 B discusses previously defined attributes that do not follow the
 guidelines.

 Authors of new RADIUS specifications can be compliant with the design
 guidelines by working through the checklists given in Appendix A.
 Reviewers of RADIUS specifications are expected to be familiar with
 the entire document.

1.1. Terminology

 This document uses the following terms:

 Network Access Server (NAS)

 A device that provides an access service for a user to a network.

 RADIUS server

 A RADIUS authentication, authorization, and accounting (AAA)
 server is an entity that provides one or more AAA services to a
 NAS.

 Standard space

 Codes in the RADIUS Attribute Type Space that are allocated by
 IANA and that follow the format defined in Section 5 of RFC 2865
 [RFC2865].

 Vendor space

 The contents of the Vendor-Specific Attribute (VSA), as defined in
 [RFC2865], Section 5.26. These attributes provide a unique
 attribute type space in the "String" field for each vendor
 (identified by the Vendor-Type field), which they can self-
 allocate.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Applicability

 The advice in this document applies to RADIUS attributes used to
 encode service-provisioning, authentication, or accounting data based
 on the attribute encodings and data formats defined in RFC 2865
 [RFC2865], RFC 2866 [RFC2866], and subsequent RADIUS RFCs.

 Since this document represents a Best Current Practice, it does not
 update or deprecate existing standards. As a result, uses of the
 terms "MUST" and "MUST NOT" are limited to requirements already
 present in existing documents.

 It is RECOMMENDED that these guidelines be followed for all new
 RADIUS specifications, whether they originate from a vendor, an SDO,
 or the IETF. Doing so will ensure the widest possible applicability
 and interoperability of the specifications, while requiring minimal
 changes to existing systems. In particular, it is expected that
 RADIUS specifications requesting allocation within the standard space
 will follow these guidelines and will explain why this is not
 possible if they cannot.

 However, there are situations in which vendors or SDOs can choose not
 to follow these guidelines without major consequences. As noted in
 Section 5.26 of [RFC2865], Vendor-Specific Attributes (VSAs) are
 "available to allow vendors to support their own extended Attributes
 not suitable for general usage". Where vendors or SDOs develop
 specifications "not suitable for general usage", limited
 interoperability and inability to use existing implementations may be
 acceptable, and, in these situations, vendors and SDOs MAY choose not
 to conform to these guidelines.

 Note that the RADEXT WG is currently (as of 2011) involved in
 developing updates to RADIUS. Those updates will provide their own
 usage guidelines that may modify some of the guidelines defined here,
 such as defining new data types, practices, etc.

 RADIUS protocol changes, or specification of attributes (such as
 Service-Type), that can, in effect, provide new RADIUS commands
 require greater expertise and deeper review, as do changes to the
 RADIUS operational model. As a result, such changes are outside the
 scope of this document and MUST NOT be undertaken outside the IETF.

1.3.1. Reviews

 For specifications utilizing attributes within the standard space,
 conformance with the design guidelines in this document is expected
 unless a good case can be made for an exception. Reviewers SHOULD
 use the design guidelines as a review checklist.

 While not required, IETF review may also be beneficial for
 specifications utilizing the vendor space. Experience has shown that
 attributes not originally designed for general usage can subsequently
 garner wide-spread deployment. An example is the Vendor-Specific
 Attributes defined in [RFC2548], which have been widely implemented
 within IEEE 802.11 Access Points.

 In order to assist in the development of specifications conforming to
 these guidelines, authors can request review by sending an email to
 the AAA Doctors [DOCTORS] or equivalent mailing list. The IETF
 Operations & Management Area Directors will then arrange for the
 review to be completed and posted to the AAA Doctors mailing list
 [DOCTORS], RADEXT WG mailing list, or other IETF mailing lists.
 Since reviews are handled by volunteers, responses are provided on a
 best-effort basis, with no service-level guarantees. Authors are
 encouraged to seek review as early as possible, so as to avoid
 potential delays.

 As reviewers require access to the specification, vendors and SDOs
 are encouraged to make it publicly available. Where the RADIUS
 specification is embedded within a larger document that cannot be
 made public, the RADIUS attribute and value definitions can be made
 available on a public web site or can be published as an
 Informational RFC, as with [RFC4679].

 The review process requires neither allocation of attributes within
 the standard space nor publication of an RFC. Requiring SDOs or
 vendors to rehost VSAs into the standard space solely for the purpose
 of obtaining review would put pressure on the standard space and may
 be harmful to interoperability since it would create two ways to
 provision the same service. Rehosting may also require changes to
 the RADIUS data model, which will affect implementations that do not
 intend to support the SDO or vendor specifications.

 Similarly, vendors are encouraged to make their specifications
 publicly available, for maximum interoperability. However, it is not
 necessary for a vendor to request publication of a VSA specification
 as an RFC.

2. Guidelines

 The RADIUS protocol as defined in [RFC2865] and [RFC2866] uses
 elements known as attributes in order to represent authentication,
 authorization, and accounting data.

 Unlike Simple Network Management Protocol (SNMP), first defined in
 [RFC1157] and [RFC1155], RADIUS does not define a formal data
 definition language. The data type of RADIUS attributes is not
 transported on the wire. Rather, the data type of a RADIUS attribute
 is fixed when an attribute is defined. Based on the RADIUS attribute
 type code, RADIUS clients and servers can determine the data type
 based on pre-configured entries within a data dictionary.

 To explain the implications of this early RADIUS design decision, we
 distinguish two kinds of data types, namely "basic" and "complex".
 Basic data types use one of the existing RADIUS data types as defined
 in Section 2.1, encapsulated in a [RFC2865] RADIUS attribute or in a
 [RFC2865] RADIUS VSA. All other data formats are "complex types".

 RADIUS attributes can be classified into one of three broad
 categories:

 * Attributes that are of interest to a single vendor, e.g., for a
 product or product line. Minimal cross-vendor interoperability
 is needed.

 Vendor-Specific Attributes (VSAs) are appropriate for use in
 this situation. Code-point allocation is managed by the vendor
 with the vendor space defined by their Private Enterprise Number
 (PEN), as given in the Vendor-Id field.

 * Attributes that are of interest to an industry segment, where an
 SDO defines the attributes for that industry. Multi-vendor
 interoperability within an industry segment is expected.

 Vendor-Specific Attributes (VSAs) MUST be used. Code-point
 allocation is managed by the SDO with the vendor space defined
 by the SDO's PEN rather than the PEN of an individual vendor.

 * Attributes that are of broad interest to the Internet community.
 Multi-vendor interoperability is expected.

 Attributes within the standard space are appropriate for this
 purpose and are allocated via IANA as described in [RFC3575].
 Since the standard space represents a finite resource, and is
 the only attribute space available for use by IETF working
 groups, vendors, and SDOs are encouraged to utilize the vendor
 space rather than request allocation of attributes from the
 standard space. Usage of attribute type codes reserved for
 standard attributes is considered antisocial behavior and is
 strongly discouraged.

2.1. Data Types

 RADIUS defines a limited set of data types, defined as "basic data
 types". The following data qualifies as "basic data types":

 * 32-bit unsigned integer in network byte order.

 * Enumerated data types, represented as a 32-bit unsigned integer
 with a list of name to value mappings (e.g., Service-Type).

 * IPv4 address in network byte order.

 * Time as a 32-bit unsigned value in network byte order and in
 seconds since 00:00:00 UTC, January 1, 1970.

 * IPv6 address in network byte order.

 * Interface-Id (8-octet string in network byte order).

 * IPv6 prefix.

 * String (i.e., binary data), totaling 253 octets or less in
 length. This includes the opaque encapsulation of data
 structures defined outside of RADIUS. See also Appendix A.1.3
 for additional discussion.

 * UTF-8 text [RFC3629], totaling 253 octets or less in length.

 Note that the length limitations for VSAs of type String and Text are
 less than 253 octets, due to the additional overhead of the Vendor-
 Specific encoding.

 The following data also qualifies as "basic data types":

 * Attributes grouped into a logical container using the [RFC2868]
 tagging mechanism. This approach is NOT RECOMMENDED (see
 Section 3.2.2) but is permissible where the alternatives are
 worse.

 * Attributes requiring the transport of more than 253 octets of
 Text or String data. This includes the opaque encapsulation of
 data structures defined outside of RADIUS, e.g., EAP-Message.

 All other data formats (including nested attributes) are defined to
 be "complex data types" and are NOT RECOMMENDED for normal use.
 Complex data types MAY be used in situations where they reduce
 complexity in non-RADIUS systems or where using the basic data types
 would be awkward (such as where grouping would be required in order
 to link related attributes). Since there are no "hard and fast"
 rules for where complexity is best located, each situation has to be
 decided on a case-by-case basis. Examples of this trade-off are
 discussed in Appendix B. Where a complex data type is selected, an
 explanation SHOULD be offered as to why this was necessary.

2.2. Vendor Space

 The Vendor space is defined to be the contents of the Vendor-Specific
 Attribute ([RFC2865], Section 5.26) where the Vendor-Id defines the
 space for a particular vendor, and the contents of the "String" field
 define a unique attribute type space for that vendor. As discussed
 there, it is intended for vendors and SDOs to support their own
 attributes not suitable for general use.

 While the encoding of attributes within the vendor space is under the
 control of vendors and SDOs, following the guidelines described here
 is advantageous since it enables maximum interoperability with
 minimal changes to existing systems.

 For example, RADIUS server support for new attributes using "basic
 data types" can typically be accomplished by editing a RADIUS
 dictionary, whereas "complex data types" typically require RADIUS
 server code changes, which can add complexity and delays in
 implementation.

 Vendor RADIUS Attribute specifications SHOULD self-allocate
 attributes from the vendor space rather than request an allocation
 from within the standard space.

 VSA encodings that do not follow the [RFC2865], Section 5.26 encoding
 scheme are NOT RECOMMENDED. Although [RFC2865] does not mandate it,
 implementations commonly assume that the Vendor Id can be used as a
 key to determine the on-the-wire encoding of a VSA. Vendors
 therefore SHOULD NOT use multiple encodings for VSAs that are
 associated with a particular Vendor Id. A vendor wishing to use
 multiple VSA encodings SHOULD request one Vendor Id for each VSA
 encoding that they will use.

2.3. Service Definitions and RADIUS

 RADIUS specifications define how an existing service or protocol can
 be provisioned using RADIUS, usually via the Service-Type Attribute.
 Therefore, it is expected that a RADIUS attribute specification will
 reference documents defining the protocol or service to be
 provisioned. Within the IETF, a RADIUS attribute specification
 SHOULD NOT be used to define the protocol or service being
 provisioned. New services using RADIUS for provisioning SHOULD be
 defined elsewhere and referenced in the RADIUS specification.

 New attributes, or new values of existing attributes, SHOULD NOT be
 used to define new RADIUS commands. RADIUS attributes are intended
 to:

 * authenticate users

 * authorize users (i.e., service provisioning or changes to
 provisioning)

 * account for user activity (i.e., logging of session activity)

 Requirements for allocation of new commands (i.e., the Code field in
 the packet header) and new attributes within the standard space are
 described in [RFC3575], Section 2.1.

2.4. Translation of Vendor Specifications

 [RFC2865], Section 5.26 defines Vendor-Specific Attributes as
 follows:

 This Attribute is available to allow vendors to support their own
 extended Attributes not suitable for general usage. It MUST NOT
 affect the operation of the RADIUS protocol.

 Servers not equipped to interpret the vendor-specific information
 sent by a client MUST ignore it (although it may be reported).
 Clients which do not receive desired vendor-specific information
 SHOULD make an attempt to operate without it, although they may do
 so (and report they are doing so) in a degraded mode.

 The limitation on changes to the RADIUS protocol effectively
 prohibits VSAs from changing fundamental aspects of RADIUS operation,
 such as modifying RADIUS packet sequences or adding new commands.
 However, the requirement for clients and servers to be able to
 operate in the absence of VSAs has proven to be less of a constraint
 since it is still possible for a RADIUS client and server to mutually
 indicate support for VSAs, after which behavior expectations can be
 reset.

 Therefore, RFC 2865 provides considerable latitude for development of
 new attributes within the vendor space, while prohibiting development
 of protocol variants. This flexibility implies that RADIUS
 attributes can often be developed within the vendor space without
 loss (and possibly even with gain) in functionality.

 As a result, translation of RADIUS attributes developed within the
 vendor space into the standard space may provide only modest
 benefits, while accelerating the exhaustion of the standard space.
 We do not expect that all RADIUS attribute specifications requiring
 interoperability will be developed within the IETF, and allocated
 from the standard space. A more scalable approach is to recognize
 the flexibility of the vendor space, while working toward
 improvements in the quality and availability of RADIUS attribute
 specifications, regardless of where they are developed.

 It is therefore NOT RECOMMENDED that specifications intended solely
 for use by a vendor or SDO be translated into the standard space.

3. Rationale

 This section outlines the rationale behind the above recommendations.

3.1. RADIUS Operational Model

 The RADIUS operational model includes several assumptions:

 * The RADIUS protocol is stateless.

 * Provisioning of services is not possible within an Access-Reject
 or Disconnect-Request.

 * There is a distinction between authorization checks and user
 authentication.

 * The protocol provides for authentication and integrity
 protection of packets.

 * The RADIUS protocol is a Request/Response protocol.

 * The protocol defines packet length restrictions.

 While RADIUS server implementations may keep state, the RADIUS
 protocol is stateless, although information may be passed from one
 protocol transaction to another via the State Attribute. As a
 result, documents that require stateful protocol behavior without use
 of the State Attribute are inherently incompatible with RADIUS as
 defined in [RFC2865] and MUST be redesigned. See [RFC5080], Section
 2.1.1 for additional discussion surrounding the use of the State
 Attribute.

 As noted in [RFC5080], Section 2.6, the intent of an Access-Reject is
 to deny access to the requested service. As a result, RADIUS does
 not allow the provisioning of services within an Access-Reject or
 Disconnect-Request. Documents that include provisioning of services
 within an Access-Reject or Disconnect-Request are inherently
 incompatible with RADIUS and need to be redesigned.

 [RFC5176], Section 3 notes the following:

 A Disconnect-Request MUST contain only NAS and session
 identification attributes. If other attributes are included in a
 Disconnect-Request, implementations MUST send a Disconnect-NAK; an
 Error-Cause Attribute with value "Unsupported Attribute" MAY be
 included.

 As a result, documents that include provisioning of services within a
 Disconnect-Request are inherently incompatible with RADIUS and need
 to be redesigned.

 As noted in [RFC5080], Section 2.1.1, a RADIUS Access-Request may not
 contain user authentication attributes or a State Attribute linking
 the Access-Request to an earlier user authentication. Such an
 Access-Request, known as an authorization check, provides no
 assurance that it corresponds to a live user. RADIUS specifications
 defining attributes containing confidential information (such as
 Tunnel-Password) should be careful to prohibit such attributes from
 being returned in response to an authorization check. Also,
 [RFC5080], Section 2.1.1 notes that authentication mechanisms need to
 tie a sequence of Access-Request/Access-Challenge packets together
 into one authentication session. The State Attribute is RECOMMENDED
 for this purpose.

 While [RFC2865] did not require authentication and integrity
 protection of RADIUS Access-Request packets, subsequent
 authentication mechanism specifications, such as RADIUS/EAP [RFC3579]
 and Digest Authentication [RFC5090], have mandated authentication and
 integrity protection for certain RADIUS packets. [RFC5080], Section
 2.1.1 makes this behavior RECOMMENDED for all Access-Request packets,
 including Access-Request packets performing authorization checks. It
 is expected that specifications for new RADIUS authentication
 mechanisms will continue this practice.

 The RADIUS protocol as defined in [RFC2865] is a request-response
 protocol spoken between RADIUS clients and servers. A single RADIUS
 request packet ([RFC2865], [RFC2866], or [RFC5176]) will solicit in
 response at most a single response packet, sent to the IP address and
 port of the RADIUS client that originated the request. Changes to
 this model are likely to require major revisions to existing
 implementations, and this practice is NOT RECOMMENDED.

 The Length field in the RADIUS packet header is defined in [RFC2865]
 Section 3. It is noted there that the maximum length of a RADIUS
 packet is 4096 octets. As a result, attribute designers SHOULD NOT
 assume that a RADIUS implementation can successfully process RADIUS
 packets larger than 4096 octets.

 Even when packets are less than 4096 octets, they may be larger than
 the Path Maximum Transmission Unit (PMTU). Any packet larger than
 the PMTU will be fragmented, making communications more brittle as
 firewalls and filtering devices often discard fragments. Transport
 of fragmented UDP packets appears to be a poorly tested code path on
 network devices. Some devices appear to be incapable of transporting
 fragmented UDP packets, making it difficult to deploy RADIUS in a
 network where those devices are deployed. We RECOMMEND that RADIUS
 messages be kept as small possible.

 If a situation is envisaged where it may be necessary to carry
 authentication, authorization, or accounting data in a packet larger
 than 4096 octets, then one of the following approaches is
 RECOMMENDED:

 1. Utilization of a sequence of packets.

 For RADIUS authentication, a sequence of Access-
 Request/Access-Challenge packets would be used. For this to
 be feasible, attribute designers need to enable inclusion of
 attributes that can consume considerable space within Access-
 Challenge packets. To maintain compatibility with existing
 NASes, either the use of Access-Challenge packets needs to be
 permissible (as with RADIUS/EAP, defined in [RFC3579]) or
 support for receipt of an Access-Challenge needs to be
 indicated by the NAS (as in RADIUS Location [RFC5580]). Also,
 the specification needs to clearly describe how attribute
 splitting is to be signaled and how attributes included within
 the sequence are to be interpreted, without requiring stateful
 operation. Unfortunately, previous specifications have not
 always exhibited the required foresight. For example, even
 though very large filter rules are conceivable, the NAS-
 Filter-Rule Attribute defined in [RFC4849] is not permitted in
 an Access-Challenge packet, nor is a mechanism specified to
 allow a set of NAS-Filter-Rule Attributes to be split across
 an Access-Request/Access-Challenge sequence.

 In the case of RADIUS accounting, transporting large amounts
 of data would require a sequence of Accounting-Request
 packets. This is a non-trivial change to RADIUS, since RADIUS
 accounting clients would need to be modified to split the
 attribute stream across multiple Accounting-Requests, and
 billing servers would need to be modified to reassemble and
 interpret the attribute stream.

 2. Utilization of names rather than values.

 Where an attribute relates to a policy that could conceivably
 be pre-provisioned on the NAS, then the name of the pre-
 provisioned policy can be transmitted in an attribute rather
 than the policy itself, which could be quite large. An
 example of this is the Filter-Id Attribute defined in
 [RFC2865], Section 5.11, which enables a set of pre-
 provisioned filter rules to be referenced by name.

3. Utilization of Packetization Layer Path MTU Discovery
 techniques, as specified in [RFC4821].
 As a last resort, where the above techniques cannot be made to
 work, it may be possible to apply the techniques described in
 [RFC4821] to discover the maximum supported RADIUS packet size
 on the path between a RADIUS client and a home server. While
 such an approach can avoid the complexity of utilization of a
 sequence of packets, dynamic discovery is likely to be time
 consuming and cannot be guaranteed to work with existing
 RADIUS implementations. As a result, this technique is not
 generally applicable.

3.2. Data Model Issues

 While [RFC2865], Section 5 defines basic data types, later
 specifications did not follow this practice. This problem has led
 implementations to define their own names for data types, resulting
 in non-standard names for those types.

 In addition, the number of vendors and SDOs creating new attributes
 within the vendor space has grown, and this has led to some
 divergence in approaches to RADIUS attribute design. For example,
 vendors and SDOs have evolved the data model to support functions
 such as new data types along with attribute grouping and attribute
 fragmentation, with different groups taking different approaches.
 These approaches are often incompatible, leading to additional
 complexity in RADIUS implementations.

 In order to avoid repeating old mistakes, this section describes the
 history of the RADIUS data model and attempts to codify existing
 practices.

3.2.1. Issues with Definitions of Types

 [RFC2865], Section 5 explicitly defines five data types: text,
 string, address, integer, and time. Both the names and
 interpretations of the types are given.

 Subsequent RADIUS specifications defined attributes by using type
 names not defined in [RFC2865], without defining the new names as
 done in [RFC2865]. They did not consistently indicate the format of
 the value field using the same conventions as [RFC2865]. As a
 result, the data type is ambiguous in some cases and may not be
 consistent among different implementations.

 It is out of the scope of this document to resolve all potential
 ambiguities within existing RADIUS specifications. However, in order
 to prevent future ambiguities, it is RECOMMENDED that future RADIUS
 attribute specifications explicitly define newly created data types
 at the beginning of the document and indicate clearly the data type
 to be used for each attribute.

 For example, [RFC3162] utilizes, but does not explicitly define, a
 type that encapsulates an IPv6 address (Sections 2.1 and 2.4) and
 another type that encapsulates an IPv6 prefix (Section 2.3). The
 IPv6 address attributes confusingly are referenced as type "Address"
 in the document. This is a similar name as the "address" type
 defined in [RFC2865], which was defined to refer solely to IPv4
 addresses.

 While the Framed-Interface-Id Attribute defined in [RFC3162], Section
 2.2 included a value field of 8 octets, the data type was not
 explicitly indicated; therefore, there is controversy over whether
 the format of the data was intended to be an 8-octet String or
 whether a special Interface-Id type was intended.

 Given that attributes encapsulating an IPv6 address and an IPv6
 prefix are already in use, it is RECOMMENDED that RADIUS server
 implementations include support for these as basic types, in addition
 to the types defined in [RFC2865]. Where the intent is to represent
 a specific IPv6 address, an "IPv6 address" type SHOULD be used.
 Although it is possible to use an "IPv6 Prefix" type with a prefix
 length of 128 to represent an IPv6 address, this usage is NOT
 RECOMMENDED. Implementations supporting the Framed-Interface-Id
 Attribute may select a data type of their choosing (most likely an
 8-octet String or a special "Interface Id" data type).

 It is worth noting that since RADIUS only supports unsigned integers
 of 32 bits, attributes using signed integer data types or unsigned
 integer types of other sizes will require code changes and SHOULD be
 avoided.

 For [RFC2865] RADIUS VSAs, the length limitation of the String and
 Text types is 247 octets instead of 253 octets, due to the additional
 overhead of the Vendor-Specific Attribute.

3.2.2. Tagging Mechanism

 [RFC2868] defines an attribute grouping mechanism based on the use of
 a one-octet tag value. Tunnel attributes that refer to the same
 tunnel are grouped together by virtue of using the same tag value.

 This tagging mechanism has some drawbacks. There are a limited
 number of unique tags (31). The tags are not well suited for use
 with arbitrary binary data values because it is not always possible
 to tell if the first byte after the Length is the tag or the first
 byte of the untagged value (assuming the tag is optional).

 Other limitations of the tagging mechanism are that when integer
 values are tagged, the value portion is reduced to three bytes,
 meaning only 24-bit numbers can be represented. The tagging
 mechanism does not offer an ability to create nested groups of
 attributes. Some RADIUS implementations treat tagged attributes as
 having the additional data types tagged-string and tagged-integer.
 These types increase the complexity of implementing and managing
 RADIUS systems.

 For these reasons, the tagging scheme described in RFC 2868 is NOT
 RECOMMENDED for use as a generic grouping mechanism.

3.2.3. Complex Data Types

 As described in this section, the creation of complex types can lead
 to interoperability and deployment issues, so they need to be
 introduced with care. For example, the RADIUS attribute encoding is
 summarized in [RFC2865]:

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
+‑
| Type | Length | Value ...
+‑

 However, some standard attributes pack multiple sub-fields into the
 "Value" field, resulting in the creation a non-standard, i.e.,
 complex, type. Separating these sub-fields into different
 attributes, each with its own type and length, would have the
 following benefits:

 * When manual data entry is required, it is easier for an
 administrator to enter the data as well-known types rather than
 as complex structures.

 * It enables additional error checking by leveraging the parsing
 and validation routines for well-known types.

 * It simplifies implementations by eliminating special-case,
 attribute-specific parsing.

 One of the fundamental goals of the RADIUS protocol design was to
 allow RADIUS servers to be configured to support new attributes,
 without requiring server code changes. RADIUS server implementations
 typically provide support for basic data types and define attributes
 in a data dictionary. This architecture enables a new attribute to
 be supported by the addition of a dictionary entry, without requiring
 other RADIUS server code changes.

 Code changes can also be required in policy management systems and in
 the RADIUS server's receive path. These changes are due to
 limitations in RADIUS server policy languages, which commonly provide
 for limited operations (such as comparisons or arithmetic operations)
 on the existing data types. Many existing RADIUS policy languages
 typically are not capable of parsing sub-elements or providing more
 sophisticated matching functionality.

 On the RADIUS client, code changes are typically required in order to
 implement a new attribute. The RADIUS client typically has to
 compose the attribute dynamically when sending. When receiving, a
 RADIUS client needs to be able to parse the attribute and carry out
 the requested service. As a result, a detailed understanding of the
 new attribute is required on clients, and data dictionaries are less
 useful on clients than on servers.

 Given these limitations, the introduction of new types can require
 code changes on the RADIUS server, which would be unnecessary if
 basic data types had been used instead. In addition, if "ad hoc"
 types are used, attribute-specific parsing is required, which means
 more complex software to develop and maintain. More complexity can
 lead to more error-prone implementations, interoperability problems,
 and even security vulnerabilities. These issues can increase costs
 to network administrators as well as reduce reliability and introduce
 deployment barriers.

3.2.4. Complex Data Type Exceptions

 As described in Section 2.1, the introduction of complex data types
 is discouraged where viable alternatives are available. A potential
 exception is attributes that inherently require code changes on both
 the client and server. For example, as described in Appendix B,
 complex attributes have been used in situations involving
 authentication and security attributes, which need to be dynamically
 computed and verified. Supporting this functionality requires code
 changes on both the RADIUS client and server, regardless of the
 attribute format. As a result, in most cases, the use of complex
 attributes to represent these methods is acceptable and does not
 create additional interoperability or deployment issues.

 Another exception to the recommendation against complex types is for
 types that can be treated as opaque data by the RADIUS server. For
 example, the EAP-Message Attribute, defined in [RFC3579], Section
 3.1, contains a complex data type that is an Extensible
 Authentication Protocol (EAP) packet. Since these complex types do
 not need to be parsed by the RADIUS server, the issues arising from
 server limitations do not arise. Similarly, since attributes of
 these complex types can be configured on the server using a data type
 of String, dictionary limitations are also not encountered. Appendix
 A.1 includes a series of checklists that may be used to analyze a
 design for RECOMMENDED and NOT RECOMMENDED behavior in relation to
 complex types.

 If the RADIUS Server simply passes the contents of an attribute to
 some non-RADIUS portion of the network, then the data is opaque to
 RADIUS and SHOULD be defined to be of type String. A concrete way of
 judging this requirement is whether or not the attribute definition
 in the RADIUS document contains delineated fields for sub-parts of
 the data. If those fields need to be delineated in RADIUS, then the
 data is not opaque to RADIUS, and it SHOULD be separated into
 individual RADIUS attributes.

 An examination of existing RADIUS RFCs discloses a number of complex
 attributes that have already been defined. Appendix B includes a
 listing of complex attributes used within [RFC2865], [RFC2868],
 [RFC2869], [RFC3162], [RFC4818], and [RFC4675]. The discussion of
 these attributes includes reasons why a complex type is acceptable or
 suggestions for how the attribute could have been defined to follow
 the RADIUS data model.

 In other cases, the data in the complex type are described textually
 in a specification. This is possible because the data types are not
 sent within the attributes but are a matter for endpoint
 interpretation. An implementation can define additional data types
 and use these data types today by matching them to the attribute's
 textual definition.

3.3. Vendor Space

 The usage model for RADIUS VSAs is described in [RFC2865], Section
 6.2:

 Note that RADIUS defines a mechanism for Vendor-Specific
 extensions (Attribute 26) and the use of that should be encouraged
 instead of allocation of global attribute types, for functions
 specific only to one vendor's implementation of RADIUS, where no
 interoperability is deemed useful.

 Nevertheless, many new attributes have been defined in the vendor
 space in situations where interoperability is not only useful but is
 required. For example, SDOs outside the IETF (such as the IEEE 802
 and the 3rd Generation Partnership Project (3GPP)) have been assigned
 Vendor-Ids, enabling them to define their own VSA encoding and assign
 Vendor types within their own vendor space, as defined by their
 unique Vendor-Id.

 The use of VSAs by SDOs outside the IETF has gained in popularity for
 several reasons:

 Efficiency

 As with SNMP, which defines an "Enterprise" Object Identifier
 (OID) space suitable for use by vendors as well as other SDOs, the
 definition of Vendor-Specific Attributes has become a common
 occurrence as part of standards activity outside the IETF. For
 reasons of efficiency, it is easiest if the RADIUS attributes
 required to manage a standard are developed within the same SDO
 that develops the standard itself. As noted in "Transferring MIB
 Work from IETF Bridge MIB WG to IEEE 802.1 WG" [RFC4663], today
 few vendors are willing to simultaneously fund individuals to
 participate within an SDO to complete a standard as well as to
 participate in the IETF in order to complete the associated RADIUS
 attributes specification.

 Attribute scarcity

 The standard space is limited to 255 unique attributes. Of these,
 only about half remain available for allocation. In the vendor
 space, the number of attributes available is a function of the
 encoding of the attribute (the size of the Vendor type field).

3.3.1. Interoperability Considerations

 Vendors and SDOs are reminded that the standard space and the
 enumerated value space for enumerated attributes are reserved for
 allocation through work published via the IETF, as noted in
 [RFC3575], Section 2.1. In the past, some vendors and SDOs have
 assigned vendor-specific meaning to "unused" values from the standard
 space. This process results in interoperability issues and is
 counterproductive. Similarly, the vendor-specific enumeration
 practice discussed in [RFC2882], Section 2.2.1 is NOT RECOMMENDED.

 If it is not possible to follow the IETF process, vendors and SDOs
 SHOULD self-allocate an attribute, which MUST be in their own vendor
 space as defined by their unique Vendor-Id, as discussed in Sections
 3.3.2 and 3.3.3.

 The design and specification of VSAs for multi-vendor usage SHOULD be
 undertaken with the same level of care as standard RADIUS attributes.
 Specifically, the provisions of this document that apply to standard
 RADIUS attributes also apply to VSAs for multi-vendor usage.

3.3.2. Vendor Allocations

 As noted in [RFC3575], Section 2.1, vendors are encouraged to utilize
 VSAs to define functions "specific only to one vendor's
 implementation of RADIUS, where no interoperability is deemed useful.
 For functions specific only to one vendor's implementation of RADIUS,
 the use of that should be encouraged instead of the allocation of
 global attribute types".

 The recommendation for vendors to allocate attributes from a vendor
 space rather than via the IETF process is a recognition that vendors
 desire to assert change control over their own RADIUS specifications.
 This change control can be obtained by requesting a PEN from the
 Internet Assigned Number Authority (IANA) for use as a Vendor-Id
 within a Vendor-Specific Attribute. The vendor can then allocate
 attributes within the vendor space defined by that Vendor-Id at their
 sole discretion. Similarly, the use of data types (complex or
 otherwise) within that vendor space is solely under the discretion of
 the vendor.

3.3.3. SDO Allocations

 Given the expanded utilization of RADIUS, it has become apparent that
 requiring SDOs to accomplish all their RADIUS work within the IETF is
 inherently inefficient and unscalable. It is therefore RECOMMENDED
 that SDO RADIUS Attribute specifications allocate attributes from the
 vendor space rather than request an allocation from the RADIUS
 standard space for attributes matching any of the following criteria:

 * Attributes relying on data types not defined within RADIUS

 * Attributes intended primarily for use within an SDO

 * Attributes intended primarily for use within a group of SDOs

 Any new RADIUS attributes or values intended for interoperable use
 across a broad spectrum of the Internet community SHOULD follow the
 allocation process defined in [RFC3575].

 The recommendation for SDOs to allocate attributes from a vendor
 space rather than via the IETF process is a recognition that SDOs
 desire to assert change control over their own RADIUS specifications.
 This change control can be obtained by requesting a PEN from the
 Internet Assigned Number Authority (IANA) for use as a Vendor-Id
 within a Vendor-Specific Attribute. The SDO can then allocate
 attributes within the vendor space defined by that Vendor-Id at their
 sole discretion. Similarly, the use of data types (complex or
 otherwise) within that vendor space is solely under the discretion of
 the SDO.

3.4. Polymorphic Attributes

 A polymorphic attribute is one whose format or meaning is dynamic.
 For example, rather than using a fixed data format, an attribute's
 format might change based on the contents of another attribute. Or,
 the meaning of an attribute may depend on earlier packets in a
 sequence.

 RADIUS server dictionary entries are typically static, enabling the
 user to enter the contents of an attribute without support for
 changing the format based on dynamic conditions. However, this
 limitation on static types does not prevent implementations from
 implementing policies that return different attributes based on the
 contents of received attributes; this is a common feature of existing
 RADIUS implementations.

 In general, polymorphism is NOT RECOMMENDED. Polymorphism rarely
 enables capabilities that would not be available through use of
 multiple attributes. Polymorphism requires code changes in the
 RADIUS server in situations where attributes with fixed formats would
 not require such changes. Thus, polymorphism increases complexity
 while decreasing generality, without delivering any corresponding
 benefits.

 Note that changing an attribute's format dynamically is not the same
 thing as using a fixed format and computing the attribute itself
 dynamically. RADIUS authentication attributes, such as User-
 Password, EAP-Message, etc., while being computed dynamically, use a
 fixed format.

4. IANA Considerations

 This document has no action items for IANA. However, it does provide
 guidelines for Expert Reviewers appointed as described in [RFC3575].

5. Security Considerations

 This specification provides guidelines for the design of RADIUS
 attributes used in authentication, authorization, and accounting.
 Threats and security issues for this application are described in
 [RFC3579] and [RFC3580]; security issues encountered in roaming are
 described in [RFC2607].

 Obfuscation of RADIUS attributes on a per-attribute basis is
 necessary in some cases. The current standard mechanism for this is
 described in [RFC2865], Section 5.2 (for obscuring User-Password
 values) and is based on the MD5 algorithm specified in [RFC1321].
 The MD5 and SHA-1 algorithms have recently become a focus of scrutiny
 and concern in security circles, and as a result, the use of these
 algorithms in new attributes is NOT RECOMMENDED. In addition,
 previous documents referred to this method as generating "encrypted"
 data. This terminology is no longer accepted within the
 cryptographic community.

 Where new RADIUS attributes use cryptographic algorithms, algorithm
 negotiation SHOULD be supported. Specification of a mandatory-to-
 implement algorithm is REQUIRED, and it is RECOMMENDED that the
 mandatory-to-implement algorithm be certifiable under FIPS 140
 [FIPS].

 Where new RADIUS attributes encapsulate complex data types, or
 transport opaque data, the security considerations discussed in
 Section 5.1 SHOULD be addressed.

 Message authentication in RADIUS is provided largely via the Message-
 Authenticator attribute. See Section 3.2 of [RFC3579] and also
 Section 2.2.2 of [RFC5080], which say that client implementations
 SHOULD include a Message-Authenticator Attribute in every Access-
 Request.

 In general, the security of the RADIUS protocol is poor. Robust
 deployments SHOULD support a secure communications protocol such as
 IPsec. See Section 4 of [RFC3579] and Section 5 of [RFC3580] for a
 more in-depth explanation of these issues.

 Implementations not following the suggestions outlined in this
 document may be subject to problems such as ambiguous protocol
 decoding, packet loss leading to loss of billing information, and
 denial-of-service attacks.

5.1. New Data Types and Complex Attributes

 The introduction of complex data types brings the potential for the
 introduction of new security vulnerabilities. Experience shows that
 the common data types have few security vulnerabilities, or else that
 all known issues have been found and fixed. New data types require
 new code, which may introduce new bugs and therefore new attack
 vectors.

 Some systems permit complex attributes to be defined via a method
 that is more capable than traditional RADIUS dictionaries. These
 systems can reduce the security threat of new types significantly,
 but they do not remove it entirely.

 RADIUS servers are highly valued targets, as they control network
 access and interact with databases that store usernames and
 passwords. An extreme outcome of a vulnerability due to a new,
 complex type would be that an attacker is capable of taking complete
 control over the RADIUS server.

 The use of attributes representing opaque data does not reduce this
 threat. The threat merely moves from the RADIUS server to the system
 that consumes that opaque data. The threat is particularly severe
 when the opaque data originates from the user and is not validated by
 the NAS. In those cases, the RADIUS server is potentially exposed to
 attack by malware residing on an unauthenticated host.

 Any system consuming opaque data that originates from a RADIUS system
 SHOULD be properly isolated from that RADIUS system and SHOULD run
 with minimal privileges. Any potential vulnerabilities in the non-
 RADIUS system will then have minimal impact on the security of the
 system as a whole.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575, July
 2003.

6.2. Informative References

 [RFC1155]
 Rose, M. and K. McCloghrie, "Structure and
 identification of management information for TCP/IP-
 based internets", STD 16, RFC 1155, May 1990.

 [RFC1157]
 Case, J., Fedor, M., Schoffstall, M., and J. Davin,
 "Simple Network Management Protocol (SNMP)", RFC 1157,
 May 1990.

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC
 1321, April 1992.

 [RFC2548]
 Zorn, G., "Microsoft Vendor-specific RADIUS
 Attributes", RFC 2548, March 1999.

 [RFC2607]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC2868]
 Zorn, G., Leifer, D., Rubens, A., Shriver, J.,
 Holdrege, M., and I. Goyret, "RADIUS Attributes for
 Tunnel Protocol Support", RFC 2868, June 2000.

 [RFC2869]
 Rigney, C., Willats, W., and P. Calhoun, "RADIUS
 Extensions", RFC 2869, June 2000.

 [RFC2882]
 Mitton, D., "Network Access Servers Requirements:
 Extended RADIUS Practices", RFC 2882, July 2000.

 [RFC3162]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6",
 RFC 3162, August 2001.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote
 Authentication Dial In User Service) Support For
 Extensible Authentication Protocol (EAP)", RFC 3579,
 September 2003.

 [RFC3580]
 Congdon, P., Aboba, B., Smith, A., Zorn, G., and J.
 Roese, "IEEE 802.1X Remote Authentication Dial In User
 Service (RADIUS) Usage Guidelines", RFC 3580, September
 2003.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4181]
 Heard, C., Ed., "Guidelines for Authors and Reviewers
 of MIB Documents", BCP 111, RFC 4181, September 2005.

 [RFC4663]
 Harrington, D., "Transferring MIB Work from IETF Bridge
 MIB WG to IEEE 802.1 WG", RFC 4663, September 2006.

 [RFC4675]
 Congdon, P., Sanchez, M., and B. Aboba, "RADIUS
 Attributes for Virtual LAN and Priority Support", RFC
 4675, September 2006.

 [RFC4679]
 Mammoliti, V., Zorn, G., Arberg, P., and R. Rennison,
 "DSL Forum Vendor-Specific RADIUS Attributes", RFC
 4679, September 2006.

 [RFC4818]
 Salowey, J. and R. Droms, "RADIUS Delegated-IPv6-Prefix
 Attribute", RFC 4818, April 2007.

 [RFC4821]
 Mathis, M. and J. Heffner, "Packetization Layer Path
 MTU Discovery", RFC 4821, March 2007.

 [RFC4849]
 Congdon, P., Sanchez, M., and B. Aboba, "RADIUS Filter
 Rule Attribute", RFC 4849, April 2007.

 [RFC5080]
 Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

 [RFC5090]
 Sterman, B., Sadolevsky, D., Schwartz, D., Williams,
 D., and W. Beck, "RADIUS Extension for Digest
 Authentication", RFC 5090, February 2008.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC
 5176, January 2008.

[DOCTORS] AAA Doctors Mailing List, www.ietf.org/mail‑
 archive/web/aaa‑doctors.

 [FIPS]
 FIPS 140-3 (DRAFT), "Security Requirements for
 Cryptographic Modules",
 http://csrc.nist.gov/publications/PubsFIPS.html.

 [IEEE-802.1Q] IEEE Standards for Local and Metropolitan Area

 Networks: Draft Standard for Virtual Bridged Local Area
 Networks, P802.1Q-2003, January 2003.

 [RFC5580]
 Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A.,
 and B. Aboba, "Carrying Location Objects in RADIUS and
 Diameter", RFC 5580, August 2009.

 [AAA-SIP]
 Sterman, B., Sadolevsky, D., Schwartz, D., Williams,
 D., and W. Beck, "RADIUS Extension for Digest
 Authentication", Work in Progress, November 2004.

Appendix A. Design Guidelines Checklist

 The following text provides guidelines for the design of attributes
 used by the RADIUS protocol. Specifications that follow these
 guidelines are expected to achieve maximum interoperability with
 minimal changes to existing systems.

A.1. Types Matching the RADIUS Data Model

A.1.1. Transport of Basic Data Types

 Does the data fit within the basic data types described in Section
 2.1? If so, it SHOULD be encapsulated in a [RFC2865] format RADIUS
 attribute or in a [RFC2865] format RADIUS VSA that uses one of the
 existing RADIUS data types.

A.1.2. Transport of Authentication and Security Data

 Does the data provide authentication and/or security capabilities for
 the RADIUS protocol as outlined below? If so, use of a complex data
 type is acceptable under the following circumstances:

 * Complex data types that carry authentication methods that RADIUS
 servers are expected to parse and verify as part of an
 authentication process.

 * Complex data types that carry security information intended to
 increase the security of the RADIUS protocol itself.

 Any data type carrying authentication and/or security data that is
 not meant to be parsed by a RADIUS server is an "opaque data type",
 as defined in Section A.1.3.

A.1.3. Opaque Data Types

 Does the attribute encapsulate an existing data structure defined
 outside of the RADIUS specifications? Can the attribute be treated
 as opaque data by RADIUS servers (including proxies)? If both
 questions can be answered affirmatively, a complex structure MAY be
 used in a RADIUS specification.

 The specification of the attribute SHOULD define the encapsulating
 attribute to be of type String. The specification SHOULD refer to an
 external document defining the structure. The specification SHOULD
 NOT define or describe the structure, for reasons discussed in
 Section 3.2.3.

A.1.4. Pre-Existing Data Types

 There is a trade-off in design between reusing existing formats for
 historical compatibility or choosing new formats for a "better"
 design. This trade-off does not always require the "better" design
 to be used. As a result, pre-existing complex data types described
 in Appendix B MAY be used.

A.2. Improper Data Types

 This section suggests alternatives to data types that do not fall
 within the "basic data type" definition. Section A.2.1 describes
 simple data types, which should be replaced by basic data types.
 Section A.2.2 describes more complex data types, which should be
 replaced by multiple attributes using the basic data types.

A.2.1. Simple Data Types

 Does the attribute use any of the following data types? If so, the
 data type SHOULD be replaced with the suggested alternatives, or it
 SHOULD NOT be used at all.

 * Signed integers of any size.

 SHOULD NOT be used. SHOULD be replaced with one or more
 unsigned integer attributes. The definition of the attribute
 can contain information that would otherwise go into the sign
 value of the integer.

 * 8-bit unsigned integers.

 SHOULD be replaced with 32-bit unsigned integer. There is
 insufficient justification to save three bytes.

 * 16-bit unsigned integers.

 SHOULD be replaced with 32-bit unsigned integer. There is
 insufficient justification to save two bytes.

 * Unsigned integers of size other than 32 bits.

 SHOULD be replaced by an unsigned integer of 32 bits. There is
 insufficient justification to define a new size of integer.

 * Integers of any size in non-network byte order.

 SHOULD be replaced by unsigned integer of 32 bits in network.
 There is no reason to transport integers in any format other
 than network byte order.

 * Multi-field text strings.

 Each field SHOULD be encapsulated in a separate attribute.

 * Polymorphic attributes.

 Multiple attributes, each with a static data type, SHOULD be
 defined instead.

 * Nested attribute-value pairs (AVPs).

 Attributes should be defined in a flat typespace.

A.2.2. More Complex Data Types

 Does the attribute:

 * define a complex data type not described in Appendix B?

 * that a RADIUS server and/or client is expected to parse,
 validate, or create the contents of via a dynamic computation
 (i.e., a type that cannot be treated as opaque data (Section
 A.1.3))?

 * involve functionality that could be implemented without code
 changes on both the client and server (i.e., a type that doesn't
 require dynamic computation and verification, such as those
 performed for authentication or security attributes)?

 If so, this data type SHOULD be replaced with simpler types, as
 discussed in Appendix A.2.1. See also Section 2.1 for a discussion
 of why complex types are problematic.

A.3. Vendor-Specific Formats

 Does the specification contain Vendor-Specific Attributes that match
 any of the following criteria? If so, the VSA encoding should be
 replaced with the [RFC2865], Section 5.26 encoding or should not be
 used at all.

 * Vendor types of more than 8 bits.

 SHOULD NOT be used. Vendor types of 8 bits SHOULD be used
 instead.

 * Vendor lengths of less than 8 bits (i.e., zero bits).

 SHOULD NOT be used. Vendor lengths of 8 bits SHOULD be used
 instead.

 * Vendor lengths of more than 8 bits.

 SHOULD NOT be used. Vendor lengths of 8 bits SHOULD be used
 instead.

* Vendor‑specific contents that are not in Type‑Length‑Value
 format.
 SHOULD NOT be used. Vendor‑Specific Attributes SHOULD be in
 Type‑Length‑Value format.

 In general, Vendor-Specific Attributes SHOULD follow the encoding
 suggested in Section 5.26 of [RFC2865]. Vendor extensions to non-
 standard encodings are NOT RECOMMENDED as they can negatively affect
 interoperability.

A.4. Changes to the RADIUS Operational Model

 Does the specification change the RADIUS operation model as outlined
 in the list below? If so, then another method of achieving the
 design objectives SHOULD be used. Potential problem areas include
 the following:

 * Defining new commands in RADIUS using attributes.

 The addition of new commands to RADIUS MUST be handled via
 allocation of a new Code and not by the use of an attribute.
 This restriction includes new commands created by overloading
 the Service-Type Attribute to define new values that modify the
 functionality of Access-Request packets.

* Using RADIUS as a transport protocol for data unrelated to
 authentication, authorization, or accounting.
 Using RADIUS to transport authentication methods such as EAP is
 explicitly permitted, even if those methods require the
 transport of relatively large amounts of data. Transport of
 opaque data relating to AAA is also permitted, as discussed in
 Section 3.2.3. However, if the specification does not relate to
 AAA, then RADIUS SHOULD NOT be used.

 * Assuming support for packet lengths greater than 4096 octets.
 Attribute designers cannot assume that RADIUS implementations
 can successfully handle packets larger than 4096 octets. If a
 specification could lead to a RADIUS packet larger than 4096
 octets, then the alternatives described in Section 3.3 SHOULD be
 considered.

 * Stateless operation.

 The RADIUS protocol is stateless, and documents that require
 stateful protocol behavior without the use of the State
 Attribute need to be redesigned.

 * Provisioning of service in an Access-Reject.

 Such provisioning is not permitted, and MUST NOT be used. If
 limited access needs to be provided, then an Access-Accept with
 appropriate authorizations can be used instead.

 * Provisioning of service in a Disconnect-Request.

 Such provisioning is not permitted and MUST NOT be used. If
 limited access needs to be provided, then a CoA-Request
 [RFC5176] with appropriate authorizations can be used instead.

 * Lack of user authentication or authorization restrictions.

 In an authorization check, where there is no demonstration of a
 live user, confidential data cannot be returned. Where there is
 a link to a previous user authentication, the State Attribute
 SHOULD be present.

 * Lack of per-packet integrity and authentication.

 It is expected that documents will support per-packet integrity
 and authentication.

 * Modification of RADIUS packet sequences.

 In RADIUS, each request is encapsulated in its own packet and
 elicits a single response that is sent to the requester. Since
 changes to this paradigm are likely to require major
 modifications to RADIUS client and server implementations, they
 SHOULD be avoided if possible.

 For further details, see Section 3.1.

A.5. Allocation of Attributes

 Does the attribute have a limited scope of applicability as outlined
 below? If so, then the attributes SHOULD be allocated from the
 vendor space rather than requesting allocation from the standard
 space.

 * attributes intended for a vendor to support their own systems
 and not suitable for general usage

 * attributes relying on data types not defined within RADIUS

 * attributes intended primarily for use within an SDO

 * attributes intended primarily for use within a group of SDOs

 Note that the points listed above do not relax the recommendations
 discussed in this document. Instead, they recognize that the RADIUS
 data model has limitations. In certain situations where
 interoperability can be strongly constrained by the SDO or vendor, an
 expanded data model MAY be used. It is RECOMMENDED, however, that
 the RADIUS data model be used, even when it is marginally less
 efficient than alternatives.

 When attributes are used primarily within a group of SDOs, and are
 not applicable to the wider Internet community, we expect that one
 SDO will be responsible for allocation from their own private vendor
 space.

Appendix B. Complex Attributes

 This appendix summarizes RADIUS attributes with complex data types
 that are defined in existing RFCs.

 This appendix is published for informational purposes only and
 reflects the usage of attributes with complex data types at the time
 of the publication of this document.

B.1. CHAP-Password

 [RFC2865], Section 5.3 defines the CHAP-Password Attribute, which is
 sent from the RADIUS client to the RADIUS server in an Access-
 Request. The data type of the CHAP Identifier is not given, only the
 one-octet length:

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
+‑
| Type | Length | CHAP Ident | String ...
+‑

 Since this is an authentication attribute, code changes are required
 on the RADIUS client and server to support it, regardless of the
 attribute format. Therefore, this complex data type is acceptable in
 this situation.

B.2. CHAP-Challenge

 [RFC2865], Section 5.40 defines the CHAP-Challenge Attribute, which
 is sent from the RADIUS client to the RADIUS server in an Access-
 Request. While the data type of the CHAP Identifier is given, the
 text also says:

 If the CHAP challenge value is 16 octets long it MAY be placed in
 the Request Authenticator field instead of using this attribute.

 Defining attributes to contain values taken from the RADIUS packet
 header is NOT RECOMMENDED. Attributes should have values that are
 packed into a RADIUS AVP.

B.3. Tunnel-Password

 [RFC2868], Section 3.5 defines the Tunnel-Password Attribute, which
 is sent from the RADIUS server to the client in an Access-Accept.
 This attribute includes Tag and Salt fields, as well as a String
 field that consists of three logical sub-fields: the Data-Length
 (required and one octet), Password sub-fields (required), and the
 optional Padding sub-field. The attribute appears as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Tag | Salt
+‑+
 Salt (cont) | String ...
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Since this is a security attribute, code changes are required on the
 RADIUS client and server to support it, regardless of the attribute
 format. However, while use of a complex data type is acceptable in
 this situation, the design of the Tunnel-Password Attribute is
 problematic from a security perspective since it uses MD5 as a cipher
 and provides a password to a NAS, potentially without proper
 authorization.

B.4. ARAP-Password

 [RFC2869], Section 5.4 defines the ARAP-Password Attribute, which is
 sent from the RADIUS client to the server in an Access-Request. It
 contains four 4-octet values instead of having a single Value field:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value1
+‑+
 | Value2
+‑+
 | Value3
+‑+
 | Value4
+‑+
 |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 As with the CHAP-Password Attribute, this is an authentication
 attribute that would have required code changes on the RADIUS client
 and server, regardless of format.

B.5. ARAP-Features

 [RFC2869], Section 5.5 defines the ARAP-Features Attribute, which is
 sent from the RADIUS server to the client in an Access-Accept or
 Access-Challenge. It contains a compound string of two single octet
 values, plus three 4-octet values, which the RADIUS client
 encapsulates in a feature flags packet in the Apple Remote Access
 Protocol (ARAP):

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value1 | Value2 |
+‑+
| Value3 |
+‑+
| Value4 |
+‑+
| Value5 |
+‑+

 Unlike the previous attributes, this attribute contains no encrypted
 component, nor is it directly involved in authentication. The
 individual sub-fields therefore could have been encapsulated in
 separate attributes.

 While the contents of this attribute are intended to be placed in an
 ARAP packet, the fields need to be set by the RADIUS server. Using
 standard RADIUS data types would have simplified RADIUS server
 implementations and subsequent management. The current form of the
 attribute requires either the RADIUS server implementation or the
 RADIUS server administrator to understand the internals of the ARAP
 protocol.

B.6. Connect-Info

 [RFC2869], Section 5.11 defines the Connect-Info Attribute, which is
 used to indicate the nature of the connection.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+‑+
| Type | Length | Text...
+‑+

 Even though the type is Text, the rest of the description indicates
 that it is a complex attribute:

 The Text field consists of UTF-8 encoded 10646 [8] characters.
 The connection speed SHOULD be included at the beginning of the
 first Connect-Info attribute in the packet. If the transmit and
 receive connection speeds differ, they may both be included in the
 first attribute with the transmit speed first (the speed the NAS
 modem transmits at), a slash (/), the receive speed, then
 optionally other information.

 For example, "28800 V42BIS/LAPM" or "52000/31200 V90"

 More than one Connect-Info attribute may be present in an
 Accounting-Request packet to accommodate expected efforts by ITU
 to have modems report more connection information in a standard
 format that might exceed 252 octets.

 This attribute contains no encrypted component and is not directly
 involved in authentication. The individual sub-fields could
 therefore have been encapsulated in separate attributes.

 However, since the definition refers to potential standardization
 activity within ITU, the Connect-Info Attribute can also be thought
 of as opaque data whose definition is provided elsewhere. The
 Connect-Info Attribute could therefore qualify for an exception as
 described in Section 3.2.4.

B.7. Framed-IPv6-Prefix

 Section 2.3 of [RFC3162] defines the Framed-IPv6-Prefix Attribute,
 and Section 3 of [RFC4818] reuses this format for the Delegated-
 IPv6-Prefix Attribute; these attributes are sent from the RADIUS
 server to the client in an Access-Accept.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Reserved | Prefix‑Length |
+‑+
 Prefix
+‑+
 Prefix
+‑+
 Prefix
+‑+
 Prefix |
+‑+

 The sub-fields encoded in these attributes are strongly related, and
 there was no previous definition of this data structure that could be
 referenced. Support for this attribute requires code changes on both
 the client and server, due to a new data type being defined. In this
 case, it appears to be acceptable to encode them in one attribute.

B.8. Egress-VLANID

 [RFC4675], Section 2.1 defines the Egress-VLANID Attribute, which can
 be sent by a RADIUS client or server.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 While it appears superficially to be of type Integer, the Value field
 is actually a packed structure, as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Tag Indic. | Pad | VLANID |
+‑+

 The length of the VLANID field is defined by the [IEEE-802.1Q]
 specification. The Tag Indicator field is either 0x31 or 0x32, for
 compatibility with the Egress-VLAN-Name, as discussed below. The
 complex structure of Egress-VLANID overlaps with that of the base
 Integer data type, meaning that no code changes are required for a
 RADIUS server to support this attribute. Code changes are required
 on the NAS, if only to implement the VLAN ID enforcement.

 Given the IEEE VLAN requirements and the limited data model of
 RADIUS, the chosen method is likely the best of the possible
 alternatives.

B.9. Egress-VLAN-Name

 [RFC4675], Section 2.3 defines the Egress-VLAN-Name Attribute, which
 can be sent by a RADIUS client or server.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Tag Indic. | String...
+‑+

 The Tag Indicator is either the character '1' or '2', which in ASCII
 map to the identical values for Tag Indicator in Egress-VLANID above.
 The complex structure of this attribute is acceptable for reasons
 identical to those given for Egress-VLANID.

B.10. Digest-*

 [RFC5090] attempts to standardize the functionality provided by an
 expired Internet-Draft [AAA-SIP], which improperly uses two
 attributes from the standard space without having been assigned them
 by IANA. This self-allocation is forbidden, as described in Section
 2. In addition, the document uses nested attributes, which are
 discouraged in Section 2.1. The updated document uses basic data
 types and allocates nearly 20 attributes in the process.

 However, the document has seen wide-spread implementation, but
 [RFC5090] has not. One explanation may be that implementors
 disagreed with the trade-offs made in the updated specification. It
 may have been better to simply document the existing format and
 request IANA allocation of two attributes. The resulting design
 would have used nested attributes but may have gained more wide-
 spread implementation.

Acknowledgments

 We would like to acknowledge David Nelson, Bernard Aboba, Emile van
 Bergen, Barney Wolff, Glen Zorn, Avi Lior, and Hannes Tschofenig for
 contributions to this document.

Authors' Addresses

Alan DeKok (editor)
The FreeRADIUS Server Project
http://freeradius.org/

 EMail: aland@freeradius.org

Greg Weber
Knoxville, TN 37932
USA

 EMail: gdweber@gmail.com

6421 - Crypto-Agility Requirements for Remote Authentication Dial-In User Servic

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6421

Category: Informational

ISSN: 2070-1721

D. Nelson, Ed.

Elbrys Networks, Inc.

November 2011

Crypto-Agility Requirements for Remote Authentication Dial-In User Service (RADIUS)

Abstract

 This memo describes the requirements for a crypto-agility solution
 for Remote Authentication Dial-In User Service (RADIUS).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6421.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. General

	 1.2. Requirements Language

	 1.3. Publication Process

	2. A Working Definition of Crypto-Agility

	3. The Current State of RADIUS Security

	4. The Requirements
	 4.1. Overall Solution Approach

	 4.2. Security Services

	 4.3. Backwards Compatibility

	 4.4. Interoperability and Change Control

	 4.5. Scope of Work

	 4.6. Applicability of Automated Key Management Requirements

	5. Security Considerations

	6. Acknowledgments

	7. References
	 7.1. Normative References

	 7.2. Informative References

1. Introduction

1.1. General

 At the IETF 66 meeting, the RADIUS Extensions (RADEXT) Working Group
 (WG) was asked by members of the Security Area Directorate to prepare
 a formal description of a crypto-agility work item and corresponding
 charter milestones. After consultation with one of the Security Area
 Directors (Russ Housley), text was initially proposed on the RADEXT
 WG mailing list on October 26, 2006. The following summarizes that
 proposal:

 The RADEXT WG will review the security requirements for crypto-
 agility in IETF protocols, and identify the deficiencies of the
 existing RADIUS protocol specifications against these
 requirements. Specific attention will be paid to RFC 4962
 [RFC4962].

 The RADEXT WG will propose one or more specifications to remediate
 any identified deficiencies in the crypto-agility properties of
 the RADIUS protocol. The known deficiencies include the issue of
 negotiation of substitute algorithms for the message digest
 functions, the key-wrap functions, and the password-hiding
 function. Additionally, at least one mandatory to implement
 cryptographic algorithm will be defined in each of these areas, as
 required.

 This document describes the features, properties, and limitations of
 RADIUS crypto-agility solutions; defines the term "crypto-agility" as
 used in this context; and provides the motivations for this work.

 The requirements defined in this memo have been developed based on
 email messages posted to the RADEXT WG mailing list, which may be
 found in the archives of that list. The purpose of framing the
 requirements in this memo is to formalize and archive them for future
 reference and to bring them explicitly to the attention of the IESG
 and the IETF community as we proceed with this work.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 A RADIUS crypto-agility solution is not compliant with this
 specification if it fails to satisfy one or more of the MUST or MUST
 NOT statements. A solution that satisfies all the MUST, MUST NOT,
 SHOULD, and SHOULD NOT statements is said to be "unconditionally
 compliant"; one that satisfies all the MUST and MUST NOT statements
 but not all the SHOULD or SHOULD NOT requirements is said to be
 "conditionally compliant".

1.3. Publication Process

 RADIUS [RFC2865] is a widely deployed protocol that has attained
 Draft Standard status based on multiple independent interoperable
 implementations. Therefore, it is desirable that a high level of
 interoperability be maintained for crypto-agility solutions.

 To ensure that crypto-agility solutions published on the standards
 track are well specified and interoperable, the RADEXT WG has adopted
 a two phase process for standards-track publication of crypto-agility
 solutions.

 In the initial phase, crypto-agility solutions adopted by the working
 group will be published as Experimental. These documents should
 contain a description of the implementations and experimental
 deployments in progress as well as an evaluation of the proposal
 against the requirements described in this document.

 The working group will then select proposals to advance on the
 standards track. Criteria to be used include evaluation of the
 proposal against the requirements, summary of the experimental
 deployment experience, and evidence of multiple interoperable
 implementations.

2. A Working Definition of Crypto-Agility

 Crypto-agility is the ability of a protocol to adapt to evolving
 cryptography and security requirements. This may include the
 provision of a modular mechanism to allow cryptographic algorithms to
 be updated without substantial disruption to fielded implementations.
 It may provide for the dynamic negotiation and installation of
 cryptographic algorithms within protocol implementations (think of
 Dynamic-Link Libraries (DLL)).

 In the specific context of the RADIUS protocol and RADIUS
 implementations, crypto-agility may be better defined as the ability
 of RADIUS implementations to automatically negotiate cryptographic
 algorithms for use in RADIUS exchanges, including the algorithms used
 to integrity protect and authenticate RADIUS packets and to hide
 RADIUS attributes. This capability covers all RADIUS message types:
 Access-Request/Response, Accounting-Request/Response, CoA/Disconnect-
 Request/Response, and Status-Server. Negotiation of cryptographic
 algorithms MAY occur within the RADIUS protocol, or within a lower
 layer such as the transport layer.

 Proposals MUST NOT introduce generic new capability negotiation
 features into the RADIUS protocol or require changes to the RADIUS
 operational model as defined in "RADIUS Design Guidelines" [RFC6158],
 Section 3.1 and Appendix A.4. A proposal SHOULD focus on the crypto-
 agility problem and nothing else. For example, proposals SHOULD NOT
 require new attribute formats and SHOULD be compatible with the
 guidance provided in [RFC6158], Section 2.3. Issues of backward
 compatibility are described in more detail in Section 4.3.

3. The Current State of RADIUS Security

 RADIUS packets, as defined in [RFC2865], are protected by an MD5
 message integrity check (MIC) within the Authenticator field of
 RADIUS packets other than Access-Request [RFC2865] and Status-Server
 [RFC5997]. The Message-Authenticator Attribute utilizes HMAC-MD5 to
 authenticate and integrity protect RADIUS packets.

 While RADIUS does not support confidentiality of entire packets,
 various RADIUS attributes support encrypted (also known as "hidden")
 values, including User-Password (defined in [RFC2865], Section 5.2),
 Tunnel-Password (defined in [RFC2868], Section 3.5), and various
 Vendor-Specific Attributes, such as the MS-MPPE-Send-Key and
 MS-MPPE-Recv-Key attributes (defined in [RFC2548], Section 2.4).
 Generally speaking, the hiding mechanism uses a stream cipher based
 on a key stream from an MD5 digest. Attacks against this mechanism
 are described in "RADIUS Support for EAP" [RFC3579], Section 4.3.4.

"Updated Security Considerations for the MD5 Message‑Digest and the
HMAC‑MD5 Algorithms" [RFC6151] discusses security considerations for
use of the MD5 and HMAC‑MD5 algorithms. While the advances in MD5
collisions do not immediately compromise the use of MD5 or HMAC‑MD5
for the purposes used within RADIUS absent knowledge of the
RADIUS shared secret, the progress toward compromise of MD5's basic
cryptographic assumptions has resulted in the deprecation of MD5
usage in a variety of applications. As noted in [RFC6151],
Section 2:

 MD5 is no longer acceptable where collision resistance is required
 such as digital signatures. It is not urgent to stop using MD5 in
 other ways, such as HMAC-MD5; however, since MD5 must not be used
 for digital signatures, new protocol designs should not employ
 HMAC-MD5.

4. The Requirements

4.1. Overall Solution Approach

 RADIUS crypto-agility solutions are not restricted to utilizing
 technology described in existing RFCs. Since RADIUS over IPsec is
 already described in Section 5 of "RADIUS and IPv6" [RFC3162] and
 Section 4.2 of [RFC3579], this technique is already available to
 those who wish to use it. Therefore, it is expected that proposals
 will utilize other techniques.

4.2. Security Services

 Proposals MUST support the negotiation of cryptographic algorithms
 for per-packet integrity/authentication protection. Proposals also
 MUST support per-packet replay protection for all RADIUS message
 types. Crypto-agility solutions MUST specify mandatory-to-implement
 cryptographic algorithms for each defined mechanism.

 Crypto-agility solutions MUST avoid security compromise, even in
 situations where the existing cryptographic algorithms utilized by
 RADIUS implementations are shown to be weak enough to provide little
 or no security (e.g., in the event of compromise of the legacy RADIUS
 shared secret). Included in this would be protection against
 bidding-down attacks. In analyzing the resilience of a crypto-
 agility solution, it can be assumed that RADIUS requesters and
 responders can be configured to require the use of new secure
 algorithms in the event of a compromise of existing cryptographic
 algorithms or the legacy RADIUS shared secret.

 Guidance on acceptable algorithms can be found in [NIST-SP800-131A].
 It is RECOMMENDED that mandatory-to-implement cryptographic
 algorithms be chosen from among those classified as "Acceptable" with
 no known deprecation date from within this or successor documents.

 It is RECOMMENDED that solutions provide support for confidentiality,
 either by supporting encryption of entire RADIUS packets or by
 encrypting individual RADIUS attributes. Proposals supporting
 confidentiality MUST support the negotiation of cryptographic
 algorithms for encryption.

 Support for encryption of individual RADIUS attributes is OPTIONAL
 for solutions that provide encryption of entire RADIUS packets.
 Solutions providing for encryption of individual RADIUS attributes
 are REQUIRED to provide support for improving the confidentiality of
 existing encrypted (sometimes referred to as "hidden") attributes as
 well as encrypting attributes (such as location attributes) that are
 currently transmitted in cleartext.

 In addition to the goals referred to above, [RFC4962] Section 3
 describes additional security requirements, which translate into the
 following requirements for RADIUS crypto-agility solutions:

 Strong, fresh session keys:

 RADIUS crypto-agility solutions are REQUIRED to generate fresh
 session keys for use between the RADIUS client and server. In
 order to prevent the disclosure of one session key from aiding an
 attacker in discovering other session keys, RADIUS crypto-agility
 solutions are RECOMMENDED to support Perfect Forward Secrecy (PFS)
 with respect to session keys negotiated between the RADIUS client
 and server.

 Limit key scope:

In order to enable a Network Access Server (NAS) and RADIUS server
to exchange confidential information such as keying material
without disclosure to third parties, it is RECOMMENDED that a
RADIUS crypto‑agility solution support X.509 certificates for
authentication between the NAS and RADIUS server. Manual
configuration or automated discovery mechanisms such as NAI‑based
Dynamic Peer Discovery [RADYN] can be used to enable
direct NAS‑RADIUS server communications. Support for end‑to‑end
confidentiality of RADIUS attributes is OPTIONAL.

 For compatibility with existing operations, RADIUS crypto-agility
 solutions SHOULD also support pre-shared key credentials.
 However, support for direct communications between the NAS and
 RADIUS server is OPTIONAL when pre-shared key credentials are
 used.

4.3. Backwards Compatibility

 Solutions MUST demonstrate backward compatibility with existing
 RADIUS implementations. That is, an implementation that supports
 both crypto-agility and legacy mechanisms MUST be able to talk with
 legacy RADIUS clients and servers (using the legacy mechanisms).

 While backward compatibility is needed to ease the transition between
 legacy RADIUS and crypto-agile RADIUS, use of legacy mechanisms is
 only appropriate prior to the compromise of those mechanisms. After
 legacy mechanisms have been compromised, secure algorithms MUST be
 used so that backward compatibility is no longer possible.

 Since RADIUS is a request/response protocol, the ability to negotiate
 cryptographic algorithms within a single RADIUS exchange is
 inherently limited. Prior to receipt of a response, a requester will
 not know what algorithms are supported by the responder. Therefore,
 while a RADIUS request can provide a list of supported cryptographic
 algorithms that can be selected for use within a response, prior to
 the receipt of a response, the cryptographic algorithms utilized to
 provide security services within an initial request will need to be
 predetermined.

 In order to enable a request to be handled both by legacy as well as
 crypto-agile implementations, a request can be secured with legacy
 algorithms was well as with attributes providing security services
 using more secure algorithms. This approach allows a RADIUS packet
 to be processed by legacy implementations as well as by crypto-agile
 implementations, and it does not result in additional response
 delays. If this technique is used, credentials used with legacy
 algorithms MUST be cryptographically independent of the credentials
 used with the more secure algorithms, so that compromise of the
 legacy credentials does not result in compromise of the credentials
 used with more secure algorithms.

 In this approach to backward compatibility, legacy mechanisms are
 initially used in requests sent between crypto-agile implementations.
 However, if the responder indicates support for crypto-agility,
 future requests can use more secure mechanisms. Note that if a
 responder is upgraded and then subsequently needs to be downgraded
 (e.g., due to bugs), this could result in requesters being unable to
 communicate with the downgraded responder unless a mechanism is
 provided to configure the requester to re-enable use of legacy
 algorithms.

 Probing techniques can be used to avoid the use of legacy algorithms
 in requests sent between crypto-agile implementations. For example,
 an initial request can omit use of legacy mechanisms. If a response
 is received, then the recipient can be assumed to be crypto-agile and
 future requests to that recipient can utilize secure mechanisms.
 Similarly, the responder can assume that the requester supports
 crypto-agility and can prohibit use of legacy mechanisms in future
 requests. Note that if a requester is upgraded and then subsequently
 needs to be downgraded (e.g., due to bugs), this could result in the
 requester being unable to interpret responses, unless a mechanism is
 provided to configure the responder to re-enable use of legacy
 algorithms.

 If a response is not received, in the absence of information
 indicating responder support for crypto-agility (such as pre-
 configuration or previous receipt of a crypto-agile response), a new
 request can be composed utilizing legacy mechanisms.

 Since legacy implementations not supporting crypto-agility will
 silently discard requests not protected by legacy algorithms rather
 than returning an error, repeated requests can be required to
 distinguish lack of support for crypto-agility from packet loss or
 other failure conditions. Therefore, probing techniques can delay
 initial communication between crypto-agile requesters and legacy
 responders. This can be addressed by upgrading the responders (e.g.,
 RADIUS servers) first.

4.4. Interoperability and Change Control

 Proposals MUST indicate a willingness to cede change control to the
 IETF.

 Crypto-agility solutions MUST be interoperable between independent
 implementations based purely on the information provided in the
 specification.

4.5. Scope of Work

 Crypto-agility solutions MUST apply to all RADIUS packet types,
 including Access-Request, Access-Challenge, Access-Reject,
 Access-Accept, Accounting-Request, Accounting-Response, Status-Server
 and CoA/Disconnect messages.

 Since it is expected that the work will occur purely within RADIUS or
 in the transport, message data exchanged with Diameter SHOULD NOT be
 affected.

 Proposals MUST discuss any inherent assumptions about, or limitations
 on, client/server operations or deployment and SHOULD provide
 recommendations for transition of deployments from legacy RADIUS to
 crypto-agile RADIUS. Issues regarding cipher-suite negotiation,
 legacy interoperability, and the potential for bidding-down attacks
 SHOULD be among these discussions.

4.6. Applicability of Automated Key Management Requirements

 "Guidelines for Cryptographic Key Management" [RFC4107] provides
 guidelines for when automated key management is necessary.
 Consideration was given as to whether or not RFC 4107 would require a
 RADIUS crypto-agility solution to feature Automated Key Management
 (AKM). It was determined that AKM was not inherently required for
 RADIUS based on the following points:

 o RFC 4107 requires AKM for protocols that involve O(n^2) keys.
 This does not apply to RADIUS deployments, which require O(n)
 keys.

 o Requirements for session key freshness can be met without AKM, for
 example, by utilizing a pre-shared key along with an exchange of
 nonces.

 o RADIUS does not require the encryption of large amounts of data in
 a short time.

 o Organizations already have operational practices to manage
 existing RADIUS shared secrets to address key changes required as
 a result of personnel changes.

 o The crypto-agility solution can avoid the use of cryptographic
 modes of operation, such as a counter mode cipher, that require
 frequent key changes.

 However, at the same time, it is recognized that features recommended
 in Section 4.2 such as support for perfect forward secrecy and direct
 transport of keys between a NAS and RADIUS server can only be
 provided by a solution supporting AKM. As a result, support for
 Automated Key Management is RECOMMENDED within a RADIUS crypto-
 agility solution.

 Also, automated key management is REQUIRED for RADIUS crypto-agility
 solutions that use cryptographic modes of operation that require
 frequent key changes.

5. Security Considerations

 Potential attacks against the RADIUS protocol are described in
 [RFC3579], Section 4.1, and details of known exploits as well as
 potential mitigations are discussed in [RFC3579], Section 4.3.

 This specification describes the requirements for new cryptographic
 protection mechanisms, including the modular selection of algorithms
 and modes. Therefore, all the subject matter of this memo is related
 to security.

6. Acknowledgments

 Thanks to all the reviewers and contributors, including Bernard
 Aboba, Mary Barnes, Pasi Eronen, Dan Romascanu, Joe Salowey, and Glen
 Zorn.

7. References

7.1. Normative References

 [NIST-SP800-131A]

 Barker, E. and A. Roginsky, "Transitions: Recommendation
 for Transitioning the Use of Cryptographic Algorithms and
 Key Lengths", NIST SP-800-131A, January 2011.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC4107]
 Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [RFC4962]
 Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management", BCP
 132, RFC 4962, July 2007.

 [RFC6151]
 Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, March 2011.

 [RFC6158]
 DeKok, A., Ed., and G. Weber, "RADIUS Design Guidelines",
 BCP 158, RFC 6158, March 2011.

7.2. Informative References

 [RADYN]
 Winter, S. and M. McCauley, "NAI-based Dynamic Peer
 Discovery for RADIUS/TLS and RADIUS/DTLS", Work in
 Progress, July 2011.

 [RFC2548]
 Zorn, G., "Microsoft Vendor-specific RADIUS Attributes",
 RFC 2548, March 1999.

 [RFC2868]
 Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,
 M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, June 2000.

 [RFC3162]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6", RFC
 3162, August 2001.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC5997]
 DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol",
 RFC 5997, August 2010.

Author's Address

David B. Nelson (editor)
Elbrys Networks, Inc.
282 Corporate Drive, Unit 1
Portsmouth, NH 03801
USA

 EMail: d.b.nelson@comcast.net

6613 - RADIUS over TCP

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6613

Category: Experimental

ISSN: 2070-1721

A. DeKok

FreeRADIUS

May 2012

RADIUS over TCP

Abstract

 The Remote Authentication Dial-In User Server (RADIUS) protocol has,
 until now, required the User Datagram Protocol (UDP) as the
 underlying transport layer. This document defines RADIUS over the
 Transmission Control Protocol (RADIUS/TCP), in order to address
 handling issues related to RADIUS over Transport Layer Security
 (RADIUS/TLS). It permits TCP to be used as a transport protocol for
 RADIUS only when a transport layer such as TLS or IPsec provides
 confidentiality and security.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6613.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Applicability of Reliable Transport

	 1.2. Terminology

	 1.3. Requirements Language

	2. Changes to RADIUS
	 2.1. Packet Format

	 2.2. Assigned Ports for RADIUS/TCP

	 2.3. Management Information Base (MIB)

	 2.4. Detecting Live Servers

	 2.5. Congestion Control Issues

	 2.6. TCP Specific Issues
	 2.6.1. Duplicates and Retransmissions

	 2.6.2. Head of Line Blocking

	 2.6.3. Shared Secrets

	 2.6.4. Malformed Packets and Unknown Clients

	 2.6.5. Limitations of the ID Field

	 2.6.6. EAP Sessions

	 2.6.7. TCP Applications Are Not UDP Applications

	3. Diameter Considerations

	4. Security Considerations

	5. References
	 5.1. Normative References

	 5.2. Informative References

1. Introduction

 The RADIUS protocol is defined in [RFC2865] as using the User
 Datagram Protocol (UDP) for the underlying transport layer. While
 there are a number of benefits to using UDP as outlined in [RFC2865],
 Section 2.4, there are also some limitations:

 * Unreliable transport. As a result, systems using RADIUS have
 to implement application-layer timers and retransmissions, as
 described in [RFC5080], Section 2.2.1.

 * Packet fragmentation. [RFC2865], Section 3, permits RADIUS
 packets up to 4096 octets in length. These packets are larger
 than the common Internet MTU (576), resulting in fragmentation
 of the packets at the IP layer when they are proxied over the
 Internet. Transport of fragmented UDP packets appears to be a
 poorly tested code path on network devices. Some devices
 appear to be incapable of transporting fragmented UDP packets,
 making it difficult to deploy RADIUS in a network where those
 devices are deployed.

 * Connectionless transport. Neither clients nor servers receive
 positive statements that a "connection" is down. This
 information has to be deduced instead from the absence of a
 reply to a request.

 * Lack of congestion control. Clients can send arbitrary amounts
 of traffic with little or no feedback. This lack of feedback
 can result in congestive collapse of the network.

 RADIUS has been widely deployed for well over a decade and continues
 to be widely deployed. Experience shows that these issues have been
 minor in some use cases and problematic in others. For use cases
 such as inter-server proxying, an alternative transport and security
 model -- RADIUS/TLS, is defined in [RFC6614]. That document
 describes the transport implications of running RADIUS/TLS.

 The choice of TCP as a transport protocol is largely driven by the
 desire to improve the security of RADIUS by using RADIUS/TLS. For
 practical reasons, the transport protocol (TCP) is defined separately
 from the security mechanism (TLS).

 Since "bare" TCP does not provide for confidentiality or enable
 negotiation of credible ciphersuites, its use is not appropriate for
 inter-server communications where strong security is required. As a
 result, "bare" TCP transport MUST NOT be used without TLS, IPsec, or
 another secure upper layer.

 However, "bare" TCP transport MAY be used when another method such as
 IPsec [RFC4301] is used to provide additional confidentiality and
 security. Should experience show that such deployments are useful,
 this specification could be moved to the Standards Track.

