This book is a collection of RFCs and Internet-Drafts related to specific working group. The RFC and Internet-Drafts files are normally stored in plain ascii text format and they are converted to html suitable for eBook use by automatic scripts. Those scripts try to detect headers, pictures, lists, references etc and create special html for each of those. For text paragraphs those scripts remove indentation and hard linebreaks and makes text paragraphs as normal text so font size of the eBook can be adjusted at will and features like text-to-speech work.
As this conversion is completely automatic there might be errors in the converted files. I have tried to fix the issues when I find them, but sometimes fixing issue in one RFC cause problems in others, so not all errors can be easily fixed, this is especially true for very old RFCs which do not follow the formatting specifications. If you notice errors in the formatting please send email to the <kivinen+rfc-ebook@iki.fi> and describle the problem. Please, remember to include the RFC number and the version number of the eBook file (found from the cover page).
As the collection of RFCs is quite large there has been some issues with the conversion to kindle, and some features do not seem to work properly when full set of RFCs is used. Because of this some work-arounds have been made to make the eBook still usable. If the kindle software gets updated some of those work-arounds might be removed. For more information about those see the Conversion section.
The primary output format of the scripts is the .mobi format used in the kindle, and I have been using Kindle 3 as my primary testing device, so if other reader devices are used, there might be more issues. The automatic tools also create the .ePub file, which can be used on platforms which do not support .mobi format. There is program called mobipocket for reading .mobi files, and that program is available for wide range of devices including PalmOS, Symbian, PC, Windows Mobile, Blackberry etc, so also those devices can be used in addition to normal eBook readers.
In this section I will concentrate mostly on how to use this on Kindle 3. This eBook contains 5 main parts:
The cover page includes the date when this eBook was created (i.e. eBook version).
The conversion section includes technical information how this eBook was created and some known issues etc.
There are four main ways to navigate through the book in addition to normal page up and down.
Fastest way to go to specific RFC or Internet-Draft is to press menu button on the Kindle 3, and then select Index from the menu. This will give you the automatic index of the contents of the this file. This allows quick access to the RFC by just typing the numbers to the search box, i.e. pressing Alt-t, Alt-o, Alt-o, Alt-y will jump you to the RFC 5996 and then you can use arrow down to select RFC and hit enter to go there. For internet draft start typing the draft name.
Another option is to use the RFC Index in the beginning of the file (You can get to there by either pressing menu, selecting Index and then clicking on the Index in the beginning of the index, or by pressing menu, selecting Go to... and then selecting Table of Contents).
Third option is to use left and right arrows to navigate the next and previous RFC/Internet-Drafts.
The fourth way to navigate inside the book is to use the links inside the files. The RFC Index has direct links to every 100th RFC. Each file contains links to back 5, forward 5, next and previous rfc. Also any reference inside the documents pointing to other RFCs gets you directly there. Some of the links inside RFC moves you inside the RFC, i.e. clicking link on the table of contents inside the RFC moves you to that section etc. Also references inside the RFC will move you to the refences section etc.
draft-ietf-secevent-http-poll-01 - Poll-Based Security Event Token (SET) Deliver
Network Working Group
Internet-Draft
Intended status: Standards Track
Expires: April 25, 2019
A. Backman, Ed.
Amazon
M. Jones, Ed.
Microsoft
M. Scurtescu
Coinbase
M. Ansari
Cisco
A. Nadalin
Microsoft
October 22, 2018
draft-ietf-secevent-http-poll-01
This specification defines how a series of Security Event Tokens (SETs) may be delivered to an intended recipient using HTTP POST over TLS initiated as a poll by the recipient. The specification also defines how delivery can be assured, subject to the SET Recipient's need for assurance.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 25, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This specification defines how a stream of Security Event Tokens (SETs) [RFC8417] can be transmitted to an intended SET Recipient using HTTP [RFC7231] over TLS. The specification defines a method to poll for SETs using HTTP POST.
This specification defines a method of SET delivery in what is known as Event Streams.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
For purposes of readability, examples are not URL encoded. Implementers MUST percent encode URLs as described in Section 2.1 of [RFC3986].
Throughout this document, all figures MAY contain spaces and extra line wrapping for readability and due to space limitations. Similarly, some URIs contained within examples have been shortened for space and readability reasons.
This specification utilizes terminology defined in [RFC8417], as well as the terms defined below:
SET Transmitter
An entity that delivers SETs in its possession to one or more SET Recipients.
When an event occurs, the SET Transmitter constructs a SET [RFC8417] that describes the event. The SET Transmitter determines the SET Recipients that the SET should be distributed to.
How SETs are defined and the process by which events are identified for SET Recipients is out of scope of this specification.
When a SET is available for an SET Recipient, the SET Transmitter attempts to deliver the SET based on the SET Recipient's registered delivery mechanism:
o The SET Transmitter queues the SET in a buffer so that an SET Recipient MAY poll for SETs using HTTP/1.1 POST.
o Or, the SET Transmitter delivers the Event through a different method not defined by this specification.
In Poll-Based SET Delivery Using HTTP, multiple SETs are delivered in a JSON document [RFC7159] to an SET Recipient in response to an HTTP POST request to the SET Transmitter. Then in a following request, the SET Recipient acknowledges received SETs and MAY poll for more. All requests and responses are JSON documents and use a "Content- Type" of "application/json" as described in Section 2.1.
After successful (acknowledged) SET delivery, Event Transmitters SHOULD NOT be required to maintain or record SETs for recovery. Once a SET is acknowledged, the SET Recipient SHALL be responsible for retention and recovery.
Transmitted SETs SHOULD be self-validating (e.g., signed) if there is a requirement to verify they were issued by the Event Transmitter at a later date when de-coupled from the original delivery where authenticity could be checked via the HTTP or TLS mutual authentication.
Upon receiving a SET, the SET Recipient reads the SET and validates it. The SET Recipient MUST acknowledge receipt to the SET Transmitter, using the defined acknowledgement or error method depending on the method of transfer.
The SET Recipient SHALL NOT use the Event acknowledgement mechanism to report Event errors other than relating to the parsing and validation of the SET.
This method allows an SET Recipient to use HTTP POST (Section 4.3.3 of [RFC7231]) to acknowledge SETs and to check for and receive zero or more SETs. Requests MAY be made at a periodic interval (short polling) or requests MAY wait, pending availability of new SETs using long polling (see Section 2 of [RFC6202]).
The delivery of SETs in this method is facilitated by HTTP POST requests initiated by the SET Recipient in which:
o The SET Recipient makes a request for available SETs using an HTTP POST to a pre-arranged endpoint provided by the Event Transmitter. Or,
o After validating previously received SETs, the SET Recipient initiates another poll request using HTTP POST that includes acknowledgement of previous SETs, and waits for the next batch of SETs.
The purpose of the "acknowledgement" is to inform the SET Transmitter that has successfully been delivered and attempts to re-deliver are no longer required. Before acknowledgement, Event Recipients SHOULD ensure received SETs have been validated and retained in a manner appropriate to the recipient's retention requirements. The level and method of retention of SETs by SET Recipients is out of scope of this specification.
When initiating a poll request, the SET Recipient constructs a JSON document that consists of polling request parameters and SET acknowledgement parameters in the form of JSON attributes.
The request payloads are delivered in one of two forms as described in Section 2.4 and Section 2.5
When making a request, the HTTP header "Content-Type" is set to "application/json".
The following JSON Attributes are used in a polling request:
Request Processing Parameters
maxEvents
an OPTIONAL JSON integer value indicating the maximum number of unacknowledged SETs that SHOULD be returned. If more than the maximum number of SETs are available, the oldest SETs available SHOULD be returned first. A value of "0" MAY be used by SET Recipients that would like to perform an acknowledge only request. This enables the Recipient to use separate HTTP requests for acknowledgement and reception of SETs. When zero returned events is requested, the value of the attribute "returnImmediately" SHALL be ignored as an immediate response is expected.
returnImmediately
An OPTIONAL JSON boolean value that indicates the SET Transmitter SHOULD return an immediate response even if no results are available (short polling). The default value is "false" indicates the request is to be treated as an HTTP Long Poll (see Section 2 of [RFC6202]). The time out for the
request is part of the Stream configuration, which is out of scope of this specification.
SET Acknowledgment Parameters
ack
Which is an array of Strings that each correspond to the "jti" of a successfully received SET. If there are no outstanding SETs to acknowledge, the attribute MAY be omitted. When acknowledging a SET, the SET Transmitter is released from any obligation to retain the SET (e.g., for a future retry to receive).
setErrs
A JSON Object that contains one or more nested JSON attributes that correspond to the "jti" of each invalid SET received. The value of each is a JSON object whose contents is an "err" attribute and "description" attribute whose value correspond to the errors described in Section 2.6.
In response to a poll request, the SET Transmitter checks for available SETs and responds with a JSON document containing the following JSON attributes:
sets
A JSON object that contains zero or more nested JSON attributes. Each nested attribute corresponds to the "jti" of a SET to be delivered and whose value is a JSON String containing the value of the encoded corresponding SET. If there are no outstanding SETs to be transmitted, the JSON object SHALL be empty.
moreAvailable
A JSON boolean value that indicates if more unacknowledged SETs are available to be returned.
When making a response, the HTTP header "Content-Type" is set to "application/json".
The SET Recipient performs an HTTP POST (see Section 4.3.4 of [RFC7231]) to a pre-arranged polling endpoint URI to check for SETs that are available. Because the SET Recipient has no prior SETs to acknowledge, the "ack" and "errs" request parameters are omitted. If after a period of time, negotiated between the Event Transmitter and Recipient, an SET Transmitter MAY reissue SETs it has previously delivered. The SET Recipient SHOULD accept repeat SETs and acknowledge the SETs regardless of whether the Recipient believes it has already acknowledged the SETs previously. An SET Transmitter MAY limit the number of times it attempts to deliver a SET.
If the SET Recipient has received SETs from the SET Transmitter, the SET Recipient SHOULD parse and validate received SETs to meet its own requirements and SHOULD acknowledge receipt in a timely (e.g., minutes) fashion so that the Event Transmitter may mark the SETs as received. SET Recipients SHOULD acknowledge receipt before taking any local actions based on the SETs to avoid unnecessary delay in acknowledgement, where possible.
Poll requests have three variations:
Poll Only
In which an SET Recipient asks for the next set of Events where no previous SET deliveries are acknowledged (such as in the initial poll request).
Acknowledge Only
In which an Event Recipient sets the "maxEvents" attribute to "0" along with "ack" and "err" attributes indicating the SET Recipient is acknowledging previously received SETs and does not want to receive any new SETs in response to the request.
Combined Acknowledge and Poll
In which an SET Recipient is both acknowledging previously received SETs using the "ack" and "err" attributes and will wait for the next group of SETs in the SET Transmitters response.
In the case where no SETs were received in a previous poll (see Figure 7), the SET Recipient simply polls without acknowledgement parameters ("sets" and "setErrs").
The following is an example request made by an SET Recipient that has no outstanding SETs to acknowledge and is polling for available SETs. The following is a non-normative example poll request to the endpoint: "https://nofity.exampleidp.com/Events".