1.1. Applicability of Reliable Transport

 The intent of this document is to address transport issues related to
 RADIUS/TLS [RFC6614] in inter-server communications scenarios, such
 as inter-domain communication between proxies. These situations
 benefit from the confidentiality and ciphersuite negotiation that can
 be provided by TLS. Since TLS is already widely available within the
 operating systems used by proxies, implementation barriers are low.

 In scenarios where RADIUS proxies exchange a large volume of packets,
 it is likely that there will be sufficient traffic to enable the
 congestion window to be widened beyond the minimum value on a long-
 term basis, enabling ACK piggybacking. Through use of an
 application-layer watchdog as described in [RFC3539], it is possible
 to address the objections to reliable transport described in
 [RFC2865], Section 2.4, without substantial watchdog traffic, since
 regular traffic is expected in both directions.

 In addition, use of RADIUS/TLS has been found to improve operational
 performance when used with multi-round-trip authentication mechanisms
 such as the Extensible Authentication Protocol (EAP) over RADIUS
 [RFC3579]. In such exchanges, it is typical for EAP fragmentation to
 increase the number of round trips required. For example, where EAP-
 TLS authentication [RFC5216] is attempted and both the EAP peer and
 server utilize certificate chains of 8 KB, as many as 15 round trips
 can be required if RADIUS packets are restricted to the common
 Ethernet MTU (1500 octets) for EAP over LAN (EAPoL) use cases.
 Fragmentation of RADIUS/UDP packets is generally inadvisable due to
 lack of fragmentation support within intermediate devices such as
 filtering routers, firewalls, and NATs. However, since RADIUS/UDP
 implementations typically do not support MTU discovery, fragmentation
 can occur even when the maximum RADIUS/UDP packet size is restricted
 to 1500 octets.

 These problems disappear if a 4096-octet application-layer payload
 can be used alongside RADIUS/TLS. Since most TCP implementations
 support MTU discovery, the TCP Maximum Segment Size (MSS) is
 automatically adjusted to account for the MTU, and the larger
 congestion window supported by TCP may allow multiple TCP segments to
 be sent within a single window. Even those few TCP stacks that do
 not perform Path MTU discovery can already support arbitrary
 payloads.

 Where the MTU for EAP packets is large, RADIUS/EAP traffic required
 for an EAP-TLS authentication with 8-KB certificate chains may be
 reduced to 7 round trips or less, resulting in substantially reduced
 authentication times.

 In addition, experience indicates that EAP sessions transported over
 RADIUS/TLS are less likely to abort unsuccessfully. Historically,
 RADIUS-over-UDP (see Section 1.2) implementations have exhibited poor
 retransmission behavior. Some implementations retransmit packets,
 others do not, and others send new packets rather than performing
 retransmission. Some implementations are incapable of detecting EAP
 retransmissions, and will instead treat the retransmitted packet as
 an error. As a result, within RADIUS/UDP implementations,
 retransmissions have a high likelihood of causing an EAP
 authentication session to fail. For a system with a million logins a
 day running EAP-TLS mutual authentication with 15 round trips, and
 having a packet loss probability of P=0.01%, we expect that 0.3% of
 connections will experience at least one lost packet. That is, 3,000
 user sessions each day will experience authentication failure. This
 is an unacceptable failure rate for a mass-market network service.

 Using a reliable transport method such as TCP means that RADIUS
 implementations can remove all application-layer retransmissions, and
 instead rely on the Operating System (OS) kernel's well-tested TCP
 transport to ensure Path MTU discovery and reliable delivery. Modern
 TCP implementations also implement anti-spoofing provisions, which is
 more difficult to do in a UDP application.

 In contrast, use of TCP as a transport between a Network Access
 Server (NAS) and a RADIUS server is usually a poor fit. As noted in
 [RFC3539], Section 2.1, for systems originating low numbers of RADIUS
 request packets, inter-packet spacing is often larger than the packet
 Round-Trip Time (RTT), meaning that, the congestion window will
 typically stay below the minimum value on a long-term basis. The
 result is an increase in packets due to ACKs as compared to UDP,
 without a corresponding set of benefits. In addition, the lack of
 substantial traffic implies the need for additional watchdog traffic
 to confirm reachability.

 As a result, the objections to reliable transport indicated in
 [RFC2865], Section 2.4, continue to apply to NAS-RADIUS server
 communications, and UDP SHOULD continue to be used as the transport
 protocol in this scenario. In addition, it is recommended that
 implementations of RADIUS Dynamic Authorization Extensions [RFC5176]
 SHOULD continue to utilize UDP transport, since the volume of dynamic
 authorization traffic is usually expected to be small.

1.2. Terminology

 This document uses the following terms:

 RADIUS client

 A device that provides an access service for a user to a network.
 Also referred to as a Network Access Server, or NAS.

 RADIUS server

 A device that provides one or more of authentication,
 authorization, and/or accounting (AAA) services to a NAS.

 RADIUS proxy

 A RADIUS proxy acts as a RADIUS server to the NAS, and a RADIUS
 client to the RADIUS server.

 RADIUS request packet

 A packet originated by a RADIUS client to a RADIUS server. For
 example, Access-Request, Accounting-Request, CoA-Request, or
 Disconnect-Request.

 RADIUS response packet

 A packet sent by a RADIUS server to a RADIUS client, in response
 to a RADIUS request packet. For example, Access-Accept, Access-
 Reject, Access-Challenge, Accounting-Response, or CoA-ACK.

 RADIUS/UDP

 RADIUS over UDP, as defined in [RFC2865].

 RADIUS/TCP

 RADIUS over TCP, as defined in this document.

 RADIUS/TLS

 RADIUS over TLS, as defined in [RFC6614].

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Changes to RADIUS

 RADIUS/TCP involves sending RADIUS application messages over a TCP
 connection. In the sections that follow, we discuss the implications
 for the RADIUS packet format (Section 2.1), port usage (Section 2.2),
 RADIUS MIBs (Section 2.3), and RADIUS proxies (Section 2.5). TCP-
 specific issues are discussed in Section 2.6.

2.1. Packet Format

 The RADIUS packet format is unchanged from [RFC2865], [RFC2866], and
 [RFC5176]. Specifically, all of the following portions of RADIUS
 MUST be unchanged when using RADIUS/TCP:

* Packet format
* Permitted codes
* Request Authenticator calculation
* Response Authenticator calculation
* Minimum packet length
* Maximum packet length
* Attribute format
* Vendor‑Specific Attribute (VSA) format
* Permitted data types
* Calculations of dynamic attributes such as CHAP‑Challenge, or
 Message‑Authenticator.
* Calculation of "encrypted" attributes such as Tunnel‑Password.

 The use of TLS transport does not change the calculation of security-
 related fields (such as the Response-Authenticator) in RADIUS
 [RFC2865] or RADIUS Dynamic Authorization [RFC5176]. Calculation of
 attributes such as User-Password [RFC2865] or Message-Authenticator
 [RFC3579] also does not change.

 Clients and servers MUST be able to store and manage shared secrets
 based on the key described in Section 2.6, of (IP address, port,
 transport protocol).

 The changes to RADIUS implementations required to implement this
 specification are largely limited to the portions that send and
 receive packets on the network.

2.2. Assigned Ports for RADIUS/TCP

 IANA has already assigned TCP ports for RADIUS transport, as outlined
 below:

* radius 1812/tcp
* radius‑acct 1813/tcp
* radius‑dynauth 3799/tcp

 Since these ports are unused by existing RADIUS implementations, the
 assigned values MUST be used as the default ports for RADIUS over
 TCP.

 The early deployment of RADIUS was done using UDP port number 1645,
 which conflicts with the "datametrics" service. Implementations
 using RADIUS/TCP MUST NOT use TCP ports 1645 or 1646 as the default
 ports for this specification.

 The "radsec" port (2083/tcp) SHOULD be used as the default port for
 RADIUS/TLS. The "radius" port (1812/tcp) SHOULD NOT be used for
 RADIUS/TLS.

2.3. Management Information Base (MIB)

 The MIB Module definitions in [RFC4668], [RFC4669], [RFC4670],
 [RFC4671], [RFC4672], and [RFC4673] are intended to be used for
 RADIUS over UDP. As such, they do not support RADIUS/TCP, and will
 need to be updated in the future. Implementations of RADIUS/TCP
 SHOULD NOT reuse these MIB Modules to perform statistics counting for
 RADIUS/TCP connections.

2.4. Detecting Live Servers

 As RADIUS is a "hop-by-hop" protocol, a RADIUS proxy shields the
 client from any information about downstream servers. While the
 client may be able to deduce the operational state of the local
 server (i.e., proxy), it cannot make any determination about the
 operational state of the downstream servers.

 Within RADIUS, as defined in [RFC2865], proxies typically only
 forward traffic between the NAS and RADIUS server, and they do not
 generate their own responses. As a result, when a NAS does not
 receive a response to a request, this could be the result of packet
 loss between the NAS and proxy, a problem on the proxy, loss between
 the RADIUS proxy and server, or a problem with the server.

 When UDP is used as a transport protocol, the absence of a reply can
 cause a client to deduce (incorrectly) that the proxy is unavailable.
 The client could then fail over to another server or conclude that no
 "live" servers are available (OKAY state in [RFC3539], Appendix A).
 This situation is made even worse when requests are sent through a
 proxy to multiple destinations. Failures in one destination may
 result in service outages for other destinations, if the client
 erroneously believes that the proxy is unresponsive.

 For RADIUS/TLS, it is RECOMMENDED that implementations utilize the
 existence of a TCP connection along with the application-layer
 watchdog defined in [RFC3539], Section 3.4, to determine that the
 server is "live".

 RADIUS clients using RADIUS/TCP MUST mark a connection DOWN if the
 network stack indicates that the connection is no longer active. If
 the network stack indicates that the connection is still active,
 clients MUST NOT decide that it is down until the application-layer
 watchdog algorithm has marked it DOWN ([RFC3539], Appendix A).
 RADIUS clients using RADIUS/TCP MUST NOT decide that a RADIUS server
 is unresponsive until all TCP connections to it have been marked
 DOWN.

 The above requirements do not forbid the practice of a client
 proactively closing connections or marking a server as DOWN due to an
 administrative decision.

2.5. Congestion Control Issues

 Additional issues with RADIUS proxies involve transport protocol
 changes where the proxy receives packets on one transport protocol
 and forwards them on a different transport protocol. There are
 several situations in which the law of "conservation of packets"
 could be violated on an end-to-end basis (e.g., where more packets
 could enter the system than could leave it on a short-term basis):

 * Where TCP is used between proxies, it is possible that the
 bandwidth consumed by incoming UDP packets destined to a given
 upstream server could exceed the sending rate of a single TCP
 connection to that server, based on the window size/RTT
 estimate.

 * It is possible for the incoming rate of TCP packets destined to
 a given realm to exceed the UDP throughput achievable using the
 transport guidelines established in [RFC5080]. This could
 happen, for example, where the TCP window between proxies has
 opened, but packet loss is being experienced on the UDP leg, so
 that the effective congestion window on the UDP side is 1.

 Intrinsically, proxy systems operate with multiple control loops
 instead of one end-to-end loop, and so they are less stable. This is
 true even for TCP-TCP proxies. As discussed in [RFC3539], the only
 way to achieve stability equivalent to a single TCP connection is to
 mimic the end-to-end behavior of a single TCP connection. This
 typically is not achievable with an application-layer RADIUS
 implementation, regardless of transport.

2.6. TCP Specific Issues

 The guidelines defined in [RFC3539] for implementing a AAA protocol
 over reliable transport are applicable to RADIUS/TLS.

 The application-layer watchdog defined in [RFC3539], Section 3.4,
 MUST be used. The Status-Server packet [RFC5997] MUST be used as the
 application-layer watchdog message. Implementations MUST reserve one
 RADIUS ID per connection for the application-layer watchdog message.
 This restriction is described further in Section 2.6.4.

 RADIUS/TLS implementations MUST support receiving RADIUS packets over
 both UDP and TCP transports originating from the same endpoint.
 RADIUS packets received over UDP MUST be replied to over UDP; RADIUS
 packets received over TCP MUST be replied to over TCP. That is,
 RADIUS clients and servers MUST be treated as unique based on a key
 of the three-tuple (IP address, port, transport protocol).
 Implementations MUST permit different shared secrets to be used for
 UDP and TCP connections to the same destination IP address and
 numerical port.

 This requirement does not forbid the traditional practice of using
 primary and secondary servers in a failover relationship. Instead,
 it requires that two services sharing an IP address and numerical
 port, but differing in transport protocol, MUST be treated as
 independent services for the purpose of failover, load-balancing,
 etc.

 Whenever the underlying network stack permits the use of TCP
 keepalive socket options, their use is RECOMMENDED.

2.6.1. Duplicates and Retransmissions

 As TCP is a reliable transport, implementations MUST NOT retransmit
 RADIUS request packets over a given TCP connection. Similarly, if
 there is no response to a RADIUS packet over one TCP connection,
 implementations MUST NOT retransmit that packet over a different TCP
 connection to the same destination IP address and port, while the
 first connection is in the OKAY state ([RFC3539], Appendix A).

 However, if the TCP connection is broken or closed, retransmissions
 over new connections are permissible. RADIUS request packets that
 have not yet received a response MAY be transmitted by a RADIUS
 client over a new TCP connection. As this procedure involves using a
 new source port, the ID of the packet MAY change. If the ID changes,
 any security attributes such as Message-Authenticator MUST be
 recalculated.

 If a TCP connection is broken or closed, any cached RADIUS response
 packets ([RFC5080], Section 2.2.2) associated with that connection
 MUST be discarded. A RADIUS server SHOULD stop the processing of any
 requests associated with that TCP connection. No response to these
 requests can be sent over the TCP connection, so any further
 processing is pointless. This requirement applies not only to RADIUS
 servers, but also to proxies. When a client's connection to a proxy
 server is closed, there may be responses from a home server that were
 supposed to be sent by the proxy back over that connection to the
 client. Since the client connection is closed, those responses from
 the home server to the proxy server SHOULD be silently discarded by
 the proxy.

 Despite the above discussion, RADIUS servers SHOULD still perform
 duplicate detection on received packets, as described in [RFC5080],
 Section 2.2.2. This detection can prevent duplicate processing of
 packets from non-conformant clients.

 RADIUS packets SHOULD NOT be retransmitted to the same destination IP
 and numerical port, but over a different transport protocol. There
 is no guarantee in RADIUS that the two ports are in any way related.
 This requirement does not, however, forbid the practice of putting
 multiple servers into a failover or load-balancing pool. In that
 situation, RADIUS request MAY be retransmitted to another server that
 is known to be part of the same pool.

2.6.2. Head of Line Blocking

 When using UDP as a transport for RADIUS, there is no ordering of
 packets. If a packet sent by a client is lost, that loss has no
 effect on subsequent packets sent by that client.

 Unlike UDP, TCP is subject to issues related to Head of Line (HoL)
 blocking. This occurs when a TCP segment is lost and a subsequent
 TCP segment arrives out of order. While the RADIUS server can
 process RADIUS packets out of order, the semantics of TCP makes this
 impossible. This limitation can lower the maximum packet processing
 rate of RADIUS/TCP.

2.6.3. Shared Secrets

 The use of TLS transport does not change the calculation of security-
 related fields (such as the Response-Authenticator) in RADIUS
 [RFC2865] or RADIUS Dynamic Authorization [RFC5176]. Calculation of
 attributes such as User-Password [RFC2865] or Message-Authenticator
 [RFC3579] also does not change.

 Clients and servers MUST be able to store and manage shared secrets
 based on the key described above, at the start of this section (i.e.,
 IP address, port, transport protocol).

2.6.4. Malformed Packets and Unknown Clients

 The RADIUS specifications ([RFC2865], and many others) say that an
 implementation should "silently discard" a packet in a number of
 circumstances. This action has no further consequences for UDP
 transport, as the "next" packet is completely independent of the
 previous one.

 When TCP is used as a transport, decoding the "next" packet on a
 connection depends on the proper decoding of the previous packet. As
 a result, the behavior with respect to discarded packets has to
 change.

 Implementations of this specification SHOULD treat the "silently
 discard" texts referenced above as "silently discard and close the
 connection". That is, the TCP connection MUST be closed if any of
 the following circumstances are seen:

* Connection from an unknown client
* Packet where the RADIUS "Length" field is less than the minimum
 RADIUS packet length
* Packet where the RADIUS "Length" field is more than the maximum
 RADIUS packet length
* Packet that has an Attribute "Length" field has value of zero
 or one (0 or 1)
* Packet where the attributes do not exactly fill the packet
* Packet where the Request Authenticator fails validation (where
 validation is required)
* Packet where the Response Authenticator fails validation (where
 validation is required)
* Packet where the Message‑Authenticator attribute fails
 validation (when it occurs in a packet)

 After applying the above rules, there are still two situations where
 the previous specifications allow a packet to be "silently discarded"
 upon receipt:

* Packets with an invalid code field
* Response packets that do not match any outstanding request

 In these situations, the TCP connections MAY remain open, or they MAY
 be closed, as an implementation choice. However, the invalid packet
 MUST be silently discarded.

 These requirements reduce the possibility for a misbehaving client or
 server to wreak havoc on the network.

2.6.5. Limitations of the ID Field

 The RADIUS ID field is one octet in size. As a result, any one TCP
 connection can have only 256 "in flight" RADIUS packets at a time.
 If more than 256 simultaneous "in flight" packets are required,
 additional TCP connections will need to be opened. This limitation
 is also noted in [RFC3539], Section 2.4.

 An additional limit is the requirement to send a Status-Server packet
 over the same TCP connection as is used for normal requests. As
 noted in [RFC5997], the response to a Status-Server packet is either
 an Access-Accept or an Accounting-Response. If all IDs were
 allocated to normal requests, then there would be no free ID to use
 for the Status-Server packet, and it could not be sent over the
 connection.

 Implementations SHOULD reserve ID zero (0) on each TCP connection for
 Status-Server packets. This value was picked arbitrarily, as there
 is no reason to choose any one value over another for this use.

 Implementors may be tempted to extend RADIUS to permit more than 256
 outstanding packets on one connection. However, doing so is a
 violation of a fundamental part of the protocol and MUST NOT be done.
 Making that extension here is outside of the scope of this
 specification.

2.6.6. EAP Sessions

 When RADIUS clients send EAP requests using RADIUS/TCP, they SHOULD
 choose the same TCP connection for all packets related to one EAP
 session. This practice ensures that EAP packets are transmitted in
 order, and that problems with any one TCP connection affect the
 minimum number of EAP sessions.

 A simple method that may work in many situations is to hash the
 contents of the Calling-Station-Id attribute, which normally contains
 the Media Access Control (MAC) address. The output of that hash can
 be used to select a particular TCP connection.

 However, EAP packets for one EAP session can still be transported
 from client to server over multiple paths. Therefore, when a server
 receives a RADIUS request containing an EAP request, it MUST be
 processed without considering the transport protocol. For TCP
 transport, it MUST be processed without considering the source port.
 The algorithm suggested in [RFC5080], Section 2.1.1 SHOULD be used to
 track EAP sessions, as it is independent of the source port and
 transport protocol.

 The retransmission requirements of Section 2.6.1, above, MUST be
 applied to RADIUS-encapsulated EAP packets. That is, EAP
 retransmissions MUST NOT result in retransmissions of RADIUS packets
 over a particular TCP connection. EAP retransmissions MAY result in
 retransmission of RADIUS packets over a different TCP connection, but
 only when the previous TCP connection is marked DOWN.

2.6.7. TCP Applications Are Not UDP Applications

 Implementors should be aware that programming a robust TCP
 application can be very different from programming a robust UDP
 application. It is RECOMMENDED that implementors of this
 specification familiarize themselves with TCP application programming
 concepts.

 Clients and servers SHOULD implement configurable connection limits.
 Clients and servers SHOULD implement configurable limits on
 connection lifetime and idle timeouts. Clients and servers SHOULD
 implement configurable rate limiting on new connections. Allowing an
 unbounded number or rate of TCP connections may result in resource
 exhaustion.

 Further discussion of implementation issues is outside of the scope
 of this document.

3. Diameter Considerations

 This document defines TCP as a transport layer for RADIUS. It
 defines no new RADIUS attributes or codes. The only interaction with
 Diameter is in a RADIUS-to-Diameter, or in a Diameter-to-RADIUS
 gateway. The RADIUS side of such a gateway MAY implement RADIUS/TCP,
 but this change has no effect on Diameter.

4. Security Considerations

 As the RADIUS packet format, signing, and client verification are
 unchanged from prior specifications, all of the security issues
 outlined in previous specifications for RADIUS/UDP are also
 applicable here.

 As noted above, clients and servers SHOULD support configurable
 connection limits. Allowing an unlimited number of connections may
 result in resource exhaustion.

 Implementors should consult [RFC6614] for issues related to the
 security of RADIUS/TLS, and [RFC5246] for issues related to the
 security of the TLS protocol.

 Since "bare" TCP does not provide for confidentiality or enable
 negotiation of credible ciphersuites, its use is not appropriate for
 inter-server communications where strong security is required. As a
 result, "bare" TCP transport MUST NOT be used without TLS, IPsec, or
 another secure upper layer.

 There are no (at this time) other known security issues for RADIUS-
 over-TCP transport.

5. References

5.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3539]
 Aboba, B. and J. Wood, "Authentication, Authorization
 and Accounting (AAA) Transport Profile", RFC 3539, June
 2003.

 [RFC5997]
 DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol",
 RFC 5997, August 2010.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, May 2012.

5.2. Informative References

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September
 2003.

 [RFC4301]
 Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4668]
 Nelson, D., "RADIUS Authentication Client MIB for IPv6",
 RFC 4668, August 2006.

 [RFC4669]
 Nelson, D., "RADIUS Authentication Server MIB for IPv6",
 RFC 4669, August 2006.

 [RFC4670]
 Nelson, D., "RADIUS Accounting Client MIB for IPv6", RFC
 4670, August 2006.

 [RFC4671]
 Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC
 4671, August 2006.

 [RFC4672]
 De Cnodder, S., Jonnala, N., and M. Chiba, "RADIUS
 Dynamic Authorization Client MIB", RFC 4672, September
 2006.

 [RFC4673]
 De Cnodder, S., Jonnala, N., and M. Chiba, "RADIUS
 Dynamic Authorization Server MIB", RFC 4673, September
 2006.

 [RFC5080]
 Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [RFC5216]
 Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, March 2008.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.2", RFC 5246, August
 2008.

Author's Address

Alan DeKok
The FreeRADIUS Server Project
http://freeradius.org/

 EMail: aland@freeradius.org

6614 - Transport Layer Security (TLS) Encryption for RADIUS

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6614

Category: Experimental

ISSN: 2070-1721

S. Winter

RESTENA

M. McCauley

OSC

S. Venaas

K. Wierenga

Cisco

May 2012

Transport Layer Security (TLS) Encryption for RADIUS

Abstract

 This document specifies a transport profile for RADIUS using
 Transport Layer Security (TLS) over TCP as the transport protocol.
 This enables dynamic trust relationships between RADIUS servers.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6614.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Terminology

	 1.3. Document Status

	2. Normative: Transport Layer Security for RADIUS/TCP
	 2.1. TCP port and Packet Types

	 2.2. TLS Negotiation

	 2.3. Connection Setup

	 2.4. Connecting Client Identity

	 2.5. RADIUS Datagrams

	3. Informative: Design Decisions
	 3.1. Implications of Dynamic Peer Discovery

	 3.2. X.509 Certificate Considerations

	 3.3. Ciphersuites and Compression Negotiation Considerations

	 3.4. RADIUS Datagram Considerations

	4. Compatibility with Other RADIUS Transports

	5. Diameter Compatibility

	6. Security Considerations

	7. IANA Considerations

	8. Acknowledgements

	9. References
	 9.1. Normative References

	 9.2. Informative References

	Appendix A. Implementation Overview: Radiator

	Appendix B. Implementation Overview: radsecproxy

	Appendix C. Assessment of Crypto-Agility Requirements

1. Introduction

 The RADIUS protocol [RFC2865] is a widely deployed authentication and
 authorization protocol. The supplementary RADIUS Accounting
 specification [RFC2866] provides accounting mechanisms, thus
 delivering a full Authentication, Authorization, and Accounting (AAA)
 solution. However, RADIUS is experiencing several shortcomings, such
 as its dependency on the unreliable transport protocol UDP and the
 lack of security for large parts of its packet payload. RADIUS
 security is based on the MD5 algorithm, which has been proven to be
 insecure.

 The main focus of RADIUS over TLS is to provide a means to secure the
 communication between RADIUS/TCP peers using TLS. The most important
 use of this specification lies in roaming environments where RADIUS
 packets need to be transferred through different administrative
 domains and untrusted, potentially hostile networks. An example for
 a worldwide roaming environment that uses RADIUS over TLS to secure
 communication is "eduroam", see [eduroam].

 There are multiple known attacks on the MD5 algorithm that is used in
 RADIUS to provide integrity protection and a limited confidentiality
 protection (see [MD5-attacks]). RADIUS over TLS wraps the entire
 RADIUS packet payload into a TLS stream and thus mitigates the risk
 of attacks on MD5.

 Because of the static trust establishment between RADIUS peers (IP
 address and shared secret), the only scalable way of creating a
 massive deployment of RADIUS servers under the control of different
 administrative entities is to introduce some form of a proxy chain to
 route the access requests to their home server. This creates a lot
 of overhead in terms of possible points of failure, longer
 transmission times, as well as middleboxes through which
 authentication traffic flows. These middleboxes may learn privacy-
 relevant data while forwarding requests. The new features in RADIUS
 over TLS obsolete the use of IP addresses and shared MD5 secrets to
 identify other peers and thus allow the use of more contemporary
 trust models, e.g., checking a certificate by inspecting the issuer
 and other certificate properties.

1.1. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
 RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in RFC 2119 [RFC2119].

1.2. Terminology

RADIUS/TLS node: a RADIUS‑over‑TLS client or server

RADIUS/TLS Client: a RADIUS‑over‑TLS instance that initiates a new
 connection.

RADIUS/TLS Server: a RADIUS‑over‑TLS instance that listens on a
 RADIUS‑over‑TLS port and accepts new connections

 RADIUS/UDP: a classic RADIUS transport over UDP as defined in

 [RFC2865]

1.3. Document Status

 This document is an Experimental RFC.

 It is one out of several approaches to address known cryptographic
 weaknesses of the RADIUS protocol (see also Section 4). The
 specification does not fulfill all recommendations on a AAA transport
 profile as per [RFC3539]; in particular, by being based on TCP as a
 transport layer, it does not prevent head-of-line blocking issues.

 If this specification is indeed selected for advancement to Standards
 Track, certificate verification options (Section 2.3, point 2) need
 to be refined.

 Another experimental characteristic of this specification is the
 question of key management between RADIUS/TLS peers. RADIUS/UDP only
 allowed for manual key management, i.e., distribution of a shared
 secret between a client and a server. RADIUS/TLS allows manual
 distribution of long-term proofs of peer identity as well (by using
 TLS-PSK ciphersuites, or identifying clients by a certificate
 fingerprint), but as a new feature enables use of X.509 certificates
 in a PKIX infrastructure. It remains to be seen if one of these
 methods will prevail or if both will find their place in real-life
 deployments. The authors can imagine pre-shared keys (PSK) to be
 popular in small-scale deployments (Small Office, Home Office (SOHO)
 or isolated enterprise deployments) where scalability is not an issue
 and the deployment of a Certification Authority (CA) is considered
 too much of a hassle; however, the authors can also imagine large
 roaming consortia to make use of PKIX. Readers of this specification
 are encouraged to read the discussion of key management issues within
 [RFC6421] as well as [RFC4107].

 It has yet to be decided whether this approach is to be chosen for
 Standards Track. One key aspect to judge whether the approach is
 usable on a large scale is by observing the uptake, usability, and
 operational behavior of the protocol in large-scale, real-life
 deployments.

 An example for a worldwide roaming environment that uses RADIUS over
 TLS to secure communication is "eduroam", see [eduroam].

2. Normative: Transport Layer Security for RADIUS/TCP

2.1. TCP port and Packet Types

 The default destination port number for RADIUS over TLS is TCP/2083.
 There are no separate ports for authentication, accounting, and
 dynamic authorization changes. The source port is arbitrary. See
 Section 3.4 for considerations regarding the separation of
 authentication, accounting, and dynamic authorization traffic.

2.2. TLS Negotiation

 RADIUS/TLS has no notion of negotiating TLS in an established
 connection. Servers and clients need to be preconfigured to use
 RADIUS/TLS for a given endpoint.

2.3. Connection Setup

 RADIUS/TLS nodes

 1. establish TCP connections as per [RFC6613]. Failure to connect
 leads to continuous retries, with exponentially growing intervals
 between every try. If multiple servers are defined, the node MAY
 attempt to establish a connection to these other servers in
 parallel, in order to implement quick failover.

 2. after completing the TCP handshake, immediately negotiate TLS
 sessions according to [RFC5246] or its predecessor TLS 1.1. The
 following restrictions apply:

 * Support for TLS v1.1 [RFC4346] or later (e.g., TLS 1.2
 [RFC5246]) is REQUIRED. To prevent known attacks on TLS
 versions prior to 1.1, implementations MUST NOT negotiate TLS
 versions prior to 1.1.

 * Support for certificate-based mutual authentication is
 REQUIRED.

 * Negotiation of mutual authentication is REQUIRED.

 * Negotiation of a ciphersuite providing for confidentiality as
 well as integrity protection is REQUIRED. Failure to comply
 with this requirement can lead to severe security problems,
 like user passwords being recoverable by third parties. See
 Section 6 for details.

 * Support for and negotiation of compression is OPTIONAL.

 * Support for TLS-PSK mutual authentication [RFC4279] is
 OPTIONAL.

 * RADIUS/TLS implementations MUST, at a minimum, support
 negotiation of the TLS_RSA_WITH_3DES_EDE_CBC_SHA, and SHOULD
 support TLS_RSA_WITH_RC4_128_SHA and
 TLS_RSA_WITH_AES_128_CBC_SHA as well (see Section 3.3.

 * In addition, RADIUS/TLS implementations MUST support
 negotiation of the mandatory-to-implement ciphersuites
 required by the versions of TLS that they support.

 3. Peer authentication can be performed in any of the following
 three operation models:

 * TLS with X.509 certificates using PKIX trust models (this
 model is mandatory to implement):

 + Implementations MUST allow the configuration of a list of
 trusted Certification Authorities for incoming connections.

 + Certificate validation MUST include the verification rules
 as per [RFC5280].

 + Implementations SHOULD indicate their trusted Certification
 Authorities (CAs). For TLS 1.2, this is done using
 [RFC5246], Section 7.4.4, "certificate_authorities" (server
 side) and [RFC6066], Section 6 "Trusted CA Indication"
 (client side). See also Section 3.2.

 + Peer validation always includes a check on whether the
 locally configured expected DNS name or IP address of the
 server that is contacted matches its presented certificate.
 DNS names and IP addresses can be contained in the Common
 Name (CN) or subjectAltName entries. For verification,
 only one of these entries is to be considered. The
 following precedence applies: for DNS name validation,
 subjectAltName:DNS has precedence over CN; for IP address
 validation, subjectAltName:iPAddr has precedence over CN.

 Implementors of this specification are advised to read
 [RFC6125], Section 6, for more details on DNS name
 validation.

 + Implementations MAY allow the configuration of a set of
 additional properties of the certificate to check for a
 peer's authorization to communicate (e.g., a set of allowed
 values in subjectAltName:URI or a set of allowed X509v3
 Certificate Policies).

 + When the configured trust base changes (e.g., removal of a
 CA from the list of trusted CAs; issuance of a new CRL for
 a given CA), implementations MAY renegotiate the TLS
 session to reassess the connecting peer's continued
 authorization.

 * TLS with X.509 certificates using certificate fingerprints
 (this model is optional to implement): Implementations SHOULD
 allow the configuration of a list of trusted certificates,
 identified via fingerprint of the DER encoded certificate
 octets. Implementations MUST support SHA-1 as the hash
 algorithm for the fingerprint. To prevent attacks based on
 hash collisions, support for a more contemporary hash function
 such as SHA-256 is RECOMMENDED.

 * TLS using TLS-PSK (this model is optional to implement).

 4. start exchanging RADIUS datagrams (note Section 3.4 (1)). The
 shared secret to compute the (obsolete) MD5 integrity checks and
 attribute encryption MUST be "radsec" (see Section 3.4 (2)).

2.4. Connecting Client Identity

 In RADIUS/UDP, clients are uniquely identified by their IP address.
 Since the shared secret is associated with the origin IP address, if
 more than one RADIUS client is associated with the same IP address,
 then those clients also must utilize the same shared secret, a
 practice that is inherently insecure, as noted in [RFC5247].

 RADIUS/TLS supports multiple operation modes.

 In TLS-PSK operation, a client is uniquely identified by its TLS
 identifier.

 In TLS-X.509 mode using fingerprints, a client is uniquely identified
 by the fingerprint of the presented client certificate.

 In TLS-X.509 mode using PKIX trust models, a client is uniquely
 identified by the tuple (serial number of presented client
 certificate;Issuer).

 Note well: having identified a connecting entity does not mean the
 server necessarily wants to communicate with that client. For
 example, if the Issuer is not in a trusted set of Issuers, the server
 may decline to perform RADIUS transactions with this client.

 There are numerous trust models in PKIX environments, and it is
 beyond the scope of this document to define how a particular
 deployment determines whether a client is trustworthy.
 Implementations that want to support a wide variety of trust models
 should expose as many details of the presented certificate to the
 administrator as possible so that the trust model can be implemented
 by the administrator. As a suggestion, at least the following
 parameters of the X.509 client certificate should be exposed:

 o Originating IP address

 o Certificate Fingerprint

 o Issuer

 o Subject

 o all X509v3 Extended Key Usage

 o all X509v3 Subject Alternative Name

 o all X509v3 Certificate Policies

 In TLS-PSK operation, at least the following parameters of the TLS
 connection should be exposed:

 o Originating IP address

 o TLS Identifier

2.5. RADIUS Datagrams

 Authentication, Authorization, and Accounting packets are sent
 according to the following rules:

 RADIUS/TLS clients transmit the same packet types on the connection
 they initiated as a RADIUS/UDP client would (see Section 3.4 (3) and
 (4)). For example, they send

 o Access-Request

 o Accounting-Request

 o Status-Server

 o Disconnect-ACK

 o Disconnect-NAK

 o ...

 and they receive

 o Access-Accept

 o Accounting-Response

 o Disconnect-Request

 o ...

 RADIUS/TLS servers transmit the same packet types on connections they
 have accepted as a RADIUS/UDP server would. For example, they send

 o Access-Challenge

 o Access-Accept

 o Access-Reject

 o Accounting-Response

 o Disconnect-Request

 o ...

 and they receive

 o Access-Request

 o Accounting-Request

 o Status-Server

 o Disconnect-ACK

 o ...

 Due to the use of one single TCP port for all packet types, it is
 required that a RADIUS/TLS server signal which types of packets are
 supported on a server to a connecting peer. See also Section 3.4 for
 a discussion of signaling.

 o When an unwanted packet of type 'CoA-Request' or 'Disconnect-
 Request' is received, a RADIUS/TLS server needs to respond with a
 'CoA-NAK' or 'Disconnect-NAK', respectively. The NAK SHOULD
 contain an attribute Error-Cause with the value 406 ("Unsupported
 Extension"); see [RFC5176] for details.

 o When an unwanted packet of type 'Accounting-Request' is received,
 the RADIUS/TLS server SHOULD reply with an Accounting-Response
 containing an Error-Cause attribute with value 406 "Unsupported
 Extension" as defined in [RFC5176]. A RADIUS/TLS accounting
 client receiving such an Accounting-Response SHOULD log the error
 and stop sending Accounting-Request packets.

3. Informative: Design Decisions

 This section explains the design decisions that led to the rules
 defined in the previous section.

3.1. Implications of Dynamic Peer Discovery

 One mechanism to discover RADIUS-over-TLS peers dynamically via DNS
 is specified in [DYNAMIC]. While this mechanism is still under
 development and therefore is not a normative dependency of RADIUS/
 TLS, the use of dynamic discovery has potential future implications
 that are important to understand.

 Readers of this document who are considering the deployment of DNS-
 based dynamic discovery are thus encouraged to read [DYNAMIC] and
 follow its future development.

3.2. X.509 Certificate Considerations

 (1) If a RADIUS/TLS client is in possession of multiple certificates

 from different CAs (i.e., is part of multiple roaming consortia)
 and dynamic discovery is used, the discovery mechanism possibly
 does not yield sufficient information to identify the consortium
 uniquely (e.g., DNS discovery). Subsequently, the client may
 not know by itself which client certificate to use for the TLS
 handshake. Then, it is necessary for the server to signal to
 which consortium it belongs and which certificates it expects.
 If there is no risk of confusing multiple roaming consortia,
 providing this information in the handshake is not crucial.

 (2) If a RADIUS/TLS server is in possession of multiple certificates

 from different CAs (i.e., is part of multiple roaming
 consortia), it will need to select one of its certificates to
 present to the RADIUS/TLS client. If the client sends the
 Trusted CA Indication, this hint can make the server select the
 appropriate certificate and prevent a handshake failure.
 Omitting this indication makes it impossible to
 deterministically select the right certificate in this case. If
 there is no risk of confusing multiple roaming consortia,
 providing this indication in the handshake is not crucial.

3.3. Ciphersuites and Compression Negotiation Considerations

 Not all TLS ciphersuites in [RFC5246] are supported by available TLS
 tool kits, and licenses may be required in some cases. The existing
 implementations of RADIUS/TLS use OpenSSL as a cryptographic backend,
 which supports all of the ciphersuites listed in the rules in the
 normative section.

 The TLS ciphersuite TLS_RSA_WITH_3DES_EDE_CBC_SHA is mandatory to
 implement according to [RFC4346]; thus, it has to be supported by
 RADIUS/TLS nodes.

 The two other ciphersuites in the normative section are widely
 implemented in TLS tool kits and are considered good practice to
 implement.

3.4. RADIUS Datagram Considerations

 (1) After the TLS session is established, RADIUS packet payloads are

 exchanged over the encrypted TLS tunnel. In RADIUS/UDP, the
 packet size can be determined by evaluating the size of the
 datagram that arrived. Due to the stream nature of TCP and TLS,
 this does not hold true for RADIUS/TLS packet exchange.
 Instead, packet boundaries of RADIUS packets that arrive in the
 stream are calculated by evaluating the packet's Length field.
 Special care needs to be taken on the packet sender side that
 the value of the Length field is indeed correct before sending
 it over the TLS tunnel, because incorrect packet lengths can no
 longer be detected by a differing datagram boundary. See
 Section 2.6.4 of [RFC6613] for more details.

 (2) Within RADIUS/UDP [RFC2865], a shared secret is used for hiding

 attributes such as User-Password, as well as in computation of
 the Response Authenticator. In RADIUS accounting [RFC2866], the
 shared secret is used in computation of both the Request
 Authenticator and the Response Authenticator. Since TLS
 provides integrity protection and encryption sufficient to
 substitute for RADIUS application-layer security, it is not
 necessary to configure a RADIUS shared secret. The use of a
 fixed string for the obsolete shared secret eliminates possible
 node misconfigurations.

 (3) RADIUS/UDP [RFC2865] uses different UDP ports for

 authentication, accounting, and dynamic authorization changes.
 RADIUS/TLS allocates a single port for all RADIUS packet types.
 Nevertheless, in RADIUS/TLS, the notion of a client that sends
 authentication requests and processes replies associated with
 its users' sessions and the notion of a server that receives
 requests, processes them, and sends the appropriate replies is
 to be preserved. The normative rules about acceptable packet
 types for clients and servers mirror the packet flow behavior
 from RADIUS/UDP.

 (4) RADIUS/UDP [RFC2865] uses negative ICMP responses to a newly

 allocated UDP port to signal that a peer RADIUS server does not
 support the reception and processing of the packet types in
 [RFC5176]. These packet types are listed as to be received in
 RADIUS/TLS implementations. Note well: it is not required for
 an implementation to actually process these packet types; it is
 only required that the NAK be sent as defined above.

 (5) RADIUS/UDP [RFC2865] uses negative ICMP responses to a newly

 allocated UDP port to signal that a peer RADIUS server does not
 support the reception and processing of RADIUS Accounting
 packets. There is no RADIUS datagram to signal an Accounting
 NAK. Clients may be misconfigured for sending Accounting
 packets to a RADIUS/TLS server that does not wish to process
 their Accounting packet. To prevent a regression of
 detectability of this situation, the Accounting-Response +
 Error-Cause signaling was introduced.

4. Compatibility with Other RADIUS Transports

 The IETF defines multiple alternative transports to the classic UDP
 transport model as defined in [RFC2865], namely RADIUS over TCP
 [RFC6613] and the present document on RADIUS over TLS. The IETF also
 proposed RADIUS over Datagram Transport Layer Security (DTLS)
 [RADEXT-DTLS].

 RADIUS/TLS does not specify any inherent backward compatibility to
 RADIUS/UDP or cross compatibility to the other transports, i.e., an
 implementation that utilizes RADIUS/TLS only will not be able to
 receive or send RADIUS packet payloads over other transports. An
 implementation wishing to be backward or cross compatible (i.e.,
 wishes to serve clients using other transports than RADIUS/TLS) will
 need to implement these other transports along with the RADIUS/TLS
 transport and be prepared to send and receive on all implemented
 transports, which is called a "multi-stack implementation".

 If a given IP device is able to receive RADIUS payloads on multiple
 transports, this may or may not be the same instance of software, and
 it may or may not serve the same purposes. It is not safe to assume
 that both ports are interchangeable. In particular, it cannot be
 assumed that state is maintained for the packet payloads between the
 transports. Two such instances MUST be considered separate RADIUS
 server entities.

5. Diameter Compatibility

 Since RADIUS/TLS is only a new transport profile for RADIUS, the
 compatibility of RADIUS/TLS - Diameter [RFC3588] and RADIUS/UDP
 [RFC2865] - Diameter [RFC3588] is identical. The considerations
 regarding payload size in [RFC6613] apply.

6. Security Considerations

 The computational resources to establish a TLS tunnel are
 significantly higher than simply sending mostly unencrypted UDP
 datagrams. Therefore, clients connecting to a RADIUS/TLS node will
 more easily create high load conditions and a malicious client might
 create a Denial-of-Service attack more easily.

 Some TLS ciphersuites only provide integrity validation of their
 payload, and provide no encryption. This specification forbids the
 use of such ciphersuites. Since the RADIUS payload's shared secret
 is fixed to the well-known term "radsec" (see Section 2.3 (4)),
 failure to comply with this requirement will expose the entire
 datagram payload in plaintext, including User-Password, to
 intermediate IP nodes.

 By virtue of being based on TCP, there are several generic attack
 vectors to slow down or prevent the TCP connection from being
 established; see [RFC4953] for details. If a TCP connection is not
 up when a packet is to be processed, it gets re-established, so such
 attacks in general lead only to a minor performance degradation (the
 time it takes to re-establish the connection). There is one notable
 exception where an attacker might create a bidding-down attack
 though. If peer communication between two devices is configured for
 both RADIUS/TLS (i.e., TLS security over TCP as a transport, shared
 secret fixed to "radsec") and RADIUS/UDP (i.e., shared secret
 security with a secret manually configured by the administrator), and
 the RADIUS/UDP transport is the failover option if the TLS session
 cannot be established, a bidding-down attack can occur if an
 adversary can maliciously close the TCP connection or prevent it from
 being established. Situations where clients are configured in such a
 way are likely to occur during a migration phase from RADIUS/UDP to
 RADIUS/TLS. By preventing the TLS session setup, the attacker can
 reduce the security of the packet payload from the selected TLS
 ciphersuite packet encryption to the classic MD5 per-attribute
 encryption. The situation should be avoided by disabling the weaker
 RADIUS/UDP transport as soon as the new RADIUS/TLS connection is
 established and tested. Disabling can happen at either the RADIUS
 client or server side:

 o Client side: de-configure the failover setup, leaving RADIUS/TLS
 as the only communication option

 o Server side: de-configure the RADIUS/UDP client from the list of
 valid RADIUS clients

 RADIUS/TLS provides authentication and encryption between RADIUS
 peers. In the presence of proxies, the intermediate proxies can
 still inspect the individual RADIUS packets, i.e., "end-to-end"
 encryption is not provided. Where intermediate proxies are
 untrusted, it is desirable to use other RADIUS mechanisms to prevent
 RADIUS packet payload from inspection by such proxies. One common
 method to protect passwords is the use of the Extensible
 Authentication Protocol (EAP) and EAP methods that utilize TLS.

 When using certificate fingerprints to identify RADIUS/TLS peers, any
 two certificates that produce the same hash value (i.e., that have a
 hash collision) will be considered the same client. Therefore, it is
 important to make sure that the hash function used is
 cryptographically uncompromised so that an attacker is very unlikely
 to be able to produce a hash collision with a certificate of his
 choice. While this specification mandates support for SHA-1, a later
 revision will likely demand support for more contemporary hash
 functions because as of issuance of this document, there are already
 attacks on SHA-1.

7. IANA Considerations

 No new RADIUS attributes or packet codes are defined. IANA has
 updated the already assigned TCP port number 2083 to reflect the
 following:

 o Reference: [RFC6614]

 o Assignment Notes: The TCP port 2083 was already previously
 assigned by IANA for "RadSec", an early implementation of RADIUS/
 TLS, prior to issuance of this RFC. This early implementation can
 be configured to be compatible to RADIUS/TLS as specified by the
 IETF. See RFC 6614, Appendix A for details.

8. Acknowledgements

 RADIUS/TLS was first implemented as "RADSec" by Open Systems
 Consultants, Currumbin Waters, Australia, for their "Radiator" RADIUS
 server product (see [radsec-whitepaper]).

 Funding and input for the development of this document was provided
 by the European Commission co-funded project "GEANT2" [geant2] and
 further feedback was provided by the TERENA Task Force on Mobility
 and Network Middleware [terena].

9. References

9.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC4279]
 Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279,
 December 2005.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5247]
 Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, August 2008.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC6066]
 Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6613]
 DeKok, A., "RADIUS over TCP", RFC 6613, May 2012.

9.2. Informative References

 [DYNAMIC]
 Winter, S. and M. McCauley, "NAI-based Dynamic Peer
 Discovery for RADIUS/TLS and RADIUS/DTLS", Work
 in Progress, July 2011.

 [MD5-attacks]

 Black, J., Cochran, M., and T. Highland, "A Study of the
 MD5 Attacks: Insights and Improvements", October 2006,
 <http://www.springerlink.com/content/40867l85727r7084/>.

 [RADEXT-DTLS]

 DeKok, A., "DTLS as a Transport Layer for RADIUS", Work
 in Progress, October 2010.

 [RFC3539]
 Aboba, B. and J. Wood, "Authentication, Authorization and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

 [RFC3588]
 Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC4107]
 Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [RFC4346]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4953]
 Touch, J., "Defending TCP Against Spoofing Attacks",
 RFC 4953, July 2007.

 [RFC6125]
 Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6421]
 Nelson, D., "Crypto-Agility Requirements for Remote
 Authentication Dial-In User Service (RADIUS)", RFC 6421,
 November 2011.

 [eduroam]
 Trans-European Research and Education Networking
 Association, "eduroam Homepage", 2007,
 <http://www.eduroam.org/>.

 [geant2]
 Delivery of Advanced Network Technology to Europe,
 "European Commission Information Society and Media:
 GEANT2", 2008, <http://www.geant2.net/>.

 [radsec-whitepaper]

 Open System Consultants, "RadSec - a secure, reliable
 RADIUS Protocol", May 2005,
 <http://www.open.com.au/radiator/radsec-whitepaper.pdf>.

 [radsecproxy-impl]

 Venaas, S., "radsecproxy Project Homepage", 2007,
 <http://software.uninett.no/radsecproxy/>.

 [terena]
 Trans-European Research and Education Networking
 Association (TERENA), "Task Force on Mobility and Network
 Middleware", 2008,
 <http://www.terena.org/activities/tf-mobility/>.

Appendix A. Implementation Overview: Radiator

 Radiator implements the RadSec protocol for proxying requests with
 the <Authby RADSEC> and <ServerRADSEC> clauses in the Radiator
 configuration file.

 The <AuthBy RADSEC> clause defines a RadSec client, and causes
 Radiator to send RADIUS requests to the configured RadSec server
 using the RadSec protocol.

 The <ServerRADSEC> clause defines a RadSec server, and causes
 Radiator to listen on the configured port and address(es) for
 connections from <Authby RADSEC> clients. When an <Authby RADSEC>
 client connects to a <ServerRADSEC> server, the client sends RADIUS
 requests through the stream to the server. The server then handles
 the request in the same way as if the request had been received from
 a conventional UDP RADIUS client.

 Radiator is compliant to RADIUS/TLS if the following options are
 used:

 <AuthBy RADSEC>

 * Protocol tcp

 * UseTLS

 * TLS_CertificateFile

 * Secret radsec

 <ServerRADSEC>

 * Protocol tcp

 * UseTLS

 * TLS_RequireClientCert

 * Secret radsec

 As of Radiator 3.15, the default shared secret for RadSec connections
 is configurable and defaults to "mysecret" (without quotes). For
 compliance with this document, this setting needs to be configured
 for the shared secret "radsec". The implementation uses TCP
 keepalive socket options, but does not send Status-Server packets.
 Once established, TLS connections are kept open throughout the server
 instance lifetime.

Appendix B. Implementation Overview: radsecproxy

 The RADIUS proxy named radsecproxy was written in order to allow use
 of RadSec in current RADIUS deployments. This is a generic proxy
 that supports any number and combination of clients and servers,
 supporting RADIUS over UDP and RadSec. The main idea is that it can
 be used on the same host as a non-RadSec client or server to ensure
 RadSec is used on the wire; however, as a generic proxy, it can be
 used in other circumstances as well.

 The configuration file consists of client and server clauses, where
 there is one such clause for each client or server. In such a
 clause, one specifies either "type tls" or "type udp" for TLS or UDP
 transport. Versions prior to 1.6 used "mysecret" as a default shared
 secret for RADIUS/TLS; version 1.6 and onwards uses "radsec". For
 backwards compatibility with older versions, the secret can be
 changed (which makes the configuration not compliant with this
 specification).

 In order to use TLS for clients and/or servers, one must also specify
 where to locate CA certificates, as well as certificate and key for
 the client or server. This is done in a TLS clause. There may be
 one or several TLS clauses. A client or server clause may reference
 a particular TLS clause, or just use a default one. One use for
 multiple TLS clauses may be to present one certificate to clients and
 another to servers.

 If any RadSec (TLS) clients are configured, the proxy will, at
 startup, listen on port 2083, as assigned by IANA for the OSC RadSec
 implementation. An alternative port may be specified. When a client
 connects, the client certificate will be verified, including checking
 that the configured Fully Qualified Domain Name (FQDN) or IP address
 matches what is in the certificate. Requests coming from a RadSec
 client are treated exactly like requests from UDP clients.

 At startup, the proxy will try to establish a TLS connection to each
 (if any) of the configured RadSec (TLS) servers. If it fails to
 connect to a server, it will retry regularly. There is some back-off
 where it will retry quickly at first, and with longer intervals
 later. If a connection to a server goes down, it will also start
 retrying regularly. When setting up the TLS connection, the server
 certificate will be verified, including checking that the configured
 FQDN or IP address matches what is in the certificate. Requests are
 sent to a RadSec server, just like they would be to a UDP server.

 The proxy supports Status-Server messages. They are only sent to a
 server if enabled for that particular server. Status-Server requests
 are always responded to.

 This RadSec implementation has been successfully tested together with
 Radiator. It is a freely available, open-source implementation. For
 source code and documentation, see [radsecproxy-impl].

Appendix C. Assessment of Crypto-Agility Requirements

 The RADIUS Crypto-Agility Requirements document [RFC6421] defines
 numerous classification criteria for protocols that strive to enhance
 the security of RADIUS. It contains mandatory (M) and recommended
 (R) criteria that crypto-agile protocols have to fulfill. The
 authors believe that the following assessment about the crypto-
 agility properties of RADIUS/TLS are true.

 By virtue of being a transport profile using TLS over TCP as a
 transport protocol, the cryptographically agile properties of TLS are
 inherited, and RADIUS/TLS subsequently meets the following points:

 (M) negotiation of cryptographic algorithms for integrity and auth

 (M) negotiation of cryptographic algorithms for encryption

 (M) replay protection

 (M) define mandatory-to-implement cryptographic algorithms

 (M) generate fresh session keys for use between client and server

 (R) support for Perfect Forward Secrecy in session keys

 (R) support X.509 certificate-based operation

 (R) support Pre-Shared keys

 (R) support for confidentiality of the entire packet

 (M/R) support Automated Key Management

 The remainder of the requirements is discussed individually below in
 more detail:

 (M) "...avoid security compromise, even in situations where the
 existing cryptographic algorithms utilized by RADIUS
 implementations are shown to be weak enough to provide little or
 no security" [RFC6421]. The existing algorithm, based on MD5, is
 not of any significance in RADIUS/TLS; its compromise does not
 compromise the outer transport security.

 (R) mandatory-to-implement algorithms are to be NIST-Acceptable
 with no deprecation date - The mandatory-to-implement algorithm is
 TLS_RSA_WITH_3DES_EDE_CBC_SHA. This ciphersuite supports three-
 key 3DES operation, which is classified as Acceptable with no
 known deprecation date by NIST.

 (M) demonstrate backward compatibility with RADIUS - There are
 multiple implementations supporting both RADIUS and RADIUS/TLS,
 and the translation between them.

 (M) After legacy mechanisms have been compromised, secure
 algorithms MUST be used, so that backward compatibility is no
 longer possible - In RADIUS, communication between client and
 server is always a manual configuration; after a compromise, the
 legacy client in question can be de-configured by the same manual
 configuration.

 (M) indicate a willingness to cede change control to the IETF -
 Change control of this protocol is with the IETF.

 (M) be interoperable between implementations based purely on the
 information in the specification - At least one implementation was
 created exclusively based on this specification and is
 interoperable with other RADIUS/TLS implementations.

 (M) apply to all packet types - RADIUS/TLS operates on the
 transport layer, and can carry all packet types.

 (R) message data exchanged with Diameter SHOULD NOT be affected -
 The solution is Diameter-agnostic.

 (M) discuss any inherent assumptions - The authors are not aware
 of any implicit assumptions that would be yet-unarticulated in the
 document.

 (R) provide recommendations for transition - The Security
 Considerations section contains a transition path.

 (R) discuss legacy interoperability and potential for bidding-down
 attacks - The Security Considerations section contains a
 corresponding discussion.

 Summarizing, it is believed that this specification fulfills all the
 mandatory and all the recommended requirements for a crypto-agile
 solution and should thus be considered UNCONDITIONALLY COMPLIANT.

Authors' Addresses

Stefan Winter
Fondation RESTENA
6, rue Richard Coudenhove‑Kalergi
Luxembourg 1359
Luxembourg

Phone: +352 424409 1
Fax: +352 422473
EMail: stefan.winter@restena.lu
URI: http://www.restena.lu.

Mike McCauley
Open Systems Consultants
9 Bulbul Place
Currumbin Waters QLD 4223
Australia

Phone: +61 7 5598 7474
Fax: +61 7 5598 7070
EMail: mikem@open.com.au
URI: http://www.open.com.au.

Stig Venaas
Cisco Systems
Tasman Drive
San Jose, CA 95134
USA

 EMail: stig@cisco.com

Klaas Wierenga
Cisco Systems International BV
Haarlerbergweg 13‑19
Amsterdam 1101 CH
The Netherlands

Phone: +31 (0)20 3571752
EMail: klaas@cisco.com
URI: http://www.cisco.com

6911 - RADIUS Attributes for IPv6 Access Networks

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6911

Category: Standards Track

ISSN: 2070-1721

W. Dec, Ed.

Cisco Systems, Inc.

B. Sarikaya

Huawei USA

G. Zorn, Ed.

Network Zen

D. Miles

Google

B. Lourdelet

Juniper Networks

April 2013

RADIUS Attributes for IPv6 Access Networks

Abstract

 This document specifies additional IPv6 RADIUS Attributes useful in
 residential broadband network deployments. The Attributes, which are
 used for authorization and accounting, enable assignment of a host
 IPv6 address and an IPv6 DNS server address via DHCPv6, assignment of
 an IPv6 route announced via router advertisement, assignment of a
 named IPv6 delegated prefix pool, and assignment of a named IPv6 pool
 for host DHCPv6 addressing.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6911.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Deployment Scenarios
	 2.1. IPv6 Address Assignment

	 2.2. DNS Servers

	 2.3. IPv6 Route Information

	 2.4. Delegated IPv6 Prefix Pool

	 2.5. Stateful IPv6 Address Pool

	3. Attributes
	 3.1. Framed-IPv6-Address

	 3.2. DNS-Server-IPv6-Address

	 3.3. Route-IPv6-Information

	 3.4. Delegated-IPv6-Prefix-Pool

	 3.5. Stateful-IPv6-Address-Pool

	 3.6. Table of Attributes

	4. Diameter Considerations

	5. Security Considerations

	6. IANA Considerations

	7. Acknowledgments

	8. References
	 8.1. Normative References

	 8.2. Informative References

1. Introduction

 This document specifies additional RADIUS Attributes used to support
 configuration of DHCPv6 and/or ICMPv6 Router Advertisement (RA)
 parameters on a per-user basis. The Attributes, which complement
 those defined in [RFC3162] and [RFC4818], support the following:

 o The assignment of specific IPv6 addresses to hosts via DHCPv6.

 o The assignment of an IPv6 DNS server address, via DHCPv6 or Router
 Advertisement [RFC6106].

 o The configuration of more specific routes to be announced to the
 user via the Route Information Option defined in [RFC4191],
 Section 2.3.

 o The assignment of a named delegated prefix pool for use with "IPv6
 Prefix Options for Dynamic Host Configuration Protocol (DHCP)
 version 6" [RFC3633].

 o The assignment of a named stateful address pool for use with
 DHCPv6 stateful address assignment [RFC3315].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Deployment Scenarios

 The extensions in this document are intended to be applicable across
 a wide variety of network access scenarios in which RADIUS is
 involved. One such typical network scenario is illustrated in Figure
 1. It is composed of an IP Routing Residential Gateway (RG) or host;
 a Layer 2 Access Node (AN), e.g., a Digital Subscriber Line Access
 Multiplexer (DSLAM); an IP Network Access Server (NAS) (incorporating
 an Authentication, Authorization, and Accounting (AAA) client); and a
 AAA server.

 +‑‑‑‑‑+
 | AAA |
 | |
 +‑‑+‑‑+
 ^
 .
 .(RADIUS)
 .
 v
 +‑‑‑‑‑‑+ +‑‑‑+‑‑‑+
+‑‑‑‑‑‑+ | | | |
| RG/ +‑‑‑‑‑‑‑| AN +‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑+ NAS |
| host | | | | |
+‑‑‑‑‑‑+ (DSL) +‑‑‑‑‑‑+ (Ethernet) +‑‑‑‑‑‑‑+

 Figure 1

 In the depicted scenario, the NAS may utilize an IP address
 configuration protocol (e.g., DHCPv6) to handle address assignment to
 RGs/hosts. The RADIUS server authenticates each RG/host and returns
 the Attributes used for authorization and accounting. These
 Attributes can include a host's IPv6 address, a DNS server address,
 and a set of IPv6 routes to be advertised via any suitable protocol,
 e.g., ICMPv6 (Neighbor Discovery). The name of a prefix pool to be
 used for DHCPv6 Prefix Delegation or the name of an address pool to
 be used for DHCPv6 address assignment can also be Attributes provided
 to the NAS by the RADIUS AAA server.

 The following subsections discuss how these Attributes are used in
 more detail.

2.1. IPv6 Address Assignment

DHCPv6 [RFC3315] provides a mechanism to assign one or more non‑
temporary IPv6 addresses to hosts. To provide a DHCPv6 server
residing on a NAS with one or more IPv6 addresses to be assigned,
this document specifies the Framed‑IPv6‑Address Attribute
(Section 3.1).

 While [RFC3162] permits the specification of an IPv6 address via the
 combination of the Framed-Interface-Id and Framed-IPv6-Prefix
 Attributes, this separation is more natural for use with PPP's IPv6
 Control Protocol than it is for use with DHCPv6, and the use of a
 single IPv6 address Attribute makes for easier processing of
 accounting records.

 Because DHCPv6 can be deployed on the same network as ICMPv6
 stateless address autoconfiguration (SLAAC) [RFC4862], it is possible
 that the NAS will require both stateful and stateless configuration
 information. Therefore, it is possible for the Framed-IPv6-Address,
 Framed-IPv6-Prefix, and Framed-Interface-Id Attributes [RFC3162] to
 be included within the same packet. To avoid ambiguity in this case,
 the Framed-IPv6-Address Attribute is intended for authorization and
 accounting of DHCPv6-assigned addresses, and the Framed-IPv6-Prefix
 and Framed-Interface-Id Attributes are used for authorization and
 accounting of addresses assigned via SLAAC.

2.2. DNS Servers

 DHCPv6 provides an option for configuring a host with the IPv6
 address of a DNS server. The IPv6 address of a DNS server can also
 be conveyed to the host using ICMPv6 with Router Advertisements, via
 the Recursive DNS Server Option [RFC6106]. To provide the NAS with
 the IPv6 address of one or more DNS servers, this document specifies
 the DNS-Server-IPv6-Address Attribute (Section 3.2).

2.3. IPv6 Route Information

 The IPv6 Route Information Option [RFC4191], is intended to be used
 to inform a host connected to the NAS that a specific route is
 reachable via any given NAS.

 This document specifies the Route-IPv6-Information Attribute
 (Section 3.3) that allows the AAA server to provision the
 announcement by the NAS of a specific Route Information Option to an
 accessing host. The NAS may advertise this route using the method
 defined in RFC 4191 or other equivalent methods. Any other
 information, such as preference or lifetime values, that is to be
 present in the actual announcement using a given method is assumed to
 be determined by the NAS using means not specified by this document
 (e.g., local configuration on the NAS).

 While the Framed-IPv6-Prefix Attribute ([RFC3162], Section 2.3)
 allows the route to be advertised in an RA, it cannot be used to
 configure more specific routes. While the Framed-IPv6-Route
 Attribute ([RFC3162], Section 2.5) causes the route to be configured
 on the NAS and potentially to be announced via an IP routing
 protocol, depending on the value of Framed-Routing, it does not
 result in the route being announced in an RA.

2.4. Delegated IPv6 Prefix Pool

 DHCPv6 Prefix Delegation (DHCPv6-PD) [RFC3633] involves a delegating
 router selecting a prefix and delegating it on a temporary basis to a
 requesting router. The delegating router may implement a number of
 strategies as to how it chooses what prefix is to be delegated to a
 requesting router, one of them being the use of a local named prefix
 pool. The Delegated-IPv6-Prefix-Pool Attribute (Section 3.4) allows
 the RADIUS server to convey a prefix pool name to a NAS that is
 hosting a DHCPv6-PD server and that is acting as a delegating router.

 Because DHCPv6 Prefix Delegation can be used with SLAAC on the same
 network, it is possible for the Delegated-IPv6-Prefix-Pool and
 Framed-IPv6-Pool Attributes to be included within the same packet.
 To avoid ambiguity in this scenario, use of the Delegated-IPv6-
 Prefix-Pool Attribute should be restricted to authorization and
 accounting of prefix pools used in DHCPv6 Prefix Delegation, and the
 Framed-IPv6-Pool Attribute should be used for authorization and
 accounting of prefix pools used in SLAAC.

2.5. Stateful IPv6 Address Pool

 DHCPv6 [RFC3315] provides a mechanism to assign one or more non-
 temporary IPv6 addresses to hosts. Section 3.1 introduces the
 Framed-IPv6-Address Attribute to be used to provide a DHCPv6 server
 residing on a NAS with one or more IPv6 addresses to be assigned to
 the clients. An alternative way to achieve a similar result is for
 the NAS to select the IPv6 address to be assigned from an address
 pool configured for this purpose on the NAS. This document specifies
 the Stateful-IPv6-Address-Pool Attribute (Section 3.5) to allow the
 RADIUS server to convey a pool name to be used for such stateful
 DHCPv6-based addressing and for any subsequent accounting.

3. Attributes

 The fields shown in the diagrams below are transmitted from left to
 right.

3.1. Framed-IPv6-Address

 The Framed-IPv6-Address Attribute indicates an IPv6 address that is
 assigned to the NAS-facing interface of the RG/host. It MAY be used
 in Access-Accept packets and MAY appear multiple times. It MAY be
 used in an Access-Request packet as a hint by the NAS to the RADIUS
 server that it would prefer this IPv6 address, but the RADIUS server
 is not required to honor the hint. Because it is assumed that the
 NAS will add a route corresponding to the address, it is not
 necessary for the RADIUS server to also send a host Framed-IPv6-Route
 Attribute for the same address.

 This Attribute can be used by a DHCPv6 process on the NAS to assign a
 unique IPv6 address to the RG/host.

 A summary of the Framed-IPv6-Address Attribute format is shown below.
 The format of the Address field is identical to that of the
 corresponding field in the NAS-IPv6-Address Attribute [RFC3162].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Address
+‑+
 Address (cont)
+‑+
 Address (cont)
+‑+
 Address (cont)
+‑+
 Address (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 168 for Framed-IPv6-Address

 Length

 18

 Address

 A 128-bit IPv6 address.

3.2. DNS-Server-IPv6-Address

 The DNS-Server-IPv6-Address Attribute contains the IPv6 address of a
 DNS server. This Attribute MAY be included multiple times in Access-
 Accept packets when the intention is for a NAS to announce more than
 one DNS server address to an RG/host. The Attribute MAY be used in
 an Access-Request packet as a hint by the NAS to the RADIUS server
 regarding the DNS IPv6 address, but the RADIUS server is not required
 to honor the hint.

 The content of this Attribute can be copied to an instance of the
 DHCPv6 DNS Recursive Name Server Option [RFC3646] or to an IPv6
 Router Advertisement Recursive DNS Server Option [RFC6106]. If more
 than one DNS-Server-IPv6-Address Attribute is present in the Access-
 Accept packet, the addresses from the Attributes SHOULD be copied in
 the same order as received.

 A summary of the DNS-Server-IPv6-Address Attribute format is given
 below. The format of the Address field is the same as that of the
 corresponding field in the NAS-IPv6-Address Attribute [RFC3162].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Address
+‑+
 Address (cont)
+‑+
 Address (cont)
+‑+
 Address (cont)
+‑+
 Address (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 169 for DNS-Server-IPv6-Address

 Length

 18

 Address

 The 128-bit IPv6 address of a DNS server.

3.3. Route-IPv6-Information

 The Route-IPv6-Information Attribute specifies a prefix (and
 corresponding route) for the user on the NAS, which is to be
 announced using the Route Information Option defined in "Default
 Router Preferences and More Specific Routes" [RFC4191], Section 2.3.
 It is used in the Access-Accept packet and can appear multiple times.
 It MAY be used in an Access-Request packet as a hint by the NAS to
 the RADIUS server, but the RADIUS server is not required to honor the
 hint. The Route-IPv6-Information Attribute format is depicted below.
 The format of the prefix is as per [RFC3162].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Reserved | Prefix‑Length |
+‑+
| |
. Prefix (variable) .
. .
| |
+‑+

 Type

 170 for Route-IPv6-Information

 Length

 Length, in bytes. At least 4 and no larger than 20; typically, 12
 or less.

 Prefix Length

 8-bit unsigned integer. The number of leading bits in the prefix
 that are valid. The value can range from 0 to 128. The prefix
 field is 0, 8, or 16 octets depending on Length.

 Prefix

 Variable-length field containing an IP prefix. The prefix length
 field contains the number of valid leading bits in the prefix.
 The bits in the prefix after the prefix length, if any, are
 reserved and MUST be initialized to zero.

3.4. Delegated-IPv6-Prefix-Pool

 The Delegated-IPv6-Prefix-Pool Attribute contains the name of an
 assigned pool that SHOULD be used to select an IPv6 delegated prefix
 for the user on the NAS. If a NAS does not support prefix pools, the
 NAS MUST ignore this Attribute. It MAY be used in an Access-Request
 packet as a hint by the NAS to the RADIUS server regarding the pool,
 but the RADIUS server is not required to honor the hint.

 A summary of the Delegated-IPv6-Prefix-Pool Attribute format is shown
 below.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+‑+
| Type | Length | String...
+‑+

 Type

 171 for Delegated-IPv6-Prefix-Pool

 Length

 Length, in bytes. At least 3.

 String

 The string field contains the name of an assigned IPv6 prefix pool
 configured on the NAS. The field is not NULL (hexadecimal 00)
 terminated.

 Note: The string data type is as documented in [RFC6158] and carries
 binary data that is external to the RADIUS protocol, e.g., the name
 of a pool of prefixes configured on the NAS.

3.5. Stateful-IPv6-Address-Pool

 The Stateful-IPv6-Address-Pool Attribute contains the name of an
 assigned pool that SHOULD be used to select an IPv6 address for the
 user on the NAS. If a NAS does not support address pools, the NAS
 MUST ignore this Attribute. A summary of the Stateful-IPv6-Address-
 Pool Attribute format is shown below. It MAY be used in an Access-
 Request packet as a hint by the NAS to the RADIUS server regarding
 the pool, but the RADIUS server is not required to honor the hint.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+‑+
| Type | Length | String...
+‑+

 Type

 172 for Stateful-IPv6-Address-Pool

 Length

 Length, in bytes. At least 3.

 String

 The string field contains the name of an assigned IPv6 stateful
 address pool configured on the NAS. The field is not NULL
 (hexadecimal 00) terminated.

 Note: The string data type is as documented in [RFC6158] and carries
 binary data that is external to the RADIUS protocol, e.g., the name
 of a pool of addresses configured on the NAS.

3.6. Table of Attributes

 The following table provides a guide to which Attributes may be found
 in which kinds of packets, and in what quantity. The optional
 inclusion of the options in Access Request messages is intended to
 allow for a NAS to provide the RADIUS server with a hint of the
 Attributes in advance of user authentication, which may be useful in
 cases in which a user reconnects or has a static address. The server
 is under no obligation to honor such hints.

Request Accept Reject Challenge Accounting # Attribute
 Request
0+ 0+ 0 0 0+ 168 Framed‑IPv6‑Address
0+ 0+ 0 0 0+ 169 DNS‑Server‑IPv6‑Address
0+ 0+ 0 0 0+ 170 Route‑IPv6‑Information
0+ 0+ 0 0 0+ 171 Delegated‑IPv6‑Prefix‑Pool
0+ 0+ 0 0 0+ 172 Stateful‑IPv6‑Address‑Pool

4. Diameter Considerations

 Given that the Attributes defined in this document are allocated from
 the standard RADIUS type space (see Section 6), no special handling
 is required by Diameter entities.

5. Security Considerations

 This document specifies additional IPv6 RADIUS Attributes useful in
 residential broadband network deployments. In such networks, the
 RADIUS protocol may run either over IPv4 or over IPv6, and known
 security vulnerabilities of the RADIUS protocol, e.g., [SECI], apply
 to the Attributes defined in this document. A trust relationship
 between a NAS and RADIUS server is expected to be in place, with
 communication optionally secured by IPsec or Transport Layer Security
 (TLS) [RFC6614].

6. IANA Considerations

 IANA has assigned five new RADIUS Attribute types in the "Radius
 Attribute Types" registry (currently located at
 http://www.iana.org/assignments/radius-types) for the following
 Attributes:

 o Framed-IPv6-Address

 o DNS-Server-IPv6-Address

 o Route-IPv6-Information

 o Delegated-IPv6-Prefix-Pool

 o Stateful-IPv6-Address-Pool

7. Acknowledgments

 The authors would like to thank Bernard Aboba, Benoit Claise, Peter
 Deacon, Alan DeKok, Ralph Droms, Brian Haberman, Alfred Hines,
 Stephen Farrell, Jouni Korhonen, Roberta Maglione, Pete Resnick, Mark
 Smith, and Leaf Yeh for their help and comments in reviewing this
 document.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4862]
 Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

8.2. Informative References

 [RFC3162]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6", RFC
 3162, August 2001.

 [RFC3315]
 Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3633]
 Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 December 2003.

 [RFC3646]
 Droms, R., "DNS Configuration options for Dynamic Host
 Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
 December 2003.

 [RFC4191]
 Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [RFC4818]
 Salowey, J. and R. Droms, "RADIUS Delegated-IPv6-Prefix
 Attribute", RFC 4818, April 2007.

 [RFC6106]
 Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
 "IPv6 Router Advertisement Options for DNS Configuration",
 RFC 6106, November 2010.

 [RFC6158]
 DeKok, A. and G. Weber, "RADIUS Design Guidelines", BCP
 158, RFC 6158, March 2011.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, May 2012.

 [SECI]
 Hill, J., "An Analysis of the RADIUS Authentication
 Protocol", November 2001, <http://regul.uni-mb.si/~meolic/
 ptk-seminarske/radius.pdf>.

Authors' Addresses

Wojciech Dec (editor)
Cisco Systems, Inc.
Haarlerbergweg 13‑19
Amsterdam, Noord‑Holland 1101 CH
Netherlands

 EMail: wdec@cisco.com

Behcet Sarikaya
Huawei USA
1700 Alma Drive, Suite 500
Plano, TX
US

Phone: +1 972‑509‑5599
EMail: sarikaya@ieee.org

Glen Zorn (editor)
Network Zen
227/358 Thanon Sanphawut
Bang Na, Bangkok 10260
Thailand

Phone: +66 (0) 8‑1000‑4155
EMail: glenzorn@gmail.com

David Miles
Google

 EMail: davidmiles@google.com

Benoit Lourdelet
Juniper Networks
France

 EMail: blourdel@juniper.net

6929 - Remote Authentication Dial-In User Service (RADIUS) Protocol Extensions

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 6929

Updates: 2865, 3575, 6158

Category: Standards Track

ISSN: 2070-1721

A. DeKok

Network RADIUS

A. Lior

April 2013

Remote Authentication Dial-In User Service (RADIUS) Protocol Extensions

Abstract

 The Remote Authentication Dial-In User Service (RADIUS) protocol is
 nearing exhaustion of its current 8-bit Attribute Type space. In
 addition, experience shows a growing need for complex grouping, along
 with attributes that can carry more than 253 octets of data. This
 document defines changes to RADIUS that address all of the above
 problems.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6929.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Caveats and Limitations
	 1.1.1. Failure to Meet Certain Goals

	 1.1.2. Implementation Recommendations

	 1.2. Terminology

	 1.3. Requirements Language

	2. Extensions to RADIUS
	 2.1. Extended Type

	 2.2. Long Extended Type

	 2.3. TLV Data Type
	 2.3.1. TLV Nesting

	 2.4. EVS Data Type

	 2.5. Integer64 Data Type

	 2.6. Vendor-Id Field

	 2.7. Attribute Naming and Type Identifiers
	 2.7.1. Attribute and TLV Naming

	 2.7.2. Attribute Type Identifiers

	 2.7.3. TLV Identifiers

	 2.7.4. VSA Identifiers

	 2.8. Invalid Attributes

	3. Attribute Definitions
	 3.1. Extended-Type-1

	 3.2. Extended-Type-2

	 3.3. Extended-Type-3

	 3.4. Extended-Type-4

	 3.5. Long-Extended-Type-1

	 3.6. Long-Extended-Type-2

	4. Vendor-Specific Attributes
	 4.1. Extended-Vendor-Specific-1

	 4.2. Extended-Vendor-Specific-2

	 4.3. Extended-Vendor-Specific-3

	 4.4. Extended-Vendor-Specific-4

	 4.5. Extended-Vendor-Specific-5

	 4.6. Extended-Vendor-Specific-6

	5. Compatibility with Traditional RADIUS
	 5.1. Attribute Allocation

	 5.2. Proxy Servers

	6. Guidelines
	 6.1. Updates to RFC 6158

	 6.2. Guidelines for Simple Data Types

	 6.3. Guidelines for Complex Data Types

	 6.4. Design Guidelines for the New Types

	 6.5. TLV Guidelines

	 6.6. Allocation Request Guidelines

	 6.7. Allocation Request Guidelines for TLVs

	 6.8. Implementation Guidelines

	 6.9. Vendor Guidelines

	7. Rationale for This Design
	 7.1. Attribute Audit

	8. Diameter Considerations

	9. Examples
	 9.1. Extended Type

	 9.2. Long Extended Type

	10. IANA Considerations
	 10.1. Attribute Allocations

	 10.2. RADIUS Attribute Type Tree

	 10.3. Allocation Instructions
	 10.3.1. Requested Allocation from the Standard Space

	 10.3.2. Requested Allocation from the Short Extended Space

	 10.3.3. Requested Allocation from the Long Extended Space

	 10.3.4. Allocation Preferences

	 10.3.5. Extending the Type Space via the TLV Data Type

	 10.3.6. Allocation within a TLV

	 10.3.7. Allocation of Other Data Types

	11. Security Considerations

	12. References
	 12.1. Normative References

	 12.2. Informative References

	13. Acknowledgments

	Appendix A. Extended Attribute Generator Program

1. Introduction

 Under current allocation pressure, we expect that the RADIUS
 Attribute Type space will be exhausted by 2014 or 2015. We therefore
 need a way to extend the type space so that new specifications may
 continue to be developed. Other issues have also been shown with
 RADIUS. The attribute grouping method defined in [RFC2868] has been
 shown to be impractical, and a more powerful mechanism is needed.
 Multiple Attributes have been defined that transport more than the
 253 octets of data originally envisioned with the protocol. Each of
 these attributes is handled as a "special case" inside of RADIUS
 implementations, instead of as a general method. We therefore also
 need a standardized method of transporting large quantities of data.
 Finally, some vendors are close to allocating all of the Attributes
 within their Vendor-Specific Attribute space. It would be useful to
 leverage changes to the base protocol for extending the Vendor-
 Specific Attribute space.

 We satisfy all of these requirements through the following changes
 given in this document:

 * Defining an "Extended Type" format, which adds 8 bits of "Extended
 Type" to the RADIUS Attribute Type space, by using one octet of the
 "Value" field. This method gives us a general way of extending the
 Attribute Type space (Section 2.1).

 * Allocating 4 attributes as using the format of "Extended Type".
 This allocation extends the RADIUS Attribute Type space by
 approximately 1000 values (Sections 3.1, 3.2, 3.3, and 3.4).

 * Defining a "Long Extended Type" format, which inserts an additional
 octet between the "Extended Type" octet and the "Value" field.
 This method gives us a general way of adding more functionality to
 the protocol (Section 2.2).

 * Defining a method that uses the additional octet in the "Long
 Extended Type" to indicate data fragmentation across multiple
 Attributes. This method provides a standard way for an Attribute
 to carry more than 253 octets of data (Section 2.2).

 * Allocating 2 attributes as using the format "Long Extended Type".
 This allocation extends the RADIUS Attribute Type space by an
 additional 500 values (Sections 3.5 and 3.6).

 * Defining a new "Type-Length-Value" (TLV) data type. This data type
 allows an attribute to carry TLVs as "sub-Attributes", which can in
 turn encapsulate other TLVs as "sub-sub-Attributes". This change
 creates a standard way to group a set of Attributes (Section 2.3).

 * Defining a new "Extended-Vendor-Specific" (EVS) data type. This
 data type allows an attribute to carry Vendor-Specific Attributes
 (VSAs) inside of the new Attribute formats (Section 2.4).

 * Defining a new "integer64" data type. This data type allows
 counters that track more than 2^32 octets of data (Section 2.5).

 * Allocating 6 attributes using the new EVS data type. This
 allocation extends the Vendor-Specific Attribute Type space by over
 1500 values (Sections 4.1 through 4.6).

 * Defining the "Vendor-Id" for Vendor-Specific Attributes to
 encompass the entire 4 octets of the Vendor field. [RFC2865]
 Section 5.26 defined it to be 3 octets, with the fourth octet being
 zero (Section 2.6).

 * Describing compatibility with existing RADIUS systems (Section 5).

 * Defining guidelines for the use of these changes for IANA,
 implementations of this specification, and for future RADIUS
 specifications (Section 6).

 As with any protocol change, the changes defined here are the result
 of a series of compromises. We have tried to find a balance between
 flexibility, space in the RADIUS message, compatibility with existing
 deployments, and difficulty of implementation.

1.1. Caveats and Limitations

 This section describes some caveats and limitations of the proposal.

1.1.1. Failure to Meet Certain Goals

 One goal that was not met by the above modifications is to have an
 incentive for standards to use the new space. That incentive is
 being provided by the exhaustion of the standard space.

1.1.2. Implementation Recommendations

 It is RECOMMENDED that implementations support this specification.
 It is RECOMMENDED that new specifications use the formats defined in
 this specification.

 The alternative to the above recommendations is a circular argument
 of not implementing this specification because no other standards
 reference it, and also not defining new standards referencing this
 specification because no implementations exist.

 As noted earlier, the standard space is almost entirely allocated.
 Ignoring the looming crisis benefits no one.

1.2. Terminology

 This document uses the following terms:

 Silently discard

 This means the implementation discards the packet without further
 processing. The implementation MAY provide the capability of
 logging the error, including the contents of the silently
 discarded packet, and SHOULD record the event in a statistics
 counter.

 Invalid attribute

 This means that the Length field of an Attribute is valid (as per
 [RFC2865], Section 5, top of page 25) but the contents of the
 Attribute do not follow the correct format, for example, an
 Attribute of type "address" that encapsulates more than four, or
 less than four, octets of data. See Section 2.8 for a more
 complete definition.

 Standard space

 This refers to codes in the RADIUS Attribute Type space that are
 allocated by IANA and that follow the format defined in Section 5
 of [RFC2865].

 Extended space

 This refers to codes in the RADIUS Attribute Type space that
 require the extensions defined in this document and are an
 extension of the standard space, but that cannot be represented
 within the standard space.

 Short extended space

 This refers to codes in the extended space that use the "Extended
 Type" format.

 Long extended space

 This refers to codes in the extended space that use the "Long
 Extended Type" format.

 The following terms are used here with the meanings defined in BCP 26
 [RFC5226]: "namespace", "assigned value", "registration", "Private
 Use", "Reserved", "Unassigned", "IETF Review", and "Standards
 Action".

1.3. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. Extensions to RADIUS

 This section defines two new Attribute formats: "Extended Type" and
 "Long Extended Type". It defines a new Type-Length-Value (TLV) data
 type, an Extended-Vendor-Specific (EVS) data type, and an Integer64
 data type. It defines a new method for naming attributes and
 identifying Attributes using the new Attribute formats. It finally
 defines the new term "invalid attribute" and describes how it affects
 implementations.

 The new Attribute formats are designed to be compatible with the
 Attribute format given in [RFC2865] Section 5. The meaning and
 interpretation of the Type and Length fields are unchanged from that
 specification. This reuse allows the new formats to be compatible
 with RADIUS implementations that do not implement this specification.
 Those implementations can simply ignore the "Value" field of an
 attribute or forward it verbatim.

 The changes to the Attribute format come about by "stealing" one or
 more octets from the "Value" field. This change has the effect that
 the "Value" field of [RFC2865] Section 5 contains both the new octets
 given here and any attribute-specific Value. The result is that
 "Value"s in this specification are limited to less than 253 octets in
 size. This limitation is overcome through the use of the "Long
 Extended Type" format.

 We reiterate that the formats given in this document do not insert
 new data into an attribute. Instead, we "steal" one octet of Value,
 so that the definition of the Length field remains unchanged. The
 new Attribute formats are designed to be compatible with the
 Attribute format given in [RFC2865] Section 5. The meaning and
 interpretation of the Type and Length fields is unchanged from that
 specification. This reuse allows the new formats to be compatible
 with RADIUS implementations that do not implement this specification.
 Those implementations can simply ignore the "Value" field of an
 attribute or forward it verbatim.

2.1. Extended Type

 This section defines a new Attribute format, called "Extended Type".
 A summary of the Attribute format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Type

 This field is identical to the Type field of the Attribute format
 defined in [RFC2865] Section 5.

 Length

 The Length field is one octet and indicates the length of this
 Attribute, including the Type, Length, "Extended-Type", and
 "Value" fields. Permitted values are between 4 and 255. If a
 client or server receives an Extended Attribute with a Length of 2
 or 3, then that Attribute MUST be considered to be an "invalid
 attribute" and handled as per Section 2.8, below.

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified according to the policies and rules described
 in Section 10. Unlike the Type field defined in [RFC2865]
 Section 5, no values are allocated for experimental or
 implementation-specific use. Values 241-255 are reserved and MUST
 NOT be used.

 The Extended-Type is meaningful only within a context defined by
 the Type field. That is, this field may be thought of as defining
 a new type space of the form "Type.Extended-Type". See
 Section 3.5, below, for additional discussion.

 A RADIUS server MAY ignore Attributes with an unknown
 "Type.Extended-Type".

 A RADIUS client MAY ignore Attributes with an unknown
 "Type.Extended-Type".

 Value

 This field is similar to the "Value" field of the Attribute format
 defined in [RFC2865] Section 5. The format of the data MUST be a
 valid RADIUS data type.

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

The addition of the Extended‑Type field decreases the maximum
length for attributes of type "text" or "string" from 253 to
252 octets. Where an Attribute needs to carry more than
252 octets of data, the "Long Extended Type" format MUST be used.

 Experience has shown that the "experimental" and "implementation-
 specific" attributes defined in [RFC2865] Section 5 have had little
 practical value. We therefore do not continue that practice here
 with the Extended-Type field.

2.2. Long Extended Type

 This section defines a new Attribute format, called "Long Extended
 Type". It leverages the "Extended Type" format in order to permit
 the transport of attributes encapsulating more than 253 octets of
 data. A summary of the Attribute format is shown below. The fields
 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type |M| Reserved |
+‑+
| Value ...
+‑+

 Type

 This field is identical to the Type field of the Attribute format
 defined in [RFC2865] Section 5.

 Length

 The Length field is one octet and indicates the length of this
 Attribute, including the Type, Length, Extended-Type, and "Value"
 fields. Permitted values are between 5 and 255. If a client or
 server receives a "Long Extended Type" with a Length of 2, 3, or
 4, then that Attribute MUST be considered to be an "invalid
 attribute" and handled as per Section 2.8, below.

 Note that this Length is limited to the length of this fragment.
 There is no field that gives an explicit value for the total size
 of the fragmented attribute.

 Extended-Type

 This field is identical to the Extended-Type field defined above
 in Section 2.1.

 M (More)

 The More field is one (1) bit in length and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 The More field MUST be clear (0) if the Length field has a value
 of less than 255. The More field MAY be set (1) if the Length
 field has a value of 255.

 If the More field is set (1), it indicates that the "Value" field
 has been fragmented across multiple RADIUS attributes. When the
 More field is set (1), the Attribute MUST have a Length field of
 value 255, there MUST be an attribute following this one, and the
 next attribute MUST have both the same Type and "Extended Type".
 That is, multiple fragments of the same value MUST be in order and
 MUST be consecutive attributes in the packet, and the last
 attribute in a packet MUST NOT have the More field set (1).

 That is, a packet containing a fragmented attribute needs to
 contain all fragments of the Attribute, and those fragments need
 to be contiguous in the packet. RADIUS does not support
 inter-packet fragmentation, which means that fragmenting an
 attribute across multiple packets is impossible.

 If a client or server receives an attribute fragment with the
 "More" field set (1) but for which no subsequent fragment can be
 found, then the fragmented attribute is considered to be an
 "invalid attribute" and handled as per Section 2.8, below.

 Reserved

 This field is 7 bits long and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Future specifications may define additional meaning for this
 field. Implementations therefore MUST NOT treat this field as
 invalid if it is non-zero.

 Value

 This field is similar to the "Value" field of the Attribute format
 defined in [RFC2865] Section 5. It may contain a complete set of
 data (when the Length field has a value of less than 255), or it
 may contain a fragment of data.

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

 Any interpretation of the resulting data MUST occur after the
 fragments have been reassembled. The length of the data MUST be
 taken as the sum of the lengths of the fragments (i.e., "Value"
 fields) from which it is constructed. The format of the data
 SHOULD be a valid RADIUS data type. If the reassembled data does
 not match the expected format, all fragments MUST be treated as
 "invalid attributes", and the reassembled data MUST be discarded.

 We note that the maximum size of a fragmented attribute is limited
 only by the RADIUS packet length limitation (i.e., 4096 octets,
 not counting various headers and overhead). Implementations MUST
 be able to handle the case where one fragmented attribute
 completely fills the packet.

 This definition increases the RADIUS Attribute Type space as above
 but also provides for transport of Attributes that could contain more
 than 253 octets of data.

 Note that [RFC2865] Section 5 says:

 If multiple Attributes with the same Type are present, the order
 of Attributes with the same Type MUST be preserved by any proxies.
 The order of Attributes of different Types is not required to be
 preserved. A RADIUS server or client MUST NOT have any
 dependencies on the order of attributes of different types. A
 RADIUS server or client MUST NOT require attributes of the same
 type to be contiguous.

 These requirements also apply to the "Long Extended Type" Attribute,
 including fragments. Implementations MUST be able to process
 non-contiguous fragments -- that is, fragments that are mixed
 together with other attributes of a different Type. This will allow
 them to accept packets, so long as the Attributes can be correctly
 decoded.

2.3. TLV Data Type

 We define a new data type in RADIUS, called "tlv". The "tlv" data
 type is an encapsulation layer that permits the "Value" field of an
 Attribute to contain new sub-Attributes. These sub-Attributes can in
 turn contain "Value"s of data type TLV. This capability both extends
 the Attribute space and permits "nested" attributes to be used. This
 nesting can be used to encapsulate or group data into one or more
 logical containers.

 The "tlv" data type reuses the RADIUS Attribute format, as given
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | TLV‑Length | TLV‑Value ...
+‑+

 TLV-Type

 The TLV-Type field is one octet. Up-to-date values of this field
 are specified according to the policies and rules described in
 Section 10. Values 254-255 are "Reserved" for use by future
 extensions to RADIUS. The value 26 has no special meaning and
 MUST NOT be treated as a Vendor-Specific Attribute.

 As with the Extended-Type field defined above, the TLV-Type is
 meaningful only within the context defined by "Type" fields of the
 encapsulating Attributes. That is, the field may be thought of as
 defining a new type space of the form
 "Type.Extended-Type.TLV-Type". Where TLVs are nested, the type
 space is of the form "Type.Extended-Type.TLV-Type.TLV-Type", etc.

 A RADIUS server MAY ignore Attributes with an unknown "TLV-Type".

 A RADIUS client MAY ignore Attributes with an unknown "TLV-Type".

 A RADIUS proxy SHOULD forward Attributes with an unknown
 "TLV-Type" verbatim.

 TLV-Length

 The TLV-Length field is one octet and indicates the length of this
 TLV, including the TLV-Type, TLV-Length, and TLV-Value fields. It
 MUST have a value between 3 and 255. If a client or server
 receives a TLV with an invalid TLV-Length, then the Attribute that
 encapsulates that TLV MUST be considered to be an "invalid
 attribute" and handled as per Section 2.8, below.

 TLV-Value

 The TLV-Value field is one or more octets and contains information
 specific to the Attribute. The format and length of the TLV-Value
 field are determined by the TLV-Type and TLV-Length fields.

 The TLV-Value field SHOULD encapsulate a standard RADIUS data
 type. Non-standard data types SHOULD NOT be used within TLV-Value
 fields. We note that the TLV-Value field MAY also contain one or
 more attributes of data type TLV; data type TLV allows for simple
 grouping and multiple layers of nesting.

 The TLV-Value field is limited to containing 253 or fewer octets
 of data. Specifications that require a TLV to contain more than
 253 octets of data are incompatible with RADIUS and need to be
 redesigned. Specifications that require the transport of empty
 "Value"s (i.e., Length = 2) are incompatible with RADIUS and need
 to be redesigned.

 The TLV-Value field MUST NOT contain data using the "Extended
 Type" formats defined in this document. The base Extended
 Attributes format allows for sufficient flexibility that nesting
 them inside of a TLV offers little additional value.

 This TLV definition is compatible with the suggested format of the
 "String" field of the Vendor-Specific Attribute, as defined in
 [RFC2865] Section 5.26, though that specification does not discuss
 nesting.

 Vendors MAY use attributes of type "TLV" in any Vendor-Specific
 Attribute. It is RECOMMENDED to use type "TLV" for VSAs, in
 preference to any other format.

 If multiple TLVs with the same TLV-Type are present, the order of
 TLVs with the same TLV-Type MUST be preserved by any proxies. The
 order of TLVs of different TLV-Types is not required to be preserved.
 A RADIUS server or client MUST NOT have any dependencies on the order
 of TLVs of different TLV-Types. A RADIUS server or client MUST NOT
 require TLVs of the same TLV-Type to be contiguous.

 The interpretation of multiple TLVs of the same TLV-Type MUST be that
 of a logical "and", unless otherwise specified. That is, multiple
 TLVs are interpreted as specifying an unordered set of values.
 Specifications SHOULD NOT define TLVs to be interpreted as a logical
 "or". Doing so would mean that a RADIUS client or server would make
 an arbitrary and non-deterministic choice among the values.

2.3.1. TLV Nesting

 TLVs may contain other TLVs. When this occurs, the "container" TLV
 MUST be completely filled by the "contained" TLVs. That is, the
 "container" TLV-Length field MUST be exactly two (2) more than the
 sum of the "contained" TLV-Length fields. If the "contained" TLVs
 overfill the "container" TLV, the "container" TLV MUST be considered
 to be an "invalid attribute" and handled as described in Section 2.8,
 below.

 The depth of TLV nesting is limited only by the restrictions on the
 TLV-Length field. The limit of 253 octets of data results in a limit
 of 126 levels of nesting. However, nesting depths of more than 4 are
 NOT RECOMMENDED. They have not been demonstrated to be necessary in
 practice, and they appear to make implementations more complex.
 Reception of packets with such deeply nested TLVs may indicate
 implementation errors or deliberate attacks. Where implementations
 do not support deep nesting of TLVs, it is RECOMMENDED that the
 unsupported layers are treated as "invalid attributes".

2.4. EVS Data Type

 We define a new data type in RADIUS, called "evs", for "Extended-
 Vendor-Specific". The "evs" data type is an encapsulation layer that
 permits the EVS-Value field of an Attribute to contain a Vendor-Id,
 followed by an EVS-Type, and then vendor-defined data. This data can
 in turn contain valid RADIUS data types or any other data as
 determined by the vendor.

 This data type is intended for use in attributes that carry vendor-
 specific information, as is done with the Vendor-Specific Attribute
 (Attribute number 26). It is RECOMMENDED that this data type be used
 by a vendor only when the Vendor-Specific Attribute Type space has
 been fully allocated.

 Where [RFC2865] Section 5.26 makes a recommendation for the format of
 the data following the Vendor-Id, we give a strict definition.
 Experience has shown that many vendors have not followed the
 [RFC2865] recommendations, leading to interoperability issues. We
 hope here to give vendors sufficient flexibility as to meet their
 needs while minimizing the use of non-standard VSA formats.

 The "evs" data type MAY be used in Attributes having the format of
 "Extended Type" or "Long Extended Type". It MUST NOT be used in any
 other Attribute definition, including standard RADIUS attributes,
 TLVs, and VSAs.

 A summary of the "evs" data type format is shown below. The fields
 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Vendor‑Id |
+‑+
| EVS‑Type | EVS‑Value
+‑+

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 EVS-Type

 The EVS-Type field is one octet. Values are assigned at the sole
 discretion of the vendor.

 EVS-Value

 The EVS-Value field is one or more octets. It SHOULD encapsulate
 a standard RADIUS data type. Using non-standard data types is NOT
 RECOMMENDED. We note that the EVS-Value field may be of data type
 TLV. However, it MUST NOT be of data type "evs", as the use cases
 are unclear for one vendor delegating Attribute Type space to
 another vendor.

 The actual format of the information is site or application
 specific, and a robust implementation SHOULD support the field as
 undistinguished octets. While we recognize that vendors have
 complete control over the contents and format of the EVS-Value
 field, we recommend that good practices be followed.

 Further codification of the range of allowed usage of this field
 is outside the scope of this specification.

 Note that unlike the format described in [RFC2865] Section 5.26, this
 data type has no "Vendor-Length" field. The length of the EVS-Value
 field is implicit and is determined by taking the "Length" of the
 encapsulating RADIUS attribute and then subtracting the length of the
 Attribute header (2 octets), the "Extended Type" (1 octet), the
 Vendor-Id (4 octets), and the EVS-Type (1 octet). That is, for
 "Extended Type" Attributes the length of the EVS-Value field is eight
 (8) less than the value of the Length field, and for "Long Extended
 Type" Attributes the length of the EVS-Value field is nine (9) less
 than the value of the Length field.

2.5. Integer64 Data Type

 We define a new data type in RADIUS, called "integer64", which
 carries a 64-bit unsigned integer in network byte order.

 This data type is intended to be used in any situation where there is
 a need to have counters that can count past 2^32. The expected use
 of this data type is within Accounting-Request packets, but this data
 type SHOULD be used in any packet where 32-bit integers are expected
 to be insufficient.

 The "integer64" data type can be used in Attributes of any format,
 standard space, extended attributes, TLVs, and VSAs.

 A summary of the "integer64" data type format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Value ...
+‑+
 |
+‑+

 Attributes having data type "integer64" MUST have the relevant Length
 field set to eight more than the length of the Attribute header. For
 standard space Attributes and TLVs, this means that the Length field
 MUST be set to ten (10). For "Extended Type" Attributes, the Length
 field MUST be set to eleven (11). For "Long Extended Type"
 Attributes, the Length field MUST be set to twelve (12).

2.6. Vendor-Id Field

We define the Vendor‑Id field of Vendor‑Specific Attributes
to encompass the entire 4 octets of the Vendor field.
[RFC2865] Section 5.26 defined it to be 3 octets, with the fourth
octet being zero. This change has no immediate impact on RADIUS, as
the maximum Private Enterprise Code defined is still within 16 bits.

However, it is best to make advance preparations for changes in the
protocol. As such, it is RECOMMENDED that all implementations
support four (4) octets for the Vendor‑Id field, instead of
three (3).

2.7. Attribute Naming and Type Identifiers

 Attributes have traditionally been identified by a unique name and
 number. For example, the Attribute "User-Name" has been allocated
 number one (1). This scheme needs to be extended in order to be able
 to refer to attributes of "Extended Type", and to TLVs. It will also
 be used by IANA for allocating RADIUS Attribute Type values.

 The names and identifiers given here are intended to be used only in
 specifications. The system presented here may not be useful when
 referring to the contents of a RADIUS packet. It imposes no
 requirements on implementations, as implementations are free to
 reference RADIUS attributes via any method they choose.

2.7.1. Attribute and TLV Naming

 RADIUS specifications traditionally use names consisting of one or
 more words, separated by hyphens, e.g., "User-Name". However, these
 names are not allocated from a registry, and there is no restriction
 other than convention on their global uniqueness.

 Similarly, vendors have often used their company name as the prefix
 for VSA names, though this practice is not universal. For example,
 for a vendor named "Example", the name "Example-Attribute-Name"
 SHOULD be used instead of "Attribute-Name". The second form can
 conflict with attributes from other vendors, whereas the first form
 cannot.

 It is therefore RECOMMENDED that specifications give names to
 Attributes that attempt to be globally unique across all RADIUS
 Attributes. It is RECOMMENDED that a vendor use its name as a unique
 prefix for attribute names, e.g., Livingston-IP-Pool instead of
 IP-Pool. It is RECOMMENDED that implementations enforce uniqueness
 on names; not doing so would lead to ambiguity and problems.

 We recognize that these suggestions may sometimes be difficult to
 implement in practice.

 TLVs SHOULD be named with a unique prefix that is shared among
 related attributes. For example, a specification that defines a set
 of TLVs related to time could create attributes called "Time-Zone",
 "Time-Day", "Time-Hour", "Time-Minute", etc.

2.7.2. Attribute Type Identifiers

 The RADIUS Attribute Type space defines a context for a particular
 "Extended-Type" field. The "Extended-Type" field allows for 256
 possible type code values, with values 1 through 240 available for
 allocation. We define here an identification method that uses a
 "dotted number" notation similar to that used for Object Identifiers
 (OIDs), formatted as "Type.Extended-Type".

 For example, an attribute within the Type space of 241, having
 Extended-Type of one (1), is uniquely identified as "241.1".
 Similarly, an attribute within the Type space of 246, having
 Extended-Type of ten (10), is uniquely identified as "246.10".

2.7.3. TLV Identifiers

 We can extend the Attribute reference scheme defined above for TLVs.
 This is done by leveraging the "dotted number" notation. As above,
 we define an additional TLV Type space, within the "Extended Type"
 space, by appending another "dotted number" in order to identify the
 TLV. This method can be repeated in sequence for nested TLVs.

 For example, let us say that "245.1" identifies RADIUS Attribute Type
 245, containing an "Extended Type" of one (1), which is of type
 "TLV". That attribute will contain 256 possible TLVs, one for each
 value of the TLV-Type field. The first TLV-Type value of one (1) can
 then be identified by appending a ".1" to the number of the
 encapsulating attribute ("241.1"), to yield "241.1.1". Similarly,
 the sequence "245.2.3.4" identifies RADIUS attribute 245, containing
 an "Extended Type" of two (2), which is of type "TLV", which in turn
 contains a TLV with TLV-Type number three (3), which in turn contains
 another TLV, with TLV-Type number four (4).

2.7.4. VSA Identifiers

 There has historically been no method for numerically addressing
 VSAs. The "dotted number" method defined here can also be leveraged
 to create such an addressing scheme. However, as the VSAs are
 completely under the control of each individual vendor, this section
 provides a suggested practice but does not define a standard of any
 kind.

The Vendor‑Specific Attribute has been assigned the Attribute
number 26. It in turn carries a 32‑bit Vendor‑Id, and possibly
additional VSAs. Where the VSAs follow the format recommended
by [RFC2865] Section 5.26, a VSA can be identified as
"26.Vendor‑Id.Vendor‑Type".

 For example, Livingston has Vendor-Id 307 and has defined an
 attribute "IP-Pool" as number 6. This VSA can be uniquely identified
 as 26.307.6, but it cannot be uniquely identified by name, as other
 vendors may have used the same name.

 Note that there are few restrictions on the size of the numerical
 values in this notation. The Vendor-Id is a 32-bit number, and the
 VSA may have been assigned from a 16-bit Vendor-Specific Attribute
 Type space. Implementations SHOULD be capable of handling 32-bit
 numbers at each level of the "dotted number" notation.

 For example, the company USR has historically used Vendor-Id 429 and
 has defined a "Version-Id" attribute as number 32768. This VSA can
 be uniquely identified as 26.429.32768 but again cannot be uniquely
 identified by name.

 Where a VSA is a TLV, the "dotted number" notation can be used as
 above: 26.Vendor-Id.Vendor-Type.TLV1.TLV2.TLV3, where the "TLVn"
 values are the numerical values assigned by the vendor to the
 different nested TLVs.

2.8. Invalid Attributes

 The term "invalid attribute" is new to this specification. It is
 defined to mean that the Length field of an Attribute permits the
 packet to be accepted as not being "malformed". However, the "Value"
 field of the Attribute does not follow the format required by the
 data type defined for that Attribute, and therefore the Attribute is
 "malformed". In order to distinguish the two cases, we refer to
 "malformed" packets and "invalid attributes".

 For example, an implementation receives a packet that is well formed.
 That packet contains an Attribute allegedly of data type "address"
 but that has Length not equal to four. In that situation, the packet
 is well formed, but the Attribute is not. Therefore, it is an
 "invalid attribute".

 A similar analysis can be performed when an attribute carries TLVs.
 The encapsulating attribute may be well formed, but the TLV may be an
 "invalid attribute". The existence of an "invalid attribute" in a
 packet or attribute MUST NOT result in the implementation discarding
 the entire packet or treating the packet as a negative
 acknowledgment. Instead, only the "invalid attribute" is treated
 specially.

 When an implementation receives an "invalid attribute", it SHOULD be
 silently discarded, except when the implementation is acting as a
 proxy (see Section 5.2 for discussion of proxy servers). If it is

not discarded, it MUST NOT be handled in the same manner as a well‑
formed attribute. For example, receiving an Attribute of data type
"address" containing either less than four octets or more than
four octets of data means that the Attribute MUST NOT be treated as
being of data type "address". The reason here is that if the
Attribute does not carry an IPv4 address, the receiver has no idea
what format the data is in, and it is therefore not an IPv4 address.

 For Attributes of type "Long Extended Type", an Attribute is
 considered to be an "invalid attribute" when it does not match the
 criteria set out in Section 2.2, above.

 For Attributes of type "TLV", an Attribute is considered to be an
 "invalid attribute" when the TLV-Length field allows the
 encapsulating Attribute to be parsed but the TLV-Value field does not
 match the criteria for that TLV. Implementations SHOULD NOT treat
 the "invalid attribute" property as being transitive. That is, the
 Attribute encapsulating the "invalid attribute" SHOULD NOT be treated
 as an "invalid attribute". That encapsulating Attribute might
 contain multiple TLVs, only one of which is an "invalid attribute".

 However, a TLV definition may require particular sub-TLVs to be
 present and/or to have specific values. If a sub-TLV is missing or
 contains incorrect value(s), or if it is an "invalid attribute", then
 the encapsulating TLV SHOULD be treated as an "invalid attribute".
 This requirement ensures that strongly connected TLVs are either
 handled as a coherent whole or ignored entirely.

 It is RECOMMENDED that Attributes with unknown Type, Extended-Type,
 TLV-Type, or EVS-Type are treated as "invalid attributes". This
 recommendation is compatible with the suggestion in [RFC2865]
 Section 5 that implementations "MAY ignore Attributes with an
 unknown Type".

3. Attribute Definitions

 We define four (4) attributes of "Extended Type", which are allocated
 from the "Reserved" Attribute Type codes of 241, 242, 243, and 244.
 We also define two (2) attributes of "Long Extended Type", which are
 allocated from the "Reserved" Attribute Type codes of 245 and 246.

Type Name
‑‑‑‑ ‑‑‑‑
241 Extended‑Type‑1
242 Extended‑Type‑2
243 Extended‑Type‑3
244 Extended‑Type‑4
245 Long‑Extended‑Type‑1
246 Long‑Extended‑Type‑2

 The rest of this section gives detailed definitions for each
 Attribute based on the above summary.

3.1. Extended-Type-1

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type space of 241.{1-255}.

 A summary of the Extended-Type-1 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Type

 241 for Extended-Type-1.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified in the 241.{1-255} RADIUS Attribute Type
 space, according to the policies and rules described in
 Section 10. Further definition of this field is given in
 Section 2.1, above.

 Value

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

3.2. Extended-Type-2

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type space of 242.{1-255}.

 A summary of the Extended-Type-2 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Type

 242 for Extended-Type-2.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified in the 242.{1-255} RADIUS Attribute Type
 space, according to the policies and rules described in
 Section 10. Further definition of this field is given in
 Section 2.1, above.

 Value

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

3.3. Extended-Type-3

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type space of 243.{1-255}.

 A summary of the Extended-Type-3 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Type

 243 for Extended-Type-3.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified in the 243.{1-255} RADIUS Attribute Type
 space, according to the policies and rules described in
 Section 10. Further definition of this field is given in
 Section 2.1, above.

 Value

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

3.4. Extended-Type-4

 Description

 This attribute encapsulates attributes of the "Extended Type"
 format, in the RADIUS Attribute Type space of 244.{1-255}.

 A summary of the Extended-Type-4 Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Type

 244 for Extended-Type-4.

 Length

 >= 4

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified in the 244.{1-255} RADIUS Attribute Type
 space, according to the policies and rules described in
 Section 10. Further definition of this field is given in
 Section 2.1, above.

 Value

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the Value Field.

3.5. Long-Extended-Type-1

 Description

 This attribute encapsulates attributes of the "Long Extended Type"
 format, in the RADIUS Attribute Type space of 245.{1-255}.

 A summary of the Long-Extended-Type-1 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type |M| Reserved |
+‑+
| Value ...
+‑+

 Type

 245 for Long-Extended-Type-1

 Length

 >= 5

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified in the 245.{1-255} RADIUS Attribute Type
 space, according to the policies and rules described in
 Section 10. Further definition of this field is given in
 Section 2.1, above.

 M (More)

 The More field is one (1) bit in length and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Reserved

 This field is 7 bits long and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Value

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

3.6. Long-Extended-Type-2

 Description

 This attribute encapsulates attributes of the "Long Extended Type"
 format, in the RADIUS Attribute Type space of 246.{1-255}.

 A summary of the Long-Extended-Type-2 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type |M| Reserved |
+‑+
| Value ...
+‑+

 Type

 246 for Long-Extended-Type-2

 Length

 >= 5

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of this
 field are specified in the 246.{1-255} RADIUS Attribute Type
 space, according to the policies and rules described in
 Section 10. Further definition of this field is given in
 Section 2.1, above.

 M (More)

 The More field is one (1) bit in length and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Reserved

 This field is 7 bits long and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Value

 The "Value" field is one or more octets.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type" to determine the interpretation
 of the "Value" field.

4. Vendor-Specific Attributes

 We define six new attributes that can carry vendor-specific
 information. We define four (4) attributes of the "Extended Type"
 format, with Type codes (241.26, 242.26, 243.26, 244.26), using the
 "evs" data type. We also define two (2) attributes using "Long
 Extended Type" format, with Type codes (245.26, 246.26), which are of
 the "evs" data type.

Type.Extended‑Type Name
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑
241.26 Extended‑Vendor‑Specific‑1
242.26 Extended‑Vendor‑Specific‑2
243.26 Extended‑Vendor‑Specific‑3
244.26 Extended‑Vendor‑Specific‑4
245.26 Extended‑Vendor‑Specific‑5
246.26 Extended‑Vendor‑Specific‑6

 The rest of this section gives detailed definitions for each
 Attribute based on the above summary.

4.1. Extended-Vendor-Specific-1

 Description

 This attribute defines a RADIUS Type Code of 241.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-1 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Vendor‑Id ...
+‑+
 ... Vendor‑Id (cont) | Vendor‑Type |
+‑+
| Value
+‑+

 Type.Extended-Type

 241.26 for Extended-Vendor-Specific-1

 Length

 >= 9

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 Value

 The "Value" field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the "Value" field is eight (8) less than the value
 of the Length field.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the "Value" field.

4.2. Extended-Vendor-Specific-2

 Description

 This attribute defines a RADIUS Type Code of 242.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-2 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Vendor‑Id ...
+‑+
 ... Vendor‑Id (cont) | Vendor‑Type |
+‑+
| Value
+‑+

 Type.Extended-Type

 242.26 for Extended-Vendor-Specific-2

 Length

 >= 9

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 Value

 The "Value" field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the "Value" field is eight (8) less than the value
 of the Length field.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the "Value" field.

4.3. Extended-Vendor-Specific-3

 Description

 This attribute defines a RADIUS Type Code of 243.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-3 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Vendor‑Id ...
+‑+
 ... Vendor‑Id (cont) | Vendor‑Type |
+‑+
| Value
+‑+

 Type.Extended-Type

 243.26 for Extended-Vendor-Specific-3

 Length

 >= 9

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 Value

 The "Value" field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the "Value" field is eight (8) less than the value
 of the Length field.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the "Value" field.

4.4. Extended-Vendor-Specific-4

 Description

 This attribute defines a RADIUS Type Code of 244.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-4 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Vendor‑Id ...
+‑+
 ... Vendor‑Id (cont) | Vendor‑Type |
+‑+
| Value
+‑+

 Type.Extended-Type

 244.26 for Extended-Vendor-Specific-4

 Length

 >= 9

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 Value

 The "Value" field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 The length of the "Value" field is eight (8) less than the value
 of the Length field.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the "Value" field.

4.5. Extended-Vendor-Specific-5

 Description

 This attribute defines a RADIUS Type Code of 245.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-5 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type |M| Reserved |
+‑+
| Vendor‑Id |
+‑+
| Vendor‑Type | Value
+‑+

 Type.Extended-Type

 245.26 for Extended-Vendor-Specific-5

 Length

>= 10 (first fragment)
>= 5 (subsequent fragments)

 When a VSA is fragmented across multiple Attributes, only the
 first Attribute contains the Vendor-Id and Vendor-Type fields.
 Subsequent Attributes contain fragments of the "Value" field only.

 M (More)

 The More field is one (1) bit in length and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Reserved

 This field is 7 bits long and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 Value

 The "Value" field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the "Value" field.

4.6. Extended-Vendor-Specific-6

 Description

 This attribute defines a RADIUS Type Code of 246.26, using the
 "evs" data type.

 A summary of the Extended-Vendor-Specific-6 Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type |M| Reserved |
+‑+
| Vendor‑Id |
+‑+
| Vendor‑Type | Value
+‑+

 Type.Extended-Type

 246.26 for Extended-Vendor-Specific-6

 Length

>= 10 (first fragment)
>= 5 (subsequent fragments)

 When a VSA is fragmented across multiple Attributes, only the
 first Attribute contains the Vendor-Id and Vendor-Type fields.
 Subsequent Attributes contain fragments of the "Value" field only.

 M (More)

 The More field is one (1) bit in length and indicates whether or
 not the current attribute contains "more" than 251 octets of data.
 Further definition of this field is given in Section 2.2, above.

 Reserved

 This field is 7 bits long and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an attribute
 for sending in a packet. The contents SHOULD be ignored on
 reception.

 Vendor-Id

 The 4 octets of the Vendor-Id field are the Network Management
 Private Enterprise Code [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 Value

 The "Value" field is one or more octets. The actual format of the
 information is site or application specific, and a robust
 implementation SHOULD support the field as undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

 Implementations supporting this specification MUST use the
 identifier of "Type.Extended-Type.Vendor-Id.Vendor-Type" to
 determine the interpretation of the "Value" field.

5. Compatibility with Traditional RADIUS

 There are a number of potential compatibility issues with traditional
 RADIUS, as defined in [RFC6158] and earlier. This section describes
 them.

5.1. Attribute Allocation

 Some vendors have used Attribute Type codes from the "Reserved" space
 as part of vendor-defined dictionaries. This practice is considered
 antisocial behavior, as noted in [RFC6158]. These vendor definitions
 conflict with the Attributes in the RADIUS Attribute Type space. The
 conflicting definitions may make it difficult for implementations to
 support both those Vendor Attributes, and the new Extended Attribute
 formats.

 We RECOMMEND that RADIUS client and server implementations delete all
 references to these improperly defined attributes. Failing that, we
 RECOMMEND that RADIUS server implementations have a per-client
 configurable flag that indicates which type of attributes are being
 sent from the client. If the flag is set to "Non-Standard
 Attributes", the conflicting attributes can be interpreted as being
 improperly defined Vendor-Specific Attributes. If the flag is set to
 "IETF Attributes", the Attributes MUST be interpreted as being of the
 Extended Attributes format. The default SHOULD be to interpret the
 Attributes as being of the Extended Attributes format.

 Other methods of determining how to decode the Attributes into a
 "correct" form are NOT RECOMMENDED. Those methods are likely to be
 fragile and prone to error.

 We RECOMMEND that RADIUS server implementations reuse the above flag
 to determine which types of attributes to send in a reply message.
 If the request is expected to contain the improperly defined
 attributes, the reply SHOULD NOT contain Extended Attributes. If the
 request is expected to contain Extended Attributes, the reply MUST
 NOT contain the improper Attributes.

 RADIUS clients will have fewer issues than servers. Clients MUST NOT
 send improperly defined Attributes in a request. For replies,
 clients MUST interpret attributes as being of the Extended Attributes
 format, instead of the improper definitions. These requirements
 impose no change in the RADIUS specifications, as such usage by
 vendors has always been in conflict with the standard requirements
 and the standards process.

 Existing clients that send these improperly defined attributes
 usually have a configuration setting that can disable this behavior.
 We RECOMMEND that vendors ship products with the default set to
 "disabled". We RECOMMEND that administrators set this flag to
 "disabled" on all equipment that they manage.

5.2. Proxy Servers

 RADIUS proxy servers will need to forward Attributes having the new
 format, even if they do not implement support for the encoding and
 decoding of those attributes. We remind implementers of the
 following text in [RFC2865] Section 2.3:

 The forwarding server MUST NOT change the order of any attributes
 of the same type, including Proxy-State.

 This requirement solves some of the issues related to proxying of the
 new format, but not all. The reason is that proxy servers are
 permitted to examine the contents of the packets that they forward.
 Many proxy implementations not only examine the Attributes, but they
 refuse to forward attributes that they do not understand (i.e.,
 attributes for which they have no local dictionary definitions).
 This practice is NOT RECOMMENDED. Proxy servers SHOULD forward
 attributes, even attributes that they do not understand or that are
 not in a local dictionary. When forwarded, these attributes SHOULD
 be sent verbatim, with no modifications or changes. This requirement
 includes "invalid attributes", as there may be some other system in
 the network that understands them.

 The only exception to this recommendation is when local site policy
 dictates that filtering of attributes has to occur. For example, a
 filter at a visited network may require removal of certain
 authorization rules that apply to the home network but not to the
 visited network. This filtering can sometimes be done even when the
 contents of the Attributes are unknown, such as when all Vendor-
 Specific Attributes are designated for removal.

 As seen during testing performed in 2010 via the EDUcation ROAMing
 (EDUROAM) service (A. DeKok, unpublished data), many proxies do not
 follow these practices for unknown Attributes. Some proxies filter
 out unknown attributes or attributes that have unexpected lengths
 (24%, 17/70), some truncate the Attributes to the "expected" length
 (11%, 8/70), some discard the request entirely (1%, 1/70), and the
 rest (63%, 44/70) follow the recommended practice of passing the
 Attributes verbatim. It will be difficult to widely use the Extended
 Attributes format until all non-conformant proxies are fixed. We
 therefore RECOMMEND that all proxies that do not support the Extended
 Attributes (241 through 246) define them as being of data type
 "string" and delete all other local definitions for those attributes.

 This last change should enable wider usage of the Extended Attributes
 format.

6. Guidelines

 This specification proposes a number of changes to RADIUS and
 therefore requires a set of guidelines, as has been done in
 [RFC6158]. These guidelines include suggestions related to design,
 interaction with IANA, usage, and implementation of attributes using
 the new formats.

6.1. Updates to RFC 6158

 This specification updates [RFC6158] by adding the data types "evs",
 "tlv", and "integer64"; defining them to be "basic" data types; and
 permitting their use subject to the restrictions outlined below.

 The recommendations for the use of the new data types and Attribute
 formats are given below.

6.2. Guidelines for Simple Data Types

 [RFC6158] Section A.2.1 says in part:

 * Unsigned integers of size other than 32 bits. SHOULD be replaced
 by an unsigned integer of 32 bits. There is insufficient
 justification to define a new size of integer.

 We update that specification to permit unsigned integers of 64 bits,
 for the reasons defined above in Section 2.5. The updated text is as
 follows:

 * Unsigned integers of size other than 32 or 64 bits. SHOULD be
 replaced by an unsigned integer of 32 or 64 bits. There is
 insufficient justification to define a new size of integer.

 That section later continues with the following list item:

 * Nested attribute-value pairs (AVPs). Attributes should be defined
 in a flat typespace.

 We update that specification to permit nested TLVs, as defined in
 this document:

 * Nested attribute-value pairs (AVPs) using the extended Attribute
 format MAY be used. All other nested AVP or TLV formats MUST NOT
 be used.

 The [RFC6158] recommendations for "basic" data types apply to the
 three types listed above. All other recommendations given in
 [RFC6158] for "basic" data types remain unchanged.

6.3. Guidelines for Complex Data Types

 [RFC6158] Section 2.1 says:

 Complex data types MAY be used in situations where they reduce
 complexity in non-RADIUS systems or where using the basic data
 types would be awkward (such as where grouping would be required
 in order to link related attributes).

 Since the extended Attribute format allows for grouping of complex
 types via TLVs, the guidelines for complex data types need to be
 updated as follows:

 [RFC6158], Section 3.2.4, describes situations in which complex
 data types might be appropriate. They SHOULD NOT be used even in
 those situations, without careful consideration of the described
 limitations. In all other cases not covered by the complex data
 type exceptions, complex data types MUST NOT be used. Instead,
 complex data types MUST be decomposed into TLVs.

 The checklist in [RFC6158] Appendix A.2.2 is similarly updated to add
 a new requirement at the top of that section, as follows:

 Does the Attribute

 * define a complex type that can be represented via TLVs?

 If so, this data type MUST be represented via TLVs.

 Note that this requirement does not override [RFC6158] Appendix A.1,
 which permits the transport of complex types in certain situations.

 All other recommendations given in [RFC6158] for "complex" data types
 remain unchanged.

6.4. Design Guidelines for the New Types

 This section gives design guidelines for specifications defining
 attributes using the new format. The items listed below are not
 exhaustive. As experience is gained with the new formats, later
 specifications may define additional guidelines.

 * The data type "evs" MUST NOT be used for standard RADIUS
 Attributes, or for TLVs, or for VSAs.

 * The data type TLV SHOULD NOT be used for standard RADIUS
 attributes.

 * [RFC2866] "tagged" attributes MUST NOT be defined in the
 Extended-Type space. The "tlv" data type should be used instead to
 group attributes.

 * The "integer64" data type MAY be used in any RADIUS attribute. The
 use of 64-bit integers was not recommended in [RFC6158], but their
 utility is now evident.

 * Any attribute that is allocated from the long extended space of
 data type "text", "string", or "tlv" can potentially carry more
 than 251 octets of data. Specifications defining such attributes
 SHOULD define a maximum length to guide implementations.

 All other recommendations given in [RFC6158] for attribute design
 guidelines apply to attributes using the short extended space and
 long extended space.

6.5. TLV Guidelines

 The following items give design guidelines for specifications using
 TLVs.

 * When multiple Attributes are intended to be grouped or managed
 together, the use of TLVs to group related attributes is
 RECOMMENDED.

 * More than 4 layers (depth) of TLV nesting is NOT RECOMMENDED.

 * Interpretation of an attribute depends only on its type definition
 (e.g., Type.Extended-Type.TLV-Type) and not on its encoding or
 location in the RADIUS packet.

 * Where a group of TLVs is strictly defined, and not expected to
 change, and totals less than 247 octets of data, the specifications
 SHOULD request allocation from the short extended space.

 * Where a group of TLVs is loosely defined or is expected to change,
 the specifications SHOULD request allocation from the long extended
 space.

 All other recommendations given in [RFC6158] for attribute design
 guidelines apply to attributes using the TLV format.

6.6. Allocation Request Guidelines

 The following items give guidelines for allocation requests made in a
 RADIUS specification.

 * Discretion is recommended when requesting allocation of attributes.
 The new space is much larger than the old one, but it is not
 infinite.

 * Specifications that allocate many attributes MUST NOT request that
 allocation be made from the standard space. That space is under
 allocation pressure, and the extended space is more suitable for
 large allocations. As a guideline, we suggest that one
 specification allocating twenty percent (20%) or more of the
 standard space would meet the above criteria.

 * Specifications that allocate many related attributes SHOULD define
 one or more TLVs to contain related attributes.

 * Specifications SHOULD request allocation from a specific space.
 The IANA considerations given in Section 10, below, give
 instructions to IANA, but authors should assist IANA where
 possible.

 * Specifications of an attribute that encodes 252 octets or less of
 data MAY request allocation from the short extended space.

 * Specifications of an attribute that always encode less than

 253 octets of data MUST NOT request allocation from the long
 extended space. The standard space or the short extended space
 MUST be used instead.

 * Specifications of an attribute that encodes 253 octets or more of
 data MUST request allocation from the long extended space.

 * When the extended space is nearing exhaustion, a new specification
 will have to be written that requests allocation of one or more
 RADIUS attributes from the "Reserved" portion of the standard
 space, values 247-255, using an appropriate format ("Short Extended
 Type", or "Long Extended Type").

 An allocation request made in a specification SHOULD use one of the
 following formats when allocating an attribute type code:

 * TBDn - request allocation of an attribute from the standard space.
 The value "n" should be 1 or more, to track individual attributes
 that are to be allocated.

 * SHORT-TBDn - request allocation of an attribute from the short
 extended space. The value "n" should be 1 or more, to track
 individual attributes that are to be allocated.

 * LONG-TBDn - request allocation of an attribute from the long
 extended space. The value "n" should be 1 or more, to track
 individual attributes that are to be allocated.

 These guidelines should help specification authors and IANA
 communicate effectively and clearly.

6.7. Allocation Request Guidelines for TLVs

 Specifications may allocate a new attribute of type TLV and at the
 same time allocate sub-Attributes within that TLV. These
 specifications SHOULD request allocation of specific values for the
 sub-TLV. The "dotted number" notation MUST be used.

 For example, a specification may request allocation of a TLV as
 SHORT-TBD1. Within that attribute, it could request allocation of
 three sub-TLVs, as SHORT-TBD1.1, SHORT-TBD1.2, and SHORT-TBD1.3.

 Specifications may request allocation of additional sub-TLVs within
 an existing attribute of type TLV. Those specifications SHOULD use
 the "TBDn" format for every entry in the "dotted number" notation.

 For example, a specification may request allocation within an
 existing TLV, with "dotted number" notation MM.NN. Within that
 attribute, the specification could request allocation of three
 sub-TLVs, as MM.NN.TBD1, MM.NN.TBD2, and MM.NN.TBD3.

6.8. Implementation Guidelines

 * RADIUS client implementations SHOULD support this specification in
 order to permit the easy deployment of specifications using the
 changes defined herein.

 * RADIUS server implementations SHOULD support this specification in
 order to permit the easy deployment of specifications using the
 changes defined herein.

 * RADIUS proxy servers MUST follow the specifications in Section 5.2.

6.9. Vendor Guidelines

 * Vendors SHOULD use the existing Vendor-Specific Attribute Type
 space in preference to the new Extended-Vendor-Specific Attributes,
 as this specification may take time to become widely deployed.

 * Vendors SHOULD implement this specification. The changes to RADIUS
 are relatively small and are likely to quickly be used in new
 specifications.

7. Rationale for This Design

 The path to extending the RADIUS protocol has been long and arduous.
 A number of proposals have been made and discarded by the RADEXT
 working group. These proposals have been judged to be either too
 bulky, too complex, too simple, or unworkable in practice. We do not
 otherwise explain here why earlier proposals did not obtain working
 group consensus.

 The changes outlined here have the benefit of being simple, as the
 "Extended Type" format requires only a one-octet change to the
 Attribute format. The downside is that the "Long Extended Type"
 format is awkward, and the 7 Reserved bits will likely never be used
 for anything.

7.1. Attribute Audit

 An audit of almost five thousand publicly available attributes [ATTR]
 (2010) shows the statistics summarized below. The Attributes include
 over 100 Vendor dictionaries, along with the IANA-assigned
 attributes:

Count Data Type
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
2257 integer
1762 text
273 IPv4 Address
225 string
96 other data types
35 IPv6 Address
18 date
10 integer64
4 Interface Id
3 IPv6 Prefix

4683 Total

 The entries in the "Data Type" column are data types recommended by
 [RFC6158], along with "integer64". The "other data types" row
 encompasses all other data types, including complex data types and
 data types transporting opaque data.

 We see that over half of the Attributes encode less than 16 octets of
 data. It is therefore important to have an extension mechanism that
 adds as little as possible to the size of these attributes. Another
 result is that the overwhelming majority of attributes use simple
 data types.

 Of the Attributes defined above, 177 were declared as being inside of
 a TLV. This is approximately 4% of the total. We did not
 investigate whether additional attributes were defined in a flat
 namespace but could have been defined as being inside of a TLV. We
 expect that the number could be as high as 10% of attributes.
 Manual inspection of the dictionaries shows that approximately 20 (or
 0.5%) attributes have the ability to transport more than 253 octets
 of data. These attributes are divided between VSAs and a small
 number of standard Attributes such as EAP-Message.

 The results of this audit and analysis are reflected in the design of
 the extended attributes. The extended format has minimal overhead,
 permits TLVs, and has support for "long" attributes.

8. Diameter Considerations

 The Attribute formats defined in this specification need to be
 transported in Diameter. While Diameter supports attributes longer
 than 253 octets and grouped attributes, we do not use that
 functionality here. Instead, we define the simplest possible
 encapsulation method.

 The new formats MUST be treated the same as traditional RADIUS
 attributes when converting from RADIUS to Diameter, or vice versa.
 That is, the new attribute space is not converted to any "extended"
 Diameter attribute space. Fragmented attributes are not converted to
 a single long Diameter attribute. The new EVS data types are not
 converted to Diameter attributes with the "V" bit set.

 In short, this document mandates no changes for existing RADIUS-to-
 Diameter or Diameter-to-RADIUS gateways.

9. Examples

 A few examples are presented here in order to illustrate the encoding
 of the new Attribute formats. These examples are not intended to be
 exhaustive, as many others are possible. For simplicity, we do not
 show complete packets, but only attributes.

 The examples are given using a domain-specific language implemented
 by the program given in Appendix A of this document. The language is
 line oriented and composed of a sequence of lines matching the ABNF
 grammar ([RFC5234]) given below:

 Identifier = 1*DIGIT *("." 1*DIGIT)

 HEXCHAR = HEXDIG HEXDIG

 STRING = DQUOTE 1*CHAR DQUOTE

 TLV = "{" SP 1*DIGIT SP DATA SP "}"

 DATA = (HEXCHAR *(SP HEXCHAR)) / (TLV *(SP TLV)) / STRING

 LINE = Identifier SP DATA

 The program has additional restrictions on its input that are not
 reflected in the above grammar. For example, the portions of the
 identifier that refer to Type and Extended-Type are limited to values
 between 1 and 255. We trust that the source code in Appendix A is
 clear and that these restrictions do not negatively affect the
 comprehensibility of the examples.

 The program reads the input text and interprets it as a set of
 instructions to create RADIUS attributes. It then prints the hex
 encoding of those attributes. It implements the minimum set of
 functionality that achieves that goal. This minimalism means that it
 does not use attribute dictionaries; it does not implement support
 for RADIUS data types; it can be used to encode attributes with
 invalid data fields; and there is no requirement for consistency from
 one example to the next. For example, it can be used to encode a
 User-Name attribute that contains non-UTF8 data or a
 Framed-IP-Address that contains 253 octets of ASCII data. As a
 result, it MUST NOT be used to create RADIUS attributes for transport
 in a RADIUS message.

 However, the program correctly encodes the RADIUS attribute fields of
 "Type", "Length", "Extended-Type", "More", "Reserved", "Vendor-Id",
 "Vendor-Type", and "Vendor-Length". It encodes RADIUS attribute data
 types "evs" and "tlv". It can therefore be used to encode example
 attributes from inputs that are human readable.

 We do not give examples of "invalid attributes". We also note that
 the examples show format, rather than consistent meaning. A
 particular Attribute Type code may be used to demonstrate two
 different formats. In real specifications, attributes have a static
 definitions based on their type code.

 The examples given below are strictly for demonstration purposes only
 and do not provide a standard of any kind.

9.1. Extended Type

 The following is a series of examples of the "Extended Type" format.

 Attribute encapsulating textual data:

 241.1 "bob"

 -> f1 06 01 62 6f 62

 Attribute encapsulating a TLV with TLV-Type of one (1):

 241.2 { 1 23 45 }

 -> f1 07 02 01 04 23 45

 Attribute encapsulating two TLVs, one after the other:

 241.2 { 1 23 45 } { 2 67 89 }

 -> f1 0b 02 01 04 23 45 02 04 67 89

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating a TLV:

 241.2 { 1 23 45 } { 3 { 1 ab cd } }

 -> f1 0d 02 01 04 23 45 03 06 01 04 ab cd

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating two TLVs:

 241.2 { 1 23 45 } { 3 { 1 ab cd } { 2 "foo" } }

 -> f1 12 02 01 04 23 45 03 0b 01 04 ab cd 02 05 66 6f 6f

 Attribute encapsulating a TLV, which in turn encapsulates a TLV, to a
 depth of 5 nestings:

 241.1 { 1 { 2 { 3 { 4 { 5 cd ef } } } } }

 -> f1 0f 01 01 0c 02 0a 03 08 04 06 05 04 cd ef

 Attribute encapsulating an Extended-Vendor-Specific Attribute, with
 Vendor-Id of 1 and Vendor-Type of 4, which in turn encapsulates
 textual data:

 241.26.1.4 "test"

 -> f1 0c 1a 00 00 00 01 04 74 65 73 74

 Attribute encapsulating an Extended-Vendor-Specific Attribute, with
 Vendor-Id of 1 and Vendor-Type of 5, which in turn encapsulates a TLV
 with TLV-Type of 3, which encapsulates textual data:

 241.26.1.5 { 3 "test" }

 -> f1 0e 1a 00 00 00 01 05 03 06 74 65 73 74

9.2. Long Extended Type

 The following is a series of examples of the "Long Extended Type"
 format.

 Attribute encapsulating textual data:

 245.1 "bob"

 -> f5 07 01 00 62 6f 62

 Attribute encapsulating a TLV with TLV-Type of one (1):

 245.2 { 1 23 45 }

 -> f5 08 02 00 01 04 23 45

 Attribute encapsulating two TLVs, one after the other:

 245.2 { 1 23 45 } { 2 67 89 }

 -> f5 0c 02 00 01 04 23 45 02 04 67 89

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating a TLV:

 245.2 { 1 23 45 } { 3 { 1 ab cd } }

 -> f5 0e 02 00 01 04 23 45 03 06 01 04 ab cd

 Attribute encapsulating two TLVs, where the second TLV is itself
 encapsulating two TLVs:

 245.2 { 1 23 45 } { 3 { 1 ab cd } { 2 "foo" } }

 -> f5 13 02 00 01 04 23 45 03 0b 01 04 ab cd 02 05 66 6f 6f

 Attribute encapsulating a TLV, which in turn encapsulates a TLV, to a
 depth of 5 nestings:

 245.1 { 1 { 2 { 3 { 4 { 5 cd ef } } } } }

 -> f5 10 01 00 01 0c 02 0a 03 08 04 06 05 04 cd ef

 Attribute encapsulating an Extended-Vendor-Specific Attribute, with
 Vendor-Id of 1 and Vendor-Type of 4, which in turn encapsulates
 textual data:

 245.26.1.4 "test"

 -> f5 0d 1a 00 00 00 00 01 04 74 65 73 74

 Attribute encapsulating an Extended-Vendor-Specific Attribute, with
 Vendor-Id of 1 and Vendor-Type of 5, which in turn encapsulates a TLV
 with TLV-Type of 3, which encapsulates textual data:

 245.26.1.5 { 3 "test" }

 -> f5 0f 1a 00 00 00 00 01 05 03 06 74 65 73 74

 Attribute encapsulating more than 251 octets of data. The "Data"
 portions are indented for readability:

245.4 "aaa
 aa
 aa
 aa
 aaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 bb
 bb
 bb
 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcccccccccccccccccccc
 ccccccccccc"
 ‑> f5 ff 04 80 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
 aa
 aa
 aa
 aa
 aa
 aa aa aa aa aa aa aa aa aa ab bb bb bb bb bb bb bb bb bb bb
 bb
 bb
 bb
 bb
 bb
 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb f5 13 04 00 cc
 cc cc cc cc cc cc cc cc cc cc cc cc cc cc

 Below is an example of an attribute encapsulating an Extended-Vendor-
 Specific Attribute, with Vendor-Id of 1 and Vendor-Type of 6, which
 in turn encapsulates more than 251 octets of data.

 As the VSA encapsulates more than 251 octets of data, it is split
 into two RADIUS attributes. The first attribute has the More field
 set, and it carries the Vendor-Id and Vendor-Type. The second
 attribute has the More field clear and carries the rest of the data
 portion of the VSA. Note that the second attribute does not include
 the Vendor-Id ad Vendor-Type fields.

 The "Data" portions are indented for readability:

245.26.1.6 "aaa
 aa
 aa
 aa
 aaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 bb
 bb
 bb
 bbbccccccccccccc
 ccccccccccccccccc"
 ‑> f5 ff 1a 80 00 00 00 01 06 aa aa aa aa aa aa aa aa aa aa aa
 aa
 aa
 aa
 aa
 aa
 aa aa aa aa aa aa aa aa aa aa aa aa aa aa ab bb bb bb bb bb
 bb
 bb
 bb
 bb
 bb
 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb f5 18 1a 00 bb
 bb bb bb bb cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc

10. IANA Considerations

 This document updates [RFC3575] in that it adds new IANA
 considerations for RADIUS attributes. These considerations modify
 and extend the IANA considerations for RADIUS, rather than replacing
 them.

 The IANA considerations of this document are limited to the "RADIUS
 Attribute Types" registry. Some Attribute Type values that were
 previously marked "Reserved" are now allocated, and the registry is
 extended from a simple 8-bit array to a tree-like structure, up to a
 maximum depth of 125 nodes. Detailed instructions are given below.

10.1. Attribute Allocations

 IANA has moved the following Attribute Type values from "Reserved" to
 "Allocated" with the corresponding names:

* 241 Extended‑Type‑1
* 242 Extended‑Type‑2
* 243 Extended‑Type‑3
* 244 Extended‑Type‑4
* 245 Long‑Extended‑Type‑1
* 246 Long‑Extended‑Type‑2

 These values serve as an encapsulation layer for the new RADIUS
 Attribute Type tree.

10.2. RADIUS Attribute Type Tree

 Each of the Attribute Type values allocated above extends the "RADIUS
 Attribute Types" to an N-ary tree, via a "dotted number" notation.
 Allocation of an Attribute Type value "TYPE" using the new "Extended
 Type" format results in allocation of 255 new Attribute Type values
 of format "TYPE.1" through "TYPE.255". Value twenty-six (26) is
 assigned as "Extended-Vendor-Specific-*". Values "TYPE.241" through
 "TYPE.255" are marked "Reserved". All other values are "Unassigned".
 The initial set of Attribute Type values and names assigned by this
 document is given below.

* 241 Extended‑Attribute‑1
* 241.{1‑25} Unassigned
* 241.26 Extended‑Vendor‑Specific‑1
* 241.{27‑240} Unassigned
* 241.{241‑255} Reserved
* 242 Extended‑Attribute‑2
* 242.{1‑25} Unassigned
* 242.26 Extended‑Vendor‑Specific‑2
* 242.{27‑240} Unassigned
* 242.{241‑255} Reserved
* 243 Extended‑Attribute‑3
* 243.{1‑25} Unassigned
* 243.26 Extended‑Vendor‑Specific‑3
* 243.{27‑240} Unassigned
* 243.{241‑255} Reserved
* 244 Extended‑Attribute‑4
* 244.{1‑25} Unassigned
* 244.26 Extended‑Vendor‑Specific‑4
* 244.{27‑240} Unassigned
* 244.{241‑255} Reserved
* 245 Extended‑Attribute‑5
* 245.{1‑25} Unassigned
* 245.26 Extended‑Vendor‑Specific‑5
* 245.{27‑240} Unassigned
* 245.{241‑255} Reserved
* 246 Extended‑Attribute‑6
* 246.{1‑25} Unassigned
* 246.26 Extended‑Vendor‑Specific‑6
* 246.{27‑240} Unassigned
* 246.{241‑255} Reserved

 As per [RFC5226], the values marked "Unassigned" above are available
 for assignment by IANA in future RADIUS specifications. The values
 marked "Reserved" are reserved for future use.

 The Extended-Vendor-Specific spaces (TYPE.26) are for Private Use,
 and allocations are not managed by IANA.

 Allocation of Reserved entries in the extended space requires
 Standards Action.

 All other allocations in the extended space require IETF Review.

10.3. Allocation Instructions

 This section defines what actions IANA needs to take when allocating
 new attributes. Different actions are required when allocating
 attributes from the standard space, attributes of the "Extended Type"
 format, attributes of the "Long Extended Type" format, preferential
 allocations, attributes of data type TLV, attributes within a TLV,
 and attributes of other data types.

10.3.1. Requested Allocation from the Standard Space

 Specifications can request allocation of an Attribute from within the
 standard space (e.g., Attribute Type Codes 1 through 255), subject to
 the considerations of [RFC3575] and this document.

10.3.2. Requested Allocation from the Short Extended Space

 Specifications can request allocation of an Attribute that requires
 the format "Extended Type", by specifying the short extended space.
 In that case, IANA should assign the lowest Unassigned number from
 the Attribute Type space with the relevant format.

10.3.3. Requested Allocation from the Long Extended Space

 Specifications can request allocation of an Attribute that requires
 the format "Long Extended Type", by specifying the extended space
 (long). In that case, IANA should assign the lowest Unassigned
 number from the Attribute Type space with the relevant format.

10.3.4. Allocation Preferences

 Specifications that make no request for allocation from a specific
 type space should have Attributes allocated using the following
 criteria:

 * When the standard space has no more Unassigned attributes, all
 allocations should be performed from the extended space.

 * Specifications that allocate a small number of attributes (i.e.,
 less than ten) should have all allocations made from the standard
 space.

 * Specifications that would allocate more than twenty percent of the
 remaining standard space attributes should have all allocations
 made from the extended space.

 * Specifications that request allocation of an attribute of data type
 TLV should have that attribute allocated from the extended space.

 * Specifications that request allocation of an attribute that can
 transport 253 or more octets of data should have that attribute
 allocated from within the long extended space. We note that
 Section 6.5 above makes recommendations related to this allocation.

 There is otherwise no requirement that all attributes within a
 specification be allocated from one type space or another.
 Specifications can simultaneously allocate attributes from both the
 standard space and the extended space.

10.3.5. Extending the Type Space via the TLV Data Type

 When specifications request allocation of an attribute of data type
 TLV, that allocation extends the Attribute Type tree by one more
 level. Allocation of an Attribute Type value "TYPE.TLV", with data
 type TLV, results in allocation of 255 new Attribute Type values, of
 format "TYPE.TLV.1" through "TYPE.TLV.255". Values 254-255 are
 marked "Reserved". All other values are "Unassigned". Value 26 has
 no special meaning.

 For example, if a new attribute "Example-TLV" of data type TLV is
 assigned the identifier "245.1", then the extended tree will be
 allocated as below:

* 245.1 Example‑TLV
* 245.1.{1‑253} Unassigned
* 245.1.{254‑255} Reserved

 Note that this example does not define an "Example-TLV" attribute.

 The Attribute Type tree can be extended multiple levels in one
 specification when the specification requests allocation of nested
 TLVs, as discussed below.

10.3.6. Allocation within a TLV

 Specifications can request allocation of Attribute Type values within
 an Attribute of data type TLV. The encapsulating TLV can be
 allocated in the same specification, or it can have been previously
 allocated.

 Specifications need to request allocation within a specific Attribute
 Type value (e.g., "TYPE.TLV.*"). Allocations are performed from the
 smallest Unassigned value, proceeding to the largest Unassigned
 value.

 Where the Attribute being allocated is of data type TLV, the
 Attribute Type tree is extended by one level, as given in the
 previous section. Allocations can then be made within that level.

10.3.7. Allocation of Other Data Types

 Attribute Type value allocations are otherwise allocated from the
 smallest Unassigned value, proceeding to the largest Unassigned
 value, e.g., starting from 241.1, proceeding through 241.255, then to
 242.1, through 242.255, etc.

11. Security Considerations

 This document defines new formats for data carried inside of RADIUS
 but otherwise makes no changes to the security of the RADIUS
 protocol.

 Attacks on cryptographic hashes are well known and are getting better
 with time, as discussed in [RFC4270]. The security of the RADIUS
 protocol is dependent on MD5 [RFC1321], which has security issues as
 discussed in [RFC6151]. It is not known if the issues described in
 [RFC6151] apply to RADIUS. For other issues, we incorporate by
 reference the security considerations of [RFC6158] Section 5.

 As with any protocol change, code changes are required in order to
 implement the new features. These code changes have the potential to
 introduce new vulnerabilities in the software. Since the RADIUS
 server performs network authentication, it is an inviting target for
 attackers. We RECOMMEND that access to RADIUS servers be kept to a
 minimum.

12. References

12.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 July 2003.

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6158]
 DeKok, A., Ed., and G. Weber, "RADIUS Design Guidelines",
 BCP 158, RFC 6158, March 2011.

 [PEN]
 IANA, "PRIVATE ENTERPRISE NUMBERS",
 <http://www.iana.org/assignments/enterprise-numbers>.

12.2. Informative References

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2868]
 Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,
 M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, June 2000.

 [RFC4270]
 Hoffman, P. and B. Schneier, "Attacks on Cryptographic
 Hashes in Internet Protocols", RFC 4270, November 2005.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC6151]
 Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, March 2011.

 [ATTR]
 "alandekok/freeradius-server", available from GitHub, data
 retrieved September 2010, <http://github.com/alandekok/
 freeradius-server/tree/master/share/>.

13. Acknowledgments

 This document is the result of long discussions in the IETF RADEXT
 working group. The authors would like to thank all of the
 participants who contributed various ideas over the years. Their
 feedback has been invaluable and has helped to make this
 specification better.

Appendix A. Extended Attribute Generator Program

 This section contains "C" program source code that can be used for
 testing. It reads a line-oriented text file, parses it to create
 RADIUS formatted attributes, and prints the hex version of those
 attributes to standard output.

 The input accepts grammar similar to that given in Section 9, with
 some modifications for usability. For example, blank lines are
 allowed, lines beginning with a '#' character are interpreted as
 comments, numbers (RADIUS Types, etc.) are checked for minimum/
 maximum values, and RADIUS attribute lengths are enforced.

 The program is included here for demonstration purposes only, and
 does not define a standard of any kind.

‑‑
/*
 * Copyright (c) 2013 IETF Trust and the persons identified as
 * authors of the code. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * ‑ Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * ‑ Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 *
 * ‑ Neither the name of Internet Society, IETF or IETF Trust, nor
 * the names of specific contributors, may be used to endorse or
 * promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Author: Alan DeKok <aland@networkradius.com>
 */
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>

 static int encode_tlv(char *buffer, uint8_t *output, size_t outlen);

 static const char *hextab = "0123456789abcdef";

static int encode_data_string(char *buffer,
 uint8_t *output, size_t outlen)
{
 int length = 0;
 char *p;

 p = buffer + 1;

 while (*p && (outlen > 0)) {
 if (*p == '"') {
 return length;
 }

 if (*p != '\\') {
 *(output++) = *(p++);
 outlen‑‑;
 length++;
 continue;
 }

 switch (p[1]) {
 default:
 *(output++) = p[1];
 break;

 case 'n':
 *(output++) = '\n';
 break;

 case 'r':
 *(output++) = '\r';
 break;

 case 't':
 *(output++) = '\t';
 break;
 }

 outlen‑‑;
 length++;
 }

 fprintf(stderr, "String is not terminated\n");
 return 0;
}

static int encode_data_tlv(char *buffer, char **endptr,
 uint8_t *output, size_t outlen)
{
 int depth = 0;
 int length;
 char *p;

 for (p = buffer; *p != '\0'; p++) {
 if (*p == '{') depth++;
 if (*p == '}') {
 depth‑‑;
 if (depth == 0) break;
 }
 }

 if (*p != '}') {
 fprintf(stderr, "No trailing '}' in string starting "
 "with \"%s\"\n",
 buffer);
 return 0;
 }

 *endptr = p + 1;
 *p = '\0';

 p = buffer + 1;
 while (isspace((int) *p)) p++;

 length = encode_tlv(p, output, outlen);
 if (length == 0) return 0;

 return length;
}

static int encode_data(char *p, uint8_t *output, size_t outlen)
{
 int length;

 if (!isspace((int) *p)) {
 fprintf(stderr, "Invalid character following attribute "
 "definition\n");
 return 0;
 }

 while (isspace((int) *p)) p++;

if (*p == '{') {
 int sublen;
 char *q;

 length = 0;

 do {
 while (isspace((int) *p)) p++;
 if (!*p) {
 if (length == 0) {
 fprintf(stderr, "No data\n");
 return 0;
 }

 break;
 }

 sublen = encode_data_tlv(p, &q, output, outlen);
 if (sublen == 0) return 0;

 length += sublen;
 output += sublen;
 outlen ‑= sublen;
 p = q;
 } while (*q);

 return length;
}

if (*p == '"') {
 length = encode_data_string(p, output, outlen);
 return length;
}

length = 0;
while (*p) {

 char *c1, *c2;

 while (isspace((int) *p)) p++;

 if (!*p) break;

 if(!(c1 = memchr(hextab, tolower((int) p[0]), 16)) ||
 !(c2 = memchr(hextab, tolower((int) p[1]), 16))) {
 fprintf(stderr, "Invalid data starting at "
 "\"%s\"\n", p);
 return 0;
 }

 *output = ((c1 ‑ hextab) << 4) + (c2 ‑ hextab);
 output++;
 length++;
 p += 2;

 outlen‑‑;
 if (outlen == 0) {
 fprintf(stderr, "Too much data\n");
 return 0;
 }
 }

 if (length == 0) {
 fprintf(stderr, "Empty string\n");
 return 0;
 }

 return length;
}

static int decode_attr(char *buffer, char **endptr)
{
 long attr;

 attr = strtol(buffer, endptr, 10);
 if (*endptr == buffer) {
 fprintf(stderr, "No valid number found in string "
 "starting with \"%s\"\n", buffer);
 return 0;
 }

 if (!**endptr) {
 fprintf(stderr, "Nothing follows attribute number\n");
 return 0;
 }

 if ((attr <= 0) || (attr > 256)) {
 fprintf(stderr, "Attribute number is out of valid "
 "range\n");
 return 0;
 }

 return (int) attr;
}

static int decode_vendor(char *buffer, char **endptr)
{
 long vendor;

 if (*buffer != '.') {
 fprintf(stderr, "Invalid separator before vendor id\n");
 return 0;
 }

 vendor = strtol(buffer + 1, endptr, 10);
 if (*endptr == (buffer + 1)) {
 fprintf(stderr, "No valid vendor number found\n");
 return 0;
 }

 if (!**endptr) {
 fprintf(stderr, "Nothing follows vendor number\n");
 return 0;
 }

 if ((vendor <= 0) || (vendor > (1 << 24))) {
 fprintf(stderr, "Vendor number is out of valid range\n");
 return 0;
 }

 if (**endptr != '.') {
 fprintf(stderr, "Invalid data following vendor number\n");
 return 0;
 }
 (*endptr)++;

 return (int) vendor;
}

static int encode_tlv(char *buffer, uint8_t *output, size_t outlen)
{
 int attr;
 int length;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 output[0] = attr;
 output[1] = 2;

 if (*p == '.') {
 p++;
 length = encode_tlv(p, output + 2, outlen ‑ 2);

 } else {
 length = encode_data(p, output + 2, outlen ‑ 2);
 }

 if (length == 0) return 0;
 if (length > (255 ‑ 2)) {
 fprintf(stderr, "TLV data is too long\n");
 return 0;
 }

 output[1] += length;

 return length + 2;
}

static int encode_vsa(char *buffer, uint8_t *output, size_t outlen)
{
 int vendor;
 int attr;
 int length;
 char *p;

 vendor = decode_vendor(buffer, &p);
 if (vendor == 0) return 0;

 output[0] = 0;
 output[1] = (vendor >> 16) & 0xff;
 output[2] = (vendor >> 8) & 0xff;
 output[3] = vendor & 0xff;

 length = encode_tlv(p, output + 4, outlen ‑ 4);
 if (length == 0) return 0;
 if (length > (255 ‑ 6)) {
 fprintf(stderr, "VSA data is too long\n");
 return 0;
 }

 return length + 4;
}

static int encode_evs(char *buffer, uint8_t *output, size_t outlen)
{
 int vendor;
 int attr;
 int length;
 char *p;

 vendor = decode_vendor(buffer, &p);
 if (vendor == 0) return 0;

 attr = decode_attr(p, &p);
 if (attr == 0) return 0;

 output[0] = 0;
 output[1] = (vendor >> 16) & 0xff;
 output[2] = (vendor >> 8) & 0xff;
 output[3] = vendor & 0xff;
 output[4] = attr;

 length = encode_data(p, output + 5, outlen ‑ 5);
 if (length == 0) return 0;

 return length + 5;
}

static int encode_extended(char *buffer,
 uint8_t *output, size_t outlen)
{
 int attr;
 int length;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 output[0] = attr;

 if (attr == 26) {
 length = encode_evs(p, output + 1, outlen ‑ 1);
 } else {
 length = encode_data(p, output + 1, outlen ‑ 1);
 }
 if (length == 0) return 0;
 if (length > (255 ‑ 3)) {
 fprintf(stderr, "Extended Attr data is too long\n");

 return 0;
 }

 return length + 1;
}

static int encode_extended_flags(char *buffer,
 uint8_t *output, size_t outlen)
{
 int attr;
 int length, total;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 /* output[0] is the extended attribute */
 output[1] = 4;
 output[2] = attr;
 output[3] = 0;

 if (attr == 26) {
 length = encode_evs(p, output + 4, outlen ‑ 4);
 if (length == 0) return 0;

 output[1] += 5;
 length ‑= 5;
 } else {
 length = encode_data(p, output + 4, outlen ‑ 4);
 }
 if (length == 0) return 0;

 total = 0;
 while (1) {
 int sublen = 255 ‑ output[1];

 if (length <= sublen) {
 output[1] += length;
 total += output[1];
 break;
 }

 length -= sublen;

 memmove(output + 255 + 4, output + 255, length);
 memcpy(output + 255, output, 4);

 output[1] = 255;

 output[3] |= 0x80;

 output += 255;
 output[1] = 4;
 total += 255;
 }

 return total;
}

static int encode_rfc(char *buffer, uint8_t *output, size_t outlen)
{
 int attr;
 int length, sublen;
 char *p;

 attr = decode_attr(buffer, &p);
 if (attr == 0) return 0;

 length = 2;
 output[0] = attr;
 output[1] = 2;

 if (attr == 26) {

 sublen = encode_vsa(p, output + 2, outlen - 2);

 } else if ((*p == ' ') || ((attr < 241) || (attr > 246))) {

 sublen = encode_data(p, output + 2, outlen - 2);

 } else {
 if (*p != '.') {
 fprintf(stderr, "Invalid data following "
 "attribute number\n");
 return 0;
 }

 if (attr < 245) {
 sublen = encode_extended(p + 1,
 output + 2, outlen ‑ 2);
 } else {

 /*
 * Not like the others!
 */
 return encode_extended_flags(p + 1, output, outlen);
 }
 }
 if (sublen == 0) return 0;

 if (sublen > (255 ‑2)) {
 fprintf(stderr, "RFC Data is too long\n");
 return 0;
 }

 output[1] += sublen;
 return length + sublen;
}

int main(int argc, char *argv[])
{
 int lineno;
 size_t i, outlen;
 FILE *fp;
 char input[8192], buffer[8192];
 uint8_t output[4096];

 if ((argc < 2) || (strcmp(argv[1], "‑") == 0)) {
 fp = stdin;
 } else {
 fp = fopen(argv[1], "r");
 if (!fp) {
 fprintf(stderr, "Error opening %s: %s\n",
 argv[1], strerror(errno));
 exit(1);
 }
 }

 lineno = 0;
 while (fgets(buffer, sizeof(buffer), fp) != NULL) {
 char *p = strchr(buffer, '\n');

 lineno++;

if (!p) {
 if (!feof(fp)) {
 fprintf(stderr, "Line %d too long in %s\n",
 lineno, argv[1]);
 exit(1);
 }
} else {
 *p = '\0';
}

p = strchr(buffer, '#');
if (p) *p = '\0';

 p = buffer;

 while (isspace((int) *p)) p++;
 if (!*p) continue;

 strcpy(input, p);
 outlen = encode_rfc(input, output, sizeof(output));
 if (outlen == 0) {
 fprintf(stderr, "Parse error in line %d of %s\n",
 lineno, input);
 exit(1);
 }

 printf("%s ‑> ", buffer);
 for (i = 0; i < outlen; i++) {
 printf("%02x ", output[i]);
 }

 printf("\n");
}

 if (fp != stdin) fclose(fp);

 return 0;
}
‑‑

Authors' Addresses

Alan DeKok
Network RADIUS SARL
57bis blvd des Alpes
38240 Meylan
France

EMail: aland@networkradius.com
URI: http://networkradius.com

 Avi Lior

 EMail: avi.ietf@lior.org

7268 - RADIUS Attributes for IEEE 802 Networks

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7268

Updates: 3580, 4072

Category: Standards Track

ISSN: 2070-1721

B. Aboba

Microsoft Corporation

J. Malinen

Independent

P. Congdon

Tallac Networks

J. Salowey

Cisco Systems

M. Jones

Azuca Systems

July 2014

RADIUS Attributes for IEEE 802 Networks

Abstract

 RFC 3580 provides guidelines for the use of the Remote Authentication
 Dial-In User Service (RADIUS) within IEEE 802 local area networks
 (LANs). This document defines additional attributes for use within
 IEEE 802 networks and clarifies the usage of the EAP-Key-Name
 Attribute and the Called-Station-Id Attribute. This document updates
 RFCs 3580 and 4072.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7268.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	2. RADIUS Attributes
	 2.1. Allowed-Called-Station-Id

	 2.2. EAP-Key-Name

	 2.3. EAP-Peer-Id

	 2.4. EAP-Server-Id

	 2.5. Mobility-Domain-Id

	 2.6. Preauth-Timeout

	 2.7. Network-Id-Name

	 2.8. EAPoL-Announcement

	 2.9. WLAN-HESSID

	 2.10. WLAN-Venue-Info

	 2.11. WLAN-Venue-Language

	 2.12. WLAN-Venue-Name

	 2.13. WLAN-Reason-Code

	 2.14. WLAN-Pairwise-Cipher

	 2.15. WLAN-Group-Cipher

	 2.16. WLAN-AKM-Suite

	 2.17. WLAN-Group-Mgmt-Cipher

	 2.18. WLAN-RF-Band

	3. Table of Attributes

	4. IANA Considerations

	5. Security Considerations

	6. References
	 6.1. Normative References

	 6.2. Informative References

	7. Acknowledgments

1. Introduction

 In situations where it is desirable to centrally manage
 authentication, authorization, and accounting (AAA) for IEEE 802
 [IEEE-802] networks, deployment of a backend authentication and
 accounting server is desirable. In such situations, it is expected
 that IEEE 802 authenticators will function as AAA clients.