Figure 1: Example Initial Poll Request
An SET Recipient MAY poll with no parameters at all by passing an empty JSON object.
The following is a non-normative example default poll request to the endpoint: "https://nofity.exampleidp.com/Events".
{}
Figure 2: Example Default Poll Request
In this variation, the SET Recipient acknowledges previously received SETs and indicates it does not want to receive SETs in response by setting the "maxEvents" attribute to "0".
This variation is typically used when an SET Recipient needs to acknowledge received SETs independently (e.g., on separate threads) from the process of receiving SETs.
The following is a non-normative example poll with acknowledgement of SETs received (for example as shown in Figure 6).
Figure 3: Example Acknowledge Only equest
This variation allows a recipient thread to simultaneously acknowledge previously received SETs and wait for the next group of SETs in a single request.
The following is a non-normative example poll with acknowledgement of SETs received in Figure 6.
Figure 4: Example Poll With Acknowledgement and No Errors
In the above acknowledgement, the SET Recipient has acknowledged receipt of two SETs and has indicated it wants to wait until the next SET is available.
In the case where errors were detected in previously delivered SETs, the SET Recipient MAY use the "setErrs" attribute to indicate errors in the following poll request.
The following is a non-normative example of a response acknowledging 1 error and 1 receipt of two SETs received in Figure 6.
Figure 5: Example Poll Acknowledgement With Error
In response to a poll request, the service provider MAY respond immediately if SETs are available to be delivered. If no SETs are available at the time of the request, the SET Transmitter SHALL delay responding until a SET is available unless the poll request parameter "returnImmediately" is "true".
As described in Section 2.3 a JSON document is returned containing a number of attributes including "sets" which SHALL contain zero or more SETs.
The following is a non-normative example response to the request shown Section 2.4. This example shows two SETs are returned.
Figure 6: Example Poll Response
In the above example, a two SETs whose "jti" are "4d3559ec67504aaba65d40b0363faad8" and "3d0c3cf797584bd193bd0fb1bd4e7d30" are delivered.
The following is a non-normative example response to the request shown Section 2.4 showing no new SETs or unacknowledged SETs are available.
Figure 7: Example No SETs Poll Response
Upon receiving the JSON document (e.g., as shown in Figure 6), the SET Recipient parses and verifies the received SETs and notifies the SET Transmitter via the next poll request to the SET Transmitter as described in Section 2.4.3 or Section 2.4.4.
If a SET is invalid, error codes from the IANA "Security Event Token Delivery Error Codes" registry established by [I-D.ietf-secevent-http-push] are used in error responses. An error response SHALL include a JSON object which provides details about the error. The JSON object includes the JSON attributes:
err
A value from the IANA "Security Event Token Delivery Error Codes" registry that identifies the error.
description
A human-readable string that provides additional diagnostic information.
When included as part of a batch of SETs, the above JSON is included as part of the "setErrs" attribute, as defined in Section 2.3 and Section 2.4.4.
The SET delivery method described in this specification is based upon HTTP and depends on the use of TLS and/or standard HTTP authentication and authorization schemes as per [RFC7235]. For example, the following methodologies could be used among others:
TLS Client Authentication
Event delivery endpoints MAY request TLS mutual client authentication. See Section 7.3 of [RFC5246].
Bearer Tokens
Bearer tokens [RFC6750] MAY be used when combined with TLS and a token framework such as OAuth 2.0 [RFC6749]. For security considerations regarding the use of bearer tokens in SET delivery see Section 4.4.1.
Basic Authentication
Usage of basic authentication should be avoided due to its use of a single factor that is based upon a relatively static, symmetric secret. Implementers SHOULD combine the use of basic authentication with other factors. The security considerations of HTTP BASIC, are well documented in [RFC7617] and SHOULD be considered along with using signed SETs (see SET Payload Authentication below).
As per Section 4.1 of [RFC7235], a SET delivery endpoint SHALL indicate supported HTTP authentication schemes via the "WWW- Authenticate" header.
Because SET Delivery describes a simple function, authorization for the ability to pick-up or deliver SETs can be derived by considering the identity of the SET issuer, or via an authentication method above. This specification considers authentication as a feature to prevent denial-of-service attacks. Because SETs are not commands, SET Recipients are free to ignore SETs that are not of interest.
For illustrative purposes only, SET delivery examples show an OAuth2 bearer token value [RFC6750] in the authorization header. This is not intended to imply that bearer tokens are preferred. However, the use of bearer tokens in the specification does reflect common practice.
When using bearer tokens or proof-of-possession tokens that represent an authorization grant such as issued by OAuth (see [RFC6749]), implementers SHOULD consider the type of authorization granted, any authorized scopes (see Section 3.3 of [RFC6749]), and the security subject(s) that SHOULD be mapped from the authorization when considering local access control rules. Section 6 of the OAuth Assertions draft [RFC7521], documents common scenarios for authorization including:
o Clients using an assertion to authenticate and/or act on behalf of itself;
o Clients acting on behalf of a user; and,
o A Client acting on behalf of an anonymous user (e.g., see next section).
When using OAuth access tokens, implementers MUST take into account the threats and countermeasures documented in the security considerations for the use of client authorizations (see Section 8 of [RFC7521]). When using other token formats or frameworks, implementers MUST take into account similar threats and countermeasures, especially those documented by the relevant specifications.
In scenarios where HTTP authorization or TLS mutual authentication are not used or are considered weak, JWS signed SETs SHOULD be used (see [RFC7515] and Security Considerations [RFC8417]). This enables the SET Recipient to validate that the SET issuer is authorized to deliver the SET.
SET delivery depends on the use of Hypertext Transfer Protocol and thus subject to the security considerations of HTTP Section 9 of [RFC7230] and its related specifications.
As stated in Section 2.7.1 of [RFC7230], an HTTP requestor MUST NOT generate the "userinfo" (i.e., username and password) component (and its "@" delimiter) when an "http" URI reference is generated with a message as they are now disallowed in HTTP.
SETs may contain sensitive information that is considered PII (e.g., subject claims). In such cases, SET Transmitters and SET Recipients MUST require the use of a transport-layer security mechanism. Event delivery endpoints MUST support TLS 1.2 [RFC5246] and MAY support additional transport-layer mechanisms meeting its security requirements. When using TLS, the client MUST perform a TLS/SSL server certificate check, per [RFC6125]. Implementation security considerations for TLS can be found in "Recommendations for Secure Use of TLS and DTLS" [RFC7525].
When using access tokens such as those issued by OAuth 2.0 [RFC6749], implementers MUST take into account threats and countermeasures documented in Section 8 of [RFC7521].
Due to the possibility of interception, Bearer tokens MUST be exchanged using TLS.
Bearer tokens MUST have a limited lifetime that can be determined directly or indirectly (e.g., by checking with a validation service) by the service provider. By expiring tokens, clients are forced to obtain a new token (which usually involves re-authentication) for continued authorized access. For example, in OAuth2, a client MAY use OAuth token refresh to obtain a new bearer token after authenticating to an authorization server. See Section 6 of [RFC6749].
Implementations supporting OAuth bearer tokens need to factor in security considerations of this authorization method [RFC7521]. Since security is only as good as the weakest link, implementers also need to consider authentication choices coupled with OAuth bearer tokens. The security considerations of the default authentication method for OAuth bearer tokens, HTTP BASIC, are well documented in [RFC7617], therefore implementers are encouraged to prefer stronger authentication methods. Designating the specific methods of authentication and authorization are out of scope for the delivery of SETs, however this information is provided as a resource to implementers.
If a SET needs to be retained for audit purposes, a JWS signature MAY be used to provide verification of its authenticity.
SET Transmitters SHOULD attempt to specialize Event Streams so that the content is targeted to the specific business and protocol needs of subscribers.
When sharing personally identifiable information or information that is otherwise considered confidential to affected users, Event Transmitters and Recipients MUST have the appropriate legal agreements and user consent or terms of service in place.
The propagation of subject identifiers can be perceived as personally identifiable information. Where possible, SET Transmitters and Recipients SHOULD devise approaches that prevent propagation -- for example, the passing of a hash value that requires the subscriber to already know the subject.
There are no IANA considerations.
[I-D.ietf-secevent-http-push]
Backman, A., Jones, M., Scurtescu, M., Ansari, M., and A. Nadalin, "Push-Based Security Event Token (SET) Delivery Using HTTP", draft-ietf-secevent-http-push-03 (work in progress), October 2018.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <https://www.rfc-editor.org/info/rfc3986>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5988]
Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/RFC5988, October 2010, <https://www.rfc-editor.org/info/rfc5988>.
[RFC6125]
Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, <https://www.rfc-editor.org/info/rfc6125>.
[RFC7159]
Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 2014, <https://www.rfc-editor.org/info/rfc7159>.
[RFC7231]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-editor.org/info/rfc7231>.
[RFC7517]
Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/RFC7517, May 2015, <https://www.rfc-editor.org/info/rfc7517>.
[RFC7519]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.
[RFC7525]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, <https://www.rfc-editor.org/info/rfc7525>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8417]
Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari, "Security Event Token (SET)", RFC 8417, DOI 10.17487/RFC8417, July 2018, <https://www.rfc-editor.org/info/rfc8417>.
[POSIX.1]
Institute of Electrical and Electronics Engineers, "The Open Group Base Specifications Issue 7", IEEE Std 1003.1, 2013 Edition, 2013.
[RFC3339]
Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002, <https://www.rfc-editor.org/info/rfc3339>.
[RFC6202]
Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins, "Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP", RFC 6202, DOI 10.17487/RFC6202, April 2011, <https://www.rfc-editor.org/info/rfc6202>.
[RFC6749]
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.
[RFC6750]
Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/RFC6750, October 2012, <https://www.rfc-editor.org/info/rfc6750>.
[RFC7230]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.
[RFC7235]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014, <https://www.rfc-editor.org/info/rfc7235>.
[RFC7515]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>.
[RFC7516]
Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://www.rfc-editor.org/info/rfc7516>.
[RFC7521]
Campbell, B., Mortimore, C., Jones, M., and Y. Goland, "Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521, May 2015, <https://www.rfc-editor.org/info/rfc7521>.
[RFC7617]
Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI 10.17487/RFC7617, September 2015, <https://www.rfc-editor.org/info/rfc7617>.
The editors would like to thank the members of the SCIM working group, which began discussions of provisioning events starting with: draft-hunt-scim-notify-00 in 2015.
The editors would like to thank Phil Hunt and the other the authors of draft-ietf-secevent-delivery-02, on which this draft is based.
The editors would like to thank the participants in the the SECEVENTS working group for their contributions to this specification.
[[to be removed by the RFC Editor before publication as an RFC]]
Draft 00 - AB - Based on draft-ietf-secevent-delivery-02 with the following additions:
o Renamed to "Poll-Based SET Token Delivery Using HTTP"
o Removed references to the HTTP Push delivery method.
Draft 01 - mbj:
o Addressed problems identified in my 18-Jul-18 review message titled "Issues for both the Push and Poll Specs".
o Changes to align terminology with RFC 8417, for instance, by using the already defined term SET Recipient rather than SET Receiver.
o Applied editorial and minor normative corrections.
o Updated Marius' contact information.
o Begun eliminating redundanies between this specification and "Push-Based Security Event Token (SET) Delivery Using HTTP" [I-D.ietf-secevent-http-push], referencing, rather that duplicating common normative text.
Authors' Addresses
Email: richanna@amazon.com
Email: marius.scurtescu@coinbase.com
Email: morteza.ansari@cisco.com
Email: tonynad@microsoft.com
draft-ietf-secevent-http-push-03 - Push-Based Security Event Token (SET) Deliver
Security Events Working Group
Internet-Draft
Intended status: Standards Track
Expires: April 21, 2019
A. Backman, Ed.
Amazon
M. Jones, Ed.
Microsoft
M. Scurtescu
Coinbase
M. Ansari
Cisco
A. Nadalin
Microsoft
October 18, 2018
draft-ietf-secevent-http-push-03
This specification defines how a Security Event Token (SET) may be delivered to an intended recipient using HTTP POST. The SET is transmitted in the body of an HTTP POST reqest to an endpoint operated by the recipient, and the recipient indicates successful or failed transmission via the HTTP response.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 21, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This specification defines a mechanism by which a transmitter of a Security Event Token (SET) [RFC8417] may deliver the SET to an intended recipient via HTTP POST [RFC7231].
Push-Based SET Delivery over HTTP POST is intended for scenarios where all of the following apply:
o The transmitter of the SET is capable of making outbound HTTP requests.
o The recipient is capable of hosting an HTTP endpoint that is accessible to the transmitter.
o The transmitter and recipient are known to one another.
o The transmitter and recipient have an out-of-band mechanism for exchanging configuration metadata such as endpoint URLs and cryptographic key parameters.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Throughout this documents all figures may contain spaces and extra line-wrapping for readability and due to space limitations.
This specification utilizes terminology defined in [RFC8417], as well as the terms defined below:
SET Transmitter
An entity that delivers SETs in its possession to one or more SET Recipients.
To deliver a SET to a given SET Recipient, the SET Transmitter makes a SET Transmission Request to the SET Recipient, with the SET itself contained within the request. The SET Recipient replies to this request with a response either acknowledging successful transmission of the SET, or indicating that an error occurred while receiving, parsing, and/or validating the SET.
Upon receipt of a SET, the SET Recipient SHALL validate that all of the following are true:
o The SET Recipient can parse the SET.
o The SET is authentic (i.e., it was issued by the issuer specified within the SET).
o The SET Recipient is identified as an intended audience of the SET.
The mechanisms by which the SET Recipient performs this validation are out of scope for this document. SET parsing and issuer and audience identification are defined in [RFC8417]. The mechanism for validating the authenticity of a SET is implementation specific, and may vary depending on the authentication mechanisms in use, and whether the SET is signed and/or encrypted (See Section 3).
The SET Recipient SHOULD ensure that the SET is persisted in a way that is sufficient to meet the SET Recipient's own reliability requirements, and MUST NOT expect or depend on a SET Transmitter to re-transmit or otherwise make available to the SET Recipient a SET once the SET Recipient acknowledges that it was received successfully.
Once the SET has been validated and persisted, the SET Recipient SHOULD immediately return a response indicating that the SET was successfully delivered. The SET Recipient SHOULD NOT perform extensive business logic that processes the event expressed by the SET prior to sending this response. Such logic SHOULD be executed asynchronously from delivery, in order to minimize the expense and impact of SET delivery on the SET Transmitter.
The SET Transmitter SHOULD NOT re-transmit a SET, unless the response from the SET Recipient in previous transmissions indicated a potentially recoverable error (such as server unavailability that may be transient, or a decryption failure that may be due to misconfigured keys on the SET Recipient's side). In the latter case, the SET Transmitter MAY re-transmit a SET, after an appropriate delay to avoid overwhelming the SET Recipient (see Section 4).
To transmit a SET to a SET Recipient, the SET Transmitter makes an HTTP POST request to an HTTP endpoint provided by the SET Recipient. The "Content-Type" header of this request MUST be "application/ secevent+jwt" as defined in Sections 2.2 and 6.2 of [RFC8417], and the "Accept" header MUST be "application/json". The request body MUST consist of the SET itself, represented as a JWT [RFC7519].
The mechanisms by which the SET Transmitter determines the HTTP endpoint to use when transmitting a SET to a given SET Recipient are not defined by this specification and may be implementation-specific. The following is a non-normative example of a SET transmission request:
Figure 1: Example SET Transmission Request
If the SET is determined to be valid, the SET Recipient SHALL "acknowledge" successful transmission by responding with HTTP Response Status Code 202 (Accepted) (see Section 6.3.3 of [RFC7231]). The body of the response MUST be empty.
The following is a non-normative example of a successful receipt of a SET.
HTTP/1.1 202 Accepted
Figure 2: Example Successful Delivery Response
Note that the purpose of the "acknowledgement" response is to let the SET Transmitter know that a SET has been delivered and the information no longer needs to be retained by the SET Transmitter. Before acknowledgement, SET Recipients SHOULD ensure they have validated received SETs and retained them in a manner appropriate to information retention requirements appropriate to the SET event types signaled. The level and method of retention of SETs by SET Recipients is out of scope of this specification.
In the event of a general HTTP error condition, the SET Recipient MAY respond with an appropriate HTTP Status Code as defined in Section 6 of [RFC7231].
When the SET Recipient detects an error parsing or validating a SET transmitted in a SET Transmission Request, the SET Recipient SHALL respond with an HTTP Response Status Code of 400 (Bad Request). The "Content-Type" header of this response MUST be "application/json", and the body MUST be a JSON object containing the following name/ value pairs:
The following is an example non-normative error response.
}
Figure 3: Example Error Response
Security Event Token Delivery Error Codes are strings that identify a specific type of error that may occur when parsing or validating a SET. Every Security Event Token Delivery Error Code MUST have a unique name registered in the IANA "Security Event Token Delivery Error Codes" registry established by Section 7.1.
The following table presents the initial set of Error Codes that are registered in the IANA "Security Event Token Delivery Error Codes" registry:
Table 1: SET Delivery Error Codes
The SET delivery method described in this specification is based upon HTTP and depends on the use of TLS and/or standard HTTP authentication and authorization schemes as per [RFC7235].
Because SET Delivery describes a simple function, authorization for the ability to pick-up or deliver SETs can be derived by considering the identity of the SET issuer, or via other employed authentication methods. Because SETs are not commands, SET Recipients are free to ignore SETs that are not of interest.
Delivery reliability requirements may vary from implementation to implementation. This specification defines the response from the SET Recipient in such a way as to provide the SET Transmitter with the information necessary to determine what further action is required, if any, in order to meet their requirements. SET Transmitters with high reliability requirements may be tempted to always retry failed transmissions, however it should be noted that for many types of SET delivery errors, a retry is extremely unlikely to be successful. For example, "json", "jwtParse", and "setParse" all indicate structural errors in the content of the SET that are likely to remain when re- transmitting the same SET. Others such as "jws" or "jwe" may be transient, for example if cryptographic material has not been properly distributed to the SET Recipient's systems.
Implementers SHOULD evaluate their reliability requirements and the impact of various retry mechanisms on the performance of their systems to determine the correct strategy for various error conditions.
In scenarios where HTTP authorization or TLS mutual authentication are not used or are considered weak, JWS signed SETs SHOULD be used (see [RFC7515] and Security Considerations [RFC8417]). This enables the SET Recipient to validate that the SET issuer is authorized to deliver the SET.
SETs may contain sensitive information that is considered PII (e.g., subject claims). In such cases, SET Transmitters and SET Recipients MUST require the use of a transport-layer security mechanism. Event delivery endpoints MUST support TLS 1.2 [RFC5246] and MAY support additional transport-layer mechanisms meeting its security requirements. When using TLS, the client MUST perform a TLS/SSL server certificate check, per [RFC6125]. Implementation security considerations for TLS can be found in "Recommendations for Secure Use of TLS and DTLS" [RFC7525].
The SET Recipient may be vulnerable to a denial-of-service attack where a malicious party makes a high volume of requests containing invalid SETs, causing the endpoint to expend significant resources on cryptographic operations that are bound to fail. This may be mitigated by authenticating SET Transmitters with a mechanism with low runtime overhead, such as mutual TLS.
At the time of receipt, the SET Recipient can rely upon transport layer mechanisms, HTTP authentication methods, and/or other context from the transmission request to authenticate the SET Transmitter and validate the authenticity of the SET. However, this context is typically unavailable to systems that the SET Recipient forwards the SET onto, or to systems that retrieve the SET from storage. If the SET Recipient requires the ability to validate SET authenticity outside of the context of the transmission request, then the SET Transmitter SHOULD sign the SET in accordance with [RFC7515] and optionally also encrypt it in accordance with [RFC7516].
If a SET needs to be retained for audit purposes, a JWS signature MAY be used to provide verification of its authenticity.
When sharing personally identifiable information or information that is otherwise considered confidential to affected users, SET Transmitters and Recipients MUST have the appropriate legal agreements and user consent or terms of service in place.
The propagation of subject identifiers can be perceived as personally identifiable information. Where possible, SET Transmitters and Recipients SHOULD devise approaches that prevent propagation -- for example, the passing of a hash value that requires the subscriber to already know the subject.
This document defines Security Event Token Delivery Error Codes, for which IANA is asked to create and maintain a new registry titled "Security Event Token Delivery Error Codes". Initial values for the Security Event Token Delivery Error Codes registry are given in Table 1. Future assignments are to be made through the Expert Review registration policy ([RFC8126]) and shall follow the template presented in Section 7.1.1.
Error Code
The name of the Security Event Token Delivery Error Code, as described in Section 2.4. The name MUST be a case-sensitive ASCII string consisting only of upper-case letters ("A" - "Z"), lower- case letters ("a" - "z"), and digits ("0" - "9").
Description
A brief human-readable description of the Security Event Token Delivery Error Code.
Change Controller
For error codes registered by the IETF or its working groups, list "IETF Secevent Working Group". For all other error codes, list the name of the party responsible for the registration. Contact
information such as mailing address, email address, or phone number may also be provided.
Defining Document(s)
A reference to the document or documents that define the Security Event Token Delivery Error Code. The definition MUST specify the name and description of the error code, and explain under what circumstances the error code may be used. URIs that can be used to retrieve copies of each document at no cost SHOULD be included.
Error Code: jwtIss
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <https://www.rfc-editor.org/info/rfc3986>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC5988]
Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/RFC5988, October 2010, <https://www.rfc-editor.org/info/rfc5988>.
[RFC6125]
Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, <https://www.rfc-editor.org/info/rfc6125>.
[RFC7159]
Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 2014, <https://www.rfc-editor.org/info/rfc7159>.
[RFC7231]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-editor.org/info/rfc7231>.
[RFC7515]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>.
[RFC7516]
Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://www.rfc-editor.org/info/rfc7516>.
[RFC7517]
Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/RFC7517, May 2015, <https://www.rfc-editor.org/info/rfc7517>.
[RFC7519]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.