 "IEEE 802.1X Remote Authentication Dial In User Service (RADIUS)
 Usage Guidelines" [RFC3580] provides guidelines for the use of the
 Remote Authentication Dial-In User Service (RADIUS) within networks
 utilizing IEEE 802 local area networks. This document defines
 additional attributes suitable for usage by IEEE 802 authenticators
 acting as AAA clients.

1.1. Terminology

 This document uses the following terms:

 Access Point (AP)

 A Station that provides access to the distribution services via
 the wireless medium for associated Stations.

 Association

 The service used to establish Access Point/Station mapping and
 enable Station invocation of the distribution system services.

 Authenticator

 An entity that requires authentication from the Supplicant. The
 authenticator may be connected to the Supplicant at the other end
 of a point-to-point LAN segment or wireless link.

 Authentication Server

 An entity that provides an authentication service to an
 authenticator. This service verifies the claim of identity made
 by the Supplicant using the credentials provided by the Supplicant

 Station (STA)

 Any device that contains an IEEE 802.11 conformant Medium Access
 Control (MAC) and Physical Layer (PHY) interface to the wireless
 medium (WM).

 Supplicant

 An entity that is being authenticated by an authenticator. The
 Supplicant may be connected to the authenticator at one end of a
 point-to-point LAN segment or 802.11 wireless link.

1.2. Requirements Language

In this document, several words are used to signify the requirements
of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

2. RADIUS Attributes

2.1. Allowed-Called-Station-Id

 Description

 The Allowed-Called-Station-Id Attribute allows the RADIUS server
 to specify the authenticator MAC addresses and/or networks to
 which the user is allowed to connect. One or more Allowed-Called-
 Station-Id Attributes MAY be included in an Access-Accept, CoA-
 Request, or Accounting-Request packet.

 The Allowed-Called-Station-Id Attribute can be useful in
 situations where pre-authentication is supported (e.g., IEEE
 802.11 pre-authentication). In these scenarios, a Called-Station-
 Id Attribute typically will not be included within the Access-
 Request so that the RADIUS server will not know the network that
 the user is attempting to access. The Allowed-Called-Station-Id
 enables the RADIUS server to restrict the networks and attachment
 points to which the user can subsequently connect.

 A summary of the Allowed-Called-Station-Id Attribute format is
 shown below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 174

 Length

 >=3

 String

 The String field is one or more octets, specifying a Called-
 Station-Id that the user MAY connect to; if the Called-Station-Id
 that the user connects to does not match one of the Allowed-
 Called-Station-Id Attributes, the Network Access Server (NAS) MUST
 NOT permit the user to access the network.

 In the case of IEEE 802, the Allowed-Called-Station-Id Attribute
 is used to store the Medium Access Control (MAC) address,
 represented as an uppercase ASCII character string in Canonical
 format and with octet values separated by a "-", for example,
 "00-10-A4-23-19-C0". Where restrictions on both the network and
 authenticator MAC address usage are intended, the network name
 MUST be appended to the authenticator MAC address, separated from
 the MAC address with a ":", for example, "00-10-A4-23-19-C0:AP1".
 Where no MAC address restriction is intended, the MAC address
 field MUST be omitted, but ":" and the network name field MUST be
 included, for example, ":AP1".

 Within IEEE 802.11 [IEEE-802.11], the Service Set Identifier
 (SSID) constitutes the network name; within IEEE 802.1X
 [IEEE-802.1X] wired networks, the Network-Id Name (NID-Name)
 constitutes the network name. Since a NID-Name can be up to 253
 octets in length, when used with [IEEE-802.1X] wired networks,
 there may not be sufficient room within the Allowed-Called-
 Station-Id Attribute to include both a MAC address and a network
 name. However, as the Allowed-Called-Station-Id Attribute is
 expected to be used largely in wireless access scenarios, this
 restriction is not considered serious.

2.2. EAP-Key-Name

 Description

 The EAP-Key-Name Attribute, defined in "Diameter Extensible
 Authentication Protocol (EAP) Application" [RFC4072], contains the
 EAP Session-Id, as described in "Extensible Authentication
 Protocol (EAP) Key Management Framework" [RFC5247]. Exactly how
 this attribute is used depends on the link layer in question.

 It should be noted that not all link layers use this name. An
 EAP-Key-Name Attribute MAY be included within Access-Request,
 Access-Accept, and CoA-Request packets. A summary of the EAP-Key-
 Name Attribute format is shown below. The fields are transmitted
 from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 102 [RFC4072]

 Length

 >=3

 String

 The String field is one or more octets, containing the EAP
 Session-Id, as defined in "Extensible Authentication Protocol
 (EAP) Key Management Framework" [RFC5247]. Since the NAS operates
 as a pass-through in EAP, it cannot know the EAP Session-Id before
 receiving it from the RADIUS server. As a result, an EAP-Key-Name
 Attribute sent in an Access-Request MUST only contain a single NUL
 character. A RADIUS server receiving an Access-Request with an
 EAP-Key-Name Attribute containing anything other than a single NUL
 character MUST silently discard the attribute. In addition, the
 RADIUS server SHOULD include this attribute in an Access-Accept or
 CoA-Request only if an EAP-Key-Name Attribute was present in the
 Access-Request. Since a NAS will typically only include an EAP-
 Key-Name Attribute in an Access-Request in situations where the
 attribute is required to provision service, if an EAP-Key-Name
 Attribute is included in an Access-Request but is not present in
 the Access-Accept, the NAS SHOULD treat the Access-Accept as
 though it were an Access-Reject. If an EAP-Key-Name Attribute was
 not present in the Access-Request but is included in the Access-
 Accept, then the NAS SHOULD silently discard the EAP-Key-Name
 Attribute. As noted in Section 6.2.2 of [IEEE-802.1X], the
 Connectivity Association Key Name (CKN) is derived from the EAP
 Session-Id, and, as described in Section 9.3.3 of [IEEE-802.1X],
 the CKN is subsequently used in the derivation of the Key
 Encrypting Key (KEK) and the Integrity Check Value Key (ICK),
 which protect the Secure Association Keys (SAKs) utilized by Media
 Access Control Security (MACsec). As a result, for the NAS to
 acquire information needed in the MACsec Key Agreement (MKA)
 exchange, it needs to include the EAP-Key-Name Attribute in the
 Access-Request and receive it from the RADIUS server in the
 Access-Accept.

2.3. EAP-Peer-Id

 Description

 The EAP-Peer-Id Attribute contains a Peer-Id generated by the EAP
 method. Exactly how this name is used depends on the link layer
 in question. See [RFC5247] for more discussion. The EAP-Peer-Id
 Attribute MAY be included in Access-Request, Access-Accept, and
 Accounting-Request packets. More than one EAP-Peer-Id Attribute
 MUST NOT be included in an Access-Request; one or more EAP-Peer-Id
 Attributes MAY be included in an Access-Accept.

 It should be noted that not all link layers use this name, and
 existing EAP method implementations do not generate it. Since the
 NAS operates as a pass-through in EAP [RFC3748], it cannot know
 the EAP-Peer-Id before receiving it from the RADIUS server. As a
 result, an EAP-Peer-Id Attribute sent in an Access-Request MUST
 only contain a single NUL character. A home RADIUS server
 receiving an Access-Request with an EAP-Peer-Id Attribute
 containing anything other than a single NUL character MUST
 silently discard the attribute. In addition, the home RADIUS
 server SHOULD include one or more EAP-Peer-Id Attributes in an
 Access-Accept only if an EAP-Peer-Id Attribute was present in the
 Access-Request. If a NAS receives EAP-Peer-Id Attribute(s) in an
 Access-Accept without having included one in an Access-Request,
 the NAS SHOULD silently discard the attribute(s). A summary of
 the EAP-Peer-Id Attribute format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 175

 Length

 >=3

 String

 The String field is one or more octets, containing an EAP Peer-Id
 exported by the EAP method. For details, see Appendix A of
 [RFC5247]. A robust implementation SHOULD support the field as
 undistinguished octets. Only a single EAP Peer-Id may be included
 per attribute.

2.4. EAP-Server-Id

 Description

 The EAP-Server-Id Attribute contains a Server-Id generated by the
 EAP method. Exactly how this name is used depends on the link
 layer in question. See [RFC5247] for more discussion. The EAP-
 Server-Id Attribute is only allowed in Access-Request, Access-
 Accept, and Accounting-Request packets. More than one EAP-Server-
 Id Attribute MUST NOT be included in an Access-Request; one or
 more EAP-Server-Id Attributes MAY be included in an Access-Accept.

 It should be noted that not all link layers use this name, and
 existing EAP method implementations do not generate it. Since the
 NAS operates as a pass-through in EAP [RFC3748], it cannot know
 the EAP-Server-Id before receiving it from the RADIUS server. As
 a result, an EAP-Server-Id Attribute sent in an Access-Request
 MUST contain only a single NUL character. A home RADIUS server
 receiving an Access-Request with an EAP-Server-Id Attribute
 containing anything other than a single NUL character MUST
 silently discard the attribute. In addition, the home RADIUS
 server SHOULD include this attribute in an Access-Accept only if
 an EAP-Server-Id Attribute was present in the Access-Request. A
 summary of the EAP-Server-Id Attribute format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 176

 Length

 >=3

 String

 The String field is one or more octets, containing an EAP Server-
 Id exported by the EAP method. For details, see Appendix A of
 [RFC5247]. A robust implementation SHOULD support the field as
 undistinguished octets.

2.5. Mobility-Domain-Id

 Description

 A single Mobility-Domain-Id Attribute MAY be included in an
 Access-Request or Accounting-Request in order to enable the NAS to
 provide the RADIUS server with the Mobility Domain Identifier
 (MDID), defined in Section 8.4.2.49 of [IEEE-802.11]. A summary
 of the Mobility-Domain-Id Attribute format is shown below. The
 fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 177

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer. The two most significant octets MUST be set to zero by
 the sender and are ignored by the receiver; the two least
 significant octets contain the Mobility Domain Identifier (MDID)
 defined in Section 8.4.2.49 of [IEEE-802.11].

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Reserved | Mobility Domain Identifier |
+‑+

2.6. Preauth-Timeout

 Description

 This attribute sets the maximum number of seconds that pre-
 authentication state is required to be kept by the NAS without
 being utilized within a user session. For example, when
 [IEEE-802.11] pre-authentication is used, if a user has not
 attempted to utilize the Pairwise Master Key (PMK) derived as a
 result of pre-authentication within the time specified by the
 Preauth-Timeout Attribute, the PMK MAY be discarded by the Access
 Point. However, once the session is underway, the Preauth-Timeout
 Attribute has no bearing on the maximum session time for the user
 or the maximum time during which key state may be kept prior to
 re-authentication. This is determined by the Session-Timeout
 Attribute, if present.

 A single Preauth-Timeout Attribute MAY be included within an
 Access-Accept or CoA-Request packet. A summary of the Preauth-
 Timeout Attribute format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 178

 Length

 6

 Value

 The field is 4 octets, containing a 32-bit unsigned integer
 encoding the maximum time in seconds that pre-authentication state
 should be retained by the NAS.

2.7. Network-Id-Name

 Description

 The Network-Id-Name Attribute is utilized by implementations of
 IEEE-802.1X [IEEE-802.1X] to specify the name of a Network-Id
 (NID-Name).

 Unlike the IEEE 802.11 SSID (which is a maximum of 32 octets in
 length), the NID-Name may be up to 253 octets in length.
 Consequently, if the MAC address is included within the Called-
 Station-Id Attribute, it is possible that there will not be enough
 remaining space to encode the NID-Name as well. Therefore, when
 used with IEEE 802.1X [IEEE-802.1X], the Called-Station-Id
 Attribute SHOULD contain only the MAC address, with the Network-
 Id-Name Attribute used to transmit the NID-Name. The Network-Id-
 Name Attribute MUST NOT be used to encode the IEEE 802.11 SSID; as
 noted in [RFC3580], the Called-Station-Id Attribute is used for
 this purpose.

 Zero or one Network-Id-Name Attribute is permitted within an
 Access-Request, Access-Challenge, Access-Accept or Accounting-
 Request packet. When included within an Access-Request packet,
 the Network-Id-Name Attribute represents a hint of the NID-Name to
 which the Supplicant should be granted access. When included
 within an Access-Accept packet, the Network-Id-Name Attribute
 represents the NID-Name to which the Supplicant is to be granted
 access. When included within an Accounting-Request packet, the
 Network-Id-Name Attribute represents the NID-Name to which the
 Supplicant has been granted access.

 A summary of the Network-Id-Name Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 179

 Length

 >=3

 String

 The String field is one or more octets, containing a NID-Name.
 For details, see [IEEE-802.1X]. A robust implementation SHOULD
 support the field as undistinguished octets.

2.8. EAPoL-Announcement

 Description

 The EAPoL-Announcement Attribute contains EAPoL-Announcement Type-
 Length-Value (TLV) tuples defined within Table 11-8 of IEEE-802.1X
 [IEEE-802.1X]. The acronym "EAPoL" stands for Extensible
 Authentication Protocol over Local Area Network.

 Zero or more EAPoL-Announcement Attributes are permitted within an
 Access-Request, Access-Accept, Access-Challenge, Access-Reject,
 Accounting-Request, CoA-Request, or Disconnect-Request packet.
 When included within an Access-Request packet, EAPoL-Announcement
 Attributes contain EAPoL-Announcement TLVs that the user sent in
 an EAPoL-Announcement. When included within an Access-Accept,
 Access-Challenge, Access-Reject, CoA-Request or Disconnect-Request
 packet, EAPoL-Announcement Attributes contain EAPoL-Announcement
 TLVs that the NAS is to send to the user in a unicast EAPoL-
 Announcement. When sent within an Accounting-Request packet,
 EAPoL-Announcement Attributes contain EAPoL-Announcement TLVs that
 the NAS has most recently sent to the user in a unicast EAPoL-
 Announcement.

 A summary of the EAPoL-Announcement Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 180

 Length

 >=3

 String

 The String field is one or more octets, containing EAPoL-
 Announcement TLVs in the format defined in Figure 11-8 of Section
 11.12 of [IEEE-802.1X]. Any EAPoL-Announcement TLV Type MAY be
 included within an EAPoL-Announcement Attribute, including
 Organizationally Specific TLVs. If multiple EAPoL-Announcement
 Attributes are present in a packet, their String fields MUST be
 concatenated before being parsed for EAPoL-Announcement TLVs; this
 allows EAPoL-Announcement TLVs longer than 253 octets to be
 transported by RADIUS. Similarly, EAPoL-Announcement TLVs larger
 than 253 octets MUST be fragmented between multiple EAPoL-
 Announcement Attributes.

2.9. WLAN-HESSID

 Description

 The WLAN-HESSID Attribute contains a MAC address that identifies
 the Homogenous Extended Service Set. The HESSID is a globally
 unique identifier that, in conjunction with the SSID, encoded
 within the Called-Station-Id Attribute as described in [RFC3580],
 may be used to provide network identification for a subscription
 service provider network (SSPN), as described in Section 8.4.2.94
 of [IEEE-802.11]. Zero or one WLAN-HESSID Attribute is permitted
 within an Access-Request or Accounting-Request packet.

 A summary of the WLAN-HESSID Attribute format is shown below. The
 fields are transmitted from left to right.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 181

 Length

 19

 String

 The String field is encoded in uppercase ASCII characters with the
 octet values separated by dash characters, as described in RFC
 3580 [RFC3580], for example, "00-10-A4-23-19-C0".

2.10. WLAN-Venue-Info

 Description

 The WLAN-Venue-Info Attribute identifies the category of venue
 hosting the WLAN, as defined in Section 8.4.1.34 of [IEEE-802.11].
 Zero or more WLAN-Venue-Info Attributes may be included in an
 Access-Request or Accounting-Request.

 A summary of the WLAN-Venue-Info Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 182

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer. The two most significant octets MUST be set to zero by
 the sender, and are ignored by the receiver; the two least
 significant octets contain the Venue Group and Venue Type fields.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Reserved | Venue Group | Venue Type |
+‑+

 Venue Group

 The Venue Group field is a single octet and describes the broad
 category of the venue, e.g., "Assembly". See Section 8.4.1.34
 of [IEEE-802.11] for Venue Group codes and descriptions.

 Venue Type

 The Venue Type field is a single octet and describes the venue
 in a finer granularity within the Venue Group, e.g., "Library".
 See Section 8.4.1.34 of [IEEE-802.11] for Venue Type codes and
 descriptions.

2.11. WLAN-Venue-Language

 Description

 The WLAN-Venue-Language Attribute is a string encoded by
 ISO-14962-1997 [ISO-14962-1997] that defines the language used in
 the WLAN-Venue-Name Attribute. Zero or more WLAN-Venue-Language
 Attributes may be included in an Access-Request or Accounting-
 Request, and each one indicates the language of the WLAN-Venue-
 Name Attribute that follows it.

 A summary of the WLAN-Venue-Language Attribute format is shown
 below. The fields are transmitted from left to right.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+
 String (cont) |
+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 183

 Length

 4-5

 String

 The String field is a two- or three-character language code
 selected from ISO-639 [ISO-639]. A two-character language code
 has a zero ("null" in ISO-14962-1997) appended to make it 3 octets
 in length.

2.12. WLAN-Venue-Name

 Description

 The WLAN-Venue-Name Attribute provides additional metadata on the
 Basic Service Set (BSS). For example, this information may be
 used to assist a user in selecting the appropriate BSS with which
 to associate. Zero or more WLAN-Venue-Name Attributes may be
 included in an Access- Request or Accounting-Request in the same
 or different languages.

 A summary of the WLAN-Venue-Name Attribute format is shown below.
 The fields are transmitted from left to right.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | String...
+‑+

 Type

 184

 Length

 >=3

 String

 The String field is encoded in UTF-8 and contains the venue's
 name. The maximum length of this field is 252 octets.

2.13. WLAN-Reason-Code

 Description

 The WLAN-Reason-Code Attribute contains information on the reason
 why a Station has been refused network access and has been
 disassociated or de-authenticated. This can occur due to policy
 or for reasons related to the user's subscription.

 A WLAN-Reason-Code Attribute MAY be included within an Access-
 Reject or Disconnect-Request packet, as well as within an
 Accounting-Request packet. Upon receipt of an Access-Reject or
 Disconnect-Request packet containing a WLAN-Reason-Code Attribute,
 the WLAN-Reason-Code value is copied by the Access Point into the
 Reason Code field of a Disassociation or Deauthentication frame
 (see Clauses 8.3.3.4 and 8.3.3.12, respectively, in
 [IEEE-802.11]), which is subsequently transmitted to the Station.

 A summary of the WLAN-Reason-Code Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 185

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer. The two most significant octets MUST be set to zero by
 the sender and are ignored by the receiver; the two least
 significant octets contain the Reason Code values defined in Table
 8-36 of Section 8.4.1.7 of [IEEE-802.11].

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Reserved | Reason Code |
+‑+

2.14. WLAN-Pairwise-Cipher

 Description

 The WLAN-Pairwise-Cipher Attribute contains information on the
 pairwise ciphersuite used to establish the robust security network
 association (RSNA) between the AP and mobile device. A WLAN-
 Pairwise-Cipher Attribute MAY be included within Access-Request
 and Accounting-Request packets.

 A summary of the WLAN-Pairwise-Cipher Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 186

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer, in Suite selector format as specified in Figure 8-187
 within Section 8.4.2.27.2 of [IEEE-802.11], with values of OUI and
 Suite Type drawn from Table 8-99.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| OUI | Suite Type |
+‑+

2.15. WLAN-Group-Cipher

 Description

 The WLAN-Group-Cipher Attribute contains information on the group
 ciphersuite used to establish the robust security network
 association (RSNA) between the AP and mobile device. A WLAN-
 Group-Cipher Attribute MAY be included within Access-Request and
 Accounting-Request packets.

 A summary of the WLAN-Group-Cipher Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 187

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer, in Suite selector format as specified in Figure 8-187
 within Section 8.4.2.27.2 of [IEEE-802.11], with values of OUI and
 Suite Type drawn from Table 8-99.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| OUI | Suite Type |
+‑+

2.16. WLAN-AKM-Suite

 Description

 The WLAN-AKM-Suite Attribute contains information on the
 authentication and key management suite used to establish the
 robust security network association (RSNA) between the AP and
 mobile device. A WLAN-AKM-Suite Attribute MAY be included within
 Access-Request and Accounting-Request packets.

 A summary of the WLAN-AKM-Suite Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 188

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer, in Suite selector format as specified in Figure 8-187
 within Section 8.4.2.27.2 of [IEEE-802.11], with values of OUI and
 Suite Type drawn from Table 8-101:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| OUI | Suite Type |
+‑+

2.17. WLAN-Group-Mgmt-Cipher

 Description

 The WLAN-Group-Mgmt-Cipher Attribute contains information on the
 group management cipher used to establish the robust security
 network association (RSNA) between the AP and mobile device.

 Zero or one WLAN-Group-Mgmt-Cipher Attribute MAY be included
 within Access-Request and Accounting-Request packets. The
 presence of the Attribute indicates that the Station negotiated to
 use management frame protection during association.

 A summary of the WLAN-Group-Mgmt-Cipher Attribute format is shown
 below. The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 189

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer, in Suite selector format as specified in Figure 8-187
 within Section 8.4.2.27.2 of [IEEE-802.11], with values of OUI and
 Suite Type drawn from Table 8-99:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| OUI | Suite Type |
+‑+

2.18. WLAN-RF-Band

 Description

 The WLAN-RF-Band Attribute contains information on the radio
 frequency (RF) band used by the Access Point for transmission and
 reception of information to and from the mobile device. Zero or
 one WLAN-RF-Band Attribute MAY be included within an Access-
 Request or Accounting-Request packet.

 A summary of the WLAN-RF-Band Attribute format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Value
+‑+
 Value |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Type

 190

 Length

 6

 Value

 The Value field is four octets, containing a 32-bit unsigned
 integer. The three most significant octets MUST be set to zero by
 the sender and are ignored by the receiver; the least significant
 octet contains the RF Band field, whose values are defined by the
 IEEE 802.11 Band ID field (Table 8-53a of [IEEE-802.11ad])

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Reserved | RF Band |
+‑+

3. Table of Attributes

 The following table provides a guide to which attributes may be found
 in which kinds of packets and in what quantity.

Access‑ Access‑ Access‑ Access‑
Request Accept Reject Challenge # Attribute
0 0+ 0 0 174 Allowed‑Called‑Station‑Id
0‑1 0‑1 0 0 102 EAP‑Key‑Name
0‑1 0+ 0 0 175 EAP‑Peer‑Id
0‑1 0+ 0 0 176 EAP‑Server‑Id
0‑1 0 0 0 177 Mobility‑Domain‑Id
0‑1 0‑1 0 0 178 Preauth‑Timeout
0‑1 0 0 0 179 Network‑Id‑Name
0+ 0+ 0+ 0+ 180 EAPoL‑Announcement
0‑1 0 0 0 181 WLAN‑HESSID
0‑1 0 0 0 182 WLAN‑Venue‑Info
0+ 0 0 0 183 WLAN‑Venue‑Language
0+ 0 0 0 184 WLAN‑Venue‑Name
0 0 0‑1 0 185 WLAN‑Reason‑Code
0‑1 0 0 0 186 WLAN‑Pairwise‑Cipher
0‑1 0 0 0 187 WLAN‑Group‑Cipher
0‑1 0 0 0 188 WLAN‑AKM‑Suite
0‑1 0 0 0 189 WLAN‑Group‑Mgmt‑Cipher
0‑1 0 0 0 190 WLAN‑RF‑Band

CoA‑ Dis‑ Acct‑
Req Req Req # Attribute
0+ 0 0+ 174 Allowed‑Called‑Station‑Id
0‑1 0 0 102 EAP‑Key‑Name
0 0 0+ 175 EAP‑Peer‑Id
0 0 0+ 176 EAP‑Server‑Id
0 0 0‑1 177 Mobility‑Domain‑Id
0‑1 0 0 178 Preauth‑Timeout
0 0 0‑1 179 Network‑Id‑Name
0+ 0+ 0+ 180 EAPoL‑Announcement
0 0 0‑1 181 WLAN‑HESSID
0 0 0‑1 182 WLAN‑Venue‑Info
0 0 0+ 183 WLAN‑Venue‑Language
0 0 0+ 184 WLAN‑Venue‑Name
0 0‑1 0‑1 185 WLAN‑Reason‑Code
0 0 0‑1 186 WLAN‑Pairwise‑Cipher
0 0 0‑1 187 WLAN‑Group‑Cipher
0 0 0‑1 188 WLAN‑AKM‑Suite
0 0 0‑1 189 WLAN‑Group‑Mgmt‑Cipher
0 0 0‑1 190 WLAN‑RF‑Band

 The following table defines the above table entries.

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in the
 packet.
0‑1 Zero or one instance of this attribute MAY be present in the
 packet.

4. IANA Considerations

 This document uses the RADIUS [RFC2865] namespace; see
 <http://www.iana.org/assignments/radius-types>. Per this
 specification, RADIUS attribute types have been assigned for the
 following attributes:

Attribute Type
========= ====
Allowed‑Called‑Station‑Id 174
EAP‑Peer‑Id 175
EAP‑Server‑Id 176
Mobility‑Domain‑Id 177
Preauth‑Timeout 178
Network‑Id‑Name 179
EAPoL‑Announcement 180
WLAN‑HESSID 181
WLAN‑Venue‑Info 182
WLAN‑Venue‑Language 183
WLAN‑Venue‑Name 184
WLAN‑Reason‑Code 185
WLAN‑Pairwise‑Cipher 186
WLAN‑Group‑Cipher 187
WLAN‑AKM‑Suite 188
WLAN‑Group‑Mgmt‑Cipher 189
WLAN‑RF‑Band 190

 Since this specification relies entirely on values assigned by IEEE
 802, no registries are established for maintenance by the IANA.

5. Security Considerations

 Since this document describes the use of RADIUS for purposes of
 authentication, authorization, and accounting in IEEE 802 networks,
 it is vulnerable to all of the threats that are present in other
 RADIUS applications. For a discussion of these threats, see
 [RFC2607], [RFC2865], [RFC3162], [RFC3579], [RFC3580], and [RFC5176].
 In particular, when RADIUS traffic is sent in the clear, the
 attributes defined in this document can be obtained by an attacker
 snooping the exchange between the RADIUS client and server. As a
 result, RADIUS confidentiality is desirable; for a review of RADIUS
 security and crypto-agility requirements, see [RFC6421].

 While it is possible for a RADIUS server to make decisions on whether
 to accept or reject an Access-Request based on the values of the
 WLAN-Pairwise-Cipher, WLAN-Group-Cipher, WLAN-AKM-Suite, WLAN-Group-
 Mgmt-Cipher, and WLAN-RF-Band Attributes, the value of doing this is
 limited. In general, an Access-Reject should not be necessary,
 except where Access Points and Stations are misconfigured so as to
 enable connections to be made with unacceptable values. Rather than
 rejecting access on an ongoing basis, users would be better served by
 fixing the misconfiguration.

 Where access does need to be rejected, the user should be provided
 with an indication of why the problem has occurred, or else they are
 likely to become frustrated. For example, if the values of the WLAN-
 Pairwise-Cipher, WLAN-Group-Cipher, WLAN-AKM-Suite, or WLAN-Group-
 Mgmt-Cipher Attributes included in the Access-Request are not
 acceptable to the RADIUS server, then a WLAN-Reason-Code Attribute
 with a value of 29 (Requested service rejected because of service
 provider ciphersuite or AKM requirement) SHOULD be returned in the
 Access-Reject. Similarly, if the value of the WLAN-RF-Band Attribute
 included in the Access-Request is not acceptable to the RADIUS
 server, then a WLAN-Reason-Code Attribute with a value of 11
 (Disassociated because the information in the Supported Channels
 element is unacceptable) SHOULD be returned in the Access-Reject.

6. References

6.1. Normative References

 [IEEE-802]
 IEEE, "IEEE Standard for Local and Metropolitan Area
 Networks: Overview and Architecture. Amendment 2:
 Registration of Object Identifiers", ANSI/IEEE Std 802,
 2001.

 [IEEE-802.11]

 IEEE, "IEEE Standard for Information technology -
 Telecommunications and information exchange between
 systems - Local and metropolitan area networks - Specific
 requirements Part 11: Wireless LAN Medium Access Control
 (MAC) and Physical Layer (PHY) Specifications", IEEE Std
 802.11-2012, 2012.

 [IEEE-802.11ad]

 IEEE, "IEEE Standard for Information technology -
 Telecommunications and information exchange between
 systems - Local and metropolitan area networks - Specific
 requirements Part 11: Wireless LAN Medium Access Control
 (MAC) and Physical Layer (PHY) Specifications, Amendment
 3: Enhancements for Very High Throughput in the 60 GHz
 Band", IEEE Std 802.11ad-2012, 2012.

 [IEEE-802.1X]

 IEEE, "IEEE Standard for Local and metropolitan area
 networks - Port-Based Network Access Control", IEEE Std
 802.1X-2010, February 2010.

 [ISO-639]
 ISO, "Codes for the Representation of Names of Languages",
 ISO 639.

 [ISO-14962-1997]

 ISO, "Space data and information transfer systems - ASCII
 encoded English", 1997.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)", RFC
 2865, June 2000.

 [RFC4072]
 Eronen, P., Ed., Hiller, T., and G. Zorn, "Diameter
 Extensible Authentication Protocol (EAP) Application", RFC
 4072, August 2005.

 [RFC5247]
 Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",
 RFC 5247, August 2008.

6.2. Informative References

 [RFC2607]
 Aboba, B. and J. Vollbrecht, "Proxy Chaining and Policy
 Implementation in Roaming", RFC 2607, June 1999.

 [RFC3162]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6", RFC
 3162, August 2001.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003.

 [RFC3580]
 Congdon, P., Aboba, B., Smith, A., Zorn, G., and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580, September 2003.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, June 2004.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [RFC6421]
 Nelson, D., Ed., "Crypto-Agility Requirements for Remote
 Authentication Dial-In User Service (RADIUS)", RFC 6421,
 November 2011.

7. Acknowledgments

 The authors would like to acknowledge Maximilian Riegel, Dorothy
 Stanley, Yoshihiro Ohba, and the contributors to the IEEE 802.1 and
 IEEE 802.11 reviews of this document, for useful discussions.

Authors' Addresses

Bernard Aboba
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
US

 EMail: bernard_aboba@hotmail.com

 Jouni Malinen

 EMail: j@w1.fi

Paul Congdon
Tallac Networks
6528 Lonetree Blvd.
Rocklin, CA 95765
US

Phone: +19167576350
EMail: paul.congdon@tallac.com

Joseph Salowey
Cisco Systems

 EMail: jsalowey@cisco.com

Mark Jones
Azuca Systems

EMail: mark@azu.ca

7360 - Datagram Transport Layer Security (DTLS) as a Transport Layer for RADIUS

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7360

Category: Experimental

ISSN: 2070-1721

A. DeKok

FreeRADIUS

September 2014

Datagram Transport Layer Security (DTLS) as a Transport Layer for RADIUS

Abstract

 The RADIUS protocol defined in RFC 2865 has limited support for
 authentication and encryption of RADIUS packets. The protocol
 transports data in the clear, although some parts of the packets can
 have obfuscated content. Packets may be replayed verbatim by an
 attacker, and client-server authentication is based on fixed shared
 secrets. This document specifies how the Datagram Transport Layer
 Security (DTLS) protocol may be used as a fix for these problems. It
 also describes how implementations of this proposal can coexist with
 current RADIUS systems.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7360.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	 1.3. Document Status

	2. Building on Existing Foundations
	 2.1. Changes to RADIUS

	 2.2. Similarities with RADIUS/TLS
	 2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS

	3. Interaction with RADIUS/UDP
	 3.1. DTLS Port and Packet Types

	 3.2. Server Behavior

	4. Client Behavior

	5. Session Management
	 5.1. Server Session Management
	 5.1.1. Session Opening and Closing

	 5.2. Client Session Management

	6. Implementation Guidelines
	 6.1. Client Implementations

	 6.2. Server Implementations

	7. Diameter Considerations

	8. IANA Considerations

	9. Implementation Status
	 9.1. Radsecproxy

	 9.2. jradius

	10. Security Considerations
	 10.1. Crypto-Agility

	 10.2. Legacy RADIUS Security

	 10.3. Resource Exhaustion

	 10.4. Client-Server Authentication with DTLS

	 10.5. Network Address Translation

	 10.6. Wildcard Clients

	 10.7. Session Closing

	 10.8. Client Subsystems

	11. References
	 11.1. Normative References

	 11.2. Informative References

	Acknowledgments

1. Introduction

 The RADIUS protocol as described in [RFC2865], [RFC2866], [RFC5176],
 and others has traditionally used methods based on MD5 [RFC1321] for
 per-packet authentication and integrity checks. However, the MD5
 algorithm has known weaknesses such as [MD5Attack] and [MD5Break].
 As a result, some specifications, such as [RFC5176], have recommended
 using IPsec to secure RADIUS traffic.

 While RADIUS over IPsec has been widely deployed, there are
 difficulties with this approach. The simplest point against IPsec is
 that there is no straightforward way for an application to control or
 monitor the network security policies. That is, the requirement that
 the RADIUS traffic be encrypted and/or authenticated is implicit in
 the network configuration, and it cannot be enforced by the RADIUS
 application.

 This specification takes a different approach. We define a method
 for using DTLS [RFC6347] as a RADIUS transport protocol. This
 approach has the benefit that the RADIUS application can directly
 monitor and control the security policies associated with the traffic
 that it processes.

 Another benefit is that RADIUS over DTLS continues to be a UDP-based
 protocol. The change from RADIUS/UDP is largely to add DTLS support,
 and make any necessary related changes to RADIUS. This allows
 implementations to remain UDP based, without changing to a TCP
 architecture.

 This specification does not, however, solve all of the problems
 associated with RADIUS/UDP. The DTLS protocol does not add reliable
 or in-order transport to RADIUS. DTLS also does not support
 fragmentation of application-layer messages, or of the DTLS messages
 themselves. This specification therefore shares with traditional
 RADIUS the issues of order, reliability, and fragmentation. These
 issues are dealt with in RADIUS/TCP [RFC6613] and RADIUS/TLS
 [RFC6614].

1.1. Terminology

 This document uses the following terms:

 RADIUS/DTLS

 This term is a shorthand for "RADIUS over DTLS".

 RADIUS/DTLS client

 This term refers both to RADIUS clients as defined in [RFC2865]
 and to Dynamic Authorization clients as defined in [RFC5176] that
 implement RADIUS/DTLS.

 RADIUS/DTLS server

 This term refers both to RADIUS servers as defined in [RFC2865]
 and to Dynamic Authorization servers as defined in [RFC5176] that
 implement RADIUS/DTLS.

 RADIUS/UDP

 RADIUS over UDP, as defined in [RFC2865].

 RADIUS/TLS

 RADIUS over TLS, as defined in [RFC6614].

 silently discard

 This means that the implementation discards the packet without
 further processing.

1.2. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
 RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in [RFC2119].

1.3. Document Status

 This document is an Experimental RFC.

 It contains one of several approaches to address known cryptographic
 weaknesses of the RADIUS protocol, such as described in [RFC6614].
 This specification does not fulfill all recommendations for an
 Authentication, Authorization, and Accounting (AAA) transport profile
 as per [RFC3539]; however, unlike [RFC6614], it is based on UDP and
 therefore does not have head-of-line blocking issues.

 If this specification is indeed selected for advancement to Standards
 Track, certificate verification options ([RFC6614], Section 2.3,
 point 2) will need to be refined.

 Another experimental characteristic of this specification is the
 question of key management between RADIUS/DTLS peers. RADIUS/UDP
 only allowed for manual key management, i.e., distribution of a
 shared secret between a client and a server. RADIUS/DTLS allows
 manual distribution of long-term proofs of peer identity, by using
 TLS-PSK ciphersuites. RADIUS/DTLS also allows the use of X.509
 certificates in a PKIX infrastructure. It remains to be seen if one
 of these methods will prevail or if both will find their place in
 real-life deployments. The authors can imagine pre-shared keys
 (PSKs) to be popular in small-scale deployments (Small Office, Home
 Office (SOHO) or isolated enterprise deployments) where scalability
 is not an issue and the deployment of a Certification Authority (CA)
 is considered too much of a hassle; however, the authors can also
 imagine large roaming consortia to make use of PKIX. Readers of this
 specification are encouraged to read the discussion of key management
 issues within [RFC6421] as well as [RFC4107].

 It has yet to be decided whether this approach is to be chosen for
 Standards Track. One key aspect to judge whether the approach is
 usable on a large scale is by observing the uptake, usability, and
 operational behavior of the protocol in large-scale, real-life
 deployments.

2. Building on Existing Foundations

 Adding DTLS as a RADIUS transport protocol requires a number of
 changes to systems implementing standard RADIUS. This section
 outlines those changes, and defines new behaviors necessary to
 implement DTLS.

2.1. Changes to RADIUS

 The RADIUS packet format is unchanged from [RFC2865], [RFC2866], and
 [RFC5176]. Specifically, all of the following portions of RADIUS
 MUST be unchanged when using RADIUS/DTLS:

* Packet format
* Permitted codes
* Request Authenticator calculation
* Response Authenticator calculation
* Minimum packet length
* Maximum packet length
* Attribute format
* Vendor‑Specific Attribute (VSA) format
* Permitted data types
* Calculations of dynamic attributes such as CHAP‑Challenge, or
 Message‑Authenticator.
* Calculation of "obfuscated" attributes such as User‑Password and
 Tunnel‑Password.

 In short, the application creates a RADIUS packet via the usual
 methods, and then instead of sending it over a UDP socket, sends the
 packet to a DTLS layer for encapsulation. DTLS then acts as a
 transport layer for RADIUS: hence, the names "RADIUS/UDP" and
 "RADIUS/DTLS".

 The requirement that RADIUS remain largely unchanged ensures the
 simplest possible implementation and widest interoperability of this
 specification.

 We note that the DTLS encapsulation of RADIUS means that RADIUS
 packets have an additional overhead due to DTLS. Implementations
 MUST support sending and receiving encapsulated RADIUS packets of
 4096 octets in length, with a corresponding increase in the maximum
 size of the encapsulated DTLS packets. This larger packet size may
 cause the packet to be larger than the Path MTU (PMTU), where a
 RADIUS/UDP packet may be smaller. See Section 5.2, below, for more
 discussion.

 The only changes made from RADIUS/UDP to RADIUS/DTLS are the
 following two items:

 (1) The Length checks defined in [RFC2865], Section 3, MUST use the

 length of the decrypted DTLS data instead of the UDP packet
 length. They MUST treat any decrypted DTLS data octets outside
 the range of the Length field as padding and ignore it on
 reception.

 (2) The shared secret used to compute the MD5 integrity checks and

 the attribute encryption MUST be "radius/dtls".

 All other aspects of RADIUS are unchanged.

2.2. Similarities with RADIUS/TLS

 While this specification can be thought of as RADIUS/TLS over UDP
 instead of the Transmission Control Protocol (TCP), there are some
 differences between the two methods. The bulk of [RFC6614] applies
 to this specification, so we do not repeat it here.

 This section explains the differences between RADIUS/TLS and
 RADIUS/DTLS, as semantic "patches" to [RFC6614]. The changes are as
 follows:

 * We replace references to "TCP" with "UDP"

 * We replace references to "RADIUS/TLS" with "RADIUS/DTLS"

 * We replace references to "TLS" with "DTLS"

 Those changes are sufficient to cover the majority of the differences
 between the two specifications. The next section reviews some more
 detailed changes from [RFC6614], giving additional commentary only
 where necessary.

2.2.1. Changes from RADIUS/TLS to RADIUS/DTLS

 This section describes how particular sections of [RFC6614] apply to
 RADIUS/DTLS.

 Section 2.1 applies to RADIUS/DTLS, with the exception that the
 RADIUS/DTLS port is UDP/2083.

 Section 2.2 applies to RADIUS/DTLS. Servers and clients need to be
 pre-configured to use RADIUS/DTLS for a given endpoint.

 Most of Section 2.3 applies also to RADIUS/DTLS. Item (1) should be
 interpreted as applying to DTLS session initiation, instead of TCP
 connection establishment. Item (2) applies, except for the
 recommendation that implementations "SHOULD" support
 TLS_RSA_WITH_RC4_128_SHA. This recommendation is a historical
 artifact of RADIUS/TLS, and it does not apply to RADIUS/DTLS. Item
 (3) applies to RADIUS/DTLS. Item (4) applies, except that the fixed
 shared secret is "radius/dtls", as described above.

 Section 2.4 applies to RADIUS/DTLS. Client identities SHOULD be
 determined from DTLS parameters, instead of relying solely on the
 source IP address of the packet.

 Section 2.5 does not apply to RADIUS/DTLS. The relationship between
 RADIUS packet codes and UDP ports in RADIUS/DTLS is unchanged from
 RADIUS/UDP.

 Sections 3.1, 3.2, and 3.3 apply to RADIUS/DTLS.

 Section 3.4 item (1) does not apply to RADIUS/DTLS. Each RADIUS
 packet is encapsulated in one DTLS packet, and there is no "stream"
 of RADIUS packets inside of a TLS session. Implementors MUST enforce
 the requirements of [RFC2865], Section 3, for the RADIUS Length
 field, using the length of the decrypted DTLS data for the checks.
 This check replaces the RADIUS method of using the Length field from
 the UDP packet.

 Section 3.4 items (2), (3), (4), and (5) apply to RADIUS/DTLS.

 Section 4 does not apply to RADIUS/DTLS. Protocol compatibility
 considerations are defined in this document.

 Section 6 applies to RADIUS/DTLS.

3. Interaction with RADIUS/UDP

 Transitioning to DTLS is a process that needs to be done carefully.
 A poorly handled transition is complex for administrators and
 potentially subject to security downgrade attacks. It is not
 sufficient to just disable RADIUS/UDP and enable RADIUS/DTLS. RADIUS
 has no provisions for protocol negotiation, so simply disabling
 RADIUS/UDP would result in timeouts, lost traffic, and network
 instabilities.

 The end result of this specification is that nearly all RADIUS/UDP
 implementations should transition to using a secure alternative. In
 some cases, RADIUS/UDP may remain where IPsec is used as a transport,
 or where implementation and/or business reasons preclude a change.
 However, we do not recommend long-term use of RADIUS/UDP outside of
 isolated and secure networks.

 This section describes how clients and servers should use
 RADIUS/DTLS, and how it interacts with RADIUS/UDP.

3.1. DTLS Port and Packet Types

 The default destination port number for RADIUS/DTLS is UDP/2083.
 There are no separate ports for authentication, accounting, and
 dynamic authorization changes. The source port is arbitrary. The
 text in [RFC6614], Section 3.4, describes issues surrounding the use
 of one port for multiple packet types. We recognize that
 implementations may allow the use of RADIUS/DTLS over non-standard
 ports. In that case, the references to UDP/2083 in this document
 should be read as applying to any port used for transport of
 RADIUS/DTLS traffic.

3.2. Server Behavior

 When a server receives packets on UDP/2083, all packets MUST be
 treated as being DTLS. RADIUS/UDP packets MUST NOT be accepted on
 this port.

 Servers MUST NOT accept DTLS packets on the old RADIUS/UDP ports.
 Early versions of this specification permitted this behavior. It is
 forbidden here, as it depended on behavior in DTLS that may change
 without notice.

 Servers MUST authenticate clients. RADIUS is designed to be used by
 mutually trusted systems. Allowing anonymous clients would ensure
 privacy for RADIUS/DTLS traffic, but would negate all other security
 aspects of the protocol.

 As RADIUS has no provisions for capability signaling, there is no way
 for a server to indicate to a client that it should transition to
 using DTLS. This action has to be taken by the administrators of the
 two systems, using a method other than RADIUS. This method will
 likely be out of band, or manual configuration will need to be used.

 Some servers maintain a list of allowed clients per destination port.
 Others maintain a global list of clients that are permitted to send
 packets to any port. Where a client can send packets to multiple
 ports, the server MUST maintain a "DTLS Required" flag per client.

 This flag indicates whether or not the client is required to use
 DTLS. When set, the flag indicates that the only traffic accepted
 from the client is over UDP/2083. When packets are received from a
 client on non-DTLS ports, for which DTLS is required, the server MUST
 silently discard these packets, as there is no RADIUS/UDP shared
 secret available.

 This flag will often be set by an administrator. However, if a
 server receives DTLS traffic from a client, it SHOULD notify the
 administrator that DTLS is available for that client. It MAY mark
 the client as "DTLS Required".

 It is RECOMMENDED that servers support the following Perfect Forward
 Secrecy (PFS) ciphersuites:

 o TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 Allowing RADIUS/UDP and RADIUS/DTLS from the same client exposes the
 traffic to downbidding attacks and is NOT RECOMMENDED.

4. Client Behavior

 When a client sends packets to the assigned RADIUS/DTLS port, all
 packets MUST be DTLS. RADIUS/UDP packets MUST NOT be sent to this
 port.

 Clients MUST authenticate themselves to servers via credentials that
 are unique to each client.

 It is RECOMMENDED that clients support the following PFS
 ciphersuites:

 o TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 RADIUS/DTLS clients SHOULD NOT probe servers to see if they support
 DTLS transport. Instead, clients SHOULD use DTLS as a transport
 layer only when administratively configured. If a client is
 configured to use DTLS and the server appears to be unresponsive, the
 client MUST NOT fall back to using RADIUS/UDP. Instead, the client
 should treat the server as being down.

 RADIUS clients often had multiple independent RADIUS implementations
 and/or processes that originate packets. This practice was simple to
 implement, but the result is that each independent subsystem must
 independently discover network issues or server failures. It is
 therefore RECOMMENDED that clients with multiple internal RADIUS
 sources use a local proxy as described in Section 6.1, below.
 Clients may implement "pools" of servers for fail-over or load-
 balancing. These pools SHOULD NOT mix RADIUS/UDP and RADIUS/DTLS
 servers.

5. Session Management

 Where [RFC6614] can rely on the TCP state machine to perform session
 tracking, this specification cannot. As a result, implementations of
 this specification may need to perform session management of the DTLS
 session in the application layer. This section describes logically
 how this tracking is done. Implementations may choose to use the
 method described here, or another, equivalent method.

 We note that [RFC5080], Section 2.2.2, already mandates a duplicate
 detection cache. The session tracking described below can be seen as
 an extension of that cache, where entries contain DTLS sessions
 instead of RADIUS/UDP packets.

 [RFC5080], Section 2.2.2, describes how duplicate RADIUS/UDP requests
 result in the retransmission of a previously cached RADIUS/UDP
 response. Due to DTLS sequence window requirements, a server MUST
 NOT retransmit a previously sent DTLS packet. Instead, it should
 cache the RADIUS response packet, and re-process it through DTLS to
 create a new RADIUS/DTLS packet, every time it is necessary to
 retransmit a RADIUS response.

5.1. Server Session Management

 A RADIUS/DTLS server MUST track ongoing DTLS sessions for each, based
 on the following 4-tuple:

* source IP address
* source port
* destination IP address
* destination port

 Note that this 4-tuple is independent of IP address version (IPv4 or
 IPv6).

 Each 4-tuple points to a unique session entry, which usually contains
 the following information:

 DTLS Session

 Any information required to maintain and manage the DTLS session.

 Last Traffic

 A variable containing a timestamp that indicates when this session
 last received valid traffic. If "Last Traffic" is not used, this
 variable may not exist.

 DTLS Data

 An implementation-specific variable that may contain information
 about the active DTLS session. This variable may be empty or
 nonexistent.

 This data will typically contain information such as idle
 timeouts, session lifetimes, and other implementation-specific
 data.

5.1.1. Session Opening and Closing

 Session tracking is subject to Denial-of-Service (DoS) attacks due to
 the ability of an attacker to forge UDP traffic. RADIUS/DTLS servers
 SHOULD use the stateless cookie tracking technique described in
 [RFC6347], Section 4.2.1. DTLS sessions SHOULD NOT be tracked until
 a ClientHello packet has been received with an appropriate Cookie
 value. Server implementation SHOULD have a way of tracking DTLS
 sessions that are partially set up. Servers MUST limit both the
 number and impact on resources of partial sessions.

 Sessions (both 4-tuple and entry) MUST be deleted when a TLS Closure
 Alert ([RFC5246], Section 7.2.1) or a fatal TLS Error Alert
 ([RFC5246], Section 7.2.2) is received. When a session is deleted
 due to it failing security requirements, the DTLS session MUST be
 closed, any TLS session resumption parameters for that session MUST
 be discarded, and all tracking information MUST be deleted.

 Sessions MUST also be deleted when a RADIUS packet fails validation
 due to a packet being malformed, or when it has an invalid Message-
 Authenticator or invalid Request Authenticator. There are other
 cases when the specifications require that a packet received via a
 DTLS session be "silently discarded". In those cases,
 implementations MAY delete the underlying session as described above.
 There are few reasons to communicate with a Network Access Server
 (NAS) that is not implementing RADIUS.

 A session MUST be deleted when non-RADIUS traffic is received over
 it. This specification is for RADIUS, and there is no reason to
 allow non-RADIUS traffic over a RADIUS/DTLS session. A session MUST
 be deleted when RADIUS traffic fails to pass security checks. There
 is no reason to permit insecure networks. A session SHOULD NOT be
 deleted when a well-formed, but "unexpected", RADIUS packet is
 received over it. Future specifications may extend RADIUS/DTLS, and
 we do not want to forbid those specifications.

 The goal of the above requirements is to ensure security, while
 maintaining flexibility. Any security-related issue causes the
 connection to be closed. After the security restrictions have been
 applied, any unexpected traffic may be safely ignored, as it cannot
 cause a security issue. There is no need to close the session for
 unexpected but valid traffic, and the session can safely remain open.

 Once a DTLS session is established, a RADIUS/DTLS server SHOULD use
 DTLS Heartbeats [RFC6520] to determine connectivity between the two
 servers. A server SHOULD also use watchdog packets from the client
 to determine that the session is still active.

 As UDP does not guarantee delivery of messages, RADIUS/DTLS servers
 that do not implement an application-layer watchdog MUST also
 maintain a "Last Traffic" timestamp per DTLS session. The
 granularity of this timestamp is not critical and could be limited to
 one-second intervals. The timestamp SHOULD be updated on reception
 of a valid RADIUS/DTLS packet, or a DTLS Heartbeat, but no more than
 once per interval. The timestamp MUST NOT be updated in other
 situations.

 When a session has not received a packet for a period of time, it is
 labeled "idle". The server SHOULD delete idle DTLS sessions after an
 "idle timeout". The server MAY cache the TLS session parameters, in
 order to provide for fast session resumption.

 This session "idle timeout" SHOULD be exposed to the administrator as
 a configurable setting. It SHOULD NOT be set to less than 60 seconds
 and SHOULD NOT be set to more than 600 seconds (10 minutes). The
 minimum useful value for this timer is determined by the application-
 layer watchdog mechanism defined in the following section.

 RADIUS/DTLS servers SHOULD also monitor the total number of open
 sessions. They SHOULD have a "maximum sessions" setting exposed to
 administrators as a configurable parameter. When this maximum is
 reached and a new session is started, the server MUST either drop an
 old session in order to open the new one or not create a new session.
 RADIUS/DTLS servers SHOULD implement session resumption, preferably
 stateless session resumption as given in [RFC5077]. This practice
 lowers the time and effort required to start a DTLS session with a
 client and increases network responsiveness.

 Since UDP is stateless, the potential exists for the client to
 initiate a new DTLS session using a particular 4-tuple, before the
 server has closed the old session. For security reasons, the server
 MUST keep the old session active until either it has received secure
 notification from the client that the session is closed or the server
 decides to close the session based on idle timeouts. Taking any
 other action would permit unauthenticated clients to perform a DoS
 attack, by reusing a 4-tuple and thus causing the server to close an
 active (and authenticated) DTLS session.

 As a result, servers MUST ignore any attempts to reuse an existing
 4-tuple from an active session. This requirement can likely be
 reached by simply processing the packet through the existing session,
 as with any other packet received via that 4-tuple. Non-compliant,
 or unexpected packets will be ignored by the DTLS layer.

 The above requirement is mitigated by the suggestion in Section 6.1,
 below, that the client use a local proxy for all RADIUS traffic.
 That proxy can then track the ports that it uses and ensure that
 reuse of 4-tuples is avoided. The exact process by which this
 tracking is done is outside of the scope of this document.

5.2. Client Session Management

 Clients SHOULD use PMTU discovery [RFC6520] to determine the PMTU
 between the client and server, prior to sending any RADIUS traffic.
 Once a DTLS session is established, a RADIUS/DTLS client SHOULD use
 DTLS Heartbeats [RFC6520] to determine connectivity between the two
 systems. RADIUS/DTLS clients SHOULD also use the application-layer
 watchdog algorithm defined in [RFC3539] to determine server
 responsiveness. The Status-Server packet defined in [RFC5997] SHOULD
 be used as the "watchdog packet" in any application-layer watchdog
 algorithm.

 RADIUS/DTLS clients SHOULD proactively close sessions when they have
 been idle for a period of time. Clients SHOULD close a session when
 the DTLS Heartbeat algorithm indicates that the session is no longer
 active. Clients SHOULD close a session when no traffic other than
 watchdog packets and (possibly) watchdog responses has been sent for
 three watchdog timeouts. This behavior ensures that clients do not
 waste resources on the server by causing it to track idle sessions.
 When a client fails to implement both DTLS Heartbeats and watchdog
 packets, it has no way of knowing that a DTLS session has been
 closed. Therefore, there is the possibility that the server closes
 the session without the client knowing. When that happens, the
 client may later transmit packets in a session, and those packets
 will be ignored by the server. The client is then forced to time out
 those packets and then the session, leading to delays and network
 instabilities.

 For these reasons, it is RECOMMENDED that all DTLS sessions be
 configured to use DTLS Heartbeats and/or watchdog packets.

 DTLS sessions MUST also be deleted when a RADIUS packet fails
 validation due to a packet being malformed, or when it has an invalid
 Message-Authenticator or invalid Response Authenticator. There are
 other cases when the specifications require that a packet received
 via a DTLS session be "silently discarded". In those cases,
 implementations MAY delete the underlying DTLS session.

 RADIUS/DTLS clients should not send both RADIUS/UDP and RADIUS/DTLS
 packets to different servers from the same source socket. This
 practice causes increased complexity in the client application and
 increases the potential for security breaches due to implementation
 issues.

 RADIUS/DTLS clients SHOULD implement session resumption, preferably
 stateless session resumption as given in [RFC5077]. This practice
 lowers the time and effort required to start a DTLS session with a
 server and increases network responsiveness.

6. Implementation Guidelines

 The text above describes the protocol. In this section, we give
 additional implementation guidelines. These guidelines are not part
 of the protocol, but they may help implementors create simple,
 secure, and interoperable implementations.

 Where a TLS-PSK method is used, implementations MUST support keys of
 at least 16 octets in length. Implementations SHOULD support key
 lengths of 32 octets and SHOULD allow for longer keys. The key data
 MUST be capable of being any value (0 through 255, inclusive).
 Implementations MUST NOT limit themselves to using textual keys. It
 is RECOMMENDED that the administration interface allow for the keys
 to be entered as human-readable strings in hex format.

 When creating keys for use with PSK ciphersuites, it is RECOMMENDED
 that keys be derived from a Cryptographically Secure Pseudorandom
 Number Generator (CSPRNG) instead of administrators inventing keys on
 their own. If managing keys is too complicated, a certificate-based
 TLS method SHOULD be used instead.

6.1. Client Implementations

 RADIUS/DTLS clients should use connected sockets where possible. Use
 of connected sockets means that the underlying kernel tracks the
 sessions, so that the client subsystem does not need to manage
 multiple sessions on one socket.

 RADIUS/DTLS clients should use a single source (IP + port) when
 sending packets to a particular RADIUS/DTLS server. Doing so
 minimizes the number of DTLS session setups. It also ensures that
 information about the home server state is discovered only once.

 In practice, this means that RADIUS/DTLS clients with multiple
 internal RADIUS sources should use a local proxy that arbitrates all
 RADIUS traffic between the client and all servers. The proxy should
 accept traffic only from the authorized subsystems on the client
 machine and should proxy that traffic to known servers. Each
 authorized subsystem should include an attribute that uniquely
 identifies that subsystem to the proxy, so that the proxy can apply
 origin-specific proxy rules and security policies. We suggest using
 NAS-Identifier for this purpose.

 The local proxy should be able to interact with multiple servers at
 the same time. There is no requirement that each server have its own
 unique proxy on the client, as that would be inefficient.

 The suggestion to use a local proxy means that there is only one
 process that discovers network and/or connectivity issues with a
 server. If each client subsystem communicated directly with a
 server, issues with that server would have to be discovered
 independently by each subsystem. The side effect would be increased
 delays in re-routing traffic, error reporting, and network
 instabilities.

 Each client subsystem can include a subsystem-specific NAS-Identifier
 in each request. The format of this attribute is implementation-
 specific. The proxy should verify that the request originated from
 the local system, ideally via a loopback address. The proxy MUST
 then rewrite any subsystem-specific NAS-Identifier to a NAS-
 Identifier that identifies the client as a whole, or, remove the NAS-
 Identifier entirely and replace it with NAS-IP-Address or NAS-
 IPv6-Address.

 In traditional RADIUS, the cost to set up a new "session" between a
 client and server was minimal. The client subsystem could simply
 open a port, send a packet, wait for the response, and then close the
 port. With RADIUS/DTLS, the connection setup is significantly more
 expensive. In addition, there may be a requirement to use DTLS in
 order to communicate with a server, as RADIUS/UDP may not be
 supported by that server. The knowledge of what protocol to use is
 best managed by a dedicated RADIUS subsystem, rather than by each
 individual subsystem on the client.

6.2. Server Implementations

 RADIUS/DTLS servers should not use connected sockets to read DTLS
 packets from a client. This recommendation exists because a
 connected UDP socket will accept packets only from one source IP
 address and port. This limitation would prevent the server from
 accepting packets from multiple clients on the same port.

7. Diameter Considerations

 This specification defines a transport layer for RADIUS. It makes no
 other changes to the RADIUS protocol. As a result, there are no
 Diameter considerations.

8. IANA Considerations

 No new RADIUS attributes or packet codes are defined. IANA has
 updated the "Service Name and Transport Protocol Port Number
 Registry". The entries corresponding to port service name "radsec",
 port number "2083", and transport protocol "UDP" have been updated as
 follows:

 o Assignee: IESG

 o Contact: IETF Chair

 o Reference: This document

 o Assignment Notes: The UDP port 2083 was already previously
 assigned by IANA for "RadSec", an early implementation of
 RADIUS/TLS, prior to issuance of this RFC.

9. Implementation Status

 This section records the status of known implementations of
 RADIUS/DTLS at the time of writing, and is based on a proposal
 described in [RFC6982].

 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing Internet-
 Drafts to RFCs.

9.1. Radsecproxy

 Organization: Radsecproxy

URL: https://software.uninett.no/radsecproxy/

Maturity: Widely used software based on early versions of this
 document.
 The use of the DTLS functionality is not clear.

Coverage: The bulk of this specification is implemented, based on
 earlier versions of this document. Exact revisions that
 were implemented are unknown.

 Licensing: Freely distributable with acknowledgment.

 Implementation experience: No comments from implementors.

9.2. jradius

 Organization: Coova

URL: http://www.coova.org/JRadius/RadSec

Maturity: Production software based on early versions of this
 document.
 The use of the DTLS functionality is not clear.

Coverage: The bulk of this specification is implemented, based on
 earlier versions of this document. Exact revisions that
 were implemented are unknown.

 Licensing: Freely distributable with requirement to redistribute

 source.

 Implementation experience: No comments from implementors.

10. Security Considerations

 The bulk of this specification is devoted to discussing security
 considerations related to RADIUS. However, we discuss a few
 additional issues here.

 This specification relies on the existing DTLS, RADIUS/UDP, and
 RADIUS/TLS specifications. As a result, all security considerations
 for DTLS apply to the DTLS portion of RADIUS/DTLS. Similarly, the
 TLS and RADIUS security issues discussed in [RFC6614] also apply to
 this specification. Most of the security considerations for RADIUS
 apply to the RADIUS portion of the specification.

 However, many security considerations raised in the RADIUS documents
 are related to RADIUS encryption and authorization. Those issues are
 largely mitigated when DTLS is used as a transport method. The
 issues that are not mitigated by this specification are related to
 the RADIUS packet format and handling, which is unchanged in this
 specification.

 This specification also suggests that implementations use a session
 tracking table. This table is an extension of the duplicate
 detection cache mandated in [RFC5080], Section 2.2.2. The changes
 given here are that DTLS-specific information is tracked for each
 table entry. Section 5.1.1, above, describes steps to mitigate any
 DoS issues that result from tracking additional information.

 The fixed shared secret given above in Section 2.2.1 is acceptable
 only when DTLS is used with a non-null encryption method. When a
 DTLS session uses a null encryption method due to misconfiguration or
 implementation error, all of the RADIUS traffic will be readable by
 an observer. Therefore, implementations MUST NOT use null encryption
 methods for RADIUS/DTLS.

 For systems that perform protocol-based firewalling and/or filtering,
 it is RECOMMENDED that they be configured to permit only DTLS over
 the RADIUS/DTLS port.

10.1. Crypto-Agility

 Section 4.2 of [RFC6421] makes a number of recommendations about
 security properties of new RADIUS proposals. All of those
 recommendations are satisfied by using DTLS as the transport layer.

 Section 4.3 of [RFC6421] makes a number of recommendations about
 backwards compatibility with RADIUS. Section 3, above, addresses
 these concerns in detail.

 Section 4.4 of [RFC6421] recommends that change control be ceded to
 the IETF, and that interoperability is possible. Both requirements
 are satisfied.

 Section 4.5 of [RFC6421] requires that the new security methods apply
 to all packet types. This requirement is satisfied by allowing DTLS
 to be used for all RADIUS traffic. In addition, Section 3, above,
 addresses concerns about documenting the transition from legacy
 RADIUS to crypto-agile RADIUS.

 Section 4.6 of [RFC6421] requires automated key management. This
 requirement is satisfied by using DTLS key management.

10.2. Legacy RADIUS Security

 We reiterate here the poor security of the legacy RADIUS protocol.
 We suggest that RADIUS clients and servers implement either this
 specification or [RFC6614]. New attacks on MD5 have appeared over
 the past few years, and there is a distinct possibility that MD5 may
 be completely broken in the near future. Such a break would mean
 that RADIUS/UDP was completely insecure.

 The existence of fast and cheap attacks on MD5 could result in a loss
 of all network security that depends on RADIUS. Attackers could
 obtain user passwords and possibly gain complete network access. We
 cannot overstate the disastrous consequences of a successful attack
 on RADIUS.

 We also caution implementors (especially client implementors) about
 using RADIUS/DTLS. It may be tempting to use the shared secret as
 the basis for a TLS-PSK method and to leave the user interface
 otherwise unchanged. This practice MUST NOT be used. The
 administrator MUST be given the option to use DTLS. Any shared
 secret used for RADIUS/UDP MUST NOT be used for DTLS. Reusing a
 shared secret between RADIUS/UDP and RADIUS/DTLS would negate all of
 the benefits found by using DTLS.

 RADIUS/DTLS client implementors MUST expose a configuration that
 allows the administrator to choose the ciphersuite. Where
 certificates are used, RADIUS/DTLS client implementors MUST expose a
 configuration that allows an administrator to configure all
 certificates necessary for certificate-based authentication. These
 certificates include client, server, and root certificates.

 TLS-PSK methods are susceptible to dictionary attacks. Section 6,
 above, recommends deriving TLS-PSK keys from a Cryptographically
 Secure Pseudorandom Number Generator (CSPRNG), which makes dictionary
 attacks significantly more difficult. Servers SHOULD track failed
 client connections by TLS-PSK ID and block TLS-PSK IDs that seem to
 be attempting brute-force searches of the keyspace.

 The historic RADIUS practice of using shared secrets (here, PSKs)
 that are minor variations of words is NOT RECOMMENDED, as it would
 negate all of the security of DTLS.

10.3. Resource Exhaustion

 The use of DTLS allows DoS attacks and resource-exhaustion attacks
 that were not possible in RADIUS/UDP. These attacks are similar to
 those described in [RFC6614], Section 6, for TCP.

 Session tracking, as described in Section 5.1, can result in resource
 exhaustion. Therefore, servers MUST limit the absolute number of
 sessions that they track. When the total number of sessions tracked
 is going to exceed the configured limit, servers MAY free up
 resources by closing the session that has been idle for the longest
 time. Doing so may free up idle resources that then allow the server
 to accept a new session.

 Servers MUST limit the number of partially open DTLS sessions. These
 limits SHOULD be exposed to the administrator as configurable
 settings.

10.4. Client-Server Authentication with DTLS

 We expect that the initial deployment of DTLS will follow the
 RADIUS/UDP model of statically configured client-server
 relationships. The specification for dynamic discovery of RADIUS
 servers is under development, so we will not address that here.

 Static configuration of client-server relationships for RADIUS/UDP
 means that a client has a fixed IP address for a server and a shared
 secret used to authenticate traffic sent to that address. The server
 in turn has a fixed IP address for a client and a shared secret used
 to authenticate traffic from that address. This model needs to be
 extended for RADIUS/DTLS.

 Instead of a shared secret, TLS credentials MUST be used by each
 party to authenticate the other. The issue of identity is more
 problematic. As with RADIUS/UDP, IP addresses may be used as a key
 to determine the authentication credentials that a client will
 present to a server or which credentials a server will accept from a
 client. This is the fixed IP address model of RADIUS/UDP, with the
 shared secret replaced by TLS credentials.

 There are, however, additional considerations with RADIUS/DTLS. When
 a client is configured with a hostname for a server, the server may
 present to the client a certificate containing a hostname. The
 client MUST then verify that the hostnames match. Any mismatch is a
 security violation, and the connection MUST be closed.

 A RADIUS/DTLS server MAY be configured with a "wildcard" IP address
 match for clients, instead of a unique fixed IP address for each
 client. In that case, clients MUST be individually configured with a
 unique certificate. When the server receives a connection from a
 client, it MUST determine client identity from the client
 certificate, and MUST authenticate (or not) the client based on that
 certificate. See [RFC6614], Section 2.4, for a discussion of how to
 match a certificate to a client identity.

 However, servers SHOULD use IP address filtering to minimize the
 possibility of attacks. That is, they SHOULD permit clients only
 from a limited IP address range or ranges. They SHOULD silently
 discard all traffic from outside of those ranges.

 Since the client-server relationship is static, the authentication
 credentials for that relationship must also be statically configured.
 That is, a client connecting to a DTLS server SHOULD be pre-
 configured with the server's credentials (e.g., PSK or certificate).
 If the server fails to present the correct credentials, the DTLS
 session MUST be closed. Each server SHOULD be pre-configured with
 sufficient information to authenticate connecting clients.

 The requirement for clients to be individually configured with a
 unique certificate can be met by using a private CA for certificates
 used in RADIUS/DTLS environments. If a client were configured to use
 a public CA, then it could accept as valid any server that has a
 certificate signed by that CA. While the traffic would be secure
 from third-party observers, the server would, however, have
 unrestricted access to all of the RADIUS traffic, including all user
 credentials and passwords.

 Therefore, clients SHOULD NOT be pre-configured with a list of known
 public CAs by the vendor or manufacturer. Instead, the clients
 SHOULD start off with an empty CA list. The addition of a CA SHOULD
 be done only when manually configured by an administrator.

 This scenario is the opposite of web browsers, where they are pre-
 configured with many known CAs. The goal there is security from
 third-party observers, but also the ability to communicate with any
 unknown site that presents a signed certificate. In contrast, the
 goal of RADIUS/DTLS is both security from third-party observers and
 the ability to communicate with only a small set of well-known
 servers.

 This requirement does not prevent clients from using hostnames
 instead of IP addresses for locating a particular server. Instead,
 it means that the credentials for that server should be pre-
 configured on the client, and associated with that hostname. This
 requirement does suggest that in the absence of a specification for
 dynamic discovery, clients SHOULD use only those servers that have
 been manually configured by an administrator.

10.5. Network Address Translation

 Network Address Translation (NAT) is fundamentally incompatible with
 RADIUS/UDP. RADIUS/UDP uses the source IP address to determine the
 shared secret for the client, and NAT hides many clients behind one
 source IP address. As a result, RADIUS/UDP clients cannot be located
 behind a NAT gateway.

 In addition, port reuse on a NAT gateway means that packets from
 different clients may appear to come from the same source port on the
 NAT. That is, a RADIUS server may receive a RADIUS/DTLS packet from
 one source IP/port combination, followed by the reception of a
 RADIUS/UDP packet from that same source IP/port combination. If this
 behavior is allowed, then the server would have an inconsistent view
 of the client's security profile, allowing an attacker to choose the
 most insecure method.

 If more than one client is located behind a NAT gateway, then every
 client behind the NAT MUST use a secure transport such as TLS or
 DTLS. As discussed below, a method for uniquely identifying each
 client MUST be used.

10.6. Wildcard Clients

 Some RADIUS server implementations allow for "wildcard" clients --
 that is, clients with an IPv4 netmask of other than 32 or an IPv6
 netmask of other than 128. That practice is not recommended for
 RADIUS/UDP, as it means multiple clients will use the same shared
 secret.

 The use of RADIUS/DTLS can allow for the safe usage of wildcards.
 When RADIUS/DTLS is used with wildcards, clients MUST be uniquely
 identified using TLS parameters, and any certificate or PSK used MUST
 be unique to each client.

10.7. Session Closing

 Section 5.1.1, above, requires that DTLS sessions be closed when the
 transported RADIUS packets are malformed or fail the authenticator
 checks. The reason is that the session is expected to be used for
 transport of RADIUS packets only.

 Any non-RADIUS traffic on that session means the other party is
 misbehaving and is a potential security risk. Similarly, any RADIUS
 traffic failing authentication vector or Message-Authenticator
 validation means that two parties do not have a common shared secret,
 and the session is therefore unauthenticated and insecure.

 We wish to avoid the situation where a third party can send well-
 formed RADIUS packets that cause a DTLS session to close. Therefore,
 in other situations, the session SHOULD remain open in the face of
 non-conformant packets.

10.8. Client Subsystems

 Many traditional clients treat RADIUS as subsystem-specific. That
 is, each subsystem on the client has its own RADIUS implementation
 and configuration. These independent implementations work for simple
 systems, but break down for RADIUS when multiple servers, fail-over,
 and load-balancing are required. They have even worse issues when
 DTLS is enabled.

 As noted in Section 6.1, above, clients SHOULD use a local proxy that
 arbitrates all RADIUS traffic between the client and all servers.
 This proxy will encapsulate all knowledge about servers, including
 security policies, fail-over, and load-balancing. All client
 subsystems SHOULD communicate with this local proxy, ideally over a
 loopback address. The requirements on using strong shared secrets
 still apply.

 The benefit of this configuration is that there is one place in the
 client that arbitrates all RADIUS traffic. Subsystems that do not
 implement DTLS can remain unaware of DTLS. DTLS sessions opened by
 the proxy can remain open for long periods of time, even when client
 subsystems are restarted. The proxy can do RADIUS/UDP to some
 servers and RADIUS/DTLS to others.

 Delegation of responsibilities and separation of tasks are important
 security principles. By moving all RADIUS/DTLS knowledge to a DTLS-
 aware proxy, security analysis becomes simpler, and enforcement of
 correct security becomes easier.

11. References

11.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3539]
 Aboba, B. and J. Wood, "Authentication, Authorization and
 Accounting (AAA) Transport Profile", RFC 3539, June 2003.

 [RFC5077]
 Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption
 without Server-Side State", RFC 5077, January 2008.

 [RFC5080]
 Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

 [RFC5246]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5997]
 DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol",
 RFC 5997, August 2010.

 [RFC6347]
 Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6520]
 Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer
 Security (DTLS) Heartbeat Extension", RFC 6520, February
 2012.

 [RFC6613]
 DeKok, A., "RADIUS over TCP", RFC 6613, May 2012.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, May 2012.

11.2. Informative References

 [RFC1321]
 Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC4107]
 Bellovin, S. and R. Housley, "Guidelines for
 Cryptographic Key Management", BCP 107, RFC 4107, June
 2005.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [RFC6421]
 Nelson, D., Ed., "Crypto-Agility Requirements for Remote
 Authentication Dial-In User Service (RADIUS)", RFC 6421,
 November 2011.

 [RFC6982]
 Sheffer, Y. and A. Farrel, "Improving Awareness of
 Running Code: The Implementation Status Section", RFC
 6982, July 2013.

 [MD5Attack]
 Dobbertin, H., "The Status of MD5 After a Recent Attack",
 CryptoBytes Vol.2 No.2, Summer 1996.

 [MD5Break]
 Wang, X. and H. Yu, "How to Break MD5 and Other Hash
 Functions", EUROCRYPT '05 Proceedings of the 24th annual
 international conference on Theory and Applications of
 Cryptographic Techniques, pp. 19-35, ISBN 3-540-25910-4,
 2005.

Acknowledgments

 Parts of the text in Section 3 defining the Request and Response
 Authenticators were taken with minor edits from [RFC2865], Section 3.

Author's Address

Alan DeKok
The FreeRADIUS Server Project
URI: http://freeradius.org
EMail: aland@freeradius.org

7499 - Support of Fragmentation of RADIUS Packets

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7499

Category: Experimental

ISSN: 2070-1721

A. Perez-Mendez, Ed.

R. Marin-Lopez

F. Pereniguez-Garcia

G. Lopez-Millan

University of Murcia

D. Lopez

Telefonica I+D

A. DeKok

Network RADIUS

April 2015

Support of Fragmentation of RADIUS Packets

Abstract

 The Remote Authentication Dial-In User Service (RADIUS) protocol is
 limited to a total packet size of 4096 bytes. Provisions exist for
 fragmenting large amounts of authentication data across multiple
 packets, via Access-Challenge packets. No similar provisions exist
 for fragmenting large amounts of authorization data. This document
 specifies how existing RADIUS mechanisms can be leveraged to provide
 that functionality. These mechanisms are largely compatible with
 existing implementations, and they are designed to be invisible to
 proxies and "fail-safe" to legacy RADIUS Clients and Servers.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7499.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	2. Status of This Document

	3. Scope of This Document

	4. Overview

	5. Fragmentation of Packets
	 5.1. Pre-Authorization

	 5.2. Post-Authorization

	6. Chunk Size

	7. Allowed Large Packet Size

	8. Handling Special Attributes
	 8.1. Proxy-State Attribute

	 8.2. State Attribute

	 8.3. Service-Type Attribute

	 8.4. Rebuilding the Original Large Packet

	9. New T Flag for the Long Extended Type Attribute Definition

	10. New Attribute Definition
	 10.1. Frag-Status Attribute

	 10.2. Proxy-State-Length Attribute

	 10.3. Table of Attributes

	11. Operation with Proxies
	 11.1. Legacy Proxies

	 11.2. Updated Proxies

	12. General Considerations
	 12.1. T Flag

	 12.2. Violation of RFC 2865

	 12.3. Proxying Based on User-Name

	 12.4. Transport Behavior

	13. Security Considerations

	14. IANA Considerations

	15. References
	 15.1. Normative References

	 15.2. Informative References

	Acknowledgements

	Authors' Addresses

1. Introduction

 The RADIUS [RFC2865] protocol carries authentication, authorization,
 and accounting information between a RADIUS Client and a RADIUS
 Server. Information is exchanged between them through RADIUS
 packets. Each RADIUS packet is composed of a header, and zero or
 more attributes, up to a maximum packet size of 4096 bytes. The
 protocol is a request/response protocol, as described in the
 operational model ([RFC6158], Section 3.1).