[RFC7525]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, <https://www.rfc-editor.org/info/rfc7525>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8417]
Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari, "Security Event Token (SET)", RFC 8417, DOI 10.17487/RFC8417, July 2018, <https://www.rfc-editor.org/info/rfc8417>.
[RFC3339]
Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002, <https://www.rfc-editor.org/info/rfc3339>.
[RFC6749]
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.
[RFC6750]
Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/RFC6750, October 2012, <https://www.rfc-editor.org/info/rfc6750>.
[RFC7230]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, <https://www.rfc-editor.org/info/rfc7230>.
[RFC7235]
Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014, <https://www.rfc-editor.org/info/rfc7235>.
[RFC7521]
Campbell, B., Mortimore, C., Jones, M., and Y. Goland, "Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521, May 2015, <https://www.rfc-editor.org/info/rfc7521>.
[RFC7617]
Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI 10.17487/RFC7617, September 2015, <https://www.rfc-editor.org/info/rfc7617>.
[[EDITORS NOTE: This section to be removed prior to publication]]
The following pub/sub, queuing, streaming systems were reviewed as possible solutions or as input to the current draft:
XMPP Events
The WG considered the XMPP events ands its ability to provide a single messaging solution without the need for both polling and push modes. The feeling was the size and methodology of XMPP was to far apart from the current capabilities of the SECEVENTs community which focuses in on HTTP based service delivery and authorization.
Amazon Simple Notification Service
Simple Notification Service, is a pub/sub messaging product from AWS. SNS supports a variety of subscriber types: HTTP/HTTPS endpoints, AWS Lambda functions, email addresses (as JSON or plain text), phone numbers (via SMS), and AWS SQS standard queues. It doesn't directly support pull, but subscribers can get the pull model by creating an SQS queue and subscribing it to the topic. Note that this puts the cost of pull support back onto the subscriber, just as it is in the push model. It is not clear that one way is strictly better than the other; larger, sophisticated developers may be happy to own message persistence so they can have their own internal delivery guarantees. The long tail of OIDC clients may not care about that, or may fail to get it right. Regardless, I think we can learn something from the Delivery Policies supported by SNS, as well as the delivery controls that SQS offers (e.g., Visibility Timeout, Dead-Letter Queues). I'm not suggesting that we need all of these things in the spec, but they give an idea of what features people have found useful.
Other information:
o API Reference: http://docs.aws.amazon.com/AWSSimpleQueueService/latest/ APIReference/Welcome.html
o Visibility Timeouts: http://docs.aws.amazon.com/AWSSimpleQueueService/latest/ SQSDeveloperGuide/sqs-visibility-timeout.html
Apache Kafka
Apache Kafka is an Apache open source project based upon TCP for distributed streaming. It prescribes some interesting general purpose features that seem to extend far beyond the simpler streaming model SECEVENTs is after. A comment from MS has been that Kafka does an acknowledge with poll combination event which seems to be a performance advantage. See: https://kafka.apache.org/intro
Google Pub/Sub
Google Pub Sub system favours a model whereby polling and acknowledgement of events is done as separate endpoints as separate functions.
Information:
o Cloud Overview - https://cloud.google.com/pubsub/
o Subscriber Overview - https://cloud.google.com/pubsub/docs/ subscriber
o Subscriber Pull(poll) - https://cloud.google.com/pubsub/docs/pull
The editors would like to thank the members of the SCIM working group, which began discussions of provisioning events starting with: draft-hunt-scim-notify-00 in 2015.
The editors would like to thank Phil Hunt and the other authors of draft-ietf-secevent-delivery-02, on which this draft is based.
The editors would like to thank the participants in the the SECEVENTS working group for their contributions to this specification.
Draft 00 - AB - Based on draft-ietf-secevent-delivery-02 with the following changes:
o Renamed to "Push-Based SET Token Delivery Using HTTP"
o Removed references to the HTTP Polling delivery method.
o Removed informative reference to RFC6202.
Draft 01 - AB:
o Fixed area and workgroup to match secevent.
o Removed unused definitions and definitions already covered by SET.
o Renamed Event Transmitter and Event Receiver to SET Transmitter and SET Receiver, respectively.
o Added IANA registry for SET Delivery Error Codes.
o Removed enumeration of HTTP authentication methods.
o Removed generally applicable guidance for HTTP, authorization tokens, and bearer tokens.
o Moved guidance for using authentication methods as DoS protection to Security Considerations.
o Removed redundant instruction to use WWW-Authenticate header.
o Removed further generally applicable guidance for authorization tokens.
o Removed bearer token from example delivery request, and text referencing it.
o Broke delivery method description into separate request/response sections.
o Added missing empty line between headers and body in example request.
o Removed unapplicable notes about example formatting.
o Removed text about SET creation and handling.
o Removed duplication in protocol description.
o Added "non-normative example" text to example transmission request.
o Fixed inconsistencies in use of Error Code term.
Draft 02 - AB:
o Rewrote abstract and introduction.
o Rewrote definitions for SET Transmitter, SET Receiver.
o Renamed Event Delivery section to SET Delivery.
o Readability edits to Success Response and Failure Response sections.
o Consolidated definition of error response under Failure Response section.
o Removed Event Delivery Process section and moved its content to parent section.
o Readability edits to SET Delivery section and its subsections.
o Added callout that SET Receiver HTTP endpoint configuration is out-of-scope.
o Added callout that SET verification mechanisms are out-of-scope.
o Added retry guidance, notes regarding delivery reliability requirements.
o Added guidance around using JWS and/or JWE to authenticate persisted SETs.
Draft 03 - mbj:
o Addressed problems identified in my 18-Jul-18 review message titled "Issues for both the Push and Poll Specs".
o Changes to align terminology with RFC 8417, for instance, by using the already defined term SET Recipient rather than SET Receiver.
o Applied editorial and minor normative corrections.
o Updated Marius' contact information.
Authors' Addresses
Email: richanna@amazon.com
Email: marius.scurtescu@coinbase.com
Email: morteza.ansari@cisco.com
Email: tonynad@microsoft.com
draft-ietf-secevent-subject-identifiers-02 - Subject Identifiers for Security Ev
Security Events Working Group
Internet-Draft
Intended status: Standards Track
Expires: April 26, 2019
A. Backman, Ed.
Amazon
M. Scurtescu
Coinbase
October 23, 2018
draft-ietf-secevent-subject-identifiers-02
Security events communicated within Security Event Tokens may support a variety of identifiers to identify the subject and/or other principals related to the event. This specification formalizes the notion of subject identifiers as named sets of well-defined claims describing the subject, a mechanism for representing subject identifiers within a [JSON] object such as a JSON Web Token [JWT] or Security Event Token [SET], and a registry for defining and allocating names for these claim sets.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 26, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
As described in section 1.2 of [SET], the subject of a security event may take a variety of forms, including but not limited to a JWT principal, an IP address, a URL, etc. Furthermore, even in the case where the subject of an event is more narrowly scoped, there may be multiple ways by which a given subject may be identified. For example, an account may be identified by an opaque identifier, an email address, a phone number, a JWT "iss" claim and "sub" claim, etc., depending on the nature and needs of the transmitter and receiver. Even within the context of a given transmitter and receiver relationship, it may be appropriate to identify different accounts in different ways, for example if some accounts only have email addresses associated with them while others only have phone numbers. Therefore it can be necessary to indicate within a SET the mechanism by which the subject of the security event is being identified.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
A Subject Identifier Type is a light-weight schema that describes a set of claims that identifies a subject. Every Subject Identifier Type MUST have a unique name registered in the IANA "Security Event Subject Identifier Types" registry established by Section 4.1. A Subject Identifier Type MAY describe more claims than are strictly necessary to uniquely identify a subject, and MAY describe conditions under which those claims are required, optional, or prohibited.
A Subject Identifier is a [JSON] object containing a "subject_type" claim whose value is the unique name of a Subject Identifier Type, and a set of additional "payload claims" which are to be interpreted according to the rules defined by that Subject Identifier Type. Payload claim values MUST match the format specified for the claim by the Subject Identifier Type. A Subject Identifier MUST NOT contain any payload claims prohibited or not described by its Subject Identifier Type, and MUST contain all payload claims required by its Subject Identifier Type.
The following Subject Identifier Types are registered in the IANA "Security Event Subject Identifier Types" registry established by Section 4.1.
The Email Subject Identifier Type describes a subject that is a user account associated with an email address. Subject Identifiers of this type MUST contain an "email" claim whose value is a string containing the email address of the subject, formatted as an "addr- spec" as defined in Section 3.4.1 of [RFC5322]. The "email" claim is REQUIRED and MUST NOT be null or empty. The Email Subject Identifier Type is identified by the name "email".
Below is a non-normative example Subject Identifier for the Email Subject Identifier Type:
Figure 1: Example: Subject Identifier for the Email Subject
Identifier Type.
The Phone Number Subject Identifier Type describes a subject that is a user account associated with a telephone number. Subject Identifiers of this type MUST contain a "phone" claim whose value is a string containing the full telephone number of the subject, including international dialing prefix, formatted according to E.164 [E164]. The "phone" claim is REQUIRED and MUST NOT be null or empty. The Phone Number Subject Identifier Type is identified by the name "phone".
Below is a non-normative example Subject Identifier for the Email Subject Identifier Type:
Figure 2: Example: Subject Identifier for the Phone Number Subject
Identifier Type.
The Issuer and Subject Subject Identifier Type describes a subject that is an account identified by a pair of "iss" and "sub" claims, as defined by [JWT]. These claims MUST follow the formats of the "iss" claim and "sub" claim defined by [JWT], respectively. Both the "iss" claim and the "sub" claim are REQUIRED and MUST NOT be null or empty. The Issuer and Subject Subject Identifier Type is identified by the name "iss-sub".
Below is a non-normative example Subject Identifier for the Issuer and Subject Subject Identifier Type:
Figure 3: Example: Subject Identifier for the Issuer and Subject
Subject Identifier Type.
The ID Token Claims Subject Identifier Type describes a subject that was the subject of a previously issued ID Token [IDTOKEN]. It is intended for use when a variety of identifiers have been shared with the party that will be interpreting the Subject Identifier, and it is unknown which of those identifiers they require. This type is identified by the name "id-token-claims".
Subject Identifiers of this type MUST contain at least one of the following claims:
email
An "email" claim, as defined in [IDTOKEN]. If present, the value of this claim MUST NOT be null or empty.
phone_number
A "phone_number" claim, as defined in [IDTOKEN]. If present, the value of this claim MUST NOT be null or empty.
sub
A "sub" claim, as defined in [RFC7519]. If present, the value of this claim MUST NOT be null or empty.
iss
An "iss" claim, as defined in [RFC7519]. This claim is OPTIONAL, unless a "sub" claim in present, in which case it is REQUIRED. If present, its value MUST NOT be null or empty.
At least one of "email", "phone_number", or "sub" MUST be present.
Below is a non-normative example Subject Identifier for the ID Token Claims Subject Identifier Type:
Figure 4: Example: Subject Identifier for the ID Token Claims Subject
Identifier Type.
This document defines Subject Identifier Types, for which IANA is asked to create and maintain a new registry titled "Security Event Subject Identifier Types". Initial values for the Security Event Subject Identifier Types registry are given in Section 3. Future assignments are to be made through the Expert Review registration policy [BCP26] and shall follow the template presented in Section 4.1.1.