 The intention of the above packet size limitation was to avoid UDP
 fragmentation as much as possible. Back then, a size of 4096 bytes
 seemed large enough for any purpose. Now, new scenarios are emerging
 that require the exchange of authorization information exceeding this
 4096-byte limit. For instance, the Application Bridging for
 Federated Access Beyond web (ABFAB) IETF working group defines the
 transport of Security Assertion Markup Language (SAML) statements
 from the RADIUS Server to the RADIUS Client [SAML-RADIUS]. This
 assertion is likely to be larger than 4096 bytes.

 This means that peers desiring to send large amounts of data must
 fragment it across multiple packets. For example, RADIUS-EAP
 [RFC3579] defines how an Extensible Authentication Protocol (EAP)
 exchange occurs across multiple Access-Request / Access-Challenge
 sequences. No such exchange is possible for accounting or
 authorization data. [RFC6158], Section 3.1 suggests that exchanging
 large amounts of authorization data is unnecessary in RADIUS.
 Instead, the data should be referenced by name. This requirement
 allows large policies to be pre-provisioned and then referenced in an
 Access-Accept. In some cases, however, the authorization data sent
 by the RADIUS Server is large and highly dynamic. In other cases,
 the RADIUS Client needs to send large amounts of authorization data
 to the RADIUS Server. Neither of these cases is met by the
 requirements in [RFC6158]. As noted in that document, the practical
 limit on RADIUS packet sizes is governed by the Path MTU (PMTU),
 which may be significantly smaller than 4096 bytes. The combination
 of the two limitations means that there is a pressing need for a
 method to send large amounts of authorization data between RADIUS
 Client and Server, with no accompanying solution.

 [RFC6158], Section 3.1 recommends three approaches for the
 transmission of large amounts of data within RADIUS. However, they
 are not applicable to the problem statement of this document for the
 following reasons:

 o The first approach (utilization of a sequence of packets) does not
 talk about large amounts of data sent from the RADIUS Client to a
 RADIUS Server. Leveraging EAP (request/challenge) to send the
 data is not feasible, as EAP already fills packets to PMTU, and
 not all authentications use EAP. Moreover, as noted for the
 NAS-Filter-Rule attribute ([RFC4849]), this approach does not
 entirely solve the problem of sending large amounts of data from a
 RADIUS Server to a RADIUS Client, as many current RADIUS
 attributes are not permitted in Access-Challenge packets.

 o The second approach (utilization of names rather than values) is
 not usable either, as using names rather than values is difficult
 when the nature of the data to be sent is highly dynamic (e.g., a
 SAML statement or NAS-Filter-Rule attributes). URLs could be used
 as a pointer to the location of the actual data, but their use
 would require them to be (a) dynamically created and modified,
 (b) securely accessed, and (c) accessible from remote systems.
 Satisfying these constraints would require the modification of
 several networking systems (e.g., firewalls and web servers).
 Furthermore, the setup of an additional trust infrastructure
 (e.g., Public Key Infrastructure (PKI)) would be required to allow
 secure retrieval of the information from the web server.

 o PMTU discovery does not solve the problem, as it does not allow
 the sending of data larger than the minimum of (PMTU or 4096)
 bytes.

 This document provides a mechanism to allow RADIUS peers to exchange
 large amounts of authorization data exceeding the 4096-byte limit by
 fragmenting it across several exchanges. The proposed solution does
 not impose any additional requirements to the RADIUS system
 administrators (e.g., need to modify firewall rules, set up web
 servers, configure routers, or modify any application server). It
 maintains compatibility with intra-packet fragmentation mechanisms
 (like those defined in [RFC3579] or [RFC6929]). It is also
 transparent to existing RADIUS proxies, which do not implement this
 specification. The only systems needing to implement this RFC are
 the ones that either generate or consume the fragmented data being
 transmitted. Intermediate proxies just pass the packets without
 changes. Nevertheless, if a proxy supports this specification, it
 may reassemble the data in order to examine and/or modify it.

 A different approach to deal with RADIUS packets above the 4096-byte
 limit is described in [RADIUS-Larger-Pkts], which proposes to extend
 RADIUS over TCP by allowing the Length field in the RADIUS header to
 take values up to 65535 bytes. This provides a simpler operation,
 but it has the drawback of requiring every RADIUS proxy in the path
 between the RADIUS Client and the RADIUS Server to implement the
 extension as well.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].
 When these words appear in lower case, they have their natural
 language meaning.

2. Status of This Document

 This document is an Experimental RFC. It defines a proposal to allow
 the sending and receiving of data exceeding the 4096-byte limit in
 RADIUS packets imposed by [RFC2865], without requiring the
 modification of intermediary proxies.

 The experiment consists of verifying whether the approach is usable
 in a large-scale environment, by observing the uptake, usability, and
 operational behavior it shows in large-scale, real-life deployments.
 In that sense, so far the main use case for this specification is the
 transportation of large SAML statements defined within the ABFAB
 architecture [ABFAB-Arch]. Hence, it can be tested wherever an ABFAB
 deployment is being piloted.

 Besides, this proposal defines some experimental features that will
 need to be tested and verified before the document can be considered
 for the Standards Track. The first one of them is the requirement of
 updating [RFC2865] in order to relax the sentence defined in
 Section 4.1 of that document that states that "An Access-Request MUST
 contain either a User-Password or a CHAP-Password or a State." This
 specification might generate Access-Request packets without any of
 these attributes. Although all known implementations have chosen the
 philosophy of "be liberal in what you accept," we need to gain more
 operational experience to verify that unmodified proxies do not drop
 these types of packets. More details on this aspect can be found in
 Section 12.2.

 Another experimental feature of this specification is that it
 requires proxies to base their routing decisions on the value of the
 RADIUS User-Name attribute. Our experience is that this is the
 common behavior; thus, no issues are expected. However, it needs to
 be confirmed after using different implementations of intermediate
 proxies. More details on this aspect can be found in Section 12.3.

 Moreover, this document requires two minor updates to Standards Track
 documents. First, it modifies the definition of the Reserved field
 of the Long Extended Type attribute [RFC6929] by allocating an
 additional flag called the T (Truncation) flag. No issues are
 expected with this update, although some proxies might drop packets
 that do not have the Reserved field set to 0. More details on this
 aspect can be found in Section 12.1.

 The other Standards Track document that requires a minor update is
 [RFC6158]. It states that "attribute designers SHOULD NOT assume
 that a RADIUS implementation can successfully process RADIUS packets
 larger than 4096 bytes," something no longer true if this document
 advances.

 A proper "Updates" clause will be included for these modifications
 when/if the experiment is successful and this document is reissued as
 a Standards Track document.

3. Scope of This Document

This specification describes how a RADIUS Client and a RADIUS Server
can exchange data exceeding the 4096‑byte limit imposed by one
packet. However, the mechanism described in this specification
SHOULD NOT be used to exchange more than 100 kilobytes of data. Any
more than this may turn RADIUS into a generic transport protocol,
such as TCP or the Stream Control Transmission Protocol (SCTP), which
is undesirable. Experience shows that attempts to transport bulk
data across the Internet with UDP will inevitably fail, unless these
transport attempts reimplement all of the behavior of TCP. The
underlying design of RADIUS lacks the proper retransmission policies
or congestion control mechanisms that would make it a competitor
of TCP.

 Therefore, RADIUS/UDP transport is by design unable to transport bulk
 data. It is both undesirable and impossible to change the protocol
 at this point in time. This specification is intended to allow the
 transport of more than 4096 bytes of data through existing RADIUS/UDP
 proxies. Other solutions such as RADIUS/TCP MUST be used when a
 "green field" deployment requires the transport of bulk data.
 Section 7, below, describes in further detail what is considered to
 be a reasonable amount of data and recommends that administrators
 adjust limitations on data transfer according to the specific
 capabilities of their existing systems in terms of memory and
 processing power.

 Moreover, its scope is limited to the exchange of authorization data,
 as other exchanges do not require such a mechanism. In particular,
 authentication exchanges have already been defined to overcome this
 limitation (e.g., RADIUS-EAP). Moreover, as they represent the most
 critical part of a RADIUS conversation, it is preferable to not
 introduce into their operation any modification that may affect
 existing equipment.

 There is no need to fragment accounting packets either. While the
 accounting process can send large amounts of data, that data is
 typically composed of many small updates. That is, there is no
 demonstrated need to send indivisible blocks of more than 4 kilobytes
 of data. The need to send large amounts of data per user session
 often originates from the need for flow-based accounting. In this
 use case, the RADIUS Client may send accounting data for many
 thousands of flows, where all those flows are tied to one user
 session. The existing Acct-Multi-Session-Id attribute defined in
 [RFC2866], Section 5.11 has been proven to work here.

 Similarly, there is no need to fragment Change-of-Authorization (CoA)
 [RFC5176] packets. Instead, according to [RFC5176], the CoA client
 will send a CoA-Request packet containing session identification
 attributes, along with Service-Type = Additional-Authorization, and a
 State attribute. Implementations not supporting fragmentation will
 respond with a CoA-NAK and an Error-Cause of Unsupported-Service.

 The above requirement does not assume that the CoA client and the
 RADIUS Server are co-located. They may, in fact, be run on separate
 parts of the infrastructure, or even by separate administrators.
 There is, however, a requirement that the two communicate. We can
 see that the CoA client needs to send session identification
 attributes in order to send CoA packets. These attributes cannot be
 known a priori by the CoA client and can only come from the RADIUS
 Server. Therefore, even when the two systems are not co-located,
 they must be able to communicate in order to operate in unison. The
 alternative is for the two systems to have differing views of the
 users' authorization parameters; such a scenario would be a security
 disaster.

 This specification does not allow for fragmentation of CoA packets.
 Allowing for fragmented CoA packets would involve changing multiple
 parts of the RADIUS protocol; such changes introduce the risk of
 implementation issues, mistakes, etc.

 Where CoA clients (i.e., RADIUS Servers) need to send large amounts
 of authorization data to a CoA server (i.e., RADIUS Client), they
 need only send a minimal CoA-Request packet containing a Service-Type
 of Authorize Only, as per [RFC5176], along with session
 identification attributes. This CoA packet serves as a signal to the
 RADIUS Client that the users' session requires re-authorization.
 When the RADIUS Client re-authorizes the user via Access-Request, the
 RADIUS Server can perform fragmentation and send large amounts of
 authorization data to the RADIUS Client.

 The assumption in the above scenario is that the CoA client and
 RADIUS Server are co-located, or at least strongly coupled. That is,
 the path from CoA client to CoA server SHOULD be the exact reverse of
 the path from RADIUS Client to RADIUS Server. The following diagram
 will hopefully clarify the roles:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RADIUS CoA |
 | Client Server |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
Access‑Request | | CoA‑Request
 v |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RADIUS CoA |
 | Server Client |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 Where there is a proxy involved:

 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RADIUS CoA |
 | Client Server |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
Access‑Request | | CoA‑Request
 v |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RADIUS CoA |
 | Proxy Proxy |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | ^
Access‑Request | | CoA‑Request
 v |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | RADIUS CoA |
 | Server Client |
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 That is, the RADIUS and CoA subsystems at each hop are strongly
 connected. Where they are not strongly connected, it will be
 impossible to use CoA-Request packets to transport large amounts of
 authorization data.

 This design is more complicated than allowing for fragmented CoA
 packets. However, the CoA client and the RADIUS Server must
 communicate even when not using this specification. We believe that
 standardizing that communication and using one method for exchange of
 large data are preferred to unspecified communication methods and
 multiple ways of achieving the same result. If we were to allow
 fragmentation of data over CoA packets, the size and complexity of
 this specification would increase significantly.

The above requirement solves a number of issues. It clearly
separates session identification from authorization. Without this
separation, it is difficult to both identify a session and change its
authorization using the same attribute. It also ensures that the
authorization process is the same for initial authentication and
for CoA.

4. Overview

 Authorization exchanges can occur either before or after end-user
 authentication has been completed. An authorization exchange before
 authentication allows a RADIUS Client to provide the RADIUS Server
 with information that MAY modify how the authentication process will
 be performed (e.g., it may affect the selection of the EAP method).
 An authorization exchange after authentication allows the RADIUS
 Server to provide the RADIUS Client with information about the end
 user, the results of the authentication process, and/or obligations
 to be enforced. In this specification, we refer to
 "pre-authorization" as the exchange of authorization information
 before the end-user authentication has started (from the RADIUS
 Client to the RADIUS Server), whereas the term "post-authorization"
 is used to refer to an authorization exchange happening after this
 authentication process (from the RADIUS Server to the RADIUS Client).

 In this specification, we refer to the "size limit" as the practical
 limit on RADIUS packet sizes. This limit is the minimum between
 4096 bytes and the current PMTU. We define below a method that uses
 Access-Request and Access-Accept in order to exchange fragmented
 data. The RADIUS Client and Server exchange a series of
 Access-Request / Access-Accept packets, until such time as all of the
 fragmented data has been transported. Each packet contains a
 Frag-Status attribute, which lets the other party know if
 fragmentation is desired, ongoing, or finished. Each packet may also
 contain the fragmented data or may instead be an "ACK" to a previous
 fragment from the other party. Each Access-Request contains a
 User-Name attribute, allowing the packet to be proxied if necessary
 (see Section 11.1). Each Access-Request may also contain a State
 attribute, which serves to tie it to a previous Access-Accept. Each
 Access-Accept contains a State attribute, for use by the RADIUS
 Client in a later Access-Request. Each Access-Accept contains a
 Service-Type attribute with the "Additional-Authorization" value.
 This indicates that the service being provided is part of a
 fragmented exchange and that the Access-Accept should not be
 interpreted as providing network access to the end user.

 When a RADIUS Client or RADIUS Server needs to send data that exceeds
 the size limit, the mechanism proposed in this document is used.
 Instead of encoding one large RADIUS packet, a series of smaller
 RADIUS packets of the same type are encoded. Each smaller packet is
 called a "chunk" in this specification, in order to distinguish it
 from traditional RADIUS packets. The encoding process is a simple
 linear walk over the attributes to be encoded. This walk preserves
 the order of the attributes of the same type, as required by
 [RFC2865]. The number of attributes encoded in a particular chunk
 depends on the size limit, the size of each attribute, the number of
 proxies between the RADIUS Client and RADIUS Server, and the overhead
 for fragmentation-signaling attributes. Specific details are given
 in Section 6. A new attribute called Frag-Status (Section 10.1)
 signals the fragmentation status.

 After the first chunk is encoded, it is sent to the other party. The
 packet is identified as a chunk via the Frag-Status attribute. The
 other party then requests additional chunks, again using the
 Frag-Status attribute. This process is repeated until all the
 attributes have been sent from one party to the other. When all the
 chunks have been received, the original list of attributes is
 reconstructed and processed as if it had been received in one packet.

 The reconstruction process is performed by simply appending all of
 the chunks together. Unlike IPv4 fragmentation, there is no Fragment
 Offset field. The chunks in this specification are explicitly
 ordered, as RADIUS is a lock-step protocol, as noted in Section 12.4.
 That is, chunk N+1 cannot be sent until all of the chunks up to and
 including N have been received and acknowledged.

 When multiple chunks are sent, a special situation may occur for Long
 Extended Type attributes as defined in [RFC6929]. The fragmentation
 process may split a fragmented attribute across two or more chunks,
 which is not permitted by that specification. We address this issue
 by using the newly defined T flag in the Reserved field of the Long
 Extended Type attribute format (see Section 9 for further details on
 this flag).

 This last situation is expected to be the most common occurrence in
 chunks. Typically, packet fragmentation will occur as a consequence
 of a desire to send one or more large (and therefore fragmented)
 attributes. The large attribute will likely be split into two or
 more pieces. Where chunking does not split a fragmented attribute,
 no special treatment is necessary.

 The setting of the T flag is the only case where the chunking process
 affects the content of an attribute. Even then, the Value fields of
 all attributes remain unchanged. Any per-packet security attributes,
 such as Message-Authenticator, are calculated for each chunk
 independently. Neither integrity checks nor security checks are
 performed on the "original" packet.

 Each RADIUS packet sent or received as part of the chunking process
 MUST be a valid packet, subject to all format and security
 requirements. This requirement ensures that a "transparent" proxy
 not implementing this specification can receive and send compliant
 packets. That is, a proxy that simply forwards packets without
 detailed examination or any modification will be able to proxy
 "chunks".

5. Fragmentation of Packets

 When the RADIUS Client or the RADIUS Server desires to send a packet
 that exceeds the size limit, it is split into chunks and sent via
 multiple client/server exchanges. The exchange is indicated via the
 Frag-Status attribute, which has value More-Data-Pending for all but
 the last chunk of the series. The chunks are tied together via the
 State attribute.

 The delivery of a large fragmented RADIUS packet with authorization
 data can happen before or after the end user has been authenticated
 by the RADIUS Server. We can distinguish two phases, which can be
 omitted if there is no authorization data to be sent:

 1. Pre-authorization. In this phase, the RADIUS Client MAY send a
 large packet with authorization information to the RADIUS Server
 before the end user is authenticated. Only the RADIUS Client is
 allowed to send authorization data during this phase.

 2. Post-authorization. In this phase, the RADIUS Server MAY send a
 large packet with authorization data to the RADIUS Client after
 the end user has been authenticated. Only the RADIUS Server is
 allowed to send authorization data during this phase.

 The following subsections describe how to perform fragmentation for
 packets for these two phases. We give the packet type, along with a
 RADIUS Identifier, to indicate that requests and responses are
 connected. We then give a list of attributes. We do not give values
 for most attributes, as we wish to concentrate on the fragmentation
 behavior rather than packet contents. Attribute values are given for
 attributes relevant to the fragmentation process. Where "long
 extended" attributes are used, we indicate the M (More) and T
 (Truncation) flags as optional square brackets after the attribute
 name. As no "long extended" attributes have yet been defined, we use
 example attributes, named as "Example-Long-1", etc. For the sake of
 simplicity, the maximum chunk size is established in terms of the
 number of attributes (11).

5.1. Pre-Authorization

 When the RADIUS Client needs to send a large amount of data to the
 RADIUS Server, the data to be sent is split into chunks and sent to
 the RADIUS Server via multiple Access-Request / Access-Accept
 exchanges. The example below shows this exchange.

 The following is an Access-Request that the RADIUS Client intends to
 send to a RADIUS Server. However, due to a combination of issues
 (PMTU, large attributes, etc.), the content does not fit into one
 Access-Request packet.

Access‑Request
 User‑Name
 NAS‑Identifier
 Calling‑Station‑Id
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1
 Example‑Long‑2 [M]
 Example‑Long‑2 [M]
 Example‑Long‑2

 Figure 1: Desired Access-Request

The RADIUS Client therefore must send the attributes listed above in
a series of chunks. The first chunk contains eight (8) attributes
from the original Access‑Request, and a Frag‑Status attribute. Since
the last attribute is "Example‑Long‑1" with the M flag set, the
chunking process also sets the T flag in that attribute. The
Access‑Request is sent with a RADIUS Identifier field having
value 23. The Frag‑Status attribute has value More‑Data‑Pending, to
indicate that the RADIUS Client wishes to send more data in a
subsequent Access‑Request. The RADIUS Client also adds a
Service‑Type attribute, which indicates that it is part of the
chunking process. The packet is signed with the
Message‑Authenticator attribute, completing the maximum number of
attributes (11).

Access‑Request (ID = 23)
 User‑Name
 NAS‑Identifier
 Calling‑Station‑Id
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [MT]
 Frag‑Status = More‑Data‑Pending
 Service‑Type = Additional‑Authorization
 Message‑Authenticator

 Figure 2: Access-Request (Chunk 1)

 Compliant RADIUS Servers (i.e., servers implementing fragmentation)
 receiving this packet will see the Frag-Status attribute and will
 postpone all authorization and authentication handling until all of
 the chunks have been received. This postponement also applies to the
 verification that the Access-Request packet contains some kind of
 authentication attribute (e.g., User-Password, CHAP-Password, State,
 or other future attribute), as required by [RFC2865] (see
 Section 12.2 for more information on this).

 Non-compliant RADIUS Servers (i.e., servers not implementing
 fragmentation) should also see the Service-Type requesting
 provisioning for an unknown service and return Access-Reject. Other
 non-compliant RADIUS Servers may return an Access-Reject or
 Access-Challenge, or they may return an Access-Accept with a
 particular Service-Type other than Additional-Authorization.
 Compliant RADIUS Client implementations MUST treat these responses as
 if they had received Access-Reject instead.

 Compliant RADIUS Servers who wish to receive all of the chunks will
 respond with the following packet. The value of the State here is
 arbitrary and serves only as a unique token for example purposes. We
 only note that it MUST be temporally unique to the RADIUS Server.

Access‑Accept (ID = 23)
 Frag‑Status = More‑Data‑Request
 Service‑Type = Additional‑Authorization
 State = 0xabc00001
 Message‑Authenticator

 Figure 3: Access-Accept (Chunk 1)

 The RADIUS Client will see this response and use the RADIUS
 Identifier field to associate it with an ongoing chunking session.
 Compliant RADIUS Clients will then continue the chunking process.
 Non-compliant RADIUS Clients will never see a response such as this,
 as they will never send a Frag-Status attribute. The Service-Type
 attribute is included in the Access-Accept in order to signal that
 the response is part of the chunking process. This packet therefore
 does not provision any network service for the end user.

 The RADIUS Client continues the process by sending the next chunk,
 which includes an additional six (6) attributes from the original
 packet. It again includes the User-Name attribute, so that
 non-compliant proxies can process the packet (see Section 11.1). It
 sets the Frag-Status attribute to More-Data-Pending, as more data is
 pending. It includes a Service-Type, for the reasons described
 above. It includes the State attribute from the previous
 Access-Accept. It signs the packet with Message-Authenticator, as
 there are no authentication attributes in the packet. It uses a new
 RADIUS Identifier field.

Access‑Request (ID = 181)
 User‑Name
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1
 Example‑Long‑2 [M]
 Example‑Long‑2 [MT]
 Frag‑Status = More‑Data‑Pending
 Service‑Type = Additional‑Authorization
 State = 0xabc000001
 Message‑Authenticator

 Figure 4: Access-Request (Chunk 2)

 Compliant RADIUS Servers receiving this packet will see the
 Frag-Status attribute and look for a State attribute. Since one
 exists and it matches a State sent in an Access-Accept, this packet
 is part of a chunking process. The RADIUS Server will associate the
 attributes with the previous chunk. Since the Frag-Status attribute
 has value More-Data-Request, the RADIUS Server will respond with an
 Access-Accept as before. It MUST include a State attribute, with a
 value different from the previous Access-Accept. This State MUST
 again be globally and temporally unique.

Access‑Accept (ID = 181)
 Frag‑Status = More‑Data‑Request
 Service‑Type = Additional‑Authorization
 State = 0xdef00002
 Message‑Authenticator

 Figure 5: Access-Accept (Chunk 2)

 The RADIUS Client will see this response and use the RADIUS
 Identifier field to associate it with an ongoing chunking session.
 The RADIUS Client continues the chunking process by sending the next
 chunk, with the final attribute(s) from the original packet, and
 again includes the original User-Name attribute. The Frag-Status
 attribute is not included in the next Access-Request, as no more
 chunks are available for sending. The RADIUS Client includes the
 State attribute from the previous Access-Accept. It signs the packet
 with Message-Authenticator, as there are no authentication attributes
 in the packet. It again uses a new RADIUS Identifier field.

Access‑Request (ID = 241)
 User‑Name
 Example‑Long‑2
 State = 0xdef00002
 Message‑Authenticator

 Figure 6: Access-Request (Chunk 3)

 On reception of this last chunk, the RADIUS Server matches it with an
 ongoing session via the State attribute and sees that there is no
 Frag-Status attribute present. It then processes the received
 attributes as if they had been sent in one RADIUS packet. See
 Section 8.4 for further details on this process. It generates the
 appropriate response, which can be either Access-Accept or
 Access-Reject. In this example, we show an Access-Accept. The
 RADIUS Server MUST send a State attribute, which allows linking the
 received data with the authentication process.

Access‑Accept (ID = 241)
 State = 0x98700003
 Message‑Authenticator

 Figure 7: Access-Accept (Chunk 3)

 The above example shows in practice how the chunking process works.
 We reiterate the implementation and security requirements here.
 Each chunk is a valid RADIUS packet (see Section 12.2 for some
 considerations about this), and all RADIUS format and security
 requirements MUST be followed before any chunking process is applied.

 Every chunk except for the last one from a RADIUS Client MUST include
 a Frag-Status attribute, with value More-Data-Pending. The last
 chunk MUST NOT contain a Frag-Status attribute. Each chunk except
 for the last one from a RADIUS Client MUST include a Service-Type
 attribute, with value Additional-Authorization. Each chunk MUST
 include a User-Name attribute, which MUST be identical in all chunks.
 Each chunk except for the first one from a RADIUS Client MUST include
 a State attribute, which MUST be copied from a previous
 Access-Accept.

 Each Access-Accept MUST include a State attribute. The value for
 this attribute MUST change in every new Access-Accept and MUST be
 globally and temporally unique.

5.2. Post-Authorization

 When the RADIUS Server wants to send a large amount of authorization
 data to the RADIUS Client after authentication, the operation is very
 similar to the pre-authorization process. The presence of a
 Service-Type = Additional-Authorization attribute ensures that a
 RADIUS Client not supporting this specification will treat that
 unrecognized Service-Type as though an Access-Reject had been
 received instead ([RFC2865], Section 5.6). If the original large
 Access-Accept packet contained a Service-Type attribute, it will be
 included with its original value in the last transmitted chunk, to
 avoid confusion with the one used for fragmentation signaling. It is
 RECOMMENDED that RADIUS Servers include a State attribute in their
 original Access-Accept packets, even if fragmentation is not taking
 place, to allow the RADIUS Client to send additional authorization
 data in subsequent exchanges. This State attribute would be included
 in the last transmitted chunk, to avoid confusion with the ones used
 for fragmentation signaling.

 Clients supporting this specification MUST include a Frag-Status =
 Fragmentation-Supported attribute in the first Access-Request sent to
 the RADIUS Server, in order to indicate that they would accept
 fragmented data from the server. This is not required if the
 pre-authorization process was carried out, as it is implicit.

 The following is an Access-Accept that the RADIUS Server intends to
 send to a RADIUS Client. However, due to a combination of issues
 (PMTU, large attributes, etc.), the content does not fit into one
 Access-Accept packet.

Access‑Accept
 User‑Name
 EAP‑Message
 Service‑Type = Login
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1
 Example‑Long‑2 [M]
 Example‑Long‑2 [M]
 Example‑Long‑2
 State = 0xcba00003

 Figure 8: Desired Access-Accept

 The RADIUS Server therefore must send the attributes listed above in
 a series of chunks. The first chunk contains seven (7) attributes
 from the original Access-Accept, and a Frag-Status attribute. Since
 the last attribute is "Example-Long-1" with the M flag set, the
 chunking process also sets the T flag in that attribute. The
 Access-Accept is sent with a RADIUS Identifier field having value 30,
 corresponding to a previous Access-Request not depicted. The
 Frag-Status attribute has value More-Data-Pending, to indicate that
 the RADIUS Server wishes to send more data in a subsequent
 Access-Accept. The RADIUS Server also adds a Service-Type attribute
 with value Additional-Authorization, which indicates that it is part
 of the chunking process. Note that the original Service-Type is not
 included in this chunk. Finally, a State attribute is included to
 allow matching subsequent requests with this conversation, and the
 packet is signed with the Message-Authenticator attribute, completing
 the maximum number of attributes (11).

Access‑Accept (ID = 30)
 User‑Name
 EAP‑Message
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [MT]
 Frag‑Status = More‑Data‑Pending
 Service‑Type = Additional‑Authorization
 State = 0xcba00004
 Message‑Authenticator

 Figure 9: Access-Accept (Chunk 1)

 Compliant RADIUS Clients receiving this packet will see the
 Frag-Status attribute and suspend all authorization handling until
 all of the chunks have been received. Non-compliant RADIUS Clients
 should also see the Service-Type indicating the provisioning for an
 unknown service and will treat it as an Access-Reject.

 RADIUS Clients who wish to receive all of the chunks will respond
 with the following packet, where the value of the State attribute is
 taken from the received Access-Accept. They will also include the
 User-Name attribute so that non-compliant proxies can process the
 packet (Section 11.1).

Access‑Request (ID = 131)
 User‑Name
 Frag‑Status = More‑Data‑Request
 Service‑Type = Additional‑Authorization
 State = 0xcba00004
 Message‑Authenticator

 Figure 10: Access-Request (Chunk 1)

 The RADIUS Server receives this request and uses the State attribute
 to associate it with an ongoing chunking session. Compliant RADIUS
 Servers will then continue the chunking process. Non-compliant
 RADIUS Servers will never see a response such as this, as they will
 never send a Frag-Status attribute.

 The RADIUS Server continues the chunking process by sending the next
 chunk, with the final attribute(s) from the original packet. The
 value of the Identifier field is taken from the received
 Access-Request. A Frag-Status attribute is not included in the next
 Access-Accept, as no more chunks are available for sending. The
 RADIUS Server includes the original State attribute to allow the
 RADIUS Client to send additional authorization data. The original
 Service-Type attribute is included as well.

Access‑Accept (ID = 131)
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1 [M]
 Example‑Long‑1
 Example‑Long‑2 [M]
 Example‑Long‑2 [M]
 Example‑Long‑2
 Service‑Type = Login
 State = 0xfda000003
 Message‑Authenticator

 Figure 11: Access-Accept (Chunk 2)

 On reception of this last chunk, the RADIUS Client matches it with an
 ongoing session via the Identifier field and sees that there is no
 Frag-Status attribute present. It then processes the received
 attributes as if they had been sent in one RADIUS packet. See
 Section 8.4 for further details on this process.

6. Chunk Size

 In an ideal scenario, each intermediate chunk would be exactly the
 size limit in length. In this way, the number of round trips
 required to send a large packet would be optimal. However, this is
 not possible for several reasons.

 1. RADIUS attributes have a variable length and must be included
 completely in a chunk. Thus, it is possible that, even if there
 is some free space in the chunk, it is not enough to include the
 next attribute. This can generate up to 254 bytes of spare space
 in every chunk.

 2. RADIUS fragmentation requires the introduction of some extra
 attributes for signaling. Specifically, a Frag-Status attribute
 (7 bytes) is included in every chunk of a packet, except the last
 one. A RADIUS State attribute (from 3 to 255 bytes) is also
 included in most chunks, to allow the RADIUS Server to bind an
 Access-Request with a previous Access-Challenge. User-Name
 attributes (from 3 to 255 bytes) are included in every chunk the
 RADIUS Client sends, as they are required by the proxies to route
 the packet to its destination. Together, these attributes can
 generate from up to 13 to 517 bytes of signaling data, reducing
 the amount of payload information that can be sent in each chunk.

 3. RADIUS packets SHOULD be adjusted to avoid exceeding the network
 MTU. Otherwise, IP fragmentation may occur, with undesirable
 consequences. Hence, maximum chunk size would be decreased from
 4096 to the actual MTU of the network.

 4. The inclusion of Proxy-State attributes by intermediary proxies
 can decrease the availability of usable space in the chunk. This
 is described in further detail in Section 8.1.

7. Allowed Large Packet Size

 There are no provisions for signaling how much data is to be sent via
 the fragmentation process as a whole. It is difficult to define what
 is meant by the "length" of any fragmented data. That data can be
 multiple attributes and can include RADIUS attribute header fields,
 or it can be one or more "large" attributes (more than 256 bytes in
 length). Proxies can also filter these attributes, to modify, add,
 or delete them and their contents. These proxies act on a "packet by
 packet" basis and cannot know what kind of filtering actions they
 will take on future packets. As a result, it is impossible to signal
 any meaningful value for the total amount of additional data.

 Unauthenticated end users are permitted to trigger the exchange of
 large amounts of fragmented data between the RADIUS Client and the
 RADIUS Server, having the potential to allow denial-of-service (DoS)
 attacks. An attacker could initiate a large number of connections,
 each of which requests the RADIUS Server to store a large amount of
 data. This data could cause memory exhaustion on the RADIUS Server
 and result in authentic users being denied access. It is worth
 noting that authentication mechanisms are already designed to avoid
 exceeding the size limit.

 Hence, implementations of this specification MUST limit the total
 amount of data they send and/or receive via this specification. Its
 default value SHOULD be 100 kilobytes. Any more than this may turn
 RADIUS into a generic transport protocol, which is undesirable. This
 limit SHOULD be configurable, so that it can be changed if necessary.

 Implementations of this specification MUST limit the total number of
 round trips used during the fragmentation process. Its default value
 SHOULD be 25. Any more than this may indicate an implementation
 error, misconfiguration, or DoS attack. This limit SHOULD be
 configurable, so that it can be changed if necessary.

For instance, let's imagine that the RADIUS Server wants to transport
a SAML assertion that is 15000 bytes long to the RADIUS Client. In
this hypothetical scenario, we assume that there are three
intermediate proxies, each one inserting a Proxy‑State attribute of
20 bytes. Also, we assume that the State attributes generated by the
RADIUS Server have a size of 6 bytes and the User‑Name attribute
takes 50 bytes. Therefore, the amount of free space in a chunk for
the transport of the SAML assertion attributes is as follows:
Total (4096 bytes) ‑ RADIUS header (20 bytes) ‑ User‑Name (50 bytes)
‑ Frag‑Status (7 bytes) ‑ Service‑Type (6 bytes) ‑ State (6 bytes) ‑
Proxy‑State (20 bytes) ‑ Proxy‑State (20 bytes) ‑ Proxy‑State
(20 bytes) ‑ Message‑Authenticator (18 bytes), resulting in a total
of 3929 bytes. This amount of free space allows the transmission of
up to 15 attributes of 255 bytes each.

 According to [RFC6929], a Long-Extended-Type provides a payload of
 251 bytes. Therefore, the SAML assertion described above would
 result in 60 attributes, requiring four round trips to be completely
 transmitted.

8. Handling Special Attributes

8.1. Proxy-State Attribute

 RADIUS proxies may introduce Proxy-State attributes into any
 Access-Request packet they forward. If they are unable to add this
 information to the packet, they may silently discard it rather than
 forward it to its destination; this would lead to DoS situations.
 Moreover, any Proxy-State attribute received by a RADIUS Server in an
 Access-Request packet MUST be copied into the corresponding reply
 packet. For these reasons, Proxy-State attributes require special
 treatment within the packet fragmentation mechanism.

 When the RADIUS Server replies to an Access-Request packet as part of
 a conversation involving a fragmentation (either a chunk or a request
 for chunks), it MUST include every Proxy-State attribute received in
 the reply packet. This means that the RADIUS Server MUST take into
 account the size of these Proxy-State attributes in order to
 calculate the size of the next chunk to be sent.

 However, while a RADIUS Server will always know how much space MUST
 be left in each reply packet for Proxy-State attributes (as they are
 directly included by the RADIUS Server), a RADIUS Client cannot know
 this information, as Proxy-State attributes are removed from the
 reply packet by their respective proxies before forwarding them back.
 Hence, RADIUS Clients need a mechanism to discover the amount of
 space required by proxies to introduce their Proxy-State attributes.
 In the following paragraphs, we describe a new mechanism to perform
 such a discovery:

 1. When a RADIUS Client does not know how much space will be
 required by intermediate proxies for including their Proxy-State
 attributes, it SHOULD start using a conservative value (e.g.,
 1024 bytes) as the chunk size.

 2. When the RADIUS Server receives a chunk from the RADIUS Client,
 it can calculate the total size of the Proxy-State attributes
 that have been introduced by intermediary proxies along the path.
 This information MUST be returned to the RADIUS Client in the
 next reply packet, encoded into a new attribute called
 Proxy-State-Length. The RADIUS Server MAY artificially increase
 this quantity in order to handle situations where proxies behave
 inconsistently (e.g., they generate Proxy-State attributes with a
 different size for each packet) or where intermediary proxies
 remove Proxy-State attributes generated by other proxies.
 Increasing this value would make the RADIUS Client leave some
 free space for these situations.

 3. The RADIUS Client SHOULD respond to the reception of this
 attribute by adjusting the maximum size for the next chunk
 accordingly. However, as the Proxy-State-Length offers just an
 estimation of the space required by the proxies, the RADIUS
 Client MAY select a smaller amount in environments known to be
 problematic.

8.2. State Attribute

 This RADIUS fragmentation mechanism makes use of the State attribute
 to link all the chunks belonging to the same fragmented packet.
 However, some considerations are required when the RADIUS Server is
 fragmenting a packet that already contains a State attribute for
 other purposes not related to the fragmentation. If the procedure
 described in Section 5 is followed, two different State attributes
 could be included in a single chunk. This is something explicitly
 forbidden in [RFC2865].

 A straightforward solution consists of making the RADIUS Server send
 the original State attribute in the last chunk of the sequence
 (attributes can be reordered as specified in [RFC2865]). As the last
 chunk (when generated by the RADIUS Server) does not contain any
 State attribute due to the fragmentation mechanism, both situations
 described above are avoided.

 Something similar happens when the RADIUS Client has to send a
 fragmented packet that contains a State attribute in it. The RADIUS
 Client MUST ensure that this original State is included in the first
 chunk sent to the RADIUS Server (as this one never contains any State
 attribute due to fragmentation).

8.3. Service-Type Attribute

 This RADIUS fragmentation mechanism makes use of the Service-Type
 attribute to indicate that an Access-Accept packet is not granting
 access to the service yet, since an additional authorization exchange
 needs to be performed. Similarly to the State attribute, the RADIUS
 Server has to send the original Service-Type attribute in the last
 Access-Accept of the RADIUS conversation to avoid ambiguity.

8.4. Rebuilding the Original Large Packet

 The RADIUS Client stores the RADIUS attributes received in each chunk
 in a list, in order to be able to rebuild the original large packet
 after receiving the last chunk. However, some of these received
 attributes MUST NOT be stored in that list, as they have been
 introduced as part of the fragmentation signaling and hence are not
 part of the original packet.

 o State (except the one in the last chunk, if present)

 o Service-Type = Additional-Authorization

 o Frag-Status

 o Proxy-State-Length

 Similarly, the RADIUS Server MUST NOT store the following attributes
 as part of the original large packet:

 o State (except the one in the first chunk, if present)

 o Service-Type = Additional-Authorization

 o Frag-Status

 o Proxy-State (except the ones in the last chunk)

 o User-Name (except the one in the first chunk)

9. New T Flag for the Long Extended Type Attribute Definition

 This document defines a new field in the Long Extended Type attribute
 format. This field is one bit in size and is called "T" for
 Truncation. It indicates that the attribute is intentionally
 truncated in this chunk and is to be continued in the next chunk of
 the sequence. The combination of the M flag and the T flag indicates
 that the attribute is fragmented (M flag) but that all the fragments
 are not available in this chunk (T flag). Proxies implementing
 [RFC6929] will see these attributes as invalid (they will not be able
 to reconstruct them), but they will still forward them, as
 Section 5.2 of [RFC6929] indicates that they SHOULD forward unknown
 attributes anyway.

 As a consequence of this addition, the Reserved field is now 6 bits
 long (see Section 12.1 for some considerations). The following
 figure represents the new attribute format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type |M|T| Reserved |
+‑+
| Value ...
+‑+

 Figure 12: Updated Long Extended Type Attribute Format

10. New Attribute Definition

 This document proposes the definition of two new extended type
 attributes, called Frag-Status and Proxy-State-Length. The format of
 these attributes follows the indications for an Extended Type
 attribute defined in [RFC6929].

10.1. Frag-Status Attribute

 This attribute is used for fragmentation signaling, and its meaning
 depends on the code value transported within it. The following
 figure represents the format of the Frag-Status attribute:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Code
+‑+
 Code (cont) |
+‑+

 Figure 13: Frag-Status Format

 Type

 241

 Length

 7

 Extended-Type

 1

 Code

 4 bytes. Integer indicating the code. The values defined in this
 specification are:

 0 - Reserved

 1 - Fragmentation-Supported

 2 - More-Data-Pending

 3 - More-Data-Request

 This attribute MAY be present in Access-Request, Access-Challenge,
 and Access-Accept packets. It MUST NOT be included in Access-Reject
 packets. RADIUS Clients supporting this specification MUST include a
 Frag-Status = Fragmentation-Supported attribute in the first
 Access-Request sent to the RADIUS Server, in order to indicate that
 they would accept fragmented data from the server.

10.2. Proxy-State-Length Attribute

 This attribute indicates to the RADIUS Client the length of the
 Proxy-State attributes received by the RADIUS Server. This
 information is useful for adjusting the length of the chunks sent by
 the RADIUS Client. The format of this Proxy-State-Length attribute
 is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value
+‑+
 Value (cont) |
+‑+

 Figure 14: Proxy-State-Length Format

 Type

 241

 Length

 7

 Extended-Type

 2

 Value

 4 bytes. Total length (in bytes) of received Proxy-State
 attributes (including headers). As the RADIUS Length field cannot
 take values over 4096 bytes, values of Proxy-State-Length MUST be
 less than that maximum length.

 This attribute MAY be present in Access-Challenge and Access-Accept
 packets. It MUST NOT be included in Access-Request or Access-Reject
 packets.

10.3. Table of Attributes

 The following table shows the different attributes defined in this
 document, along with the types of RADIUS packets in which they can be
 present.

 | Type of Packet |
 +‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+
Attribute Name | Req | Acc | Rej | Cha |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+
Frag‑Status | 0‑1 | 0‑1 | 0 | 0‑1 |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+
Proxy‑State‑Length | 0 | 0‑1 | 0 | 0‑1 |
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+‑‑‑‑‑+

11. Operation with Proxies

 The fragmentation mechanism defined above is designed to be
 transparent to legacy proxies, as long as they do not want to modify
 any fragmented attribute. Nevertheless, updated proxies supporting
 this specification can even modify fragmented attributes.

11.1. Legacy Proxies

 As every chunk is indeed a RADIUS packet, legacy proxies treat them
 as they would the rest of the packets, routing them to their
 destination. Proxies can introduce Proxy-State attributes into
 Access-Request packets, even if they are indeed chunks. This will
 not affect how fragmentation is managed. The RADIUS Server will
 include all the received Proxy-State attributes in the generated
 response, as described in [RFC2865]. Hence, proxies do not
 distinguish between a regular RADIUS packet and a chunk.

11.2. Updated Proxies

 Updated proxies can interact with RADIUS Clients and Servers in order
 to obtain the complete large packet before starting to forward it.
 In this way, proxies can manipulate (modify and/or remove) any
 attribute of the packet or introduce new attributes, without worrying
 about crossing the boundaries of the chunk size. Once the
 manipulated packet is ready, it is sent to the original destination
 using the fragmentation mechanism (if required). The example in
 Figure 15 shows how an updated proxy interacts with the RADIUS Client
 to (1) obtain a large Access-Request packet and (2) modify an
 attribute, resulting in an even larger packet. The proxy then
 interacts with the RADIUS Server to complete the transmission of the
 modified packet, as shown in Figure 16.

+‑+‑+‑+‑+‑+ +‑+‑+‑+‑+‑+
| RADIUS | | RADIUS |
| Client | | Proxy |
+‑+‑+‑+‑+‑+ +‑+‑+‑+‑+‑+
 | |
 | Access‑Request(1){User‑Name,Calling‑Station‑Id, |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[MT],Frag‑Status(MDP)} |
 |‑‑‑>|
 | |
 | Access‑Challenge(1){User‑Name, |
 | Frag‑Status(MDR),State1} |
 |<‑‑‑|
 | |
 | Access‑Request(2){User‑Name,State1, |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[M],Example‑Long‑1} |
 |‑‑‑>|

 Proxy Modifies Attribute Data, Increasing Its

 Size from 9 Fragments to 11 Fragments

 Figure 15: Updated Proxy Interacts with RADIUS Client

+‑+‑+‑+‑+‑+ +‑+‑+‑+‑+‑+
| RADIUS | | RADIUS |
| Proxy | | Server |
+‑+‑+‑+‑+‑+ +‑+‑+‑+‑+‑+
 | |
 | Access‑Request(3){User‑Name,Calling‑Station‑Id, |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[MT],Frag‑Status(MDP)} |
 |‑‑‑>|
 | |
 | Access‑Challenge(1){User‑Name, |
 | Frag‑Status(MDR),State2} |
 |<‑‑‑|
 | |
 | Access‑Request(4){User‑Name,State2, |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[M],Example‑Long‑1[M], |
 | Example‑Long‑1[MT],Frag‑Status(MDP)} |
 |‑‑‑>|
 | |
 | Access‑Challenge(1){User‑Name, |
 | Frag‑Status(MDR),State3} |
 |<‑‑‑|
 | |
 | Access‑Request(5){User‑Name,State3,Example‑Long‑1} |
 |‑‑‑>|

 Figure 16: Updated Proxy Interacts with RADIUS Server

12. General Considerations

12.1. T Flag

 As described in Section 9, this document modifies the definition of
 the Reserved field of the Long Extended Type attribute [RFC6929] by
 allocating an additional flag called the T flag. The meaning and
 position of this flag are defined in this document, and nowhere else.
 This might cause an issue if subsequent specifications want to
 allocate a new flag as well, as there would be no direct way for them
 to know which parts of the Reserved field have already been defined.

 An immediate and reasonable solution for this issue would be
 declaring that this RFC updates [RFC6929]. In this way, [RFC6929]
 would include an "Updated by" clause that will point readers to this
 document. Another alternative would be creating an IANA registry for
 the Reserved field. However, the RADIUS Extensions (RADEXT) working
 group thinks that would be overkill, as a large number of
 specifications extending that field are not expected.

 In the end, the proposed solution is that this experimental RFC
 should not update RFC 6929. Instead, we rely on the collective mind
 of the working group to remember that this T flag is being used as
 specified by this Experimental document. If the experiment is
 successful, the T flag will be properly assigned.

12.2. Violation of RFC 2865

 Section 5.1 indicates that all authorization and authentication
 handling will be postponed until all the chunks have been received.
 This postponement also applies to the verification that the
 Access-Request packet contains some kind of authentication attribute
 (e.g., User-Password, CHAP-Password, State, or other future
 attribute), as required by [RFC2865]. This checking will therefore
 be delayed until the original large packet has been rebuilt, as some
 of the chunks may not contain any of them.

 The authors acknowledge that this specification violates the "MUST"
 requirement of [RFC2865], Section 4.1 that states that "An
 Access-Request MUST contain either a User-Password or a CHAP-Password
 or a State." We note that a proxy that enforces that requirement
 would be unable to support future RADIUS authentication extensions.
 Extensions to the protocol would therefore be impossible to deploy.
 All known implementations have chosen the philosophy of "be liberal
 in what you accept." That is, they accept traffic that violates the
 requirement of [RFC2865], Section 4.1. We therefore expect to see no
 operational issues with this specification. After we gain more
 operational experience with this specification, it can be reissued as
 a Standards Track document and can update [RFC2865].

12.3. Proxying Based on User-Name

 This proposal assumes that legacy proxies base their routing
 decisions on the value of the User-Name attribute. For this reason,
 every packet sent from the RADIUS Client to the RADIUS Server (either
 chunks or requests for more chunks) MUST contain a User-Name
 attribute.

12.4. Transport Behavior

This proposal does not modify the way RADIUS interacts with the
underlying transport (UDP). That is, RADIUS keeps following a
lock‑step behavior that requires receiving an explicit
acknowledgement for each chunk sent. Hence, bursts of traffic
that could congest links between peers are not an issue.

 Another benefit of the lock-step nature of RADIUS is that there are
 no security issues with overlapping fragments. Each chunk simply has
 a length, with no Fragment Offset field as with IPv4. The order of
 the fragments is determined by the order in which they are received.
 There is no ambiguity about the size or placement of each chunk, and
 therefore no security issues associated with overlapping chunks.

13. Security Considerations

 As noted in many earlier specifications ([RFC5080], [RFC6158], etc.),
 RADIUS security is problematic. This specification changes nothing
 related to the security of the RADIUS protocol. It requires that all
 Access-Request packets associated with fragmentation are
 authenticated using the existing Message-Authenticator attribute.
 This signature prevents forging and replay, to the limits of the
 existing security.

 The ability to send bulk data from one party to another creates new
 security considerations. RADIUS Clients and Servers may have to
 store large amounts of data per session. The amount of this data can
 be significant, leading to the potential for resource exhaustion. We
 therefore suggest that implementations limit the amount of bulk data
 stored per session. The exact method for this limitation is
 implementation-specific. Section 7 gives some indications of what
 could be reasonable limits.

 The bulk data can often be pushed off to storage methods other than
 the memory of the RADIUS implementation. For example, it can be
 stored in an external database or in files. This approach mitigates
 the resource exhaustion issue, as RADIUS Servers today already store
 large amounts of accounting data.

14. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) has registered the
 Attribute Types and Attribute Values defined in this document in the
 RADIUS namespaces as described in the "IANA Considerations" section
 of [RFC3575], in accordance with BCP 26 [RFC5226]. For RADIUS
 packets, attributes, and registries created by this document, IANA
 has updated <http://www.iana.org/assignments/radius-types>
 accordingly.

In particular, this document defines two new RADIUS attributes,
entitled "Frag‑Status" (value 241.1) and "Proxy‑State‑Length"
(value 241.2), which have been allocated from the short extended
space as described in [RFC6929]:

Type Name Length Meaning
‑‑‑‑ ‑‑‑‑ ‑‑‑‑‑‑ ‑‑‑‑‑‑‑
241.1 Frag‑Status 7 Signals fragmentation
241.2 Proxy‑State‑Length 7 Indicates the length of the
 received Proxy‑State attributes

 The Frag-Status attribute also defines an 8-bit "Code" field, for
 which IANA has created and now maintains a new sub-registry entitled
 "Code Values for RADIUS Attribute 241.1, Frag-Status". Initial
 values for the RADIUS Frag-Status "Code" registry are given below;
 future assignments are to be made through "RFC Required" [RFC5226].
 Assignments consist of a Frag-Status "Code" name and its associated
 value.

Value Frag‑Status Code Name Definition
‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
0 Reserved See Section 10.1
1 Fragmentation‑Supported See Section 10.1
2 More‑Data‑Pending See Section 10.1
3 More‑Data‑Request See Section 10.1
4‑255 Unassigned

 Additionally, IANA has allocated a new Service-Type value for
 "Additional-Authorization".

Value Service Type Value Definition
‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑
19 Additional‑Authorization See Section 5.1

15. References

15.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000, <http://www.rfc-editor.org/
 info/rfc2865>.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 July 2003, <http://www.rfc-editor.org/info/rfc3575>.

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008, <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6158]
 DeKok, A., Ed., and G. Weber, "RADIUS Design Guidelines",
 BCP 158, RFC 6158, March 2011,
 <http://www.rfc-editor.org/info/rfc6158>.

 [RFC6929]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 April 2013, <http://www.rfc-editor.org/info/rfc6929>.

15.2. Informative References

 [ABFAB-Arch]

 Howlett, J., Hartman, S., Tschofenig, H., Lear, E., and J.
 Schaad, "Application Bridging for Federated Access Beyond
 Web (ABFAB) Architecture", Work in Progress,
 draft-ietf-abfab-arch-13, July 2014.

 [RADIUS-Larger-Pkts]

 Hartman, S., "Larger Packets for RADIUS over TCP", Work in
 Progress, draft-ietf-radext-bigger-packets-03, March 2015.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000,
 <http://www.rfc-editor.org/info/rfc2866>.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003,
 <http://www.rfc-editor.org/info/rfc3579>.

 [RFC4849]
 Congdon, P., Sanchez, M., and B. Aboba, "RADIUS Filter
 Rule Attribute", RFC 4849, April 2007,
 <http://www.rfc-editor.org/info/rfc4849>.

 [RFC5080]
 Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007,
 <http://www.rfc-editor.org/info/rfc5080>.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008, <http://www.rfc-editor.org/info/rfc5176>.

 [SAML-RADIUS]

 Howlett, J., Hartman, S., and A. Perez-Mendez, Ed., "A
 RADIUS Attribute, Binding, Profiles, Name Identifier
 Format, and Confirmation Methods for SAML", Work in
 Progress, draft-ietf-abfab-aaa-saml-10, February 2015.

Acknowledgements

 The authors would like to thank the members of the RADEXT working
 group who have contributed to the development of this specification
 by either participating in the discussions on the mailing lists or
 sending comments about our RFC.

 The authors also thank David Cuenca (University of Murcia) for
 implementing a proof-of-concept implementation of this RFC that has
 been useful to improve the quality of the specification.

 This work has been partly funded by the GEANT GN3+ SA5 and CLASSe
 (<http://www.um.es/classe/>) projects.

Authors' Addresses

Alejandro Perez‑Mendez (editor)
University of Murcia
Campus de Espinardo S/N, Faculty of Computer Science
Murcia 30100
Spain

Phone: +34 868 88 46 44
EMail: alex@um.es

Rafa Marin‑Lopez
University of Murcia
Campus de Espinardo S/N, Faculty of Computer Science
Murcia 30100
Spain

Phone: +34 868 88 85 01
EMail: rafa@um.es

Fernando Pereniguez‑Garcia
University of Murcia
Campus de Espinardo S/N, Faculty of Computer Science
Murcia 30100
Spain

Phone: +34 868 88 78 82
EMail: pereniguez@um.es

Gabriel Lopez‑Millan
University of Murcia
Campus de Espinardo S/N, Faculty of Computer Science
Murcia 30100
Spain

Phone: +34 868 88 85 04
EMail: gabilm@um.es

Diego R. Lopez
Telefonica I+D
Don Ramon de la Cruz, 84
Madrid 28006
Spain

Phone: +34 913 129 041
EMail: diego@tid.es

Alan DeKok
Network RADIUS SARL
57bis Boulevard des Alpes
Meylan 38240
France

EMail: aland@networkradius.com
URI: http://networkradius.com

7542 - The Network Access Identifier

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7542

Obsoletes: 4282

Category: Standards Track

ISSN: 2070-1721

A. DeKok

FreeRADIUS

May 2015

The Network Access Identifier

Abstract

 In order to provide inter-domain authentication services, it is
 necessary to have a standardized method that domains can use to
 identify each other's users. This document defines the syntax for
 the Network Access Identifier (NAI), the user identifier submitted by
 the client prior to accessing resources. This document is a revised
 version of RFC 4282. It addresses issues with international
 character sets and makes a number of other corrections to RFC 4282.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7542.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	 1.3. Purpose

	 1.4. Motivation

	2. NAI Definition
	 2.1. UTF-8 Syntax and Normalization

	 2.2. Formal Syntax

	 2.3. NAI Length Considerations

	 2.4. Support for Username Privacy

	 2.5. International Character Sets

	 2.6. The Normalization Process
	 2.6.1. Issues with the Normalization Process

	 2.7. Use in Other Protocols

	 2.8. Using the NAI Format for Other Identifiers

	3. Routing inside of AAA Systems
	 3.1. Compatibility with Email Usernames

	 3.2. Compatibility with DNS

	 3.3. Realm Construction
	 3.3.1. Historical Practices

	 3.4. Examples

	4. Security Considerations
	 4.1. Correlation of Identities over Time and Protocols

	 4.2. Multiple Identifiers

	5. Administration of Names

	6. References
	 6.1. Normative References

	 6.2. Informative References

	Appendix A. Changes from RFC 4282

	Acknowledgments

	Author's Address

1. Introduction

 Considerable interest exists for a set of features that fit within
 the general category of inter-domain authentication, or "roaming
 capability" for network access, including dialup Internet users,
 Virtual Private Network (VPN) usage, wireless LAN authentication, and
 other applications.

 By "inter-domain authentication", this document refers to situations
 where a user has authentication credentials at one "home" domain but
 is able to present them at a second "visited" domain to access
 certain services at the visited domain. The two domains generally
 have a pre-existing relationship, so that the credentials can be
 passed from the visited domain to the home domain for verification.
 The home domain typically responds with a permit/deny response, which
 may also include authorization parameters that the visited domain is
 expected to enforce on the user.

 That is, the "roaming" scenario involves a user visiting, or
 "roaming" to, a non-home domain and requesting the use of services at
 that visited domain.

 Interested parties have included the following:

 * Regional Internet Service Providers (ISPs) operating within a
 particular state or province, looking to combine their efforts
 with those of other regional providers to offer dialup service
 over a wider area.

 * Telecommunications companies who wish to combine their operations
 with those of one or more companies in other areas or nations, in
 order to offer more comprehensive network access service in areas
 where there is no native service (e.g., in another country).

 * Wireless LAN hotspots providing service to one or more ISPs.

 * Businesses desiring to offer their employees a comprehensive
 package of dialup services on a global basis. Those services may
 include Internet access as well as secure access to corporate
 intranets via a VPN, enabled by tunneling protocols such as the
 Point-to-Point Tunneling Protocol (PPTP) [RFC2637], the Layer 2
 Forwarding (L2F) protocol [RFC2341], the Layer 2 Tunneling
 Protocol (L2TP) [RFC2661], and the IPsec tunnel mode [RFC4301].

 * Other protocols that are interested in leveraging the users'
 credentials in order to take advantage of an existing
 authentication framework.

 In order to enhance the interoperability of these services, it is
 necessary to have a standardized method for identifying users. This
 document defines syntax for the Network Access Identifier (NAI).
 Examples of implementations that use the NAI, and descriptions of its
 semantics, can be found in [RFC2194].

 When the NAI was defined for network access, it had the side effect
 of defining an identifier that could be used in non-AAA systems.
 Some non-AAA systems defined identifiers that were compatible with
 the NAI, and deployments used the NAI. This process simplified the
 management of credentials, by reusing the same credential in multiple
 situations. Protocols that reuse the same credential or the same
 identifier format can benefit from this simplified management. The
 alternative is to have protocol-specific credentials or identifier
 formats, which increases cost to both the user and the administrator.

 There are privacy implications to using one identifier across
 multiple protocols. See Sections 2.7 and 4 for further discussion of
 this topic.

 The goal of this document is to define the format of an identifier
 that can be used in many protocols. A protocol may transport an
 encoded version of the NAI (e.g., '.' as %2E). However, the
 definition of the NAI is protocol independent. The goal of this
 document is to encourage the widespread adoption of the NAI format.
 This adoption will decrease the work required to leverage
 identification and authentication in other protocols. It will also
 decrease the complexity of non-AAA systems for end users and
 administrators.

 This document only suggests that the NAI format be used; it does not
 require such use. Many protocols already define their own identifier
 formats. Some of these are incompatible with the NAI, while others
 allow the NAI in addition to non-NAI identifiers. The definition of
 the NAI in this document has no requirements on protocol
 specifications, implementations, or deployments.

 However, this document suggests that using one standard identifier
 format is preferable to using multiple incompatible identifier
 formats. Where identifiers need to be used in new protocols and/or
 specifications, it is RECOMMENDED that the format of the NAI be used.
 That is, the interpretation of the identifier is context specific,
 while the format of the identifier remains the same. These issues
 are discussed in more detail in Section 2.8, below.

 The recommendation for a standard identifier format is not a
 recommendation that each user have one universal identifier. In
 contrast, this document allows for the use of multiple identifiers
 and recommends the use of anonymous identifiers where those
 identifiers are publicly visible.

 This document is a revised version of [RFC4282], which originally
 defined internationalized NAIs. Differences and enhancements
 compared to that document are listed in Appendix A.

1.1. Terminology

 This document frequently uses the following terms:

 "Local" or "Localized" Text

 "Local" or "localized" text is text that is in either non-UTF-8 or
 non-normalized form. The character set, encoding, and locale are
 (in general) unknown to Authentication, Authorization, and
 Accounting (AAA) network protocols. The client that "knows" the
 locale may have a different concept of this text than other AAA
 entities, which do not know the same locale.

 Network Access Identifier

 The Network Access Identifier (NAI) is a common format for user
 identifiers submitted by a client during authentication. The
 purpose of the NAI is to allow a user to be associated with an
 account name, as well as to assist in the routing of the
 authentication request across multiple domains. Please note that
 the NAI may not necessarily be the same as the user's email
 address or the user identifier submitted in an application-layer
 authentication.

 Network Access Server

 The Network Access Server (NAS) is the device that clients connect
 to in order to get access to the network. In PPTP terminology,
 this is referred to as the PPTP Access Concentrator (PAC), and in
 L2TP terminology, it is referred to as the L2TP Access
 Concentrator (LAC). In IEEE 802.11, it is referred to as an
 Access Point.

 Roaming Capability

 Roaming capability can be loosely defined as the ability to use
 any one of multiple Internet Service Providers (ISPs), while
 maintaining a formal customer-vendor relationship with only one.
 Examples of cases where roaming capability might be required
 include ISP "confederations" and ISP-provided corporate network
 access support.

 Normalization or Canonicalization

 These terms are defined in Section 4 of [RFC6365]; those
 definitions are incorporated here by reference.

 Locale

 This term is defined in [RFC6365], Section 8; that definition is
 incorporated here by reference.

 Tunneling Service

 A tunneling service is any network service enabled by tunneling
 protocols such as PPTP, L2F, L2TP, and IPsec tunnel mode. One
 example of a tunneling service is secure access to corporate
 intranets via a Virtual Private Network (VPN).

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

1.3. Purpose

 As described in [RFC2194], there are a number of providers offering
 network access services, and essentially all Internet Service
 Providers are involved in roaming consortia.

 In order to be able to offer roaming capability, one of the
 requirements is to be able to identify the user's home authentication
 server. For use in roaming, this function is accomplished via the
 Network Access Identifier (NAI) submitted by the user to the NAS in
 the initial network authentication. It is also expected that NASes
 will use the NAI as part of the process of opening a new tunnel, in
 order to determine the tunnel endpoint.

 This document suggests that other protocols can take advantage of the
 NAI format. Many protocols include authentication capabilities,
 including defining their own identifier formats. These identifiers
 can then end up being transported in AAA protocols, so that the
 originating protocols can leverage AAA for user authentication.
 There is therefore a need for a definition of a user identifier that
 can be used in multiple protocols.

 While the NAI is defined herein, it should be noted that existing
 protocols and deployments do not always use it. AAA systems MUST
 therefore be able to handle user identifiers that are not in the NAI
 format. The process by which that is done is outside of the scope of
 this document.

 Non-AAA systems can accept user identifiers in forms other than the
 NAI. This specification does not forbid that practice. It only
 codifies the format and interpretation of the NAI. This document
 cannot change existing protocols or practices. It can, however,
 suggest that using a consistent form for a user identifier is of
 benefit to the community.

 This document does not make any protocol-specific definitions for an
 identifier format, and it does not make changes to any existing
 protocol. Instead, it defines a protocol-independent form for the
 NAI. It is hoped that the NAI is a user identifier that can be used
 in multiple protocols.

 Using a common identifier format simplifies protocols requiring
 authentication, as they no longer need to specify a protocol-specific
 format for user identifiers. It increases security, as multiple
 identifier formats allow attackers to make contradictory claims
 without being detected (see Section 4.2 for further discussion of
 this topic). It simplifies deployments, as a user can have one
 identifier in multiple contexts, which allows them to be uniquely
 identified, so long as that identifier is itself protected against
 unauthorized access.

 In short, having a standard is better than having no standard at all.

1.4. Motivation

 The changes from [RFC4282] are listed in detail in Appendix A.
 However, some additional discussion is appropriate to motivate those
 changes.

 The motivation to revise [RFC4282] began with internationalization
 concerns raised in the context of [EDUROAM]. Section 2.1 of
 [RFC4282] defines ABNF for realms and limits the realm grammar to
 English letters, digits, and the hyphen "-" character. The intent
 appears to have been to encode, compare, and transport realms with
 the Punycode [RFC3492] encoding form as described in [RFC5891].
 There are a number of problems with this approach:

* The [RFC4282] ABNF is not aligned with internationalization
 of DNS.

 * The requirement in Section 2.1 of [RFC4282] that realms are ASCII
 conflicts with the Extensible Authentication Protocol (EAP) as
 defined in [RFC3748], and RADIUS, which are both 8-bit clean, and
 which both recommend the use of UTF-8 for identifiers.

 * Section 2.4 of [RFC4282] required mappings that are language
 specific and that are nearly impossible for intermediate nodes to
 perform correctly without information about that language.

 * Section 2.4 of [RFC4282] requires normalization of usernames,
 which may conflict with local system or administrative
 requirements.

 * The recommendations in Section 2.4 of [RFC4282] for treatment of
 bidirectional characters have proven to be unworkable.

 * The prohibition of the use of unassigned code points in
 Section 2.4 of [RFC4282] effectively prohibits support for new
 scripts.

 * No Authentication, Authorization, and Accounting (AAA) client,
 proxy, or server has implemented any of the requirements in
 Section 2.4 of [RFC4282], among other sections.

 With international roaming growing in popularity, it is important for
 these issues to be corrected in order to provide robust and
 interoperable network services.

 Furthermore, this document was motivated by a desire to codify
 existing practice related to the use of the NAI format and to
 encourage widespread use of the format.

2. NAI Definition

2.1. UTF-8 Syntax and Normalization

 UTF-8 characters can be defined in terms of octets using the
 following ABNF [RFC5234], taken from [RFC3629]:

UTF8‑xtra‑char = UTF8‑2 / UTF8‑3 / UTF8‑4

UTF8‑2 = %xC2‑DF UTF8‑tail

UTF8‑3 = %xE0 %xA0‑BF UTF8‑tail /
 %xE1‑EC 2(UTF8‑tail) /
 %xED %x80‑9F UTF8‑tail /
 %xEE‑EF 2(UTF8‑tail)

UTF8‑4 = %xF0 %x90‑BF 2(UTF8‑tail) /
 %xF1‑F3 3(UTF8‑tail) /
 %xF4 %x80‑8F 2(UTF8‑tail)

UTF8‑tail = %x80‑BF

 These are normatively defined in [RFC3629] but are repeated in this
 document for reasons of convenience.

 See [RFC5198] and Section 2.6 of this specification for a discussion
 of normalization. Strings that are not Normal Form Composed (NFC)
 are not valid NAIs and SHOULD NOT be treated as such.
 Implementations that expect to receive an NAI but that instead
 receive non-normalized (but otherwise valid) UTF-8 strings instead
 SHOULD attempt to create a local version of the NAI, which is
 normalized from the input identifier. This local version can then be
 used for local processing. This local version of the identifier MUST
 NOT be used outside of the local context.

 Where protocols carry identifiers that are expected to be transported
 over a AAA protocol, it is RECOMMENDED that the identifiers be in NAI
 format. Where the identifiers are not in the NAI format, it is up to
 the AAA systems to discover this and to process them. This document
 does not suggest how that is done. However, existing practice
 indicates that it is possible.

 As internationalized domain names become more widely used, existing
 practices are likely to become inadequate. This document therefore
 defines the NAI, which is a user identifier format that can correctly
 deal with internationalized identifiers.

2.2. Formal Syntax

 The grammar for the NAI is given below, described in Augmented
 Backus-Naur Form (ABNF) as documented in [RFC5234].

nai = utf8‑username
nai =/ "@" utf8‑realm
nai =/ utf8‑username "@" utf8‑realm

utf8‑username = dot‑string

dot‑string = string *("." string)
string = 1*utf8‑atext

utf8‑atext = ALPHA / DIGIT /
 "!" / "#" /
 "$" / "%" /
 "&" / "'" /
 "*" / "+" /
 "‑" / "/" /
 "=" / "?" /
 "^" / "_" /
 "`" / "{" /
 "|" / "}" /
 "~" /
 UTF8‑xtra‑char

utf8‑realm = 1*(label ".") label

label = utf8‑rtext *(ldh‑str)
ldh‑str = *(utf8‑rtext / "‑") utf8‑rtext
utf8‑rtext = ALPHA / DIGIT / UTF8‑xtra‑char

2.3. NAI Length Considerations

Devices handling NAIs MUST support an NAI length of at least
72 octets. Devices SHOULD support an NAI length of 253 octets.
However, the following implementation issues should be considered:

 * NAI octet length constraints may impose a more severe constraint
 on the number of UTF-8 characters.

 * NAIs are often transported in the User-Name attribute of the
 Remote Authentication Dial-In User Service (RADIUS) protocol.
 Unfortunately, [RFC2865], Section 5.1 states that "the ability to
 handle at least 63 octets is recommended." As a result, it may
 not be possible to transfer NAIs beyond 63 octets through all
 devices. In addition, since only a single User-Name attribute may

 be included in a RADIUS message and the maximum attribute length
 is 253 octets, RADIUS is unable to support NAI lengths beyond
 253 octets.

* NAIs can also be transported in the User‑Name attribute of
 Diameter [RFC6733], which supports content lengths up to
 2^24 ‑ 9 octets. As a result, NAIs processed only by Diameter
 nodes can be very long. However, an NAI transported over Diameter
 may eventually be translated to RADIUS, in which case the above
 limitations will apply.

 * NAIs may be transported in other protocols. Each protocol can
 have its own limitations on maximum NAI length.

 The above criteria should permit the widest use and widest possible
 interoperability of the NAI.

2.4. Support for Username Privacy

 Interpretation of the username part of the NAI depends on the realm
 in question. Therefore, the utf8-username portion SHOULD be treated
 as opaque data when processed by nodes that are not a part of the
 home domain for that realm.

 That is, the only domain that is capable of interpreting the meaning
 of the utf8-username portion of the NAI is the home domain. Any
 third-party domains cannot form any conclusions about the
 utf8-username and cannot decode it into subfields. For example, it
 may be used as "firstname.lastname", or it may be entirely digits, or
 it may be a random hex identifier. There is simply no way (and no
 reason) for any other domain to interpret the utf8-username field as
 having any meaning whatsoever.

 In some situations, NAIs are used together with a separate
 authentication method that can transfer the username part in a more
 secure manner to increase privacy. In this case, NAIs MAY be
 provided in an abbreviated form by omitting the username part.
 Omitting the username part is RECOMMENDED over using a fixed username
 part, such as "anonymous", since including a fixed username part is
 ambiguous as to whether or not the NAI refers to a single user.
 However, current practice is to use the username "anonymous" instead
 of omitting the username part. This behavior is also permitted.

 The most common use case of omitting or obfuscating the username part
 is with TLS-based EAP methods such as Tunneled Transport Layer
 Security (TTLS) [RFC5281]. Those methods allow for an "outer"
 identifier, which is typically an anonymous "@realm". This outer
 identifier allows the authentication request to be routed from a
 visited domain to a home domain. At the same time, the username part
 is kept confidential from the visited network. The protocol provides
 for an "inner" authentication exchange, in which a full identifier is
 used to authenticate a user.

 That scenario offers the best of both worlds. An anonymous NAI can
 be used to route authentication to the home domain, and the home
 domain has sufficient information to identify and authenticate users.

 However, some protocols do not support authentication methods that
 allow for "inner" and "outer" exchanges. Those protocols are limited
 to using an identifier that is publicly visible. It is therefore
 RECOMMENDED that such protocols use ephemeral identifiers. We
 recognize that this practice is not currently used and will likely be
 difficult to implement.

 Similar to the anonymous user, there may be situations where portions
 of the realm are sensitive. For those situations, it is RECOMMENDED
 that the sensitive portion of the realm also be omitted (e.g., to use
 "@example.com" instead of "@sensitive.example.com", or
 "anonymous@sensitive.example.com"). The home domain is authoritative
 for users in all subdomains and can (if necessary) route the
 authentication request to the appropriate subsystem within the home
 domain.

 For roaming purposes, it is typically necessary to locate the
 appropriate backend authentication server for the given NAI before
 the authentication conversation can proceed. As a result,
 authentication routing is impossible unless the realm portion is
 available and is in a well-known format.

2.5. International Character Sets

 This specification allows both international usernames and realms.
 International usernames are based on the use of Unicode characters,
 encoded as UTF-8. Internationalization of the username portion of
 the NAI is based on the "Internationalized Email Headers" [RFC6532]
 extensions to the "local-part" portion of email addresses [RFC5322].

 In order to ensure a canonical representation, characters of the
 realm portion in an NAI MUST match the ABNF in this specification as
 well as the requirements specified in [RFC5891]. In practice, these
 requirements consist of the following item:

 * Realms MUST be of the form that can be registered as a Fully
 Qualified Domain Name (FQDN) within the DNS.

 This list is significantly shorter and simpler than the list in
 Section 2.4 of [RFC4282]. The form suggested in [RFC4282] depended
 on intermediate nodes performing canonicalizations based on
 insufficient information, which meant that the form was not
 canonical.

 Specifying the realm requirement as above means that the requirements
 depend on specifications that are referenced here, rather than copied
 here. This allows the realm definition to be updated when the
 referenced documents change, without requiring a revision of this
 specification.

 One caveat on the above recommendation is the issues noted in
 [RFC6912]. That document notes that there are additional
 restrictions around DNS registration that forbid some code points
 from being valid in a DNS U-label. These restrictions cannot be
 expressed algorithmically.

For this specification, that caveat means the following:
Realms not matching the above ABNF are not valid NAIs. However, some
realms that do match the ABNF are still invalid NAIs. That is,
matching the ABNF is a necessary, but not sufficient, requirement for
an NAI.

 In general, the above requirement means following the requirements
 specified in [RFC5891].

2.6. The Normalization Process

 Conversion to Unicode as well as normalization SHOULD be performed by
 edge systems (e.g., laptops, desktops, smart phones, etc.) that take
 "local" text as input. These edge systems are best suited to
 determine the user's intent and can best convert from "local" text to
 a normalized form.

 Other AAA systems such as proxies do not have access to locale and
 character set information that is available to edge systems.
 Therefore, they may not always be able to convert local input to
 Unicode.

 That is, all processing of NAIs from "local" character sets and
 locales to UTF-8 SHOULD be performed by edge systems, prior to the
 NAIs entering the AAA system. Inside of a AAA system, NAIs are sent
 over the wire in their canonical form, and this canonical form is
 used for all NAI and/or realm comparisons.

 Copying of localized text into fields that can subsequently be placed
 into the RADIUS User-Name attribute is problematic. This practice
 can result in a AAA proxy encountering non-UTF-8 characters within
 what it expects to be an NAI. An example of this requirement is
 Section 2.1 of [RFC3579], which states:

 the NAS MUST copy the contents of the Type-Data field of the
 EAP-Response/Identity received from the peer into the User-Name
 attribute

 As a result, AAA proxies expect the contents of the
 EAP-Response/Identity sent by an EAP supplicant to consist of UTF-8
 characters, not localized text. Using localized text in AAA username
 or identity fields means that realm routing becomes difficult or
 impossible.

 In contrast to Section 2.4 of [RFC4282], AAA systems are now expected
 to perform NAI comparisons, matching, and AAA routing based on the
 NAI as it is received. This specification provides a canonical
 representation, ensures that intermediate AAA systems such as proxies
 are not required to perform translations, and can be expected to work
 through AAA systems that are unaware of international character sets.

 In an ideal world, the following requirements would be widely
 implemented:

 * Edge systems using "localized" text SHOULD normalize the NAI prior
 to it being used as an identifier in an authentication protocol.

 * AAA systems SHOULD NOT normalize the NAI, as they may not have
 sufficient information to perform the normalization.

 There are issues with this approach, however.

2.6.1. Issues with the Normalization Process

 The requirements in the preceding section are not implemented today.
 For example, most EAP implementations use a user identifier that is
 passed to them from some other local system. This identifier is
 treated as an opaque blob and is placed as is into the EAP Identity
 field. Any subsequent system that receives that identifier is
 assumed to be able to understand and process it.

 This opaque blob unfortunately can contain localized text, which
 means that the AAA systems have to process that text.

 These limitations have the following theoretical and practical
 implications:

 * Edge systems used today generally do not normalize the NAI.

 * Therefore, AAA systems SHOULD attempt to normalize the NAI.

 The suggestions above contradict the suggestions in the previous
 section. This is the reality of imperfect protocols.

 Where the user identifier can be normalized, or determined to be in
 normal form, the normal form MUST be used as the NAI. In all other
 circumstances, the user identifier MUST NOT be treated as an NAI.
 That data is still, however, a user identifier. AAA systems MUST NOT
 fail authentication simply because the user identifier is not an NAI.

 That is, when the realm portion of the NAI is not recognized by a AAA
 server, it SHOULD try to normalize the NAI into NFC form. That
 normalized form can then be used to see if the realm matches a known
 realm. If no match is found, the original form of the NAI SHOULD be
 used in all subsequent processing.

 The AAA server may also convert realms to Punycode and perform all
 realm comparisons on the resulting Punycode strings. This conversion
 follows the recommendations above but may have different operational
 effects and failure modes.

2.7. Use in Other Protocols

 As noted earlier, the NAI format can be used in other, non-AAA
 protocols. It is RECOMMENDED that the definition given here be used
 unchanged. Using other definitions for user identifiers may hinder
 interoperability, along with the user's ability to authenticate
 successfully. It is RECOMMENDED that protocols requiring the use of
 a user identifier use the NAI format.

 This document cannot require other protocols to use the NAI format
 for user identifiers. Their needs are unknown and, at this time,
 unknowable. This document suggests that interoperability and
 inter-domain authentication are useful and should be encouraged.

 Where a protocol is 8-bit clean, it can likely transport the NAI as
 is, without further modification.

 Where a protocol is not 8-bit clean, it cannot transport the NAI as
 is. Instead, this document presumes that a protocol-specific
 transport layer takes care of encoding the NAI on input to the
 protocol and decoding it when the NAI exits the protocol. The
 encoded or escaped version of the NAI is not a valid NAI and MUST NOT
 be presented to the AAA system.

 For example, HTTP carries user identifiers but escapes the '.'
 character as "%2E" (among others). When HTTP is used to transport
 the NAI "fred@example.com", the data as transported will be in the
 form "fred@example%2Ecom". That data exists only within HTTP and has
 no relevance to any AAA system.

 Any comparison, validation, or use of the NAI MUST be done on its
 unescaped (i.e., utf8-clean) form.

2.8. Using the NAI Format for Other Identifiers

 As discussed in Section 1, above, it is RECOMMENDED that the NAI
 format be used as the standard format for user identifiers. This
 section discusses that use in more detail.

 It is often useful to create new identifiers for use in specific
 contexts. These identifiers may have a number of different
 properties, most of which are unimportant to this document. The
 goal of this document is to create identifiers that are to be in a
 well-known format and that will have namespaces. The NAI format fits
 these requirements.

 One example of such use is the "private user identity", which is an
 identifier defined by the 3rd Generation Partnership Project (3GPP).
 That identifier is used to uniquely identify the user to the network.
 The identifier is used for authorization, authentication, accounting,
 administration, etc. The "private user identity" is globally unique
 and is defined by the home network operator. The format of the
 identifier is explicitly the NAI, as stated by Section 13.3 of
 [3GPP]:

 The private user identity shall take the form of an NAI, and shall
 have the form username@realm as specified in clause 2.1 of IETF
 RFC 4282

 For 3GPP, the "username" portion is a unique identifier that is
 derived from device-specific information. The "realm" portion is
 composed of information about the home network, followed by the base
 string "3gppnetwork.org" (e.g.,
 234150999999999@ims.mnc015.mcc234.3gppnetwork.org).

 This format as defined by 3GPP ensures that the identifier is
 globally unique, as it is based on the "3gppnetwork.org" domain. It
 ensures that the "realm" portion is specific to a particular home
 network (or organization), via the "ims.mnc015.mcc234" prefix to the
 realm. Finally, it ensures that the "username" portion follows a
 well-known format.

 This document suggests that the NAI format be used for all new
 specifications and/or protocols where a user identifier is required.
 Where the username portions need to be created with subfields, a
 well-known and documented method, as has been done with 3GPP, is
 preferred to ad hoc methods.

3. Routing inside of AAA Systems

 Many AAA systems use the "utf8-realm" portion of the NAI to route
 requests within a AAA proxy network. The semantics of this operation
 involves a logical AAA routing table, where the "utf8-realm" portion
 acts as a key, and the values stored in the table are one or more
 "next hop" AAA servers.

 Intermediate nodes MUST use the "utf8-realm" portion of the NAI
 without modification to perform this lookup. As noted earlier,
 intermediate nodes may not have access to the same locale information
 as the system that injected the NAI into the AAA routing systems.
 Therefore, almost all "case insensitive" comparisons can be wrong.
 Where the "utf8-realm" is entirely ASCII, current AAA systems
 sometimes perform case-insensitive matching on realms. This method
 MAY be continued, as it has been shown to work in practice.

 Many existing non-AAA systems have user identifiers that are similar
 in format to the NAI but that are not compliant with this
 specification. For example, they may use non-NFC form, or they may
 have multiple "@" characters in the user identifier. Intermediate
 nodes SHOULD normalize non-NFC identifiers to NFC, prior to looking
 up the "utf8-realm" in the logical routing table. Intermediate nodes
 MUST NOT modify the identifiers that they forward. The data as
 entered by the user is inviolate.

 The "utf8-realm" provisioned in the logical AAA routing table SHOULD
 be provisioned to the proxy prior to it receiving any AAA traffic.
 The "utf8-realm" SHOULD be supplied by the "next hop" or "home"
 system that also supplies the routing information necessary for
 packets to reach the next hop.

 This "next hop" information may be any of, or all of, the following
 information: IP address, port, RADIUS shared secret, TLS certificate,
 DNS host name, or instruction to use dynamic DNS discovery (i.e.,
 look up a record in the "utf8-realm" domain). This list is not
 exhaustive and may be extended by future specifications.

 It is RECOMMENDED to use the entirety of the "utf8-realm" for the
 routing decisions. However, AAA systems MAY use a portion of the
 "utf8-realm" portion, so long as that portion is a valid "utf8-realm"
 and is handled as above. For example, routing "fred@example.com" to
 a "com" destination is forbidden, because "com" is not a valid
 "utf8-realm". However, routing "fred@sales.example.com" to the
 "example.com" destination is permissible.

 Another reason to forbid the use of a single label (e.g.,
 "fred@sales") is that many non-AAA systems treat a single label as
 being a local identifier within their realm. That is, a user logging
 in as "fred@sales" to a domain "example.com" would be treated as if
 the NAI was instead "fred@sales.example.com". Permitting the use of
 a single label would mean changing the interpretation and meaning of
 a single label, which cannot be done.

3.1. Compatibility with Email Usernames

 As proposed in this document, the Network Access Identifier is of the
 form "user@realm". Please note that while the user portion of the
 NAI is based on the "Internet Message Format" [RFC5322] "local-part"
 portion of an email address as extended by "Internationalized Email
 Headers" [RFC6532], it has been modified for the purposes of
 Section 2.2. It does not permit quoted text along with "folding" or
 "non-folding" whitespace that is commonly used in email addresses.
 As such, the NAI is not necessarily equivalent to usernames used in
 email.

 However, it is a common practice to use email addresses as user
 identifiers in AAA systems. The ABNF in Section 2.2 is defined to be
 close to the "addr-spec" portion of [RFC5322] as extended by
 [RFC6532], while still being compatible with [RFC4282].

 In contrast to Section 2.5 of [RFC4282], this document states that
 the internationalization requirements for NAIs and email addresses
 are substantially similar. The NAI and email identifiers may be the
 same, and both need to be entered by the user and/or the operator
 supplying network access to that user. There is therefore good
 reason for the internationalization requirements to be similar.

3.2. Compatibility with DNS

 The "utf8-realm" portion of the NAI is intended to be compatible with
 Internationalized Domain Names (IDNs) [RFC5890]. As defined above,
 the "utf8-realm" portion as transported within an 8-bit clean
 protocol such as RADIUS and EAP can contain any valid UTF-8
 character. There is therefore no reason for a NAS to convert the
 "utf8-realm" portion of an NAI into Punycode encoding form [RFC3492]
 prior to placing the NAI into a RADIUS User-Name attribute.

 The NAI does not make a distinction between A-labels and U-labels, as
 those are terms specific to DNS. It is instead an IDNA-valid label,
 as per the first item in Section 2.3.2.1 of [RFC5890]. As noted in
 that section, the term "IDNA-valid label" encompasses both "A-label"
 and "U-label".

 When the realm portion of the NAI is used as the basis for name
 resolution, it may be necessary to convert internationalized realm
 names to Punycode [RFC3492] encoding form as described in [RFC5891].
 As noted in Section 2 of [RFC6055], resolver Application Programming
 Interfaces (APIs) are not necessarily DNS specific, so conversion to
 Punycode needs to be done carefully:

 Applications that convert an IDN to A-label form before calling (for
 example) getaddrinfo() will result in name resolution failures if the
 Punycode name is directly used in such protocols. Having libraries
 or protocols to convert from A-labels to the encoding scheme defined
 by the protocol (e.g., UTF-8) would require changes to APIs and/or
 servers, which Internationalized Domain Names for Applications (IDNA)
 was intended to avoid.

 As a result, applications SHOULD NOT assume that non-ASCII names are
 resolvable using the public DNS and blindly convert them to A-labels
 without knowledge of what protocol will be selected by the name
 resolution library.

3.3. Realm Construction

 The home realm usually appears in the "utf8-realm" portion of the
 NAI, but in some cases a different realm can be used. This may be
 useful, for instance, when the home realm is reachable only via
 intermediate proxies.

 Such usage may prevent interoperability unless the parties involved
 have a mutual agreement that the usage is allowed. In particular,
 NAIs MUST NOT use a different realm than the home realm unless the
 sender has explicit knowledge that (a) the specified other realm is
 available and (b) the other realm supports such usage. The sender
 may determine the fulfillment of these conditions through a database,
 dynamic discovery, or other means not specified here. Note that the
 first condition is affected by roaming, as the availability of the
 other realm may depend on the user's location or the desired
 application.

 The use of the home realm MUST be the default unless otherwise
 configured.

3.3.1. Historical Practices

 Some AAA systems have historically used NAI modifications with
 multiple "prefix" and "suffix" decorations to perform explicit
 routing through multiple proxies inside of a AAA network.

 In RADIUS-based environments, the use of decorated NAI is NOT
 RECOMMENDED for the following reasons:

 * Using explicit routing paths is fragile and is unresponsive to
 changes in the network due to servers going up or down or to
 changing business relationships.

 * There is no RADIUS routing protocol, meaning that routing paths
 have to be communicated "out of band" to all intermediate AAA
 nodes, and also to all edge systems (e.g., supplicants) expecting
 to obtain network access.

 * Using explicit routing paths requires thousands, if not millions,
 of edge systems to be updated with new path information when a AAA
 routing path changes. This adds huge expense for updates that
 would be better done at only a few AAA systems in the network.

 * Manual updates to RADIUS paths are expensive, time-consuming, and
 prone to error.

 * Creating compatible formats for the NAI is difficult when locally
 defined "prefixes" and "suffixes" conflict with similar practices
 elsewhere in the network. These conflicts mean that connecting
 two networks may be impossible in some cases, as there is no way
 for packets to be routed properly in a way that meets all
 requirements at all intermediate proxies.

 * Leveraging the DNS name system for realm names establishes a
 globally unique namespace for realms.

 In summary, network practices and capabilities have changed
 significantly since NAIs were first overloaded to define AAA routes
 through a network. While manually managed explicit path routing was
 once useful, the time has come for better methods to be used.

 Notwithstanding the above recommendations, the above practice is
 widely used for Diameter routing [RFC5729]. The routes described
 there are managed automatically, for both credential provisioning and
 routing updates. Those routes also exist within a particular
 framework (typically 3G), where membership is controlled and system
 behavior is standardized. There are no known issues with using
 explicit routing in such an environment.

 However, if decorated identifiers are used, such as:

 homerealm.example.org!user@otherrealm.example.net

 then the part before the (non-escaped) '!' MUST be a "utf8-realm" as
 defined in the ABNF in Section 2.2. When receiving such an
 identifier, the "otherrealm.example.net" system MUST convert the
 identifier to "user@homerealm.example.org" before forwarding the
 request. The forwarding system MUST then apply normal AAA routing
 for the transaction, based on the updated identifier.

3.4. Examples

 Examples of valid Network Access Identifiers include the following:

 bob
 joe@example.com
 fred@foo‑9.example.com
 jack@3rd.depts.example.com
 fred.smith@example.com
 fred_smith@example.com
 fred$@example.com
 fred=?#$&*+‑/^smith@example.com
 nancy@eng.example.net
 eng.example.net!nancy@example.net
 eng%nancy@example.net
 @privatecorp.example.net
 \(user\)@example.net

An additional valid NAI is the following ‑‑ shown here as a
hex string, as this document can only contain ASCII characters:

 626f 6240 ceb4 cebf ceba ceb9 cebc ceae 2e63 6f6d

 Examples of invalid Network Access Identifiers include the following:

fred@example
fred@example_9.com
fred@example.net@example.net
fred.@example.net
eng:nancy@example.net
eng;nancy@example.net
(user)@example.net
<nancy>@example.net

 One example given in [RFC4282] is still permitted by the ABNF, but it
 is NOT RECOMMENDED because of the use of the Punycode [RFC3492]
 encoding form for what is now a valid UTF-8 string:

 alice@xn--tmonesimerkki-bfbb.example.net

4. Security Considerations

 Since an NAI reveals the home affiliation of a user, it may assist an
 attacker in further probing the username space. Typically, this
 problem is of most concern in protocols that transmit the username in
 clear-text across the Internet, such as in RADIUS [RFC2865]
 [RFC2866]. In order to prevent snooping of the username, protocols
 may use confidentiality services provided by protocols transporting
 them, such as RADIUS protected by IPsec [RFC3579] or Diameter
 protected by TLS [RFC6733].

 This specification adds the possibility of hiding the username part
 in the NAI, by omitting it. As discussed in Section 2.4, this is
 possible only when NAIs are used together with a separate
 authentication method that can transfer the username in a secure
 manner. In some cases, application-specific privacy mechanisms have
 also been used with NAIs. For instance, some EAP methods apply
 method-specific pseudonyms in the username part of the NAI [RFC3748].
 While neither of these approaches can protect the realm part, their
 advantage over transport protection is that the privacy of the
 username is protected, even through intermediate nodes such as NASes.

4.1. Correlation of Identities over Time and Protocols

 The recommendations in Sections 2.7 and 2.8 for using the NAI in
 other protocols have implications for privacy. Any attacker who is
 capable of observing traffic containing the NAI can track the user
 and can correlate his activity across time and across multiple
 protocols. The authentication credentials therefore SHOULD be
 transported over channels that permit private communications, or
 multiple identifiers SHOULD be used, so that user tracking is
 impossible.

 It is RECOMMENDED that user privacy be enhanced by configuring
 multiple identifiers for one user. These identifiers can be changed
 over time, in order to make user tracking more difficult for a
 malicious observer. However, provisioning and management of the
 identifiers may be difficult to do in practice -- a likely reason why
 multiple identifiers are rarely used today.

4.2. Multiple Identifiers

 Section 1.3 states that multiple identifier formats allow attackers
 to make contradictory claims without being detected. This statement
 deserves further discussion.

 Section 2.4 discussed "inner" and "outer" identifiers in the context
 of TTLS [RFC5281]. A close reading of that specification shows there
 is no requirement that the inner and outer identifiers be in any way
 related. That is, it is perfectly valid to use "@example.com" for an
 outer identifier and "user@example.org" as an inner identifier. The
 authentication request will then be routed to "example.com", which
 will likely be unable to authenticate "user@example.org".

 Even worse, a misconfiguration of "example.com" means that it may in
 turn proxy the inner authentication request to the "example.org"
 domain. Such cross-domain authentication is highly problematic, and
 there are few good reasons to allow it.

 It is therefore RECOMMENDED that systems that permit anonymous
 "outer" identifiers require that the "inner" domain be the same as,
 or a subdomain of, the "outer" domain. An authentication request
 using disparate realms is a security violation, and the request
 SHOULD be rejected.

 The situation gets worse when multiple protocols are involved. The
 TTLS protocol permits Microsoft CHAP (MS-CHAP) [RFC2433] to be
 carried inside of the TLS tunnel. MS-CHAP defines its own
 identifier, which is encapsulated inside of the MS-CHAP exchange.
 That identifier is not required to be any particular format, is not
 required to be in UTF-8, and, in practice, can be one of many unknown
 character sets. There is no way in practice to determine which
 character set was used for that identifier.

 The result is that the "outer" EAP Identity carried by TTLS is likely
 to not even share the same character set as the "inner" identifier
 used by MS-CHAP. The two identifiers are entirely independent and
 fundamentally incomparable.

 Such a protocol design is NOT RECOMMENDED.

5. Administration of Names

 In order to avoid creating any new administrative procedures,
 administration of the NAI realm namespace piggybacks on the
 administration of the DNS namespace.

 NAI realm names are required to be unique, and the rights to use a
 given NAI realm for roaming purposes are obtained coincident with
 acquiring the rights to use a particular Fully Qualified Domain Name
 (FQDN). Those wishing to use an NAI realm name should first acquire
 the rights to use the corresponding FQDN. Administrators MUST NOT
 publicly use an NAI realm without first owning the corresponding
 FQDN. Private use of unowned NAI realms within an administrative
 domain is allowed, though it is RECOMMENDED that example names be
 used, such as "example.com".

 Note that the use of an FQDN as the realm name does not require use
 of the DNS for location of the authentication server. While Diameter
 [RFC6733] supports the use of DNS for location of authentication
 servers, existing RADIUS implementations typically use proxy
 configuration files in order to locate authentication servers within
 a domain and perform authentication routing. The implementations
 described in [RFC2194] did not use DNS for location of the
 authentication server within a domain. Similarly, existing
 implementations have not found a need for dynamic routing protocols
 or propagation of global routing information. Note also that there
 is no requirement that the NAI represent a valid email address.

6. References

6.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, November 2003,
 <http://www.rfc-editor.org/info/rfc3629>.

 [RFC5198]
 Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008,
 <http://www.rfc-editor.org/info/rfc5198>.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008, <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5890]
 Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, August 2010,
 <http://www.rfc-editor.org/info/rfc5890>.

 [RFC5891]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, August 2010,
 <http://www.rfc-editor.org/info/rfc5891>.

 [RFC6365]
 Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 September 2011, <http://www.rfc-editor.org/info/rfc6365>.

6.2. Informative References

 [RFC2194]
 Aboba, B., Lu, J., Alsop, J., Ding, J., and W. Wang,
 "Review of Roaming Implementations", RFC 2194,
 September 1997, <http://www.rfc-editor.org/info/rfc2194>.

 [RFC2341]
 Valencia, A., Littlewood, M., and T. Kolar, "Cisco
 Layer Two Forwarding (Protocol) "L2F"", RFC 2341,
 May 1998, <http://www.rfc-editor.org/info/rfc2341>.

 [RFC2433]
 Zorn, G. and S. Cobb, "Microsoft PPP CHAP Extensions",
 RFC 2433, October 1998,
 <http://www.rfc-editor.org/info/rfc2433>.

 [RFC2637]
 Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little,
 W., and G. Zorn, "Point-to-Point Tunneling Protocol
 (PPTP)", RFC 2637, July 1999,
 <http://www.rfc-editor.org/info/rfc2637>.

 [RFC2661]
 Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
 RFC 2661, August 1999,
 <http://www.rfc-editor.org/info/rfc2661>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866, June 2000,
 <http://www.rfc-editor.org/info/rfc2866>.

 [RFC3492]
 Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003,
 <http://www.rfc-editor.org/info/rfc3492>.

 [RFC3579]
 Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
 Dial In User Service) Support For Extensible
 Authentication Protocol (EAP)", RFC 3579, September 2003,
 <http://www.rfc-editor.org/info/rfc3579>.

 [RFC3748]
 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, June 2004,
 <http://www.rfc-editor.org/info/rfc3748>.

 [RFC4282]
 Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005,
 <http://www.rfc-editor.org/info/rfc4282>.

 [RFC4301]
 Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005,
 <http://www.rfc-editor.org/info/rfc4301>.

 [RFC5281]
 Funk, P. and S. Blake-Wilson, "Extensible Authentication
 Protocol Tunneled Transport Layer Security Authenticated
 Protocol Version 0 (EAP-TTLSv0)", RFC 5281, August 2008,
 <http://www.rfc-editor.org/info/rfc5281>.

 [RFC5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008, <http://www.rfc-editor.org/info/rfc5322>.

 [RFC5335]
 Yang, A., Ed., "Internationalized Email Headers",
 RFC 5335, September 2008,
 <http://www.rfc-editor.org/info/rfc5335>.

 [RFC5729]
 Korhonen, J., Ed., Jones, M., Morand, L., and T. Tsou,
 "Clarifications on the Routing of Diameter Requests Based
 on the Username and the Realm", RFC 5729, December 2009,
 <http://www.rfc-editor.org/info/rfc5729>.

 [RFC6055]
 Thaler, D., Klensin, J., and S. Cheshire, "IAB Thoughts on
 Encodings for Internationalized Domain Names", RFC 6055,
 February 2011, <http://www.rfc-editor.org/info/rfc6055>.

 [RFC6532]
 Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, February 2012,
 <http://www.rfc-editor.org/info/rfc6532>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC6912]
 Sullivan, A., Thaler, D., Klensin, J., and O. Kolkman,
 "Principles for Unicode Code Point Inclusion in Labels in
 the DNS", RFC 6912, April 2013,
 <http://www.rfc-editor.org/info/rfc6912>.

 [EDUROAM]
 "eduroam (EDUcation ROAMing)", <http://eduroam.org>.

 [3GPP]
 3GPP, "Numbering, addressing and Identification", 3GPP TS
 23.003, Release 12, July 2014,
 <ftp://ftp.3gpp.org/Specs/archive/23_series/23.003/>.

Appendix A. Changes from RFC 4282

 This document contains the following updates with respect to the
 previous NAI definition in RFC 4282 [RFC4282]:

 * The formal syntax in Section 2.1 has been updated to forbid
 non-UTF-8 characters (e.g., characters with the "high bit" set).

 * The formal syntax in Section 2.1 of [RFC4282] has been updated to
 allow UTF-8 in the "realm" portion of the NAI.

 * The formal syntax in Section 2.1 of [RFC4282] applied to the NAI
 after it was "internationalized" via the ToAscii function. The
 contents of the NAI before it was "internationalized" were left
 indeterminate. This document updates the formal syntax to define
 an internationalized form of the NAI and forbids the use of the
 ToAscii function for NAI "internationalization".

 * The grammar for the user and realm portion is based on a
 combination of the "nai" defined in Section 2.1 of [RFC4282] and
 the "utf8-addr-spec" defined in Section 4.4 of [RFC5335].

 * All use of the ToAscii function has been moved to normal
 requirements on DNS implementations when realms are used as the
 basis for DNS lookups. This involves no changes to the existing
 DNS infrastructure.

 * The discussions on internationalized character sets in Section 2.4
 of [RFC4282] have been updated. The suggestion to use the ToAscii
 function for realm comparisons has been removed. No AAA system
 has implemented these suggestions, so this change should have no
 operational impact.

 * The "Routing inside of AAA Systems" section is new in this
 document. The concept of a "local AAA routing table" is also new,
 although it accurately describes the functionality of widespread
 implementations.

 * The "Compatibility with EMail Usernames" and "Compatibility with
 DNS" sections have been revised and updated. The Punycode
 transformation is suggested to be used only when a realm name is
 used for DNS lookups, and even then the function is only used by a
 resolving API on the local system, and even then it is recommended
 that only the home network perform this conversion.

 * The "Realm Construction" section has been updated to note that
 editing of the NAI is NOT RECOMMENDED.

 * The "Examples" section has been updated to remove the instance of
 the IDN being converted to ASCII. This behavior is now forbidden.

Acknowledgments

 The initial text for this document was [RFC4282], which was then
 heavily edited. The original authors of [RFC4282] were Bernard
 Aboba, Mark A. Beadles, Jari Arkko, and Pasi Eronen.

Author's Address

Alan DeKok
The FreeRADIUS Server Project

 EMail: aland@freeradius.org

7585 - Dynamic Peer Discovery for RADIUS/TLS and RADIUS/DTLS Based on the Networ

Index
Back 5
Prev
Next
Forward 5

Internet Engineering Task Force (IETF)

Request for Comments: 7585

Category: Experimental

ISSN: 2070-1721

S. Winter

RESTENA

M. McCauley

AirSpayce

October 2015

Dynamic Peer Discovery for RADIUS/TLS and RADIUS/DTLS Based on the Network Access Identifier (NAI)

Abstract

 This document specifies a means to find authoritative RADIUS servers
 for a given realm. It is used in conjunction with either RADIUS over
 Transport Layer Security (RADIUS/TLS) or RADIUS over Datagram
 Transport Layer Security (RADIUS/DTLS).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7585.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Language

	 1.2. Terminology

	 1.3. Document Status

	2. Definitions
	 2.1. DNS Resource Record (RR) Definition
	 2.1.1. S-NAPTR

	 2.1.2. SRV

	 2.1.3. Optional Name Mangling

	 2.2. Definition of the X.509 Certificate Property SubjectAltName:otherName:NAIRealm

	3. DNS-Based NAPTR/SRV Peer Discovery
	 3.1. Applicability

	 3.2. Configuration Variables

	 3.3. Terms

	 3.4. Realm to RADIUS Server Resolution Algorithm
	 3.4.1. Input

	 3.4.2. Output

	 3.4.3. Algorithm

	 3.4.4. Validity of Results

	 3.4.5. Delay Considerations

	 3.4.6. Example

	4. Operations and Manageability Considerations

	5. Security Considerations

	6. Privacy Considerations

	7. IANA Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Appendix A. ASN.1 Syntax of NAIRealm

	Authors' Addresses

1. Introduction

 RADIUS in all its current transport variants (RADIUS/UDP, RADIUS/TCP,
 RADIUS/TLS, and RADIUS/DTLS) requires manual configuration of all
 peers (clients and servers).

 Where more than one administrative entity collaborates for RADIUS
 authentication of their respective customers (a "roaming
 consortium"), the Network Access Identifier (NAI) [RFC7542] is the
 suggested way of differentiating users between those entities; the
 part of a username to the right of the "@" delimiter in an NAI is
 called the user's "realm". Where many realms and RADIUS forwarding
 servers are in use, the number of realms to be forwarded and the
 corresponding number of servers to configure may be significant.
 Where new realms with new servers are added or details of existing
 servers change on a regular basis, maintaining a single monolithic
 configuration file for all these details may prove too cumbersome to
 be useful.

 Furthermore, in cases where a roaming consortium consists of
 independently working branches (e.g., departments and national
 subsidiaries), each with their own forwarding servers, and who add or
 change their realm lists at their own discretion, there is additional
 complexity in synchronizing the changed data across all branches.

 Where realms can be partitioned (e.g., according to their top-level
 domain (TLD) ending), forwarding of requests can be realized with a
 hierarchy of RADIUS servers, all serving their partition of the realm
 space. Figure 1 shows an example of this hierarchical routing.

 +‑‑‑‑‑‑‑+
 | |
 | . |
 | |
 +‑‑‑+‑‑‑+
 / | \
 +‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑/ | \‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
 | | |
 | | |
 | | |
 +‑‑+‑‑‑+ +‑‑+‑‑+ +‑‑‑‑+‑‑‑+
 | | | | | |
 | .edu | . . . | .nl | . . . | .ac.uk |
 | | | | | |
 +‑‑+‑‑‑+ +‑‑+‑‑+ +‑‑‑‑+‑‑‑+
 / | \ | \ |
 / | \ | \ |
 / | \ | \ |
 +‑‑‑‑‑+ | +‑‑‑‑‑+ | +‑‑‑‑‑‑+ |
 | | | | | |
 | | | | | |
 +‑‑‑+‑‑‑+ +‑‑‑‑+‑‑‑+ +‑‑‑‑+‑‑‑+ +‑‑+‑‑‑+ +‑‑‑‑‑+‑‑‑‑+ +‑‑‑‑‑+‑‑‑‑‑+
utk.edu		utah.edu		case.edu		hva.nl		surfnet.nl		soton.ac.uk
 +‑‑‑‑+‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | |
 +‑‑+‑‑+ +‑‑+‑‑+
 | | | |
 +‑+‑‑‑‑‑+‑+ | |
 | | +‑‑‑‑‑+
 +‑‑‑‑‑‑‑‑‑+
user: paul@surfnet.nl surfnet.nl Authentication server

 Figure 1: RADIUS Hierarchy Based on Top-Level Domain Partitioning

 However, such partitioning is not always possible. As an example, in
 one real-life deployment, the administrative boundaries and RADIUS
 forwarding servers are organized along country borders, but generic
 top-level domains such as .edu do not map to this choice of
 boundaries (see [RFC7593] for details). These situations can benefit
 significantly from a distributed mechanism for storing realm and
 server reachability information. This document describes one such
 mechanism: storage of realm-to-server mappings in DNS; realm-based
 request forwarding can then be realized without a static hierarchy
 such as in the following figure:

 ‑‑‑‑‑‑‑‑‑
 / \
 ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑
 / \
 | DNS ‑
 ‑‑‑‑‑‑‑‑‑‑| \
 / \ surfnet.nl NAPTR? |
 (1) / ‑‑‑‑ ‑> radius.surfnet.nl /
 / \ /
 / ‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
 / \‑‑‑‑‑‑‑‑‑/
 |
 | ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 | / (2) RADIUS \
 | | |
+‑‑‑+‑‑‑+ +‑‑‑‑+‑‑‑+ +‑‑‑‑+‑‑‑+ +‑‑+‑‑‑+ +‑‑‑‑‑+‑‑‑‑+ +‑‑‑‑‑+‑‑‑‑‑+
utk.edu		utah.edu		case.edu		hva.nl		surfnet.nl		soton.ac.uk
+‑‑‑‑+‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑‑‑+ +‑‑‑‑‑‑+ +‑‑‑‑+‑‑‑‑‑+ +‑‑‑‑‑‑‑‑‑‑‑+
 | |
 | |
 +‑‑+‑‑+ +‑‑+‑‑+
 | | | |
+‑+‑‑‑‑‑+‑+ | |
| | +‑‑‑‑‑+
+‑‑‑‑‑‑‑‑‑+
user: paul@surfnet.nl surfnet.nl Authentication server

 Figure 2: RADIUS Hierarchy Based on Top-Level Domain Partitioning

 This document also specifies various approaches for verifying that
 server information that was retrieved from DNS was from an authorized
 party; for example, an organization that is not at all part of a
 given roaming consortium may alter its own DNS records to yield a
 result for its own realm.

1.1. Requirements Language

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 RFC 2119 [RFC2119].

1.2. Terminology

 RADIUS/TLS Client: a RADIUS/TLS [RFC6614] instance that initiates a
 new connection.

 RADIUS/TLS Server: a RADIUS/TLS [RFC6614] instance that listens on a
 RADIUS/TLS port and accepts new connections.

 RADIUS/TLS Node: a RADIUS/TLS client or server.

 [RFC7542] defines the terms NAI, realm, and consortium.

1.3. Document Status

 This document is an Experimental RFC.

 The communities expected to use this document are roaming consortia
 whose authentication services are based on the RADIUS protocol.

 The duration of the experiment is undetermined; as soon as enough
 experience is collected on the choice points mentioned below, it is
 expected to be obsoleted by a Standards Track version of the
 protocol, which trims down the choice points.

 If that removal of choice points obsoletes tags or service names as
 defined in this document and allocated by IANA, these items will be
 returned to IANA as per the provisions in [RFC6335].

 The document provides a discovery mechanism for RADIUS, which is very
 similar to the approach that is taken with the Diameter protocol
 [RFC6733]. As such, the basic approach (using Naming Authority
 Pointer (NAPTR) records in DNS domains that match NAI realms) is not
 of a very experimental nature.

 However, the document offers a few choice points and extensions that
 go beyond the provisions for Diameter. The list of major additions/
 deviations is

 o provisions for determining the authority of a server to act for
 users of a realm (declared out of scope for Diameter)

 o much more in-depth guidance on DNS regarding timeouts, failure
 conditions, and alteration of Time-To-Live (TTL) information than
 the Diameter counterpart

 o a partially correct routing error detection during DNS lookups

2. Definitions

2.1. DNS Resource Record (RR) Definition

 DNS definitions of RADIUS/TLS servers can be either S-NAPTR records
 (see [RFC3958]) or SRV records. When both are defined, the
 resolution algorithm prefers S-NAPTR results (see Section 3.4 below).

2.1.1. S-NAPTR

2.1.1.1. Registration of Application Service and Protocol Tags

 This specification defines three S-NAPTR service tags:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Service Tag | Use |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
aaa+auth	RADIUS Authentication, i.e., traffic as
	defined in [RFC2865]
‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑	‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
aaa+acct	RADIUS Accounting, i.e., traffic as
	defined in [RFC2866]
‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑	‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
aaa+dynauth	RADIUS Dynamic Authorization, i.e.,
	traffic as defined in [RFC5176]
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Figure 3: List of Service Tags

 This specification defines two S-NAPTR protocol tags:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| Protocol Tag | Use |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
radius.tls.tcp	RADIUS transported over TLS as defined
	in [RFC6614]
‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑	‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
radius.dtls.udp	RADIUS transported over DTLS as defined
	in [RFC7360]
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Figure 4: List of Protocol Tags

 Note well:

 The S-NAPTR service and protocols are unrelated to the IANA
 "Service Name and Transport Protocol Port Number Registry".

 The delimiter "." in the protocol tags is only a separator for
 human reading convenience -- not for structure or namespacing; it
 MUST NOT be parsed in any way by the querying application or
 resolver.

 The use of the separator "." is common also in other protocols'
 protocol tags. This is coincidence and does not imply a shared
 semantics with such protocols.

2.1.1.2. Definition of Conditions for Retry/Failure

 RADIUS is a time-critical protocol; RADIUS clients that do not
 receive an answer after a configurable, but short, amount of time
 will consider the request failed. Due to this, there is little
 leeway for extensive retries.

 As a general rule, only error conditions that generate an immediate
 response from the other end are eligible for a retry of a discovered
 target. Any error condition involving timeouts, or the absence of a
 reply for more than one second during the connection setup phase, is
 to be considered a failure; the next target in the set of discovered
 NAPTR targets is to be tried.

 Note that [RFC3958] already defines that a failure to identify the
 server as being authoritative for the realm is always considered a
 failure; so even if a discovered target returns a wrong credential
 instantly, it is not eligible for retry.

 Furthermore, the contacted RADIUS/TLS server verifies during
 connection setup whether or not it finds the connecting RADIUS/TLS
 client authorized. If the connecting RADIUS/TLS client is not found
 acceptable, the server will close the TLS connection immediately with
 an appropriate alert. Such TLS handshake failures are permanently
 fatal and not eligible for retry, unless the connecting client has
 more X.509 certificates to try; in this case, a retry with the
 remainder of its set of certificates SHOULD be attempted. Not trying
 all available client certificates potentially creates a DoS for the
 end user whose authentication attempt triggered the discovery; one of
 the neglected certificates might have led to a successful RADIUS
 connection and subsequent end-user authentication.

 If the TLS session setup to a discovered target does not succeed,
 that target (as identified by the IP address and port number) SHOULD
 be ignored from the result set of any subsequent executions of the
 discovery algorithm at least until the target's Effective TTL (see
 Section 3.3) has expired or until the entity that executes the
 algorithm changes its TLS context to either send a new client
 certificate or expect a different server certificate.

2.1.1.3. Server Identification and Handshake

 After the algorithm in this document has been executed, a RADIUS/TLS
 session as per [RFC6614] is established. Since the discovery
 algorithm does not have provisions to establish confidential keying
 material between the RADIUS/TLS client (i.e., the server that
 executes the discovery algorithm) and the RADIUS/TLS server that was
 discovered, Pre-Shared Key (PSK) ciphersuites for TLS cannot be used
 in the subsequent TLS handshake. Only TLS ciphersuites using X.509
 certificates can be used with this algorithm.

 There are numerous ways to define which certificates are acceptable
 for use in this context. This document defines one mandatory-to-
 implement mechanism that allows verification of whether the contacted
 host is authoritative for an NAI realm or not. It also gives one
 example of another mechanism that is currently in widespread
 deployment and one possible approach based on DNSSEC, which is yet
 unimplemented.

 For the approaches that use trust roots (see the following two
 sections), a typical deployment will use a dedicated trust store for
 RADIUS/TLS certificate authorities, particularly a trust store that
 is independent from default "browser" trust stores. Often, this will
 be one or a few Certification Authorities (CAs), and they only issue
 certificates for the specific purpose of establishing RADIUS server-
 to-server trust. It is important not to trust a large set of CAs
 that operate outside the control of the roaming consortium, since
 their issuance of certificates with the properties important for
 authorization (such as NAIRealm and policyOID below) is difficult to
 verify. Therefore, clients SHOULD NOT be preconfigured with a list
 of known public CAs by the vendor or manufacturer. Instead, the
 clients SHOULD start off with an empty CA list. The addition of a CA
 SHOULD be done only when manually configured by an administrator.

2.1.1.3.1. Mandatory-to-Implement Mechanism: Trust Roots + NAIRealm

 Verification of authority to provide Authentication, Authorization,
 and Accounting (AAA) services over RADIUS/TLS is a two-step process.

 Step 1 is the verification of certificate well-formedness and
 validity as per [RFC5280] and whether it was issued from a root
 certificate that is deemed trustworthy by the RADIUS/TLS client.

 Step 2 is to compare the value of the algorithm's variable "R" after
 the execution of step 3 of the discovery algorithm in Section 3.4.3
 below (i.e., after a consortium name mangling but before conversion
 to a form usable by the name resolution library) to all values of the
 contacted RADIUS/TLS server's X.509 certificate property
 "subjectAlternativeName:otherName:NAIRealm" as defined in
 Section 2.2.

2.1.1.3.2. Other Mechanism: Trust Roots + policyOID

 Verification of authority to provide AAA services over RADIUS/TLS is
 a two-step process.

 Step 1 is the verification of certificate well-formedness and
 validity as per [RFC5280] and whether it was issued from a root
 certificate that is deemed trustworthy by the RADIUS/TLS client.

 Step 2 is to compare the values of the contacted RADIUS/TLS server's
 X.509 certificate's extensions of type "Policy OID" to a list of
 configured acceptable Policy OIDs for the roaming consortium. If one
 of the configured OIDs is found in the certificate's Policy OID
 extensions, then the server is considered authorized; if there is no
 match, the server is considered unauthorized.

 This mechanism is inferior to the mandatory-to-implement mechanism in
 the previous section because all authorized servers are validated by
 the same OID value; the mechanism is not fine grained enough to
 express authority for one specific realm inside the consortium. If
 the consortium contains members that are hostile against other
 members, this weakness can be exploited by one RADIUS/TLS server
 impersonating another if DNS responses can be spoofed by the hostile
 member.

 The shortcomings in server identification can be partially mitigated
 by using the RADIUS infrastructure only with authentication payloads
 that provide mutual authentication and credential protection (i.e.,
 Extensible Authentication Protocol (EAP) types passing the criteria
 of [RFC4017]): using mutual authentication prevents the hostile
 server from mimicking the real EAP server (it can't terminate the EAP
 authentication unnoticed because it does not have the server
 certificate from the real EAP server); protection of credentials
 prevents the impersonating server from learning usernames and
 passwords of the ongoing EAP conversation (other RADIUS attributes
 pertaining to the authentication, such as the EAP peer's Calling-
 Station-ID, can still be learned though).

2.1.1.3.3. Other Mechanism: DNSSEC/DANE

 Where DNSSEC is used, the results of the algorithm can be trusted;
 that is, the entity that executes the algorithm can be certain that
 the realm that triggered the discovery is actually served by the
 server that was discovered via DNS. However, this does not guarantee
 that the server is also authorized (i.e., a recognized member of the
 roaming consortium). The server still needs to present an X.509
 certificate proving its authority to serve a particular realm.

 The authorization can be sketched using DNSSEC and DNS-Based
 Authentication of Named Entities (DANE) as follows: DANE/TLSA records
 of all authorized servers are put into a DNSSEC zone that contains
 all known and authorized realms; the zone is rooted in a common,
 consortium-agreed branch of the DNS tree. The entity executing the
 algorithm uses the realm information from the authentication attempt
 and then attempts to retrieve TLSA resource records (TLSA RRs) for
 the DNS label "realm.commonroot". It then verifies that the
 presented server certificate during the RADIUS/TLS handshake matches
 the information in the TLSA record.

 Example:

 Realm = "example.com"

 Common Branch = "idp.roaming-consortium.example.

 label for TLSA query = "example.com.idp.roaming-
 consortium.example.

 result of discovery algorithm for realm "example.com" =
 192.0.2.1:2083

 (TLS certificate of 192.0.2.1:2083 matches TLSA RR ? "PASS" :
 "FAIL")

2.1.1.3.4. Client Authentication and Authorization

 Note that RADIUS/TLS connections always mutually authenticate the
 RADIUS server and the RADIUS client. This specification provides an
 algorithm for a RADIUS client to contact and verify authorization of
 a RADIUS server only. During connection setup, the RADIUS server
 also needs to verify whether it considers the connecting RADIUS
 client authorized; this is outside the scope of this specification.

2.1.2. SRV

 This specification defines two SRV prefixes (i.e., two values for the
 "_service._proto" part of an SRV RR as per [RFC2782]):

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
| SRV Label | Use |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+
_radiustls._tcp	RADIUS transported over TLS as defined
	in [RFC6614]
‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑	‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
_radiusdtls._udp	RADIUS transported over DTLS as defined
	in [RFC7360]
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Figure 5: List of SRV Labels

 Just like NAPTR records, the lookup and subsequent follow up of SRV
 records may yield more than one server to contact in a prioritized
 list. [RFC2782] does not specify rules regarding "Definition of
 Conditions for Retry/Failure" nor "Server Identification and
 Handshake". This specification states that the rules for these two
 topics as defined in Sections 2.1.1.2 and 2.1.1.3 SHALL be used both
 for targets retrieved via an initial NAPTR RR as well as for targets
 retrieved via an initial SRV RR (i.e., in the absence of NAPTR RRs).

2.1.3. Optional Name Mangling

 It is expected that in most cases, the SRV and/or NAPTR label used
 for the records is the DNS A-label representation of the literal
 realm name for which the server is the authoritative RADIUS server
 (i.e., the realm name after conversion according to Section 5 of
 [RFC5891]).

 However, arbitrary other labels or service tags may be used if, for
 example, a roaming consortium uses realm names that are not
 associated to DNS names or special-purpose consortia where a globally
 valid discovery is not a use case. Such other labels require a
 consortium-wide agreement about the transformation from realm name to
 lookup label and/or which service tag to use.

 Examples:

 a. A general-purpose RADIUS server for realm example.com might have
 DNS entries as follows:

 example.com. IN NAPTR 50 50 "s" "aaa+auth:radius.tls.tcp" ""
 _radiustls._tcp.foobar.example.com.

 _radiustls._tcp.foobar.example.com. IN SRV 0 10 2083
 radsec.example.com.

 b. The consortium "foo" provides roaming services for its members
 only. The realms used are of the form enterprise-name.example.
 The consortium operates a special purpose DNS server for the
 (private) TLD "example", which all RADIUS servers use to resolve
 realm names. "Company, Inc." is part of the consortium. On the
 consortium's DNS server, realm company.example might have the
 following DNS entries:

 company.example. IN NAPTR 50 50 "a"
 "aaa+auth:radius.dtls.udp" "" roamserv.company.example.

 c. The eduroam consortium (see [RFC7593]) uses realms based on DNS
 but provides its services to a closed community only. However, a
 AAA domain participating in eduroam may also want to expose AAA
 services to other, general-purpose, applications (on the same or
 other RADIUS servers). Due to that, the eduroam consortium uses
 the service tag "x-eduroam" for authentication purposes and
 eduroam RADIUS servers use this tag to look up other eduroam
 servers. An eduroam participant example.org that also provides
 general-purpose AAA on a different server uses the general
 "aaa+auth" tag:

 example.org. IN NAPTR 50 50 "s" "x-eduroam:radius.tls.tcp" ""
 _radiustls._tcp.eduroam.example.org.

 example.org. IN NAPTR 50 50 "s" "aaa+auth:radius.tls.tcp" ""
 _radiustls._tcp.aaa.example.org.

 _radiustls._tcp.eduroam.example.org. IN SRV 0 10 2083 aaa-
 eduroam.example.org.

 _radiustls._tcp.aaa.example.org. IN SRV 0 10 2083 aaa-
 default.example.org.

2.2. Definition of the X.509 Certificate Property
 SubjectAltName:otherName:NAIRealm

 This specification retrieves IP addresses and port numbers from the
 Domain Name System that are subsequently used to authenticate users
 via the RADIUS/TLS protocol. Regardless whether the results from DNS
 discovery are trustworthy or not (e.g., DNSSEC in use), it is always
 important to verify that the server that was contacted is authorized
 to service requests for the user that triggered the discovery
 process.

 The input to the algorithm is an NAI realm as specified in
 Section 3.4.1. As a consequence, the X.509 certificate of the server
 that is ultimately contacted for user authentication needs to be able
 to express that it is authorized to handle requests for that realm.

 Current subjectAltName fields do not semantically allow an NAI realm
 to be expressed; the field subjectAltName:dNSName is syntactically a
 good match but would inappropriately conflate DNS names and NAI realm
 names. Thus, this specification defines a new subjectAltName field
 to hold either a single NAI realm name or a wildcard name matching a
 set of NAI realms.

 The subjectAltName:otherName:sRVName field certifies that a
 certificate holder is authorized to provide a service; this can be
 compared to the target of a DNS label's SRV resource record. If the
 Domain Name System is insecure, it is required that the label of the
 SRV record itself is known-correct. In this specification, that
 label is not known-correct; it is potentially derived from a
 (potentially untrusted) NAPTR resource record of another label. If
 DNS is not secured with DNSSEC, the NAPTR resource record may have
 been altered by an attacker with access to the Domain Name System
 resolution, and thus the label used to look up the SRV record may
 already be tainted. This makes subjectAltName:otherName:sRVName not
 a trusted comparison item.

 Further to this, this specification's NAPTR entries may be of type
 "A", which does not involve resolution of any SRV records, which
 again makes subjectAltName:otherName:sRVName unsuited for this
 purpose.

 This section defines the NAIRealm name as a form of otherName from
 the GeneralName structure in subjectAltName defined in [RFC5280].
 id-on-naiRealm OBJECT IDENTIFIER ::= { id-on 8 }

 ub-naiRealm-length INTEGER ::= 255

 NAIRealm ::= UTF8String (SIZE (1..ub-naiRealm-length))

 The NAIRealm, if present, MUST contain an NAI realm as defined in
 [RFC7542]. It MAY substitute the leftmost dot-separated label of the
 NAI with the single character "*" to indicate a wildcard match for
 "all labels in this part". Further features of regular expressions,
 such as a number of characters followed by an "*" to indicate a
 common prefix inside the part, are not permitted.

 The comparison of an NAIRealm to the NAI realm as derived from user
 input with this algorithm is a byte-by-byte comparison, except for
 the optional leftmost dot-separated part of the value whose content
 is a single "*" character; such labels match all strings in the same
 dot-separated part of the NAI realm. If at least one of the
 sAN:otherName:NAIRealm values match the NAI realm, the server is
 considered authorized; if none match, the server is considered
 unauthorized.

 Since multiple names and multiple name forms may occur in the
 subjectAltName extension, an arbitrary number of NAIRealms can be
 specified in a certificate.

 Examples:

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| NAI realm (RADIUS) | NAIRealm (cert) | MATCH? |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
foo.example	foo.example	YES
foo.example	*.example	YES
bar.foo.example	*.example	NO
bar.foo.example	*ar.foo.example	NO (NAIRealm invalid)
bar.foo.example	bar.*.example	NO (NAIRealm invalid)
bar.foo.example	*.*.example	NO (NAIRealm invalid)
sub.bar.foo.example	*.*.example	NO (NAIRealm invalid)
sub.bar.foo.example	*.bar.foo.example	YES
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑+

 Figure 6: Examples for NAI Realm vs. Certificate Matching

 Appendix A contains the ASN.1 definition of the above objects.

3. DNS-Based NAPTR/SRV Peer Discovery

3.1. Applicability

 Dynamic server discovery as defined in this document is only
 applicable for new AAA transactions and per service (i.e., distinct
 discovery is needed for Authentication, Accounting, and Dynamic
 Authorization) where a RADIUS entity that acts as a forwarding server
 for one or more realms receives a request with a realm for which it
 is not authoritative, and which no explicit next hop is configured.
 It is only applicable for

 a. new user sessions, i.e., for the initial Access-Request.
 Subsequent messages concerning this session, for example, Access-
 Challenges and Access-Accepts, use the previously established
 communication channel between client and server.

 b. the first accounting ticket for a user session.

 c. the first RADIUS DynAuth packet for a user session.

3.2. Configuration Variables

 The algorithm contains various variables for timeouts. These
 variables are named here and reasonable default values are provided.
 Implementations wishing to deviate from these defaults should make
 sure they understand the implications of changes.

 DNS_TIMEOUT: maximum amount of time to wait for the complete set
 of all DNS queries to complete: Default = 3 seconds

 MIN_EFF_TTL: minimum DNS TTL of discovered targets: Default = 60
 seconds

 BACKOFF_TIME: if no conclusive DNS response was retrieved after
 DNS_TIMEOUT, do not attempt dynamic discovery before BACKOFF_TIME
 has elapsed: Default = 600 seconds

3.3. Terms

 Positive DNS response: A response that contains the RR that was
 queried for.

 Negative DNS response: A response that does not contain the RR that
 was queried for but contains an SOA record along with a TTL
 indicating cache duration for this negative result.

 DNS Error: Where the algorithm states "name resolution returns with
 an error", this shall mean that either the DNS request timed out or
 it is a DNS response, which is neither a positive nor a negative
 response (e.g., SERVFAIL).

 Effective TTL: The validity period for discovered RADIUS/TLS target
 hosts. Calculated as: Effective TTL (set of DNS TTL values) = max {
 MIN_EFF_TTL, min { DNS TTL values } }

 SRV lookup: For the purpose of this specification, SRV lookup
 procedures are defined as per [RFC2782] but excluding that RFCs "A"
 fallback as defined in the "Usage Rules" section, final "else"
 clause.

 Greedy result evaluation: The NAPTR to SRV/A/AAAA resolution may lead
 to a tree of results, whose leafs are the IP addresses to contact.
 The branches of the tree are ordered according to their order/
 preference DNS properties. An implementation is executing greedy
 result evaluation if it uses a depth-first search in the tree along
 the highest order results, attempts to connect to the corresponding
 resulting IP addresses, and only backtracks to other branches if the
 higher ordered results did not end in successful connection attempts.

3.4. Realm to RADIUS Server Resolution Algorithm

3.4.1. Input

 For RADIUS Authentication and RADIUS Accounting server discovery,
 input I to the algorithm is the RADIUS User-Name attribute with
 content of the form "user@realm"; the literal "@" sign is the
 separator between a local user identifier within a realm and its
 realm. The use of multiple literal "@" signs in a User-Name is
 strongly discouraged; but if present, the last "@" sign is to be
 considered the separator. All previous instances of the "@" sign are
 to be considered part of the local user identifier.

 For RADIUS DynAuth server discovery, input I to the algorithm is the
 domain name of the operator of a RADIUS realm as was communicated
 during user authentication using the Operator-Name attribute
 ([RFC5580], Section 4.1). Only Operator-Name values with the
 namespace "1" are supported by this algorithm -- the input to the
 algorithm is the actual domain name, preceded with an "@" (but
 without the "1" namespace identifier byte of that attribute).

 Note well: The attribute User-Name is defined to contain UTF-8 text.
 In practice, the content may or may not be UTF-8. Even if UTF-8, it
 may or may not map to a domain name in the realm part. Implementors
 MUST take possible conversion error paths into consideration when
 parsing incoming User-Name attributes. This document describes
 server discovery only for well-formed realms mapping to DNS domain
 names in UTF-8 encoding. The result of all other possible contents
 of User-Name is unspecified; this includes, but is not limited to:

 Usage of separators other than "@".

 Encoding of User-Name in local encodings.

 UTF-8 realms that fail the conversion rules as per [RFC5891].

 UTF-8 realms that end with a "." ("dot") character.

 For the last bullet point, "trailing dot", special precautions should
 be taken to avoid problems when resolving servers with the algorithm
 below: they may resolve to a RADIUS server even if the peer RADIUS
 server only is configured to handle the realm without the trailing
 dot. If that RADIUS server again uses NAI discovery to determine the
 authoritative server, the server will forward the request to
 localhost, resulting in a tight endless loop.

3.4.2. Output

 Output O of the algorithm is a two-tuple consisting of: O-1) a set of
 tuples {hostname; port; protocol; order/preference; Effective TTL} --
 the set can be empty -- and O-2) an integer. If the set in the first
 part of the tuple is empty, the integer contains the Effective TTL
 for backoff timeout; if the set is not empty, the integer is set to 0
 (and not used).

3.4.3. Algorithm

 The algorithm to determine the RADIUS server to contact is as
 follows:

 1. Determine P = (position of last "@" character) in I.

 2. Generate R = (substring from P+1 to end of I).

 3. Modify R according to agreed consortium procedures if
 applicable.

 4. Convert R to a representation usable by the name resolution
 library if needed.

 5. Initialize TIMER = 0; start TIMER. If TIMER reaches
 DNS_TIMEOUT, continue at step 20.

 6. Using the host's name resolution library, perform a NAPTR query
 for R (see "Delay Considerations", Section 3.4.5, below). If
 the result is a negative DNS response, O-2 = Effective TTL (TTL
 value of the SOA record) and continue at step 13. If name
 resolution returns with error, O-1 = { empty set }, O-2 =
 BACKOFF_TIME, and terminate.

 7. Extract NAPTR records with service tags "aaa+auth", "aaa+acct",
 and "aaa+dynauth" as appropriate. Keep note of the protocol tag
 and remaining TTL of each of the discovered NAPTR records.

 8. If no records are found, continue at step 13.

 9. For the extracted NAPTRs, perform successive resolution as
 defined in [RFC3958], Section 2.2. An implementation MAY use
 greedy result evaluation according to the NAPTR order/preference
 fields (i.e., can execute the subsequent steps of this algorithm
 for the highest-order entry in the set of results and only look
 up the remainder of the set if necessary).

 10. If the set of hostnames is empty, O-1 = { empty set }, O-2 =
 BACKOFF_TIME, and terminate.

 11. O' = (set of {hostname; port; protocol; order/preference;
 Effective TTL (all DNS TTLs that led to this hostname) } for
 all terminal lookup results).

 12. Proceed with step 18.

 13. Generate R' = (prefix R with "_radiustls._tcp." and/or
 "_radiustls._udp.").

 14. Using the host's name resolution library, perform SRV lookup
 with R' as label (see "Delay Considerations", Section 3.4.5,
 below).

 15. If name resolution returns with error, O-1 = { empty set }, O-2
 = BACKOFF_TIME, and terminate.

 16. If the result is a negative DNS response, O-1 = { empty set },
 O-2 = min { O-2, Effective TTL (TTL value of the SOA record)
 }, and terminate.

 17. O' = (set of {hostname; port; protocol; order/preference;
 Effective TTL (all DNS TTLs that led to this result) } for all
 hostnames).

 18. Generate O-1 by resolving hostnames in O' into corresponding A
 and/or AAAA addresses: O-1 = (set of {IP address; port;
 protocol; order/preference; Effective TTL (all DNS TTLs that
 led to this result) } for all hostnames), O-2 = 0.

 19. For each element in O-1, test if the original request that
 triggered dynamic discovery was received on {IP address; port}.
 If yes, O-1 = { empty set }, O-2 = BACKOFF_TIME, log error, and
 terminate (see next section for a rationale). If no, O is the
 result of dynamic discovery; terminate.

 20. O-1 = { empty set }, O-2 = BACKOFF_TIME, log error, and
 terminate.

3.4.4. Validity of Results

 The discovery algorithm is used by servers that do not have
 sufficient configuration information to process an incoming request
 on their own. If the discovery algorithm result contains the
 server's own listening address (IP address and port), then there is a
 potential for an endless forwarding loop. If the listening address
 is the DNS result with the highest priority, the server will enter a
 tight loop (the server would forward the request to itself,
 triggering dynamic discovery again in a perpetual loop). If the
 address has a lower priority in the set of results, there is a
 potential loop with intermediate hops in between (the server could
 forward to another host with a higher priority, which might use DNS
 itself and forward the packet back to the first server). The
 underlying reason that enables these loops is that the server
 executing the discovery algorithm is seriously misconfigured in that
 it does not recognize the request as one that is to be processed by
 itself. RADIUS has no built-in loop detection, so any such loops
 would remain undetected. So, if step 18 of the algorithm discovers
 such a possible-loop situation, the algorithm should be aborted and
 an error logged. Note that this safeguard does not provide perfect
 protection against routing loops. One reason that might introduce a
 loop includes the possibility that a subsequent hop has a statically
 configured next hop that leads to an earlier host in the loop.
 Another reason for occurring loops is if the algorithm was executed
 with greedy result evaluation, and the server's own address was in a
 lower-priority branch of the result set that was not retrieved from
 DNS at all, and thus can't be detected.

 After executing the above algorithm, the RADIUS server establishes a
 connection to a home server from the result set. This connection can
 potentially remain open for an indefinite amount of time. This
 conflicts with the possibility of changing device and network
 configurations on the receiving end. Typically, TTL values for
 records in the name resolution system are used to indicate how long
 it is safe to rely on the results of the name resolution. If these
 TTLs are very low, thrashing of connections becomes possible; the
 Effective TTL mitigates that risk. When a connection is open and the
 smallest of the Effective TTL value that was learned during
 discovering the server has not expired, subsequent new user sessions
 for the realm that corresponds to that open connection SHOULD reuse
 the existing connection and SHOULD NOT re-execute the discovery
 algorithm nor open a new connection. To allow for a change of
 configuration, a RADIUS server SHOULD re-execute the discovery
 algorithm after the Effective TTL that is associated with this
 connection has expired. The server SHOULD keep the session open
 during this reassessment to avoid closure and immediate reopening of
 the connection should the result not have changed.

 Should the algorithm above terminate with O-1 = { empty set }, the
 RADIUS server SHOULD NOT attempt another execution of this algorithm
 for the same target realm before the timeout O-2 has passed.

3.4.5. Delay Considerations

 The host's name resolution library may need to contact outside
 entities to perform the name resolution (e.g., authoritative name
 servers for a domain), and since the NAI discovery algorithm is based
 on uncontrollable user input, the destination of the lookups is out
 of control of the server that performs NAI discovery. If such
 outside entities are misconfigured or unreachable, the algorithm
 above may need an unacceptably long time to terminate. Many RADIUS
 implementations time out after five seconds of delay between Request
 and Response. It is not useful to wait until the host name
 resolution library signals a timeout of its name resolution
 algorithms. The algorithm therefore controls execution time with
 TIMER. Execution of the NAI discovery algorithm SHOULD be non-
 blocking (i.e., allow other requests to be processed in parallel to
 the execution of the algorithm).

3.4.6. Example

 Assume

 a user from the Technical University of Munich, Germany, has a
 RADIUS User-Name of "foobar@tu-m[U+00FC]nchen.example".

 The name resolution library on the RADIUS forwarding server does
 not have the realm tu-m[U+00FC]nchen.example in its forwarding
 configuration but uses DNS for name resolution and has configured
 the use of dynamic discovery to discover RADIUS servers.

 It is IPv6 enabled and prefers AAAA records over A records.

 It is listening for incoming RADIUS/TLS requests on 192.0.2.1,
 TCP/2083.

 May the configuration variables be

 DNS_TIMEOUT = 3 seconds

 MIN_EFF_TTL = 60 seconds

 BACKOFF_TIME = 3600 seconds

 If DNS contains the following records

 xn--tu-mnchen-t9a.example. IN NAPTR 50 50 "s"
 "aaa+auth:radius.tls.tcp" "" _myradius._tcp.xn--tu-mnchen-
 t9a.example.

 xn--tu-mnchen-t9a.example. IN NAPTR 50 50 "s"
 "fooservice:bar.dccp" "" _abc123._def.xn--tu-mnchen-t9a.example.

 _myradius._tcp.xn--tu-mnchen-t9a.example. IN SRV 0 10 2083
 radsecserver.xn--tu-mnchen-t9a.example.

 _myradius._tcp.xn--tu-mnchen-t9a.example. IN SRV 0 20 2083
 backupserver.xn--tu-mnchen-t9a.example.

 radsecserver.xn--tu-mnchen-t9a.example. IN AAAA
 2001:0DB8::202:44ff:fe0a:f704

 radsecserver.xn--tu-mnchen-t9a.example. IN A 192.0.2.3

 backupserver.xn--tu-mnchen-t9a.example. IN A 192.0.2.7

 Then the algorithm executes as follows, with I =
 "foobar@tu-m[U+00FC]nchen.example", and no consortium name mangling
 in use:

 1. P = 7

 2. R = "tu-m[U+00FC]nchen.example"

 3. NOOP

 4. Name resolution library converts R to xn--tu-mnchen-t9a.example

 5. TIMER starts.

 6. Result:

 (TTL = 47) 50 50 "s" "aaa+auth:radius.tls.tcp" ""
 _myradius._tcp.xn--tu-mnchen-t9a.example.

 (TTL = 522) 50 50 "s" "fooservice:bar.dccp" ""
 _abc123._def.xn--tu-mnchen-t9a.example.

 7. Result:

 (TTL = 47) 50 50 "s" "aaa+auth:radius.tls.tcp" ""
 _myradius._tcp.xn--tu-mnchen-t9a.example.

 8. NOOP

 9. Successive resolution performs SRV query for label
 _myradius._tcp.xn--tu-mnchen-t9a.example, which results in

 (TTL 499) 0 10 2083 radsec.xn--tu-mnchen-t9a.example.

 (TTL 2200) 0 20 2083 backup.xn--tu-mnchen-t9a.example.

 10. NOOP

 11. O' = {

 (radsec.xn--tu-mnchen-t9a.example.; 2083; RADIUS/TLS; 10;
 60),

 (backup.xn--tu-mnchen-t9a.example.; 2083; RADIUS/TLS; 20; 60)

 } // minimum TTL is 47, upped to MIN_EFF_TTL

 12. Continuing at 18.

 13. (not executed)

 14. (not executed)

 15. (not executed)

 16. (not executed)

 17. (not executed)

 18. O-1 = {

 (2001:0DB8::202:44ff:fe0a:f704; 2083; RADIUS/TLS; 10; 60),

 (192.0.2.7; 2083; RADIUS/TLS; 20; 60)

 }; O-2 = 0

 19. No match with own listening address; terminate with tuple (O-1,
 O-2) from previous step.

 The implementation will then attempt to connect to two servers, with
 preference to [2001:0DB8::202:44ff:fe0a:f704]:2083 using the RADIUS/
 TLS protocol.

4. Operations and Manageability Considerations

 The discovery algorithm as defined in this document contains several
 options: the major ones are use of NAPTR vs. SRV; how to determine
 the authorization status of a contacted server for a given realm; and
 which trust anchors to consider trustworthy for the RADIUS
 conversation setup.

 Random parties that do not agree on the same set of options may not
 be able to interoperate. However, such a global interoperability is
 not intended by this document.

 Discovery as per this document becomes important inside a roaming
 consortium, which has set up roaming agreements with the other
 partners. Such roaming agreements require much more than a technical
 means of server discovery; there are administrative and contractual
 considerations at play (service contracts, back-office compensations,
 procedures, etc.).

 A roaming consortium's roaming agreement must include a profile of
 which choice points in this document to use. So as long as the
 roaming consortium can settle on one deployment profile, they will be
 able to interoperate based on that choice; this per-consortium
 interoperability is the intended scope of this document.

5. Security Considerations

 When using DNS without DNSSEC security extensions and validation for
 all of the replies to NAPTR, SRV, and A/AAAA requests as described in
 Section 3, the result of the discovery process can not be trusted.
 Even if it can be trusted (i.e., DNSSEC is in use), actual
 authorization of the discovered server to provide service for the
 given realm needs to be verified. A mechanism from Section 2.1.1.3
 or equivalent MUST be used to verify authorization.

 The algorithm has a configurable completion timeout DNS_TIMEOUT
 defaulting to three seconds for RADIUS' operational reasons. The
 lookup of DNS resource records based on unverified user input is an
 attack vector for DoS attacks: an attacker might intentionally craft
 bogus DNS zones that take a very long time to reply (e.g., due to a
 particularly byzantine tree structure or artificial delays in
 responses).

 To mitigate this DoS vector, implementations SHOULD consider rate
 limiting either the amount of new executions of the discovery
 algorithm as a whole or the amount of intermediate responses to
 track, or at least the number of pending DNS queries.
 Implementations MAY choose lower values than the default for
 DNS_TIMEOUT to limit the impact of DoS attacks via that vector. They
 MAY also continue their attempt to resolve DNS records even after
 DNS_TIMEOUT has passed; a subsequent request for the same realm might
 benefit from retrieving the results anyway. The amount of time spent
 waiting for a result will influence the impact of a possible DoS
 attack; the waiting time value is implementation dependent and
 outside the scope of this specification.

 With dynamic discovery being enabled for a RADIUS server, and
 depending on the deployment scenario, the server may need to open up
 its target IP address and port for the entire Internet because
 arbitrary clients may discover it as a target for their
 authentication requests. If such clients are not part of the roaming
 consortium, the RADIUS/TLS connection setup phase will fail (which is
 intended), but the computational cost for the connection attempt is
 significant. When the port for a TLS-based service is open, the
 RADIUS server shares all the typical attack vectors for services
 based on TLS (such as HTTPS and SMTPS). Deployments of RADIUS/TLS
 with dynamic discovery should consider these attack vectors and take
 appropriate countermeasures (e.g., blacklisting known bad IPs on a
 firewall, rate limiting new connection attempts, etc.).

6. Privacy Considerations

 The classic RADIUS operational model (known, preconfigured peers,
 shared secret security, and mostly plaintext communication) and this
 new RADIUS dynamic discovery model (peer discovery with DNS, PKI
 security, and packet confidentiality) differ significantly in their
 impact on the privacy of end users trying to authenticate to a RADIUS
 server.

 With classic RADIUS, traffic in large environments gets aggregated by
 statically configured clearinghouses. The packets sent to those
 clearinghouses and their responses are mostly unprotected. As a
 consequence,

 o All intermediate IP hops can inspect most of the packet payload in
 clear text, including the User-Name and Calling-Station-Id
 attributes, and can observe which client sent the packet to which
 clearinghouse. This allows the creation of mobility profiles for
 any passive observer on the IP path.

 o The existence of a central clearinghouse creates an opportunity
 for the clearinghouse to trivially create the same mobility
 profiles. The clearinghouse may or may not be trusted not to do
 this, e.g., by sufficiently threatening contractual obligations.

 o In addition to that, with the clearinghouse being a RADIUS
 intermediate in possession of a valid shared secret, the
 clearinghouse can observe and record even the security-critical
 RADIUS attributes such as User-Password. This risk may be
 mitigated by choosing authentication payloads that are
 cryptographically secured and do not use the attribute User-
 Password -- such as certain EAP types.

 o There is no additional information disclosure to parties outside
 the IP path between the RADIUS client and server (in particular,
 no DNS servers learn about realms of current ongoing
 authentications).

 With RADIUS and dynamic discovery,

 o This protocol allows for RADIUS clients to identify and directly
 connect to the RADIUS home server. This can eliminate the use of
 clearinghouses to do forwarding of requests, and it also
 eliminates the ability of the clearinghouse to then aggregate the
 user information that flows through it. However, there are
 reasons why clearinghouses might still be used. One reason to
 keep a clearinghouse is to act as a gateway for multiple backends

 in a company; another reason may be a requirement to sanitize
 RADIUS datagrams (filter attributes, tag requests with new
 attributes, etc.).

 o Even where intermediate proxies continue to be used for reasons
 unrelated to dynamic discovery, the number of such intermediates
 may be reduced by removing those proxies that are only deployed
 for pure request routing reasons. This reduces the number of
 entities that can inspect the RADIUS traffic.

 o RADIUS clients that make use of dynamic discovery will need to
 query the Domain Name System and use a user's realm name as the
 query label. A passive observer on the IP path between the RADIUS
 client and the DNS server(s) being queried can learn that a user
 of that specific realm was trying to authenticate at that RADIUS
 client at a certain point in time. This may or may not be
 sufficient for the passive observer to create a mobility profile.
 During the recursive DNS resolution, a fair number of DNS servers
 and the IP hops in between those get to learn that information.
 Not every single authentication triggers DNS lookups, so there is
 no one-to-one relation of leaked realm information and the number
 of authentications for that realm.

 o Since dynamic discovery operates on a RADIUS hop-by-hop basis,
 there is no guarantee that the RADIUS payload is not transmitted
 between RADIUS systems that do not make use of this algorithm, and
 they possibly use other transports such as RADIUS/UDP. On such
 hops, the enhanced privacy is jeopardized.

 In summary, with classic RADIUS, few intermediate entities learn very
 detailed data about every ongoing authentication, while with dynamic
 discovery, many entities learn only very little about recently
 authenticated realms.

7. IANA Considerations

 Per this document, IANA has added the following entries in existing
 registries:

 o S-NAPTR Application Service Tags registry

 * aaa+auth

 * aaa+acct

 * aaa+dynauth

 o S-NAPTR Application Protocol Tags registry

 * radius.tls.tcp

 * radius.dtls.udp

 This document reserves the use of the "radiustls" and "radiusdtls"
 service names. Registration information as per Section 8.1.1 of
 [RFC6335] is as follows:

 Service Name: radiustls; radiusdtls

 Transport Protocols: TCP (for radiustls), UDP (for radiusdtls)

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Authentication, Accounting, and Dynamic Authorization
 via the RADIUS protocol. These service names are used to
 construct the SRV service labels "_radiustls" and "_radiusdtls"
 for discovery of RADIUS/TLS and RADIUS/DTLS servers, respectively.

 Reference: RFC 7585

 This specification makes use of the SRV protocol identifiers "_tcp"
 and "_udp", which are mentioned as early as [RFC2782] but do not
 appear to be assigned in an actual registry. Since they are in
 widespread use in other protocols, this specification refrains from
 requesting a new registry "RADIUS/TLS SRV Protocol Registry" and
 continues to make use of these tags implicitly.

 Per this document, a number of Object Identifiers have been assigned.
 They are now under the control of IANA following [RFC7299].

 IANA has assigned the following identifiers:

 85 has been assigned from the "SMI Security for PKIX Module
 Identifier" registry. The description is id-mod-nai-realm-08.

 8 has been assigned from the "SMI Security for PKIX Other Name
 Forms" registry. The description is id-on-naiRealm.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2782]
 Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <http://www.rfc-editor.org/info/rfc2782>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <http://www.rfc-editor.org/info/rfc2866>.

 [RFC3958]
 Daigle, L. and A. Newton, "Domain-Based Application
 Service Location Using SRV RRs and the Dynamic Delegation
 Discovery Service (DDDS)", RFC 3958, DOI 10.17487/RFC3958,
 January 2005, <http://www.rfc-editor.org/info/rfc3958>.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 DOI 10.17487/RFC5176, January 2008,
 <http://www.rfc-editor.org/info/rfc5176>.

 [RFC5280]
 Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5580]
 Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A., and
 B. Aboba, "Carrying Location Objects in RADIUS and
 Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,
 <http://www.rfc-editor.org/info/rfc5580>.

 [RFC5891]
 Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <http://www.rfc-editor.org/info/rfc5891>.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <http://www.rfc-editor.org/info/rfc6614>.

 [RFC7360]
 DeKok, A., "Datagram Transport Layer Security (DTLS) as a
 Transport Layer for RADIUS", RFC 7360,
 DOI 10.17487/RFC7360, September 2014,
 <http://www.rfc-editor.org/info/rfc7360>.

 [RFC7542]
 DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <http://www.rfc-editor.org/info/rfc7542>.

8.2. Informative References

 [RFC4017]
 Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, DOI 10.17487/RFC4017, March
 2005, <http://www.rfc-editor.org/info/rfc4017>.

 [RFC6335]
 Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <http://www.rfc-editor.org/info/rfc6335>.

 [RFC6733]
 Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC7299]
 Housley, R., "Object Identifier Registry for the PKIX
 Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
 <http://www.rfc-editor.org/info/rfc7299>.

 [RFC7593]
 Wierenga, K., Winter, S., and T. Wolniewicz, "The eduroam
 Architecture for Network Roaming", RFC 7593,
 DOI 10.17487/RFC7593, September 2015,
 <http://www.rfc-editor.org/info/rfc7593>.

Appendix A. ASN.1 Syntax of NAIRealm

PKIXNaiRealm08 {iso(1) identified‑organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id‑mod(0)
 id‑mod‑nai‑realm‑08(85) }

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 id‑pkix
 FROM PKIX1Explicit‑2009
 {iso(1) identified‑organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id‑mod(0)
 id‑mod‑pkix1‑explicit‑02(51)}
 ‑‑ from RFCs 5280 and 5912

 OTHER‑NAME
 FROM PKIX1Implicit‑2009
 {iso(1) identified‑organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id‑mod(0) id‑mod‑pkix1‑implicit‑02(59)}
 ‑‑ from RFCs 5280 and 5912
;

 -- Service Name Object Identifier

id‑on OBJECT IDENTIFIER ::= { id‑pkix 8 }

 id-on-naiRealm OBJECT IDENTIFIER ::= { id-on 8 }

 -- Service Name

 naiRealm OTHER-NAME ::= { NAIRealm IDENTIFIED BY { id-on-naiRealm }}

 ub-naiRealm-length INTEGER ::= 255

 NAIRealm ::= UTF8String (SIZE (1..ub-naiRealm-length))

 END

Authors' Addresses

Stefan Winter
Fondation RESTENA
6, rue Richard Coudenhove‑Kalergi
Luxembourg 1359
Luxembourg

Phone: +352 424409 1
Fax: +352 422473
Email: stefan.winter@restena.lu
URI: http://www.restena.lu

Mike McCauley
AirSpayce Pty Ltd
9 Bulbul Place
Currumbin Waters QLD 4223
Australia

Phone: +61 7 5598 7474
Email: mikem@airspayce.com
URI: http://www.airspayce.com

7930 - Larger Packets for RADIUS over TCP

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 7930

Updates: 6613

Category: Experimental

ISSN: 2070-1721

S. Hartman

Painless Security

August 2016

Larger Packets for RADIUS over TCP

Abstract

 The RADIUS-over-TLS experiment described in RFC 6614 has opened
 RADIUS to new use cases where the 4096-octet maximum size limit of a
 RADIUS packet proves problematic. This specification extends the
 RADIUS-over-TCP experiment (RFC 6613) to permit larger RADIUS
 packets. This specification compliments other ongoing work to permit
 fragmentation of RADIUS authorization information. This document
 registers a new RADIUS code, an action that required IESG approval.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7930.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Requirements Notation

	2. Changes to Packet Processing
	 2.1. Status-Server Considerations

	3. Forward and Backward Compatibility
	 3.1. Rationale

	 3.2. Discovery

	4. Protocol-Error Code

	5. Too Big Response

	6. IANA Considerations

	7. Security Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgements

	Author's Address

1. Introduction

 The experiment with Remote Authentication Dial-In User Service
 (RADIUS) over Transport Layer Security (TLS) [RFC6614] provides
 strong confidentiality and integrity for RADIUS [RFC2865]. This
 enhanced security has opened new opportunities for using RADIUS to
 convey additional authorization information. As an example,
 [RFC7833] describes a mechanism for using RADIUS to carry Security
 Assertion Markup Language (SAML) messages in RADIUS. Many attributes
 carried in these SAML messages will require confidentiality or
 integrity such as that provided by TLS.

 These new use cases involve carrying additional information in RADIUS
 packets. The maximum packet length of 4096 octets is proving
 insufficient for some SAML messages and for other structures that may
 be carried in RADIUS.

 One approach is to fragment a RADIUS message across multiple packets
 at the RADIUS layer. RADIUS fragmentation [RFC7499] provides a
 mechanism to split authorization information across multiple RADIUS
 messages. That mechanism is necessary in order to split
 authorization information across existing unmodified proxies.

 However, there are some significant disadvantages to RADIUS
 fragmentation. First, RADIUS is a lock-step protocol, and only one
 fragment can be in transit at a time as part of a given request.
 Also, there is no current mechanism to discover the Path Maximum
 Transmission Unit (PMTU) across the entire path that the fragment
 will travel. As a result, fragmentation is likely both at the RADIUS
 layer and at the transport layer. When TCP is used, much better
 transport characteristics can be achieved by fragmentation only at
 the TCP layer. This specification provides a mechanism to achieve
 these better transport characteristics when TCP is used. As part of
 this specification, a new RADIUS code is registered.

 This specification is published as an Experimental specification
 because the TCP extensions to RADIUS are currently experimental. The
 need for this specification arises from operational experience with
 the TCP extensions. However, this specification introduces no new
 experimental evaluation criteria beyond those in the base TCP
 specification; this specification can be evaluated along with that
 one for advancement on the Standards Track.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Changes to Packet Processing

 The maximum length of a RADIUS message is increased from 4096 to
 65535. A RADIUS Server implementing this specification MUST be able
 to receive a RADIUS packet of maximum length. Servers MAY have a
 maximum size over which they choose to return an error, as discussed
 in Section 5, rather than processing a received packet; this size
 MUST be at least 4096 octets.

 Clients implementing this specification MUST be able to receive a
 RADIUS packet of maximum length; that is, clients MUST NOT close a
 TCP connection simply because a large packet is sent over it.
 Clients MAY include the Response-Length attribute defined in
 Section 6 to indicate the maximum size of a packet that they can
 successfully process. Clients MAY silently discard a packet greater
 than some configured size; this size MUST be at least 4096 octets.
 Clients MUST NOT retransmit an unmodified request whose response is
 larger than the client can process, as subsequent responses will
 likely continue to be too large.

 Proxies MUST be able to receive a RADIUS packet of maximum length
 without closing the TCP connection. Proxies SHOULD be able to
 process and forward packets of maximum length. When a proxy receives
 a request over a transport with a 4096-octet maximum length and the
 proxy forwards that request over a transport with a larger maximum
 length, the proxy MUST include the Response-Length attribute with a
 value of 4096.

2.1. Status-Server Considerations

 This section extends processing of Status-Server messages as
 described in Sections 4.1 and 4.2 of [RFC5997].

 Clients implementing this specification SHOULD include the Response-
 Length attribute in Status-Server requests. Servers are already
 required to ignore unknown attributes received in this message. By
 including the attribute, the client indicates how large of a response
 it can process to its Status-Server request. It is very unlikely
 that a response to Status-Server is greater than 4096 octets.
 However, the client also indicates support for this specification,
 which triggers the server behavior below.

 If a server implementing this specification receives a Response-
 Length attribute in a Status-Server request, it MUST include a
 Response-Length attribute indicating the maximum size request it can
 process in its response to the Status-Server request.

3. Forward and Backward Compatibility

 An implementation of [RFC6613] will silently discard any RADIUS
 packet larger than 4096 octets and will close the TCP connection.
 This section provides guidelines for interoperability with these
 implementations. These guidelines are stated at the SHOULD level.
 In some environments, support for large packets will be important
 enough that roaming or other agreements will mandate their support.
 In these environments, all implementations might be required to
 support this specification, thus removing the need for
 interoperability with RFC 6613. It is likely that these guidelines
 will be relaxed to the MAY level and support for this specification
 made a requirement if RADIUS over TLS and TCP are moved to the
 Standards Track in the future.

 Clients SHOULD provide configuration for the maximum size of a
 request sent to each server. Servers SHOULD provide configuration
 for the maximum size of a response sent to each client. If dynamic
 discovery mechanisms are supported, configuration SHOULD be provided
 for the default maximum size of RADIUS packets sent to clients and
 servers. If an implementation provides more granular configuration
 for some classes of dynamic resources, then the implementation SHOULD
 also provide configuration of default maximum packet sizes at the
 same granularity. As an example, an implementation that provided
 granular configuration for resources using a particular trust anchor
 or belonging to a particular roaming consortium SHOULD provide
 default packet size configuration at the same granularity.