Type Name
The name of the Subject Identifier Type, as described in Section 3. The name MUST be an ASCII string consisting only of lower-case characters ("a" - "z"), digits ("0" - "9"), and hyphens ("-"), and SHOULD NOT exceed 20 characters in length.
Type Description
A brief description of the Subject Identifier Type.
Change Controller
For types defined in documents published by the OpenID Foundation or its working groups, list "OpenID Foundation RISC Working Group". For all other types, list the name of the party responsible for the registration. Contact information such as mailing address, email address, or phone number may also be provided.
Defining Document(s)
A reference to the document or documents that define the Subject Identifier Type. The definition MUST specify the name, format, and meaning of each claim that may occur within a Subject Identifier of the defined type, as well as whether each claim is optional or required, or the circumstances under which the claim
is optional or required. URIs that can be used to retrieve copies of each document SHOULD be included.
o Type Name: "email"
o Type Description: Subject identifier based on email address.
o Change Controller: IETF secevent Working Group
o Defining Document(s): Section 3 of this document.
o Type Name: "id-token-claims"
o Type Description: Subject identifier based on OpenID Connect ID Token claims.
o Change Controller: IETF secevent Working Group
o Defining Document(s): Section 3 of this document.
o Type Name: "iss-sub"
o Type Description: Subject identifier based on an issuer and subject.
o Change Controller: IETF secevent Working Group
o Defining Document(s): Section 3 of this document.
o Type Name: "phone"
o Type Description: Subject identifier based on an phone number.
o Change Controller: IETF secevent Working Group
o Defining Document(s): Section 3 of this document.
The Expert Reviewer is expected to review the documentation referenced in a registration request to verify its completeness. The Expert Reviewer must base their decision to accept or reject the request on a fair and impartial assessment of the request. If the Expert Reviewer has a conflict of interest, such as being an author of a defining document referenced by the request, they must recuse themselves from the approval process for that request. In the case where a request is rejected, the Expert Reviewer should provide the requesting party with a written statement expressing the reason for rejection, and be prepared to cite any sources of information that went into that decision.
Subject Identifier Types need not be generally applicable and may be highly specific to a particular domain; it is expected that types may be registered for niche or industry-specific use cases. The Expert Reviewer should focus on whether the type is thoroughly documented, and whether its registration will promote or harm interoperability. In most cases, the Expert Reviewer should not approve a request if the registration would contribute to confusion, or amount to a synonym for an existing type.
There are no privacy considerations.
There are no security considerations.
[BCP26]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/info/rfc8126>.
[E164]
International Telecommunication Union, "The international public telecommunication numbering plan", 2010, <http://www.itu.int/rec/T-REC-E.164-201011-I/en>.
[IDTOKEN]
Sakamura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore, "OpenID Connect Core 1.0 - ID Token", April 2017, <http://openid.net/specs/ openid-connect-core-1_0.html#IDToken>.
[JSON]
Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March 2014, <https://www.rfc-editor.org/info/rfc7159>.
[JWT]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC5322]
Resnick, P., Ed., "Internet Message Format", RFC 5322, DOI 10.17487/RFC5322, October 2008, <https://www.rfc-editor.org/info/rfc5322>.
[RFC7519]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.
[SET]
Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari, "Security Event Token (SET)", RFC 8417, DOI 10.17487/RFC8417, July 2018, <https://www.rfc-editor.org/info/rfc8417>.
This document is based on work developed within the OpenID RISC Working Group. The authors would like to thank the members of this group for their hard work and contributions.
Change Log
(This section to be removed by the RFC Editor before publication as an RFC.)
Draft 00 - AB - First draft
Draft 01 - AB: * Added reference to RFC 5322 for format of "email" claim. * Renamed "iss_sub" type to "iss-sub". * Renamed "id_token_claims" type to "id-token-claims". * Added text specifying the nature of the subjects described by each type.
Draft 02 - AB: * Corrected format of phone numbers in examples. * Updated author info.
Authors' Addresses
Email: richanna@amazon.com
Email: marius.scurtescu@coinbase.com
8417 - Security Event Token (SET)
Internet Engineering Task Force (IETF)
Request for Comments: 8417
Category: Standards Track
ISSN: 2070-1721
P. Hunt, Ed.
Oracle
M. Jones
Microsoft
W. Denniss
Google
M. Ansari
Cisco
July 2018
This specification defines the Security Event Token (SET) data structure. A SET describes statements of fact from the perspective of an issuer about a subject. These statements of fact represent an event that occurred directly to or about a security subject, for example, a statement about the issuance or revocation of a token on behalf of a subject. This specification is intended to enable representing security- and identity-related events. A SET is a JSON Web Token (JWT), which can be optionally signed and/or encrypted. SETs can be distributed via protocols such as HTTP.
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8417.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This specification defines an extensible Security Event Token (SET) data structure, which can be exchanged using protocols such as HTTP. The specification builds on the JSON Web Token (JWT) format [RFC7519] in order to provide a self-contained token that can be optionally signed using JSON Web Signature (JWS) [RFC7515] and/or encrypted using JSON Web Encryption (JWE) [RFC7516].
This specification profiles the use of JWT for the purpose of issuing SETs. This specification defines a base format used by profiling specifications to define actual events and their meanings. This specification uses non-normative example events to demonstrate how events can be constructed.
This specification is scoped to security- and identity-related events. While SETs may be used for other purposes, the specification only considers security and privacy concerns relevant to identity and personal information.
Security events are not commands issued between parties. A SET describes statements of fact from the perspective of an issuer about a subject (e.g., a web resource, token, IP address, the issuer itself). These statements of fact represent a logical event that occurred directly to or about a security subject, for example, a statement about the issuance or revocation of a token on behalf of a subject. A security subject may be permanent (e.g., a user account) or temporary (e.g., an HTTP session) in nature. A state change could describe a direct change of entity state, an implicit change of state, or other higher-level security statements such as:
o The creation, modification, removal of a resource.
o The resetting or suspension of an account.
o The revocation of a security token prior to its expiry.
o The logout of a user session.
o An indication that a user has been given control of an email identifier that was previously controlled by another user.
While subject state changes are often triggered by a user agent or security subsystem, the issuance and transmission of an event may occur asynchronously and in a back channel to the action that caused the change that generated the security event. Subsequently, a SET recipient, having received a SET, validates and interprets the received SET and takes its own independent actions, if any. For example, having been informed of a personal identifier being associated with a different security subject (e.g., an email address is being used by someone else), the SET recipient may choose to ensure that the new user is not granted access to resources associated with the previous user. Or, the SET recipient may not have any relationship with the subject, and no action is taken.
While SET recipients will often take actions upon receiving SETs, security events cannot be assumed to be commands or requests. The intent of this specification is to define a syntax for statements of fact that SET recipients may interpret for their own purposes.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
For purposes of readability, examples are not URL encoded. Implementers MUST percent-encode URLs as described in Section 2.1 of [RFC3986].
Throughout this document, all figures may contain spaces and extra line-wrapping for readability and space limitations. Similarly, some URIs contained within examples have been shortened for space and readability reasons.
The following definitions are used with SETs:
Security Event Token (SET)
A SET is a JWT [RFC7519] conforming to this specification.
SET Issuer
A service provider that creates SETs to be sent to other service providers known as SET recipients.
SET Recipient
A SET recipient is an entity that receives SETs through some distribution method. A SET recipient is the same entity referred as a "recipient" in [RFC7519] or "receiver" in related specifications.
Subject
A SET describes an event or state change that has occurred to a subject. A subject might, for instance, be a principal (e.g., Section 4.1.2 of [RFC7519]), a web resource, an entity such as an IP address, or the issuer of the SET.
Event Identifier
A member name for an element of the JSON object that is the value of the "events" claim in a SET. This member name MUST be a URI.
Event Payload
A member value for an element of the JSON object that is the value of the "events" claim in a SET. This member value MUST be a JSON object.
Profiling Specification
A specification that profiles the SET data structure to define one or more specific event types and their associated claims and processing rules.
A SET is a JWT [RFC7519] data structure that represents one or more related aspects of a security event that occurred to a subject. The JWT Claims Set in a SET has the following structure:
o The top-level claims in the JWT Claims Set are called the SET "envelope". Some of these claims are present in every SET; others will be specific to particular SET profiles or profile families. Claims in the envelope SHOULD be registered in the "JSON Web Token Claims" registry [IANA.JWT.Claims] or be Public Claims or Private Claims, as defined in [RFC7519].
o Envelope claims that are profiled and defined in this specification are used to validate the SET and provide information about the event data included in the SET. The "events" claim contains the event identifiers and event-specific data expressed about the security subject. The envelope MAY include event- specific or profile-specific data. The "events" claim value MUST be a JSON object that contains at least one member.
o Each member of the "events" JSON object is a name/value pair. The JSON member name is a URI string value, which is the event identifier, and the corresponding value is a JSON object known as the event "payload". The payload JSON object contains claims that pertain to that event identifier and need not be registered as JWT
claims. These claims are defined by the profiling specification that defines the event. An event with no payload claims SHALL be represented as the empty JSON object ("{}").
o When multiple event identifiers are contained in a SET, they represent multiple aspects of the same state transition that occurred to the security subject. They are not intended to be used to aggregate distinct events about the same subject. Beyond this, the interpretation of SETs containing multiple event identifiers is out of scope for this specification; profiling specifications MAY define their own rules regarding their use of SETs containing multiple event identifiers, as described in Section 3. Possible uses of multiple values include, but are not limited to:
* Values to provide classification information (e.g., threat type or level).
* Additions to existing event representations.
* Values used to link potential series of events.
* Specific-purpose event URIs used between particular SET issuers and SET recipients.
This section illustrates several possible uses of SETs through non- normative examples.
The following example shows the JWT Claims Set for a hypothetical System for Cross-domain Identity Management (SCIM) [RFC7644] password reset SET. Such a SET might be used by a receiver as a trigger to reset active user-agent sessions related to the identified user.
Figure 1: Example SCIM Password Reset Event
The JWT Claims Set usage consists of:
o The "events" claim specifying the hypothetical SCIM URN ("urn:ietf:params:scim:event:passwordReset") for a password reset, and a second value, "https://example.com/scim/event/ passwordResetExt", that is used to provide additional event information such as the current count of resets.
o The "iss" claim, denoting the SET issuer.
o The "sub" claim, specifying the SCIM resource URI that was affected.
o The "aud" claim, specifying the intended audiences for the event. (The syntax of the "aud" claim is defined in Section 4.1.3 of [RFC7519].)
The SET contains two event payloads:
o The "id" claim represents SCIM's unique identifier for a subject.
o The second payload identified by "https://example.com/scim/event/ passwordResetExt" and the payload claim "resetAttempts" conveys the current count of reset attempts. In this example, while the count is a simple factual statement for the issuer, the meaning of the value (a count) is up to the receiver. As an example, such a value might be used by the receiver to infer increasing risk.
In this example, the SCIM event indicates that a password has been updated and the current password reset count is 5. Notice that the value for "resetAttempts" is in the event payload of an event used to convey this information.
Here is another example JWT Claims Set for a security event token, this one for a Logout Token:
Figure 2: Example OpenID Back-Channel Logout Event
Note that the above SET has an empty JSON object and uses the JWT claims "sub" and "sid" to identify the subject that was logged out. At the time of this writing, this example corresponds to the logout token defined in the OpenID Connect Back-Channel Logout 1.0 [OpenID.BackChannel] specification.
In the following example JWT Claims Set, a fictional medical service collects consent for medical actions and notifies other parties. The individual for whom consent is identified was originally authenticated via OpenID Connect. In this case, the issuer of the security event is an application rather than the OpenID provider:
Figure 3: Example Consent Event
In the above example, the attribute "iss" contained within the payload for the event "https://openid.net/heart/specs/consent.html" refers to the issuer of the security subject ("sub") rather than the SET issuer "https://my.med.example.org". They are distinct from the top-level value of "iss", which always refers to the issuer of the event -- a medical consent service that is a relying party to the OpenID Provider.
The following example JWT Claims Set is for an account disabled event. At the time of this writing, this example corresponds to the account disabled event defined in the OpenID RISC Event Types 1.0 [OpenID.RISC.Events] specification.
Figure 4: Example RISC Event
Notice that parameters to the event are included in the event payload, in this case, the "reason" and "cause-time" values. The subject of the event is identified using the "subject" payload value, which itself is a JSON object.
The following claims from [RFC7519] are profiled for use in SETs:
"iss" (Issuer) Claim
As defined by Section 4.1.1 of [RFC7519], this claim contains a string identifying the service provider publishing the SET (the issuer). In some cases, the issuer of the SET will not be the issuer associated with the security subject of the SET. Therefore, implementers cannot assume that the issuers are the same unless the profiling specification specifies that they are for SETs conforming to that profile. This claim is REQUIRED.
"iat" (Issued At) Claim
As defined by Section 4.1.6 of [RFC7519], this claim contains a value representing when the SET was issued. This claim is REQUIRED.
"jti" (JWT ID) Claim
As defined by Section 4.1.7 of [RFC7519], this claim contains a unique identifier for the SET. The identifier MUST be unique within a particular event feed and MAY be used by clients to track whether a particular SET has already been received. This claim is REQUIRED.
"aud" (Audience) Claim
As defined by Section 4.1.3 of [RFC7519], this claim contains one or more audience identifiers for the SET. This claim is RECOMMENDED.
"sub" (Subject) Claim
As defined by Section 4.1.2 of [RFC7519], this claim contains a StringOrURI value representing the principal that is the subject of the SET. This is usually the entity whose "state" was changed. For example:
* an IP Address was added to a blacklist;
* a URI representing a user resource that was modified; or,
* a token identifier (e.g. "jti") for a revoked token.
If used, the profiling specification MUST define the content and format semantics for the value. This claim is OPTIONAL, as the principal for any given profile may already be identified without the inclusion of a subject claim. Note that some SET profiles MAY choose to convey event subject information in the event payload (either using the "sub" member name or another name), particularly if the subject information is relative to issuer information that is also conveyed in the event payload, which may be the case for some identity SET profiles.
"exp" (Expiration Time) Claim
As defined by Section 4.1.4 of [RFC7519], this claim is the time after which the JWT MUST NOT be accepted for processing. In the context of a SET, however, this notion does not typically apply, since a SET represents something that has already occurred and is historical in nature. Therefore, its use is NOT RECOMMENDED. (Also, see Section 4.1 for additional reasons not to use the "exp" claim in some SET use cases.)
The following new claims are defined by this specification:
"events" (Security Events) Claim
This claim contains a set of event statements that each provide information describing a single logical event that has occurred about a security subject (e.g., a state change to the subject). Multiple event identifiers with the same value MUST NOT be used. The "events" claim MUST NOT be used to express multiple independent logical events.
The value of the "events" claim is a JSON object whose members are name/value pairs whose names are URIs identifying the event statements being expressed. Event identifiers SHOULD be stable values (e.g., a permanent URL for an event specification). For each name present, the corresponding value MUST be a JSON object. The JSON object MAY be an empty object ("{}"), or it MAY be a JSON object containing data described by the profiling specification.
"txn" (Transaction Identifier) Claim
An OPTIONAL string value that represents a unique transaction identifier. In cases in which multiple related JWTs are issued, the transaction identifier claim can be used to correlate these related JWTs. Note that this claim can be used in JWTs that are SETs and also in JWTs using non-SET profiles.
"toe" (Time of Event) Claim
A value that represents the date and time at which the event occurred. This value is a NumericDate (see Section 2 of [RFC7519]). By omitting this claim, the issuer indicates that they are not sharing an event time with the recipient. (Note that in some use cases, the represented time might be approximate; statements about the accuracy of this field MAY be made by profiling specifications.) This claim is OPTIONAL.
This specification registers the "application/secevent+jwt" media type, which can be used to indicate that the content is a SET. SETs MAY include this media type in the "typ" header parameter of the JWT representing the SET to explicitly declare that the JWT is a SET. This MUST be included if the SET could be used in an application context in which it could be confused with other kinds of JWTs.
Per the definition of "typ" in Section 4.1.9 of [RFC7515], it is RECOMMENDED that the "application/" prefix be omitted. Therefore, the "typ" value used SHOULD be "secevent+jwt".
This section describes how to construct a SET.
The following is an example JWT Claims Set for a hypothetical SCIM SET:
Figure 5: Example Event Claims
The JSON Claims Set is encoded per [RFC7519].
In this example, the SCIM SET claims are encoded in an unsecured JWT. The JOSE Header for this example is:
{"typ":"secevent+jwt","alg":"none"}
Base64url encoding (as defined by Section 2 of [RFC7515], including the omission of all trailing '=' characters) of the octets of the UTF-8 [RFC3629] representation of the JOSE Header yields:
eyJ0eXAiOiJzZWNldmVudCtqd3QiLCJhbGciOiJub25lIn0
The above example JWT Claims Set (with insignificant whitespace removed) is encoded as follows (with line breaks for display purposes only):
eyJpc3MiOiJodHRwczovL3NjaW0uZXhhbXBsZS5jb20iLCJpYXQiOjE0NTg0OTY0M DQsImp0aSI6IjRkMzU1OWVjNjc1MDRhYWJhNjVkNDBiMDM2M2ZhYWQ4IiwiYXVkIj pbImh0dHBzOi8vc2NpbS5leGFtcGxlLmNvbS9GZWVkcy85OGQ1MjQ2MWZhNWJiYzg 3OTU5M2I3NzU0IiwiaHR0cHM6Ly9zY2ltLmV4YW1wbGUuY29tL0ZlZWRzLzVkNzYw NDUxNmIxZDA4NjQxZDc2NzZlZTciXSwiZXZlbnRzIjp7InVybjppZXRmOnBhcmFtc zpzY2ltOmV2ZW50OmNyZWF0ZSI6eyJyZWYiOiJodHRwczovL3NjaW0uZXhhbXBsZS 5jb20vVXNlcnMvNDRmNjE0MmRmOTZiZDZhYjYxZTc1MjFkOSIsImF0dHJpYnV0ZXM iOlsiaWQiLCJuYW1lIiwidXNlck5hbWUiLCJwYXNzd29yZCIsImVtYWlscyJdfX19
The encoded JWS signature is the empty string.
Concatenating the three encoded parts (JOSE Header, JWT Claims Set, and JWS signature) in order with period ('.') characters between the parts yields this complete SET (with line breaks for display purposes only):
Figure 6: Example Unsecured Security Event Token
For the purpose of having a simpler example in Figure 6, an unsecured token is shown. When SETs are not signed or encrypted, other mechanisms such as TLS MUST be employed to provide integrity protection, confidentiality, and issuer authenticity, as needed by the application.
When validation (i.e., auditing) or additional transmission security is required, JWS signing and/or JWE encryption MAY be used. To create and or validate a signed and/or encrypted SET, follow the instructions in Section 7 of [RFC7519].
Profiling specifications of this specification define actual SETs to be used in particular use cases. These profiling specifications define the syntax and semantics of SETs conforming to that SET profile and rules for validating those SETs. Profiling specifications SHOULD define syntax, semantics, subject identification, and validation.
Syntax
The syntax of the SETs defined, including:
Top-Level Claims
Claims and values in the JWT Claims Set. Examples are claims defined by the JWT specification [RFC7519], this specification, and by the profiling specification.
Event Payload
The JSON data structure contents and format, containing event- specific information, if any (see Section 1.2).
Semantics
Defining the semantics of the SET contents for SETs utilizing the profile is equally important. Possibly most important is defining the procedures used to validate the SET issuer and to obtain the keys controlled by the issuer that were used for cryptographic operations used in the JWT representing the SET. For instance, some profiles may define an algorithm for retrieving the SET issuer's keys that uses the "iss" claim value as its input. Likewise, if the profile allows (or requires) that the JWT be unsecured, the means by which the integrity of the JWT is ensured MUST be specified.
Subject Identification
Profiling specifications MUST define how the event subject is identified in the SET, as well as how to differentiate between the event subject's issuer and the SET issuer, if applicable. It is NOT RECOMMENDED for profiling specifications to use the "sub" claim in cases in which the subject is not globally unique and has a different issuer from the SET itself.
Validation
Profiling specifications MUST clearly specify the steps that a recipient of a SET utilizing that profile MUST perform to validate that the SET is both syntactically and semantically valid.
Among the syntax and semantics of SETs that a profiling specification may define is whether the value of the "events" claim may contain multiple members, and what processing instructions are employed in the single- and multiple-valued cases for SETs conforming to that profile. Many valid choices are possible. For instance, some profiles might allow multiple event identifiers to be present and specify that any that are not understood by recipients be ignored, thus enabling extensibility. Other profiles might allow multiple event identifiers to be present but require that all be understood if the SET is to be accepted. Some profiles might require that only a single value be present. All such choices are within the scope of profiling specifications to define.
Because [RFC7519] states that "all claims that are not understood by implementations MUST be ignored", there is a consideration that a SET might be confused with another kind of JWT from the same issuer. Unless this confusion is prevented, this might enable an attacker who possesses a SET to use it in a context in which another kind of JWT is expected, or vice versa. This section presents concrete techniques for preventing confusion between SETs and several other specific kinds of JWTs, as well as generic techniques for preventing possible confusion between SETs and other kinds of JWTs.
A SET might be confused with an ID Token [OpenID.Core] if a SET is mistakenly or maliciously used in a context requiring an ID Token. If a SET could otherwise be interpreted as a valid ID Token (because it includes the required claims for an ID Token and valid issuer and audience claim values for an ID Token), then that SET profile MUST require that the "exp" claim not be present in the SET. Because "exp" is a required claim in ID Tokens, valid ID Token implementations will reject such a SET if presented as if it were an ID Token.
Excluding "exp" from SETs that could otherwise be confused with ID Tokens is actually defense in depth. In any OpenID Connect contexts in which an attacker could attempt to substitute a SET for an ID Token, the SET would actually already be rejected as an ID Token because it would not contain the correct "nonce" claim value for the ID Token to be accepted in contexts for which substitution is possible.