 If a client sends a request larger than 4096 octets and the TCP
 connection is closed without a response, the client SHOULD treat the
 request as if a "Request Too Big" error (Section 5) specifying a
 maximum size of 4096 is received. Clients or proxies sending
 multiple requests over a single TCP connection without waiting for
 responses SHOULD implement capability discovery as discussed in
 Section 3.2.

 By default, a server SHOULD NOT generate a response larger than 4096
 octets. The Response-Length attribute MAY be included in a request
 to indicate that larger responses are acceptable. Other attributes
 or configurations MAY be used as an indicator that large responses
 are likely to be acceptable.

 A proxy that implements both this specification and RADIUS
 fragmentation [RFC7499] SHOULD use RADIUS fragmentation when the
 following conditions are met:

 1. A RADIUS packet is being forwarded towards a next hop whose
 configuration does not support a packet that large.

 2. RADIUS fragmentation can be used for the packet in question.

3.1. Rationale

 The interoperability challenge appears at first significant. This
 specification proposes to introduce behavior where new
 implementations will fail to function with existing implementations.

 However, these capabilities are introduced to support new use cases.
 If an implementation has 10000 octets of attributes to send, it
 cannot, in general, trim down the response to something that can be
 sent. Under this specification, a large packet would be generated
 that will be silently discarded by an existing implementation.
 Without this specification, no packet is generated because the
 required attributes cannot be sent.

 The biggest risk to interoperability would be if requests and
 responses are expanded to include additional information that is not
 strictly necessary. So, avoiding creating situations where large
 packets are sent to existing implementations is mostly an operational
 matter. Interoperability is most impacted when the size of packets
 in existing use cases is significantly increased and least impacted
 when large packets are used for new use cases where the deployment is
 likely to require updated RADIUS implementations.

 There is a special challenge for proxies or clients with a high
 request volume. When an implementation of RFC 6613 receives a packet
 that is too large, it closes the connection and does not respond to
 any requests in process. Such a client would lose requests and might
 find it difficult to distinguish "Request Too Big" situations from
 other failures. In these cases, the discovery mechanism described in
 Section 3.2 can be used.

 Also, RFC 6613 is an experiment. Part of running that experiment is
 to evaluate whether additional changes are required to RADIUS. A
 lower bar for interoperability should apply to changes to
 Experimental protocols than Standard protocols.

 This specification provides good facilities to enable implementations
 to understand packet size when proxying to/from Standards Track UDP
 RADIUS.

3.2. Discovery

 As discussed in Section 2.1, a client MAY send a Status-Server
 message to discover whether an authentication or accounting server
 supports this specification. The client includes a Response-Length
 attribute; this signals the server to include a Response-Length
 attribute indicating the maximum packet size the server can process.
 In this one instance, Response-Length indicates the size of a request
 that can be processed rather than a response.

4. Protocol-Error Code

 This document defines a new RADIUS code, 52, called Protocol-Error.
 This packet code may be used in response to any request packet, such
 as Access-Request, Accounting-Request, CoA-Request, or Disconnect-
 Request. It is a response packet sent by a server to a client. The
 packet indicates to the client that the server is unable to process
 the request for some reason.

 A Protocol-Error packet MUST contain an Original-Packet-Code
 attribute, along with an Error-Cause attribute. Other attributes MAY
 be included if desired. The Original-Packet-Code contains the code
 from the request that generated the protocol error so that clients
 can disambiguate requests with different codes and the same ID.
 Regardless of the original packet code, the RADIUS Server calculates
 the Message-Authenticator attribute as if the original packet were an
 Access-Request packet. The identifier is copied from the original
 request.

 Clients processing Protocol-Error MUST ignore unknown or unexpected
 attributes.

 This RADIUS code is hop by hop. Proxies MUST NOT forward a Protocol-
 Error packet they receive.

5. Too Big Response

 When a RADIUS Server receives a request that is larger than can be
 processed, it generates a Protocol-Error response as follows:

 The code is Protocol-Error.

 The Response-Length attribute MUST be included and its value is
 the maximum size of request that will be processed.

 The Error-Cause attribute is included with a value of 601.

 The Original-Packet-Code attribute is copied from the request.

 Clients will not typically be able to adjust and resend requests when
 this error is received. In some cases, the client can fall back to
 RADIUS fragmentation. In other cases, this code will provide for
 better client error reporting and will avoid retransmitting requests
 guaranteed to fail.

6. IANA Considerations

 A new RADIUS Packet Type Code is registered in the "RADIUS Packet
 Type Codes" registry discussed in Section 2.1 of RFC 3575 [RFC3575].
 The name is "Protocol-Error" and the code is 52.

 The following RADIUS attribute Type values [RFC3575] are assigned.
 The assignment rules in Section 10.3 of [RFC6929] are used.

+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
| Name | Attribute | Description |
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+
Response‑Length	241.3	An attribute of type "integer"
		per Section 5 of RFC 2865
		containing maximum response
		length.
Original‑Packet‑Code	241.4	An integer attribute
		containing the code from a
		packet resulting in a
		Protocol‑Error response.
+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑+‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑+

 The Response-Length attribute MAY be included in any RADIUS request.
 In this context, it indicates the maximum length of a response the
 client is prepared to receive. Values are between 4096 and 65535.
 The attribute MAY also be included in a response to a Status-Server
 message. In this case, the attribute indicates the maximum size
 RADIUS request that is permitted.

 A new Error-Cause value is registered in the "Values for RADIUS
 Attribute 101, Error-Cause Attribute" registry at
 <http://www.iana.org/assignments/radius-types> for "Response Too Big"
 with value 601. The range of valid values for the Error-Cause
 attribute in the "Values for RADIUS Attribute 101, Error-Cause
 Attribute" registry originally defined in RFC 5176 are extended. Two
 new ranges are defined:

 6xx fatal errors committed by a RADIUS server

 7xx fatal errors committed by a RADIUS client

7. Security Considerations

 This specification updates [RFC6613] and will be used with [RFC6614].
 When used over plain TCP, this specification creates new
 opportunities for an on-path attacker to impact availability. These
 attacks can be entirely mitigated by using TLS. If these attacks are
 acceptable, then this specification can be used over TCP without TLS.

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 DOI 10.17487/RFC3575, July 2003,
 <http://www.rfc-editor.org/info/rfc3575>.

 [RFC5997]
 DeKok, A., "Use of Status-Server Packets in the Remote
 Authentication Dial In User Service (RADIUS) Protocol",
 RFC 5997, DOI 10.17487/RFC5997, August 2010,
 <http://www.rfc-editor.org/info/rfc5997>.

 [RFC6613]
 DeKok, A., "RADIUS over TCP", RFC 6613,
 DOI 10.17487/RFC6613, May 2012,
 <http://www.rfc-editor.org/info/rfc6613>.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <http://www.rfc-editor.org/info/rfc6614>.

 [RFC6929]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <http://www.rfc-editor.org/info/rfc6929>.

8.2. Informative References

 [RFC7499]
 Perez-Mendez, A., Ed., Marin-Lopez, R., Pereniguez-Garcia,
 F., Lopez-Millan, G., Lopez, D., and A. DeKok, "Support of
 Fragmentation of RADIUS Packets", RFC 7499,
 DOI 10.17487/RFC7499, April 2015,
 <http://www.rfc-editor.org/info/rfc7499>.

 [RFC7833]
 Howlett, J., Hartman, S., and A. Perez-Mendez, Ed., "A
 RADIUS Attribute, Binding, Profiles, Name Identifier
 Format, and Confirmation Methods for the Security
 Assertion Markup Language (SAML)", RFC 7833,
 DOI 10.17487/RFC7833, May 2016,
 <http://www.rfc-editor.org/info/rfc7833>.

Acknowledgements

 Sam Hartman's time on this document was funded by JANET as part of
 Project Moonshot.

 Alan DeKok provided valuable review and text for the Protocol-Error
 packet code.

 Alejandro Perez Mendez provided valuable review comments.

Author's Address

Sam Hartman
Painless Security

 Email: hartmans-ietf@mit.edu

8044 - Data Types in RADIUS

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8044

Updates: 2865, 3162, 4072, 6158, 6572, 7268

Category: Standards Track

ISSN: 2070-1721

A. DeKok

FreeRADIUS

January 2017

Data Types in RADIUS

Abstract

 RADIUS specifications have used data types for two decades without
 defining them as managed entities. During this time, RADIUS
 implementations have named the data types and have used them in
 attribute definitions. This document updates the specifications to
 better follow established practice. We do this by naming the data
 types defined in RFC 6158, which have been used since at least the
 publication of RFC 2865. We provide an IANA registry for the data
 types and update the "RADIUS Attribute Types" registry to include a
 Data Type field for each attribute. Finally, we recommend that
 authors of RADIUS specifications use these types in preference to
 existing practice. This document updates RFCs 2865, 3162, 4072,
 6158, 6572, and 7268.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8044.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Specification Problems with Data Types

	 1.2. Implementation Problems with Data Types

	 1.3. No Mandated Changes

	 1.4. Requirements Language

	2. Use of Data Types
	 2.1. Specification Use of Data Types
	 2.1.1. Field Names for Attribute Values

	 2.1.2. Attribute Definitions Using Data Types

	 2.1.3. Format of Attribute Definitions

	 2.1.4. Defining a New Data Type

	 2.2. Implementation Use of Data Types

	3. Data Type Definitions
	 3.1. integer

	 3.2. enum

	 3.3. time

	 3.4. text

	 3.5. string

	 3.6. concat

	 3.7. ifid

	 3.8. ipv4addr

	 3.9. ipv6addr

	 3.10. ipv6prefix

	 3.11. ipv4prefix

	 3.12. integer64

	 3.13. tlv

	 3.14. vsa

	 3.15. extended

	 3.16. long-extended

	 3.17. evs

	4. Updated Registries
	 4.1. New "Data Type" Registry

	 4.2. Updates to the "RADIUS Attribute Types" Registry

	5. Security Considerations

	6. IANA Considerations

	7. References
	 7.1. Normative References

	 7.2. Informative References

	Acknowledgments

	Author's Address

1. Introduction

RADIUS specifications have historically defined attributes in terms
of name, value, and data type. Of these three pieces of information,
the name is recorded by IANA in the "RADIUS Attribute Types" registry
but is not otherwise managed or restricted, as discussed in
[RFC6929], Section 2.7.1. The value is managed by IANA and recorded
in that registry. The data type is not managed or recorded in the
"RADIUS Attribute Types" registry. Experience has shown that there
is a need to create well‑known data types and have them managed
by IANA.

 This document defines an IANA RADIUS "Data Type" registry and updates
 the "RADIUS Attribute Types" registry to use those newly defined
 data types. It recommends how both specifications and
 implementations should use the data types. It extends the "RADIUS
 Attribute Types" registry to have a data type for each assigned
 attribute.

 In this section, we review the use of data types in specifications
 and implementations. We highlight ambiguities and inconsistencies.
 The rest of this document is devoted to resolving those problems.

1.1. Specification Problems with Data Types

 When attributes are defined in the specifications, the terms "Value"
 and "String" are used to refer to the contents of an attribute.
 However, these names are used recursively and inconsistently. We
 suggest that defining a field to recursively contain itself is
 problematic.

A number of data type names and definitions are given in
[RFC2865], Section 5, at the bottom of page 25. These data types are
named and clearly defined. However, this practice was not continued
in later specifications.

 Specifically, [RFC2865] defines attributes of data type "address" to
 carry IPv4 addresses. Despite this definition, [RFC3162] defines
 attributes of data type "Address" to carry IPv6 addresses. We
 suggest that the use of the word "address" to refer to disparate
 data types is problematic.

 Other failures are that [RFC3162] does not give a data type name and
 definition for the data types IPv6 address, Interface-Id, or IPv6
 prefix. [RFC2869] defines Event-Timestamp to carry a time but does
 not reuse the "time" data type defined in [RFC2865]. Instead, it
 just repeats the "time" definition. [RFC6572] defines multiple
 attributes that carry IPv4 prefixes. However, an "IPv4 prefix" data
 type is not named, defined as a data type, or called out as an
 addition to RADIUS. Further, [RFC6572] does not follow the
 recommendations of [RFC6158] and does not explain why it fails to
 follow those recommendations.

 These ambiguities and inconsistencies need to be resolved.

1.2. Implementation Problems with Data Types

 RADIUS implementations often use "dictionaries" to map attribute
 names to type values and define data types for each attribute. The
 data types in the dictionaries are defined by each implementation but
 correspond to the "ad hoc" data types used in the specifications.

In effect, implementations have seen the need for well‑defined
data types and have created them. It is time for RADIUS
specifications to follow this practice.

1.3. No Mandated Changes

 This document mandates no changes to any past, present, or future
 RADIUS implementation. It instead documents existing practice in
 order to simplify the process of writing RADIUS specifications,
 clarify the interpretation of RADIUS standards, and improve the
 communication between specification authors and IANA.

 This document suggests that implementations SHOULD use the data types
 defined here, in preference to any ad hoc data types currently in
 use. This suggestion should have a minimal effect on
 implementations, as most ad hoc data types are compatible with the
 ones defined here. Any difference will typically be limited to the
 name of the data type.

 This document updates [RFC6158] to permit the data types defined in
 the "Data Type" registry as "basic data types", as per Section 2.1 of
 [RFC6158]. The recommendations of [RFC6158] are otherwise unchanged.

1.4. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Use of Data Types

 The data types can be used in two places: specifications and
 implementations. This section discusses both uses and gives guidance
 on using the data types.

2.1. Specification Use of Data Types

 In this section, we give recommendations for how specifications
 should be written using data types. We first describe how attribute
 field names can be consistently named. We then describe how
 attribute definitions should use the data types and deprecate the use
 of "ASCII art" for attribute definitions. We suggest a format for
 new attribute definitions. This format includes recommended fields
 and suggestions for how those fields should be described.

 Finally, we make recommendations for how new data types should be
 defined.

2.1.1. Field Names for Attribute Values

 Previous specifications used inconsistent and conflicting names for
 the contents of RADIUS attributes. For example, the term "Value" is
 used in [RFC2865], Section 5 to define a field that carries the
 contents of an attribute. It is then used in later sections as the
 subfield of attribute contents. The result is that the field is
 defined as recursively containing itself. Similarly, "String" is
 used both as a data type and as a subfield of other data types.

 We correct this ambiguity by using context-specific names for various
 fields of attributes and data types. It then becomes clear that, for
 example, a field called "VSA-Data" must contain different data than a
 field called "EVS-Data". Each new name is defined where it is used.

 We also define the following term:

 Attr-Data

The Value field of an Attribute as defined in
[RFC2865], Section 5. The contents of this field MUST be of a
valid data type as defined in the RADIUS "Data Type" registry.

 We consistently use "Attr-Data" to refer to the contents of an
 attribute, instead of the more ambiguous name "Value". It is
 RECOMMENDED that new specifications follow this practice.

 We consistently use "Value" to refer to the contents of a data type,
 where that data type is simple. For example, an "integer" can have a
 "Value". In contrast, a Vendor-Specific Attribute carries complex
 information and thus cannot have a "Value".

For data types that carry complex information, we name the fields
based on the data type. For example, a Vendor‑Specific Attribute is
defined to carry a "vsa" data type, and the contents of that
data type are described herein as "VSA‑Data".

 These terms are used in preference to the term "String", which was
 previously used in ambiguous ways. It is RECOMMENDED that future
 specifications use type-specific names and the same naming scheme for
 new types. This use will maintain consistent definitions and help to
 avoid ambiguities.

2.1.2. Attribute Definitions Using Data Types

 New RADIUS specifications MUST define attributes using data types
 from the RADIUS "Data Type" registry. The specification may, of
 course, define a new data type, update the "Data Type" registry, and
 use the new data type, all in the same document. The guidelines
 given in [RFC6929] MUST be followed when defining a new data type.

 Attributes can usually be completely described via the Attribute Type
 value, name, and data type. The use of ASCII art is then limited
 only to the definition of new data types and for complex data types.

 Use of the new extended attributes [RFC6929] makes ASCII art even
 more problematic. An attribute can be allocated from any of the
 extended spaces, with more than one option for the attribute header
 format. This allocation decision is made after the specification has
 been accepted for publication. As the allocation affects the format
 of the attribute header, it is essentially impossible to create the
 correct ASCII art prior to final publication. Allocation from the
 different spaces also changes the value of the Length field, making
 it difficult to define it correctly prior to final publication of the
 document.

 It is therefore RECOMMENDED that ASCII art diagrams not be used for
 new RADIUS attribute specifications.

2.1.3. Format of Attribute Definitions

 When defining a new attribute, the following fields SHOULD be given:

 Description

 A description of the meaning and interpretation of the
 attribute.

 Type

 The Attribute Type value, given in the "dotted number" notation
 from [RFC6929]. Specifications can often leave this as "TBD"
 (to be determined) and request that IANA fill in the allocated
 values.

 Length

 A description of the length of the attribute. For attributes
 of variable length, a maximum length SHOULD be given. Since
 the Length value may depend on the Type value, the definition
 of Length may be affected by IANA allocations.

 Data Type

 One of the named data types from the RADIUS "Data Type"
 registry.

 Value

 A description of any attribute-specific limitations on the
 values carried by the specified data type. If there are no
 attribute-specific limitations, then the description of this
 field can be omitted, so long as the Description field is
 sufficiently explanatory.

 Where the values are limited to a subset of the possible range,
 valid range(s) MUST be defined.

 For attributes of data type "enum", a list of enumerated values
 and names MUST be given, as shown in [RFC2865], Section 5.6.

 Using a consistent format for attribute definitions helps to make the
 definitions clearer.

2.1.4. Defining a New Data Type

 When a specification needs to define a new data type, it SHOULD
 follow the format used by the definitions in Section 3 of this
 document. The text at the start of the data type definition MUST
 describe the data type, including the expected use, and why a new
 data type is required. That text SHOULD include limits on expected
 values and why those limits exist. The fields "Name", "Value",
 "Length", and "Format" MUST be given, along with values.

 The Name field SHOULD be a single name, all lowercase.

 Contractions such as "ipv4addr" are RECOMMENDED where they add
 clarity.

 We note that the use of "Value" in the RADIUS "Data Type" registry
 can be confusing. That name is also used in attribute definitions,
 but with a different meaning. We trust that the meaning here is
 clear from the context.

 The Value field SHOULD be given as "TBD" in specifications. That
 number is assigned by IANA.

 The Format field SHOULD be defined with ASCII art in order to have a
 precise definition. Machine-readable formats are also RECOMMENDED.

The definition of a new data type should be done only when absolutely
necessary. We do not expect a need for a large number of new
data types. When defining a new data type, the guidelines of
[RFC6929] with respect to data types MUST be followed.

It is RECOMMENDED that vendors not define "vendor‑specific"
data types. As discussed in [RFC6929], those data types are rarely
necessary and can cause interoperability problems.

 Any new data type MUST have a unique name in the RADIUS "Data Type"
 registry. The number of the data type will be assigned by IANA.

2.2. Implementation Use of Data Types

Implementations not supporting a particular data type MUST treat
attributes of that data type as being of data type "string", as
defined in Section 3.5. It is RECOMMENDED that such attributes
be treated as "invalid attributes", as defined in
[RFC6929], Section 2.8.

 Where the contents of a data type do not match the definition,
 implementations MUST treat the enclosing attribute as being an
 invalid attribute. This requirement includes, but is not limited to,
 the following situations:

 * Attributes with values outside of the allowed range(s) for the
 data type, e.g., as given in the data types "integer", "ipv4addr",
 "ipv6addr", "ipv4prefix", "ipv6prefix", or "enum".

 * "text" attributes where the contents do not match the required
 format.

 * Attributes where the length is shorter or longer than the allowed
 length(s) for the given data type.

 The requirements for Reserved fields are more difficult to quantify.
 Implementations SHOULD be able to receive and process attributes
 where Reserved fields are non-zero. We do not, however, define any
 "correct" processing of such attributes. Instead, specifications
 that define one or more new meanings for Reserved fields SHOULD
 describe how each new meaning is compatible with older
 implementations. We expect that such descriptions are derived from
 practical experience with implementations. Implementations MUST set
 Reserved fields to zero when creating attributes.

3. Data Type Definitions

 This section defines the new data types. For each data type, it
 gives a definition, a name, a number, a length, and an encoding
 format. Where relevant, it describes subfields contained within the
 data type. These definitions have no impact on existing RADIUS
 implementations. There is no requirement that implementations use
 these names.

 Where possible, the name of each data type has been taken from
 previous specifications. In some cases, a different name has been
 chosen. The change of name is sometimes required to avoid ambiguity
 (i.e., "address" versus "Address"). Otherwise, the new name has been
 chosen to be compatible with [RFC2865] or with usage in common
 implementations. In some cases, new names are chosen to clarify the
 interpretation of the data type.

 The numbers assigned herein for the data types have no meaning other
 than to permit them to be tracked by IANA. As RADIUS does not encode
 information about data types in a packet, the numbers assigned to a
 data type will never occur in a packet. It is RECOMMENDED that new
 implementations use the names defined in this document in order to
 avoid confusion. Existing implementations may choose to use the
 names defined here, but that is not required.

 The encoding of each data type is taken from previous specifications.
 The fields are transmitted from left to right.

 Where the data types have interdependencies, the simplest data type
 is given first, and dependent ones are given later.

We do not create specific data types for the "tagged" attributes
(i.e., attributes containing a Tag field) defined in [RFC2868]. That
specification defines the tagged attributes as being backwards
compatible with pre‑existing data types. In addition,
[RFC6158], Section 2.1 says that tagged attributes should not be
used. There is therefore no benefit to defining additional
data types for these attributes. We trust that implementors will be
aware that tagged attributes must be treated differently from
non‑tagged attributes of the same data type.

 Similarly, we do not create data types for some attributes having a
 complex structure, such as CHAP-Password, ARAP-Features, or
 Location-Information. ("CHAP" refers to the Challenge Handshake
 Authentication Protocol, and "ARAP" refers to the Apple Remote Access
 Protocol.) We need to strike a balance between correcting earlier
 mistakes and making this document more complex. In some cases, it is
 better to treat complex attributes as being of type "string", even
 though they need to be interpreted by RADIUS implementations. The
 guidelines given in Section 6.3 of [RFC6929] were used to make this
 determination.

3.1. integer

 The "integer" data type encodes a 32-bit unsigned integer in network
 byte order. Where the range of values for a particular attribute is
 limited to a subset of the values, specifications MUST define the
 valid range. Attributes with Values outside of the allowed ranges
 SHOULD be treated as invalid attributes.

 Name

 integer

 Value

 1

 Length

 Four octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Value |
+‑+

3.2. enum

 The "enum" data type encodes a 32-bit unsigned integer in network
 byte order. It differs from the "integer" data type only in that it
 is used to define enumerated types, such as Service-Type (Section 5.6
 of [RFC2865]). Specifications MUST define a valid set of enumerated
 values, along with a unique name for each value. Attributes with
 Values outside of the allowed enumerations SHOULD be treated as
 invalid attributes.

 Name

 enum

 Value

 2

 Length

 Four octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Value |
+‑+

3.3. time

 The "time" data type encodes time as a 32-bit unsigned value in
 network byte order and in seconds since 00:00:00 UTC, January 1,
 1970. We note that dates before the year 2017 are likely to indicate
 configuration errors or lack of access to the correct time.

 Note that the "time" attribute is defined to be unsigned, which means
 that it is not subject to a signed integer overflow in the year 2038.

 Name

 time

 Value

 3

 Length

 Four octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Time |
+‑+

3.4. text

 The "text" data type encodes UTF-8 text [RFC3629]. The maximum
 length of the text is given by the encapsulating attribute. Where
 the range of lengths for a particular attribute is limited to a
 subset of possible lengths, specifications MUST define the valid
 range(s). Attributes with lengths outside of the allowed values
 SHOULD be treated as invalid attributes.

 Attributes of type "text" that are allocated in the standard space
 (Section 1.2 of [RFC6929]) are limited to no more than 253 octets of
 data. Attributes of type "text" that are allocated in the extended
 space can be longer. In both cases, these limits are reduced when
 the data is encapsulated inside of another attribute.

Where the text is intended to carry data in a particular format
(e.g., Framed‑Route), the format MUST be given. The specification
SHOULD describe the format in a machine‑readable way, such as via the
Augmented Backus‑Naur Form (ABNF) [RFC5234]. Attributes with
Values not matching the defined format SHOULD be treated as
invalid attributes.

 Note that the "text" data type does not terminate with a NUL octet
 (hex 00). The Attribute has a Length field and does not use a
 terminator. Texts of length zero (0) MUST NOT be sent; omit the
 entire attribute instead.

 Name

 text

 Value

 4

 Length

 One or more octets

 Format

 0
 0 1 2 3 4 5 6 7
+‑+‑+‑+‑+‑+‑+‑+‑
| Value ...
+‑+‑+‑+‑+‑+‑+‑+‑

3.5. string

 The "string" data type encodes binary data as a sequence of
 undistinguished octets. Where the range of lengths for a particular
 attribute is limited to a subset of possible lengths, specifications
 MUST define the valid range(s). Attributes with lengths outside of
 the allowed values SHOULD be treated as invalid attributes.

 Attributes of type "string" that are allocated in the standard space
 (Section 1.2 of [RFC6929]) are limited to no more than 253 octets of
 data. Attributes of type "string" that are allocated in the extended
 space can be longer. In both cases, these limits are reduced when
 the data is encapsulated inside of another attribute.

Note that the "string" data type does not terminate with a NUL octet
(hex 00). The Attribute has a Length field and does not use a
terminator. Strings of length zero (0) MUST NOT be sent; omit the
entire attribute instead. Where there is a need to encapsulate
complex data structures and TLVs cannot be used, the "string"
data type MUST be used. This requirement includes encapsulation of
data structures defined outside of RADIUS that are opaque to the
RADIUS infrastructure. It also includes encapsulation of some data
structures that are not opaque to RADIUS, such as the contents of
CHAP‑Password.

 There is little reason to define a new RADIUS data type for only one
 attribute. However, where the complex data type cannot be
 represented as TLVs and is expected to be used in many attributes, a
 new data type SHOULD be defined.

 These requirements are stronger than [RFC6158], which makes the above
 encapsulation a "SHOULD". This document defines data types for use
 in RADIUS, so there are few reasons to avoid using them.

 Name

 string

 Value

 5

 Length

 One or more octets

 Format

 0
 0 1 2 3 4 5 6 7
+‑+‑+‑+‑+‑+‑+‑+‑
| Octets ...
+‑+‑+‑+‑+‑+‑+‑+‑

3.6. concat

 The "concat" data type permits the transport of more than 253 octets
 of data in a "standard space" [RFC6929] attribute. It is otherwise
 identical to the "string" data type.

 If multiple attributes of this data type are contained in a packet,
 all attributes of the same type code MUST be in order, and they MUST
 be consecutive attributes in the packet.

 The amount of data transported in a "concat" data type can be no more
 than the RADIUS packet size. In practice, the requirement to
 transport multiple attributes means that the limit may be
 substantially smaller than one RADIUS packet. As a rough guide, it
 is RECOMMENDED that this data type transport no more than 2048 octets
 of data.

 The "concat" data type MAY be used for "standard space" attributes.
 It MUST NOT be used for attributes in the "short extended space" or
 the "long extended space". It MUST NOT be used in any field or
 subfields of the following data types: "tlv", "vsa", "extended",
 "long-extended", or "evs".

 Name

 concat

 Value

 6

 Length

 One or more octets

 Format

 0
 0 1 2 3 4 5 6 7
+‑+‑+‑+‑+‑+‑+‑+‑
| Octets ...
+‑+‑+‑+‑+‑+‑+‑+‑

3.7. ifid

 The "ifid" data type encodes an Interface-Id as an 8-octet IPv6
 Interface Identifier in network byte order.

 Name

 ifid

 Value

 7

 Length

 Eight octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Interface‑Id ...
+‑+
 ... Interface‑Id |
+‑+

3.8. ipv4addr

 The "ipv4addr" data type encodes an IPv4 address in network byte
 order. Where the range of addresses for a particular attribute is
 limited to a subset of possible addresses, specifications MUST define
 the valid range(s). Attributes with Address values outside of the
 allowed range(s) SHOULD be treated as invalid attributes.

 Name

 ipv4addr

 Value

 8

 Length

 Four octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Address |
+‑+

3.9. ipv6addr

 The "ipv6addr" data type encodes an IPv6 address in network byte
 order. Where the range of addresses for a particular attribute is
 limited to a subset of possible addresses, specifications MUST define
 the valid range(s). Attributes with Address values outside of the
 allowed range(s) SHOULD be treated as invalid attributes.

 Name

 ipv6addr

 Value

 9

 Length

 Sixteen octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Address ...
+‑+
 ... Address ...
+‑+
 ... Address ...
+‑+
 ... Address |
+‑+

3.10. ipv6prefix

 The "ipv6prefix" data type encodes an IPv6 prefix, using both a
 prefix length and an IPv6 address in network byte order. Where the
 range of prefixes for a particular attribute is limited to a subset
 of possible prefixes, specifications MUST define the valid range(s).
 Attributes with Address values outside of the allowed range(s) SHOULD
 be treated as invalid attributes.

 Attributes with a Prefix-Length field having a value greater than 128
 MUST be treated as invalid attributes.

 Name

 ipv6prefix

 Value

 10

 Length

 At least two, and no more than eighteen, octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Reserved | Prefix‑Length | Prefix ...
+‑+
 ... Prefix ...
+‑+
 ... Prefix ...
+‑+
 ... Prefix |
+‑+

 Subfields

 Reserved

 This field, which is reserved and MUST be present, is always
 set to zero. This field is one octet in length.

 Prefix-Length

 The length of the prefix, in bits. At least 0 and no larger
 than 128. This field is one octet in length.

 Prefix

 The Prefix field is up to 16 octets in length. Bits outside of
 the Prefix-Length, if included, MUST be zero.

 The Prefix field SHOULD NOT contain more octets than necessary
 to encode the Prefix field.

3.11. ipv4prefix

 The "ipv4prefix" data type encodes an IPv4 prefix, using both a
 prefix length and an IPv4 address in network byte order. Where the
 range of prefixes for a particular attribute is limited to a subset
 of possible prefixes, specifications MUST define the valid range(s).
 Attributes with Address values outside of the allowed range(s) SHOULD
 be treated as invalid attributes.

 Attributes with a Prefix-Length field having a value greater than 32
 MUST be treated as invalid attributes.

 Name

 ipv4prefix

 Value

 11

 Length

 Six octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Reserved | Prefix‑Length | Prefix ...
+‑+
 ... Prefix |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Subfields

 Reserved

 This field, which is reserved and MUST be present, is always
 set to zero. This field is one octet in length.

 Note that this definition differs from that given in [RFC6572].
 See "Prefix-Length", below, for an explanation.

 Prefix-Length

 The length of the prefix, in bits. The values MUST be no
 larger than 32. This field is one octet in length. Note that
 this definition differs from that given in [RFC6572].

As compared to [RFC6572], the Prefix‑Length field has increased
in size by two bits, both of which must be zero. The
Reserved field has decreased in size by two bits. The result
is that both fields are aligned on octet boundaries, which
removes the need for bit masking of the fields.

 Since [RFC6572] required the Reserved field to be zero, the
 definition here is compatible with the definition in the
 original specification.

 Prefix

 The Prefix field is 4 octets in length. Bits outside of the
 Prefix-Length MUST be zero. Unlike the "ipv6prefix" data type,
 this field is fixed length. If the address is all zeros (i.e.,
 "0.0.0.0"), then the Prefix-Length MUST be set to 32.

3.12. integer64

 The "integer64" data type encodes a 64-bit unsigned integer in
 network byte order. Where the range of values for a particular
 attribute is limited to a subset of the values, specifications MUST
 define the valid range(s). Attributes with Values outside of the
 allowed range(s) SHOULD be treated as invalid attributes.

 Name

 integer64

 Value

 12

 Length

 Eight octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Value ...
+‑+
 ... Value |
+‑+

3.13. tlv

 The "tlv" data type encodes a Type-Length-Value, as defined in
 [RFC6929], Section 2.3.

 Name

 tlv

 Value

 13

 Length

 Three or more octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | TLV‑Length | TLV‑Data ...
+‑+

 Subfields

 TLV-Type

 This field is one octet. Up-to-date values of this field are
 specified according to the policies and rules described in
 [RFC6929], Section 10. Values of 254-255 are reserved for use
 by future extensions to RADIUS. The value 26 has no special
 meaning and MUST NOT be treated as a Vendor-Specific Attribute.

 The TLV-Type is meaningful only within the context defined by
 Type fields of the encapsulating Attributes, using the
 dotted-number notation introduced in [RFC6929].

 A RADIUS server MAY ignore Attributes with an unknown
 "TLV-Type".

 A RADIUS client MAY ignore Attributes with an unknown
 "TLV-Type".

 A RADIUS proxy SHOULD forward Attributes with an unknown
 "TLV-Type" verbatim.

 TLV-Length

The TLV‑Length field is one octet and indicates the length of
this TLV, including the TLV‑Type, TLV‑Length, and TLV‑Value
fields. It MUST have a value between 3 and 255. If a client
or server receives a TLV with an invalid TLV‑Length, then the
attribute that encapsulates that TLV MUST be considered to be
an invalid attribute and is handled as per
[RFC6929], Section 2.8.

 TLVs having a TLV-Length of two (2) MUST NOT be sent; omit the
 entire TLV instead.

 TLV-Data

 The TLV-Data field is one or more octets and contains
 information specific to the attribute. The format and length
 of the TLV-Data field are determined by the TLV-Type and
 TLV-Length fields.

The TLV‑Data field MUST contain only known RADIUS data types.
The TLV‑Data field MUST NOT contain any of the following
data types: "concat", "vsa", "extended", "long‑extended",
or "evs".

3.14. vsa

 The "vsa" data type encodes vendor-specific data, as given in
 [RFC2865], Section 5.26. It is used only in the Attr-Data field of a
 Vendor-Specific Attribute. It MUST NOT appear in the contents of any
 other data type.

 Where an implementation determines that an attribute of data type
 "vsa" contains data that does not match the expected format, it
 SHOULD treat that attribute as being an invalid attribute.

 Name

 vsa

 Value

 14

 Length

 Five or more octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Vendor‑Id |
+‑+
| VSA‑Data
+‑+

 Subfields

 Vendor-Id

 The 4 octets are the Network Management Private Enterprise Code
 [PEN] of the vendor in network byte order.

 VSA-Data

 The VSA-Data field is one or more octets. The actual format of
 the information is site specific or application specific, and a
 robust implementation SHOULD support the field as
 undistinguished octets.

 The codification of the range of allowed usage of this field is
 outside the scope of this specification.

The "vsa" data type SHOULD contain a sequence of "tlv"
data types. The interpretation of the TLV‑Type and TLV‑Data
fields is dependent on the vendor's definition of that
attribute.

The "vsa" data type MUST be used as the contents of the
Attr‑Data field of the Vendor‑Specific Attribute. The "vsa"
data type MUST NOT appear in the contents of any other
data type.

3.15. extended

 The "extended" data type encodes the "Extended Type" format, as given
 in [RFC6929], Section 2.1. It is used only in the Attr-Data field of
 an attribute allocated from the standard space. It MUST NOT appear
 in the contents of any other data type.

 Name

 extended

 Value

 15

 Length

 Two or more octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Extended‑Type | Ext‑Data ...
+‑+

 Subfields

 Extended-Type

 The Extended-Type field is one octet. Up-to-date values of
 this field are specified according to the policies and rules
 described in [RFC6929], Section 10. Unlike the Type field
 defined in [RFC2865], Section 5, no values are allocated for
 experimental or implementation-specific use. Values 241-255
 are reserved and MUST NOT be used.

 The Extended-Type is meaningful only within a context defined
 by the Type field. That is, this field may be thought of as
 defining a new type space of the form "Type.Extended-Type".
 See [RFC6929], Section 2.1 for additional discussion.

 A RADIUS server MAY ignore Attributes with an unknown
 "Type.Extended-Type".

 A RADIUS client MAY ignore Attributes with an unknown
 "Type.Extended-Type".

 Ext-Data

 The Ext-Data field is one or more octets.

The contents of this field MUST be a valid data type as defined
in the RADIUS "Data Type" registry. The Ext‑Data field
MUST NOT contain any of the following data types: "concat",
"vsa", "extended", "long‑extended", or "evs".

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the
 interpretation of the Ext-Data field.

3.16. long-extended

 The "long-extended" data type encodes the "Long Extended Type"
 format, as given in [RFC6929], Section 2.2. It is used only in the
 Attr-Data field of an attribute. It MUST NOT appear in the contents
 of any other data type.

 Name

 long-extended

 Value

 16

 Length

 Three or more octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Extended‑Type |M|T| Reserved | Ext‑Data ...
+‑+

 Subfields

 Extended-Type

 This field is identical to the Extended-Type field defined
 above in Section 3.15.

 M (More)

The More field (M flag) is one (1) bit in length and indicates
whether or not the current attribute contains "more" than
251 octets of data. The More field MUST be clear (0) if the
Length field has a value less than 255. The More field MAY be
set (1) if the Length field has a value of 255.

 If the More field is set (1), it indicates that the Ext-Data
 field has been fragmented across multiple RADIUS attributes.

 When the More field is set (1), the Attribute MUST have a
 Length field value of 255; there MUST be an attribute following
 this one; and the next attribute MUST have both the same Type
 and Extended-Type. That is, multiple fragments of the same
 value MUST be in order and MUST be consecutive attributes in
 the packet, and the last attribute in a packet MUST NOT have
 the More field set (1).

 That is, a packet containing a fragmented attribute needs to
 contain all fragments of the attribute, and those fragments
 need to be contiguous in the packet. RADIUS does not support
 inter-packet fragmentation, which means that fragmenting an
 attribute across multiple packets is impossible.

 If a client or server receives an attribute fragment with the
 More field set (1), but for which no subsequent fragment can be
 found, then the fragmented attribute is considered to be an
 invalid attribute and is handled as per [RFC6929], Section 2.8.

 T (Truncation)

 This field is one bit in size and is called "T" for Truncation.
 It indicates that the attribute is intentionally truncated in
 this chunk and is to be continued in the next chunk of the
 sequence. The combination of the M flag and the T flag
 indicates that the attribute is fragmented (M flag) but that
 all of the fragments are not available in this chunk (T flag).
 Proxies implementing [RFC6929] will see these attributes as
 invalid (they will not be able to reconstruct them), but they
 will still forward them, as Section 5.2 of [RFC6929] indicates
 that they SHOULD forward unknown attributes anyway.

 Please see [RFC7499] for further discussion of the uses of
 this flag.

 Reserved

 This field is six bits long and is reserved for future use.
 Implementations MUST set it to zero (0) when encoding an
 attribute for sending in a packet. The contents SHOULD be
 ignored on reception.

 Future specifications may define one or more additional
 meanings for this field. Implementations therefore MUST NOT
 treat this field as invalid if it is non-zero.

 Ext-Data

 The Ext-Data field is one or more octets.

 The contents of this field MUST be a valid data type as defined
 in the RADIUS "Data Type" registry. The Ext-Data field MUST
 NOT contain any of the following data types: "concat", "vsa",
 "extended", "long-extended", or "evs".

 Implementations supporting this specification MUST use the
 Identifier of "Type.Extended-Type" to determine the
 interpretation of the Ext-Data field.

 The length of the data MUST be taken as the sum of the lengths
 of the fragments (i.e., Ext-Data fields) from which it is
 constructed. Any interpretation of the resulting data MUST
 occur after the fragments have been reassembled. If the
 reassembled data does not match the expected format, each
 fragment MUST be treated as an invalid attribute, and the
 reassembled data MUST be discarded.

 We note that the maximum size of a fragmented attribute is
 limited only by the RADIUS packet length limitation.
 Implementations MUST be able to handle the case where one
 fragmented attribute completely fills the packet.

3.17. evs

 The "evs" data type encodes an Extended-Vendor-Specific Attribute, as
 given in [RFC6929], Section 2.4. The "evs" data type is used solely
 to extend the vendor-specific space. It MAY appear inside of an
 "extended" data type or a "long-extended" data type. It MUST NOT
 appear in the contents of any other data type.

 Where an implementation determines that an attribute of data type
 "evs" contains data that does not match the expected format, it
 SHOULD treat that attribute as being an invalid attribute.

 Name

 evs

 Value

 17

 Length

 Six or more octets

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Vendor‑Id |
+‑+
| Vendor‑Type | EVS‑Data
+‑+

 Subfields

 Vendor-Id

 The 4 octets are the Network Management Private Enterprise Code
 [PEN] of the vendor in network byte order.

 Vendor-Type

 The Vendor-Type field is one octet. Values are assigned at the
 sole discretion of the vendor.

 EVS-Data

 The EVS-Data field is one or more octets. It SHOULD
 encapsulate a previously defined RADIUS data type.
 Non-standard data types SHOULD NOT be used. We note that the
 EVS-Data field may be of data type "tlv".

 The actual format of the information is site specific or
 application specific, and a robust implementation SHOULD
 support the field as undistinguished octets. We recognize that
 vendors have complete control over the contents and format of
 the Ext-Data field; at the same time, we recommend that good
 practices be followed.

 Further codification of the range of allowed usage of this
 field is outside the scope of this specification.

4. Updated Registries

 This section defines a new IANA registry for RADIUS data types and
 then updates the existing "RADIUS Attribute Types" registry to use
 the data types from the new registry.

4.1. New "Data Type" Registry

 This section defines a new registry located under "RADIUS Types",
 called "Data Type". The registration procedures for the "Data Type"
 registry are "Standards Action" [RFC5226].

 The "Data Type" registry contains three columns of data, as follows.

 Value

 The number of the data type. The Value field is an artifact of
 the registry and has no on-the-wire meaning.

 Description

 The name of the data type. This field is used only for the
 registry and has no on-the-wire meaning.

 Reference

 The specification where the data type was defined.

 The initial contents of the registry are as follows.

Value Description Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 1 integer [RFC2865], RFC 8044
 2 enum [RFC2865], RFC 8044
 3 time [RFC2865], RFC 8044
 4 text [RFC2865], RFC 8044
 5 string [RFC2865], RFC 8044
 6 concat RFC 8044
 7 ifid [RFC3162], RFC 8044
 8 ipv4addr [RFC2865], RFC 8044
 9 ipv6addr [RFC3162], RFC 8044
 10 ipv6prefix [RFC3162], RFC 8044
 11 ipv4prefix [RFC6572], RFC 8044
 12 integer64 [RFC6929], RFC 8044
 13 tlv [RFC6929], RFC 8044
 14 vsa [RFC2865], RFC 8044
 15 extended [RFC6929], RFC 8044
 16 long‑extended [RFC6929], RFC 8044
 17 evs [RFC6929], RFC 8044

4.2. Updates to the "RADIUS Attribute Types" Registry

 This section updates the "RADIUS Attribute Types" registry to have a
 new column, which is inserted between the existing "Description" and
 "Reference" columns. The new column is named "Data Type". The
 contents of that column are the name of a data type, corresponding to
 the attribute in that row, or blank if the Attribute Type is
 unassigned. The name of the data type is taken from the RADIUS
 "Data Type" registry, as defined above.

 The existing registration requirements for the "RADIUS Attribute
 Types" registry are otherwise unchanged.

5. Security Considerations

 This specification is concerned solely with updates to IANA
 registries. As such, there are no security considerations with the
 document itself.

 However, the use of inconsistent names and poorly defined entities in
 a protocol is problematic. Inconsistencies in specifications can
 lead to security and interoperability problems in implementations.
 Further, having one canonical source for the definition of data types
 means that an implementor has fewer specifications to read. The
 implementation work is therefore simpler and more likely to be
 correct.

 The goal of this specification is to reduce ambiguities in the RADIUS
 protocol, which we believe will lead to more robust and more secure
 implementations.

6. IANA Considerations

 IANA has created one new registry, as described in Section 4.1.

 IANA has updated the "RADIUS Attribute Types" registry, as described
 in Section 4.2.

 IANA requires that all allocation requests in the "RADIUS Attribute
 Types" registry contain a Data Type field, which is required to
 contain one of the "Data Type" names contained in the RADIUS "Data
 Type" registry.

 IANA requires that updates to the RADIUS "Data Type" registry contain
 the following fields, with the associated instructions:

 * Value. IANA is instructed to assign the next unused integer in
 sequence to new data type definitions.

 * Name. IANA is instructed to require that this name be unique in
 the registry.

 * Reference. IANA is instructed to update this field with a
 reference to the document that defines the data type.

7. References

7.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3162]
 Aboba, B., Zorn, G., and D. Mitton, "RADIUS and IPv6",
 RFC 3162, DOI 10.17487/RFC3162, August 2001,
 <http://www.rfc-editor.org/info/rfc3162>.

 [RFC3629]
 Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
 November 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC4072]
 Eronen, P., Ed., Hiller, T., and G. Zorn, "Diameter
 Extensible Authentication Protocol (EAP) Application",
 RFC 4072, DOI 10.17487/RFC4072, August 2005,
 <http://www.rfc-editor.org/info/rfc4072>.

 [RFC5234]
 Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC6158]
 DeKok, A., Ed., and G. Weber, "RADIUS Design Guidelines",
 BCP 158, RFC 6158, DOI 10.17487/RFC6158, March 2011,
 <http://www.rfc-editor.org/info/rfc6158>.

 [RFC6572]
 Xia, F., Sarikaya, B., Korhonen, J., Ed., Gundavelli, S.,
 and D. Damic, "RADIUS Support for Proxy Mobile IPv6",
 RFC 6572, DOI 10.17487/RFC6572, June 2012,
 <http://www.rfc-editor.org/info/rfc6572>.

 [RFC7499]
 Perez-Mendez, A., Ed., Marin-Lopez, R., Pereniguez-Garcia,
 F., Lopez-Millan, G., Lopez, D., and A. DeKok, "Support of
 Fragmentation of RADIUS Packets", RFC 7499,
 DOI 10.17487/RFC7499, April 2015,
 <http://www.rfc-editor.org/info/rfc7499>.

7.2. Informative References

 [PEN]
 IANA, "PRIVATE ENTERPRISE NUMBERS",
 <http://www.iana.org/assignments/enterprise-numbers/>.

 [RFC2868]
 Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,
 M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, DOI 10.17487/RFC2868, June 2000,
 <http://www.rfc-editor.org/info/rfc2868>.

 [RFC2869]
 Rigney, C., Willats, W., and P. Calhoun, "RADIUS
 Extensions", RFC 2869, DOI 10.17487/RFC2869, June 2000,
 <http://www.rfc-editor.org/info/rfc2869>.

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6929]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <http://www.rfc-editor.org/info/rfc6929>.

 [RFC7268]
 Aboba, B., Malinen, J., Congdon, P., Salowey, J., and M.
 Jones, "RADIUS Attributes for IEEE 802 Networks",
 RFC 7268, DOI 10.17487/RFC7268, July 2014,
 <http://www.rfc-editor.org/info/rfc7268>.

Acknowledgments

 Thanks to the RADEXT WG participants for their patience and reviews
 of this document.

Author's Address

Alan DeKok
The FreeRADIUS Server Project

 Email: aland@freeradius.org

8045 - RADIUS Extensions for IP Port Configuration and Reporting

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8045

Category: Standards Track

ISSN: 2070-1721

D. Cheng

Huawei

J. Korhonen

Broadcom Corporation

M. Boucadair

Orange

S. Sivakumar

Cisco Systems

January 2017

RADIUS Extensions for IP Port Configuration and Reporting

Abstract

 This document defines three new RADIUS attributes. For devices that
 implement IP port ranges, these attributes are used to communicate
 with a RADIUS server in order to configure and report IP transport
 ports as well as mapping behavior for specific hosts. This mechanism
 can be used in various deployment scenarios such as Carrier-Grade
 NAT, IPv4/IPv6 translators, Provider WLAN gateway, etc. This
 document defines a mapping between some RADIUS attributes and IP Flow
 Information Export (IPFIX) Information Element identifiers.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc8045.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction

	2. Terminology
	 2.1. Requirements Language

	3. Extensions of RADIUS Attributes and TLVs
	 3.1. Extended Attributes for IP Ports
	 3.1.1. IP-Port-Limit-Info Attribute

	 3.1.2. IP-Port-Range Attribute

	 3.1.3. IP-Port-Forwarding-Map Attribute

	 3.2. RADIUS TLVs for IP Ports
	 3.2.1. IP-Port-Type TLV

	 3.2.2. IP-Port-Limit TLV

	 3.2.3. IP-Port-Ext-IPv4-Addr TLV

	 3.2.4. IP-Port-Int-IPv4-Addr TLV

	 3.2.5. IP-Port-Int-IPv6-Addr TLV

	 3.2.6. IP-Port-Int-Port TLV

	 3.2.7. IP-Port-Ext-Port TLV

	 3.2.8. IP-Port-Alloc TLV

	 3.2.9. IP-Port-Range-Start TLV

	 3.2.10. IP-Port-Range-End TLV

	 3.2.11. IP-Port-Local-Id TLV

	4. Applications, Use Cases, and Examples
	 4.1. Managing CGN Port Behavior Using RADIUS
	 4.1.1. Configure IP Port Limit for a User

	 4.1.2. Report IP Port Allocation/Deallocation

	 4.1.3. Configure Port Forwarding Mapping

	 4.1.4. An Example

	 4.2. Report Assigned Port Set for a Visiting UE

	5. Table of Attributes

	6. Security Considerations

	7. IANA Considerations
	 7.1. New IPFIX Information Elements

	 7.2. New RADIUS Attributes

	 7.3. New RADIUS TLVs

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Acknowledgments

	Authors' Addresses

1. Introduction

 In a broadband network, customer information is usually stored on a
 RADIUS server [RFC2865]. At the time when a user initiates an IP
 connection request, if this request is authorized, the RADIUS server
 will populate the user's configuration information to the Network
 Access Server (NAS), which is often referred to as a Broadband
 Network Gateway (BNG) in broadband access networks. The Carrier-
 Grade NAT (CGN) function may also be implemented on the BNG. Within
 this document, the CGN may perform Network Address Translation from
 IPv4 Clients to IPv4 Servers (NAT44) [RFC3022], NAT from IPv6 Clients
 to IPv4 Servers (NAT64) [RFC6146], or Dual-Stack Lite Address Family
 Transition Router (AFTR) [RFC6333] function. In such case, the CGN
 IP transport port (e.g., TCP/UDP port) mapping behaviors can be part
 of the configuration information sent from the RADIUS server to the
 NAS/BNG. As part of the accounting information sent from the NAS/BNG
 to a RADIUS server, the NAS/BNG may also report the IP port mapping
 behavior applied by the CGN to a user session.

 When IP packets traverse the CGN, it performs mapping on the IP
 transport (e.g., TCP/UDP) source port as required. An IP transport
 source port, along with a source IP address, destination IP address,
 destination port, and protocol identifier, if applicable, uniquely
 identify a mapping. Since the number space of IP transport ports in
 the CGN's external realm is shared among multiple users assigned with
 the same IPv4 address, the total number of a user's simultaneous IP
 mappings is likely to be subject to a port quota (see Section 5 of
 [RFC6269]).

 The attributes defined in this document may also be used to report
 the assigned port range in some deployments, such as Provider WLAN
 [WIFI-SERVICES]. For example, a visiting host can be managed by
 Customer Premises Equipment (CPE), which will need to report the
 assigned port range to the service platform. This is required for
 identification purposes (see TR-146 [TR-146] for more details).

 This document proposes three new attributes as RADIUS protocol
 extensions; they are used for separate purposes, as follows:

 1. IP-Port-Limit-Info: This attribute may be carried in a RADIUS
 Access-Accept, Access-Request, Accounting-Request, or CoA-Request
 packet. The purpose of this attribute is to limit the total
 number of IP source transport ports allocated to a user and
 associated with one or more IPv4 or IPv6 addresses.

 2. IP-Port-Range: This attribute may be carried in a RADIUS
 Accounting-Request packet. The purpose of this attribute is for
 an address-sharing device (e.g., a CGN) to report to the RADIUS
 server the range of IP source transport ports that have been
 allocated or deallocated for a user. The port range is bound to
 an external IPv4 address.

 3. IP-Port-Forwarding-Map: This attribute may be carried in RADIUS
 Access-Accept, Access-Request, Accounting-Request, or CoA-Request
 packet. The purpose of this attribute is to specify how an IP
 internal source transport port, together with its internal IPv4
 or IPv6 address, are mapped to an external source transport port
 along with the external IPv4 address.

 IPFIX Information Elements [RFC7012] can be used for IP flow
 identification and representation over RADIUS. This document
 provides a mapping between some RADIUS TLVs and IPFIX Information
 Element identifiers. A new IPFIX Information Element is defined by
 this document (see Section 3.2.2).

 IP protocol numbers (refer to [ProtocolNumbers]) can be used for
 identification of IP transport protocols (e.g., TCP [RFC793], UDP
 [RFC768], Datagram Congestion Control Protocol (DCCP) [RFC4340], and
 Stream Control Transmission Protocol (SCTP) [RFC4960]) that are
 associated with some RADIUS attributes.

 This document focuses on IPv4 address sharing. Mechanisms for IPv6
 prefix sharing (e.g., IPv6-to-IPv6 Network Prefix Translation
 (NPTv6)) are out of scope.

2. Terminology

 This document makes use of the following terms:

 o IP Port: This refers to an IP transport port (e.g., a TCP port
 number or UDP port number).

 o IP Port Type: This refers to the IP transport protocol as
 indicated by the IP transport protocol number. Refer to
 [ProtocolNumbers].

 o IP Port Limit: This denotes the maximum number of IP ports for a
 specific (or all) IP transport protocol(s) that a device
 supporting port ranges can use when performing port number
 mappings for a specific user/host. Note that this limit is
 usually associated with one or more IPv4/IPv6 addresses.

 o IP Port Range: This specifies a set of contiguous IP ports
 indicated by the lowest numerical number and the highest numerical
 number, inclusively.

 o Internal IP Address: This refers to the IP address that is used by
 a host as a source IP address in an outbound IP packet sent
 towards a device supporting port ranges in the internal realm.
 The internal IP address may be IPv4 or IPv6.

 o External IP Address: This refers to the IP address that is used as
 a source IP address in an outbound IP packet after traversing a
 device supporting port ranges in the external realm. This
 document assumes that the external IP address is an IPv4 address.

 o Internal Port: This is an IP transport port that is allocated by a
 host or application behind an address-sharing device for an
 outbound IP packet in the internal realm.

 o External Port: This is an IP transport port that is allocated by
 an address-sharing device upon receiving an outbound IP packet in
 the internal realm and is used to replace the internal port that
 is allocated by a user or application.

 o External Realm: This refers to the networking segment where
 external IP addresses are used as source addresses of outbound
 packets forwarded by an address-sharing device.

 o Internal Realm: This refers to the networking segment that is
 behind an address-sharing device and where internal IP addresses
 are used.

 o Mapping: This denotes a relationship between an internal IP
 address, internal port, and protocol, as well as an external IP
 address, external port, and protocol.

 o Address-Sharing Device: This is a device that is capable of
 sharing an IPv4 address among multiple users. A typical example
 of this device is a CGN, CPE, Provider WLAN gateway, etc.

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Extensions of RADIUS Attributes and TLVs

 These three new attributes are defined in the following subsections:

 1. IP-Port-Limit-Info Attribute

 2. IP-Port-Range Attribute

 3. IP-Port-Forwarding-Map Attribute

 All these attributes are allocated from the RADIUS "Extended Type"
 code space per [RFC6929].

 These attributes and their embedded TLVs (refer to Section 3.2) are
 defined with globally unique names and follow the guidelines in
 Section 2.7.1 of [RFC6929].

 In all the figures describing the RADIUS attributes and TLV formats
 in the following subsections, the fields are transmitted from left to
 right.

3.1. Extended Attributes for IP Ports

3.1.1. IP-Port-Limit-Info Attribute

 This attribute is of type "tlv" as defined in the RADIUS Protocol
 Extensions [RFC6929]. It contains some sub-attributes, and the
 requirements are as follows:

 o The IP-Port-Limit-Info Attribute MAY contain the IP-Port-Type TLV
 (see Section 3.2.1).

o The IP‑Port‑Limit‑Info Attribute MUST contain the
 IP‑Port‑Limit TLV (see Section 3.2.2).

 o The IP-Port-Limit-Info Attribute MAY contain the
 IP-Port-Ext-IPv4-Addr TLV (see Section 3.2.3).

 The IP-Port-Limit-Info Attribute specifies the maximum number of IP
 ports, as indicated in IP-Port-Limit TLV, of a specific IP transport
 protocol, as indicated in IP-Port-Type TLV, and associated with a
 given IPv4 address, as indicated in IP-Port-Ext-IPv4-Addr TLV, for an
 end user.

 Note that when IP-Port-Type TLV is not included as part of the
 IP-Port-Limit-Info Attribute, the port limit applies to all IP
 transport protocols.

 Note also that when IP-Port-Ext-IPv4-Addr TLV is not included as part
 of the IP-Port-Limit-Info Attribute, the port limit applies to all
 the IPv4 addresses managed by the address-sharing device, e.g., a CGN
 or NAT64 device.

 The IP-Port-Limit-Info Attribute MAY appear in an Access-Accept
 packet. It MAY also appear in an Access-Request packet as a
 preferred maximum number of IP ports indicated by the device
 supporting port ranges co-located with the NAS, e.g., a CGN or NAT64.

 The IP-Port-Limit-Info Attribute MAY appear in a CoA-Request packet.

 The IP-Port-Limit-Info Attribute MAY appear in an Accounting-Request
 packet.

 The IP-Port-Limit-Info Attribute MUST NOT appear in any other RADIUS
 packet.

 The format of the IP-Port-Limit-Info Attribute is shown in Figure 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Figure 1

 Type

 241

 Length

 This field indicates the total length in octets of all fields of
 this attribute, including the Type, Length, Extended-Type, and the
 entire length of the embedded TLVs.

 Extended-Type

 5

 Value

 This field contains a set of TLVs as follows:

 IP-Port-Type TLV

 This TLV contains a value that indicates the IP port type.
 Refer to Section 3.2.1.

 IP-Port-Limit TLV

 This TLV contains the maximum number of IP ports of a specific
 IP port type and associated with a given IPv4 address for an
 end user. This TLV MUST be included in the IP-Port-Limit-Info
 Attribute. Refer to Section 3.2.2. This limit applies to all
 mappings that can be instantiated by an underlying address-
 sharing device without soliciting any external entity. In
 particular, this limit does not include the ports that are
 instructed by an Authentication, Authorization, and Accounting
 (AAA) server.

 IP-Port-Ext-IPv4-Addr TLV

 This TLV contains the IPv4 address that is associated with the
 IP port limit contained in the IP-Port-Limit TLV. This TLV is
 optionally included as part of the IP-Port-Limit-Info
 Attribute. Refer to Section 3.2.3.

 IP-Port-Limit-Info Attribute is associated with the following
 identifier: 241.5.

3.1.2. IP-Port-Range Attribute

 This attribute is of type "tlv" as defined in the RADIUS Protocol
 Extensions [RFC6929]. It contains some sub-attributes and the
 requirement is as follows:

 o The IP-Port-Range Attribute MAY contain the IP-Port-Type TLV (see
 Section 3.2.1).

 o The IP-Port-Range Attribute MUST contain the IP-Port-Alloc TLV
 (see Section 3.2.8).

 o For port allocation, the IP-Port-Range Attribute MUST contain both
 the IP-Port-Range-Start TLV (see Section 3.2.9) and the
 IP-Port-Range-End TLV (see Section 3.2.10). For port
 deallocation, the IP-Port-Range Attribute MAY contain both of
 these two TLVs; if the two TLVs are not included, it implies that
 all ports that were previously allocated are now all deallocated.

o The IP‑Port‑Range Attribute MAY contain the
 IP‑Port‑Ext‑IPv4‑Addr TLV (see Section 3.2.3).

 o The IP-Port-Range Attribute MAY contain the IP-Port-Local-Id TLV
 (see Section 3.2.11).

 The IP-Port-Range Attribute contains a range of contiguous IP ports.
 These ports are either to be allocated or deallocated depending on
 the Value carried by the IP-Port-Alloc TLV.

 If the IP-Port-Type TLV is included as part of the IP-Port-Range
 Attribute, then the port range is associated with the specific IP
 transport protocol as specified in the IP-Port-Type TLV, but
 otherwise it is for all IP transport protocols.

 If the IP-Port-Ext-IPv4-Addr TLV is included as part of the
 IP-Port-Range Attribute, then the port range as specified is
 associated with the IPv4 address as indicated, but otherwise it is
 for all IPv4 addresses by the address-sharing device (e.g., a CGN
 device) for the end user.

 This attribute can be used to convey a single IP transport port
 number: in such case, the Value of the IP-Port-Range-Start TLV and
 the IP-Port-Range-End TLV, respectively, contain the same port
 number.

 The information contained in the IP-Port-Range Attribute is sent to
 RADIUS server.

 The IP-Port-Range Attribute MAY appear in an Accounting-Request
 packet.

 The IP-Port-Range Attribute MUST NOT appear in any other RADIUS
 packet.

 The format of the IP-Port-Range Attribute is shown in Figure 2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value ...
+‑+

 Figure 2

 Type

 241

 Length

 This field indicates the total length in octets of all fields of
 this attribute, including the Type, Length, Extended-Type, and the
 entire length of the embedded TLVs.

 Extended-Type

 6

 Value

 This field contains a set of TLVs as follows:

 IP-Port-Type TLV

 This TLV contains a value that indicates the IP port type.
 Refer to Section 3.2.1.

 IP-Port-Alloc TLV

 This TLV contains a flag to indicate the range of the specified
 IP ports for either allocation or deallocation. This TLV MUST
 be included as part of the IP-Port-Range Attribute. Refer to
 Section 3.2.8.

 IP-Port-Range-Start TLV

 This TLV contains the smallest port number of a range of
 contiguous IP ports. To report the port allocation, this TLV
 MUST be included together with IP-Port-Range-End TLV as part of
 the IP-Port-Range Attribute. Refer to Section 3.2.9.

 IP-Port-Range-End TLV

 This TLV contains the largest port number of a range of
 contiguous IP ports. To report the port allocation, this TLV
 MUST be included together with IP-Port-Range-Start TLV as part
 of the IP-Port-Range Attribute. Refer to Section 3.2.10.

 IP-Port-Ext-IPv4-Addr TLV

 This TLV contains the IPv4 address that is associated with the
 IP port range, as is collectively indicated in the
 IP-Port-Range-Start TLV and the IP-Port-Range-End TLV. This
 TLV is optionally included as part of the IP-Port-Range
 Attribute. Refer to Section 3.2.3.

 IP-Port-Local-Id TLV

 This TLV contains a local significant identifier at the
 customer premise, such as the Media Access Control (MAC)
 address, interface ID, VLAN ID, PPP sessions ID, VPN Routing
 and Forwarding (VRF) ID, IP address/prefix, etc. This TLV is
 optionally included as part of the IP-Port-Range Attribute.
 Refer to Section 3.2.11.

 The IP-Port-Range Attribute is associated with the following
 identifier: 241.6.

3.1.3. IP-Port-Forwarding-Map Attribute

 This attribute is of type "tlv" as defined in the RADIUS Protocol
 Extensions [RFC6929]. It contains some sub-attributes and the
 requirement is as follows:

o The IP‑Port‑Forwarding‑Map Attribute MAY contain the
 IP‑Port‑Type TLV (see Section 3.2.1).

o The IP‑Port‑Forwarding‑Map Attribute MUST contain both
 IP‑Port‑Int‑Port TLV (see Section 3.2.6) and the
 IP‑Port‑Ext‑Port TLV (see Section 3.2.7).

 o If the internal realm is with an IPv4 address family, the
 IP-Port-Forwarding-Map Attribute MUST contain the
 IP-Port-Int-IPv4-Addr TLV (see Section 3.2.4); if the internal
 realm is with an IPv6 address family, the IP-Port-Forwarding-Map
 Attribute MUST contain the IP-Port-Int-IPv6-Addr TLV (see
 Section 3.2.5).

 o The IP-Port-Forwarding-Map Attribute MAY contain the
 IP-Port-Ext-IPv4-Addr TLV (see Section 3.2.3).

 o The IP-Port-Forwarding-Map Attribute MAY contain the
 IP-Port-Local-Id TLV (see Section 3.2.11).

 The attribute contains a two-octet IP internal port number and a
 two-octet IP external port number. The internal port number is
 associated with an internal IPv4 or IPv6 address that MUST always be
 included. The external port number is associated with a specific
 external IPv4 address if included, but otherwise it is associated
 with all external IPv4 addresses for the end user.

 If the IP-Port-Type TLV is included as part of the
 IP-Port-Forwarding-Map Attribute, then the port mapping is associated
 with the specific IP transport protocol as specified in the
 IP-Port-Type TLV, but otherwise it is for all IP transport protocols.

 The IP-Port-Forwarding-Map Attribute MAY appear in an Access-Accept
 packet. It MAY also appear in an Access-Request packet to indicate a
 preferred port mapping by the device co-located with NAS. However,
 the server is not required to honor such a preference.

 The IP-Port-Forwarding-Map Attribute MAY appear in a CoA-Request
 packet.

 The IP-Port-Forwarding-Map Attribute MAY also appear in an
 Accounting-Request packet.

 The IP-Port-Forwarding-Map Attribute MUST NOT appear in any other
 RADIUS packet.

 The format of the IP-Port-Forwarding-Map Attribute is shown in
 Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| Type | Length | Extended‑Type | Value
+‑+

 Figure 3

 Type

 241

 Length

 This field indicates the total length in octets of all fields of
 this attribute, including the Type, Length, Extended-Type, and the
 entire length of the embedded TLVs.

 Extended-Type

 7

 Value

 This field contains a set of TLVs as follows:

 IP-Port-Type TLV

 This TLV contains a value that indicates the IP port type.
 Refer to Section 3.2.1.

 IP-Port-Int-Port TLV

 This TLV contains an internal IP port number associated with an
 internal IPv4 or IPv6 address. This TLV MUST be included
 together with IP-Port-Ext-Port TLV as part of the
 IP-Port-Forwarding-Map Attribute. Refer to Section 3.2.6.

 IP-Port-Ext-Port TLV

 This TLV contains an external IP port number associated with an
 external IPv4 address. This TLV MUST be included together with
 IP-Port-Int-Port TLV as part of the IP-Port-Forwarding-Map
 Attribute. Refer to Section 3.2.7.

 IP-Port-Int-IPv4-Addr TLV

 This TLV contains an IPv4 address that is associated with the
 internal IP port number contained in the IP-Port-Int-Port TLV.
 For the internal realm with an IPv4 address family, this TLV
 MUST be included as part of the IP-Port-Forwarding-Map
 Attribute. Refer to Section 3.2.4.

 IP-Port-Int-IPv6-Addr TLV

 This TLV contains an IPv6 address that is associated with the
 internal IP port number contained in the IP-Port-Int-Port TLV.
 For the internal realm with an IPv6 address family, this TLV
 MUST be included as part of the IP-Port-Forwarding-Map
 Attribute. Refer to Section 3.2.5.

 IP-Port-Ext-IPv4-Addr TLV

 This TLV contains an IPv4 address that is associated with the
 external IP port number contained in the IP-Port-Ext-Port TLV.
 This TLV MAY be included as part of the IP-Port-Forwarding-Map
 Attribute. Refer to Section 3.2.3.

 IP-Port-Local-Id TLV

 This TLV contains a local significant identifier at the
 customer premise, such as MAC address, interface ID, VLAN ID,
 PPP sessions ID, VRF ID, IP address/prefix, etc. This TLV is
 optionally included as part of the IP-Port-Forwarding-Map
 Attribute. Refer to Section 3.2.11.

 The IP-Port-Forwarding-Map Attribute is associated with the following
 identifier: 241.7.

3.2. RADIUS TLVs for IP Ports

 The TLVs that are included in the three attributes (see Section 3.1)
 are defined in the following subsections. These TLVs use the format
 defined in [RFC6929]. As the three attributes carry similar data, we
 have defined a common set of TLVs that are used for all three
 attributes. That is, the TLVs have the same name and number when
 encapsulated in any one of the three parent attributes. See
 Sections 3.1.1, 3.1.2, and 3.1.3 for a list of which TLV is permitted
 within which parent attribute.

The encoding of the Value field of these TLVs follows the
recommendation of [RFC6158]. In particular, IP‑Port‑Type,
IP‑Port‑Limit, IP‑Port‑Int‑Port, IP‑Port‑Ext‑Port, IP‑Port‑Alloc,
IP‑Port‑Range‑Start, and IP‑Port‑Range‑End TLVs are encoded in
32 bits as per the recommendation in Appendix A.2.1 of [RFC6158].

3.2.1. IP-Port-Type TLV

 The format of IP-Port-Type TLV is shown in Figure 4. This attribute
 carries the IP transport protocol number defined by IANA (refer to
 [ProtocolNumbers]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | Protocol‑Number
+‑+
 Protocol‑Number |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 4

 TLV-Type

 1

 Length

 Six octets

 Protocol-Number

 Integer. This field contains the data (unsigned8) of the protocol
 number defined in [ProtocolNumbers], right justified, and the
 unused bits in this field MUST be set to zero. Protocols that do
 not use a port number (e.g., the Resource Reservation Protocol
 (RSVP) or IP Encapsulating Security Payload (ESP)) MUST NOT be
 included in the IP-Port-Type TLV.

 IP-Port-Type TLV MAY be included in the following attributes:

 o IP-Port-Limit-Info Attribute, identified as 241.5.1 (see
 Section 3.1.1)

 o IP-Port-Range Attribute, identified as 241.6.1 (see Section 3.1.2)

 o IP-Port-Forwarding-Map Attribute, identified as 241.7.1 (see
 Section 3.1.3)

When the IP‑Port‑Type TLV is included within a RADIUS attribute, the
associated attribute is applied to the IP transport protocol as
indicated by the Protocol‑Number only, such as TCP, UDP, SCTP,
DCCP, etc.

3.2.2. IP-Port-Limit TLV

 The format of IP-Port-Limit TLV is shown in Figure 5. This attribute
 carries IPFIX Information Element 458, "sourceTransportPortsLimit",
 which indicates the maximum number of IP transport ports as a limit
 for an end user to use that is associated with one or more IPv4 or
 IPv6 addresses.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | sourceTransportPortsLimit
+‑+
 sourceTransportPortsLimit |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 5

 TLV-Type

 2

 Length

 Six octets

 sourceTransportPortsLimit

 Integer. This field contains the data (unsigned16) of
 sourceTransportPortsLimit (458) defined in IPFIX, right justified,
 and the unused bits in this field MUST be set to zero.

 IP-Port-Limit TLV MUST be included as part of the IP-Port-Limit-Info
 Attribute (refer to Section 3.1.1), identified as 241.5.2.

3.2.3. IP-Port-Ext-IPv4-Addr TLV

 The format of IP-Port-Ext-IPv4-Addr TLV is shown in Figure 6. This
 attribute carries IPFIX Information Element 225,
 "postNATSourceIPv4Address", which is the IPv4 source address after
 NAT operation (refer to [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | postNATSourceIPv4Address
+‑+
 postNATSourceIPv4Address |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 6

 TLV-Type

 3

 Length

 Six octets

 postNATSourceIPv4Address

 Integer. This field contains the data (ipv4Address) of
 postNATSourceIPv4Address (225) defined in IPFIX.

 IP-Port-Ext-IPv4-Addr TLV MAY be included in the following
 attributes:

 o IP-Port-Limit-Info Attribute, identified as 241.5.3 (see
 Section 3.1.1)

 o IP-Port-Range Attribute, identified as 241.6.3 (see Section 3.1.2)

 o IP-Port-Forwarding-Mapping Attribute, identified as 241.7.3 (see
 Section 3.1.3)

3.2.4. IP-Port-Int-IPv4-Addr TLV

 The format of IP-Port-Int-IPv4 TLV is shown in Figure 7. This
 attribute carries IPFIX Information Element 8, "sourceIPv4Address",
 which is the IPv4 source address before NAT operation (refer to
 [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | sourceIPv4Address
+‑+
 sourceIPv4Address |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 7

 TLV-Type

 4

 Length

 Six octets

 sourceIPv4Address

 Integer. This field contains the data (ipv4Address) of
 sourceIPv4Address (8) defined in IPFIX.

 If the internal realm is with an IPv4 address family, the
 IP-Port-Int-IPv4-Addr TLV MUST be included as part of the
 IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
 identified as 241.7.4.

3.2.5. IP-Port-Int-IPv6-Addr TLV

 The format of IP-Port-Int-IPv6-Addr TLV is shown in Figure 8. This
 attribute carries IPFIX Information Element 27, "sourceIPv6Address",
 which is the IPv6 source address before NAT operation (refer to
 [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | sourceIPv6Address
+‑+
 sourceIPv6Address
+‑+
 sourceIPv6Address
+‑+
 sourceIPv6Address
+‑+
 sourceIPv6Address |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 8

 TLV-Type

 5

 Length

 Eighteen octets

 sourceIPv6Address

 IPv6 address (128 bits). This field contains the data
 (ipv6Address) of sourceIPv6Address (27) defined in IPFIX.

 If the internal realm is with an IPv6 address family, the
 IP-Port-Int-IPv6-Addr TLV MUST be included as part of the
 IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
 identified as 241.7.5.

3.2.6. IP-Port-Int-Port TLV

 The format of IP-Port-Int-Port TLV is shown in Figure 9. This
 attribute carries IPFIX Information Element 7, "sourceTransportPort",
 which is the source transport number associated with an internal IPv4
 or IPv6 address (refer to [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | sourceTransportPort
+‑+
 sourceTransportPort |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 9

 TLV-Type

 6

 Length

 Six octets

 sourceTransportPort

 Integer. This field contains the data (unsigned16) of
 sourceTransportPort (7) defined in IPFIX, right justified, and
 unused bits MUST be set to zero.

 IP-Port-Int-Port TLV MUST be included as part of the
 IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
 identified as 241.7.6.

3.2.7. IP-Port-Ext-Port TLV

 The format of IP-Port-Ext-Port TLV is shown in Figure 10. This
 attribute carries IPFIX Information Element 227,
 "postNAPTSourceTransportPort", which is the transport number
 associated with an external IPv4 address (refer to [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | postNAPTSourceTransportPort
+‑+
 postNAPTSourceTransportPort |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 10

 TLV-Type

 7

 Length

 Six octets

 postNAPTSourceTransportPort

 Integer. This field contains the data (unsigned16) of
 postNAPTSourceTransportPort (227) defined in IPFIX, right
 justified, and unused bits MUST be set to zero.

 IP-Port-Ext-Port TLV MUST be included as part of the
 IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
 identified as 241.7.7.

3.2.8. IP-Port-Alloc TLV

 The format of IP-Port-Alloc TLV is shown in Figure 11. This
 attribute carries IPFIX Information Element 230, "natEvent", which is
 a flag to indicate an action of NAT operation (refer to [IPFIX]).

 When the value of natEvent is "1" (Create event), it means to
 allocate a range of transport ports; when the value is "2", it means
 to deallocate a range of transports ports. For the purpose of this
 TLV, no other value is used.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | natEvent
+‑+
 natEvent |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 11

 TLV-Type

 8

 Length

 Six octets

 natEvent

 Integer. This field contains the data (unsigned8) of natEvent
 (230) defined in IPFIX, right justified, and unused bits MUST be
 set to zero. It indicates the allocation or deallocation of a
 range of IP ports as follows:

0: Reserved
1: Allocation
2: Deallocation

 IP-Port-Alloc TLV MUST be included as part of the IP-Port-Range
 Attribute (refer to Section 3.1.2), identified as 241.6.8.

3.2.9. IP-Port-Range-Start TLV

 The format of IP-Port-Range-Start TLV is shown in Figure 12. This
 attribute carries IPFIX Information Element 361, "portRangeStart",
 which is the smallest port number of a range of contiguous transport
 ports (refer to [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | portRangeStart
+‑+
 portRangeStart |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 12

 TLV-Type

 9

 Length

 Six octets

 portRangeStart

 Integer. This field contains the data (unsigned16) of
 portRangeStart (361) defined in IPFIX, right justified, and unused
 bits MUST be set to zero.

 IP-Port-Range-Start TLV is included as part of the IP-Port-Range
 Attribute (refer to Section 3.1.2), identified as 241.6.9.

3.2.10. IP-Port-Range-End TLV

 The format of IP-Port-Range-End TLV is shown in Figure 13. This
 attribute carries IPFIX Information Element 362, "portRangeEnd",
 which is the largest port number of a range of contiguous transport
 ports (refer to [IPFIX]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | portRangeEnd
+‑+
 portRangeEnd |
+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+‑+

 Figure 13

 TLV-Type

 10

 Length

 Six octets

 portRangeEnd

 Integer. This field contains the data (unsigned16) of
 portRangeEnd (362) defined in IPFIX, right justified, and unused
 bits MUST be set to zero.

 IP-Port-Range-End TLV is included as part of the IP-Port-Range
 Attribute (refer to Section 3.1.2), identified as 241.6.10.

3.2.11. IP-Port-Local-Id TLV

 The format of IP-Port-Local-Id TLV is shown in Figure 14. This
 attribute carries a string called "localID", which is a local
 significant identifier as explained below.