Note that the use of explicit typing, as described in Section 2.3, will not achieve disambiguation between ID Tokens and SETs, as the ID Token validation rules do not use the "typ" header parameter value.
OAuth 2.0 [RFC6749] defines access tokens as being opaque. Nonetheless, some implementations implement access tokens as JWTs. Because the structure of these JWTs is implementation specific, ensuring that a SET cannot be confused with such an access token is, therefore, also implementation specific, generally. Nonetheless, it is recommended that SET profiles employ the following strategies to prevent possible substitutions of SETs for access tokens in contexts in which that might be possible:
o Prohibit use of the "exp" claim, as is done to prevent ID Token confusion.
o Where possible, use a separate "aud" claim value to distinguish between the SET recipient and the protected resource that is the audience of an access token.
o Modify access token validation systems to check for the presence of the "events" claim as a means to detect security event tokens. This is particularly useful if the same endpoint may receive both types of tokens.
o Employ explicit typing, as described in Section 2.3, and modify access token validation systems to use the "typ" header parameter value.
JWTs are now being used in application areas beyond the identity applications in which they first appeared. For instance, the "Session Initiation Protocol (SIP) Via Header Field Parameter to Indicate Received Realm" [RFC8055] and "PASSporT: Personal Assertion Token" [RFC8225] specifications both define JWT profiles that use mostly or completely different sets of claims than are used by ID Tokens. If it would otherwise be possible for an attacker to substitute a SET for one of these (or other) kinds of JWTs, then the SET profile must be defined in such a way that any substituted SET will result in its rejection when validated as the intended kind of JWT.
The most direct way to prevent confusion is to employ explicit typing, as described in Section 2.3, and modify applicable token validation systems to use the "typ" header parameter value. This approach can be employed for new systems but may not be applicable to existing systems.
Another way to ensure that a SET is not confused with another kind of JWT is to have the JWT validation logic reject JWTs containing an "events" claim unless the JWT is intended to be a SET. This approach can be employed for new systems but may not be applicable to existing systems. Validating that the JWT has an "events" claim will be effective in preventing attackers from passing other kinds of JWTs off as SETs.
For many use cases, the simplest way to prevent substitution is requiring that the SET not include claims that are required for the kind of JWT that might be the target of an attack. For example, for [RFC8055], the "sip_callid" claim could be omitted and for [RFC8225], the "orig" claim could be omitted.
In many contexts, simple measures such as these will accomplish the task, should confusion otherwise even be possible. Note that this topic is being explored in a more general fashion in "JSON Web Token Best Current Practices" [JWT-BCP]. The proposed best practices in that document may also be applicable for particular SET profiles and use cases.
SETs may contain sensitive information. Therefore, methods for distribution of events SHOULD require the use of a transport-layer security mechanism when distributing events. Parties MUST support TLS 1.2 [RFC5246] or a higher version and MAY support additional transport-layer mechanisms meeting its security requirements. When using TLS, the client MUST perform a TLS server certificate check, per [RFC6125]. Implementation security considerations for TLS can be found in "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)" [RFC7525].
Security events distributed through third parties or that carry personally identifiable information MUST be encrypted using JWE [RFC7516] or secured for confidentiality by other means.
Unless integrity of the JWT is ensured by other means, it MUST be signed using JWS [RFC7515] by an issuer that is trusted to do so for the use case so that the SET can be authenticated and validated by the SET recipient.
This specification does not define a delivery mechanism for SETs. In addition to confidentiality and integrity (discussed above), implementers and profiling specifications must consider the consequences of delivery mechanisms that are not secure and/or not assured. For example, while a SET may be end-to-end secured using JWE encrypted SETs, without (mutual) TLS, there is no assurance that the correct endpoint received the SET and that it could be successfully processed.
This specification defines no means of ordering multiple SETs in a sequence. Depending on the type and nature of the events represented by SETs, order may or may not matter. For example, in provisioning, event order is critical -- an object cannot be modified before it is created. In other SET types, such as a token revocation, the order of SETs for revoked tokens does not matter. If, however, the event conveys a logged in or logged out status for a user subject, then order becomes important.
Profiling specifications and implementers SHOULD take caution when using timestamps such as "iat" to define order. Distributed systems will have some amount of clock skew. Thus, time by itself will not guarantee order.
Specifications profiling SET SHOULD define a mechanism for detecting order or sequence of events when the order matters. For example, the "txn" claim could contain an ordered value (e.g., a counter) that the issuer includes, although just as for timestamps, ensuring such ordering can be difficult in distributed systems.
When SETs are delivered asynchronously and/or out-of-band with respect to the original action that incurred the security event, it is important to consider that a SET might be delivered to a SET recipient in advance of or behind the process that caused the event. For example, a user having been required to log out and then log back in again, may cause a "token revoked" SET to be issued, typically causing the receiver to reset all active sessions at the receiver that are related to that user. If a revocation SET arrives at the same time as the user agent re-logs in, timing could cause problems by erroneously treating the new user session as logged out. Profiling specifications SHOULD be careful to consider both SET expression and timing issues. For example, it might be more appropriate to revoke a specific session or ID Token rather than a general logout statement about a "user". Alternatively, profiling specifications could use timestamps that allow new sessions to be started immediately after a stated logout event time.
Also, see Section 4 above for both additional security considerations and normative text on preventing SETs from being confused with other kinds of JWTs.
If a SET needs to be retained for audit purposes, the signature can be used to provide verification of its authenticity.
SET issuers SHOULD attempt to specialize SETs so that their content is targeted to the specific business and protocol needs of the intended SET recipients.
When sharing personally identifiable information or information that is otherwise considered confidential to affected users, SET issuers and recipients should have the appropriate legal agreements and user consent and/or terms of service in place.
The propagation of subject identifiers can be perceived as personally identifiable information. Where possible, SET issuers and recipients SHOULD devise approaches that prevent propagation -- for example, the passing of a salted hash value that requires the SET recipient to know the subject.
In some cases, it may be possible for a SET recipient to correlate different events and thereby gain information about a subject that the SET issuer did not intend to share. For example, a SET recipient might be able to use "iat" values or highly precise "toe" values to determine that two otherwise un-relatable events actually relate to the same real-world event. The union of information from both events could allow a SET recipient to de-anonymize data or recognize that unrelated identifiers relate to the same individual. SET issuers SHOULD take steps to minimize the chance of event correlation, when such correlation would constitute a privacy violation. For instance, they could use approximate values for the "toe" claim or arbitrarily delay SET issuance, where such delay can be tolerated.
IANA has registered the "events", "toe", and "txn" claims in the IANA "JSON Web Token Claims" registry [IANA.JWT.Claims] established by [RFC7519].
IANA has registered the "+jwt" structured syntax suffix [RFC6838] in the "Structured Syntax Suffix" registry [IANA.StructuredSuffix] in the manner described in [RFC6838], which can be used to indicate that the media type is encoded as a JWT.
The syntax and semantics for fragment identifiers for a specific "xxx/yyy+jwt" SHOULD be processed as follows:
For cases defined in +jwt where the fragment identifier resolves per the +jwt rules, process as specified in +jwt.
For cases defined in +jwt where the fragment identifier does not resolve per the +jwt rules, process as specified in "xxx/yyy+jwt".
This section registers the "application/secevent+jwt" media type [RFC2046] in the "Media Types" registry [IANA.MediaTypes] in the manner described in [RFC6838], which can be used to indicate that the content is a SET.
[IANA.JWT.Claims]
IANA, "JSON Web Token Claims", <http://www.iana.org/assignments/jwt>.
[IANA.MediaTypes]
IANA, "Media Types", <http://www.iana.org/assignments/media-types>.
[IANA.StructuredSuffix]
IANA, "Structured Syntax Suffix", <https://www.iana.org/assignments/ media-type-structured-suffix/>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November 2003, <https://www.rfc-editor.org/info/rfc3629>.
[RFC3986]
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <https://www.rfc-editor.org/info/rfc3986>.
[RFC5246]
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>.
[RFC6125]
Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, <https://www.rfc-editor.org/info/rfc6125>.
[RFC6749]
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://www.rfc-editor.org/info/rfc6749>.
[RFC7515]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>.
[RFC7516]
Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://www.rfc-editor.org/info/rfc7516>.
[RFC7519]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.
[RFC7525]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, <https://www.rfc-editor.org/info/rfc7525>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[JWT-BCP]
Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token Best Current Practices", Work in Progress, draft-ietf-oauth-jwt-bcp-03, May 2018.
[OpenID.BackChannel]
Jones, M. and J. Bradley, "OpenID Connect Back-Channel Logout 1.0", January 2017, <http://openid.net/specs/ openid-connect-backchannel-1_0.html>.
[OpenID.Core]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore, "OpenID Connect Core 1.0", November 2014, <http://openid.net/specs/openid-connect-core-1_0.html>.
[OpenID.RISC.Events]
Scurtescu, M., Backman, A., Hunt, P., and J. Bradley, "OpenID RISC Event Types 1.0", April 2018, <http://openid.net/specs/ openid-risc-event-types-1_0.html>.
[RFC2046]
Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", RFC 2046, DOI 10.17487/RFC2046, November 1996, <https://www.rfc-editor.org/info/rfc2046>.
[RFC6838]
Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, January 2013, <https://www.rfc-editor.org/info/rfc6838>.
[RFC7644]
Hunt, P., Ed., Grizzle, K., Ansari, M., Wahlstroem, E., and C. Mortimore, "System for Cross-domain Identity Management: Protocol", RFC 7644, DOI 10.17487/RFC7644, September 2015, <https://www.rfc-editor.org/info/rfc7644>.
[RFC8055]
Holmberg, C. and Y. Jiang, "Session Initiation Protocol (SIP) Via Header Field Parameter to Indicate Received Realm", RFC 8055, DOI 10.17487/RFC8055, January 2017, <https://www.rfc-editor.org/info/rfc8055>.
[RFC8225]
Wendt, C. and J. Peterson, "PASSporT: Personal Assertion Token", RFC 8225, DOI 10.17487/RFC8225, February 2018, <https://www.rfc-editor.org/info/rfc8225>.
Acknowledgments
The editors would like to thank the members of the IETF SCIM working group, which began discussions of provisioning events starting with draft-hunt-scim-notify-00 in 2015. The editors would like to thank the participants in the IETF id-event mailing list, the Security Events working group, and related working groups for their contributions to this specification. The specification incorporates suggestions made by many people, including Annabelle Backman, John Bradley, Alissa Cooper, Ned Freed, Dick Hardt, Russ Housley, Benjamin Kaduk, Mirja Kuehlewind, Mark Lizar, Alexey Melnikov, Andrew Nash, Eric Rescorla, Adam Roach, Justin Richer, Nat Sakimura, Marius Scurtescu, Yaron Sheffer, and Martin Vigoureux.
Authors' Addresses
Email: phil.hunt@yahoo.com
Email: morteza.ansari@cisco.com
This text describes the conversion process used to create this ebook.
The conversion process goes like follows:
Steps 2 - 8 happens inside the make-rfc-mobibook.sh script.
The conversion process goes like follows:
This program takes the title, time and logo postscript, and creates a postscript file which it then runs through ghostscript and converts it file suitable for the Kindle 3. The title can have three lines separated with "\n". Normally the top two lines contain the actual title, and third line contains the date of conversion. The time is added to the end of the page with small font, so it can be used during development phase to see which version of ebook this is (during development I did have multiple versions loaded to my Kindle and it was painful to find out which one of them is newest before this was added). The logo is ietf-logo.eps directly from the IETF web page.
The page is initially created at 2400x3200 pixel resolution and then scaled down to 25% of size meaning the final page is 600x800 pixels in size.
For RFC ebook:
For the Internet-Draft ebooks:
NCX file contains list all files and the navigation information. That is used when you press left or right arrows on the kindle to see where to move next. See make-ncx manual page for information about options.
For RFC ebook:
For the Internet-Draft ebooks:
Open package format file describes what files are in the ebook. It also contains information where to start reading and in which order entries are appearing in the book. See make-opf manual page for information about options.
For RFCs the conversion command line is:
For Internet-Drafts the conversion command line is:
This program takes the text formatted RFC or Internet-Draft and formats it to html suitable for ebooks. The first step is to remove page formatting (page breaks, page numbers, page headers and footers). In that phase it also tries to see if one textual paragraph is continuing from the previous page to the next, and if so then it will glue them together. The second phase is to go through all paragraphs and try to find out what type of paragraph it is (text, picture, header, table of contents, authors address section, terminology defination, bulleted or numbered list, references section). After this it goes through the actual text paragraphs and converts them to html suitable for their type. See rfc2html manual page for information about options.
TBF
TBF
TBF
Issues I have found when converting this to kindle 3
It seems there is maximum number of items the ncx file can have, or some other limitation in the ncx file parsing. When I included all the rfcs to the ncx file then the next and previous arrows in the kindle 3 does not work anymore. If the number if items is reduced then they start working.
When I tried to use the best compression of kindlegen, the program did create a eBook file but all the links inside the file pointed in wrong place, i.e. when you used link to go rfc5996 you ended up in the middle of rfc6020 or so.
The mobipockect supports multiple indexes and the eBook originally included titleword and full title text indexes, but those were removed as kindle 3 does not support them.
The automatic index (using the menu and selecting index) sometimes misses the last item in it. Thats why I added this conversion description to the end, so if something is missing it will be this text.
Kindle 3 does support monospace font and the screen is wide enough for 67 charactes if screen is rotated. This allows the normal 32 bit packet frame description pictures to be shown properly using the normal pre-tag. The Kindle 3 will still wrap words to the next line, and this was problematic when combined with hyphens used in pictures. To fix this all the hyphens in the text are converted to the no-breaking hyphens.
Because of the previous issue with word wrap we needed to use non-breaking hyphens, but unfortunately they do not show properly on the kindle for PC, but instead of unknown character box is shown instead.
For some reason the searching from the RFC eBook does not work on the Kindle 3.
make-ncx - Create NCX file
make-ncx [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--depth|-d depth-of-toc] [--total-page-count|-T total-page-count] [--max-page-number|-m max-page-number] [--separator|-s separator-regexp] --author|-a author --title|-t title entry ... [--class|-c class] entry ... [--in] entry ... [--out] [--autosplit|-A split-count] entry ... [--include-regexp include-regexp] entry ... [--exclude-regexp exclude-regexp] entry ... [--split-regexp split-regexp] entry ... [--input-file|-i input-file] entry ... entry ...
make-ncx --help
make-ncx takes list of ncx entries and creates NCX (Navigation Control for for XML applications Format) file out of them.
NCX is hierarchical structure, and the make-ncx supports this so that the list of entries can include --in and --out options to in and out in the hierarchy. Note, that the first item is always on level 1 and you can go in only one level per entry, i.e. adding two --in options right after each other is an error. Multiple --out options is allowed, but going out from level 1 is not allowed.
Each entry contain 4 fields separated from each other by separator regexp. The first field is the class of the entry. This can be something like "book", "toc", "entry" etc. Second field is the id of the entry. This should be something unique. Third field is the actual link inside the mobibook, i.e. "index.html", "index.html#s1000" or "rfc1234.html". Last field is the text of the entry.
If only 3 fields are given then they are assumed to be id, link and text, and the class is the one given with --class option.
If only 2 fields are given then they are assumed to be link and text, and the class is processed as with 3 fields, and id is autogenerated from the link, by removing path, prefixes and special chars.
If only one field is given then it is assumed to be link, and class and id is generated as previously, and link is converted to text by removing prefixes and removing some special charactes and replacing '/', '-', '_' to spaces.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Max depth of the NCX file. If not given this is autodetected from the options.
Sets total page count. If not given this is set to 0.
Sets max page number. If not given this is set to 0.
Separator regexp used to split entries to class, id, link and text. Defaults to ':'
Author of the publication.
Title of the publication.
Go one level into the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Go one level out in the hierarchy. This option is used inside the entry list and it affects the entries coming after it.
Set the class of the entries coming after this if no class given in the entry. This option is used inside the entry list and it affects the entries coming after it.
Starts autosplitting long list of entries, so that split-count entries are combined so that the first entry stays at current level, and all other entries are moved in one level inside the first entry. This process is repeated until --in, --out, or new --autosplit option is found. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which are matching this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Filters entries based on the regexp. Only those entries will be processed which do not match this regexp. This allows creating one entry file having all entries, and then filter them so that only parts of them are included to the final ncx file. This option is used inside the entry list and it affects the entries coming after it.
Automatically split entries to sublevels based on the regexp. This will match entries against the regexp and when first match is found it will put this entry on current level and then go down one level, and then put all further entries not matching this regexp to that level. Further matching entries are moved to the same level as the first one. This can be used in combination with --autosplit option in which case --autosplit entries will be below this, meaning the hierarchy will have 3 levels. Top level contains the entries matching this regexp. The next level contains every Nth entry and lowest level contains all other entries. Every time matching entry is found the --autosplit counter is reset.
Reads the list of options from the input-file instead of reading them from command line. The options are in the file one option at line, and are processed exactly as they would be on the command line. This means that you can give --class, --in, --autosplit etc options first and then just get the list of filenames from the file.
make-ncx --title foo \ --author bar \ toc:toc:index.html:Index \ book:rfc0001:rfc0001.html:RFC0001
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ 0000:index.html#s0000:RFC0000 \ 1000:index.html#s1000:RFC1000 \ 2000:index.html#s2000:RFC2000 \ 3000:index.html#s3000:RFC3000 \ 4000:index.html#s4000:RFC4000 \ 5000:index.html#s5000:RFC5000 \ 6000:index.html#s6000:RFC6000 \ --out \ --class book \ --autosplit 5 \ rfc0001.html rfc0002.html rfc0003.html rfc0004.html rfc0005.html \ rfc0006.html rfc0007.html rfc0008.html rfc0009.html rfc0010.html \ rfc6001.html rfc6002.html rfc6003.html rfc6004.html rfc6005.html \ rfc6006.html rfc6007.html
make-ncx --title "RFC Index" \ --author "IETF" \ "toc:toc:index.html:Table of Contents" \ --in \ --class entry \ --input-file toc-entries.txt \ --out \ --class book \ --autosplit 5 \ --input-file rfc-list.txt
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
make-opf - Create OPF file
make-opf [--help|-h] [--version|-V] [--verbose|-v] [--output|-o output-file-name] [--config config-file] [--beginning|-b first-page-filename] [--cover|-c cover-jpg-file-name] [--creator|-C creator] [--date|-D date] [--description|-d description] --id|-i id [--index|-I index-html-file-name] --language|-l language [--publisher|-p publisher] [--role|-r creator-role] [--stylesheet|-S stylesheet-css-file-name] [--subject|-s subject] --title|-t title [--toc|-T toc-ncs-file-name] filename ...
make-opf --help
make-opf takes list of html files inside the mobibook and creates a OPF (Open Packaging Format) file out of them.
Files are added to the spine in the order they appear in the command line. Note, that before any files there is --cover, --beginning and ---index pages, which always come in that order in the beginning of the book.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to stdout.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
File name inside the mobibook which is used as a beginning of the book, i.e. when book is opened it comes to this page.
File name inside the mobibook which is used as a cover page for the publication. Must be jpg file. This is mandatory for Kindle books.
Creator of the publication. Usually the name of the author.
Date of the publication.
Short description of the publication.
Unique ID for the publication.
File name inside the mobibook which is used as index. If included this is also used as table of contents.
Language tag of the publication. Typically "en".
Publisher name.
Role of the creator, i.e. author (aut), collaborator (clb), editor (edt) etc.
File name inside the mobibook which used as css stylesheet.
Subject of the publication.
Title of the publication.
File name inside the mobibook which is used as NCS table of contents file name.
make-opf.pl --title "${partial}RFC Index $d" \ --language en \ --cover rfc.jpg \ --subject Reference \ --id "$id" \ --role clb \ --creator "Tero Kivinen" \ --publisher "IETF" \ --description "All RFCs as mobibook" \ --date "$d" \ --index index.html \ --stylesheet rfc.css \ --toc rfc.ncx \ rfc*.html
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created when making RFC mobibook files for IETF use.
rfc2html - Convert RFC to simple html
rfc2html [--help|-h] [--version|-V] [--verbose|-v] [--key-index] [--navigation|-n navigation-links] [--filelist|-f filelist-file] [--rfc|-r rfc-number] [--title|-t title-prefix] [--output|-o output-file] [--config config-file] filename ...
rfc2html --help
rfc2html takes RFC txt file and converts it to simple html file.
filename is read in and new file is created so that .txt extension is removed from the filename (if it exists) and .html extesion is added.
Prints out the usage information.
Prints out the version information.
Enables the verbose prints. This option can be given multiple times, and each time it enables more verbose prints.
Output file name. Defaults to <inputfile>.txt.
Gives the RFC number of the current file. Used to make title information correct.
Gives text added to the beginning of the title, for example the file name.
Filename of the file containing list of files in the book. If given only those links pointing to files listed in this file are converted to links.
Creates navigation links at the top of the file. The navigation links text is semicolon separated list of navigation links. Each link consists of file name inside the book, and the link title. The filename can either be full filename like "index.html", or it can be relative filename like "-1" or "+100". Using this option requires that the filelist option is also used and all links given here are found from the filelist. The filelist is also used to find the current file name and then calculate relative filenames from there, i.e. "-1" means the filename in the filename list just before this file.
The filename used for searching this entry from the filelist is the output filename, and if exact match is not found then the path components are removed and file is searched again.
Create key index entries. Those are only useful for mobipacket reader, they do not work on kindle.
All options given by the command line can also be given in the configuration file. This option is used to read another configuration file in addition to the default configuration file.
Default configuration file.
Tero Kivinen <kivinen@iki.fi>.
This program was created based on the rfcmarkup version 1.90 to convert RFCs to simple html suitable for kindle ebook conversion. The rfcmarkup tries to keep formatting intact, while this actually removes things which are not needed in ebooks, i.e page breaks and page numbers, and makes text paragraphs as html paragraphs, instead of using <pre> around the whole file.