 The primary issue addressed by this TLV is that there are CGN
 deployments that do not distinguish internal hosts by their internal
 IP address alone but use further identifiers for unique subscriber
 identification. For example, this is the case if a CGN supports
 overlapping private or shared IP address spaces (as described in
 [RFC1918] and [RFC6598]) for internal hosts of different subscribers.
 In such cases, different internal hosts are identified and mapped at
 the CGN by their IP address and/or another identifier, for example,
 the identifier of a tunnel between the CGN and the subscriber. In
 these scenarios (and similar ones), the internal IP address is not
 sufficient to demultiplex connections from internal hosts. An
 additional identifier needs to be present in the IP-Port-Range
 Attribute and IP-Port-Forwarding-Mapping Attribute in order to
 uniquely identify an internal host. The IP-Port-Local-Id TLV is used
 to carry this identifier.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+‑+
| TLV‑Type | Length | localID
+‑+

 Figure 14

 TLV-Type

 11

 Length

 Variable number of octets

 localID

 String. The data type of this field is string (refer to
 [RFC8044]). This field contains the data that is a local
 significant identifier at the customer premise, such as MAC
 address, interface ID, VLAN ID, PPP sessions ID, VRF ID, IP
 address/prefix, or another local significant identifier.

 IP-Port-Local-Id TLV MAY be included in the following Attributes if
 it is necessary to identify the subscriber:

 o IP-Port-Range Attribute, identified as 241.6.11 (see
 Section 3.1.2)

 o IP-Port-Forwarding-Mapping Attribute, identified as 241.7.11 (see
 Section 3.1.3)

4. Applications, Use Cases, and Examples

 This section describes some applications and use cases to illustrate
 the use of the attributes proposed in this document.

4.1. Managing CGN Port Behavior Using RADIUS

 In a broadband network, customer information is usually stored on a
 RADIUS server, and the BNG acts as a NAS. The communication between
 the NAS and the RADIUS server is triggered by a user when it signs in
 to the Internet service where either PPP or DHCP/DHCPv6 is used.
 When a user signs in, the NAS sends a RADIUS Access-Request message
 to the RADIUS server. The RADIUS server validates the request, and
 if the validation succeeds, it in turn sends back a RADIUS
 Access-Accept message. The Access-Accept message carries
 configuration information specific to that user back to the NAS,
 where some of the information would be passed on to the requesting
 user via PPP or DHCP/DHCPv6.

 A CGN function in a broadband network is most likely to be co-located
 on a BNG. In that case, parameters for CGN port mapping behavior for
 users can be configured on the RADIUS server. When a user signs in
 to the Internet service, the associated parameters can be conveyed to
 the NAS, and proper configuration is accomplished on the CGN device
 for that user.

 Also, a CGN operation status such as CGN port allocation and
 deallocation for a specific user on the BNG can also be transmitted
 back to the RADIUS server for accounting purposes using the RADIUS
 protocol.

 The RADIUS protocol has already been widely deployed in broadband
 networks to manage BNG, thus the functionality described in this
 specification introduces little overhead to the existing network
 operation.

 In the following subsections, we describe how to manage CGN behavior
 using the RADIUS protocol, with required RADIUS extensions proposed
 in Section 3.

4.1.1. Configure IP Port Limit for a User

 In the face of an IPv4 address shortage, there are currently
 proposals to multiplex multiple users' connections over a number of
 shared IPv4 addresses, such as Carrier Grade NAT [RFC6888],
 Dual-Stack Lite [RFC6333], NAT64 [RFC6146], etc. As a result, a
 single IPv4 public address may be shared by hundreds or even
 thousands of users. As indicated in [RFC6269], it is therefore
 necessary to impose limits on the total number of ports available to
 an individual user to ensure that the shared resource, i.e., the
 IPv4 address, remains available in some capacity to all the users
 using it. The support of an IP port limit is also documented in
 [RFC6888] as a requirement for CGN.

 The IP port limit imposed on an end user may be on the total number
 of IP source transport ports or a specific IP transport protocol as
 defined in Section 3.1.1.

 The per-user IP port limit is configured on a RADIUS server, along
 with other user information such as credentials.

 When a user signs in to the Internet service successfully, the IP
 port limit for the subscriber is passed by the RADIUS server to the
 BNG, which is acting as a NAS and is co-located with the CGN using
 the IP-Port-Limit-Info RADIUS attribute (defined in Section 3.1.1)
 along with other configuration parameters. While some parameters are
 passed to the user, the IP port limit is recorded on the CGN device
 for imposing the usage of IP transport ports for that user.

 Figure 15 illustrates how the RADIUS protocol is used to configure
 the maximum number of TCP/UDP ports for a given user on a CGN device.

User CGN/NAS AAA
 | BNG Server
‑‑‑‑Service Request‑‑‑‑‑‑>	
	‑‑‑‑‑Access‑Request ‑‑‑‑‑‑‑‑>
	<‑‑‑‑Access‑Accept‑‑‑‑‑‑‑‑‑‑‑
	(IP‑Port‑Limit‑Info)
	(for TCP/UDP ports)
<‑‑‑Service Granted ‑‑‑‑‑‑	
(other parameters)	
(CGN external port	
allocation and	
IPv4 address assignment)	

 Figure 15: RADIUS Message Flow for Configuring CGN Port Limit

 The IP port limit created on a CGN device for a specific user using a
 RADIUS extension may be changed using a RADIUS CoA message [RFC5176]
 that carries the same RADIUS attribute. The CoA message may be sent
 from the RADIUS server directly to the NAS, and once a RADIUS CoA ACK
 message is accepted and sent back, the new IP port limit replaces the
 previous one.

 Figure 16 illustrates how the RADIUS protocol is used to increase the
 TCP/UDP port limit from 1024 to 2048 on a CGN device for a specific
 user.

User CGN/NAS AAA
 | BNG Server
 | | |
 | TCP/UDP Port Limit (1024) |
	<‑‑‑‑‑‑‑‑‑CoA Request‑‑‑‑‑‑‑‑‑‑
	(IP‑Port‑Limit‑Info)
	(for TCP/UDP ports)
TCP/UDP Port Limit (2048)	
	‑‑‑‑‑‑‑‑‑CoA Response‑‑‑‑‑‑‑‑‑>

 Figure 16: RADIUS Message Flow for Changing a User's CGN Port Limit

4.1.2. Report IP Port Allocation/Deallocation

 Upon obtaining the IP port limit for a user, the CGN device needs to
 allocate an IP transport port for the user when receiving a new IP
 flow sent from that user.

 As one practice, a CGN may allocate a block of IP ports for a
 specific user, instead of one port at a time, and within each port
 block the ports may be randomly distributed or in consecutive
 fashion. When a CGN device allocates a block of transport ports, the
 information can be easily conveyed to the RADIUS server by a new
 RADIUS attribute called the IP-Port-Range (defined in Section 3.1.2).
 The CGN device may allocate one or more IP port ranges, where each
 range contains a set of numbers representing IP transport ports and
 the total number of ports MUST be less or equal to the associated IP
 port limit imposed for that user. A CGN device may choose to
 allocate a small port range and allocate more at a later time as
 needed; such practice is good because of its randomization in nature.
 At the same time, the CGN device also needs to decide on the shared
 IPv4 address for that user. The shared IPv4 address and the
 pre-allocated IP port range are both passed to the RADIUS server.

 When a user initiates an IP flow, the CGN device randomly selects a
 transport port number from the associated and pre-allocated IP port
 range for that user to replace the original source port number along
 with the replacement of the source IP address by the shared IPv4
 address.

 A CGN device may decide to "free" a previously assigned set of IP
 ports that have been allocated for a specific user but are not
 currently in use, and with that, the CGN device must send the
 information of the deallocated IP port range along with the shared
 IPv4 address to the RADIUS server.

 Figure 17 illustrates how the RADIUS protocol is used to report a set
 of ports allocated and deallocated, respectively, by a NAT64 device
 for a specific user to the RADIUS server. 2001:db8:100:200::/56 is
 the IPv6 prefix allocated to this user. In order to limit the usage
 of the NAT64 resources on a per-user basis for fairness of resource
 usage (see REQ-4 of [RFC6888]), port range allocations are bound to
 the /56 prefix, not to the source IPv6 address of the request. The
 NAT64 device is configured with the per-user port limit policy by
 some means (e.g., subscriber-mask [RFC7785]).

Host NAT64/NAS AAA
 | BNG Server
‑‑‑‑Service Request‑‑‑‑‑‑>	
	‑‑‑‑‑Access‑Request ‑‑‑‑‑‑‑‑>
	<‑‑‑‑Access‑Accept‑‑‑‑‑‑‑‑‑‑‑
<‑‑‑Service Granted ‑‑‑‑‑‑	
(other parameters)	
... 	
(NAT64 decides to allocate	
a TCP/UDP port range for the user)	
	‑‑‑‑‑Accounting‑Request‑‑‑‑‑>
	(IP‑Port‑Range
	for allocation)
... 	
(NAT64 decides to deallocate	
a TCP/UDP port range for the user)	
	‑‑‑‑‑Accounting‑Request‑‑‑‑‑>
	(IP‑Port‑Range
	for deallocation)

 Figure 17: RADIUS Message Flow for Reporting NAT64

 Allocation/Deallocation of a Port Set

4.1.3. Configure Port Forwarding Mapping

 In most scenarios, the port mapping on a NAT device is dynamically
 created when the IP packets of an IP connection initiated by a user
 arrives. For some applications, the port mapping needs to be
 pre-defined and allow IP packets of applications from outside a CGN
 device to pass through and be "port forwarded" to the correct user
 located behind the CGN device.

 The Port Control Protocol (PCP) [RFC6887], provides a mechanism to
 create a mapping from an external IP address and port to an internal
 IP address and port on a CGN device just to achieve the "port
 forwarding" purpose. PCP is a server-client protocol capable of
 creating or deleting a mapping along with a rich set of features on a
 CGN device in dynamic fashion. In some deployments, all users need
 is a few (typically just one) pre-configured port mappings for
 applications at home, such as a web cam; the lifetime of such a port
 mapping remains valid throughout the duration of the customer's
 Internet service connection time. In such an environment, it is
 possible to statically configure a port mapping on the RADIUS server
 for a user and let the RADIUS protocol propagate the information to
 the associated CGN device.

 Note that this document targets deployments where a AAA server is
 responsible for instructing NAT mappings for a given subscriber and
 does not make any assumption about the host's capabilities with
 regards to port forwarding control. This deployment is complementary
 to PCP given that PCP targets a different deployment model where an
 application (on the host) controls its mappings in an upstream CPE,
 CGN, firewall, etc.

 Figure 18 illustrates how the RADIUS protocol is used to configure a
 port forwarding mapping on a NAT44 device.

Host CGN/NAS AAA
 | BNG Server
‑‑‑‑Service Request‑‑‑‑‑‑>	
	‑‑‑‑‑‑‑‑‑Access‑Request‑‑‑‑‑‑‑>
	<‑‑‑‑‑‑‑‑Access‑Accept‑‑‑‑‑‑‑‑‑
	(IP‑Port‑Forwarding‑Map)
<‑‑‑Service Granted ‑‑‑‑‑‑	
(other parameters)	
(Create a port mapping	
for the user, and	
associate it with the	
internal IP address	
and external IP address)	
	‑‑‑‑‑‑Accounting‑Request‑‑‑‑‑‑>
	(IP‑Port‑Forwarding‑Map)

 Figure 18: RADIUS Message Flow for Configuring

 a Port Forwarding Mapping

 A port forwarding mapping that is created on a CGN device using the
 RADIUS extension as described above may also be changed using a
 RADIUS CoA message [RFC5176] that carries the same RADIUS
 association. The CoA message may be sent from the RADIUS server
 directly to the NAS, and once the RADIUS CoA ACK message is accepted
 and sent back, the new port forwarding mapping then replaces the
 previous one.

 Figure 19 illustrates how the RADIUS protocol is used to change an
 existing port mapping from (a:X) to (a:Y), where "a" is an internal
 port, and "X" and "Y" are external ports, respectively, for a
 specific user with a specific IP address

Host CGN/NAS AAA
 | BNG Server
 | | |
 | Internal IP Address |
 | Port Map (a:X) |
	<‑‑‑‑‑‑‑‑‑CoA Request‑‑‑‑‑‑‑‑‑‑
	(IP‑Port‑Forwarding‑Map)
Internal IP Address	
Port Map (a:Y)	
	‑‑‑‑‑‑‑‑‑CoA Response‑‑‑‑‑‑‑‑‑>
	(IP‑Port‑Forwarding‑Map)

 Figure 19: RADIUS Message Flow for Changing

 a User's Port Forwarding Mapping

4.1.4. An Example

 An Internet Service Provider (ISP) assigns TCP/UDP 500 ports for the
 user Joe. This number is the limit that can be used for TCP/UDP
 ports on a CGN device for Joe and it is configured on a RADIUS
 server. Also, Joe asks for a pre-defined port forwarding mapping on
 the CGN device for his web cam applications (external port 5000 maps
 to internal port 1234).

 When Joe successfully connects to the Internet service, the RADIUS
 server conveys the TCP/UDP port limit (500) and the port forwarding
 mapping (external port 5000 to internal port 1234) to the CGN device
 using the IP-Port-Limit-Info Attribute and IP-Port-Forwarding-Map
 Attribute, respectively, carried by an Access-Accept message to the
 BNG where NAS and CGN are co-located.

 Upon receiving the first outbound IP packet sent from Joe's laptop,
 the CGN device decides to allocate a small port pool that contains 40
 consecutive ports, from 3500 to 3540, inclusively, and also assigns a
 shared IPv4 address 192.0.2.15 for Joe. The CGN device also randomly
 selects one port from the allocated range (say, 3519) and uses that
 port to replace the original source port in outbound IP packets.

 For accounting purposes, the CGN device passes this port range
 (3500-3540) and the shared IPv4 address 192.0.2.15 together to the
 RADIUS server using IP-Port-Range Attribute carried by an
 Accounting-Request message.

 When Joe works on more applications with more outbound IP mappings
 and the port pool (3500-3540) is close to exhaust, the CGN device
 allocates a second port pool (8500-8800) in a similar fashion and
 also passes the new port range (8500-8800) and IPv4 address
 192.0.2.15 together to the RADIUS server using IP-Port-Range
 Attribute carried by an Accounting-Request message. Note when the
 CGN allocates more ports, it needs to assure that the total number of
 ports allocated for Joe is within the limit.

 Joe decides to upgrade his service agreement with more TCP/UDP ports
 allowed (up to 1000 ports). The ISP updates the information in Joe's
 profile on the RADIUS server, which then sends a CoA-Request message
 that carries the IP-Port-Limit-Info Attribute with 1000 ports to the
 CGN device; the CGN device in turn sends back a CoA-ACK message.
 With that, Joe enjoys more available TCP/UDP ports for his
 applications.

 When Joe is not using his service, most of the IP mappings are closed
 with their associated TCP/UDP ports released on the CGN device, which
 then sends the relevant information back to the RADIUS server using
 the IP-Port-Range Attribute carried by the Accounting-Request
 message.

 Throughout Joe's connection with his ISP, applications can
 communicate with his web cam at home from the external realm, thus
 directly traversing the pre-configured mapping on the CGN device.

 When Joe disconnects from his Internet service, the CGN device will
 deallocate all TCP/UDP ports as well as the port forwarding mapping
 and send the relevant information to the RADIUS server.

4.2. Report Assigned Port Set for a Visiting UE

 Figure 20 illustrates an example of the flow exchange that occurs
 when the visiting User Equipment (UE) connects to a CPE offering WLAN
 service.

 For identification purposes (see [RFC6967]), once the CPE assigns a
 port set, it issues a RADIUS message to report the assigned port set.

UE CPE CGN AAA
 | BNG Server
‑‑‑‑Service Request‑‑‑‑‑‑>	
	‑‑‑‑‑Access‑Request ‑‑‑‑‑‑‑‑>
	<‑‑‑‑Access‑Accept‑‑‑‑‑‑‑‑‑‑‑
<‑‑‑Service Granted ‑‑‑‑‑‑	
(other parameters)	
...
<‑‑‑IP@‑‑‑‑	
(CPE assigns a TCP/UDP port	
range for this visiting UE)	
	‑‑Accounting‑Request‑...‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
	(IP‑Port‑Range
	for allocation)
...
(CPE withdraws a TCP/UDP port	
range for a visiting UE)	
	‑‑Accounting‑Request‑...‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑>
	(IP‑Port‑Range
	for deallocation)

 Figure 20: RADIUS Message Flow for Reporting CPE
 Allocation/Deallocation of a Port Set to a Visiting UE

5. Table of Attributes

 This document proposes three new RADIUS attributes, and their formats
 are as follows:

 o IP-Port-Limit-Info: 241.5

 o IP-Port-Range: 241.6

 o IP-Port-Forwarding-Map: 241.7

 The following table provides a guide as to what type of RADIUS
 packets may contain these attributes and in what quantity.

Request Accept Reject Challenge Acct. # Attribute
 Request
0+ 0+ 0 0 0+ 241.5 IP‑Port‑Limit‑Info
0 0 0 0 0+ 241.6 IP‑Port‑Range
0+ 0+ 0 0 0+ 241.7 IP‑Port‑Forwarding‑Map

 The following table defines the meaning of the above table entries.

0 This attribute MUST NOT be present in packet.
0+ Zero or more instances of this attribute MAY be present in packet.

6. Security Considerations

 This document does not introduce any security issue other than the
 ones already identified in RADIUS documents [RFC2865] and [RFC5176]
 for CoA messages. Known RADIUS vulnerabilities apply to this
 specification. For example, if RADIUS packets are sent in the clear,
 an attacker in the communication path between the RADIUS client and
 server may glean information that it will use to prevent a legitimate
 user from accessing the service by appropriately setting the maximum
 number of IP ports conveyed in an IP-Port-Limit-Info Attribute;
 exhaust the port quota of a user by installing many mapping entries
 (IP-Port-Forwarding-Map Attribute); prevent incoming traffic from
 being delivered to its legitimate destination by manipulating the
 mapping entries installed by means of an IP-Port-Forwarding-Map
 Attribute; discover the IP address and port range that are assigned
 to a given user and reported in an IP-Port-Range Attribute; and so
 on. The root cause of these attack vectors is the communication
 between the RADIUS client and server.

 The IP-Port-Local-Id TLV includes an identifier of which the type and
 length is deployment and implementation dependent. This identifier
 might carry privacy-sensitive information. It is therefore
 RECOMMENDED to utilize identifiers that do not have such privacy
 concerns.

If there is any error in a RADIUS Accounting‑Request packet sent
from a RADIUS client to the server, the RADIUS server MUST NOT send
a response to the client (refer to [RFC2866]). Examples of the
errors include the erroneous port range in the
IP‑Port‑Range Attribute, inconsistent port mapping in the
IP‑Port‑Forwarding‑Map Attribute, etc.

 This document targets deployments where a trusted relationship is in
 place between the RADIUS client and server with communication
 optionally secured by IPsec or Transport Layer Security (TLS)
 [RFC6614].

7. IANA Considerations

 Per this document, IANA has made new code point assignments for both
 IPFIX Information Elements and RADIUS attributes as explained in the
 following subsections.

7.1. New IPFIX Information Elements

 The following IPFIX Information Element has been registered (refer to
 Section 3.2.2):

 o sourceTransportPortsLimit:

 * Name: sourceTransportPortsLimit

 * Element ID: 458

 * Description: This Information Element contains the maximum
 number of IP source transport ports that can be used by an end
 user when sending IP packets; each user is associated with one
 or more (source) IPv4 or IPv6 addresses. This Information
 Element is particularly useful in address-sharing deployments
 that adhere to REQ-4 of [RFC6888]. Limiting the number of
 ports assigned to each user ensures fairness among users and
 mitigates the denial-of-service attack that a user could launch
 against other users through the address-sharing device in order
 to grab more ports.

 * Data type: unsigned16

 * Data type semantics: totalCounter

 * Data type unit: ports

 * Data value range: from 1 to 65535

7.2. New RADIUS Attributes

 The Attribute Types defined in this document have been registered by
 IANA from the RADIUS namespace as described in the "IANA
 Considerations" section of [RFC3575], in accordance with BCP 26
 [RFC5226]. For RADIUS packets, attributes, and registries created by
 this document, IANA has placed them at
 <http://www.iana.org/assignments/radius-types>.

 In particular, this document defines three new RADIUS attributes, as
 follows, from the Short Extended Space of [RFC6929]:

Type Description Data Type Reference
‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
241.5 IP‑Port‑Limit‑Info tlv Section 3.1.1
241.6 IP‑Port‑Range tlv Section 3.1.2
241.7 IP‑Port‑Forwarding‑Map tlv Section 3.1.3

7.3. New RADIUS TLVs

 IANA has created a new registry called "RADIUS IP Port Configuration
 and Reporting TLVs". All TLVs in this registry have one or more
 parent RADIUS attributes in nesting (refer to [RFC6929]). This
 registry contains the following TLVs:

Value Description Data Type Reference
‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑
0 Reserved
1 IP‑Port‑Type integer Section 3.2.1
2 IP‑Port‑Limit integer Section 3.2.2
3 IP‑Port‑Ext‑IPv4‑Addr ipv4addr Section 3.2.3
4 IP‑Port‑Int‑IPv4‑Addr ipv4addr Section 3.2.4
5 IP‑Port‑Int‑IPv6‑Addr ipv4addr Section 3.2.5
6 IP‑Port‑Int‑Port integer Section 3.2.6
7 IP‑Port‑Ext‑Port integer Section 3.2.7
8 IP‑Port‑Alloc integer Section 3.2.8
9 IP‑Port‑Range‑Start integer Section 3.2.9
10 IP‑Port‑Range‑End integer Section 3.2.10
11 IP‑Port‑Local‑Id string Section 3.2.11
12‑255 Unassigned

 The registration procedure for this registry is Standards Action as
 defined in [RFC5226].

8. References

8.1. Normative References

 [IPFIX]
 IANA, "IP Flow Information Export (IPFIX) Entities",
 <http://www.iana.org/assignments/ipfix/>.

 [ProtocolNumbers]

 IANA, "Protocol Numbers",
 <http://www.iana.org/assignments/protocol-numbers/>.

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3575]
 Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575,
 DOI 10.17487/RFC3575, July 2003,
 <http://www.rfc-editor.org/info/rfc3575>.

 [RFC5226]
 Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6929]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <http://www.rfc-editor.org/info/rfc6929>.

 [RFC7012]
 Claise, B., Ed., and B. Trammell, Ed., "Information Model
 for IP Flow Information Export (IPFIX)", RFC 7012,
 DOI 10.17487/RFC7012, September 2013,
 <http://www.rfc-editor.org/info/rfc7012>.

 [RFC8044]
 DeKok, A., "Data Types in RADIUS", RFC 8044,
 DOI 10.17487/RFC8044, January 2017,
 <http://www.rfc-editor.org/info/rfc8044>.

8.2. Informative References

 [RFC768]
 Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC793]
 Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1918]
 Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <http://www.rfc-editor.org/info/rfc2866>.

 [RFC3022]
 Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 DOI 10.17487/RFC3022, January 2001,
 <http://www.rfc-editor.org/info/rfc3022>.

 [RFC4340]
 Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <http://www.rfc-editor.org/info/rfc4340>.

 [RFC4960]
 Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 DOI 10.17487/RFC5176, January 2008,
 <http://www.rfc-editor.org/info/rfc5176>.

 [RFC6146]
 Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <http://www.rfc-editor.org/info/rfc6146>.

 [RFC6158]
 DeKok, A., Ed., and G. Weber, "RADIUS Design Guidelines",
 BCP 158, RFC 6158, DOI 10.17487/RFC6158, March 2011,
 <http://www.rfc-editor.org/info/rfc6158>.

 [RFC6269]
 Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
 P. Roberts, "Issues with IP Address Sharing", RFC 6269,
 DOI 10.17487/RFC6269, June 2011,
 <http://www.rfc-editor.org/info/rfc6269>.

 [RFC6333]
 Durand, A., Droms, R., Woodyatt, J., and Y. Lee,
 "Dual-Stack Lite Broadband Deployments Following IPv4
 Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,
 <http://www.rfc-editor.org/info/rfc6333>.

 [RFC6598]
 Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and
 M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address
 Space", BCP 153, RFC 6598, DOI 10.17487/RFC6598,
 April 2012, <http://www.rfc-editor.org/info/rfc6598>.

 [RFC6614]
 Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <http://www.rfc-editor.org/info/rfc6614>.

 [RFC6887]
 Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <http://www.rfc-editor.org/info/rfc6887>.

 [RFC6888]
 Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
 A., and H. Ashida, "Common Requirements for Carrier-Grade
 NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
 April 2013, <http://www.rfc-editor.org/info/rfc6888>.

 [RFC6967]
 Boucadair, M., Touch, J., Levis, P., and R. Penno,
 "Analysis of Potential Solutions for Revealing a Host
 Identifier (HOST_ID) in Shared Address Deployments",
 RFC 6967, DOI 10.17487/RFC6967, June 2013,
 <http://www.rfc-editor.org/info/rfc6967>.

 [RFC7785]
 Vinapamula, S. and M. Boucadair, "Recommendations for
 Prefix Binding in the Context of Softwire Dual-Stack
 Lite", RFC 7785, DOI 10.17487/RFC7785, February 2016,
 <http://www.rfc-editor.org/info/rfc7785>.

 [TR-146]
 Broadband Forum, "TR-146: Subscriber Sessions", Broadband
 Forum Technical Report 146, Issue 1, May 2013,
 <http://www.broadband-forum.org/technical/
 download/TR-146.pdf>.

 [WIFI-SERVICES]

 Gundavelli, S., Grayson, M., Seite, P., and Y. Lee,
 "Service Provider Wi-Fi Services Over Residential
 Architectures", Work in Progress,
 draft-gundavelli-v6ops-community-wifi-svcs-06, April 2013.

Acknowledgments

 Many thanks to Dan Wing, Roberta Maglione, Daniel Derksen, David
 Thaler, Alan DeKok, Lionel Morand, and Peter Deacon for their useful
 comments and suggestions.

 Special thanks to Lionel Morand for the Shepherd review and to
 Kathleen Moriarty for the AD review.

 Thanks to Carl Wallace, Tim Chown, and Ben Campbell for the detailed
 review.

Authors' Addresses

Dean Cheng
Huawei
2330 Central Expressway
Santa Clara, California 95050
United States of America

 Email: dean.cheng@huawei.com

Jouni Korhonen
Broadcom Corporation
3151 Zanker Road
San Jose, California 95134
United States of America

 Email: jouni.nospam@gmail.com

Mohamed Boucadair
Orange
Rennes
France

 Email: mohamed.boucadair@orange.com

Senthil Sivakumar
Cisco Systems
7100‑8 Kit Creek Road
Research Triangle Park, North Carolina
United States of America

 Email: ssenthil@cisco.com

8559 - Dynamic Authorization Proxying in the Remote Authentication Dial-In User

Index
Back 5
Prev
Next

Internet Engineering Task Force (IETF)

Request for Comments: 8559

Updates: 5176, 5580

Category: Standards Track

ISSN: 2070-1721

A. DeKok

FreeRADIUS

J. Korhonen

April 2019

Dynamic Authorization Proxying in the Remote Authentication Dial-In User Service (RADIUS) Protocol

Abstract

 RFC 5176 defines Change-of-Authorization (CoA) and Disconnect Message
 (DM) behavior for RADIUS. RFC 5176 also suggests that proxying these
 messages is possible, but it does not provide guidance as to how that
 is done. This specification updates RFC 5176 to correct that
 omission for scenarios where networks use realm-based proxying as
 defined in RFC 7542. This specification also updates RFC 5580 to
 allow the Operator-Name attribute in CoA-Request and Disconnect-
 Request packets.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8559.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

	1. Introduction
	 1.1. Terminology

	 1.2. Requirements Language

	2. Problem Statement
	 2.1. Typical RADIUS Proxying

	 2.2. CoA Processing

	 2.3. Failure of CoA Proxying

	3. How to Perform CoA Proxying
	 3.1. Changes to Access-Request and Accounting-Request Packets

	 3.2. Proxying of CoA-Request and Disconnect-Request Packets

	 3.3. Reception of CoA-Request and Disconnect-Request Packets

	 3.4. Operator-NAS-Identifier

	4. Requirements
	 4.1. Requirements on Home Servers

	 4.2. Requirements on Visited Networks

	 4.3. Requirements on Proxies
	 4.3.1. Security Requirements on Proxies

	 4.3.2. Filtering Requirements on Proxies

	5. Functionality
	 5.1. User Login

	 5.2. CoA Proxying

	6. Security Considerations
	 6.1. RADIUS Security and Proxies

	 6.2. Security of the Operator-NAS-Identifier Attribute

	7. IANA Considerations

	8. References
	 8.1. Normative References

	 8.2. Informative References

	Authors' Addresses

1. Introduction

 RFC 5176 [RFC5176] defines Change-of-Authorization (CoA) and
 Disconnect Message (DM) behavior for RADIUS. Section 3.1 of
 [RFC5176] suggests that proxying these messages is possible, but it
 does not provide guidance as to how that is done. This omission
 means that in practice, proxying of CoA packets is impossible.

 We partially correct that omission here by explaining how proxying of
 these packets can be done by leveraging an existing RADIUS attribute,
 Operator-Name (Section 4.1 of [RFC5580]). We then explain how this
 attribute can be used by proxies to route packets "backwards" through
 a RADIUS proxy chain from a home network to a visited network. We
 then introduce a new attribute: Operator-NAS-Identifier. This
 attribute permits packets to be routed from the RADIUS server at the
 visited network to the Network Access Server (NAS).

 This correction is limited to the use case of realm-based proxying as
 defined in [RFC7542]. Other forms of proxying are possible but are
 not discussed here. We note that the recommendations provided in
 this document apply only to those systems that implement proxying of
 CoA packets, and then only to those that implement realm-based CoA
 proxying. This specification neither requires nor suggests changes
 to any implementation or deployment of any other RADIUS systems.

 We also update the behavior described in [RFC5580] to allow the
 Operator-Name attribute to be used in CoA-Request and Disconnect-
 Request packets, as further described in this document.

 This document is a Standards Track document in order to update the
 behavior described in [RFC5580], as [RFC5580] is also a Standards
 Track document. This document relies heavily upon and also updates
 some of the behaviors described in RFC 5176, which is an
 Informational document; because the applicability statements in
 Section 1.1 of [RFC5176] do not apply to this document, this document
 does not change the status of [RFC5176].

 We finally conclude with a discussion of the security implications of
 this design and show that they do not decrease the security of the
 network.

1.1. Terminology

 This document frequently uses the following terms:

 CoA

 Change of authorization, e.g., CoA-Request, CoA-ACK, or CoA-NAK,
 as defined in [RFC5176]. [RFC5176] also defines Disconnect-
 Request, Disconnect-ACK, and Disconnect-NAK. For simplicity,
 where we use "CoA" in this document, we mean a generic
 "CoA-Request or Disconnect-Request" packet. We use "CoA-Request"
 or "Disconnect-Request" to refer to the specific packet types.

 Network Access Identifier (NAI)

 The user identity submitted by the client during network access
 authentication. See [RFC7542]. The purpose of the NAI is to
 identify the user as well as assist in the routing of the
 authentication request. Please note that the NAI may not
 necessarily be the same as the user's email address or the user
 identity submitted in an application-layer authentication.

 Network Access Server (NAS)

 The device that clients connect to in order to get access to the
 network. In Point-to-Point Tunneling Protocol (PPTP) terminology,
 this is referred to as the PPTP Access Concentrator (PAC), and in
 Layer 2 Tunneling Protocol (L2TP) terminology, it is referred to
 as the L2TP Access Concentrator (LAC). In IEEE 802.11, it is
 referred to as an Access Point.

 Home Network

 The network that holds the authentication credentials for a user.

 Visited Network

 A network other than the home network, where the user attempts to
 gain network access. The visited network typically has a
 relationship with the home network, possibly through one or more
 intermediary proxies.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Problem Statement

 This section describes how RADIUS proxying works, how CoA packets
 work, and why CoA proxying as discussed in [RFC5176] is insufficient
 to create a working system.

2.1. Typical RADIUS Proxying

 When a RADIUS server proxies an Access-Request packet, it typically
 does so based on the contents of the User-Name attribute, which
 contains an NAI [RFC7542]. This specification describes how to use
 the NAI in order to proxy CoA packets across multiple hops. Other
 methods of proxying CoA packets are possible but are not discussed
 here.

 In order to determine the "next hop" for a packet, the proxying
 server looks up the "realm" portion of the NAI in a logical
 Authentication, Authorization, and Accounting (AAA) routing table, as
 described in Section 3 of [RFC7542]. The entry in that table
 contains information about the next hop to which the packet is sent.
 This information can be IP address, shared secret, certificate, etc.
 The next hop may also be another proxy, or it may be the home server
 for that realm.

If the next hop is a proxy, that proxy will perform the same realm
lookup and then proxy the packet as above. At some point, the
next hop will be the home server for that realm.

 The home server validates the NAI in the User-Name attribute against
 the list of realms hosted by the home network. If there is no match,
 then an Access-Reject is returned. All other packets are processed
 through local site rules, which result in an appropriate response
 packet being sent. This response packet can be Access-Accept,
 Access-Challenge, or Access-Reject.

 The RADIUS client receiving that response packet will match it to an
 outstanding request. If the client is part of a proxy, the proxy
 will then send that response packet in turn to the system that
 originated the Access-Request. This process continues until the
 response packet arrives at the NAS.

 The proxies are typically stateful with respect to ongoing
 request/response packets but are stateless with respect to user
 sessions. That is, once a response has been sent by the proxy, it
 can discard all information about the request packet, other than what
 is needed for detecting retransmissions as per Section 2.2.2 of
 [RFC5080].

 The same method is used to proxy Accounting-Request packets.
 Proxying both Access-Request and Accounting-Request packets allows
 proxies to connect visited networks to home networks for all AAA
 purposes.

2.2. CoA Processing

 [RFC5176] describes how CoA clients send packets to CoA servers. We
 note that a system comprising the CoA client is typically co-located
 with, or is the same as, the RADIUS server. Similarly, the CoA
 server is a system that is either co-located with or the same as the
 RADIUS client.

 In the case of packets sent inside of one network, the source and
 destination of CoA packets are locally determined. There is thus no
 need for standardization of that process, as networks are free to
 send CoA packets whenever they want, for whatever reason they want.

2.3. Failure of CoA Proxying

 The situation is more complicated when proxies are involved.
 [RFC5176] suggests that CoA proxying is permitted, but [RFC5176] does
 not make any suggestions as to how that proxying should be done.

 If proxies were to track user sessions, it would be possible for a
 proxy to match an incoming CoA packet to a user session and then to
 proxy the CoA packet to the RADIUS client that originated the
 Access-Request for that session. There are many problems with such a
 scenario.

 The CoA server might not, in fact, be co-located with the RADIUS
 client, in which case it might not have access to user session
 information for performing the reverse path forwarding.

 The CoA server may be down, but there may be a different CoA server
 that could successfully process the packet. The CoA client should
 then fail over to a different CoA server. If the reverse path is
 restricted to be the same as the forward path, then such failover is
 not possible.

 In a roaming consortium, the proxies may forward traffic for tens of
 millions of users. Tracking each user session can be expensive and
 complicated, and doing so does not scale well. For that reason, most
 proxies do not record user sessions.

 Even if the proxy recorded user sessions, [RFC5176] is silent on the
 topic of what attributes constitute "session identification
 attributes". That silence means it is impossible for a proxy to
 determine if a CoA packet matches a particular user session.

 The result of all of these issues is that CoA proxying is impossible
 when using the behavior defined in [RFC5176].

3. How to Perform CoA Proxying

 The solution to the above problem is to use realm-based proxying on
 the reverse path, just as with the forward path. In order for the
 reverse path proxying to work, the proxy decision must be based on an
 attribute other than User-Name.

 The reverse path proxying can be done by using the Operator-Name
 attribute defined in Section 4.1 of [RFC5580]. We repeat a portion
 of that definition here for clarity:

 This attribute carries the operator namespace identifier and the
 operator name. The operator name is combined with the namespace
 identifier to uniquely identify the owner of an access network.

 ...followed a few paragraphs later by a description of the REALM
 namespace:

 REALM ('1' (0x31)):

 The REALM operator namespace can be used to indicate operator
 names based on any registered domain name. Such names are
 required to be unique, and the rights to use a given realm name
 are obtained coincident with acquiring the rights to use a
 particular Fully Qualified Domain Name (FQDN). ...

 In short, the Operator-Name attribute contains an ASCII "1", followed
 by the realm of the visited network. For example, for the
 "example.com" realm, the Operator-Name attribute contains the text
 "1example.com". This information is precisely what is needed by
 intermediate nodes in order to perform CoA proxying.

 The remainder of this document describes how CoA proxying can be
 performed by using the Operator-Name attribute. We describe the
 following:

 o how the forward path has to change in order to allow reverse path
 proxying

 o how reverse path proxying works

 o how visited networks and home networks have to behave in order for
 CoA proxying to work

 We note that as a proxied CoA packet is sent to only one destination,
 the Operator-Name attribute MUST NOT occur more than once in a
 packet. If a packet contains more than one Operator-Name,
 implementations MUST treat the second and subsequent attributes as
 "invalid attributes", as discussed in Section 2.8 of [RFC6929].

3.1. Changes to Access-Request and Accounting-Request Packets

 When a visited network proxies an Access-Request or Accounting-
 Request packet outside of its network, a visited network that wishes
 to support realm-based CoA proxying SHOULD include an Operator-Name
 attribute in the packet, as discussed in Section 4.1 of [RFC5580].
 The contents of the Operator-Name attribute should be "1", followed
 by the realm name of the visited network. Where the visited network
 has more than one realm name, a "canonical" name SHOULD be chosen and
 used for all packets.

 Visited networks MUST use a consistent value for Operator-Name for
 any one user session. That is, sending "1example.com" in an
 Access-Request packet and "1example.org" in an Accounting-Request
 packet for that same session is forbidden. Such behavior would make
 it look like a single user session was active simultaneously in two
 different visited networks, which is impossible.

 Proxies that record user session information SHOULD also record
 Operator-Name. Proxies that do not record user session information
 do not need to record Operator-Name.

 Home networks SHOULD record Operator-Name along with any other
 information that they record about user sessions. Home networks that
 expect to send CoA packets to visited networks MUST record
 Operator-Name for each user session that originates from a visited
 network. Failure to record Operator-Name would mean that the home
 network would not know where to send any CoA packets.

 Networks that host both the RADIUS client and RADIUS server do not
 need to create, record, or track Operator-Name. That is, if the
 visited network and home network are the same, there is no need to
 use the Operator-Name attribute.

3.2. Proxying of CoA-Request and Disconnect-Request Packets

 When a home network wishes to send a CoA-Request or Disconnect-
 Request packet to a visited network, it MUST include an Operator-Name
 attribute in the CoA packet. The value of the Operator-Name
 attribute MUST be the value that was recorded earlier for that user
 session.

The home network MUST look up the realm from the Operator‑Name
attribute in a logical "realm routing table", as discussed in
Section 3 of [RFC7542]. That logical realm table is defined
therein as:

 ... a logical AAA routing table, where the "utf8-realm" portion
 acts as a key, and the values stored in the table are one or more
 "next hop" AAA servers.

 In order to support proxying of CoA packets, this table is extended
 to include a mapping between "utf8-realm" and one or more next-hop
 CoA servers.

 When proxying CoA-Request and Disconnect-Request packets, the lookups
 will return data from the "CoA server" field instead of the "AAA
 server" field.

 In practice, this process means that CoA proxying works exactly like
 "normal" RADIUS proxying, except that the proxy decision is made
 using the realm from the Operator-Name attribute instead of using the
 realm from the User-Name attribute.

 Proxies that receive the CoA packet will look up the realm from the
 Operator-Name attribute in a logical "realm routing table", as with
 home servers, above. The packet is then sent to the proxy for the
 realm that was found in that table. This process continues with any
 subsequent proxies until the packet reaches a public CoA server at
 the visited network.

 Where the realm is unknown, the proxy MUST return a NAK packet that
 contains an Error-Cause Attribute having value 502 ("Request Not
 Routable").

 Proxies that receive a CoA packet MUST NOT use the NAI from the
 User-Name attribute in order to make proxying decisions. Doing so
 would result in the CoA packet being forwarded to the home network,
 while the user's session is in the visited network.

 We also update Section 5 of [RFC5580] to permit CoA-Request and
 Disconnect-Request packets to contain zero or one instance of the
 Operator-Name attribute.

3.3. Reception of CoA-Request and Disconnect-Request Packets

 After some proxying, the CoA packet will be received by the CoA
 server in the visited network. That CoA server MUST validate the NAI
 in the Operator-Name attribute against the list of realms hosted by
 the visited network. If the realm is not found, then the CoA server
 MUST return a NAK packet that contains an Error-Cause Attribute
 having value 502 ("Request Not Routable").

 Some home networks will not have permission to send CoA packets to
 the visited network. The CoA server SHOULD therefore also validate
 the NAI contained in the User-Name attribute. If the home network is
 not permitted to send CoA packets to this visited network, then the
 CoA server MUST return a NAK packet that contains an Error-Cause
 Attribute having value 502 ("Request Not Routable").

 These checks make it more difficult for a malicious home network to
 scan roaming networks in order to determine which visited network
 hosts which realm. That information should be known to all parties
 in advance and exchanged via methods outside the scope of this
 specification. Those methods will typically be in the form of
 contractual relationships between parties or membership in a roaming
 consortium.

 The CoA server in the visited network will also ensure that the
 Operator-NAS-Identifier attribute is known, as described below. If
 the attribute matches a known NAS, then the packet will be sent to
 that NAS. Otherwise, the CoA server MUST return a NAK packet that
 contains an Error-Cause Attribute having value 403 ("NAS
 Identification Mismatch").

 All other received packets are processed as per local site rules and
 will result in an appropriate response packet being sent. This
 process mirrors the method used to process Access-Request and
 Accounting-Request packets (described above).

 Processing done by the visited network will normally include sending
 the CoA packet to the NAS, having the NAS process it, and then
 returning any response packets back up the proxy chain to the home
 server.

 The only missing piece here is the procedure by which the visited
 network gets the packet from its public CoA server to the NAS. The
 visited network could use NAS-Identifier, NAS-IP-Address, or
 NAS-IPv6-Address, but these attributes may have been edited by an
 intermediate proxy or the attributes may be missing entirely.

 These attributes may be incorrect because proxies forwarding
 Access-Request packets often rewrite them for internal policy
 reasons. These attributes may be missing, because the visited
 network may not want all upstream proxies and home servers to have
 detailed information about the internals of its private network and
 may remove them itself.

 We therefore need a way to identify a NAS in the visited network via
 a method that affords privacy and does not use any existing
 attributes. Our solution is to define an Operator-NAS-Identifier
 attribute, which identifies an individual NAS in the visited network.

3.4. Operator-NAS-Identifier

 The Operator-NAS-Identifier attribute is an opaque token that
 identifies an individual NAS in a visited network. It MAY appear in
 the following packets: Access-Request, Accounting-Request,
 CoA-Request, or Disconnect-Request. Operator-NAS-Identifier MUST NOT
 appear in any other packets.

Operator‑NAS‑Identifier MAY occur in a packet if the packet also
contains an Operator‑Name attribute. Operator‑NAS‑Identifier
MUST NOT appear in a packet if there is no Operator‑Name in the
packet. As each proxied CoA packet is sent to only one NAS, the
Operator‑NAS‑Identifier attribute MUST NOT occur more than once in a
packet. If a packet contains more than one Operator‑NAS‑Identifier,
implementations MUST treat the second and subsequent attributes as
"invalid attributes", as discussed in Section 2.8 of [RFC6929].

 An Operator-NAS-Identifier attribute SHOULD be added to an
 Access-Request or Accounting-Request packet by a visited network,
 before proxying a packet to an external RADIUS server. When the
 Operator-NAS-Identifier attribute is added to a packet, the following
 attributes SHOULD be deleted from the packet: NAS-IP-Address,
 NAS-IPv6-Address, and NAS-Identifier. If these attributes are
 deleted, the proxy MUST then add a new NAS-Identifier attribute,

 in order to satisfy the requirements of Section 4.1 of [RFC2865] and
 Section 4.1 of [RFC2866]. The contents of the new NAS-Identifier
 attribute SHOULD be the realm name of the visited network.

 When a server receives a packet that already contains an Operator-
 NAS-Identifier attribute, no such editing is performed.

 The Operator-NAS-Identifier attribute MUST NOT be added to any packet
 by any other proxy or server in the network. Only the visited
 network (i.e., the operator) can name a NAS that is inside of the
 visited network.

 The result of these requirements is that for everyone outside of the
 visited network there is only one NAS: the visited network itself.
 Also, the visited network is able to identify its own NASes to its
 own satisfaction.

 This usage of the Operator-NAS-Identifier attribute parallels the
 Operator-Name attribute as defined in Section 4.1 of [RFC5580].

 The Operator-NAS-Identifier attribute is defined as follows.

 Description

 An opaque token describing the NAS a user has logged into.

 Type

 241.8 (assigned by IANA from the "short extended space" [RFC6929]
 of the "RADIUS Attribute Types" registry).

 Length

 4 to 35.

 Implementations supporting this attribute MUST be able to handle
 between one (1) and thirty-two (32) octets of data.
 Implementations creating an Operator-NAS-Identifier attribute
 MUST NOT create attributes with more than sixty-four (64) octets
 of data. A 32-octet string should be more than sufficient for
 future uses.

 Data Type

 The data type of this field is "string". See Section 3.5 of
 [RFC8044] for a definition.

 Value

 This attribute contains an opaque token that can only be
 interpreted by the visited network.

 This token MUST allow the visited network to direct the packet to
 the NAS for the user's session. In practice, this requirement
 means that the visited network has two practical methods for
 creating the value.

 The first method is to create an opaque token per NAS and then to
 store that information in a database. The database can be
 configured to allow querying by NAS IP address in order to find
 the correct Operator-NAS-Identifier. The database can also be
 configured to allow querying by Operator-NAS-Identifier in order
 to find the correct NAS IP address.

 The second method is to obfuscate the NAS IP address using
 information known locally by the visited network -- for example,
 by XORing it with a locally known secret key. The output of that
 obfuscation operation is data that can be used as the value of
 Operator-NAS-Identifier. On reception of a CoA packet, the
 locally known information can be used to unobfuscate the value of
 Operator-NAS-Identifier, in order to determine the actual NAS IP
 address.

 Note that there is no requirement that the value of Operator-NAS-
 Identifier be checked for integrity. Modification of the value
 can only result in the erroneous transaction being rejected.

 We note that the Access-Request and Accounting-Request packets
 often contain the Media Access Control (MAC) address of the NAS.
 There is therefore no requirement that Operator-NAS-Identifier
 obfuscate or hide in any way the total number of NASes in a
 visited network. That information is already public knowledge.

4. Requirements

4.1. Requirements on Home Servers

 The Operator-NAS-Identifier attribute MUST be stored by a home server
 along with any user session identification attributes. When sending
 a CoA packet for a user session, the home server MUST include
 verbatim any Operator-NAS-Identifier it has recorded for that
 session.

 A home server MUST NOT send CoA packets for users of other networks.
 The next few sections describe how other participants in the RADIUS
 ecosystem can help enforce this requirement.

4.2. Requirements on Visited Networks

 A visited network that receives a CoA packet that will be proxied to
 a NAS MUST perform all of the operations required for proxies; see
 Section 4.3.2. We specify this requirement because we assume that
 the visited network has a proxy between the NAS and any external
 (i.e., third-party) proxy. Situations where a NAS sends packets
 directly to a third-party RADIUS server are outside the scope of this
 specification.

 The visited network uses the contents of the Operator-NAS-Identifier
 attribute to determine which NAS will receive the packet.

 The visited network MUST remove the Operator-Name and Operator-NAS-
 Identifier attributes from a given CoA packet prior to sending that
 packet to the final CoA server (i.e., NAS). This step is necessary
 due to the limits specified in Section 2.3 of [RFC5176].

 The visited network MUST also ensure that the CoA packet sent to the
 NAS contains one of the following attributes: NAS-IP-Address,
 NAS-IPv6-Address, or NAS-Identifier. This step is the inverse of the
 removal suggested above in Section 3.4.

 In general, the NAS should only receive attributes that identify or
 modify a user's session. It is not appropriate to send to a NAS
 attributes that are used only for inter-proxy signaling.

4.3. Requirements on Proxies

 There are a number of requirements on both CoA proxies and RADIUS
 proxies. For the purpose of this section, we assume that each RADIUS
 proxy shares a common administration with a corresponding CoA proxy
 and that the two systems can communicate electronically. There is no
 requirement that these systems be co-located.

4.3.1. Security Requirements on Proxies

 Section 6.1 of [RFC5176] has some security requirements on proxies
 that handle CoA-Request and Disconnect-Request packets:

 ... a proxy MAY perform a "reverse path forwarding" (RPF) check to
 verify that a Disconnect-Request or CoA-Request originates from an
 authorized Dynamic Authorization Client.

 We strengthen that requirement by saying that a proxy MUST perform a
 reverse path forwarding check to verify that a CoA packet originates
 from an authorized Dynamic Authorization Client. Without this check,
 a proxy may forward packets from misconfigured or malicious parties
 and thus contribute to the problem instead of preventing it. Where
 the check fails, the proxy MUST return a NAK packet that contains an
 Error-Cause Attribute having value 502 ("Request Not Routable").

 Proxies that record user session information SHOULD verify the
 contents of a received CoA packet against the recorded data for that
 user session. If the proxy determines that the information in the
 packet does not match the recorded user session, it SHOULD return a
 NAK packet that contains an Error-Cause Attribute having value 503
 ("Session Context Not Found"). These checks cannot be mandated due
 to the fact that [RFC5176] offers no advice on which attributes are
 used to identify a user's session.

 Because a RADIUS proxy will see Access-Request and Accounting-Request
 packets, we recognize that it will have sufficient information to
 forge CoA packets. The RADIUS proxy will thus have the ability to
 subsequently disconnect any user who was authenticated through
 itself.

 We suggest that the real-world effect of this security problem is
 minimal. RADIUS proxies can already return Access-Accept or
 Access-Reject for Access-Request packets and can change authorization
 attributes contained in an Access-Accept. Allowing a proxy to change
 (or disconnect) a user session post-authentication is not
 substantially different from changing (or refusing to connect) a user
 session during the initial process of authentication.

 The biggest problem is that there are no provisions in RADIUS for
 "end-to-end" security. That is, the visited network and home network
 cannot communicate privately in the presence of proxies. This
 limitation originates from the design of RADIUS for Access-Request
 and Accounting-Request packets. That limitation is then carried over
 to CoA-Request and Disconnect-Request packets.

 We therefore cannot prevent proxies or home servers from forging CoA
 packets. We can only create scenarios where that forgery is hard to
 perform, is likely to be detected, and/or has no effect.

4.3.2. Filtering Requirements on Proxies

 Section 2.3 of [RFC5176] makes the following requirement for CoA
 servers:

 In CoA-Request and Disconnect-Request packets, all attributes MUST
 be treated as mandatory.

 This requirement is too stringent for a CoA proxy. Only the final
 CoA server (i.e., NAS) can decide which attributes are mandatory and
 which are not.

Instead, in the case of a CoA proxy, we say that all attributes
MUST NOT be treated as mandatory. Proxies implementing this
specification MUST perform proxying based on Operator‑Name. Other
schemes are possible but are not discussed here. Proxies SHOULD
forward all packets either "as is" or with minimal changes.

 We note that some NAS implementations currently treat signaling
 attributes as mandatory. For example, some NAS implementations will
 NAK any CoA packet that contains a Proxy-State attribute. While this
 behavior is based on a straightforward reading of the above text, it
 causes problems in practice.

 We update Section 2.3 of [RFC5176] as follows: in CoA-Request and
 Disconnect-Request packets, the NAS MUST NOT treat as mandatory any
 attribute that is known to not affect the user's session -- for
 example, the Proxy-State attribute. Proxy-State is an attribute used
 for proxy-to-proxy signaling. It cannot affect the user's session,
 and therefore Proxy-State (and similar attributes) MUST be ignored by
 the NAS.

 When Operator-Name and/or Operator-NAS-Identifier are received by a
 proxy, the proxy MUST pass those attributes through unchanged. This
 requirement applies to all proxies, including proxies that forward
 any or all of Access-Request, Accounting-Request, CoA-Request, and
 Disconnect-Request packets.

 All attributes added by a RADIUS proxy when sending packets from the
 visited network to the home network MUST be removed by the
 corresponding CoA proxy from packets traversing the reverse path.
 That is, any editing of attributes that is done on the "forward" path
 MUST be undone on the "reverse" path.

 The result is that a NAS will only ever receive CoA packets that
 either contain (1) attributes sent by the NAS to its local RADIUS
 server or (2) attributes that are sent by the home server in order to
 perform a change of authorization.

 Finally, we extend the above requirement not only to Operator-Name
 and Operator-NAS-Identifier but also to any future attributes that
 are added for proxy-to-proxy signaling.

5. Functionality

 This section describes how the two attributes work together to permit
 CoA proxying.

5.1. User Login

In this scenario, we follow a roaming user who is attempting to
log in to a visited network. The login attempt is done via a NAS in
the visited network. That NAS will send an Access‑Request packet to
the visited RADIUS server. The visited RADIUS server will see that
the user is roaming and will add an Operator‑Name attribute, with
value "1" followed by its own realm name, e.g., "1example.com". The
visited RADIUS server MAY also add an Operator‑NAS‑Identifier
attribute. The NAS identification attributes are also edited, as
required by Section 3.4, above.

 The visited server will then proxy the authentication request to an
 upstream server. That server may be the home server, or it may be a
 proxy. In the case of a proxy, the proxy will forward the packet
 until the packet reaches the home server.

 The home server will record the Operator-Name and Operator-NAS-
 Identifier attributes, along with other information about the user's
 session, if those attributes are present in a packet.

5.2. CoA Proxying

At some later point in time, the home server determines that
(1) a user session should have its authorization changed or
(2) the user should be disconnected. The home server looks up the
Operator‑Name and Operator‑NAS‑Identifier attributes, along with
other user session identifiers as described in [RFC5176]. The home
server then looks up the realm from the Operator‑Name attribute in
the logical AAA routing table, in order to find the next‑hop CoA
server for that realm (which may be a proxy). The CoA‑Request is
then sent to that CoA server.

 The CoA server receives the request and, if it is a proxy, performs a
 lookup similar to the lookup done by the home server. The packet is
 then proxied repeatedly until it reaches the visited network.

 If the proxy cannot find a destination for the request or if no
 Operator-Name attribute exists in the request, the proxy will return
 a CoA-NAK with Error-Cause 502 ("Request Not Routable").

 The visited network will receive the CoA-Request packet and will use
 the Operator-NAS-Identifier attribute (if available) to determine
 which local CoA server (i.e., NAS) the packet should be sent to. If
 there is no Operator-NAS-Identifier attribute, the visited network
 may use other means to locate the NAS, such as consulting a local
 database that tracks user sessions.

 The Operator-Name and Operator-NAS-Identifier attributes are then
 removed from the packet; one of NAS-IP-Address, NAS-IPv6-Address, or
 NAS-Identifier is added to the packet; and the packet is then sent to
 the CoA server.

 If no CoA server can be found, the visited network returns a CoA-NAK
 with Error-Cause 403 ("NAS Identification Mismatch").

 Any response from the CoA server (NAS) is returned to the home
 network via the normal method of returning responses to requests.

6. Security Considerations

 This specification incorporates by reference Section 11 of [RFC6929].
 In short, RADIUS has many known issues; those issues are discussed in
 detail in [RFC6929] and do not need to be repeated here.

 This specification adds one new attribute and defines new behavior
 for RADIUS proxying. As this behavior mirrors existing RADIUS
 proxying, we do not believe that it introduces any new security
 issues. We note, however, that RADIUS proxying has many inherent
 security issues.

6.1. RADIUS Security and Proxies

 The requirement that packets be signed with a shared secret means
 that a CoA packet can only be received from a trusted party or,
 transitively, received from a third party via a trusted party. This
 security provision of the base RADIUS protocol makes it impossible
 for untrusted parties to affect the user's session.

 When RADIUS proxying is performed, all packets are signed on a
 hop-by-hop basis. Any intermediate proxy can therefore forge
 packets, replay packets, or modify the contents of any packet. Any
 system receiving correctly signed packets must accept them at face
 value and is unable to detect any forgery, replay, or modifications.
 As a result, the secure operation of such a system depends largely on
 trust instead of on technical means.

 CoA packet proxying has all of the same issues as those noted above.
 We note that the proxies that see and can modify CoA packets are
 generally the same proxies that can see or modify Access-Request and
 Accounting-Request packets. As such, there are few additional
 security implications in allowing CoA proxying.

 The main security implication that remains is that home networks now
 have the ability to disconnect or change the authorization of users
 in a visited network. As this capability is only enabled when mutual
 agreement is in place, and only for those parties who can already
 control user sessions, there are no new security issues with this
 specification.

6.2. Security of the Operator-NAS-Identifier Attribute

 Nothing in this specification depends on the security of the
 Operator-NAS-Identifier attribute. The entire process would work
 exactly the same if the Operator-NAS-Identifier attribute simply
 contained the NAS IP address that is hosting the user's session. The
 only real downside in that situation would be that external parties
 would see some additional private information about the visited
 network. They would still, however, be unable to leverage that
 information to do anything malicious.

 The main reason to use an opaque token for the Operator-NAS-
 Identifier attribute is that there is no compelling reason to make
 the information public. We therefore recommend that the value be
 simply an opaque token. We also state that there is no requirement
 for integrity protection or replay detection of this attribute. The
 rest of the RADIUS protocol ensures that modification or replay of
 the Operator-NAS-Identifier attribute will either have no effect or
 have the same effect as if the value had not been modified.

 Trusted parties can modify a user's session on the NAS only when they
 have sufficient information to identify that session. In practice,
 this limitation means that those parties already have access to the
 user's session information. In other words, those parties are the
 proxies who are already forwarding Access-Request and Accounting-
 Request packets.

 Since those parties already have the ability to see and modify all of
 the information about a user's session, there is no additional
 security issue with allowing them to see and modify CoA packets.

 In short, any security issues with the contents of Operator-NAS-
 Identifier are largely limited by the security of the underlying
 RADIUS protocol. This limitation means that it does not matter how
 the values of Operator-NAS-Identifier are created, stored, or used.

7. IANA Considerations

 Per Section 3.4 of this document, IANA has allocated one new RADIUS
 attribute (the Operator-NAS-Identifier attribute) from the "short
 extended space" of the "RADIUS Attribute Types" registry as follows:

Value: 241.8
Description: Operator‑NAS‑Identifier
Data Type: string
Reference: RFC 8559

8. References

8.1. Normative References

 [RFC2119]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865]
 Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC5080]
 Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, DOI 10.17487/RFC5080,
 December 2007, <https://www.rfc-editor.org/info/rfc5080>.

 [RFC5176]
 Chiba, M., Dommety, G., Eklund, M., Mitton, D., and
 B. Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 DOI 10.17487/RFC5176, January 2008,
 <https://www.rfc-editor.org/info/rfc5176>.

 [RFC5580]
 Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A., and
 B. Aboba, "Carrying Location Objects in RADIUS and
 Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,
 <https://www.rfc-editor.org/info/rfc5580>.

 [RFC6929]
 DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <https://www.rfc-editor.org/info/rfc6929>.

 [RFC7542]
 DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC8044]
 DeKok, A., "Data Types in RADIUS", RFC 8044,
 DOI 10.17487/RFC8044, January 2017,
 <https://www.rfc-editor.org/info/rfc8044>.

 [RFC8174]
 Leiba, B., "Ambiguity of Uppercase vs Lowercase in
 RFC 2119 Key Words", BCP 14, RFC 8174,
 DOI 10.17487/RFC8174, May 2017,
 <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [RFC2866]
 Rigney, C., "RADIUS Accounting", RFC 2866,
 DOI 10.17487/RFC2866, June 2000,
 <https://www.rfc-editor.org/info/rfc2866>.

Authors' Addresses

Alan DeKok
The FreeRADIUS Server Project

 Email: aland@freeradius.org

 Jouni Korhonen

 Email: jouni.nospam@gmail.com

RFC eBook Conversion

This text describes the conversion process used to create this
ebook.

Conversion process for rfc.mobi/rfc.epub

The conversion process goes like follows:

	Update rfc index from the www.ietf.org

	Create the cover jpg from the postscript file and scale it
down

	Create list of files to be included to the book

	Create ncx file based on the list created before

	Go through RFCs and convert them from text to html

	Create opf file for the book

	Convert the rfc-index.txt to index.html file

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.

Conversion process for working group internet-drafts

The conversion process goes like follows:

	Update rfc and internet-draft reposotiries from the
www.ietf.org

	Create the directory structure where we have one directory for
each area, and inside that directory we have directory for each
working group in that area. Also create the .htaccess file containing
full names for working groups.

	Create ebooks, by looping through all working groups in all areas
and do following:

	Fetch list of working group drafts, RFCs and related from the
http://datatracker.ietf.org/wg/wgname/documents/txt.

	Create the cover jpg from the postscript file and scale it
down

	Create ncx file based on the list created before

	Go through documents and convert them from text to html

	Create opf file for the book

	Create index.html file based on the files and titles fetched in
the beginning from datatracker.

	Create .mobi file using kindlegen

	Create .ePub file from the same sources than .mobi by removing
some mobipocket specific html tags from the html.

	 Copy .epub and .mobi files to the correct place in the directory
structure.

Creating Cover page

make-cover.sh "\nRFC Index\n$date" "$time" \
 "ietf-logo.eps" > rfc.jpg

This program takes the title, time and logo postscript, and creates
a postscript file which it then runs through ghostscript and converts
it file suitable for the Kindle 3. The title can have three lines
separated with "\n". Normally the top two lines contain the
actual title, and third line contains the date of conversion. The time
is added to the end of the page with small font, so it can be used
during development phase to see which version of ebook this is (during
development I did have multiple versions loaded to my Kindle and it
was painful to find out which one of them is newest before this was
added). The logo is ietf-logo.eps directly from the IETF web page.

The page is initially created at 2400x3200 pixel resolution and
then scaled down to 25% of size meaning the final page is 600x800
pixels in size.

Creating NCX file

For RFC ebook:

make-ncx.pl --title "RFC Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file $ncxtocentries \
 --out \
 --class book \
 --include-regexp '^rfc[0-9][0-9][0-9]1' \
 --split-regexp '^rfc[0-9][0-9]01' \
 --input-file $ncxrfcentries

For the Internet-Draft ebooks:

make-ncx.pl --title "$wg Index" \
 --author "IETF" \
 --output $ncx \
 "toc:toc:index.html:Table of Contents" \
 --class book \
 --input-file $ncxentries

NCX file contains list all files and the navigation information.
That is used when you press left or right arrows on the kindle to see
where to move next. See make-ncx manual
page for information about options.

Creating OPF file

For RFC ebook:

files=`ls -1 "$dir"/rfc*.html | sed 's/.*\///g'`
make-opf.pl --title "RFC Index $date" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 --output rfc.opf \
 intro.html \
 $files \
 conversion.html \
 $manpages

For the Internet-Draft ebooks:

make-opf.pl --title "$wg ID and RFC Docs $date" \
 --language en \
 --cover wg.jpg \
 --subject Reference \
 --beginning intro.html \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "$wg RFCs and Internet-Drafts" \
 --date "$date" \
 --index index.html \
 --stylesheet rfc.css \
 --toc wg-"$wg".ncx \
 --output "$opf" \
 $files \
 conversion.html \
 $manpages

Open package format file describes what files are in the ebook. It
also contains information where to start reading and in which order
entries are appearing in the book. See make-opf manual page for information about
options.

Converting text RFC to html

For RFCs the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -r $rfcnum \
 -o rfc$rfcnum.html \
 $rfctxtfile

For Internet-Drafts the conversion command line is:

rfc2html.pl \
 --navigation \
 "index.html:Index;-5:Back 5;-1:Prev;+1:Next;+5:Forward 5" \
 -f $filelist \
 -t $draft-name \
 -o $draft-name.html \
 $draft-name.txt

This program takes the text formatted RFC or Internet-Draft and
formats it to html suitable for ebooks. The first step is to remove
page formatting (page breaks, page numbers, page headers and footers).
In that phase it also tries to see if one textual paragraph is
continuing from the previous page to the next, and if so then it will
glue them together. The second phase is to go through all paragraphs
and try to find out what type of paragraph it is (text, picture,
header, table of contents, authors address section, terminology
defination, bulleted or numbered list, references section). After this
it goes through the actual text paragraphs and converts them to html
suitable for their type. See rfc2html manual page for information about
options.

Converting rfc-index.txt to index.html

TBF

Creating .mobi file

kindlegen rfc.opf -c1 -verbose

TBF

Converting files to .epub format

makeepub.sh current

TBF

Kindle 3 issues

Issues I have found when converting this to kindle 3

Ncx file size

It seems there is maximum number of items the ncx file can have, or
some other limitation in the ncx file parsing. When I included all the
rfcs to the ncx file then the next and previous arrows in the kindle 3
does not work anymore. If the number if items is reduced then they
start working.

Kindle -c2 compression

When I tried to use the best compression of kindlegen, the program
did create a eBook file but all the links inside the file pointed in
wrong place, i.e. when you used link to go rfc5996 you ended up in the
middle of rfc6020 or so.

No support for multiple indexes

The mobipockect supports multiple indexes and the eBook originally
included titleword and full title text indexes, but those were removed
as kindle 3 does not support them.

Last item in might be missing in index

The automatic index (using the menu and selecting index) sometimes
misses the last item in it. Thats why I added this conversion
description to the end, so if something is missing it will be this
text.

Kindle 3 and pictures

Kindle 3 does support monospace font and the screen is wide enough
for 67 charactes if screen is rotated. This allows the normal 32 bit
packet frame description pictures to be shown properly using the
normal pre-tag. The Kindle 3 will still wrap words to the next line,
and this was problematic when combined with hyphens used in pictures.
To fix this all the hyphens in the text are converted to the
no-breaking hyphens.

No-breaking hyphen not shown properly on Kindle for PC

Because of the previous issue with word wrap we needed to use
non-breaking hyphens, but unfortunately they do not show properly on
the kindle for PC, but instead of unknown character box is shown
instead.

Searching does not work

For some reason the searching from the RFC eBook does not work on
the Kindle 3.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-ncx - Create NCX file

[bookmark: synopsis]SYNOPSIS

make-ncx [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--depth|-d depth-of-toc]
 [--total-page-count|-T total-page-count]
 [--max-page-number|-m max-page-number]
 [--separator|-s separator-regexp]
 --author|-a author
 --title|-t title
 entry ...
 [--class|-c class] entry ...
 [--in] entry ... [--out]
 [--autosplit|-A split-count] entry ...
 [--include-regexp include-regexp] entry ...
 [--exclude-regexp exclude-regexp] entry ...
 [--split-regexp split-regexp] entry ...
 [--input-file|-i input-file] entry ...
 entry ...

make-ncx --help

[bookmark: description]DESCRIPTION

make-ncx takes list of ncx entries and creates NCX (Navigation
Control for for XML applications Format) file out of them.

NCX is hierarchical structure, and the make-ncx supports this so
that the list of entries can include --in and --out options to
in and out in the hierarchy. Note, that the first item is always on
level 1 and you can go in only one level per entry, i.e. adding two
--in options right after each other is an error. Multiple --out
options is allowed, but going out from level 1 is not allowed.

Each entry contain 4 fields separated from each other by separator
regexp. The first field is the class of the entry. This can be
something like "book", "toc", "entry" etc. Second field is the id of
the entry. This should be something unique. Third field is the actual
link inside the mobibook, i.e. "index.html", "index.html#s1000" or
"rfc1234.html". Last field is the text of the entry.

If only 3 fields are given then they are assumed to be id, link and
text, and the class is the one given with --class option.

If only 2 fields are given then they are assumed to be link and text,
and the class is processed as with 3 fields, and id is autogenerated
from the link, by removing path, prefixes and special chars.

If only one field is given then it is assumed to be link, and class
and id is generated as previously, and link is converted to text by
removing prefixes and removing some special charactes and replacing
'/', '-', '_' to spaces.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: depth_d_depth_of_toc]--depth -d depth-of-toc

	
Max depth of the NCX file. If not given this is autodetected from the
options.

	[bookmark: total_page_count_t_total_page_count]--total-page-count -T total-page-count

	
Sets total page count. If not given this is set to 0.

	[bookmark: max_page_number_m_max_page_number]--max-page-number -m max-page-number

	
Sets max page number. If not given this is set to 0.

	[bookmark: separator_s_separator_regexp]--separator -s separator-regexp

	
Separator regexp used to split entries to class, id, link and text.
Defaults to ':'

	[bookmark: author_a_author]--author -a author

	
Author of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: in]--in

	
Go one level into the hierarchy. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: out]--out

	
Go one level out in the hierarchy. This option is used inside the
entry list and it affects the entries coming after it.

	[bookmark: class_c]--class -c

	
Set the class of the entries coming after this if no class given in
the entry. This option is used inside the entry list and it affects
the entries coming after it.

	[bookmark: autosplit_a_split_count]--autosplit -A split-count

	
Starts autosplitting long list of entries, so that split-count
entries are combined so that the first entry stays at current level,
and all other entries are moved in one level inside the first entry.
This process is repeated until --in, --out, or new
--autosplit option is found. This option is used inside the entry
list and it affects the entries coming after it.

	[bookmark: include_regexp_include_regexp]--include-regexp include-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which are matching this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: exclude_regexp_exclude_regexp]--exclude-regexp exclude-regexp

	
Filters entries based on the regexp. Only those entries will be
processed which do not match this regexp. This allows creating one
entry file having all entries, and then filter them so that only parts
of them are included to the final ncx file. This option is used inside
the entry list and it affects the entries coming after it.

	[bookmark: split_regexp_split_regexp]--split-regexp split-regexp

	
Automatically split entries to sublevels based on the regexp. This
will match entries against the regexp and when first match is found it
will put this entry on current level and then go down one level, and
then put all further entries not matching this regexp to that level.
Further matching entries are moved to the same level as the first one.
This can be used in combination with --autosplit option in which
case --autosplit entries will be below this, meaning the hierarchy
will have 3 levels. Top level contains the entries matching this
regexp. The next level contains every Nth entry and lowest level
contains all other entries. Every time matching entry is found the
--autosplit counter is reset.

	[bookmark: input_file_i_input_file]--input-file -i input-file

	
Reads the list of options from the input-file instead of reading
them from command line. The options are in the file one option at
line, and are processed exactly as they would be on the command line.
This means that you can give --class, --in, --autosplit etc options
first and then just get the list of filenames from the file.

[bookmark: examples]EXAMPLES

make-ncx --title foo \
 --author bar \
 toc:toc:index.html:Index \
 book:rfc0001:rfc0001.html:RFC0001

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 0000:index.html#s0000:RFC0000 \
 1000:index.html#s1000:RFC1000 \
 2000:index.html#s2000:RFC2000 \
 3000:index.html#s3000:RFC3000 \
 4000:index.html#s4000:RFC4000 \
 5000:index.html#s5000:RFC5000 \
 6000:index.html#s6000:RFC6000 \
 --out \
 --class book \
 --autosplit 5 \
 rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \
 rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \
 rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \
 rfc6006.html rfc6007.html

make-ncx --title "RFC Index" \
 --author "IETF" \
 "toc:toc:index.html:Table of Contents" \
 --in \
 --class entry \
 --input-file toc-entries.txt \
 --out \
 --class book \
 --autosplit 5 \
 --input-file rfc-list.txt

[bookmark: files]FILES

	[bookmark: makencxrc]~/.makencxrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

make-opf - Create OPF file

[bookmark: synopsis]SYNOPSIS

make-opf [--help|-h] [--version|-V] [--verbose|-v]
 [--output|-o output-file-name]
 [--config config-file]
 [--beginning|-b first-page-filename]
 [--cover|-c cover-jpg-file-name]
 [--creator|-C creator]
 [--date|-D date]
 [--description|-d description]
 --id|-i id
 [--index|-I index-html-file-name]
 --language|-l language
 [--publisher|-p publisher]
 [--role|-r creator-role]
 [--stylesheet|-S stylesheet-css-file-name]
 [--subject|-s subject]
 --title|-t title
 [--toc|-T toc-ncs-file-name]
 filename ...

make-opf --help

[bookmark: description]DESCRIPTION

make-opf takes list of html files inside the mobibook and creates a
OPF (Open Packaging Format) file out of them.

Files are added to the spine in the order they appear in the command
line. Note, that before any files there is --cover, --beginning
and ---index pages, which always come in that order in the
beginning of the book.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to stdout.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

	[bookmark: beginning_b_first_page_filen_file_name]--beginning -b first-page-filen-file-name

	
File name inside the mobibook which is used as a beginning of the
book, i.e. when book is opened it comes to this page.

	[bookmark: cover_c_cover_jpg_file_name]--cover -c cover-jpg-file-name

	
File name inside the mobibook which is used as a cover page for the
publication. Must be jpg file. This is mandatory for Kindle books.

	[bookmark: creator_c_creator]--creator -C creator

	
Creator of the publication. Usually the name of the author.

	[bookmark: date_d_date]--date -D date

	
Date of the publication.

	[bookmark: description_d_description]--description -d description

	
Short description of the publication.

	[bookmark: id_i_id]--id -i id

	
Unique ID for the publication.

	[bookmark: index_i_index_html_file_name]--index -I index-html-file-name

	
File name inside the mobibook which is used as index. If included this
is also used as table of contents.

	[bookmark: language_l_language]--language -l language

	
Language tag of the publication. Typically "en".

	[bookmark: publisher_p_publisher]--publisher -p publisher

	
Publisher name.

	[bookmark: role_r_creator_role]--role -r creator-role

	
Role of the creator, i.e. author (aut), collaborator (clb), editor
(edt) etc.

	[bookmark: stylesheet_s_stylesheet_css_filename]--stylesheet -S stylesheet-css-filename

	
File name inside the mobibook which used as css stylesheet.

	[bookmark: subject_s_subject]--subject -S subject

	
Subject of the publication.

	[bookmark: title_t_title]--title -t title

	
Title of the publication.

	[bookmark: toc_t_toc_ncs_file_name]--toc -T toc-ncs-file-name

	
File name inside the mobibook which is used as NCS table of contents
file name.

[bookmark: examples]EXAMPLES

make-opf.pl --title "${partial}RFC Index $d" \
 --language en \
 --cover rfc.jpg \
 --subject Reference \
 --id "$id" \
 --role clb \
 --creator "Tero Kivinen" \
 --publisher "IETF" \
 --description "All RFCs as mobibook" \
 --date "$d" \
 --index index.html \
 --stylesheet rfc.css \
 --toc rfc.ncx \
 rfc*.html

[bookmark: files]FILES

	[bookmark: makeopfrc]~/.makeopfrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created when making RFC mobibook files for IETF use.

[bookmark: __index__]

		NAME

		SYNOPSIS

		DESCRIPTION

		OPTIONS

		EXAMPLES

		FILES

		AUTHOR

		HISTORY

[bookmark: name]NAME

rfc2html - Convert RFC to simple html

[bookmark: synopsis]SYNOPSIS

rfc2html [--help|-h] [--version|-V] [--verbose|-v]
 [--key-index]
 [--navigation|-n navigation-links]
 [--filelist|-f filelist-file]
 [--rfc|-r rfc-number]
 [--title|-t title-prefix]
 [--output|-o output-file]
 [--config config-file]
 filename ...

rfc2html --help

[bookmark: description]DESCRIPTION

rfc2html takes RFC txt file and converts it to simple html file.

filename is read in and new file is created so that .txt extension
is removed from the filename (if it exists) and .html extesion is
added.

[bookmark: options]OPTIONS

	[bookmark: help_h]--help -h

	
Prints out the usage information.

	[bookmark: version_v]--version -V

	
Prints out the version information.

	[bookmark: verbose_v]--verbose -v

	
Enables the verbose prints. This option can be given multiple times,
and each time it enables more verbose prints.

	[bookmark: output_o_output_file]--output -o output-file

	
Output file name. Defaults to <inputfile>.txt.

	[bookmark: rfc_r_rfc_number]--rfc -r rfc-number

	
Gives the RFC number of the current file. Used to make title
information correct.

	[bookmark: title_t_title_prefix]--title -t title-prefix

	
Gives text added to the beginning of the title, for example the file
name.

	[bookmark: filelist_f_file_list_filename]--filelist -f file-list-filename

	
Filename of the file containing list of files in the book. If given
only those links pointing to files listed in this file are converted
to links.

	[bookmark: navigation_n_navigation_links]--navigation -n navigation-links

	
Creates navigation links at the top of the file. The navigation links
text is semicolon separated list of navigation links. Each link
consists of file name inside the book, and the link title. The
filename can either be full filename like "index.html", or it can be
relative filename like "-1" or "+100". Using this option requires that
the filelist option is also used and all links given here are found
from the filelist. The filelist is also used to find the current file
name and then calculate relative filenames from there, i.e. "-1" means
the filename in the filename list just before this file.

The filename used for searching this entry from the filelist is the
output filename, and if exact match is not found then the path
components are removed and file is searched again.

	[bookmark: key_index]--key-index

	
Create key index entries. Those are only useful for mobipacket reader,
they do not work on kindle.

	[bookmark: config_config_file]--config config-file

	
All options given by the command line can also be given in the
configuration file. This option is used to read another configuration
file in addition to the default configuration file.

[bookmark: examples]EXAMPLES

 rfc2html rfc5996.txt
 rfc2html *.txt

[bookmark: files]FILES

	[bookmark: rfc2htmlrc]~/.rfc2htmlrc

	
Default configuration file.

[bookmark: author]AUTHOR

Tero Kivinen <kivinen@iki.fi>.

[bookmark: history]HISTORY

This program was created based on the rfcmarkup version 1.90 to
convert RFCs to simple html suitable for kindle ebook conversion. The
rfcmarkup tries to keep formatting intact, while this actually removes
things which are not needed in ebooks, i.e page breaks and page
numbers, and makes text paragraphs as html paragraphs, instead of
using <pre> around the whole file.

OPS/wg.jpg
radext
Documents
2019-11-24

SO ¢

1 E T F

Kindle trans formation by Tero Kivinen
011230

